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1 Introduction

Let M be a compact Riemannian manifold endowed with its natural Riemannian
measure dx (x is the generic element of M). In local coordinates, we can think at
the linear space R

d endowed with the metric gi,j (x)dxi ⊗ dxj where x are the
local coordinates and x → (g.,.(x)) is a smooth function from R

d into the space of
symmetric strictly positive matrix. The Riemannian measure associated is

dx = det (g.,.)
−1/2dx1.. ⊗ dxd (1.1)

We consider a linear symmetric positive operator densely defined on L2(dx) acting
on a space which separates the point on M . This means if f and g belong to this
space,

∫
M

g(x)Lh(x)ds =
∫

M

h(x)Lg(x)dx (1.2)
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∫
M

h(x)Lh(x)dx ≥ 0 (1.3)

It has by abstract theory a self-adjoint extension on L2(dx), which generates a
contraction semi-group Pt on L2(dx) which solves the heat equation for t > 0

∂

∂t
Pth = −LPth (1.4)

with initial condition

P0h = h (1.5)

It is a natural question to know if there is a heat kernel:

Pth(x) =
∫

M

pt (x, y)h(y)dy (1.6)

There are several ways to solve this problem:

– The microlocal analysis [12, 18, 19], which uses as basic tool the Fourier
transform and some regularity on the coefficients of L. In the case of a partial

differential operator on R
d , this means that L = ∑

a(α)(x) ∂(α)

∂x(α) where (α) is a
multiindex and x → a(α)(x) is smooth.

– The harmonic analysis, which uses as basic tools functional inequalities and does
not need any regularity on the coefficients of L [3, 13, 51].

– The Malliavin calculus [20, 44, 49], which works for Markov semi-groups:
Ptf ≥ 0 if f ≥ 0. The Malliavin calculus requires moreover that the semi-group
is represented by a stochastic differential equation.

More precisely, the Malliavin calculus needs a probabilistic representation of the
semi-group Pt by using the theory of stochastic differential equations where a flat
Brownian motion or a Poisson process plays a fundamental role.

Let us recall the main idea of the Malliavin calculus in the case of the flat
Brownian motion. Let us consider the Hilbert space H of finite energy maps starting
from 0 from [0, 1] into R

m t → rt = (ri
t ) endowed with the Hilbert norm

‖r‖2 =
m∑

i=1

∫ 1

0
|d/dtri

t |2dt (1.7)

We consider the formal Gaussian measure on H (written in the heuristic way of
Feynman path integral)

dμ(r) = 1/Z exp | − ‖r‖2/2]dD(r) (1.8)
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where dD(r) is the formal Lebesgue measure on H. Haar measure satisfying all
the axioms of measure theory on a group exists if and only if the group is locally
compact. (We refer to [2] and [30] to define Haar measure in infinite dimension in a
generalized way). This explains that we need to construct this measure on a bigger
space, the space of continuous function C([0, 1],Rm)t → Bt issued from 0 from
[0, 1] into R

m. There are a lot of Gaussian measures on C([0, 1],Rm) [48] but the
law of the Brownian motion is related to the heat equation on R

m

∂

∂t
Ptf (x) = 1/2

m∑
i=1

∂2

∂x2
i

Ptf (x) (1.9)

We have, namely,

Pth(x) = E[h(Bt + x)] (1.10)

if f is a bounded continuous function on R
m. In such a case we have a semi-group

operating on continuous function on R
m.

