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Abstract. Much attention has been paid to making 5G developments more
energy efficient, especially in view of the need for using high data rates with
more complex modulation schemes within a limited bandwidth. The concept of
the Doherty power amplifier for improving amplifier efficiency is explained in
addition to a case study of a 70 W asymmetrical Doherty power Amplifier using
two GaN HEMTs transistors with peak power ratings of 45 W and 25 W. The
rationale for this choice of power ratio is discussed. The designed circuit works
in the 3.4 GHz frequency band with 200 MHz bandwidth. Rogers RO4350B
substrate with dielectric constant er = 4.66 and thickness 0.035 mm is used. The
performance analysis of the Doherty power amplifier is simulated using
AWR MWO software. The simulated results showed that 54–64% drain effi-
ciency has been achieved at 8 dB back-off within the specified bandwidth with
an average gain of 10.7 dB.
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1 Introduction

The requirement for increasing the amount of transmitted data within a limited band-
width using mobile communications systems is growing rapidly and this is expected to
continue, especially with the developments of the LTE-Advanced system, where the
user is being attracted by the video streaming and multimedia data in addition to the
Internet of Things technology revolution [1–3]. Hence the 5G mobile generation will
include several technologies that can help to achieve the promised goals of the 5G.
Some of these are the use of massive MIMO, carrier aggregation, beam forming and
more complex modulation schemes which produce a high peak to average power ratio
(PAPR). The high PAPR requires the power amplifier to be backed off from the most
efficient point into a region where the efficiency drops sharply. As a result, a large
amount of supply power will be dissipated as a heat [1]. In particular, a high efficiency
performance produces a low linearity of the power amplifier and vice versa. The power

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
V. Sucasas et al. (Eds.): BROADNETS 2018, LNICST 263, pp. 446–454, 2019.
https://doi.org/10.1007/978-3-030-05195-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05195-2_44&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05195-2_44&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05195-2_44&amp;domain=pdf
https://doi.org/10.1007/978-3-030-05195-2_44


amplifier should be designed to produce high efficiency at a large Output power Back-
off (OBO). There are several techniques which are used for efficiency enhancements,
and these include Envelope Tracking (ET), Envelope Elimination and Restoration
(EER), LInear amplification using nonlinear Component (LINC), Chireix outphasing,
and the Doherty Power amplifier. However, the simplest technique is the Doherty
amplifier, where neither additional controlling circuits nor signal processing blocks are
required [3].

The present paper has four sections, starting with the Doherty concept, then a
Doherty design example appropriate to 5G, followed by the simulation results and
finally the work’s conclusions.

2 Doherty Concept

The Doherty combiner was introduced by its inventor W.H. Doherty in 1936 [4] in
relation to high power tube amplifiers for broadcasting station. Nearly linear output
power can be achieved using two or more power amplifiers by combining their outputs
with k/4 transmission lines. The Classical Doherty power amplifier consists of two
separate amplifiers known as the carrier amplifier and the peaking amplifier (Fig. 1).
The carrier amplifier is designed to operate as a class AB amplifier whereas the peaking
amplifier is designed to operate as class C amplifier. The input signal is split between
the two amplifiers, where the carrier amplifier should be saturated at the back-off input
power; at the same power level, the peaking amplifier starts feeding current to the
output till it becomes saturated at the peak region, where the two power amplifiers give
their maximum designed output power [5–7].

The idea of the Doherty depends on the so-called active load-pull technique [1].
Where the operation of the Doherty power amplifier can be divided into three main
regions [5–9]:

The low power region, where the input signal level is not sufficient to turn the
peaking amplifier on so that the peaking amplifier can (ideally) be represented as an
open circuit. On the other hand, the main amplifier is amplifying the input signal as an

Fig. 1. Doherty Power amplifier structure [2]
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ordinary power amplifier, however the load is seen by the main amplifier through the
k/4 transmission line (Impedance Inverter), which makes the main amplifier saturate
because it sees a high load impedance at this phase, as shown in Fig. 2(a). The
impedance seen by the main amplifier depends on the following equation,

Z1 ¼ Z2
T

RL
ð1Þ

where:

Z1: the impedance seen by the main amplifier
ZT: the impedance of the k/4 transmission line
RL: the load impedance

The second region (medium power region) where the peaking amplifier starts
injecting the current into the load and acts as a current source. As the current in the
peaking amplifier increases, the load impedance seen by the impedance inverter will be
increased, at the same time, the impedance seen by the main amplifier will be
decreased. As a result, the main amplifier output voltage remains roughly constant and
the total current is increasing which increases the total output power as shown the
following equations:

Z2 ¼ RL 1þ I�

I2

� �
ð2Þ

Z1 ¼ Z2
T

RL 1þ I2
I�

� � ð3Þ

where:

Z2: the impedance seen by the Peaking amplifier
I� : the current after the k/4 transmission line
I2: the peaking Amplifier current

Fig. 2. Doherty operation region [2] (a) Low power region, (b) Medium and high-power region
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Finally, the high-power region, where both amplifiers work at their maximum out-
put current, where the impedance seen by each amplifier is controlled by Eqs. (2) and (3).

