
SeDiCom: A Secure Distributed
Privacy-Preserving Communication

Platform

Alexander Marsalek1,2(B), Bernd Prünster2, Bojan Suzic2,
and Thomas Zefferer3

1 Secure Information Technology Center Austria, Graz, Austria
Alexander.Marsalek@iaik.tugraz.at

2 Graz University of Technology, IAIK, Graz, Austria
{BPruenster,BSuzic}@iaik.tugraz.at
3 A-SIT Plus GmbH, Vienna, Austria

Thomas.Zefferer@a-sit.at

Abstract. Efficient and secure electronic communication is crucial for
successful business-to-business processes. Due to the weaknesses of e-mail
communication, a shift towards instant messaging can also be observed
in this context. However, reliance on instant-messaging solutions in busi-
ness processes has its own drawbacks such as the lack of archiving capa-
bilities and unsatisfactory legal compliance. Furthermore, special busi-
ness scenarios such as bidding processes come with complex security
requirements that are not met by current instant-messaging solutions. To
also enable efficient and secure electronic communication for these sce-
narios, we propose a blockchain-based instant-messaging solution under
the name SeDiCom. SeDiCom employs the capabilities of the blockchain
technology, one-time identities, and the Tor anonymity network to enable
confidential instant messaging without leaking any identifying metadata.
Our proposed solution provides non-repudiation, censorship resistance,
integrated backup facilities, and verifiable notices of receipt, while inher-
ently preventing man-in-the-middle attacks and virtually all other forms
of eavesdropping. By this means, SeDiCom enables efficient and secure
electronic communication for business scenarios with special security
requirements while also catering to today’s usage patterns.

Keywords: Blockchain · Messenger · Decentralized
Secure data exchange · Censorship-resistant · Non-repudiation
Privacy preserving

1 Introduction

During the past decades, many workflows and a significant amount of writ-
ten communication have been migrated from pen-and-paper procedures to e-
mail. While person-to-person communication is today typically carried out using

c© Springer Nature Switzerland AG 2018
V. Ganapathy et al. (Eds.): ICISS 2018, LNCS 11281, pp. 345–363, 2018.
https://doi.org/10.1007/978-3-030-05171-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05171-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-05171-6_18

346 A. Marsalek et al.

instant messengers, with WhatsApp having reached over a billion active users [1],
business workflows still rely heavily on e-mail. SMTP, the protocol e-mail deliv-
ery is based on, was, never designed with confidentiality and authenticity in
mind, however, even though it is still heavily used to transport confidential
information. In the more recent past, however, this has also begun to change in
favor of instant messaging systems. Popular platforms like Apple’s iMessage1,
WhatsApp2 and Viber3 have recognized the demand for secure and confiden-
tial communication and provide (end-to-end) encrypted communication [2–4].
Recently, the need to integrate such messaging solutions into business processes
has also been identified [5–7].

Relying on instant messaging in a business context instead of e-mail has its
own drawbacks, such as the lack of archiving facilities and increased difficulties
when it comes to legal compliance [8,9]. Moreover, certain business processes are
subject to specific and complex constraints: Aside from archiving, communica-
tion between parties must be kept secret (including metadata) while it happens.
At a later point in time, however, any of the involved parties may need or wish to
prove to the public not only that a communication took place but also when and
about what. Examples include certain bidding processes or tender offers. In such
cases, none of the parties involved must be able to repudiate or refute any past
statements. More than end-to-end encrypted messaging is required to reach these
goals, as encrypting traffic does not prevent third parties from learning about
users’ communication habits [3,10]. As long as detailed, unaltered metadata of
electronic conversations is available, profound conclusions about communicating
parties and even the contents of a conversation can be drawn, which enables
profiling [11,12] and can serve as a basis for critical decisions [13].

Although increasingly more solutions for encrypted online communication
exist [2,14,15], virtually all of them still leak metadata [3]. The factors con-
tributing to this drawback can be traced back to the underlying architecture,
centralized designs and the reliance on a single authority. Furthermore, the mech-
anisms used for key management and the reliance on stable identities of the par-
ties involved may affect the security and privacy of users in numerous ways. In
this work, we propose a blockchain-based [16] communication service which not
only offers end-to-end encryption, but also guarantees untraceability of all com-
munication. Moreover, our approach inherently supports unforgeable identities,
virtually eliminating the risk of man-in-the-middle attacks. Users can therefore
be sure about whoever they are communicating with at any time. Our platform
also proves whether a particular message has been delivered and read. By relying
on the blockchain technology, our design also guarantees immutability of all mes-
sage contents, non-repudiation and censorship resistance. Essentially, only the
parties involved in a conversation know who communicates with whom and about
what, moreover nobody can later dispute any statements previously made. Our
design is therefore well-suited for transmitting any form of confidential infor-

1 https://support.apple.com/explore/messages.
2 https://www.whatsapp.com/.
3 https://www.viber.com/.

https://support.apple.com/explore/messages
https://www.whatsapp.com/
https://www.viber.com/

SeDiCom 347

mation which might require a notice of receipt and non-repudiation, such as
registered electronic mail or legal documents like contracts, for example. While
our proposed solution has several advantages, it also comes with some limita-
tions rooted in its blockchain underpinnings such as every participant receiving
all (encrypted) messages. However for our envisioned use-cases these drawbacks
do not pose an issue.

Our novel approach of relying on one-time addresses, a well-defined address
schedule and incorporating the Tor [17] anonymity network prevents any and
all leaks of conversation metadata. The only detail observable from outside a
conversation is the fact that someone is sending something into a blockchain-
based network. Due to the nature of blockchain-based systems, it is not even
possible to deduce whether someone is receiving any messages at all. At the
same time, the most prominent scalability issues associated with blockchain-
based designs do not apply, as explained in Sect. 3. To the best of our knowledge,
no existing system offers such extensive privacy-preserving mechanisms.

