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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to pro-
vide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications and
numerical implementation, but richness and relevance of applications and imple-
mentation depend fundamentally on the structure and depth of theoretical under-
pinnings. Thus, from our point of view, the interleaving of theory and applications
and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time–frequency anal-
ysis, and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from
abstract harmonic analysis, including von Neumann algebras and the affine
group. This leads to a study of the Heisenberg group and its relationship to Gabor
systems, and of the metaplectic group for a meaningful interaction of signal
decomposition methods. The unifying influence of wavelet theory in the afore-
mentioned topics illustrates the justification for providing a means for centralizing
and disseminating information from the broader, but still focused, area of harmonic
analysis. This will be a key role of ANHA. We intend to publish with the scope and
interaction that such a host of issues demands.

vii



Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and sci-
entific phenomena, and on the solution of some of the most important problems in
mathematics and the sciences. Historically, Fourier series were developed in the
analysis of some of the classical PDEs of mathematical physics; these series were
used to solve such equations. In order to understand Fourier series and the kinds of
solutions they could represent, some of the most basic notions of analysis were
defined, e.g., the concept of “function.” Since the coefficients of Fourier series are
integrals, it is no surprise that Riemann integrals were conceived to deal with
uniqueness properties of trigonometric series. Cantor’s set theory was also devel-
oped because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of har-
monics, as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engi-
neering, mathematics, and the sciences. For example, Wiener’s Tauberian theorem
in Fourier analysis not only characterizes the behavior of the prime numbers, but
also provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal pro-
cessing, whether with the fast Fourier transform (FFT), or filter design, or the

Antenna theory
Biomedical signal processing
Digital signal processing

Fast algorithms
Gabor theory and applications

Image processing
Numerical partial differential

equations

Prediction theory
Radar applications
Sampling theory

Spectral estimation
Speech processing

Time–frequency and time-scale
analysis

Wavelet theory
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adaptive modeling inherent in time–frequency–scale methods such as wavelet
theory. The coherent states of mathematical physics are translated and modulated
Fourier transforms, and these are used, in conjunction with the uncertainty prin-
ciple, for dealing with signal reconstruction in communications theory. We are back
to the raison d’être of the ANHA series!

College Park John J. Benedetto
Series Editor

University of Maryland
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Preface

The first international conference Aspects of Time–Frequency Analysis “ATFA17”
took place during 5–7 June 2017 at the Politecnico di Torino. It was a major
international scientific event gathering many of the brightest stars in harmonic
analysis and its applications. This meeting was jointly organized by Dipartimento di
Matematica (Università di Torino), Dipartimento di Scienze Matematiche
(Politecnico di Torino) and the Numerical Harmonic Analysis Group (NuHAG,
Vienna).

The Organizing Committee consisted of Paolo Boggiatto, Elena Cordero,
Alessandro Oliaro (University di Torino), Maurice de Gosson, Hans Feichtinger
(Universität Wien), Enrico Magli, Fabio Nicola, and Anita Tabacco (Politecnico di
Torino).

The financial support was granted by local funds from the Dipartimento di
Matematica (Università di Torino) and Dipartimento di Scienze Matematiche
(Politecnico di Torino); partial support was provided by Gruppo Nazionale per
l’Analisi Matematica, la Probabilità e le loro Applicazioni—GNAMPA (INDAM).

Topics included function spaces, time–frequency analysis and Gabor analysis,
sampling theory and compressed sensing, mathematical signal processing,
microlocal analysis, pseudodifferential and Fourier integral operators, numerical
harmonic analysis, abstract harmonic analysis, and applications of harmonic anal-
ysis to quantum mechanics. This wide range of topics illustrates well the broadness
of the scope of ATFA17. The given talks formed the heart of the conference and
provided ample opportunity for fruitful discussions and led in some cases to new
collaborations.

It is our duty and pleasure to thank all participants for their contributions to the
conference program.

The present volume gathers written texts from invited participants, our choice
covering the full range of the conference topics. It thus reflects well the spirit of
ATFA17.

Organizing the volume and reminding late contributors was a challenging pro-
cess, may Elena Cordero be praised for her patience and tenacity and careful
proofreading!
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We would also like to thank the Proceedings team for having invested so much
time in very dedicated and professional work. The ATFA17 proceeding is a credit
to a large group of people, and everybody should be proud of the outcome. The
success of this conference means that we can now envisage with confidence the
next event ATFA19 to be held in Turin in June 2019. We are sure that it will be as
interesting and enjoyable as its predecessor.

Vienna, Austria Maurice de Gosson
August 2018
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Chapter 1
On the Probabilistic Cauchy Theory
for Nonlinear Dispersive PDEs

Árpád Bényi, Tadahiro Oh and Oana Pocovnicu

Abstract In this note, we review some of the recent developments in the well-
posedness theory of nonlinear dispersive partial differential equations with random
initial data.

1.1 Introduction

Nonlinear dispersive partial differential equations (PDEs) naturally appear asmodels
describing wave phenomena in various branches of physics and engineering such as
quantummechanics, nonlinear optics, plasma physics, water waves, and atmospheric
sciences. They have received wide attention from the applied science community due
to their importance in applications and have also been studied extensively from the
theoretical point of view, providing a framework for the development of analytical
ideas and tools.

The simplest yet most important examples of nonlinear dispersive PDEs are the
following nonlinear Schrödinger equations (NLS):1

1For conciseness, we restrict our attention to the defocusing case in the following.
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2 Á. Bényi et al.

{
i∂t u = Δu − |u|p−1u

u|t=0 = u0,
(t, x) ∈ R × M (1.1.1)

and nonlinear wave equations (NLW):

{
∂2

t u = Δu − |u|p−1u

(u, ∂t u)|t=0 = (u0, u1),
(t, x) ∈ R × M , (1.1.2)

whereM = R
d orTd and p > 1. Over the last several decades, multilinear harmonic

analysis has played a crucial role in building basic insights on the study of nonlinear
dispersive PDEs, settling questions on the existence of solutions to these equations,
their long-time behavior, and singularity formation. Furthermore, in recent years, a
remarkable combination of PDE techniques and probability theory has had a signif-
icant impact on the field. In this note, we go over some of the recent developments
in this direction.

In the classical deterministic well-posedness theory, the main goal is to construct
unique solutions for all initial data belonging to a certain fixed function space such
as the L2-based Sobolev spaces:

H s(M ) for (1.1.1) and Hs(M ) := H s(M ) × H s−1(M ) for (1.1.2).

In practice, however, we are often interested in the typical behavior of solutions.
Namely, even if certain pathological behavior occurs, we may be content if we can
show that almost all solutions behave well and do not exhibit such pathological
behavior. This concept may be formalized in terms of probability. For example, in
terms of well-posedness theory, onemay consider an evolution equationwith random
initial data and try to construct unique solutions in an almost sure manner. This idea
first appeared in Bourgain’s seminal paper [9], where he constructed global-in-time
solutions toNLS onT almost surelywith respect to the random initial data distributed
according to the Gibbs measure. See Sect. 1.3.2.

Such probabilistic construction of solutions with random initial data also allows
us to go beyond deterministic thresholds in certain situations. First, recall that NLS
(1.1.1) and NLW (1.1.2) enjoy the following dilation symmetry:

u(t, x) �−→ uλ(t, x) = λ
− 2

p−1 u(λ−αt, λ−1x), (1.1.3)

with α = 2 for (1.1.1) and α = 1 for (1.1.2). Namely, if u is a solution to (1.1.1) or
(1.1.2) onRd , then uλ is also a solution to the same equation onRd with the rescaled
initial data. This dilation symmetry induces the following scaling-critical Sobolev
regularity:

scrit = d

2
− 2

p − 1
(1.1.4)
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such that the homogeneous Ḣ scrit(Rd)-norm is invariant under the dilation symmetry.
This critical regularity scrit provides a threshold regularity for well-posedness and ill-
posedness of (1.1.1) and (1.1.2).2 While there is no dilation symmetry in the periodic
setting, the heuristics provided by the scaling argument also plays an important role.
On the one hand, there is a good local-in-time theory for (1.1.1) and (1.1.2) (at least
when the dimension d and the degree p are not too small). See [6, 62, 79] for the
references therein. On the other hand, it is known that (1.1.1) and (1.1.2) are ill-posed
in the supercritical regime: s < scrit. See [21, 24, 26, 48, 62, 64, 76, 90]. Regardless
of these ill-posedness results, by considering random initial data (see Sect. 1.2),
one may still prove almost sure local well-posedness3 in the supercritical regime.
This probabilistic construction of local-in-time solutions was first implemented by
Bourgain [10] in the context of NLS and by Burq–Tzvetkov [21] in the context of
NLW. In more recent years, there have also been results on almost sure global well-
posedness for these equations; see, for example, [22, 27, 47, 52, 63, 65, 79, 84]. See
also the lecture note by Tzvetkov [88]. We will discuss some aspects of probabilistic
well-posedness in Sect. 1.3.

1.2 On Random Initial Data

In this section, we go over random initial data based on random Fourier series on Td

and its analogue on R
d .

1.2.1 Random Initial Data on T
d

In the context of nonlinear dispersive PDEs, probabilistic construction of solutions
was initiated in an effort to construct well-defined dynamics almost surely with
respect to the Gibbs measure for NLS on Td , d = 1, 2 [9, 10, 54]. Before discussing
this problem for NLS on Td , let us consider the following finite dimensional Hamil-
tonian flow on R

2N :

ṗn = ∂ H

∂qn
and q̇n = − ∂ H

∂pn
, (1.2.1)

2In fact, there are other critical regularities induced by the Galilean invariance for (1.1.1) and the
Lorentzian symmetry for (1.1.2) below which the equations are ill-posed; see [25, 42, 51, 56]. We
point out, however, that these additional critical regularities are relevant only when the dimension
is low and/or the degree p is small. For example, for NLS (1.1.1) with an algebraic nonlinearity
(p ∈ 2N + 1), the critical regularity induced by the Galilean invariance is relevant (i.e., higher than
the scaling-critical regularity scrit in (1.1.4)) only for d = 1 and p = 3. For simplicity, we only
consider the scaling-critical regularities in the following.
3Namely, local-in-time existence of unique solutions almost surely with respect to given random
initial data.
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n = 1, . . . , N , with Hamiltonian H(p, q) = H(p1, . . . , pN , q1, . . . , qN ).
Liouville’s theorem states that the Lebesgue measure dpdq = ∏N

n=1 dpndqn onR2N

is invariant under the flow. Then, it follows from the conservation of the Hamiltonian
H(p, q) that the Gibbs measure:4

dρ = Z−1e−H(p,q)dpdq

is invariant under the flow of (1.2.1). Recall that NLS (1.1.1) is a Hamiltonian PDE
with the following Hamiltonian:

H(u) = 1

2

∫
M

|∇u|2dx + 1

p + 1

∫
M

|u|p+1dx . (1.2.2)

Moreover, the mass M(u) defined by

M(u) = 1

2

∫
M

|u|2dx (1.2.3)

is conserved under the dynamics of (1.1.1). Then, by drawing an analogy to the finite
dimensional case, one may expect that the Gibbs measure:5

“dρ = Z−1e−H(u)−M(u)du” (1.2.4)

is invariant under the flow of (1.1.1). Here, the expression in (1.2.4) is merely formal,
where “du” denotes the nonexistent Lebesgue measure on an infinite dimensional
phase space.

Wefirst introduce a family ofmean-zeroGaussianmeasuresμs , s ∈ R, on periodic
distributions on T

d , formally given by

dμs = Z−1e− 1
2 ‖u‖2Hs du = Z−1

∏
n∈Zd

e− 1
2 〈n〉2s |̂u(n)|2dû(n), (1.2.5)

where 〈 · 〉 = (1 + | · |2) 1
2 . As we see in (1.2.7) below, the Gibbs measure ρ is

constructed as the Gaussian measure μ1 with a weight. While the expression
dμs = Z−1 exp(− 1

2‖u‖2H s )du may suggest thatμs is aGaussianmeasure on H s(Td),
we need to enlarge a space in order to make sense of μs as a countably additive
probability measure. In fact, the Gaussian measure μs defined above is the induced
probability measure under the following map:6

4Hereafter, we use Z to denote various normalizing constants so that the resulting measure is a
probability measure provided that it makes sense.
5Here, we added the mass in the exponent to avoid a problem at the zeroth frequency in (1.2.8)
below.
6In the following, we drop the harmless factor of 2π .
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ω ∈ Ω �−→ uω(x) = u(x;ω) =
∑
n∈Zd

gn(ω)

〈n〉s
ein·x , (1.2.6)

where {gn}n∈Zd is a sequence of independent standard complex-valued Gaussian
random variables on a probability space (Ω,F , P). It is easy to check that the
random function uω in (1.2.6) lies in

Hσ (Td) for σ < s − d

2
but not in H s− d

2 (Td),

almost surely. Moreover, for the same range of σ , μs is a Gaussian probability
measure on Hσ (Td) and the triplet (H s(Td), Hσ (Td), μs) forms an abstract Wiener
space. See [39, 49].Note that, when s = 1, the randomFourier series (1.2.6) basically
corresponds to the Fourier–Wiener series for the Brownian motion. See [4] for more
on this.

By restricting our attention toTd , we substitute the expressions (1.2.2) and (1.2.3)
in (1.2.4). Then, we formally obtain

dρ = Z−1e− 1
p+1

∫ |u|p+1

e− 1
2 ‖u‖2

H1 du

= Z−1e− 1
p+1

∫ |u|p+1

dμ1, (1.2.7)

where μ1 is as in (1.2.5) with s = 1. When d = 1, it is easy to see that the Gibbs
measure ρ is a well-defined probability measure, absolutely continuous with respect
to the Gaussian measure μ1. In particular, it is supported on Hσ (T) for any σ < 1

2 .
When d = 2, a typical element under μ1 lies in H−ε(T2) \ L2(T2) for any ε > 0.

As such, the weight e− 1
p+1

∫ |u|p+1

in (1.2.7) equals 0 almost surely and hence the
expression (1.2.7) for ρ does not make sense as a probability measure. Nonetheless,
when p ∈ 2N + 1, one can apply a suitable renormalization (the Wick ordering) and
construct the Gibbs measure ρ associated with the Wick-ordered Hamiltonian such
that ρ is absolutely continuous to μ1.7 See [10, 70, 71] for more on the renormaliza-
tion in the two-dimensional case. This shows that when d = 1, 2, it is of importance
to study the dynamical property of NLS (1.1.1) with the random initial data uω

0 dis-
tributed according to the Gaussian measure μ1, namely given by the random Fourier
series (1.2.6) with s = 1:

uω
0 (x) =

∑
n∈Zd

gn(ω)

〈n〉 ein·x ∈ H 1− d
2 −ε(Td) \ H 1− d

2 (Td) (1.2.8)

almost surely for any ε > 0. In [10], Bourgain studied the (renormalized) cubic
NLS on T

2 with the random initial data (1.2.8). Recalling that the two-dimensional

7When d ≥ 3, it is known that the Gibbs measure ρ can be constructed only for d = 3 and p = 3.
In this case, the resulting Gibbs measure ρ is not absolutely continuous with respect to the Gaussian
measureμ1. See [2] for the references therein, regarding the construction of the Gibbs measure (the
Φ4

3 measure) in the real-valued setting.
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cubic NLS is L2-critical, we see that this random initial data uω
0 lies slightly below

the critical regularity.8 Nonetheless, by combining the deterministic analysis (the
Fourier restriction norm method introduced in [8]) with the probabilistic tools, in
particular, the probabilistic Strichartz estimates (Lemma 1.3), he managed to prove
almost sure local well-posedness with respect to the random initial data uω

0 in (1.2.8).
In the context of the cubic NLW on a three-dimensional compact Riemannian

manifold M , Burq–Tzvetkov [21] considered the Cauchy problem with a more
general class of random initial data. In particular, given a rough initial data (u0, u1) ∈
Hs(M ) with s < scrit = 1

2 , they introduced a randomization (uω
0 , uω

1 ) of the given
initial data (u0, u1) and proved almost sure local well-posedness with respect to this
randomization. For simplicity, we discuss this randomization for a single function
u0 on Td in the following. Fix u0 ∈ H s(Td). Then, we define a randomization uω

0 of
u0 by setting

uω
0 (x) :=

∑
n∈Zd

gn(ω)̂u0(n)ein·x , (1.2.9)

where û0(n) denotes the Fourier coefficient of u0 and {gn}n∈Zd is a sequence of
independent mean-zero complex-valued random variables with bounded moments
up to a certain order.9 Note that the random Fourier series in (1.2.6) and (1.2.8)
can be viewed as a randomization of the particular function u0 with the Fourier
coefficient 〈n〉−s by independent standard Gaussian random variables {gn}n∈Zd . The
main point of the randomization (1.2.9) is that while the randomized function uω

0 does
not enjoy any smoothing in terms of differentiability, it enjoys a gain of integrability
(Lemma 1.2).

1.2.2 Probabilistic Strichartz Estimates

In this subsection, we discuss the effect of the randomization (1.2.9) introduced in
the previous subsection. For simplicity, we further assume that the probability distri-
butions μ(1)

n and μ(2)
n of the real and imaginary parts of gn in (1.2.9) are independent

and satisfy ∣∣∣∣
∫
R

eγ x dμ( j)
n (x)

∣∣∣∣ ≤ ecγ 2
(1.2.10)

for all γ ∈ R, n ∈ Z
d , j = 1, 2. Note that (1.2.10) is satisfied by standard complex-

valuedGaussian randomvariables, Bernoulli randomvariables, and any randomvari-

8In terms of the Besov spaces Bσ
p,∞, p < ∞, we see that uω

0 in (1.2.8) lies almost surely in the

critical spaces B0
2,∞. See [4].

9In the real-valued setting, we also need to impose that g−n = gn so that, given a real-valued
function u0, the resulting randomization uω

0 remains real-valued. A similar comment applies to the
randomization (1.2.13) introduced for functions on R

d .
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ables with compactly supported distributions. Under this extra assumption (1.2.10),
we have the following estimate. See [21] for the proof.

Lemma 1.1 Assume (1.2.10). Then, there exists C > 0 such that∥∥∥∥ ∑
n∈Zd

gn(ω)cn

∥∥∥∥
L p(Ω)

≤ C
√

p‖cn‖�2n(Z
d )

for all p ≥ 2 and {cn} ∈ �2(Zd).

When {gn}n∈Zd is a sequence of independent standard Gaussian random variables,
Lemma 1.1 follows from the Wiener chaos estimate (see Lemma 1.4 below) with
k = 1.

Given u0 ∈ H s(Td), it is easy to see that its randomization uω
0 in (1.2.9) lies in

H s(Td) almost surely. One can also show that, under some non-degeneracy con-
dition, there is no smoothing upon randomization in terms of differentiability; see,
for example, Lemma B.1 in [21]. The main point of the randomization (1.2.9) is its
improved integrability.

Lemma 1.2 Given u0 ∈ L2(Td), let uω
0 be its randomization defined in (1.2.9), sat-

isfying (1.2.10). Then, given finite p ≥ 2, there exist C, c > 0 such that

P
(
‖uω

0 ‖L p > λ
)

≤ Ce−cλ2‖u0‖−2
L2

for all λ > 0. In particular, uω
0 lies in L p(Td) almost surely.

Such gain of integrability is well known for random Fourier series; see, for exam-
ple, [3, 46, 78]. The proof of Lemma 1.2 is standard and follows from Minkowski’s
integral inequality, Lemma 1.1, and Chebyshev’s inequality. See [5, 21, 27]. By a
similar argument, one can also establish the following probabilistic improvement of
the Strichartz estimates.

Lemma 1.3 Given u0 onTd , let uω
0 be its randomization defined in (1.2.9), satisfying

(1.2.10). Then, given finite q ≥ 2 and 2 ≤ r ≤ ∞, there exist C, c > 0 such that

P
(
‖e−i tΔuω

0 ‖Lq
t Lr

x ([0,T ]×Td ) > λ
)

≤ C exp

(
− c

λ2

T
2
q ‖u0‖2H s

)

for all T > 0 and λ > 0 with (i) s = 0 if r < ∞ and (ii) s > 0 if r = ∞.

By setting λ = T θ‖u0‖L2 , we have

‖e−i tΔuω
0 ‖Lq

t Lr
x ([0,T ]×Td ) � T θ‖u0‖L2(Td ) (1.2.11)

outside a set of probability at most C exp
( − cT 2θ− 2

q
)
. Note that, as long as θ < 1

q ,
this probability can be made arbitrarily small by letting T → 0. We can interpret
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(1.2.11) as the probabilistic improvement of the usual Strichartz estimates, where
the indices q and r satisfy certain relations10 and the resulting estimates come with
possible loss of derivatives. See [16, 43]. In Lemma1.3,we only stated the probabilis-
tic Strichartz estimates for the Schrödinger equation. Similar probabilistic Strichartz
estimates also hold for the wave equation. See [21, 22, 79].

On the one hand, the probabilistic Strichartz estimates in Lemma 1.3 allow us
to exploit the randomization at the linear level. On the other hand, the following
Wiener chaos estimate ([83, Theorem I.22]) allows us to exploit the randomization
at a multilinear level. See also [86, Proposition 2.4].

Lemma 1.4 Let {gn}n∈Zd be a sequence of independent standard Gaussian random
variables. Given k ∈ N, let {Pj } j∈N be a sequence of polynomials in ḡ = {gn}n∈Zd

of degree at most k. Then, for p ≥ 2, we have

∥∥∥∥∑
j∈N

Pj (ḡ)

∥∥∥∥
L p(Ω)

≤ (p − 1)
k
2

∥∥∥∥∑
j∈N

Pj (ḡ)

∥∥∥∥
L2(Ω)

.

This lemma is a direct corollary to the hypercontractivity of the Ornstein–
Uhlenbeck semigroup due to Nelson [59]. It allows us to prove the following prob-
abilistic improvement of Young’s inequality. Such a probabilistic improvement was
essential in the probabilistic construction of solutions to the (renormalized) cubic
NLS onTd , d = 1, 2, in a low regularity setting [10, 27]. For simplicity, we consider
a trilinear case.

Lemma 1.5 Let an, bn, cn ∈ �2(Zd;C). Given a sequence {gn}n∈Zd of independent
standard complex-valued Gaussian random variables, define aω

n = gnan, bω
n = gnbn,

and cω
n = gncn, n ∈ Z

d . Then, given ε > 0, there exists a set Ωε ⊂ Ω with P(Ωc
ε ) <

ε and Cε > 0 such that11

∥∥aω
n ∗ bω

n ∗ cω
n

∥∥
�2

≤ Cε‖an‖�2‖bn‖�2‖cn‖�2 (1.2.12)

for all ω ∈ Ωε.

The proof of Lemma 1.5 is immediate from the following tail estimate:

P

(∣∣∣∑
j∈N

Pj (ḡ)

∣∣∣ > λ

)
≤ C exp

(
− c

∥∥∥ ∑
j∈N

Pj (ḡ)

∥∥∥− 2
k

L2(Ω)
λ

2
k

)
,

which is a consequence of Lemma 1.4 andChebyshev’s inequality. Note that Young’s
inequality (without randomization) only yields

∥∥an ∗ bn ∗ cn

∥∥
�2

≤ ‖an‖�2‖bn‖�1‖cn‖�1 .

10See (1.2.16) below for the scaling condition on R
d .

11One can choose Cε = ( 1
c log C

ε

) 3
2 .
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Recalling that �1 ⊂ �2,we see that there is a significant improvement in (1.2.12) under
randomization of the sequences, which was a key in establishing crucial nonlinear
estimates in a probabilistic manner in [10, 27].

1.2.3 Random Initial Data on R
d

We conclude this section by briefly going over the randomization of a function on
R

d analogous to (1.2.9) on T
d . See [5, 52, 92]. On compact domains, there is a

countable basis of eigenfunctions of the Laplacian and thus there is a natural way
to introduce a randomization via (1.2.9). On the other hand, on R

d , there is no
countable basis of L2(Rd) consisting of eigenfunctions of the Laplacian and hence
there is no “natural” way to introduce a randomization. In the following, we discuss a
randomization adapted to the so-called Wiener decomposition [89] of the frequency
space: Rd = ⋃

n∈Zd Qn , where Qn is the unit cube centered at n ∈ Z
d .

Let ψ ∈ S (Rd) such that

suppψ ⊂ [−1, 1]d and
∑
n∈Zd

ψ(ξ − n) ≡ 1 for any ξ ∈ R
d .

Then, given a function u0 on R
d , we have

u0 =
∑
n∈Zd

ψ(D − n)u0,

where ψ(D − n) is defined by ψ(D − n)u0(x) = ∫
Rd ψ(ξ − n)̂u0(ξ)eix ·ξ dξ ,

namely the Fourier multiplier operator with symbol NQn conveniently smoothed.
This decomposition leads to the following randomization of u0 adapted to theWiener
decomposition. Let {gn}n∈Zd be a sequence of independent mean-zero complex-
valued random variables as in (1.2.9). Then, we can define the Wiener random-
ization12 of u0 by

uω
0 :=

∑
n∈Zd

gn(ω)ψ(D − n)u0. (1.2.13)

Compare this with the randomization (1.2.9) on Td . Under the assumption (1.2.10),
Lemmas 1.2 and 1.3 also hold for the Wiener randomization (1.2.13) of a given
function on R

d . The proofs remain essentially the same with an extra ingredient of
the following version of Bernstein’s inequality:

‖ψ(D − n)u0‖Lq (Rd ) � ‖ψ(D − n)u0‖L p(Rd ), 1 ≤ p ≤ q ≤ ∞, (1.2.14)

12It is also called the unit-scale randomization in [33].



10 Á. Bényi et al.

for all n ∈ Z
d . The point of (1.2.14) is that once a function is (roughly) restricted

to a unit cube, we do not need to lose any derivative to go from the Lq -norm to the
L p-norm, q ≥ p. See [5] for the proofs of the analogues of Lemmas 1.2 and 1.3.

Note that the probabilistic Strichartz estimates in Lemma 1.3 hold only locally
in time. On T

d , this does not cause any loss since the usual deterministic Strichartz
estimates also hold only locally in time. On the other hand, the Strichartz estimates
on Rd hold globally in time:

‖e−i tΔu0‖Lq
t Lr

x (R×Rd ) � ‖u0‖L2
x (R

d ) (1.2.15)

for any Schrödinger admissible pair (q, r), satisfying

2

q
+ d

r
= d

2
(1.2.16)

with 2 ≤ q, r ≤ ∞ and (q, r, d) �= (2,∞, 2). By incorporating the global-in-time
estimate (1.2.15), one can also obtain the following global-in-time probabilistic
Strichartz estimates.

Lemma 1.6 Given u0 ∈ L2(Rd), let uω
0 be its Wiener randomization defined in

(1.2.13), satisfying (1.2.10). Given a Schrödinger admissible pair (q, r) with q, r <

∞, let r̃ ≥ r . Then, there exist C, c > 0 such that

P
(
‖e−i tΔuω

0 ‖Lq
t Lr̃

x (R×Rd ) > λ
)

≤ Ce−cλ2‖u0‖−2
L2

for all λ > 0.

As in the periodic setting, similar global-in-time probabilistic Strichartz estimates
also hold for the wave equation. See [52, 65, 79].

Remark 1.1 (i) As we point out below, the Wiener randomization is special among
other possible randomizations stemming from functions spaces in time–frequency
analysis. Recall the following definition of the modulation spaces in time–frequency
analysis [35–37]. Let 0 < p, q ≤ ∞ and s ∈ R; M p,q

s consists of all tempered dis-
tributions u ∈ S ′(Rd) for which the (quasi) norm

‖u‖M p,q
s (Rd ) := ∥∥〈n〉s‖ψ(D − n)u‖L p

x (Rd )

∥∥
�

q
n (Zd )

is finite, where ψ(D − n) is as above. In particular, we see that the Wiener ran-
domization (1.2.13) based on the unit cube decomposition of the frequency space
is very natural from the perspective of time–frequency analysis associated with the
modulation spaces.

(ii) Let ϕ0, ϕ ∈ S (Rd) such that suppϕ0 ⊂ {|ξ | ≤ 2}, suppϕ ⊂ { 12 ≤ |ξ | ≤ 2}, and
ϕ0(ξ) + ∑∞

j=1 ϕ(2− jξ) ≡ 1. With ϕ j (ξ) = ϕ(2− jξ), one may consider the follow-
ing decomposition of a function:
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u0 =
∞∑
j=0

ϕ j (D)u0 (1.2.17)

and introduce the following randomization:

uω
0 :=

∞∑
j=0

gn(ω)ϕ j (D)u0.

Note that (1.2.17) can be viewed as a decomposition associated with the Besov
spaces. In view of the Littlewood–Paley theory, such a randomization does not yield
any improvement on differentiability or integrability and thus it is of no interest.

(iii) Consider the following wavelet series of a function:

u0 =
∑
λ∈�

〈u0, ψλ〉ψλ, (1.2.18)

where {ψλ}λ∈� is a wavelet basis of L2(Rd). One may also fancy the following
randomization based on the wavelet expansion (1.2.18):

uω
0 :=

∑
λ∈�

gλ(ω)〈u0, ψλ〉ψλ. (1.2.19)

Under some regularity assumption on ψλ, we have the following characterization of
the L p-norm [55, Chapter 6]:

‖uω
0 ‖L p(Rd ) ∼

∥∥∥∥
( ∑

λ∈�

|gλ(ω)|2|〈u0, ψλ〉|2|ψλ(x)|2
) 1

2
∥∥∥∥

L p(Rd )

(1.2.20)

for 1 < p < ∞. For example, if {gλ}λ∈� is a sequence of independent Bernoulli
random variables, then it follows from (1.2.20) that ‖uω

0 ‖L p ∼ ‖u0‖L p and hence we
see no improvement on integrability under the randomization (1.2.19).

1.3 Probabilistic Well-Posedness of NLW and NLS

In this section, we go over some aspects of probabilistic well-posedness of nonlinear
dispersive PDEs. In recent years, there has been an increasing number of probabilistic
well-posedness results for these equations. See [6, 63, 72, 79] and the references
therein.
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1.3.1 Basic Almost Sure Local Well-Posedness Argument

In the following, we consider the defocusing13 cubic NLW on T
3:

{
∂2

t u = Δu − u3

(u, ∂t u)|t=0 = (u0, u1) ∈ Hs(T3),
(t, x) ∈ R × T

3. (1.3.1)

We say that u is a solution to (1.3.1) if u satisfies the following Duhamel formulation:

u(t) = S(t)(u0, u1) −
∫ t

0

sin((t − t ′)|∇|)
|∇| u3(t ′)dt ′, (1.3.2)

where S(t) denotes the linear wave operator:

S(t) (u0, u1) := cos(t |∇|)u0 + sin(t |∇|)
|∇| u1.

In view of (1.1.4), we see that the scaling-critical regularity for (1.3.1) is scrit = 1
2 .

When s ≥ 1
2 , local well-posedness of (1.3.1) inHs(T3) follows from a standard fixed

point argument with the (deterministic) Strichartz estimates. Moreover, the equation
(1.3.1) is known to be ill-posed in Hs(T3) for s < 1

2 [21, 26, 90]. In the following,

we take initial data (u0, u1) to be inHs(T3) \ H 1
2 (T3) for some appropriate s < 1

2 .

Fix (u0, u1) ∈ Hs(T3) \ H 1
2 (T3). We apply the randomization defined in (1.2.9)

to (u0, u1). More precisely, we set

(uω
0 , uω

1 )(x) :=
( ∑

n∈Z3

g0,n(ω)̂u0(n)ein·x ,
∑
n∈Z3

g1,n(ω)̂u1(n)ein·x
)

, (1.3.3)

where {g j,n} j=0,1,n∈Z3 is a sequence of independent mean-zero complex-valued ran-
dom variables conditioned that g j,−n = g j,n , j = 0, 1, n ∈ Z

3. Moreover, we assume
the exponential moment bound of type (1.2.10).

Theorem 1.1 Let s ≥ 0. Then, the cubic NLW (1.3.1) on T
3 is almost surely locally

well-posed with respect to the randomization (1.3.3). Moreover, the solution u lies
in the class:

S(t)(uω
0 , uω

1 ) + C([0, Tω]; H 1(T3)) ⊂ C([0, Tω]; L2(T3))

for Tω = Tω(u0, u1) > 0 almost surely.

This theorem is implicitly included in [22]. See also [79]. We point out, however,
that the main goal of the paper [22] is to establish almost sure global well-posedness

13For the local-in-time argument, the defocusing/focusing nature of the equation does not play any
role.



1 On the Probabilistic Cauchy Theory for Nonlinear Dispersive PDEs 13

(see the next subsection) and to introduce the notion of probabilistic continuous
dependence. See [22] for details.

In view of the Duhamel formulation (1.3.2), we write the solution u as

u = z + v, (1.3.4)

where z = zω = S(t)(uω
0 , uω

1 ) denotes the random linear solution. Then, instead of
studying the original Eq. (1.3.1), we study the equation satisfied by the nonlinear
part v: {

∂2
t v = Δv − (v + zω)3

(v, ∂t v)|t=0 = (0, 0)
(1.3.5)

by viewing the random linear solution zω as an explicit external source term. Given
ω ∈ Ω , define �ω by

�ω(v)(t) = −
∫ t

0

sin((t − t ′)|∇|)
|∇| (v + zω)3(t ′)dt ′. (1.3.6)

Our main goal is to show that

v = �ω(v) (1.3.7)

on some random time interval [0, Tω]with Tω > 0 almost surely.14 Then, the solution
u to (1.3.1) with the randomized initial data (uω

0 , uω
1 ) in (1.3.3) is given by (1.3.4).

Given T > 0,we use the following shorthand notations:CT B = C([0, T ]; B) and
Lq

T B = Lq([0, T ]; B).Wealso denote by B1 ⊂ CT Ḣ 1 the unit ball inCT Ḣ 1 centered
at the origin. Suppose that (u0, u1) ∈ H0(T3). Then, by Sobolev’s inequality, we have

‖�ω(v)‖CT Ḣ 1 ≤ ‖v + zω‖3L3
T L6

x
≤ C1T ‖v‖3CT Ḣ 1 + C2‖zω‖3L3

T L6
x

≤ C1T ‖v‖3CT Ḣ 1 + 1
2 ,

where the last inequality holds on a set ΩT thanks to the probabilistic Strichartz
estimate (i.e., an analogue to Lemma 1.3 for the linear wave equation). Moreover,
we have

P(Ωc
T ) → 0 as T → 0. (1.3.8)

By taking T > 0 sufficiently small, we conclude that

‖�ω(v)‖CT Ḣ 1 ≤ 1 (1.3.9)

14Needless to say, the solution v is random since it depends on the random linear solution zω. For
simplicity, however, we suppress the superscript ω.
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for any v ∈ B1 and ω ∈ ΩT .
Similarly, by taking T > 0 sufficiently small, the following difference estimate

holds:

‖�ω(v1) − �ω(v2)‖CT Ḣ 1 ≤ CT
1
3

( 2∑
j=1

T
2
3 ‖v j‖2CT Ḣ 1 + ‖zω‖2L3

T L6
x

)
‖v1 − v2‖CT Ḣ 1

≤ 1
2‖v1 − v2‖CT Ḣ 1 (1.3.10)

for any v1, v2 ∈ B1 and ω ∈ ΩT . Therefore, from (1.3.9) and (1.3.10), we conclude
that, given T > 0 sufficiently small,�ω is a contraction on B1 for anyω ∈ ΩT . By the
fundamental theorem of calculus: v(t) = ∫ t

0 ∂t v(t ′)dt ′ and Minkowski’s inequality,
we also conclude that v ∈ C([0, T ]; H 1(T3)).

Now, set Σ = ⋃
0<T �1 ΩT . Then, for each ω ∈ Σ , there exists a unique solution

v to (1.3.7) on [0, Tω]with Tω > 0.Moreover, it follows from (1.3.8) that P(Σ) = 1.
This proves Theorem 1.1.

The main point of the argument above is (i) the decomposition (1.3.4) and (ii)
the gain of integrability for the random linear solution z thanks to the probabilistic
Strichartz estimates. Then, the gain of one derivative in theDuhamel integral operator
in (1.3.6) allows us to conclude the desired result in a straightforwardmanner. Lastly,
note that the same almost sure local well-posedness result holds for the cubic NLW
posed on R

3 with the verbatim proof.

Remark 1.2 The decomposition (1.3.4) allows us to separate the unknown part v
from the explicitly known random part z and exploit the gain of integrability on
z. This idea goes back to the work of McKean [54] and Bourgain [10]. See also
Burq–Tzvetkov [21]. In the field of stochastic parabolic PDEs, this decomposition
is usually referred to as the Da Prato–Debussche trick [28].

Next, let us briefly discuss the situation for the cubic NLS on R
3:

{
i∂t u = Δu − |u|2u

u|t=0 = u0 ∈ H s(R3),
(t, x) ∈ R × R

3. (1.3.11)

As before, the scaling-critical regularity for (1.3.11) is scrit = 1
2 and local well-

posedness of (1.3.11) in H s(R3), s ≥ 1
2 , follows froma standard fixed point argument

with the Strichartz estimates. Moreover, the Eq. (1.3.11) is known to be ill-posed
in H s(R3) for s < 1

2 . Nonetheless, we have the following almost sure local well-
posedness.

Theorem 1.2 Let 1
4 < s < 1

2 . Given u0 ∈ H s(R3), let uω
0 be its Wiener randomiza-

tion defined in (1.2.13), satisfying (1.2.10). Then, the cubic NLS (1.3.11) on R
3 is

almost surely locally well-posed with respect to the random initial data uω
0 . Moreover,

the solution u lies in the class:
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e−i tΔuω
0 + C([0, T ]; H

1
2 (R3)) ⊂ C([0, T ]; H s(R3))

for Tω = Tω(u0) > 0 almost surely.

As in the case of the cubic NLW, write the solution u as

u = z + v, (1.3.12)

where z denotes the random linear solution:

z = zω = e−i tΔuω
0 . (1.3.13)

Then, the residual part v satisfies the following perturbed NLS:

{
i∂t v = Δv − |v + z|2(v + z)

v|t=0 = 0.
(1.3.14)

In terms of the Duhamel formulation, we have

v(t) = i
∫ t

0
e−i(t−t ′)Δ|v + z|2(v + z)(t ′)dt ′. (1.3.15)

A key difference from (1.3.6) is that there is no explicit smoothing on the Duhamel
integral operator in (1.3.15). Hence, we need another mechanism to gain derivatives.
For this purpose, we employ the Fourier restriction norm method introduced by
Bourgain [8]. The basic strategy for proving Theorem 1.2 is to expand the product
|v + z|2(v + z) in (1.3.15) and carry out case-by-case analysis on terms of the form:

vvv, vvz, vzz, . . . , zzz. (1.3.16)

In the following, we describe the main idea of the argument. See [6] for the full
details. By the duality, it suffices to estimate

∣∣∣∣
∫ T

0

∫
R3

〈∇〉 1
2 (v1v2v3)v4dxdt

∣∣∣∣, (1.3.17)

where v j = v or z, j = 1, 2, 3, and v4 denotes the duality variable at the spatial
regularity 0. By applying the dyadic decompositions to each function in (1.3.17), we
separate the argument into several cases. For the sake of the argument, let us denote by
N j the dyadic size of the spatial frequencies of v j after the dyadic decomposition and
assume N1 ∼ N4 ≥ N2 ≥ N3.15 (i)When N2, N3 � N θ

1 for some suitable θ = θ(s) ∈
(0, 1), we can move the derivatives from v1 to v2 and v3. (ii) When N2, N3 � N θ

1 ,

15Note that, due to the spatial integration in (1.3.17), the largest two frequencies of the dyadic pieces
must be comparable.
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we group v1v2 and v3v4 and apply the bilinear refinement of the Strichartz estimate
[12, 77], which allows us to gain some derivative. (iii) When N2 � N θ

1 ≥ N3, we
combine (i) and (ii). This allows us to prove Theorem 1.2.

Remark 1.3 (i) Note that we did not need to perform any refined case-by-case anal-
ysis in proving Theorem 1.1 for the cubic NLW (1.3.1). This is thanks to the explicit
gain of one derivative in the Duhamel integral operator (1.3.6).

(ii) One may also study almost sure local well-posedness of the cubic NLS posed
on T3 below the scaling-critical regularity. In this case, the argument becomes more
involved due to the lack of the bilinear refinement of the Strichartz estimate, which
was the main tool for gaining derivatives in the problem onR3. See, for example, [10,
27, 58]. We point out that, in these works, the random initial data was taken to be of
the specific form (1.2.6). Then, the main ingredient is the probabilistic improvement
of Young’s inequality (Lemma 1.5), which allows us to save some summations. Note
that with the random initial data of the form (1.2.6), this probabilistic improvement
on summability allows us to gain derivatives thanks to the reciprocal powers of the
spatial frequencies in (1.2.6). At this point, however, for the general randomized
initial data (1.2.9) on T

d , it is not clear to us how to prove almost sure local well-
posedness below the critical regularity.

Remark 1.4 (i) The solution map: (u0, u1) �→ u for (1.3.1) is classically ill-posed
when s < scrit = 1

2 . The decomposition (1.3.4) tells us that we can decompose the
ill-posed solution map as

(uω
0 , uω

1 )
1�−→ zω 2�−→ v �−→ u = zω + v, (1.3.18)

where the first step 1 involves stochastic analysis (i.e., the probabilistic Strichartz
estimates) and the second step 2 is entirely deterministic. Moreover, there is con-
tinuous dependence of the nonlinear part v on the random linear part z in the second
step. See Remark 1.5 for more on this issue.

(ii) By a similar argument, one can prove almost sure local well-posedness with
initial data of the form: “a smooth deterministic function + a rough random pertur-
bation.” For example, given deterministic (v0, v1) ∈ H1(T3), consider the random
initial data (v0, v1) + (uω

0 , uω
1 ) for (1.3.1), where (uω

0 , uω
1 ) is as in (1.3.3). Then, the

only modification in the proof of Theorem 1.1 appears in that the initial data for
the perturbed equation (1.3.5) is now given by (v0, v1). In this case, we have the
following decomposition of the ill-posed solution map:

(v0 + uω
0 , v1 + uω

1 ) �−→ (v0, v1, zω) �−→ v �−→ u = zω + v.

See [69] for a further discussion on the random initial data of this type.

(iii) In Theorems 1.1 and 1.2, we used the term “almost sure local well-posedness”
in a loose manner, following Bourgain. In fact, what is claimed in Theorems 1.1 and
1.2 is simply almost sure local existence of unique solutions. We point out, however,
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that the decompositions (1.3.4) and (1.3.12) provide continuous dependence of the
nonlinear part v (in a higher regularity) on the random linear solution z as mentioned
above.

(iv) In [22], Burq–Tzvetkov introduced the notion of probabilistic continuous depen-
dence of u on the random initial data, thus providing a more complete notion of
probabilistic well-posedness.

(v) Unlike the usual deterministic theory, the approximation property of the random
solution uω constructed in Theorem 1.1 by smooth solutions crucially depends on
a method of approximation. On the one hand, Xia [90] showed that the solution
map: (u0, u1) �→ u for (1.3.1) is discontinuous everywhere in Hs(T3) when s <
1
2 . This in particular shows that the solution map for (1.3.1), a priori defined on
smooth functions, does not extend continuously to rough functions, including the
case of the random initial data (uω

0 , uω
1 ) considered in Theorem 1.1.16 On the other

hand, by considering mollified initial data (ηε ∗ uω
0 , ηε ∗ uω

1 ), one can show that
the corresponding smooth solution uε converges almost surely to the solution uω

constructed in Theorem 1.1. Moreover, the limit is independent of the mollification
kernel η. See [64, 88, 90].

(vi) In [63], Oh–Okamoto–Pocovnicu proved almost sure local well-posedness of
the following NLS without gauge invariance:

i∂t u = Δu − |u|p

in the regime where nonexistence of solutions is known. This shows an example of a
probabilistic argument overcoming a stronger form of ill-posedness than discontinu-
ity of a solution map (which is the case for NLW (1.3.1) and NLS (1.3.11) discussed
above). In the same paper, the authors also discussed a probabilistic construction of
finite time blow-up solutions below the scaling-critical regularity.

(vii) In this section, we discussed almost sure local well-posedness based on a simple
Banach fixed point argument. There are also probabilistic constructions of local-in-
time solutions which are not based on a contraction argument. See [61, 75, 82]. See
also Sect. 1.3.3.

1.3.2 On Almost Sure Global Well-Posedness

Before going over some of the almost sure global well-posedness results in the
literature, we point out that, in the stochastic setting, it suffices to prove the following
statement to conclude almost sure global well-posedness.

Lemma 1.7 (“Almost” almost sure global well-posedness) Given T > 0 and ε > 0,
there exists ΩT,ε ⊂ Ω with P(Ωc

T,ε) < ε such that a solution uω exists on [−T, T ]
for any ω ∈ ΩT,ε.

16In fact, almost sure norm inflation at (uω
0 , uω

1 ) holds.
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Then, almost sure globalwell-posedness follows fromLemma1.7 andBorel–Cantelli
lemma.

In [9], Bourgain studied the invariance property of the Gibbs measure ρ in (1.2.7)
for NLS (1.1.1) on T. The main difficulty of this problem is the construction of
global-in-time dynamics in the support of the Gibbs measure, i.e., in Hσ (T), σ < 1

2 .
By introducing the Fourier restriction norm method, Bourgain [8] proved local well-
posedness of NLS below H

1
2 (T). Global well-posedness, however, was obtained

only for the cubic case (p = 3). In [9], Bourgain combined PDE analysis with ideas
from probability and dynamical systems and proved global well-posedness of NLS
almost surely with respect to the Gibbs measure ρ. The main idea is to use the
(formal) invariance of the Gibbs measure ρ as a replacement of a conservation law,
providing a control on the growth of the relevant norm of solutions in a probabilistic
manner. More precisely, he exploited the invariance of the truncated Gibbs measure
ρN associated with the truncated NLS:

i∂t uN = ΔuN − PN (|PN uN |p−1PN uN ), (1.3.19)

wherePN denotes theDirichlet projection onto the frequencies {|n| ≤ N }, and proved
the following growth bound; given N ∈ N, T > 0, and ε > 0, there exists ΩN ,T,ε ⊂
Ω with P(Ωc

N ,T,ε) < ε such that for ω ∈ ΩN ,T,ε, the solution uω
N to (1.3.19) satisfies

‖uN (t)‖Hσ ≤ C
(
log

T

ε

) 1
2

(1.3.20)

for any t ∈ [−T, T ], where C is independent of N . Combining (1.3.20) with a stan-
dard PDE analysis, the same estimate also holds for the solution u to (1.1.1) on a
set ΩT,ε with P(Ωc

T,ε) < ε, yielding Lemma 1.7. We point out that invariance of the
Gibbs measure ρ follows easily once we have well-defined global-in-time dynam-
ics. This argument is now known as Bourgain’s invariant measure argument and is
widely applied17 in situations where there is a formally invariant measure.

Note that while Bourgain’s invariant measure argument is very useful, its use
is restricted to the situation where there is a formally invariant measure. Namely,
it cannot be used to study the global-in-time behavior of solutions to an evolution
equation with general random initial data. In the following, we list various methods
in establishing almost sure global well-posedness of nonlinear dispersive PDEs with
general random initial data.

• Bourgain’s high-low method in the probabilistic context: In [12], Bourgain intro-
duced an argument to prove global well-posedness of NLS below the energy space.
The main idea is to divide the dynamics into the low- and high-frequency parts,
where the low-frequency part lies in H 1 and hence the energy conservation is avail-
able. The main ingredient in this argument is the nonlinear smoothing property of the

17This argument is not limited to nonlinear dispersive PDEs. For instance, see [45] for an application
of this argument in studying a stochastic parabolic PDE.
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high-frequency part. By exhibiting nonlinear smoothing in a probabilistic manner,18

Colliander–Oh [27] implemented this argument in the probabilistic setting to prove
almost sure global well-posedness of the (renormalized) cubic NLS on T in negative
Sobolev spaces. See also [52, 81].

• Probabilistic a priori energy bound: The most basic way to prove global well-
posedness is to iterate a local well-posedness argument. This can be implemented
in a situation, where one has (deterministic) local well-posedness in the subcritical
sense19 and the relevant norm of a solution is controlled by a conservation law. In the
probabilistic setting, one can implement a similar idea. Burq–Tzvetkov [22] proved
almost sure global well-posedness of the defocusing cubic NLW onT3 by estimating
the growth of the (non-conserved) energy:

H(v) = 1

2

∫
T3

|∇v|2dx + 1

2

∫
T3

(∂t v)
2dx + 1

4

∫
T3

v4dx

of the nonlinear part v = u − z, solving the perturbed NLW (1.3.5). The argument
is based on Gronwall’s inequality along with Cauchy–Schwarz’ inequality and the
probabilistic Strichartz estimates. There is a slight loss of derivative in controlling
the L∞

x -norm of the random linear solution, and thus, this argument works only for
s > 0. In the endpoint case (s = 0), Burq–Tzvetkov adapted Yudovich’s argument
[91] to control the energy growth of the nonlinear part v.

We point out that this argument based on Cauchy–Schwarz’ and Gronwall’s
inequalities works only for the cubic case. In [65], Oh–Pocovnicu proved almost sure
global well-posedness of the energy-critical defocusing quintic NLW on R3 (see the
next item). The main new ingredient is a new probabilistic a priori energy bound on
the nonlinear part v = u − z. See [53, 84] for almost sure global well-posedness of
the three-dimensional NLW 3 < p < 5, following the idea in [65].

• Almost sure global existence by a compactness argument: In [19], Burq–Thomann–
Tzvetkov studied the defocusing cubic NLW (1.3.1) on T

d , d ≥ 4. By establishing
a probabilistic energy bound on the nonlinear part vN of the solution to the trun-
cated NLW, which is uniform in the truncation parameter N ∈ N, they established a
compactness property of {vN }N∈N, which allowed them to prove almost sure global
existence. See Nahmod–Pavlović–Staffilani [57] for a precursor of this argument in
the context of the Navier–Stokes equations.

In [20], Burq–Thomann–Tzvetkov adapted a different kind of compactness argu-
ment in fluids by Albeverio–Cruzeiro [1] to the dispersive setting and constructed
almost sure global-in-time dynamics with respect to Gibbs measures ρ for various
equations. By exploiting the invariance of the truncated Gibbs measure ρN for the
truncated dynamics, they showed a compactness property of the measures {νN }N∈N
on space-time functions, where νN = ρN ◦ Φ−1

N denotes the pushforward of the trun-
cated Gibbs measure ρN under the global-in-time solution map ΦN of the truncated

18See Theorems 1.1 and 1.2 for such nonlinear smoothing in the probabilistic setting.
19Namely, the local existence time depends only on the norm of initial data.
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dynamics. Skorokhod’s theorem then allowed them to construct a function u as an
almost sure limit of the solutions uN to the truncated dynamics (distributed accord-
ing to νN ), yielding almost sure global existence. See [32, 70] for more on this
method. This construction of global-in-time solutions is closely related to the notion
of martingale solutions in the field of stochastic PDEs. See [29].

Due to the use of compactness, the global-in-time solutions constructed above are
not unique (except for the two-dimensional case in [57]). In the four-dimensional
case, the solutions to the defocusing cubic NLW constructed in [19] were shown to
be unique in [66], relying on the result [79], which we discuss in the next item.

• Almost sure global well-posedness in the energy-critical case via perturba-
tion/stability results: In the deterministic setting, the energy conservation allows
us to prove global well-posedness in H 1 of energy-subcritical defocusing NLW and
NLS. In the energy-critical setting, however, the situation is more complicated and
the energy conservation is not enough.Over the last several decades, substantial effort
wasmade in understanding global-in-time behavior of solutions to the energy-critical
NLW and NLS. See [6, 63, 79] for the references therein.

In an analogous manner, a probabilistic a priori energy bound discussed above
does not suffice to prove almost sure global well-posedness of the energy-critical
defocusing NLW and NLS. In [6], we introduced a new argument, using perturba-
tion/stability results for NLS to approximate the dynamics of the perturbed NLS
(1.3.14) by unperturbed NLS dynamics on short time intervals, and proved condi-
tional almost sure global well-posedness of the energy-critical defocusing cubic NLS
on R

4, provided that the energy of the nonlinear part v = u − z remains bounded
almost surely for each finite time. Subsequently, by establishing probabilistic a priori
energy bounds, Pocovnicu [79] and Oh–Pocovnicu [65, 66] applied this argument
and proved almost sure global well-posedness of the energy-critical defocusingNLW
onRd and Td , d = 3, 4, 5. More recently, Oh–Okamoto–Pocovnicu [63] established
probabilistic a priori energy bounds for the energy-critical defocusing NLS on R

d ,
d = 5, 6 and proved almost sure global well-posedness for these equations.

• Almost sure scattering results via a double bootstrap argument: The almost sure
global well-posedness results mentioned above do not give us any information on
the qualitative behavior of global-in-time solutions such as scattering. This is due
to the lack of global-in-time space-time bounds in the argument mentioned above.
In a recent paper, Dodson–Lührmann–Mendelson [33] studied the energy-critical
defocusing NLW onR4 in the radial setting and proved almost sure scattering in this
setting. The argument is once again based on applying perturbation/stability results
as in [6, 65, 79]. The main new ingredient is the Morawetz estimate for the per-
turbed NLW (1.3.5) satisfied by the nonlinear part v = u − z. More precisely, they
implemented a double bootstrap argument, controlling the energy and the Morawetz
quantity for the nonlinear part v in an intertwining manner. Here, the radial assump-
tion plays a crucial role in applying the radial improvement of theStrichartz estimates.
We also point out that even if the original initial data is radial, its randomization is
no longer radial and some care must be taken in order to make use of the radial
assumption. In [47], Killip–Murphy–Vişan proved an analogous almost sure scat-
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tering result for the energy-critical defocusing NLS on R
4 in the radial setting.20 It

would be of interest to remove the radial assumption imposed in the aforementioned
work [33, 47].

We also mention the work [18, 31] on the almost sure scattering results based on
(a variant of) Bourgain’s invariant measure argument combined with the equation-
specific transforms.

In this subsection, we went over various globalization arguments. We point out,
however, that, except for Bourgain’s invariant measure argument (which is restricted
to a very particular setting), all the almost sure globalization arguments are based
on known deterministic globalization arguments. Namely, there is no probabilistic
argument at this point that is not based on a known deterministic argument for
generating global-in-time solutions.

1.3.3 Further Discussions

We conclude this section with a further discussion on probabilistic construction of
solutions to nonlinear dispersive PDEs.

• Higher-order expansions: In Sect. 1.3.1, we described the basic strategy for proving
almost sure local well-posedness of NLW and NLS. In the following, we describe
the main idea on how to improve the regularity thresholds stated in Theorems 1.1
and 1.2.

We first consider the cubic NLS on R
3. The almost sure local well-posedness

stated in Theorem 1.2 follows from the case-by-case analysis in (1.3.16) within
the framework of the Fourier restriction norm method. See [6] for the details. By
examining the case-by-case analysis in [6],we see that the regularity restriction s > 1

4
in Theorem 1.2 comes from the cubic interaction of the random linear solution:

z3(t) := i
∫ t

0
S(t − t ′)|z1|2z1(t

′)dt ′, (1.3.21)

where z1 := zω = e−i tΔuω
0 defined in (1.3.13). On the one hand, given u0 ∈ H s(R3),

0 ≤ s < 1,we can prove that z3 in (1.3.21) has spatial regularity 2s − ε for any ε > 0.
On the other hand, we need 2s − ε > scrit = 1

2 in order to close the argument. This
yields the regularity restriction s > 1

4 stated in Theorem 1.2.
By noting that all the other interactions in (1.3.16) behave better than z1z1z1, we

introduce the following second-order expansion:

u = z1 + z3 + v

20We also mention a recent work by Dodson–Lührmann–Mendelson [34] that appeared after the
completion of this note. The main new idea in [34] is to adapt the functional framework for the
derivative NLS and Schrödinger maps to study the perturbed NLS (1.3.14).
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to remove theworst interaction z1z1z1. In this case, the residual term v := u − z1 − z3
satisfies the following equation:

{
i∂t v = Δv − N (v + z1 + z3) + N (z1)

v|t=0 = 0,

where N (u) = |u|2u. In terms of the Duhamel formulation, we have

v(t) = i
∫ t

0
e−i(t−t ′)Δ{

N (v + z1 + z3) − N (z1)
}
(t ′)dt ′ (1.3.22)

Note that we have removed the worst interaction z1z1z1 appearing in the case-by-
case analysis (1.3.16). There is, however, a price to pay; we need to carry out the
following case-by-case analysis

v1v2v3, for vi = v, z1, or z3, i = 1, 2, 3, but not all vi equal to z1, (1.3.23)

containingmore terms than the previous case-by-case analysis (1.3.16). Nonetheless,
by studying the fixed point problem (1.3.22) for v, we can lower the regularity thresh-
old for almost sure local well-posedness. Note that the solution u thus constructed
lies in the class:

z1 + z3 + C([0, T ]; H
1
2 (R3)) ⊂ C([0, T ]; H s(R3))

for some appropriate s < 1
2 .

By examining the case-by-case analysis (1.3.23), we see that the worst interaction
appears in

z j1 z j2 z j3 with ( j1, j2, j3) = (1, 1, 3) up to permutations, (1.3.24)

giving rise to the following third-order term:

z5(t) := i
∑

j1+ j2+ j3=5
j1, j2, j3∈{1,3}

∫ t

0
S(t − t ′)z j1 z j2 z j3(t

′)dt ′. (1.3.25)

A natural next step is to remove this non-desirable interaction in (1.3.24) in the case-
by-case analysis in (1.3.23) by considering the following third-order expansion:

u = z1 + z3 + z5 + v.

In this case, the residual term v := u − z1 − z3 − z5 satisfies the following equation:
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⎧⎪⎨
⎪⎩

i∂t v = Δv − N (v + z1 + z3 + z5) +
∑

j1+ j2+ j3∈{3,5}
j1, j2, j3∈{1,3}

z j1 z j2 z j3

v|t=0 = 0

and thus we need to carry out the following case-by-case analysis:

v1v2v3 for vi = v, z1, z3, or z5, i = 1, 2, 3, such that

it is not of the form z j1 z j2 z j3 with j1 + j2 + j3 ∈ {3, 5}.

Note the increasing number of combinations. While it is theoretically possible to
repeat this procedure based on partial power series expansions, it seems virtually
impossible to keep track of all the terms as the order of the expansion grows. In
[7], we introduced modified higher-order expansions to avoid this combinatorial
nightmare and established improved almost sure local well-posedness based on the
modified higher-order expansions of arbitrary length.

Next, we briefly discuss the cubic NLW (1.3.1) on T
3. Theorem 1.1 already

provides almost sure local well-posedness for s ≥ 0, and hence, we now need to take
s < 0. In this case, the cubic product z3 appearing in the perturbed NLW (1.3.5)
does not make sense and we need to renormalize the nonlinearity. We assume that
the randomized initial data (uω

0 , uω
1 ) is of the form (1.3.3) with û j (n) = 〈n〉−α+ j ,

j = 0, 1, and that {g j,n} j=0,1,n∈Z3 in (1.3.3) is a sequence of independent standard
complex-valued Gaussian random variables conditioned that g j,−n = g j,n , j = 0, 1,
n ∈ Z

3. Comparing this with (1.2.6), we see that (uω
0 , uω

1 ) is distributed according
to the Gaussian measure μα ⊗ μα−1 supported on Hs(T3) for s < α − 3

2 . In this
case, we can apply the Wick renormalization (see [41, 71]) and obtain the following
renormalized equation for v = u − z:

∂2
t v = Δv − :(v + z)3 :

= Δv − v3 − 3v2z − 3v : z2 : − : z3 :, (1.3.26)

where : z� : is the standard Wick power of z, having the spatial regularity �(α − 3
2 ) −

ε, � = 2, 3. By studying the equation (1.3.26), it is easy to prove almost sure local
well-posedness for α > 4

3 , corresponding to s > − 1
6 . Note that the worst term in

(1.3.26) is given by : z3 : with the spatial regularity 3α − 9
2 − ε.

As in the case of the cubic NLS, we shall consider the second-order expansion:

u = z1 + z3 + v, (1.3.27)

where z1 = z and

z3(t) := −
∫ t

0

sin((t − t ′)|∇|)
|∇| : z31(t

′) : dt ′.



24 Á. Bényi et al.

Then, the residual term v = u − z1 − z3 satisfies

∂2
t v = Δv − :(v + z1 + z3)

3 : + : z31 :
= Δv − (v + z3)

3 − 3(v + z3)
2z1 − 3(v + z3) : z21 : . (1.3.28)

Note that the worst term : z31 : in (1.3.26) is now eliminated. In (1.3.28), the worst
contribution is given by 3(v + z3) : z21 : with regularity 2α − 3 − ε.21 By solving the
fixed point problem (1.3.28) for v, we can lower the regularity threshold. In this
formulation, the regularity restriction arises in making sense of the product z3 · : z21 :
as distributions of regularities 3α − 7

2 − ε and 2α − 3 − ε.

Remark 1.5 The second-order formulation (1.3.27) yields the following decompo-
sition of the ill-posed solution map:

(uω
0 , uω

1 ) �−→ (z1, : z21 :, z3) �−→ v �−→ u = z1 + z3 + v.

Compare thiswith (1.3.18).Asbefore, thefirst step involves stochastic analysis,while
the second step is entirely deterministic. One can establish a further improvement
to the argument sketched above, providing a meaning to z3 · : z21 : in a probabilistic
manner:22

(uω
0 , uω

1 ) �−→ (z1, : z21 :, z3, z3 = : z21 :) �−→ v �−→ u = z1 + z3 + v.

See [67] for details.

Remark 1.6 In a recent paper [80], Pocovnicu–Wang provided a simple argument
for constructing unique solutions to NLS with random initial data by exploiting the
dispersive estimate. In the context of the cubic NLS (1.3.11) on R

3, the random
initial data can be taken to be only in L2(R3). Compare this with Theorem 1.2. Their
construction, however, places a solution u only in the class:

e−i tΔuω
0 + C([0, T ]; L4(R3)),

which does not embed in C([0, T ]; H s(R3)). See also [68] for a related result in the
context of the stochastic NLS on R

d .

21 Here,we assume that z3 has positive regularity. For example,we know that z3 has spatial regularity
at least 3α − 9

2 + 1 − ε and hence α > 7
6 suffices.

22Recall the following paraproduct decomposition of the product f g of two functions f and g:

f g = f < g + f = g + f > g

:=
∑

j<k−1

ϕ j (D) f ϕk(D)g +
∑

| j−k|≤1

ϕ j (D) f ϕk(D)g +
∑

k< j−1

ϕ j (D) f ϕk(D)g.

Since the paraproducts z3 < : z21 : and z3 > : z21 : always make sense as distributions, it suffices to give
a meaning to the resonant product z3 = : z21 : in a probabilistic manner.
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• Bourgain–Bulut’s argument: In Sect. 1.3.2, we described a globalization argument
when there is a formally invariant measure (Bourgain’s invariant measure argument).
We point out that this globalization argument requires a separate localwell-posedness
argument (whether deterministic or probabilistic). In [13–15], Bourgain–Bulut pre-
sented a new argument, where they exploited formal invariance already in the con-
struction of local-in-time solutions. In the following, we briefly sketch the essential
idea in [13–15] by taking NLS (1.1.1) on T as an example.

The main goal is to show that the solution uN to the truncated NLS (1.3.19)
converges to some space-time distribution u, which turns out to satisfy the original
NLS (1.1.1). This is done by exploiting the invariance of the truncatedGibbsmeasure
ρN :

dρN = Z−1e− 1
p+1

∫ |PN u|p+1

dμ1,

for the truncated equation (1.3.19). Let T ≤ 1. Then, by the probabilistic Strichartz
estimates (Lemma 1.3), we have

μ1

(
u0 : ‖e−i tΔu0‖Lq

t W σ,r
x ([0,T ]×T) > λ

)
≤ C exp(−cλ2)

for any σ < 1
2 , finite q ≥ 2, and 2 ≤ r ≤ ∞. Then, by using the mutual absolute

continuity between μ1 and ρN and exploiting the invariance of ρN , we can upgrade
this estimate to

ρN

(
u0 : ‖uN ‖Lq

t W σ,r
x ([0,T ]×T) > λ

)
≤ C exp(−cλc′

), (1.3.29)

where uN is the solution to the truncated NLS (1.3.19) with uN |t=0 = u0. We stress
that the constants in (1.3.29) are independent of N ∈ N.

Given M ≥ N ≥ 1, let uM and uN be the solutions to (1.3.19) with the truncation
size M and N , respectively. Then, on a time interval I j = [t j , t j+1] ⊂ [0, T ], we
have

uM(t) − uN (t) = e−i(t−t j )∂
2
x (uM(t j ) − uN (t j ))

+ i
∫ t

t j

e−i(t−t ′)∂2
x (PM − PN )|uM |p−1uM(t ′)dt ′

+ i
∫ t

t j

e−i(t−t ′)∂2
x PN (|uM |p−1uM − |uN |p−1uN )(t ′)dt ′.

= I + II + III. (1.3.30)

Fix s < 1
2 sufficiently close to 1

2 . We estimate each term on the right-hand side of
(1.3.30) in the Xs,b-norm with b = 1

2+. See [85] for the basic properties of the Xs,b-
spaces. The first term I is trivially bounded by ‖uM(t j ) − uN (t j )‖H s . Noting that the
second term II is supported on high frequencies {|n| > N }, we can show that it tends
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to 0 as N → ∞. Here, we used (1.3.29) with s < σ < 1
2 , giving a decay of N s−σ for

‖II‖Xs,b([t j ,t j+1]). As for the last term III, by the fractional Leibniz rule, (1.3.29), and
the periodic Strichartz estimate, we can estimate it by ‖uM − uN ‖Xs,b([t j ,t j+1]).23 This
allows us to iterate the argument on intervals I j to cover the entire interval [0, T ]
and show that {uN }N∈N is Cauchy in Xs,b([0, T ]).

The almost sure local well-posedness argument presented in Sect. 1.3.1 exploited
the gain of integrability only at the level of the random linear solution. The main
novelty of the argument presented above is the use of invariance in constructing local-
in-time solutions, which yields the gain of integrability for the truncated solutions
uN , uniformly in N ∈ N.

1.4 Remarks and Comments

(i) In (1.1.4), we introduced the scaling-critical Sobolev regularity scrit. Note that
this regularity is based on the (homogeneous) L2-based Sobolev spaces Ḣ s = Ẇ s,2.
Given 1 ≤ r ≤ ∞, we can also consider the scaling-critical Sobolev regularity
adapted to the Lr -based Sobolev spaces Ẇ s,r :

scrit(r) = d

r
− 2

p − 1

such that the homogeneous Ẇ scrit(r),r -norm is invariant under the dilation symme-
try (1.1.3). Heuristically speaking, the gain of integrability depicted in Lemmas
1.2 and 1.3 allows us to lower the critical regularity from scrit = scrit(2) = d

2 − 2
p−1

to scrit(r) = − 2
p−1 + ε for r � 1.24 For example, in the cubic case (p = 3), we

have scrit(r) = d
r − 1 → −1 as r → ∞, which makes the problem considered in

Sect. 1.3.1 subcritical in some appropriate sense.

(ii) In recent years, there has been a significant development in the well-posedness
theory of singular stochastic parabolic PDEs. For example, the theory of regular-

23Here, the implicit constant depends on the choice of λ in (1.3.29), which needs to be chosen in
terms of N . See [14] for more on this issue.
24Things are not as simple as stated here due to the unboundedness of the linear solution operator
on Lr , r �= 2, for dispersive equations. In the case of the nonlinear heat equation, however, this
heuristics can be seen more clearly. Consider the following nonlinear heat equation on R

d :

∂t u = Δu − |u|p−1u (1.4.1)

with initial data u0 ∈ L2(Rd ). In general, (when 4 < d(p − 1) for example), we do not know how
to construct a solution with initial data in L2(Rd ). By randomizing the initial data u0 as in (1.2.13),
we see that the randomized initial data uω

0 lies almost surely in Lr (Rd ) for any finite r ≥ 2. Then,

by taking r >
d(p−1)

2 , we can apply the deterministic subcritical local well-posedness result in [17]
to conclude (rather trivial) almost sure local well-posedness of (1.4.1) with respect to the Wiener
randomization uω

0 . This is an instance of “making the problem subcritical” by randomization.
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ity structures by Hairer [44] and the paracontrolled distributions introduced by
Gubinelli–Imkeller–Perkowski [23, 40] allow us to make sense of the following
stochastic quantization equation (SQE, dynamical Φ4

3 model) on T3:

∂t u = Δu − u3 + ∞ · u + ξ, (1.4.2)

where ξ denotes the space-time white noise. See also [50]. Moreover, it has been
shown that the Gibbs measure ρ in (1.2.7) (in a renormalized form) is invariant
under the dynamics of (1.4.2) [2, 45]. It would be of great interest to study a similar
problem for the defocusing cubic NLS and NLW on T

3 with the Gibbs measure ρ

as initial data. While the NLS problem seems to be out of reach (see (iii) below),
one may approach the NLW problem by adapting the paracontrolled calculus25 to
the wave case.

(iii) There has also been somedevelopment in the solution theory for singular stochas-
tic nonlinear dispersive PDEs [41, 60]. The problem of particular importance is the
following (renormalized) stochastic cubic nonlinear Schrödinger equation (SNLS)
on T with additive space-time white noise forcing:

i∂t u = Δu − |u|2u + 2∞ · u + ξ. (1.4.3)

Since SNLS (1.4.3) on T
d scales like (1.4.2) on T

d , one may be tempted to think
that they are of equal difficulty. This, however, is completely false; while SQE on
T

d , d = 1, 2, 3 is subcritical, SNLS on the one-dimensional torus T is critical in the
following sense.

The linear heat semigroup etΔ is bounded on L∞, and thus, the scaling-critical
regularity for the cubic heat equation is given by scrit(∞) = −1 for any dimension.
The space-time white noise under the Duhamel integral operator:26

∫ t
0 e(t−t ′)Δξ(dt ′)

has (spatial) regularity − d
2 + 1 − ε. Comparing these two regularities, we see that

SQE (1.4.2) is critical when d = 4 and is subcritical when d = 1, 2, 3. We point
out that both the theory of regularity structures and the theory of paracontrolled
distributions are subcritical theories and cannot handle (1.4.2) when d = 4.

Similarly, by recalling that the linear Schrödinger group e−i tΔ is bounded on L2

and is unbounded on any Lr , r �= 2, it seems reasonable to use r = 2 to compute
the scaling-critical regularity for the cubic NLS, thus giving scrit(2) = d

2 − 1. On
the other hand, the stochastic convolution

∫ t
0 e−i(t−t ′)Δξ(dt ′) in this case does not

experience any smoothing and thus has (spatial) regularity− d
2 − ε. Comparing these

two regularities, we see that SNLS (1.4.3) is critical already when d = 1. We point
out that the (deterministic) cubic NLS on T with the spatial white noise as initial
data, i.e., (1.2.6) with s = 0, basically has the same difficulty. This criticality is also
manifested in the fact that the higher-order iterates such as z3 in (1.3.21) and z5 in

25At this point, we do not know how to apply the theory of regularity structures to study dispersive
PDEs, partly because we do not know how to lift the Duhamel integral operator for dispersive PDEs
to regularity structures.
26This is the so-called stochastic convolution.
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(1.3.25) do not experience any smoothing.27 Lastly, we mention a recent work [38],
where the second author (with Forlano andY.Wang) established localwell-posedness
of (1.4.3) with a slightly smooth noise 〈∂x 〉−εξ , ε > 0.

(iv) Various methods and ideas in the random data Cauchy theory for nonlinear
dispersive PDEs are applicable to study stochastic nonlinear dispersive PDEs thanks
to the gain of integrability on a stochastic forcing term.28 For example, the almost
sure local well-posedness result for the (renormalized) cubicNLS in H s(T), s > − 1

3 ,
by Colliander–Oh [27] essentially implies local well-posedness of SNLS (1.4.3) with
a smoothed noise 〈∂x 〉−εξ , ε > 1

6 .

(v) Thanks to Bourgain’s invariant measure argument, we now have a good under-
standing of how to build an invariant measure of Gibbs type based on a conservation
law. Note, however, that these measures are supported on rough functions (except
for completely integrable equations) and we do not know how to construct invariant
measures supported on smooth functions. Bourgain [11] wrote “the most important
challenge is perhaps the question if we may produce an invariant measure which is
supported by smooth functions.”

(vi) So far, we discussed how to construct solutions in a probabilistic manner. It
would be of interest to develop a probabilistic argument to get more qualitative
information of solutions. For example, the random initial data (1.2.6) lies almost
surely in W σ,∞(Td), σ < s − d

2 . On the one hand, the deterministic well-posedness
theory propagates only the Hσ -regularity of solutions. On the other hand, quasi-
invariance of μs [72–74, 87] implies that the W σ,∞-regularity is also propagated in
an almost sure manner. An interesting problem may be to use probabilistic tools to
study the growth of high Sobolev norms of solutions. For example, the argument in
[72, 87] provides a probabilistic proof of a polynomial upper bound.
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Chapter 2
Endpoint Results for Fourier Integral
Operators on Noncompact Symmetric
Spaces

Tommaso Bruno, Anita Tabacco and Maria Vallarino

Abstract Let X be a noncompact symmetric space of rank one, and let h1(X) be
a local atomic Hardy space. We prove the boundedness from h1(X) to L1(X) and
on h1(X) of some classes of Fourier integral operators related to the wave equation
associated with the Laplacian on X, and we estimate the growth of their norms
depending on time.

2.1 Introduction

Given a second-order differential operatorL on a manifold M, consider the Cauchy
problem for the associated wave equation

⎧
⎪⎨

⎪⎩

∂2
t u(t, x) + L u(t, x) = 0,

u(0, x) = f (x),

∂t u(0, x) = g(x) t ∈ R, x ∈ M.

(2.1.1)

An interesting problem is to find L p-bounds of the solution u at a certain time in terms
of Sobolev norms of the initial data f and g. This problem is well understood for
the standard Laplacian in R

n [15, 18]. It was also studied for the Laplace–Beltrami
operator on compact manifolds [19], for the sub-Laplacian on groups of Heisen-
berg type [16, 17] and for the Laplacian on compact Lie groups [5]. Ionescu [12]
investigated the same problem on noncompact symmetric spaces of rank one. More
precisely, let X be a noncompact symmetric space of rank one and dimension n and
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denote with d the number (n − 1)/2. LetΔ denote the Laplace–Beltrami operator on
X, whose L2-spectrum is the half-line [ρ2,∞), and set L = Δ − ρ2 (see Sect. 2.2
for the definition of ρ). The wave equation associated withL was considered in [2–
4, 11, 12, 21]. By the spectral theorem, the solution of the Cauchy problem (2.1.1)
associated with L is given by

u(t, ·) = cos(t
√
L ) f + sin(t

√
L )√

L
g.

Finding L p-bounds for u amounts to prove the boundedness on L p(X) of the oper-
ators

Tt = m(
√
L ) cos(t

√
L ) and St = m(

√
L )

sin(t
√
L )√

L
,

for suitable symbols m, and estimates the growth of their norm on L p(X) depending
on t .

In this paper, we prove endpoint results at p = 1 for Tt . To state our result, we
need some notation. For every a ≥ 0 and b ∈ R, let Sb

a be the set of continuous
functions m on the complex tube {λ ∈ C : |Im λ| ≤ a}, analytic in the interior of the
tube, infinitely differentiable on the two lines |Im λ| = a, which satisfy the symbol
inequalities

|∂α
λ m(λ)| ≤ C (1 + |Re λ|)b−α ∀α ∈ N, |Im λ| ≤ a.

If m ∈ Sb
a , the real number b is called the order of m.

In [12], Ionescu proved an endpoint result for Tt at p = ∞. Indeed, he showed
that if m ∈ S−d

ρ is an even symbol, then the operatorTt is bounded from L∞(X) to a
suitable B M O(X) space. From this, he deduced the boundedness ofTt on L p(X) for
every p ∈ (1,∞). Let us also mention that previously Giulini and Meda [8] proved
L p-estimates, p ∈ (1,∞), for oscillatingmultipliers of the formΔ−β/2 eiΔα/2

,α > 0,
Re β ≥ 0. When α = 1 and β = d, these operators are related toT1. Note, however,
that on a noncompact symmetric space, the growth in t of the norm of Tt cannot
be deduced from its norm at t = 1, as one can do in other contexts equipped with a
dilation structure (e.g. Euclidean spaces and stratified nilpotent groups).

Let h1(X) be the local atomicHardy space ofGoldberg type defined byTaylor [22]
and Meda and Volpi [14] (see Definition 2.2 below). The main result of this paper is
the following.

Theorem 2.1 Let t > 0. Then the following hold:

(i) if m ∈ S−d
ρ is an even symbol, then the operator Tt is bounded from h1(X) to

L1(X) and ‖Tt f ‖h1→L1 ≤ C eρ t ;
(ii) if m ∈ Sb

ρ is an even symbol and b < −d, then the operator Tt is bounded on
h1(X) and ‖Tt f ‖h1→h1 ≤ C eρ t .
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The results of Theorem 2.1 are endpoint results for Tt at p = 1. The h1 → L1

boundedness may be considered as the counterpart at p = 1 of Ionescu’s result;
observe, however, that it does not descend from this by duality, for h1(X) is not the
dual of B M O(X). Nevertheless, the proof of part (i) is strongly related to Ionescu’s
proof. Part (ii), instead, gives a more precise endpoint result but requires higher
regularity of the multiplier m. It would be interesting to know whether this regularity
condition is really necessary, or whether it can be weakened up to the value b = −d,
which as part (i) shows is enough for the h1 → L1 boundedness. The proof of part
(ii) goes through a pointwise decomposition of the convolution kernel kt of Tt as a
sum of compactly supported functions in certain annuli, whose h1-norm we estimate
separately. We do this by means of precise estimates of both kt and its derivative. In
applying this procedure, the condition b < −d turns out to be fundamental.

We finally observe that, by analytic interpolation with L2(X) and by duality, one
can re-obtain Ionescu’s result of L p(X) boundedness of Tt , p ∈ (1,∞).

The paper is organized as follows. In Sect. 2.2, we summarize the notation for
noncompact symmetric spaces of rank one and the spherical analysis on them. In
Sect. 2.3, we recall the definition of the local Hardy space h1(X) and we prove some
technical lemmatawhichwill be of use later on. InSect. 2.4,weproveTheorem2.1 (i),
while Section 2.5 is devoted to the proof of Theorem 2.1 (ii).

2.2 Notation

We shall use the same notation as in [12] and refer the reader to [1, 7, 10] for more
details on noncompact symmetric spaces and spherical analysis on them.

Let G be a connected noncompact semisimple Lie group with finite centre, g its
Lie algebra, θ a Cartan involution of g and g = k ⊕ p the associated Cartan decompo-
sition. Let K be a maximal compact subgroup of G and X = G/K be the associated
symmetric space of dimension n. Let a be a maximal abelian subspace of p. We will
assume that the dimension ofa is one, i.e. that the rank ofX is one. TheKilling formon
g induces a G-invariant distance onX, whichwe shall denote by d(·, ·). For every x ∈
X, we denote by |x | the distance d(x, o), where o = eK and e is the identity of G. Let
a∗ be the real dual ofa and forα ∈ a∗ letgα = {X ∈ g : [H, X ] = α(H)X ∀ H ∈ a}.
Let Σ = {α ∈ a∗ \ {0} : dim gα �= 0} be the set of nonzero roots. It is well known
that eitherΣ = {−α, α} orΣ = {−2α,−α, α, 2α}. Letm1 = dim gα ,m2 = dim g2α
and ρ = (m1 + 2m2)/2. Set n = gα + g2α and N = exp n.

In the sequel, we shall identify A = exp a with R by choosing the unique ele-
ment H0 of a such that α(H0) = 1 and considering the diffeomeorphism a : R → A
defined by a(s) = exp(s H0). It is well known that G admits the Cartan decom-
position G = K A+K , where A+ = {a(s) : s ≥ 0} and the Iwasawa decomposition
G = N AK . For every g ∈ G we denote by H(g) the unique element in R such that
g = n exp(H(g)H0)k, for some n ∈ N and k ∈ K .
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For every r > 0 and x ∈ X, we denote by B(x, r) the closed ball centred at the
point x of radius r . For every 0 < r < R, we denote by AR

r the annulus AR
r = {x ∈

X : r ≤ |x | ≤ R}. As a convention, AR
r when r ≤ 0 shall be intended as the ball

B(o, R).
For every integrable function f on G, we have

∫

G
f (g) dg = C

∫

K

∫

R+

∫

K
f (k1a(s)k2) δ(s) dk1 ds dk2,

where dg is the Haar measure of G, dk is the Haar measure of K normalized in such
a way that

∫

K dk = 1 and

δ(s) = C(sinh s)m1(sinh 2s)m2
{

sn−1 s ≤ 1

e2ρs s > 1.

We identify right K -invariant functions on G with functions onX, and K -biinvariant
functions on G with K -invariant functions on X which can also be identified with
functions depending only on the coordinate s ∈ R

+. More precisely, if f is a K -
biinvariant function on G, we shall denote by F : R

+ → C the function such that
f (k1a(s)k2) = F(s) for every s ∈ R

+, k1, k2 ∈ K . We define the convolution of two
functions f1, f2 on X, when it exists, as

f1 ∗ f2(x) =
∫

G
f1(gh) f2(h

−1) dh ∀ x = gK ∈ X.

We denote by μ the Riemannian measure on X, and for every p ∈ [1,∞), let L p(X)

be the space of measurable functions f such that ‖ f ‖p
L p = ∫

X
| f |pdμ < ∞. For

every K -invariant function f on X

∫

X

f (x) dμ(x) =
∫

R+
F(s) δ(s) ds,

where F is defined above. By this and the left invariance of the metric

μ(B(x, r)) = μ(B(o, r)) 
{

rn r ≤ 1

e2ρr r > 1
∀ r > 0, x ∈ X. (2.2.1)

Observe moreover that

μ(AR+r
R−r )  e2ρRr, ∀ R > 1, r < 1. (2.2.2)

We recall that a spherical Fourier transform on the symmetric space is defined. It
associates to each left K -invariant function f on X, i.e. to each radial function, its
spherical Fourier transform f̃ , defined by
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f̃ (λ) =
∫

G
f (g) φλ(g) dg λ ∈ a∗

C
,

where the spherical functions are defined by

φλ(g) =
∫

K
exp[(iλ + ρ)H(kg)] dk g ∈ G, λ ∈ a∗

C
.

It is well known that for every radial function in L2(X)

‖ f ‖2L2 = C
∫ ∞

0
| f̃ (λ)|2 |c(λ)|−2dλ, (2.2.3)

and

f (x) = C
∫ ∞

0
f̃ (λ) φλ(x) |c(λ)|−2dλ, (2.2.4)

where c is the Harish-Chandra function. In particular, by the Plancherel and the
inversion formulae above, any bounded function m : R

+ → C defines a bounded
operator on L2(X) given by Ũm f (λ) = m(λ) f̃ (λ).

All throughout the paper, we shall write A � B when there exists a positive
constant C such that A ≤ C B, whose value may change from line to line. If A � B
and B � A, we write A  B.

2.3 The Local Hardy Space h1(X)

We recall here the definition of the local atomic Hardy space h1(X), which can be
thought as the analogue in the context of noncompact symmetric space of the local
Hardy space introduced by Goldberg in the Euclidean setting [9]. The space h1(X)

was introduced and studied by Meda and Volpi [14] and Taylor [22] in more general
contexts. It is easy to see that noncompact symmetric spaces satisfy the geometric
assumptions of [14, 22], so that the theory developed in those papers can be applied
in our setting.

Definition 2.1 A standard h1-atom is a function a in L1(X) supported in a ball B
of radius ≤ 1 such that

(i) ‖a‖L2 ≤ μ(B)−1/2 (size condition);
(ii)

∫
a dμ = 0 (cancellation condition).

A global h1-atom is a function a in L1(X) supported in a ball B of radius 1 such that
‖a‖L2 ≤ μ(B)−1/2. Standard and global h1-atoms will be referred to as admissible
atoms.
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Definition 2.2 TheHardy space h1(X) is the space of functions f in L1(X) such that
f = ∑

j c j a j , where
∑

j |c j | < ∞ and a j are admissible atoms. The norm ‖ f ‖h1

is defined as the infimum of
∑

j |c j | < ∞ over all atomic decompositions of f .

By means of the atomic structure of h1(X) and of the following result, the bounded-
ness from h1(X) of an operator bounded on L2(X) may be tested only on atoms. Its
proof is an easy adaptation of the proof of [14, Theorem 4 and Proposition 4] and is
omitted.

Proposition 2.1 Let Y be either L1(X) or h1(X). Suppose that U is a Y -valued
linear operator defined on finite linear combination of admissible atoms such that

A := sup{‖U a‖Y : a h1-atom} < ∞.

Then there exists a unique bounded operator U ′ from h1(X) to Y which extends U
with norm ‖U ′‖h1→Y � A. If U is bounded on L2(X), then U ′ and U coincide on
Y ∩ L2(X).

We now collect some technical lemmata where we estimate the h1-norm of L2-
functions supported either in a ball or in an annulus, which will be useful later on.
We shall repeatedly use the notion of discretization of the space X, which we now
recall.

For every r ∈ (0, 1], we call r/3-discretization Σ of X a set of points which is
maximal with respect to the properties

min{d(z, w) : z, w ∈ Σ, z �= w} >
r

3
, d(x,Σ) ≤ r

3
∀ x ∈ X.

Let Σ be a r/3-discretization of X, for some r ∈ (0, 1]. Then the family of balls
B = {B(z, r) : z ∈ Σ} is a uniformly locally finite covering of X. More precisely,
there exists a constant M , independent of r , such that

1 ≤
∑

B∈B
χB(x) ≤ M ∀ x ∈ X. (2.3.1)

Indeed, given anypoint x ∈ X, if x ∈ B(z, r), then z ∈ B(x, r). Thus
∑

B∈B χB(x) =
M(x) = |Σ ∩ B(x, r)|. Let {w1, . . . , wM(x)} = Σ ∩ B(x, r). If wi , w j ∈ Σ ∩B
(x, r), with wi �= w j , then B(wi ,

r
6 ) ∩ B(w j ,

r
6 ) = ∅. Thus,

⋃M(x)
i=1 B(wi ,

r
6 ) ⊆

B(x, r + r
6 ) and by (2.2.1)

C M(x)rn ≤ μ

(
M(x)⋃

i=1

B(wi ,
r
6 )

)

≤ μ
(
B(x, r + r

6 )
) ≤ C rn.

Thus, there exists a constant M independent of x and r such that M(x) ≤ M, which
proves (2.3.1).
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Lemma 2.1 Let f be a function in L2(X) supported in a ball B = B(o, R). If

• either R ≤ 1 and f has vanishing integral,
• or R ≥ 1,

then ‖ f ‖h1 � μ(B)1/2 ‖ f ‖L2 .

Proof If R ≤ 1 and f has vanishing integral, it suffices to notice that f
μ(B)1/2‖ f ‖L2

is
a standard atom.

If R ≥ 1, we follow the line of [14, Lemma 3.3] with slight modifications. Let
Σ be a 1/3-discretization of X. Denote by z1, . . . , zN the points in Σ such that
B(z j , 1) ∩ B �= ∅. Note that N ≤ C μ(B). Denote by B j the ball B(z j , 1) and define

ψ j = χB j
∑N

k=1 χBk

.

We have f = ∑N
j=1 f j , where f j = f ψ j . Since

f j

μ(B j )1/2‖ f j ‖L2
is a global atom, then

‖ f ‖h1 ≤
N∑

j=1

μ(B j )
1
2 ‖ f j ‖L2 �

N∑

j=1

‖ f j ‖L2 � N
1
2

⎛

⎝
N∑

j=1

‖ f j ‖2L2

⎞

⎠

1/2

� μ(B)
1
2 ‖ f ‖L2 ,

where we used Schwarz’s inequality and the fact that N � μ(B). �

Lemma 2.2 Let f be a function in L2(X) with vanishing integral supported in an
annulus AR+r

R−r , r ∈ (0, 1], R > r . Then f is in h1(X) and

‖ f ‖h1 � log(1/r) eρRr1/2 ‖ f ‖L2 .

Proof We take a r/3-discretizationΣ ofX. The set AR+r
R−r ∩ Σ has atmost N elements

z1, . . . , zN . Then AR+r
R−r ⊆ ∪N

j=1B j ⊆ AR+2r
R−2r , so that

N ≤ C r−nμ(AR+2r
R−2r ) � r−n+1e2ρR, (2.3.2)

the second inequality by (2.2.2). Let K be the lowest integer such that 2K r > 1,
and for every k = 0, . . . , K and j = 1, . . . , N , denote by Bk

j the ball B(z j , 2kr) and
define

ψ j =
χB0

j
∑N

i=1 χB0
i

, φk
j =

χBk
j

μ(Bk
j )

.

Clearly
∫

φk
j dμ = 1and‖φk

j ‖L2 = μ(Bk
j )

−1/2. Set f 0j = f ψ j , so that f = ∑N
j=1 f 0j .

Next, define
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a0
j = f 0j − φ0

j

∫

f 0j dμ,

ak
j = (φk−1

j − φk
j )

∫

f 0j dμ k = 1, . . . , K − 1,

aK
j = φK−1

j

∫

f 0j dμ.

Then, the support of a0
j is contained in B0

j , the integral of a0
j vanishes, and

‖a0
j ‖L2 ≤ ‖ f 0j ‖L2 + μ(B0

j )
−1/2‖ f 0j ‖L2μ(B0

j )
1/2 = 2 ‖ f 0j ‖L2 .

Hence, by Lemma 2.1
‖a0

j ‖h1 ≤ 2 ‖ f 0j ‖L2μ(B0
j )

1/2 .

The function ak
j is supported in Bk

j , the integral of ak
j vanishes, and

‖ak
j ‖L2 ≤ ‖ f 0j ‖L2 μ(B0

j )
1/2(μ(Bk−1

j )−1/2 + μ(Bk
j )

−1/2) .

Then, again by Lemma 2.1

‖ak
j ‖h1 ≤ ‖ f 0j ‖L2 μ(B0

j )
1/2 μ(Bk

j )
1/2(μ(Bk−1

j )−1/2 + μ(Bk
j )

−1/2)

= ‖ f 0j ‖L2 μ(B0
j )

1/2
μ(Bk−1

j )1/2 + μ(Bk
j )

1/2

μ(Bk−1
j )1/2

� ‖ f 0j ‖L2 μ(B0
j )

1/2.

Finally, the function aK
j is supported in BK

j , whose radius is bigger than 1 but smaller
than 2, so that by Lemma 2.1

‖aK
j ‖h1 � ‖aK

j ‖L2 � ‖ f 0j ‖L2 μ(B0
j )

1/2.

It follows that f = ∑N
j=1 f 0j = ∑N

j=1

∑K
k=0 ak

j and

‖ f ‖h1 �
K∑

k=0

N∑

j=1

‖ f 0j ‖L2 μ(B0
j )

1/2

≤ K N 1/2

⎛

⎝
N∑

j=1

‖ f 0j ‖2L2

⎞

⎠

1/2

rn/2 � log(1/r) eρRr1/2‖ f ‖L2 ,

the last inequality by (2.3.2) and since
∑N

j=1 ‖ f 0j ‖2L2 ≤ M‖ f ‖2L2 , where M is the
constant in (2.3.1). This completes the proof of the lemma. �
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Lemma 2.3 Let γ be a radial function supported in B(o, β).

(i) If a is a global atom at scale 1 supported in B(o, 1), then

‖a ∗ γ ‖h1 ≤ C μ(B(o, 1 + β))1/2 ‖γ ‖L2 ;

(ii) if a is a standard atom supported in B(o, r), r ∈ (0, 1], then

‖a ∗ γ ‖h1 ≤ C μ(B(o, r + β))1/2 min(‖γ ‖L2 , r ‖∇γ ‖L2),

where ∇ is the Riemannian gradient.

Proof To prove (i), if a is a global atom supported in B(o, 1), then a ∗ γ is supported
in B(o, 1 + β) and

‖a ∗ γ ‖2 ≤ ‖a‖L1 ‖γ ‖L2 ≤ ‖γ ‖L2 .

Thus, (i) follows from Lemma 2.1.
To prove (ii), if a is a standard atom supported in B(o, r), r ≤ 1, then a ∗ γ is

supported in B(o, r + β) and again

‖a ∗ γ ‖2 ≤ ‖a‖L1 ‖γ ‖L2 ≤ ‖γ ‖L2 .

By arguing as in [13, Lemma 2.7] and using the cancellation of the atom, we obtain
that

‖a ∗ γ ‖2 ≤ r ‖∇γ ‖L2 . (2.3.3)

Thus, (ii) follows from Lemma 2.1. �

Lemma 2.4 Let m be an even symbol in Sb
0 and Um be the operator defined by the

Fourier multiplier m. The following hold:

(i) if 2 ≤ q < ∞ and 1
q = 1

2 + b
n , then Um is bounded from L2(X) to Lq(X);

(ii) if 1 < s ≤ 2 and 1
s = 1

2 − b
n , then Um is bounded from Ls(X) to L2(X).

Proof Part (i) is proved in [12, Lemma 3].
Part (ii) follows by a duality argument. Indeed, the adjoint of Um is the operator

Um . Since m ∈ Sb
0 also m ∈ Sb

0 . By (i) the operator Um is bounded from L2(X) to
Lq(X), with 2 ≤ q < ∞ and 1

q = 1
2 + b

n . ThenUm is bounded from Lq ′
(X) to L2(X).

Let s = q ′. Then 1 < s ≤ 2 and 1
s = 1 − 1

q = 1 − 1
2 − b

n = 1
2 − b

n , as required. �

2.4 Boundedness of Tt from h1(X) to L1(X)

In this section, we prove part (i) of Theorem 2.1. The proof is inspired to that of [12,
Proposition 4].
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Proof (of Theorem 2.1 (i)) By Proposition 2.1 and since Tt is left invariant, it is
enough to prove that

sup{‖Tt a‖L1 : a h1-atom supported in B(o, r), r ≤ 1} � eρ t .

Let a be an atom supported in B(o, r), r ≤ 1. We separate two different cases,
according to the values of t .

Case I: t ≥ 1/2. We define the set

B∗ := {x ∈ X : ||x | − t | < 10r},

whose measure is μ(B∗) � re2ρt , and split

‖Tt a‖L1 = ‖Tt a‖L1(B∗) + ‖Tt a‖L1((B∗)c).

We observe that by Hölder inequality

‖Tt a‖L1(B∗) ≤ μ(B∗)1/2‖Tt a‖L2 � eρt r1/2‖Tt a‖L2 .

Moreover, by Lemma 2.4 (ii) with 1
s = 1

2 − (− d
n

) = 1
2 + n−1

2n = 1 − 1
2n , Hölder

inequality and the size condition of the atom

‖Tt a‖L2 � ‖a‖Ls � μ(B)−1+1/s � r−1/2. (2.4.1)

Thus, ‖Tt a‖L1(B∗) � eρt .
Let now kt be the radial kernel of the operator Tt , and let Kt be the function on

[0,∞) such that kt (x) = Kt (|x |). It remains to estimate the L1-norm of a ∗ kt on
(B∗)c. In order to do this, we take a function

ψt ∈ C∞
c (X), ψt (x) = 1 if ||x | − t | < 1

10 , ψt (x) = 0 if ||x | − t | ≥ 2
10 ,

with values in [0, 1], define Ψt (|x |) = ψt (x), and split the kernel kt in its singular
part st and its good part gt as

kt = ktψt + kt (1 − ψt ) =: st + gt .

Observe that this induces a splitting Kt = KtΨt + Kt (1 − Ψt ) =: St + Gt of func-
tions defined on R

+. It is proved in [12, p. 287] that

|Gt (s)| �

⎧
⎪⎨

⎪⎩

s−d−1 if s ≤ 1
10

e−ρs |t − s|−2 if 1
10 ≤ s ≤ t − 1

10

eρt e−2ρs |t − s|−2 if s ≥ t + 1
10

(2.4.2)

from which ‖gt‖L1 ≤ eρt . Thus,
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‖a ∗ gt‖L1((B∗)c) ≤ ‖a ∗ gt‖L1 ≤ ‖a‖L1‖gt‖L1 ≤ eρt .