We consider m smooth vector fields on R
d with bounded derivatives at each

order. Vector fields here are considered as first order partial differential operators.
We consider the operator

L = 1/2
m∑

i=1

X2
i (1.11)

We introduce the Stratonovich differential equation [20, 49] starting from x (vector
fields here are considered as vectors which depend smoothly on x).:

dxt(x) =
m∑

i=1

Xi(xt (x))dBi
t (1.12)

This is (and not the Itô equation) the correct equation associated to

dxt(r)(x) =
m∑

i=1

Xi(xt (h)(x))dri
t (1.13)

for r ∈ H endowed with the formal Gaussian measure dμ(r).
By Itô Calculus [20, 49], we can show that the semi-group Pt generated by L =

1/2
∑m

i=1 X2
i is related to the diffusion xt (x) by the formula

Pt(h)(x) = E[h(xt (x))] (1.14)

if h is a continuous function on R
d (in such a case, the semi-group acts on

continuous bounded functions on R
d ).
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Malliavin idea is the following [44]: he differentiates in a generalized sense the
Itô map B. → xt (x) . If this Itô map is a submersion in a generalized sense (the
inverse of the Malliavin matrix belongs to all the Lp), the law of xt (x) has a smooth
density and therefore the semi-group has a heat kernel. Malliavin for that uses a
heavy apparatus of differential operations on the Wiener space. Let us recall that
there are several pioneering works of the Malliavin calculus [1, 6, 16] motivated
by mathematical physics, but only Malliavin calculus is adapted to the study of
stochastic differential equations and fits very well to the study of all measures of
stochastic analysis.

Bismut [7] don’t use this heavy apparatus of differential operations on the Wiener
space, by using a suitable Girsanov transformation and a system of convenient
stochastic differential equations in cascade associated to the original stochastic
differential equation. This allows Bismut’s way to get in a simpler way the Malliavin
integration by parts for diffusions: if (α) is a multiindex, if t > 0,

E[h(α)xt (x))] = E[h(xt (x))Q
(α)
t ] (1.15)

where Q
(α)
t is a polynomial in the extra components of the system of stochastic

differential equations in cascade and in the inverse of the Malliavin matrix.
The fact that only stochastic differential equations in cascade (therefore a system

of semi-groups in cascade) appear in Bismut’s approach of the Malliavin calculus
allows us to interpret Bismut’s way of the Malliavin calculus in the theory of semi-
group by expulsating the probabilistic language in [31]. We refer to [32, 33] for
reviews with some applications.

Léandre [31] uses an elementary integration by parts, which has to be optimized.
The main remark is that we can adapt this elementary integration by parts for
non-Markovian semi-groups. It is possible to adapt Bismut’s way of the Malliavin
calculus for non-Markovian semi-groups.

It is divided into two steps:

– An algebra on the semi-group. Only existences on the semi-group are required.
– Estimates on the enlarged semi-group, which are necessary because polynomial

function appears in the Malliavin integration by parts which are not bounded, but
are performed in the non-Markovian case by the Davies gauge transform (in the
Markovian case, they were done by an adaptation in semi-group on the classic
Burkholder-Davies-Gundy inequalities of stochastic analysis).

Moreover, Bismut in his seminal work [9] has done an intrinsic integration by
part formula for the Brownian motion on a manifold, which overcame the problem
that in the standard Malliavin calculus there are a lot of stochastic differential
equations which represent the same semi-group. In Part IV we perform an intrinsic
Malliavin calculus associated to a wide class of pseudo-differential elliptic operator,
by performing a variation of the original pseudo-differential operator by a fractional
power of it intrinsically associated to the original operator. We exhibit the relation
between the Malliavin calculus of Bismut type and the general theory of elliptic
pseudo-differential operators.
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Bismut in his seminal work [9] pointed out the relation between the Malliavin
calculus and the large deviation theory for the study of short time asymptotics of the
heat-kernel associated to diffusion semi-groups. We refer to the reviews [26, 29, 53],
the book [5], and the seminal work [47] for probabilistic methods in short time
asymptotics of semi-groups.

Let us recall quickly the main goal of large deviation theory, here of Wentzel-
Freidlin type [4, 52] and [54]. We introduce a small parameter and consider the
stochastic differential equation with a small parameter starting from x:

dxε
t (x) = ε

m∑
i=1

Xi(x
ε
t )(x)dBi

t (1.16)

Wentzel-Freidlin theory allows to get estimates of the type, when ε → 0

lim 2ε2Log[P [xε
. (x) ∈ 0] = − inf

x.(h)(x)∈O
‖r‖2 (1.17)

if O is an open subset of C([0, 1],Rd) equipped with the uniform norm. We don’t
give details of the lot of technicalities in this estimate.