The remainder of this paper is structured as follows. In the next section, we
discuss related work and provide the necessary background information. Section 3
presents the architecture of SeDiCom in detail, followed by a performance evalua-
tion in Sect. 4 and an extensive security evaluation in Sect. 5. Finally, we conclude
this paper in Sect. 6 and provide an outlook.

2 Background and Related Work

Since we are presenting a blockchain-based communication platform provid-
ing an extensive set of security and privacy properties, we first provide some
basic background on distributed ledger technologies commonly referred to as
blockchain. The blockchain was developed by someone under the pseudonym
Satoshi Nakamoto as the decentralized ledger for the cryptocurrency Bitcoin [16]
and consists of a list of cryptographically linked blocks. Each block includes the
fingerprint of the previous block and a list of transactions. Consensus algorithms
are used to agree on which chain of blocks is considered valid. Bitcoin uses a
proof-of-work (PoW) consensus algorithm: Network nodes, which want to create
new blocks, so-called miners, have to solve a cryptographic task (mining). The
first one solving the task can create a new block and receives a specified quantity
of Bitcoin units as a reward. An attacker willing to delete or modify a block has
to redo all the work done by the remaining (honest) network as the network
always uses the chain with the highest combined PoW. Later incarnations of
blockchain-based systems like Ethereum (testnet) [18] do not require computa-
tionally intensive tasks to process transactions, but rely on other concepts like
proof-of-authority (PoA) as implemented by the Clique [19] algorithm. Regard-
less of the underlying consensus mechanism, a blockchain provides a tamper-
proof, trackable, fault-tolerant, DDoS-resistant, censorship-resistant, distributed
public ledger, as long as more than half the network’s computation power4 is
controlled by honest nodes.
4 In case of a proof-of-work based blockchain. .

348 A. Marsalek et al.

The advantages of blockchain-based data storage combined with encrypted
communication are employed by several privacy-preserving messaging platforms.
Systems like the VooMessenger5 or closed-source products like Echo6, Blokcom7

by Reply S.p.A.8 and CrypViser [15] are examples for such platforms.
However, all of the above described properties, which are a blockchain-based

system’s greatest strength can also turn into its greatest weakness from a privacy
point of view: When using a blockchain-based system to exchange confidential
information, it presents various short-term advantages like tamper-resistance and
fault-tolerance. In the long run, however, this can backfire. Considering that all
messages ever transmitted using such a system are persistently stored inside
a single highly replicated database, which is accessible from anywhere on the
Internet, a single flaw in the encryption mechanism can lead to massive data
breaches in the future. From this point of view, the utility of blockchain-based
messaging platforms for increasing privacy has to be classified as questionable.
However, some use cases remain where this is not an issue.
Our system caters to such scenarios where confidentiality (of contents and meta
data) is paramount at first, but communication contents are usually divulged
at a later point in time. We achieve this by building on the solid foundation of
the blockchain and augmenting it to provide extensive guarantees wrt. privacy,
non-repudiation, integrity, and availability.

More traditional messaging systems, but also various other blockchain-based
messengers, are inherently incapable of achieving these goals due to their archi-
tecture [2,14,15].

In the next section we will introduce our proposed solution.

3 SeDiCom

We propose a messaging platform which enables secure and private communi-
cation over the Internet without leaking metadata. After all, metadata can be
sufficient to severely endanger users’ privacy [10–13,20]. Based on the proper-
ties of typical messaging solutions and our goals, we can derived the following
requirements:

R1 Confidentiality: Only entitled entities may read messages.
R2 Message Authentication: Nobody may alter a message or forge a sender’s
identity (contrary to what is possible with e-mail addresses [21,22]).
R3 Metadata Protection: It must not be possible to obtain the identities of
the communicating parties. At the same time, a user must be able to produce a
proof of sending or receiving a message if she chooses to.
R4 Decentralization: There shall be no central instance that can be attacked
to obtain unencrypted messages or cryptographic material to decrypt messages.
No instance shall be able to collect user-related data, like messages, or metadata.
5 https://faizod.com/blockchain-solutions/business/voomessenger/.
6 https://my-echo.com/.
7 http://www.reply.com/en/content/blokcom.
8 https://reply.com/.

https://faizod.com/blockchain-solutions/business/voomessenger/
https://my-echo.com/
http://www.reply.com/en/content/blokcom
https://reply.com/

SeDiCom 349

R5 Proof of Existence: The sending time of a message must be provable.
R6 Notice of Receipt: Notices of receipt shall be produced and transmitted
automatically entailing a proof of existence (POE).
R7 High Availability, Redundancy: Messages have to be replicated to gain
a failure-resistant system. The system should be resistant to denial-of-service
(DoS) attacks.
R8 Non-Repudiation: Authors shall not be able to successfully challenge the
authorship of a message.
R9 Immutability: Once a message has been sent, it must not be possible to
manipulate (e.g. modify or remove) it in any way.
R10 Censorship Resistance: It shall not be possible to block individuals from
using the service.

Notably, scalability is not listed as a requirement. The reasons for this appar-
ent lack of an elementary requirement for applications as targeted by our design
are threefold: First, current-generation blockchain designs do not suffer from as
many scalability issues as Bitcoin. Second, the targeted use case of our design
imposes fewer and weaker constraints compared to WhatsApp, for example: Bid-
ding processes and tender offers typically do not require the exchange of millions
of messages in a short time frame and the number of participants is typically
also lower. Finally, our work focuses on security and privacy and achieves its
goals by building upon guarantees provided by blockchain designs (as described
in the following section). Advancements made wrt. blockchain scalability thus
directly benefits our solution. We therefore expect performance to improve over
time.