As for the convolution with st , we first consider the case when a is a global atom.
Since ψt is supported in the annulus At+2/10

t−2/10, the convolution a ∗ st is supported in

the annulus At+6/5
t−6/5. Then by Hölder inequality

‖a ∗ st‖L1((B∗)c) ≤ ‖a ∗ st‖L1 � μ(At+6/5
t−6/5)

1/2‖a ∗ st‖L2 � eρt‖a ∗ st‖L2

where

‖a ∗ st‖L2 � ‖a ∗ kt‖L2 + ‖a ∗ gt‖L2 � ‖Tt‖L2→L2‖a‖L2 + ‖gt‖L2‖a‖L1 � 1,

since ‖gt‖L2 � 1 by (2.4.2). Thus, ‖a ∗ st‖L1((B∗)c) � eρt . If instead a is a standard
atom, by its cancellation condition it is easy to see that

a ∗ st (x) =
∫

G
a(z)

[
st (z

−1x) − st (x)
]

dz =
∫

B
a(z)

[
St (|z−1x |) − St (|x |)] dz

for every x ∈ X, so that

‖a ∗ st‖L1((B∗)c) ≤
∫

B
|a(z)|

∫

(B∗)c

|St (|z−1x |) − St (|x |)| dx dz.

It remains to observe that, since |∂s St (s)| � e−ρt |t − s|−2 as shown in [12, p. 287],

sup
z∈B

∫

(B∗)c

|St (|z−1x |) − St (|x |)| dx � sup
z∈B

|z|
∫

10r≤||x |−t |≤r+2/10
|∂s St (|x |)| dx

� re−ρt
∫

10r≤||x |−t |≤r+2/10
||x | − t |−2 dx � eρt ,

which concludes the proof of the Case I.
Case II: t < 1/2. After defining the set

B∗ := {x ∈ X : ||x | − t | < 10r} ∪ B(0, 10r),

we proceed as in the previous case. Since μ(B∗) � r , we get ‖Tt a‖L1(B∗) ≤ C again
by (2.4.1). In order to estimate ‖Tt a‖L1((B∗)c), we pick a function

ψ0 ∈ C∞
c (X), ψ0(x) = 1 if |x | ≤ 3

4 , ψ0(x) = 0 if |x | ≥ 1,

and split again the kernel kt as

kt = ktψ0 + kt (1 − ψ0) = st + gt .
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We let Ψ0, St and Gt be the associated functions on R
+. It is proved in [12, p. 288]

that
|Gt (s)| � e−2ρs |t − s|−2 ∀ s ≥ 3

4 ,

so that ‖gt‖L1 ≤ C ; hence, ‖a ∗ gt‖L1((B∗)c) ≤ C . As for the convolution with st , if
a is a global atom then as before

‖a ∗ st‖L1 � μ(At+1
t−1)

1/2‖a ∗ st‖L2 � ‖Tt‖L2→L2‖a‖L2 + ‖gt‖L2‖a‖L1 � 1,

while if a is a standard atom, by its cancellation condition we obtain again

‖a ∗ st‖L1((B∗)c) ≤
∫

B
|a(z)|

∫

(B∗)c

|St (|z−1x |) − St (|x |)| dx dz.

Proceeding as in [12, p. 288], St may bewritten as the sumof two functions S1,t + S2,t
such that S1,t (s) ≤ s−d−1 (hence s1,t ∈ L1(X)) while

∣
∣∂s S2,t (s)

∣
∣ � s−d

(|t − s|−2 + s|t − s|−1) .

The proof may be completed as before. �

2.5 Boundedness of Tt on h1(X)

In this section, we prove part (ii) of Theorem 2.1, but first we need some pre-
liminary results. We recall the behaviour of the Harish-Chandra function and of
spherical functions on noncompact symmetric spaces of rank one. It follows from
[12, Propositions A.1, A.2] and is based on various results in [20]. We denote by ρ ′
the number ρ + 1

10 .

Lemma 2.5 The Harish-Chandra function c satisfies the following:

(i) for all λ ∈ R

|c(λ)|−2 = c(λ)−1 c(−λ)−1 ;

(ii) the function λ �→ λ−1 c(−λ)−1 is analytic inside the region Im λ ≥ 0, and for
all α ≥ 0, there exists a positive constant Cα such that

∣
∣
∣∂

α
λ (λ−1 c(−λ)−1)

∣
∣
∣ ≤ Cα (1 + |Re λ|)d−1−α ∀ 0 ≤ Im λ ≤ ρ ′;

(iii) the function λ �→ λ c(λ) is analytic in a neighbourhood of the real axis, and
for all α ≥ 0, there exists a positive constant Cα such that

∣
∣
∣∂

α
λ (λ c(λ))

∣
∣
∣ ≤ Cα (1 + |Re λ|)1−d−α ∀ λ ∈ R.
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The spherical functions φλ satisfy the following properties:

(a) |∂�
s φλ(s)| ≤ C e−ρs(1 + s) (1 + |λ|)� ∀ λ, s ∈ R, � ∈ N.

(b) If s ≤ 1, λ ∈ R and s|λ| ≥ 1, for every N ∈ N, φλ can be written as

φλ(s) = eiλsa1(λ, s) + e−iλsa1(−λ, s) + O(λ, s),

where the functions a1, O : {(s, λ) ∈ R × [0, 1] : s|λ| ≥ 1} → C satisfy

∣
∣
∣∂

α
λ ∂�

s a1(λ, s)
∣
∣
∣ ≤ C [s(1 + |λ|)]−d s−� (1 + |λ|)−α � ∈ {0, 1}, α ∈ [0, N ]

and
|∂�

s O(λ, s)| ≤ C [s(1 + |λ|)]−d−N−1−�.

(c) If s ≥ 1/10, then

φλ(s) = e−ρs
(
eiλsc(λ)a2(λ, s) + e−iλsc(−λ)a2(−λ, s)

)
,

where the function a2 is such that for all α ≥ 0, there exist positive constants Cα

such that
∣
∣
∣∂

α
λ ∂�

s a2(λ, s)
∣
∣
∣ ≤ Cα (1 + |Re λ|)−α ∀ � ∈ {0, 1}, s ≥ 1

10 , 0 ≤ Im λ ≤ ρ ′.

Proof The properties of the Harish–Chandra functionwere given in [12]. See also [1,
Formula (2.2.5)].

Formula (a) follows from [7, Formula 5.1.18].
The proof of (b) follows the same outline of the proof of [12, Proposition A.2 (b)].

The only difference is that following the same arguments, it is possible to estimate
the derivatives of the term O(λ, s) which were not estimated in [12].

The proof of (c) is given in [12, Proposition A.2 (c)]. �

In the following proposition, we shall prove pointwise estimates of the kernel of the
operator Tt and of its derivative. We will distinguish the cases when t is either large
or small. Let us mention that Ionescu [12] estimated the kernels of the operator Tt

(but not their derivatives) far from the sphere of radius t , while he gave estimates of
the derivatives of the kernels (but not of the kernels) near the sphere of radius t .

Proposition 2.2 Let ε > 0 and m ∈ S−d−ε
ρ be an even symbol. Let kt be the radial

kernel of the operatorTt and Kt be the function on [0,∞) such that kt (x) = Kt (|x |).
If t ≥ 1

2 , then

|Kt (s)| �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s−d−1+ε s ≤ 1
10

e−ρs |t − s|−2+[ε] 1
10 ≤ s ≤ t − 2

10

e−ρt |t − s|−1+ε t − 2
10 ≤ s ≤ t + 2

10

eρt e−2ρs |t − s|−2+[ε] s ≥ t + 2
10 ;

(2.5.1)
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|K ′
t (s)| �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s−d−2+ε s ≤ 1
10

e−ρs |t − s|−2+[ε] 1
10 ≤ s ≤ t − 2

10

e−ρt |t − s|−2+ε t − 2
10 ≤ s ≤ t + 2

10

eρt e−2ρs |t − s|−2+[ε] s ≥ t + 2
10 .

(2.5.2)

If t < 1
2 , then

|Kt (s)| �
{

e−2ρs |t − s|−2+[ε] s ≥ 1

s−d−1+ε + s−d |t − s|−1+ε s ≤ 1 ; (2.5.3)

|K ′
t (s)| �

{
e−2ρs |t − s|−2+[ε] s ≥ 1

s−d−2+ε + s−d |t − s|−2+ε + s−d−1|t − s|−1+ε s ≤ 1.
(2.5.4)

Proof Since the operator Tt corresponds to the spherical Fourier multiplier λ �→
m(λ) cos(tλ), by the inversion formula for the spherical transform (2.2.4) we get

Kt (s) = C
∫

R

m(λ) cos(tλ) φλ(s) |c(λ)|−2 dλ. (2.5.5)

We distinguish the cases when t is either large or small.
Case I: t ≥ 1/2. Let Ψt be a smooth cutoff function such that

Ψt (s) = 1 if |s − t | ≤ 1
10 , Ψt (s) = 0 if |s − t | ≥ 2

10 .

Let St := Ψt Kt and Gt := (1 − Ψt ) Kt . To prove (2.5.1) and (2.5.2), it is enough
to estimate St and Gt and their derivatives. We shall repeatedly use, without further
mention, [3, Lemma A.2] to estimate the Fourier transform of a symbol of some
given order.

We first consider St . Observe that St (s) = 0 unless |t − s| ≤ 2
10 , i.e. t − 2

10 ≤ s ≤
t + 2

10 . From (2.5.5) and Lemma 2.5, we deduce that

St (s) = C Ψt (s) e−ρ s
∫

R

m(λ) cos(tλ) eiλs a2(λ, s) c(−λ)−1 dλ.

Since by Lemma 2.5 (c), the function λ �→ m(λ) a2(λ, s) c(−λ)−1 is a symbol on
the real line of order −ε

|St (s)| � e−ρt |t − s|−1+ε.

Similarly, one can see that |S′
t (s)| � e−ρt |t − s|−2+ε.

To estimate Gt and its derivative, we observe that Gt (s) = 0 unless |t − s| ≥ 1
10 .

The function Gt can be estimated as in [12, Formula (3.9)] (see also (2.4.2)). To
estimate the derivative of Gt , we distinguish different cases.
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We first consider the case when s ≤ 1
10 . We choose a smooth cutoff function η

such that
η(v) = 1 if |v| ≤ 1, η(v) = 0 if |v| ≥ 2.

By Lemma 2.5 (b), we write

Gt (s) = C (1 − Ψt (s))
∫

R

η(λ s) φλ(s) m(λ) cos(tλ) |c(λ)|−2 dλ

+ C (1 − Ψt (s))
∫

R

(1 − η(λs)) O(λ, s) m(λ) cos(tλ) |c(λ)|−2 dλ

+ C (1 − Ψt (s))
∫

R

(1 − η(λs)) eiλs a1(λ, s) m(λ) cos(tλ) |c(λ)|−2 dλ.

Then

G′
t (s) = C

∫

R

[
− Ψ ′

t (s)η(λ s) φλ(s) + (1 − Ψt (s)) λη′(λs) φλ(s)

+ (1 − Ψt (s)) η(λs) ∂sφλ(s)
]
m(λ) cos(tλ) |c(λ)|−2 dλ

+ C
∫

R

[
− Ψ ′

t (s) (1 − η(λ s)) O(λ, s) − (1 − Ψt (s)) λη′(λs) O(λ, s)

+ (1 − Ψt (s)) (1 − η(λs)) ∂s O(λ, s)
]

m(λ) cos(tλ) |c(λ)|−2 dλ

+ C
∫

R

[
− Ψ ′

t (s) (1 − η(λ s)) a1(λ, s) − (1 − Ψt (s)) λη′(λs) a1(λ, s)

+ (1 − Ψt (s)) (1 − η(λs)) iλ a1(λ, s) + (1 − Ψt (s)) (1 − η(λs)) ∂sa1(λ, s)
]

× eiλs m(λ) cos(tλ) |c(λ)|−2 dλ

= G′
1,t (s) + G′

2,t (s) + G′
3,t (s).

(2.5.6)
By Lemma 2.5 (a)

|G ′
1,t (s)| �

∫ 2/s

0
(1 + λ)d−ε+1 dλ � s−d−2+ε.

Similarly, by Lemma 2.5 (b), (with N = 0)

|G ′
2,t (s)| �

∫ ∞

1/s
s−d−1 λ−ε−1 dλ � s−d−1+ε.

To estimate G ′
3,t , we write cos(tλ) = (eitλ + e−i tλ)/2 and integrate by parts twice:



48 T. Bruno et al.

|G ′
3,t (s)| � 1

|t − s|2
∫

R

∣
∣
∣∂

2
λ

[
− Ψ ′

t (s) (1 − η(λ s)) a1(λ, s) − (1 − Ψt (s)) λη′(λs) a1(λ, s)

+ (1 − Ψt (s)) (1 − η(λs)) iλ a1(λ, s) + (1 − Ψt (s)) (1 − η(λs)) ∂sa1(λ, s)
]

× m(λ) |c(λ)|−2
∣
∣
∣ dλ.

By applying Lemma 2.5 (b), we can easily show that |G ′
3,t (s)| � s−d−2+ε.

Thus, from (2.5.6) and the estimates above, we deduce that for every s ≤ 1
10 ,|G ′

t (s)| � s−d−2+ε.

We now consider the case s ≥ 1
10 . By Lemma 2.5 (c), we have

Gt (s) = C (1 − Ψt (s)) e−ρs
∫

R

m(λ) a2(λ, s) c(−λ)−1 eiλs cos(tλ) dλ, (2.5.7)

so that

G ′
t (s) = −CΨ ′

t (s) e−ρs
∫

R

m(λ) a2(λ, s) c(−λ)−1 eiλs cos(tλ) dλ

+ C (1 − Ψt (s)) e−ρs
∫

R

m(λ) (∂sa2(λ, s) + (−ρ + iλ) a2(λ, s))

× c(−λ)−1 eiλs cos(tλ) dλ.

Since λ �→ m(λ) (a2(λ, s) + ∂sa2(λ, s)) c(−λ)−1 is a symbol of order−ε, and λ �→
m(λ) iλ a2(λ, s) c(−λ)−1 is a symbol of order 1 − ε, we obtain that

|G ′
t (s)| � e−ρs |t − s|−2+[ε] if 1

10 ≤ s ≤ t − 1
10 .

It remains to consider the case when s ≥ t + 1
10 . In order to do this, we move the

contour of integration in formula (2.5.7) to the line R + iρ and obtain

Gt (s) = C (1 − Ψt (s)) e−2ρs

×
∫

R

m(λ + iρ) a2(λ + iρ, s) c(−λ − iρ)−1 eiλs cos(t(λ + iρ)) dλ.

By taking the derivative, we get

G′
t (s) = e−2ρs

∫

R

m(λ + iρ)c(−λ − iρ)−1 cos(t (λ + iρ))eiλs
{

− Ψ ′
t (s)a2(λ + iρ, s)

+ (1 − Ψt (s)) [a2(λ + iρ, s)(−2ρ + iλ) + ∂sa2(λ + iρ, s)]
}

dλ.

The estimates of the derivatives of a2 and c−1 contained in Lemma 2.5 imply that

|G ′
t (s)| � e−2ρs eρt |t − s|−2+[ε].
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By combining the estimates of Gt , G ′
t , St and S′

t , one deduces the required estimates
of Kt and its first derivative for t large.

Case II: t < 1/2. Let Ψ0 be a smooth cutoff function such that

Ψ0(s) = 1 if s ≤ 3
4 , Ψ0(s) = 0 if s ≥ 1.

Let St = Ψ0 Kt and Gt = (1 − Ψ0) Kt .
We first analyse Gt and notice that Gt (s) = 0 if s ≤ 3/4. If s > 3/4, then by

Lemma 2.5 (c)

Gt (s) = C (1 − Ψ0(s))
∫

R

m(λ) cos(tλ)e−ρs eiλs a2(λ, s) c(−λ)−1dλ,

which by moving the contour of integration from the real line to R + iρ becomes

Gt (s) = C (1 − Ψ0(s)) e−2ρs

×
∫

R

m(λ + iρ) eiλs a2(λ + iρ, s) cos(t (λ + iρ)) c(−λ − iρ)−1dλ.

The function Gt can be estimated as in [12, p. 289]. Since Gt is the Fourier transform
at s ± t of a symbol of order −ε, s > 3/4 and t < 1/2,

|G ′
t (s)| � e−2ρs |t − s|−2+[ε].

It remains to consider St . Observe that St (s) = 0 unless s ≤ 1; hence, we use
Lemma 2.5 (c) (with N = 0) to write

St (s) = Ψ0(s)
∫

η(λs) φλ(s) m(λ) cos(tλ) |c(λ)|−2 dλ

+ Ψ0(s)
∫

(1 − η(λs)) O(λ, s) m(λ) cos(tλ) |c(λ)|−2 dλ

+ Ψ0(s)
∫

(1 − η(λs))eiλs a1(λ, s) m(λ) cos(tλ) |c(λ)|−2 dλ

= S1,t (s) + S2,t (s) + S3,t (s),

where η is a smooth cutoff function such that η(v) = 1 if |v| ≤ 1 and η(v) = 0 if
|v| ≥ 2. For every s ≤ 1, we have

|S1,t (s)| �
∫ 2/s

0
λd−εdλ � s−d−1+ε

and

|S2,t (s)| �
∫ ∞

1/s
(sλ)−d−1λd−εdλ � s−d−1+ε.
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Finally, S3,t is the inverse Fourier transform computed at s ± t of the symbol λ �→
(1 − η(λs)) a1(λ, s) m(λ) |c(λ)|−2 of order −ε. Then,

|S3,t (s)| � s−d |t − s|−1+ε.

It then follows that for every s ≤ 1,

|St (s)| � s−d−1+ε + s−d |t − s|−1+ε.

In a similar way, one can prove that for every s ≤ 1,

|S′
t (s)| � s−d−2+ε + s−d |t − s|−2+ε + s−d−1|t − s|−1+ε.

By combining the estimates of Gt , G ′
t , St and S′

t , one deduces the required estimates
of Kt and its first derivative for t small. �
Remark 2.1 Let us notice that the kernel Kt and its derivative behave in the same
way far from the singularities, i.e. far from the point o and the sphere of radius t ,
while they have a different behaviour near o and near the sphere of radius t . Observe
moreover that when t ≥ 1

2 and either
1
10 ≤ s ≤ t − 2

10 or s ≥ t + 2
10 , or when t < 1

2
and s ≥ 1, the power |t − s|−2+[ε] in the estimates of Kt (s) and K ′

t (s)maybe replaced
with |t − s|−M for any integer M ≥ −2 + [ε], provided the constant (which might
depend on M) is properly chosen. This is a consequence of [3, Lemma A.2].

We are now in the position to prove the part (ii) of Theorem 2.1. The strategy
we shall adopt consists in decomposing the kernel kt of Tt into a sum of compactly
supported functions which we shall consider separately. We also treat separately the
cases when t is either large or small. The proof turns out to bemore delicate when a is
a standard atom supported in a ball of small radius, and in this case, the cancellation
condition of the atom is crucial together with the estimates of the derivative of the
kernel. When the atom is either a global atom or a standard atom supported in a ball
of radius not too small when compared with t and 1, instead, the cancellation of the
atom plays no role and only the estimates of the kernel are involved.

In order to do this, we shall repeatedly use smooth cutoff radial functions, which
are introduced below. We fix r ∈ (0, 1] and t > 0.

Take a function φ ∈ C∞
c (R) supported in [1/2, 2] such that 0 ≤ φ ≤ 1, φ = 1 in

[1, 3/2], φ(s) = 1 − φ(s/2) for every s ∈ (1, 2) and |φ′| ≤ C . For every i ∈ N and
every x ∈ X, define

φi (x) = φ

( |x |
2i r

)

. (2.5.8)

Observe thatφi is supported in the annulus A2i+1r
2i−1r , 0 ≤ φi ≤ 1 and |∇φi | ≤ C (2i r)−1.

For every h ∈ N and x ∈ X, define

ηh(x) = φ

(
t − |x |
2hr

)

, ωh(x) = φ

( |x | − t

2hr

)

. (2.5.9)
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The function ηh is supported in At−2h−1r
t−2h+1r , 0 ≤ ηh ≤ 1 and |∇ηh| ≤ C (2hr)−1. Simi-

larly, ωh is supported in At+2h+1r
t+2h−1r , 0 ≤ ωh ≤ 1 and |∇ωh | ≤ C (2hr)−1.

Finally, take a function ψ ∈ C∞
c (R) supported in [0, 2] such that 0 ≤ ψ ≤ 1,

ψ = 1 in [2/3, 4/3] and ψ(s + 1) = 1 − ψ(s) for every s ∈ (0, 1). For every j ≥ 2
and x ∈ X, define

ψ j (x) = ψ (|x | − j + 1) . (2.5.10)

The function ψ j is supported in A j+1
j−1 and 0 ≤ ψ j ≤ 1.

Proof (of Theorem 2.1 (ii)) By Proposition 2.1 and the left invariance of Tt , it is
enough to prove that

sup{‖Tt a‖h1 : a h1-atom supported in B(o, r), r ≤ 1} � eρ t .

All throughout the proof, we let ε := −b − d > 0, so that m ∈ S−d−ε
ρ . It will be

crucial for the following to notice that by Lemma 2.4 (ii) with 1
s = 1

2 − (− d+ε
n

) =
1 − 1

2n + ε
n , Hölder inequality and the size condition of the atom, we get

‖Tt a‖L2 � ‖a‖Ls � μ(B)−1+1/s � r− 1
2 +ε. (2.5.11)

Case I: t ≥ 1/2.
Choose J such that J − 2 ≤ t + 2

10 ≤ J − 1. Then for every j ≥ J , the function
a ∗ (ψ j kt ) is supported in B(o, j + 1 + r). By Lemma 2.3 and estimate (2.5.1), we
obtain

‖a ∗ (ψ j kt )‖h1 � (μ(B(o, j + r + 1))1/2 ‖ψ j kt‖L2

� eρ j

(∫ j+1

j−1
e2ρt e−4ρs |t − s|−4 e2ρs ds

)1/2

� eρt |t − j |−2.

Thus,

∞∑

j=J

‖a ∗ (ψ j kt )‖h1 � eρt
∞∑

j=J

( j − t)−2 � eρt
∫ ∞

J

du

(u − t)2
� eρt , (2.5.12)

where we have used the fact that J − 2 ≤ t + 2
10 ≤ J − 1.

Subcase IA: r ≤ 1
10 .

Let φ0 be a smooth function taking values in [0, 1] supported in B(o, 3r) such
that

φ0 +
I1∑

i=1

φi +
I2∑

i=I1+1

φi +
H1∑

h=3

ηh +
H2∑

h=3

ωh +
∞∑

j=J

ψ j = 1 in X \ At+10r
t−10r ,

where φi , ηh, ωh, ψ j are defined by formulae (2.5.8), (2.5.9), (2.5.10) and
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2I1−1r ≤ 1
10 ≤ 2I1+1r,

2I2−1r ≤ t − 2
10 ≤ 2I2+1r,

t − 2H1+1r ≤ t − 2
10 ≤ t − 2H1−1r,

t + 2H2−1r ≤ t + 2
10 ≤ t + 2H2+1r.

Define

σt =
⎡

⎣1 − φ0 +
I1∑

i=1

φi +
I2∑

i=I1+1

φi +
H1∑

h=3

ηh +
H2∑

h=3

ωh +
∞∑

j=J

ψ j

⎤

⎦ kt ,

so that

Tt a = a ∗ (φ0kt ) +
I2∑

i=1

a ∗ (φi kt ) +
H1∑

h=3

a ∗ (ηhkt ) +
H2∑

h=3

a ∗ (ωhkt ) + a ∗ σt +
∞∑

j=J

a ∗ (ψ j kt ).

The h1-norm of the last term of the sum has been already estimated in (2.5.12). We
now concentrate on the remaining terms.

The function a ∗ (φ0kt ) is supported in B(o, 4r) and by Lemma 2.1

‖a ∗ (φ0kt )‖h1 ≤ μ(B(o, 4r))1/2‖a ∗ (φ0kt )‖L2 � rn/2‖Tt‖L2→L2‖a‖L2 � 1,
(2.5.13)

where we have used the size condition of the atom and the fact that the norm of the
operator f �→ f ∗ (φ0kt ) on L2(X) is bounded by the norm of Tt on L2(X) (see
e.g. [13, proof of Theorem 3.1]).

Consider now the cases i = 1, . . . , I1. The function a ∗ (φi kt ) is supported in
B(o, (2i+1 + 1)r). By Lemma 2.3 and by estimates (2.5.1) and (2.5.2), we obtain
that

‖a ∗ (φi kt )‖h1 � (μ(B(o, (2i+1 + 1)r))1/2 r ‖∇(φi kt )‖L2

� (2i r)n/2 r

(∫ 2i+1r

2i−1r
[(2i r)−2s−2d−2+2ε + s−2d−4+2ε]sn−1 ds

)1/2

� (2i )ε+(n−3)/2r ε+(n−1)/2.

Thus, since I1  log2
(

1
10r

)
, we get

I1∑

i=1

‖a ∗ (φi kt )‖h1 � r ε+(n−1)/2
∫ log2(

1
10r )

1
(2u)ε+(n−3)/2 du � r.

Consider now the caseswhen i = I1 + 1, . . . , I2. The functiona ∗ (φi kt ) is supported
in B(o, (2i+1 + 1)r). By Lemma 2.3 and by estimates (2.5.1) and (2.5.2), we obtain
that
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‖a ∗ (φi kt )‖h1 � (μ(B(o, (2i+1 + 1)r))1/2 r ‖∇(φi kt )‖L2

� eρ2i r r

(∫ 2i r

2i−1r
[(2i r)−2e−2ρs + e−2ρs]e2ρs ds

)1/2

� eρ2i r r3/2 2i/2.

Thus, since 2I2r  t − 1
10 , we get

I2∑

i=I1+1

‖a ∗ (φi kt )‖h1 � r3/2
I2∑

i=I1+1

eρ2i r 2i/2 � r3/2
∫ I2

I1+1
eρr2u

2u/2 du

� r3/2
∫ 2I2

2I1+1
v−1/2eρvr dv � r1/2eρt .

Consider now 3 ≤ h ≤ H1. By the triangular inequality, the function a ∗ (ηhkt ) is

supported in At−(2h−1−1)r
t−(2h+1+1)r and has vanishing integral and by Lemma 2.2, by (2.3.3)

and estimates (2.5.1) and (2.5.2)

‖a ∗ (ηhkt )‖h1 � log(1/(2hr))(2hr)1/2 eρt r ‖∇(ηhkt )‖L2

� eρt r (2hr)−1+ε log(1/(2hr))

since ‖∇(ηhkt )‖L2 � (2hr)−3/2+ε. Using the fact that 2H1r  2
10 and then changing

variables 2hr = v, we obtain

H1∑

h=3

‖a ∗ (ηhkt )‖h1 � eρt r
H1∑

h=3

(2hr)−1+ε log(1/(2hr))

� eρt r
∫ H1

3
(2hr)−1+ε log(1/(2hr)) dh

� eρt r
∫ 2/10

8r
v−2+ε log(1/v) dv � eρt r ε log(1/r) � eρt .

Similar computations can be done for a ∗ (ωhkt ), proving that

H2∑

h=3

‖a ∗ (ωhkt )‖h1 � eρt .

It remains to consider a ∗ σt , where σt is the singular part of the kernel supported in
At+10r

t−10r . By the triangular inequality, the function a ∗ σt is supported in At+11r
t−11r . For

every x ∈ At+11r
t−11r , we have

Tt a(x) = a ∗ σt (x) + a ∗ (η3kt )(x) + a ∗ (ω3kt )(x),

so that
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‖a ∗ σt‖L2 ≤ ‖Tt a‖L2 + ‖a ∗ (η3kt )‖L2 + ‖a ∗ (ω3kt )‖L2

� r−1/2+ε + r‖∇(η3kt )‖L2 + r‖∇(η3kt )‖L2 � r−1/2+ε. (2.5.14)

The second inequality follows from (2.5.11) and (2.3.3), while the third follows
from the computations we made before for ∇(ηhkt ) and a similar computation for
∇(ωhkt ).

We deduce from Lemma 2.2 and (2.5.14) that

‖a ∗ σt‖h1 � log(1/r)eρt r1/2r−1/2+ε � eρt .

Subcase IB: 1
10 < r ≤ 1.

Choose two smooth cutoff functions φ0 and φt with values in [0, 1] such that

supp (φ0) ⊆ B(o, 3), supp (φt ) ⊆ A
t− 1

10
2

φ0 + φt +
∞∑

j=J

ψ j = 1 in X \ A
t+ 1

10

t− 1
10

,

(if t − 1/10 < 2, then just φt ≡ 0) and define

σt =
⎡

⎣1 − φ0 − φt −
∞∑

j=J

ψ j

⎤

⎦ kt .

The convolution of a with the sum of theψ j ’s has been already estimated in (2.5.12).
The function a ∗ (φ0kt ) is supported in B(o, 3 + r) and by Lemma 2.1

‖a ∗ (φ0kt )‖h1 � μ(B(o, 4))1/2 ‖Tt‖L2→L2 ‖a‖L2 � 1, (2.5.15)

where we argued as in (2.5.13). By Lemma 2.3 and estimates (2.5.1), we get

‖a ∗ (φt kt )‖h1 � μ(B(o, t − 1
5 + r))1/2 ‖φt kt‖L2

� eρt

(∫ t− 1
5

2
e−2ρs |t − s|−4e2ρs ds

)1/2

� eρt .
(2.5.16)

It remains to estimate the h1-norm of a ∗ σt , which is supported in At+r+1/10
t−r−1/10. Since

Tt a(x) = a ∗ σt (x) + a ∗ (φt kt )(x) + a ∗ (ψJ kt )(x) ∀ x ∈ At+r+1/10
t−r−1/10,

then
‖a ∗ σt‖L2 ≤ ‖Tt a‖L2 + ‖a ∗ (φt kt )‖L2 + ‖a ∗ (ψJ kt )‖L2

≤ ‖Tt‖L2→L2 ‖a‖L2 + ‖φt kt‖L2 + ‖ψJ kt‖L2 � 1,
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which follows from (2.5.11) and the computations we made in (2.5.16) and (2.5.12).
Thus,

‖a ∗ σt‖h1 � μ
(
B(o, t + 1

10 + r)
)1/2 ‖a ∗ σt‖L2 � eρt .

The proof in the case t ≥ 1/2 is then complete.
Case II: t < 1/2.
For every j ≥ 2 by Lemma 2.3 and estimates (2.5.3), we get

‖a ∗ (ψ j kt )‖h1 � μ(B(o, j + 2))1/2 ‖ψ j kt‖L2

� eρ j

(∫ j+1

j−1
e−4ρs(1 + |t − s|−2)2e2ρs ds

)1/2

� ( j − t)−2 � j−2,

where the functions ψ j are defined in (2.5.10). Thus,

∞∑

j=2

‖a ∗ (ψ j kt )‖h1 �
∞∑

j=2

j−2 � 1. (2.5.17)

Subcase IIA: r ≤ t
20 .

Let φ0 be a cutoff function supported in B(o, 3r) taking values in [0, 1] such that

φ0 +
I∑

i=2

φi +
I2∑

i=I1

φi +
∞∑

j=2

ψ j = 1 in X \ At+10r
t−10r ,

where the φi ’s are defined by (2.5.8) and

2I−1r < t − 10r < 2I+1r,

2I1−1r < t + 10r < 2I1+1r,

2I2−1r < 1 < 2I2+1r.

Define

σt =
⎡

⎣1 − φ0 −
I∑

i=3

φi −
I2∑

i=I1

φi −
∞∑

j=1

ψ j

⎤

⎦ kt .

The h1-norm of the convolution with theψ j ’s has been already estimated in (2.5.17).
Since a ∗ (φ0kt ) is supported in B(o, 4r)

‖a ∗ (φ0kt )‖h1 � μ((B(o, 4r)))1/2‖a ∗ (φ0kt )‖L2 � rn/2‖a‖L2 ‖Tt‖L2→L2 � 1,

where we argued as in (2.5.13). For every i ∈ {2, . . . , I } ∪ {I1, . . . , I2}, the function
a ∗ (φi kt ) is supported in B(o, 2i+1r + r) and by Lemma 2.3 and estimates (2.5.3)
and (2.5.4)
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‖a ∗ (φi kt )‖h1 � μ(B(o, 2i+1r + r))1/2 r ‖∇(φi kt )‖L2

� (2i r)n/2 r

(∫ 2i+1r

2i−1r
[(2i r)−2s−2−2d+2ε + (2i r)−2s−2d |t − s|−2+2ε

+ s−2d−4+2ε + s−2d |t − s|−4+2ε + s−2d−2|t − s|−2+2ε]sn−1 ds

)1/2

� r
[
(2i r)

n−3
2 +ε + (2i r)

n−1
2 |t − 2i r |−1+ε + (2i r)

n+1
2 |t − 2i r |−2+ε

]
.

Thus,

I∑

i=2

‖a ∗ (φi kt )‖h1 � r
n−1
2 +ε

∫ I

2
(2u)

n−3
2 +ε du + r

n+1
2

∫ I

2
(2u)

n−1
2 |t − 2ur |−1+ε du

+ r
n+3
2

∫ I

2
(2u)

n+1
2 |t − 2ur |−2+ε du.

By the change of variables 2ur = w and recalling that 2I r  t − 10r < t < 1/2,

I∑

i=3

‖a ∗ (φi kt )‖h1 � r + r
∫ 2I r

4r
w

n−3
2 |t − w|−1+ε dw + r

∫ 2I r

4r
w

n−1
2 |t − w|−2+ε dw

� rε � 1

since |t − w| ≥ |t − 4r | � r . Arguing as before, we can also prove that

I2∑

i=I1

‖a ∗ (φi kt )‖h1 � 1.

It remains to consider a ∗ σt , where σt is the singular part of the kernel supported
in At+10r

t−10r . By the triangular inequality, a ∗ σt is supported in At+11r
t−11r . For every x ∈

At+11r
t−11r , we have

Tt a(x) = a ∗ σt (x) + a ∗ (φI kt )(x) + a ∗ (φI1kt )(x),

so that

‖a ∗ σt‖L2 ≤ ‖Tt a‖L2 + ‖a ∗ (φI kt )‖L2 + ‖a ∗ (φI1kt )‖L2

� r−1/2+ε + r‖∇(φI kt )‖L2 + r‖∇(φI1kt )‖L2 � r−1/2+ε,

where we have applied (2.5.11) and the computations we made above. Then by
Lemma 2.2,

‖a ∗ σt‖h1 � log(1/r)μ(At+11r
t−11r )

1/2‖a ∗ σt‖L2 � log(1/r)r ε � 1.
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Subcase IIB: t
20 < r ≤ 1.

Notice that t + 10r < 30r . We choose a smooth cutoff function φ0 supported in
B(o, 30r) taking values in [0, 1] such that

φ0 +
I∑

i=5

φi +
∞∑

j=2

ψ j = 1

in X, where I is such that 2I−1r < 1 < 2I+1r . We split the kernel kt accordingly as
we did before. Then a ∗ (φ0kt ) is supported in B(o, 31r) and

‖a ∗ (φ0kt )‖h1 � μ(B(o, 31r))1/2‖a‖L2 ‖Tt‖L2→L2 � 1,

where we argued as in (2.5.13). For every i = 5, . . . , I by Lemma 2.3 and esti-
mate (2.5.3), one can see that

‖a ∗ (φi kt )‖h1 � (2i r)n/2‖φi kt‖L2 � (2i r)
n−1
2 +ε + (2i r)

n+1
2 |t − 2i r |−1+ε,

which yields

I∑

i=5

‖a ∗ (φi kt )‖h1 � r
n−1
2 +ε

∫ 2I

25
v

n−3
2 +ε dv +

∫ 1

32r
v

n−1
2 |t − v|−1+ε dv � 1

where we used the fact that 2I−1r < 1 < 2I+1r . This concludes the proof of the case
t < 1/2 and of the theorem. �
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Chapter 3
Weak-Type Estimates
for the Metaplectic Representation
Restricted to the Shearing and Dilation
Subgroup of SL(2,R)

Alessandra Cauli

Abstract We consider the subgroup G of SL(2, R) consisting of shearing and dila-
tions, and we study the decay at infinity of the matrix coefficients of the metaplectic
representation restricted to G. We prove weak-type estimates for such coefficients,
which are uniform for functions in the modulation space M1. This work represents a
continuation of a project aiming at studying weak-type and Strichartz estimates for
unitary representations of non-compact Lie groups.

3.1 Introduction

In [1], we started a project aiming at studying weak-type and Strichartz estimates for
unitary representations of non-compact Lie groups. There, we consider the case of the
metaplectic representation, which is a faithful representation of themetaplectic group
Mp(n, R) in L2(Rn), being the double covering of the symplectic group Sp(n, R).
It can therefore be identified with a subgroup of unitary operators Ŝ on L2(Rn). We
denote by Ŝ �→ S ∈ Sp(n, R) the projection. Among other things, we proved the
uniform and sharp weak-type estimate

∥
∥
∥

〈

Ŝϕ1, ϕ2

〉∥
∥
∥

L4,∞(Mp(n,R))
� ‖ϕ1‖M1 ‖ϕ2‖M1 ,

where Mp(n, R) is endowed with its Haar measure. In this formula, M1 denotes a
modulation space—a Banach space well known in time–frequency analysis [16]—
whose definition will be recalled in the next section. Here it is enough to observe
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that it is dense in L2(Rn) and contains the Schwartz space. From the above estimate,
we can deduce Strichartz-type estimates for the metaplectic representation. In this
paper, we consider a similar problem, but for the metapletic representation restricted
to the shearing and dilation subgroup G of SL(2, R), constituted by the matrices of
the form lt ds1/2 , with t ∈ R, s > 0, where

ds =
(

s−1 0
0 s

)

, s > 0, lt =
(

1 0
t 1

)

, t ∈ R

hence

lt ds1/2 =
(

1 0
t 1

) (

s−1/2 0
0 s1/2

)

=
(

s−1/2 0
ts−1/2 s1/2

)

.

The corresponding Haar measure is dtds
s2 . This group is particularly important in

time–frequency analysis because it is reproducing, see [13, Lemma 2.1] as well as
[2–5], where it is shown that the metaplectic representation plays a key role in the
classification of the reproducing subgroups of the affine symplectic group.

Now, for any ϕ1, ϕ2 ∈ M1 we consider again the matrix coefficient G → R, S �→
∣
∣
∣

〈

Ŝϕ1, ϕ2

〉∣
∣
∣. Our main result reads as follows.

Theorem 3.1 Given G as above, we have:

∥
∥
∥

〈

Ŝϕ1, ϕ2

〉∥
∥
∥

L4,∞
� ‖ϕ1‖M1 ‖ϕ2‖M1 .

From this result, it is easy to obtain corresponding Strichartz-type estimates, fol-
lowing the pattern in [1]. The results on Strichartz estimates are often applied to
wellposedness and scattering of nonlinear PDEs, see [17] for further details. We also
refer to [10–12] for general results concerning decay estimates formatrix coefficients
of unitary representation and to [6–9] for the role of the metaplectic representation
in PDEs from a time–frequency analysis perspective.

The paper is organized as follows. Section 3.2 contains some preliminary results,
Sect. 3.3 is devoted to a survey of the results on reproducing groups, with the aim of
describing the role of the above group G in time–frequency analysis. In Sect. 3.4,
we recall some results from [1], while in Sect. 3.5, we prove our main result.

3.2 Preliminaries

3.2.1 Integration on the Symplectic Group

The symplectic group Sp(n, R) is the group of 2n × 2n real matrices S such that
S J = J S, where
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J =
(

0 In

−In 0

)

is the standard symplectic form

ω(x, y) = xT J y, x, y ∈ R
2n. (3.2.1)

Sp(n, R) turns out to be a unimodular Lie group. The following integration formula
for U (2n, R)-bi-invariant functions on Sp(n, R) will be crucial in the following.

Recall that f : Sp(n, R) → C is called U (2n, R)-bi-invariant if f (U1SU2) =
f (S) for every S ∈ Sp(n, R), U1, U2 ∈ U (2n, R).
Consider the abelian subgroup A = {at } of Sp(n, R) given by

at =
(

e
t
2 0
0 e− t

2

)

, t = diag(t1, . . . , tn), (t1, . . . , tn) ∈ R
n.

If f is a U (2n, R)-bi-invariant function on Sp(n, R), its integral with respect to the
Haar measure is given by

∫

Sp(n,R)

f (S)d S = C
∫

t1≥...≥tn≥0
f (at )

∏

i< j

sinh
ti − t j

2

∏

i≤ j

sinh
ti + t j

2
dt1 . . . dtn

(3.2.2)
for some constant C > 0.

3.2.2 The Metaplectic Representation

The metaplectic representation μ links the standard Schrödinger representation ρ of
the Heisenberg group H

n to the representation obtained from it by composing ρ with
the action of Sp(n, R) by automorphisms onH

n . We recall here its construction. The
product in the Heisenberg group H

n is defined by

(z, t) · (z′, t ′) =
(

z + z′, t + t ′ − 1

2
ω(z, z′)

)

onR
2n+1, whereω is the standard symplectic form inR

2n given by (3.2.1).We denote
the translation and modulation operators on L2(Rn) by

Tx f (t) = f (t − x) and Mξ f (t) = e2π i〈ξ,t〉 f (t).

The Schrödinger representation of the group H
n on L2(Rn) is then defined by

ρ(x, ξ, t) f (y) = e2π i t eπ i〈x,ξ〉e2π i〈ξ,y−x〉 f (y − x) = e2π i t eπ i〈x,ξ〉Tx Mξ f (y),
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where we write z = (x, ξ) when we separate space components from frequency
components in a point z in the phase space R

2n . The symplectic group acts on H
n

via automorphisms that leave the center {(0, t) : t ∈ R} � R of H
n point-wise fixed:

A · (z, t) = (Az, t).

Moreover, for any fixed A ∈ Sp(n, R) there is a representation

ρA : H
n −→ U (L2(Rn)), (z, t) �→ ρ(A · (z, t))

whose restriction to the center is amultiple of the identity.By theStone–vonNeumann
theorem, ρA is equivalent to ρ. This means that there exists an unitary operator
μ(A) ∈ U (L2(Rn)) such that ρA(z, t) = μ(A) ◦ ρ(z, t) ◦ μ(A)−1, for all (z, t) ∈
H

n . By Schur’s lemma, μ is determined up to a phase factor eis , s ∈ R. Actually,
the phase ambiguity is really a sign and μ lifts to a representation of the double
cover of the symplectic group. It is exactly the famous metaplectic or Shale–Weil
representation.

The representations ρ and μ can be combined and produced the extended meta-
plectic representation of the group G = H

n
� Sp(n, R). The group law on G is

((z, t), A) · ((z′, t ′), A′) = ((z, t) · (Az′, t ′), AA′)

and the extended metaplectic representation μe of G is

μe((z, t), A) = ρ(z, t) ◦ μ(A).

The role of the center of the Heisenberg group is irrelevant, and the true group under
consideration is R

2n
� Sp(n, R), which we denote again by G. G acts naturally by

affine transformations on the phase space, namely

g · (x, ξ) = ((q, p), A) · (x, ξ) = AT (x, ξ) + (q, p)T .

For elements of Sp(n, R) in special form and for f ∈ L2(Rn), the metaplectic rep-
resentation can be computed explicitly in a simple way, so we have:

μ

([

A 0
0 (AT )−1

])

f (x) = (det A)−1/2 f (A−1x) (3.2.3)

μ

([

I 0
C I

])

f (x) = ±eiπ〈Cx,x〉 f (x) (3.2.4)

μ(J ) = (−i)d/2F (3.2.5)

where F denotes the Fourier transform
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F f (ξ) =
∫

Rn

f (x)e−2π i〈x,ξ〉dx, f ∈ L1(Rn) ∩ L2(Rn).

3.2.3 Modulation Spaces

Fix a window function ϕ ∈ S (Rn) \ {0}. The short-time Fourier transform (STFT)
of a function–temperate distribution ψ ∈ S ′(Rn) with respect to ϕ is defined by

Vϕψ(x, ξ) =
∫

Rn

e−2π iξ ·yψ(y)ϕ(y − x)dy, x, ξ ∈ R
n.

For 1 ≤ p, q ≤ ∞ and a Schwartz function ϕ ∈ S (Rn) \ {0}, the modulation space
M p,q(Rn) is defined as the space of ψ ∈ S ′(Rn) such that

‖ψ‖M p,q :=
( ∫

Rn

( ∫

Rn

|Vϕψ(x, ξ)|pdx
)q/p

dξ
)1/q

< ∞,

with obvious changes if p = ∞ or q = ∞.
If p = q, then we write M p instead of M p,p.
We will also need a variant, sometimes called Wiener amalgam space in the

literature, whose norm is

‖ψ‖W (F L p,Lq ) :=
( ∫

Rn

( ∫

Rn

|Vϕψ(x, ξ)|pdξ
)q/p

dx
)1/q;

here the Lebesgue norms appear in the inverse order. Both these norms provide a
measure of the time–frequency concentration of a function and are widely used in
time–frequency analysis [14, 16].

We have M p1,q1 ⊆ M p2,q2 if and only if p1 ≤ p2 and q1 ≤ q2. Similarly, W (F L p1 ,

Lq1) ⊆ W (F L p2 , Lq2) if and only if p1 ≤ p2 and q1 ≤ q2.
The duality goes as expected:

(M p,q)′ = M p′,q ′
, 1 ≤ p, q < ∞,

and in particular
|〈 f, g〉| � ‖ f ‖M p ‖g‖M p′ . (3.2.6)

In the dispersive estimates, we meet, in particular, the Gelfand triple

M1 ⊂ L2(Rn) ⊂ M∞.

We observe that
S (Rn) ⊂ M1 ⊂ L2(Rn)
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with dense and strict inclusions. For atomic characterizations of the space M1, we
refer to [14, 16].

We will also use the complex interpolation theory for modulation spaces, which
reads as follows: for 1 ≤ p, q, pi , qi ≤ ∞, i = 0, 1, 0 ≤ θ ≤ 1,

1

p
= 1 − ϑ

p0
+ ϑ

p1
,

1

q
= 1 − ϑ

q0
+ ϑ

q1
,

we have
(M p0,q0 , M p1,q1)ϑ = M p,q .

3.3 The Role of the Metaplectic Representation
in Time–Frequency Analysis

The metaplectic representation became an essential tool in time–frequency analysis
as it is very important in Weyl pseudo-differential calculus, and it is strictly related
to a quadratic time–frequency representation called Wigner distribution, which is
regarded as one of the bestmathematical descriptions of the time–frequency behavior
of signals. The metaplectic representation is also important in order to understand
when a subgroup is reproducing as we will see in the following.

3.3.1 The Wigner Distribution and Some of its Properties

In this paragraph, we recall some basic definition and properties; we refer to [14, 15]
for more details.

Definition 3.1 The Wigner distribution W (ϕ) of a function ϕ ∈ L2(Rn) is defined
to be

Wϕ(x, ξ) =
∫

Rn

ϕ

(

x + t

2

)

ϕ

(

x − t

2

)

e−2π iξ ·t dt.

By polarizing the quadratic expression, one obtains the cross-Wigner distribution of
ϕ,ψ ∈ L2(Rn):

W (ϕ, ψ)(x, ξ) =
∫

Rn

ϕ

(

x + t

2

)

ψ

(

x − t

2

)

e−2π iξ ·t dt.

We also set W (ϕ) = W (ϕ, ϕ).

Proposition 3.1 The cross-Wigner distribution of ϕ,ψ ∈ L2(Rn) satisfies:

1. W (ϕ, ψ) is uniformly continuous on R
2n and ‖W (ϕ, ψ)‖∞ ≤ 2n ‖ϕ‖2 ‖ψ‖2.
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2. W (ϕ, ψ) = W (ψ, ϕ); in particular, W (ϕ) is real valued.
3. For u, v, η, γ ∈ R

n, we have

W (Tu Mηϕ, Tv Mγ ψ)(x, ξ) =

= eπ i(u+v)·(γ−η)e2π i x ·(η−γ )e−2π iξ ·(u−v) · W (ϕ, ψ)

(

x − u + v

2
, ξ − η + γ

2

)

.

In particular, Wϕ is covariant, that is,

W (Tu Mηϕ)(x, ξ) = Wϕ(x − u, ξ − η).

4. W (ϕ̂, ψ̂)(x, ξ) = W (ϕ, ψ)(−ξ, x).
5. Moyal’s formula: for ϕ1, ϕ2, ψ1, ψ2 ∈ L2(Rn),

〈W (ϕ1, ψ1), W (ϕ2, ψ2)〉L2(R2n) = 〈ϕ1, ϕ2〉〈ψ1, ψ2〉. (3.3.1)

6. Marginal densities: If ϕ, ϕ̂ ∈ L1 ∩ L2(Rn), then

∫

Rn

Wϕ(x, ξ)dξ = |ϕ(x)|2 ,

∫

Rn

W ϕ̂(x, ξ)dξ = ∣
∣ϕ̂(x)

∣
∣
2
. (3.3.2)

In particular, ∫ ∫

R2n

Wϕ(x, ξ)dxdξ = ‖ϕ‖22 . (3.3.3)

3.3.2 Reproducing Groups

We now come to the notion of reproducing groups, and we show how the metaplectic
representation is essential in their characterization. We consider a Lie group H with
left Haar measure dh, and φ ∈ L2(Rn) is a unitary representation of H in L2(Rn),
and we are interested in reproducing formulae of the type:

f =
∫

H
〈 f, φh〉 φhdh, f ∈ H , (3.3.4)

In particular, we consider the case when the Lie group H in (3.3.4) is a subgroup
of the semi-direct product G = H

n
� Sp(n, R) of the Heisenberg group and the

symplectic group, while the representation h �→ φh arises from the restriction to
H of the reducible (extended) metaplectic representation μe of G as applied to a
fixed and suitable window function φ ∈ L2(Rn). A group H for which there exists
a window φ such that (3.3.4) holds is said to be reproducing.
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Definition 3.2 We say that a connected Lie subgroup H of G = R
2n

� Sp(n, R) is
a reproducing group for μe if there exists a function φ ∈ L2 (Rn) such that

f =
∫

H
〈 f, μe(h)φ〉μe(h)φdh, f or all f ∈ L2(Rn). (3.3.5)

Any φ ∈ L2(Rn) for which (3.3.5) holds is called a reproducing function.

Remark 3.1 We notice that we do require Formula (3.3.5) to hold for all functions
in L2(Rn) for the same window φ, but we do not require the restriction of μe to H
to be irreducible.

One of themost important features ofμe is that it may be realized by affine actions on
R

2n bymeans of theWigner distribution. Since the reproducing formula is insensitive
to phase factors, i.e., to the action of the center of H

n , the group G is truly R
2n

�

Sp(n, R). The following notion of admissible subgroup H of G = H
n

� Sp(n, R)

relative to the extended metaplectic representation μe via the Wigner distribution is
important to establishwhen a subgroup is reproducing, together with some additional
integrability and boundedness properties of W (ψ)(h−1 · (x, ξ)).

Definition 3.3 We say that a connected Lie subgroup H of G = R
2n

� Sp(n, R) is
an admissible group for μe if there exists a function φ ∈ L2

R
n such that

∫

H
W (φ)(h−1 · (x, ξ))dh = 1 f or a.e. (x, ξ) ∈ R

2n. (3.3.6)

Any φ ∈ L2(Rn) for which (3.3.6) holds is called an admissible function.

Theorem 3.2 Suppose that φ ∈ L2(Rn) is such that the mapping

h �→ W (μe(h)φ)(x, ξ) = W (φ)(h−1 · (x, ξ)) (3.3.7)

is in L1(H) for a.e. (x, ξ) ∈ R
2n and

∫

H

∣
∣W (φ)(h−1 · (x, ξ))

∣
∣ dh ≤ M, f or a.e. (x, ξ) ∈ R

2n. (3.3.8)

The condition (3.3.5) holds for all f ∈ L2(Rn) if and only if the following admissi-
bility condition is satisfied:

∫

H
W (φ)(h−1 · (x, ξ))dh = 1 f or a.e. (x, ξ) ∈ R

2n. (3.3.9)

We now dispose of two different tools for checking whether a subgroup H of
G = R

2n
� Sp(n, R) is reproducing or not. Either we find a window function φ

for which (3.3.5) holds or we check the admissibility of the subgroup H and use
Theorem 3.2.
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3.4 On Dispersive and Strichartz Estimates
for the Metaplectic Representation

We recall here a number of definitions and results from [1] that we will use in
the following. As anticipated in the introduction, in [1] we proved the following
dispersive-type estimate.

Theorem 3.3 (Dispersive estimate) The following estimate holds:

‖Ŝψ‖M∞ � (λ1(S) . . . λn(S))−1/2‖ψ‖M1 (3.4.1)

for Ŝ ∈ Mp(n, R), ψ ∈ S (Rn), where λ1(S), . . . , λn(S) are the singular values
≥ 1 of S = π(Ŝ) ∈ Sp(n, R).

By duality, this is in fact equivalent to:

|〈Ŝψ, ϕ〉| � (λ1(S) . . . λn(S))−1/2‖ψ‖M1‖ϕ‖M1 ,∀Ŝ ∈ Mp(n, R). (3.4.2)

Corollary 3.1 (Uniform weak-type estimate for matrix coefficients) Let G = Mp
(n, R) with the Haar measure. The following estimate holds:

‖〈Ŝϕ1, ϕ2〉‖L4n,∞(G) � ‖ϕ1‖M1‖ϕ2‖M1 , (3.4.3)

for ϕ1, ϕ2 ∈ S (Rn).

The proof of the above corollary is in fact based on Theorem 3.3 and the following
result:

Proposition 3.2 Let α > 0, β > 0. Consider the function

h(S) = (λ1(S) . . . λn(S))−α

on Sp(n, R), where λ1(S) . . . λn(S) are the singular values ≥1 of the symplectic
matrix S.

We have h ∈ Lβ,∞ on Sp(n, R), with respect to the Haar measure, if

αβ ≥ 2n.

Proposition 3.2 is in turn proved by using the explicit formula for the integration
of functions on Mp(n, R) (i.e., Sp(n, R)), that we recalled in the previous section.

Finally, as a consequence of the dispersive estimates we therefore obtained the
following Strichartz-type estimates.

Theorem 3.4 (Strichartz estimates) Let G = Mp(n, R) with the Haar measure. The
following estimates hold:

‖Ŝψ‖Lq (G;Mr ) � ‖ψ‖L2 ,
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Fig. 3.1 Admissible pairs
for Strichartz estimates

1/q

1/r

1
2

1
8n

1
2

Schrödinger equation

n−2
2n

metaplectic representation

(Lebesgue/modulation space exponent)

for
4n

q
+ 1

r
≤ 1

2
, 2 ≤ q, r ≤ ∞.

The range of admissible pairs (q, r) in Theorem 3.4 is represented in Fig. 3.1.
For the sake of completeness, we now report a sketch of the proof of the previous

theorem.

Proof (Proof of Theorem 3.4) We know that

‖Ŝψ‖L2 = ‖ψ‖L2 (3.4.4)

for ψ ∈ L2(Rn), which gives the desired Strichartz estimate for q = ∞, r = 2,
because M2 = L2, and also for q = ∞, 2 ≤ r ≤ ∞, because L2 ↪→ Mr for r ≥ 2.
Hence from now on, we can suppose q < ∞.

Now by Theorem 3.3,

‖Ŝψ‖M∞ � (λ1(S) . . . λn(S))−1/2‖ψ‖M1 .

By interpolation with (3.4.4), we obtain, for every 2 ≤ r ≤ ∞,

‖Ŝψ‖Mr � (λ1(S) . . . λn(S))−( 1
2 − 1

r )‖ψ‖Mr ′ . (3.4.5)

Let now G = Mp(n, R), as in the statement. Then one concludes by applying the
usual T T ∗ method (see [17, page 75]) to the operator

T : L2 → Lq(G; Mr ), T ψ = Ŝψ.

3.5 Proof of the Main Results

Since G ⊂ SL(2, R) = Sp(1, R), the estimate (3.4.2) holds with n = 1 for S ∈ G.
Let now
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S = lt ds1/2 =
(

s−1/2 0
ts−1/2 s1/2

)

be a generic element of G, so that

S∗ =
(

s−1/2 ts−1/2

0 s1/2

)

and

S∗S =
(

s−1/2 ts−1/2

0 s1/2

) (

s−1/2 0
ts−1/2 s1/2

)

=
(

s−1 + t2s−1 t
t s

)

.

We determine the singular values of S, which are the square roots of the eigen-
values of S∗S. Now,

det (S∗S − λI ) = λ2 − (s + s−1 + t2s−1)λ + 1

from which

λ1,2 = s + s−1 + t2s−1 ± √

(s − s−1)2 + t2(t2s−2 + 2s−2 + 2)

2
.

We assume λ2 ≤ λ1, and we have λ2 = λ−1
1 , so that λ1 ≥ 1. We get:

λ
−1/2
1 =

(
1

2

)−1/2

(s + s−1(1 + t2) +
√

(s − s−1)2 + t2s−2(t2 + 2) + 2t2)−1/2.

Let us observe that

√

(s − s−1)2 + t2s−2(t2 + 2) + 2t2 � |s − s−1| + |t |s−1
√

t2 + 1 + |t |.

We have to estimate the measure of the set

Dλ = {

(t, s) ∈ R × R+ : λ1(t, s)−1/4 ≥ λ
}

,

λ > 0 with respect to the Haar measure dtds
s2 i.e.,

∫

R×R+
χDλ

dtds

s2
,

where χDλ
is the indicator function of Dλ. We split the domain of the indicator

function into several regions. As Dλ = ∅ if λ > 1, we will consider λ ≤ 1 in the
following.
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Let us consider D1 : |t | ≤ 2, s ≥ 2. Then we have:

s + s−1(1 + t2) � s + s−1 � s

and

|s − s−1| + |t |s−1
√

t2 + 1 + |t | � s + |t |s−1 + |t | = s + |t |(s−1 + 1)

� s + |t | � s.

Hence,
λ1(t, s) � s.

Since
s−1/4 ≥ λ ⇔ s ≤ λ−4,

we have ∫

D1

χD1

dtds

s2
≤

∫

|t |≤2,2≤s�λ−4

dtds

s2
= O(1)

as λ → 0+.
Then consider D2 : |t | ≥ 2, s > 2. We have:

s + s−1(1 + t2) � s + s−1t2

and
|s − s−1| + |t |s−1

√

t2 + 1 + |t | � s + |t |(1 + |t |s−1).

Hence,
λ1(t, s) � s + |t |(1 + s−1|t |).

We consider two cases:

• If s−1|t | ≥ 1, λ1(t, s) � s + s−1t2.
Clearly,

s + s−1t2 ≥ s−1t2

and
(s−1t2) ≥ λ2

if
|t | ≤ λ−1s−1/2.

Then,
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∫

D2

χD2

dtds

s2
≤

∫ +∞

2

1

s2

∫

|t |�λ−1s−1/2
dtds

� λ−1
∫ +∞

2

1

s3/2
ds = O(λ−1).

• If s−1|t | ≤ 1, λ1(t, s) � s + |t |.
Since

s + |t | ≤ λ−4 ⇒ |t | ≤ λ−4,

∫

D2

χD2

dtds

s2
≤

∫

|t |�λ−4,s≥2

dtds

s2

� λ−4
∫ +∞

2

ds

s2
= O(λ−4).

So we have ∫

D2

χD2

dtds

s2
� λ−4.

Then consider D3 : |t | ≥ 2, 0 < s < 1
2 . Then we have:

s + s−1(1 + t2) � s + s−1t2 � s + s−1t2

and

|s − s−1| + |t |s−1
√

t2 + 1 + |t | � s−1 + t2s−1 + |t | = s−1(1 + t2) + |t |
� s−1t2 + |t | = |t |(s−1|t | + 1) � s−1t2.

So,
λ1(t, s) � s + s−1t2

and
s + s−1t2 ≤ λ−4

implies
|t | ≤ s1/2λ−2.

Then, ∫

D3

χD3

dtds

s2
≤

∫

λ2�s≤1/2

1

s2

∫

2≤|t |�s1/2λ−2
dtds � λ−2.

Consider D4 : |t | ≥ 2, 1
2 < s < 2. So we have:
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s + s−1(1 + t2) � t2

and
|s − s−1| + |t |s−1

√

t2 + 1 + |t | � |s − 1| + t2 � t2.

On the other hand,
t2 ≤ λ−4 ⇒ |t | ≤ λ−2

and therefore, ∫

D4

χD4

dtds

s2
�

∫

2≤|t |�λ−2, 12 <s<2
1

dtds

s2
� λ−2.

Consider D5 : |t | ≤ 2, 0 < s < 1
2 . Then we have:

s + s−1(1 + t2) � s + s−1 � s−1

and

|s − s−1| + |t |s−1
√

t2 + 1 + |t | � |s − s−1| + |t |s−1
√

t2 + 1 + |t |
� s−1 + |t |s−1 + |t | = s−1(|t | + 1) + |t | � s−1 + |t |.

Hence,
λ1(t, s) � s−1 + |t |

and
s−1 + |t | ≤ λ−4 ⇒ s−1 ≤ λ−4 ⇒ s ≥ λ4

so that ∫

D5

χD5

dtds

s2
≤

∫

|t |≤2,λ4�s< 1
2

dtds

s2
� λ−4.

Consider D6 : |t | ≤ 2, 1
2 < s < 2. Then we have:

∫

D6

χD6

dtds

s2
≤

∫

|t |≤2, 12 <s<2

dtds

s2
= O(1)

for λ → 0+. Considering the contribution of each integral, we have just calculated
and observing that

λ−4 � λ−β

for 0 < λ ≤ 1, if β ≥ 4 we conclude the proof.

Acknowledgements I am very indebted to Professors Fabio Nicola and Elena Cordero for discus-
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Chapter 4
On the Atomic Decomposition of Coorbit
Spaces with Non-integrable Kernel

Stephan Dahlke, Filippo De Mari, Ernesto De Vito, Lukas Sawatzki,
Gabriele Steidl, Gerd Teschke and Felix Voigtlaender

Abstract This chapter is concerned with recent progress in the context of coorbit
space theory. Based on a square-integrable group representation, the coorbit theory
provides new families of associated smoothness spaces, where the smoothness of
a function is measured by the decay of the associated voice transform. Moreover,
by discretizing the representation, atomic decompositions and Banach frames can
be constructed. Usually, the whole machinery works well if the associated repro-
ducing kernel is integrable with respect to a weighted Haar measure on the group.
In recent studies, it has turned out that to some extent coorbit spaces can still be
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established if this condition is violated. In this chapter, we clarify in which sense
atomic decompositions and Banach frames for these generalized coorbit spaces can
be obtained.

4.1 Introduction

This chapter is concerned with specific problems arising in the context of signal
analysis. The overall goal in signal analysis is the efficient extraction of the relevant
information one is interested in. For this, the signal—usually modeled as an element
in a suitable function space—has to be processed, denoised, compressed, etc. The
first step is always to decompose the signal into appropriate building blocks. This
is performed by an associated transform, such as the wavelet transform, the Gabor
transform, or the shearlet transform, just to name a few. Which transform to choose
clearly depends on the type of information one wants to extract from the signal.
In recent years, it has turned out that group theory—in particular representation
theory—acts as a common thread behind many transforms. Indeed, many transforms
are related with square-integrable representations of certain locally compact groups.
For instance, the wavelet transform is associated with the affine group whereas the
Gabor transform stems from the Weyl-Heisenberg group. We refer e.g., to [12, 13]
for details.

This connection with group theory paves the way to the application of another
very important concept, namely coorbit theory. This theory has been developed by
Feichtinger and Gröchenig already in the late 1980s, see [12–14, 21]. In recent
years, coorbit theory has experienced a real renaissance. Among other things, the
connections to the various shearlet transforms [6] and to the concept of decomposition
spaces [18, 28] have been investigated.

Based on a square-integrable group representation, by means of coorbit space
theory, it is possible to construct canonical smoothness spaces, the coorbit spaces,
by collecting all functions for which the associated voice transform has a certain
decay.Moreover, by discretizing the underlying representation, it is possible to obtain
atomic decompositions for the coorbit spaces. Moreover, also Banach frames can be
constructed.

The coorbit space theory is based on certain assumptions. In particular, it is not
enough that the representation is square-integrable, it must also be integrable, i.e.,
the reproducing kernel must be contained in a weighted L1-space on the group.
Unfortunately, this condition is restrictive, and even in very simple settings such
as for the case of band-limited functions, it is not satisfied. Nevertheless, in [5], it
has been shown that there is a way out. Instead of using a classical L1-space as the
space of generalized test functions, one can work with the weaker concept of Fréchet
spaces. Then, more or less all the basic steps to establish the associated coorbit spaces
can be performed. We refer to Sect. 4.2 for brief discussion of this approach.

However, in [5] one issue remained open, namely the construction of atomic
decompositions for the resulting coorbit spaces. This is exactly the problem we are
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concerned with here. As a surprise, it turns out that this part of the coorbit space
theory does not directly carry over to the Fréchet setting. There are two essential
differences: First of all, a synthesis map can be constructed, but only at the price
that the integrability parameters of the discrete norms on the coefficient spaces and
of the coorbit norms are different. At first sight, this might look strange, but in the
setting of non-integrable kernels this is in a certain sense not too surprising. Indeed,
in the context of coorbit space theory, sooner or later convolution estimates of Young
type have to be employed, which yield bounded mappings between L p-spaces with
different integrability exponents for domain and codomain if the convolution kernel
is not in L1. Concerning the atomic decomposition part, the situation is even more
involved. It turns out that for any element in the coorbit space a suitable approximation
by linear combinations of the atoms can be derived, but at the price that the weighted
sequence norms of the expansion coefficients cannot be uniformly bounded by the
coorbit norm. These results will be stated and proved in Sect. 4.3, see in particular
Theorem 4.3.

Looking at these results, the inclined reader might have the impression that the
authors were simply unable to prove sharper results, whereas such results might still
be true, and provable with a more refined analysis. This might be true, but only
partially. Indeed, in Sect. 4.4, we prove an additional result which shows that, under
some very natural conditions, uniform bounds can only be obtained if the kernel
operator acts as a bounded operator on theweighted L p-spaces, that is, this additional
assumption is necessary for obtaining uniform bounds. These facts strongly indicate
that with the decomposition results stated in Sect. 4.3, we have almost reached the
ceiling. However, there is still a little bit of flexibility which we can use to improve
our results. Indeed, in Sect. 4.5, we prove that if there exists a second kernel W that
satisfies additional smoothness assumptions and acts as the identity by left and right
convolution on the reproducing kernel of the representation, then uniform bounds
for both, the synthesis and the analysis part, can be obtained. Fortunately, in one
important practical application given by the Paley–Wiener spaces such a kernel can
be found.

This chapter is organized as follows. First of all, in Sect. 4.2, we recall the
construction of coorbit spaces based on non-integrable kernels. We keep the expla-
nation as short as possible and refer to [5] for further details. Then, in Sect. 4.3,
we provide first discretization results for the associated coorbit spaces; the main
result is Theorem 4.3. Then, in Sect. 4.4, we are concerned with “negative” results.
Indeed, in Theorem 4.4 we show that stable decompositions can only be obtained if
the right convolution by the reproducing kernel is bounded on the underlying L p-
spaces. Finally, in Sect. 4.5 we present satisfactory discretization results with the
aid of an additional kernel W . Indeed, in the Theorems 4.5 and 4.6, respectively, we
show that atomic decompositions and Banach frames with uniform bounds can be
constructed, just as in the context of the classical coorbit theory.
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4.2 An Overview

Throughout this paper, G denotes a fixed locally compact second countable group
with leftHaar measure β andmodular function Δ. For a definition of these terms, we
refer to [15]. We simply write

∫
G f (x) dx instead of

∫
G f (x) dβ(x) and we denote

by L0(G) the space of Borel measurable functions. Given f ∈ L0(G) the functionŝ

f and f are
̂

f (x) = f (x−1), f (x) = f (x),

and for all x ∈ G the left and right regular representations λ and ρ act on f as

λ(x) f (y) = f (x−1y) a.e y ∈ G,

ρ(x) f (y) = f (yx) a.e y ∈ G.

Finally, the convolution f ∗ g between f, g ∈ L0(G) is the function

f ∗ g(x) =
∫

G
f (y)g(y−1x) dy =

∫

G
f (y) · (λ(x)

̂
g)(y) dy a.e. x ∈ G,

provided that, for almost all x ∈ G, the function y �→ f (y) · (λ(x)

̂
g)(y) is integrable.

Furthermore, given two functions f, g ∈ L0(G), with slight abuse of notations,
we write

〈 f, g〉L2 =
∫

G
f (x)g(x) dx,

provided that the function f g is integrable.
We fix a continuous weight w : G → (0,∞) satisfying

w(xy) ≤ w(x)w(y), (4.2.1a)

w(x) = w(x−1) (4.2.1b)

for all x, y ∈ G. As a consequence, it also holds that

inf
x∈G

w(x) ≥ 1. (4.2.1c)

The symmetry (4.2.1b) can always be satisfied by replacingwwithw +
̂
w, where the

latter weight is easily seen to still satisfy the submultiplicativity condition (4.2.1a).
For all p ∈ [1,∞), define the separable Banach space

L p,w(G) =
{

f ∈ L0(G)

∣
∣
∣
∣

∫

G
|w(x) f (x)|p dx < ∞

}
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with norm

‖ f ‖p
L p,w

=
∫

G
|w(x) f (x)|p dx,

and the obvious modifications for L∞(G), which however is not separable. When
w ≡ 1, we simply write L p(G).

With terminology as in [5], we choose, as a target space for the coorbit space
theory, the following space

Tw =
⋂

1<p<∞
L p,w(G).

We recall some basic properties of Tw; for proofs, we refer to Theorem 4.3 of [5],
which is based on results in [7]. We endow Tw with the (unique) topology such
that a sequence ( fn)∈N in Tw converges to 0 if and only if limn→+∞‖ fn‖L p,w

= 0
for all 1 < p < ∞. With this topology, Tw becomes a reflexive Frechét space. The
(anti-)linear dual space of Tw can be identified with

Uw = span
⋃

1<q<∞
Lq,w−1(G)

under the pairing

∫

G
Φ(x) f (x) dx = 〈Φ, f 〉w, Φ ∈ Uw, f ∈ Tw. (4.2.2)

Remark 4.1 The spaceUw is endowed with one of the following equivalent topolo-
gies, both compatible with the pairing (4.2.2).

(i) The finest topology making the inclusions Lq,w−1(G) ↪→ Uw continuous for all
1 < q < ∞.

(ii) The topology induced by the family of semi-norms
(‖·‖p,r

)
1<p<r<∞, where

‖Φ‖p,r = sup
{|〈Φ, f 〉w| ∣∣ f ∈ Tw and max

{‖ f ‖L p,w
, ‖ f ‖Lr,w

} ≤ 1
}
,

for Φ ∈ Uw.

The representation λ leaves invariant both Tw and Uw, it acts continuously on
Tw, and the contragradient representation tλ of λ|Tw

, given by

〈 tλgΦ, f 〉w = 〈Φ, λg−1 f 〉w for Φ ∈ Uw and f ∈ Tw,

is simply tλ = λ|Uw
.

Take g ∈ Tw with
̂
g ∈ Tw. For all f ∈ Tw, the convolution f ∗ g is in Tw and

the map
f �→ f ∗ g
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is continuous fromTw intoTw. Furthermore, for all Φ ∈ Uw, the convolution Φ ∗ g
is in Uw and the map

Φ �→ Φ ∗ g

is continuous from Uw into Uw.
Take now a (strongly continuous) unitary representation π of G acting on a sep-

arable complex Hilbert spaceH with scalar product 〈·, ·〉H linear in the first entry.
We assume that π is reproducing, namely there exists a vector u ∈ H such that the
corresponding voice transform

V v(x) = 〈v, π(x)u〉H , v ∈ H , x ∈ G,

is an isometry fromH into L2(G). We observe that this implies that V is injective,
whence span {π(x)u}x∈G is dense inH .

We denote by K the reproducing kernel

K (x) = V u(x) = 〈u, π(x)u〉H , x ∈ G, v ∈ H , (4.2.3)

which is a bounded continuous function and enjoys the following basic properties

K =
̂

K , (4.2.4a)
n∑

i, j=1

ci c j K (x−1
i x j ) ≥ 0, c1, . . . , cn ∈ C, x1, . . . , xn ∈ G, (4.2.4b)

K ∗ K = K ∈ L2(G). (4.2.4c)

In general,π is not assumed to be irreducible, but the reproducing assumption implies
that u is a cyclic vector. Properties (4.2.4a) and (4.2.4b) uniquely define the repre-
sentation π up to an unitary equivalence, see Theorem 3.20 and Proposition 3.35
of [15]. Equation (4.2.4c) states that π is equivalent to the subrepresentation of the
left-regular representation (on L2(G)) having K as a cyclic vector. Conversely, if a
bounded continuous function K satisfies (4.2.4a), (4.2.4b), and (4.2.4c), then there
exists a unique (up to an unitary equivalence) reproducing representation π whose
reproducing kernel is K .

For the remainder of the paper, we will always impose the following basic
assumption:

Assumption 4.1 We assume K ∈ Tw, i.e,

K ∈ L p,w(G) for all 1 < p < ∞. (4.2.5)

We add some remarks.

Remark 4.2 (i) Since w(x) ≥ 1, Assumption (4.2.5) implies that K ∈ L p(G) for
all p > 1. If π is irreducible, this last fact gives that V is an isometry up to
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a constant, so that π is always a reproducing representation. If π is reducible,
condition (4.2.5) is not sufficient to ensure that π is reproducing; however, if
K ∗ K = K , then π is always reproducing.

(ii) If w−1 belongs to Lq(G) for some 1 < q < ∞, then Hölder’s inequality shows
K ∈ L1(G), but in general K /∈ L1,w(G). However in many interesting exam-
ples, w is independent of one or more variables, so that w−1 /∈ Lq(G) for all
1 < q < ∞.

We now define the test space Sw as

Sw = {
v ∈ H

∣
∣ V v ∈ L p,w(G) for all 1 < p < ∞}

, (4.2.6)

which becomes a locally convex topological vector space under the family of semi-
norms

‖v‖p,Sw
= ‖V v‖L p,w

. (4.2.7)

We recall the main properties ofSw.

Theorem 4.1 (Theorem 4.4 of [5]) Under Assumption (4.2.5), the following hold:

(i) the space Sw is a reflexive Fréchet space, continuously and densely embedded
in H ;

(ii) the representation π leaves Sw invariant and its restriction to Sw is a contin-
uous representation;

(iii) the space H is continuously and densely embedded into the (anti-)linear dual
S ′

w, where both spaces are endowed with the weak topology;
(iv) the restriction of the voice transform V : Sw → Tw is a topological isomor-

phism from Sw onto the closed subspace MTw of Tw, given by

MTw = {
f ∈ Tw

∣
∣ f ∗ K = f

}
,

and it intertwines π and λ;
(v) for every f ∈ Tw, there exists a unique element π( f )u ∈ Sw such that

〈π( f )u, v〉H =
∫

G
f (x)〈π(x)u, v〉H dx =

∫

G
f (x)V v(x) dx, v ∈ H .

Furthermore, it holds that

V π( f )u = f ∗ K ,

and the map
Tw � f �→ π( f )u ∈ Sw

is continuous and its restriction to MTw is the inverse of V .

Here and in the following, the notation π( f )u is motivated by the following fact.
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Remark 4.3 In the framework of abstract harmonic analysis, any function f ∈
L1(G) defines a bounded operator π( f ) on H , which is weakly given by

〈π( f )v, v′〉H =
∫

G
f (x)〈π(x)v, v′〉H dx, v, v′ ∈ H ,

see for example Sect. 3.2 of [15]. However, if f /∈ L1(G), then in general π( f )v is
well-defined only if v = u, where u is an admissible vector for the representation π .

Recalling that the (anti-)dual ofTw isUw under the pairing (4.2.2), we denote by
tV the contragradient map tV : Uw → S ′

w given by

〈 tV Φ, v〉Sw
= 〈Φ, V v〉w, Φ ∈ Uw, v ∈ Sw.

As usual, we extend the voice transform from H to the (anti-)dual S ′
w of Sw,

where S ′
w plays the role of the space of distributions. For all T ∈ S ′

w, we set

VeT (x) = 〈T, π(x)u〉Sw
, x ∈ G, (4.2.8)

which is a continuous function on G by item (ii) of the previous theorem and 〈·, ·〉Sw

denotes the pairing between Sw and S ′
w, whereas 〈·, ·〉w is the pairing between Tw

and Uw.
We summarize the main properties of the extended voice transform in the follow-

ing theorem.

Theorem 4.2 (Theorem 4.4 of [5]) Under assumption (4.2.5), the following hold:

(i) for every Φ ∈ Uw there exists a unique element π(Φ)u ∈ S ′
w such that

〈π(Φ)u, v〉Sw
=

∫

G
Φ(x)〈π(x)u, v〉H dx =

∫

G
Φ(x)V v(x) dx, v ∈ Sw.

Furthermore, it holds that

Veπ(Φ)u = Φ ∗ K ;

(ii) for all T ∈ S ′
w the voice transform VeT is in Uw and satisfies

VeT = VeT ∗ K , (4.2.9)

〈T, v〉Sw
= 〈VeT , V v〉w, v ∈ Sw; (4.2.10)

(iii) the extended voice transform Ve is injective, continuous from S ′
w into Uw

(when both spaces are endowed with the strong topology), its range is the
closed subspace
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MUw = {
Φ ∈ Uw

∣
∣ Φ ∗ K = Φ

} = span
⋃

p∈(1,∞)

M L p,w(G) ⊂ L∞,w−1(G)

(4.2.11)
and it intertwines the contragradient representation of π|Sw

and λ|Uw
;

(iv) the map
MUw � Φ �→ π(Φ)u ∈ S ′

w

is the left inverse of Ve and coincides with the restriction of the map t V to
MUw , namely

Ve(
t V Φ) = Veπ(Φ)u = Φ, Φ ∈ MUw ; (4.2.12)

(v) regarding Sw ↪→ H ↪→ S ′
w, it holds

Sw = {
T ∈ S ′

w

∣
∣ VeT ∈ Tw

} =
{
π( f )u

∣
∣
∣ f ∈ MTw

}
.

Item (ii) of the previous theorem states that the voice transform of any distri-
bution T ∈ S ′

w satisfies the reproducing formula (4.2.9) and uniquely defines the
distribution T by means of the reconstruction formula (4.2.10), i.e.,

T =
∫

G
〈T, π(x)u〉Sw

π(x)u dx,

where the integral is a Dunford-Pettis integral with respect to the duality between
Sw and S ′

w, see, for example, Appendix 3 of [15].
We nowfix an exponent r ∈ [1,∞), and aw-moderateweightm, i.e., a continuous

function m : G → (0,∞) such that

m(xy) ≤ w(x) · m(y) and m(xy) ≤ m(x) · w(y) for all x, y ∈ G . (4.2.13)

Remark 4.4 The definition (4.2.13) of a w-moderate weight m is equivalent to the
condition

m(xyz) ≤ w(x) · m(y) · w(z) for all x, y, z ∈ G

up to the constant w(e).

The result of the following lemma is used multiple times in this chapter.

Lemma 4.1 If m is a w-moderate weight on G, then so is m−1.

Proof To prove the estimates in (4.2.13) for m−1, we fix x, y ∈ G, then by the w-
moderateness of m it holds

m(y) = m(x−1xy) ≤ w(x−1) · m(xy) = w(x) · m(xy),



84 S. Dahlke et al.

which implies m(xy)−1 ≤ w(x) · m(y)−1. Similarly, we observe that

m(x) = m(xyy−1) ≤ m(xy) · w(y−1) = m(xy) · w(y),

which in turn implies m(xy)−1 ≤ m(x)−1 · w(y). �

With terminology as in [5], we choose as a model space for the coorbit space
theory, the Banach space Y = Lr,m(G) with r ∈ (1,∞). The corresponding coorbit
space is defined as

Co(Y ) = {
T ∈ S ′

w

∣
∣ VeT ∈ Y

}
(4.2.14)

endowed with the norm
‖T ‖Co(Y ) = ‖VeT ‖Y . (4.2.15)

We summarize the main properties of Co(Y ) in the following proposition.

Proposition 4.1 The space Co(Y ) is a Banach space invariant under the action
of the contragradient representation of π|Sw

. The extended voice transform is an
isometry from Co(Y ) onto the λ-invariant closed subspace

M Y = {
F ∈ Y

∣
∣ F ∗ K = F

} ⊂ Uw ,

and we have
Co(Y ) = {

π(F)u
∣
∣ F ∈ M Y

}
.

Furthermore

Veπ(F)u = F, F ∈ M Y , (4.2.16)

π(VeT )u = T, T ∈ Co(Y ). (4.2.17)

Proof The proof is essentially an application of Theorem 3.5 in [5]. We first note
that convergence with respect to ‖ · ‖Y = ‖ · ‖Lr,m implies convergence in measure.
Furthermore, since m is w-moderate, it is not hard to see that Y = Lr,m(G) is λ-
invariant, and that the restriction of λ to Y is a continuous representation of G.
Therefore, we only need to prove that Assumptions 5 and 6 in [5] are satisfied.

We first show that Y ⊂ Uw. By (4.2.13) and (4.2.1b), we get for any x ∈ G that

m(e) = m(xx−1) ≤ m(x) · w(x−1) = m(x) · w(x) , (4.2.18)

andhence [w(x)]−1 · m(e) ≤ m(x),whenceY = Lr,m(G) ↪→ Lr,w−1(G) ⊂ Uw since
r > 1.

SinceUw = T ′
w under the pairing (4.2.2), for all F ∈ Y and f ∈ Tw it holds that

F f ∈ L1(G). In particular, by assumption (4.2.5), F K ∈ L1(G) for all F ∈ Y and,
by construction, F V v ∈ L1(G) for all v ∈ Sw and F ∈ M Y , so that Assumption 5
and Assumption 6 in [5] hold true. �
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4.3 Discretization

The aim of this section is to establish certain atomic decompositions for the coorbit
spaces described in Sect. 4.2. In particular, we recall that

Tw =
⋂

p∈(1,∞)

L p,w(G), T ′
w = Uw = span

⋃

q∈(1,∞)

Lq,w−1(G) (4.3.1)

and for some 1 < r < ∞,
Y = Lr,m(G). (4.3.2)

Proposition 4.1 shows that the correspondence principle holds, i.e., the extended
voice transform Ve is an isometry from the associated coorbit space

Co(Lr,m) := {
T ∈ S ′

w

∣
∣ Ve(T ) ∈ Lr,m(G)

}
(4.3.3)

onto the corresponding reproducing kernel Banach space

Mr,m = M Lr,m (G) = {
f ∈ Lr,m(G)

∣
∣ f ∗ K = f

}
. (4.3.4)

Remark 4.5 Assumption (4.2.5) on the kernel K and the fact that m is
w-moderate imply that for all f ∈ Lr,m(G) the convolution f ∗ K is well-defined;
see Proposition 4.13.

In this setting, we can characterize the antidual M ′
r,m of the reproducing kernel

space.

Lemma 4.2 The antidual M ′
r,m of Mr,m is canonically isomorphic to Lr ′,m−1(G)/

M⊥
r,m, where

M⊥
r,m =

{
F̃ ∈ Lr ′,m−1(G)

∣
∣
∣ 〈F̃, F〉L2 = 0 for all F ∈ Mr,m

}
(4.3.5)

and 1/r + 1/r ′ = 1. Hence, for every Γ ∈ M ′
r,m, there is a F̃ ∈ Lr ′,m−1(G) such

that Γ (F) = 〈F̃, F〉L2 for all F ∈ Mr,m.

Proof Since Mr,m is a closed subspace of Lr,m(G), [25, Proposition 1.4] yields
that M ′

r,m is canonically isomorphic to L ′
r,m(G)/M⊥

r,m . The claim follows because
L ′

r,m(G) is canonically isomorphic to Lr ′,m−1(G). �

Some more preparations are necessary. Given a compact neighborhood Q ⊂ G
of e with Q = int Q, the local maximal function (with respect to the right regular
representation) Mρ

Q f of f ∈ L0(G) is defined by

Mρ

Q f (x) := ‖ f · ρ(x)χQ‖L∞, whence
̂

M
ρ

Q f (x) := Mρ

Q f (x−1) = ‖ f ‖L∞(Qx) .

(4.3.6)
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Then, for a function space Y on G, we define

M ρ

Q(Y ) := {
f ∈ L0(G)

∣
∣
̂

M
ρ

Q f ∈ Y
}
. (4.3.7)

Now we define the Q-oscillation of a function f with respect to Q as

oscQ f (x) := sup
u∈Q

| f (ux) − f (x)|. (4.3.8)

The decay properties of the Q-oscillation play an important role in view of the
discretization of coorbit spaces. To this end, the following lemma is useful. Since
the proof is a simple generalization of the proof of [21, Lemma 4.6], it is deferred to
the appendix.

Lemma 4.3 Let w be a weight on G, let p ∈ (1,∞), and assume that f : G → C is
continuous and that f ∈ M ρ

Q0
(L p,w) for some compact unit neighborhood Q0 with

Q0 = int Q0. Then the following hold:

(i) ‖oscQ0 f ‖L p,w
< ∞.

(ii) For arbitrary ε > 0, there is a unit neighborhood Qε ⊂ Q0 such that for each
unit neighborhood Q ⊂ Qε, we have ‖oscQ f ‖L p,w

< ε. Put briefly,

lim
Q→{e}‖oscQ f ‖L p,w

= 0.

4.3.1 An Assumption on the Kernel

From now on we make the following assumption on the reproducing kernel space.

Assumption 4.2 Assumption 4.1 is satisfied, and span{λ(x)K }x∈G is dense inMr,m .

This assumption is similar to the density of span {π(x)K }x∈G in H —which is
equivalent to K being a cyclic vector for the representation π onH —and inMTw ,
which is Assumption 3 of [5] and fulfilled in our setting, as can be seen by combining
Theorems 4.1 and 4.2.

In the following, we will denote with RCK the right convolution operator
RCK f := f ∗ K , where the space on which RCK acts may vary depending on the
context.

Before we provide a sufficient condition under which Assumption 4.2 is fulfilled
(see Lemma 4.4), we need a couple of auxiliary results.



4 On the Atomic Decomposition of Coorbit Spaces with Non-integrable Kernel 87

Proposition 4.2 Assume that for all f ∈ Lr,m(G), f and K are convolvable (in the
sense that f · λ(x)

̂

K ∈ L1(G) for almost all x ∈ G) and f ∗ K ∈ Lr,m(G), then the
right convolution operator

RCK : Lr,m(G) → Lr,m(G), RCK f = f ∗ K ,

is bounded.

Proof For r = 2, the result is stated in [22, Proposition 3.10], whose proof holds
true for any p. Indeed, by the closed graph theorem, it is enough to show that RCK

is a closed operator. Take a sequence ( fn)n∈N converging to f ∈ Lr,m(G) such that
(RCK fn)n∈N converges to g ∈ Lr,m(G). By a sharp version of the Riesz–Fischer
theorem, see [1, Theorem 13.6], there exists a positive function g ∈ Lr,m(G) such
that, possibly passing twice to a subsequence, there exist two null sets E, F such
that for all y ∈ G \ E and x ∈ G\F

| fn(y)| ≤ g(y),

lim
n→∞ fn(y) = f (y),

lim
n→∞ RCK fn(x) = g(x).

Furthermore, by definition of convolution and possibly redefining the null set F , we
get that for all x ∈ G\F and all n ∈ N the mappings

y �→ fn(y)K (y−1x), y �→ g(y)K (y−1x)

are integrable. Then, given x ∈ G\F , for all y ∈ G\E

| fn(y)K (y−1x)| ≤ |g(y)K (y−1x)|, lim
n→∞ fn(y)K (y−1x) = f (y)K (y−1x).

For x ∈ G\F , the function y �→ g(y)K (y−1x) is integrable, so that by dominated
convergence we obtain

g(x) = lim
n→∞

∫

G
fn(y)K (y−1x) dy =

∫

G
f (y)K (y−1x) dy = f ∗ K (x),

so RCK is indeed closed. �

Proposition 4.3 Denote by r ′ the dual exponent 1/r + 1/r ′ = 1. Assume that the
right convolution operator

RCK : Lr,m(G) → Lr,m(G), RCK f = f ∗ K

is bounded, then
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(i) the right convolution operator is bounded on Lr ′,m−1(G) and it coincides with
the adjoint of RCK ;

(ii) the operator RCK is a projection from Lr,m(G) onto the reproducing kernel
Banach space Mr,m.

Here and in the following, the duality pairing is the sesqui-linear form

〈 f, g〉L2 =
∫

G
f (x)g(x) dx, f ∈ Lr,m(G), g ∈ Lr ′,m−1(G).

Proof Since RCK is a bounded operator on Lrm(G), the adjoint is a bounded operator
on Lr,m(G)′. Take g ∈ Lr ′,m−1(G) and f ∈ Cc(G) ⊂ Lr,m(G), then

〈RC∗
K g, f 〉L2 = 〈g, RCK f 〉L2 =

∫

G
g(x)

(∫

G
f (y)K (y−1x) dy

)

dx

=
∫

G

(∫

G
g(x)K (x−1y) dx

)

f (y) dy

= 〈g ∗ K , f 〉L2 ,

where K (y−1x) = K (x−1y). Note that we can interchange the integral by Fubini’s
theorem since

∫

G
|g(x)|

(∫

G
| f (y)K (y−1x)| dy

)

dx ≤ ‖g‖Lr ′ ,m−1 · ‖| f | ∗ |K |‖Lr,m

and | f | ∗ |K | ∈ Lr,m(G) by Young’s inequality (4.6.5) with q = 1 and p = r , f ∈
L1,m(G) and g = K ∈ Lr,w(G). Note that Fubini’s theorem shows that

∫
| f (y)| · (|g| ∗ |K |)(y) dy < ∞ .

Since this holds for any f ∈ Cc(G), we see |g| ∗ |K | < ∞ almost everywhere, so
that g and K are convolvable. By density of Cc(G) in Lr,m(G), we get that RC∗

K g =
g ∗ K , so that g ∗ K ∈ Lr ′,m−1(G). Hence the convolution operator acts continuously
on Lr ′,m−1(G), and it coincides with RC∗

K .
To show the secondclaim, observefirst that for any f ∈ Cc(G) ⊂ Tw ⊂ Lr ′,m−1G),

since K ∈ Tw, both | f | ∗ |K | and (| f | ∗ |K |) ∗ |K | exist, so that by (77d) of [5] the
convolution is associative and

RC2
K f = ( f ∗ K ) ∗ K = f ∗ (K ∗ K ) = f ∗ K = RCK f.

By density, and since RCK is bounded on Lr,m(G) by assumption, we get that
RC2

K = RCK and hence Ran RCK ⊂ Mr,m . The other inclusion is trivial. �

As a consequence of the above result, we get the following corollary.
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Corollary 4.1 Denote by r ′ the dual exponent 1/r + 1/r ′ = 1 and assume that the
right convolution operator RCK is bounded on Lr,m(G). The sesqui-linear pairing
on Co(Lr,m) × Co(Lr ′,m−1) given by

〈T, T ′〉Co(Lr,m ) = 〈VeT , VeT ′〉L2

is such that the linear map

T ′ �→
(

T �→ 〈T, T ′〉Co(Lr,m )

)

is an isomorphism of Co(Lr ′,m−1) onto the antilinear dual of Co(Lr,m).

Proof We identify Co(Lr,m) with Mr,m by the extended voice transform Ve, so that
the pairing becomes

〈 f, g〉L2 =
∫

G
f (x)g(x) dx, f ∈ Mr,m, g ∈ Mr ′,m−1 .

Since g ∈ Lr ′,m−1(G), clearly f �→ 〈 f, g〉L2 is a continuous antilinear map, which
we denote by Γg, onMr,m whose norm is

‖Γg‖ = sup
{|〈 f, g〉L2 | | f ∈ Mr,m, ‖ f ‖Lr,m ≤ 1

}

≤ sup
{|〈h, g〉L2 | | h ∈ Lr,m(G), ‖h‖Lr,m ≤ 1

} = ‖g‖Lr ′ ,m−1 .

Next, since Lr,m(G) is the dual of Lr ′,m−1(G), there is h ∈ Lr,m(G) with ‖h‖Lr,m ≤ 1
such that ‖g‖Lr ′ ,m−1 = 〈h, g〉L2 . Now, setting c := ‖RCK ‖Lr,m→Lr,m and f = c−1 ·
RCK h, we have ‖ f ‖Lr,m ≤ 1 and

〈 f, g〉L2 = c−1〈RCK h, g〉L2 = c−1〈h, RCK g〉L2 = c−1〈h, g〉L2 = c−1‖g‖Lr ′ ,m−1 .

Hence, c−1 · ‖g‖Lr ′ ,m−1 ≤ ‖Γg‖ ≤ ‖g‖Lr ′ ,m−1 .
We now prove that the map g �→ Γg is surjective. Take Γ in the antilinear dual

ofMr,m . SinceMr,m is a subspace of Lr,m(G) there exists g′ ∈ Lr ′,m−1(G) such that
Γ ( f ) = 〈 f, g′〉L2 for all f ∈ Mr,m . By setting g = RCK g

′ ∈ Mr ′,m−1 , as above

Γ ( f ) = 〈 f, g′〉L2 = 〈RCK f, g〉L2 = 〈 f, g〉L2 = Γg( f ) for all f ∈ Mr,m,

thus Γ = Γg. �

Now we can prove that in the following setting Assumption 4.2 is fulfilled.

Lemma 4.4 Fix r ∈ (1,∞) and assume that the right convolution operator RCK is
bounded on Lr,m(G). Then the sets span{π(x)u}x∈G and span{λ(x)K }x∈G are dense
in Co(Lr,m) and Mr,m, respectively. Thus, Assumption 4.2 is fulfilled.
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Proof By the correspondence principle, it is enough to show the second claim. Let
Γ ∈ M ′

r,m be such that for all x ∈ G,

Γ (λ(x)K ) = 0.

By the above corollary, there exists g ∈ Mr ′,m−1 such that Γ ( f ) = 〈g, f 〉L2 for all
f ∈ Mr,m . In particular,

0 = Γ
(
λ(x)K

) = 〈g, λ(x)K 〉L2 = g ∗ K (x) = RCK g(x)

for all x ∈ G, that is, RCK g = 0. Since g ∈ Mr ′,m−1 , this implies g = 0 and then
Γ = 0. Since this holds for any Γ ∈ M ′

r,m such that Γ (λ(x)K ) = 0 for all x ∈ G,
we see that span{λ(x)K }x∈G is dense inMr,m . �

By Young’s inequality, we know that the L1(G)-integrability of K · w implies
that the (right) convolution operator RCK is a bounded operator acting on L p,m(G)

for all 1 < p < ∞. But for general K ∈ Tw, this question is unclear. As we will
show in Sect. 4.3.3, there are kernels that act boundedly on all L p(G) without being
integrable. But in Sect. 4.4, we also show that there exist kernels for a very similar
setting that are contained in Tw but that do not give rise to bounded operators on
L p,m(G).

4.3.2 Atomic Decompositions

This section is dedicated to finding possible atomic decompositions of coorbit spaces,
provided that Assumption 4.2 is fulfilled. The main results of this section will be
stated in Theorem 4.3.