It is possible to adapt [35, 37–40] Wentzel-Freidlin estimates to the case of
non-Markovian semi-groups with the normalization of W.K.B. analysis of Maslov
school [45] (see [17, 27] for seminal works on W.K.B. analysis). The main remark
is that we can get only upper-bounds, because the semi-group does not preserve the
positivity in this case. The second remark is that these estimates are valid only for
the semi-group, because in this case path space functional integrals are not defined
(see [36] for a review and the work [11, 25, 46]). The normalizations are standard in
semi-classical analysis but the type of estimates is different. They work for the heat
equation and not for the Schrodinger equation.

This allows to fulfill in this non-Markovian context the beautiful request of
Bismut’s book [5] and to do the marriage between the Malliavin calculus and
Wentzel-Freidlin estimates. The main difference is that we have to consider the
absolute value of the heat-kernel because in such a case the semi-group does not
preserve the positivity such that we get only upper-bound in the studied Varadhan
type estimates (Wentzel-Freidlin estimates are still valid for the heat-kernel).

This work is a review paper of several of our works. The main novelty is part IV,
which is new.

2 The Case of a Formal Stochastic Differential Equation

Let us consider an elliptic differential operator of order l on a compact manifold M

of dimension d . If we perturb it by a strictly lower order operator Lp, it results by
the theory of pseudo-differential operator (which is given by the role of the principal
symbol of an elliptic operator) that the qualitative behavior (hypoellipticity..) is the



162 R. Léandre

same than the qualitative behavior of L+Lp. See [12, 18, 19] for various textbooks
in analysis about this problem.

Recently, we have introduced an elliptic operator of order 2k L0 = ∑
f 2k

i where
fi is an orthonormal basis of the Lie algebra of a compact Lie group G of dimension
m with generic element g. fi are considered as right invariant vector fields. We have
established the Malliavin calculus of Bismut type for L0. We consider a polynomial
Q of degree strictly smaller than 2k in the vector fieldsfi with constant components.
We consider the total operator

L = L0 + Q (2.1)

The goal of this part by using a small interpretation of [41] and [42] is to adapt
in this present situation the strategy of [41] for diffusions. (Léandre [41, 42]
used the machinery of the Malliavin calculus [7] translated in semi-group theory
for diffusions in [31].) Malliavin matrix plays here a fundamental role in the
optimization of the integration by parts in order to arrive to full Malliavin integration
by parts. All formulas are formally the same if we add or do not add the
perturbation of the main operator.

We consider the elliptic operator on G × R

Q +
∑

i

f 2k
i +

∑
ri,t fi

∂

∂u
+ ∂2k

∂u2k
= L̃r

t (2.2)

It generates by elliptic theory a semi-group on Cb(G × R), the space of bounded
continuous function on G × R endowed with the uniform norm.

Theorem 2.1 (Elementary Integration by Parts Formula) We have if h is
smooth with compact support

∫ t

0
Pt−s

∑
hs,ifiPs [h]ds = P̃ h

t [uh](., 0) (2.3)

Proof It is the same proof than the proof of Theorem 3 of [42]. ��
Let V = G × Md . Md is the space of symmetric matrices on LieG. (x, v) ∈ V .

v is called the Malliavin matrix. We consider

X̂0 = (0,
∑

< g−1fi, . >2) (2.4)

We consider the Malliavin generator (we skip the problems of signs)

L̂ =
∑

f 2k
i − X̂0 (2.5)

Theorem 2.2 L̂ spans a semi-group. P̂t called the Malliavin semi-group onCb(M).
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Proof It is the same proof of theorem 4 of [42] since Q is a polynomial with constant
components in the fi and L generates a Cb(G) semi-group. The proof leads to
some difficulties because the Malliavin operator is not the perturbation of an elliptic
operator and uses the Volterra expansion. ��

The Malliavin semi-group will allow us to get suitable integration by parts
formulas 2. We have the main theorem of this paper:

Theorem 2.3 (Malliavin) If the Malliavin condition holds

|P̂t ][v−p](g, 0) < ∞ (2.6)

for all integer positive integer p, Pt has a heat-kernel.