Our solution proposed in this section meets all identified requirements. We
discuss the architecture of this solution in the following section.

3.1 Architecture

Considering the requirements identified in Sect. 3, we have derived a suitable
architecture for our secure distributed communication platform, called SeDi-
Com. We use a blockchain [16] as the central component. The blockchain pro-
vides a highly available, highly redundant, censorship-resistant network com-
munication and storage system, the content of which cannot easily be modified
or erased. Figure 1 shows the high-level architecture of our proposed solution. It
shows an arbitrary number of clients (nodes) running our software. These clients
are connected via the Tor network (visualized as onions) and create a P2P net-
work that maintains and distributes a blockchain. We use transactions to trans-
fer information in this P2P network. These transactions are broadcast through
the network. Each transaction contains at least one sender address (input) and
one receiver address (output) and is thus ideal for sending content to one or
more participants. As every participant can generate addresses on their own and
there is no binding to an identity, users remain anonymous. Once a transaction
is mined into a block, which is accepted by the network, it can be considered
immutable. Therefore, the blockchain provides a highly available, decentralized

350 A. Marsalek et al.

backup system. The creation time of a block can be used as POE for all included
transactions. The sender and receiver addresses are representations of the cor-
responding public part of the public-private key-pairs. By using the public key
of the collocutor, it is possible to encrypt messages. These messages can only be
decrypted by the owner of the corresponding private key. Using the private key,
it is possible to sign messages and therefore prove key ownership and implicitly
prove identity. For the rest of this paper, we will refer to these public-private
key pairs as identities. We propose a protocol, where every participant creates
a main identity and several one-time identities. The main identity is only used
for identity proofs. It will never be used to send or receive messages. Instead,
one-time identities are used to send and receive messages. In the next section,
we describe a typical process flow between two collocutors.

Fig. 1. Proposed solution architecture.

3.2 Generic Process Flow

In this section, we describe a typical process flow between two collocutors who
want to securely communicate with each other. The sequence of actions is visu-
alized in Figure 2 for two users, namely Alice and Bob. Initially, both parties
create their main identity IDAB and IDBA (1-2). Every identity IDXY con-
sists of a private key ID−

XY and a public key ID+
XY . X denotes the owner of

the key, and Y the collocutor. Knowing the public key is equivalent to knowing
the corresponding address. Depending on their needs, participants can choose
to create several main identities, e.g., one per collocutor. For the protocol it
is only important that the same main identity is used for the same collocutor.
Otherwise, it would not be possible to verify the message sender’s authenticity.
The main identity is never used to send or receive transactions, it will only be
used to sign messages encoded into transactions. Next, both parties create a one-
time send (IDESAB1, IDESBA1) and receive identity (IDERAB1, IDERBA1)
(3-4) for sending and receiving transactions. These identities will be created for
every collocutor individually. Next, the public keys of the main identities ID+

AB ,
ID+

BA and the public key (address) of the receiving identity of Bob IDER+
BA1

SeDiCom 351

have to be exchanged over an authenticated channel (5), e.g. by digitally signing
them using a qualified electronic signature and exchanging the result electroni-
cally or by meeting somewhere in person. IDER denotes a one-time, ephemeral
identity that is used to receive messages, whereas IDES represents a one-time
identity that is used to send messages. The information exchanged in Step 5 is
not secret, it is only used to authenticate the other party and to communicate
details on how to reach the other party. After the exchange, Alice has all nec-
essary information to communicate securely and anonymously with Bob. Next,
Alice sends a message m to Bob and prepends her receiving address IDER+

AB1

to the message. The resulting message is signed using Alice’s main identity key
ID−

AB to prove that the message was indeed sent by her and then signed with
IDES−

AB1, to prevent replay attacks. From now on we refer to the first signature
as inner signature and to the second signature as outer signature. The resulting
message is shown in Eq. 1. Note that Sign(m) returns m and the signature over
the fingerprint of m.

mSigned = SignIDES−
AB1

(SignID−
AB

(IDER+
AB1||m)) (1)

As the message will be sent over the P2P-network, the next step is to encrypt the
message, thus preventing unauthorized parties from eavesdropping on it. Next,
a shared key is derived using the Diffie–Hellmann key agreement protocol. Both

3Generate IDERAB1 and IDESAB1

Alice P2P-Network Bob

Generate IDAB1 Generate IDBA2

Generate IDERBA1 and4

Exchange IDAB, IDBA and IDERBA1 over authenticated channel

Broadcast TXi7

verify TXi8verify TXi9

verify content10

Broadcast block11

Verify block12 Verify block13

check if TXi is in block14

Show m as confirmed15

5

Generate TXi6

+++

create block

create block

create block

create block~~~~ ~~

and IDESBA1

Fig. 2. Exchange of the first message between two parties.

352 A. Marsalek et al.

parties can derive the same shared key using their private key and the public
key of the collocutor as shown in Eq. 2.

SharedSecret = ECDH(IDES−
AB1, IDER+

BA1)
= ECDH(IDER−

BA1, IDES+
AB1)

(2)

Next, the shared secret is hashed using SHA-256 and the resulting fingerprint is
used as key for an symmetric cipher as shown in Eqs. 3 and 4.

KMsg = SHA-256(SharedSecret) (3)

CMsg = EKMsg,IV (mSigned) (4)

Note that neither of the parties has to store the key KMsg. Next, the
encrypted message CMsg together with information needed to decrypt the mes-
sage (depending on the cipher and the chaining mode; e.g. an IV) are packed
into a container C as shown in Eq. 5.