But before that we need to introduce some notation. First, for each n ∈ N, we
choose a countable subset Yn = {x j,n} j∈Jn ⊂ G such that

Yn ⊂ Yn+1, (4.3.9)
⋃

n∈N
Yn = G. (4.3.10)

Moreover, for every n ∈ N, we assume that there exists a compact neighborhood Qn

of the identity e ∈ G, such that Yn is Qn-dense in G, i.e.,

G =
⋃

j∈Jn

x j,n Qn. (4.3.11)

Additionally, we assume each Yn to be uniformly relatively Qn-separated, i.e., there
exists an integer I , independent of n, and subsets Zn,i ⊂ Yn , 1 ≤ i ≤ I , such that
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Yn =
I⋃

i=1

Zn,i (4.3.12)

and for all x, y ∈ Zn,i , 1 ≤ i ≤ I , it holds x Qn ∩ yQn �= ∅ if and only if x = y.
By Ψn = {ψn,x }x∈Yn , we denote a partition of unity subordinate to the Qn-dense

set Yn , i.e.,

0 ≤ ψn,x ≤ 1, (4.3.13)
∑

x∈Yn

ψn,x ≡ 1, (4.3.14)

supp(ψn,x ) ⊂ x Qn. (4.3.15)

We also assume that the family Ψn = {ψn,x }x∈Yn is linearly independent as
a.e. defined functions, i.e., for any finite subset X ⊂ Yn and (αx )x∈X ∈ C

X , the con-
dition ∑

x∈X

αxψn,x (y) = 0

for almost all y ∈ G implies that αx = 0 for all x ∈ X .
We now denote with Xn a finite subset of Yn , such that

Xn ⊂ Xn+1, (4.3.16)
⋃

n∈N
Xn = G. (4.3.17)

Therefore, for every n ∈ N, the finite set of functions {ψn,x }x∈Xn is similar to a
partition of unity subordinate to the family (x Qn)x∈Xn .

For each n ∈ N and 1 < r < ∞, set

Tn : Lr,m(G) → Mr,m, Tn F :=
∑

x∈Xn

〈F, ψn,x 〉L2 λ(x)K . (4.3.18)

We observe that this operator is well-defined. Since the sum is finite, we only have
to verify that each term of the sum is a well-defined element of Mr,m . It is easy to
verify that the reproducing identity holds for λ(x)K , since it holds for K . Moreover,
we have λ(x)K ∈ Lr,m(G) by Assumption 4.1 and by translation invariance of the
spaces Lr,m(G); thus, λ(x)K ∈ Mr,m . Finally, the pairing

〈F, ψn,x 〉L2 =
∫

G
F(y)ψn,x (y) dy

is well-defined for all x ∈ Xn , since ψn,x is bounded with compact support, so that
ψn,x ∈ Lr ′,m−1(G).
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Now we define Vn = Ran Tn , which is a finite dimensional subspace ofMr,m , as
well as Ṽn = V −1

e (Vn), which is a finite dimensional subspace of Co(Lr,m) by the
correspondence principle. We show the following result concerning the structure of
the spaces Vn:

Lemma 4.5 The following holds for all n ∈ N:

Vn = span {λ(x)K }x∈Xn
, (4.3.19)

Vn ⊂ Vn+1, (4.3.20)
⋃

n≥1

Vn = Mr,m . (4.3.21)

Proof We start by showing (4.3.19). By the construction, we made above, Vn ⊆
span {λ(x)K }x∈Xn

.
We first observe that the map

F �→ (〈F, ψn,x 〉L2(G)

)
x∈Xn

is surjective from Lr,m(G) to C
Xn . Indeed, if this was not true, there would

be a non-zero family (αx )x∈Xn ∈ C
Xn satisfying

∑
x∈Xn

αx 〈F, ψn,x 〉L2 = 0 for all
F ∈ Lr,m(G), then

∑
x∈Xn

αxψn,x = 0 in Lr ′,m−1(G) and, hence, almost every-
where, then by assumption αx = 0 for all x ∈ Xn , a contradiction. It follows that
span {λ(x)K }x∈Xn

⊆ Vn and (4.3.19) holds true.
Equation (4.3.20) is an easy consequence of (4.3.16) and (4.3.19).
It remains to show (4.3.21). Since the sequence (Vn)n∈N is an increasing family

of subspaces, and since Vn ⊂ Mr,m for all n ∈ N, the set
⋃

n≥1 Vn is a subspace of
the closed space Mr,m . Hence, by the Hahn–Banach theorem, condition (4.3.21) is
equivalent to the following condition: If Γ ∈ M ′

r,m satisfies

〈Γ, F〉M ′
r,m×M r,m = 0, for all F ∈ Vn, n ∈ N,

then Γ = 0 in M ′
r,m . By Lemma 4.2, we can write 〈Γ, F〉M ′

r,m×M r,m = 〈g, F〉L2 for
all F ∈ Mr,m , for a suitable g ∈ Lr ′,m−1(G). Since λ(x)K ∈ Mr,m , x ∈ G, for every
f ∈ Lr ′,m−1(G) with f − g ∈ M⊥

r,m , it holds for all x ∈ G,

(g ∗ K )(x) = 〈g, λ(x) K 〉L2 = 〈Γ, λ(x) K 〉M ′
r,m×M r,m .

Now, with F = Tn f for some f ∈ Lr,m(G), we obtain

0 = 〈Γ, Tn f 〉M ′
r,m×M r,m =

∑

x∈Xn

〈ψn,x , f 〉L2 · 〈Γ, λ(x)K 〉M ′
r,m×M r,m

=
∑

x∈Xn

〈ψn,x , f 〉L2 · (g ∗ K )(x) = 〈
∑

x∈Xn

(g ∗ K )(x)ψn,x , f 〉L2 .
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Since this holds for any f ∈ Lr,m(G),weget
∑

x∈Xn
(g ∗ K )(x)ψn,x = 0 in Lr ′,m−1(G)

for all n ∈ N. Because the finite family
{
ψn,x

}
x∈Xn

is linearly independent as ele-
ments of Lr ′,m−1(G), we have (g ∗ K )(x) = 0 for all x ∈ Xn and n ∈ N. Therefore,
by (4.3.17), the function g ∗ K vanishes on a dense subset of G. But since we have
g ∗ K (x) = 〈g, λ(x)K 〉L2 with g ∈ Lr ′,m−1(G), and since the map G → Lr,m(G),

x �→ λ(x)K is continuous, we see that g ∗ K : G → C is a continuous functions, so
that we get g ∗ K ≡ 0, i.e., 〈Γ, λ(x)K 〉M ′

r,m×M r,m = 0 for all x ∈ G.
By Assumption 4.2, this implies Γ = 0 as an element of M ′

r,m , which proves
(4.3.21). �

Remark 4.6 By the correspondence principle, analogous results to (4.3.19), (4.3.20),
and (4.3.21) hold true for Ṽn . This can be seen as follows: Since it holds Veπ(x)u =
λ(x)K for all x ∈ Xn , by (4.3.19), we obtain

Ṽn = span {π(x)u}x∈Xn
. (4.3.22)

Hence, the nesting property Ṽn ⊂ Ṽn+1 analogous to (4.3.20) is straightforward. By
the correspondence principle, it follows from (4.3.20) that

⋃

n∈N
Ṽn = Co(Lr,m). (4.3.23)

With the spaces Vn at hand, in the following, we will turn to projections from
Mr,m onto Vn and their properties. To this end, let πn : Mr,m → Vn be the metric
projection defined by

πn(F) = argming∈Vn
‖F − g‖M r,m . (4.3.24)

Since Mr,m is a closed subspace of Lr,m(G) with 1 < r < ∞, the space Mr,m is a
uniformly convex Banach space and every Vn is convex and closed; therefore πn is a
well-defined and unique function, see [19, Proposition 3.1]. Similarly, we define the
projection π̃n : Co(Lr,m) → Ṽn by setting π̃n = V −1

e πn Ve.
The following lemma gives us a first norm estimate for this metric projection.

Lemma 4.6 Given ε > 0 and F ∈ Mr,m, there exists n∗ = n∗
F,ε ∈ N such that for

all n ≥ n∗ it holds

‖F − πn(F)‖M r,m ≤ ε, (4.3.25)

‖πn(F)‖M r,m ≤ (1 + ε)‖F‖M r,m . (4.3.26)

Proof If F = 0, the claim is clear since 0 ∈ Vn so that πn(F) = 0. Hence, we can
assume that F �= 0. Let δ := min

{
1, ‖F‖M r,m

} · ε > 0. By (4.3.21), there exists
n∗ ≥ 1 and g ∈ Vn∗ such that ‖F − g‖M r,m ≤ δ. For all n ≥ n∗, by (4.3.20), we have
g ∈ Vn and by definition of the metric projection,



94 S. Dahlke et al.

‖F − πn(F)‖M r,m ≤ ‖F − g‖M r,m ≤ δ ≤ ε.

The triangle inequality gives

‖πn(F)‖M r,m ≤ ‖F − πn(F)‖M r,m + ‖F‖M r,m ≤ δ + ‖F‖M r,m ≤ (1 + ε)‖F‖M r,m ,

which concludes the proof. �

The following auxiliary result establishes a first upper bound for certain coeffi-
cients related to functions F ∈ Mr,m . This will be used for the atomic decomposition
afterward.

Proposition 4.4 For any F ∈ Lr,m(G) and n ∈ N, let the coefficients cn,x ∈ C,
x ∈ Xn, be defined via

cn,x :=
∫

G
F(y)ψn,x (y) dy.

Then the inequality

⎛

⎝
∑

x∈Xn

|cn,x |r m(x)r

⎞

⎠

1/r

≤ |Qn|1/r ′ · sup
q∈Qn

w(q) · ‖F‖Lr,m (4.3.27)

holds, where |Qn| denotes the Haar measure of the set Qn and r ′ denotes the dual
exponent of r .

Proof We first note that, since ψn,x is compactly supported and bounded, the coef-
ficient cn,x is well-defined.

Next, we observe that if ψn,x (y) �= 0, then y = xqn for some qn ∈ Qn , and hence
m(x) = m(xqnq−1

n ) ≤ m(xqn) · w(q−1
n ) ≤ m(y) · supq∈Qn

w(q). This shows

m(x) · |cn,x | ≤ m(x) ·
∫

G
|F(y)| · ψn,x (y) dy

≤ sup
q∈Qn

w(q) ·
∫

G
|(m F)(y)| · ψn,x (y) dy .

(4.3.28)

We will now further estimate the integral on the right-hand side, setting F0 := m · F
for brevity.

To this end, we define the measure dμx on G (for x ∈ Xn) by setting

dμx (y) = ψn,x (y)

‖ψn,x‖L1

dy

and readily observe that
∫

G 1 dμx = 1. Thus, by Jensen’s inequality, see
[8, Theorem 10.2.6], we obtain
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(∫

G
|F0(y)| ψn,x (y)

‖ψn,x‖L1

dy

)r

=
(∫

G
|F0(y)| dμx (y)

)r

≤
∫

G
|F0(y)|r dμx (y)

=
∫

G
|F0(y)|r ψn,x (y)

‖ψn,x‖L1

dy.

By the properties of Ψn , see (4.3.13), (4.3.14) and (4.3.15), it holds

‖ψn,x‖L1 =
∫

G
ψn,x (y) dy ≤

∫

x Qn

1 dy =
∫

Qn

1 dy = |Qn|.

Recalling (4.3.28), we thus see

∑

x∈Xn

(m(x) · |cn,x |)r

≤ sup
q∈Qn

w(q)r ·
∑

x∈Xn

‖ψn,x‖r
L1

(∫

G
|F0(y)| ψn,x (y)

‖ψn,x‖L1

dy

)r

≤ sup
q∈Qn

w(q)r ·
∑

x∈Xn

‖ψn,x‖r
L1

∫

G
|F0(y)|r ψn,x (y)

‖ψn,x‖L1

dy

≤ sup
q∈Qn

w(q)r · sup
x∈Xn

‖ψn,x‖r−1
L1

∑

x∈Xn

∫

G
|F0(y)|rψn,x (y) dy

≤ sup
q∈Qn

w(q)r · |Qn|r−1 · ‖F‖r
Lr,m

,

which concludes the proof. �

With this at hand, we are able to give a first atomic decomposition for functions
F ∈ Vn , n ∈ N, as well as an estimate for the norm of the coefficients involved.

Lemma 4.7 Given n ∈ N, for all F ∈ Vn the following atomic decomposition holds
true:

F =
∑

x∈Xn

c(F)n,x λ(x)K , (4.3.29)

where the coefficients c(F)n,x are of the form

c(F)n,x = 〈Sn F, ψn,x 〉L2 , (4.3.30)

where Sn denotes any linear right inverse of Tn : Lr,m(G) → Vn. In particular, the
coefficients depend linearly on F and they satisfy
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⎛

⎝
∑

x∈Xn

|c(F)n,x |r m(x)r

⎞

⎠

1/r

≤ Cn‖F‖M r,m , (4.3.31)

with Cn = ‖Sn‖ · |Qn|1/r ′ · supq∈Qn
w(q).

Proof Wefirst observe that the operator Tn admits a bounded right inverse Sn : Vn →
Lr,m(G). Indeed, by [4, Theorem 2.12], the existence of a bounded right inverse is
equivalent to the existence of a topological supplement of the kernel of Tn . However,
since the spaces Vn are finite dimensional, such a topological supplement exists, see
[4, Example 2.4.2].

In the remainder of the proof, we denote by Sn an arbitrary linear right inverse of
Tn . Thus, for all F ∈ Vn we have the decomposition

F = Tn Sn F =
∑

x∈Xn

〈Sn F, ψn,x 〉L2λ(x)K ,

so that (4.3.29) holds true if we define the coefficients c(F)n,x as in (4.3.30). With
this notation the coefficients depend linearly on F . By applying (4.3.27), we obtain
the estimate

⎛

⎝
∑

x∈Xn

|c(F)n,x |r m(x)r

⎞

⎠

1/r

≤ |Qn|1/r ′ · sup
q∈Qn

w(q) · ‖Sn F‖M r,m ≤ Cn ‖F‖M r,m ,

where Cn is as in the statement of the lemma, and where ‖Sn‖ is the operator norm
of Sn as an operator from Vn into Lr,m(G). This proves (4.3.31). �

Remark 4.7 Note that if the sequence (|Qn|1/r ′ · supq∈Qn
w(q) · ‖Sn‖)n∈N is

bounded, then the constant Cn in (4.3.31) can be bounded independently of n. Natu-
rally, the question arises under which conditions this really is the case. To answer this
question, it is necessary to determine the asymptotic behavior of the operator norm
of Sn . As we will show in Sect. 4.3.3, this task is already non-trivial for a very simple
setting. Still, in Lemma 4.20, we give a partial answer, as we present a technique to
characterize the operator norm in a different manner.

The proof of the following technical lemma can be found in the appendix. We
recall that the integer I is defined through assumption (4.3.12).

Lemma 4.8 Let 1 ≤ p ≤ ∞ and (dx )x∈Yn ∈ �p,m(Yn) for some n ∈ N, then

∥
∥
∥
∑

x∈Yn

|dx |χx Qn

∥
∥
∥

L p,m

≤ I 1− 1
p · sup

q∈Qn

w(q) · |Qn| 1
p · ‖(dx )x∈Yn ‖�p,m

with the convention 1
∞ := 0.
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With the auxiliary results above, we are in the position to state and prove our main
result.

Theorem 4.3 We assume that K satisfies (4.2.5) and that there exists p < r such
that

K ∈ L p,wΔ−1/p (G),

oscQn (K ) ∈ L p,w(G) ∩ L p,wΔ−1/p (G), (4.3.32)

for all n ∈ N.

(i) Fix ε > 0; then for any T ∈ Co(Lr,m) there exists n∗ = n∗
T,ε ∈ N such that for

all n ≥ n∗

∥
∥
∥ T −

∑

x∈Xn

c(T )n,xπ(x)u
∥
∥
∥
Co(Lr,m )

≤ ε,

where the family (c(T )n,x )x∈Xn satisfies

‖(c(T )n,x )x∈Xn ‖�r,m ≤ Cn(1 + ε)‖T ‖Co(Lr,m ),

with Cn = |Qn|1/r ′ · supq∈Qn
w(q) · ‖Sn‖, where Sn denotes any linear right

inverse to the operator Tn : Lr,m(G) → Vn defined in (4.3.18).
(ii) Let n ∈ N, and let d = (dx )x∈Yn ∈ �q,m(Yn). Then T = ∑

x∈Yn
dxπ(x)u is in

Co(Lr,m). Furthermore the estimate

‖T ‖Co(Lr,m ) ≤ Dn‖(dx )x∈Yn ‖�q,m

holds, where 1/q + 1/p = 1 + 1/r , and

Dn := |Qn| 1
q −1 · I 1− 1

q · sup
q∈Qn

w(q) · θn (4.3.33)

with θn := max
{
‖ oscQn (K ) + |K | ‖L p,w

, ‖ oscQn (K ) + |K | ‖L p,wΔ−1/p

}
.

Proof To prove (i), choose n∗ = n∗
F,ε as in Lemma4.6 with F = VeT ∈ Mr,m . By

applying (4.3.29) and (4.3.30) to πn(F) ∈ Vn , we obtain the atomic decomposition
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π̃n(T ) = V −1
e πn(F)

= V −1
e

⎛

⎝
∑

x∈Xn

〈Snπn(F), ψn,x 〉L2 · λ(x)K

⎞

⎠

=
∑

x∈Xn

〈Snπn Ve(T ), ψn,x 〉L2 · V −1
e λ(x)K

=
∑

x∈Xn

c(T )n,xπ(x)u,

where c(T )n,x = 〈Snπn Ve(T ), ψn,x 〉L2 . Using (4.3.25) and the correspondence prin-
ciple, we derive

∥
∥
∥T −

∑

x∈Xn

c(T )n,xπ(x)u
∥
∥
∥
Co(Lr,m )

= ∥
∥T − π̃n(T )

∥
∥
Co(Lr,m )

= ∥
∥VeT − Veπ̃n(T )

∥
∥
M r,m

= ∥
∥F − πn(F)

∥
∥
M r,m

≤ ε .

Now (4.3.31) and (4.3.26) yield the estimate

⎛

⎝
∑

x∈Xn

|c(T )n,x |r m(x)r

⎞

⎠

1
r

≤ Cn‖πn(VeT )‖M r,m ≤ Cn(1 + ε)‖VeT ‖M r,m

= Cn(1 + ε)‖T ‖Co(Lr,m )

for any n ≥ n∗.
It remains to prove (ii). In [6, Chap. 3, p. 100], the following pointwise estimate

for y ∈ G has been established:

|
∑

x∈Yn

dxλ(x)K (y)| ≤
⎛

⎝
∑

x∈Yn

|dx |χx Qn

|Qn|

⎞

⎠ ∗ (
oscQn (K ) + |K |) (y).

Let now q > 1 such that 1/q + 1/p = 1 + 1/r . By using Young’s inequality, see
Proposition 4.13, and Lemma 4.8, we obtain

∥
∥
∥
∥
∑

x∈Yn

dxπ(x)u

∥
∥
∥
∥
Co(Lr,m )

=
∥
∥
∥
∥
∑

x∈Yn

dxλ(x)K

∥
∥
∥
∥

Lr,m

≤
∥
∥
∥
∥

(∑

x∈Yn

|dx |χx Qn

)
∗ (

oscQn (K ) + |K |)
∥
∥
∥
∥

Lr,m

· |Qn|−1
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≤
∥
∥
∥
∥
∑

x∈Yn

|dx |χx Qn

∥
∥
∥
∥

Lq,m

· max
{
‖oscQn (K ) + |K |‖L p,w

, ‖oscQn (K ) + |K |‖L p,wΔ−1/p

}
· |Qn|−1

≤ |Qn| 1
q −1 · I 1− 1

q · sup
q∈Qn

w(q) · ‖(dx )‖�q,m

· max
{
‖oscQn (K ) + |K |‖L p,w

, ‖oscQn (K ) + |K |‖L p,wΔ−1/p

}
.

By the assumption (4.3.32), the expression on the right-hand side is finite. �

Remark 4.8 The coefficients c(T )n,x , x ∈ Xn , in Theorem 4.3(i), depend linearly on
T if and only if the projection πn from (4.3.24) is linear.

The following proposition presents a slight variation of Theorem 4.3.

Proposition 4.5 Under the same assumptions as in Theorem 4.3, the following
holds: Fix ε > 0 and T ∈ Co(Lr,m); then there exists n∗ = n∗

T,ε ∈ N such that for
all n ≥ n∗

1

τn(1 + ε)
· ‖(c(T )n,x )x∈Xn ‖�q,m ≤ ‖T ‖Co(Lr,m ) (4.3.34)

and

‖T ‖Co(Lr,m ) ≤ ε + Dn · ‖(c(T )n,x )x∈Xn ‖�q,m , (4.3.35)

where Dn as in (4.3.33) and τn := Cn · |Xn| 1
q − 1

r , |Xn| is the cardinality of Xn and
1/q + 1/p = 1 + 1/r .

Proof Throughout this proof, we use the same notations as in Theorem 4.3. We first
note that for any finite sequence (dx )x∈Xn , n ∈ N, by Hölder’s inequality, it holds that

‖(dx )x∈Xn ‖�q,m ≤ ‖(dx )x∈Xn ‖�r,m · ‖1Xn ‖� rq
r−q

,

where 1Xn is a sequence of ones only. Furthermore, it holds

‖1Xn ‖� rq
r−q

= |Xn| 1
q − 1

r .

With τn := Cn · |Xn| 1
q − 1

r , we then obtain from Theorem 4.3(i) the estimate

1

τn(1 + ε)
‖(c(T )n,x )x∈Xn ‖�q,m ≤ 1

Cn(1 + ε)
‖(c(T )n,x )x∈Xn ‖�r,m ≤ ‖T ‖Co(Lr,m ),

which proves (4.3.34).
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It remains to show the second inequality (4.3.35). For this we note that the
sequence (c(T )n,x )x∈Xn can be understood as a sequence over the index set Yn with
only finitely many non-zero entries. Therefore, by (4.3.25) and Theorem 4.3(ii), this
yields

‖T ‖Co(Lr,m ) ≤ ε +
∥
∥
∥
∥
∑

x∈Xn

c(T )n,xπ(x)u

∥
∥
∥
∥
Co(Lr,m )

≤ ε + |Qn| 1
q −1 · θn · ‖(c(T )n,x )x∈Xn ‖�q,m ,

which concludes the proof. �

4.3.3 An Example: Coorbit Theory for Paley–Wiener Spaces

As an example, we will discuss the case of band-limited functions on the real line.
This case cannot be handled with the classical coorbit theory, since the reproducing
kernel that arises is the sinc function, which is not integrable. Thus, the band-limited
functions are a suitable example for our setting.

Wewill briefly recall the setting following the lines of Sect. 4.2 in [5]. LetG denote
the additive group R whose Haar measure is the Lebesgue measure dx . Since the
group is abelian,R is unimodular. We denote by S(R) the Schwartz space of smooth,
rapidly decaying functions and by S

′(R) the space of tempered distributions. The
Fourier transform on S(R) and S

′(R)—defined for f ∈ L1(R) asF f (ξ) = f̂ (ξ) =∫
R

f (x)e−2π i x ξ dx—is denoted by F . If v ∈ S
′(R), we also set v̂ = Fv.

The Hilbert spaceH we are interested in is the Paley–Wiener space of functions
with band in the fixed set Ω ⊂ R, namely

H = B2
Ω = {

v ∈ L2(R)
∣
∣ supp(̂v) ⊆ Ω

}

equipped with the L2(R) scalar product. Then, by defining π for b ∈ R as

π(b)v(x) = v(x − b), v ∈ B2
Ω,

π becomes an unitary representation of the groupR acting on B2
Ω .With this definition

of π , on the frequency side π̂ = FπF−1 acts on FH = L2(Ω) by modulations:

π̂(b)̂v(ξ) = e2π ibξ v̂(ξ), v ∈ B2
Ω.

Fromnowonwe setΩ to be a symmetrical interval,Ω = [−ω,ω]. Proposition 4.6
in [5] then shows that by choosing as admissible vector the function u = F−1χΩ ∈
B2

Ω , the resulting kernel K as defined in (4.2.3) is the sinc function
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K (b) = F−1χΩ(b) = 2ω sinc(2ωπb) = sin(2ωπb)

πb
, (4.3.36)

where sinc x = sin x/x . Clearly, K is not in L1(R), but it belongs to L p(R) for every
p > 1. Therefore, we choose the weight w = 1 and take

T =
⋂

1<p<∞
L p(R)

as a target space to construct coorbits, see (4.3.1). As above, the (anti-)dual of T
can be identified with

T ′ = U = span
⋃

1<q<∞
Lq(R).

For p ∈ [1,∞), we define the Paley–Wiener p-spaces

B p
Ω := {

f ∈ L p(R)
∣
∣ supp(F f ) ⊆ Ω

}
.

Recall that the Fourier transform maps L p(R) to L p′(R) for p ≤ 2, which follows
from the Hausdorff–Young inequality. In contrast, for p > 2, the space F L p(R)

contains distributions that in general are not functions, see [23, Theorem 7.6.6].
The spaces B p

Ω are sometimes defined in the literature as the spaces of the entire
functions of fixed exponential type whose restriction to the real line is in L p(R).
This definition is equivalent to ours since a Paley–Wiener theorem holds for all p ∈
[1,∞). In particular, all these functions are infinitely differentiable on R. Moreover,
if f ∈ B p

Ω with p < ∞, then f (x) → 0 as x → ±∞, and hence

B p
Ω ⊂ C∞

0 (R) = {
f ∈ C∞(R)

∣
∣ f (x) → 0 as x → ±∞}

, 1 ≤ p < ∞.

Consequently, the Paley–Wiener spaces are nested and increase with p:

B p
Ω ⊆ Bq

Ω, 1 ≤ p ≤ q < ∞.

Proposition 4.6 (Proposition 4.8 of [5]) Let Ω = [−ω,ω] and define u := K :=
F−1χΩ . The “test space” (as defined in 4.2.6) is

S =
⋂

p∈(1,∞)

B p
Ω

and its dual space is

S ′ =
⋃

p∈(1,∞)

B p
Ω.
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The extended voice transform is the inclusion

Ve : S ′ ↪→ U

and the following identification holds:

Co(L p(R)) = M p = B p
Ω.

To obtain a discretization as laid out in Sect. 4.3, we first need to show that
Assumption 4.2 is fulfilled. By Lemma 4.4, it suffices to show that the convolu-
tion operator associated to K is a bounded operator on L p(R).

Corollary 4.2 Let 1 < p < ∞, then RCK is a bounded operator on L p(R).

Proof Since K = F−1χΩ , the convolution with K is a bounded operator on L p(R)

if and only if χΩ is a Fourier multiplier on L p(R). By [20, Example 2.5.15], this is
true if and only if χ[0,1] is a Fourier multiplier on L p(R). However, it is well known
that this is true because the Hilbert transform is bounded as an operator acting on
L p(R), see [20, Theorem 5.1.7]. �

We will now apply the analysis outlined in Sect. 4.3.2 to obtain a discretization
for these spaces. To this end, for n ∈ N, let

Yn := {
2−nk

}
k∈Z ⊂ R. (4.3.37)

Furthermore, we fix

Qn = [−2−n−1, 2−n−1
]
, (4.3.38)

which is a compact neighborhood of zero, and we set

ψn,k := χ[−2−n−1,2−n−1)(· − 2−nk) (4.3.39)

for n ∈ N and k ∈ Z, where χ denotes the characteristic function. Then, the verifica-
tion of (4.3.13)–(4.3.15) is straightforward. For later use, we note that |Qn| = 2−n .
Furthermore, the system {ψn,k}k∈Z, n ∈ N fixed, is orthogonal with ‖ψn,k‖2L2(R) =
|Qn|. As a finite subset of Yn , n ∈ N, we set

Xn := {
2−nk

∣
∣ − N (n) ≤ k ≤ N (n)

}
, (4.3.40)

where N (n) ∈ N is chosen such that (4.3.16) and (4.3.17) are fulfilled. A possible
choice is N = N (n) = n · 2n .

According to (4.3.18), the operator Tn : B p
Ω → Vn ⊂ B p

Ω is defined via
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Tn f (x) =
N (n)∑

k=−N (n)

〈 f, ψn,k〉L2 K (x − 2−nk),

for f ∈ B p
Ω , where

〈 f, ψn,k〉L2 =
∫ 2−n(k+1/2)

2−n(k−1/2)
f (y) dy.

By (4.3.19), this means

Vn = span
{
sinc(2πω(· − 2−nk))

∣
∣ − N (n) ≤ k ≤ N (n)

}
.

In order to apply Theorem 4.3, we first need to show the following:

Lemma 4.9 It holds K ∈ M ρ

Qn
(Lr ), and therefore oscQn f ∈ Lr (R) for all n ∈ N.

Proof We have |K (y)| ≤ 2ω for all y ∈ R, and |K (b)| ≤ 1/(π |b|) for all b �= 0.
This implies

|K (y)| ≤ 1 + 4ω

1 + |y| .

Indeed, for |y| ≤ 1, we have |K (y)| ≤ 2ω ≤ 4ω
1+|y| , while for |y| ≥ 1, we have

1/|y| ≤ 2/(1 + |y|), and thus |K (y)| ≤ 2
π

1
|y| ≤ 1+4ω

1+|y| .
Now, for y ∈ x + Qn ⊂ x + [−1, 1] we have 1 + |x | ≤ 2 + |y| ≤ 2(1 + |y|), so

that |K (y)| ≤ 1+4ω
1+|y| ≤ 2+8ω

1+|x | . Hence,

sup
y∈x+Qn

|K (y)|r ≤
(
2 + 8ω

1 + |x |
)r

,

and thus ∫

R

sup
y∈x+Qn

|K (y)|r dx < ∞ ,

concluding the proof. �

With this at hand, we can discretize the Paley–Wiener p-spaces according to
Theorem 4.3.

Proposition 4.7 Let 1 < p < ∞.

(i) Fix ε > 0; then for any f ∈ B p
Ω there exists an integer n∗ = n∗

f,ε ∈ N, such that
for all n ≥ n∗

∥
∥
∥
∥ f −

N (n)∑

k=−N (n)

c( f )n,k K (· − 2−nk)

∥
∥
∥
∥

L p

≤ ε,
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where the family of coefficients (c( f )n,k)−N (n)≤k≤N (n) satisfies

‖(c( f )n,k)−N (n)≤k≤N (n)‖�p ≤ 2−n/p′
(1 + ε)‖Sn‖ · ‖ f ‖L p .

Here, as usual, Sn is a linear right inverse for the operator Tn defined in (4.3.18).
(ii) For any sequence (dx )x∈Yn ∈ �q(Yn), n ∈ N, the function f defined by f =∑

k∈Z d2−nk K (· − 2−nk) is in B p
Ω with

‖ f ‖L p(R) ≤ C · 2n(1−1/q)‖(dx )x∈Yn ‖�q ,

where C = C(p, q) > 0 is a constant and q < p.

Proof (i) is an application of Theorem 4.3(i), with |Qn| = 2−n .
It remains to prove (ii). Again, we can apply Theorem 4.3(ii) and note that, by

Lemma 4.9, the assumption (4.3.32) is fulfilled. Moreover, Lemma 4.9 shows that
‖oscQn (K ) + |K |‖Lr can be estimated from above by a constant C > 0 independent
of n ∈ N. �

As stated in Remark 4.7, the asymptotic behavior of the operator norm of Sn is
crucial. In the following, we apply Lemma 4.20 to obtain a useful characterization
of ‖Sn‖.

For this, we restrict ourselves to the case p = 2 and obtain with the notation of
Lemma 4.20

‖Sn‖−1 = ε = inf

{‖Tn f ‖L2

‖ f ‖L2

∣
∣
∣
∣ f ∈ (Ker Tn)

⊥
}

= inf

{ 〈T ∗
n Tn f , f 〉L2

〈 f, f 〉L2

∣
∣
∣
∣ f ∈ (Ker Tn)

⊥
}1/2

= λmin(Un)
1/2,

where λmin(Un) denotes the smallest eigenvalue of the operator

Un := T ∗
n Tn : (Ker Tn)

⊥ → (Ker Tn)
⊥ .

Here, we used the well-known inclusion Ran A∗ ⊂ (Ker A)⊥ which guarantees that
Un is well-defined.

We have thus shown that the asymptotic behavior of the smallest eigenvalue of
Un is equivalent to the asymptotic behavior of ‖Sn‖.

By using

Tn f =
N (n)∑

j=−N (n)

〈 f, ψn, j 〉L2 K (· − 2−n j), T ∗
n g =

N (n)∑

k=−N (n)

〈g, K (· − 2−nk)〉L2ψn,k,

we can rewrite Un as
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Un f =
N (n)∑

j,k=−N (n)

〈 f, ψn, j 〉L2(R)〈K (· − 2−n j), K (· − 2−nk)〉L2(R)ψn,k

=
N (n)∑

j,k=−N (n)

〈 f, ψn, j 〉L2(R)K (2−n(k − j))ψn,k

for f ∈ (Ker Tn)
⊥.

We set Wn := span
{
ψn,k

∣
∣ − N (n) ≤ k ≤ N (n)

}
and obtain the relation W ⊥

n ⊂
Ker Tn; thus (Ker Tn)

⊥ ⊂ Wn . Next, we note that the family {λ(x)K }x∈R is linearly
independent; indeed, we haveF (λ(x)K ) = e−2π i x ·χ[−ω,ω], and by analyticity these
functions are linearly independent if and only if the functions (R → C, ξ �→ e−2π i xξ )

are. But each of these functions is an eigenvector of the differential operator d/dξ

with pairwise distinct eigenvalues 2π i x, x ∈ R, which yields the linear indepen-
dence. From this and fromLemma4.5,we see thatRan Tn = Vn = span {λ(x)K }x∈Xn

satisfies dim Ran Tn = |Xn| = 1 + 2N (n). But since Tn : (Ker Tn)
⊥ → Vn is an

isomorphism, we see dim(Ker Tn)
⊥ = 1 + 2N (n) as well, so that we finally see

Wn = (Ker Tn)
⊥ by comparing dimensions. Hence, Un : Wn → Wn .

Moreover, by the orthogonality of the family {ψn,k}, we see that

Un ψn,k = ‖ψn,k‖2L2

N (n)∑

�=−N (n)

K (2−n(� − k)) ψn,� (4.3.41)

for any −N (n) ≤ k ≤ N (n). Since dim Wn = 2N (n) + 1 < ∞, we may define an
isomorphism

Pn : Wn → R
2N (n)+1, Pn(ψn,k) = ‖ψn,k‖L2ek, (4.3.42)

where ek denotes the k-th canonical unit vector of R
2N (n)+1. Note that Pn maps the

orthonormal basis (ψn,k/‖ψn,k‖L2(R)) to the orthonormal basis (ek)k∈N, so that Pn is
unitary.

The linear map PnUn P−1
n : R

2N (n)+1 → R
2N (n)+1 is represented by a matrix Mn ,

whose entries are given via

(Mn) j,k = 〈PnUn P−1
n ek, e j 〉R2N (n)+1 = 〈Un

ψn,k

‖ψn,k‖L2

,
ψn, j

‖ψn, j‖L2(R)

〉L2

= ‖ψn,k‖L2

‖ψn, j‖L2

N (n)∑

�=−N (n)

K (2−n(� − k))〈ψn,�, ψn, j 〉L2

= ‖ψn,k‖L2‖ψn, j‖L2 K (2−n( j − k))

= 2−n K (2−n( j − k)),
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1 ≤ j, k ≤ 2N (n) + 1. Since K is real, the matrix Mn is a symmetric Toeplitz matrix,
whichmeans that the entries of Mn only depend on the quantity |k − j |, thus yielding
a band structure. Since the eigenvalues of Mn coincide with those of the map Un ,
finding the smallest eigenvalue of Un is equivalent to finding the smallest eigenvalue
of the Toeplitz matrix Mn .

Unfortunately, this task is very difficult. To the best knowledge of the authors,
it is not possible to properly characterize the asymptotic behavior of the smallest
eigenvalue of such a Toeplitz matrix. We further refer to [3], where the authors
were told that leading experts on the field of Toeplitz matrices are unaware of these
asymptotics.

Since there are already big obstacles in understanding the asymptotic behavior of
‖Sn‖ in this rather simple setting, one cannot hope that easy answers are available
when turning to more complex groups and their associated coorbit spaces.

4.4 Obstructions to Discretization for Non-integrable
Kernels

In classical coorbit theory, the kernel K (x) = V u(x) = 〈u, π(x) u〉H is assumed
to be integrable; in other words, it has to satisfy K ∈ L1,w(G) for a suitable weight
w ≥ 1 on G. This assumption is introduced in order to guarantee two independent
properties: First, it ensures that one can construct a suitable reservoir of “distribu-
tions,” and thus obtains well-defined coorbit spaces. Second, it ensures that the right
convolution operator f �→ f ∗ K acts boundedly on the function space Y which is
used to define the coorbit space Co(Y ). For instance, this is the case if Y = Lr,m(G)

with a w-moderate weight m.
Replacing the integrability condition K ∈ L1,w(G) by the weaker assumption

K ∈ ⋂
1<p<∞ L p,w(G), one can still define a suitable reservoir and obtains well-

defined decomposition spaces, as we saw in Sect. 4.2. However, we will see in
the present section—precisely, in Proposition 4.8—that the modified assumption
K ∈ ⋂

1<p<∞ L p,w(G) is in general too weak to ensure that right convolution with
K defines a bounded operator on Lr,m(G). In other words, a given kernel K satisfying
the weak integrability assumption might or might not act boundedly on Lr,m(G) by
right convolution.

For such “bad” kernels that do not act boundedly, no discretization results similar
to those from classical coorbit theory can hold, aswewill prove in the present section.
Therefore, if such discretization results for the coorbit space Co(Lr,m) are desired,
one needs to assume that K ∈ ⋂

1<p<∞ L p,w(G) and additionally that f �→ f ∗ K
defines a bounded operator on Lr,m(G). This second condition is highly non-trivial
to verify in many cases where the kernel K is not integrable. However, it is possible
in the setting of the group (R,+) as discussed in Sect. 4.3.3.

Since we aim to show that no discretization as for classical coorbit theory is
possible, we briefly recall these results: Assuming the kernel K to be well behaved,
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a combination of Lemma 3.5(v) and Theorem 6.1 in [13] shows that the synthesis
operator

SynthX : �r,m X (I ) → Co(Lr,m), (ci )i∈I �→
∑

i∈I

ci · π(xi ) u with (m X )i = m(xi )

is well-defined and bounded, for each r ∈ (1,∞), each w-moderate weight m, and
each family X = (xi )i∈I in G that is sufficiently separated—similar to δZ

d in G =
R

d . The operator SynthX even has a bounded linear right inverse, provided that the
family X is sufficiently dense in G, where the required density only depends onw, u.
If SynthX indeed has a bounded linear right inverse, the family (π(xi ) u)i∈I is called
a family of atoms for Co(Lr,m) with coefficient space �r,m X (I ).

Dual to the concept of atomic decompositions is the notion of Banach frames,
which was introduced in [21]. By definition, the family (π(xi ) u)i∈I is a Banach
frame for Co(Lr,m) with coefficient space �r,m X (I ) if the analysis operator

AX : Co(Lr,m) → �r,m X (I ), f �→ (〈 f, π(xi ) u〉Sw

)
i∈I

is well-defined and bounded and has a bounded linear left inverse. As shown in
[21, Theorem 5.3], this is satisfied if the sampling points X = (xi )i∈I satisfy the
same properties as above: they should be sufficiently separated and dense enough
in G, where these conditions only depend on w and u, but not on the integrability
exponent r or thew-moderate weightm. Provided that (π(xi ) u)i∈I is a Banach frame
for Co(Lr,m), we have in particular ‖AX f ‖�r,m X

� ‖ f ‖Co(Lr,m ) for all f ∈ Co(Lr,m);
but in general, this latter property is weaker than the Banach frame property.

The preceding statements hold for allw-moderate weightsm and for all exponents
r ∈ (1,∞). Since the reciprocalm−1 of aw-moderateweightm is againw-moderate,
see Lemma 4.1, it follows that if the above properties hold for Lr,m(G), then they
also hold for Lr ′,m−1(G). Therefore, classical coorbit theory provides discretization
results that are stronger than the assumptions of the following theorem. The following
theorem thus shows that discretization results as in classical coorbit theory can only
hold if the kernel K acts boundedly on Lr,m(G) via right convolutions.

Theorem 4.4 Let r ∈ (1,∞) be arbitrary. Assume that Assumption 4.1 is satisfied,
and let m : G → (0,∞) be a w-moderate weight. Furthermore, assume that for
some family (xi )i∈I in G and for some weight θ = (θi )i∈I on the index set I , the
following hold:

(i) “Weak Banach frame condition for Co(Lr,m)”: The analysis map

A : Co(Lr,m) → �r,θ (I ), ϕ �→ ( 〈ϕ , π(xi ) u〉Sw

)
i∈I

is well-defined and bounded, with

‖A ϕ‖�r,θ
� ‖ϕ‖Co(Lr,m ) for all ϕ ∈ Co(Lr,m) . (4.4.1)
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(ii) “Weak atomic decomposition condition for Co(Lr ′,m−1)”: The synthesis map

S : �r ′,θ−1(I ) → Co(Lr ′,m−1), (ci )i∈I �→
∑

i∈I

[ci · π(xi ) u]

is well-defined and bounded.

Then the right convolution operator RCK : f �→ f ∗ K defines a bounded linear
operator on Lr,m(G).

For the proof of this theorem, we will need several technical lemmata. Having
shown in Sect. 4.2 that the voice transform can be extended fromH to the reservoir
S ′

w (and thus to the coorbit spaces Co(Lr,m)), our first lemma shows that one can
also define a version of the voice transform on the (anti-)dual space

[
Co(Lr,m)

]′
.

Lemma 4.10 If Assumption 4.1 is satisfied for r ∈ (1,∞), and if m : G → (0,∞)

is w-moderate, then there is a constant C = C(m, r,w, K ) > 0 such that

for all x ∈ G : π(x) u ∈ Co(Lr,m) and ‖π(x) u‖Co(Lr,m ) ≤ C · w(x) .

Therefore, for any (antilinear) continuous functional ϕ ∈ [
Co(Lr,m)

]′
, the special

voice transform

Vsp ϕ : G → C, x �→ ϕ(π(x) u) = 〈ϕ , π(x)u〉[Co(Lr,m )]′×Co(Lr,m )

is a well-defined function.

Proof First, let us set C1 := m(e), where e is the unit element of G. Since m is
w-moderate (see 4.2.13), we have

m(x) = m(x · e) ≤ w(x) · m(e) ≤ C1 · w(x) for all x ∈ G .

Furthermore,

w(y) = w(xx−1y) ≤ w(x) · w(x−1y) = w(x) · (λ(x)w)(y) .

Now, recall from Sect. 4.2, the embedding H ↪→ S ′
w, and that the extended voice

transform Ve coincides with the usual voice transform on H . Therefore, since
π(x) u ∈ H , and since K = V u, we get

‖Ve [π(x)u]‖Lr,m
= ‖V [π(x)u]‖Lr,m

≤ C1 · ‖V [π(x)u]‖Lr,w

= C1 · ‖w · λ(x) [V u]‖Lr
≤ C1 · w(x) · ‖λ(x) [w · V u]‖Lr

= C1 · w(x) · ‖w · V u‖Lr
= C1 · w(x) · ‖K‖Lr,w

= C · w(x) ,
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where C := C1 · ‖K‖Lr,w is finite thanks to Assumption 4.1. This proves the first part
of the lemma, which then trivially implies that Vsp ϕ is a well-defined function, for
any ϕ ∈ [Co(Lr,m)]′. �

Our next lemma shows that if the right convolution with K does not act boundedly
on Lr ′,m−1(G), then there exist certain pathological functionals on Co(Lr,m).

Lemma 4.11 Assume that Assumption 4.1 is satisfied, and let r ∈ (1,∞). If the
right convolution operator RCK : f �→ f ∗ K does not yield a well-defined bounded
linear operator on Lr ′,m−1(G), then there is an (antilinear) continuous functional
ϕ ∈ [

Co(Lr,m)
]′

satisfying Vsp ϕ /∈ Lr ′,m−1(G).

Proof We first claim that there is some Φ ∈ Lr ′,m−1(G) with Φ ∗ K /∈ Lr ′,m−1(G);
that is, we claim that RCK : Lr ′,m−1(G) → Lr ′,m−1(G) is not well-defined.

To see this, recall from Assumption 4.1 that K ∈ ⋂
1<p<∞ L p,w(G). Thus, since

m−1 isw-moderate (seeLemma4.1),Young’s inequality (seeProposition4.13) shows
that the right convolution operator RCK is bounded as a map RCK : Lr ′,m−1(G)

→ Lq,m−1(G) for any q ∈ (r ′,∞). Therefore, if RCK : Lr ′,m−1(G) → Lr ′,m−1(G)

was well-defined, then the closed graph theorem would imply that
RCK : Lr ′,m−1(G) → Lr ′,m−1(G) is bounded, contradicting our assumptions. Hence,
there is a function Φ as desired.

Now, define the antilinear functional

ϕ : Co(Lr,m) → C, f �→
∫

G
Φ(y) · Ve f (y) dy.

It is easy to see that ϕ is well-defined and bounded; in fact,

|ϕ( f )| ≤ ‖Φ‖Lr ′ ,m−1
· ‖Ve f ‖Lr,m

= ‖Φ‖Lr ′ ,m−1
· ‖ f ‖Co(Lr,m ) .

Finally, note for all x ∈ G that

Vsp ϕ(x) = 〈ϕ , π(x) u〉[Co(Lr,m )]′×Co(Lr,m ) =
∫

G
Φ(y) · Ve [π(x) u] (y) dy

=
∫

G
Φ(y) · 〈π(x)u , π(y) u〉H dy =

∫

G
Φ(y) · 〈u , π(y−1x) u〉H dy

=
∫

G
Φ(y) · K (y−1x) dy = (Φ ∗ K )(x)

withΦ ∗ K ∈ Lq,m−1(G) for allq ∈ (r ′,∞). But by our choice ofΦ, we haveVsp ϕ =
Φ ∗ K /∈ Lr ′,m−1(G), as desired. �

Our next lemma shows that the assumptions of Theorem 4.4 exclude the existence
of pathological functionals as in the preceding lemma.
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Lemma 4.12 Under the assumptions of Theorem 4.4 and with notation as in
Lemma 4.10, every antilinear continuous functionalϕ ∈ [

Co(Lr,m)
]′

satisfies Vsp ϕ ∈
Lr ′,m−1(G).

Proof Let ϕ ∈ [
Co(Lr,m)

]′
be arbitrary, and let the analysis operator A be as in the

assumptions of Theorem4.4.Using this operator,we define the (antilinear) functional

Λ0 : A
(
Co(Lr,m)

) → C, A f �→ ϕ( f ) .

Note that this is well-defined, since (4.4.1) ensures that A is injective. Furthermore,
with A

(
Co(Lr,m)

)
considered as a subspace of �r,θ (I ), the functionalΛ0 is bounded,

since (4.4.1) yields a constantC > 0 such that each c = A f ∈ A
(
Co(Lr,m)

)
satisfies

|Λ0(c)| = |ϕ( f )| ≤ ‖ϕ‖[Co(Lr,m )]′ · ‖ f ‖Co(Lr,m )

≤ C‖ϕ‖[Co(Lr,m )]′ · ‖A f ‖�r,θ
= C‖ϕ‖[Co(Lr,m )]′ · ‖c‖�r,θ

.

With Λ0 being bounded, an antilinear version of the Hahn–Banach theorem yields a
bounded (antilinear) extension Λ : �r,θ (I ) → C of Λ0. Therefore, an antilinear ver-
sion of theRiesz representation theorem for the dual of �r,θ (I ) ensures the existence of
� = (�i )i∈I ∈ �r ′,θ−1(I ) satisfying Λ(c) = 〈� , c〉�r ′ ,θ−1×�r,θ

for all c ∈ �r,θ (I ). Here,
the pairing between �r ′,θ−1(I ) and �r,θ (I ) is given by 〈(ci )i∈I , (ei )i∈I 〉�r ′ ,θ−1×�r,θ =∑

i∈I ci · ei .
Having constructed the sequence � ∈ �r ′,θ−1(I ), we can now apply the second

assumption of Theorem 4.4—the boundedness of the synthesis operator S—to define
g := S� ∈ Co(Lr ′,m−1). Furthermore, for arbitrary x ∈ G, we recall from Lemma
4.10 that π(x) u ∈ Co(Lr,m), so that

c(x) = (
c(x)

i

)
i∈I

:= A (π(x)u) = (〈π(x) u , π(xi ) u〉H )i∈I ∈ �r,θ (I )

is well-defined. Combining our preceding observations, we see

Vsp ϕ(x) = ϕ(π(x) u) = Λ0
(

A(π(x) u)
) = Λ(c(x)) = 〈�, c(x)〉�r ′ ,θ−1 ,×�r,θ

=
∑

i∈I

[
�i · 〈π(x) u , π(xi ) u〉H

]
=

∑

i∈I

[
�i · 〈π(xi ) u , π(x) u〉Sw

]

(∗)=
〈∑

i∈I

(�i · π(xi ) u) , π(x) u
〉

Sw

(4.4.2)

= 〈S� , π(x) u〉Sw
= [Ve g] (x).

This identity—which will be fully justified below—completes the proof, since we
have g = S� ∈ Co(Lr ′,m−1), that is Ve g ∈ Lr ′,m−1(G). Therefore, (4.4.2) implies
Vsp ϕ = Ve g ∈ Lr ′,m−1(G), as claimed.

It remains to justify the step marked with (∗) in (4.4.2).
At that step, we used on the one hand that S� = ∑

i∈I

[
�i · π(xi ) u

]
with uncon-

ditional convergence in Co(Lr ′,m−1). To see that this indeed holds, recall that r ′ < ∞,
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so that � = ∑
i∈I �i δi , with unconditional convergence in �r ′,θ−1(I ); by the bound-

edness of S, this implies the claimed identity. On the other hand, we also used at (∗)

that Co(Lr ′,m−1) → C, f �→ 〈 f , π(x) u〉Sw
is a bounded linear functional. Indeed,

(4.2.10) and Lemma 4.10 imply

∣
∣〈 f , π(x) u〉Sw

∣
∣ = ∣

∣〈Ve f , V [π(x) u]〉L2

∣
∣ ≤ ‖Ve f ‖Lr ′ ,m−1

· ‖V [π(x) u]‖Lr,m

= ‖ f ‖Co(Lr ′ ,m−1 ) · ‖V [π(x) u]‖Lr,m

≤ C · ‖ f ‖Co(Lr ′ ,m−1 ) · w(x) ,

with C = C(m,w, u, r). �

We can now finally prove Theorem 4.4.

Proof (of Theorem 4.4) Assume toward a contradiction that the right convolution
operator RCK : Lr,m(G) → Lr,m(G) is not bounded. By Proposition 4.3, and since
the prerequisites of Theorem 4.4 include Assumption 4.1, this implies that RCK :
Lr ′,m−1(G) → Lr ′,m−1(G) is also not bounded. Therefore, Lemma 4.11 yields an
antilinear continuous functional ϕ ∈ [Co(Lr,m)]′ with Vspϕ /∈ Lr ′,m−1(G). In view of
Lemma 4.12, this yields the desired contradiction. �

Before closing this section, we show that the “weak integrability assumption”
K ∈ ⋂

1<p<∞ L p,w(G) does not imply in general that the right convolution operator
RCK : f �→ f ∗ K acts boundedly on any L p-space with p �= 2.

To this end, we consider as in Sect. 4.3.3 the Paley–Wiener space

H = B2
Ω = { f ∈ L2(R) : f̂ ≡ 0 almost everywhere on R\Ω} (4.4.3)

for a fixed measurable subset Ω ⊂ R of finite measure. As seen in Sect. 4.3.3, the
group G = R acts on this space by translations; that is, if we set π(x) f = λ(x) f for
f ∈ B2

Ω , then π is an unitary representation of R. Setting u := F−1χΩ ∈ B2
Ω , using

Plancherel’s theorem, and noting f̂ = f̂ · χΩ = f̂ · û for f ∈ B2
Ω , we see that the

associated voice transform is given by

V f (x) = 〈 f , π(x)u〉L2 = 〈 f̂ , e−2π i x · û 〉L2 =
∫

R

f̂ (ξ) · e2π i xξ dξ

= (F−1 f̂ )(x) = f (x) .

Thus, V : B2
Ω → L2(R) is an isometry and the reproducing kernel K is simply given

by K (x) = V u(x) = u(x) for x ∈ R. In view of these remarks, the following propo-
sition shows that there is a reproducing kernel that satisfies the weak integrability
assumption, but for which the associated right convolution operator does not act
boundedly on L p(R) for any p �= 2.
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Proposition 4.8 There is a compact set C ⊂ [0, 1] with the following properties:

(i) F−1χC ∈ ⋂
1<p≤∞ L p(R).

(ii) For any p ∈ (1,∞)\{2}, the convolution operator f �→ f ∗ F−1χC is not
bounded, and by Proposition 4.2 not well-defined, as an operator on L p(R).

Since the construction of the set C is quite technical, we refer the proof to the
appendix.

4.5 Improved Discretization Results Under Additional
Assumptions

In the preceding section, we have seen that there are limitations to the possible
discretization theory for coorbit spaces with “bad” kernels, that is, for kernels K for
which the right convolution with K does not act boundedly on Lr,m(G).

But even if this right convolution operator does act boundedly, the results in the
preceding sections only yield discretization results that are weaker than those that
one would expect to hold when coming from classical coorbit theory. In the present
section, wewill see that a “proper” discretization theory is possible even for relatively
bad (i.e., non-integrable) kernels, as long as the kernel in question acts boundedly
on Lr,m(G) and is compatible with another “well-behaved” kernel W : G → C, in
the sense that it satisfies K ∗ W = K for the construction of Banach frames, or
W ∗ K = K for the construction of atomic decompositions.

We emphasize that we do not assume that the kernel W satisfies W ∗ W = W ,
thereby allowing a larger freedom in the choice of W . To see that the property
K ∗ K = K is indeed quite restrictive, let us consider the case when G = R is the
real line. Then K ∗ K = K implies that K̂ = K̂ · K̂ , so that K̂ = χΩ must be the
indicator function of a (measurable) set, see also [5]. In particular, K /∈ L1(R) (unless
K ≡ 0), since otherwise K̂ would be continuous. In stark contrast, at least if the
set Ω is bounded, one can choose a Schwartz function ψ with ψ ≡ 1 on Ω , so
thatW := F−1ψ ∈ S(R) satisfies Ŵ ∗ K = Ŵ · χΩ = χΩ = K̂ , and thus K ∗ W =
W ∗ K = K . It is worth noting that a related approach has been established in [17].

The section is structured as follows: In the first subsection, we recall some basic
notions from classical coorbit theory: Relatively separated sets, BUPUs, etc. Then, in
Sect. 4.5.2, we discuss conditions on the well-behaved kernel W which guarantee the
existence of Banach frames for the coorbit spaces. The existence of atomic decom-
positions, under similar but different conditions on W , is discussed in Sect. 4.5.3.
In the last subsection, we apply the abstract results to the setting of Paley–Wiener
spaces.

Finally, we should mention that most of the proofs in this section are heavily
inspired by the original coorbit papers [12–14, 21]. The main novel ingredient here
is the observation that instead of the idempotent reproducing formula K ∗ K = K , it
suffices to have K ∗ W = K or W ∗ K = K for potentially different kernels K , W .
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Remark 4.9 Most of the results in this section can also be obtained for coorbit
spaces Co(Y ) where Y is a solid Banach space continuously embedded into L0(G).
For simplicity, we restrict our attention to the case Y = Lr,m(G) as in the rest of the
paper.

4.5.1 Required Notions from Classical Coorbit Theory

We would like to sample the continuous frame
(
π(x)u

)
x∈G

to obtain a discrete
(Banach) frame

(
π(xi )u

)
i∈I . In order for this to succeed, the family of sampling

points (xi )i∈I needs to be sufficiently well distributed in G. This intuition is made
precise in the following definition. The reader might compare this to the definitions
in the beginning of Sect. 4.3.2.

Definition 4.1 (cf. [13, Definition 3.2]) Let X = (xi )i∈I be a family in G.

(i) X is V -dense in G, for a unit neighborhood V ⊂ G, if G = ⋃
i∈I xi V .

(ii) X is V -separated, for a unit neighborhood V ⊂ G, if the family (xi V )i∈I is
pairwise disjoint.

(iii) X is relatively separated if for every compact unit neighborhood Q ⊂ G, there
is a constant N = N (X, Q) ∈ N with

∑

i∈I

χxi Q(x) ≤ N for all x ∈ G .

(iv) X is V -well-spread for a unit neighborhood V ⊂ G if X is relatively separated
and V -dense.

Remark 4.10 (i) Since we always assume the underlying group G to be second
countable, G is in particular σ -compact. Therefore, [28, Lemma 2.3.10] shows
that (the index set of) every relatively separated family in G is countable.

(ii) Usually, X is called relatively separated if X is a finite union of V -separated
sets, for some compact unit neighborhood V . The two definitions are shown to
be equivalent in in [11, Lemma 2.9] and [28, Lemma 2.3.11].

Given a V -well-spread family X = (xi )i∈I , one often wants to decompose a given
function f into building blocks fi which are supported in the sets (xi V )i∈I . This can
be done using suitable partitions of unity; again the reader might compare this to
Sect. 4.3.2.

Definition 4.2 (cf. [13, Definition 3.6]) Let V ⊂ G be a compact unit neighborhood.
A familyΨ = (ψi )i∈I is called a V -BUPU (bounded uniform partition of unity) with
localizing family X = (xi )i∈I if the following holds:
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(i) Each ψi : G → [0, 1] is a measurable function.
(ii) X is relatively separated and ψi ≡ 0 on G\xi V for all i ∈ I .
(iii) We have

∑
i∈I ψi ≡ 1 on G.

One can find a V -BUPU for any compact unit neighborhood V :

Lemma 4.13 (cf. [10, Theorem 2] and [28, Lemma 2.3.12]) Let V ⊂ G be an arbi-
trary compact unit neighborhood. Then there exists a V -BUPU Ψ = (ψi )i∈I with
ψi ∈ Cc(G) for all i ∈ I .

The following lemma points out an important property of relatively separated
families that we will use time and again:

Lemma 4.14 Let X = (xi )i∈I be a relatively separated family and let r ∈ [1,∞).
Let further m : G → (0,∞) be a w-moderate weight. Define the weight m X on the
index set I by (m X )i := m(xi ) for i ∈ I .

Then for every compact unit neighborhood U ⊂ G, the synthesis operator

SynthX,U : �r,m X (I ) → Lr,m(G), (ci )i∈I �→
∑

i∈I

ci χxi U

is well-defined and bounded, with pointwise absolute convergence of the defining
series.

Furthermore, if Ψ = (ψi )i∈I is a U-BUPU with localizing family X, then
the synthesis operator

SynthX,Ψ : �r,m X (I ) → Lr,m(G), (ci )i∈I �→
∑

i∈I

ci ψi

is well-defined and bounded, with pointwise absolute convergence of the defining
series.

Proof The second part of the lemma is a consequence of the first one: Since 0 ≤
ψi ≤ 1, and since ψi vanishes outside of xiU , we have

|(SynthX,Ψ c)(x)| ≤
∑

i∈I

|ci | ψi (x) ≤
∑

i∈I

|ci | χxi U (x) = (SynthX,U |c|)(x) < ∞

for all x ∈ G and all c = (ci )i∈I ∈ �r,m X (I ), where |c| = (|ci |)i∈I ∈ �r,m X (I ) with
‖ |c| ‖�r,m X

= ‖c‖�r,m X
, so that

‖SynthX,Ψ c‖Lr,m ≤ ‖SynthX,U |c| ‖Lr,m � ‖ |c| ‖�r,m X
= ‖c‖�r,m X

.

Thus, it remains to prove the first part of the lemma.

By definition of a relatively separated family, there is N = N (X, U ) > 0 with∑
i∈I χxi U ≤ N . On the one hand, this shows that for each x ∈ G only finitely many
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terms of the series defining (SynthX,U c)(x) do no vanish; in particular, the defining
series is pointwise absolutely convergent. On the other hand, we see

∣
∣
(
SynthX,U c

)
(x)

∣
∣r ≤

(
∑

i∈I

|ci | χxi U (x) χxi U (x)

)r

≤
(

sup
j∈I

|c j | χx j U (x) ·
∑

i∈I

χxi U (x)

)r

≤ Nr · sup
j∈I

|c j |r χx j U (x) ≤ Nr ·
∑

i∈I

|ci |r χxi U (x) .

Thus,

‖ SynthX,U c ‖r
Lr,m

≤ Nr ·
∫

G
(m(x))r ·

∑

i∈I

|ci |r χxi U (x) dx

≤ Nr ·
∑

i∈I

(

|ci |r ·
∫

xi U
(m(x))r dx

)

.

But for x = xi u ∈ xiU , we have m(x) = m(xi u) ≤ m(xi ) · w(u) ≤ C · m(xi ) for
C := supu∈U w(u), which is finite since U is compact and w is continuous. Overall,
since |xiU | = |U | for all i ∈ I , where |U | is the Haar measure of U , we see

‖SynthX,U c ‖r
Lr,m

≤ Nr · Cr · |U | ·
∑

i∈I

(
m(xi ) · |ci |

)r
,

which easily yields the boundedness of SynthX,U . �

4.5.2 Banach Frames

In this subsection, we will assume the following:

Assumption 4.3 We fix some r ∈ (1,∞) and a w-moderate weight m : G →
(0,∞) and assume that the kernel K from (4.2.3) satisfies the following:

(i) Assumption 4.1 is satisfied, that is, K ∈ L p,w(G) for all p ∈ (1,∞).
(ii) The right convolution operator RCK : f �→ f ∗ K is well-defined, and by

Proposition 4.2 bounded, as an operator on Lr,m(G).
(iii) There is some unit neighborhoodU0 ⊂ G such that for each unit neighborhood

U ⊂ U0 there is a constant CU > 0 with

for all f ∈ Mr,m : ‖ oscρ

U f ‖Lr,m ≤ CU · ‖ f ‖Lr,m . (4.5.1)
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Here, Mr,m is the reproducing kernel space from (4.3.4), and

oscρ

U f (x) := sup
u∈U

| f (xu) − f (x)| (4.5.2)

similar to (4.3.8).
(iv) The constants CU from the preceding point satisfy CU → 0 asU → {e}. More

precisely, for every ε > 0 there is a unit neighborhood Uε ⊂ U0 with CU ≤ ε

for all unit neighborhoods U ⊂ Uε.

At a first glance, it seems that the preceding assumptions have nothing to do with
the existence of a “well-behaved” kernel W which is compatible with the kernel K .
But it turns out that the existence of such a kernel provides an easy way of verifying
the preceding assumptions:

Lemma 4.15 Assume that K ∈ L p,w(G) for all p ∈ (1,∞) and that the operator
RCK : Lr,m(G) → Lr,m(G), f �→ f ∗ K is well-defined and bounded.

Furthermore assume that there is a kernel W : G → C with the following prop-
erties:

(i) W is continuous.
(ii) K ∗ W = K .

(iii) Mλ
U0

W ∈ L1,w(G) ∩ L1,wΔ−1(G) for some compact unit neighborhood
U0 ⊂ G. Here

Mλ
U0

W (x) := ‖W‖L∞(xU0), x ∈ G (4.5.3)

is the local maximal function (with respect to left-regular representation),
similar to (4.3.6).

Then Assumption 4.3 is satisfied.

Proof We first note that our assumptions imply Mλ
U W ∈ L1,w(G) ∩ L1,wΔ−1(G) for

every compact unit neighborhood U ⊂ G. Indeed, by compactness, and since U ⊂⋃
x∈G x int(U0), there is a finite family (xi )i=1,...,n with U ⊂ ⋃n

i=1 xiU0. Therefore,
xU ⊂ ⋃n

i=1 xxiU0, whence

Mλ
U W (x) = ‖W‖L∞(xU ) ≤

n∑

i=1

‖W‖L∞(xxi U0)

=
n∑

i=1

Mλ
U0

W (xxi ) =
n∑

i=1

[
ρ(xi )(Mλ

U0
W )

]
(x) .

But since w and wΔ−1 are submultiplicative, both L1,w(G) and L1,wΔ−1(G) are
invariant under right translations, and hence Mλ

U W ∈ L1,w(G) ∩ L1,wΔ−1(G).
Next, if V is an open precompact unit neighborhood and U := V , then by con-

tinuity of W , we have |W (x)| ≤ supv∈V |W (xv)| = ‖W‖L∞(xV ) ≤ Mλ
U W (x) for all

x ∈ G. Therefore, W ∈ L1,w(G) ∩ L1,wΔ−1(G).
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Since by assumption, the right convolution operator RCK acts boundedly on
Lr,m(G), Lemma 4.4 shows that the set X0 := span {λ(x)K }x∈G is dense in the
reproducing kernel space Mr,m . Furthermore, the assumption K ∗ W = K yields
(λ(x)K ) ∗ W = λ(x)(K ∗ W ) = λ(x)K for all x ∈ G, and thus f ∗ W = f for all
f ∈ X0. By density of X0 in Mr,m , and since the right convolution operator f �→
f ∗ W is continuous on Lr,m(G) thanks to W ∈ L1,w(G) ∩ L1,wΔ−1(G) and Young’s
inequality (Proposition 4.13), we see

f ∗ W = f for all f ∈ Mr,m . (4.5.4)

Wenowuse (4.5.4) to prove (4.5.1). To this end, letU ⊂ G be an arbitrary compact
unit neighborhood. Let f ∈ Mr,m , x ∈ G and u ∈ U be arbitrary. Then

| f (xu) − f (x)| = |( f ∗ W )(xu) − ( f ∗ W )(x)|
≤

∫

G
| f (y)| · |W (y−1xu) − W (y−1x)| dy

≤
∫

G
| f (y)| · (oscρ

U W )(y−1x) dy = (| f | ∗ (oscρ

U W )
)
(x) .

Since this holds for every u ∈ U , we get oscρ

U f (x) ≤ | f | ∗ (oscρ

U W )(x) for all
x ∈ G. By solidity of Lr,m(G) and in view of Young’s inequality (Proposition 4.13),
this implies

‖ oscρ

U f ‖Lr,m ≤ ‖ f ‖Lr,m · max{‖ oscρ

U W‖L1,w , ‖ oscρ

U W‖L1,wΔ−1 } .

But an easy generalization of Lemma 4.3 shows that ‖ oscρ

U W‖L1,v → 0 asU → {e},
for v = w as well as for v = wΔ−1. From this, it is not hard to see that the two
remaining properties from Assumption 4.3 are satisfied. �

We now prove that Assumption 4.3 ensures that a sufficiently fine sampling of
the continuous frame (π(x) u)x∈G provides a Banach frame for the coorbit space
Co(Lr,m). For this, we will first show that we can sample the point evaluation func-
tionals to obtain aBanach frame for the reproducing kernel spaceMr,m . In the end,we
will then use the correspondence principle to transfer the result from the reproducing
kernel space to the coorbit space.

We begin by showing that a certain sampling operator is bounded:

Lemma 4.16 Let Assumption 4.3 be satisfied, and let X = (xi )i∈I be a relatively
separated family in G.

Then, with the weight m X as in Lemma 4.14, the sampling operator

SampX : Mr,m → �r,m X (I ), f �→ ( f (xi ))i∈I = (〈 f, λxi K 〉L2

)
i∈I

is well-defined and bounded.
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Proof We first recall that each f ∈ Mr,m satisfies f = f ∗ K , and hence

f (x) = f ∗ K (x) =
∫

G
f (y) · K (y−1x) dy =

∫

G
f (y) · K (x−1y) dy = 〈 f, λ(x)K 〉L2 .

But K ∈ Lr ′,w(G), and thus also λ(x)K ∈ Lr ′,w(G), since w is submultiplicative.
Furthermore, since m is w-moderate, we have m(e) = m(xx−1) ≤ m(x)w(x−1),
and thus [m(x)]−1 ≤ w(x−1)/m(e) = w(x)/m(e),whence Lr ′,w(G) ↪→ Lr ′,m−1(G).
Thus, the dual pairing 〈 f, λ(x)K 〉L2 ∈ C is well-defined for every x ∈ R. Therefore,
each entry f (xi ) of the sequence SampX f = ( f (xi ))i∈I makes sense.

Now, let U be a compact unit neighborhood with ‖ oscρ

U f ‖Lr,m ≤ C · ‖ f ‖Lr,m

for all f ∈ Mr,m . Such a neighborhood exists by virtue of Assumption 4.3. Note
that U−1 is also a compact unit neighborhood, so that by definition of a relatively
separated family there is a constant N > 0 with

∑
i∈I χxi U−1(x) ≤ N for all x ∈ G.

Next, fix any i ∈ I and note that χxi U−1(x) �= 0 can only hold if x = xi u−1 and
thus xi = xu for some u ∈ U . But in this case, we see by definition of the oscillation
oscρ

U f that

| f (xi )| ≤ | f (x)| + | f (xi ) − f (x)| ≤ | f (x)| + (oscρ

U f )(x) =: F(x) .

We have thus shown | f (xi )| · χxi U−1(x) ≤ F(x) · χxi U−1(x) for all x ∈ G. Summing
over i ∈ I , we see

Θ f (x) :=
∑

i∈I

| f (xi )| · χxi U−1(x) ≤
(
∑

i∈I

χxi U−1(x)

)

· F(x) ≤ N · F(x)

for all x ∈ G.
Because of r ≥ 1, we have �1(I ) ↪→ �r (I ), which implies

∑
i∈I cr

i ≤ (
∑

i∈I ci )
r

for arbitrary ci ≥ 0. Therefore,

∫

G
(m(x))r ·

∑

i∈I

| f (xi )|r · χxi U−1(x) dx ≤ ‖Θ f ‖r
Lr,m

≤ Nr · ‖F‖r
Lr,m

≤ Nr · (‖ f ‖Lr,m + ‖ oscρ

U f ‖Lr,m

)r

≤ Nr · (1 + C)r · ‖ f ‖r
Lr,m

.

Finally, if χxi U−1(x) �= 0, then x = xi u−1 for some u ∈ U , and therefore m(xi ) =
m(xu) ≤ m(x) · w(u) ≤ C ′ · m(x) for C ′ := supu∈U w(u), which is finite sincew is
continuous and U is compact.

Overall, we have thus shown

(C ′)−r ·
∑

i∈I

(m(xi ))
r · | f (xi )|r · |xiU

−1| ≤
∫

G
(m(x))r ·

∑

i∈I

| f (xi )|r · χxi U−1(x) dx

≤ Nr · (1 + C)r · ‖ f ‖r
Lr,m

,



4 On the Atomic Decomposition of Coorbit Spaces with Non-integrable Kernel 119

which—because of |xiU−1| = |U−1|—shows

‖SampX f ‖�r,m X
≤ C ′N (1 + C) · |U−1|−1/r · ‖ f ‖Lr,m for all f ∈ Mr,m ,

which finally proves that SampX is well-defined and bounded. �

Now we can prove that a sufficiently fine sampling of the point evaluations yields
a Banach frame for the reproducing kernel space Mr,m .

Proposition 4.9 Let Assumption 4.3 be satisfied, and let U ⊂ U−1
0 be a compact

unit neighborhood such that the constant CU−1 from (4.5.1) satisfies

‖RCK ‖Lr,m→Lr,m · CU−1 < 1 . (4.5.5)

Let X = (xi )i∈I be any relatively separated family in G for which there exists a
U-BUPU Ψ = (ψi )i∈I with localizing family X, and let the weight m X be defined
as in Lemma 4.14.

Then there is a bounded linear reconstruction map R : �r,m X (I ) → Mr,m which
satisfies R ◦ SampX = idM r,m for the sampling map SampX from Lemma 4.16.

In other words, the family (δxi )i∈I of point evaluations forms a Banach frame for
Mr,m with coefficient space �r,m X (I ).

Remark 4.11 The proof shows that the action of the reconstruction operator is inde-
pendent of the choice of r, m.

In other words, if (4.5.5) is satisfied for Lr1,m1(G) and Lr2,m2(G) and if R1 :
�r1,m1,X (I ) → Mr1,m1 and R2 : �r2,m2,X (I ) → Mr2,m2 denote the respective recon-
struction operators, then R1c = R2c for all c ∈ �r1,m1,X (I ) ∩ �r2,m2,X (I ).

Proof With the synthesis operator SynthX,Ψ from Lemma 4.14, we define

B := SynthX,Ψ ◦SampX : Mr,m → Lr,m(G) .

Because of f (x) = ∑
i∈I ψi (x) f (x), we have

| f (x) − B f (x)| ≤
∑

i∈I

ψi (x) · | f (x) − f (xi )| .

But if ψi (x) �= 0, then x = xi u ∈ xiU , so that xi = xu−1 ∈ xU−1, and hence
| f (x) − f (xi )| = | f (x) − f (xu−1)| ≤ oscρ

U−1 f (x). Therefore,

| f (x) − B f (x)| ≤
∑

i∈I

ψi (x) oscρ

U−1 f (x) = oscρ

U−1 f (x) .

By Proposition 4.3 the operator RCK is a projection onto Mr,m , therefore
RCK f = f for f ∈ Mr,m . Thus, the operator A := RCK ◦ B : Mr,m → Mr,m is
well-defined and bounded, and we have
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‖ f − A f ‖Lr,m = ‖RCK ( f − B f )‖Lr,m ≤ ‖RCK ‖Lr,m→Lr,m · ‖ f − B f ‖Lr,m

≤ ‖RCK ‖Lr,m→Lr,m · ‖ oscρ

U−1 f ‖Lr,m

≤ ‖RCK ‖Lr,m→Lr,m · CU−1 · ‖ f ‖Lr,m

for all f ∈ Mr,m .
In view of (4.5.5), a Neumann series argument (see [2, Sect. 5.7]) shows that the

bounded linear operator R0 := ∑∞
n=0(idM r,m −A)n : Mr,m → Mr,m satisfies

(R0 ◦ RCK ◦ SynthX,Ψ ) ◦ SampX = R0 ◦ A = idM r,m .

Thus, R := R0 ◦ RCK ◦ SynthX,Ψ : �r,m X (I ) → Mr,m is the desired reconstruction
operator. Note that the action of this operator on a given sequence is independent
of the choice of r, m, since the action of the operators RCK , SynthX,Ψ and A =
RCK ◦ SynthX,Ψ ◦SampX is independent of r, m, so that the same holds for R0 =∑∞

n=0(id−A)n . �

Using the correspondence principle, we can finally lift the result from the repro-
ducing kernel space Mr,m to the coorbit space Co(Lr,m).

Theorem 4.5 Under the assumptions of Proposition 4.9, the sampled family
(π(xi )u)i∈I ⊂ (Co(Lr,m))′ forms a Banach frame forCo(Lr,m) with coefficient space
�r,m X (I ).

More precisely, the sampling operator

SampX,Co : Co(Lr,m) → �r,m X (I ), f �→ (
Ve f (xi )

)
i∈I = (〈 f, π(xi )u〉Sw

)
i∈I

is well-defined and bounded, and there is a bounded linear reconstruction operator
RCo : �r,m X (I ) → Co(Lr,m) satisfying RCo ◦ SampX,Co = idCo(Lr,m ).

Finally, the action of the reconstruction operator RCo is independent of the choice
of r, m, that is, if the assumptions of the current theorem are satisfied for Lr1,m1(G)

and for Lr2,m2(G) and if R1, R2 denote the corresponding reconstruction operators,
then R1c = R2c for all c ∈ �r1,m1,X (I ) ∩ �r2,m2,X (I ).

Proof The correspondence principle (Proposition 4.1) states that the extended voice
transform Ve : Co(Lr,m) → Mr,m is an isometric isomorphism. Now, with the sam-
pling map SampX from Proposition 4.9, we have

(SampX ◦Ve) f = (
Ve f (xi )

)
i∈I = (〈 f, π(xi )u〉Sw

)
i∈I = SampX,Co f .

Thus, the sampling operator SampX,Co = SampX ◦Ve : Co(Lr,m) → �r,m X (I ) is
indeed well-defined and bounded.

Now,with the reconstruction operator R : �r,m X (I ) → Mr,m fromProposition 4.9,
define RCo := V −1

e ◦ R : �r,m X (I ) → Co(Lr,m). Then

RCo ◦ SampX,Co = V −1
e ◦ R ◦ SampX ◦Ve = V −1

e ◦ Ve = idCo(Lr,m ),



4 On the Atomic Decomposition of Coorbit Spaces with Non-integrable Kernel 121

as desired. Since the action of R is independent of the choice of r, m, so is the action
of RCo. �

4.5.3 Atomic Decompositions

For the case of atomic decompositions, we will impose slightly different conditions
compared to the case of Banach frames. In this case, our assumptions immediately
refer to a “well-behaved” kernel W .

Assumption 4.4 We fix some r ∈ (1,∞) and some w-moderate weight m : G →
(0,∞), and we assume that the kernel K from (4.2.3) satisfies the following:

(i) Assumption 4.1 is satisfied, that is, K ∈ L p,w(G) for all p ∈ (1,∞).
(ii) The right convolution operator RCK : f �→ f ∗ K iswell-defined and bounded

as an operator on Lr,m(G).
(iii) There is a continuous kernel W : G → C with the following properties:

(a) W ∗ K = K .
(b)

̂

M
ρ

Q W ∈ L1,w(G) ∩ L1,wΔ−1(G) for some compact unit neighborhood

Q ⊂ G. Here, the maximal function

̂

M
ρ

Q W is defined as in (4.3.6).

Remark 4.12 Wewill use below that

̂

M
ρ

U W ∈ L1,w(G) ∩ L1,wΔ−1(G) for every com-
pact unit neighborhood U ⊂ G if we assume

̂

M
ρ

Q W ∈ L1,w(G) ∩ L1,wΔ−1(G) for
some unit neighborhood Q ⊂ G.

Indeed, by compactness of U , and since U ⊂ ⋃
x∈G(int Q)x , there is a finite

family (xi )i=1,...,n in G with U ⊂ ⋃n
i=1 Qxi . Therefore, U x ⊂ ⋃n

i=1 Qxi x , whence

̂

M
ρ

U W (x) = ‖W‖L∞(U x) ≤
n∑

i=1

‖W‖L∞(Qxi x) =
n∑

i=1

(

̂

M
ρ

Q W )(xi x) .

By solidity and (left) translation invariance of L1,v(G) for v = w or v = wΔ−1, this
implies

‖
̂

M
ρ

U W‖L1,v ≤
n∑

i=1

‖λ(x−1
i )(

̂

M
ρ

Q W )‖L1,v < ∞ .

Here, the left-translation invariance of L1,v(G) is a consequence of the submulti-
plicativity of v.

As in the preceding subsection, our first goal is to show that certain synthesis and
analysis operators are bounded.

Lemma 4.17 Let Assumption 4.4 be satisfied, and let X = (xi )i∈I be any relatively
separated family in G. Let the weight m X be as in Lemma 4.14. Then the following
hold:
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(i) If Ψ = (ψi )i∈I is a U-BUPU with localizing family X, then the analysis oper-
ator

AnaX,Ψ : Lr,m(G) → �r,m X (I ), f �→ (〈 f, ψi 〉L2

)
i∈I

is a well-defined bounded linear map.
(ii) The synthesis map

SynthX,W : �r,m X (I ) → Lr,m(G), (ci )i∈I �→
∑

i∈I

ci · λ(xi )W

is a well-defined bounded linear map, where the defining series is almost every-
where absolutely convergent.

Proof For x = xi u ∈ xiU , we have m(xi ) = m(xu−1) ≤ m(x)w(u−1) ≤ C · m(x),
where C := supu∈U w(u−1) is finite by continuity ofw and compactness of U . Since
we also have ψi ≡ 0 on G\xiU , then we see by following the lines of the proof of
Proposition 4.4 and using Jensen’s inequality, see [8, Theorem 10.2.6]:

(m(xi ))
r · |〈 f, ψi 〉L2 |r ≤ |xiU |r ·

(∫

xi U
| f (x)|m(xi )ψi (x)

dx

|xiU |
)r

≤ |xiU |r ·
∫

xi U
(| f (x)| · C · m(x)ψi (x))r dx

|xiU |
≤ |U |r−1 · Cr ·

∫

G
|(m · f )(x)|r · ψi (x) dx ,

where the last step used the left invariance of the Haar measure and the estimate
(ψi (x))r ≤ ψi (x) which holds since ψi (x) ∈ [0, 1] and r ≥ 1.

Summing over i ∈ I and applying the monotone convergence theorem, we thus
get

‖AnaX,Ψ f ‖r
�r,m X

=
∑

i∈I

(
m(xi ) · |〈 f, ψi 〉L2 |

)r

≤ |U |r−1 · Cr ·
∫

G
|(m · f )(x)|r ·

∑

i∈I

ψi (x) dx

= |U |r−1 · Cr · ‖ f ‖r
Lr,m

< ∞ ,

thereby proving the boundedness and well-definedness of AnaX,Ψ .

We now consider the synthesis map SynthX,W . Let V ⊂ G be any compact unit
neighborhood, and set Q := int V , so that U := Q ⊂ V is a compact unit neighbor-
hood that satisfies intU ⊃ Q = U and hence U = intU . As a consequence, as seen
in the proof of Lemma 4.3 (see p. 138), we have ‖W‖L∞(U x) = supy∈U x |W (y)| for
all x ∈ G. Here we used that W is continuous.
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Now, let x ∈ G and i ∈ I be arbitrary. For any y = xi u ∈ xiU , we then have
x−1

i x = (yu−1)−1x = uy−1x ∈ U y−1x , and thus

|W (x−1
i x)| ≤ ‖W‖L∞(U y−1x) = (

̂

M
ρ

U W )(y−1x) for all x ∈ G and y ∈ xiU .

Writing Θ :=
̂

M
ρ

U W , and averaging this estimate over y ∈ xiU , we get

|λxi W (x)| ≤ 1

|U |
∫

G
χxi U (y) · Θ(y−1x) dy for all x ∈ G, i ∈ I . (4.5.6)

Now, let c = (ci )i∈I ∈ �r,m X (I ) be arbitrary, and set Υ := ∑
i∈I |ci | · χxi U . With

the notation introduced in Lemma4.14,we getΥ = SynthX,U |c|with |c| = (|ci |)i∈I .
This easily implies Υ ∈ Lr,m(G) with

‖Υ ‖Lr,m ≤ C · ‖c‖�r,m X
(4.5.7)

for a constant C = C(m, X, U, r) independent of c.
By weighting estimate (4.5.6) with |ci | and summing over i ∈ I , and by invoking

the monotone convergence theorem, we see for all x ∈ G that

∑

i∈I

|ci | · |(λ(xi )W )(x)| ≤ 1

|U | ·
∫

G
Υ (y) · Θ(y−1x) dy = 1

|U | · (Υ ∗ Θ)(x) .

But since Θ =
̂

M
ρ

U W ∈ L1,w(G) ∩ L1,wΔ−1(G) (see Assumption 4.4 and
Remark 4.12) and since Υ ∈ Lr,m(G), Young’s inequality (Proposition 4.13) shows
Υ ∗ Θ ∈ Lr,m(G). In particular, Υ ∗ Θ(x) < ∞ almost everywhere. Therefore, we
already see that the series defining SynthX,W c is almost everywhere absolutely con-
vergent. Finally, we also see

‖SynthX,W c‖Lr,m ≤
∥
∥
∥
∑

i∈I

|ci | · |λ(xi )W |
∥
∥
∥

Lr,m

≤ 1

|U | · ‖Υ ∗ Θ‖Lr,m

≤ 1

|U | · max{‖Θ‖L1,w , ‖Θ‖L1,wΔ−1 } · ‖Υ ‖Lr,m .

In view of (4.5.7), this proves the boundedness and well-definedness of
SynthX,W . �

Now we can prove the desired atomic decomposition result:

Proposition 4.10 Let Assumption 4.4 be satisfied. For each compact unit neighbor-
hood U ⊂ G write

CU := max{‖ oscU W‖L1,w , ‖ oscU W‖L1,wΔ−1 }. (4.5.8)

Assume that
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CU · ‖RCK ‖Lr,m→Lr,m < 1 . (4.5.9)

Finally, let X = (xi )i∈I be a relatively separated family for which there exists a
U-BUPU Ψ = (ψi )i∈I with localizing family X, and let the weight m X be as defined
in Lemma 4.14.

Then the family (λ(xi )K )i∈I forms a family of atoms for Mr,m with associated
sequence space �r,m X (I ). This means:

(i) The synthesis operator

SynthX,K : �r,m X (I ) → Mr,m, (ci )i∈I �→
∑

i∈I

ci · λ(xi )K

is well-defined and bounded, with unconditional convergence of the defining
series. This even holds without assuming (4.5.9).

(ii) There is a bounded coefficient operator

C : Mr,m → �r,m X (I ) with SynthX,K ◦ C = idM r,m .

Remark 4.13 (i) We note that condition (4.5.9) is always satisfied for U small
enough, thanks to Lemma 4.3 and Assumption 4.4.

(ii) As in Proposition 4.9, the action of the coefficient operator C is independent
of the choice of r, m, that is, if condition (4.5.9) is satisfied for Lr1,m1(G)

and Lr2,m2(G) and if C1 : Mr1,m1 → �r1,m1,X (I ) and C2 : Mr2,m2 → �r2,m2,X (I )
are the respective coefficient operators, then C1 f = C2 f for all f ∈ Mr1,m1 ∩
Mr2,m2 .

Proof Step 1 (Boundedness of the synthesis operator): For this step, we will not
use condition (4.5.9). By Assumption 4.4, RCK : Lr,m(G) → Lr,m(G) is bounded,
and we have W ∗ K = K , which implies (λ(x)W ) ∗ K = λ(x)(W ∗ K ) = λ(x)K
for all x ∈ G.

Furthermore, Lemma 4.17 shows that the map

SynthX,W : �r,m X (I ) → Lr,m(G), (ci )i∈I �→
∑

i∈I

ci · λ(xi )W

is well-defined and bounded. Because of r < ∞, each c = (ci )i∈I ∈ �r,m X (I ) satis-
fies c = ∑

i∈I ciδi with unconditional convergence in �r,m X (I ), where (δi )i∈I denotes
the standard basis of �r,m X (I ). This implies that the series defining SynthX,W c con-
verges unconditionally in Lr,m(G). Since bounded operators preserve unconditional
convergence, we see
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RCK
(
SynthX,W c

) = RCK

(
∑

i∈I

ci λ(xi )W

)

=
∑

i∈I

ci [(λ(xi )W ) ∗ K ] =
∑

i∈I

ci λ(xi )K

with unconditional convergence of the series. We have thus shown that SynthX,K =
RCK ◦ SynthX,W : �r,m X (I ) → Lr,m(G) is well-defined and bounded, with uncondi-
tional convergence of the defining series.

Since λ(xi )K ∈ Mr,m for all i ∈ I , we also see that the range of SynthX,K is
contained in the closed subspace Mr,m ⊂ Lr,m(G).

Step 2 (An alternative reproducing formula for Mr,m): In this step, we will
prove

f = ( f ∗ W ) ∗ K for all f ∈ Mr,m . (4.5.10)

This is almost trivial: For f ∈ Mr,m , we have f = f ∗ K by definition of Mr,m ,
and we have K = W ∗ K by Assumption 4.4. By combining these facts, we get
f = f ∗ K = f ∗ (W ∗ K ). Thus, all we need to verify is that the convolution is
associative in the setting that we consider here.

In light of [5, Lemma 6.3] to prove this, it remains to
show ((| f | ∗ |W |) ∗ |K |)(x) < ∞ for almost all x ∈ G. To this end, we first show
W ∈ L1,w(G) ∩ L1,wΔ−1(G). In order to see this, let V ⊂ G be any compact unit
neighborhood, and set Q := int V , so that U := Q ⊂ V is a compact unit neighbor-
hood that satisfies intU ⊃ Q = U and hence U = intU . As a consequence of this
and of the continuity of W , as seen in the proof of Lemma 4.3 (see p. 138), we have

̂

M
ρ

U W (x) = ‖W‖L∞(U x) = sup
y∈U x

|W (y)| ≥ |W (x)| for all x ∈ G .

Since
̂

M
ρ

U W ∈ L1,w(G) ∩ L1,wΔ−1(G) (see Assumption 4.4 and Remark 4.12), we
see W ∈ L1,w(G) ∩ L1,wΔ−1(G).

Now, fix some s ∈ (r,∞) and let f ∈ Mr,m . Because of W ∈ L1,w(G) ∩ L1,wΔ−1

(G), Proposition 4.13 shows | f | ∗ |W | ∈ Lr,m(G). Therefore, by the second part of
Proposition 4.13, we see (| f | ∗ |W |) ∗ |K | ∈ Ls,m(G), since |K (x−1)| = |K (x)| and
since K ∈ L p,w(G) for all p ∈ (1,∞). In particular, ((| f | ∗ |W |) ∗ |K |)(x) < ∞ for
almost all x ∈ G. By the considerations from above, we thus see that (4.5.10) holds.

Step 3 (Approximating f �→ f ∗ W ): Let AnaX,Ψ : Lr,m(G) → �r,m X (I ) and
SynthX,W : �r,m X (I ) → Lr,m(G) be as defined in Lemma 4.17, and define A :=
SynthX,W ◦AnaX,Ψ : Lr,m(G) → Lr,m(G). In this step, we will show

‖ f ∗ W − A f ‖Lr,m ≤ CU · ‖ f ‖Lr,m for all f ∈ Lr,m(G) , (4.5.11)

with CU as in (4.5.8).
To this end, recall from the previous step that W ∈ L1,w(G) ∩ L1,wΔ−1(G), so that

Young’s inequality (Proposition 4.13) shows | f | ∗ |W | ∈ Lr,m(G) for f ∈ Lr,m(G).
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In particular, this implies | f | ∗ |W |(x) < ∞ for almost all x ∈ G. For each such
x ∈ G, the dominated convergence theorem and the definition of the operators
AnaX,Ψ , SynthX,W and A shows

| f ∗ W (x) − A f (x)| =
∣
∣
∣
∣
∣
∣

∑

i∈I

∫

G
f (y)ψi (y)W (y−1x) dy −

∑

i∈I

〈 f, ψi 〉L2 (λ(xi )W )(x)

∣
∣
∣
∣
∣
∣

≤
∑

i∈I

∫

G
ψi (y) · | f (y)| · |W (y−1x) − W (x−1

i x)| dy .

Fix i ∈ I for the moment. For y ∈ G with ψi (y) �= 0, we have y = xi u ∈ xiU , and
thus x−1

i x = uy−1x ∈ U y−1x . Therefore, |W (y−1x) − W (x−1
i x)| ≤

(oscU W ) (y−1x), by definition of the oscillation oscU W (see 4.3.8).
If we combine this with the estimate from above and with the monotone conver-

gence theorem, we get

| f ∗ W (x) − A f (x)| ≤
∑

i∈I

∫

G
ψi (y) · | f (y)| · (oscU W )(y−1x) dy

=
∫

G
| f (y)| · (oscU W )(y−1x) dy = (| f | ∗ oscU W )(x) .

In view of Young’s inequality (Proposition 4.13) and the definition of CU (see 4.5.8),
we see that (4.5.11) holds true.

Step 4 (Completing the proof): Recall that RCK : Lr,m(G) → Mr,m is bounded
by Assumption 4.4. Thus, B := RCK ◦ A|M r,m : Mr,m → Mr,m is well-defined and
bounded, with A as in the preceding step. Now, for arbitrary f ∈ Mr,m our results
from Steps 2 and 3 show

‖ f − B f ‖Lr,m = ‖RCK ( f ∗ W − A f )‖Lr,m ≤ ‖RCK ‖Lr,m→Lr,m · CU · ‖ f ‖Lr,m .

In view of our assumption (4.5.9), a Neumann series argument (see [2, Sect. 5.7])
shows thatC0 := ∑∞

n=0(idM r,m −B)n defines abounded linear operatorC0 : Mr,m →
Mr,m with B ◦ C0 = idM r,m .

But we saw in Step 1 that SynthX,K = RCK ◦ SynthX,W , so that

B = RCK ◦ A|M r,m = RCK ◦ SynthX,W ◦AnaX,Ψ |M r,m

= SynthX,K ◦AnaX,Ψ |M r,m .

Thus, the operator C := AnaX,Ψ |M r,m ◦ C0 : Mr,m → �r,m X (I ) satisfies

SynthX,K ◦ C = B ◦ C0 = idM r,m .
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It is not hard to see that the action of the coefficient operator C is independent
of the choice of r, m. For more details see the end of the proof of Proposition 4.9,
where a similar claim is shown. �

Finally, as in the preceding section, we apply the correspondence principle to
obtain atomic decomposition results for the coorbit spaces from those for the repro-
ducing kernel spaces.

Theorem 4.6 Under the assumptions of Proposition 4.10, the sampled family
(π(xi )u)i∈I ⊂ Co(Lr,m) forms a family of atoms for Co(Lr,m) with coefficient space
�r,m X (I ).

More precisely, the synthesis operator

SynthX,Co : �r,m X (I ) → Co(Lr,m), (ci )i∈I �→
∑

i∈I

ci · π(xi )u

is well-defined and bounded, and there is a bounded linear coefficient operator
CCo : Co(Lr,m) → �r,m X (I ) satisfying SynthX,Co ◦CCo = idCo(Lr,m ).

Finally, the action of the coefficient operator CCo is independent of the choice
of r, m. In other words, if the assumptions of the current theorem are satisfied for
Lr1,m1 and for Lr2,m2 and if C1, C2 denote the corresponding coefficient operators,
then C1 f = C2 f for all f ∈ Co(Lr1,m1) ∩ Co(Lr2,m2).

Proof The correspondence principle (Proposition 4.1) states that the extended voice
transform Ve : Co(Lr,m) → Mr,m is an isometric isomorphism. Furthermore,

(Ve π(x) u)(y) = 〈π(x) u, π(y) u〉Sw
= 〈π(x) u, π(y) u〉H

= K (x−1y) = (λ(x)K )(y)

for all x, y ∈ G. In other words, Ve π(x) u = λ(x)K for all x ∈ G.
Now, since thebounded linear operatorV −1

e : Mr,m → Co(Lr,m)preserves uncon-
ditional convergence of series, the synthesis operator SynthX,K fromProposition 4.10
satisfies

(V −1
e ◦ SynthX,K ) (ci )i∈I = V −1

e

(
∑

i∈I

ci · λ(xi )K

)

=
∑

i∈I

ci · V −1
e (λ(xi )K )

=
∑

i∈I

ci · π(xi )u = SynthX,Co (ci )i∈I ,

for arbitrary (ci )i∈I ∈ �r,m X (I ),with unconditional convergence of all involved series.
Thus, the operator SynthX,Co = V −1

e ◦ SynthX,K : �r,m X (I ) → Co(Lr,m) is indeed
well-defined and bounded.

Now, with the coefficient operator C : Mr,m → �r,m X (I ) from Proposition 4.10,
define CCo := C ◦ Ve : Co(Lr,m) → �r,m X (I ). Then
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SynthX,Co ◦CCo = V −1
e ◦ SynthX,K ◦C ◦ Ve = V −1

e ◦ Ve = idCo(Lr,m ) ,

as desired. Since the action of C is independent of the choice of r, m, so is the action
of CCo. �

4.5.4 An Application: Discretization Results for General
Paley–Wiener Spaces

In this subsection, we will apply the abstract results from this section to the
Paley–Wiener spaces B p

Ω , thereby improving on the discretization results derived
in Sect. 4.3.3. Furthermore, our proofs clearly point out those properties that the set
Ω ⊂ R has to satisfy if one wants discretization results to hold for the associated
Paley–Wiener spaces:

Assumption 4.5 Let Ω ⊂ R be measurable, and let r ∈ (1,∞)\{2}. Assume that
the following properties hold:

(i) Ω is bounded;
(ii) the kernel K := F−1χΩ satisfies K ∈ ⋂

1<p<∞ L p(R);
(iii) the convolution operator RCK is well-defined on Lr (R).

Remark 4.14 The last property means that the indicator function χΩ is an Lr (R)-
Fourier multiplier, which implies that χΩc = 1 − χΩ is an Lr (R)-Fourier multiplier
as well. Therefore, [24, Theorem 1] shows that there is an open set U ⊂ R with
χΩc = χU almost everywhere, and thus χU c = χΩ almost everywhere. But since Ω

is bounded, we have Ω ⊂ [−R, R] for some R > 0, and then χΩ = χΩχ[−R,R] =
χU cχ[−R,R] = χ[−R,R]\U almost everywhere. Thus, by modifying Ω on a null set, we
can (and will) always assume that Ω is compact. This neither changes the kernel K ,
nor the underlying Hilbert space

H := B2
Ω := { f ∈ L2(R) : f̂ ≡ 0 a.e. on R\Ω} .