Proof It is the same proof as in the beginning of the proof of theorem 6 of [42].
Under Malliavin assumption, we can optimize the elementary integration by part of
Theorem 2, in order to get, according to the framework of the Malliavin calculus,
the inequality for any smooth function h on G

|Pt [< dh, fi >]| ≤ C‖f ‖∞ (2.7)

��
Remark Let us explain quickly the philosophy of this theorem, when there is no
perturbation term. We consider a set of path in R

m denoted ri
t which represent the

semi-group associated to
∑

i
∂2k

∂u2k
i

. We don’t enter into the problem of signs. We

consider the formal stochastic differential equation

dxt(r)(e) =
∑

i

fidri
t (2.8)

issued from e. Formally, this represents the semi-group Pt without the perturbation
term

Pt [h](e) = “E”[f (xt (e)] (2.9)

Malliavin assumption expresses in some sense that the “Itô” map r.
. → xt (e) is a

submersion.

By this inequality, we deduce according to the framework of the Malliavin
calculus that

Pt [h](e) =
∫

G

h(g)pt (e, g)dg (2.10)

for a nonstrictly positive heat-kernel pt (dg) denotes the normalized Haar measure
on G), if the Malliavin assumption is satisfied.
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Theorem 2.4 Under the previous elliptic assumptions,

|P̂t |[|v−p|]](g0, 0) < ∞ (2.11)

if t > 0

Proof It is the same proof than the proof of theorem 8 of [42]. It is based upon the
initial strategy to invert the Malliavin matrix in stochastic analysis by slicing the
time interval in small time intervals. Only the main part of the generator plays the
main role in this strategy because we are in an elliptic case. ��

We can iterate the integration by parts formulas, by introducing a system of semi-
groups in cascade. We deduce the theorem:

Theorem 2.5 If t > 0, the semi-group Pt has a smooth heat kernel

Pt ([h](g) =
∫

G

pt (g, g′)h(g′)dg′ (2.12)

We remark that the heat kernel can change of sign. This theorem is classical in
analysis [51] but it enters in our general strategy to implement stochastic tools in
the general theory of linear semi-groups.

In order to simplify the computation, we have used the symmetry of the group.
In the next part, we will use fully the symmetry of the group to simplify the
computations.

3 The Full Use of the Symmetry of the Group

Let us recall what is a pseudo-differential operator on R
d [12, 17, 18]. Let be a

smooth function a(x, ξ) from R
d × R

d with values in C. We suppose that

sup
x∈Rd

|Dr
xDl

ξ a(x, ξ)| ≤ C|ξ |m−l + C (3.1)

We suppose that

inf
x∈Rd

|a(x, ξ)| ≥ C|ξ |m′
(3.2)

for |ξ | > C for a suitable m′ > 0. Let ĥ be the Fourier transform of the continuous
function h. We consider the operator L defines on smooth function h by :

L̂h(x) =
∫
Rd

a(x, ξ)ĥ(ξ)dξ (3.3)
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L is said to be a pesudodifferential operator elliptic of order larger than m′ with
symbol a. This property is invariant if we do a diffeomorphism on R

d with bounded
derivatives at each order. This remark allows to define by using charts a pseudo-
differential operator elliptic of order larger than m′ on a compact manifold M .

Let f i be a basis of TeG. We can consider rightinvariant vector fields. This means
that if we consider the action Rg0 h → (g → h(gg0)) on smooth function h on G,
we have

Rg0(f
ih) = f i(Rg0h). (3.4)

We consider a rightinvariant elliptic pseudo-differential positive operator L of
order larger than 2k on G . It generates by elliptic theory a semi-group Pt on
L2(dg) and even on Cb(G) the space of continuous functions on G endowed with
the uniform norm.