C = IV ||CMsg (5)

Next, a new transaction is created, with IDES+
AB1 as sender and IDER+

BA1 as
receiver. This container C is encoded into the transaction’s data field. Finally,
the transaction will be signed with IDES−

AB1 to gain a valid transaction TXi

(6) and broadcast to the network (7). As the transaction is sent from a one-time
identity to another one-time identity, no conclusions can be drawn about who
communicates with whom. Shortly after sending a message, Bob and other nodes
in the network will receive the transaction TXi and verify it (8-9). Mining nodes
will save valid transactions and include them into the next block. Bob will check
if the transaction is addressed to him by checking if the receiver address of the
transaction matches one of his active ones. If it matches, Bob will decrypt the
content using his corresponding private key IDER−

BA1 and subsequently verify
the outer signature. If the outer signature matches the sender’s identity of the
transaction, Bob continues to verify the inner signature.

As every receiving address is created for a specific collocutor, Bob can verify
whether the signature matches the expected sender’s identity. If one of the signa-
tures does not match the expected identity, Bob aborts the process. If the inner
signature confirms the expected identity, Bob separates the content m and the
reply address IDER+

AB1 (10). The reply address IDER+
AB1 will be stored for

later use and the content m will be shown as unconfirmed message. Unconfirmed
means that the message is not yet included in a block, thus not all properties
(like high availability, for example) hold yet. After the transaction is included
in a block by a miner, the block will be broadcast to all network participants
(11). Every participant will verify whether the block is valid (12-13). If the block
is valid, meaning all transactions are valid and it references the previous valid
block, Bob verifies whether TXi is included (14). To be sure, he will wait until
the block’s maturity depth9 is equal or greater than a selected threshold. If the
9 As an example, Bitcoin wallets typically require a maturity depth of six blocks.

Meaning six additional blocks need to be created after the block containing the
corresponding transaction.

SeDiCom 353

block’s maturity depth requirement is fulfilled, the message will be shown to the
user as confirmed message (15).

If Bob wants to reply to Alice, he generates a new one-time send and receive
identity (IDESBA2 and IDERBA2) and repeats Steps 6 and 7 with opposite
roles. Bob will use the saved reply address, extracted from TXi as target address
for his generated transaction. This reply message is simultaneously a proof for
Alice that Bob has received the previous message. If one party wants to send
another message before a reply is received from the other party, the last receiving
identity of the collocutor is used again, but a new sending and receiving identity
is created each time, to prevent anyone from concluding anything from it. The
new receiving identities are necessary for the read confirmation requirement.
Once the other party answers, she will reply to the last received reply address
and append all other unused reply addresses to the message. One’s one-time
identities do not need to be remembered, they can always be derived from the
main identity. It is only necessary to remember the number of already used
one-time identities. For performance reasons, it makes sense to also remember
the unused reply addresses submitted by each collocutor and the unused reply
addresses submitted to collocutors.

3.3 Security Features

The blockchain already provides several features, like decentralization, proof of
existence high availability, and redundancy. This section highlights two security
features of our proposed solution, namely the address schedule used to generate
one-time identities, and the proof of receipt feature.

Address Schedule. We describe the process of deriving one-time identities
from the main identity. A key requirement for the derivation process is that
individual one-time identities can be published without disclosing any informa-
tion about other identities. We derive our one-time identities based on Eq. 6,
where IDY Z is the main identity of user Y used for communicating with user
Z. X defines the type of identity (send or receive) to create, i is an integer that
is increased every time a new one-time identity of this type is created, H(...)
denotes a cryptographic hash function and genKeyPair(...) generates an EC key
pair.

IDEXY Zi = genKeyPair(H(ID−
Y Z + H(i||Z||X))) (6)

The security of one-time identities is based on the one-way characteristic (preim-
age resistance) of the hash function.

Proof - Message Sent/Received. If a party wants to prove that a message
was sent by the other party, it needs to publish the corresponding receiving
identity. Using this identity, everyone can extract the corresponding transaction
from the blockchain and decrypt it. The inner signature of the decrypted content
will match the main identity of the other party and thus prove that she signed it.

354 A. Marsalek et al.

If Party A wants to prove that she sent a message to B, she has to publish the
corresponding sending identity and the receiving identity, on which she received
the reply address. Using the sending identity, everyone can extract the corre-
sponding transaction from the blockchain and decrypt it. Thus, it can be shown,
that the message was sent and signed by party A. Next, it must be proven that
the address the transaction was sent to belongs to Party B. This can be done
by publishing the receiving identity on which the reply address from B has been
received. The corresponding decrypted message will be signed by Party B and
contain the used reply address.

3.4 Implementation

We built a proof-of-concept implementation of the proposed solution based on
the Ethereum [18] blockchain. Our implementation relies on Clique [19], instead
of a PoW consensus algorithm to improve performance. Furthermore, we reduced
the block interval to one minute, to reduce the time until a transaction is included
in a block. This also increases the throughput of our solution in terms of mes-
sages per time interval10. These adjustments remedy virtually all scalability
concerns typically associated with blockchain-based systems. We modified our
Ethereum implementation, enabling sending transactions for free. Otherwise,
every one-time identity would need a balance to pay the fees. This step was
necessary, as we currently have no way to send a balance to one-time identi-
ties from another identity without leaving metadata, such as which identities
belong together. This procedure removes one of Ethereums’ main protection
mechanisms against attacks that wastes the power of the network or endangers
network stability, e.g., endless-loops in smart contracts. We deal with this issue
by deactivating Ethereums’ smart contract functionality11. While this prevents
many attacks, spamming the network with useless, but valid, transactions is
still possible. These messages will not be shown to the user, but waste space in
blocks. We plan to deal with this issue in future work and describe a possible
approach in Sect. 6. We implemented our prototype in Java, using the web3j12

library as connector to a modified version of Geth13, an Ethereum node imple-
mentation written in Go. Our Java application communicates with Geth via
JSON-RPC. For simplicity, we tested our approach with a single miner. The
implementation demonstrates the feasibility of the proposed solution, which is
platform-independent and lightweight enough to be used on desktop systems as
well as mobile systems like smartphones.