As seen in the discussion before Proposition 4.8, if we set u := K = F−1χΩ ,
then all standing assumptions from Sect. 4.2 are satisfied for m = w ≡ 1, so that the
coorbit spaces Co(L p) are well-defined for 1 < p < ∞. Furthermore, we saw before
Proposition 4.8 that the associated voice transformsatisfiesV f = f for all f ∈ H =
B2

Ω ⊂ L2(R). Using this identity, we can now identify the abstractly defined coorbit
spaces with more concrete reproducing kernel or Paley–Wiener spaces.

Lemma 4.18 Setting T := ⋂
1<p<∞ L p(R), the space S from (4.2.6) satisfies

S = {
f ∈ T

∣
∣ f ∗ K = f

}
,

with topology generated by the norms (‖ · ‖L p )1<p<∞.
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Furthermore, with Mp = {
f ∈ L p(R)

∣
∣ f ∗ K = f

}
and M := ⋃

1<p<∞ Mp,
the map

ι : M → S ′, f �→ Φ f with 〈Φ f , g〉S := 〈 f, g〉L2

is a bijection. If we identify each ϕ ∈ S ′ with its inverse image ι−1ϕ ∈ M under
this map, then the extended voice transform is the identity map, that is Ve ϕ = ι−1ϕ.

According to the general result, the coorbit spaces Co(L p) are given by

Co(L p) = ι(Mp) for all p ∈ (1,∞) , (4.5.12)

which means that if we identify ϕ with ι−1ϕ, then Co(L p) = Mp.
Finally for p ∈ (1, 2] we have

Mp = B p
Ω :=

{

f ∈ L p(R)

∣
∣
∣
∣ f̂ ≡ 0 a.e. on R\Ω

}

.

Therefore, up to canonical identifications, the coorbit spaces Co(L p) coincide with
the Paley–Wiener spaces B p

Ω , at least for p ∈ (1, 2].
Remark 4.15 We do not know if in general the identityMp = B p

Ω with

B p
Ω =

{

f ∈ L p(R)

∣
∣
∣
∣ the tempered dist. f̂ has supp( f̂ ) ⊂ Ω

}

also holds for p ∈ (2,∞). In case of Ω = [−ω,ω], it was shown in
[5, Proposition 4.8] that this is true. Using this, one can show Mp = B p

Ω even if
Ω is a finite disjoint union of compact intervals. For more general sets Ω , however,
we do not know whether Mp = B p

Ω for p ∈ (2,∞).

Proof (of Lemma 4.18) The following proof is similar to the proof of
[5, Proposition 4.8] with some significant improvements and generalizations.

The first property is an immediate consequence of the definitions, combined with
V f = f for f ∈ H .

The map ι is indeed well-defined, since if f ∈ Mp for some p ∈ (1,∞), then
|〈 f, g〉L2 | ≤ ‖ f ‖L p · ‖g‖L p′ , where ‖ · ‖L p′ is a continuous norm onS .

To prove the surjectivity of ι, we first show that M is a (complex) vector space.
Since eachMp is closed under multiplication with complex numbers, we only need
to show that M is closed under addition. To this end, note for f ∈ Mp because of
K ∈ L p′(R) that

| f (x)| = |( f ∗ K )(x)| = |〈 f, λ(x)K 〉L2 | ≤ ‖ f ‖L p · ‖λ(x)K‖L p′ ≤ C p · ‖ f ‖L p

for all x ∈ R, and thusMp ↪→ L∞. This embedding impliesMp ⊂ Mq for p ≤ q,
and thusMp + Mq ⊂ Mq + Mq = Mq ⊂ M . From this, we easily see thatM is
a vector space.
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WithM being a vector space,we seeM = span
⋃

1<p<∞ Mp.With notation as in
(4.2.11), thismeansM = MU .Hence, Theorem4.2 shows for arbitraryϕ ∈ S ′ that
f := Veϕ ∈ MU = M , and (4.2.10) shows because of V g = g for g ∈ S ⊂ H
that

〈Φ f , g〉S = 〈 f, g〉L2 = 〈Veϕ , V g〉L2 = 〈ϕ, g〉S .

Hence, ϕ = Φ f = ι f = ιVeϕ. On the one hand, this shows that ι is surjective, and
on the other hand—once we know that ι is bijective—it proves that the inverse of ι

is given by ι−1 = Ve : S ′ → M .
In order to prove that ι is injective, note λ(x)K ∈ S for all x ∈ R and recall

K (x) = K (−x). Hence,

〈Φ f , λ(x)K 〉S = 〈 f, λ(x)K 〉L2 = ( f ∗ K )(x) = f (x) for f ∈ M .

Therefore, ifΦ f = 0, then f = 0 as well. Since the domainM of ι is a vector space,
this shows that ι is injective.

Equation (4.5.12) is seen to be true by combining the identity Ve = ι−1 with the
correspondence principle (see Proposition 4.1), which states that Ve : Co(L p) →{

f ∈ L p(R)
∣
∣ f ∗ K = f

} = Mp is an isomorphism.
To prove Mp = B p

Ω for p ∈ (1, 2], first note F ( f ∗ g) = f̂ · ĝ for arbitrary
f, g ∈ L2, see e.g. [26, p. 270]. Therefore, for f ∈ Mp ↪→ M2 (here we used that

p ≤ 2) we see that f̂ = f̂ ∗ K = f̂ · K̂ = f̂ · χΩ , where the equality holds in the
sense of tempered distributions. But since both sides are L2(R) functions, this implies
f̂ = f̂ · χΩ almost everywhere, and thus f ∈ B p

Ω .
Conversely, let f ∈ B p

Ω be arbitrary. Because of p ≤ 2, [27, Theorem in
Sect. 1.4.1] shows f ∈ L2(R). Furthermore, since f̂ ≡ 0 almost everywhere on
R\Ω , we have F ( f ∗ K ) = f̂ · K̂ = f̂ · χΩ = f̂ , and thus f = f ∗ K , so that
f ∈ Mp. �

With Lemma 4.18 showing that the coorbit spaces Co(L p) coincide with the
reproducing kernel spaces Mp, we will in the following concentrate on the latter
spaces for proving discretization results.

In Sects. 4.5.2 and 4.5.3, we showed that the sampled frame (π(xi ) u)i∈I forms
a Banach frame or an atomic decomposition for the coorbit space Co(Lr,m) if the
family of sampling points (xi )i∈I is sufficiently dense in G. For the case of the Paley–
Wiener spaces, one can state quite precisely how dense the sampling points need to
be:

Proposition 4.11 Suppose that Assumption 4.5 is satisfied, and choose R > 0 and
ξ0 ∈ R with Ω ⊂ ξ0 + [−R, R].

Then the family (λ(k/(2R))K )k∈Z forms a Banach frame and an atomic decom-
position for the reproducing kernel space Mr with coefficient space �r (Z). More
precisely, the operators

Samp : Mr → �r (Z), f �→ (
f (k/(2R))

)
k∈Z = (〈 f, λ(k/(2R))K 〉L2

)
k∈Z
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and
Synth : �r (Z) → Mr , (ck)k∈Z �→

∑

k∈Z
ck · λ(k/(2R))K

are well-defined and bounded with Synth ◦Samp = (2R)−1 · idM r .

Proof Since Ω ⊂ R is bounded, there is a Schwartz function ψ ∈ S(R) with ψ ≡ 1
on Ω . We then have W := F−1ψ ∈ S(R), so that W is continuous. Furthermore,

Ŵ ∗ K = K̂ ∗ W = K̂ · Ŵ = χΩ · ψ = χΩ = K̂ ,

and hence W ∗ K = K ∗ W = K . Since W is a Schwartz function, there is some
C > 0 with |W (x)| ≤ C · (1 + |x |)−2 for all x ∈ R. Because of

1 + |x | ≤ 2 + |x − y| ≤ 2 · (1 + |x − y|)

for any y ∈ Q := U0 := [−1, 1], this shows |W (x + y)| ≤ 4C · (1 + |x |)−2, and

hence
̂

M
ρ

Q W ∈ L1(R) and Mλ
U0

W ∈ L1(R). Overall, noting that the modular func-
tion Δ of the abelian group G = R satisfies Δ ≡ 1, we see using Lemma 4.15 that
Assumptions 4.3 and 4.4 are both satisfied for w ≡ m ≡ 1.

Now, define I := Z and xk := k/(2R) for k ∈ Z. It is not hard to see that
the family (xk)k∈Z is relatively separated in G = R. Therefore, Lemma 4.16 and
Proposition 4.10 show that the two operators from the statement of the current
proposition are well-defined and bounded. It remains to show Synth ◦Samp =
(2R)−1 idM r .

For this, it suffices to show Synth(Samp f ) = (2R)−1 · f for f ∈ Mr ∩ L2(R),
sinceLemma4.4 shows that span{λ(x)K }x∈R ⊂ Mr ∩ L2(R) is dense inMr . But it is
well-known that the family (ek)k∈Z = (

(2R)−1/2 · e2π i k
2R · )

k∈Z forms an orthonormal
basis of L2(Ω0) where Ω0 := ξ0 + [−R, R]. To make use of this orthonormal basis,
first note for f ∈ Mr ∩ L2(R) that f̂ = f̂ ∗ K = f̂ · K̂ = χΩ · f̂ . Because of f̂ =
f̂ · χΩ , we get f̂ ≡ 0 almost everywhere on R\Ω ⊃ R\Ω0.
Overall, since F (λ(k/(2R))K ) = e−2π i k

2R · χΩ = (2R)1/2 · e−k · χΩ , we see

f̂ = χΩ · f̂ = χΩ ·
∑

k∈Z
〈 f̂ , ek〉L2 ek

= (2R)−1 ·
∑

k∈Z

〈
f̂ ,F

(
λ(−k/(2R))K

)〉

L2

· F (λ(−k/(2R)) K )

= (2R)−1 · F
(
∑

�∈Z
〈 f, λ(�/(2R))K 〉L2 · λ(�/(2R)) K

)

= (2R)−1 · F (Synth(Samp f )) ,

which implies f = (2R)−1 · (Synth ◦Samp) f for all f ∈ L2(R) ∩ Mr , as desired.
�



132 S. Dahlke et al.

To close this section, we show that the existence of a “well-behaved” kernel W
with K ∗ W = K is independent of the property that K acts boundedly on Lr (R)

via right convolutions, even when we restrict to the class of reproducing kernels
K which satisfy the weak integrability property K ∈ ⋂

1<p<∞ L p(R). In the proof
of Proposition 4.11, we saw that for every bounded set Ω ⊂ R, there is a such a
well-behaved kernel W associated to the reproducing kernel K = F−1χΩ . But the
set C ⊂ [0, 1] that we constructed in Proposition 4.8 is bounded and the associated
kernel K = F−1χC satisfies the weak integrability property. Still, K does not act
boundedly via right convolution on any L p(R) space with p �= 2. Conversely, the
following proposition shows the existence of a kernel K that acts boundedly via right
convolution on all L p spaces for 1 < p < ∞, but for which no well-behaved kernel
W with K = W ∗ K exists.

Proposition 4.12 The set Ω := ⋃∞
j=1[3 · 2 j−2 + (0, 2−2 j )] with the associated ker-

nel K := F−1χΩ has the following properties:

(i) K ∈ ⋂
1<p<∞ L p(R).

(ii) There is no W ∈ L1(R) with K = K ∗ W .
(iii) The operator RCK is bounded on L p(R) for every p ∈ (1,∞).

Proof We first verify that the union defining Ω is indeed disjoint. To this end, set
I j := 3 · 2 j−2 + (0, 2−2 j ) for j ∈ N, and note 3 j − 2 > 0, so that 23 j−2 > 1, and
hence 2−2 j < 2 j−2. This implies

2 j−1 = 2 · 2 j−2 < 3 · 2 j−2 < 3 · 2 j−2 + 2−2 j < 3 · 2 j−2 + 2 j−2 = 2 j . (4.5.13)

Therefore, I j ⊂ (2 j−1, 2 j ), which easily yields the desired disjointness. Next, we
verify the three claimed properties.

First property: A direct computation shows that F := F−1χ(0,1) satisfies F(x) =
e2π i x −1
2π i x for x �= 0, and hence F ∈ ⋂

1<p<∞ L p(R). Since χI j = λ(3 · 2 j−2)
(
χ(0,1)(22 j ·)), we thus see by elementary properties of the Fourier transform that

F−1χI j (x) = 2−2 j · e6π i2 j−2x · F(2−2 j x). Therefore,

‖K‖L p =
∥
∥
∥

∞∑

j=1

F−1χI j

∥
∥
∥

L p

≤
∞∑

j=1

2−2 j · ‖F(2−2 j ·)‖L p

= ‖F‖L p ·
∞∑

j=1

2−2 j (1−p−1) < ∞

for arbitrary p ∈ (1,∞).

Second property: Assume toward a contradiction that K = K ∗ W for some W ∈
L1(R). This implies χΩ = K̂ = K̂ · Ŵ = χΩ · Ŵ almost everywhere. In particu-
lar, there is a null set N ⊂ R with Ŵ (ξ) = 1 for all ξ ∈ Ω\N . But the Riemann-
Lebesgue lemma shows limξ→∞ Ŵ (ξ) = 0, so that |Ŵ (ξ)| ≤ 1/2 for all ξ ∈ R with
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|ξ | ≥ 2 j0−2, for a suitable j0 ∈ N. Hence, for any ξ belonging to the positive measure
set I j0 \N = (3 · 2 j0−2, 3 · 2 j0−2 + 2−2 j0)\N ⊂ Ω\N , we have 1 = |Ŵ (ξ)| ≤ 1/2,
a contradiction.

Third property: Here, we will use the strong Marcinkiewicz multiplier theorem
which states the following:

Strong Marcinkiewicz multiplier theorem (see [9, Theorem 8.3.1]) Let (Δ j ) j∈Z
denote the usual dyadic decomposition of R,

Δ j :=

⎧
⎪⎨

⎪⎩

[2 j−1, 2 j ), if j > 0 ,

(−1, 1), if j = 0 ,

(−2| j |,−2| j |−1], if j < 0 .

Assume that φ : R → C is measurable and satisfies

sup
ξ∈R

|φ(ξ)| < ∞ and sup
j∈Z

VarΔ j φ < ∞ ,

where Var I φ denotes the total variation of the function φ when restricted to the
interval I .

Then φ is an L p(R)-Fourier multiplier for all p ∈ (1,∞). In other words, the map
S(R) → S

′(R), f �→ F−1( f̂ · φ) extends to a bounded linear operator on L p(R),
for any p ∈ (1,∞).

Wewant to apply this theorem forφ := χΩ . To this end, first note supξ∈R |φ(ξ)| =
1 < ∞. Second, (4.5.13) shows for j ∈ Z with j ≤ 0 that φ|Δ j ≡ 0, and for j ∈ N

that φ|Δ j = χI j is the indicator function of an interval. In both cases, VarΔ j φ ≤
2. All in all, the strong Marcinkiewicz multiplier theorem shows that the map
S(R) → S

′(R), f �→ F−1(φ · f̂ ) = f ∗ K extends to a bounded linear operator
on L p(R) for any p ∈ (1,∞). Finally, since K ∈ ⋂

1<p<∞ L p(R), Young’s inequal-
ity (Proposition 4.13) shows that L p(R) → Lq(R), f �→ f ∗ K is well-defined
and bounded for any q ∈ (p,∞). Therefore, the extended map is still given by
L p(R) → L p(R), f �→ f ∗ K . �

4.6 Appendix

In this appendix, we provide proofs for several technical auxiliary results that we
used above. We first present some weighted versions of well-known facts for the
reader’s convenience.

The first lemma is a weighted version of Schur’s test.

Lemma 4.19 (Schur’s test) Let K : G × G → C be measurable, let w > 0 denote
a weight on G, and let p, q, r ∈ [1,∞] with 1 + 1/p = 1/q + 1/r . Assume that
there is a constant CK > 0 such that
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∥
∥
∥K (x, ·) · w(x)

w

∥
∥
∥

Lr

≤ CK for a.e. x ∈ G, (4.6.1)
∥
∥
∥K (·, y) · w

w(y)

∥
∥
∥

Lr

≤ CK for a.e. y ∈ G. (4.6.2)

If f ∈ Lq,w(G), then the integral

I f (x) =
∫

G
K (x, y) f (y) dy

converges for a.e. x ∈ G. The function I f is in L p,w(G) and fulfills

‖I f ‖L p,w
≤ CK ‖ f ‖Lq,w

.

Proof It suffices to assume f ≥ 0 and K ≥ 0. Indeed, temporarily writing IK , f

instead of I f to emphasize the role of the kernel K , we have |IK , f | ≤ I|K |,| f |; fur-
thermore, if (4.6.1) and (4.6.2) hold for K , then they also hold for |K |, with the
same constants, and we have ‖ f ‖Lq,w

= ‖ | f | ‖Lq,w
. Hence, if the claim holds for

K , f ≥ 0, then also

‖IK , f ‖L p,w
≤ ‖I|K |,| f |‖L p,w

≤ C|K | · ‖ | f | ‖Lq,w
= CK · ‖ f ‖Lq,w

.

Thus, we will assume in the following that K , f ≥ 0. Hence, also I f ≥ 0, so that
[16, Theorem 6.14] shows

‖I f ‖L p,w
= sup

0≤h∈L p′ ,w−1 (G)\{0}
〈I f , h〉L2

‖h‖L p′,w−1

. (4.6.3)

We denote with d(x, y) the product measure on G × G. Furthermore, for brevity,
we set Mx (y) := w(x)

w(y)
· K (x, y) and observe ‖Mx‖Lr ≤ CK for almost all x ∈ G,

thanks to (4.6.1). Likewise, (4.6.2) shows ‖M (y)‖Lr ≤ CK for almost all y ∈ G,
where M (y)(x) := w(x)

w(y)
· K (x, y).

We first consider a number of special cases, so that we can then concentrate on
the case where p, q, r ∈ (1,∞).

Case 1: At least one of p, q, r is infinite. In case of p < ∞, we have 1 < 1 + p−1 =
q−1 + r−1. But if q = ∞, then the right-hand side of this inequality is r−1 ≤ 1,
which leads to a contradiction. Similarly, we see that r = ∞ leads to a contradiction.
Therefore, we necessarily have p = ∞ in the present case.

Because of 1 = 1 + p−1 = q−1 + r−1, this implies q = r ′, and hence

w(x) · I f (x) =
∫

G
Mx (y) · w(y) · f (y) dy ≤ ‖Mx‖Lr · ‖ f ‖Lr ′,w ≤ CK · ‖ f ‖Lq,w < ∞

for almost all x ∈ G, proving the claim in Case 1, since p = ∞.
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Case 2: We have p, q, r < ∞, but at least one of p, q, r is equal to one. This leaves
three subcases:

Case 2-A:We have p = 1, and hence 2 = 1 + p−1 = q−1 + r−1 ≤ 2, which implies
q = r = 1. Hence, by Fubini’s theorem,

‖I f ‖L p,w
=

∫

G
w(x)

∫

G
K (x, y) · f (y) dy dx =

∫

G
w(y) · f (y) ·

∫

G
Mx (y) dx dy

≤ CK · ‖ f ‖L1,w = CK · ‖ f ‖Lq,w
,

which proves the claim in Case 2-A.

Case 2-B: We have p ∈ (1,∞), but r = 1. Since 1 + p−1 = q−1 + r−1 = 1 + q−1,
this implies p = q ∈ (1,∞). Hence, for each nonnegative h ∈ L p′,w−1(G)\{0},
Fubini’s theorem and Hölder’s inequality show

〈I f , h〉2 =
∫

G
h(x)

∫

G
K (x, y) f (y) dy dx

=
∫

G×G

h(x)

w(x)
· [M (y)(x)] 1

p′ [M (y)(x)] 1
p · w(y) f (y) d(x, y)

≤
(∫

G

(
h(x)

w(x)

)p′ ∫

G
M (y)(x) dy dx

)1/p′

·
(∫

G
(w(y) f (y))p

∫

G
M (y)(x) dx dy

)1/p

≤ CK · ‖h‖L p′,w−1 · ‖ f ‖L p,w
.

In view of (4.6.3) and because of p = q, this proves the claim in Case 2-B.

Case 2-C: We have p, r ∈ (1,∞), but q = 1. This implies p = r ∈ (1,∞), since
1 + p−1 = q−1 + r−1 = 1 + r−1, For nonnegativeh ∈ L p′,w−1(G) = Lr ′,w−1(G),we
thus have

〈I f , h〉L2 =
∫

G
w(y) · f (y)

∫

G
Mx (y) · h(x)

w(x)
dx dy

≤
∫

G
w(y) · f (y) · ‖Mx‖L p · ‖h‖L p′ ,w−1 dy

≤ CK · ‖h‖L p′,w−1 · ‖ f ‖L1,w = CK · ‖h‖L p′,w−1 · ‖ f ‖Lq,w
.

In view of (4.6.3), this proves the claim in Case 2-C.
Finally, we handle the case p, q, r ∈ (1,∞). By elementary calculations, one can

show r/p + r/q ′ = q/p + q/r ′ = p′/q ′ + p′/r ′ = 1, where all occurring numbers
r
p , r

q ′ and so on are elements of the interval (0, 1). Thus, for any 0 ≤ h ∈ L p′,w−1(G),
it follows from Hölder’s inequality and Fubini’s theorem that
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〈I f , h〉L2 =
∫

G×G
K (x, y)

w(x)

w(y)
· f (y)w(y) · h(x)w(x)−1 d(x, y)

=
∫

G×G

(
M (y)(x)

)r/p · ( f (y)w(y)
)q/p · (Mx (y)

)r/q ′

· (h(x)w(x)−1
)p′/q ′ · ( f (y)w(y)

)q/r ′ · (h(x)w(x)−1
)p′/r ′

d(x, y)

(∗)≤
(∫

G
| f (y)w(y)|q

∫

G

(
M (y)(x)

)r
dx dy

)1/p

·
(∫

G
|h(x)w(x)−1|p′

∫

G

(
Mx (y)

)r
dy dx

)1/q ′

·
(∫

G×G
| f (y)w(y)|q |h(x)w(x)−1|p′

d(x, y)

)1/r ′

≤ CK · ‖ f ‖Lq,w
· ‖h‖L p′,w−1 < ∞,

where the stepmarkedwith (∗) used 1
p + 1

q ′ + 1
r ′ = 1

p + 1 − 1
q + 1 − 1

r = 1. In view
of (4.6.3), this proves the claim for the case p, q, r ∈ (1,∞). �

Next we present a weighted version of the classical Young’s inequality.

Proposition 4.13 (Young’s inequality) Let m be a w-moderate weight on G, see
(4.2.13), and let p, q, r ∈ [1,∞] such that 1 + 1/p = 1/q + 1/r . Then it follows
for f ∈ Lq,m(G) and g ∈ Lr,w(G) ∩ Lr,wΔ−1/r (G) that f ∗ g ∈ L p,m(G) and

‖ f ∗ g‖L p,m ≤ max{‖g‖Lr,w , ‖g‖Lr,wΔ−1/r } · ‖ f ‖Lq,m . (4.6.4)

If, instead ofg ∈ Lr,w(G) ∩ Lr,wΔ−1/r (G), it holdsg ∈ Lr,w(G)and |g(x)| = |g(x−1)|
as well as w(x) = w(x−1) for all x ∈ G, or if g ∈ Lr,w(G) and G is unimodular,
then

‖ f ∗ g‖L p,m ≤ ‖g‖Lr,w · ‖ f ‖Lq,m . (4.6.5)

Proof We apply Lemma 4.19 for the case K (x, y) = g(y−1x) and the weight m. It
suffices to show that there exists a constant CK that fulfills (4.6.1) and (4.6.2). We
first consider the case r < ∞ and use (4.2.13) and the left invariance of the Haar
measure to conclude

∫

G
|g(y−1x)|r · m(x)r

m(y)r
dx =

∫

G
|g(z)|r · m(yz)r

m(y)r
dz

≤
∫

G
|g(z)|r · m(y)rw(z)r

m(y)r
dz

=
∫

G
|g(z)|r · w(z)r dz = ‖g‖r

Lr,w
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for almost all y ∈ G. Now, using the change of variables z = x−1y, and recalling the
formula d�(x) = Δ(x−1)dx (see [15, Proposition 2.31]) for the right Haar measure
� given by �(M) = β(M−1), we see

∫

G
|g(y−1x)|r · m(x)r

m(y)r
dy =

∫

G
|g(z−1)|r · m(x)r

m(xz)r
dz

≤
∫

G
|g(z−1)|r · [w(z−1)]r dz

=
∫

G
|g(y)|r · [w(y)]r · Δ(y)−1 dy = ‖g‖r

Lr,wΔ−1/r

for almost all x ∈ G. By setting CK = max{‖g‖Lr,w , ‖g‖Lr,wΔ−1/r } < ∞, Lemma 4.19
yields

‖ f ∗ g‖L p,m ≤ CK · ‖ f ‖Lq,m for all f ∈ Lq,m(G) ,

which proves (4.6.4).
Finally, for the case r = ∞, observe m(x) = m(yy−1x) ≤ m(y) · w(y−1x), so

that we get

|g(y−1x)| · m(x)

m(y)
≤ |g(y−1x)| · w(y−1x) ≤ ‖g‖L∞,w

for almost every x ∈ G and almost every y ∈ G, which establishes (4.6.1) and (4.6.2).
It remains to prove (4.6.5). If we assume |g(x)| = |g(x−1)| and w(x) = w(x−1),

the formula d�(x) = Δ(x−1)dx from above yields for r < ∞ that

‖g‖r
Lr,wΔ−1/r

=
∫

G
|g(y)|r · [w(y)]r · Δ(y−1) dy =

∫

G
|g(z−1)|r · [w(z−1)]r dz

=
∫

G
|g(z)|r · [w(z)]r dz = ‖g‖r

Lr,w
.

This identity trivially holds if G is unimodular, so thatΔ ≡ 1. For r = ∞, we always
have ‖g‖Lr,wΔ−1/r = ‖g‖Lr,w . In all of these cases, (4.6.5) is a direct consequence of
(4.6.4). �

Lemma 4.20 Let A be a bounded and surjective linear operator that maps a Banach
space W onto a Banach space V . Suppose that the kernel of A admits a complement
L in W . Set

ε := inf
{
sup

{|〈Ax, y〉V ×V ∗ | | y ∈ V ∗, ‖y‖V ∗ = 1
} ∣
∣
∣ x ∈ L , ‖x‖W = 1

}
.

Then the map S := (A|L)−1 : V → L ⊂ W is a linear right inverse of A with

‖S‖ = ε−1.
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Proof It is straightforward that A|L : L → V is a bijection. Therefore S is indeed a
linear right inverse of A, and we have

inf
{
sup

{|〈Ax, y〉V ×V ∗ | | y ∈ V ∗, ‖y‖V ∗ = 1
} | x ∈ L , ‖x‖W = 1

}

= inf {‖Ax‖V | x ∈ L , ‖x‖W = 1}
= inf

{‖Ax‖V

‖x‖W

∣
∣
∣
∣ x ∈ L\{0}

}

= inf

{‖ASv‖V

‖Sv‖W

∣
∣
∣
∣ v ∈ V \{0}

}

=
(

sup

{ ‖Sv‖W

‖ASv‖V

∣
∣
∣
∣ v ∈ V \{0}

})−1

=
(

sup

{‖Sv‖W

‖v‖V

∣
∣
∣
∣ v ∈ V \{0}

})−1

= ‖S‖−1,

which proves the claim. �

Lemmas 4.3 and 4.8 as well as Proposition 4.8 were left unproven. The proofs
are presented here.

Proof of Lemma 4.3. We start with an auxiliary observation: We claim that
‖g‖L∞(Qx) = supy∈Qx |g(y)| if g : G → C is continuous and if Q ⊂ G is a com-
pact unit neighborhood with Q = int Q.

Indeed, the inequality “≤” is trivial. Conversely, if we set α := ‖g‖L∞(Qx), then
the set M := {y ∈ G | |g(y)| > α} is open, and M ∩ Qx is a null set. Hence, M ∩
(int Q)x = ∅, since this is an open null set. In other words, |g(y)| ≤ α for all y ∈
(int Q)x . By continuity of g and since Q ⊂ int Q, we see |g(y)| ≤ α for all y ∈ Qx .

In particular, this implies

̂

M
ρ

Qg(x) = supq∈Q |g(qx)|, and thus (because of e ∈ Q)̂

M
ρ

Qg ≥ |g|.
To prove (i) we note that

̂

M
ρ

Q0
f ∈ L p,w(G) which implies f ∈ L p,w(G), since

we just saw that

̂

M
ρ

Q0
f ≥ | f |. We intend to show ‖oscQ0 f ‖L p,w

< ∞. But we have

oscQ0 f (x) = sup
q∈Q0

| f (qx) − f (x)| ≤ sup
q∈Q0

| f (qx)| + | f (x)| ≤ | f (x)| +
̂

M
ρ
Q0

f (x) .

Therefore,

‖oscQ0 f ‖L p,w
≤ ‖

̂

M
ρ

Q0
f ‖L p,w

+ ‖ f ‖L p,w
< ∞ . (4.6.6)

It remains to prove (ii). For this, we first note that oscQ f ≤ oscQ0 f if Q ⊂ Q0.
Furthermore, by part (i) we have oscQ0 f ∈ L p,w(G). Hence, since G is σ -compact,
for any ε > 0, there exists a compact set K ⊂ G of positive measure such that

∫

G\K
|oscQ f (x)w(x)|p dx ≤

∫

G\K
|oscQ0 f (x)w(x)|p dx <

ε

2
(4.6.7)

for all unit neighborhoods Q ⊂ Q0.
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Next, we observe that since f is continuous, it is uniformly continuous on K
in the following sense: For every δ > 0, there is a unit neighborhood Uδ ⊂ G with
| f (x) − f (ux)| < δ for all x ∈ K and u ∈ Uδ .

The uniform continuity described above simply means oscUδ
f (x) ≤ δ for all

x ∈ K . Choosing δ := ε1/p/([2 · |K |]1/p supy∈K w(y)), we see for every unit neigh-
borhood Q ⊂ Q0 ∩ Uδ that

∫

K
|oscQ f (x)w(x)|p dx ≤

∫

K

ε

2|K | · w(x)p

supy∈K w(y)p
dx ≤

∫

K

ε

2|K | dx = ε

2
.

(4.6.8)

Equations (4.6.7) and (4.6.8) yield ‖oscQ f ‖p
L p,w

< ε, which concludes the proof. �
Proof of Lemma 4.8. Let 1 ≤ p < ∞ and (dx )x∈Yn ∈ �p,m(Yn), then we first note that
for all x ∈ G it holds

∫

x Qn

m(y)p dy =
∫

Qn

m(xy)p dy ≤ m(x)p
∫

Qn

w(y)p dy

≤ sup
q∈Qn

w(q)p · |Qn| · m(x)p.

With this at hand and since Yn is relatively Qn-separated, as stated in (4.3.12), we
derive

∥
∥
∥
∥
∑

x∈Yn

|dx |χx Qn

∥
∥
∥
∥

L p,m

≤
I∑

i=1

∥
∥
∥
∥

∑

x∈Zn,i

|dx |χx Qn

∥
∥
∥
∥

L p,m

=
I∑

i=1

⎛

⎝
∑

x∈Zn,i

|dx |p
∫

x Qn

m(y)p dy

⎞

⎠

1
p

≤
I∑

i=1

⎛

⎝
∑

x∈Zn,i

|dx |pm(x)p

⎞

⎠

1
p

· sup
q∈Qn

w(q) · |Qn| 1
p

≤ I 1− 1
p · sup

q∈Qn

w(q) · |Qn| 1
p · ‖(dx )x∈Yn ‖�p,m .

It remains to prove the case p = ∞. Similarly as above, we see that
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∥
∥
∥
∥
∑

x∈Yn

|dx |χx Qn

∥
∥
∥
∥

L∞,m

≤
I∑

i=1

∥
∥
∥
∥

∑

x∈Zn,i

|dx |χx Qn

∥
∥
∥
∥

L∞,m

=
I∑

i=1

sup
x∈Zn,i

(

|dx | · sup
y∈x Qn

m(y)

)

≤ I ·
(

sup
x∈Yn

|dx | · m(x)

)

· sup
y∈Qn

w(y)

= I · sup
q∈Qn

w(q) · ‖(dx )x∈Yn ‖�∞,m . �

Proof of Proposition 4.8.Wewill constructC ⊂ [0, 1] as a certain “fat Cantor set”. In
particular, we will show below that C has positive measure and fulfills the following
two additional properties:

|C ∩ B| < |B| for all open intervals ∅ �= B ⊂ R , (4.6.9)

and

Cc =
∞⋃

n=0

2n−1⋃

j=0

Bn
j with Bn

j := a(n)
j + b(n)

j

2
+

(
−μn+1

2
,
μn+1

2

)
, (4.6.10)

where the complement Cc is taken relative to [0, 1], and where a(n)
j , b(n)

j ∈ R are
suitable, while μn := min{4−n, n−n} for n ∈ N.

Before we provide the precise construction of such a set C , let us see how the
properties (4.6.9) and (4.6.10) imply the properties of C that are stated in the propo-
sition.

First, [24, Theorem 1] shows that if the operator f �→ f ∗ F−1χC is bounded on
L p(R) for some p ∈ (1,∞)\{2}, that is, if χC is an L p(R)-Fourier multiplier, thenC
would be equivalent to an open set. In other words, there would be an open setU ⊂ R

with χC = χU Lebesgue almost everywhere. But since C has positive measure, this
is only possible if U is a nonempty open set. Therefore, U contains a nonempty
open interval B ⊂ U . Since χC = χU almost everywhere, this implies |B ∩ C | =
|B ∩ U | = |B|, in contradiction to (4.6.9). In summary, we have thus shown that
the convolution operator f �→ f ∗ F−1χC is not bounded on any L p(R) space for
p ∈ (1,∞)\{2}. But this even implies that L p(R) → L p(R), f �→ f ∗ F−1χC is
not well-defined, by Proposition 4.2.

Second, we will see that (4.6.10) ensures F−1χCc ∈ ⋂
1<p≤∞ L p(R), which

then implies F−1χC = F−1χ(0,1) − F−1χCc ∈ ⋂
1<p≤∞ L p(R). Here, we used

that F := F−1χ(0,1) ∈ ⋂
1<p≤∞ L p(R), since a direct computation shows F(x) =

e2π i x −1
2π i x for x �= 0, which implies |F(x)| � (1 + |x |)−1. It remains to showF−1χCc ∈

⋂
1<p≤∞ L p(R). To this end, we set ξ

(n)
j := a(n)

j +b(n)
j

2 − μn+1

2 , recall the definition of
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the intervals Bn
j = ξ

(n)
j + μn+1 · (0, 1) from (4.6.10), and use standard properties of

the Fourier transform to compute

F−1χBn
j
= μn+1 · M

ξ
(n)
j

[
(F−1χ(0,1))(μn+1·)

] = μn+1 · M
ξ

(n)
j

(
F(μn+1·)

)
,

where (Mξ f )(x) = e2π i xξ f (x) denotes the modulation with frequency ξ of a func-
tion f . Next, (4.6.10) shows

F−1χCc =
∞∑

n=0

2n−1∑

j=0

F−1χBn
j
.

Combining this with the triangle inequality for L p and with the elementary identities
‖Mξ f ‖L p = ‖ f ‖L p and ‖ f (a·)‖L p(R) = a−1/p‖ f ‖L p(R) for a > 0 and f ∈ L p(R),
we see because of μn ≤ n−n and 1 − p−1 > 0 for each fixed p ∈ (1,∞] that

‖F−1χCc‖L p ≤
∞∑

n=0

2n−1∑

j=0

μn+1 · ‖M
ξ

(n)
j

(
F(μn+1·)

)‖L p

≤ ‖F‖L p ·
∞∑

n=0

2n−1∑

j=0

μ
1−p−1

n+1 ≤ ‖F‖L p ·
∞∑

�=1

2�−1 · �−�(1−p−1) .

(4.6.11)
But for � ≥ �0 = �0(p), we have (1 − p−1) · log2(�) ≥ 2, and thus

2�−1 · �−�(1−p−1) = 1

2
· 2� · 2−�(1−p−1)·log2(�) ≤ 2�

(
1−(1−p−1)·log2(�)

)
≤ 2−� ,

so that the series on the right-hand side of (4.6.11) converges. Hence, F−1χCc ∈
L p(R) for every p ∈ (1,∞].

Finally, we note because of μn ≤ 4−n that property (4.6.10) also implies

|Cc| =
∞∑

n=0

2n−1∑

j=0

|Bn
j | =

∞∑

n=0

2nμn+1 ≤
∞∑

n=0

2n · 4−(n+1) ≤ 1

4
·

∞∑

n=0

2−n = 1

2
< 1 ,

so thatC ⊂ [0, 1] necessarily has positivemeasure if it satisfies properties (4.6.9) and
(4.6.10). It remains to show that one can indeed construct a compact set C ⊂ [0, 1]
that satisfies properties (4.6.9) and (4.6.10).

To this end, as for the construction of the classical Cantor set, we will set C :=⋂∞
n=0 Cn where the sets Cn := ⋃2n−1

j=0 Cn
j will be defined inductively.

For the start of the induction set C0
0 := [a(0)

1 , b(0)
1 ] := [0, 1].

For the induction step, assume for some n ∈ N0 that we have constructed closed
intervals Cn

� = [a(n)
� , b(n)

� ] ⊂ [0, 1], for � = 0, . . . , 2n − 1, with
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4−n ≤ b(n)
� − a(n)

� ≤ 2−n for all 0 ≤ � < 2n (4.6.12)

and
b(n)

� < a(n)
�+1 for 0 ≤ � < 2n − 1 . (4.6.13)

Now, for 0 ≤ j < 2n+1 we can write j = 2� + k with uniquely determined k ∈
{0, 1} and 0 ≤ � < 2n . We then recall from after (4.6.10) that μn+1 = min{4−(n+1),

(n + 1)−(n+1)}, and define

Cn+1
j := [a(n+1)

j , b(n+1)
j ]

:=
⎧
⎨

⎩

[
a(n)

� ,
a(n)

� +b(n)
�

2 − μn+1

2

]
⊂ [a(n)

� , b(n)
� ] = Cn

� if k = 0 ,
[

a(n)
� +b(n)

�

2 + μn+1

2 , b(n)
�

]
⊂ [a(n)

� , b(n)
� ] = Cn

� if k = 1 .

(4.6.14)

With this choice, we see from (4.6.12) and because of μn+1 ≤ 4−(n+1) that

b(n+1)
j − a(n+1)

j = b(n)
� − a(n)

�

2
− μn+1

2
≥ 1

2
· (4−n − 4−(n+1)

) = 3

8
· 4−n ≥ 4−(n+1)

and

b(n+1)
j − a(n+1)

j = b(n)
� − a(n)

�

2
− μn+1

2
≤ 1

2
(b(n)

� − a(n)
� ) ≤ 2−(n+1) ,

thereby proving (4.6.12) for n + 1 instead of n.
For the proof of (4.6.13) for 0 ≤ j < 2n+1 − 1 with j = 2� + k and k ∈ {0, 1},

we distinguish two cases:
Case 1: k = 0. In this case, j + 1 = 2� + 1, and hence

b(n+1)
j = a(n)

� + b(n)
�

2
− μn+1

2
<

a(n)
� + b(n)

�

2
+ μn+1

2
= a(n+1)

j+1 .

Case2: k = 1. In this case, 2(� + 1) + 0 = j + 1 < 2n+1, so that 1 ≤ � + 1 < 2n .
Therefore, (4.6.13) shows b(n+1)

j = b(n)
� < a(n)

�+1 = a(n+1)
j+1 .

We have thus verified (4.6.13) for n + 1 instead of n.
As indicated above, we define Cn := ⋃2n−1

j=0 Cn
j and observe as a consequence

of (4.6.14) that each Cn is closed with Cn+1 ⊂ Cn for all n ∈ N0. Hence, C :=⋂∞
n=0 Cn ⊂ C0 = [0, 1] is compact.
Having defined the set C , our first goal is to prove property (4.6.9). Let B ⊂ R be

a nonempty open interval. If C ∩ B is a finite set, the inequality in (4.6.9) is trivially
satisfied. Hence, we can assume that C ∩ B is infinite, so that there are x, y ∈ C ∩ B
with x < y. Choose n ∈ N0 with 2−n < y − x and note because of x, y ∈ C ⊂ Cn =⋃2n−1

j=0 Cn
j that there are jx , jy ∈ {0, . . . , 2n − 1}with x ∈ Cn

jx
and y ∈ Cn

jy
. In case of

jy ≤ jx , wewould get because of a(n)
� ≤ b(n)

� ≤ a(n)
�+1 for 0 ≤ � < 2n − 1 and because

of b(n)
� − a(n)

� ≤ 2−n for 0 ≤ � < 2n (see 4.6.12, 4.6.13) that
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2−n < y − x ≤ b(n)
jy

− a(n)
jx

≤ b(n)
jy

− a(n)
jy

≤ 2−n,

a contradiction. Hence, jy > jx , so that (4.6.12) and (4.6.13) show

B � x ≤ b(n)
jx

≤ b(n)
jy−1 < a(n)

jy
≤ y ∈ B ,

and thus (b(n)
jy−1, a(n)

jy
) ⊂ B\Cn ⊂ B\C . But since this interval has positive measure,

we see |B| = |B\C | + |B ∩ C | > |B ∩ C |, thereby proving (4.6.9).
Finally, we prove the formula (4.6.10) for the complement Cc of C , with the

complement taken relative to [0, 1]. To see this, note Cc = ⋃∞
n=0(C

n)c. By disjoin-
tization, and since (C0)c = ∅ and (Cn)c ⊂ (Cn+1)c, this yields

Cc =
∞⋃

n=1

(Cn)c\(Cn−1)c =
∞⋃

n=1

Cn−1\Cn =
∞⋃

n=0

Cn \Cn+1 .

Next, recall Cn = ⋃2n−1
j=0 Cn

j and also recall from (4.6.14) that Cn+1
2�+k ⊂ Cn

� for 0 ≤
� < 2n and k ∈ {0, 1}. Therefore, by (4.6.14) and the definition of Bn

j in (4.6.10) it
holds

Cn
j \Cn+1 =

2n−1⋂

�=0

1⋂

k=0

Cn
j \Cn+1

2�+k =
1⋂

k=0

Cn
j \Cn+1

2 j+k = Bn
j .

Putting everything together, we see that (4.6.10) holds. �
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Chapter 5
On the Purity and Entropy of Mixed
Gaussian States

Maurice de Gosson

Abstract The notions of purity and entropy play a fundamental role in the theory
of density operators. These are nonnegative trace class operators with unit trace. We
review and complement some results from a rigorous point of view.

5.1 Introduction

The number of papers devoted to probability distributions and their quantum coun-
terparts defies the imagination. (For a recent survey see Adesso et al. [1]). One of
the aims of this study is to derive and justify rigorously some formulas which are
often found in the physical literature. We will use notation slightly different from
that which is customary in the literature on pseudodifferential operators, or in time
frequency analysis, we will make explicit the dependence on a parameter � of the
functions we work with (in physics, this parameter is identified with Planck’s con-
stant h divided by 2π ). In fact, � is usually taken equal to one in pseudodifferential
theory and equal to 1/2π in time-frequency analysis, and this often makes the pas-
sage from formulas obtained in these theories to quantum mechanics become rather
acrobatic (a good example of this situation is Folland’s book [10]). The advantage
of introducing an undetermined positive parameter � is that everyone is free to fix it
in his guise, following his needs or interests.

We will mainly focus on the mixed states from quantum mechanics which are
represented by a Gaussian phase space distribution of the type

ρΣ(z) = (2π)−n
√
detΣ−1e− 1

2 Σ−1(z−z0)2 . (5.1.1)

Here Σ is a positive-definite symmetric (real) 2n × 2n matrix, and z0 = (x0, p0) a
fixed point in phase space R

2n
z ≡ R

n
x × R

n
p. Since ρ ≥ 0 and
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∫
ρΣ(z)d2nz = 1

such a function ρ can always be viewed as a classical probability distribution whose
covariance matrix is Σ and centered at z0. Consider the operator ρ̂Σ defined, for
ψ ∈ L2(Rn), by

ρ̂Σψ(x) =
∫∫

e
i
�

〈p,x−y〉ρΣ(z)( 12 (x + y), p)ψ(y)dn ydn p; (5.1.2)

this operator will be the density operator of some quantum state if the three following
conditions are fulfilled:

• ρ̂Σ is self-adjoint: ρ̂Σ = ρ̂∗
Σ ;• ρ̂Σ is of trace class and T r ρ̂Σ = 1;

• ρ̂Σ is positive semidefinite: ρ̂Σ ≥ 0.

It is the third of these conditions that poses a problem. While it is clear that
ρ̂Σ = ρ̂∗

Σ (because ρ̂Σ is, up to a factor, the Weyl operator with the real symbol ρΣ )
and that ρ̂Σ is of trace class (because ρΣ ∈ L2(Rn)) and has trace

T r(ρ̂Σ) =
∫

ρΣ(z)d2nz = 1

it is not at all clear that ρ̂Σ ≥ 0, that is (ρ̂Σψ |ψ)L2 ≥ 0 for all ψ ∈ L2(Rn). It turns
out that this is the case if and only if the covariance matrix Σ satisfies the positivity
condition

Σ + i�

2
J ≥ 0 (5.1.3)

where J =
(

0 I
−I 0

)
is the standard 2n × 2n symplecticmatrix. This conditionmeans

that all the eigenvalues of the complex self-adjoint matrixΣ + (i�/2)J are≥ 0. This
criterion can be proven in several ways [3, 9] , but none of the available proofs is
really elementary. We now ask: What happens if we change Planck’s constant in
such a way that � becomes a number η? In this case, ρΣ will still be the Wigner
distribution of a quantum state provided that the covariance matrix satisfies the new
condition

Σ + iη

2
J ≥ 0. (5.1.4)

Setting η = r� we have

Σ + iη

2
J = (1 − r)Σ + r

(
Σ + i�

2
J

)
;
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since Σ > 0 and Σ + (i�/2)J ≥ 0 condition (5.1.4) will hold for 0 ≤ r ≤ 1; dis-
carding the case r = 0 which corresponds to the case of a classical probability dis-
tribution, the operator ρ̂Σ will be a density operator for all η ≤ �.

5.2 Interpretations of the Condition Σ + iη
2 J ≥ 0

Condition (5.1.4) can be restated in terms of the symplectic spectrum of the covari-
ance matrix Σ . Observing that the product JΣ has the same eigenvalues as the
antisymmetric matrix Σ1/2 JΣ1/2 (because they are conjugate), its eigenvalues are
pure imaginary numbers ±iλσ

1 ,±iλσ
2 , ...,±iλσ

n where λσ
j > 0 for j = 1, 2, ..., n.

The set {λσ
1 , λσ

2 , ..., λσ
n } is called the symplectic spectrum of Σ . Now, there exists a

symplectic matrix S (i.e., a matrix such that ST J S = J ) diagonalizingΣ as follows:

Σ = ST DS , D =
(

Λ 0
0 Λ

)
(5.2.1)

whereΛ is the diagonal matrix with nonzero entries the positive numbers λσ
1 , λσ

2 , ...,

λσ
n (this is called a symplectic, or Williamson, diagonalization of Σ [3, 5, 9]). Since

ST J S = J we have

Σ + iη

2
J = ST DS + iη

2
J = ST (D + iη

2
J )S

hence, the condition Σ + iη
2 J ≥ 0 is equivalent to D + iη

2 J ≥ 0. Now, the charac-
teristic polynomial of the matrix D + iη

2 J is the product P1(λ) · · · Pn(λ) where the

Pj are the second-degree polynomials Pj (λ) = (λσ
j − λ)2 − η2

4 ; hence, the eigen-

values λ of D + iη
2 J are the numbers λ = λσ

j ± 1
2η; the condition D + iη

2 J ≥ 0
implies that all these eigenvalues λ j must be≥ 0, and hence, λσ

j ≥ sup{± 1
2η} = 1

2 |η|
for all j . We have thus proven the equivalence

Σ + iη

2
J ≥ 0 ⇐⇒ |η| ≤ 2λσ

min (5.2.2)

where λσ
min is the smallest symplectic eigenvalue of the covariance matrix Σ . It

follows in particular that we have

detΣ ≥
(η

2

)n
. (5.2.3)

It turns out that the reformulation (5.2.2) opens the gate to an attractive geomet-
ric interpretation in terms of the “quantum blobs” we have introduced elsewhere
[3, 4, 7]. A quantum blob is the image by a linear (or affine) symplectic transforma-
tion of the phase space ball B2n(

√
�). It is thus an ellipsoid of a particular type, which
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can be viewed quantummechanically as a “minimumuncertainty ellipsoid.”Consider
now the “covariance ellipsoid”

ΩΣ = {z ∈ R
2n : 1

2Σ
−1z · z ≤ 1}.

One proves [3, 4, 8] that the symplectic capacity of this ellipsoid satisfies

c(ΩΣ) ≥ π�

so that it must contain the image by a symplectic transformation of B2n(
√

�), that
is a quantum blob. This is a geometric version of the uncertainty principle: The
only quantum mechanically admissible covariance matrices are those for which the
associated covariance ellipsoids contain a minimum uncertainty ellipsoid.

5.3 The Purity of a Gaussian State

Let ρ̂ be a density operator; then, ρ̂2 is a trace class operator, and one has Tr(ρ̂2) ≤ 1
with equality if and only if ρ̂ represents a pure state, that is, if ρ̂ψ = (ψ |φ)φ for
some φ ∈ L2(Rn). The number μ(ρ̂) = Tr(ρ̂2) is called the purity of ρ̂; it will, in
general, depend on the value of Planck’s constant, that is, on the parameter η. The
purity is multiplicative under tensor products: If ρ̂(1) and ρ̂(2) are density operators on
R

n1 and R
n2 , respectively, then ρ̂(1) ⊗ ρ̂(2) is a density operator on R

n , n = n1 + n2

and we have
μ(ρ̂(1) ⊗ ρ̂(2)) = μ(ρ̂(1))μ(ρ̂(2)). (5.3.1)

In the Gaussian case, we have an explicit formula for the purity of the state. To
make things rigorous we need the following lemma.

Lemma 5.1 Let Â and B̂ be trace class operators with η-Weyl symbols a and b,
respectively. Then ÂB̂ is of trace class and

Tr( Â B̂) =
(

1
2πη

)n
∫

a(z)b(z)d2nz. (5.3.2)

For a proof see [6]; note that the result holds if one only supposes that Â and B̂
are Hilbert–Schmidt operators.

In particular, if ρ̂ ′ and ρ̂ ′′ have Wigner distributions ρ ′ and ρ ′′ on R
2n then

Tr(ρ̂ ′ρ̂ ′′) = (2πη)n
∫

ρ ′(z)ρ ′′(z)d2nz (5.3.3)

since the Weyl symbols of ρ̂ and ρ̂ ′ are (2πη)nρ and (2πη)nρ ′, respectively. Notice
that, however, if ρ̂ ′ and ρ̂ ′′ have Wigner distributions ρ ′ and ρ ′′ defined on R

2n′
and

R
2n′′

, respectively, then
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Tr(ρ̂ ′ ⊗ ρ̂ ′′) = Tr(ρ̂ ′)Tr(ρ̂ ′′). (5.3.4)

Proposition 5.1 Let ρ̂Σ be the η-density operator corresponding to the Gaussian
ρΣ where Σ + iη

2 J ≥ 0. The purity of ρ̂Σ is

μ(ρ̂Σ) =
(η

2

)n
det(Σ−1/2). (5.3.5)

Proof (Cf. [5], p. 302). The Weyl symbol of ρ̂Σ is (2πη)nρΣ ; hence, using formula
(5.3.2),

Tr(ρ̂Σ
2) = (2πη)n

∫
ρ2

Σ(z)d2nz

Now ∫
ρ2

Σ(z)d2nz = (
1
2π

)2n
(detΣ)−1

∫
e−Σ−1z2d2nz

hence, using the formula

∫
e−Mz2d2nz = πn(det M)−1/2

which is valid for every positive-definite symmetric matrix M , we get

∫
ρ2

Σ(z)d2nz = (
1
4π

)n
(detΣ)1/2;

formula (5.3.5) follows.

Notice that since detΣ ≥ ( 12η)n , we indeed have Tr(ρ̂Σ
2
η) ≤ 1. The purity of

the corresponding η-density matrix is μ(ρ̂Ση) = 1 if and only if det(Σ) = (η/2)n .
Since det(Σ) = det(JΣ) = (λσ

1 )2 · · · (λσ
n )2, this requires that λσ

j = 1 for all j =
1, 2, ..., n in view (5.2.2). In this case, the matrix D in (5.2.1) is the identity and
Σ = ST S which is a positive-definite symplectic matrix and the corresponding state
is then a squeezed coherent state . It is in fact the image of the fiducial coherent state
φ0(x) = (π�)−ne−|x |2/2� by any of the two metaplectic operators ±Ŝ covering the
symplectic matrix S [3, 5, 6].

To summarize, we have the following situation (we assume here for simplicity that
η > 0): Suppose that (5.1.4) holds for η = �. Then the system is a mixed quantum
state for all η ≤ �; when � ≤ η ≤ 2λσ

min, it is still a mixed state unless η = λσ
1 =

· · · = λσ
n in which case it becomes a coherent state; when η > 2λσ

min...
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5.4 The Notion of η-Weyl Operator

Let a be some symbol, belonging to an adequate symbol space, which we need not
define precisely for the moment; we may assume without restricting the generality
of our arguments that a ∈ S (R2n) the Schwartz space of functions decreasing at
infinity, together with their derivatives, faster that the inverse of any power of |x |. In
the theory of pseudodifferential operators, it is customary to define theWeyl operator
with symbol a by the formula

OpW(a)u(x) = (2π)−n
∫∫

ei(x−y)ξ a( 12 (x + y), ξ)u(y)dn pdn y

while in quantum mechanics, one uses a slightly different definition, namely

Âψ(x) = (
1

2π�

)n
∫∫

e
i
�

(x−y)ξ a( 12 (x + y), p)ψ(y)dn pdn y.

Both definitions coincide when � = 1; the choice � = 1/2π leads to the definition
of Weyl operators mostly used in harmonic analysis:

A f (x) =
∫∫

e2π i(x−y)ωa( 12 (x + y), ω) f (y)dn pdn y.

We are going to prove an elementary but useful result which allows to toggle
painlessly between these various definitions. Let us introduce the following defi-
nition: For any real number η > 0, we define the η-Weyl operator Âη = OpWη (a) by
the formula

Âηψ(x) =
(

1
2πη

)n
∫∫

e
i
η

p(x−y)a( 12 (x + y), p)ψ(y)dn pdn y.

The three operators above correspond to the choices η = 1, η = �, and η = 1/2π ,
respectively. Notice that the normalization constant (2πη)−n is chosen so that to
a = 1 corresponds the identity operator: OpWη (1) = Id.

Lemma 5.2 Let η and η′ be two positive real numbers. We have

OpW
η (a) = M√

η′/ηOpW
η′ (a ◦ √

η/η′)M√
η/η′ (5.4.1)

where for r > 0, a ◦ r(x, p) = a(r x, r p) and Mrψ(x) = ψ(r x).

For any number r > 0, we have

OpWη′ (a ◦ r)ψ(x) =
(

1
2πη′

)n
∫∫

e
i
η′ p(x−y)a( 12 (r x + r y), r p)ψ(y)dn pdn y
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and hence, making the change of variables (y, p) �−→ (y/r, p/r) and replacing x
with x/r ,

OpWη′ (a ◦ r)ψ(x/r) =
(

1
2πr2η′

)n
∫∫

e
i

r2η′ p(x−y)
a( 12 (x + y), p)ψ(y/r)dn pdn y

that is

M1/rOp
W
η′ (a ◦ r)ψ(x) =

(
1

2πr2η′

)n
∫∫

e
i

r2η′ p(x−y)
a( 12 (x + y), p)M1/rψ(y)dn pdn y

Choosing r = √
η/η′, we get formula (5.4.1).

It is often advantageous to express Weyl operators in terms of the displacement
and reflection operators T̂ (z0) and Π̂(z0). These are defined for z0 = (x0, p0) by

T̂ (z0)ψ(x) = e
2i
η

(p0x− 1
2 p0x0)ψ(x − x0)

Π̂(z0)ψ(x) = e
i
η

p0(x−x0)ψ(2x0 − x);

one verifies that Π̂(z0) = T̂ (z0)RT̂ (−z0) where Rψ(x) = ψ(−x) and one proves
that

OpWη (a) =
(

1
2πη

)n
∫

aσ (z0)T̂ (z0)d
2nz0 (5.4.2)

OpWη (a) =
(

1
πη

)n
∫

a(z0)Π̂(z0)d
2nz0 (5.4.3)

where in the first formula aσ is the symplectic Fourier transform of the symbol a:

aσ (z0) =
(

1
2πη

)n
∫

e− i
η
σ (z0,z)a(z)d2nz.

A straightforward consequence of this rescaling result is that it allows to immedi-
ately obtain a quantization result which is usually stated only in the case η = 1/2π
in the literature.

Lemma 5.3 Let n = 1 and set, for 0 < s < 1,

a(x, p) = exp

(
− s

η
(x2 + p2)

)
.

We have OpW
η (a) > 0 and

OpW
η (a) = (1 − s2)−1/2 exp

[
1

2η
ln

(
1 − s

1 + s

)
(̂x2 + p̂2)

]
(5.4.4)
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where x̂ψ = xψ and p̂ψ = −iη∂x

Proof Set aζ (x, p) = e−2πζ(x2+p2), ζ �= 1. In view of Corollary (5.29) in Folland
[10], we have

OpW1/2π (aζ ) = (1 − ζ 2)−1/2 exp

[
π ln

(
1 − ζ

1 + ζ

)
(x2 + (

1
2π i ∂x

)2
)

]
,

choosing η′ = 1/2π in formula (5.4.1) of Lemma 5.2 above yields formula (5.4.4).

In our study of entropy, we will need the following result.

Lemma 5.4 Let OpW
η (a) be defined as above with 0 < s < 1. The logarithm of

OpWη (a) exists and is given by

lnOpW
η (a) = −1

2
ln(1 − s2) + 1

2η
ln

(
1 − s

1 + s

)
(̂x2 + p̂2). (5.4.5)

Proof The result immediately follows from Lemma 5.3.

5.5 Metaplectic Covariance

Viewed abstractly, the metaplectic group Mp(n) is a unitary representation of the
double cover Sp2(n)of the symplectic group Sp(n). The simplest (but not necessarily
the most useful) way of describing Mp(n) is to use its elementary generators Ĵ ,
V̂−P , and M̂L ,m ; denoting by πMp the covering projection Mp(n) −→ Sp(n) these
operators and their projections are given by

Ĵψ(x) = e−inπ/4Fψ(x) , πMp( Ĵ ) = J

V̂−Pψ(x) = e
i
2η Px2ψ(x) , πMp(V̂−P) = V−P

M̂L ,mψ(x) = im
√| det L|ψ(Lx) , πMp(M̂L ,m) = ML ,m .

here F is the Fourier transform

Fψ(x) =
(

1
2πη

)n
∫

e− i
η

xx ′
ψ(x ′)dn x ′

and V−P (P = PT ), ML ,m (det L �= 0) are the symplectic matrices

V−P =
(

I 0
P I

)
, ML ,m =

(
L−1 0
0 LT

)
.

The index m in M̂L ,m is an integer corresponding to a choice of arg det L: m and is
even if det L > 0 and odd if det L < 0.
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Using these generators, it is a simple exercise to show that the translation and
reflection operators satisfy the symplectic covariance relations

T̂ (Sz0) = ŜT̂ (z0)Ŝ−1 , Π̂(Sz0) = ŜΠ̂(z0)Ŝ−1

for every Ŝ ∈ Mp(n), S = πMp(Ŝ). It follows from formula (5.4.2) or (5.4.3) that
Weyl operators satisfy the similar formula

OpWη (a ◦ S−1) = ŜOpWη (a)Ŝ−1.

Notice that a density operator ρ̂ remains a density operator under metaplectic
conjugation: we have Ŝρ̂ Ŝ−1 ≥ 0 and Tr(Ŝρ̂ Ŝ−1) = Tr(ρ̂) = 1. In fact, conjugation
does not affect the purity of the state since we have likewise

Tr[(Ŝρ̂ Ŝ−1)2] = Tr(Ŝρ̂2 Ŝ−1) = Tr(ρ̂2).

5.6 Gaussian Density Operators

Let us return to the probability distribution ρΣ ; we assume for simplicity that z0 = 0
so

ρΣ(z) = (2π)−n
√
detΣ−1e− 1

2 Σ−1z2 . (5.6.1)

In view of Williamson’s symplectic diagonalization theorem [5], there exists S ∈
Sp(n) such that SΣST = D where

D =
(

Λ 0
0 Λ

)
, Λ = diag(λσ

1 , λσ
2 , ..., λσ

n )

the λσ
j being the symplectic eigenvalues of the covariance matrix Σ . We thus have

ρΣ(S−1z) = (2π)−n
√
det D−1e− 1

2 D−1z2

that is
ρΣ ◦ S−1 = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn (5.6.2)

with

ρ j (x j , p j ) = 1

2πλσ
j

exp

(
− 1

2λσ
j

(x2
j + p2

j )

)
. (5.6.3)

Observing that OpWη (ρΣ ◦ S−1) = ŜOpWη (ρΣ)Ŝ−1 where Ŝ ∈ Mp(n) covers S, we
have

ŜOpWη (ρΣ)Ŝ−1 = ρ̂1 ⊗ ρ̂2 ⊗ · · · ⊗ ρ̂n.
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We have ρ̂ j = (2πη)OpWη (ρ j ); hence, ρ̂ j is the Weyl operator with symbol

a j (x j , p j ) = η

λσ
j

exp

(
− 1

2λσ
j

(x2
j + p2

j )

)

setting s = η/2λσ
j in formula (5.4.4) in Lemma 5.3 we get

ρ̂ j = η

λσ
j

(1 − (η/2λσ
j )

2)−1/2 exp

[
1

2η
ln

(
1 − η/2λσ

j

1 + η/2λσ
j

)
(x̂ j

2 + p̂ j
2)

]
. (5.6.4)

The operator ŜOpWη (ρΣ)Ŝ−1 and hence OpWη (ρΣ) are positive-definite if and only if
each ρ̂ j is, that is if s = η/2λσ

j < 1. But this is the case in view of the quantization
condition (5.2.2).

It follows from Proposition 5.4 that ln ρ̂ j = ln((2πη)OpWη (a)) is given by

ln ρ̂ j = ln
(
η/2λσ

j

) − 1

2
ln(1 − (η/2λσ

j )
2) + 1

2η
ln

(
1 − η/2λσ

j

1 + η/2λσ
j

)
(x̂ j

2 + p̂ j
2).

(5.6.5)

5.7 The Entropy of a Gaussian State

By definition, the (von Neumann) entropy of a density operator ρ̂ is the nonnegative
number

S(ρ̂) = −Tr(ρ̂ ln ρ̂) (5.7.1)

where the logarithm ln ρ̂ is defined as follows: Suppose that ρ̂ has the spectral
decomposition

ρ̂ =
∑

j

λ j ρ̂ j ,
∑

j

λ j = 1 (5.7.2)

where the λ j are > 0 and ρ̂ j are rank-one orthogonal projections in L2(Rn). Then

ln ρ̂ =
∑

j

(ln λ j )ρ̂ j . (5.7.3)

It follows from this definition that ln ρ̂ is also a trace class operator. TheVonNeumann
entropy is the quantum variant of the Gibbs–Boltzmann entropy, defined for an usual
probability distribution by

SB(ρ) = −kB

∫
ρ(z) ln ρ(z)d2nz
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where kB is Boltzmann’s constant; it is closely related to the Shannon entropy.
The following lemma summarizes the properties of entropy we will need.

Lemma 5.5 Assume that ρ̂ has the spectral decomposition (5.7.2). (i) Then,

S(ρ̂) = −∑
jλ j ln λ j . (5.7.4)

(ii) For every Ŝ ∈ Mp(n), the density operators ρ̂ and Ŝρ̂ Ŝ−1 have same entropy:

S(Ŝρ̂ Ŝ−1) = S(ρ̂). (5.7.5)

(iii) Let ρ̂(1) and ρ̂(2) be density operators on R
n1 and R

n2 , respectively. Then ρ̂(1) ⊗
ρ̂(2) is a density operator on R

n, n = n1 + n2 and we have the additivity property

S(ρ̂(1) ⊗ ρ̂(2)) = S(ρ̂(1)) + S(ρ̂(2). (5.7.6)

Proof (i) The operator ρ̂ ln ρ̂ is the product of two trace class operators and is hence
of trace class, and we have

ρ̂ ln ρ̂ =
(∑

jλ j ρ̂ j

) (∑
j ln λ j ρ̂ j

)
= ∑

j (λ j ln λ j )ρ̂ j

the second equality because ρ̂ j ρ̂k = 0 for j �= k and ρ̂2
j = ρ̂ j . It follows that the

Weyl symbol of ρ̂ ln ρ̂ is the function

(2πη)n∑
j (λ j ln λ j )ρ j .

Let now ρ = ∑
j λ jρ j and

∑
j ln λ jρ j be the Wigner distributions of ρ̂ and ln ρ̂,

respectively. In view of formula (5.3.2) in Lemma 5.1, we have

Tr(ρ̂ ln ρ̂) = (2πη)n
∫ (∑

jλ jρ j (z)
) (∑

j ln λ jρ j (z)
)

d2nz

= (2πη)n
∫ (∑

j,kλ j ln λkρ j (z)ρk(z)
)

d2nz

= (2πη)n∑
j,kλ j ln λk

∫
ρ j (z)ρk(z)d

2nz.

Writing

ρ j (z) = Wψ j (z) =
(

1
2πη

)n
∫

e− i
η

py
ψ j (x + 1

2 y)ψ∗
j (x − 1

2 y)dn y

Moyal’s identity implies that

∫
ρ j (z)ρk(z)d

2nz = 0
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for j �= k hence,

Tr(ρ̂ ln ρ̂) = (2πη)n∑
jλ j ln λ j

∫
ρ j (z)

2d2nz.

Using once again the Moyal identity we have

∫
ρ j (z)

2d2nz =
(

1
2πη

)n ||ψ j ||4 =
(

1
2πη

)n

and hence
Tr(ρ̂ ln ρ̂) = ∑

jλ j ln λ j

which proves (5.7.4). (ii) Formula (5.7.5) I is straightforward since Ŝρ̂ Ŝ−1 and ρ̂ have
spectral decompositions with the same coefficients. (iii) Writing ρ̂(1) = ∑

jλ j ρ̂ j and
ρ̂(2) = ∑

kμk ρ̂
′
k , we have

ρ̂(1) ⊗ ρ̂(2) =
∑

j,k

λ jμk ρ̂ j ⊗ ρ̂ ′
k

hence,
S(ρ̂(1) ⊗ ρ̂(2)) =

∑
j,k

λ jμk ln λ jμk = S(ρ̂(1)) + S(ρ̂(2))

since
∑

jλ = ∑
kμk = 1.

We now set out to calculate explicitly the entropy of the operator ρ̂Σ determined
by the centered Gaussian (5.6.1). We begin by studying the case n = 1, which leads
to a rigorous proof of a formula used in the physical literature and originally due to
Agarwal [2].

Proposition 5.2 Let ρ̂ j be the Gaussian density operator with Wigner distribution
(5.6.3). The entropy S(ρ̂ j ) = −Tr(ρ̂ j ln ρ̂ j ) of ρ̂ j is given by

S(ρ̂ j ) = − ln 2μ j + 1

2
ln(1 − μ2

j ) − 1

2μ j
ln

(
1 − μ j

1 + μ j

)
(5.7.7)

where μ j = η/2λσ
j is the purity of ρ̂ j .

Proof Using formula (5.3.2), we have

Tr(ρ̂ j ln ρ̂ j ) = 1

2πη

∫
a(z)b(z)dz

where a and b are the symbols of
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ρ̂ j = 2μ j (1 − μ2
j )

−1/2 exp

[
1

2η
ln

(
1 − μ j

1 + μ j

)
(x̂ j

2 + p̂ j
2)

]

ln ρ̂ j = ln 2μ j − 1

2
ln(1 − μ2

j ) + 1

2η
ln

(
1 − μ j

1 + μ j

)
(x̂ j

2 + p̂ j
2)

respectively. We have

a(z) = (2πη)
1

2πλσ
j

e
− 1

2λσ
j
(x2

j +p2
j )

b(z) = ln 2μ j − 1

2
ln(1 − μ2

j ) + 1

2η
ln

(
1 − μ j

1 + μ j

)
(x2

j + p2
j )

and hence,

1
2πη

a(z)b(z) = 1

2πλσ
j

e
− 1

2λσ
j
(x2

j +p2
j )

×
[
ln 2μ j − 1

2
ln(1 − μ2

j ) + 1

2η
ln

(
1 − μ j

1 + μ j

)
(x2

j + p2
j )

]

= 1

2πλσ
j

e
− 1

2λσ
j
(x2

j +p2
j )

[
ln 2μ j − 1

2
ln(1 − μ2

j )

]

+ 1

4πηλσ
j

ln

(
1 − μ j

1 + μ j

)
e
− 1

2λσ
j
(x2

j +p2
j )
(x2

j + p2
j ).

Integrating, we get

Tr(ρ̂ j ln ρ̂ j ) =
(
ln 2μ j − 1

2
ln(1 − μ2

j )

)∫
1

2πλσ
j

e
− 1

2λσ
j
(x2

j +p2
j )dp j dx j

+ 1

4πηλσ
j

ln

(
1 − μ j

1 + μ j

) ∫
e
− 1

2λσ
j
(x2

j +p2
j )
(x2

j + p2
j )dp j dx j .

Using the relations ∫
1

2πλσ
j

e
− 1

2λσ
j
(x2

j +p2
j )dp j dx j = 1

and ∫
e
− 1

2λσ
j
(x2

j +p2
j )
(x2

j + p2
j )dp j dx j = 4π(λσ

j )
2

we get, after a few simplifications,
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Tr(ρ̂ j ln ρ̂ j ) = ln 2μ j − 1

2
ln(1 − μ2

j ) + 1

4πηλσ
j

ln

(
1 − μ j

1 + μ j

)
4π(λσ

j )
2

= ln 2μ j − 1

2
ln(1 − μ2

j ) + λσ
j

η
ln

(
1 − μ j

1 + μ j

)

= ln 2μ j − 1

2
ln(1 − μ2

j ) + 1

2μ j
ln

(
1 − μ j

1 + μ j

)

since μ j = η/2λσ
j ⇐⇒ 2μ j = η/λσ

j ⇐⇒ λσ
j /η = 1/2μ j . Formula (5.7.7) follows

since S(ρ̂ j ) = −Tr(ρ̂ j ln ρ̂ j ).

The case or arbitrary n immediately follows.

Corollary 5.1 The entropy of the Gaussian mixed state ρ̂Σ is given by

S(ρ̂Σ) =
n∑

j=1

S(ρ̂ j ) (5.7.8)

where S(ρ̂ j ) is given by formula (5.7.7).

Proof The trace, the purity, and the entropy are invariant under conjugation with
unitary operators; hence, it is sufficient to assume that ρ̂Σ = ρ̂1 ⊗ · · · ⊗ ρ̂n . Formula
(5.7.8) follows from the additivity property (5.7.6) of the entropy.
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Chapter 6
On the Continuity of τ -Wigner
Pseudodifferential Operators

Lorenza D’Elia

Abstract In this survey, we recollect the latest results about the continuity of
τ -pseudodifferential operators. We obtain boundedness results for these operators
with symbols in Wiener amalgam spaces for τ ∈ (0, 1), exhibiting a function of real
parameter τ which is an upper bound for the operator norm. In general, for τ = 0 and
τ = 1 the corresponding operators are unbounded. For the well-known continuity
properties of τ -pseudodifferential operators with symbols in modulation spaces, we
find an upper bound for the operator norm which does not depend on τ .

2010 Mathematics Subject Classification 47G30 · 35S05 · 42B35 · 81S30

The purpose of this survey is to shed light on recent development on continuity
properties of τ -pseudodifferential operators with symbols in modulation andWiener
amalgam spaces.

The theory of pseudodifferential operators is relatively young; in its modern form,
it was developed about mid-sixties. One of the predecessors of this theory is surely
Calderón [5], who employed the Fourier transform in order to turn a study of linear
partial differential equations into an algebraic analysis of characteristic polynomi-
als (or symbols) of differential equations. This revolutionary viewpoint has been
extended and investigated by the works of Kohn and Nirenberg [42], Hörmander
[40] who coined the modern form of pseudodifferential operators:

Op0(a) f (x) =
∫
Rd

a(x, ξ) f̂ (ξ)e2π i xξdξ, f ∈ S(Rd), (6.0.1)

where f̂ (ξ) = ∫
Rd e−2π i xξ f (x)dx is the Fourier transform and a(x, ξ) is the so-

called symbol. Formula (6.0.1) is known as Kohn–Nirenberg operator. It is broadly
used in the context of partial differential equations. The theory of pseudodifferential
operators is also employed in another field: quantum mechanics. Indeed, it provides
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good mathematical tools in order to solve the quantization problem. Roughly speak-
ing, a quantization is a rule that assigns an operator to a function, called symbol, on
the phase space R2d . Weyl proposed in [56] the first quantization procedure which
is widely used nowadays. The Weyl operator or pseudodifferential operator in Weyl
form is defined as

Op1/2(a) f (x) =
∫
Rd

∫
Rd

a

(
x + y

2
, ξ

)
f (y)e2π i(x−y)ξdydξ, f ∈ S(Rd).

(6.0.2)
A comprehensive study of this operator can be found in Wong’s book [58].

Since the end of 90s, the tools of time–frequency analysis turned out to be appro-
priate in order to extend the investigation of pseudodifferential operators. Here, their
weak definition is used: they are defined by means of duality pairing between the
time–frequency representations and the symbols. From amathematical point of view,
time–frequency representations, which allow the time and the frequency variable to
jointly coexist, are described by quadratic forms, originated from their associated
sesquilinear forms. The advantage of using the weak definition is due to the exis-
tence of a one-to-one correspondence between operators and sesquilinear forms,
which shows that the boundedness of operators defined on suitable function spaces
is equivalent to that of their associated forms (cf. [2]). With this in mind, (6.0.1) may
be written as

〈Op0(a) f, g〉 = 〈a, R(g, f )〉, f, g ∈ S(Rd), a ∈ S′(R2d),

where R(g, f ) = e−2π i xξ g(x) f̂ (ξ) is the Rihaczek distribution. Likewise, formula
(6.0.2) is rewritten as

〈Op1/2(a) f, g〉 = 〈a, W (g, f )〉, f, g ∈ S(Rd), a ∈ S′(R2d).

In this case, the time–frequency representation associated to Weyl operator is one of
the most popular ones, the well-known (cross-)Wigner distribution [55, 57]

W ( f, g)(x, ξ) =
∫
Rd

f

(
x + t

2

)
g

(
x − t

2

)
e−2π i tξdt, f, g ∈ S(Rd). (6.0.3)

For f = g, W ( f, f ) is simply called the Wigner distribution. For a collection of its
properties, we refer to Gröchenig’s book [36].

In this survey, we are interested in studying a particular class of pseudodifferential
operators depending on a real parameter τ , called τ -operators or Shubin operators
[46]. From a time–frequency analysis perspective, for τ ∈ [0, 1], they are defined as

〈Opτ (a) f, g〉 = 〈a, Wτ (g, f )〉, f, g ∈ S(Rd), a ∈ S′(R2d), (6.0.4)

where τ -Wigner distribution Wτ ( f, g) is defined as



6 On the Continuity of τ -Wigner Pseudodifferential Operators 161

Wτ ( f, g)(x, ξ) =
∫
Rd

f (x + τ t)g(x − (1 − τ)t)e−2π iξ tdt, f, g ∈ S(Rd).

Varying the parameter τ , Wτ ( f, g) is a family of time–frequency representations,
where in the left endpoint τ = 0 W0( f, g) coincides with the Rihaczek distribution
R( f, g), in the right endpoint τ = 1 W1( f, g) becomes the conjugate Rihaczek
distribution

W1( f, g)(x, ξ) = R( f, g)(x, ξ) = e2π i xξ g(x) f̂ (ξ),

and in themiddle point τ = 1/2, we recover theWigner distribution.Wemay think of
Wτ as a path joining theRihaczek distribution and its conjugate and having asmiddle
point the Wigner distribution. Likewise, Formula (6.0.4) amounts to a collection of
pseudodifferential operators: Op0 andOp1 are, respectively, theKohn–Nirenberg and
its adjoint (also called anti-Kohn–Nirenberg) operators, whereas in the middle point
Op1/2 becomes the classical Weyl operator (6.0.2).

The continuity of pseuodifferential operators has been studied by plenty of
authors. In the framework of Kohn–Nirenberg operator, a deep analysis has been
carried on for the so-called Hörmander class [40]S m

ρ,δ , m ∈ R, 0 ≤ δ ≤ ρ ≤ 1. This
class of symbols consists of all functions a(x, ξ) ∈ C∞(Rd × R

d) such that

|∂α
x ∂

β

ξ a(x, ξ)| ≤ Cα,β(1 + |ξ |)m+δ|α|−ρ|β|,

for any multi-index α, β ∈ Z
n+. Calderón and Vaillancourt [6] first showed that

any pseudodifferential operators with symbols in the class S 0
0,0 are continuous on

L2(Rd). The request that the symbol belongs to S 0
0,0 means all of its derivatives

are bounded. Many efforts have been done in order to seek the minimal assump-
tions on the regularity of the symbols: we mention Coifamn and Meyer [7], Cordes
[30], Kato [41], Nagase [45] who proved that to obtain the continuity on L2(Rd)

is sufficient the boundedness of the symbol’s derivatives up to a certain order. The
investigation of continuity properties on L2(Rd) leads to a class of symbols, larger
than S 0

0,0, introduced by Sjöstrand [47] and then recognized to be the modulation
space M∞,1(R2d). These spaces was introduced in the context of time–frequency
analysis by Feichtinger [33–35]: they measure the time–frequency decay of a func-
tion/distribution in the phase space. Many authors investigated the continuity of
pseudodifferential operators with symbols in classical modulation spaces. The earli-
est paper was that of Gröchenig andHeil [38] in which they showed that if the symbol
a ∈ M∞,1(R2d), the corresponding operator is bounded on L2(Rd) and on the mod-
ulation spaces M p(Rd), 1 ≤ p ≤ ∞. Sugimoto and Tomita [48] investigated the
boundedness of pseudodifferential operators with symbols in the Hörmander class
Sm

ρ,δ on the modulation spaces M p,q(Rd). In [15], Cordero and Nicola give a com-
plete characterization of the continuity of pseudodifferential operators with symbols
in modulation spaces M p,q(R2d) acting on Lebesgue spaces Lr (Rd) and on Wiener
amalgam spaces W (Lr , Ls)(Rd). These spaces arise as the Fourier transform of the
modulation spaces M p,q(Rd) and their inventor Feichtinger [35] suggests to call them
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simply modulation spaces. In [32], we handle the boundedness properties of Weyl
and Kohn–Nirenberg operators acting on weighted modulation spaces Mr1,r2(Rd)

with symbol in Wiener amalgam spaces W (F L p, Lq)(R2d). We mention also other
important contributions in this framework [1, 8, 9, 18, 29, 37, 43, 51–53].

Pseudodifferential operators are a particular case of Fourier integral operators
(FIOs), which are defined as

∫
Rd

e2π iΦ(x,ξ)a(x, ξ) f̂ (ξ)dξ.

The function a is called the symbol and Φ is the phase function. We recognize
at once that pseudodifferential operators are FIOs with phase function Φ(x, ξ) =
2π i xξ . FIOs are extensively used in the analysis of the behaviour of the solution of
Schrödinger equations.We bring tomind some of theworks focused on the continuity
properties of FIOs: Cordero and Nicola [14] provide assumptions on the symbol
and on the phase function which guarantee the boundedness of FIOs acting on the
modulation spaces M p,q(Rd), 1 ≤ q < p ≤ ∞. In [28], Cordero, Tabacco,Wahlberg
give the optimal boundedness result for FIOs with symbol in modulation spaces and
acting on the same spaces. We recall also the paper of Cordero, Gröchenig, Nicola
and Rodino [11], Cordero and Nicola [13, 14, 17], Cordero, Nicola and Rodino [19–
26], in which they continue the investigation of continuity of FIOs on the modulation
spaces. Moreover, we mention Trèves’ book [54] where the author introduces the
classical theory of FIOs.

Localization operators, first introduced in time–frequency analysis byDaubechies
[31], can be regarded as pseudodifferential operators.More precisely, the localization
operator Aϕ1,ϕ2

a with symbol a ∈ S′(R2d) and windows ϕ1, ϕ2 ∈ S(Rd) is the Weyl
operator Op1/2(a ∗ W (ϕ1, ϕ2)), where the symbol is the convolution of a with the
Wigner distribution of the windows W (ϕ1, ϕ2). Namely, for any f, g ∈ S(Rd), a ∈
S′(R2d)

〈Aϕ1,ϕ2
a f, g〉 = 〈Op1/2(a ∗ W (ϕ1, ϕ2)) f, g〉 = 〈a ∗ W (ϕ1, ϕ2), W (g, f )〉.

The above formula permits us to study these operators in the realm of modulation
spaces. In [10], the authors showed that if the symbol a of the localization operator
satisfies some weak time–frequency concentration assumptions, i.e. a ∈ M∞(R2d)

and the windows ϕ1, ϕ2 ∈ M1(Rd), then Aϕ1,ϕ2
a is bounded on L2(Rd). Moreover, if

the localization operator Aϕ1,ϕ2
a is bounded on L2(Rd) uniformly with respect to all

windows ϕ1, ϕ2 ∈ M1(Rd), then the symbol a necessarily belongs to the modulation
space M∞(R2d). Cordero and Nicola [16] give sufficient and necessary conditions
for the localization operators in order to be a continuous map on the Lebegues space
L p(Rd) and Wiener amalgam spaces W (L p, Lq)(Rd) when the symbol a belongs
to the same spaces. Their approach differs from [10] since they write Aϕ1,ϕ2

a as an
integral operator and not as Weyl operator. The paper [12] recollects some of the
most important boundedness result regarding localization operators. Other continuity
properties can be found in [27, 39, 49–51].
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In this paper, we persist in analysing the continuity of τ -operators with symbols
in the Wiener amalgam spaces. We prove the continuity for τ ∈ (0, 1), while in the
endpoints τ = 0 and τ = 1 the Kohn–Nirenberg and its adjoint fail to be bounded.
This claim is proved by a counterexample, which generalizes one-dimensional one
exhibited by Boulkhermair in [4]. Furthermore, in the case of bounded τ -operators,
i.e. for τ ∈ (0, 1), we produce a function of real paramater τ , which is an upper
bound for the operator norm: for 1 ≤ r1, r2 ≤ ∞, if we set γ = 1/r1 − 1/r2 ones
has:

α(r1,r2)(τ ) = 1

τ d(1−γ )(1 − τ)d(1+γ )
. (6.0.5)

Then we discuss the continuity properties of τ -operators with symbols in modulation
spaces. It iswell known that the results forWeyl operatorswith symbols inmodulation
spaces are still true for any τ -operators (cf. [51, Proposition 1.2 (5)]). We find an
upper bound for the operator norm which actually does not depend on parameter τ ,
as expected.

The paper is organized as follows: in Sect. 6.2, we recall the necessary definitions
and notations that we will use. In Sect. 6.3, we present the existing boundedness
properties of τ -operators in Lebesgue spaces. Section6.3 is addressed to introduce
the new results of continuity of τ -operators with symbols in Wiener amalgam and
modulation spaces.

6.1 Preliminaries

In this section, we recollect some definitions and notations concerning our setting.
A weight function on R2d is a positive and locally integrable function. A submul-

tiplicative weight v on R
2d is such that

v(z1 + z2) ≤ v(z1)v(z2), z1, z2 ∈ R
2d .

Given a submultiplicative weight v, a positive function m on R
2d is a v-moderate

weight if there exists a constant C ≥ 0 such that

m(z1 + z2) ≤ Cv(z1)m(z2), z1, z2 ∈ R
2d .

In what follows, we denote with Mv(R
2d) the set of all v-moderate weights. The

Schwartz class is denoted by S(Rd) and its dual with S′(Rd). The inner product on
R

d is simply written as xy = x · y.
Among time–frequency representations, we recall the definition of the short-

time frequency representation, which is the key ingredient in order to define our
Banach function spaces. Given a nonzero window g ∈ S(Rd), the short-time Fourier
transform (STFT) is defined as
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Vg f (x, ξ) =
∫
Rd

f (t)g(t − x)e−2π i tξdt, f ∈ S(Rd).

We refer the readers to [36] for its properties. Fixed a nonzero window g ∈ S(Rd)

and m ∈ Mv(R
2d), the modulation space M p,q

m (Rd), 1 ≤ p, q ≤ ∞, consists of all
tempered distribution f ∈ S′(Rd) such that

‖ f ‖M p,q
m

=
(∫

Rd

(∫
Rd

|Vg f (x, ξ)|pm p(x, ξ)dx

)q/p

dξ

)1/q

< ∞,

with obvious modifications for the case p = ∞ or q = ∞. Given even weights u, v
on R

d , the Wiener amalgam space W (F L p
u , Lq

w)(Rd) is the set of all f ∈ S′(Rd)

such that

‖ f ‖W (F L p
u ,Lq

w) =
(∫

Rd

(∫
Rd

|Vg f (x, ξ)|pu p(ξ)dξ

)q/p

wq(x)dx

)1/q

< ∞.

It is easy to check thatWiener amalgam spaces are the image under Fourier transform
of modulation spaces, i.e.F (M p,q

u⊗v) = W (F L p
u , Lq

w). Both modulation andWiener
amalgam spaces are Banach spaces independent of the choice of window function,
in the sense that different window g yield equivalent norm. For their basic properties,
we refer to [36].

In the sequel, we denote by J the canonical symplectic matrix in R2d

J =
(

0d×d I dd×d

−I dd×d 0d×d

)
∈ Sp(2d,R),

where the symplectic group Sp(2d,R) is defined as

Sp(2d,R) = {M ∈ GL(2d,R) : MT J M = J }.

Fixed a submultiplicative weight v, we set vJ (x) = v(J x). The conjugate exponent
p′ of p, 1 ≤ p ≤ ∞, is defined as 1/p + 1/p′ = 1.

6.2 Boundedness Properties in Lebesgue Spaces

The boundedness of τ -operators Opτ (a) with symbols in classical Lebegue spaces
L p(R2d) was extensively studied. In [58], Wong shows that if the symbol a ∈
L p(R2d), 1 ≤ p ≤ 2, then the corresponding τ -operator is continuous map on the
Hilbert space L2(Rd). An extended version of this result is been provided in [59]
by the same author. Here, he proved that if the symbol a ∈ L1(R2d), then Opτ (a)

is a bounded operator on L p(Rd). A deep analysis of pseudodifferential operators is
carried on [60]. Let us note that the above results hold for every τ ∈ [0, 1].
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Wemention the results ofBoggiatto et al. [3] inwhich they completely characterize
the continuity properties of τ -operators in the Lebesgue spaces.

Theorem 6.1 ([3] Theorem 6.6)

(i) If τ ∈ (0, 1), the map

a ∈ Lq(R2d) �→ Opτ (a) ∈ B(L p(Rd))

is continuous if and only if q ≤ 2 and q ≤ p ≤ q ′, with corresponding norm
estimate

‖Opτ (a)‖B(L p) ≤ C‖a‖Lq , C > 0.

(ii) If τ = 0, the Kohn–Nirenberg correspondence

a ∈ Lq(R2d) �→ Op0(a) ∈ B(L p(Rd))

is continuous if and only if p = q and q ≤ 2. The norm estimate is

‖Op0(a)‖B(L p) ≤ C‖a‖Lq , C > 0.

(iii) If τ = 1, the map

a ∈ Lq(R2d) �→ Op1(a) ∈ B(L p(Rd))

is continuous if and only if p = q ′ and q ≤ 2. Moreover,

‖Op1(a)‖B(L p) ≤ C‖a‖Lq , C > 0.

6.3 Continuity of τ -Operators with Symbols in Wiener
and Modulation Spaces

This section concerns the discussion of the new boundedness results of τ -operators
with symbols in Wiener amalgam and modulation spaces.

The key tools in order to obtain the boundedness of τ -operators are the norm
estimates of τ -Wigner distributions. Firstly, we compute their STFTs, since they
allow us to compute the Wiener amalgam and modulation norms.
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Lemma 6.1 (i) Consider τ ∈ (0, 1). Let ϕ1, ϕ2 ∈ S(Rd), f, g ∈ S(Rd) and set
Φτ = Wτ (ϕ1, ϕ2). Then,

VΦτ
Wτ (g, f )(z, ζ ) = e−2π i z2ζ2 Vϕ1g(z1 − τζ2, z2 + (1 − τ)ζ1)

× Vϕ2 f (z1 + (1 − τ)ζ2, z2 − τζ1)

where z = (z1, z2), ζ = (ζ1, ζ2) ∈ R
2d . Equivalently,

VΦτ Wτ (g, f )(z, ζ ) = e−2π i z2ζ2 Vϕ1g(z + √
τ(1 − τ)AT

τ ζ )Vϕ2 f (z + √
τ(1 − τ)Aτ ζ ),

where Aτ is symplectic matrix defined as

Aτ =
(

0d×d ( 1−τ
τ

)1/2 Id×d

−( τ
1−τ

)1/2 Id×d 0d×d

)
, τ ∈ (0, 1).

(ii) Let ϕ1, ϕ2 ∈ S(Rd), f, g ∈ S(Rd) and set Φ0 = W0(ϕ1, ϕ2). Then,

VΦ0 W0(g, f )(z, ζ ) = e−2π i z2ζ2 Vϕ1g(z1, z2 + ζ1)Vϕ2 f (z1 + ζ2, z2),

where z = (z1, z2), ζ = (ζ1, ζ2) ∈ R
2d .

(iii) Let ϕ1, ϕ2 ∈ S(Rd), f, g ∈ S(Rd) and set Φ1 = W1(ϕ1, ϕ2). Then,

VΦ1W1(g, f )(z, ζ ) = e−2π i z2ζ2 Vϕ1g(z1 − ζ2, z2)Vϕ2 f (z1, z2 − ζ1),

where z = (z1, z2), ζ = (ζ1, ζ2) ∈ R
2d .

Let us emphasize that the computation of STFT is been made with respect to a
window function which depends on the real parameter τ .

Lemma 6.2 Consider Φ(x, ξ) = e−π(x2+ξ 2), (x, ξ) ∈ R
2d , and Φτ = Wτ (ϕ, ϕ),

where ϕ(t) = e−π t2 , t ∈ R
d . Then there exists a constant C > 0 such that

‖VΦΦτ‖L1
1⊗vJ

≤ C, ∀τ ∈ [0, 1].

Consequently,
‖Φτ‖M1

1⊗vJ
≤ C, ∀τ ∈ [0, 1].

Lemma 6.1 along with Lemma 6.2 permits us to release the dependence of τ

from W (F L1
1/vJ

, L∞)(Rd) andW (F L2
1/vJ

, L2)(Rd) normof τ -Wigner distribution,
obtaning uniform estimates.

Proposition 6.1 (i) Assume that m ∈ Mv(R
2d), 1 ≤ p1, p2 ≤ ∞, f ∈ M p1,p2

m

(Rd), g ∈ M
p′
1,p′

2
1/m (Rd). Then for every τ ∈ (0, 1), the τ -Wigner distribution

Wτ (g, f ) is in W (F L1
1/vJ

, L∞)(R2d) , with
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‖Wτ (g, f )‖W (F L1
1/vJ

,L∞) ≤ Cα(p1,p2)(τ )‖ f ‖M
p1 ,p2
m

‖g‖
M

p′
1 ,p′

2
1/m

, (6.3.1)

where the function α(p1,p2)(τ ) is defined in (6.0.5) and C > 0 is independent
of τ .

(ii) Let m ∈ Mv(R
2d), f ∈ M2

m(Rd) and g ∈ M2
1/m(Rd). For τ ∈ (0, 1), the

Wτ (g, f ) ∈ W (F L2
1/vJ

, L2)(R2d), with the uniform estimate

‖Wτ (g, f )‖W (F L2
1/vJ

,L2) ≤ C‖ f ‖M2
m
‖g‖M2

1/m
, (6.3.2)

where the positive constant C is independent of τ .

These estimates for the τ -Wigner distribution are translated in ones for the cor-
responding τ -operators, which are assumed to be defined in th weak sense.

Proposition 6.2 Consider m ∈ Mv(R
2d) and a symbol a ∈ W (F L∞

vJ
, L1)(R2d).

Then for every τ ∈ (0, 1), the τ -pseudodifferential operator Opτ (a) is bounded on
M p1,p2

m (Rd), for every 1 ≤ p1, p2 ≤ ∞, with

‖Opτ (a) f ‖M
p1 ,p2
m

≤ Cα(p1,p2)(τ )‖a‖W (F L∞
vJ

,L1)‖ f ‖M
p1 ,p2
m

, (6.3.3)

where the function α(p1,p2)(τ ) is defined by (6.0.5) and the constant C > 0 does not
depend on τ .

Proposition 6.3 Given m ∈ Mv(R
2d), a ∈ W (F L2

vJ
, L2)(R2d) and τ ∈ (0, 1).

Then the operator Opτ (a) is bounded on M2
m(Rd) with

‖Opτ (a) f ‖M2
m

≤ C‖a‖W (F L2
vJ

,L2)‖ f ‖M2
m
, (6.3.4)

and C > 0 is independent of τ .

By exploiting the complex interpolation, we show amore general continuity prop-
erty of Opτ , which provides an upper bound for the operator normwhich is a function
of the real parameter τ.

Theorem 6.2 Let 1 ≤ p, q, r1, r2 ≤ ∞ be such that

q ≤ p′, and max{r1, r2, r ′
1, r ′

2} ≤ p. (6.3.5)

Let m ∈ Mv(R
2d) and a ∈ W (F L p

vJ , Lq)(R2d) . Every τ -pseudodifferential opera-
tor Opτ (a), τ ∈ (0, 1), is a bounded on Mr1,r2

m (R2d). Moreover, there exists a constant
C > 0 independent of τ such that

‖Opτ (a) f ‖M
r1 ,r2
m

≤ Cα(r1,r2)(τ )‖a‖W (F L p
vJ ,Lq )‖ f ‖M

r1 ,r2
m

, τ ∈ (0, 1). (6.3.6)

Proof By regarding Opτ as the bilinear map (a, f ) �→ Opτ (a) f , Propositions 6.2
and 6.3 give the continuity of the Opτ (a) on the following function spaces
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W (F L∞
vJ

, L1)(R2d) × M p1,p2
m (Rd) → M p1,p2

m (Rd),

W (F L2
vJ

, L2)(R2d) × M2
m(Rd) → M2

m(Rd),

for 1 ≤ p1, p2 ≤ ∞. Using the complex interpolation betweenWiener amalgam and
modulation spaces, for θ ∈ [0, 1], we have

[W (F L∞
vJ

, L1), W (F L2
vJ

, L2)]θ = W (F L p
vJ

, L p′
),

with 2 ≤ p ≤ ∞, and [M p1,p2
m , M2

m]θ = Mr1,r2
m , with

1

r1
= 1 − θ

p1
+ θ

2
= 1 − θ

p1
+ 1

p

and
1

r2
= 1 − θ

p2
+ θ

2
= 1 − θ

p2
+ 1

p

so that r1, r2 ≤ p. Similarly, we obtain r ′
1, r ′

2 ≤ p, and thus the second relation of
(6.3.5). Due to inclusion relations for Wiener amalgam spaces, we relax the assump-
tions on symbols, so that the symbol a may belong to W (F L p

vJ , Lq)(R2d), with
q ≤ p′, which gives the first relation of (6.3.5). Finally, the norm is provided by

‖Opτ‖B(W (F L p
vJ ,Lq )×M

r1 ,r2
m ,M

r1 ,r2
m ) ≤ ‖Opτ‖1−θ

B(W (F L∞
vJ

,L1)×M
p1 ,p2
m ,M

p1 ,p2
m )

× ‖Opτ‖θ
B(W (F L2

vJ
,L2)×M2

m ,M2
m )

≤ C
1

τ
d(1−θ)

(
1− 1

p1
+ 1

p2

)
(1 − τ)

d(1−θ)
(
1+ 1

p1
− 1

p2

)

≤ C
1

τ
d
(
1− 1

p1
+ 1

p2

)
(1 − τ)

d
(
1+ 1

p1
− 1

p2

) ,

since 1 − θ ≤ 1. This concludes the proof. �

This result does not hold in the endpoints τ = 0 and τ = 1. A first sugges-
tion comes from the fact the function α(r1,r2)(τ ) is unbounded on (0, 1): indeed
for (r1, r2) �= {(1,+∞), (+∞, 1)},

lim
τ→0+

α(r1,r2)(τ ) = lim
τ→1−

α(r1,r2)(τ ) = +∞,

and for (r1, r2) = (1,+∞), limτ→1− α(1,+∞)(τ ) = +∞ and for (r1, r2) =
(+∞, 1), limτ→0+ α(+∞,1)(τ ) = +∞. Inspired by [4], we have found a counterex-
ample that permits us to shows that Kohn–Nirenberg and its adjoint operator are
unbounded on L2(Rd) = M2(Rd). We define the symbol
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a(x1, . . . , xd , ξ1, . . . , ξd) = x−1/2
1 · · · x−1/2

d χ(0,1](x1) · · · χ(0,1](xd)e
πξ 2

,

then it is easy to compute that Op0(a) f /∈ L2(Rd), when f is the Gaussian func-
tion f (t) = eπ t ∈ L2(Rd). As a consequence, the anti-Kohn–Nirenberg operator
Op1(a) f is also unbounded, since it is the adjoint Kohn–Nirenberg one.