Theorem 3.1 If t > 0,

Pth(g0) =
∫

G

pt (g0, g)h(g)dg (3.5)

where g → pt (g0, g) is smooth if h is continuous.

This theorem is classical in analysis , but it enters in our general program to
implement stochastic analysis tool in the theory of non-Markovian semi-group. See
the review [36] for that. See [41, 42] for another presentation where the Malliavin
matrix plays a key role. Here we don’t use the Malliavin matrix. See [43] for the
case of rightinvariant differential operators. The proof is divided into two steps.

3.1 Algebraic Scheme of the Proof: Malliavin Integration
by Parts

We consider the family of operators on C∞(G × R
n):

L̃n
t = L +

n∑
i=1

f ji
∂

∂ui

αi
t +

n∑
i=1

∂2k

∂u2k
i

(3.6)

αi
t are smooth function from R

+ into R. By elliptic theory, L̃n
t generates a semi-

group P̃ n
t on Cb(G × R

n). This semi-group is time inhomogeneous.

P̃ n+1
t [h(g)hn(u)v](., ., 0) =

∫ t

0
P̃ n

t,s [f j+1αn+1
s P̃ n

s [h(g)hn(u)](., .) (3.7)
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Moreover

P̃ n+1
t [uh(.)hn(.)](., ., un+1) = P̃ n+1

t [uh(.)hn(.)](., ., 0) + P̃ n
t [h(.)hn(.)](., .)un+1

(3.8)

h is a function of g, hn a function of u1, . . . , un. This comes from the fact that ∂
∂un+1

commute with the considered operator.
Therefore the two sides of (3.8) satisfy the same parabolic equation with second

member. We deduce that

P̃ n+1
t [un+1

n∏
j=1

ujh(.)](., ., 0) =
∫ t

0
dsP̃ n

t,s[f jn+1αn+1
s P̃ n

s [h
n∏

j=1

uj ]](., .) (3.9)

This is an integration by parts formula. We would like to present this formula in a
more appropriate way for our object.

We consider the operator

L
n = L +

n∑
j=1

∂2k

∂u2k
j

(3.10)

It generates a semi-group P
n

t . In the sequel we will skip the problem of sign coming
if k is even or not.

We introduce a suitable generator

R̃n+1
t = L

n + Fs (3.11)

by taking care of the relation [f i, f j ] = ∑
k λ

i,j
k f k . It is an operator of the type

studied. It generates therefore a time inhomogeneous semi-group Q̃n
t . Therefore the

integration by parts formula (3.9) can be written in a more suitable way

P̃ n+1
t [un+1

n∏
j=1

ujh(.)](., ., 0) =
∫ t

0
αn+1

s dsP̃ n
t [f jn+1h

n∏
i=1

ui](., .)+

∫ t

0
αn+1

s dsP̃ n
t,sQ̃

n
s [h

n∏
i=1

ui](., .) (3.12)

We do the following recursion hypothesis on l:

Hypothesis (l) There exists a positive real rl such that if (α) is a multiindex of
length smaller than l

|P̃ n
t [f (α)h

n∏
i=n

ui ](g, v.)| ≤ Ct−rl ‖h‖∞(1 +
n∏

i=n

|vi |) (3.13)
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where ‖.‖∞ is the uniform norm of h.
It is true for l = 1 by (3.9) and the estimates which follow.
If it is true for l, it is still true for l + 1, by using (3.12) for f (α)h and taking

αn+1
s = srl .

By choosing suitable α
j
t , we have according to the framework of the Malliavin

calculus for any multiindex (α)

|Pt [f (α)h](g0)| ≤ C(α)‖h‖∞ (3.14)

in order to conclude.