The current and voltage behaviour of both the main and the peaking amplifiers is
shown in Fig. 3. It can be observed that the peaking amplifier starts injecting the
current near the OBO point, whereas the voltage of the main amplifier remains roughly
constant after the OBO point but its current increases.

3 Doherty Design

As mentioned above, the main amplifier should be designed as class AB, whereas the
peaking amplifier should be biased as a class C power amplifier. The first issue in
designing any power amplifier is to take into account the stability of the transistor to
make sure it does not oscillate. Then the input and output matching networks have to be
designed for the optimum load and source impedances that achieve the best transistor
performance.

Since the peaking amplifier is not behaving as a current source when it is off, but it
is still subject to the output capacitance of the intrinsic device and the parasitic elements
of its package, the offset line should be inserted at the output of the peaking amplifier to
ensure that a high impedance will be seen when the peaking transistor is off below the
back-off region, as this is one of the main conditions to satisfy the Doherty concept.
After adding the offset line in the output of the peaking amplifier, the phase difference
should be compensated by inserting an offset line at the output of the main amplifier.

An important issue in designing the Doherty power is the transistor choosing,
which is govern by the following parameters

1. The average power
2. The PAPR

Fig. 3. Main and peaking current amplitude [1]
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The summation of both parameters determines the maximum output power of the
Doherty power Amplifier i.e. the sum of the main and peaking output power, whereas
the PAPR represents the same amount of the back-off power that can define the ratio
between the peaking amplifier to the main amplifier according to the following equation

B ¼ �20 log 1þ dð Þ ð4Þ

where
d: is the ratio of the peaking power amplifier to the main power amplifier.
For this paper, the maximum output power was 70 W with an –8 dB back off, so

that the ratio d should be at least 1.5. So that, GaN HEMTs transistors with peak power
ratings of 45 W and 25 W are satisfying the design requirements.

Another issue in the Doherty power amplifier design is the line offset, where the
output impedance of the peaking amplifier should be high, so that a line offset will be
added to the output impedance of the peaking amplifier, its electrical length for this
deign case is 29.2°.

4 Simulation Results

A 70 W Doherty power amplifier analysis and performance are simulated using
AWR MWO software. Rogers RO4350B material was used as a substrate. The full
circuit schematic is shown in Fig. 4 whereas the layout of input and output matching
circuits for both main and peaking amplifiers are shown in Fig. 5.

The performance of the main and peaking amplifiers separately in terms of output
power, gain, drain efficiency and Power added efficiency (PAE) are shown in Fig. 6 and
Fig. 7 respectively. As illustrated in Fig. 6, about 80% drain efficiency is obtained from
the main amplifier with an average gain of 10 dB. Nevertheless, the performance of the
peaking amplifier shown in Fig. 7, represents a class C power amplifier where it can be
noticed that the peaking amplifier starts injecting the power after the input back-off point.
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Fig. 4. Full circuit schematic
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Furthermore, it can be notice from Fig. 8, the line offset is needed to produce a high
impedance seen from the combiner toward the output of the peaking amplifier when the
transistor is off in order to satisfy one of the Doherty conditions. It can be noticed that a
high impedance can be gotten by adding a line offset.

In addition, it can be noticed from Fig. 9 that the designed Doherty power amplifier
has about 63% drain efficiency at 8 dB OBO for 3.4 GHz; however, the efficiency level
for other frequencies is less due to the effect of the off-set lines. At the same time, the
gain obtained is 10.8 dB. In addition, the total output power of the designed Doherty
power amplifier is 48 dBm where both amplifiers participate with their full power.

The achieved simulation results are compared with other works over the same
frequency band, as shown on Table 1.
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Fig. 5. Input and output matching circuit for Doherty Power amplifier
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Fig. 6. Main amplifier performance
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5 Conclusions

The Doherty power amplifier provides the simplest way of combining two amplifiers to
provide a good efficiency performance around the back off region. The performance of
A 70 W Asymmetrical Doherty power amplifier was simulated using AWR MWO; the
overall Doherty power amplifier showed, as per design, an 8.3 dB OBO, with 40 dBm
average power. The Drain efficiency at the back off point was 63%, whereas the
average gain was 10.7 dB.

Acknowledgment. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-
722424 [10].

Fig. 9. Doherty power amplifier efficiency

Table 1. Previous work achievements

Frequency (GHz) Psat (dBm) Pav (dBm) OBO (dB) DE @OBO Gain dB

[6] 3.3–3.6 43 37 6 38–56a 10
[7] 3.4–3.6 43 35 8 63 12.5
[8] 3.35–3.5 49.3 41 8 50.2–55.1 14.75
[9] 3.4–3.6 44.5 36.5 8 40–42a, b 25
This work 3.3–3.5 48 40 8 54–64 10
aPractical measurements
bPower added efficiency @ OBO
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