As far as the symbols in modulation spaces concerned, we obtain the following
result. As expected, the norm estimate does not depend of τ .

Theorem 6.3 Let p1, p2, q1, q2, p, q ∈ [0, 1] be such that

p1, p′
2, q1, q ′

2 ≤ q ′,
1

p1
+ 1

p′
2

≥ 1

p′ + 1

q ′ ,
1

q1
+ 1

q ′
2

≥ 1

p′ + 1

q ′ .

Let m ∈ Mv(R
2d). For any τ ∈ [0, 1], Opτ (a) with symbol a ∈ M p,q

1⊗vJ
(R2d), is a

bounded operator from M p1,q1
m (Rd) to M p1,q1

m (Rd). Furthermore,

‖Opτ (a) f ‖M
p2 ,q2
m

≤ C‖a‖M p,q
1⊗vJ

‖ f ‖M
p1 ,q1
m

,

with C > 0 independent of parameter τ .
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Chapter 7
Gabor Expansions of Signals:
Computational Aspects and Open
Questions

Hans G. Feichtinger

Abstract In the last 40 years the foundations of Gabor analysis, even in the con-
text of locally compact Abelian (LCA) groups, have been widely developed. We
know a lot about function spaces, in particular modulation spaces, characterization
of these spaces via Gabor expansions, or mapping properties of operators between
such spaces, even the description of solutions for PDEs can nowadays be given in this
context. In contrast, the applied literature gives the impression that the computation
of dual Gabor windows in the standard situation, i.e. for the Hilbert space L2(R),
and a time–frequency lattice of the form Λ = aZ × bZ is still the most important
problem in (numerical) Gabor analysis. The emphasis of this note is on the value of
numerical work, which is much more than just numerical realization of theoretical
concepts. It has been in many cases the inspiration for the derivation of theoretical
results, based on sometimes surprising observations or systematic numerical sim-
ulations. According to our experience, numerical Gabor analysis provides a lot of
additional insight about the concrete situation; it may suggest new directions and
ask for new theory, but of course efficient algorithms often make use of underlying
theory. Overall, we observe that there is an urgent need for a stronger link between
computational and theoretical Gabor analysis. The note also contains a number
of suggestions and even conjectures which are likely to encourage research in the
direction indicated above.

7.1 Introduction

Gabor analysis is a particular branch of time–frequency analysis. The traditional
approach to Harmonic Analysis is to look at a function (or tempered distribution) on
the “time side” or on the “frequency side”, i.e. one tries to understand properties of
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a “signal”, meaning a function or distribution, by either looking at its representation
as a function of time or by studying the behaviour of its Fourier transform. The first
representation makes it easy to find those segments of a function which contain high
energy, while the second tells us which frequencies (on average) are predominant in
the signal.

It is also well known that decay on the Fourier transform side corresponds qual-
itatively to smoothness in the time domain, and so on. Due to Plancherel’s theorem
(showing that the Fourier transformF preserves the L2-norm) we can think of | f |2
or | ̂f |2 as energy distributions. In contrast, time–frequency analysis (TFA) looks
at the spectrogram, i.e. the absolute value of the STFT, or Sliding Window Fourier
transform) resp. its square and thus presents a (smooth, non-negative) energy dis-
tribution within phase space. The energy preservation principle appears in the form
of Moyal’s identity; see [66]. The STFT describes the energy distribution within
phase space, well comparable with a musical score describing the melodies within
a piece of music. Since this continuous version is highly redundant it is natural to
replace it by a discretized version, i.e. to sample the STFT with respect to a lattice.
This is where Gabor analysis takes off. Here we write R

d × ̂R
d for the so-called

time–frequency plane (or phase space), and in the case of d = 1, the most important
case which is also relevant for effective audio processing, we thus consider R × ̂R

sometimes also as the complex plane.
It is often argued that one of the drawbacks of the STFT is the fact that one has

to choose a window. Different windows may provide different information about the
signal to be analysed. The rule of thumb is that long windows allow for a better
frequency resolution at the cost of poor time resolution. In contrast, short windows
allow for good time resolution but provide bad resolution in the frequency direction.
TheHeisenberg uncertainty relation is known to prohibit high precision in bothways,
and this iswhyGaborwas suggesting to use theGauss function g0(t) = exp(−π |t |2),
because it is a minimizer to the Heisenberg inequality. But one has to be aware that
there might be other choices more appropriate for a given concrete task.

Once the choice of the window has been made, one can then look for possible
discretizations. It is well known that it is convenient to choose some lattice, i.e. a
discrete subgroup Λ of R

2d (generated by a suitable 2d × 2d non-singular matrix
A, or Λ = A ∗ Z

2d ). We think that too much attention is given to the simple special
case where A is a simple diagonal matrix, or just even Λ = aZ

d × bZ
d , for some

pair (a, b) of positive lattice constants, the time gap a and the frequency gap b.
Gabor gave arguments why one should use the so-called Neumann lattice, or

simply choose a = 1 = b. There are in fact strong arguments against the case a · b >

1 (lack of density of the resulting Gabor sums) and a · b < 1 (lack of uniqueness),
but as it turns out one has to live with this redundancy because otherwise not every
L2(Rd)-function has a representation as a Gabor series (double sum involving TF-
shifted copies of the Gabor atom); see [77].

We will rely mostly on the standard notations as given in the books [66] or [49,
50]. In particular we denote time–frequency shift operators MωTt by π(λ) with
λ = (t, ω) ∈ R

d ×̂R
d and the STFT of a signal f for the Gabor window g by
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Vg( f )(λ) = Vg( f )(t, ω) = 〈 f, π(λ)g〉, f, g ∈ L2(Rd). (7.1.1)

This continuous function is first defined for pairs f, g ∈ L2(Rd), but for g ∈ S (Rd)

(e.g. the Gauss function) this function is also well defined for general tempered
distributions f ∈ S ′(Rd) and gives a continuous function of at most polynomial
growth. The Schwartz spaceS (Rd) can be characterized as the subspace ofS ′(Rd)s
whose elements have an STFT decaying faster than any polynomial (see [63]).

7.2 Goals for Numerical Gabor Analysis

Let us jump right away into a description of what could be seen as the main goals
for Gabor analysis, first at a theoretical level, but then more precisely at a numerical
or computational level. Of course such goals have a subjective component, but we
hope to formulate topics which are useful for the whole community.

One may formulate as the first goal of Gabor analysis to obtain an expansion
of a given function f or (tempered) distribution as a Gabor series, which requires
to compute the (minimal norm) coefficients properly, or equivalently (as theory tells
us) to recover the signal exactly or approximately from the sampled spectrogram in
a linear way.

In doing so we should have the theoretical backup which guarantees that the
representation is local in both the time and the Fourier domain, but also that imprecise
knowledge about the window or the lattice does not matter too much. The theory
of Gabor frames provides useful information: instead of inverting the Gabor frame
operator it is enough to compute (precise or approximately) the dual Gabor atom
for the given situation, and this can be done in a constructive way (see [78]).

As a second goal we see the characterization of smoothness and decay of a
function directly from the Gabor coefficients, without resynthesis. The theory of
Gabor expansions is closely related to the theory ofmodulation spaces (see [56, 66]),
which in the sense of coorbit spaces (see [39]) are those Banach spaces of (tempered
or even ultra-)distributions whose STFT shows a certain behaviour over phase space,
typically expressed through decay and summability properties; see [57]. In particular,
we say that a distribution f belongs to the Segal algebra S0(Rd) (also known as
modulation space M1(Rd)) if its STFT Vg( f ) is in L1(R2d). Its definition does not
depend on the choice of the window function g ∈ S (Rd). Moreover ‖ f ‖S0(Rd ) =
‖Vg( f )‖L1(R2d ).

Aside from discretization over phase space (which is theoretically well justified)
it should also be OK to work with a sampled version of the input function g in order
to find out whether a given function belongs to a certain modulation space or not,
at least under mild and practically applicable extra conditions and after appropriate
“high-quality” sampling.

While discrete, finite dimensional versions of Gabor analysis (e.g. computation
of the canonical dual) can be realized computationally (we have called it a construc-
tive realizable approach in [48]) the transition to the continuous, non-compact limit
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has not been analysed properly so far. In some sense we claim that Gabor analysis
over finite groups should be seen as a good approximation to Gabor analysis over
a continuous and non-periodic domain such as R

d . Here we will need more insight
through a combination of computational exploration, good algorithms, but also the-
oretical justification for the transition between the two domains. Although this is
not the main subject of this note several observations made here will be relevant for
future publications. We can still regard this as the third goal for future research in
Gabor analysis.

Finally let us mention what we see as the fourth goal (and in the long run proba-
bly the most important one), which we see as an emerging branch of time–frequency
analysis: make use of Gabor expansions and time–frequency descriptions of opera-
tors in order to treat in a numerical way pseudo-differential operators or evenFourier
integral operators. There are already various interesting papers available, still mostly
at the theoretical level, but there should be much more computational work and more
intensive collaborations with applied scientists in order to demonstrate the practical
relevance of these investigations. The kernel theorem [75] gives many hints in this
direction.

Examples of work of the combined efforts of colleagues from NuHAG and the
time–frequency community in Torino are [14, 20–22], just to give a few examples.

7.3 The Standard Literature

Let us briefly give a summary of the established literature on Gabor analysis. We
will do it in various sections, emphasizing different aspects of Gabor analysis.

The classical and still traditional question showing up in early papers on Gabor
analysis is to assume that we have a problem concerning frames G (g, a, b) arising
in a specific way, using TF-shifts along a lattice aZ × bZ, in the Hilbert space
(

L2(R), ‖ · ‖2
)

or
(

L2(Rd), ‖ · ‖2
)

.
A good summary describing the coarse structure of Gabor analysis for this case

is given in the recent paper [60], but one finds valuable information also in the books
[66], or [49, 50].

The typical questions are of the following form:

1. Given 0 �= g ∈ L2(Rd) and lattice constants a, b > 0, can one show that the
Gabor system G (g, a, b) forms a frame (or a Riesz basic sequence), perhaps with
some estimates for the frame bounds;

2. More generally, what are sufficient conditions for such systems to be frames,
conditions which can be applied to a larger family Gabor atoms g, and families
of lattices (including non-separable ones);

3. The only functions for which we know all possible sampling patterns (even irreg-
ular patterns) which give a frame are the one-dimensional Gaussians due to the
work of Lyubarskii [85], Seip [102] and Seip and Wallsten [101] proving a con-
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jecture of Daubechies et al. [26]. For a Gaussian we always get a frame if the
(lower Beurling) density of the lattice (pattern) is greater than 1;

4. Quite recently it has been shown by Gröchenig and Stöckler (see [62], but also [4,
79, 80]) that a quite large family of totally positive functions have the maximal
frame-set, i.e. they form Gabor frames for any pair with ab < 1;

5. Fixing g �= 0 one can ask what the set of all pairs (a, b) (with necessarily ab < 1)
is such thatG (g, a, b) is aGabor frame; this set is known tobeopen for g ∈ S0(Rd)

[43]; but even for Hermite functions this set can have unexpected exclusions areas
(see [84]), while for rectangular function the so-called abc problem is surprisingly
difficult to handle (cf. [24, 25, 68]);

6. Negative results, as for example Balian–Low-type results, which exclude the
existence of Gabor frames at critical density with reasonable good windows (and
duals), combined with observations how the frame bounds deteriorate as the
density approaches the critical density, i.e. for ab close to 1;

7. Questions concerning perturbation or stability of Gabor frames with respect to a
change of the lattice constants [43].

Although Gabor’s seminal paper appeared already in 1946 [59] its possible rel-
evance was only recognized in the early 80s, mostly through the investigations of
A.J.E.M. Janssen, who was checking whether the claims of Gabor are valid if one
allows distributional convergence; see [77]. One can say that a relatively small num-
ber of papers which appeared in this period have led the basis for the development of
the subject later (see the book [50] for a first summary, and [49] for some advances).

First of all we have to mention the “painless” paper [27] which describes the
situation of windows of finite length, so that for sufficiently small lattice parameters
b the Gabor frame operator is in fact multiplication operator (hence inversion is
“painless”). This case is also convenient for discrete case and one could even argue
that an important step of the MP3 coding algorithm (invented by the Fraunhofer
research group around K. Brandenburg, in Erlangen) is making use of this fact. It
can also be seen as the kickoff for the frame movement and a revival of the work
done by Duffin and Schaeffer [32] on what is known as frames in Hilbert spaces.

Around that time also interest in the connection between the Gabor approach to
signal analysis and attempts to understand the human visual system received great
interest, through the work of Porat and Zeevi [87] and Daugman ([31], with a huge
number of citations nowadays).

One has to mention the work of Walnut [111], where the so-called Walnut repre-
sentation of the frame operator was introduced, and the investigations by Ron and
Shen [98, 99], but also the two important papers which appeared in a single issue of
the J. Fourier Anal. Appl. 1995, namely [28, 76]. All of the last mentioned papers
discuss in one way or another that a Gabor family arising from a fixed window g �= 0
with parameters (a, b) and describe that it is a frame if and only if the corresponding
adjoint family with parameters (1/b, 1/a) is a Riesz basic sequence, i.e. a Riesz
basis for its closed linear span. The first and in fact numerically motivated result in
this direction is the biorthogonality characterization of Gabor frames described by
Wexler and Raz in [112]. From now on Λ◦ is the adjoint group for the given lattice
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Λ, resp. the group of all TF-shift parameters commuting with the original family of
TF-shifts {π(λ), λ∈Λ} (see [44]). It then took a while until the role of this lattice
was understood, especially in the non-separable case (see [44]), so that nowadays it
is clear that the adjoint lattice Λ◦ or Weyl–Heisenberg commutator of the original
lattice plays an important role, and that the (weak) duality condition of Gabor win-
dows (cf. [51]) is equivalent to the biorthogonality over Λ◦ and can be expressed by
Vg(γ )(λ◦) = δ0,λ◦ , λ0 ∈ Λ0.

7.4 The Classical Frame Algorithm

Reading standard texts on frame theory (see [11, 29]) it seems to be very important
to determine the lower and upper frame bounds A and B, among others in order
to check then the closeness of the optimally scaled version of the frame operator S
to the identity operator on the given Hilbert space, i.e. to verify the validity of an
estimate of the form

‖γ −1S − I dH ‖H < 1, with γ = (A + B)/2. (7.4.1)

Although it is good to have reasonable estimates for these two frame bounds A and
B, this information is by far not so really relevant for application, for a variety of
reasons: first of all a fine estimate or exact determination of these two parameters is
not crucial for the convergence of the usual frame iterationmethod. It does not put the
convergence of the algorithm at risk, a somewhat inaccurate estimate just results in a
slower convergence rate, but does not cause divergence. As a rule of thumb it makes
sense to just choose as scaling factor γ the inverse of the redundancy factor, or a
value which is slightly below, if one definitely wants to avoid divergence of the naive
iterative (frame) algorithm which follows directly from the Neumann representation
of the inverse operator

(γ S)−1 =
∞

∑

k=0

(I d − γ S)k . (7.4.2)

Since we are only interested to solve the equation S(g̃) = g we are not so much
interested in the inverse operator, but only what the partial sums are doing when
acting on the Gabor atom g, resp. we can describe the approximations gn to g̃ via

gn =
n

∑

k=0

(I d − γ S)k g, n → ∞, (7.4.3)

which can be described recursively with g1 = γ g and

gn+1 = gn − γ (S(gn) − g), n ≥ 1. (7.4.4)



7 Gabor Expansions of Signals: Computational … 179

Bymeasuring the change between gn+1 and gn one can even find out which parameter
γ is more suitable and can expect to find a good suboptimal value for this scaling
parameter during the iterations for the case that these iterations are working not
fast enough. It has also often been observed (but not proved theoretically, to our
knowledge) that the optimal parameter 2/(A + B) is rather close to 1/red(Λ), at
least for well-balanced lattices and Gauss-like Gabor atoms. But clearly, computing
first the eigenvalues of Sg,Λ in order to faster find the dual windows is not a very
efficient strategy.

Looking at the problem of the (canonical) dual Gabor window it is much better
to make use of the fact that the frame operator is always a symmetric (Hermitian)
operator, and correspondingly the equation S(g̃) = g should be solved by a much
more efficient method, such as the conjugate gradients method, ideally combined
making use of sparsity considerations, which again stem from the invariance prop-
erties of the Gabor frame operator. Early examples of such strategies are given in
[90, 91]. The block structure there reduced the cost of matrix–matrix and matrix–
vector multiplication using the properties of the Walnut representation (namely at
most b nonzero (cyclic) side-diagonals, each of which is a-periodic). This strategy
had been already quite successful in connection with the irregular sampling problem
for band-limited functions, which also was understood at that time as a problem
concerning frames (see, e.g. [64] for an analysis of the situation there).

There are various elements of abstractGabor analysiswhich have been quite useful
and in some sense observed independently when we started to carry out numerical
work on Gabor analysis in the early 90s. In particular, during the Ph.D. work of Qiu
[95] many MATLAB programs have been developed which up to now are used for
recurrent experiments on this topic.

First of all, as soon as one forms the matrix describing the Gabor frame operator,
with Gabor atom being a signal of length n, and time shifts which are multiples of
a, a divisor of n, and sampling the Fourier transform on a sublattice, with lattice
constant b, also a divisor of n, it is easy to see that there are typically (independent
of the atom) b side-diagonals (in the sense of a cyclic matrix) at a distance of n/b,
which is in fact another way to express the existence of a Walnut representation for
the Gabor frame operator. In addition, these side-diagonals are a-periodic functions.

This observation led immediately to the idea to store the information about the
Gabor frame matrix in the format of a small block matrix (the block nonzero matrix,
as it was called) of size a × b, where each of those b (row) vectors contains the
information about the basic period of each of those b side-diagonals. The first entry
describes the main diagonal, which contains the a-periodic version of |g|2 (which
has to be nonzero whenever the given Gabor family is a frame).

It was also plausible, as an alternative, to describe the operator by taking the
Fourier coefficients (again there are a such Fourier coefficients for each a-periodic
side-diagonal). As it turned out this is more or less equivalent to the Janssen repre-
sentation of the Gabor frame operator, but wewill not pursue this aspect here.We just
wanted tomention that one can be lead to the idea of a Janssen representation directly
by studying the properties of Gabor systems in a numerical fashion and inspecting
the particular properties of the Gabor frame matrix.
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It can also be observed that for b small and windows g with small support there
are only few side-diagonals and if the length of such a window g is shorter than n/b
then one finds that the Gabor frame operator is just a diagonal matrix, which is easy
to invert. In the case of strong decay the side-diagonals are not very important and
one can view the main diagonal as the dominant part of the Gabor frame operator.
The case that this matrix is diagonal dominant implies of course that the matrix is
invertible, or that the given Gabor family forms a frame (see [9], or more recently
[10]). The condition given in early papers by I. Daubechies implies that this condition
is satisfied.Translated to thefinite discrete case it reads: assume that themaindiagonal
of the frame matrix is non-vanishing, then for sufficiently small b the Gabor family
will form a Gabor frame.

Given this concrete sparse structure of the Gabor frame matrix it is quite natural
(as it has been carried out in a series of papers by S. Qiu, during his time at NuHAG)
to describe the action of the Gabor frame operator on a vector by a “compressed”
matrix–vector multiplication, resp. the composition of two matrices of this type
by a fast block/block matrix multiplication. Given the fact that the Gabor frame
matrix is positive definite and that the determination of the dual Gabor family can be
reduced to the determination of the (canonical) dual Gabor window g̃ = S−1

g,Λ(g) one
finds out easily that the Conjugate Gradients strategy for solving the linear equation
Sg,Λ(g̃) = g for g̃ is the way to go, using during the iterations the sparse structure
as described above. The details of this approach can be found in the papers [90–94,
96, 97] and others.

The numerical work in Gabor analysis is to a large extent concentrating on the
very classical case where one or several Gabor atoms are given, and then the question
is formulated: for which lattice constants (in the finite discrete case this amounts to
choosing lattice constants a, b which are divisors of the signal length) is a given
Gabor family a Gabor frame, and if this is the case, how and when can one determine
the canonical dual Gabor atom, or sometimes some dual Gabor atom or at least a
good approximate dual Gabor atom.

Since Gabor analysis can be done over any finite Abelian group (see [52]) is in
principle quite possible to treat Gabor families arising from an arbitrary lattice Λ �
G × ̂G. Many of the available numerical algorithms for the determination of dual
Gabor atoms allow to work for general lattices (including the non-separable ones)
for 1D-signals. Although there exist papers and numerical work in that direction,
especially with applications in image analysis, we think that this direction is still a bit
underdeveloped. New problems arise from the size and memory restrictions during
actual computation. For a reasonable image format it is simply not possible to store
an irregular, dual Gabor frame, because that would require to store somehow more
images of the given format than pixels. But we cannot discuss this problem here.

Let us alsomention that despite thewell-known fact that everyfiniteAbelian group
is isomorphic to a product of cyclic groups this representation is only unique up to
isomorphism, and isomorphic groups have an “isomorphic” Gabor theory, and the
same subgroup structure “in abstracto”. For example, groups of the form ZN × ZM

can be treated using the 1D code if M and N are relatively prime, because then they
are naturally isomorphic to ZM ·N (see [41]).
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For the discussion of non-separable cases and a subsequent exhaustive analysis
of performance parameters (like the condition number of the frame operator or the
numerical S0-norm of the dual window) recent results providing an explicit and con-
structive catalogue of subgroups (of all orders) are giving us important information;
see [67, 72] and more recently [106]. They have been important for the UnlocX
project.

7.5 The Idea of Double Preconditioning

The idea of double preconditioning of Gabor frame operators has been introduced
in [3], based on numerical experience. Despite its algorithmic efficiency it still waits
for theoretical justification. The idea is the following: if we take the normalized
Gabor frame operator Sg,Λ/red(Λ) then one can show (see [51]) at least for nonzero
g ∈ S0(Rd) that these operators converge to identity operator for (a, b) → (0, 0),
but despite the fact that it was known that for the Gauss function g0(t) = e−π t2

determines a Gabor frame for any pair (a, b) with 0 < ab < 1 the corresponding
frame matrices may not be very close to the identity, or even if they satisfy (7.4.1)
the estimate may still not guarantee a good rate of convergence, mostly because the
diagonal part of the frame matrix is highly oscillating. This will happen typically if a
is relatively large compared to b, in other words of the shift parameter a is larger than
a value that would allow to approximate relatively well the constant function 1 by
shifted copies of the absolute square |g|2 of the Gabor atom, by making it a-periodic.

But inverting the diagonal part of the matrix is very easy and thus it appears as a
natural idea to use it as a preconditioner in order to bring the frame operator closer
to the identity.

In some cases this simple trick already produces a perfect solution: in the painless
case (see [27]), namely in the case that the length of the support of g is smaller than
1/b. It is also plausible and provable that the main diagonal will play a crucial part
of the frame operator whenever the Gabor atom is well concentrated. Fine estimates
of the effect of tails are given, e.g. in [10].

In the alternative case of relatively large values for b compared to a we will
see that the Fourier version of the Gabor frame operator has a prominent diagonal
part. In fact, the question whether the Fourier transform of g generates a Gabor
frame for the lattice constants (b, a) is unitarily equivalent to the frame question
for the triple (g, a, b). There is also a direct way to see the possible effect on the
“time side”. One often has Gabor frame operators with significant side-diagonals,
but not too much oscillations. Clearly the best approximation to such an operator
(in the Hilbert–Schmidt or Frobenius norm) is to replace the side-diagonals by their
respective mean values. The inversion of such a convolution operator is of course
best done by a small FFT, so we have another cheap preconditioner (all with their
spreading support inside the adjoint lattice Λ◦!).
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The combination of the two preconditioner methods is based on the numerical
evidence that one has, at least for decent windows, such as Gaussian or similar, the
following effect.

• Typically one of the two steps is helpful, bringing the frame operator closer to
identity;

• In some interesting (balanced) cases (not far from critical sampling) one can profit
from both methods. In other words, the Gabor atom which is obtained by simply
applying the inverse of the diagonal part and then the inverse of the convolutional
part of the Gabor frame operator is already quite close to the true canonical dual
window (even in the S0-norm);

• Whenever only one of these two methods is less relevant, either the first or the
second one, it does not matter to blindly apply both of them, without checking
which one is the good one, because the other one typically does not deteriorate the
outcome, at least not in a practical sense;

• Asking about the order of the two preconditioners one can say that it turns out to
matter not very much. So we do not have any specific recommendation for this.
But clearly the amount of oscillation of the diagonal part (on the time resp. Fourier
side) is a strong indicator for the expected performance;

• Experimentally also multiple preconditioning has been tried out. This would be a
good strategy for non-separable Gabor lattices, in the extreme case for something
similar to a hexagonal lattice, which has three directions of equal importance.
In any case the preconditioners will arise within the Banach algebra of linear
combinations of TF-shift operators from the adjoint lattice!

As indicated already earlier, all these observationswait for a theoretical underpin-
ning and quantitative guarantees. Under which conditions can we expect a certain
closeness of the preconditioned frame operator to the identity operator (acting on
(

L2(Rd), ‖ · ‖2
)

, but also on
(

S0(Rd), ‖ · ‖S0

)

)? Observe that both precondition-
ers and hence all the operators arising by the preconditioning procedure still belong
to the Banach algebra of matrices commuting with all the TF-shifts πλ ∈ Λ, and
thus the explicit sparsity can still be used. On the other hand, the estimate that we
can give using the Janssen representation (cf. below) allows then to show that we
have sufficient conditions for the inverse frame operator also being invertible on
(

S0(Rd), ‖ · ‖S0

)

, without using the deep results obtained in [40, 61].

7.6 The Janssen Representation

It is our understanding that the Janssen representation is themost important structural
fact (see [44, 52], or [45] for technical details) concerning theGabor frame operator.
Only for the case of separable lattices it is equivalent to the Walnut representation
(see [66], where this representation is playing the dominant role), while the Janssen
representation also makes sense for non-separable lattices Λ � G × ̂G. As we will
point out it is also a good basis for the derivation of efficient algorithms.
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The frame operator for a Gabor system G(g,Λ) is given by

Sg,Λ( f ) =
∑

λ∈Λ

〈 f, π(λ)g〉π(λ)g (7.6.1)

Then Janssen’s representation of Sg,γ (see [66], Sect. 7.2), for Λ = aZ
d × bZ

d ,
is given by

Sg,γ = (ab)−d
∑ ∑

l,n∈Zd

〈

γ, Ml/a Tn/bg
〉

Ml/aTn/b.

The Janssen representation of Sg,Λ follows from the commutation relation

Sg,Λ ◦ π(λ) = π(λ) ◦ Sg,Λ ∀λ∈Λ, (7.6.2)

and also to the Wexler–Raz biorthogonality property, characterizing (weakly) dual
Gabor atoms γ (see [51]) via the following property of its STFT:

Vg(γ )(λ◦) = δ0,λ◦ the Kronecker symbol over Λ◦. (7.6.3)

Recall that Λ◦ is the adjoint lattice for Λ. Given the general theory of spreading
distributions for operators one can link the commutation relation to the fact that the
spreading support is inside Λ◦. On the other hand, viewing Sg,Λ as TF-periodization
of the rank one projection Pg : f �→ 〈 f, g〉g (assuming ‖g‖2 = 1!) one also finds
that the spreading coefficients can be described as the sampling values of Vg(g) over
Λ◦, i.e. we have altogether

Sg,Λ = red(Λ)
∑

λ◦∈Λ◦
Vg(g)(λ◦)π(λ◦). (7.6.4)

Here red(Λ) is inverse of the volumeof the fundamental domain forΛ, or equivalently
the area of the fundamental domain of Λ◦, which can be computed as the absolute
value of the determinant of anymatrix AwithΛ = A(Z2d). Let us denote the reduced
frame operator red(Λ)−1Sg,Λ by Rg,Λ. Then we have under the usual assumption
‖g‖2 = 1

‖Rg,Λ − IdL2 ‖ ≤
∑

λ◦∈Λ◦\{0}
|Vg(g)(λ◦)|. (7.6.5)

If g ∈ S0(Rd) then we also have Vgg ∈ S0(R2d) and hence the sum on the right hand
side is certainly absolutely convergent (see [45]).Moreover, themore dense the lattice
Λ is in R

d × ̂R
d the more sparse Λ◦ will be. In fact, if Λ is generated from Z

2d by
the matrix A then Λ◦ is generated by the inverse transposed matrix B = (At )−1.
Hence one can use this situation in order to derive not only that for g ∈ S0(Rd) one
can guarantee that the frame operator is invertible on

(

L2(Rd), ‖ · ‖2
)

, but even
on

(

S0(Rd), ‖ · ‖S0

)

and that consequently the dual Gabor atom g̃, which can be
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described as g̃ = S−1
g,Λ(g), also belongs to S0(Rd) (and in fact depends continuously

on the matrix A; see [43]). This is also the basis for the proof (see [51]) that the
(normalized) dual windows converge to the original Gabor atom (even in the S0-
norm) as the density of Λ tends to infinity (in the sense the (an, bn) → 0).

Another consequence of the Janssen representation of Sg,Λ is the fact that it
brings in the structure of a Banach algebra, namely a twisted convolution algebra
of operators of the form

∑

λ◦∈Λ◦ cλ◦π(λ◦), with the coefficient belonging to some
(solid) Banach space of sequences over Λ◦. The twist arises from the phase factors
arising when one composes two TF-shifts.

An instructive MATLAB experiment exposing the unique role of the ZAK trans-
form and also justifying at least numerically its formworks as follows (usingNuHAG
M-files): clearly for a given signal length n vectors x ∈ C

n can be considered as func-
tions onZn (with cyclic shift). Given any divisor a of n (e.g. n = 480 and a = 20) the
lattice constant b = n/a = 24 determines a critical lattice. The adjoint lattice is then
of the form a0 = n/b and b0 = n/a, in other words the TF-shifts from Λ commute.
We create a random matrix with spreading support in Λ◦ = Λ (in this case), e.g. by
the commands

RM=spr2mat(rand(a,n/a)); SRM=RM’*RM; [VZ,EZ]=eig(SRM);

and then inspecting the columns of thematrix V Z of eigenvectors of such an operator.
One will find that these are all modulated and shifted version of a Dirac comb, with
lattice constant a! In other words, such an experiment would suggest (if it wasn’t
well known already) to define something like the ZAK transform by first defining
for decent signals f ∈ S0(Rd) as the STFT with respect to a Dirac comb

∑

n∈Z δan

and then restrict it to an appropriate rectangle in the phase space domain. This turns
out to be just the Zak transform!

At the critical density we can also expect problems with the Gabor matrix (now
an n × n-matrix): it does not have full rank (one dimension missing) and has a one-
dimensional null-space.

The Janssen representation of the Gabor frame operator Sg,Λ is not only an impor-
tant theoretical concept but also very well suited for its inversion.

First of all it can be used to demonstrate that for 0 �= g ∈ S0(Rd) it is guaranteed
that for any (separable or non-separable) lattice which is fine enough (in the sense
of allowing a sufficiently small fundamental domain, contained in a ball of radius δ,
depending only on g) will form a Gabor frame.

In fact, one can always assume without loss of generality that ‖g‖2 = 1 or equiv-
alently that the identity operator IdL2 = π(0, 0) = M0T0 appears with coefficient
1 = Vg(g)(0, 0) = 〈g, g〉 in the Janssen representation of reduced frame operator
Sg,Λ.

The assumption g ∈ S0(Rd) implies in fact that Vg(g) ∈ S0(R2d) and hence it is
in Wiener’s algebraW(C0, �

1)(R2d). Saying thatΛ has a small fundamental domain
is equivalent to say that the adjoint lattice Λ◦ is sufficiently coarse, so that for any
given function F ∈ W(C0, �

1)(R2d), in our case F = Vg(g) one can say that
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∑

λ◦∈Λ◦\{0}
|F(λ◦)| ≤ γ < 1,

uniformly over all these lattices Λ◦. This in turn implies naturally that the frame
operator, taken as an operator on

(

L2(Rd), ‖ · ‖2
)

, or on
(

S0(Rd), ‖ · ‖S0

)

or even
on any of the spaces

(

L p(Rd), ‖ · ‖p
)

, with 1 ≤ p ≤ ∞ is invertible (with uniform
control of the inverse operator on all these spaces).

The (equivalent) condition, whether

∑

λ◦∈Λ◦
|Vg(g)(λ◦)| < 2‖g‖22 (7.6.6)

is very easily verified and requires only to compute the �1-norm if a sampled STFT
(resp. ambiguity function) over Λ◦.

It has been first suggested as a “criterion” (in the sense of an easy, sufficient
condition of invertibility) in the master thesis of Tschurtschenthaler [107] from 2000
(seeChap. 4: Preconditioning theGabor frame operator). It applies—according to our
experience—to a large variety of examples where one has reasonable redundancy
(even close to 1) and modest excentricity (i.e. in the separable case the situations
where a and b are not too different).

7.7 Gabor Multipliers

Gabor multipliers and related operators, the so-called underspread operators,
described as slowly varying linear systems in communication theory (see [69, 70,
81, 83] and in particular [82]) are exactly the class of linear operators which are
well described via Gabor systems. There are different names for these operators,
e.g. STFT multipliers (because the essential step in their description is a pointwise
multiplication of the STFT of the input signal) or Anti-Wick operators (see [6, 7,
17]).

At the phase space level these operators are of the form F �→ (M · F) ∗ G (with
F = Vg( f ), G = Vg(g)), where “∗” denotes (twisted) convolution over phase space,
or ordinary convolution on the corresponding reduced Heisenberg group, and H �→
H ∗ G describes the projection from

(

L2(R2d), ‖ · ‖2
)

onto the (closed) range of
L2(Rd) under the STFT with fixed window g, given by f �→ Vg( f ). Hence these
operators are also viewed as Toeplitz operators on a Hilbert space. There is a rich
body of literature on this direction (e.g. Englis: [33], or Hutnik [74]).

The paper [7] treats kernels in distributional Sobolev spaces, [6] with symbols
in L p(R2d). For symbols which are indicator functions of sets in phase space or
which are non-negative and well decaying towards infinity the resulting operators
also known as localization operators, going back to the meanwhile classical paper
by Daubechies [30]. Further relevant results about localization operators are given in
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[13–15, 18, 23], or [16] and provide a potentially useful theoretical foundation for
corresponding numerical work. Related work has been done in [12, 47], or [105].

In the area of Gabor multipliers a lot of insight can be gained by numerical
experiments, and in fact many abstract results have been inspired by comprehensive
simulations by the author.

One can think of such operators as linear operators which behave locally like
convolution operators, but with some extra freedom to change the convolution kernel
slowly over time (or location, e.g. a space-variant blurring in image processing).
The main tools for the analysis of such systems are the spreading function (resp.
distribution), the Gabor matrix representation of the operator and in some cases
the Kohn–Nirenberg representation known from the theory of partial differential
equations with variable coefficients.

7.8 Numerical Illustrations

MATLAB experiments can also be used quite well in order to illustrate (well-known)
theoretical results by exhibiting special cases or some valid approximations thereof.
Sometimes it is also instructive to have quantitative versions rather than just asymp-
totic estimates.

One of the most well-known principles in Gabor analysis is the so-called Balian–
Low principle [66]. According to this principle it is impossible to have a Gaborian
Riesz basis for the Hilbert space

(

L2(Rd), ‖ · ‖2
)

(even for d = 1), except for “bad”
Gabor atoms, such as the indicator function 1[0,1), which of course generated anONB
for

(

L2(R), ‖ · ‖2
)

with respect to the integer (von Neumann) lattice Z × Z [110].
So in particular, theGabor system at the critical densitywith the (Fourier invariant)

Gauss function g0(t) = e−π t2 is a total family in
(

L2(R), ‖ · ‖2
)

(i.e. finite linear
combinations are dense on L2(Rd)), but it is not possible to represent every element
as a series with coefficients in �2(Z2).

The usual argument of proof makes use of the so-called Zak transform which is
(the natural) way of diagonalizing the collection of TF-shifts along the integer lattice
Z × Z. The characteristic property of such a family is of course its commutativity
(due to the fact that phase factors appearing usually in the composition law for TF-
shifts are trivial in this particular case), combined with the periodicity properties (on
the time direction) and the quasi-periodicity property in the frequency direction.

Usually a topological argument is then used in order to derive that whenever
the Zak transform of Z(g) of g, for example, whenever g belongs to the modulation
space M1(Rd) (resp. the Segal algebra S0(Rd)), it must have some zero in its domain,
which is the unit square (fundamental domain of R × ̂R over the lattice Z

2).
For the concrete case of the Gauss function this zero is located exactly in the

mid-point of its domain, so Z(g0)(1/2, 1/2) = 0.
In order to check that there is a problem at the so-called critical density one can

do the followingMATLAB experiment, recalling that in the context of linear algebra
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the “critical” lattices in Zn × Zn are exactly those with n elements, because they are
producing Gabor families with the chance of providing a basis to C

n . Any lattice
with more than n elements clearly will have linear dependencies built in, while any
lattice with less than n elements will produce families which cannot span all of C

n .
So let us consider a finite dimensional analogue: we start with the Gauss function

and for any natural number k (e.g. for k = 16) produce a discrete version of the
Gauss function of length k2 (i.e. n = 256 = 162).

Formally (but numerically irrelevant) this is obtained by periodizing g0 to the
period p = 16 and then sampling it (or vice versa, which is the same!) at the rate
h = 1/16. This gives a sequence of length 256, with the sampling starting at zero
up to 16 − 1/16 (the value at 16 = 256 ∗ h equals of course the value at zero, due
to the p-periodicity).

It is not difficult to check that up to the normalizing factor 1/4, where 4 = √
16,

this finite sequence is invariant under the fft, or up to numerical precision we have
equality of fft(g) and 4 ∗ g. In fact, the parameters p (length of the period) and
h sampling rate change their role; i.e. we get a sampled and periodized version of
the function, i.e. the new sampling is at the lattice Z/p and the new period is 1/p,
but due to the choice of the function g0, which is Fourier invariant, and the fact that
we have h = 1/p we get (theoretically and numerically) the fft-invariance of our
vector g ∈ R

256.
After forming the matrix of size 256 × 256 containing (e.g. as columns) all the

TF-shifted version along the lattice we can check for the rank of that matrix and will
find that it is only 255. This is due to the fact that we have taken the correct version
of the Gauss function with the correct form of symmetry (not under the simple flip
operator, but under the operator which flips only the coordinates, but the one related
properly to the involution for functions, of the form f �(x) = f (−x)). Otherwise we
would maybe believe that the span is still everything, but with a rather bad condition
number (see Sect. 7.12).

Practically all the basic properties and formulas valid for regular (meaning the
lattice case) or irregular Gabor families, separable or not, can in principle be verified
experimentally or in an explorative way based on the set of MATLAB files found
within LTFAT resp. the NuHAG repository.

One can virtually take a look at the shape of the Gabor frame matrix, seeing its
pattern (Walnut representation) by simple inspection (as was done during the work
with Sigang Qiu), but also verify easily that there is a simple connection between
matrices describing linear mappings on C

n and the corresponding spreading repre-
sentation (as a matrix indexed by the discrete phase space, so in terms of format still
n × n-matrices), more or less the content of [44] in a discrete form. The routines
mapping the matrix kernel to its spreading representation or its Kohn–Nirenberg
symbol are easily shown to have an inverse, and in this way one can demonstrate
with a few lines of code the concentration of the spreading function of a given matrix
on the adjoint lattice, which is connected with the original lattice (described by its
indicator function, which is more or less the Dirac comb for the latticeΛ, or a sum of
all the unit vectors which are labelled by the elements of the lattice) by the symplectic
Fourier transform.
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These routines do not only implement the various isomorphisms relevant for a
good understanding of Gabor analysis in a numerically perfect way, they also suggest
how togo aheadwith similar ideas in the continuous setting,makinguse of theBanach
Gelfand Triple (S0, L2, S′

0)(R
d).

First one can replace the discrete variables by continuous variables, and vectors in
C

n (recall, they are essentially functions onZn) by test functions in S0(Rd). For those
decent (continuous and Riemann integrable) functions it is no problem to replace
the continuous summations or e.g. (partial) Fourier transform by the correspond-
ing integrals. Just to give an idea: the scalar product of f, g ∈ S0(Rd) is of course
just

∫

Rd f (x)g(x)dx , an the FFT is replaced by the usual continuous FT given by
(Riemann) integrals, both for the forward and inverse direction. In the next step one
shows that most of these operations are compatible with the scalar product (usually
taken as a starting point for the Hilbert space

(

L2(Rd), ‖ · ‖2
)

), and then (usually
by means of duality considerations) one extends the transformations of interest to
outer level of those “rigged Hilbert spaces”, in our case to operators having a kernel
(or equivalently a spreading symbol or equivalently a KNS symbol) in S′

0(R
2d) resp.

describe operators from S0(Rd) to S′
0(R

d).We do not go into further details about this
more functional analytic part of application-oriented Harmonic Analysis, but maybe
some readers find the studies related to the kernel theorem (see [75]) interesting for
further studies.

7.9 Computations Benefitting from Theory

There are many ways in which the computation of objects relevant for the study of
Gabor analysis can benefit greatly from equivalent descriptions, allowing efficient
implementations. In addition, onemayobserve that the user’s viewon formulaswhich
make such equivalent characterizations possible may change his appreciation for one
or the other of these formulas. He may find that some of those characterizations are
very important and useful, while others are only theoretically relevant but do not
help in practice. This does not say anything about the “value” of a given result in
general, just for its usefulness with respect to applications, but experience indicates
that on average there is a strong (positive) correlation between (a kind of overall)
importance of a mathematical result and its usefulness. The list of possible examples
is very long, so we will restrict our attention to a few examples.

1. The synthesis of the Gabor frame matrix or of Gabor multipliers;
Here the issue is to build the matrix describing the frame operator S which maps
f to

∑

λ∈Λ〈 f, π(λ)g〉π(λ)g. Since the individual term f �→ 〈 f, π(λ)g〉π(λ)g =
Pλ( f ) is described by the outer product of the Gabor building block gλ = π(λ)g
by itself the naive way of computing that matrix is to sum up over #Λ many of
such projection operators.
In the same way one could also create the matrices which generate Gabor mul-
tipliers, because Gabor multipliers with respect to a given Gabor frame (gλ)λ∈Λ,
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with symbols (mλ)λ∈Λ are nothing else but a weighted sum of such projection
operators; i.e. it is of the form

Gg,Λ,m =
∑

λ∈Λ

mλ Pλ.

Such a description is fine in order to understand the dependence of the Gabor
multiplier on its ingredients, specifically the question when and whether the sym-
bols uniquely determine the Gabor multipliers, or when and how (stable or not) it
is possible to recover that (upper, Berezin) symbol m = (mλ)λ∈Λ from the diag-
onal part of the Gabor frame matrix, which is the so-called lower symbol of an
operator, namely

λ �→ 〈T gλ, gλ〉, λ∈Λ.

Unfortunately the formation of such operators is getting more and more cumber-
some the larger the signal size n is and also the more lattice points are involved. In
this sense, a simple replacement of the lattice constants a, b (say even) bya/2, b/2
would increase the time needed to build the corresponding Gabor multiplier by
the factor 4. A study of STFT multipliers (Gabor multipliers with full lattice, or
a = 1 = b, thus n2 projection operators) would be virtually impossible. Here it is
very helpful to observe that the projection operator Pλ can be obtained by conjuga-
tion of P0 : f �→ 〈 f, g0〉g0 with the TF-shift π(λ), since Pλ = π(λ) ◦ P0 ◦ π(λ)′
(transpose conjugate, equals inverse TF-shift; see [44]).
Now, the mapping π ⊗ π∗, conjugating every Hilbert Schmidt operator (here we
just have n × n-matrices with the Frobenius norm resp. with the scalar product
inherited by the Euclidean structure of C

n2
) with π(λ) is in fact a unitary repre-

sentation of the cyclic group Zn of order n on the space of matrices, satisfying

[π(λ1) ⊗ π(λ1)
∗] ◦ [π(λ2) ⊗ π(λ2)

∗] = π(λ1 + λ2) ⊗ π(λ1 + λ2)
∗, (7.9.1)

and it is the so-called Kohn–Nirenberg description of operators (we refer again
only to [44] for details) which intertwines this action with ordinary translation (on
phase space). In other words, if κ(T ) is the KNS of some matrix (resp. operator
T acting as a matrix through vector–matrix multiplication, i.e. x �→ A ∗ x) then
we have for the new matrix Aλ := π(λ) ∗ A ∗ π(λ)′ the KNS

κ(Aλ) = Tλ(κ(A)), λ ∈ Zn × Zn, (7.9.2)

or in the case of Gabor multipliers

κ(Gg,Λ,m) =
∑

λ∈Λ

mλκ(Pλ) =
∑

λ∈Λ

mλTλκ(P0) = (
∑

λ∈Λ

mλδλ) ∗ ∗κ(P0),

(7.9.3)
where ∗∗ denotes 2D-convolution over phase space. Clearly such a convolution
can be performed easily by means of the fft2 command.



190 H. G. Feichtinger

The benefit of this consideration is clearly that the influence of the size of n is
weakened very much, but above all that such a routine is—concerning computa-
tional costs—independent of the number of points in the lattice Λ (it would be
even possible to use an irregular Gabor multiplier, with a more general discrete
set of points Λ, which could be interesting to study the effect of removing certain
elements from a given Gabor frame and check for the frame properties of the
remaining Gabor family).
In addition one can use the fact that the KNS symbol of any operator is just the
symplectic Fourier transform of its spreading function, and that the spreading
function of a rank one operator1

f �→ 〈 f, h〉g = (g ∗ h′) ∗ f

is essentially the STFT Vg(h), so one can use the STFT routine in order to form
the KNS symbol of a Gabor multiplier in a cheap way. Of course, one also has to
have (which is clearly available) an efficient FFT-based routine in order to come
back from the KNS symbol of the operator to the operator resp. matrix itself,
because this is what we are going for.
Having now an easy way to build Gabor multipliers it is meaningful to study
various properties of such operators, e.g. how the choice of the symbol influence
the behaviour of eigenvalues, when a Gabor multiplier is compact, or how a “fine
Gabormultiplier”, i.e. an STFTmultiplier (imitating anAnti-Wick operator in the
discrete setting) can be well approximated to be a rough one (for a low-redundant
lattice Λ), and so on.
Let us only mention that such experiments give on the one hand plenty of insight
into the general situation, because naive or smart questions can be answered
usually quite quickly by a small experiment, but at the same time it raises the
question to which extent the findings of such experiment conformwith theoretical
knowledge, especially for the related, continuous setting. Let us just reinforce the
need of considerations on this point here, without going into details.
Finally let us mention (on the practical side) that to form the matrix of a Gabor
frame operator one just has to view it as a Gabor multiplier with constant symbol
m(λ) ≡ 1. Of course, for the case of separable lattice one can even further speed
up the procedure by making use of another theoretical fact, the so-called Walnut
representation,which—in termsofmatrix representations—means that thematrix
of the Gabor frame operator S = Sg,Λ has only b side-diagonals which are all a-
periodic (see [66, 111]).

2. As a second point where theory appears to help enormously let us mention the
following relatively recent observation: in order to judge the quality of Gabor
frames there are many possible measures of quality. We can say that a Gabor
frame is not so good if the norm of the Gabor frame operator is large. There
is evidence from many numerical examples (but to my knowledge no formal

1Recall that at the MATLAB command line the “∗” represents matrix multiplication resp. matrix–
vector multiplication!
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connection at a theoretical level) that at least two distinct quantities are highly
correlated:

a. The condition number of the frame operator (on
(

L2(Rd), ‖ · ‖2
)

resp.
perhaps better on

(

S0(Rd), ‖ · ‖S0

)

);
b. The S0-norm of the canonical dual window g̃;
c. The covering properties of the contour lines (e.g. for level = 0.5) of the

function |Vg(g)| = |ST FT (g, g)|.
Let us shortly explain these terms and provide background information. The first
condition tells us about the numerical stability of the Gabor frame expansions.
In other words, it indicates how much one can trust the closeness of Gabor coef-
ficients (sampled versions of Vg( f ) over the lattice Λ) in order to conclude that
also the corresponding signals are close.
Since for all practical purposes it makes sense to assume that the chosen win-
dow g is in S0(Rd) we know from theory that also the canonical dual window
is in S0(Rd) (see [61]) and consequently that the mapping f �→ (Vg( f )(λ)λ∈Λ

from signals to sampled STFTs establishes anBanachGelfand triple isomorphism
between (S0, L2, S′

0)(R
d) and (�1, �2, �∞)(Λ) (see [5, 19, 54]); one can also ask

for the condition number of this Banach Gelfand triple isomorphism, which is
more or less the same as looking at the condition number of this isomorphism as
a mapping from

(

S0(Rd), ‖ · ‖S0

)

to
(

�1(Λ), ‖ · ‖1
)

.
Again theory tells us that this term is closely related to the S0-norm of g̃, because
on the one hand it is known that we have g̃ = S−1

g,Λ(g), hence knowing the prop-
erties of the inverse frame operator on

(

S0(Rd), ‖ · ‖S0

)

implies that we have
control over ‖g̃‖S0 by controlling the S0(R

d)-norm of g (which is just ‖g0‖S0 = 2
for the Gaussian). On the other hand, function space estimates allow us to con-
trol both the coefficient mapping f �→ (Vg( f )(λ) and the synthesis mapping
c �→ ∑

λ∈Λ cλπ(λ)g by the S0-norm of g̃, using again the fact that the dual win-
dow induces the inverse of the frame operator, or S−1

g,Λ = Sg̃,Λ.
The connection to the covering numbers (for the case of theGauss function g = g0
these are just circles, for generalized Gaussians one has ellipses) is giving a nice
criterion for “geometric fit” between windows (better the shape or concentration
of |Vg(g)|) and the lattice properties, but this is still under investigation and a
hard task, even for special cases (see some recent work of Faulhuber [34, 35, 37,
38])
Coming back to the issue of numerical investigations, recall that one of our goals is
to find theoretical justifications for the connection between quantities described
in (i), (ii) and (iii), ideally at a quantitative level. Because it turns out that for
large n the actual accurate computation of the condition number of the frame
operator (which is actually only possible in the Hilbert space setting, i.e. between
Euclidean norms) is computationally expensive, whereas it is easier to determine
covering numbers making use of the lattice description by their generating matri-
ces (independent on n).
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3. But it is not always necessary to avoid large signal sizes. We have meanwhile a
collection of good algorithms allowing us to compute the dual Gabor atom for
significant signal dimensions (even beyond n = 15000; see the LTFAT toolbox
for details), as well as discrete version of computing the S0 of a dual Gabor atom.
This is computed as the �1-norm of the numerical computed STFT suitably nor-
malized, so that for any sufficiently large n, e.g. n ≥ 100, one gets as a numerical
value for the discrete Gauss sequence of length n a value very close to 2, as is
the analytically computed value for the continuous case. Thus overall it should
be computationally feasible to compute the S0-norm of dual windows for differ-
ent configurations (atoms, lattices, signal dimensions) and study in this way the
influence of the Gabor atom, the lattice, and their (mostly geometric) match for
the quality of the resulting Gabor frame.
But trying to realize this program one observes that this is not a computationally
cheap task either. Already for n ≤ 5000 this approach gets slow, and thus simu-
lating the situation of more and more critical lattices, requiring to take larger and
larger n in order to allow to have some redundancy of the lattices which is closer
and closer to one is not really feasible in this way.
So in fact we have to go to a coarser version of the STFT, which is still reasonably
fast and thus allows to approximate the S0-norm by a kind of discrete sum. Trying
to understand the behaviour of S0-norms of dual windows thus requires the ability
to carry out the computation of the dual Gabor atom first and then to compute a
reliable approximation of ‖g̃‖S0 . This is all possible by now and seems to indicate
the expected behaviour (some results in this direction have been obtained in [8]).
What is missing at the moment (at least in an explicit form) is a justification,
which would require to have equivalence bounds valid uniformly over a range of
signal size parameters (n ≥ n0, for some n0 ∈ N) combined with estimates valid
for all lattices which are “not too rough”, i.e. with a range of redundancy larger
than, say 3.5 and maybe restrictions on the excentricity of lattices allowed in the
approximation.
So we have another example, where numerical computations ask for a simpli-
fication by taking some approximation, which in turn raises the need of more
general and uniform estimates than those found in the literature. Of course, while
writing this, I can report that a couple of numerical experiments carried out in that
direction provide good indications that there is a fairly realistic chance to be able
to proceed by this combination of methods. But this in itself is only a plausibility
argument and not a proof.

7.10 What are Good Gabor Systems?

During the UnlocX project, entitled Uncertainty principles versus localization prop-
erties, function systems for efficient coding schemes (2010–2013) one of the key
issues for the NuHAG team was to identify “good Gabor systems”. Although this is
a priori a vague question the numerical simulations carried out during that project
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brought up a quite clear picture. We can give here only a short outline and suggest
the concept of a compound condition number for a (tight) Gabor system.

Intuitively Gabor systems that are of interest have highly localized (in the TF-
sense) atoms, but they also have very localized dual windows, because otherwise
the representation is not at all local, and the coefficients obtained with the help of
“rough” dual windows are very sensitive to noise and also very non-local. So in
short: the Balian–Low theorem prohibits the existence of well-localized Gaborian
Riesz basis for

(

L2(Rd), ‖ · ‖2
)

and one has to expect (correctly) that systems close
to the critical density will not have a good joint TF-localization either. For Gabor
multipliers it is advisable to start from tight Gabor families, and also these Gabor
families do not have good TF-localization near the critical density.

Consequently, going for well-localized Gabor systems one has to allow a certain
amount of redundancy for Gabor frames, or equivalently not too high density for
Gaborian Riesz basis sequences for applications in mobile communication. Interest-
ingly enough the Daubechies–Landau–Landau/Janssen/Ron–Shen duality principle
implies that these two properties are equivalent (thanks to a smart use of Poisson’s
formula for the symplectic Fourier transform; see [45]). The condition number of
a Gabor frame with lattice Λ equals the condition number of the Gaborian Riesz
sequence arising from the adjoint TF-lattice Λ◦.

If one takes the condition number of the Gabor frame operator (or the condition
number of the Gram matrix for a Gaborian Riesz sequence) as the only measure
of quality it is plausible (and evident from the numerical experiments) that high
redundancy gives very good frames. Equivalently very sparse lattices Λ◦ give rise
to almost orthonormal systems (but at very low density, so not so interesting for
applications, because this means that one has channels of low capacity).

So essentially the following is a reasonable question: Given the Gabor atom
and the redundancy, one can search for the “best lattice” Λ0, i.e. for the lattice
(within a given family of lattices) which minimizes the condition number among all
frame operators of the form Sg,Λ, for that given redundancy. A typical value would
be a redundancy factor of 1.5, which means in the finite case that one has 50% more
Gabor atoms compared to the dimension of the signal space. For signals of length
n this means that one has to choose a and b such that both divide n and 1.5ab = n.
We can take n = 480, a = 20, b = 16 as a concrete example, resulting in a Gabor
family of 720 elements. But there are of course many more non-separable lattices in
this case, in fact altogether 186 of them which all have the same number of elements.

During the UnlocX project we have systematically evaluated various alternative
measures of quality, and quite a fewof them showed strong correlationwith the condi-
tion number of the frame operator. This even suggests that under certain assumptions
on the TF-concentration of the Gabor atom one might be able to estimate the opera-
tor norm of the inverse frame operator on

(

S0(Rd), ‖ · ‖S0

)

by the operator norm on
(

L2(Rd), ‖ · ‖2
)

, but to our knowledge such estimates are not theoretically available
up to now, nor do we have counterexamples.

Taking a closer look at those lattices which show optimal performance for a dis-
crete Gaussian window clearly indicates that in all the cases analysed so far exper-
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imentally it was always the most hexagonal lattice which was showing the best
performance.

For the continuous case considerations in that direction have been undertaken by
Markus Faulhuber (in his Ph.D. thesis [35] and later on in [34]). His works indicate
that for the Gaussian g0(t) = e−π |t |2 , the best case among all lattices of the form
aZ

d × bZ
d for a given redundancy red = 1/(ab) are the balanced ones, i.e. those

with a = b.
For more general lattice one expects that for d = 1, i.e. when the phase space

which R
d × ̂R

d can be identified with the complex plane, a hexagonal lattice with
the given size of the fundamental domain ( < 1!) is the best possible choice. A proof
of this claim would solve the Strohmer–Beaver conjecture positively (see [104]).

Finally we would like to mention that also an alternative view on Gabor frames
generated by pairs (g,Λ) is possible. One may ask: Given the lattice Λ (with
red(Λ) > 1), what is the best Gabor atom for the given frame, e.g. within the fam-
ily of generalized Gaussian functions of the form g(t) = eQ(x) where Q(x) is a
complex-valued quadratic form? Again experimental insight was that the optimal
lattices are those which are distorted hexagonal lattices, with a symplectic distortion
related to the quadratic form Q in a natural fashion. However, the results in [36] show
that given, e.g. the hexagonal lattice, we can choose a very ill-localized Gaussian
window (very long and possibly rotated) and still get the same optimal frame bounds
as for the round standard Gaussian. The reason is that the lattice is invariant under
the action of the modular group P SL(2, Z) = SL(2, Z)/±I . In particular, we can
choose from countably many possible bases for a lattice and to each choice of a basis
we have a different Gaussian window which can be transformed into the standard
Gaussian by choosing the canonical basis for the hexagonal window.

But aside from the decision to fix the redundancy, typically in the range [1.2, 1.6]
or [1.1, 2] we may ask: How can one determine, maybe first in some abstract way,
the right redundancy for Gabor systems?

The suggestion given below (named compound condition number) relies on some
observations which we have to explain first.

We start with the following question: In which cases are Gabor expansions use-
ful? As a first answer one can say, for the analysis of operators T which have a
strong diagonal concentration in the Gabor frame matrix representation, which can
be described as the infinite matrix where each column contains the Gabor coefficients
of T (π(λ)g), the image of some Gabor atom under the operator. Such operators,
often called underspread operators, because their (essential) spreading support is
relatively small, can be well approximated by Gabor multipliers, i.e. by a weighted
sum of projection operators on the elements of a Gabor frame.

Although one can do somefine analysis on the dependency of the class of operators
which are well approximated by Gabor multipliers (e.g. Hilbert Schmidt operators,
which arewell approximated in theHS-sense), as a function of their spreading support
and the corresponding Gabor atom we will try to explain the situation for the case of
a Gaussian Gabor atom, resp. a tight Gabor frame derived from a given Gabor frame
using the square root inverse of the frame operator.
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Inmost of the cases of interest it turned out that the family of (rank one) projection
operators (Pλ)λ∈Λ forms a Riesz basic sequence within the Hilbert space H S of
Hilbert Schmidt operators (see [46]).

In fact, they form even a Riesz projection basis for the Banach Gelfand Triple of
Gabor multipliers in (L (S′

0, S0),H S ,L (S0, S′
0)) (see [19]).

A natural quality criterion for such a Riesz basic sequence is its Riesz condition
number. This condition number can be easily computed from the theory of spline-
type space and the connection to the KNS representation of operators (which is in
fact a unitary Banach Gelfand triple morphism between these operators and their
Kohn–Nirenberg symbols, in (S0, L2, S′

0)(R
d × ̂R

d) (see [58]).
Doing a few numerical experiments one finds (what is at the end quite easily

to verify theoretically): Whenever the lattice is getting more and more dense the
condition number of this family is increasing, and one certainly can give estimates
how much it grows with increased density of the lattice Λ = aZ × bZ.

In practical terms this means, that the stability of approximation of operators is
quickly degrading if the lattice Λ is too dense. And there is in fact not much to
gain. It is the disadvantageous situation that one has to pay a high price of numerical
instability for a minimal improvement of approximation quality. Consequently we
think that it is a good idea to keep that condition number under control as well.

As a consequence we suggest to define the compound condition number as a
quality criterion, which has the effect that it leads (at least according to our experi-
ments) to a well-localized Gabor frame with a relatively stable procedure allowing
us to approximate underspread operators, typically by Gabor multipliers with the
corresponding tight Gabor family.

Definition 7.1
κκ(g, a,b) := √

cond(Sg,a,b) · cond(Pg),

where Pg is the condition number of the Riesz basic sequence of the family of
projections onto the Gabor atoms, i.e. the quotient of the two Riesz bounds for this
family of operators within the Hilbert space of Hilbert–Schmidt operators.

This figure of merit certainly guarantees that for those lattices (for a given Gabor
atom g) which show optimal performance one has a well-conditioned Gabor frame,
but at the same time a stable and numerical realizable procedure to approximate a
given operator by Gabor multipliers, preferably with tight Gabor atoms.

Since the interesting parameters describing the lattice of interest (either the sep-
arable ones, or the ones given by general matrices) form a compact domain one can
expect (due to the continuous dependence of the individual condition numbers on
the lattice parameters) that the optimal value is achieved, both within the family of
separable lattices as well as in the family of all (reasonable) lattices.



196 H. G. Feichtinger

7.11 The Role of the Zak Transform

It is clear that painless Gabor expansions are possible if the Gabor frame operator is
just a multiplication operator. In this case, after realizing the Gabor frame operator
it is enough to multiply the result of the Gabor frame operator by the inverse of
its diagonal term, i.e. with the pointwise inverse of the a-periodic version of |g|2
according to the Walnut representation. This fact is equivalent to the claim that the
dual Gabor atom is obtained by a simple multiplication and thus the atom g and its
canonical dual g̃ have the same compact support, which is also very convenient in
practice. The same is true for the canonical tight Gabor frame, obtained by dividing
by the square root of the diagonal term.

Alternatively it is easy to obtain the correct set of (canonical) coefficients for
the Gabor expansion of a given signal f with respect to such a Gabor atom by
premultiplying f and then taking the sampled STFT with respect to the given
atom g.

The situation can also be described equivalently in the Janssen picture: In this
case the support of the spreading function of Sg,Λ is part if the (commutative) sub-
group {0} × (n/a)Z ⊂ R × ̂R of all modulation operators. In other words, the frame
operator (and its inverse and square root inverse) all belong to a simple commutative
algebra of TF-shifts.

For example, one can have the same situation on the Fourier transform side.
Assume that one wants to use a band-limited Gabor atom g with the length of the
support of ĝ being smaller than 1/a (or in other words, so that a is below the Nyquist
rate for the band-limited atom g) we have the same situation on the Fourier transform
side.

But this is not the only situation, where despite the typical non-orthogonality of
the Gabor family one has a cheap way of inverting the Gabor frame operator. Any
commutative group of TF-shifts allows the diagonalization of the set of all Gabor
frame operators with respect to such a lattice.

In the terminology of general TF-lattice we have the following situation: We are
interested in the situation where the adjoint lattice Λ◦ is commutative, or in other
words where Λ◦ ⊂ Λ◦◦ = Λ.

For the classical case of finite Gabor analysis for signals of length n with TF-
lattice parameters (a, b) (both dividing n) the commutative situation is equivalent
with integer redundancy, or in other words with the fact that ab divides n. As we
know that we cannot have “nice” (resp. well TF-concentrated Gabor atoms and duals
of the same form) Gabor families at critical density, resp. for the case ab = n, we
talk about the cases n = 2 · ab or n = k · ab, with k ∈ N, which at least for k ≥ 4
are considered already high redundancy case.

It is in this situation that one can compute dual Gabor atoms easily and with very
fast algorithms, based on the use of the Zak transform in the classical, separable
case. In fact the rational case, which is often distinguished in discussions about
Gabor families from the irrational case (see [40] versus [61]) can and should be
viewed in many cases as the case of a multi-window Gabor family with respect to
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some commutative lattice. This fact points to a possible explanation, by partial Zak
transform methods appear in a number of algorithms, starting with the often cited
paper by Zeevi and Zibulski [114, 115].

7.12 Transfer from R to Zn

At the very end let us address an important but often neglected issue: the transfer of
information about continuous functions to the finite discrete (or discrete periodic)
case and vice versa. We cannot discuss the details here, but we want at least to raise
awareness for this problem and indicate how to avoid problems with it.

Typically starting from the argument that the computer allows only to work with
finite vectors one easily agrees that one has to sample a continuous function on the
real line, of course equidistantly and fine enough on a sufficiently long interval in
order to capture the rough shape of the (smooth) function under consideration. Of
course one may expect then to replace the Fourier transform (given as an integral
transform) by the FFT (the fast implementation of the DFT, the Discrete Fourier
transform), resp. “the” Fourier transform over the group Zn , but it is also clear that
this natural analogue needs some justification, which is rarely given.

Unfortunately this transfer and the transfer back to the continuous domain, e.g.
by piecewise linear interpolation is viewed only as a marginal question, although
neglecting this harmless looking but delicate issue results in a number of complica-
tions in the use if the FFT (interesting examples can be found [1, 109]), explained
somehow as bad properties of the discrete transform ormotivation to teach additional
“tricks” to the user. Among others it seems that theMATLAB command fftshift
has been introduced to tackle this problem, but it needs to used properly in order to
provide good results.

Summarizing the set of problems we can list the following issues in this context:

• How should one insert the information on the given continuous functions via
(regular, i.e. equidistant) sampling into a finite vector, representing a discrete and
periodic signal?

• How can one plot the (input or output) data properly so that they represent the
continuous curve at least approximately, or better, as good as possible?

• Which function spaces allow to guarantee preservation of more andmore informa-
tion about the underlying continuous function as the number of samples is getting
larger?

• How can one obtain quantitative version for the mutual approximation?
• Which theoretical justifications are most suitable to better understand the connec-
tion and avoid pitfalls?

We believe, that distribution theory (either using the Schwartz theory of tempered
distributions, or the much simpler theory of Banach Gelfand Triples, additional ref-
erence: (see [19])) provides the clue to a correct understanding.
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Starting froma test function in the relatively large space S0(R) (similar for S0(Rd))
one can sample it by pointwise multiplication with a Dirac comb, typically �� α =
∑

k∈Z δαk and then periodize it, with a period p which should be a multiple of α,
via convolution with the Dirac comb �� p = ∑

k∈Z δpk . The result is a discrete and
periodic (hence unbounded) measure, or in engineering terminology a periodic and
discrete signal. Now it is our choice to assign the amplitudes arising in this sum of the
form

∑

k∈Z ckδαk to a vector inC
n , with n = p/α, i.e. to turn that p-periodic sequence

into a function on Zn . Clearly we will assign the value at zero, i.e. the coefficient c0
to the zero element of the multiplicative group of unit roots, i.e. to ω0

n = 1. Starting
from there it is plausible to follow the unit roots in the mathematical positive sense,
and assign the amplitudes ck to the element ωk−1

n .
In this way the generating sequence c = [c0, c1, ...cn−1] ∈ C

n arises in a correct
way, but MATLAB does not allow indices zero, so one has to attach (formally) to
the “abstract vector” c the “concrete vector” d = [d1, ...dn] with dk = ck−1.

It is also clear that the negative coordinates are the ones coming at the end of the
sequence, because due to the periodicity we have cn−1 = c−1, cn−2 = cn−2 etc.. This
procedure is also compatible with the flip operator f �→ f �, given by f �(x) =
f (−x). It corresponds naturally to the (correct!) flip operator on the torus, meaning
that it gives us the sequence c� = [c0, cn−1, ...c2, c1], or expressed in MATLAB
coordinates [d1, dn, dn−1, ...d3, d2].

Now the key point if this interpretation is the following statement, which ismaking
a theoretical connection between the (generalized) Fourier transform for distributions
(in our case discrete and periodic distributions) and the numerical DFT (or FFT)
algorithm.

Simply starting from the basic rules for the (generalized) Fourier transform,
according to which the Fourier transform of a shifted version of a function or distri-
bution equals a modulated version of its Fourier transform, combined with the fact
that (according to Poisson’s formula, interpreted in a distributional setting) one has
�̂� = �� , and finally the dilation theorem applied to this formula, which tells us
that (up to normalization) �̂� α = Cα�� 1/α one can end with the conclusions:

Up to suitable normalization the (abstract) Fourier transform of a p-periodic
sum of Dirac measures concentrated on the lattice αZ is the 1/α-periodic sum of
Dirac measures concentrated on the lattice 1/p · Z, whose generating sequence
f = [ f0, f1, ... fn−1] is just the DFT of the original sequence c.

It is plausible that for a “decent function” with some smoothness and good decay
at infinity the periodization will not play an important role (resp. will cause only a
small error compared to just sampling its non-periodized version essentially over the
interval [−p/2, p/2]) and thus one can hope to almost recover f from its sampled
and periodized version (and the same applies on the Fourier transform side).

Tomake that argument valid it is of course (again) important to choose the period as
a multiple of the sampling rate, because then the order of sampling and periodization
can be interchanged without affecting the result!. In some sense it is most natural to
choose p as some (even) natural number and α = 1/p. In this case we obtain signals
of length n = p2. The symmetry of the situation then implies that a Fourier invariant
function (like the Gauss function, or any of the Hermite functions h j , j = 4 ∗ l, l =
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0, 1, ... and any linear combination thereof) results in a discrete version which is in
a numerical precise sense and up to the usual factor

√
n invariant under the FFT,

thus perfectly imitating the continuous situation. In addition we can be sure that a
real-valued function will have a symmetric Fourier transform and a symmetric (in
the sense of the discrete flip operator) function will have a real-valued FFT, as we
would expect it.

As with respect to the convergence property and approximate recovery of f from
a (fine) sampled and (coarsely) periodized version via piecewise linear interpolation,
or more generally suitable quasi-interpolation operator, a first general approach is
provided by the paper [42], showing that the test function space S0(Rd) provides a
very natural setting. Due to the fact that

(

S0(Rd), ‖ · ‖S0

)

is continuously embedded
into

(

L1(Rd), ‖ · ‖1
)

and
(

C0(R
d), ‖ · ‖∞

)

, and consequently into all of the L p-
spaces, in particular

(

L2(Rd), ‖ · ‖2
)

, one can derive convergence results in all those
norms whenever the input is in S0(Rd).

Essentially, this approach indicates that there is a sequence of recovery operators
Rp which can be applied to the sampled and discretized versions of f , allowing to
almost recover f . By writing P Sp (for the case α = 1/p, hence n = p2) we have
the boundedness from

(

S0(Rd), ‖ · ‖S0

)

into C
n and Rp back from C

n , so that the
combined operator sequence

Rp ◦ P Sp

is uniformly bounded on
(

S0(Rd), ‖ · ‖S0

)

and pointwise convergent to the identity
in the strong operator sense, i.e.

‖ f − Rp(P Sp( f ))‖S0 → 0 ∀ f ∈ S0(Rd). (7.12.1)

according to [42].
It is an easy exercise to estimate in such a situation that one has uniform conver-

gence over relatively compact subsets of
(

S0(Rd), ‖ · ‖S0

)

(see [53, 55]), typically
over the unit balls of Banach spaces compactly embedded into

(

S0(Rd), ‖ · ‖S0

)

,
such as the Shubin classes Qs(R

d) (for s > d), or the spaces described in [65] pro-
viding sufficient conditions for S0(Rd) via weighted norms on both the time and the
frequency side. For those examples one can expect nice estimates for the convergence
rates, in dependence of α, p and the function space parameters.

As a plausibility argument for the use of the “simple-minded approach”, which
consists in taking samples as a sequence, starting with the first sample at the left
end of the sampling interval, and progressing until the right end, one can take the
desire that it appears to be the most natural way, sampling at a regular distance
from left to right, also for convenient plotting. The MATLAB command bas =
linspace(a,b,n) provides exactly such a list. For example one gets from bas
= linspace(-1,1,4) the sampling positions

[−1,−.3333, .3333, 1]
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which is clearly missing the central value 0, as any even number n for the case of a
symmetric interval [−p/2, p/2].

In fact, in order to form a proper sampling sequence (less convenient to plot, but
correct with respect to the transfer setting) one produces a vector which starts with
the value of the function at 0 and ends at p/2 with 1 + p/2 entries (for even n) or
(1 + p)/2for p odd, and a complementary series describing the remaining sampling
positions from α, until the length n of values is reached. It turns out that for even n the
last value of the first segment corresponds just to the amplitude taken at −1 = ω

n/2
n ,

which is another flip-invariant coordinate. In contrast, the situation of odd signal
length n appears more natural in this setting, especially on the Fourier transform
side, because the first coordinate corresponds then to the zero-frequency (DC) part
of the signal, while the number of positive and negative frequencies is equal.

So, despite the fact that the plotting is more convenient in the “naive setting”
one can of course make use of reindexing in order to plot functions properly, even
with the right labels, including zero (0) an positive as well as negative values. The
corresponding NuHAG routine is called plotc.m (plot a complex-valued signal
in a centred way). A corresponding version for images or spectrograms is denoted
by imgc.m. Here only the absolute value of the complex signal is used, but with the
same idea.

For a discrete Gauss function g = gaussnk(n) the command plotc(g);
displays a discrete (and FFT invariant) Gaussian signal in the expected (nice)
way, while one can visualize the corresponding 2D Gaussian given by gg =
g(:)*g(:).’ by the command imgc(gg);.
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Contact and Cooperation

Thismanuscript contains a number of suggestions, conjectures and vague statements.
Some of these statements might encourage colleagues to follow up on them and try
to go deeper, and/or to run more systematic experiments or simulations based on the
ideas of this paper.

In order to avoid that several people work on the same subject without knowing
about each other’s work, with the additional trouble of then having perhaps problems
to publish it, I suggest that those who are interested in a concrete subject should
contact the author (hgfei) and coordinate their efforts, so that the gain for the overall
community interested in questions related to Gabor analysis is maximized. This
suggested procedurewould also be beneficial for individuals, avoiding to some extent
a long-lasting experimental phase due to potentially harmless problems, which are
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Chapter 8
L p Continuity and Microlocal Properties
for Pseudodifferential Operators

Gianluca Garello and Alessandro Morando

Abstract The aim of this paper is to give a brief survey about L p continuity and
microlocal regularity for classical pseudodifferential operators, with p �= 2. In par-
ticular, we focus on some classes of operators with smooth symbol satisfying decay
properties of quasi-homogeneous or completely non-homogeneous type.

8.1 Introduction

Let us consider the pseudodifferential operatorswith classicalKohn–Nirenberg quan-
tization:

a(x, D)u(x) = (2π)−n
∫

eix ·ξ a(x, ξ)û(ξ) dξ, u ∈ S (Rn), (8.1.1)

where û(ξ) is the Fourier transform of u. The symbol a(x, ξ) is considered in the
Hörmander classes Sm

ρ,δ , characterized, for m ∈ R and 0 ≤ δ ≤ ρ ≤ 1 by the esti-
mates:

|∂α
ξ ∂β

x a(x, ξ)| ≤ cα,β (1 + |ξ |)m−ρ|α|+δ|β| , x, ξ ∈ R
n. (8.1.2)

It is well known, see e.g. Hörmander [19], that for 0 ≤ δ < ρ ≤ 1 the pseudod-
ifferential operators of order m = 0 are L2 bounded and the same is true when
δ = ρ �= 1. In the case δ = ρ = 1, a counterexample of Ching, [6] 1972, showed
that the L2 continuity is not in general assured. Restrictive conditions which assure
the L2 boundedness of pseudodifferential operators in Op Sm

1,1 are given in the theory
of paradifferential operators, introduced in Bony [5] and well summarized in [24].
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A result of microlocal continuity in the Sobolev (Bessel potential) spaces H s,2 is
given in [10].

In this paper, the aim is to give a brief survey about L p continuity and microlocal
regularity for classical pseudodifferential operators, with p �= 2.

The problem of L p boundedness, 1 < p < ∞, when ρ = 1 is completely solved
since the early years of development of the pseudodifferential theory; see, e.g., [29,
32]. The same is true for the study of the regularity of solutions to elliptic pseudodif-
ferential equations. Here and in the following, the L p and the related Sobolev spaces
are intended on R

n , in any occurrence where, for short, this is omitted.
In Sect. 8.2, we summarize some informations about the literature on the ρ �= 1

case, starting from the very basic results of Hörmander [19], which clarify that the
pseudodifferential operators of order zero are not in general L p bounded, but one
needs operators of suitable negative order which strictly depends on ρ itself.

The issue of the negative order for obtaining the L p boundedness was completely
solved by a sharp result of Fefferman [7], as specified in next Theorem 8.3.

Let us notice that also the generalized weighted symbol classes, introduced by R.
Beals [1–3], require δ < ρ = 1 for obtaining the L p continuity for pseudodifferential
operators of zero order.

In the last part of Sect. 8.2, we describe the layout of Taylor [29], by considering
pseudodifferential operators of order zero which satisfy an additional property, that
directly assures their boundedness on L p, 1 < p < ∞. The difference with respect
to the preceding cases is that now we can apply the Marcinkiewicz lemma on the L p

continuity of Fourier multipliers.
The pseudodifferential operators of quasi-homogeneous type, introduced at first

byLascar [22], fit in a naturalway theTaylormodel.Wedescribe this case inSects. 8.3
and 8.4, wherewe construct also a quasi-homogeneous version of the tools needed for
studying the microlocal regularity in the generalized Sobolev spaces H s,p

M . We refer
here to the results obtained in [14]. By means of the quasi-homogeneous weights, we
can plainly study the hypoellipticity of the heat operator and microlocal propagation
of singularities for Schrödinger operator.
For the study of continuity and microlocal properties of quasi-homogeneous pseu-
dodifferential operators in the case δ = ρ = 1 and Sobolev space with summability
exponent p = 2, we address [11].

In Sect. 8.5, following the approach of Rodino [25], we introduce a class of local
vector weighted symbols Sm,Λ(Ω), where m(ξ) and Λ(ξ) = (λ1(ξ), . . . , λn(ξ)) are
positive continuous weight and weight vector. The corresponding pseudodifferential
operators could be considered in the frame of general pseudodifferential calculus of
Beals [1], Hörmander [20]. In this framework, we study the microlocal regularity on
a scale of Sobolev spaces H p

m . From this point of view, the main problem consists
in the complete lack of any homogeneity property of the weights m(ξ) and Λ(ξ).
Thus for describing the microlocal regularity of a distribution u ∈ D ′(Ω), we cannot
use the conic neighborhoods as done in the classical definition of the Hörmander
wave front set; see [21, I]. Also the quasi-homogeneous wave front set introduced
in Sect. 8.3 is not useful in this case. For this reason, following the arguments in
[9, 25], we introduce the concepts of characteristic filter of a pseudodifferential
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operator and of filter of weighted Sobolev regularity of u ∈ D ′(Ω). We can then give
a result ofmicrolocal propagation of singularities for solutions to (pseudo)differential
equations. The results are all proved in [16].

8.2 Classical Estimates

Let us consider the problem of L p continuity for pseudodifferential operators in
OpSm

ρ,δ , starting from the following result of Hörmander [18, Theorem 1.1].

Theorem 8.1 If A is a bounded translation invariant operator from Lq to L p and
q > p, we have A = 0 if q < ∞, and if q = ∞, the restriction of A to L∞

0 is 0.

Here, L∞
0 is the set of L∞ functions which tend to 0 at infinitive.

We then obtain the necessary condition q ≤ p for a not trivial pseudodifferential
operator to satisfy, for 1 ≤ p, q ≤ ∞ and some positive C , the inequality

‖a(x, D)u‖L p ≤ C‖u‖Lq , u ∈ S (Rn). (8.2.1)

The following result is proved in [19] as a quite easy consequence of the L2 continuity
of the pseudodifferential operators in OpSm

ρ,δ , 0 ≤ δ < ρ ≤ 1.

Theorem 8.2 If q ≤ 2 ≤ p, 0 ≤ δ < ρ ≤ 1, the estimate (8.2.1) is valid for any
a(x, ξ) ∈ S−m

ρ,δ if and only if

m ≥ n

(
1

q
− 1

p

)
, (8.2.2)

with strict inequality if q = 1 or p = ∞.

In the cases q ≤ p ≤ 2 or 2 ≤ q ≤ p, the result depends on the choice of 0 < ρ ≤ 1.
In order to obtain (8.2.1) for any a(x, ξ) ∈ S−m

ρ,δ , it is essentially proved in Wainger
[31], 1965, that we must have:

m ≥ n

{
1

q
− 1

p
+ (1 − ρ)max

(
1

2
− 1

q
,
1

p
− 1

2
, 0

)}
, (8.2.3)

with strict inequality if q = 1 or p = ∞. The inequality (8.2.3) clearly agrees with
(8.2.2) when q ≤ 2 ≤ p.

When p = ∞ and q > 2, the sufficiency of the strict inequality (8.2.3) is also
essentially contained in the results of Wainger [31].
By an interpolation theorem of Stein [27], the sufficiency of the strict inequality
(8.2.3) follows in general since Theorem 8.2 has already shown it for q ≤ 2 ≤ p.
At the end of Hörmander [19], it is left as an open problemwhether (8.2.1) is satisfied
by all a(x, D) ∈ OpS−m

ρ,δ , 0 ≤ δ < ρ < 1, when there is equality in (8.2.3), in which
case Theorem 8.2 is not applicable.
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If we consider the case 1 ≤ p = q ≤ ∞, p �= 2, then (8.2.3) reduces to

m ≥ n(1 − ρ)

∣∣∣∣ 1p − 1

2

∣∣∣∣ . (8.2.4)

In this case, the problem is completely solved by

Theorem 8.3 (Feffermann [7], 1973)

(a) Let a(x, ξ) be a symbol in S−m
ρ,δ with 0 ≤ δ < ρ < 1 and m < n

2 (1 − ρ). Then
the operator a(x, D) is bounded on L p, 1 < p < ∞, provided that:

m ≥ n(1 − ρ)

∣∣∣∣ 1p − 1

2

∣∣∣∣ . (8.2.5)

(b) If m < n(1 − ρ)

∣∣∣ 1p − 1
2

∣∣∣, then the symbol

aρ,m(ξ) = ei |ξ |1−ρ

1 + |ξ |m (8.2.6)

belongs to the class S−m
ρ,0 and provides an operator aρ,m(D) unbounded on L p.

(c) Let a(x, ξ) belong to S
− n

2 (1−ρ)

ρ,δ so that the critical L p space is L1. Although
a(x, ξ) is unbounded on L1, it is bounded on the Hardy space H 1.

The part (b) of the previous theorem is exactly the counterexample of Wainger
[31], and the part (a) must be proved in the critical case when the inequality is
not strict. Feffermann observes that (a) may be obtained from (c) by a not trivial
interpolation. Moreover, the proof of (a) and (c) requires a technique of Feffermann
and Stein [8], based on the class of functions with bounded mean oscillation (BMO).

A different point of view was introduced by Taylor, who realized that the proof
of the L p continuity of pseudodifferential operators in OpS0

1,0 may be adapted to
show the L p boundedness of some suitable subclasses of the zero-order operators in
Op S0

ρ,0, ρ ∈]0, 1[. This is obtained by replacing the Mikhlin–Hörmander lemma
about Fourier multipliers with the following analogous result due to Marcinkiewicz
and Lizorkin (see [23, 28]).

Lemma 8.1 Set K := {0, 1}n. Let the function a(ξ) be continuous on R
n together

with all its derivatives of the form ∂
γ

ξ a(ξ), γ ∈ K. If a constant B > 0 exists such
that

|ξγ ∂
γ

ξ a(ξ)| ≤ B, ξ ∈ R
n, γ ∈ K, (8.2.7)

then for every p ∈]1,+∞[, we can find a constant Ap > 0, depending only on p, B
and the dimension n, such that

‖a(D)u‖p ≤ Ap‖u‖p, u ∈ S (Rn).
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According to Taylor [29], we give the following

Definition 8.1 For m ∈ R and ρ ∈ ]0, 1], Mm
ρ is the class of all functions a ∈

C∞(R2n) such that for every γ ∈ K

ξγ ∂
γ

ξ a(x, ξ) ∈ Sm
ρ,0. (8.2.8)

Notice that the requirement (8.2.8) is equivalent to assuming that for any multi-
indices α, β ∈ Z

n+ and some Cα,β > 0,

|ξγ ∂
γ+α

ξ ∂β
x a(x, ξ)| ≤ Cα,β〈ξ 〉m−ρ|α|, (x, ξ) ∈ R

2n, γ ∈ K (8.2.9)

(cf. [12], Proposition 3.1). The usual symbolic calculus of pseudodifferential oper-
ators holds true in Op Mm

ρ . For zero-order operators, the following result holds (cf.
[29]).

Theorem 8.4 Let a(x, ξ) belong to M0
ρ . Then for every p ∈]1,+∞[ the operator

a(x, D) is L p bounded.

The L p continuity result stated by Theorem 8.4 can be easily extended to pseu-
dodifferential operators in Op Mm

ρ with arbitrary order m ∈ R. After introducing
the Sobolev (Bessel potential) spaces H s,p := {

u ∈ S ′(Rn) : 〈D〉su ∈ L p(Rn)
}
,

p ∈]1,+∞[ and s ∈ R, where 〈D〉su = F−1 (〈·〉s û), we obtain

Proposition 8.1 Let a(x, ξ) belong to Mm
ρ with arbitrary m. Then, for every real s,

the following operator
a(x, D) : H s+m,p → H s,p

is linear and continuous, whenever p belongs to ]1,+∞[.

8.3 Quasi-Homogeneous Pseudodifferential Operators

In order to provide regularity results to partial differential equations of generalized
elliptic type, as for example the heat equation, in this section we are concerned with
continuity of pseudodifferential operators of quasi-homogeneous type, as originally
introduced by Lascar [22]; see also Segàla [26], Yamazaki [33], Garello [11]. All the
results in the next two sections are proved in [14], or in the references given there.

Consider a vector M = (m1, . . . , mn) with positive integer components such that
min
1≤ j≤n

m j = 1. The quasi-homogeneous weight in Rn is defined by

〈ξ 〉2M = 1 + |ξ |2M , where |ξ |M :=
⎛
⎝ n∑

j=1

ξ
2m j

j

⎞
⎠

1
2

, ξ ∈ R
n . (8.3.1)
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We set 1/M := (1/m1, . . . , 1/mn), α · 1/M :=
n∑

j=1
α j/m j , m∗ := max

1≤ j≤n
m j . The

usual Euclidean norm |ξ | corresponds to the case M = (1, . . . , 1).

Proposition 8.2 For any vector M = (m1, . . . , mn) ∈ Z
n+ satisfying the previous

assumptions, there exists a suitable positive constant C such that

(i) 1
C (1 + |ξ |) ≤ 〈ξ 〉M ≤ C(1 + |ξ |)m∗

, ∀ ξ ∈ R
n ;

(ii) |ξ + η|M ≤ C(|ξ |M + |η|M), ∀ ξ, η ∈ R
n ;

(iii) (quasi-homogeneity) |t1/Mξ |M = t |ξ |M , ∀ t > 0 , ∀ ξ ∈ R
n ,

where t1/Mξ = (t1/m1ξ1, . . . , t1/mn ξn);
(iv) ξγ ∂α+γ |ξ |M ≤ Cα,γ 〈ξ 〉1−α·1/M

M , ∀α, γ ∈ Z
n+ ,∀ ξ �= 0.

Definition 8.2 Given m ∈ R and δ ∈ [0, 1], Sm
M,δ will be the class of functions

a(x, ξ) ∈ C∞(R2n) such that for all multi-indices α, β ∈ Z
n+ there exists Cα,β > 0

such that:

|∂β
x ∂α

ξ a(x, ξ)| ≤ Cα,β〈ξ 〉m−α·1/M+δβ·1/M
M , (x , ξ) ∈ R

2n . (8.3.2)

The estimates in Proposition 8.2.i yield the inclusion

Sm
M,δ ⊂ Smax{mm∗,m}

1/m∗,δm∗ , (8.3.3)

which establishes a suitable relation between the quasi-homogeneous classes Sm
M,δ

and the Hörmander symbol classes Sm
ρ,δ , where 0 ≤ ρ < 1, excluding the trivial case

M = (1, . . . , 1).

For the adjoint and the product of pseudodifferential operators in Op Sm
M,δ , a

suitable symbolic calculus is developed in [13] with some restrictions on δ; we quote
here the result.

Proposition 8.3 (Symbolic calculus)

1. If a(x, D) ∈ OpSm
M,δ with 0 ≤ δ < 1/m∗, the adjoint operator a(x, D)∗ still

belongs to OpSm
M,δ and its symbol a∗(x, ξ) satisfies for any integer k > 0

a∗(x, ξ) −
∑
|α|<k

(−i)|α|

α! ∂α
ξ ∂α

x a(x, ξ) ∈ Sm−(1/m∗−δ)k
M,δ ;

we write: a∗ ∼ ∑
α≥0

(−i)|α|
α! ∂α

ξ ∂α
x a.

2. If a(x, D) ∈ OpSm1
M,δ1

, b(x, D) ∈ OpSm2
M,δ2

with 0 ≤ δ2 < 1/m∗, then

a(x, D)b(x, D) ∈ OpSm1+m2
M,δ ,

with δ := max{δ1, δ2}, and the symbol a�b of the product satisfies for any integer
k > 0
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a�b(x, ξ) −
∑
|α|<k

(−i)|α|

α! ∂α
ξ a(x, ξ)∂α

x b(x, ξ) ∈ Sm1+m2−(1/m∗−δ2)k
M,δ ; (8.3.4)

we write: a�b ∼ ∑
α≥0

(−i)|α|
α! ∂α

ξ a∂α
x b.

Weobserve that symbols in the class S0
M,δ plainly satisfy the Lizorkin–Marcinkiewicz

condition (8.2.7), which allows to develop the L p-theory of the pseudodiffererential
operators in Op Sm

M,δ for 1 < p < ∞.
The suitable functional setting is provided by a quasi-homogeneous counterpart

of the Sobolev spaces, namely for s ∈ R and p ∈]1,+∞[, we say that a distribution
u ∈ S ′(Rn) belongs to the quasi-homogeneous Sobolev space H s,p

M , if

〈D〉s
M u := F−1(〈·〉s

M û) ∈ L p(Rn) . (8.3.5)

H s,p
M becomesaBanachspace,whenprovidedwith thenorm ||u||H s,p

M
:= ||〈D〉s

M u||L p .

The case p = 1 is not considered since, in order to prove the continuity result
in Theorem 8.5, H s

M,p must be stated in terms of dyadic decompositions, which
characterize H s,p

M only for 1 < p < ∞; see [13, 30, Sect. 2.3.5].
The following continuous embeddings can be easily established

S (Rn) ⊂ H s,p
M ⊂ Hr,p

M , r < s and p ∈]1,+∞[. (8.3.6)

Theorem 8.5 If a(x, ξ) ∈ Sm
M,δ , m ∈ R, δ ∈ [0, 1[ then

a(x, D) : H s+m,p
M → H s,p

M for any s ∈ R (8.3.7)

is a linear continuous operator.
If δ = 1, then the mapping property (8.3.7) is still true for s > 0.

Recall that pseudodifferential operatorswith symbol a ∈ S−∞ := ⋂
m∈R Sm

1,0 are reg-
ularizing operators; namely they can be extended to linear bounded operators from
S ′(Rn) into the space of polynomially bounded C∞ functions in R

n , with polyno-
mially bounded derivatives, and from the space E ′(Rn) of the compactly supported
distributions in R

n into the Schwartz space S (Rn).

8.4 Microlocal Sobolev Regularity

In this section, we introduce a quasi-homogeneous Sobolev version of Hörmander
wave front set; see [21, I].
Let M be a vector as defined at the beginning of Sect. 8.3, we say that a set ΓM ⊂
R

n \ {0} is M−conic, if
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ξ ∈ ΓM ⇒ t1/Mξ ∈ ΓM , ∀ t > 0 .

Moreover, a ∈ S ′(R2n) is microlocally regularizing in (x0, ξ 0) ∈ T ◦
R

n := R
n ×

(Rn \ {0}) if there existU open neighborhood of x0 andΓM open M−conic neighbor-
hood of ξ 0 such that a| U×ΓM ∈ C∞(U × ΓM) and for every m > 0 and all α, β ∈ Z

n+
a positive constant Cm,α,β > 0 is found in such a way that:

|∂α
ξ ∂β

x a(x, ξ)| ≤ Cm,α,β(1 + |ξ |)−m , (x, ξ) ∈ U × ΓM . (8.4.1)

We write a(x, ξ) ∈ mclS−∞(U × ΓM).

Definition 8.3 We say that a symbol a ∈ Sm
M,δ ismicrolocally M−elliptic at (x0, ξ 0)

∈ T ◦
R

n if there exist an open neighborhood U of x0 and an M−conic open neigh-
borhood ΓM of ξ 0 such that for c0 > 0, ρ0 > 0:

|a(x, ξ)| ≥ c0〈ξ 〉m
M , (x, ξ) ∈ U × ΓM , |ξ |M > ρ0 . (8.4.2)

Moreover the M-characteristic set of a ∈ Sm
M,δ (or a(x, D)) is CharM(a) ⊂ T ◦

R
n

defined by

(x0, ξ
0) ∈ T ◦

R
n \ CharM(a) ⇔ a is microlocally M-elliptic at (x0, ξ

0) .

(8.4.3)

Proposition 8.4 Microlocal parametrix.Assume that 0 ≤ δ < 1/m∗. Then a ∈ Sm
M,δ

is microlocally M−elliptic at (x0, ξ 0) ∈ T ◦
R

n if and only if there exist symbols
b, c ∈ S−m

M,δ such that
a � b − 1 and c � a − 1 (8.4.4)

are microlocally regularizing at (x0, ξ 0).

For s ∈ R, 1 < p < ∞, we define the H s,p
M - wave front set of u ∈ S ′(Rn),

denoted W FH s,p
M

(u), as follows

Definition 8.4 Consider (x0, ξ 0) ∈ T ◦
R

n then

(x0, ξ
0) /∈ W FH s,p

M
(u) (8.4.5)

if there exist φ ∈ C∞
0 (Rn) identically one in a neighborhood of x0, ψ(ξ) ∈ S0

M iden-
tically one on ΓM ∩ {|ξ |M > ε0}, for ΓM ⊂ R

n \ {0} M−conic neighborhood of ξ 0

and 0 < ε0 < |ξ 0|M , satisfying

ψ(D)(φu) ∈ H s,p
M . (8.4.6)

If (8.4.6) is satified, we also say that u ∈ S ′(Rn) is microlocally in H s,p
M at (x0, ξ 0).

We say that x0 /∈ H s,p
M − singsupp (u) if and only if there exists a function φ ∈

C∞
0 (Rn), φ ≡ 1 in some open neighborhood of x0, such that φu ∈ H s,p

M .



8 L p Continuity and Microlocal Properties for Pseudodifferential Operators 215

H s,p
M − singsupp (u) andW FH s,p

M
(u) are closed subsets, respectively, ofRn andT ◦

R
n;

moreover, W FH s,p
M

(u) is M − conic in the ξ variable.

Proposition 8.5 For every u ∈ S ′(Rn) and s ∈ R, we have:

H s,p
M − singsupp(u) = π1(W FH s,p

M
(u)) ,

where π1 is the canonical projection of T ◦
R

n onto R
n.