3.2 Estimates: The Davies Gauge Transform

We do as in [43] (26). The problem is that in P̃ n
t [h∏n

j=1 uj ](., .) the test function

uj are not bounded and that P̃ n
t acts only on Cb(G×R

n). We do as in [3] the Davies
gauge transform

∏n
I g(ui) where

g(u) = (|u|) (3.15)

if u is big and g is smooth strictly positive.
This gauge transform acts on the original operator by the simple formula

(
∏n

i=1 g(ui))
−1L̃n

1((
∏n

i=1 g(ui).). On the semi-group it acts as

(

n∏
i=1

g(.))−1P̃ n
t [(

n∏
i=1

g(ui)h(.)hn(.)](., .) (3.16)

But

(g(ui))
−1 ∂

∂ui

(g(ui).) = ∂

∂ui

+ C(ui) (3.17)

where the potential C(ui) is smooth with bounded derivatives at each order.
Therefore the transformed semi-group acts on Cb(G × Rn).

Remark We can consider a particular case [43] Let G be a compact connected Lie
group, with generic element g endowed with its bi-invariant Riemannian structure
and with its normalized Haar measure dg. e is the unit element of G.

Let f i be a basis of TeG. We can consider rightinvariant vector fields. This means
that if we consider the action Rg0 h → (g → h(gg0)) on smooth function h on G,
we have

Rg0(f
ih) = f i(Rg0h). (3.18)
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Let be ξ(α) = ξα1 . . . .ξα|α| and let be f (α) = f α1 ..f α|α| . (α) is a multi-index of
length |α|.

We consider a matrix aα,β for multiindices of length k, which is supposedly
symmetric strictly positive.

We consider the operator

L =
∑

(α),(β)

f (α)a(α),(β)f
(β) (3.19)

According to [51], (−1)kL is a positive symmetric densely elliptic defined operator
on L2(G), which generates by elliptic theory a semi-group acting on Cb(G), the
space of continuous function on G. In such a case, we have a heat-kernel associated
to the semi-group (See [43]). The case of a rightinvariant differential operator
has exactly the same proof than the case of theorem 6, where the details will be
presented elsewhere. See [14] for the general case.

4 The Case of an Intrinsic Variation

Let L be a strictly positive self-adjoint operator on a compact manifold M . We
suppose that L is a pseudo-differential elliptic operator of order l ≥ 2k for an integer
k ≥ 1. It generates a contraction semi-group on L2(M) and by ellipticity a semi-
group on Cb(M). See [8] and [23, 24] in the Markovian case.

Theorem 4.1 There is a heat-kernel pt (x, y) associated to Pt . If t > 0

Pt (h)(x) =
∫

M

pt (x, y)h(y)dy (4.1)

where y → pt (x, y) is smooth.

The proof is divided into two steps:

4.1 Algebraic Scheme of the Proof: Malliavin Integration by
Parts

Let α belong to ]0, 1[. The fractional power [50] Lα is still a strictly positive pseudo-
differential operator elliptic of order αl, which commutes with L. We skip up later
the problem if k is even or not. We consider the operator on C∞(M × R

n)

L̃n
s = L + srLα ∂

∂un

+
n∑

i=1

∂2k

∂u2k
i

(4.2)
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It is an elliptic operator of order 2k on M × R
n. The main part

L
n = L +

n∑
i=1

∂2k

∂u2k
i

(4.3)

is positive and is essentially self-adjoint. Therefore the main part generates a semi-
group on Cb(M ×R

n). This remains true for L̃n because L̃n is a perturbation of L
n

by a strictly lower operator. We call this semi-group P̃ n
t .

The main remark is that Lα commutes with L̃n such that

LαP̃ n
t = P̃ n

t Lα (4.4)

According to the beginning of the previous part, we get the elementary integration
by part

P̃ n+1
t [h

n∏
i=1

uiu](x, vi, 0) =
∫ t

0
Pn

t−s[srLαP̃ n
s [h

n∏
i=1

ui ]](x, vi) =

P̃ n
t [Lαh

n∏
i=1

ui](x, ui)

∫ t

0
srds (4.5)

Suppose by induction on l that

|P̃ n
t [(Lα)lh

n∏
i=1

ui ](x, vi)| ≤ Ct−r(l)‖h‖∞(1 +
n∏

i=1

|vi |) (4.6)

By applying the elementary integration by parts (4.5) to (Lα)l)f , and choosing
r = r(l), we deduce our result. Therefore we have the inequality

|Pt [(Lα)lh](x)| ≤ Ct−r(l)‖h‖∞ (4.7)

The result follows from the fact that Lα is an elliptic operator.