Ethereum uses the Elliptic Curve SECP-256k1 [23] to generate EC keys for
transaction signing. Our proposed one-time identities also rely on this curve.
As a consequence, we can use the Elliptic-curve Diffie–Hellmann (ECDH) key

10 Ethereum does not define a maximum block size in contrast to e.g. Bitcoin.
11 Transactions related to the creation of a smart contracts are ignored and not included

into a block.
12 https://github.com/web3j/web3j.
13 https://geth.ethereum.org/.

https://github.com/web3j/web3j
https://geth.ethereum.org/

SeDiCom 355

agreement protocol to derive a shared key. This enables the sender and receiver
of a transaction to independently calculate a shared secret based on one’s private
key and the collocutor’s public key. Next, the shared secret is hashed using SHA-
256 and the resulting fingerprint is used as the key for an AES cipher in counter
mode without padding. For the cipher we generate a random initialization vector
(IV), which is prepended to the encrypted message CMsg. No other external
information, (not available in the transaction) is needed to decrypt the message.
Next, we discuss the performance of the proposed solution.

4 Performance Evaluation

This section provides a short overview of the performance impact in terms of size
and speed overhead. Note that we did not consider the blockchain performance,
as it is independent of our proposed protocol. Instead, we focus on the overhead
in size imposed by our protocol and show that the necessary signing, verification,
encryption, and decryption steps have no practical consequences in terms of
performance.

4.1 Required Overhead

Figure 3 shows the size overhead of the proposed solution for different message
lengths, compared to encoding the messages directly into transactions without
one-time identities and without signing and encrypting them. As can be seen, the
overhead is mainly noticeable for smaller input message sizes since our solution
produces a constant overhead independent of the input. In detail, our proposed
solution requires 42 bytes for submitting the new receiving address, 65 bytes each
for the inner and outer signature, as well as 16 bytes for the IV. This results in
188 bytes overhead. Finally, the payload has to be hex-encoded, which doubles
the size. To summarize, our proposed solution produces a per-message overhead
of 188 × 2 = 376 bytes. Next we discuss the throughput.

4.2 Throughput

We measured how many messages per second can be created and how many
received messages per second can be verified. We executed the performance test
on a MacBook Air with an Intel Core i7-4650U CPU running at 1.7 GHz using an
unoptimized single threaded Java program. The test consists of first signing and
encrypting 10,000 messages and then decrypting and verifying 10,000 messages.
Based on the time required we calculate the number of messages that can be
created and verified every second. We repeated the experiment with different
message sizes, namely 1 byte, 1024 bytes, 8192 bytes and 16384 bytes. Note:
The test was performed without actually sending the messages, thus ignoring
the performance of the Ethereum network. Table 1 shows the results.

The results show that our proposed solution has a small overhead and an
minor impact on the performance and is thus well suited for its intended use-
cases. Note that the presented solution is not intended to replace a messaging

356 A. Marsalek et al.

Fig. 3. Comparison of payload sizes of directly encoded messages versus messages sent
by the proposed solution. Note the logarithmically scaled x- and y-axes.

Table 1. Throughput of messages per second that can be generated or read for different
input sizes.

Size [byte] Throughput create [Msg/sec] Throughput read [Msg/sec]

1 810.4 1056.6

1024 827.5 991.4

8192 682.9 833.0

16384 587.8 729.9

platform like Whatsapp. Rather, it aims at specific, but all the more critical
use-cases, which require a secret communication process that is likely to be
disclosed later on, e.g., a bidding process where all bidders first send their offers
without leaking any data and later on the offers can be disclosed to ensure a fair
procurement.

5 Security Evaluation

To verify that our proposed approach provides the proclaimed security features,
we performed a security evaluation loosely based on the Common Criteria for
Information Technology Security Evaluation (CC)14.

We derive security goals and assets from the requirements presented in
Sect. 3. Our assumptions rely on the proven security of all underlying technolo-
gies and expected secure usage of existing systems. Similarly, the security prop-
erties applied in this analysis are derived from our model presented in Sect. 3.
14 https://iso.org/standard/50341.html.

https://iso.org/standard/50341.html

SeDiCom 357

We further designate the scope of our analysis to the case that provides adequate
protection against all but a highly determined attack that requires a tremendous
amount of resources and effort.

After elaborating each of these categories in the subsequent sections, we con-
clude this chapter with the comprehensive overview of threat mitigation mech-
anisms.

5.1 Assets

A1 Message: Message contents are considered confidential. Only the interlocu-
tors are eligible to read it, unless one involved party wants to publish it.
A2 Main Identity: The private keys belonging to the main identities must not
be disclosed. The public part does not need to be protected.
A3 One-time Identities: Private keys of one-time identities are considered
confidential until the owner decides to disclose them, e.g. to prove that they
sent or received a message.
A4 Metadata: Metadata that can be used to conclude anything about the
senders’ or receivers’ identity, is considered confidential.