We then state the main result of microlocal Sobolev continuity and regularity for
pseudodifferential operators in OpSm

M,δ and give few examples.

Theorem 8.6 Consider m ∈ R, δ ∈ [0, 1/m∗[ and a ∈ Sm
M,δ , then for every s ∈ R,

1 < p < ∞ and u ∈ S ′(Rn)

W FH s,p
M

(a(x, D)u) ⊂ W FH s+m,p
M

(u) ⊂ W FH s,p
M

(a(x, D)u) ∪ CharM(a) . (8.4.7)

Examples

4.1 Consider M = (1, 2). Both the heat operator: H(∂) = ∂x1 − ∂2
x2 and the Schrö-

dinger operator: S(∂) = i∂x1 − ∂2
x2 may be considered as operators in OpS1

M .
The first one is clearly M-elliptic, while the M-characteristic set of the second
one is the set {(x1, x2, η2, η), x1, x2 ∈ R, η ∈ R \ {0}}.

4.2 Consider the operators

Q(x, ∂) = x1∂x1 + i∂x1 − ∂2
x2 with symbol q(x, ξ) = i x1ξ1 − ξ1 + ξ 2

2 ; (8.4.8)
P(x, ∂) = x1∂x1 − ∂2

x2 with symbol p(x, ξ) = i x1ξ1 + ξ 2
2 . (8.4.9)

Both of them can be considered as operators in OpS1
M . We have

CharM(q) = {
(0, x2, ξ1, ξ2); x2 ∈ R , ξ1 = ξ 2

2 , ξ2 �= 0
}
.

About the operator P(x, ∂), we can notice that for x0 = (0, x0
2 ), with an arbi-

trary x0
2 ∈ R, p(x0, ξ) = 0 if and only if ξ2 = 0; thus, the M-characteristic

set CharM(p) = {(0, x2, ξ1, 0); ξ1 �= 0} coincides with the classical (conic)
characteristic set Char(p).

8.5 m-Pseudodifferential Operators on L p

In the following, the Sobolev microlocal regularity results, previously obtained for
quasi-homogeneous pseudodifferential operators, are extended to a more general
framework of pseudodifferential operators, where the decay of symbols and their
derivatives are estimated by general non-homogeneous weights.

Notations. For χ(ξ), κ(ξ) positive continuous functions of ξ ∈ R
n and C, c positive

constants, we set:
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• χ(ξ) � κ(ξ), if c ≤ χ(ξ)

κ(ξ)
≤ C , for any ξ ∈ R

n;

• χ(ξ) ≈ χ(η) in a domain D if c ≤ χ(η)

χ(ξ)
≤ C , for any ξ, η ∈ D.

Definition 8.5 A vector-valued function Λ(ξ) = (λ1(ξ), . . . , λn(ξ)), ξ ∈ R
n , with

positive continuous components, is a weight vector if there exist positive constants
C, c such that for any j = 1, . . . , n:

c〈ξ〉c ≤ λ j (ξ) ≤ C〈ξ〉C (polynomial growth); (8.5.1)

λ j (ξ) ≥ c|ξ j | (M-condition); (8.5.2)

λ j (η)≈λ j (ξ)when
n∑

k=1

|ξk − ηk |λk(η)−1 ≤ c (slowly varying condition) (8.5.3)

A positive real continuous function m(ξ) is an admissible weight, associated with
Λ(ξ), if for some positive constants N , C, c

m(η) ≤ C m(ξ) (1 + |η − ξ |)N (temperance); (8.5.4)

m(η) ≈ m(ξ) when
n∑

k=1

|ξk − ηk |λk(η)−1 ≤ c. (8.5.5)

From (8.5.4), it follows that c〈ξ 〉−N ≤ m(ξ) ≤ C〈ξ 〉N .
It is trivial that any positive constant function on R

n is an admissible weight
associated with any weight vector Λ(ξ).

Consider Λ̃(ξ) � Λ(ξ), that is, λ j (ξ) � λ̃ j (ξ), j = 1, . . . , n; then Λ̃(ξ) is again
a weight vector. Similarly, m̃(ξ) � m(ξ) is an admissible weight.

Examples

5.1. For 〈ξ 〉M defined in (8.3.1), ΛM(ξ) =
(
〈ξ 〉1/m1

M , . . . , 〈ξ 〉1/mn

M

)
is a weight vec-

tor. For s ∈ R, 〈ξ 〉s
M is an admissible weight.

5.2. Consider a continuous function λ(ξ) satisfying (8.5.1) and the strong slowly
varying condition:

λ(η)≈λ(ξ) if for some c, μ > 0
n∑

j=1

|η j − ξ j |
(
λ(η)

1
μ + |η j |

)−1 ≤ c.

(8.5.6)

Then the vector Λ(ξ) :=
(
λ(ξ)

1
μ + |ξ1|, . . . , λ(ξ)

1
μ + |ξn|

)
is a weight vec-

tor; see [15, Proposition 1] for the proof. For s ∈ R, λ(ξ)s is an admissible
weight. In such frame, emphasis is given to the multi-quasi-homogeneous
weights λP (ξ) = (∑

α∈V (P ) ξ 2α
)1/2

, where V (P) is the set of the vertices
of a complete Newton polyhedron P as introduced in [17]; see also [4]; in this
case, the value μ in (8.5.6) is called formal order of P .
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For the sake of generality, we introduce the symbol classes in local form. All the
results obtained for quasi-homogeneous pseudodifferential operators in the preceding
Sects. 8.3 and 8.4 may be translated into such local point of view.

For Ω open subset of Rn , we set K ⊂⊂ Ω , when K is a compact subset of Ω .

Definition 8.6 For Λ(ξ) weight vector and m(ξ) admissible weight, the symbol
class Sm,Λ(Ω) is given by all the functions a(x, ξ) ∈ C∞(Ω × R

n), such that for
any K ⊂⊂ Ω , α, β ∈ Z

n+ and suitable cα,β,K > 0:

sup
x∈K

|∂α
ξ ∂β

x a(x, ξ)| ≤ cα,β,K m(ξ)Λ(ξ)−α, ξ ∈ R
n (8.5.7)

where, with standard vectorial notation, Λ(ξ)γ = ∏n
k=1 λk(ξ)γk .

Sm,Λ(Ω) turns out to be a Fréchet space, with respect to the family of natural semi-
norms defined as the best constants cα,β,K involved in the estimates (8.5.7).

Henceforth, Λ(ξ) will always be a weight vector and all the admissible weights
m(ξ) will be referred to it.

Remark 8.1 1. Considering the constants C, c in (8.5.1) and N in (8.5.4), the
following relation with the usual Hörmander [21] symbol classes Sm

ρ,δ(Ω),
0 ≤ δ < ρ ≤ 1, is trivial:

Sm,Λ(Ω) ⊂ SN
c,0(Ω) . (8.5.8)

Then for any weight vector Λ(ξ), m(ξ) admissible weight and a(x, ξ) ∈
Sm,Λ(Ω), the m−pseudodifferential operator a(x, D) is defined by (8.1.1).
The operator a(x, D) maps continuously C∞

0 (Ω) to C∞(Ω) and it extends to a
bounded linear operator from E ′(Ω) to D ′(Ω).

2. If m1, m2 are admissible weights such that m1 ≤ Cm2, then Sm1,Λ(Ω) ⊂
Sm2,Λ(Ω), with continuous embedding. In particular Sm1,Λ(Ω) = Sm2,Λ(Ω), as
long as m1 � m2.
When the admissible weight m is an arbitrary positive constant function,
Sm,Λ(Ω) will be just denoted by SΛ(Ω) and a(x, ξ) ∈ SΛ(Ω) will be called
a zero-order symbol.

The proofs of all the results in the following are given in [16], and the references
given there.

Proposition 8.6 For Λ(ξ) = (λ1(ξ), . . . , λn(ξ)) weight vector, the following prop-
erties are satisfied:

(i) the function
π(ξ) = min

1≤ j≤n
λ j (ξ), ξ ∈ R

n (8.5.9)

is an admissible weight associated with Λ(ξ) and it moreover satisfies (8.5.6),
with μ = 1;
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(ii) If m, m ′ are admissible weights associated with the weight vector Λ(ξ), then the
same property is fulfilled by mm ′ and 1/m.

For any a(x, ξ) ∈ Sm,Λ(Ω) and any sequence ak(x, ξ) ∈ Smπ−k ,Λ(Ω), k ∈ Z+, we
write

a(x, ξ) ∼
∞∑

k=0

ak(x, ξ), (8.5.10)

if for every integer N ≥ 1:

a(x, ξ) −
∑
k<N

ak(x, ξ) ∈ Smπ−N ,Λ(Ω) . (8.5.11)

By ÕpSm,Λ(Ω), we denote the class of properly supported m−pseudodifferential
operators which map C∞

0 (Ω) to C∞
0 (Ω), C∞(Ω) to C∞(Ω) and extend to bounded

linear operators on E ′(Ω) and D ′(Ω).

Proposition 8.7 (Symbolic calculus)Consider a(x, D) ∈ Op Sm,Λ(Ω) and b(x, D)

∈ Õp Sm ′,Λ(Ω), where m(ξ), m ′(ξ) are admissible weights, both associated with the
same weight vector Λ(ξ). Then, we have:

(i) a(x, D)∗ ∈ Op Sm,Λ(Ω)and a(x, D)∗ = a∗(x, D), where a∗(x, ξ) ∈ Sm,Λ(Ω)

satisfies the following aymptotic expansion:

a∗(x, ξ) ∼
∑

α

(−i)|α|

α! ∂α
ξ ∂α

x a(x, ξ) . (8.5.12)

Moreover a(x, D)∗ ∈ Õp Sm,Λ(Ω) if a(x, D) is assumed properly supported.
(ii) b(x, D)a(x, D) ∈ Op Smm ′,Λ(Ω) and its symbol b�a satisfies

b�a(x .ξ ) ∼
∑

α

(−i)|α|

α! ∂α
ξ b(x, ξ)∂α

x a(x, ξ). (8.5.13)

Considering a(x, ξ) ∈ Sm,Λ(Ω) and using (8.5.7), (8.5.4), (8.5.1), (8.5.2), it imme-
diately follows that for any α, γ ∈ Z

n+, K ⊂⊂ Ω ,

sup
x∈K

|ξγ ∂
α+γ

ξ a(x, ξ)| ≤ Mα,γ,K 〈ξ 〉N−c|α| , ξ ∈ R
n ,

with some positive constants Mα,γ,K , N , c. Then Sm,Λ(Ω) ⊂ M N
c (Ω). Here Mr

ρ(Ω),
0 < ρ ≤ 1, are the local version of the symbol classes defined in Taylor [29]; see
also Definition 8.1. Then, the next result immediately follows from Theorem 8.4.

Theorem 8.7 If a(x, ξ) ∈ SΛ(Ω), then for any 1 < p < ∞:

a(x, D) : L p
comp(Ω) �→ L p

loc(Ω) continuously.
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If a(x, D) is assumed to be properly supported, then it is bounded both as operator
on L p

comp(Ω) and on L p
loc(Ω).

It may be proved by means of technical arguments that for any admissible weight
m(ξ), there exists a smooth equivalent weight m̃(ξ) whose derivatives satisfy the
estimates

|∂αm̃(ξ)| ≤ cαm(ξ)Λ(ξ)−α, for some cα > 0. (8.5.14)

Identifying nowm(ξ) and m̃(ξ), we can define for 1 < p < ∞ the weighted Sobolev
space:

H p
m := {

u ∈ S ′(Rn), such that m(D)u ∈ L p(Rn)
}
. (8.5.15)

H p
m is a Banach space when equipped with the norm ‖u‖p,m := ‖m(D)u‖L p (Hilbert

space when p = 2).
For any open subset Ω ⊂ R

n , the following local spaces may be introduced:

H p
m,loc(Ω) = {

u ∈ D ′(Ω) such that, for anyϕ ∈ C∞
0 (Ω), ϕu ∈ H p

m
} ; (8.5.16)

H p
m,comp(Ω) = ⋃

K⊂⊂Ω

H p
m (K ), (8.5.17)

where H p
m (K ) is the closed subspace of H p

m , consisting of the distributions supported
in the compact set K . The notations in Theorem 8.7 are now completely clarified.

H p
m,loc(Ω) equipped with the semi-norms pψ(·) := ‖ψ · ‖m,p = ‖m(D)ψ · ‖L p ,

ψ ∈ C∞
0 (Ω) arbitrary is a Fréchet space. H p

m,comp(Ω) is provided with the inductive
limit topology of the spaces H p

m (K ), for K ranging on the collection of all compact
subsets of Ω .

Proposition 8.8 Assume m, m ′ admissible weights, a(x, ξ) ∈ Sm ′,Λ(Ω) and p ∈
]1,∞[. Then, a(x, D) extends to a bounded linear operator:

a(x, D) : H p
m,comp(Ω) �→ H p

m/m ′,loc(Ω). (8.5.18)

If moreover a(x, D) is a properly supported operator, then the following maps are
continuous:

a(x, D) : H p
m,comp(Ω) �→ H p

m/m ′,comp(Ω); (8.5.19)

a(x, D) : H p
m,loc(Ω) �→ H p

m/m ′,loc(Ω). (8.5.20)

The complete lack of any homogeneity property of Λ(ξ) and m(ξ) prevents us
from defining the characteristic set of a(x, D) in terms of conic or M−conic neigh-
borhoods in R

n
ξ . We try then an alternative way to solve the problem by the intro-

duction of the following tools.
Following Rodino [25] and Garello [9], theΛ-neighborhood of a set X ⊂ R

n with
length ε > 0, is defined as the open set:
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XεΛ :=
⋃
ξ 0∈X

{|ξ j − ξ 0
j | < ελ j (ξ

0), for j = 1, . . . , n
}
. (8.5.21)

Moreover for x0 ∈ Ω , we set:

X (x0) := {x0} × X , XεΛ(x0) := Bε(x0) × XεΛ, (8.5.22)

where Bε(x0) is the open ball in Ω centered at x0 with radius ε. For every ε > 0, a
suitable 0 < ε∗ < ε, depending only on ε and Λ, can be found in such a way that for
every X ⊂ R

n:

(Xε∗Λ)ε∗Λ ⊂ XεΛ; (8.5.23)(
R

n \ XεΛ

)
ε∗Λ ⊂ R

n \ Xε∗Λ. (8.5.24)

Definition 8.7 Consider x0 ∈ Ω , X ⊂ R
n
ξ ,m admissible weight.We say that a(x, ξ)

∈ Sm,Λ(Ω) ism−microlocally elliptic in X at the point x0 if, for some positive c0, R0,

|a(x0, ξ)| ≥ c0 m(ξ), when ξ ∈ X, |ξ | > R0 . (8.5.25)

We write a(x, ξ) ∈ mcem,Λ X (x0).
We denote with mceΛ X (x0) the class of zero-order microlocal symbols in X at

the point x0.

Definition 8.8 For X ⊂ R
n , x0 ∈ Ω , and p ∈]1,∞[, we say that u ∈ D ′(Ω) is

microlocally H p
m−regular in X at the point x0 ∈ Ω , and write u ∈ mclH p

m X (x0),
if there exists a properly supported operator a(x, D) ∈ OpmceΛ X (x0), such that
a(x, D)u ∈ H p

m,loc(Ω).

We say that a set family ΞΛ ⊂ R
n is a Λ-filter if it is closed with respect to the

intersection of any finite number of its elements and moreover:

X ∈ ΞΛ and X ⊂ Y, then Y ∈ ΞΛ; (8.5.26)

for any X ∈ ΞΛ, there exists Y ∈ ΞΛ and ε > 0 such that YεΛ ⊂ X.(8.5.27)

Proposition 8.9 For u ∈ D ′(Ω) and a(x, ξ) ∈ Sm,Λ(Ω), the following families of
subsets of Rn:

W p
m,x0u := {

X ⊂ R
n ; u ∈ mclH p

m (Rn \ X)(x0)
}

, 1 < p < ∞; (8.5.28)
Σm,x0a := {

X ⊂ R
n , a(x, ξ) ∈ mcem,Λ(Rn \ X)(x0)

}
, (8.5.29)

are both Λ-filters.

We refer to the Λ-filters in the previous proposition, respectively, as filter of Sobolev
singularities of u ∈ D ′(Ω) and characteristic filter of a(x, ξ) ∈ Sm,Λ(Ω).
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Concerning the filter of Sobolev singularities of a distribution, the next result
holds.

Proposition 8.10 The following conditions are equivalent:

a. ∅ ∈ W p
m,x0u;

b. There exists φ ∈ C∞
0 (Ω), with φ(x0) �= 0, such that φu ∈ H p

m ;

c. There exist X1, . . . , X H ⊂ R
n, with

H⋃
h=1

Xh = R
n, such that

u ∈ mclH p
m Xh(x0) for h = 1, . . . , H.

We are now able to generalize the result of microlocal regularity stated in
Theorem 8.6, in terms of Λ - filters.

Theorem 8.8 For m, m ′ arbitrary admissible weights, associated with the same
weight vector Λ, consider a(x, D) ∈ Õp Sm,Λ(Ω), x0 ∈ Ω , p ∈]1,∞[. Then for
any u ∈ D ′(Ω), we have:

W p
m ′/m , x0

a(x, D)u ∩ Σm, x0a ⊂ W p
m ′ , x0

u ⊂ W p
m ′/m , x0

a(x, D)u. (8.5.30)

The statement may be expressed in more explicit form by the following

Proposition 8.11 Consider x0 ∈ Ω , X ⊂ R
n, p ∈]1,∞[, m admissible weight,

a(x, D) ∈ ÕpSm,Λ(Ω), u ∈ D ′(Ω). Then we have:

(i) u ∈ mclH p
m ′ X (x0) ⇒ a(x, D)u ∈ mclH p

m ′/m X (x0);
(ii) a(x, ξ)∈mcem,Λ(X (x0))and a(x, D)u ∈mclH p

m ′/m X (x0) ⇒ u ∈mclH p
m ′ X (x0).

Example

5.3. Let us define now the positive function in R2

λ(ξ) := (1 + ξ 6
1 + ξ 4

1 ξ 4
2 + ξ 6

2 )1/2, (8.5.31)

which may be considered as multi-quasi-homogeneous weight in Example 5.2;
precisely, here the set of vertices of the complete Newton polyhedron is

V (P) = {(0, 0), (3, 0), (2, 2), (0, 3)} .

The formal order ofλ(ξ) isμ = 6.ThenΛ(ξ) = (
λ(ξ)1/6 + |ξ1|, λ(ξ)1/6 + |ξ2|

)
is a weight vector and, for any r ∈ R, λ(ξ)r is an admissible weight.
Consider the linear partial differential operators in Op Sλ,Λ(R2):

A(x, ∂) = (x1∂x1 − ∂2
x2)(x2∂x2 − ∂2

x1), (8.5.32)

B(x, ∂) = (x1∂x1 + i∂x1 − ∂2
x2)(x2∂x2 + i∂x2 − ∂2

x1). (8.5.33)
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According to the rules of the symbolic calculus (see Proposition 8.7), their
symbols a(x, ξ) and b(x, ξ) can be written in the form

a(x, ξ) = (i x1ξ1 + ξ 2
2 )(i x2ξ2 + ξ 2

1 ) + 2ξ 2
2 , (8.5.34)

b(x, ξ) = (i x1ξ1 − ξ1 + ξ 2
2 )(i x2ξ2 − ξ2 + ξ 2

1 ) + 2ξ 2
2 . (8.5.35)

The term 2ξ 2
2 that appears in the right-hand side of both formulas (8.5.34),

(8.5.35) behaves as a lower-order symbol with respect to the weight function
(8.5.31). Observing that λ(ξ) � (1 + ξ 2

1 + ξ 4
2 )

1
2 (1 + ξ 4

1 + ξ 2
2 )

1
2 , it rightly fol-

lows that A(x, ∂) and B(x, ∂) are λ-elliptic operators in OpSλ,Λ(Ω), where
Ω := R

2 \ ⋃
j=1,2

{x j = 0}.

As operators in OpSλ,Λ(R2), A(x, ∂) and B(x, ∂) fail to be λ−elliptic at the
points of the coordinate axes. The behavior of B(x, ∂) along the coordinate
axes can be summarized as follows.

i. At any point x0 = (0, x0
2 ), x0

2 �= 0, the symbol of B(x, ∂) reduces to
b(x0, ξ) = (−ξ1 + ξ 2

2 )(i x0
2ξ2 − ξ2 + ξ 2

1 ) + 2ξ 2
2 ; hence, it isλ−microlocally

elliptic in all sets Xk of the type

{
(ξ1, ξ2) ∈ R

2; ξ1 < (1 − k)ξ 2
2 or ξ1 >

1

1 − k
ξ 2
2

}
, 0 < k < 1 .

(8.5.36)
This means that a base of the characteristic filter Σλ,x0b is given by the
family of sets:

{
ξ ∈ R

2 ; (1 − k)ξ 2
2 ≤ ξ1 ≤ 1

1 − k
ξ 2
2

}
0<k<1

.

Arguing similarly, we obtain that:

ii. At any point y0 = (y01 , 0) (with an arbitrary y01 �= 0), the characteristic filter
Σλ,y0b admits as base the family of sets:

{
ξ ∈ R

2 ; (1 − k)ξ 2
1 ≤ ξ2 ≤ 1

1 − k
ξ 2
1

}
0<k<1

;

iii. At the origin 0 = (0, 0), the characteristic filter Σλ,0b admits as base the
family of sets:

⎧⎨
⎩ξ ∈ R

2 ;
(1 − k)ξ 2

2 ≤ ξ1 ≤ 1
1−k ξ 2

2
or

(1 − k ′)ξ 2
1 ≤ ξ2 ≤ 1

1−k ′ ξ
2
1

⎫⎬
⎭

0<k,k ′<1

.
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Applying Theorem 8.8, we obtain that for any solution u of the equation
B(x, ∂)u = f ∈ H p

λs ,loc(R
2), the filter of Sobolev singularities W p

λs+1,x0u at
every point x0 = (x0

1 , x0
2 ) belonging to the coordinate axes (that is such that

x0
1 x0

2 = 0) contains the characteristic filter Σλ,x0b.
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Chapter 9
Hyperbolic Wavelet Frames and
Multiresolution in the Weighted
Bergman Spaces

Margit Pap

Abstract In this paper,we construct so-calledhyperbolicwavelet frames inweighted
Bergman spaces and a multiresolution analysis (MRA) generated by them. The con-
struction is based on a new example of sampling set for the weighted Bergman space,
which is related to the Blaschke group operation. The introduced MRA is an analog
of the MRA generated by the affine wavelets in the space of the square integrable
functions on the real line, and in fact is the discretization of the continuous voice
transform generated by a representation of the Blaschke group over the weighted
Bergman space. The projection to the resolution levels is an interpolation operator.
This projection operator gives opportunity of practical realization of the hyperbolic
wavelet representation of a function belonging to the weighted Bergman space, if we
can measure the values of the function on a given set of points inside the unit disc.
Convergence properties of the hyperbolic wavelet representation are studied.
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9.1 Intoduction

Grossman, Morlet and Paul showed that the properties of affine wavelet transform
and the Gábor transform are related to square integrable group representations of
certain groups, namely the affine group and Heisenberg group, respectively (see
[13]). The common generalization of these transforms is the voice transform. We
consider a locally compact topological group (G, ·). A unitary representation of the
group (G, ·) on a Hilbert space (H, 〈·, ·〉).

The voice transform of f ∈ H generated by the representation U and by the
parameter ρ ∈ H is the (complex-valued) function on G defined by

(Vρ f )(x) := 〈 f, Uxρ〉 (x ∈ G, f, ρ ∈ H).
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For analogy,we consider the affinewavelet transform (the simplest version)which
is the voice transform of the affine group (see [9, 17, 33, 35]). Indeed let consider
(G, ◦) equal to the the affine group, where

G = {�(a,b) : R → R : (a, b) ∈ R
∗ × R},

�(a,b)(x) = ax + b, R
∗ := R \ {0}, �1 ◦ �2(x) = �1(�2(x)) = a1a2x + a1b2 + b1.

The representation of the affine group G on L2(R) is given by

U(a,b) f (x) = |a|−1/2 f (a−1x − b),

where a is the dilatation parameter and b the translation parameter.
The continuous affine wavelet transform is the voice transform of the affine group

generated by this representation, i.e.,

Wψ f (a, b) = |a|−1/2
∫
R

f (t)ψ(a−1t − b)dt = 〈 f, U(a,b)ψ〉, f, ψ ∈ L2(R).

There is a rich bibliography of the affine wavelet theory (see for example [3–5, 17,
19, 20]). One important question is the construction of the discrete version, i.e., to
find φ so that the discrete translates and dilates

φn,k = 2−n/2φ(2−n x − k)

form an orthonormal, or frame basis, and generate amultiresolution analysis in L2(R)

(see [4, 5, 20]). Roughly speaking we want to approximate the function f , if we
know the coefficients corresponding to the bases {φn,k}, which are the values of the
affine wavelet transform on a special discrete lattice:

〈 f, φn,k〉 = Wφ(2−n, k).

The discrete lattice in the affine case is determined by the following discrete subset
of the affine group:

Gn,k = {�(2−n ,−k) : R → R : n ∈ Z, k ∈ Z}.

On abstract level, the discretization of the voice transform can be achieved using
the unified approach of the atomic decomposition elaborated by Feichtinger and
Gröchenig [9, 10]. This general description can be applied, when the representa-
tion which induces the voice transform satisfies both square integrability and the
integrability conditions. In the affine wavelet case, the integrability condition is not
satisfied, but it can be constructed multiresolution analysis in order to discretize it.
The definition of the affine wavelet multiresolution analysis (MRA) in L2(R) is the
following.



9 Hyperbolic Wavelet Frames and Multiresolution in the Weighted Bergman Spaces 227

Definition 9.1.1 Let Vj , j ∈ Z be a sequence of subspaces of L2(R). The collec-
tions of spaces {Vj , j ∈ Z} is called a multiresolution analysis with scaling function
φ if the following conditions hold:

1. (nested) Vj ⊂ Vj+1

2. (density) ∪Vj = L2(R)

3. (separation) ∩Vj = {0}
4. (basis) The function φ belongs to V0 and the set {2n/2φ(2n x − k), k ∈ Z} is a

(orthonormal or frame) bases in Vn .

In the construction of affine wavelet multiresolution, the dilatation is used to
obtain a higher resolution level, i.e., if ( f (x) ∈ Vn then f (2x) ∈ Vn+1) and apply-
ing the translation we remain on the same level of resolution. This field has a rich
bibliography (see for example [3–5, 17, 20]).

Starting from 1980 Meyer and Daubechies, among others, constructed smooth
orthonormal wavelet systems of the form φn,k(x) = 2n/2φ(2n x − k), using dilation
and translationof a single functionφ (motherwavelet), and relatedMRA-s indifferent
function spaces. Excepting theHaarwavelet system, the construction of such systems
is a hard task. Despite the fact that in general φ cannot be given in an explicit form,
the wavelet Fourier series enjoy nice convergence and approximation properties. The
kernel functions of the partial sums can be well estimated and the wavelet Fourier
coefficients can be calculated by a fast algorithm. Since 1980 the theory of wavelets
has been growing fast, and it turned out that the wavelet theory has many practical
applications.

In the last years, it turned out that affine wavelet frames with a multiresolution
structure are also very important in applications, since this guarantees the existence of
the fast decomposition and reconstruction algorithms. Recently, tight affine wavelet
frames derived by the multiresolution analysis are used to open a few new areas of
applications of frames. The application of tight wavelet frames in image restorations
is one of them that includes image inpainting, image denoising, image deblurring
and blind deburring, and image decompositions. [1, 6, 31].

An up-to-date monograph in this domain is [18], where are collected the most
important ones andmultivariate results connected to affinewavelet frames (framelets)
and the related MRA-s, and their application in the image recovery from incomplete
observed data, including the tasks of inpainting and image/video enhancement. In the
recovery of missing data from incomplete and/or damaged and noisy samples, appli-
cation of wavelet methods based on frames is more advanced due to the redundancy
of frame systems.

Y. Meyer (Abel Prize 2017) formulated the following question: Is there any
“regular” (smooth or analytic and with decay condition) affine wavelet orthonor-
mal basis and any multiresolution analysis (MRA) generated by this basis? Auscher
gave in 1995 a negative answer to this question (see [2]). Applying dilation and trans-
lation to a single function, it is not possible to construct analytic wavelets satisfying
some “regularity” conditions.

Question: Is there any other way to construct analytic (very regular) wavelets or
wavelet frames, and to generate multiresolution analysis in analytic function spaces,
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like in Hardy spaces of the unit disc, or upper half plane, or in weighted Bergman
spaces?

In order to construct analytic wavelets, joint with Schipp, we have considered,
instead of the affine group, the group generated by the composition of the special
linear fractional transformations which preserve the unit circle and unit disc, the
so-called Blaschke functions. The generated group is called the Blaschke group.
These functions are closely related to hyperbolic geometry of the unit disc and to
the theory of analytic function spaces. The congruences in the Poincare model of
the hyperbolic geometry can be described by using Blaschke functions. We have
considered representations of the Blaschke group on the Hardy space of the unit
disc, on the weighted Bergman spaces and the voice transforms induced by these
representations.

Results connected to these voice transforms of the Blaschke group, the so-called
hyperbolic wavelet transforms, were published in [11, 12, 22–29, 32]. It turned
out that the general theory of atomic decompositions developed by Feichtinger and
Gröchenig (see [9, 10]) can be applied only for some weighted Bergman spaces.
In this way, in those cases, new atomic decomposition results can be derived (see
[12, 27]). If the representation which induces the hyperbolic wavelet transform is
not integrable, then it is showed that an analog of MRA can be constructed. In the
case of the Hardy spaces, we constructed hyperbolic analytic wavelets given by
explicit formulas and an analog of MRA (see [12, 26, 29]). Recently was published
a survey paper by Nowak and Pap summarizing this new method of construction of
analytic wavelets (see [21]), where it was formulated the problem of extension of
the construction for weighted Bergman spaces.

Our goal is to construct an analog of the MRA in the weighted Bergman space.
But it turns out, that in this case the construction is more complicated, then in the
Hardy spaces. The construction is based on a new example of sampling set for
the weighted Bergman space, which is related to the Blaschke group operation.
The constructed discretization scheme, the projection to the resolution levels, is
an interpolation operator. This projection operator gives opportunity of practical
realization of the hyperbolic wavelet representation of a function belonging to the
weighted Bergman space, if we can measure the values of the function on a given
set of points inside the unit disc. Convergence properties of the hyperbolic wavelet
representation are studied.

The plan of this paper is as follows. First we present some basic results connected
to the weighted Bergman spaces, we give the definition of the Blascke group, and
basic properties of the voice transform generated by a representation of the Blaschke
group on the weighted Bergman space.

In the second section, we introduce a discrete subset of the Blaschke group, which
is sampling set for the weighted Bergman space. Using this special sampling set, we
consider hyperbolic wavelet frames and we construct an analog of MRA decom-
position in the weighted Bergman space. First the different resolution spaces will
be defined using the introduced non-orthogonal hyperbolic wavelet frames. Apply-
ing the Gram–Schmidt orthogonalization we consider the rational orthogonal basis
on the n-th multiresolution level Vn . This system is the analog of the Malmquist-
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Takenaka system in the Hardy spaces possesses similar properties and is connected
to the contractive zero divisors of a finite set in Bergman space. We prove that the
projection operator Pn f (z) on the resolution level Vn is convergent in A2

α norm to
f , is interpolation operator on the set the

⋃n
k=0 Ak , where Ak is defined by (9.2.7)

with minimal norm and Pn f (z) → f (z) uniformly on every compact subset of the
unit disc.

9.1.1 The Hyperbolic Wavelet Transform

Thehyperbolicwavelet transform is the voice transformgenerated by a representation
of the Blaschke group. In this paper, we consider a representation on the weighted
Bergman space.

9.1.1.1 The Weighted Bergman Spaces Ap
α

In this section, we summarize the basic results connected to the weighted Bergman
spaces (see [7, 16, 37]). Let us consider the unit disc and the open unit circle in the
complex plane denoted by D := {z ∈ C : |z| < 1}, T := {z ∈ C : |z| = 1}, respec-
tively. Let us denote by A the set of functions f : D → C which are analytic in D.
Denote the weighted area measure on D by

d Aα(z) := α + 1

π
(1 − |z|2)α dxdy , z = x + iy.

For all α > −1 the weighted Bergman spaces Ap
α are subsets of analytic functions

with the following property

Ap
α := { f ∈ A :

∫
D

| f (z)|pd Aα(z) < ∞}.

For p = 2, the set A2
α is a Hilbert space, with the following scalar product

〈 f, g〉α :=
∫
D

f (z)g(z)d Aα(z).

For α = 0 we get back the unweighted case, A2 = A2
0, which is called the Bergman

space (see [7, 16]). For 0 < p < ∞, and−1 < α < ∞ the weighted Bergman space
Ap

α is a closed subspace of L p(D, d Aα) = L p. For any function f ∈ Ap
α , and for any

compact subset K ofD, there exists a positive constant C = C(n, K , p, α), such that

sup{| f (n)(z)| : z ∈ K } � C‖ f ‖Ap
α
.
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This inequality implies, that the point-evaluation map is a bounded linear functional
on Ap

α , and the norm convergence in Ap
α implies the locally uniform convergence on

D.
The weighted Bergman space A2

α is a reproducing kernel Hilbert space, and the
reproducing kernel, the weighted Bergman kernel, is given by the following formula

Kα(ξ, z) = 1

(1 − zξ)α+2
.

For −1 < α < +∞, the weighted Bergman projection defined by

Pα : L2(D, d Aα) → A2
α, Pα f (z) =

∫
D

f (ξ)
1

(1 − ξ z)α+2
d Aα(ξ),

is an orthogonal projection operator, which satisfies Pα f = f for every f ∈ A2
α .

The projection operator can be extended to L1(D, d Aα) by mapping each f ∈
L1(D, d Aα) to an analytic function, and Pα f = f , for every f ∈ A1

α (see [16] p. 6).
For 0 < p < ∞, a sequence of pointsΓ = {zk : k ∈ N} in the unit disc is sampling

sequence for Ap
α , if there exist positive constants A and B such that

A|| f ||p ≤
∞∑

k=1

| f (zk)|p(1 − |zk |2)2+α ≤ B|| f ||p, f ∈ Ap
α .

For p = 2, this inequality can be expressed in equivalent form, using the localized
weighted Bergman kernels in zk . If ϕk(z) = K (z, zk)/‖K (z, zk)‖, is the localized
and normalized weighted Bergman kernel, then the previous inequality is equivalent
with the following

A|| f ||2 ≤
∞∑

k=1

|〈 f, ϕk〉|2 ≤ B|| f ||2, f ∈ A2.

However, this last inequality shows that {ϕk(z), k ∈ N} will constitute a frame for
A2

α , if and only if Γ = {zk : k ∈ N} is a sampling set for A2
α . The Bergman spaces Ap

α

do have sampling sequences, but their construction is a difficult task. Some explicit
examples are due to Seip, Duren, Schuster, Horowitz, Luecking (see for ex in [7]). An
Ap

α sampling sequence is never an Ap
α zero set. A total characterization of sampling

sequences can be given with the uniformly discrete property and upper and lower
Seip density of the set (see [7]). But the computation of the upper and lower density
of a set in general is difficult. Duren, Schuster and Vukotic in [8] gave sufficient
conditions based on the pseudohyperbolic metric. Using this sufficient condition it
is easier to verify, if a set of points from the unit disc is sampling set.

The pseudohyperbolic metric in the unit disc is defined by the following formula
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ρ(z, y) =
∣∣∣∣ y − z

1 − yz

∣∣∣∣ (y, z ∈ D).

A sequence of points Γ = {zk} of points in the unit disc is uniformly discrete (sep-
arated), if

δ(Γ ) = inf
j �=k

ρ(z j , zk) = δ > 0.

For 0 < ε < 1, a sequence of points Γ = {zk : k ∈ N} of points in the unit disc is
said to be ε-net, if each point z ∈ D has the property ρ(z, zk) < ε for some zk in
Γ . An equivalent statement is, that D = ⋃∞

k=1 Δ(zk, ε), where Δ(zk, ε) denotes a
pseudohyperbolic disc.

In [8] it is shown that, if Γ is ε-net, then its lower density satisfies the following
inequality

D−(Γ ) ≥ (1 − ε)2

2ε2
.

If Γ is separated (uniformly discrete), and D−(Γ ) > (α + 1)/p, then is a sampling
set for Ap

α (Theorem 5.23 of [16]). We will use this last sufficient condition in order
to construct a sampling sequence in Ap

α .

9.1.1.2 The Blaschke Group

The pseudohyperbolic metric can be expressed using the Blaschke functions, i.e.,
ρ(z, a) = |Ba(z)|, where

Ba(z) := ε
z − b

1 − b̄z
(z ∈ C, a = (b, ε) ∈ B := D × T, bz �= 1).

These functions can be used to represent the congruences in the Poincaré model of
the hyperbolic Bolyai-Lobachevsky geometry.

If a ∈ B, then Ba is an 1 − 1 map on T and D, respectively. The restrictions of
the Blaschke functions on the set D or on T with the operation (Ba1 ◦ Ba2)(z) :=
Ba1(Ba2(z)) form a group. In the set of the parameters B := D × T, let us define
the operation induced by the function composition in the following way Ba1 ◦ Ba2 =
Ba1◦a2 . The set of the parameters with the induced operation (B, ◦) is called the
Blaschke group. If we use the notations a j := (b j , ε j ), j ∈ {1, 2} and a := (b, ε) =:
a1 ◦ a2, then we have

b = b1ε2 + b2
1 + b1b2ε2

= B(−b2ε2,ε2)(b1), ε = ε1
ε2 + b1b2

1 + ε2b1b2
= B(−b1b2,ε1)

(ε2).

The neutral element of the group (B, ◦) is e := (0, 1) ∈ B and the inverse element
of a = (b, ε) ∈ B is a−1 = (−bε, ε).
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This group and thevoice transformson this group, the so-calledhyperbolicwavelet
transforms, were introduced and studied by Pap and Schipp in [22–29].

9.1.1.3 The Representation of Blaschke Group on the Weighted
Bergman Space A2

α

The representation of the Blaschke group on the weighted Bergman space is given
by the following formula (see [24, 25])

(Uα
a−1 f )(z) := ei α+2

2 ψ (1 − |b|2) α+2
2

(1 − bz)α+2
f

(
eiψ z − b

1 − bz

)
(a = (b, eiψ) ∈ B).

It can be proved proved that for all α ≥ 0, Uα
a (a ∈ B) is a unitary irreducible

representation of the group B on the Hilbert space A2
α . The unitarity means that

〈 f, g〉 = 〈 f, g〉α :=
∫
D

f (z)g(z) d Aα(z) = 〈Uα
a f, Uα

a g〉α.

We consider the hyperbolic wavelet transform induced by this representation

(Vg f )(a−1) = (Vg f )(−bε, ε) := 〈 f, Uα
a−1g〉α (a = (b, eiψ) ∈ B, f, ρ ∈ A2

α).

This transform is in same relation with the Blaschke group and the weighted
Bergman space, as the affine wavelet transform with the affine group and the L2(R)

(see [9, 17, 33]).
From thegeneral theory (see [17, 35]), it follows that the voice transformgenerated

by representation Uα
a (a ∈ B) is one to one. The function Vg f is continuous and

bounded on B. It can be shown that every element from A2
α is admissible. Taking

in consideration that the Blaschke group is unimodular, from the general theory of
voice transform follows, that there exists a constant C such that for f, g ∈ A2

α , g �= 0
and ‖Cg‖ = 1, the following reproducing formula is valid:

Vg f = Vg f ∗ Vgg, i.e., Vg f (y−1) =
∫
B

Vg f (x−1)Vgg(x ◦ y−1)dm(x).

It was shown that, in the case of the weighted Bergman spaces, where the weight
is generated by a positive α, under some other restrictions to the weight, both the
integrability and square integrability conditions of the voice transform are satisfied.
Consequently, the general theory of atomic decomposition can be applied, and in this
way, new atomic decomposition results can be obtained for some weighted Bergman
spaces (see [27]). For the Bergman space, unweighted case α = 0, the integrability
condition of the representation is not satisfied. For this case in [28] it is showed that,
it is possible to construct a multiresolution analysis, using localized Bergman kernels
in special sampling points.



9 Hyperbolic Wavelet Frames and Multiresolution in the Weighted Bergman Spaces 233

In this paper, we will extend these results for the weighted Bergman spaces.
This result is interesting, especially for those weighted Bergman spaces, where the
integrability condition of the representation is not satisfied. Our goal is to answer the
following question:

Question: Is it possible tofind adiscrete subset {ak� = (zk�, 1) ∈ B}of theBlascke
group, a function ϕ00 ∈ A2

α , and to generate an adapted version of the multiresolution
in the weighted Bergman space A2

α using the images of this single function {Uα
ak�

ϕ00}
trough the representation?

9.2 New Results

9.2.1 Special Discrete Subsets in B and Their Sampling
Property

In order to answer the formulated question first we construct a sampling set in the
weighted Bergman space A2

α(D), which is a discrete subset of the Blaschke group.
Let us consider the following one parameter subgroups of the Blaschke group:

B1 := {(r, 1) : r ∈ (−1, 1)}, B2 := {(0, ε) : ε ∈ T}. (9.2.1)

These subgroups generate B, i. e.

a = (0, ε2) ◦ (0, ε1) ◦ (r, 1) ◦ (0, ε1) (a = (rε1, ε2) ∈ B, r ∈ [0, 1), ε1, ε2 ∈ T). (9.2.2)

B1 is the analog of the group of dilation, B2 is the analog of the group of translation
(see [33]).

The group operation (r, 1) = (r1, 1) ◦ (r2, 1) in B1 can be expressed using the
tangent hyperbolic and its inverse (ath) in the following way

r = r1 + r2
1 + r1r2

= th(ath r1 + ath r2) (r1, r2 ∈ (−1, 1)). (9.2.3)

Let denote r = thα, ri = thαi , i = 1, 2. Then by

(r1, 1) ◦ (r2, 1) = (thα1, 1) ◦ (thα2, 1) = (th (α1 + α2), 1),

it follows that (B1, ◦) is isomorphic to (R,+). It is known that (Z,+) is a subgroup
of (R,+), thenB1 = {(th k, 1), k ∈ Z} is an one parameter subgroup of (B1, ◦) (see
[34]).

Let a > 1, denote by
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B3 =
{
(rk, 1) : rk = ak − a−k

ak + a−k
, k ∈ Z

}
. (9.2.4)

It can be proved that (B3, ◦) is another subgroup of (B, ◦), and we have the following
composition rule: (rk, 1) ◦ (rn, 1) = (rk+n, 1). The hyperbolic distance of the points
rk, rn has the following property:

ρ(rk, rn) := |rk − rn|
|1 − rkrn| =

∣∣∣∣∣
ak−a−k

ak+a−k − an−a−n

an+a−n

1 − ak−a−k

ak+a−k
an−a−n

an+a−n

∣∣∣∣∣ = |rk−n|. (9.2.5)

This property implies that the sequence (rk, k ∈ N) forms an equidistant division of
the interval [0, 1) in the pseudohyperbolic metric.

Let N (a, k), k ≥ 1, N (a, 0) := 1, be an increasing sequence of natural numbers.
Let us consider the following set of points z00 := 0,

A = {zk� = rkei 2π�
N , � = 0, 1, . . . , N (a, k) − 1, k = 0, 1, 2, . . .}. (9.2.6)

For a fixed k ∈ N, let the level k be the following set of uniformly distributed points
on the circle with radius rk

Ak = {zk� = rkei 2π�
N (a,k) , � ∈ {0, 1, . . . , N (a, k) − 1} }. (9.2.7)

The points ofA determine a similar, decomposition to the Whitney cube decompo-
sition of the unit disc (see for ex. [30] p.80).

The question is how to choose a and N = N (a, k) such that A to be a sampling
set in the weighted Bergman space Ap

α(D). For the unweighted case, for α = 0, this
question was studied by Pap in [28], where it was proved that for a convenient choice
of a and N (a, k)

1. A is uniformly discrete,
2. A is an ε-net set for some 0 < ε < 1.

In this paper, we will extend these results and we will show that there exist a and
N (a, k) such that A will be sampling sequence for weighted Bergman spaces A2

α .

Theorem 9.2.1 Let a > 1, (N (a, k), k ≥ 1) a sequence of increasing natural num-
bers, and consider the set of pointsA defined by (9.2.6). Suppose that N (a, k)a−2k =
b, for k ≥ 1, and 0 < b < ∞. Let us denote by K := 1 + (a−a−1)2

4 + a2

4b2 π
2. If

√
1 − 1/K <

1

1 +
√

2(α+1)
p

,

then A is a sampling set for Ap
α .
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Proof In [28] it was proved that, if there exists b = limk→∞ N (a, k)a−2k , and if
(N (a, k)a−2k, k ≥ 1) is increasing sequence and b is finite, then A is uniformly
discrete and the separation constant satisfies

δ ≥ min

{
r1,

1√
1 + b2

}
.

In [28] it was also proved, that if (N (a, k)a−2k, k ≥ 1) is decreasing and 0 < b <

∞, then the set A is ε0-net, where ε0 = √
1 − 1/K ,with K := 1 + (a−a−1)2

4 + a2

4b2 π
2.

Indeed for given z = reiθ ∈ Dwe take k and j ∈ {0, 1, . . . N (a, k) − 1} such that
rk < r ≤ rk+1, θ ∈

[
2π j

N (a,k)
,
2π( j+1)
N (a,k)

)
, θk j = 2π j

N (a,k)
, then

1

1 − ρ2(z, zk j )
= (1 − rrk)

2 + 4rrk sin2
θ−θk j

2

(1 − r2)(1 − r2k )
= 1 + (r − rk)

2 + 4rrk sin2
θ−θk j

2

(1 − r2)(1 − r2k )
≤

1 +
(r − rk )2 + 4rrk

π2

N2(a,k)

(1 − r2)(1 − r2k )
= 1 + (a − a−1)2

4
+ (a2k+2 − a−2k−2)(a2k − a−2k )

4

π2

N2(a, k)
.

If (N (a, k)a−2k, k ≥ 1) is decreasing and b = limk→∞ N (a, k)a−2k ∈ (0,∞), then
the last term in the previous inequality is upper bounded by

K := 1 + (a − a−1)2

4
+ a2

4b2
π2.

Then for ε0 = √
1 − 1/K , we have ρ(z, zk j ) < ε0.

If N (a, k)a−2k = b, for k ≥ 1, and 0 < b < ∞, then A is in the same time uni-
formly discrete and ε0-net. In [8] it is shown that ifA is ε0-net, then the lower density
of the set satisfies

D−(A ) ≥ (1 − ε0)
2

2ε20
.

If A is separated (is a uniformly discrete) and D−(A ) > (α + 1)/p then is a sam-
pling set for Ap

α (see Theorem 5.23 of [16]).
Using this results we get that if

ε0 = √
1 − 1/K <

1

1 +
√

2(α+1)
p

,

then

D−(A ) ≥ (1 − ε0)
2

2ε20
> (α + 1)/p,

which implies that A is a sampling set for Ap
α .
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Remark

1. As it was showed in [28], for α = 0, from this theorem we obtain that if A is a
sampling set for the Bergman space Ap, then

(a − a−1)2 < 2p,

therefore a must be in the interval (1,
√
2p+√

2p+4
2 ). Then we can always choose

N = N (a, k) big enough, such that the the sampling condition to be satisfied.
2. From the point of view of computations and to have on every circle the less

possible points, for p = 2, α = 0 a convenient choice is a = 2, and N (2, k) =
22k+β for k ≥ 1 with β a fixed integer. Then b = 2β , and the smallest value for β

for which the sampling condition is satisfied is β = 3, then on the k-th circle we
will have N1(2, k) = 22k+3 equidistant points corresponding to the roots of order
22k+3 of the unity. For a = √

2 for sampling we need N1(
√
2, k) = 2k+2 points.

3. For p = 2, α > −1 in order to haveA a sampling set for A2
α we have to choose a

and on the level k the number of the points N (a, k) such that for N (a, k)a−2k = b
to have the following inequality

(a − a−1)2

4
+ a2

4b2
π2 <

1√
α + 1

.

From now on, we will concentrate on this case and using this special sampling
set we will construct multiresoluion analysis in the A2

α .

9.2.2 Multiresolution Analysis in the Weighted Bergman
Space

Using the subgroup B3 of the Blaschke group, a discrete subgroup of B2 and the
representation Uα

a we give a similar construction of the affine wavelet multiresolu-
tion in the weighted Bergman space. To show the analogy with the affine wavelet
multiresolution, we first represent the levels Vn by non-orthogonal frames, and then
we construct an orthonormal bases in Vn . We give also an orthogonal basis in Wn

which is orthogonal to Vn . We will show that the analog of the Malmquist–Takenaka
systems for weighted Bergman space, will span the resolution spaces and the den-
sity property will be fulfilled, i.e.,

⋃∞
k=1 Vk = A2

α in norm. Similar multiresolution
results, based on another discrete subset of the Blaschke group, were obtained by the
author in [26] for the Hardy space of the unit disc, for upper half plane by Feichtinger,
Pap in [11], and in the unweighted case, in Bergman space, by Pap in [28].

We show that the projection Pn f on the n-th resolution level is an interpolation
operator in the unit disc until the n-th level, which converges in A2

α norm to f.
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Let us consider a > 1, denote by rk = ak−a−k

ak+a−k , k ∈ N, and the concentric circles
with radius rk . On the circle with radius rk let us consider Nk = N (a, k) equidistantly
situated points zk� = rkei 2π�

N (a,k) , such that b = N (a, k)a−2k satisfies

0 < b < ∞, (a − a−1)2 + π2 a2

b2
< 4

1√
α + 1

.

If these conditions are satisfied then, due to Theorem 2.1, A given by (9.2.6) is a
sampling set for A2

α . This implies that the set of normalized and localized weighted
Bergman kernels in these points

{
ϕk�(z) = (1 − r2k )

α+2
2

(1 − zk�z)2+α
, ϕ00 = 1, k = 0, 1, . . . , � = 0, 1, . . . N (a, k) − 1

}

will constitute a frame system for A2
α . These system can be derived from a single

function using the representation and a discrete subset of the Blaschke group

ϕk�(z) = (Uα
(zk�,1)−1ϕ00)(z).

Due to this observation, we can consider them as an analog of affine wavelet frames,
and we call them hyperbolic wavelet frames.

From the frame theory (see for example in [14]), follows that every function f
from A2

α can be represented

f (z) =
∑
(k,�)

ck�ϕkl(z)

for some {ck�} ∈ �2, with the series converging in A2
α norm. The determination of

the coefficients it is related to the construction of the inverse frame operator (see
[14]), which is not an easy task in general. This is the reason why we try to construct
other approximation process for f ∈ A2

α and to give an exactly defined algorithmic
scheme for the determination of the coefficients.

Let us consider the function ϕ00 = 1 and let define V0 := {cϕ00, c ∈ C}. Let us
consider the non-orthogonal hyperbolic wavelets at the first level

ϕ1�(z) = (Uα
(z1�,1)−1ϕ00)(z) = (1 − r21 )

α+2
2

(1 − z1�z)2+α
, � = 0, 1, . . . , N (a, 1) − 1. (9.2.8)

They can be obtained from ϕ10 using the analog of translation operator which in the
unit disc is a multiplication by a unimodular complex number and from ϕ00 using
first the representation operator U(r1,1)−1 followed by the translation operator:

ϕ1�(z) = ϕ10(ze− 2π i�
N (a,1) )) = (Uα

(r1,1)−1ϕ00)(ze− 2π i�
N (a,1) )). (9.2.9)
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Let us define the first resolution level as follows

V1 :=
{

f : D → C, f (z) =
1∑

k=0

N (a,k)−1∑
�=0

ck�ϕk�, ck� ∈ C

}
. (9.2.10)

Let us consider the non-orthogonal wavelets on the n-th level

ϕn�(z) = (Uα
(zn�,1)−1ϕ00)(z) = (1 − r2n )

α+2
2

(1 − zn�z)α+2 , � = 0, 1, . . . , N (a, n) − 1, (9.2.11)

which can be obtained from ϕn0 using the translation operator, and from ϕ00 using
the representation Uα

((rn−1,1)◦(r1,1))−1 , and the translations

ϕn,�(z) = (Uα
((rn−1,1)◦(r1,1))−1ϕ00)(ze−i 2π�

N (a,n)
)
). (9.2.12)

Let us define the n-th resolution level by

Vn :=
{

f : D → C, f (z) =
n∑

k=0

N (a,k)−1∑
�=0

ck�ϕk�, ck� ∈ C

}
. (9.2.13)

The closed subset Vn is spanned by

{ϕk�, � = 0, 1, . . . , N (a, k) − 1, k = 0, . . . , n}. (9.2.14)

Continuing this procedure, we obtain a sequence of closed, nested subspaces of A2
α

for z ∈ D

V0 ⊂ V1 ⊂ V2 ⊂ . . . Vn ⊂ . . . A2
α. (9.2.15)

Due to Theorem 9.2.1 the normalized kernels

{ϕkl(z), k = 0, 1, . . . , � = 0, 1, . . . N (a, k) − 1}

form a frame system for A2
α . This implies, that this is a complete and a closed set in

norm, consequently the density property it is satisfied, i.e.,

⋃
n∈N

Vn = A2
α. (9.2.16)

From now on for simplicity, we consider a = 2 and N (2, k) such that b =
N (2, k)2−2k satisfies the following conditions
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0 < b < ∞, (2 − 2−1)2 + π2 2
2

b2
< 4

1√
α + 1

.

For α = 0 a good choice is N (2, k) = 22k+3. In general on the circle k-th we will
have N (2, k) = 22kb points.

We show that, if a function f ∈ Vn , thenUα
(r1,1)−1 f ∈ Vn+1. This is the analog of the

dilation. For this it is sufficient to show that, for k = 0, 1, .., n, � = 0, 1, . . . , 22kb −
1, we have

Uα
(r1,1)−1(ϕk�)(z) = Uα

(r1,1)−1 [(Uα
(rk ,1)−1ϕ00)](ze−i 2π�

22k b
)
) =

= [(Uα
(rk+1,1)−1ϕ00)](ze−i 2π4�

22(k+1)b ) = ϕk+1�′ ∈ Vn+1, (9.2.17)

for �′ = 4� ∈ {0, 1, . . . , 22(k+1)b − 1}.
Summarizing our construction we have constructed a sequence of subspaces

(Vj , j ∈ N) of A2
α with following properties:

1. (nested) Vj ⊂ Vj+1 ⊂ A2
α ,

2. (density) ∪Vj = A2
α

3. (analog of dilatation) Uα
(r1,1)−1(Vj ) ⊂ Vj+1

4. (basis) There exist {ϕk�, k = 0, 1, .., n, � = 0, 1, . . . , 22kb − 1} (orthonormal or
frame) bases in Vj .

This is the adapted definition of the multiresolution analysis in the weighted
Bergman spaces. These four properties are required for (Vj , j ∈ N) to form a hyper-
bolic wavelet multiresolution analysis (MRA) in the weighted Bergman spaces.

Because A is a sampling set, it follows that is a set of uniqueness for A2
α .

This means, that every function f ∈ A2
α is uniquely determined by the values

{ f (zk�), zk� ∈ A }. In [36] Zhu described in general, how can be recaptured a func-
tion from a Hilbert space, when the values of the function on a set of uniqueness are
known, and developed in details this process in the Hardy space. At the beginning,
we will follow the steps of the recapturation process, and we will combine this with
the multiresolution analysis. The elements of the set A are different numbers, this
implies that the localized weighted Bergman kernels

{
1

(1 − zk�z)2+α
, � = 0, 1, . . . , N (2, k) − 1, k = 0, 1, . . . , n.

}
(9.2.18)

are linearly independent, and constitute a non-orthogonal basis in Vn .
Using Gram–Schmidt orthogonalization process they can be orthogonalized.

Denote by ψk� the resulting functions. They can be viewed as the analog of the
Malmquist–Takenaka system in the Hardy space. This functions can be obtained
using the following two methods. The first arises from the orthogonalization pro-
cedure. To describe this, let reindex the points of the setA as follows, a1 = z00, a2 =
z10, a3 = z11, . . . , aN (2,1)+1 = z1N (2,1)−1, . . . , am = zk� . . . , k = 0, 1, . . . , � = 0, 1,
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. . . , N (2, k) − 1, and denote by K (z, zk�) = 1
(1−zk�z)2+α := K (z, am). The resulted

orthonormal system is

φ00(z) = φ(a1, z) = K (z, a1)

‖K (., a1)‖ , φk�(z) = φ(a1, a2, . . . , am, z) =

K (z, am) −
m−1∑
i=1

φ(a1, a2, . . . , ai , z)
〈K (., am), φ(a1, a2, . . . , ai , .)〉

‖φ(a1, a2, . . . , ai , .)‖2 .

Thus the normalized functions
{
ψk�(z) = φk�(z)

‖φk�‖ , k = 1, 2, . . . , � = 0, 1, . . . N (2, k) − 1

}

became an orthonormal system. Applying similar construction in Hardy space, with
the Cauchy kernel as reproducing kernel, the result of the orthogonalization process
can be written in closed form using the Blaschke products, and in this way we get
the Malmquist–Takenaka system. Unfortunately in our situation the result of the
ortogonalization can be not written in closed form, and the properties of the system
cannot be seen from the previous construction.

Another approach for the construction is given by Zhu in [36]. He proved that, the
result of the Gram–Schmidt process is connected to some reproducing kernels, and
the contractive zero divisors. Let denote Am = {a1, a2, . . . am} a set of distinct points
in the unit disc. Let HAm the subspace of A2

α consisted of all functions in A2
α which

vanish on Am . HAm is a closed subspace of A2
α and denote by K Am the reproducing

kernel of HAm . These reproducing kernels satisfies the following recursion formula

K Am+1(z, w) = K Am (z, w) − K Am (z, am+1)K Am (am+1, w)

K Am (am+1, am+1)
, m ≥ 0, (9.2.19)

K A0 := K (z, w) = 1

(1 − wz)2+α
.

The result of the Gram-Schmidt process can be expressed as

K (z, a1)√
K (a1, a1)

,
K A1(z, a2)√
K A1(a2, a2)

, . . .
K Am−1(z, am)√
K Am−1(am, am)

, . . . .

Then

ψk�(z) = K Am−1(z, am)√
K Am−1(am, am)

, (9.2.20)

and is the solution of the following problem
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sup{Ref (am) : f ∈ HAm−1 , ‖ f ‖ ≤ 1}.

This extremal functions in the context of the Bergman spaces have been studied by
Hedenmalm [15]. The main result in [15] is that the function

K Am−1(z, am)√
K Am−1(am, am)

is a contractive divisor on the Bergman space, vanishes on Am−1, and if A is not a
zero set for A2, as is in our case, the functions converge to 0 as m → ∞. In Hardy
space, the partial products of a Blaschke product corresponding to a nonzero set own
all these nice properties.

From the Gram–Schmidt orthogonalization process it follows,that

Vn = span{ψk�, � = 0, 1, . . . , N (2, k) − 1, k = 0, . . . , n}. (9.2.21)

The wavelet space Wn is the orthogonal complement of Vn in Vn+1. We will prove
that

Wn = span{ψn+1�, � = 0, 1, . . . , N (2, n + 1) − 1}. (9.2.22)

If f ∈ Vn , one has f (z) = ∑n
k=0

∑N (2,k)−1
�=0 ck�ϕk� ⊂ A2

α , then using (1.4) we
obtain that

〈ψn+1 j , f 〉 =
n∑

k=0

N (2,k)−1∑
�=0

ck�〈ψn+1 j , ϕk�〉 =

n∑
k=0

N (2,k)−1∑
�=0

ck�(1 − r2k )
α+2
2 ψn+1�(zk�) = 0, j = 0, 1, . . . N (2, n + 1) − 1.

We have proved that for f ∈ Vn

〈 f, ψn+1 j 〉 = 0, (9.2.23)

which is equivalent with

ψn+1 j ⊥ Vn, ( j = 0, 1, . . . , N (2, n + 1) − 1). (9.2.24)

From

Vn+1 = Vn

⊕
span{ϕn+1, j , j = 0, 1, . . . , N (2, n + 1) − 1} (9.2.25)
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it follows that, Wn is an N (2, n + 1) dimensional space and

Wn = span{ψn+1�, � = 0, 1, . . . , N (2, n + 1) − 1}. (9.2.26)

9.2.3 The Projection Operator Corresponding
to the n-th Resolution Level

Let us consider the orthogonal projection operator of an arbitrary function f ∈ A2
α

on the subspace Vn given by

Pn f (z) =
n∑

k=0

N (2,n)−1∑
�=0

〈 f, ψk�〉ψk�(z). (9.2.27)

This operator is called the projection of f at nth scale or resolution level.

Theorem 9.2.2 For f ∈ A2
α the projection operator Pn f is an interpolation oper-

ator in the points

zk� = rkei 2π�
N (2,k) , (� = 0, . . . , N (2, k) − 1, k = 0, . . . , n),

is norm convergent in A2
α to f i.e.,

‖ f − Pn f ‖ → 0, n → ∞,

uniformly convergent inside the unit disc on every compact subset.

Proof Let us consider N = 1 + N (2, 1) + · · · + N (2, n), and the corresponding
kernel function of the projection operator

KN (z, ξ) =
n∑

k=0

N (2,k)−1∑
�=0

ψk�(ξ)ψk�(z) = (9.2.28)

N∑
m=1

K Am−1(z, am)√
K Am−1(am, am)

(
K Am−1(ξ, am)√
K Am−1(am, am)

)
=

N∑
m=1

K Am−1(z, am)K Am−1(am, ξ)

K Am−1(am, am)
.

From the recursion relation (9.2.19) it follows that

KN (z, ξ) =
N∑

m=1

(K Am−1(z, ξ) − K Am (z, ξ)) = K (z, ξ) − K AN (z, ξ) (9.2.29)
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From this relation, it follows that the values of the kernel function in the points
zk�, (� = 0, . . . , N (2, k) − 1, k = 0, . . . , n) are equal to

K (zkl, ξ) = 1

(1 − zk�ξ)2+α
. (9.2.30)

Using again formula (1.4) we have

Pn f (zk�) =
∫
D

f (w)

(1 − wzk�)2+α
d Aα(w) = f (zk�) (9.2.31)

for (� = 0, . . . , N (2, k) − 1, k = 0, . . . , n). We obtain that Pn f is interpolation
operator for every f ∈ A2

α on the set ∪n
k=0Ak .

Because of 2.16 and 2.21 {ψk�, k = 0, . . . ,∞, � = 0, 1, . . . , N (2, k) − 1} is a
closed set in the Hilbert space A2

α , we have that that ‖ f − Pn f ‖ → 0 as n → ∞.
Since convergence in A2

α norm implies uniform convergence on every compact subset
inside the unit disc, we conclude that Pn f (z) → f (z) uniformly on every compact
subset of the unit disc. From Theorem 5.3.1 of [30], there exists a unique f̂n ∈ Vn

with minimal norm such that

f̂n(zk�) = f (zk�), (� = 0, . . . , N (2, k) − 1, k = 0, . . . , n), (9.2.32)

f̂n is uniquely determined by the interpolation conditions and is equal to the orthog-
onal projection of f on Vn , thus f̂n(z) = Pn f (z).

9.2.4 Reconstruction Algorithm

In what follows, we propose a computational scheme for the best approximant in the
wavelet base {ψk�, � = 0, 1, . . . , N (2, k) − 1, k = 0, . . . , n}.

The projection of f ∈ A2
α onto Vn+1 can be written in the following way:

Pn+1 f = Pn f + Qn f, (9.2.33)

where

Qn f (z) :=
N (2,n+1)−1∑

�=0

〈 f, ψn+1�〉ψn+1�(z). (9.2.34)

This operator has the following properties

Qn f (zk�) = 0, k = 1, . . . , n, � = 0, 1, . . . , N (2, k) − 1. (9.2.35)
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Consequently, Pn contains information on low resolution, i.e., until the levelAn , and
Qn is the high resolution part. After n steps

Pn+1 f = P1 f +
n∑

k=1

Qn f. (9.2.36)

Thus

Vn+1 = V0

⊕
W0

⊕
W1

⊕
. . .

⊕
Wn. (9.2.37)

The set of coefficients of the best approximant Pn f

{bk� = 〈 f, ψk�〉, � = 0.1, . . . , N (2, k) − 1 k = 0, 1, . . . , n} (9.2.38)

is the (discrete) hyperbolic wavelet transform of the function f ∈ A2
α . Thus, it is

important to have an efficient algorithm for the computation of the coefficients.
The coefficients of the projection operator Pn f can be computed, if we know the

values of the functions on
⋃n

k=0 Ak . For this reason, we express first the function
ψk� using the bases {ϕk ′�′ �′ = 0, 1, . . . , N (2, k ′) − 1, k ′ = 0, . . . , k}, i.e. we write
the partial fraction decomposition of ψk� :

ψk�(ξ) =
k−1∑
k ′=0

N (2,k ′)−1∑
�′=0

ck ′�′
1

(1 − zk ′�′ξ)2+α
+

�∑
j=0

ck j
1

(1 − zk jξ)2+α
. (9.2.39)

Using the orthogonality of the functions {ψk ′�′ �′ = 0, 1, . . . , N (2, k ′) − 1, k ′ =
0, . . . , k} and the formula (1.4) we obtain that

δknδ�m = 〈ψnm , ψk�〉 =
k−1∑
k′=0

N (2,k′)−1∑
�′=0

ck′�′ψn,m(zk′�′ ) +
�∑

j=0

ck j ψnm(zk j ), (9.2.40)

(m = 0, 1, . . . N (2, n) − 1, n = 0, . . . , k).

If we order these equalities so that we write first the relations (9.2.40) for n = k
and m = �, � − 1, . . . , 0 respectively, then for n = k − 1 and m = N (2, k − 1) −
1, N (2, k − 1) − 2, . . . , 0, etc., this is equivalent to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
.

.

.

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ψk�(zk�) 0 0 . . . 0
ψk�−1(zk�) ψk�−1(zk�−1) 0 . . . 0
ψk�−2(zk�) ψk�−2(zk�−1 0 . . . 0

.

.

.
.
.
.

ψ00(zk�) ψ00(zk�−1) ψ00(zk�−2) . . . ψ00(z00)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ck�

ck�−1
ck�−2

.

.

.

c00

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9.2.41)
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Because on the main diagonal the elements of the matrix are different from zero,
this system has a unique solution (ck�, ck�−1, ck�−2, . . . , c00)T . If we determine this
vector, then we can compute the exact value of 〈 f, ψk�〉 knowing the values of f on
the set

⋃n
k=0 Ak .

Indeed, using again the partial fraction decomposition of ψk� and the reconstruc-
tion formula formula we get that

〈 f, ψk�〉 =
k−1∑
k′=0

N (2,k′)−1∑
�′=0

ck′�′
〈

f (ξ),
1

(1 − zk′�′ξ)2+α

〉
+

�∑
j=0

ck j

〈
f (ξ),

1

(1 − zk j ξ)2+α

〉
=

=
k−1∑
k ′=0

N (2,k ′)−1∑
�′=0

ck ′�′ f (zk ′�′) +
�∑

j=0

ck j f (zk j ). (9.2.42)

9.2.5 Conclusion

We introduced a new sampling set for Ap
α which is connected to the Blaschke group

operation. We have generated a multiresolution in A2
α and we have constructed a

rational orthogonal wavelet system which generates the levels of the multiresolu-
tion. Compared with the classical affine multiresolution, according to the obtained
results, we can conclude the following advantages of the constructed hyperbolic
multiresolution in Ap

α :

1. The levels of the multiresolution are finite dimensional, which makes easier to
find a basis on every level, but in the same time the density condition remains
valid.

2. We can compute the wavelet coefficients exactly measuring the values of the
function f at the points of the setA = ⋃∞

k=0 Ak ⊂ D. We can write exactly the
projection operator (Pn f, n ∈ N)on then-th resolution levelwhich is convergent
in A2

α norm to f , and Pn f (z) → f (z) uniformly on every compact subset of the
unit disc.

3. In same time: Note that Pn f (z) is also the best approximant interpolation oper-
ator on the set the

⋃n
k=0 Ak inside the unit circle for the analytic continuation of

f.

Acknowledgements This research was supported by the grant EFOP-3.6.1.-16-2016-00004 Com-
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Chapter 10
Infinite Order Pseudo-Differential
Operators

Stevan Pilipović and Bojan Prangoski

Abstract We present a class of global pseudo-differential operators of infinite order
which are intrinsically related to the spaces of tempered ultradistributions as well as
the symbolic calculus these operators enjoy.We also give the notion of hypoellipticity
in this setting and consider the complex powers of non-negative hypoelliptic pseudo-
differential operators. Finally, we give the construction of the heat parametrix and
present an application of these results to semigroups whose infinitesimal generators
are square roots of non-negative operators having hypoelliptic Weyl symbols.

2010 Mathematics Subject Classification: 35S05 · 46F05 · 47D03

10.1 Introduction

Our aim in this expository article is to present a class of global symbols of infinite
order, the corresponding pseudo-differential calculus as well as to give some appli-
cations. The motivation for our study comes from the classical theory of pseudo-
differential operators of Shubin type as well as from mathematical physics where
operators of infinite order appear; cf. [25, 30, 42].

The spaces of symbols and corresponding pseudo-differential operators involved
in this approach were introduced by Prangoski in his thesis (see [37] for the sym-
bolic calculus) and then extensively studied in several articles by himself and his
coauthors. Similar symbol classes were considered by Cappiello [3, 4] for studying
SG-hyperbolic problems of finite order. The definition of the symbols classes in our
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250 S. Pilipović and B. Prangoski

setting is linked to two Gevrey-type weight sequences Ap and Mp, p ∈ N. The first
one controls the smoothness, while the second one controls the growth at infinity
of the symbols. These symbol classes are denoted by Γ

(Mp),∞
Ap,ρ

and Γ
{Mp},∞
Ap,ρ

. The
first one gives rise to operators acting continuously on Gelfand–Shilov-type spaces
of Beurling class (i.e. of (Mp)-class) and the second one on Gelfand–Shilov-type
spaces of Roumieu type (of {Mp}-class); wewill employΓ

∗,∞
Ap,ρ

as a common notation
for both cases. Since the symbols are allowed to grow sub-exponentially (i.e. ultra-
polynomially), the corresponding ΨDOs are of infinite order and the theory goes
beyond the classical Weyl–Hörmander calculus.

We outline the content and the organisation of the article. Section 10.2 gives some
basic background material about Gelfand–Shilov-type spaces of ultradifferentiable
functions and ultradistributionsS ∗(Rd) andS ′∗(Rd). We refer to [13, 18–20, 31–
35, 38, 40, 43] although we know that this list does not contain a great number
of papers devoted to studying these spaces of ultradistributions. In Sect. 10.3.1 and
10.3.2, we follow [35, 36] and collect and explain some useful properties of the
symbol classes Γ

∗,∞
Ap,ρ

and the corresponding global pseudo-differential operators of

infinite order Opτ (a) (the τ -quantisation of the symbol a) acting on S ∗(Rd) and
S ′∗(Rd). When τ = 1/2, that is, the Weyl quantisation, denoted as aw = Op1/2(a),
the symbolic calculus is realised through the ring structure of the spaces of asymp-
totic expansions F S∗,∞

Ap,ρ
where the product (i.e. the #-product) corresponds to the

composition of operators. In our approach, we mainly follow the expositions of the
global pseudo-differential operator calculus given in [32] and [41]: for the pseudo-
differential calculus, we refer to [21–23] and especially, the four volumes of excellent
and the most popular books of Hörmander [24].

Section 10.4 is devoted to hypoelliptic operators of infinite order, a subclass of
Γ

∗,∞
Ap,ρ

. Hypoellipticity in the Gevrey classes has been studied by several authors, see
[21, 31, 41, 44] and the references therein. The functional setting in these papers
allows the consideration of a class of general symbols a(x, ξ) admitting exponential
growth at infinity with respect to the covariable ξ . This was first noted in [44] and
generalised in [15, 16] with applications to hyperbolic equations in Gevrey classes.
The results of this section are published in [11, 12]. In Sect. 10.4.1, we consider
a linear pseudo-differential equation of the form a(x, D)u = v ∈ S ∗(Rd) while in
Sect. 10.4.2, we consider a(x, D)u = f + F[u], where a(x, ξ) is a symbol from our
class of hypoelliptic symbols with a(x, D) being its left quantisation (i.e. a(x, D) =
Op0(a)), and F is a certain power series of an unknown ultradistribution u. Although
the classical approach was followed, in our analysis we have had to use much more
sophisticated methods in the construction of a parametrix and, in the semilinear case,
the commutator technique already used in [1, 5–10] required more involved analysis
as the operators in our setting are of infinite order and the nonlinear part is allowed to
have sub-exponential growths. We also give several interesting instances of infinite
order hypoelliptic operators (as well as several instances of F[u] for the semilinear
equation) where these results are applicable.

The last two sections are devoted to the complex powers of infinite order hypoel-
liptic operators and their applications. In Sect. 10.5.1, we recall some results on the
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realisations in L2(Rd) of infinite order hypoelliptic operators as well as the semi-
boundedness of the Weyl quantisation of positive hypoelliptic infinite order sym-
bols (the proof is based on our results on the Anti-Wick quantisation [35]). These
results, together with the additional assumption that a tends to infinity at infinity,
implies that the spectrum of the closure A of the unbounded densely define operator
A = aw

|S ∗(Rd )
on L2(Rd) is given by a sequence of isolated eigenvalues {λ j } j∈N, each

one with finite multiplicity. Section 10.5.3 contains the main theorem concerning the
complex powers of the closure A in L2(Rd) of A = aw

|S ∗(Rd )
, where a ∈ Γ

∗,∞
Ap,ρ

(R2d)

is a hypoelliptic symbol. Under some technical conditions on a, the theorem states
that A

z
, where Re z > 0, is given by a ΨDO modulo an ultra-smoothing operator

(i.e. an operator that maps S ′∗(Rd) into S ∗(Rd) continuously; later on also called
∗-regularising). It furthermore gives estimates on the symbol of this ΨDO in terms
of the original symbol a. The proof of this theorem can be found in [36]. The last
section is devoted to the application of the complex powers to semigroups whose

infinitesimal generators are of the form −A
1/2

where A is non-negative, and it is
the closure of A = aw

|S ∗(Rd )
with a ∈ Γ

∗,∞
Ap,ρ

(R2d) being hypoelliptic. Under some
assumptions on the symbol, the main result of this part states that such semigroup is
comprised of a smooth family of ΨDOs modulo a smooth family of ultra-smoothing
operators. Besides the theory on complex powers, the other key ingredient for this
part is the construction of the heat parametrix. As this is of independent interest, we
devote a separate subsection to it (Sect. 10.6.1). All of the results of this section are
published in [36].

10.2 Preliminaries

In this section, we collect some basic background material on the Gelfand–Shilov-
type spaces of ultradifferentiable functions and ultradistributions: S ∗(Rd) and
S ′∗(Rd).

We start with a sequence of positive real numbers Mp, p ∈ N, satisfying some of
the conditions (M.1), (M.2), (M.3), (M.3)′ and (M.4) (cf. [27]); we always assume
that such sequences satisfy M0 = M1 = 1. Recall,

(M.1) M2
p ≤ Mp−1Mp+1, p ∈ Z+;

(M.2) Mp ≤ c0H p min0≤q≤p{Mp−q Mq}, p, q ∈ N, for some c0, H ≥ 1;
(M.3)

∑∞
p=q+1 Mp−1/Mp ≤ c0q Mq/Mq+1, q ∈ Z+;

(M.4)
(
Mp/p!)2 ≤ Mp−1/(p − 1)! · Mp+1/(p + 1)!, for all p ∈ Z+.

In some assertions in the sequel, we could replace (M.3) by the weaker assumption:
(M.3)′

∑∞
p=1 Mp−1/Mp < ∞ (cf. [27]).

We observe moreover that (M.4) implies (M.1) and, by [33, Prop. 1.1], the condition
(M.3) on (Mp) implies (M.4) for an equivalent sequence to Mp.

Let Mp and M̃p, p ∈ N, be two sequences of positive numbers. Then Mp ⊂ M̃p

means that there are C, L > 0 such that Mp ≤ C L p M̃p, ∀p ∈ N, and Mp ≺ M̃p

means that this inequality holds for each L > 0 and a corresponding C = CL >
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0. Obviously, without losing generality, we can assume that the constant H from
(M.2) is the same for the sequences Mp and M̃p. For a multi-index α ∈ N

d , Dα =
Dα1

1 ...Dαd
d , where D

α j

j = i−α j ∂α j /∂x j
α j ; moreover, Mα denotes M|α|, |α| = α1 +

... + αd . We use the notation ([27, Sect. 3]), m p = Mp/Mp−1, p ∈ Z+, and if Mp

satisfies (M.1) andm p → ∞ (the latter always holdswhen Mp satisfies (M.3)′), then
its associated function is defined by M(ρ) = supp∈N ln+ ρ p/Mp, ρ > 0. It is a non-
negative, continuous, monotonically increasing function, vanishes for sufficiently
small ρ > 0 and increases more rapidly than ln ρn as ρ → ∞, for any n ∈ N. When
Mp = p!s , with s > 0, we have c1ρ1/s ≤ M(ρ) ≤ c2ρ1/s , for some c1, c2 > 0 and
large ρ.

Let K be a regular compact subset of Rd (i.e. int K = K ). Then, for h > 0,

E {Mp},h(K ) = {ϕ ∈ C∞(K )| sup
α∈Nd

sup
x∈K

|Dαϕ(x)|/(hα Mα) < ∞},

where C∞(K ) stands for the space of all smooth functions on int K whose all partial
derivatives extend to continuous functions on K . Then E {Mp},h(K ) is a Banach space
(from now on abbreviated to (B)-space) and D

{Mp},h
K denotes its subspace of all

smooth functions supported by K . We define as locally convex spaces (abbreviated
to l.c.s.) E (Mp)(Rd), E {Mp}(Rd), D (Mp)(Rd), D {Mp}(Rd) and their strong duals, the
corresponding spaces of ultradistributions of Beurling and Roumieu type; we refer
to [27–29] for their properties.

We denote by R the set of all positive sequences which monotonically increase
to infinity. One can define a partial order onR by (rp) ≤ (kp) if rp ≤ kp, ∀p ∈ Z+,
and with it (R,≤) becomes a directed set.

Let (rp) ∈ R, and Np = Mp
∏p

j=1 r j , p ∈ N.1 This sequence satisfies (M.1) and
(M.3)′ when Mp does so and its associated function is denoted by Nrp (ρ): Nrp (ρ) =
supp∈N ln+ ρ p/(Mp

∏p
j=1 r j ), ρ > 0. Note that for (rp) ∈ R and k > 0 there is ρ0 >

0 such that Nrp (ρ) ≤ M(kρ), for ρ > ρ0.
A measurable function f on R

d is said to have ultrapolynomial growth of class
(Mp) (resp. of class {Mp}) if ‖e−M(h|·|) f ‖L∞(Rd ) < ∞ for some h > 0 (resp. for
everyh > 0).Wehave the following equivalent descriptionof continuous functions of
ultrapolynomial growth of class {Mp}. Let B ⊆ C (Rd). Then (cf. [36, Lemma 2.1])):
For every h > 0, there exists C > 0 such that | f (x)| ≤ CeM(h|x |), for all x ∈ R

d ,
f ∈ B, if and only if there exist (rp) ∈ R and C > 0 such that | f (x)| ≤ CeNr p (|x |),
for all x ∈ R

d , f ∈ B.
An entire function P(z) =∑α∈Nd cαzα , z ∈ C

d , is an ultrapolynomial of class
(Mp) (resp. of class {Mp}), whenever the coefficients cα satisfy the estimate |cα| ≤
C L |α|/Mα , α ∈ N

d , for some L > 0 andC > 0 (resp. for every L > 0 and someC =
C(L) > 0). The corresponding operator P(D) =∑α cα Dα is an ultradifferential
operator of class (Mp) (resp. of class {Mp}) and, when Mp satisfies (M.2), it acts

1Here, and throughout the rest of the article, we use the principle of vacuous (empty) product; thus,
N0 =∏0

j=1 r j = 1.
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continuously on E (Mp)(Rd) andD (Mp)(Rd) (resp. on E {Mp}(Rd) andD {Mp}(Rd)) and
the corresponding ultradistribution spaces.

Let Mp satisfy (M.1), (M.3)′ and m > 0. Then S
Mp,m∞ (Rd) denotes the (B)-

space of all ϕ ∈ C∞(Rd) for which the norm supα∈Nd m|α|‖eM(m|·|) Dαϕ‖L∞(Rd )/Mα

is finite. The spaces of sub-exponentially decreasing ultradifferentiable functions of
Beurling and Roumieu type are defined as

S (Mp)(Rd) = lim←−
m→∞

S
Mp,m∞

(
R

d
)

and S {Mp}(Rd) = lim−→
m→0

S
Mp,m∞

(
R

d
)
,

respectively. Their strong duals S ′(Mp)(Rd) and S ′{Mp}(Rd) are the spaces of
tempered ultradistributions of Beurling and Roumieu type, respectively. When
Mp = p!s , s > 1,S {Mp}(Rd) is just the Gelfand–Shilov spaceS s

s (Rd) [32]. If Mp

satisfies (M.2), then the ultradifferential operators of class ∗ act continuously on
S ∗(Rd) andS ′∗(Rd); these spaces are nuclear, and the Fourier transform is a topo-
logical isomorphism on them. We refer to [13, 34] for the topological properties
of S ∗(Rd) and S ′∗(Rd). Here we recall that, when Mp satisfies (M.2), the space
S {Mp}(Rd) is topologically isomorphic to

lim←−
(rp)∈R

S
Mp,(rp)∞ (Rd),

where the projective limit is taken with respect to the partial order on R defined
above and S

Mp,(rp)∞ (Rd) is the (B)-space of all ϕ ∈ C∞(Rd) for which the norm
supα∈Nd ‖eNr p (|·|) Dαϕ‖L∞(Rd )/(Mα

∏|α|
j=1 r j ) is finite.

We end this section with a few notations from functions analysis. When X and
Y are two locally convex spaces, we denote by L (X, Y ) the space of all contin-
uous linear operators from X to Y ; if X = Y we will often abbreviate notations
and simply write L (X) instead of L (X, X). We write Lb(X, Y ) for the space
L (X, Y ) equipped with the topology of bounded convergence; similarly,Lp(X, Y )

andLσ (X, Y ) stand for the spaceL (X, Y ) equipped with the topology of precom-
pact and simple convergence respectively. If a, b ∈ R and 0 ≤ k ≤ ∞,C k((a, b); X)

stands for the space of all k-times continuously differentiable functions on (a, b)with
values in E whileC k((a, b]; E) for the space of those on (a, b]where the derivatives
at b are to be understood as left derivatives. We use analogous notations when we
consider functions over [a, b) or [a, b].

10.3 Global ΨDOs of Infinite Order

We collect in this section the basic properties of the classes of infinite order pseudo-
differential operators that we shall consider in the article. In Sects. 10.3.1 and 10.3.2,
we collect some useful facts about their symbolic calculus and the sharp product; we
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excerpt only the most important facts and refer to [11, 37] and [36, Sects. 2 and 3]
for a complete account.

10.3.1 Spaces of Symbols. Symbolic Calculus

In the sequel, Ap and Mp will denote two weight sequences of positive numbers for
which we assume:

Mp satisfies (M.1), (M.2) and (M.3), and
Ap satisfies (M.1), (M.2), (M.3)′ and (M.4).
We assume that Ap ⊂ Mp. Letρ0 = inf{ρ ∈ R+| Ap ⊂ Mρ

p }; clearly 0 < ρ0 ≤ 1.
In the sequel, ρ will be a fixed number satisfying ρ0 ≤ ρ ≤ 1, if the infimum can be
reached, or, otherwise ρ0 < ρ ≤ 1.

Let h, m > 0. The basic ingredient is the (B)-space Γ
Mp,∞

Ap,ρ
(R2d; h, m) consisting

of all a ∈ C∞(R2d) for which the norm

sup
α,β∈Nd

sup
(x,ξ)∈R2d

∣
∣
∣Dα

ξ Dβ
x a(x, ξ)

∣
∣
∣ 〈(x, ξ)〉ρ|α|+ρ|β|e−M(m|ξ |)e−M(m|x |)

h|α|+|β| Aα Aβ

.

is finite (see [37]) and then we define as l.c.s.

Γ
(Mp),∞
Ap ,ρ (R2d ; m) = lim←−

h→0

Γ
Mp ,∞
Ap ,ρ (R2d ; h, m); Γ

(Mp),∞
Ap ,ρ (R2d ) lim−→

m→∞
Γ

(Mp),∞
Ap ,ρ (R2d ; m);

Γ
{Mp},∞
Ap ,ρ (R2d ; h) = lim←−

m→0

Γ
Mp ,∞
Ap ,ρ (R2d ; h, m); Γ

{Mp},∞
Ap ,ρ (R2d ) = lim−→

h→∞
Γ

{Mp},∞
Ap ,ρ (R2d ; h).

The spaces Γ
(Mp),∞
Ap,ρ

(R2d; m) andΓ
{Mp},∞
Ap,ρ

(R2d; h) are (F)-spaces whileΓ
∗,∞
Ap,ρ

(R2d)

are barrelled and bornological.
Let τ ∈ R and a ∈ Γ

∗,∞
Ap,ρ

(R2d). Then the τ -quantisation of a is the operator

Opτ (a), continuous on S ∗(Rd) given by the iterated integral (first Fourier, then
inverse Fourier transform):

(
Opτ (a)u

)
(x) = 1

(2π)d

∫

Rd

∫

Rd

ei(x−y)ξ a((1 − τ)x + τ y, ξ)u(y)dydξ.

Furthermore, Opτ (a) naturally extends to a continuous operator on S ′∗(Rd). More
precisely, we have the following result.

Proposition 10.1 ([36, Proposition 3.1]) For each τ ∈ R, the bilinear mapping
(a, ϕ) �→ Opτ (a)ϕ, Γ

∗,∞
Ap,ρ

(R2d) × S ∗(Rd) → S ∗(Rd), is hypocontinuous and it

extends to the hypocontinuous bilinear mapping (a, T ) �→ Opτ (a)T , Γ
∗,∞
Ap,ρ

(R2d) ×
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S ′∗(Rd) → S ′∗(Rd). The mappings a �→ Opτ (a), Γ
∗,∞
Ap,ρ

(R2d) → Lb(S ∗(Rd)),

Γ
∗,∞
Ap,ρ

(R2d) → Lb(S ′∗(Rd)) are continuous.

Since we frequently use the Weyl quantisation (when τ = 1/2), we use aw as
a shorthand of Op1/2(a). As standard, we denote by a(x, D) the left quantisation
(when τ = 0) of a.

Next we define the spaces of asymptotic expansions corresponding to the symbol
classes Γ

∗,∞
Ap,ρ

(R2d). Let t ≥ 0, B ≥ 0 and h, m > 0. We put

Qt = {(x, ξ) ∈ R
2d | 〈x〉 < t, 〈ξ 〉 < t

}
and Qc

t = R
2d\Qt .

If 0 ≤ t ≤ 1, then Qt = ∅ and Qc
t = R

2d . Then [37], F S
Mp,∞
Ap,ρ

(R2d; B, h, m) is

the vector space of formal sums
∑∞

j=0 a j (x, ξ) where a j ∈ C∞(int Qc
Bm j

) and

Dα
ξ Dβ

x a j (x, ξ) can be extended to a continuous function on Qc
Bm j

for all α, β ∈ N
d

and

sup
j∈N

sup
α,β

sup
(x,ξ)∈Qc

Bm j

∣
∣
∣Dα

ξ Dβ
x a j (x, ξ)

∣
∣
∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2 jρe−M(m|ξ |)e−M(m|x |)

h|α|+|β|+2 j Aα Aβ A j A j
< ∞.

Here, and throughout the rest of the article, we use the convention m0 = 0, and
thus Qc

Bm0
= R

2d . With this norm, F S
Mp,∞
Ap,ρ

(
R

2d; B, h, m
)
becomes a (B)-space.

As l.c.s., we define [37]

F S
(Mp),∞
Ap,ρ

(R2d; B, m) = lim←−
h→0

F S
Mp,∞
Ap,ρ

(R2d; B, h, m),

F S
(Mp),∞
Ap,ρ

(R2d; B) = lim−→
m→∞

F S
(Mp),∞
Ap,ρ

(R2d; B, m),

F S
{Mp},∞
Ap,ρ

(R2d; B, h) = lim←−
m→0

F S
Mp,∞
Ap,ρ

(R2d; B, h, m),

F S
{Mp},∞
Ap,ρ

(R2d; B) = lim−→
h→∞

F S
{Mp},∞
Ap,ρ

(R2d; B, h).

One easily verifies that F S
(Mp),∞
Ap,ρ

(R2d; B, m) and F S
{Mp},∞
Ap,ρ

(R2d; B, h) are (F)-

spaces, and F S∗,∞
Ap,ρ

(R2d; B) is barrelled and bornological. Furthermore, the inclusion

mapping Γ
∗,∞
Ap,ρ

(R2d) → F S∗,∞
Ap,ρ

(R2d; B) defined by

a �→
∑

j

a j , where a0 = a, a j = 0, j ≥ 1,

is continuous. We call this inclusion the canonical one. For B1 ≤ B2, the mapping∑
j p j �→∑

j p j |Qc
B2m j

, F S∗,∞
Ap,ρ

(R2d; B1) → F S∗,∞
Ap,ρ

(R2d; B2), called canonical, is

continuous.
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Let F S∗,∞
Ap,ρ

(R2d) = lim−→
B→∞

F S∗,∞
Ap,ρ

(R2d; B), where the inductive limit is taken in

an algebraic sense and the linking mappings are the canonical ones described above.
If
∑

j a j ∈ F S∗,∞
Ap,ρ

(R2d; B) and n ∈ N, then (
∑

j a j )n denotes the function

an ∈ C∞(Qc
Bmn

), while (
∑

j a j )<n denotes the function
∑n−1

j=0 a j ∈ C∞(Qc
Bmn−1

).
Furthermore, 1 denotes the element

∑
j a j ∈ F S∗,∞

Ap,ρ
(R2d; B) given by a0(x, ξ) = 1

and a j (x, ξ) = 0, j ∈ Z+.
Recall ([37, Definition 3]) that sums,

∑
j∈N a j ,

∑
j∈N b j ∈ F S∗,∞

Ap,ρ
(R2d), are said to

be equivalent, in notation
∑

j∈N a j ∼∑ j∈N b j , if there existm > 0 and B > 0 (resp.
there exist h > 0 and B > 0), such that for every h > 0 (resp. for every m > 0),

sup
n∈Z+

sup
α,β

sup
(x,ξ)∈Qc

Bmn

∣
∣
∣Dα

ξ Dβ
x
∑

j<n

(
a j (x, ξ) − b j (x, ξ)

)∣∣
∣ 〈(x, ξ)〉ρ|α|+ρ|β|+2nρ

h|α|+|β|+2n Aα Aβ An AneM(m|ξ |)eM(m|x |) < ∞.

Let Λ be an index set and { fλ| λ ∈ Λ} be a set of positive continuous func-
tions on R

2d each with ultrapolynomial growth of class ∗. Then a set U (Λ) ={∑
j a(λ)

j

∣
∣ λ ∈ Λ

}
⊆ F S∗,∞

Ap,ρ
(R2d; B ′) is subordinated to { fλ| λ ∈ Λ} in F S∗,∞

Ap,ρ

(R2d),U (Λ) � { fλ| λ ∈ Λ}, if the following estimate holds: there exists B ≥ B ′ such
that for every h > 0, there exists C > 0 (resp. there exist h, C > 0) such that

sup
λ∈Λ

sup
j∈N

sup
α∈N2d

sup
w∈Qc

Bm j

∣
∣
∣Dα

wa(λ)
j (w)

∣
∣
∣ 〈w〉ρ(|α|+2 j)

h|α|+2 j A|α|+2 j fλ(w)
≤ C.

(In the sequel, w = (x, ξ) ∈ R
2d .) When fλ = f , ∀λ ∈ Λ, we write U � f , and

then say that U is subordinated to f . Let U ⊆ F S∗,∞
Ap,ρ

(R2d; B1) such that U � f .
Then, there exists B ≥ B1 such that the image of U under the canonical mapping
F S∗,∞

Ap,ρ
(R2d; B1) → F S∗,∞

Ap,ρ
(R2d; B) is a bounded subset of F S

(Mp),∞
Ap,ρ

(R2d; B, m)

for some m > 0 (resp. a bounded subset of F S
{Mp},∞
Ap,ρ

(R2d; B, h) for some h > 0).

Given U ⊆ F S∗,∞
Ap,ρ

(R2d; B1) with U � f , we say that a bounded set V in

Γ
(Mp),∞
Ap,ρ

(R2d; m) for some m > 0 (resp. in Γ
{Mp},∞
Ap,ρ

(R2d; h) for some h > 0) is
subordinated to U under f , in notations V � f U , if there exists a surjective map-
ping � : U → V such that the following estimate holds: there exists B ≥ B1 such
that for every h > 0 there exists C > 0 (resp. there exist h, C > 0) such that for all∑

j a j ∈ U and the corresponding �(
∑

j a j ) = a ∈ V,

sup
n∈Z+

sup
α∈N2d

sup
w∈Qc

Bmn

∣
∣
∣Dα

w

(
a(w) −∑ j<n a j (w)

)∣
∣
∣ 〈w〉ρ(|α|+2n)

h|α|+2n A|α|+2n f (w)
≤ C.
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Let V � f U and Ṽ be the image of V under the canonical inclusion Γ
∗,∞
Ap,ρ

(R2d) →
F S∗,∞

Ap,ρ
(R2d; 0), a �→ a +∑ j∈Z+ 0. Then the above estimate for n = 1 together with

the boundedness of V inΓ
(Mp),∞
Ap,ρ

(R2d; m) for somem > 0 (resp. inΓ
{Mp},∞
Ap,ρ

(R2d; h)

for some h > 0) and the continuity and positivity of f , imply that Ṽ � f in
F S∗,∞

Ap,ρ
(R2d; 0). In such a case, we write V � f . This estimate also implies

�(
∑

j a j ) ∼∑ j a j .
If one starts with a formal sum

∑
j a j ∈ F S∗,∞

Ap,ρ
(R2d; B), there always exists a

symbol which is equivalent to
∑

j a j . In fact, the construction of such symbols can be
made uniform in the following sense: given U ⊆ F S∗,∞

Ap,ρ
(R2d; B) such that U � f

there always exists V � f U . To see this, we proceed as follows. Let ψ ∈ D (Ap)(Rd)

in the (Mp) case and ψ ∈ D {Ap}(Rd) in the {Mp} case, respectively, be such that
0 ≤ ψ ≤ 1, ψ(ξ) = 1 when 〈ξ 〉 ≤ 2 and ψ(ξ) = 0 when 〈ξ 〉 ≥ 3. Set χ(x, ξ) =
ψ(x)ψ(ξ), χn,R(w) = χ(w/(Rmn)) for n ∈ Z+ and R > 0 and put χ0,R(w) = 0.
For each

∑
j a j ∈ U , let R(

∑
j a j )(w) =∑∞

j=0(1 − χ j,R(w))a j (w). If R > B, this
is a well defined smooth function on R

2d , since the series is locally finite. We have
the following result.

Proposition 10.2 ([36, Proposition 3.3]) Let U =
{∑

j a(λ)
j

∣
∣ λ ∈ Λ

}
be a subset of

F S∗,∞
Ap,ρ

(R2d; B ′) that is subordinated to { fλ| λ ∈ Λ} in F S∗,∞
Ap,ρ

(R2d). There exists

R0 > B ′ such that for each R ≥ R0, UR =
{

R(
∑

j a(λ)
j )
∣
∣ λ ∈ Λ

}
⊆ Γ

∗,∞
Ap,ρ

(R2d) and

the following estimate holds: there exists B = B(R) ≥ B ′ such that for every h > 0,
there exists C > 0 (resp. there exist h, C > 0) such that

sup
λ∈Λ

sup
n∈Z+

sup
α∈N2d

sup
w∈Qc

Bmn

∣
∣
∣Dα

w

(
R(
∑

j a(λ)
j )(w) −∑ j<n a(λ)

j (w)
)∣
∣
∣ 〈w〉ρ(|α|+2n)

h|α|+2n A|α|+2n fλ(w)
≤ C.