5.2 Assumptions

AS1 Secure/Trusted Devices: We assume that users and miners use devices
with up-to-date security updates and without malware. Thus, it can be assumed
that identities can be securely created and stored on end-user devices and miners
can securely use their signing key. In short, we assume that users and miners
use secure and trusted systems.
AS2 Confidentiality of Private Keys: Users and miners keep their private
keys secret, unless they want to prove the sending or receiving a message. In
this case the corresponding one-time identity is disclosed. Note that the private
key of the main identity will never be disclosed (A2).
AS3 Secure Cryptographic Primitives: We assume that cryptographic
primitives like ciphers, cryptographic hash functions and signature algorithms
are practically secure, meaning they cannot be broken in relevant time.
AS4 Global Adversary: We do not consider attackers that can observe or
control a large portion of the Internet.

5.3 Security Goals

G1 Confidentiality: The content of the message (R1) as well as the private
keys (R2) must be kept confidential (R4).
G2 Anonymity: A key requirement is that parties not involved in a conversa-
tion cannot learn anything about the participants nor about the message content
itself (R3), except when one of the participants wants to disclose this informa-
tion.

358 A. Marsalek et al.

G3 Non-Repudiation: It is crucial that the author of a message can be iden-
tified by the receiving party (R2), and that the author cannot successfully chal-
lenge the authorship of a message (R8).
G4 Proof of Existence: The time a message was sent is crucial for certain use
cases (R5). Therefore its integrity must be guaranteed.
G5 Immutability: It is important that a message can not be removed or altered
after it has been sent (R9) — Neither by the sender nor by anyone else.
G6 Integrity: It must not be possible to tamper with the message or spoof its
receiver and sender, without recipients detecting this (R2, R8, R9).
G7 Availability: It must be possible to send and receive messages at any time
(R7). Furthermore, old messages need to be available in the network (R4).
G8 Censorship resistance: It is essential that nobody can censor messages
without being detected (R9, R10).
G9 Read/Send Confirmation: The sender of a message must be able to prove
that it has been sent before a specific point in time (R5). A receiver must be able
to prove that she received a message from an individual sender (R8). A sender
must be able to prove that a receiver has received an earlier message (R6).
G10 Authentication: The senders’ identity must not be forgeable (R2).

5.4 Threats

Analyzing existing approaches and their security analysis targeting relevant
problems already yields a baseline for our threat analysis [24–26]. Adapting and
extending these analyses for our target domain results in the following threat
analysis, also fostering the completeness of the analysis:

T1 Impersonation/Spoofing: An attacker spoofs the senders’ identity to
impersonate someone else, thus violating G1 and G10.
T2 Message Forgery: An attacker is forging a message, e.g. by encoding
random content into transactions, or by modifying an existing transaction. This
violates G3, G6, and G10.
T3 Eavesdropping: An attacker eavesdrops on the network communication to
learn something, e.g., to get access to the message content or deanonymize a
participant. This violates G1 and G2.
T4 Replay Attack: An attacker replays an eavesdropped transaction or
extracts its data and encodes it into a new transaction. This violates G3 and
G10.
T5 Man-in-the-middle Attack: An attacker actively manipulates the sent
transactions or broadcasts faked transactions or blocks. This violates G1, G2,
G6, G7, G9, and G10.
T6 Censorship: An attacker deletes transactions from the blockchain or does
not forward them, thus violating G4, G7, G8, and G9.
T7 Deanonymization: An attacker deanonymizes a participant by analyzing
metadata or by correlation, thus violating G1 and G2.
T8 Denial-of-service Attack: An attacker disrupts the service or attacks
individual users, thus violating G7 and G8.

SeDiCom 359

Table 2. Mapping threats to security
goals.

Table 3. Threat mitigation overview.

T9 Key Derivation: An attacker calculates the main identity or a different
one-time identity based on a published one-time identity. This attack targets
G1, G2, G3, G5, and G10.
T10 Manipulating Blocks: An attacker manipulates or deletes blocks from
the blockchain with the goal of disrupting the service or deleting sent or received
messages, thus violating G5, G6, G7, G8, and G9.
T11 Untrusted Miner: A miner censors transactions, includes manipulated
transactions or stops mining, thus violating G4, G5, G6, G7, and G8. Table 2
visualizes the threat to security goals mapping.

5.5 System Properties

SP1 Signature: Every message and reply address is signed by the main identity.
The resulting message is signed again by the one-time send identity to prevent
replay attacks. Additionally, all transactions have to be signed.
SP2 Encryption: Every message is encrypted after it has been signed twice.
The encryption guarantees confidentiality of the message.
SP3 Decentralization: The P2P-network provides a decentralized infrastruc-
ture that replicates the blockchain on every node and forwards transactions.
SP4 One-time Identities: Only anonymous one-time identities are used as
the receiving or sending address.
SP5 Network-Layer Anonymity: All parties are connected via the Tor net-
work to the Internet and are thus assigned an anonymous IP-address.

5.6 Threat Mitigation

Preventing T1 Impersonation/Spoofing: Spoofing an identity is pre-
vented by SP1. An attacker has to forge a valid signature thus violating AS2
or AS3.

360 A. Marsalek et al.

Preventing T2 Message Forgery: Creating a valid signature without the
private key would contradict AS3. An attacker could use a published one-time
identity to sign a new transaction and include the data from the published
transaction. This attack creates a valid transaction, but the consequences
depend on the timing of this attack. If the actual communicating parties
have exchanged further messages before the attack, the attack will not have
any consequences as no one will be listening to this (old) address anymore. If
the published transaction belongs to the most recent exchanged message, the
recipient will receive the same message twice, but it will not change any of
the security guarantees of the previous message. The attacker cannot change
the content of the message (SP1) and its content was already published by
one of the collocutors.
Preventing T3 Eavesdropping: An attacker eavesdropping on the com-
munication will see transactions with encrypted content (SP2) being sent
from one random address to another random address (SP4). As the message
is encrypted, the attacker will not learn anything about its content, except
the rough size. The use of one-time identities and anonymized Tor exit-node
IP-addresses (SP5) prevent insights for an attacker. An exception is a case
where one party sends multiple messages in a sequence. In this case, it will
be observable that someone received multiple messages, but not that they
originated from the same source.
Preventing T4 Replay Attack: Replay attacks are not feasible, as the
same transaction will not be included twice into a blockchain (SP3). As soon
as some value of the transaction is changed, the transaction signature breaks
(SP1, see T2). If the attacker were to extract the encoded data and include
it into a new transaction, she would get a valid transaction, but the recipient
will notice the attack as soon as she decrypts the message, as the sending
identity and the outer signature of the message do not originate from the
same entity (SP1). This attack can be used to unnecessarily increase the size
of the blockchain.
Preventing T5 Man-in-the-Middle Attack: The success of this attack
depends on where the attacker is located. If she is located directly after the
exit-node of the Tor network, she could launch all sorts of attacks, like omit-
ting transactions or blocks or sending forged transactions or blocks to the user.
Furthermore, she could use her position to start denial-of-service attacks.
In all cases, the user will detect that something is wrong and can simply
change the exit-node or wait until it is automatically changed (SP5). Omit-
ted transactions are noticed as soon as the following blocks are appended
to the blockchain. Omitted blocks are noticed if the chain is broken (one or
several blocks are missing) or if the interval where no new block was found is
suspiciously large. Manipulated transactions or blocks are noticed because of
the broken signature (SP1).
Preventing T6 Censorship: As the interlocutors and the message contents
are not known (SP2, SP4), it is not possible to censor messages based on these
attributes. An attacker could try to exclude specific IP-addresses or block
the service at all. The decentralized structure of the network (SP3) makes

SeDiCom 361

it very hard to censor transactions. Even if one node does not distribute a
transaction, other nodes will.
Preventing T7 Deanonymization: As long as the private part of the pri-
mary identity is kept confidential (AS2), no connection between one-time
identities and the primary identity can be drawn (AS3, SP4). As every mes-
sage is encrypted (SP2), outsiders can only see one-time identities (SP4) that
do not provide any information (SP4). Furthermore, as every node receives all
blocks, it is not possible to determine which client received a message (SP3).
The IP-address also does not provide any insights, as all nodes are connected
over the Tor network (SP5).
Preventing T8 Denial-of-Service (DoS) Attacks: If the attacker con-
trols only some network connections, she cannot harm the network as users
can switch their exit node (SP5) and all nodes will forward all valid blocks
and transactions (SP3). If the attacker controls the connections of an indi-
vidual user, this user can be blocked from using the service. An attacker that
controls the whole network can block the service, but this attack contradicts
AS4.
Preventing T9 Key Derivation: The security of the main identity and
the other one-time identities relies on the pre-image resistance feature of the
cryptographic hash function (AS3).
Preventing T10 Manipulating Blocks: An attacker would have to delete
or manipulate the block on all nodes (SP3), otherwise the network will recover
it.
Preventing T11 Untrusted Miner: This attack can be prevented by hav-
ing a group of miners (SP3), where it is likely that more than half of them
are honest. In our scenario, where we likely have only one miner (e.g., the
company behind the call for tenders), this attack cannot be prevented, but it
will be detected.

All threats except for two — an attacker who controls the Internet connection
of the user and an attacker who creates spam messages — are fully mitigated
by the design of the proposed solution, as summarized in Table 3.

6 Conclusions and Future Work

In this paper, we have presented a secure and privacy-preserving messaging
platform that unifies and improves security and privacy-related features not
currently present in any other single messaging solution. The proposed solution
is especially designed and suited for business-related scenarios such as bidding
processes or tender offers, where data confidentiality is paramount at first, but
communication contents are to be divulged at a later point in time. By rely-
ing on an adapted Ethereum blockchain and the Clique consensus algorithm,
our design scales even beyond the requirements of the targeted use case, since
none of the scalability issues typically associated with blockchain-based systems
apply. Moreover, advancements made wrt. blockchain scalability also benefit our
solution. We therefore expect performance to improve over time.

362 A. Marsalek et al.

Our platform relies on two privacy-enhancing pillars which prevent user-
profiling, hinder censorship and ensure unlinkable anonymous identities. First,
we replace the common centralized service architecture with a distributed archi-
tecture based on a blockchain and the Tor network. This allows us to counter a
range of issues related to metadata surveillance, eavesdropping, censorship, and
control. Second, we separate identities of the parties involved into ephemeral
and hidden components, which are derived and associated using a novel address
schedule that guarantees their unlinkability for external observers. Using this
scheme, all encrypted communication in the network can be traced to the level of
ephemeral identities only, which are typically employed only once. When desired,
message contents can be published later, including universally verifiable proofs
regarding contents and correspondents
We identify two general aspects for further development of our platform. In
future work, we first plan to improve platform reliability against spamming and
flooding attacks by charging a small amount of currency for every transaction.
We also plan to decrease the storage requirements for clients, by allowing them to
store only information relevant to them, without losing any security guarantees.