If in addition fλ = f , ∀λ ∈ Λ, then UR is bounded in Γ
(Mp),∞
Ap,ρ

(R2d; m) for some

m > 0 (resp. bounded in Γ
{Mp},∞
Ap,ρ

(R2d; h) for some h > 0) and hence UR � f U .

We say that this UR is canonically obtained from U by {χn,R}n∈N; in this case, the
mapping � : U → UR is nothing else but

∑
j a j �→ R(

∑
j a j ).

If two symbols are equivalent, then the operators they define only differ by an
operator in L (S ′∗(Rd),S ∗(Rd)) (see [37, Theorem 3]). In fact, if we start with
a set of symbols which is bounded in Γ

(Mp),∞
Ap,ρ

(R2d; m̃) (resp. in Γ
{Mp},∞
Ap,ρ

(R2d; h̃))
and they are all “uniformly equivalent” to 0 then they are in fact an equicontinuous
subset of L (S ′∗(Rd),S ∗(Rd)). The following result makes this precise.

Proposition 10.3 ([36, Proposition 3.4]) Let V be a bounded subset of Γ
(Mp),∞
Ap,ρ

(R2d; m̃) for some m̃ > 0 (resp. of Γ
{Mp},∞
Ap,ρ

(R2d; h̃) for some h̃ > 0). Assume that
there exist B, m > 0 such that for every h > 0, there exists C > 0 (resp. there exist
B, h > 0 such that for every m > 0 there exists C > 0) such that
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sup
a∈V

sup
n∈Z+

sup
α∈N2d

sup
w∈Qc

Bmn

∣
∣Dα

wa(w)
∣
∣ 〈w〉ρ(|α|+2n)

h|α|+2n A|α|+2neM(m|w|) ≤ C.

Then, {Opτ (a)| a ∈ U } is an equicontinuous subset of L (S ′∗(Rd),S ∗(Rd)) for
each τ ∈ R.

In particular, the proposition states that it does not matter how we produce a
symbol out of

∑
j a j as long as it is equivalent to it since the difference between

any two of them will always be an element of L (S ′∗(Rd),S ∗(Rd)). To simplify
notation, we will often call the operators inL (S ′∗(Rd),S ∗(Rd)) ∗-regularising.

The next result states that one can always change the quantisation modulo a ∗-
regularising operator; it also gives the asymptotic expansion of the new symbol.

Proposition 10.4 ([36, Proposition 3.5]) Let U1 ⊆ F S∗,∞
Ap,ρ

(R2d; B) be such that
U1 � f , for some continuous positive function f with ultrapolynomial growth of
class ∗ and let τ, τ1 ∈ R. For each

∑
j a j ∈ U1 and j ∈ N, define

p j,a(x, ξ) =
∑

k+|β|= j

(τ1 − τ)|β|

β! ∂
β

ξ Dβ
x ak(x, ξ), (x, ξ) ∈ Qc

Bm j
.

Then, U =
{∑

j p j,a

∣
∣
∑

j a j ∈ U1

}
is a subset of F S∗,∞

Ap,ρ
(R2d; B) and U � f .

There exists R > 0, which can be chosen arbitrarily large, such that

{
Opτ1

(R(
∑

j

a j )) − Opτ (R(
∑

j

p j,a))
∣
∣
∑

j

a j ∈ U1
}

is an equicontinuous subset of L (S ′∗(Rd),S ∗(Rd)). Moreover, {R(
∑

j a j )
∣
∣

∑
j a j ∈ U1} � f U1 and {R(

∑
j p j,a)| ∑ j a j ∈ U1} � f U .

10.3.2 Weyl Quantisation. The Ring Structure
of FS∗,∞

Ap,ρ
(R2d; B)

As in the distributional setting, in the infinite order case the composition of two
pseudo-differential operators is again a pseudo-differential operator with symbol in
the same class, but there is always an additional ∗-regularising operator; see [37,
Theorem 7] (in the quoted result this is proved for the 0-quantisation, but because of
Proposition 10.4 it holds for any quantisation). We recall in this subsection results
from [36] about the Weyl quantisation of symbols (when τ = 1/2) and the compo-
sition of two such operators. The first line of discourse is to define the #-product
on the spaces of asymptotic expansions: it is the operation that corresponds to the
composition of operators on the symbolic level; that is, if aw and bw are two Weyl
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quantisations than their #-product gives the asymptotic expansion of the composition
(as stated before, aw stands for the Weyl quantisation Op1/2(a)).

For
∑

j a j ,
∑

j b j ∈ F S∗,∞
Ap,ρ

(R2d; B), we define their sharp product, denoted as
∑

j a j#
∑

j b j , via the formal series
∑

j c j =∑ j a j#
∑

j b j where

c j (x, ξ) =
∑

s+k+l= j

∑

|α+β|=l

(−1)|β|

α!β!2l
∂α
ξ Dβ

x as(x, ξ)∂
β

ξ Dα
x bk(x, ξ), (x, ξ) ∈ Qc

Bm j
;

a straightforward computation verifies that
∑

j c j ∈ F S∗,∞
Ap,ρ

(R2d; B). If a ∈ Γ
∗,∞
Ap,ρ

(R2d), then a#
∑

j b j will denote the # product of the image of a under the canonical
inclusion Γ

∗,∞
Ap,ρ

(R2d) → F S∗,∞
Ap,ρ

(R2d; B) and
∑

j b j . The same convention applies

if b ∈ Γ
∗,∞
Ap,ρ

(R2d) or if both a, b ∈ Γ
∗,∞
Ap,ρ

(R2d).

Note, if
∑

j a j ,
∑

j b j ∈ F S∗,∞
Ap,ρ

(R2d; B) and
∑

j c j =∑ j a j#
∑

j b j , then
∑

j c j =∑ j b j#
∑

j a j . In particular, if a j and b j are real valued for all j ∈ N

and
∑

j a j#
∑

j b j =∑ j b j#
∑

j a j , then c j are real valued for all j ∈ N.
As we mentioned before, there is always an additional ∗-regularising operator

that appears when one composes two pseudo-differential operators. The next result
proves that one can always control the resulting set of ∗-regularising operators when
one composes the Weyl quantisations of two bounded sets of symbols; in fact, this
set of ∗-regularising operators is always equicontinuous inL (S ′∗(Rd),S ∗(Rd)).

Theorem 10.1 ([36, Theorem 4.2, Corollary 4.3]) Let U1, U2 ⊆ F S∗,∞
Ap,ρ

(R2d; B)

be such that U1 � f1 and U2 � f2 in F S∗,∞
Ap,ρ

(R2d; B) for some continuous positive
functions f1 and f2 with ultrapolynomial growth of class ∗.
(a) The following statements hold true.

(i) U1#U2 � f1 f2 in F S∗,∞
Ap,ρ

(R2d; B).
(ii) Let Vk � fk Uk, with �k : Uk → Vk the surjective mapping, k = 1, 2. There exists

R > 0, which can be chosen arbitrarily large, such that

⎧
⎨

⎩
Op1/2

⎛

⎝�1(
∑

j

a j )

⎞

⎠Op1/2

⎛

⎝�2(
∑

j

b j )

⎞

⎠− Op1/2

⎛

⎝R(
∑

j

a j#
∑

j

b j )

⎞

⎠
∣
∣

∑

j

a j ∈ U1,
∑

j

b j ∈ U2

⎫
⎬

⎭

is an equicontinuous subset of L (S ′∗(Rd),S ∗(Rd)) and

⎧
⎨

⎩
R(
∑

j

a j#
∑

j

b j )
∣
∣
∑

j

a j ∈ U1,
∑

j

b j ∈ U2

⎫
⎬

⎭
� f1 f2 U1#U2. (10.3.1)
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(b) For
∑

j a j ∈ U1 and
∑

j b j ∈ U2, denote
∑

j c j,a,b =∑ j a j#
∑

j b j ∈ U1#U2.
Then, there exists R > 0, which can be chosen arbitrarily large, such that

⎧
⎨

⎩
awbw − cw

∣
∣ a = R(

∑

j

a j ), b = R(
∑

j

b j ), c = R(
∑

j

c j,a,b)

⎫
⎬

⎭

is an equicontinuous subset of L (S ′∗(Rd),S ∗(Rd)) and (10.3.1) holds.

Part (b) is applicable when U1 and U2 are bounded subsets of Γ
(Mp),∞
Ap,ρ

(R2d; m)

for some m > 0 (resp. of Γ
{Mp},∞
Ap,ρ

(R2d; h) for some h > 0). In this case, part b)

reads: there exists R > 0, which can be chosen arbitrary large, such that {awbw −
Op1/2(R(a#b))| a ∈ U1, b ∈ U2} is equicontinuous ∗-regularising set and {R(a#b)|
a ∈ U1, b ∈ U2} is bounded in Γ

(Mp),∞
Ap,ρ

(R2d; m) for some m > 0 (resp. of Γ
{Mp},∞
Ap,ρ

(R2d; h) for some h > 0 (this is the fact we hinted before the statement of the theo-
rem).

Now we have the main assertion of this section.

Theorem 10.2 ([36, Proposition 4.5]) For each B ≥ 0, F S∗,∞
Ap,ρ

(R2d; B) is a ring
with the pointwise addition and multiplication given by #. The #-identity is given
by1. Moreover, the multiplication# : F S∗,∞

Ap,ρ
(R2d; B) × F S∗,∞

Ap,ρ
(R2d; B) → F S∗,∞

Ap,ρ

(R2d; B) is hypocontinuous.

10.4 Hypoelliptic Operators of Infinite Order

In this section, we will consider hypoelliptic pseudo-differential operators of infinite
order and then the corresponding linear and semilinear pseudo-differential equations.
We will present our results implying in both cases the Gevrey hypoellipticity of the
solutions. This will be done in Sects. 10.4.1 and 10.4.2 after the introduction of the
hypoelliptic class of symbols within Γ

∗,∞
Ap,ρ

.

Definition 10.1 ([11, Definition 1.1]) Let a ∈ Γ
∗,∞
Ap,ρ

(R2d). We say that a is Γ
∗,∞
Ap,ρ

-
hypoelliptic (or hypoelliptic) if

(i) there exists B > 0 such that there are c, m > 0 (resp. for every m > 0, there is
c > 0) such that

|a(x, ξ)| ≥ ce−M(m|x |)−M(m|ξ |), (x, ξ) ∈ Qc
B, (10.4.1)

(ii) there exists B > 0 such that for every h > 0, there is C > 0 (resp. there are
h, C > 0) such that

∣
∣
∣Dα

ξ Dβ
x a(x, ξ)

∣
∣
∣ ≤ C

h|α|+|β||a(x, ξ)|Aα Aβ

〈(x, ξ)〉ρ(|α|+|β|) , α, β ∈ N
d , (x, ξ) ∈ Qc

B . (10.4.2)
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The importance of Γ
∗,∞
Ap,ρ

-hypoellipticity lies in the possibility to construct para-
metrices.

Proposition 10.5 ([36, Proposition 5.2]) Let a ∈ Γ
∗,∞
Ap,ρ

(R2d) be hypoelliptic. Define

q0(w) = a(w)−1 on Qc
B and inductively, for j ∈ Z+,

q j (x, ξ) = −q0(x, ξ)

j∑

s=1

∑

|α+β|=s

(−1)|β|

α!β!2s
∂α
ξ Dβ

x q j−s(x, ξ)∂
β

ξ Dα
x a(x, ξ), (x, ξ) ∈ Qc

B .

Then, for every h > 0 there exists C > 0 (resp. there exist h, C > 0) such that

∣
∣Dα

wq j (w)
∣
∣ ≤ C

h|α|+2 j A|α|+2 j

|a(w)|〈w〉ρ(|α|+2 j)
, w ∈ Qc

B, α ∈ N
2d , j ∈ N. (10.4.3)

If B ≤ 1, then (
∑

j q j )#a = 1 in F S∗,∞
Ap,ρ

(R2d; 0). If B > 1, one can extend q0 to an

element of Γ
∗,∞
Ap,ρ

(R2d) modifying it on Q B ′ \Q B, for B ′ > B. In this case,
∑

j q j ∈
F S∗,∞

Ap,ρ
(R2d; B ′), ((

∑
j q j )#a)k = 0 on Qc

B ′ , ∀k ∈ Z+, and ((
∑

j q j )#a)0 − 1 =
q0a − 1 belongs to D (Ap)(R2d) (resp. D {Ap}(R2d)).

In particular, for q ∼∑ j q j there exists ∗-regularising operator T such that
qwaw = Id + T .

A similar proposition holds for q̃ ∈ Γ
∗,∞
Ap,ρ

(R2d) which satisfies awq̃w = Id + T̃

with T̃ ∈ L (S ′∗(Rd),S ∗(Rd)). Thus, we have that we can use the left parametrix
qw as a right one as well, i.e. there exists T1, T2 ∈ L (S ′∗(Rd),S ∗(Rd)) such that
qwaw = Id + T1 and awqw = Id + T2.

For hypoelliptic a ∈ Γ
∗,∞
Ap,ρ

(R2d), we can construct a parametrix q out of
∑

j q j ∈
F S∗,∞

Ap,ρ
(R2d; B ′) in a specific way. Namely, applying part b) of Theorem 10.1 to

(
∑

j q j )#a together with (10.4.3) and Proposition 10.2, we conclude the existence
of R > 0 and a ∗-regularising operator T such that qwaw = Id + T , where q =
R(
∑

j q j ) ∈ Γ
∗,∞
Ap,ρ

(R2d) satisfies the following conditions: there exist B ′′ ≥ B ′ and
c′′, C ′′ > 0 such that

c′′/|a(w)| ≤ |q(w)| ≤ C ′′/|a(w)|, ∀w ∈ Qc
B ′′ , (10.4.4)

and for every h > 0, there exists C > 0 (resp. there exist h, C > 0) such that

∣
∣Dα

wq(w)
∣
∣ ≤ Ch|α| Aα |a(w)|−1〈w〉−ρ|α|, w ∈ Qc

B′′ , α ∈ N
2d , j ∈ N. (10.4.5)

In particular,q is hypoelliptic. This estimate enables us to prove the next compactness
result.

Assume that a is hypoelliptic and |a(w)| → ∞ as |w| → ∞ and let q be the
parametrix for a constructed above. Take ψ ∈ D (Ap)(R2d) (resp. ψ ∈ D {Ap}(R2d))
such that 0 ≤ ψ ≤ 1, ψ = 1 on a compact neighbourhood of Q B ′′ and ψ = 0 on the
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complement of a slightly larger neighbourhood. Then, for each n ∈ Z+, the function
bn(w) = q(w)ψ(w/n) is in D (Ap)(R2d) (resp. in D {Ap}(R2d)), and hence, bw

n is ∗-
regularising for each n ∈ Z+. Since |a(w)| → ∞ as |w| → ∞ and (10.4.5) holds, it
follows that bn → q in Γ 0

ρ (R2d). Thus, bw
n → qw in Lb(L2(Rd), L2(Rd)) (see [32,

Theorem 1.7.14, p. 58]). As bw
n , n ∈ Z+, are compact operators on L2(Rd), the same

holds for qw.
If a symbol is hypoelliptic, then any τ−quantisation will have a parametrix. This

can be easily done by applying Proposition 10.4 since after the change of quantisation
the new symbol remains hypoelliptic; we briefly outline the procedure. Start with
hypoelliptic b ∈ Γ

∗,∞
Ap,ρ

(R2d) and τ ∈ R. Proposition 10.4 gives the existence of a

hypoelliptic a ∈ Γ
∗,∞
Ap,ρ

(R2d) such that c1|b(w)| ≤ |a(w)| ≤ c2|b(w)|, ∀w ∈ Qc
B1
, for

some c1, c2, B1 > 0, and Opτ (b) − aw is ∗-regularising. We can find a hypoelliptic
q̃ ∈ Γ

∗,∞
Ap,ρ

(R2d) such that

c′
1/|b(w)| ≤ |q̃(w)| ≤ c′

2/|b(w)|, ∀w ∈ Qc
B ′
1
,

for some c′
1, c′

2, B ′
1 > 0, and Opτ (q̃)Opτ (b) − Id is ∗-regularising. We infer

Opτ (b)Opτ (q̃) − Id ∈ L (S ′∗(Rd),S ∗(Rd)).

If q̃1 ∈ Γ
∗,∞
Ap,ρ

(R2d) is any other left τ -parametrix of b, i.e. Opτ (q̃1)Opτ (b) − Id ∈
L (S ′∗(Rd),S ∗(Rd)), then Opτ (q̃1) − Opτ (q̃) is ∗-regularising, which, in turn,
yields that we can use Opτ (q̃1) as a right parametrix as well.

10.4.1 Hypoellipticity of a Linear Pseudo-Differential
Equation

In [44], the hypoellipticity has been obtained by means of the construction of a
parametrix. The results of [44] have been extended by Fernández et al. [17] to the
space of ultradistributions of Beurling type and by the first author to the global frame
of the Gelfand–Shilov spaces of typeS , see [2–4], allowing exponential growth for
the symbols also with respect to the variables x and ξ .

It is then natural to study the sameproblem for pseudo-differential operators acting
on tempered ultradistributions. The main result of this subsection is the following
one from [11] on the global regularity of hypoelliptic operators; of course, this is an
easy consequence of the existence of parametrices of such operators (given in the
previous subsection).

Theorem 10.3 ([11, Theorem 1.2]) Let a ∈ Γ
∗,∞
Ap,ρ

(R2d) be Γ
∗,∞
Ap,ρ

-hypoelliptic and

let v ∈ S ∗(Rd). Then every solution u ∈ S ∗′(Rd) to the equation a(x, D)u = v

belongs to S ∗(Rd).
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Because of the comments we gave at the end of the last subsection, the result
holds true for any τ -quantisation of the hypoelliptic symbol a ∈ Γ

∗,∞
Ap,ρ

(R2d).

Example 10.1 We will give a couple of interesting instance of Γ
∗,∞
Ap,ρ

-hypoelliptic
symbols; because of the above, the corresponding operators have parametrices and
Theorem 10.3 is valid for them.

(a) The symbols of the form 〈(x, ξ)〉k , k ∈ R, are Γ
∗,∞
Ap,ρ

-hypoelliptic symbols [11].
(b) Let a be a positive elliptic Shubin symbol of order m ≥ 1 (elliptic in the sense

of the Shubin class, i.e. c1〈w〉m ≤ a(w) ≤ c2〈w〉m , w ∈ R
2d ) which additionally

satisfies the following estimate: for every h > 0, there exists C > 0 (resp. there
exist h, C > 0) such that

|Dαa(w)| ≤ Ch|α| Aαa(w)〈w〉−ρ1|α|, for all w ∈ R
2d , α ∈ N

2d , (10.4.6)

for some ρ1 > ρ. Then, by taking s > 1 large enough such that ρ1 − 1
s ≥ ρ

and the function e〈w〉1/s
to be of ultrapolynomial growth of class ∗, the symbol

e±a(w)1/(sm)

becomes Γ
∗,∞
Ap,ρ

-hypoelliptic (see [36, Remark 7.6]; see also [11]).

For example, if one takes a(w) = 〈w〉, then e±〈w〉1/s
is Γ

∗,∞
Ap,ρ

-hypoelliptic for an
appropriate choice of s; notice that 〈w〉 satisfies (10.4.6) with ρ1 = 1.

(c) Let 1 < v < l and fix 0 < ρ < 1 such that v ≤ lρ. Take s > l such that 1 − 1
s ≥

ρ and consider the function

a(w) = 1 +
∞∑

n=1

hn〈w〉n

n!s , w ∈ R
2d ,

for some h > 0. Then a is a Γ
∗,∞
Ap,ρ

-hypoelliptic symbol in Γ
∗,∞
Ap,ρ

(R2d), when

Mp = p!l and Ap = p!v (see [12, Sect. 3]).

10.4.2 Hypoellipticity of a Semilinear Pseudo-Differential
Equation

We consider a class of semilinear equations and present a result on regularity in the
spaces of tempered ultradistributions of Beurling and Roumieu type cf. [18, 34]. We
present results of [12] related to the equation

Au = f + F[u]. (10.4.7)

Here A = a(x, D), f is a given test function in our setting and F[u] is a nonlinear
term given by a suitable infinite series of powers of u. For the semilinear equations
of type (10.4.7), we adopted in [12] a more complicated calculus used for the already
known commutator method for such nonlinearity.
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The operator A is hypoelliptic, and it is of truly infinite order; i.e. its symbol is
bounded from below by a function with a sub-exponential growth. The nonlinear
term is of the form

F[u] =
∞∑

|β|=2

pβu|β|, (10.4.8)

where pβ are smooth functions which are allowed to have sub-exponential growth.
The function u in the nonlinear term under consideration additionally satisfies that
u ∈ H s(Rd), s > d/2. Thus, F[u] is also of sub-exponential growth. Roughly speak-
ing, the main result states that all the solutions of (10.4.7) that are known to be in
H s(Rd) are in fact highly regular, i.e. they are sub-exponentially decaying and ultra-
differentiable. This shows an intrinsic connection of the ΨDO calculus of [37] with
the spaces of ultradistributions.

Before we give the result, we state precisely the conditions on A and F[u].
Let Ap, Mp and ρ be as in Sect. 10.3.1. Let M̃p be another sequence that satisfies

(M.1), (M.2), (M.3)′ and (M.4) and so that Mp ⊂ M̃p. Moreover, for (kp) ∈ R,
denote Ñp = M̃p

∏p
j=1 k j .

A symbol a ∈ Γ
∗,∞
Ap,ρ

(
R

2d
)

is said to be (M̃p)-hypoelliptic, (resp. {M̃p}-
hypoelliptic) if

(i) there exist m, B, c > 0 (resp. there exist (kp) ∈ R such that
∏p

j=1 k j , p ∈ N,
satisfies (M.2) and B, c > 0) such that

|a(x, ξ)| ≥ ceM̃(m|ξ |)eM̃(m|x |)( resp. |a(x, ξ)| ≥ ceÑk p (|ξ |)eÑk p (|x |)), (x, ξ) ∈ Qc
B;

(ii) for every h > 0, there exists C > 0 (resp. there exist h, C > 0) such that

∣
∣Dα

ξ Dβ
x a(x, ξ)

∣
∣ ≤ C

h|α|+|β| Aα+β |a(x, ξ)|
〈(x, ξ)〉ρ(|α|+|β|) , (x, ξ) ∈ Qc

B .

Notice that (M̃p)-hypoelliptic (resp. {M̃p}-hypoelliptic) symbol is just Γ
∗,∞
Ap,ρ

-

hypoellipticwith sub-exponential lower bound eM̃(m|ξ |)eM̃(m|x |) (resp. eÑk p (|ξ |)eÑk p (|x |)).
Next, we introduce the class of nonlinear terms involved in the Eq. (10.4.7).
For β ∈ N

d , let pβ(x) be smooth functions onRd such that for every h > 0, there
exists C > 0 such that

∣
∣Dα

x pβ(x)
∣
∣ ≤ C

h|α|+|β| AαeM̃(h|x |)

M̃α

for all α, β ∈ N
d , (10.4.9)

respectively
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∣
∣Dα

x pβ(x)
∣
∣ ≤ C

h|α|+|β| AαeÑk p (h|x |)

M̃α

∏|α|
j=1 k j

for all α, β ∈ N
d . (10.4.10)

For such a family of functions pβ(x) and u ∈ H s(Rd), s > d/2, we can
consider the function F[u] given by (10.4.8). The condition s > d/2 implies that

F[u] is well defined and continuous on R
d and

∥
∥
∥F[u]e−M̃(h|·|)

∥
∥
∥

L∞(Rd )
< ∞ (resp.

∥
∥
∥F[u]e−Ñk p (h|·|)

∥
∥
∥

L∞(Rd )
< ∞) for some h. This implies that F[u] ∈ S ′∗(Rd).

Our main result in [12] is the following one.

Theorem 10.4 ([12, Theorem 1.2]) Let a ∈ Γ
∗,∞
Ap,ρ

(R2d) be (M̃p)-hypoelliptic (resp.

{M̃p}-hypoelliptic) and let f ∈ S ∗(Rd). Let u ∈ H s(Rd), s > d/2, be a solution of
the equation (10.4.7) with F[u] defined by (10.4.9) and (10.4.8) (resp. (10.4.10) and
(10.4.8)). Then the following properties hold:

(i) For every h > 0, there exists C > 0 (resp. there exist h, C > 0) such that
|u(x)| ≤ Ce−M(h|x |). Moreover, u ∈ C∞(Rd) with the following estimate on its
derivatives: there exists h̃ > 0 such that

sup
α

h̃|α|‖Dαu‖L∞

M̃α

< ∞,

(

resp. sup
α

h̃|α|‖Dαu‖L∞

M̃α

∏|α|
j=1 k j

< ∞
)

.

(ii) Furthermore, if F[u] is a finite sum, then u ∈ S ∗(Rd).

One interesting instance where Theorem 10.4 is applicable is when one takes
A = a(x, D), where a is the symbol given inExample 10.1 (c); here Mp = p!l , Ap =
p!v . Then one can prove that a is (M̃p)-hypoelliptic with M̃p = p!l+l ′ (resp. {M̃p}-
hypoelliptic with M̃p = p!l+l ′/2) for some l ′ > 0 (see [12, Sect. 3]). An interesting
non-trivial example of the nonlinear term F[u] related to (the growth of) this operator
can be given by taking pβ(x) =∑α∈Nd cα,β xα+β ,β ∈ N

d , where the coefficients cα,β

satisfy the following estimate: for every h > 0, there exists C > 0 such that |cα,β | ≤
Ch|α|+|β|/M̃α+β (resp. |cα,β | ≤ Ch|α|+|β|/(M̃α+β

∏|α|+|β|
j=1 k j ), with kp = pl ′/2); see

[12, Sect. 3]. Another interesting instance of the nonlinear term is given by

F[u](x) = P(x) sin(u(x)) = P(x)u(x) +
∞∑

n=2

(−1)n−1P(x)

(2n − 1)! · (u(x))2n−1,

where P is smooth and satisfies the following condition: for every h > 0 there
exists C > 0 such that |Dα P(x)| ≤ Ch|α| Aαe(h|x |)1/(l+l′)

/α!l+l ′ (resp. |Dα P(x)| ≤
Ch|α| Aαe(h|x |)1/(l+l′+ε)

/α!l+l ′ , with arbitrary but fixed ε > 0). Notice that the term
P(x)u(x) can be absorbed in Au, i.e. one can instead consider the operator A1 with
symbol a(x, ξ) − P(x) which is again (M̃p)-hypoelliptic (resp. {Mp}-hypoelliptic).
Similarly, one can consider nonlinear terms of the form
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P(x)(cos(u(x)) − 1) or P(x)(e(u(x))k − 1), k ∈ Z+, fixed,

with P(x) smooth with appropriate growth conditions on the derivatives and at
infinity.

10.5 Complex Powers of Hypoelliptic Operators

10.5.1 Some Results from the Theory of Operators

The main goal of this subsection is to give several important facts about the L2(Rd)

realisations and the spectrum of pseudo-differential operators with symbols in our
class. All the results, we mention here can be found in [36, 39].

Let a ∈ Γ
∗,∞
Ap,ρ

(R2d) and denote by A the unbounded operator on L2(Rd) with

domain D(A) = S ∗(Rd), defined by Aϕ = awϕ, ϕ ∈ S ∗(Rd). Then A is closable
since the restriction of aw to { f ∈ L2(Rd)| aw f ∈ L2(Rd)} defines a closed exten-
sion; as customary, we call this closed extension the maximal realisation of A. The
minimal realisation of A is by definition the closure of A, denoted by A. The next
result states that they are the same in the case of hypoelliptic a.

Proposition 10.6 ([36, Proposition 5.4]) Let a be hypoelliptic and A be the cor-
responding unbounded operator on L2(Rd) defined above. Then the minimal real-
isation A coincides with the maximal realisation. Moreover, A coincides with the
restriction of aw on the domain of A.

This is a known result in the case of finite orderΨDOs; the proposition claims that
it remains true in our setting as well. To better appreciate the result, the reader should
keep in mind that the notion of hypoellipticity in our setting allows the symbol to
decay sub-exponentially at infinity. Having this result, one can deduce the following
consequence.

Corollary 10.1 ([39, Proposition 4.4]) Let a ∈ Γ
∗,∞
Ap,ρ

(R2d) be a hypoelliptic real-

valued symbol. Then its minimal (i.e. maximal) realisation A is a self-adjoint operator
on L2(Rd).

The last result we give is concerning the spectrum ofΨDOs with positive hypoel-
liptic symbols. However, before we can say anything meaningful about the spectrum
of such operators, we need a result on their semi-boundedness. This is a well-known
fact for finite order operators. But in the case of our class of pseudo-differential
operators of infinite order one cannot use the classical Weyl–Hörmander calculus as
the operators go beyond this calculus. The proof is given in [39] and is not a simple
transfer from the well-known finite order case. Here we just quote the proposition
and refer to [39] for its proof.
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Proposition 10.7 ([39, Proposition 4.5])Let b ∈ Γ
∗,∞
Ap,ρ

(R2d) be positive hypoelliptic

symbol. Then, there exists C > 0 such that (bwϕ, ϕ) ≥ −C‖ϕ‖2L2(Rd )
, ∀ϕ ∈ S ∗(Rd).

This result on semi-boundedness allows us to prove the following fact on the
spectrum of infinite order ΨDOs much like for the classical Shubin hypoelliptic
operators (see, for example, the proof of [32, Theorem 4.2.9, p. 163]).

Proposition 10.8 ([39, Proposition 4.6]) Let a ∈ Γ
∗,∞
Ap,ρ

(R2d) be a hypoelliptic real-
valued symbol such that |a(w)| → ∞ as |w| → ∞ and let A be the unbounded
operator on L2(Rd) defined by aw. Then the closure A of A is a self-adjoint operator
having spectrum given by a sequence of real eigenvalues either diverging to +∞ or
to −∞ according to the sign of a at infinity. The eigenvalues have finite multiplicities
and the eigenfunctions belong to S ∗(Rd). Moreover, L2(Rd) has an orthonormal
basis consisting of eigenfunctions of A.

10.5.2 Known Results from the Abstract Theory
of Non-negative Operators and their Complex Powers

In this subsection, we recall several facts from the abstract theory of non-negative
operators on (B)-spaces. In view of our goal to present in the next subsection results
concerning the complex powers of infinite order ΨDOs, most of the facts we recall
here are about the complex powers of non-negative densely defined operators on
(B)-spaces. All results given here are borrowed from [14, 26].

Following Komatsu [26], given a (B)-space X , a closed operator A : D(A) ⊆
X → X is said to be non-negative if (−∞, 0) is contained in the resolvent set of A
and

sup
λ∈R+

λ‖(A + λId)−1‖L b(X,X) < ∞.

In this case, for z ∈ C+ = {ζ ∈ C|Re ζ > 0} and v ∈ D(A[Re z]+1), the functionλ �→
λz−1

(
A(A + λId)−1

)k
v, R+ → X , is Bochner integrable for all integers k > Re z

and by defining

I z
A,kv = γk(z)

∫ ∞

0
λz−1

(
A(A + λId)−1

)k
vdλ, v ∈ D(A[Re z]+1), k > Re z,

where γk(z) = Γ (k)/(Γ (z)Γ (k − z)), we have that I z
A,k+1v = I z

A,kv, for all integers
k > Re z (see [14, Proposition 3.1.3, p. 59]). The operator

J z
A : D(J z

A) = D(A[Re z]+1) ⊆ X → X, J z
Av = I z

A,kv, for any k > Re z,

is closable (cf. [14, Theorem 3.1.8, p. 64]). Balakrishnan defines the power of A with
exponent z as the operator J z

A. If in addition A is densely defined, then Az+ζ = Az Aζ ,
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∀z, ζ ∈ C+ (in particular, Ak = A . . . A︸ ︷︷ ︸
k

) and σ(Az) = {ζ z| ζ ∈ σ(A)}; where ζ z is

defined by the principal branch of logarithm and we put 0z = 0 (cf. [14, Corollary
5.1.12, p. 110] and [14, Theorem 5.3.1, p. 116]).

10.5.3 Complex Powers of Infinite Order Hypoelliptic ΨDOs

Given a hypoelliptic a ∈ Γ
∗,∞
Ap,ρ

(R2d), we know that the unbounded densely defined
operator

A : S ∗(Rd) ⊆ L2(Rd) → L2(Rd), Aϕ = awϕ,

is closable and its closure coincides with its maximal realisation (cf. Sect. 10.5.1).
The main goal of this part is to give sufficient conditions on a and A which will
ensure that the complex power A

z
, z ∈ C+, as defined in Sect. 10.5.2 is in fact given

by a ΨDO modulo a ∗-regularising operator and to find its symbol; incidentally, we
also give precise estimates on this symbol involving the original symbol a. Before
we give the main result, we precisely state the assumption we impose on a.

Let a ∈ Γ
∗,∞
Ap,ρ

(R2d) be hypoelliptic, where the hypoellipticity conditions (10.4.1)

and (10.4.2) hold for some B̃ > 0. We impose the following conditions on a:

(I) Re a(w) ≥ −B̃|Im a(w)| for w ∈ Qc
B̃
;

(II) the densely definedoperator A : S ∗(Rd) ⊆ L2(Rd) → L2(Rd), A = aw|S ∗(Rd ),
is such that A is non-negative.

Let χ̃ ∈ D (Ap)(R2d) in the (Mp) case and χ̃ ∈ D {Ap}(R2d) in the {Mp} case respec-
tively, be such that χ̃ ≥ 0 and χ̃ (w) > max{0,−Re a(w)} when w ∈ Q B̃ . Denote
a0 = a + χ̃ . Possibly for a larger B̃, we infer the following estimate

Re a0(w) > −B̃|Im a0(w)|, ∀w ∈ R
2d , (10.5.1)

and consequently,

|a0(w)| ≤
√

1 + B̃2|a0(w) + λ|, λ ≤
√

1 + B̃2|a0(w) + λ|, (10.5.2)

for all w ∈ R
2d and λ ≥ 0. As a consequence of (10.5.1), a0 never vanishes and for

any z ∈ C+, the function w �→ (a0(w))z , R2d → C, is a well-defined C∞ function
(in (a0(w))z we use the principal branch of the logarithm). The inequalities (10.5.2)
also give the existence of c > 0 such that

|a0(w)| + λ ≤ c|a0(w) + λ|, w ∈ R
2d , λ ≥ 0. (10.5.3)

Thus, employing the identity
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∫ ∞

0

λz−1ζ k

(ζ + λ)k
dλ = ζ z

γk(z)
, (10.5.4)

which is valid for z ∈ C+, k ∈ Nwith k > Re z and ζ ∈ C\{0}with | arg ζ | < π , we
deduce that

∣
∣(a0(w))z

∣
∣ ≤ ck |γk(z)|

∫ ∞

0

λRe z−1|a0(w)|k
(|a0(w)| + λ)k

dλ = ck |γk(z)||a0(w)|Re z

γk(Re z)
,

for all w ∈ R
2d , z ∈ C+, k > Re z, k ∈ Z+. Thus, e−Im z arg(a0(w)) ≤ ck |γk(z)|/

γk(Re z). Hence,

|a0(w)|Re z = ∣∣(a0(w))z ∣∣ eIm z arg(a0(w)) ≤ ck ∣∣(a0(w))z ∣∣ |γk (z̄)|/γk (Re z), (10.5.5)

for all w ∈ R
2d , z ∈ C+, k > Re z, k ∈ Z+.

The main result is the following theorem.

Theorem 10.5 ([36, Theorem 6.1]) Let a ∈ Γ
∗,∞
Ap,ρ

(R2d) be a hypoelliptic symbol
that satisfies (I ) and (I I ) and let a0 and A be defined as above. Then, for every
z ∈ C+ there exists a#z

0 ∈ F S∗,∞
Ap,ρ

(R2d; 0) such that the following conditions hold.

(i) a#z
0 #a#ζ

0 = a#(z+ζ )
0 = a#ζ

0 #a#z
0 , ∀z, ζ ∈ C+.

(ii) When z = k ∈ Z+, a#z
0 is just a0# . . . #a0︸ ︷︷ ︸

k

= a#k
0 . In particular, for z = 1, a#z

0 is

just a0.
(iii) The mapping z �→ a#z

0 , C+ → F S∗,∞
Ap,ρ

(R2d; 0) is continuous.

(iv) (a#z
0 )0(w) = (a0(w))z , w ∈ R

2d , z ∈ C+.

For each fixed vertical strip C+,t = {ζ ∈ C+|Re ζ ≤ t}, t > 0, and k = [t] + 1 ∈
Z+, the following estimate holds: for every h > 0, there exists C > 0 (resp. there
exist h, C > 0) such that

∣
∣Dα

w(a#z
0 ) j (w)

∣
∣ ≤ C

h|α|+2 j A|α|+2 j |γk(z)||a0(w)|Re z

γk(Re z)〈w〉ρ(|α|+2 j)
, (10.5.6)

for all w ∈ R
2d , α ∈ N

2d , j ∈ N, z ∈ C+,t . Furthermore, there exists Rt > 0 such that
a

z
̂ := Rt (a

#z
0 ), z ∈ C+,t , are hypoelliptic symbols in Γ

∗,∞
Ap,ρ

(R2d) and the following
conditions hold:

(v) There exists Bt > 0 such that for every h > 0 (resp. for some h > 0)
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sup
N∈Z+
z∈C+,t

sup
α∈N2d

sup
w∈Qc

Bt m N

∣
∣
∣
∣D

α
wa

z
̂(w) − Dα

w
∑

j<N (a#z
0 ) j (w)

∣
∣
∣
∣ 〈w〉ρ(|α|+2N )γk (Re z)

h|α|+2N A|α|+2N |a0(w)|Re z |γk (z)| < ∞,

sup
z∈C+,t

sup
α∈N2d

sup
w∈R2d

∣
∣
∣
∣D

αa
z
̂(w)

∣
∣
∣
∣ 〈w〉ρ|α|γk (Re z)

h|α| Aα |a0(w)|Re z |γk (z)| < ∞.

(vi) D(A
z
) =

{
v ∈ L2(Rd)| (az

̂)wv ∈ L2(Rd)
}

and there exist ∗-regularising oper-

ators S
z
̂, z ∈ C+,t , such that {γk(Re z)(γk(z))−1S

z
̂| z ∈ C+,t } is an equicontin-

uous subset of L (S ′∗(Rd),S ∗(Rd)) and

A
z = (a

z
̂)w|S ∗(Rd ) + S

z
̂.

Moreover, for each v ∈ L2(Rd), z �→ S
z
̂v, intC+,t → L2(Rd), is analytic and

for each v ∈ D(Ak), z �→ (a
z
̂)wv, intC+,t → L2(Rd), is analytic.

Remark 10.1 Notice that the second estimate in (v) together with (10.5.5) implies
that for every h > 0 (resp. for some h > 0)

sup
z∈C+,t

sup
α∈N2d

sup
w∈R2d

∣
∣
∣Dαa

z
̂(w)

∣
∣
∣ 〈w〉ρ|α|(γk(Re z))2

h|α| Aα|(a0(w))z||γk(z)|2 < ∞. (10.5.7)

10.6 Semigroups Generated by Square Roots
of Non-negative Infinite Order Operators

If A is a non-negative operator with a dense domain in L2(Rd), then it is known
that −A1/2 is the infinitesimal generator of an analytic semigroup (see Sect. 10.6.2
below). The goal of this section is to apply Theorem 10.5 to prove that if a A is
the L2(Rd)-closure of the Weyl quantisation of an appropriate hypoelliptic symbol
in Γ

∗,∞
Ap,ρ

(R2d), then all the operators in the semigroup are pseudo-differential with

symbols in Γ
∗,∞
Ap,ρ

(R2d) modulo ∗-regularising operators. The heat parametrix is the
key ingredient in the proof.

10.6.1 The Heat Parametrix

We assume that b is a hypoelliptic symbol in Γ
∗,∞
Ap,ρ

(R2d) for which the condition

(10.4.2) holds on the whole R
2d . Furthermore, we assume that there exists c > 0

such that
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Re b(w) > c|Im b(w)|, ∀w ∈ R
2d; (10.6.1)

hence Re b(w) > 0, ∀w ∈ R
2d . This implies that (10.4.1) also holds on the whole

R
2d . The goal is to find a smooth family of symbols t → u(t), [0,∞) → Γ

∗,∞
Ap,ρ

(R2d),
which solve

{
(∂t + bw)(u(t))w = K(t), t ∈ [0,∞),

(u(0))w = Id,
(10.6.2)

for some K ∈ C∞([0,∞);Lb(S ′∗(Rd),S ∗(Rd))). For this purpose, we consider
the system

⎧
⎨

⎩

∂t u j +∑k+l= j

∑
|μ+ν|=l

(−1)|ν|
μ!ν!2l ∂

μ
ξ Dν

x b · ∂ν
ξ Dμ

x uk = 0, j ∈ N,

u0(0, x, ξ) = 1,
u j (0, x, ξ) = 0, j ∈ Z+.

(10.6.3)

There exist u j ∈ C∞(R × R
2d), j ∈ N, which solve (10.6.3); clearly, u0(t, x, ξ) =

e−tb(x,ξ). The important fact about u j , j ∈ N, is that they satisfy uniform estimates
on the derivatives and growths which will make

∑
j u j (t, ·) a well-defined smooth

function on [0,∞)with values in F S∗,∞
Ap ,ρ

(R2d; 0). In fact, one can prove the following
estimate (see [36, Lemma 7.8]): for every h > 0, there exists C > 0 (resp. there exist
h, C > 0) such that

|Dn
t Dα

wu j (t, w)| ≤ Cn!h|α|+2 j A|α|+2 j (Re b(w))n 〈w〉−ρ(|α|+2 j)e− t
4 Re b(w),

for all α ∈ N
2d , n ∈ N, (t, w) ∈ [0,∞) × R

2d . Employing Taylor formula, this
implies that for every h > 0, there exists C > 0 (there exist h, C > 0) such that

|∂n
t Dα

wu j (t, w) − ∂n
t Dα

wu j (t0, w)|
≤ C |t − t0|(n + 1)!h|α|+2 j A|α|+2 j (Re b(w))n+1 〈w〉−ρ(|α|+2 j),

(10.6.4)

for all α ∈ N
2d , n, j ∈ N, w ∈ R

2d , t, t0 ∈ [0,∞), which gives the continuity of the
mapping t �→∑

j ∂n
t u j (t, ·), [0,∞) → F S∗,∞

Ap,ρ
(R2d; 0), for each n ∈ N. Similarly,

by expanding ∂n
t Dα

wu j (t, w) at t0 up to order 1, we can conclude that the above
mappings are differentiable and one can deduce the following result.

Proposition 10.9 ([36, Lemmas 7.9 and 7.10]) The following statements hold true.
(a) The mapping

t �→
∑

j

u j (t, ·), [0,∞) → F S∗,∞
Ap,ρ

(R2d; 0),

is in C∞([0,∞); F S∗,∞
Ap,ρ

(R2d; 0)) and ∂n
t (
∑

j u j (t, ·)) =∑ j ∂n
t u j (t, ·), n ∈ N.
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(b) There exists R > 1 such that the C∞-function

u(t, w) =
∞∑

n=0

(1 − χn,R(w))un(t, w) = R(
∑

j

u j )(t, w)

satisfies the following condition: for every h > 0, there exists C > 0 (resp. there exist
h, C > 0) such that

|Dn
t Dα

wu(t, w)| ≤ Cn!h|α| Aα (Re b(w))n 〈w〉−ρ|α|e− t
4 Re b(w), (10.6.5)

for all α ∈ N
2d , n ∈ N, (t, w) ∈ [0,∞) × R

2d and

sup
N∈Z+

sup
α∈N2d

n∈N
sup

w∈Qc
3Rm N

t∈[0,∞)

∣
∣
∣Dn

t Dα
w

(
u(t, w) −∑ j<N u j (t, w)

)∣
∣
∣ 〈w〉ρ(|α|+2N )

n!h|α|+2N A|α|+2N (Re b(w))n e− t
4 Re b(w)

≤ C.

We claim the mapping u : t �→ u(t, ·) solves (10.6.2). In fact, we have:
Theorem 10.6 ([36, Theorem 7.11]) The C∞ function u(t, w) constructed in
Proposition 10.9 is such that the mapping u : t �→ u(t, ·), [0,∞) → Γ

∗,∞
Ap,ρ

(R2d),

belongs to C∞([0,∞);Γ
∗,∞
Ap,ρ

(R2d)). The mapping t �→ (u(t))w is in both

C∞([0,∞);Lb(S
∗(Rd),S ∗(Rd))) and C∞([0,∞);Lb(S

′∗(Rd),S ′∗(Rd))).

Moreover, (u(t))w satisfy

{
(∂t + bw)(u(t))w = K(t), t ∈ [0,∞),

(u(0))w = Id,
(10.6.6)

where K ∈ C∞([0,∞);Lb(S ′∗(Rd),S ∗(Rd))).
For each t ≥ 0, (u(t))w ∈ L (L2(Rd)) and there exists C > 0 such that

‖(u(t))w‖L b(L2(Rd )) ≤ C, for all t ≥ 0.

The mapping t �→ (u(t))w, (0,∞) → Lb(L2(Rd)), is continuous and

(u(t))w → (u(0))w = Id, as t → 0+, in Lp(L2(Rd)).

Furthermore, for each n ∈ Z+, (∂n
t u(t))w ∈ L (L2(Rd)), for all t > 0. The map-

ping t �→ (u(t))w, (0,∞) → Lb(L2(Rd)), is smooth and ∂n
t (u(t))w = (∂n

t u(t))w.
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10.6.2 Semigroup Generated by the Square Root
of a Non-negative Hypoelliptic Operator

Now we have all the ingredients we need to briefly outline the proof of the result, we
announced at the beginning of Sect. 10.6.

Let a ∈ Γ
∗,∞
Ap,ρ

(R2d) be a hypoelliptic symbol which satisfies the assumptions in

Theorem 10.5 and let a0 ∈ Γ
∗,∞
Ap,ρ

(R2d) be the symbol defined in Theorem 10.5. By
this theorem, with z = 1/2, we concluded the existence of a hypoelliptic symbol

a
1/2
̂ ∈ Γ

∗,∞
Ap,ρ

(R2d) and a ∗-regularising operator S1 such that

A
1/2 = (a1/2

̂
)w|S ∗(Rd ) + S1 with D(A

1/2
) = {v ∈ L2(Rd)

∣
∣
(
a
1/2
̂
)w

v ∈ L2(Rd)
}

and the estimates in part (v) of Theorem 10.5 hold true with k = 1. By (v) for N = 1

and α = 0, one obtains Re a
1/2
̂ (w) > c′∣∣Im a

1/2
̂ (w)

∣
∣, ∀w ∈ Qc

B , for some B, c′ > 0

(cf. (10.5.1)). Clearly, we can assume that a
1/2
̂ satisfies (10.4.1) and (10.4.2) for

this B. Take ˜̃χ ∈ D (Ap)(R2d) (resp. ˜̃χ ∈ D {Ap}(R2d)) such that 0 ≤ ˜̃χ ≤ 1, ˜̃χ = 1
on a small neighbourhood of Q B and ˜̃χ = 0 on the complement of a slightly larger

neighbourhood and define b = ˜̃χ + (1 − ˜̃χ)a
1/2
̂ . Then b is a hypoelliptic symbol

in Γ
∗,∞
Ap,ρ

(R2d) that satisfies (10.4.1), (10.4.2) and (10.6.1) on R
2d . Furthermore, for

every h > 0, there exists C > 0 (resp. there exist h, C > 0) such that

∣
∣Dα

wb(w)
∣
∣ ≤ Ch|α| Aα|a0(w)|1/2〈w〉−ρ|α|, w ∈ R

2d , α ∈ N
2d . (10.6.7)

Moreover, A
1/2 = bw|S ∗(Rd ) + S with S a ∗-regularising operator and

D(A
1/2

) = {v ∈ L2(Rd)| bwv ∈ L2(Rd)
}
.

Now, we apply Theorem 10.6 to b to obtain (10.6.6). Since t �→ S(u(t))w belongs to
C∞([0,∞);Lb(S ′∗(Rd),S ∗(Rd))) (u ∈ C∞([0,∞);Lb(S ′∗(Rd),S ′∗(Rd))))
we have

{
(∂t + bw + S)(u(t))w = K̃(t), t ∈ [0,∞),

(u(0))w = Id,
(10.6.8)

for some K̃ ∈ C∞([0,∞);Lb(S ′∗(Rd),S ∗(Rd))).
On the other hand, since A is non-negative and densely defined, [14, Theorem

5.5.2, p. 131] (cf. [14, Theorem 5.4.1, p. 123; Theorem A.7.6, p. 329]) implies that

−A
1/2

is the infinitesimal generator of an analytic semigroup T (t) of amplitude less
than π/2 and
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T (t) = 2

π
lim

s→∞

∫ s

0
λ sin(tλ)(A + λ2Id)−1dλ, t > 0, (10.6.9)

where the limit exists in Lb(L2(Rd)). In fact, one can prove that

T (t) ∈ L (S ∗(Rd),S ∗(Rd)), for all t ≥ 0,

and t �→ T (t) belongs to C∞([0,∞);Lb(S ∗(Rd),S ∗(Rd))) (see [36, Lemma
7.14]); furthermore, T (t) and (u(t))w are the same modulo a smooth family of ∗-
regularising operators. More precisely, we have the following result.

Theorem 10.7 ([36, Theorem 7.12]) Let a be a hypoelliptic symbol in Γ
∗,∞
Ap,ρ

(R2d)

that satisfies the assumptions of Theorem 10.5 and let T (t), t ≥ 0, be the analytic

semigroup generated by −A
1/2

. There exists u ∈ C∞(R × R
2d) such that the map-

ping t �→ u(t) = u(t, ·) belongs to C∞([0,∞);Γ
∗,∞
Ap,ρ

(R2d)) and T (t) = (u(t))w +
Q(t), where the mapping t �→ Q(t)belongs toC∞([0,∞);Lb(S ′∗(Rd),S ∗(Rd))).
Moreover, the function u satisfies the following estimate: there exists 0 < c1 < 1 such
that for every h > 0, there exists C > 0 (resp. there exist h, C > 0) such that

|Dn
t Dα

wu(t, w)| ≤ Cn!h|α| Aα|a0(w)|n/2〈w〉−ρ|α|e−c1t |a0(w)|1/2 , (10.6.10)

for all α ∈ N
2d , n ∈ N, (t, w) ∈ [0,∞) × R

2d , where a0 ∈ Γ
∗,∞
Ap,ρ

(R2d) is the symbol
defined in the statement of Theorem 10.5.

Furthermore, (u(0))w = Id, (u(t))w ∈ L (L2(Rd)) for every t ≥ 0, and there
exists C > 0 such that ‖(u(t))w‖L b(L2(Rd )) ≤ C, for all t ≥ 0. The mapping t �→
(u(t))w, R+ → Lb(L2(Rd)), is continuous and (u(t))w → Id, as t → 0+, in
Lp(L2(Rd)).

For each n ∈ Z+, (∂n
t u(t))w ∈ L (L2(Rd)), ∀t > 0, and the mapping t �→

(u(t))w, belongs to C∞(R+;Lb(L2(Rd))), with ∂n
t (u(t))w = (∂n

t u(t))w, n ∈ Z+.

Note that with our semigroup related to A the unique bounded solution of utt − Au =
0, u(0) ∈ L2(Rd), can be given as an action of pseudo-differential operators plus a
smooth family of ∗-regularising operators on u(0) (cf. [14, Theorem 6.3.2, p. 165]).
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Chapter 11
New Progress on Weighted
Trudinger–Moser and
Gagliardo–Nirenberg, and Critical
Hardy Inequalities on Stratified Groups

Michael Ruzhansky and Nurgissa Yessirkegenov

Abstract In this paper, we present a summary of our recent research on local and
global weighted (singular) Trudinger–Moser inequalities with remainder terms, crit-
ical Hardy-type and weighted Gagliardo–Nirenberg inequalities on general strati-
fied groups. These include the cases of Rn and Heisenberg groups. Moreover, the
described critical Hardy-type inequalities give the critical case of the Hardy-type
inequalities from [4].
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11.1 Introduction

In this short survey, we give a summary of our recent research on local and global
weighted (singular) Trudinger–Moser inequalities with remainder terms, critical
Hardy-type and weighted Gagliardo–Nirenberg inequalities on general stratified
groups. The full proofs of the obtained results will appear elsewhere.

The classical Trudinger–Moser inequality takes the form
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where ωn−1 is the surface area of the unit sphere in Rn and αn = nω
1/(n−1)
n−1 . Here Ω

is a bounded smooth domain in R
n , and Ln

1(Ω) is the completion of C∞
0 (Ω) with

respect to the norm ‖ f ‖Ln(Ω) + ‖∇ f ‖Ln(Ω), where ∇ is the usual gradient in R
n .

The Trudinger–Moser inequality (11.1.1) was obtained independently by Pohožaev
[23], Yudovič [33], and Trudinger [30]. Then, the optimal constant αn was found by
Moser [18]. The inequality (11.1.1) was obtained in the higher-order Sobolev spaces
by Adams [1].

Adimurthi and Sandeep [2] introduced the following weighted (singular)
Trudinger–Moser inequality

sup
f ∈Ln

1(Ω),‖∇ f ‖Ln (Ω)≤1

1

|Ω|
∫

Ω

exp(α| f (x)| n
n−1 )

dx

|x |β
{

< ∞, α ≤ n−β

n αn;
= ∞, otherwise,

(11.1.2)

where β ∈ [0, n). In [8, 9], the authors proved that the supremum here is attained
for 0 < α ≤ 2π(2 − β) and for any bounded domain Ω ⊂ R

2.
Since we are interested, in particular, in the Trudinger–Moser inequality on Lie

groups, let us recall some results in this direction. In the setting of stratified groups,
(11.1.1) was proven by Saloff-Coste in [29] with horizontal gradient instead of the
Euclidean gradient in (11.1.1). Then, the sharp exponent αQ for the Heisenberg
groups was obtained in [5] and for the general stratified groups in [3]. However,
when Ω has infinite volume, the above inequalities are meaningless.

Most of the existing proofs of the Trudinger–Moser inequalities on unbounded
domains of the Euclidean space or of the Heisenberg group are based on rear-
rangement arguments, which are not readily available on the general stratified
Lie groups. Therefore, we are interested in obtaining such inequalities on strati-
fied groups. However, Yang [32] showed the following Trudinger–Moser inequal-
ities on the entire Heisenberg group without using a rearrangement argument,
namely by gluing local estimates with the help of cutoff functions. Let us recall
this result: Let Q = 2n + 2 is the homogeneous dimension of Hn . Let τ ∈ R

+,
Q′ = Q/(Q − 1) and ω2n−1 is the surface area of the unit sphere in R

2n . Let
αQ = Qσ

1/(Q−1)
Q with σQ = Γ (1/2)Γ (n + 1/2)ω2n−1/n!. Then for any β ∈ [0, Q)

and α ∈ (0, αQ(1 − β/Q)), we have

sup
‖ f ‖1,τ ≤1

∫
Hn

1

(ρ(ξ))β

(
exp(α| f (ξ)|Q′

) −
Q−2∑
k=0

αk | f (ξ)|k Q′

k!

)
dξ < ∞, (11.1.3)

where

‖ f ‖1,τ =
(∫

Hn

(|∇Hn f (ξ)|Q + τ | f (ξ)|Q)dξ

)1/Q

,

and ρ(ξ) = (|z|4 + t2)1/4 with z = (x, y) ∈ R
2n and ξ = (z, t) ∈ H

n . Moreover, it
was shown there that in the case α > αQ(1 − β/Q) the integral in (11.1.3) is still
finite for any f ∈ L Q

1 (Hn), but the supremum is infinite.
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We also refer to [6, 7, 14–17] for the Trudinger–Moser inequalities on Heisenberg
groups.

However, to obtain the weighted Trudinger–Moser inequality on fractional order
Sobolev space even on Heisenberg groups, the simplest nontrivial stratified groups,
is a much more delicate matter.

In this paper,we show theTrudinger–Moser inequality on fractional order Sobolev
space on stratified groups using the strategy developed in [13, 22].

We are also interested in obtaining critical cases of the Hardy-type inequality,
which have been obtained on stratified groups in [4]: Let G be a stratified Lie group
of homogeneous dimension Q, and let L be a sub-Laplacian on G (see Sect. 11.2
for more details).

Hardy-type inequality [4, Theorem A]. Let 1 < p < ∞ and Tγ f = | · |−γ

(−L )−γ /2 f with 0 < γ < Q/p, where | · | is a homogeneous norm on G. Then
the operator Tγ extends uniquely to a bounded operator on L p(G), and we have

‖Tγ ‖L p(G)→L p(G) ≤ 1 + Cγ + O(γ 2) (11.1.4)

for a particular choice of a homogeneous norm | · |0. We refer to [4] for the history
of (11.1.4).

In this paper when γ = Q/p, we describe different types of the critical Hardy
inequalities, which can be thought as a critical case of (11.1.4).

For the convenience of the reader let us now briefly recapture the main results of
this short survey. Let G be a stratified Lie group of homogeneous dimension Q and
let L be a sub-Laplacian on G. Let | · | be homogeneous norm on G. Let B(x0, r)

is the quasi-ball of radius r in G centered at the origin x0. Let L p
Q/p(B(x0, r)) with

1 < p < ∞ be the completion of C∞
0 (B(x0, r)) with respect to the norm

‖ f ‖L p
Q/p(B(x0,r)) =

(∫
B(x0,r)

(|(−L )
Q
2p f (x)|p + | f (x)|p)dx

)1/p

. (11.1.5)

Then, we have

• (Local weighted Trudinger–Moser inequalities I). Let 1 < p < ∞ and β ∈
[0, Q). Let r > 0 be given, and let x0 be any point of G. Then there exist positive
constants C1 = C1(p, Q, α, β, r) and C2 = C2(p, Q, β), so that we have

∫
B(x0,r)

1

| · |β

⎛
⎝exp(α| f (x)|p′

) −
∑

0≤k<p−1, k∈N

αk | f (x)|kp′

k!

⎞
⎠ dx

≤ C1‖ f ‖p
L p

Q/p(B(x0,r))
, (11.1.6)

for any α ∈ [0, C2) and for all f ∈ L p
Q/p(B(x0, r)) satisfying ‖ f ‖L p

Q/p(B(x0,r)) ≤ 1,

where 1/p + 1/p′ = 1, and the space L p
Q/p(B(x0, r)) is defined in (11.1.5).
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• (Local weighted Trudinger–Moser inequalities II). Let β ∈ [0, Q) and let αQ

be as in Theorem 11.3.8. Let r > 0 be given and let x0 be any point of G. Then
there exists a positive constant C = C(Q, r, β) such that

∫
B(x0,r)

1

| · |β
(
exp(α| f (x)|Q′

) −
Q−2∑
k=0

αk | f (x)|k Q′

k!

)
dx

≤ C‖∇H f ‖Q
L Q(B(x0,r))

(11.1.7)

holds for all f ∈ L Q
1 (B(x0, r)) satisfying ‖∇ f ‖L Q(B(x0,r)) ≤ 1 and any α ∈ [0, αQ

(1 − β/Q)], where Q′ = Q/(Q − 1), and the space L Q
1 (B(x0, r)) is defined in

(11.1.5).
• (Weighted Trudinger–Moser inequalities with remainder terms I). Let 1 <

p < ∞ and Q/(Q − β) < μ < ∞ with β ∈ [0, Q). Then, there exist positive
constants C2 = C2(p, Q, β, μ) and C3 = C3(p, Q, α, β, μ) such that

∫
G

1

| · |β

⎛
⎝exp(α| f (x)|p′

) −
∑

0≤k<p−1, k∈N

αk | f (x)|kp′

k!

⎞
⎠ dx

≤ C3(‖ f ‖p
L p(G) + ‖ f ‖p/μ

L p(G)) (11.1.8)

holds for all α ∈ (0, C2), and for all functions f ∈ L p
Q/p(G) satisfying

‖(−L )
Q
2p f ‖L p(G) ≤ 1, where 1/p + 1/p′ = 1.

• (Weighted Trudinger–Moser inequalities with remainder terms II). Let αQ be
as in Theorem 11.3.8. Then we have

sup
‖ f ‖

L Q
1 (G)

≤1

∫
G

1

| · |β
(
exp(α| f (x)|Q′

) −
Q−2∑
k=0

αk | f (x)|k Q′

k!

)
dx < ∞ (11.1.9)

for any β ∈ [0, Q) and α ∈ (0, αQ(1 − β/Q)), where Q′ = Q/(Q − 1). When
α > αQ(1 − β/Q), the integral in (11.1.9) is still finite for any f ∈ L Q

1 (G), but
the supremum is infinite.

• (Critical Hardy-type inequalities I). Let 1 < p < ∞ and β ∈ [0, Q). Let r > 0
be given, and let x0 be any point of G. Then for any p ≤ q < ∞, there exists a
positive constant C = C(p, Q, β, r, q) such that

∥∥∥∥∥
f

| · | β

q

∥∥∥∥∥
Lq (B(x0,r))

≤ C(‖ f ‖L p(B(x0,r)) + ‖(−L )
Q
2p f ‖L p(B(x0,r))) (11.1.10)

holds for all f ∈ L p
Q/p(B(x0, r)), where the space L p

Q/p(B(x0, r)) is defined in
(11.1.5).
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• (Critical Hardy-type inequalities II). Let β ∈ [0, Q). Let r > 0 be given, and
let x0 be any point ofG. Then for any Q ≤ q < ∞, there exists a positive constant
C = C(Q, β, r, q) such that

∥∥∥∥∥
f

| · | β

q

∥∥∥∥∥
Lq (B(x0,r))

≤ C‖∇H f ‖L Q(B(x0,r)) (11.1.11)

holds for all f ∈ L Q
1 (B(x0, r)), where the space L Q

1 (B(x0, r)) is defined in
(11.1.5).

• (Critical Hardy-type inequalities III) Let 1 < p1 < p3 < ∞ and p1 < p2 <

(p3 − 1)p
′
1. Then, there exists a positive constant C = C(p1, p2, p3, Q) such that

∥∥∥∥∥∥∥
f(

log
(

e + 1
|·|

)) p3
p2 | · | Q

p2

∥∥∥∥∥∥∥
L p2 (G)

≤ C(‖ f ‖L p1 (G) + ‖(−L )
Q

2p1 f ‖L p1 (G))

(11.1.12)
holds for all f ∈ L p1

Q/p1
(G), where 1/p1 + 1/p

′
1 = 1.

• (Weighted Gagliardo–Nirenberg inequalities). Let 1 < p < ∞ and β ∈ [0, Q)

with Q/(Q − β) < μ < ∞. Then for any p ≤ q < ∞, there exists a positive
constant C = C(p, Q, β, μ, q) such that

∥∥∥∥∥
f

| · | β

q

∥∥∥∥∥
Lq (G)

≤ C(‖(−L )
Q
2p f ‖1−p/q

L p(G) ‖ f ‖p/q
L p(G)

+ ‖(−L )
Q
2p f ‖1−p/(qμ)

L p(G) ‖ f ‖p/(qμ)

L p(G) )

(11.1.13)
holds for all f ∈ L p

Q/p(G).

We note that the inequalities (11.1.8) and (11.1.9) are generalized versions of
the inequality (11.1.3). Moreover, (11.1.10), (11.1.11), and (11.1.12) give the crit-
ical cases of the Hardy-type inequalities (11.1.4). Similarly to (11.1.8), (11.1.12)
and (11.1.13) were investigated in the Euclidean setting in [20]. For the so-called
Caffarelli–Kohn–Nirenberg-type inequalities, similar to (11.1.13), we refer to [24]
on stratified groups, to [25, 26] on general homogeneous groups, to [31] on Lie
groups of polynomial growth and to [19, 28] on Riemannian manifolds as well as
references therein.

The remaining part of this note is organized as follows. In Sect. 11.2, we briefly
recall the necessary concepts of stratified Lie groups and fix the notation. The local
and global weighted Trudinger–Moser inequalities with remainder terms on stratified
groups are described in more detail in Sect. 11.3. Finally, in Sects. 11.4 and 11.5,
we discuss the critical Hardy-type and weighted Gagliardo–Nirenberg inequalities
on stratified groups.
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11.2 Preliminaries

In this section, we very briefly recall the necessary notation concerning the setting
of stratified groups.

We say that G = (Rn, ◦) is a stratified group (or a homogeneous Carnot group)
if it satisfies the following two conditions:

• Let Ni ∈ N for i = 1, . . . , r with N = N1. Let x ′ ≡ x (1) ∈ R
N and x (k) ∈ R

Nk for
k = 2, . . . , r . Then we have the decomposition R

n = R
N × . . . × R

Nr , and for
every λ > 0 the dilation δλ : Rn → R

n given by

δλ(x) = δλ(x ′, x (2), . . . , x (r)) := (λx ′, λ2x (2), . . . , λr x (r))

is an automorphism of the group G.
• Let N be as in above. Let X1, . . . , X N be the left invariant vector fields onG such
that Xk(0) = ∂

∂xk
|0 for k = 1, . . . , N . Then we have

rank(Lie{X1, . . . , X N }) = n,

for every x ∈ R
n , that is, the iterated commutators of X1, . . . , X N span the Lie

algebra of the group G.

Such groups have been thoroughly investigated by Folland [10].We also refer to [12]
(see also [11]) for more detailed discussions from the point of view of more general
stratified Lie groups.

Recall that the homogeneous dimension of G is defined by

Q =
r∑

k=1

k Nk, N1 = N .

Let us also recall that the standard Lebesgue measure dx on R
n is the Haar

measure forG (see, e.g., [11, Proposition 1.6.6]). The (canonical) sub-Laplacian and
horizontal gradient on the stratified group G are defined by

L =
N∑

k=1

X2
k

and
∇H := (X1, . . . , X N ),

respectively.
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11.3 Weighted Trudinger–Moser Inequalities
with Remainder Terms

In this section, we discuss local and global weighted Trudinger–Moser inequalities
on stratified group G.

First, let us recall the following unweighted Trudinger–Moser and Gagliardo–
Nirenberg inequalities on graded groups, which include the cases ofRn , Heisenberg,
and general stratified groups:

Theorem 11.3.1 ([27, Theorem 3.3])] Let G be a graded Lie group of homogeneous
dimension Q, and let R be a positive Rockland operator of homogeneous degree ν.
Then, there exists a positive constant C̃1 = C̃1(p, Q) such that

‖ f ‖Lq (G) ≤ C̃1q
1−1/p‖R Q

νp f ‖1−p/q
L p(G) ‖ f ‖p/q

L p(G), 1 < p < ∞, (11.3.1)

holds for any q with p ≤ q < ∞ and all functions f ∈ L p
Q/p(G).

Theorem 11.3.2 ([27, Theorem 3.5]) Let G be a graded group of homogeneous
dimension Q, and let R be a positive Rockland operator of homogeneous degree ν.
Then, there exist positive constants α and C̃2 such that

∫
G

⎛
⎝exp(α| f (x)|p′

) −
∑

0≤k<p−1, k∈N

1

k! (α| f (x)|p′
)k

⎞
⎠ dx ≤ C̃2‖ f ‖p

L p(G)
, 1 < p < ∞,

(11.3.2)
holds for any function f ∈ L p

Q/p(G) satisfying ‖R Q
νp f ‖L p(G) ≤ 1, where 1/p +

1/p′ = 1.

Remark 11.3.3 ([27, Remark 3.6]) We note that the constant C̃2 in (11.3.2) can be
expressed in terms of the constant C̃1 = C̃1(p, Q) from (11.3.1) as follows

C̃2 = C̃2(α) =
∑

k≥p−1, k∈N

kk

k! (p′C̃1
p′
α)k .

Then, it is easy to see that the inequality (11.3.2) is valid for all α ∈ (0, (ep′C̃1
p′
)−1)

and C̃2(α).

We also recall the following result:

Theorem 11.3.4 ([3, Theorem 2.6]) Let G be a stratified group with homogeneous
dimension Q, and let uQ be a singular solution for the subelliptic Q-Laplacian with
pole at 0 ∈ G. Then, there exists a positive constant aQ such that the function

N (x) = exp(−aQuQ(x)) (11.3.3)

is a homogeneous norm on G.
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From Theorems 11.3.1 and 11.3.2, one can obtain the following corollary:

Corollary 11.3.5 Let G be a stratified group of homogeneous dimension Q. Let
1 < p < ∞ and 1/p + 1/p′ = 1. Then, there exist some positive constants α and
C̃3 = C̃3(p, Q, α) such that

∫
Ω

exp(α| f (x)|p′
)dx ≤ C̃3 (11.3.4)

holds for any bounded smooth domain Ω ⊂ G, and for all functions f ∈ L p
Q/p(Ω)

satisfying ‖ f ‖L p
Q/p(Ω) ≤ 1.

Remark 11.3.6 Remark 11.3.3 shows that the inequality (11.3.4) is valid for all

α ∈ [0, (ep′ C̃1
p′
)−1), where C̃1 is defined in (11.3.1). We also note that the smallest

constant C̃1 (and hence also C̃2) can be expressed in the variational form as well as
in terms of the ground state solutions of the nonlinear Schrödinger-type equations
(see [27, Sect. 5]).

UsingCorollary 11.3.5,we can obtain the followingTrudinger–Moser inequalities
on fractional order Sobolev space.

Theorem 11.3.7 Let G be a stratified Lie group of homogeneous dimension Q, and
let | · | be a homogeneous norm on G. Let β ∈ [0, Q) and 1 < p < ∞. Let r > 0
be given, and let x0 be any point of G. Then there exist some positive constants
C1 = C1(p, Q, α, β, r) and C2 = C2(p, Q, β) such that

∫
B(x0,r)

1

| · |β

⎛
⎝exp(α| f (x)|p′

) −
∑

0≤k<p−1, k∈N

αk | f (x)|kp′

k!

⎞
⎠ dx

≤ C1‖ f ‖p
L p

Q/p(B(x0,r))

(11.3.5)

holds for any α ∈ [0, C2) and all f ∈ L p
Q/p(B(x0, r)) satisfying ‖ f ‖L p

Q/p(B(x0,r)) ≤ 1,

where the space L p
Q/p(B(x0, r)) is defined in (11.1.5) and 1/p + 1/p′ = 1.

In the case p = Q, applying [3, Theorem 4.1], assuming ‖∇H f ‖L Q(B(x0,r)) ≤ 1 and
using the strategy developed in [32], we can also obtain the following Theorems
11.3.8 and 11.3.9:

Theorem 11.3.8 Let G be a stratified Lie group of homogeneous dimension Q, and
let | · | be a homogeneous norm on G. Let β ∈ [0, Q), and let r > 0 be given, and
let x0 be any point of G. Then, there exists a positive constant C = C(Q, r, β) such
that

∫
B(x0,r)

1

| · |β
(
exp(α| f (x)|Q′

) −
Q−2∑
k=0

αk | f (x)|k Q′

k!

)
dx ≤ C‖∇H f ‖Q

L Q(B(x0,r))

(11.3.6)
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holds for all f ∈ L Q
1 (B(x0, r)) satisfying ‖∇ f ‖L Q(B(x0,r)) ≤ 1 and any α ∈ [0, αQ

(1 − β/Q)]withαQ = QcQ′−1
Q , where Q′ = Q/(Q − 1), and the space L Q

1 (B(x0, r))

is defined in (11.1.5). Here cQ = ∫
℘

|∇H N (y)|Qdσ(y), N (x) is a homogeneous norm
on G (see (11.3.3)), and ℘ := {x ∈ G : |x | = 1} is the unit sphere with respect to
the homogeneous norm N from Theorem 11.3.4.

Theorem 11.3.9 Let G be a stratified Lie group of homogeneous dimension Q, and
let | · | be a homogeneous norm on G. Let αQ be as in Theorem 11.3.8. Then, we have

sup
‖ f ‖

L Q
1 (G)

≤1

∫
G

1

| · |β
(
exp(α| f (x)|Q′

) −
Q−2∑
k=0

αk | f (x)|k Q′

k!

)
dx < ∞ (11.3.7)

for any β ∈ [0, Q) and α ∈ (0, αQ(1 − β/Q)), where Q′ = Q/(Q − 1). When α >

αQ(1 − β/Q), the integral in (11.3.7) is still finite for any f ∈ L Q
1 (G), but the

supremum is infinite.

Remark 11.3.10 In the case when G is the Heisenberg group, and | · | is the Kaplan
distance, the obtained Theorems 11.3.8 and 11.3.9 were established in [32].

Nowwe introduce theweightedTrudinger–Moser inequalitywith remainder terms
on the entire stratified group.

Theorem 11.3.11 Let G be a stratified Lie group of homogeneous dimension Q,
and let | · | be a homogeneous norm on G. Let 1 < p < ∞ and Q/(Q − β) < μ <
∞ with β ∈ [0, Q). Then, there exist positive constants C2 = C2(p, Q, β, μ) and
C3 = C3(p, Q, α, β, μ) such that

∫
G

1

| · |β

⎛
⎝exp(α| f (x)|p′

) −
∑

0≤k<p−1, k∈N

αk | f (x)|kp′

k!

⎞
⎠ dx ≤ C3(‖ f ‖p

L p(G)
+ ‖ f ‖p/μ

L p(G)
)

(11.3.8)
holds for all α ∈ (0, C2) and all functions f ∈ L p

Q/p(G) satisfying ‖(−L )
Q
2p f ‖L p(G)

≤ 1, where 1/p + 1/p′ = 1.

If we take supremum over ‖ f ‖L p
Q/p(G) ≤ 1 in (11.3.8), then we obtain the following

weighted Trudinger–Moser inequality:

Corollary 11.3.12 Let G be a stratified Lie group of homogeneous dimension Q,
and let | · | be a homogeneous norm on G. Let 1 < p < ∞ and β ∈ [0, Q). Then,
there exist positive constants C2 = C2(p, Q, β) and C3 = C3(p, Q, α, β) such that

sup
‖ f ‖L

p
Q/p (G)

≤1

∫
G

1

| · |β

⎛
⎝exp(α| f (x)|p′

) −
∑

0≤k<p−1, k∈N

αk | f (x)|kp′

k!

⎞
⎠ dx ≤ C3

(11.3.9)
holds for all α ∈ (0, C2), where 1/p + 1/p′ = 1.
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Remark 11.3.13 In the special case, when G is the Heisenberg group and | · | is the
Kaplan distance with p = Q, Corollary 11.3.12 was obtained in [32, Theorem 1.1].
We note that when β = 0, the unweighted Trudinger–Moser inequality similar to
(11.3.8) was investigated in [21] on G = (Rn,+) with L =  the Laplacian, and
in [27, Theorem 3.5] on the graded groups G with the Rockland operator.

11.4 Critical Hardy-Type Inequalities

In this section, we show critical Hardy-type inequalities, which are critical case of
(11.1.4) when γ = Q/p.

Theorem 11.4.1 Let G be a stratified Lie group of homogeneous dimension Q, and
let | · | be a homogeneous norm on G. Let 1 < p < ∞ and β ∈ [0, Q). Let r > 0 be
given, and let x0 be any point of G. Then for any p ≤ q < ∞, there exists a positive
constant C = C(p, Q, β, r, q) such that

∥∥∥∥∥
f

| · | β

q

∥∥∥∥∥
Lq (B(x0,r))

≤ C‖ f ‖L p
Q/p(B(x0,r)) (11.4.1)

holds for all f ∈ L p
Q/p(B(x0, r)), where the space L p

Q/p(B(x0, r)) is defined in
(11.1.5).

In the case p = Q, we have the following improved version of Theorem 11.4.1.

Theorem 11.4.2 Let G be a stratified Lie group of homogeneous dimension Q, and
let | · | be a homogeneous norm on G. Let β ∈ [0, Q). Let r > 0 be given, and let
x0 be any point of G. Then for any Q ≤ q < ∞, there exists a positive constant
C = C(Q, β, r, q) such that

∥∥∥∥∥
f

| · | β

q

∥∥∥∥∥
Lq (B(x0,r))

≤ C‖∇H f ‖L Q(B(x0,r)) (11.4.2)

holds for all f ∈ L Q
1 (B(x0, r)), where the space L Q

1 (B(x0, r)) is defined in (11.1.5).

Remark 11.4.3 In the special case, the inequalities (11.4.1) with q = p and (11.4.2)
with q = Q imply the critical case of (11.1.4) for all f ∈ L p

Q/p(B(x0, r)) and f ∈
L Q
1 (B(x0, r)), respectively.

Now we introduce the critical case β = Q of Theorem 11.4.1.

Theorem 11.4.4 Let G be a stratified Lie group of homogeneous dimension Q,
and let | · | be a homogeneous norm on G. Let 1 < p1 < p3 < ∞ and p1 < p2 <

(p3 − 1)p
′
1. Then, there exists a positive constant C = C(p1, p2, p3, Q) such that
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∥∥∥∥∥∥∥
f(

log
(

e + 1
|·|

)) p3
p2 | · | Q

p2

∥∥∥∥∥∥∥
L p2 (G)

≤ C‖ f ‖L
p1
Q/p1

(G) (11.4.3)

holds for all f ∈ L p1
Q/p1

(G), where 1/p1 + 1/p
′
1 = 1.

11.5 Weighted Gagliardo–Nirenberg Inequalities

In this section, we establish weighted Gagliardo–Nirenberg inequalities.

Theorem 11.5.1 Let G be a stratified Lie group of homogeneous dimension Q, and
let | · | be a homogeneous norm on G. Let 1 < p < ∞ and Q/(Q − β) < μ < ∞
with β ∈ [0, Q). Then for any p ≤ q < ∞, there exists a positive constant C =
C(p, Q, β, μ, q) such that

∥∥∥∥∥
f

| · | β

q

∥∥∥∥∥
Lq (G)

≤ C(‖(−L )
Q
2p f ‖1−p/q

L p(G) ‖ f ‖p/q
L p(G) + ‖(−L )

Q
2p f ‖1−p/(qμ)

L p(G) ‖ f ‖p/(qμ)

L p(G) )

(11.5.1)
holds for any function f ∈ L p

Q/p(G).

Theorem 11.5.1 gives the following corollary when β = 0:

Corollary 11.5.2 Let G be a stratified Lie group of homogeneous dimension Q,
and let 1 < p < ∞. Then, L p

Q/p(G) is continuously embedded in Lq(G) for any
p ≤ q < ∞.

Remark 11.5.3 We note that Corollary 11.5.2 was obtained in [21] onG = (Rn,+)

and in [32, Lemma 4.1] on the Heisenberg group for p = Q.

Remark 11.5.4 We also note that the Corollary 11.5.2 shows the critical case a =
Q/p of the continuous embedding L p

a (G) ↪→ Lq(G) [11, Proposition 4.4.13] on
stratified groups, where 1/q = 1/p − a/Q and 0 < a < Q/p.
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Chapter 12
Continuity Properties of Multilinear
Localization Operators on Modulation
Spaces

Nenad Teofanov

Abstract We introduce multilinear localization operators in terms of the short-
time Fourier transform and multilinear Weyl pseudodifferential operators. We prove
that such localization operators are in fact Weyl pseudodifferential operators whose
symbols are given by the convolution between the symbol of the localization operator
and themultilinearWigner transform. To obtain such interpretation, we use the kernel
theorem for the Gelfand–Shilov space S (1)(Rd) and its dual space of tempered
ultra-distributions S (1)′(R2d). Furthermore, we study the continuity properties of
the multilinear localization operators on modulation spaces. Our results extend some
known results when restricted to the linear case.

12.1 Introduction

Multilinear localization operators were first introduced in [8], and their continu-
ity properties are formulated in terms of modulation spaces. The key point is the
interpretation of these operators as multilinear Kohn–Nirenberg pseudodifferential
operators. The multilinear pseudodifferential operators were already studied in the
context of modulation spaces in [1]; see also a more recent contribution [24] where
such approach is strengthened and applied to the bilinear and trilinear Hilbert trans-
forms.

Our approach is related toWeyl pseudodifferential operators instead, with another
(Weyl) correspondence between the operator and its symbol. Both correspondences
are particular cases of the so-called τ−pseudodifferential operators, τ ∈ [0, 1]. For
τ = 1/2 we obtain Weyl operators, while for τ = 0 we recapture Kohn–Nirenberg
operators. We refer to [7, 10] for the recent contribution in that context (see also the
references given there).

The Weyl correspondence provides an elegant interpretation of localization oper-
ators asWeyl pseudodifferential operators. This is given by the formula that contains
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the Wigner transform which is, together with the short-time Fourier transform, the
main tool in our investigations. We refer to [17, 41] for more details on the Wigner
transform.

In signal analysis, different localization techniques are used to describe signals
which are as concentrated as possible in general regions of the phase space. This
motivated I.Daubechies to address these questions by introducing certain localization
operators in the pioneering contribution [14]. Afterward, Cordero and Grochenig
made an essential contribution in the context of time–frequency analysis [6]. Among
other things, their results emphasized the role played by modulation spaces in the
study of localization operators.

In this paper, we first recall the basic facts on modulation spaces in Sect. 12.2.
Then, in Sect. 12.3, following the definition of bilinear localization operators given in
[33] we introduce multilinear localization operators, Definition 12.2. Then we define
the multilinear Weyl pseudodifferential operators and give their weak formulation in
termsof themultilinearWigner transform (Lemma12.2).Byusing the kernel theorem
for Gelfand–Shilov spaces, Theorem 12.1, we prove that the multilinear localization
operators can be interpreted as multilinear Weyl pseudodifferential operators in the
same way as in the linear case, Theorem 12.5.

In Sect. 12.4 we first recall two results from [9]: (multilinear version of) sharp
integral bounds for the Wigner transform, Theorem 12.6, and continuity properties
of pseudodifferential operators on modulation spaces, Theorem 12.8. These results,
in combination with the convolution estimates for modulation spaces from [38],
Theorem 12.3, are then used to prove the main result of the continuity properties of
multilinear localization operators on modulation spaces, Theorem 12.9.

Notation. The Schwartz space of rapidly decreasing smooth functions is denoted by
S (Rd), and its dual space of tempered distributions is denoted by S ′(Rd). We use
the brackets 〈 f, g〉 to denote the extension of the inner product 〈 f, g〉 = ∫

f (t)g(t)dt
on L2(Rd) to any pair of dual spaces. The Fourier transform is normalized to be

f̂ (ω) = F f (ω) =
∫

f (t)e−2π i tωdt.

The involution f ∗ is f ∗(·) = f (−·), and the convolution of f and g is given by
f ∗ g(x) = ∫

f (x − y)g(y)dy, when the integral exists.
We denote by 〈·〉s the polynomial weights

〈(x, ω)〉s = (1 + |x |2 + |ω|2)s/2, (x, ω) ∈ R
2d , s ∈ R,

and 〈x〉 = 〈1 + |x |2〉1/2, when x ∈ R
d .

We use the notation A � B to indicate that A ≤ cB for a suitable constant c > 0,
whereas A � B means that c−1A ≤ B ≤ cA for some c ≥ 1.

The Gelfand–Shilov space and Weyl pseudodifferential operators. The Gelfand–
Shilov-type space of analytic functions S (1)(Rd) is given by
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f ∈ S (1)(Rd) ⇐⇒ sup
x∈Rd

| f (x)eh·|x || < ∞ and sup
ω∈Rd

| f̂ (ω)eh·|ω|| < ∞, ∀h > 0.

Any f ∈ S (1)(Rd) can be extended to a holomorphic function f (x + iy) in the
strip {x + iy ∈ C

d : |y| < T } some T > 0, [18, 25]. The dual space of S (1)(Rd)

will be denoted by S (1)′(Rd).

The space S (1)(Rd) is nuclear, and we will use the following kernel theorem in
the context of S (1)(Rd).

Theorem 12.1 Let Lb(A ,B) denote the space of continuous linear mappings
between the spaces A and B (equipped with the topology of bounded convergence).
Then the following isomorphisms hold:

1. S (1)(Rd1)⊗̂S (1)(Rd2) ∼= S (1)(Rd1+d2) ∼= Lb(S
(1)′(Rd1),S (1)(Rd2)),

2. S (1)′(Rd1)⊗̂S (1)′(Rd2) ∼= S (1)′(Rd1+d2) ∼= Lb(S
(1)(Rd1),S (1)′(Rd2)).

Theorem 12.1 is a special case of [31, Theorem 2.5], see also [27], so we omit
the proof. We refer to the classical reference [40] for kernel theorems and nuclear
spaces, and in particular to Theorem 51.6 and its corollary related to S (Rd) and
S ′(Rd), which will be used later on.

By the isomorphisms in Theorem 12.1 2. it follows that for a given kernel distribu-
tion k(x, y) onRd1+d2 we may associate a continuous linear mapping k ofS (1)(Rd2)

intoS (1)′(Rd1) as follows:

〈kϕ, φ〉 = 〈k(x, y), φ(x)ϕ(y)〉, φ ∈ S (1)(Rd1),

which is commonly written as kϕ(·) = ∫
k(·, y)ϕ(y)dy. The correspondence

between k(x, y) and k is an isomorphism and this fact will be used in the proof
of Theorem 12.5.

Let σ ∈ S (1)(R2d). Then the Weyl pseudodifferential operator Lσ with the Weyl
symbol σ can be defined as the oscillatory integral:

Lσ f (x) =
∫∫

σ(
x + y

2
, ω) f (y)e2π i(x−y)·ωdydω, f ∈ S (1)(Rd).

This definition extends to each σ ∈ S (1)′(R2d), so that Lσ is a continuous mapping
fromS (1)(Rd) toS (1)′(Rd), cf. [19, Lemma 14.3.1] If

W ( f, g)(x, ω) =
∫

f (x + t

2
)g(x − t

2
)e−2π iωt dt, f, g ∈ S (1)(Rd),

(12.1.1)
denotes the Wigner transform, also known as the cross-Wigner distribution, then the
following formula holds:

〈Lσ f, g〉 = 〈σ, W (g, f )〉, f, g ∈ S (1)(Rd),

for each σ ∈ S (1)′(R2d); see e.g., [16, 19, 41].
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12.2 Modulation Spaces

In this section, we collect some facts on modulation spaces which will be used in
Sect. 12.4. First, we introduce the short-time Fourier transform in terms of duality
between the Gelfand–Shilov space S (1)(Rd) and its dual space of tempered ultra-
distributions S (1)′(R2d) as follows.

The short-time Fourier transform (STFT in the sequel) of f ∈ S (1)(Rd) with
respect to the window g ∈ S (1)(Rd) \ 0 is defined by

Vg f (x, ω) = 〈 f, MωTx g〉 =
∫

Rd

f (t) g(t − x) e−2π iωt dt, (12.2.1)

where the translation operator Tx and the modulation operator Mω are given by

Tx f (·) = f (· − x) and Mω f (·) = e2π iω· f (·) x, ω ∈ R
d . (12.2.2)

The map ( f, g) �→ Vg f from S (1)(Rd) ⊗ S (1)(Rd) to S (1)(R2d) extends
uniquely to a continuous operator from S (1)′(Rd) ⊗ S (1)′(Rd) to S (1)′(R2d) by
duality, cf. [12, Theorem 4.1], [37, proposition 1.8].

Moreover, for a fixed g ∈ S (1)(Rd) \ 0 the following characterization holds:

f ∈ S (1)(Rd) ⇐⇒ Vg f ∈ S (1)(R2d).

We recall the notation from [33] related to the bilinear case. For given ϕ1, ϕ2, f1,
f2 ∈ S (1)(Rd), we put

Vϕ1⊗ϕ2 ( f1 ⊗ f2)(x, ω) =
∫

R2d
f1(t1) f2(t2)Mω1 Tx1ϕ1(t1)Mω2 Tx2ϕ2(t2)dt1dt2

=
∫

R2d
( f1 ⊗ f2)(t)(Mω1 Tx1ϕ1 ⊗ Mω2 Tx2ϕ2)(t)dt,

(12.2.3)

where x = (x1, x2), ω = (ω1, ω2), t = (t1, t2), x1, x2, ω1, ω2, t1, t2 ∈ R
d .

To give an interpretation of multilinear operators in the weak sense we note that, if
f = ( f1, f2, . . . , fn) andϕ = (ϕ1, ϕ2, . . . , ϕn), f j , ϕ j ∈ S (1)(Rd), j = 1, 2, . . . , n,

then (12.2.3) becomes

Vϕf(x, ω) =
∫

Rnd

f(t)
n∏

j=1

Mω j Tx j ϕ j (t j )dt, (12.2.4)

see also (12.3.1) for the notation.
We refer to [23, 30–32, 37] for more details on STFT in other spaces of Gelfand–

Shilov type. Since we restrict ourselves to weighted modulation spaces with poly-
nomial weights in this paper, we proceed by using the duality between S and S ′
instead of the more general duality between S (1) and S (1)′ . Related results in the



12 Continuity Properties of Multilinear Localization Operators on Modulation Spaces 295

framework of subexponential and superexponential weights can be found in, e.g.,
[11, 12, 31, 37], and we leave the study of multilinear localization operators in that
case for a separate contribution.

Modulation spaces [15, 19] are defined through decay and integrability conditions
on STFT, which makes them suitable for time–frequency analysis, and for the study
of localization operators in particular. They are defined in terms of weighted mixed-
norm Lebesgue spaces.

In general, a weight w(·) on R
d is a nonnegative and continuous function. The

weighted Lebesgue space L p
w(Rd), p ∈ [1,∞], is the Banach space with the norm

‖ f ‖L p
w

= ‖ f w‖L p =
(∫

| f (x)|pw(x)pdx

)1/p

,

and with the usual modification when p = ∞. When w(x) = 〈x〉t , t ∈ R, we use
the notation L p

t (Rd) instead.
Similarly, the weighted mixed-norm Lebesgue space L p,q

w (R2d), p, q ∈ [1,∞],
consists of (Lebesgue) measurable functions on R

2d such that

‖F‖L p,q
w

=
(∫

Rd

(∫

Rd

|F(x, ω)|pw(x, ω)pdx

)q/p

dω

)1/q

< ∞.

where w(x, ω) is a weight on R
2d .

In particular, when w(x, ω) = 〈x〉t 〈ω〉s, s, t ∈ R, we use the notation L p,q
w

(R2d) = L p,q
s,t (R2d).

Now, modulation space M p,q
s,t (Rd) consists of distributions whose STFT belongs

to L p,q
s,t (R2d):

Definition 12.1 Let φ ∈ S (Rd) \ 0, s, t ∈ R, and p, q ∈ [1,∞]. The modulation
space M p,q

s,t (Rd) consists of all f ∈ S ′(Rd) such that

‖ f ‖M p,q
s,t

≡
(∫

Rd

(∫

Rd

|Vφ f (x, ω)〈x〉t 〈ω〉s |p dx

)q/p

dω

)1/q

< ∞

(with obvious interpretation of the integrals when p = ∞ or q = ∞).

In special cases, we use the usual abbreviations: M p,p
0,0 = M p, M p,p

t,t = M p
t , etc.

For the consistency, and according to (12.2.4), we denote by M p,q
s,t (Rnd) the set

of f = ( f1, f2, . . . , fn), f j ∈ S ′(Rd), j = 1, 2, . . . , n, such that

‖f‖M p,q
s,t

≡
(∫

Rnd

(∫

Rnd

|Vϕf(x, ω)〈x〉t 〈ω〉s |p dx

)q/p

dω

)1/q

< ∞, (12.2.5)

where ϕ = (ϕ1, ϕ2, . . . , ϕn), ϕ j ∈ S (Rd) \ 0, j = 1, 2, . . . , n, is a given n-tuple of
window functions.
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The kernel theorem for S (Rd) and S ′(Rd) (see [40]) implies that there is an
isomorphism betweenM p,q

s,t (Rnd) and M p,q
s,t (Rnd) (which commutes with the oper-

ators from (12.2.2)). This allows us to identify f ∈ M p,q
s,t (Rnd) with (its isomorphic

image) F ∈ M p,q
s,t (Rnd) (and vice versa). We will use this identification whenever

convenient and without further explanation.

Remark 12.1 The original definition of modulation spaces given in [15] deals with
more general submultiplicative weights. We restrict ourselves to the weights of the
form w(x, ω) = 〈x〉t 〈ω〉s, s, t ∈ R, since the convolution and multiplication esti-
mates which will be used later on are formulated in terms of weighted spaces with
such polynomial weights. As already mentioned, weights of exponential type growth
are used in the study of Gelfand–Shilov spaces and their duals in cf. [11, 23, 30, 37].
We refer to [20] for a survey on the most important types of weights commonly used
in time–frequency analysis.

The following theorem lists some basic properties of modulation spaces. We refer
to [15, 19] for the proof.

Theorem 12.2 Let p, q, p j , q j ∈ [1,∞] and s, t, s j , t j ∈ R, j = 1, 2. Then:

1. M p,q
s,t (Rd) are Banach spaces, independent of the choice of φ ∈ S (Rd) \ 0;

2. if p1 ≤ p2, q1 ≤ q2, s2 ≤ s1 and t2 ≤ t1, then

S (Rd) ⊆ M p1,q1
s1,t1 (Rd) ⊆ M p2,q2

s2,t2 (Rd) ⊆ S ′(Rd);

3. ∩s,t M p,q
s,t (Rd) = S (Rd), ∪s,t M p,q

s,t (Rd) = S ′(Rd);
4. For p, q ∈ [1,∞), the dual of M p,q

s,t (Rd) is M p′,q ′
−s,−t (R

d), where 1
p + 1

p′ = 1
q + 1

q ′
= 1.

Modulation spaces include the following well-known function spaces:

1. M2(Rd) = L2(Rd), and M2
t,0(R

d) = L2
t (R

d);
2. The Feichtinger algebra: M1(Rd) = S0(Rd);
3. Sobolev spaces: M2

0,s(R
d) = H 2

s (Rd) = { f | f̂ (ω)〈ω〉s ∈ L2(Rd)};
4. Shubin spaces: M2

s (Rd) = L2
s (R

d) ∩ H 2
s (Rd) = Qs(R

d), cf. [28].

To deal with duality when pq = ∞ we observe that, by a slight modification of
[1, Lemma 2.2] the following is true.

Lemma 12.1 Let L0(R2nd) denote the space of bounded, measurable functions on
R

2nd which vanish at infinity and put

M 0,q(Rnd) = {f ∈ M∞,q(Rnd) | Vϕf ∈ L0(R2nd)}, 1 ≤ q < ∞,

M p,0(Rnd) = {f ∈ M p,∞(Rnd) | Vϕf ∈ L0(R2nd)}, 1 ≤ p < ∞,

M 0,0(Rnd) = {f ∈ M∞,∞(Rnd) | Vϕf ∈ L0(R2nd)},

equipped with the norms of M∞,q ,M p,∞ and M∞,∞ respectively. Then,
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1. M 0,q is M∞,q−closure of S in M∞,q , hence is a closed subspace of M∞,q .
Likewise for M p,0 and M 0,0.

2. The following duality results hold for 1 ≤ p, q < ∞: (M 0,q)′ = M 1,q ′
,

(M p,0)′ = M p′,1, and (M 0,0)′ = M 1,1.

From now on, we will use these duality relations in the cases p = ∞ and/or
q = ∞ without further explanations.

For the results on multiplication and convolution in modulation spaces and in
weighted Lebesgue spaces, we first introduce the Young functional:

R(p) = R(p0, p1, p2) ≡ 2 − 1

p0
− 1

p1
− 1

p2
, p = (p0, p1, p2) ∈ [1,∞]3.

(12.2.6)
When R(p) = 0, the Young inequality for convolution reads as

‖ f1 ∗ f2‖L p′
0

≤ ‖ f1‖L p1 ‖ f2‖L p2 , f j ∈ L p j (Rd), j = 1, 2.

The following theorem is an extension of the Young inequality to the case of
weighted Lebesgue spaces and modulation spaces when 0 ≤ R(p) ≤ 1/2.

Theorem 12.3 Let s j , t j ∈ R, p j , q j ∈ [1,∞], j = 0, 1, 2. Assume that0 ≤ R(p) ≤
1/2, R(q) ≤ 1,

0 ≤ t j + tk, j, k = 0, 1, 2, j �= k, (12.2.7)

0 ≤ t0 + t1 + t2 − d · R(p), and (12.2.8)

0 ≤ s0 + s1 + s2, (12.2.9)

with strict inequality in (12.2.8) when R(p) > 0 and t j = d · R(p) for some j =
0, 1, 2.