References

1. WhatsApp. One Billion, 1 February 2016. https://blog.whatsapp.com/616/One-
billion. Accessed 19 Apr 2017

2. Fiadino, P., Schiavone, M., Casas, P.: Vivisecting WhatsApp in cellular networks:
servers, flows, and quality of experience. In: Steiner, M., Barlet-Ros, P., Bonaven-
ture, O. (eds.) TMA 2015. LNCS, vol. 9053, pp. 49–63. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17172-2 4

3. Coull, S.E., Dyer, K.P.: Traffic analysis of encrypted messaging services: Apple
imessage and beyond. ACM SIGCOMM Comput. Commun. Rev. 44(5), 5–11
(2014)

4. Azfar, A., Choo, K.K.R., Liu, L.: A study of ten popular android mobile voip
applications: are the communications encrypted? In: 2014 HICSS-47, pp. 4858-
4867 (2014). https://doi.org/10.1109/HICSS.2014.596

5. cnet.com: Instant messaging latest trend in e-commerce software (2009). https://
www.cnet.com/news/instant-messaging-latest-trend-in-e-commerce-software/

6. Lawton, G.: Instant messaging puts on a business suit. Computer 36(3), 14–16
(2003)

7. Doyle, S.: Is instant messaging going to replace SMS and e-mail as the medium of
choice for direct customer communications? J. Datab. Mark. Customer Strategy
Manag. 11, 17–182 (2003)

8. Cameron, A.F., Webster, J.: Unintended consequences of emerging communication
technologies: instant messaging in the workplace. Comput. Hum. Behav. 21(1), 85–
103 (2005). ISSN 0747–5632

9. Gann, R.: Instant messaging for business (2012). https://www.techradar.com/
news/world-of-tech/roundup/instant-messaging-for-business-1075434

10. Schneier, B.: NSA doesn’t need to spy on your calls to learn your secrets. Wired
(2015)

11. Mayer, J., Mutchler, P., Mitchell, J.C.: Evaluating the privacy properties of tele-
phone metadata. Proc. Nat. Acad. Sci. 113(20), 5536–5541 (2016). https://doi.
org/10.1073/pnas.1508081113

https://blog.whatsapp.com/616/One-billion
https://blog.whatsapp.com/616/One-billion
https://doi.org/10.1007/978-3-319-17172-2_4
https://doi.org/10.1109/HICSS.2014.596
https://www.cnet.com/news/instant-messaging-latest-trend-in-e-commerce-software/
https://www.cnet.com/news/instant-messaging-latest-trend-in-e-commerce-software/
https://www.techradar.com/news/world-of-tech/roundup/instant-messaging-for-business-1075434
https://www.techradar.com/news/world-of-tech/roundup/instant-messaging-for-business-1075434
https://doi.org/10.1073/pnas.1508081113
https://doi.org/10.1073/pnas.1508081113

SeDiCom 363

12. Schneier, B.: Metadata = surveillance. IEEE Secur. Priv. 12(2), 84–84 (2014).
https://doi.org/10.1109/MSP.2014.28. ISSN 1540-7993

13. Cole, D.: We kill people based on metadata. N. Y. Rev. Books 10, 2014 (2014)
14. Goldberg, I., OTR Development Team: Off-the record messaging protocol version

3, 6 January 2016. https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html. Accessed
16 Mar 2017

15. Crypviser GmbH: Crypviser - the most secure solution ever (whitepa-
per), May 2017. https://ico.crypviser.net/static/docs/CrypViserWhitepaper en.
pdf. Accessed 05 Sept 2017

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). eprint:
https://bitcoin.org/bitcoin.pdf

17. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, San Diego, CA,
USA, August 2004

18. Buterin, V., et al.: Ethereum white paper (2013). https://github.com/ethereum/
wiki/wiki/White-Paper

19. Sziláyi, P.: Clique PoA protocol & Rinkeby PoA testnet #225 (2017). https://
github.com/ethereum/EIPs/issues/225

20. Greenwald, G.: NSA collecting phone records of millions of Verizon customers daily.
The Guardian 6(5), 13 (2013)

21. Lyon, J., Wong, M.: Sender id: Authenticating e-mail. RFC Editor, RFC 4406,
April 2006

22. Carnegie Mellon University: CERT Division: Spoofed/forged email, September
2017. http://cert.org/historical/tech tips/email spoofing.cfm. Accessed 05 Sept
2017

23. Brown, D.R.L.: Standards for Efficient Cryptography 2 (SEC 2), January 2010.
http://www.secg.org/sec2-v2.pdf. Accessed 27 July 2018

24. Petrlic, R., Sorge, C.: Instant messaging. Datenschutz, pp. 97–108. Springer, Wies-
baden (2017). https://doi.org/10.1007/978-3-658-16839-1 8

25. Schrittwieser, S., et al.: Guess who’s texting you. Evaluating the Security of Smart-
phone Messaging Applications, SBA Research gGmbH (2012)

26. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE EuroS&P, April
2017, pp. 451–466. https://doi.org/10.1109/EuroSP.2017.27

https://doi.org/10.1109/MSP.2014.28
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://ico.crypviser.net/static/docs/CrypViserWhitepaper_en.pdf
https://ico.crypviser.net/static/docs/CrypViserWhitepaper_en.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225
http://cert.org/historical/tech_tips/email_spoofing.cfm
http://www.secg.org/sec2-v2.pdf
https://doi.org/10.1007/978-3-658-16839-1_8
https://doi.org/10.1109/EuroSP.2017.27

	SeDiCom: A Secure Distributed Privacy-Preserving Communication Platform
	1 Introduction
	2 Background and Related Work
	3 SeDiCom
	3.1 Architecture
	3.2 Generic Process Flow
	3.3 Security Features
	3.4 Implementation

	4 Performance Evaluation
	4.1 Required Overhead
	4.2 Throughput

	5 Security Evaluation
	5.1 Assets
	5.2 Assumptions
	5.3 Security Goals
	5.4 Threats
	5.5 System Properties
	5.6 Threat Mitigation

	6 Conclusions and Future Work
	References