Then ( f1, f2) �→ f1 ∗ f2 on C∞
0 (Rd) extends uniquely to a continuous map from

1. L p1
t1 (Rd) × L p2

t2 (Rd) to L
p′
0−t0(R

d);

2. M p1,q1
s1,t1 (Rd) × M p2,q2

s2,t2 (Rd) to M
p′
0,q

′
0−s0,−t0(R

d).

For the proof,we refer to [38]. It is based on the detailed study of an auxiliary three-
linear map over carefully chosen regions in Rd (see Sects. 3.1 and 3.2 in [38]). This
result extends multiplication and convolution properties obtained in [26]. Moreover,
the sufficient conditions fromTheorem12.3 are also necessary in the following sense.

Theorem 12.4 Let p j , q j ∈ [1,∞] and s j , t j ∈ R, j = 0, 1, 2. Assume that at least
one of the following statements hold true:

1. The map ( f1, f2) �→ f1 ∗ f2 on C∞
0 (Rd) is continuously extendable to a map

from L p1
t1 (Rd) × L p2

t2 (Rd) to L
p′
0−t0(R

d);
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2. The map ( f1, f2) �→ f1 ∗ f2 on C∞
0 (Rd) is continuously extendable to a map

from M p1,q1
s1,t1 (Rd) × M p2,q2

s2,t2 (Rd) to M
p′
0,q

′
0−s0,−t0(R

d);

Then (12.2.7) and (12.2.8) hold true.

12.3 Multilinear Localization Operators

In this section, we introduce multilinear localization operators in Definition 12.2 and
show that they can be interpreted as particular Weyl pseudodifferential operators,
Theorem 12.5. We also introduce multilinear Weyl pseudodifferential operators and
prove their connection to the multilinear Wigner transform in Lemma 12.2. This is
done in the context of the duality between S (1)(Rd) and S (1)′(Rd) and carried out
verbatim to the duality between S (Rd) and S ′(Rd) in the next section.

The localization operator Aϕ1,ϕ2
a with the symbol a ∈ L2(R2d) and with windows

ϕ1, ϕ2 ∈ L2(Rd) can be defined in terms of the short-time Fourier transform (12.2.1)
as follows:

Aϕ1,ϕ2
a f (t) =

∫

R2d

a(x, ω)Vϕ1 f (x, ω)MωTxϕ2(t) dxdω, f ∈ L2(Rd).

To define multilinear localization operators, we slightly abuse the notation (as it
is done in, e.g., [24]) so that f will denote both the vector f = ( f1, f2, . . . , fn) and
the tensor product f = f1 ⊗ f2 ⊗ · · · ⊗ fn . This will not cause confusion, since the
meaning of f will be clear from the context.

For example, if t = (t1, t2, . . . , tn), and Fj = Fj (t j ), t j ∈ R
d , j = 1, 2, . . . , n,

then

n∏

j=1

Fj (t j ) = F1(t1) · F2(t2) · · · · · Fn(tn) = F1(t1) ⊗ F2(t2) ⊗ · · · ⊗ Fn(tn) = F(t).

(12.3.1)

Definition 12.2 Let f j ∈ S (1)(Rd), j = 1, 2, . . . , n, and f = ( f1, f2, . . . , fn). The
multilinear localization operator Aϕ,φ

a with symbol a ∈ S (1)′(R2nd) and windows

ϕ = (ϕ1, ϕ2, . . . , ϕn) and φ = (φ1, φ2, . . . , φn), ϕ j , φ j ∈ S (1)(Rd ), j = 1, 2, . . . , n,

is given by

Aϕ,φ
a f(t) =

∫

R2nd

a(x, ω)

n∏

j=1

(
Vϕ j f j (x j , ω j )Mω j Tx j φ j (t j )

)
dxdω, (12.3.2)

where x j , ω j , t j ∈ R
d , j = 1, 2, . . . , n, and x = (x1, x2, . . . , xn), ω = (ω1, ω2

. . . , ωn), t = (t1, t2 . . . , tn).
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Remark 12.2 When n = 2 in Definition 12.2 we obtain the bilinear localization
operators studied in [33]. (There is a typo in [33, Definition 1]; the integration in (9)
should be taken over R4d .)

LetR denote the trace mapping that assigns to each function F defined on Rnd a
function defined on R

d by the formula

R : F �→ F
∣
∣
t1=t2=···=tn , t j ∈ R

d , j = 1, 2, . . . , n.

Then RAϕ,φ
a is the multilinear operator given in [8, Definition 2.2].

By (12.2.4) it follows that the weak definition of (12.3.2) is given by

〈Aϕ,φ
a f, g〉 = 〈aVϕf, Vφg〉 = 〈a, Vϕf Vφg〉, (12.3.3)

and f j , g j ,∈ S (1)(Rd), j = 1, 2, . . . , n. The brackets can be interpreted as duality
between a suitable pair of dual spaces. Thus, Aϕ,φ

a is well-defined continuous operator
fromS (1)(Rnd) to (S (1))′(Rnd).

Next, we introduce a class ofmultilinearWeyl pseudodifferential operators (ΨDO
for short) and use the Wigner transform to prove appropriate interpretation of
multilinear localization operators as multilinear Weyl pseudodifferential operators,
Theorem 12.5.

Recall that in [8], multilinear localization operators are introduced in connection
to Kohn–Nirenberg ΨDOs instead.

By analogy with the bilinear Weyl pseudodifferential operators given in [33], we
define the multilinear Weyl pseudodifferential operator as follows:

Lσ (f)(x) =
∫

R2nd

σ(
x + y

2
, ω)f(y)e2π iI (x−y)·ωdydω, x ∈ R

nd , (12.3.4)

where σ ∈ S (1)′(R2nd), f(y) = ∏n
j=1 f j (y j ), f j ∈ S (1)(Rd), j = 1, 2, . . . , n. Here

I denotes the identity matrix in nd, that is, I (x − y) · ω =
n∑

j=1

(x j − y j )ω j .)

Similarly, the bilinear Wigner transform from [33] extends to

W (f, g)(x, ω) =
∫

Rnd

n∏

j=1

(

f j (x j + t j

2
)g j (x j − t j

2
)

)

e−2π iI ωt dt, (12.3.5)

where f j , g j ∈ S (1)(Rd), x j , ω j , t j ∈ R
d , j = 1, 2, . . . , n, and x = (x1,

x2, . . . , xn), ω = (ω1, ω2 . . . , ωn), t = (t1, t2 . . . , tn).
It is easy to see that W (f, g) ∈ S (1)(R2nd), when f, g ∈ S (1)(Rnd).

Lemma 12.2 Let σ ∈ S (1)(R2nd) and f j , g j ∈ S (1)(Rd), j = 1, 2, . . . , n. Then
Lσ given by (12.3.4) extends to a continuous map from S (1)(Rnd) to (S (1))′(Rnd).
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〈Lσ f, g〉 = 〈σ, W (g, f)〉.
Proof The proof follows by the straightforward calculation:

〈σ, W (g, f)〉 =
∫

R2nd
σ(x, ω)W (f, g)(x, ω)dxdω

=
∫

R3nd
σ(x, ω)

n∏

j=1

(

f j (x j + t j

2
)g j (x j − t j

2
)

)

e−2π iI ωt dtdxdω

=
∫

R6d
σ(

u + v

2
, ω)

n∏

j=1

(
f j (v j )g j (u j )

)
e−2π iI (u−v)ωdudvdω

= 〈σ(
u + v

2
, ω)f(v)e2π iI (u−v)ω, g(u)〉 = 〈Lσ f, g〉,

where we used W (g, f) = W (f, g) and the change of variables u = x + t
2 , v =

x − t
2 . This extends to each σ ∈ S (1)′(R2nd), since W (f, g) ∈ S (1)(R2nd) when

f j , g j ∈ S (1)(Rd), j = 1, 2, . . . , n. �

The so-called Weyl connection between the set of linear localization operators
and Weyl ΨDOs is well known; we refer to, e.g., [4, 16, 32]. The corresponding
Weyl connection in bilinear case is established in [33, Theorem 4]. The proof is quite
technical and based on the kernel theorem for Gelfand–Shilov spaces (see, e.g., [27,
31, 39]) and direct calculations. Since the proof of the following Theorem 12.5 is
its straightforward extension, here we only sketch the main ideas. The conclusion
of Theorem 12.5 is that any multilinear localization operator can be viewed as a
particular multilinear Weyl ΨDOs, as expected.

Theorem 12.5 Let there be given a ∈ S (1)′(R2d) and let φ = (φ1, φ2, . . . , φn),

ϕ = (ϕ1, ϕ2, . . . , ϕn), ϕ j , φ j ∈ S (1)(Rd), j = 1, 2, . . . , n. Then the localization
operator Aϕ,φ

a is the Weyl pseudodifferential operator with the Weyl symbol

σ = a ∗ W (φ,ϕ) = a ∗ (

n∏

j=1

W (φ j , ϕ j )).

Therefore, if f = ( f1, f2, . . . , fn), g = (g1, g2, . . . , gn), f j , g j ,∈ S (1)′(Rd), j =
1, 2, . . . , n, then

〈Aϕ,φ
a f, g〉 = 〈La∗W (φ,ϕ)f, g〉.

Proof The formal expressions given below are justified due to the absolute conver-
gence of the involved integrals and the standard interpretation of oscillatory integrals
in distributional setting.We refer to [33, Sect. 5] for this and for detailed calculations.

The calculations from the proof of [33, Theorem 4] yield the following kernel
representation of (12.3.3):

〈Aϕ,φ
a f, g〉 = 〈k,

n∏

j=1

f j ⊗
n∏

j=1

g j 〉,
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where the kernel k = k(t, s) is given by

k(t, s) =
∫

R2nd

a(x, ω)

n∏

j=1

Mω j Tx j ϕ j (t) ·
n∏

j=1

Mω j Tx j φ j (s)dxdω, (12.3.6)

t = (t1, t2, . . . , tn), s = (s1, s2, . . . , sn), t j , s j ∈ R
d , j = 1, 2, . . . , n.

To calculate the convolution a ∗ (
∏n

j=1 W (φ j , ϕ j )) = a ∗ W (φ,ϕ), we use

W (g, f ) = W ( f, g), the commutation relation Tx Mω = e−2π i x ·ω MωTx , and the
covariance property of the Wigner transform:

W (Tx j Mω j φ j , Tx j Mω j ϕ j )(p j , q j ) = W (φ j , ϕ j )(p j − x j , q j − ω j ), j = 1, 2, . . . , n.

Let p = (p1, p2, . . . , pn),q = (q1, q2 . . . , qn), p j , q j ∈ R
d , j = 1, 2, . . . , n.Then,

a ∗ W (φ,ϕ)(p, q) =
∫

R2nd

a(x, ω)×
⎛

⎝
∫

Rnd

n∏

j=1

Mω j Tx j φ j (p j + t j

2
) ·

n∏

j=1

Mω j Tx j ϕ j (p j − t j

2
)e−2π iq·t dt

⎞

⎠ dxdω,

(12.3.7)

where q · t denotes the scalar product of q, t ∈ R
d , cf. [33, Sect. 5].

Therefore,

〈La∗W (φ,ϕ)f, g〉 = 〈a ∗
n∏

j=1

W (φ j , ϕ j ), W (g, f)〉 =
∫

R2nd

a(x, ω)×
∫

Rnd

(
∫

Rnd

n∏

j=1

Mω j Tx j φ j (p j + t j

2
) ·

n∏

j=1

Mω j Tx j ϕ j (p j − t j

2
)×

n∏

j=1

f j (p j − t j

2
) ·

n∏

j=1

g j (p j + t j

2
)dt

)
dpdxdω,

Finally, after performing the change of variables we obtain

〈La∗W (φ,ϕ)f, g〉 = 〈k,

n∏

j=1

f j ⊗
n∏

j=1

g j 〉,

where the kernel k is given by (12.3.6). The theoremnow follows from the uniqueness
of the kernel representation, Theorem 12.1. �
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12.4 Continuity Properties of Localization Operators

Wefirst recall the sharp estimates of the modulation space norm for the cross-Wigner
distribution given in [9]. There it is shown that the sufficient conditions for the
continuity of the cross-Wigner distribution on modulation spaces are also necessary
(in the unweighted case). Related results can be found elsewhere, e.g., in [32, 34,
35]. In many situations, such results overlap. For example, Proposition 10 in [33]
coincides with certain sufficient conditions from [9, Theorem 1.1] when restricted
to R(p) = 0, t0 = −t1, and t2 = |t0|.
Theorem 12.6 Let there be given s ∈ R and pi , qi , p, q ∈ [1,∞], such that

p ≤ pi , qi ≤ q, i = 1, 2 (12.4.1)

and

min

{
1

p1
+ 1

p2
,
1

q1
+ 1

q2

}

≥ 1

p
+ 1

q
. (12.4.2)

If f, g ∈ S (Rd), then the map ( f, g) �→ W ( f, g) where W is the cross-Wigner dis-
tribution given by (12.1.1) extends to sesquilinear continuous map from M p1,q1

|s| (Rd) ×
M p2,q2

s (Rd) to M p,q
s,0 (R2d) and

‖W ( f, g)‖M p,q
s,0

� ‖ f ‖M
p1 ,q1|s|

‖g‖M
p2 ,q2
s

. (12.4.3)

Viceversa, if there exists a constant C > 0 such that

‖W ( f, g)‖M p,q � ‖ f ‖M p1 ,q1 ‖g‖M p2 ,q2 .

then (12.4.1) and (12.4.2) must hold.

Proof We omit the proof which is given in [9, Sect. 3] and recall here only the main
formulas which highlight its most important parts.

The first formula is the well-known relation between the Wigner transform and
the STFT (see [19, Lemma 4.3.1]):

W ( f, g)(x, ω) = 2de4π i x ·ωVg∗ f (2x, 2ω), f, g ∈ S (Rd).

To estimate the modulation space norm of W ( f, g)(x, ω), we fix ψ1, ψ2 ∈
S (Rd) \ 0 and use the fact that modulation spaces are independent on the choice of
the window function from S (R2d) \ 0, Theorem 12.2 1. By choosing the window
to be W (ψ1, ψ2), after some calculations we obtain:

(VW (ψ1,ψ2)W (g, f ))(z, ζ )

= e−2π i z2ζ2Vψ1 f (z1 + ζ2

2
, z2 − ζ1

2
)Vψ2g(z1 − ζ2

2
, z2 + ζ1

2
),
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cf. the proof of [19, Lemma 14.5.1 (b)]. Consequently (cf. [9, Sect. 3]),

‖W (g, f )‖M p,q
s,0

�
(∫

R2d

(|Vψ1 f |p ∗ |Vψ2g
∗|p)q/p(ζ2,−ζ1)〈(ζ2,−ζ1)〉sqdζ

)1/q

= ‖|Vψ1 f |p ∗ |Vψ2g
∗|p‖Lq/p

ps,0
.

Then one proceeds with a careful case study to obtain (12.4.3) when (12.4.1) and
(12.4.2) hold true. We refer to [9] for details. �

From the inspection of the proof of Theorem 12.6 given in [9, Sect. 3], the defi-
nition of W (f, g) given by (12.3.5), and the use of the kernel theorem, we conclude
the following.

Corollary 12.1 Let the assumptions of Theorem 12.6 hold. If f = ( f1, f2, . . . , fn),
g = (g1, g2, . . . , gn) and f j , g j ∈ S (Rd), j = 1, 2, . . . , n, then the map (f, g) �→
W (f, g), where W is the cross-Wigner distribution given by (12.3.5) extends to a con-
tinuous map from M p1,q1

|s| (Rd) × M p2,q2
s (Rd) to M p,q

s,0 (R2d), where the modulation
spaces are given by (12.2.5).

Next, we give an extension of [19, Theorem 14.5.2] and [33, Theorem 14] to the
multilinear Weyl ΨDOs. Recall, if σ ∈ M∞,1(R2d) is the Weyl symbol of Lσ , then
[19, Theorem 14.5.2] says that Lσ is bounded on M p,q(Rd), 1 ≤ p, q ≤ ∞. This
result has a long history starting from the Calderon–Vaillancourt theorem on bound-
edness of the pseudodifferential operators with smooth and bounded symbols on
L2(Rd), [5]. It is generalized by Sjöstrand in [29] where M∞,1 is used as appropriate
symbol class. Sjöstrand’s results were thereafter extended in [19, 21, 22, 34–36].
Moreover,we refer to [1–3] for themultilinearKohn–NirenbergΨDOs and the recent
contribution [10] related to τ−ΨDOs (these include both Kohn–Nirenberg (when
τ = 0) and Weyl operators (when τ = 1/2)).

The following fact related to symbols σ ∈ M∞,1(R2nd) is a straightforward exten-
sion of [33, Theorem 14].

Theorem 12.7 Let σ ∈ M∞,1(R2nd) and let Lσ be given by (12.3.4). The opera-
tor Lσ is bounded from M p,q(Rnd) to M p,q(Rnd), 1 ≤ p, q ≤ ∞, with a uniform
estimate ‖Lσ‖op ≤ ‖σ‖M∞,1 for the operator norm.

On the other hand, Theorem 12.7 is a special case of [9, Theorem 5.1.] if Lσ is a
linear operator. Here, we give the multilinear version of [9, Theorem 5.1.].

Theorem 12.8 Let there be given s ≥ 0 and pi , qi , ri , p, q ∈ [1,∞], such that

q ≤ min{p′
1, q ′

1, p2, q2} (12.4.4)

and

min

{
1

p1
+ 1

p′
2

,
1

q1
+ 1

q ′
2

}

≥ 1

p′ + 1

q ′ . (12.4.5)
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Then the operator Lσ given by (12.3.4) with symbol σ ∈ M p,q
s,0 (R2nd), from S (Rnd)

toS ′(Rnd), extends uniquely to a bounded operator fromM p1,q1
s,0 (Rnd) toM p2,q2

s,0 (Rnd),
with the estimate

‖Lσ f‖M p2 ,q2
s,0

� ‖σ‖M p,q
s,0

‖f‖M p1 ,q1
s,0

. (12.4.6)

In particular, when σ ∈ M∞,1(R2nd) we have ‖Lσ‖op ≤ ‖σ‖M∞,1 for the operator
norm.

Vice versa, if (12.4.6) holds for s = 0, and for every f ∈ S (Rnd), σ ∈ S ′(R2nd),
then (12.4.1) and (12.4.2) must be satisfied.

Proof The proof is a straightforward extension of the proof of [9, Theorem 5.1.],
and we give it here for the sake of completeness.

When f ∈ M p1,q1
s,0 (Rnd) and g ∈ M

p′
2,q

′
2

s,0 (Rnd), their Wigner transform W (g, f) =
W (f, g) belongs to M p′,q ′

−s,0 since the conditions (12.4.1) and (12.4.2) of Theorem 12.6
are transferred to (12.4.4) and (12.4.5), respectively.

Now, Lemma 12.2 and the duality of modulation spaces give

|〈Lσ f, g〉| = |〈σ, W (g, f)〉| ≤ ‖σ‖M p,q
s,0

‖W (f, g)‖
M p′,q′

−s,0

≤ C‖f‖M p1,q1
s,0

‖g‖
M

p′
2,q′

2
s,0

,

for some constant C > 0 (and we used the fact that modulation spaces are closed
under the complex conjugation).

We refer to [13, Theorem 1.1.] for the necessity of conditions (12.4.4) and (12.4.5)
(in linear case). �

Next, we combine different results established so far to obtain an extension of
[33, Theorem 15]. More precisely, we use the relation between the Weyl pseudod-
ifferential operators and the localization operators (Lemma 12.5), the convolution
estimates for modulation spaces (Theorem 12.3), and boundedness of pseudodiffer-
ential operators (Theorem 12.8) to obtain continuity results for Aϕ,φ

a for different
choices of windows and symbols.

Theorem 12.9 Let there be given s ≥ 0 and pi , qi , p, q ∈ [1,∞], i = 0, 1, 2 such
that (12.4.4) and (12.4.5) hold. Moreover, let q0 ≤ q, and

p0 ≥ p if p ≥ 2, and
2p

2 − p
≥ p0 ≥ p if 2 > p ≥ 1. (12.4.7)

If ϕ ∈ M r1
2s,0(R

nd), φ ∈ M r2
2s,0(R

nd), where 1
r1

+ 1
r2

≥ 1, and a ∈ M p0,q0
s0,t0 (R2nd) with

s0 ≥ −s, and t0 ≥ d

(
1

p
− 1

p0

)

with the strict inequality when p0 = p, then Aϕ,φ
a

is continuous from M p1,q1
s,0 (Rnd) to M p2,q2

s,0 (Rnd) with

‖Aϕ,φ
a ‖op � ‖a‖M

p0 ,q0
s0 ,t0

‖ϕ‖M r1
2s,0

‖φ‖M r2
2s,0

.



12 Continuity Properties of Multilinear Localization Operators on Modulation Spaces 305

Proof We first estimate W (φ,ϕ). If ϕ ∈ M r1
2s,0(R

nd), φ ∈ M r2
2s,0(R

nd), with 1
r1

+
1
r2

≥ 1, then Corollary 12.1 implies that

W (φ,ϕ) ∈ M 1,∞
2s,0 (R2nd).

Now,we use the result of Theorem 12.3 2. TheYoung functional (12.2.6) becomes
R(p) = R(p′, p0, 1), and the condition R(p) ∈ [0, 1/2] is equivalent to (12.4.7),
whileR(q) = R(q ′, q0,∞) ≤ 1 is equivalent to q0 ≤ q. Furthermore, (12.2.9) trans-

fers to s0 ≥ −s,while (12.2.7) and (12.2.8) are equivalent to t0 ≥ d

(
1

p
− 1

p0

)

with

the strict inequality when p0 = p. Therefore, the conditions of by Theorem 12.3 2
are fulfilled, and we obtain

a ∗ W (φ,ϕ) ∈ M p0,q0
s0,t0 (R2nd) ∗ M 1,∞

2s,0 (R2nd) ⊂ M p,q
s,0 (R2nd).

Finally, by Theorem 12.7 with σ = a ∗ W (φ,ϕ), it follows that

‖Aϕ,φ
a ‖op = ‖Lσ‖op ≤ ‖σ‖M p,q

s,0
≤ ‖a‖M

p0 ,q0
s0 ,t0

‖ϕ‖M r1
2s,0

‖φ‖M r2
2s,0

,

and the Theorem is proved. �

In particular, we recover (the linear case treated in) [9, Theorem 5.2] when
r1 = r2 = r , t0 = 0, s0 = −s, p0 = p (i.e., R(p′, p0, 1) = 0), and q0 = q (i.e.,
R(q ′, q0,∞) = 1). Therefore, by [9, Remark 5.3], we obtain an extension of [6,
Theorem 3.2] and [35, Theorem 4.11] for this particular choice of weights.

Note that conditions R(p′, p0, 1) ∈ (0, 1/2] which extend the possible choices
of the Lebesgue parameters beyond the usual Young condition R(p′, p0, 1) = 0
must be compensated by an additional condition to the weights, expressed by t0 ≥
d

(
1

p
− 1

p0

)

.

Another result concerning the boundedness of (bilinear) localization operators on
unweightedmodulation spaces is given by [33, Theorem 15]. There we used different
type of estimates, leading to the result which partially overlaps with Theorem 12.9.
For example, both results give the same continuity property when the symbol a
belongs to a ∈ M∞,1(R2nd).
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12. Cordero, E., Pilipović, S., Rodino L., Teofanov, N., Quasianalytic Gelfand-Shilov spaces with
application to localization operators, Rocky Mountain J. Math. 40 (4), 1123–1147 (2010)

13. Cordero, E., Tabacco, A.,Wahlberg, P., Schrödinger-type propagators, pseudodifferential oper-
ators and modulation spaces, Journal of the London Mathematical Society, 88 (2), 375–395
(2013)

14. Daubechies, I. , Time-frequency localization operators: a geometric phase space approach.
IEEE Trans. Inform. Theory, 34 (4), 605–612 (1988)

15. Feichtinger, H. G. , Modulation spaces on locally compact abelian groups, Technical Report,
University Vienna (1983) and also in Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets
and Their Applications, 99–140, Allied Publishers, Chennai (2003)

16. Folland, G. B., Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, NJ (1989)
17. de Gosson, M., The Wigner Transform, World Scientific, London (2017)
18. Gelfand, I. M. , Shilov, G. E., Generalized Functions II, Academic Press, New York (1968)
19. Gröchenig, K., Foundations of Time-Frequency Analysis, Birkhäuser, Boston (2001)
20. Gröchenig, K., Weight functions in time-frequency analysis. In: Rodino, L., Schulze, B.-W.,

Wong M. W. (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-
Frequency Analysis, pp. 343–366, Fields Institute Comm., 52 (2007)

21. Gröchenig, K., Heil, C., Modulation spaces and pseudo-differential operators, Integr. Equat.
Oper. Th., 34, 439–457 (1999)

22. Gröchenig, K., Heil, C., Modulation spaces as symbol classes for pseudodifferential operators.
In: Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets and Their Applications, 151–170.
Allied Publishers, Chennai (2003)

23. Gröchenig, K., Zimmermann, G., Hardy’s theorem and the short-time Fourier transform of
Schwartz functions. J. London Math. Soc. 63, 205–214 (2001)

24. Molahajloo, S., OkoudjouK.A., Pfander, G. E., Boundedness ofMultilinear Pseudodifferential
Operators on Modulation Spaces, J. Fourier Anal. Appl., 22 (6), 1381-1415 (2016)

25. Nicola, F., Rodino, L., Global Pseudo-differential calculus on Euclidean spaces, Pseudo-
Differential Operators. Theory and Applications 4, Birkhäuser Verlag, (2010)
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38. Toft, J., Johansson, K., Pilipović, S., Teofanov, N., Sharp convolution and multiplication esti-
mates in weighted spaces, Analysis and Applications, 13 (5), 457–480 (2015)

39. Toft, J., Khrennikov, A., Nilsson, B., Nordebo, S., Decompositions of Gelfand-Shilov kernels
into kernels of similar class, J. Math. Anal. Appl. 396 (1), 315–322 (2012)

40. Treves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York
(1967)

41. Wong, M. W. , Weyl Transforms, Springer-Verlag, 1998.

https://doi.org/10.1155/2018/7560870


Chapter 13
Semi-continuous Convolution Estimates
on Weakly Periodic Lebesgue Spaces

Joachim Toft

Abstract We deduce mixed quasi-norm estimates of Lebesgue types on semi-
continuous convolutions between sequences and functions which may be periodic
or possess a weaker form of periodicity in certain directions. In these directions, the
Lebesgue quasi-norms are applied on the period instead of the whole axes.

13.1 Introduction

Continuous, discrete and semi-continuous convolutions appear naturally when
searching for estimates between short-time Fourier transformswith different window
functions. By straightforward application of Fourier’s inversion formula, the short-
time Fourier transform Vφ f of the function or (ultra-)distribution f with window
function φ is linked to Vφ0 f by

|Vφ f | � |Vφφ0| ∗ |Vφ0 f | (13.1.1)

(cf. e. g. [12, Chap. 11]). Here ∗ denotes the usual (continuous) convolution and it is
assumed that the window functions φ and φ0 are fixed and belongs to suitable classes
(see [12, 14] and Sect. 13.2 for notations).

Modulation spaces appear by imposing norm or quasi-norm estimates on the
short-time Fourier transforms of (ultra-)distributions in Fourier-invariant spaces. In
most situations, these (quasi-)norms are mixed norms of (weighted) Lebesgue type,
given in Definition 13.2.1. More precisely, let B be a mixed quasi-Banach space of
Lebesgue type with functions defined on the phase space, and let ω be a moderate
weight. Then the modulation space M(ω,B) consists of all ultra-distributions f
such that

‖ f ‖M(ω,B ) ≡ ‖Vφ f · ω‖B (13.1.2)
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is finite.
If B is a Banach space of mixed Lebesgue type, then the inequality (13.1.1) can

be used to deduce:

(1) that M(ω,B) is invariant of the choice of window function φ in (13.1.2), and
that different φ give rise to equivalent norms.

(2) that M(ω,B) increases with the Lebesgue exponents.
(3) that M(ω,B) is complete.

Essential parts of these basic properties for modulation spaces were established in
the pioneering paper [7], but some tracks go back to [5, 6]. The theory has thereafter
been developed in different ways, see e.g. [8–10, 12].

A more complicated situation appear when some of the Lebesgue exponents for
B above are strictly smaller than one, sinceB is then merely a quasi-Banach space,
but not a Banach space, because only a weaker form of the triangle inequality holds
true. In such situations, B even fails to be a local convex topological vector space,
and the analysis based on (13.1.1) to reach (1)–(3) in their full strength above seems
not work. (Some partial properties can be achieved if for example it is required that
the Fourier transform of φ and φ0 should be compactly supported, see e.g [18]).

In [11], the more discrete approach is used to handle this situation, where a Gabor
expansion of φ with φ0 as Gabor window leads to that |Vφ f | can be estimated by

|Vφ f | � a ∗[E] |Vφ0 f |, (13.1.3)

for some nonnegative sequence a with enough rapid decay toward zero at infinity.
Here ∗[E] denotes the semi-continuous convolution

a ∗[E] F ≡
∑

j∈ΛE

F( · − j)a( j)

with respect to the basis E , between functions F and sequences a, and ΛE is the
lattice spanned by E . It follows that ∗[E] is similar to discrete convolutions.

For the discrete convolution ∗ both the classical Young’s inequality

‖a ∗ b‖�
p
0

≤ ‖a‖�p1 ‖b‖�p2 ,
1

p1
+ 1

p2
= 1 + 1

p0
, p j ∈ [1,∞], (13.1.4)

as well as

‖a ∗ b‖�p ≤ ‖a‖�p‖b‖�r , r ≤ min(1, p), p, r ∈ (0,∞], (13.1.5)

hold true, and it is proved in [11] and extended in [15] that similar facts hold
true for semi-continuous convolutions. In the end, the following restatement of
[15, Proposition 2.1] is deduced. The result also extends [11, Lemma 2.6].

Theorem 13.1.1 Let E be an ordered basis of Rd , ω, v ∈ PE (Rd) be such that ω

is v-moderate, and let p, r ∈ (0,∞]d be such that
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rk ≤ min
m≤k

(1, pm).

Then the map (a, f ) �→ a ∗[E] f from �0(ΛE ) × Σ1(Rd) to L p
E,(ω)(R

d) extends
uniquely to a linear andcontinuousmap from �rE,(v)(ΛE ) × L p

E,(ω)(R
d) to L p

E,(ω)(R
d),

and

‖a ∗[E] f ‖L p
E,(ω)

� ‖a‖�rE,(v)
‖ f ‖L p

E,(ω)
,

a ∈ �rE,(v)(ΛE ), f ∈ L p
E,(ω)(R

d). (13.1.6)

In [11], (13.1.3) in combination with [11, Lemma 2.6] is used to show that (1)–(3)
still hold when B = L p,q and ω is a moderate weight of polynomial type. In [15],
(13.1.3) in combination with Theorem 13.1.1 are used to show (1)–(3) for an even
broader class of mixed Lebesgue spaces B and weight functions ω.

The aim of the paper is to extend Theorem 13.1.1, so that f in some direc-
tions (variables) is allowed to be periodic, or a weaker form of periodicity, called
echo-periodic functions (cf. Theorem 13.3.1 in Sect. 13.3). Such functions appear
for example when applying the short-time Fourier transform on periodic or quasi-
periodic functions. In fact, if f is E-periodic, then x �→ |Vφ f (x, ξ)| is E-periodic
for every ξ . A function or distribution F(x, ξ) is called quasi-periodic of order ρ > 0,
if

F(x + ρk, ξ) = e2π iρ〈k,ξ〉F(x, ξ), k ∈ Zd ,

F(x, ξ + κ/ρ) = F(x, ξ), κ ∈ Zd .

and by straightforward computations it follows that

|(VΦF)(x + ρk, ξ, η, y)| = |(VΦF)(x, ξ, η, y − 2πk)|, k ∈ Zd ,

|(VΦF)(x, ξ + κ/ρ, η, y)| = |(VΦF)(x, ξ, η, y)|, κ ∈ Zd ,
(13.1.7)

for such F . Hence, the notion on echo-periodic functions comprises periodicity,
quasi-periodicity and the weaker form of periodicity that VΦF possess in (13.1.7).

It is expected that the achieved extensions will be useful when performing local
investigations of short-time Fourier transforms of periodic and quasi-periodic func-
tions, e.g. in [16].

Finally, we remark that in the Banach space case, i.e., when rk ≥ 1 for every k,
then Theorems 13.1.1, and 13.3.1 follow from [9].

13.2 Preliminaries

In this section, we recall some basic facts and introduce some notations. In the
first part, we recall the notion of weight functions. Thereafter we discuss mixed
quasi-norm spaces of Lebesgue types and modulation spaces. Finally, we consider
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periodic functions and distributions and introduce the notion of echo-periodic func-
tions, which is a weaker form of periodicity which at the same time also include the
notion of quasi-periodicity. The results in the section can be found in e.g. [5–13, 15].

13.2.1 Weight Functions

A weight on Rd is a positive function ω ∈ L∞
loc(R

d) such that 1/ω ∈ L∞
loc(R

d). A
usual condition on ω is that it should be moderate, or v-moderate for some positive
function v ∈ L∞

loc(R
d). This means that

ω(x + y) � ω(x)v(y), x, y ∈ Rd . (13.2.1)

Here f (θ) � g(θ) means that f (θ) ≤ cg(θ) for some constant c > 0 which is inde-
pendent of θ in the domain of f and g. We note that (13.2.1) implies that ω fulfills
the estimates

v(−x)−1 � ω(x) � v(x), x ∈ Rd . (13.2.2)

We let PE (Rd) be the set of all moderate weights on Rd .
It can be proved that if ω ∈ PE (Rd), then ω is v-moderate for some v(x) = er |x |,

provided the positive constant r is large enough (cf. [13]). In particular, (13.2.2)
shows that for any ω ∈ PE (Rd), there is a constant r > 0 such that

e−r |x | � ω(x) � er |x |, x ∈ Rd

(cf. [12]).
We say that v is submultiplicative if v is even and (13.2.1) holds with ω = v. In

the sequel, v and v j for j ≥ 0, always stand for submultiplicative weights if nothing
else is stated.

13.2.2 Spaces of Mixed Quasi-Norm Spaces of Lebesgue
Types

For the (ordered) basis E = {e1, . . . , ed} ofRd , the corresponding latticeΛE is given
by

ΛE = { n1e1 + · · · + nded ; (n1, . . . , nd) ∈ Zd },

and mixed (quasi-)normed space of Lebesgue types with respect to E is given in the
following definition.

Definition 13.2.1 Let E = {e1, . . . , ed} be an ordered basis of Rd , κ(E) be the
parallelepiped spanned by E , ω ∈ PE (Rd) p = (p1, . . . , pd) ∈ (0,∞]d and r =
min(1, p). If f ∈ Lr

loc(R
d), then
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‖ f ‖L p
E,(ω)

≡ ‖gd−1‖L pd (R)

where gk(zk), zk ∈ Rd−k , k = 0, . . . , d − 1, are inductively defined as

g0(x1, . . . , xd) ≡ | f (x1e1 + · · · + xded)ω(x1e1 + · · · + xded)|,

and

gk(zk) ≡ ‖gk−1( · , zk)‖L pk (R), k = 1, . . . , d − 1.

1. IfΩ ⊆ Rd is measurable, then L p
E,(ω)(Ω) consists of all f ∈ Lr

loc(Ω)with finite
quasi-norm

‖ f ‖L p
E,(ω)(Ω) ≡ ‖ fΩ‖L p

E,(ω)(R
d ), fΩ(x) ≡

{
f (x), when x ∈ Ω

0, when x /∈ Ω.

The space L p
E,(ω)(Ω) is called E-split Lebesgue space (with respect to ω, p, Ω

and E), and p is called the Lebesgue exponents of L p
E,(ω)(Ω);

2. IfΛ ⊆ Rd is a lattice such that ΛE ⊆ Λ, then the quasi-Banach space �
p
E,(ω)(Λ)

consists of all a ∈ �′
0(Λ) such that

‖a‖�
p
E,(ω)(Λ) ≡

∥∥∥∥∥∥

∑

j∈Λ

a( j)χ j+κ(E)

∥∥∥∥∥∥
L p
E,(ω)(R

d )

is finite. The space �
p
E,(ω) ≡ �

p
E,(ω)(ΛE ) is called the discrete version of the space

L p
E,(ω)(R

d) (cf. [9]).

Evidently, L p
E,(ω)(Ω) and �

p
E,(ω)(Λ) in Definition 13.2.1 are quasi-Banach spaces

of order min(p, 1). We set

L p
E = L p

E,(ω) and �
p
E = �

p
E,(ω)

when ω = 1, and if p = (p0, . . . , p0) for some p0 ∈ (0,∞], then

L p
E,(ω) = L p0

(ω), L p
E = L p0 , �

p
E,(ω) = �

p0
(ω) and �

p
E = �p0

with equivalent quasi-norms.
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13.2.3 Echo-Periodic Functions

We recall that if E = {e1, . . . , ed} is an ordered basis of Rd , then the function or
distribution f on Rd is called E-periodic, if f ( · + v) = f for every v ∈ E . More
generally, if E0 ⊆ E , then f above is called E0-periodic, if f ( · + v) = f for every
v ∈ E0.We shall consider functions that possess conditions resemblingperiodic ones,
which appear when dealing with, e.g., quasi-periodic functions and their short-time
Fourier transforms.

Definition 13.2.2 Let E = {e1, . . . , ed} be an ordered basis of Rd , E0 ⊆ E and let
f be a (complex-valued) function on Rd . For every k ∈ {1, . . . , d}, let Mk be the
set of all l ∈ {1, . . . , k} such that el ∈ E \ E0. Then f is called an echo-periodic
function with respect to E0, if for every ek ∈ E0, there is a vector

vk =
∑

l∈Mk

vk,l el

such that
| f ( · + ek)| = | f ( · + vk)|. (13.2.3)

Example 13.1 Evidently, any periodic function or quasi-periodic function is echo-
periodic. The notion of echo-periodic functions is also related to the notion on almost
periodic functions (cf. [2, 3, 17]). We also notice that if f is a periodic function or
distribution onRd , then x �→ |Vφ f (x, ξ)| is also period, giving that x �→ Vφ f (x, ξ)

is echo-periodic, but in general not periodic, for every fixed ξ ∈ Rd .
A more sophisticated example on echo-periodic functions concern the short-time

Fourier transform on quasi-periodic functions. In fact, in [16] it is observed that
(13.1.7) hold true, when F is quasi-periodic of order ρ. If e1, . . . , e4d is the standard
basis of R4d ,

E =
{
ed+1

ρ
, . . . ,

e2d
ρ

, e3d+1, . . . , e4d , ρe1, . . . , ρed , e2d+1, . . . , e3d

}

and

E0 =
{
ed+1

ρ
, . . . ,

e2d
ρ

, ρe1, . . . , ρed

}
,

then it follows that VΦF is echo-periodic with respect to E0.

We notice that in (13.1.7), relations of the form (13.2.3) appear.

Remark 13.2.3 Let E , E0 and Mk be the same as in Definition 13.2.2, and let f be
a (complex-valued) function on Rd such that (13.2.3) holds true. Also let
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Jk =
{
R, k ∈ Md ,

[0, 1], k /∈ Md ,

Ik = { xek ; x ∈ Jk }, k ∈ {1, . . . , d}

and

I = { x1e1 + · · · xded ; xk ∈ Jk, k = 1, . . . , d }
� I1 × · · · × Id .

Then evidently, | f ( · + nek)| = | f ( · + nvk)| for every integer n. Hence, if f is
measurable and echo-periodic with respect to E0, and p ∈ (0,∞]d , then it follows
by straightforward computations that

‖ f ( · + nek)‖L p
E (I ) = ‖ f ‖L p

E (I )

for every integer n and ek ∈ E0.

Definition 13.2.4 Let E , E0 and I ⊆ Rd be the same as in Remark 13.2.3, ω ∈
PE (Rd) and let p ∈ (0,∞]d . Then L p,E0

E,(ω)(R
d) denotes the set of all complex-valued

measurable echo-periodic functions f with respect to E0 such that

‖ f ‖L
p,E0
E,(ω)

≡ ‖ f ‖L p
E,(ω)(I )

is finite.

In the next section, we shall deduceweighted L p
E (I ) estimates of the semi-discrete

convolution
(a ∗[E] f )(x)

∑

j∈ΛE

a( j) f (x − j), (13.2.4)

of the measurable function f on Rd and a ∈ �0(ΛE ), with respect to the ordered
basis E .

13.3 Weighted Lebesgue Estimates on Semi-discrete
Convolutions

In this section, we extend Theorem 13.1.1 from the introduction such that L p
E (I )-

estimates of echo-periodic functions are included.
Let E , E0, Mk , I and Jk , k = 1, . . . , d, be the same as in Remark 13.2.3. In what

follows we let Σ E0
1 (Rd) be the set of all E0-periodic f ∈ C∞(Rd) such that if

g(x1, . . . , xd) ≡ f (x1e1 + · · · + xded),

then
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sup
α,β∈Nd

‖xαDβg‖L∞(I )

h|α+β|α!β!

is finite for every h > 0. By the assumptions and basic properties due to [4] it follows
thatΣ E0

1 (Rd) ⊆ L p,E0

E,(ω)(R
d) for every choice of ω ∈ PE (Rd) and p ∈ (0,∞]d such

that

ω(x) = ω(x0) when x =
d∑

k=1

xkek, x0 =
∑

k∈Md

xkek . (13.3.1)

Our extension of Theorem 13.1.1 to include echo-periodic functions is the fol-
lowing, which is also our main result.

Theorem 13.3.1 Let E be an ordered basis ofRd , E0 ⊆ E,ω, v ∈ PE (Rd) be such
that ω is v-moderate and satisfy (13.3.1), and let p, r ∈ (0,∞]d be such that

rk ≤ min
m≤k

(1, pm).

Also let I ⊆ Rd be as in Remark 13.2.3. Then the map (a, f ) �→ a ∗[E] f from
�0(ΛE ) × Σ

E0
1 (Rd) to L p

E,(ω)(I ) extends uniquely to a linear and continuous map

from �rE,(v)(ΛE ) × L p,E0

E,(ω)(R
d) to L p

E,(ω)(I ), and

‖a ∗[E] f ‖L p
E,(ω)

(I ) � ‖a‖�rE,(v)
(ΛE )‖ f ‖L p

E,(ω)
(I ),

a ∈ �rE,(v)(ΛE ), f ∈ L
p,E0
E,(ω)

(Rd ) (13.3.2)

For the proof we recall that

⎛

⎝
∑

j∈I
|b( j)|

⎞

⎠
r

≤
∑

j∈I
|b( j)|r 0 < r ≤ 1, (13.3.3)

for any sequence b and countable set I (cf. [1]).

Proof Since �rE,(v) increases with r , we may assume that rk is equal to the smallest
number of 1, p1, . . . , pk . By letting

fω(x1, . . . , xd) = | f (x1e1 + · · · + xded)ω(x1e1 + · · · + xded)|,
av(l1, . . . , ld) = |a(l1e1 + · · · + lded)v(l1e1 + · · · + lded)|

and using the inequality
|a ∗[E] f · ω| � av ∗[E] fω,

(with pointwise estimate in the inequality) we reduce ourselves to the case when E
is the standard basis, ω = v = 1 and f, a ≥ 0. This implies that we may identify Ik
in Remark 13.2.3 with Jk for every k.
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Let

zk = (xk+1, . . . , xd) ∈ Rd−k, mk = (lk+1, . . . , ld) ∈ Zd−k

for k = 0, . . . , d − 1.
Then zk−1 = (xk, zk) and mk−1 = (lk,mk). It follows that xk ∈ Ik when applying

the mixed quasi-norms of Lebesgue types, and that

0 ≤ (a ∗[E] f )(x1, . . . , xd)

≤
∑

m0∈Zd

f (x1 − ϕ1(m0), . . . , zd − ϕd(md−1))a(m0),

(13.3.4)

for some linear functions ϕk from Rd+1−k to R, which satisfy

ϕk(zk−1) =
{
xk + ψk(zk), Jk = R,

0, Jk = [0, 1], (13.3.5)

for some linear forms ψk on Rd−k , k = 1, . . . , d.
Let

f0 = f, a0 = a, g0 = a ∗[E] f.

and define inductively

fk(zk) = ‖ fk−1( · , zk)‖L pk (Jk ), ak(mk) = ‖ak−1( · ,mk)‖�rk (Z),

and

gk(zk) = ‖gk−1( · , zk)‖L pk (Jk ), k = 1, . . . d.

Also let
ϕk(zk) = (ϕk+1(zk), . . . , ϕd(zd−1)), k = 0, . . . , d − 1.

Then (13.3.4) is the same as

0 ≤ (a ∗[E] f )(x1, . . . , xd) ≤
∑

m0∈Zd

f (z0 − ϕ0(m0))a(m0), (13.3.6)

We claim

gk(zk) �
(

∑

mk

fk(xk+1 − ϕk+1(mk), . . . , xd − ϕd(md−1))
rk ak(mk)

rk

) 1
rk

,
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which in view of the links between (13.3.4) and (13.3.6) is the same as

gk(zk) �
(

∑

mk

fk(zk − ϕk(mk))
rk ak(mk)

rk

) 1
rk

(13.3.7)

when k = 0, . . . , d. Here we set r0 = 1, and interprete fd , ad , gd and the right-hand
side of (13.3.7) as‖ f ‖L p

E (I ),‖a‖�rE (Zd ),‖g0‖L p
E (I ) and‖ f ‖L p

E (I )‖a‖�rE (Zd ), respectively.
The result then follows by letting k = d in (13.3.7).

We shall prove (13.3.7) by induction. The result is evidently true when k = 0.
Suppose it is true for k − 1, k ∈ {1, . . . , d − 1}. We shall consider the cases when
pk ≥ rk−1 or pk ≤ rk−1, and Jk = R or Jk = [0, 1] separately and for conveniency
we set q = rk−1 and fk−1 = h.

First assume that pk ≥ rk−1. Then rk = rk−1. Also suppose Jk = R. Then it fol-
lows from the induction hypothesis that

gk(zk)

�
(∫ ∞

−∞

(∑
h(xk − ϕk(mk−1), zk − ϕk(mk))

qak−1(lk,mk)
q
) pk

q
dxk

) 1
pk

,

where the sum is taken over all (lk,mk) ∈ Z × Zd−k . ByMinkowski’s inequality we
get

gk(zk)

�
(

∑(∫ ∞

−∞
h(xk − ϕk(mk−1), zk − ϕk(mk))

pk dxk

) q
pk

ak−1(lk,mk)
q

) 1
q

=
(

∑ (∫ ∞

−∞
h(xk, zk − ϕk(mk))

pk dxk

) q
pk

ak−1(lk,mk)
q

) 1
q

=
(∑

fk(zk − ϕk(mk))
qak−1(lk,mk)

q
) 1

q

=
⎛

⎝
∑

mk∈Zd−k

fk(zk − ϕk(mk))
q

⎛

⎝
∑

lk∈Z
ak−1(lk,mk)

q

⎞

⎠

⎞

⎠

1
q

=
⎛

⎝
∑

mk∈Zd−k

fk(zk − ϕk(mk))
rk ak(mk)

rk

⎞

⎠

1
rk

, (13.3.8)

and (13.3.7) follows in the case pk ≥ rk−1 and Jk = R by combining these estimates.
Next we consider the case when pk ≥ rk−1 and Jk = [0, 1]. Then ϕk(mk−1) = 0,

and by the induction hypothesis and Minkowski’s inequality we get
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gk(zk) �

⎛

⎝
∫ 1

0

(
∑

mk−1

h(xk, zk − ϕk(mk))
qak−1(lk,mk)

q

) pk
q

dxk

⎞

⎠

1
pk

≤
(

∑

mk−1

(∫ 1

0
h(xk, zk − ϕk(mk))

pk dxk

) q
pk

ak−1(lk,mk)
q

) 1
q

=
(

∑

mk−1

fk(zk − ϕk(mk))
qak−1(lk,mk)

q

) 1
q

=
⎛

⎝
∑

mk∈Zd−k

fk(zk − ϕk(mk))
rk ak(mk)

rk

⎞

⎠

1
rk

, (13.3.9)

and (13.3.7) follows in the case pk ≥ rk−1 and Jk = [0, 1] as well.
Next assume that pk ≤ rk−1 and Jk = R. Then

pk/rk−1 = pk/q ≤ 1 and rk = pk,

and (13.3.3) gives

gk(zk)

�

⎛

⎝
∫ ∞

−∞

(
∑

mk−1

h(xk − ϕk(mk−1), zk − ϕk(mk))
qak−1(lk,mk)

q

) pk
q

dxk

⎞

⎠

1
pk

�
(∫ ∞

−∞

∑

mk−1

(
h(xk − ϕk(mk−1), zk − ϕk(mk))

qak−1(lk,mk)
q
) pk

q dxk

) 1
pk

=
(

∑

mk−1

(∫ ∞

−∞
h(xk − ϕk(mk−1), zk − ϕk(mk))

pk dxk

)
ak−1(lk,mk)

pk

) 1
pk

=
(

∑

mk−1

(∫ ∞

−∞
h(xk, zk − ϕk(mk))

pk dxk

)
ak−1(lk,mk)

pk

) 1
pk

=
⎛

⎝
∑

mk

fk(zk − ϕk(mk))
pk

⎛

⎝
∑

lk

ak−1(lk,mk)
pk

⎞

⎠

⎞

⎠

1
pk

=
(

∑

mk

fk(zk − ϕk(mk))
rk ak(mk)

rk

) 1
rk

, (13.3.10)

and (13.3.7) follows in this case as well.
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It remain to consider the case pk ≤ rk−1 and Jk = [0, 1]. Then ϕk(mk−1) = 0, and
by similar arguments as above we get

gk(zk)

�

⎛

⎝
∫ 1

0

(
∑

mk−1

h(xk, zk − ϕk(mk))
qak−1(lk,mk)

q

) pk
p

dxk

⎞

⎠

1
pk

�
(∫ 1

0

∑

mk−1

(
h(xk, zk − ϕk(mk))

qak−1(lk,mk)
q
) pk

q dxk

) 1
pk

=
(

∑

mk−1

(∫ 1

0
h(xk, zk − ϕk(mk))

pk dxk

)
ak−1(lk,mk)

pk

) 1
pk

=
(

∑

mk

fk(zk − ϕk(mk))
rk ak(mk)

rk

) 1
rk

, (13.3.11)

and (13.3.7) and thereby the result follow.
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Chapter 14
Almost Diagonalization
of Pseudodifferential Operators

S. Ivan Trapasso

Abstract In this review we focus on the almost diagonalization of pseudodifferen-
tial operators and highlight the advantages that time-frequency techniques provide
here. In particular, we retrace the steps of an insightful paper by Gröchenig, who
succeeded in characterizing a class of symbols previously investigated by Sjöstrand
by noticing that Gabor frames almost diagonalize the correspondingWeyl operators.
This approach also allows to give new and more natural proofs of related results such
as boundedness of operators or algebra and Wiener properties of the symbol class.
Then, we discuss some recent developments on the theme, namely an extension of
these results to a more general family of pseudodifferential operators and similar
outcomes for a symbol class closely related to Sjöstrand’s one.

2010 Mathematics Subject Classification: 47G30 · 35S05 · 42B35 · 81S30

14.1 Introduction

The wide range of problems that one can tackle by means of time-frequency analysis
bears witness to the relevance of this quite modern discipline stemmed from both
pure and applied issues in harmonic analysis. There is no way to provide here a com-
prehensive bibliography on the theme, which would encompass studies in quantum
mechanics and partial differential equations. We confine ourselves to list some refer-
ences to be used as points of departure for a walk through the topic: see [1, 4, 6, 11,
25, 28]. Besides the countless achievements as tool for other fields, Gabor analysis
is a fascinating subject in itself and it may happen to shed new light on established
facts in an effort to investigate the subtle problems underlying its foundation. We
report here the case of Gröchenig’s work [17]: the author retrieved and extended
well-known outcomes obtained by Sjöstrand within the realm of “hard” analysis—
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cf. [26, 27], and this was achieved using techniques from phase space analysis. We
will give a detailed account in the subsequent sections, but let us briefly introduce
here the main characters of this story.

The (cross-)Wigner distribution is a quadratic time-frequency representation of
signals f, g in suitable function spaces (for instance f, g ∈ S (Rd), the Schwartz
class) defined as

W ( f, g)(x, ω) =
∫
Rd

e−2π iyω f
(

x + y

2

)
g

(
x − y

2

)
dy. (14.1.1)

It is possible to associate a pseudodifferential operator to this representation, namely
the so-called Weyl transform—it is a quite popular quantization rule in Physics
community. Given a tempered distribution σ ∈ S ′(R2d) as symbol (also observable,
in physics vocabulary), the correspondingWeyl transformmapsS (Rd) intoS ′(Rd)

and can be defined via duality by

〈OpW(σ ) f, g〉 = 〈σ, W (g, f )〉, f, g ∈ S (Rd). (14.1.2)

The Weyl transform has been thoroughly studied in [15, 32] among others. In
his aforementioned works, Sjöstrand proved that Weyl operators with symbols of
special type satisfy a number of interesting properties concerning their boundedness
and algebraic structure as a set. In terms that will be specified later in Sect. 14.3,
we can state that the set of such operators is a spectral invariant *-subalgebra of
B(L2(Rd)), the (C∗-)algebra of bounded operators on L2(Rd).

To be precise, given a Schwartz function g ∈ S (R2d) \ {0}, we provisionally
define the Sjöstrand’s class as the space of tempered distributions σ ∈ S ′(R2d)

such that ∫
R2d

sup
z∈R2d

|〈σ, π(z, ζ )g〉|dζ < ∞.

As a rule of thumb, notice that a symbol in M∞,1(R2d) locally (i.e., for fixed z ∈ R
2d )

coincides with the Fourier transform of a L1 function. Furthermore, it can be proved
that this somewhat exotic symbol class contains classical Hörmander’s symbols of
type S0

0,0, together with non-smooth ones.
The crucial remark here is that Sjöstrand’s class actually coincides with a function

space of a particular type, namely the modulation space M∞,1(R2d). In more general
terms, modulation spaces are Banach spaces defined by means of estimates on time-
frequency concentration and decay of its elements—see Sect. 14.2 for the details.
They were introduced by Feichtinger in the ’80s, although the original approach
was quite different from the simplified one adopted hereinafter (cf. the pioneering
papers [7, 8]), and soon established themselves as the optimal environment for time-
frequency analysis. Nevertheless, they also provide a fruitful context to set problems
in harmonic analysis and PDEs—see for instance [12, 14, 31].

Gröchenig deeply exploited this connectionwith time-frequency analysis by prov-
ing that Sjöstrand’s results extend to more general modulation spaces and, more
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importantly, he was able to completely characterize symbols in these classes by
means of a property satisfied by the corresponding Weyl operators, namely approx-
imate diagonalization. This is a classical problem in pure and applied harmonic
analysis—a short list of references is [2, 21, 23, 24]. We will thoroughly examine
Gröchenig’s results in Sect. 14.3. Here, we limit ourselves to heuristically argue that
the choice of a certain type of symbols assures that the corresponding Weyl oper-
ators preserve the time-frequency localization, since their “kernel” with respect to
continuous or discrete time-frequency shifts satisfies a convenient decay condition.

In the subsequent Sect. 14.4, we report some results on almost diagonalization
obtained by the author in a recent joint work with Elena Cordero and Fabio Nicola—
see [5]. Mimicking the scheme which leads to define the Weyl transform, in [1]
the authors consider a one-parameter family of time-frequency representations (τ -
Wigner distributions) and also define the corresponding pseudodifferential operators
Opτ via duality. Precisely, for τ ∈ [0, 1], the (cross-)τ -Wigner distribution is given
by

Wτ ( f, g)(x, ω) =
∫
Rd

e−2π iyζ f (x + τ y)g(x − (1 − τ)y) dy, f, g ∈ S (Rd),

(14.1.3)
whereas the corresponding τ -pseudodifferential operator is defined by

〈Opτ (a) f, g〉 = 〈a, Wτ (g, f )〉, f, g ∈ S (Rd). (14.1.4)

For τ = 1/2, we recapture the Weyl transform and the usual Wigner distribution,
while the cases τ = 0, 1, respectively cover the classical theory of Kohn-Nirenberg
and anti-Kohn-Nirenberg operators—whose corresponding distributions are also
known as Rihaczek and conjugate-Rihaczek distributions, respectively.

Our contribution aims at enlarging the area of application of Gröchenig’s result
along two directions. First, one finds that symbols in the Sjöstrand’s class are in fact
characterized by almost diagonalization of the corresponding τ -pseudodifferential
operators for any τ ∈ [0, 1]. While this is not surprising for reasons that will be
discussed later, it seems worthy of interest to get a similar result for symbols belong-
ing to a function space closely related to M∞,1, namely the Wiener amalgam space
W (F L∞, L1). The connection between these spaces is established by Fourier trans-
form: in fact, the latter exactly contains the Fourier transforms of symbols in the
Sjöstrand’s class. It is important to remark that even if the spirit of the result is the
same, numerous differences occur and we try to clarify the intuition behind this
situation in Sect. 14.4.

To conclude, we take advantage of this characterization in regards to boundedness
results. We were able to study the boundedness of τ -pseudodifferential operator
covering several possible choices among modulation and Wiener amalgam space
for symbol classes and spaces on which they act. We mention that in a number of
these outcomes, we have benefited from a strong linkage with the theory of Fourier
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integral operators. Besides, the latter condition also made possible to establish (or
disprove) the algebraic properties considered by Sjöstrand for special classes of τ -
pseudodifferential operators.

14.2 Preliminaries

Notation. We write t2 = t · t , for t ∈ R
d , and xy = x · y is the scalar product on

R
d . The Schwartz class is denoted byS (Rd), the space of tempered distributions by

S ′(Rd). The brackets 〈 f, g〉 denote both the duality pairing between S ′(Rd) and
S (Rd) and the inner product 〈 f, g〉 = ∫

f (t)g(t)dt on L2(Rd). In particular, we
assume it to be conjugate-linear in the second argument. The symbol � means that
the underlying inequality holds up to a positive constant factor C > 0 on the RHS:

f � g ⇒ ∃C > 0 : f ≤ Cg.

The Fourier transform of a function f on R
d is normalized as

F f (ξ) =
∫
Rd

e−2π i xξ f (x) dx .

Given x, ω ∈ R
d , themodulation Mω and translation Tx operators act on a function

f (on Rd ) as
Mω f (t) = e2π i tω f (t) , Tx f (t) = f (t − x) .

We write a point in phase space as z = (x, ω) ∈ R
2d , and the corresponding phase-

space shift acting on a function or distribution as

π(z) f (t) = e2π iωt f (t − x), t ∈ R
d . (14.2.1)

Denote by J , the canonical symplectic matrix in R2d :

J =
(

0d×d Id×d

−Id×d 0d×d

)
∈ Sp (2d,R) ,

where the symplectic group Sp (2d,R) is defined by

Sp (2d,R) = {
M ∈ GL(2d,R) : M� J M = J

}
.

Observe that, for z = (z1, z2) ∈ R
2d , we have J z = J (z1, z2) = (z2,−z1) , J−1z =

J−1 (z1, z2) = (−z2, z1) = −J z, and J 2 = −I2d×2d .

Short-time Fourier transform. Let f ∈ S ′(Rd) and g ∈ S (Rd) \ {0}. The short-
time Fourier transform (STFT) of f with window function g is defined as
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Vg f (x, ω) = 〈 f, π(x, ω)g〉 = F ( f Tx g)(ω) =
∫
Rd

f (y) g(y − x) e−2π iyω dy.

(14.2.2)
We remark that the last expression has to be intended in formal sense, but it truly
represents the integral corresponding to the inner product 〈 f, π(x, ω)g〉 whenever
f, g ∈ L2(Rd).
Recall the fundamental property of time-frequency analysis:

Vg f (x, ω) = e−2π i xωVĝ f̂ (J (x, ω)) . (14.2.3)

Gabor frames. Let Λ = AZ2d , with A ∈ GL(2d,R), be a lattice in the time-
frequency plane. The set of time-frequency shifts G (ϕ,Λ) = {π(λ)ϕ : λ ∈ Λ} for
a non-zero ϕ ∈ L2(Rd) (the so-called window function) is called Gabor system. A
Gabor system G (ϕ,Λ) is said to be a Gabor frame if the lattice is such thick that the
energy content of a signal as sampled on the lattice by means of STFT is comparable
with its total energy, that is, there exist constants A, B > 0 such that

A‖ f ‖22 ≤
∑
λ∈Λ

|〈 f, π(λ)ϕ〉|2 ≤ B‖ f ‖22, ∀ f ∈ L2(Rd). (14.2.4)

14.2.1 Function Spaces

Weight functions. Let us call admissible weight function any non-negative contin-
uous function v on R

2d such that:

1. v (0) = 1 and v is even in each coordinate:

v (±z1, . . . ,±z2d) = v (z1, . . . , z2d) .

2. v is submultiplicative, that is,

v (w + z) ≤ v (w) v (z) ∀w, z ∈ R
2d .

3. v satisfies the Gelfand–Raikov–Shilov (GRS) condition:

lim
n→∞ v (nz)

1
n = 1 ∀z ∈ R

2d . (14.2.5)

Examples of admissible weights are given by v (z) = ea|z|b (1 + |z|)s logr

(e + |z|), with real parameters a, r, s ≥ 0 and 0 ≤ b < 1. Functions of polynomial
growth such as

vs (z) = 〈z〉s = (
1 + |z|2) s

2 , z ∈ R
2d , s ≥ 0 (14.2.6)

are admissibleweights too. Fromnowon, v will denote an admissibleweight function
unless otherwise specified.We remark that the GRS condition is exactly the technical
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tool required to forbid an exponential growth of the weight in some direction. For
further discussion on this feature, see [18].

Given a submultiplicative weight v, a positive function m on R
2d is called v-

moderate weight if there exists a constant C ≥ 0 such that

m(z1 + z2) ≤ Cv(z1)m(z2) , z1, z2 ∈ R
2d .

The set of all v-moderate weights will be denoted by Mv(R
2d).

In order to remain in the framework of tempered distributions, in what follows we
shall always assume that weight functions m on R

d under our consideration satisfy
the following condition:

m(z) ≥ 1, ∀z ∈ R
d or m(z) � 〈z〉−N , (14.2.7)

for some N ∈ N. The same holds with suitable modifications for weights on R2d .

Modulation spaces. Given a non-zero window g ∈ S (Rd), a v-moderate weight
function m on R

2d satisfying (14.2.7), and 1 ≤ p, q ≤ ∞, the modulation space
M p,q

m (Rd) consists of all tempered distributions f ∈ S ′(Rd) such that Vg f ∈
L p,q

m (R2d) (weighted mixed-norm space). The norm on M p,q
m is

‖ f ‖M p,q
m

= ‖Vg f ‖L p,q
m

=
(∫

Rd

(∫
Rd

|Vg f (x, ω)|pm(x, ω)p dx

)q/p

dω

)1/q

,

with suitable modifications if p = ∞ or q = ∞. If p = q, we write M p
m instead of

M p,p
m , and if m(z) ≡ 1 on R

2d , then we write M p,q and M p for M p,q
m and M p,p

m .
It can be proved (see [15]) that M p,q

m (Rd) is a Banach space whose definition
is independent of the choice of the window g—meaning that different windows
provide equivalent norms on M p,q

m . The window class can be extended to M1
v , cf.

[15, Thm. 11.3.7]. Hence, given any g ∈ M1
v (Rd) and f ∈ M p,q

m , we have

‖ f ‖M p,q
m

� ‖Vg f ‖L p,q
m

. (14.2.8)

We recall the inversion formula for the STFT (see [15, Proposition 11.3.2]). If g ∈
M1

v (Rd) \ {0}, f ∈ M p,q
m (Rd), with m satisfying (14.2.7), then

f = 1

‖g‖22

∫
R2d

Vg f (z)π(z)g dz , (14.2.9)

and the equality holds in M p,q
m (Rd).

The adjoint operator of Vg , defined by

V ∗
g F(t) =

∫
R2d

F(z)π(z)gdz ,
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maps the Banach space L p,q
m (R2d) into M p,q

m (Rd). In particular, if F = Vg f the
inversion formula (14.2.9) reads

IdM p,q
m

= 1

‖g‖22
V ∗

g Vg. (14.2.10)

WienerAmalgamSpaces. Fix g ∈ S (Rd) \ {0} and consider evenweight functions
u, w onRd satisfying (14.2.7). TheWiener amalgam space W (F L p

u , Lq
w)(Rd) is the

space of distributions f ∈ S ′(Rd) such that

‖ f ‖W (F L p
u ,Lq

w)(Rd ) :=
(∫

Rd

(∫
Rd

|Vg f (x, ω)|pu p(ω) dω

)q/p

wq(x)dx

)1/q

< ∞

with obvious modifications for p = ∞ or q = ∞.
It shall be underlined that this kind of spaces is a (very special, indeed) subclass

of the more general family W (B, C), where B and C are suitable functional spaces.
Furthermore, the definition provided here sweeps under the carpet many non-trivial
aspects of their structure. A thorough discussion of the subject is not necessary for
our purposes and would lead us too far, thus we prefer to address the interested reader
to the literature, cf. for instance [9, 15, 20].

Notice that the fundamental identity of time-frequency analysis (14.2.3) yields
|Vg f (x, ω)| = |Vĝ f̂ (ω,−x)| = |F ( f̂ Tω ĝ)(−x)| and (since u(x) = u(−x))

‖ f ‖M p,q
u⊗w

=
(∫

Rd

‖ f̂ Tω ĝ‖q
F L p

u
wq(ω) dω

)1/q

= ‖ f̂ ‖W (F L p
u ,Lq

w).

Hence, the specialWiener amalgam spaces under our consideration are simply the
image under Fourier transform of modulation spaces with weights of tensor product
type, namely m(x, ω) = u ⊗ w(x, ω) = u(x)w(ω):

F (M p,q
u⊗w) = W (F L p

u , Lq
w). (14.2.11)

This shouldnot at all comeas a surprise. In fact, it is exactly howmodulation spaces
have been originally designed by Feichtinger, i.e., as specialWiener amalgams on the
Fourier transform side. We recommend to look at [10] for an intriguing conceptual
and historical account on the whole matter.

14.2.2 τ -Pseudodifferential Operators

Let us introduce the τ -pseudodifferential operators as it is customary in time-
frequency analysis, i.e., by means of superposition of time-frequency shifts:
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Opτ (σ ) f (x) =
∫
R2d

σ̂ (ω, u) e−2π i(1−τ)ωu (T−u Mω f ) (x) dudω, x ∈ R
d ,

(14.2.12)
for any τ ∈ [0, 1]. The symbol σ and the function f belong to suitable function
spaces, to be determined in order for the previous expression to make sense. As an
example, minor modifications to [15, Lem. 14.3.1] give that Opτ (σ ) maps S

(
R

d
)

toS ′ (
R

2d
)
whenever σ ∈ S ′ (

R
2d

)
.

Assuming that (14.2.12) is a well-defined absolutely convergent integral (for
instance, it is enough to assume σ̂ ∈ L1

(
R

2d
)
), easy computations lead to the usual

integral form of τ -pseudodifferential operators, namely

Opτ (σ ) f (x) =
∫
R2d

e2π i(x−y)ωσ ((1 − τ) x + τ y, ω) f (y) dydω.

We finally aim to represent Opτ (σ ) as an integral operator of the form

Opτ (σ ) f (x) =
∫
R2d

k (x, y) f (y) dy.

Let us introduce the operator Tτ acting on functions on R
2d as

Tτ F (x, y) = F (x + τ y, x − (1 − τ) y) , T−1
τ F (x, y) = F ((1 − τ) x + τ y, x − y) ,

and denote by Fi , i = 1, 2, the partial Fourier transform with respect to the i-th
d−dimensional variable (it is then clear that F = F1F2).

Since the operators Tτ and Fi are continuous bijections on S
(
R

2d
)
, the kernel

k is well-defined (as a tempered distribution) also for symbols in S ′ (
R

2d
)
and we

finally recover the representation by duality given in the Introduction according to
[1].

Proposition 14.1 For any symbol σ ∈ S ′ (
R

2d
)

and any real τ ∈ [0, 1], the map
Opτ (σ ) : S

(
R

d
) → S

(
R

d
)

is defined as integral operator with distributional
kernel

k = T−1
τ F−1

2 σ ∈ S ′ (
R

2d
)
,

meaning that, for any f, g ∈ S
(
R

d
)
,

〈
Opτ (σ ) f, g

〉 = 〈
k, g ⊗ f

〉
.

In particular, since the representation

Wτ ( f, g) (x, ω) = F2Tτ ( f ⊗ g) (x, ω)

holds for f, g ∈ S
(
R

d
)
, we have

〈
Opτ (σ ) f, g

〉 = 〈σ, Wτ (g, f )〉 .



14 Almost Diagonalization of Pseudodifferential Operators 331

As a consequence of the celebrated Schwartz’s kernel theorem (see for
instance [15, Theorem 14.3.4]), we are able to relate the representations for τ -
pseudodifferential operators given insofar.

Theorem 14.1 Let T : S
(
R

d
) → S ′ (

R
d
)

be a continuous linear operator. There
exist tempered distributions k, σ, F ∈ S ′ (

R
d
)

and τ ∈ [0, 1] such that T admits the
following representations:

(i) as an integral operator: 〈T f, g〉 = 〈
k, g ⊗ f

〉
for any f, g ∈ S

(
R

d
)
;

(ii) as a τ -pseudodifferential operator T = Opτ (σ ) with symbol σ ;
(iii) as a superposition (in a weak sense) of time-frequency shifts :

T =
∫
R2d

F (x, ω) e2(1−τ)π i xωTx Mωdxdω.

The relations among k, σ and F are the following:

σ = F2Tτ k, F = I2σ̂ ,

where I2 denotes the reflection in the second d-dimensional variable (i.e., I2G
(x, ω) = G (x,−ω), (x, ω) ∈ R

2d ).

To conclude this anthology, since the algebraic properties of pseudodifferential
operators’ families will be considered, recall that the composition ofWeyl transforms
provides a bilinear form on symbols, the so-called twisted product:

OpW(σ ) ◦ OpW(ρ) = OpW(σ�ρ).

Although explicit formulas for the twisted product of symbols can be derived (cf.
[32]), we will not need them hereafter. Anyway, this is a fundamental notion in order
to establish an algebra structure on symbol spaces: it is quite natural to ask if the
composition of operators with symbols in the same class reveals to be an operator
of the same type for some symbol in the same class. Also recall that taking the
adjoint of a Weyl operator provides an involution on the level of symbols, since
(OpW(σ ))∗ = OpW(σ ).

14.3 Time-Frequency Analysis of the Sjöstrand’s Class

The study of pseudodifferential operators has a wide and long tradition in the field
of mathematical analysis, starting from the monumental work of Hörmander. It has
to be noticed that the classical symbol classes considered in these investigations
are usually defined by means of differentiability conditions. In the spirit of time-
frequency analysis, we hereby employ modulation and Wiener amalgam spaces as
reservoirs of symbols for pseudodifferential operator andhence the short-timeFourier
transform to shape the desired properties.
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Recall that the Sjöstrand’s class is the modulation space M∞,1(R2d) consisting
of distributions σ ∈ S ′(R2d) such that

∫
R2d

sup
z∈R2d

|〈σ, π(z, ζ )g〉|dζ < ∞.

The control on symbols can be improved by weighting the condition on their
short-time Fourier transform, i.e., the modulation space norm. In the following, we
will employ weight functions of type 1 ⊗ v, where v is an admissible weight on
R

2d , according to the properties assumed in the Preliminaries. Weighted Sjöstrand’s
classes of this type are thus defined as

M∞,1
1⊗v

(
R

2d
) =

{
σ ∈ S ′ (

R
2d

) :
∫
R2d

sup
z∈R2d

|Vgσ(z, ζ )|v (ζ ) dζ < ∞
}

.

A function space closely related to the previous one is the Wiener amalgam
space W (F L∞, L1

v)(R
2d). As discussed in the previous section, we have indeed

W (F L∞, L1
v)(R

2d) = F M∞,1
1⊗v (R2d). Heuristically, a symbol in W (F L∞, L1)

(R2d) locally coincides with the Fourier transform of a L∞(R2d) signal and exhibits
global decay of L1 type. For instance, the δ distribution (in S ′(R2d)) belongs to
W (F L∞, L1)(R2d).

Although Sjöstrand’s definition of the eponym symbol class was quite different
from the one given here in terms of modulation spaces, in his works [26, 27] he
proved three fundamental results on Weyl operators with symbols in M∞,1.

Theorem 14.2

(i) (Boundedness) If σ ∈ M∞,1
(
R

2d
)
, then OpW(σ ) is a bounded operator on

L2(Rd).
(ii) (Algebra property) If σ1, σ2 ∈ M∞,1

(
R

2d
)

and OpW(ρ) = OpW(σ1)OpW(σ2),
then ρ = σ1�σ2 ∈ M∞,1

(
R

2d
)
.

(iii) (Wiener property) If σ ∈ M∞,1
(
R

2d
)

and OpW(σ ) is invertible on L2(Rd),

then
[
OpW(σ )

]−1 = OpW(ρ) for some ρ ∈ M∞,1
(
R

2d
)
.

For sake of conciseness, we can resume the preceding outcomes by saying that the
family ofWeyl operators with symbols in Sjöstrand’s class (denoted byOpW(M∞,1))
is an inverse-closed Banach *-subalgebra ofB(L2(Rd)).

Both these results and their original proofs might appear fairly technical at first
glance. Nonetheless, they unravel a deep and fascinating analogy between Weyl
operatorswith symbols in the Sjöstrand’s class and Fourier serieswith �1 coefficients.
Similarities of this kind come under the multifaceted problem of spectral invariance,
a topic thoroughly explored by Gröchenig in his insightful lecture [18].

In view of the structure of τ -pseudodifferential operators as superposition of time-
frequency shifts (cf. Eq. 14.2.12), it canbe fruitful to studyhowoperators interactwith
time-frequency shifts. Ameasure of this interplay is given by the entries of the infinite
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matrix which we are going to refer to as channel matrix, according to traditional
nomenclature in applied contexts like data transmission. First, fix a non-zero window
ϕ ∈ M1

v (Rd)
(
R

d
)
and a lattice Λ = AZ2d ⊆ R

2d , where A ∈ GL(2d,R), such that
G (ϕ,Λ) is a Gabor frame for L2

(
R

d
)
. Therefore, the entries of the channel matrix

are given by
〈OpW(σ )π(z)ϕ, π(w)ϕ〉, z, w ∈ R

2d ,

or
M(σ )λ,μ := 〈OpW(σ )π(λ)ϕ, π(μ)ϕ〉, λ, μ ∈ Λ,

if we restrict to the lattice Λ. In this context, we could say that OpW is almost
diagonalized by the Gabor frame G (ϕ,Λ) if its channel matrix exhibits a suitable
off-diagonal decay. The key result proved by Gröchenig in [17] is a characterization
of this type: a symbol belongs to the (weighted) Sjöstrand’s class if and only if time-
frequency shifts are almost eigenvectors of the corresponding Weyl operator. More
precisely, the claim is the following.

Theorem 14.3 Let v be an admissible weight and fix a non-zero window ϕ ∈
M1

v (Rd)
(
R

d
)

such that G (ϕ,Λ) is a Gabor frame for L2
(
R

d
)
. The following prop-

erties are equivalent:

(i) σ ∈ M∞,1
1⊗v◦J−1

(
R

2d
)
.

(ii) σ ∈ S ′ (
R

2d
)

and there exists a function H ∈ L1
v

(
R

2d
)

such that

|〈OpW (σ ) π (z) ϕ, π (w) ϕ〉| ≤ H (w − z) , ∀w, z ∈ R
2d .

(iii) σ ∈ S ′ (
R

2d
)

and there exists a sequence h ∈ �1v (Λ) such that

|〈OpW (σ ) π (μ) ϕ, π (λ) ϕ〉| ≤ h (λ − μ) , ∀λ,μ ∈ Λ.

This characterization is very strong: in particular, by applying Schwartz’s kernel
theorem, we also have:

Corollary 14.1 Under the hypotheses of the previous Theorem, assume that T :
S

(
R

d
) → S ′ (

R
d
)

is continuous and satisfies one of the following conditions:

(i) |〈T π (z) ϕ, π (w) ϕ〉| ≤ H (w − z) , ∀w, z ∈ R
2d for some H ∈ L1.

(ii) |〈T π (μ) ϕ, π (λ) ϕ〉| ≤ h (λ − μ) , ∀λ,μ ∈ Λ for some h ∈ �1.

Therefore, T = OpW (σ ) for some symbol σ ∈ M∞,1
1⊗v◦J−1

(
R

2d
)
.

Theproof of themain result heavily relies on a simple but crucial interplay between
the entries of the channel matrix of OpW and the short-time Fourier transform of the
symbol, whichwill be discussed in complete generality in the subsequent section.We
mention that at this point, Gröchenig establishes a strong link with matrix algebra,
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hence heading towards a more conceptual discussion of the almost diagonalization
property. In particular, it is easy to prove that σ ∈ M∞,1

1⊗v◦J−1 if and only if its channel
matrix M(σ ) belongs to the class Cv(Λ) of matrices A = (aλ,μ)λ,μ∈Λ such that there
exists a sequence h ∈ �1v which almost diagonalizes its entries, i.e.,

‖aλ,μ‖ ≤ h(λ − μ), λ, μ ∈ Λ.

It can be proved that Cv(Λ) is indeed a Banach *-algebra, and this insight allows a
natural extension if one considers other matrix algebras and investigates the relation
between symbols and the membership of their Gabor matrices in a matrix algebra.
For further investigations in more general contexts, see for instance [19].

Thanks to this fresh new formulation, the proofs of Sjöstrand’s results provided by
Gröchenig are to certain extent more natural. Furthermore, they extend the previous
ones since weighted spaces are considered. We summarize the main outcomes in the
following claims.

Theorem 14.4 (Boundedness) If σ ∈ M∞,1
1⊗v◦J−1 , then OpW(σ ) is bounded on M p,q

m

for any 1 ≤ p, q ≤ ∞ and any m ∈ Mv. In particular, if σ ∈ M∞,1, OpW(σ ) is
bounded on L2(Rd) and

• if 1 ≤ p ≤ 2, OpW(σ ) maps L p into M p,p′
;

• if 2 ≤ p ≤ ∞, OpW(σ ) maps L p into M p.

Theorem 14.5 (Algebra property) If v is a submultiplicative on R
2d , then M∞,1

v is
a Banach ∗-algebra with respect to the twisted product � and the involution σ �→ σ .

Theorem 14.6 (Wiener property) Assume that v is a submultiplicative weight on
R

2d . OpW
(
M∞,1

v

)
is inverse-closed in B(L2(Rd)) (i.e., if σ ∈ (

M∞,1
v

)
and OpW(σ )

is invertible on L2, then [OpW(σ )]−1 = OpW(ρ) for some ρ ∈ (
M∞,1

v

)
) if and only

if v satisfies the GRS condition (14.2.5).

Corollary 14.2 (Spectral invariance on modulation spaces) Assume that v is an
admissible weight, σ ∈ (

M∞,1
v

)
and OpW(σ ) is invertible on L2. Then, OpW(σ ) is

simultaneously invertible on every modulation space M p,q
m (Rd), for any 1 ≤ p, q ≤

∞ and m ∈ Mv.

Remark 14.1 The intuition behind the last result is that the spectrum of an operator
with suitably likable properties does not truly depend on the space on which it acts.
In order to establish a link with Beals’ theorem on spectral invariance in the context
of classical pseudodifferential operators, notice that Hörmander’s class

S0
0,0(R

2d) = {σ ∈ C∞(R2d) : ∂ασ ∈ L∞(R2d)∀α ∈ N
2d
0 }
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can be recasted as intersection of Sjöstrand’s classes with polynomial weights (cf.
[19]), namely

S0
0,0(R

2d) =
⋂
s≥0

M∞,1
vs

(R2d).

The Wiener property of these spaces leads to the conclusion that OpW
(
S0
0,0

)
is

inverse-closed in B(L2) too.

14.4 Almost Diagonalization of τ -Pseudodifferential
Operators

In a recent joint work of the author with E. Cordero and F. Nicola, an attempt has
been made to follow the path outlined by Gröchenig. The two directions investigated
are

1. the extension of the almost-diagonalization theorem to more general operators;
2. the search of an almost-diagonalization-like characterization of other symbol

classes.

For what concerns the first point, τ -pseudodifferential operators were investigated
instead of those of Weyl type. We already discussed in the Introduction how this
general class of operators extends in a natural way the previous one, which can be
recovered as the case τ = 1/2.Wewere able to obtain an identical result with an iden-
tical proof—apart from the substantialmodifications in the preliminary lemmas—see
[5] for the details.

Theorem 14.7 Let v be an admissible weight on R
2d . Consider ϕ ∈ M1

v

(
R

d
) \ {0}

and a lattice Λ ⊆ R
2d such that G (ϕ,Λ) is a Gabor frame for L2

(
R

d
)
. For any

τ ∈ [0, 1], the following properties are equivalent:

(i) σ ∈ M∞,1
1⊗v◦J−1

(
R

2d
)
.

(ii) σ ∈ S ′ (
R

2d
)

and there exists a function Hτ ∈ L1
v

(
R

2d
)

such that

∣∣〈Opτ (σ ) π (z) ϕ, π (w) ϕ
〉∣∣ ≤ Hτ (w − z) ∀w, z ∈ R

2d .

(iii) σ ∈ S ′ (
R

2d
)

and there exists a sequence hτ ∈ �1v (Λ) such that

∣∣〈Opτ (σ ) π (μ) ϕ, π (λ) ϕ
〉∣∣ ≤ hτ (λ − μ) ∀λ,μ ∈ Λ.

This result is not surprising for at least two reasons. Looking at the mapping
relating the symbols of different τ -quantizations, namely (see for instance [22, 29])

Opτ1
(a1) = Opτ2

(a2) ⇔ â2(ξ1, ξ2) = e−2π i(τ2−τ1)ξ1ξ2 â1(ξ1, ξ2),
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we see that the map that relates a Weyl symbol to its τ -counterpart is bounded in the
Sjöstrand’s class. At a more fundamental level, it is instructive to give a look at the
crucial ingredient of the proof, which is the relation between the channel matrix of
the τ -pseudodifferential operator and the short-time Fourier transform of the symbol.

Proposition 14.2 Fix a non-zero window ϕ ∈ S (Rd) and set Φτ = Wτ (ϕ, ϕ) for
τ ∈ [0, 1]. Then, for σ ∈ S ′ (

R
2d

)
,

∣∣〈Opτ (σ ) π (z) ϕ, π (w) ϕ
〉∣∣ = ∣∣VΦτ

σ (Tτ (z, w) , J (w − z))
∣∣ = ∣∣VΦτ

σ (x, y)
∣∣

(14.4.1)
and ∣∣VΦτ

σ (x, y)
∣∣ = ∣∣〈Opτ (σ ) π (z (x, y)) ϕ, π (w (x, y)) ϕ

〉∣∣ , (14.4.2)

for all w, z, x, y ∈ R
2d , where Tτ is defined as

Tτ (z, w) =
(

(1 − τ) z1 + τw1

τ z2 + (1 − τ) w2

)
z = (z1, z2), w = (w1, w2) ∈ R

2d . (14.4.3)

and

z (x, y) =
(

x1 + (1 − τ) y2
x2 − τ y1

)
, w (x, y) =

(
x1 − τ y2

x2 + (1 − τ) y1

)
. (14.4.4)

The main remark here is that the controlling function Hτ ∈ L1
v(R

d) in the almost
diagonalization theorem can be chosen as the so-called grand symbol associated to
σ ∈ M∞,1

v◦J−1 (according to [16]): for the general τ -case, we have

Hτ (v) = sup
u∈R2d

∣∣VΦτ
σ (u, Jv)

∣∣ .

The choice of the grand symbol is quite natural if one looks at the modulation norm
in the Sjöstrand’s class. However, it is clear that the dependence from τ is completely
confined to the window function Φτ and does not affect the variable v ∈ R

2d , which
corresponds to the frequency variable for the short-time Fourier transform of the
symbol. The proof of the general case can thus proceed exactly as the one for Weyl
case. We remark that also Corollary 14.1 generalizes in the obvious way.

It is reasonable at this stage to askwhat happens if a slightmodification of the grand
symbol is taken into account, that is, what happens if we look at the time dependence
of VΦτ

σ? This is equivalent to wonder if similar arguments extend in some fashion to
Fourier transform of symbols in the Sjöstrand’s class, namely symbols in a suitably
weighted version ofWiener amalgam space W

(
F L∞, L1

) = F M∞,1—hereinafter
referred toF -Sjöstrand’s class. The main outcome we got is the following.

Theorem 14.8 Let v be an admissible weight function on R
2d . Consider ϕ ∈

M1
v

(
R

d
) \ {0}. For any τ ∈ (0, 1), the following properties are equivalent:

(i) σ ∈ W
(
F L∞, L1

v◦B τ

) (
R

2d
)
.
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(ii) σ ∈ S ′ (
R

2d
)

and there exists a function Hτ ∈ L1
v

(
R

2d
)

such that

∣∣〈Opτ (σ ) π (z) ϕ, π (w) ϕ
〉∣∣ ≤ Hτ (w − Uτ z) ∀w, z ∈ R

2d , (14.4.5)

where the matrices Bτ and Uτ are defined as

Bτ =
( 1

1−τ
Id×d 0d×d

0d×d
1
τ

Id×d

)
, Uτ = −

(
τ

1−τ
Id×d 0d×d

0d×d
1−τ
τ

Id×d

)
∈ Sp (2d,R) .

(14.4.6)
If τ ∈ [0, 1], the estimate in (14.4.5) weakens as follows:

(ii’) σ ∈ S ′ (
R

2d
)

and there exists a function Hτ ∈ L1
v

(
R

2d
)

such that

∣∣〈Opτ (σ ) π (z) ϕ, π (w) ϕ
〉∣∣ ≤ Hτ (Tτ (w, z)) ∀w, z ∈ R

2d . (14.4.7)

A number of differences arise with respect to its counterpart for Sjöstrand’s sym-
bols. First, the almost diagonalization of the (continuous) channel matrix is lost, but
this is still a well-organized matrix: in the favourable case τ = (0, 1), (14.4.5) can be
interpreted as a measure of the concentration of the time-frequency representation
of Opτ (σ ) along the graph of the map Uτ . If we include the endpoints, the estimate
loses this meaning too.

Furthermore, notice that the discrete characterization via Gabor frames is lost, the
main obstruction being the following: for a given lattice Λ, the inclusionUτΛ ⊆ Λ

holds if and only if τ = 1/2, i.e., Uτ = U1/2 = −I2d×2d . In this particular frame-
work, the matrix B1/2 then becomes B1/2 = 2I2d×2d and the symmetry of Weyl
operators is rewarded by an additional characterization:

(iii’) σ ∈ S ′ (
R

2d
)
and there exists a sequence h ∈ �1v (Λ) such that

|〈OpW (σ ) π (μ) ϕ, π (λ) ϕ〉| ≤ h (λ + μ) ∀λ,μ ∈ Λ.

14.5 Consequences of Almost Diagonalization

14.5.1 Boundedness

We are now able to study the boundedness of τ -pseudodifferential operators cov-
ering several possible choices for symbol classes and spaces on which they act. If
one considers the action of τ -pseudodifferential operators on modulation spaces, a
Sjöstrand-type result for symbols in the Sjöstrand’s class can be inferred by means
of the same arguments applied in the Weyl case.

Theorem 14.9 Consider m ∈ Mv
(
R

2d
)

satisfying (14.2.7). For any τ ∈ [0, 1] and

σ ∈ M∞,1
1⊗v◦J−1 the operator Opτ (σ ) is bounded on M p,q

m (Rd), and there exists a
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constant Cτ > 0 such that

‖Opτ (σ )‖M p,q
m

≤ Cτ‖σ‖M∞,1
1⊗v◦J−1

. (14.5.1)

In order to address the problem of boundedness of τ -pseudodifferential operators
on modulation spaces with symbols in F -Sjöstrand’s class, a different strategy is
needed. Following [3], the idea is to recast Opτ (σ ) as the transformation (via the
short-time Fourier transform and its adjoint) of an integral operator with the channel
matrix as distributional kernel. Therefore, the almost diagonalization property allows
to obtain the desired estimates and claim the following result.

Theorem 14.10 Fix m ∈ Mv satisfying (14.2.7). For τ ∈ (0, 1) consider a symbol
σ ∈ W (F L∞, L1

v◦B τ
)
(
R

2d
)
, with the matrix Bτ defined in (14.4.6). Then the oper-

ator Opτ (σ ) is bounded from M p,q
m

(
R

d
)

to M p,q
m◦U −1

1−τ

(
R

d
)
, 1 ≤ p, q ≤ ∞.

We now turn to consider the boundedness of τ -pseudodifferential operators on
Wiener amalgam spaces. Looking for a big picture and given that modulation and
Wiener amalgam spaces are intertwined by the Fourier transform, it is natural to
wonder if continuity properties of an operator acting on modulation spaces may
still hold true when it acts on the corresponding amalgam spaces. In the case of τ -
pseudodifferential operators, the answer is yes but heavily relies on the particularway
Fourier transform and τ -pseudodifferential operators commute. This phenomenon is
a special case of the symplectic covariance property of Shubin calculus, which we
briefly recall—see [13] for a comprehensive discussion on the issue.

Lemma 14.1 For any σ ∈ S ′ (
R

2d
)

and τ ∈ [0, 1],

FOpτ (σ )F−1 = Op1−τ

(
σ ◦ J−1

)
.

This property, along with other preliminary results, allows to quickly prove the
desired claims for symbols in both Sjöstrand’s class and the corresponding amalgam
space.

Theorem 14.11 Consider m = m1 ⊗ m2 ∈ Mv
(
R

2d
)

satisfying (14.2.7). For any

τ ∈ [0, 1] and σ ∈ M∞,1
1⊗v

(
R

2d
)
, the operatorOpτ (σ ) is bounded on W

(
F L p

m1 , Lq
m2

)
(
R

d
)

with
‖Opτ (σ )‖W(F L p

m1 ,L
q
m2)

≤ Cτ‖σ‖M∞,1
1⊗v

,

for a suitable Cτ > 0.

Theorem 14.12 Consider m = m1 ⊗ m2 ∈ Mv
(
R

2d
)

satisfying (14.2.7). For any

τ ∈ (0, 1) and σ ∈ W
(
F L∞, L1

v◦B τ ◦J−1

) (
R

2d
)
, the operator Opτ σ is bounded

from W
(
F L p

m1 , Lq
m2

) (
R

d
)

to W
(
F L p

m1◦(U −1
1−τ )1

, Lq
m2◦(U −1

1−τ )2

) (
R

d
)
, 1 ≤ p, q ≤

∞, where
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(
U −1

1−τ

)
1 (x) = − τ

1 − τ
x,

(
U −1

1−τ

)
2 (x) = −1 − τ

τ
x, x ∈ R

d .

We finally remark that even if the results with symbols inF -Sjöstrand’s class do
not hold for the endpoint cases τ = 0 and τ = 1, it is still possible to use the weak
characterization (14.4.7) to construct ad hoc examples of bounded operators.

Proposition 14.3 Assume σ ∈ W (F L∞, L1)(R2d).

1. The Kohn-Nirenberg operator OpKN(σ ) (τ = 0) is bounded on M1,∞(Rd).
2. The anti-Kohn-Nirenberg Op1(σ ) (τ = 1) is bounded on W (F L1, L∞)(Rd).

14.5.2 Algebra and Wiener Properties

To conclude, we give a brief summary on the extension of the other properties studied
by Sjöstrand, namely algebra andWiener property, to τ -pseudodifferential operators.
Wiener algebras of pseudodifferential operators have been already investigated by
Cordero, Gröchenig, Nicola and Rodino in several occasions, see for instance [2,
3]. Let us recall the definition and the relevant properties of generalized metaplectic
operators, introduced by the aforementioned authors.

Definition 14.1 Given A ∈ Sp (2d,R), g ∈ S (Rd), and s ≥ 0, a linear operator
T : S (Rd) → S ′(Rd) belongs to the class F I O(A , vs) of generalized metaplectic
operators if

∃H ∈ L1
vs
(R2d) such that |〈T π(z)g, π(w)g〉| ≤ H(w − A z), ∀w, z ∈ R

2d .

Theorem 14.13 Fix Ai ∈ Sp (2d,R), si ≥ 0, mi ∈ Mvsi
, and Ti ∈ F I O

(
Ai , vsi

)
,

i = 0, 1, 2.

1. T0 is bounded from M p
m0

(
R

d
)

to M p
m0◦A −1

i

(
R

d
)

for any 1 ≤ p ≤ ∞.

2. T1T2 ∈ F I O (A1A2, vs), where s = min {s1, s2}.
3. If T0 is invertible in L2

(
R

d
)
, then T −1

0 ∈ F I O
(
A −1

0 , vs0

)
.

In short, the class

F I O(Sp(2d,R), vs) =
⋃

A ∈Sp(2d,R)

F I O(A , vs)

is a Wiener subalgebra of B(L2(Rd)). In view of the defining property of oper-
ators in F I O(A , vs), we immediately recognize that for any τ ∈ (0, 1), if σ ∈
W (F L∞, L1

vs
) then Opτ (σ ) ∈ F I O(Uτ , vs). Therefore, if we limit to consider

admissible weights of polynomial type vs on R
d , s ≥ 0, we are able to establish

a fruitful connection and to derive a number of properties without any effort. For
instance, we have another boundedness result.
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Corollary 14.3 If σ ∈ W (F L∞, L1
vs
)(R2d), s ≥ 0, then the operator Opτ (σ ) is

bounded on every modulation space M p
vs (R

d), for 1 ≤ p ≤ ∞ and τ ∈ (0, 1).

For what concerns the algebra property, we in fact have a no-go result. By inspect-
ing the composition properties of matrices Uτ , we notice that there is no τ ∈ (0, 1)
such that Uτ1Uτ2 = Uτ . This implies that there is no τ -quantization rule such that
composition of τ -operators with symbols in W

(
F L∞, L1

vs

)
has symbol in the same

class. We can only state weaker algebraic results, such as the following property of
“symmetry” with respect to the Weyl quantization.

Theorem 14.14 For any a, b ∈ W
(
F L∞, L1

vs

)
(R2d) and τ ∈ (0, 1), there exists a

symbol c ∈ M∞,1
1⊗vs

(R2d) such that

Opτ (a)Op1−τ (b) = Op1/2 (c) .

Also notice that, given a ∈ W
(
F L∞, L1

vs

)
, b ∈ M∞,1

1⊗vs
and τ, τ0 ∈ (0, 1), we have

Opτ0
(b)Opτ (a) = Opτ (c1) , Opτ (a)Opτ0

(b) = Opτ (c2) ,

for some c1, c2 ∈ W
(
F L∞, L1

vs

)
. This means that, for fixed quantization rules τ, τ0,

the amalgam space W
(
F L∞, L1

vs

)
(R2d) is a bimodule over the algebra M∞,1

1⊗vs
(R2d)

under the laws

M∞,1
1⊗vs

× W
(
F L∞, L1

vs

) → W
(
F L∞, L1

vs

) : (b, a) �→ c1,

W
(
F L∞, L1

vs

) × M∞,1
1⊗vs

→ W
(
F L∞, L1

vs

) : (a, b) �→ c2,

with c1 and c2 as before.
Finally, after noticing thatU −1

τ = U1−τ for any τ ∈ (0, 1), aWiener-like property
comes at the price of passing to the complementary τ -quantization when inverting
Opτ .

Theorem 14.15 For any τ ∈ (0, 1) and a ∈ W
(
F L∞, L1

vs

)
(R2d) such thatOpτ (a)

is invertible on L2
(
R

d
)
, we have

Opτ (a)−1 = Op1−τ (b)

for some b ∈ W
(
F L∞, L1

vs

)
(R2d).
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