4.2 Estimates: The Davies Gauge Transform

We do as in [43] (26). The problem is that in P̃ n
t [h∏n

j=1 uj ](., .) the test function

uj are not bounded and that P̃ n
t acts only on Cb(G × R

n). We do as in [35] the
Davies gauge transform

∏n
I g(ui) where

g(u) = (|u|) (4.8)

if u is big and g is smooth strictly positive.
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This gauge transform acts on the original operator by the simple formula
(
∏n

i=1 g(ui))
−1L̃n

1((
∏n

i=1 g(ui).). On the semi-group it acts as

(

n∏
i=1

g(.))−1P̃ n
t [(

n∏
i=1

g(ui)h(.)hn(.)](., .) (4.9)

But

(g(ui))
−1 ∂

∂ui

(g(ui).) = ∂

∂ui

+ C(ui) (4.10)

where the potential C(ui) is smooth with bounded derivatives at each order.
Therefore the transformed semi-group acts on Cb(G × Rn). It remains to choose

hn(u.) =
n∏

j=1

uj

g(uj )
(4.11)

in order to conclude. We deduce the bound:

|P̃ n
t |[h

n∏
j=1

|uj |](.; v.) ≤ C(‖h‖∞(1 +
n∏

i=n

|vi |) (4.12)

where |P̃ n
t | is the absolute value of the semi-group P̃ n

t .

Remark We could show that (x, y) → pt(x, y) is smooth if t > 0 by the same
argument.

Remark We can replace the hypothesis L strictly positive by the hypothesis L

positive by replacing Lα by (L + CId)α where C > 0.

5 Wentzel-Freidlin Estimates for the Semi-Group Only

We consider a differential operator of order 2k on the compact manifold M which is
supposedly elliptic of order 2k and strictly positive. We suppose we can write it as

L =
2k∑

j=0

r(j)∑
i=0

(Xi,j )
j (5.1)

where Xi,j are smooth vector fields on M . The ellipticity assumption states that

r(2k)∑
i=0

< Xi,2k, ξ >2k= H(x, ξ) ≥ C|ξ |2k (5.2)
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To the Hamiltonian H , we introduce the Lagrangian

L(x, p) = sup
ξ

(< p, ξ > −H(x, ξ)) (5.3)

We get the estimate

− C + C|p| 2k
2k−1 ≤ L(x, p) ≤ C + |p| 2k

2k−1 (5.4)

for some strictly positive constants C.
If φ is a continuous piecewise differentiable path on M , we put:

S(φ) =
∫ 1

0
L(φ(t), d/dtφ(t))dt (5.5)

and we put

l(x, y) = inf
φ(0)=x,φ(1)=y

S(φ) (5.6)

By Ascoli theorem, (x, y) → l(x, y) is a continuous function on M × M .

Theorem 5.1 (Wentzel-Freidlin) If O is an open ball of M , we have when t → 0

limt
1

2k−1 log |Pt |(1O](x) ≤ − inf
y∈O

l(x, y) (5.7)

Proof We put ε = t
1

2k−1 . According to the normalization of Maslov school [37], we
consider the semi-group Pε

s associated to Lε = ε2k−1L. Moreover

Pt = P t
1 (5.8)

where P t
s is associated to tL ([10]). The result will arise if we show when ε → 0

limε log |Pε
1 |(1O](x) ≤ − inf

y∈O
l(x, y) (5.9)

The main ingredient is: ��
Lemma 5.2 For all δ > 0, all C, there exists sδ such that if s < sδ

|Pε
s |[1B(x,δ)c](x) ≤ exp[−C/ε] (5.10)

where B(x, δ) is the ball of radius δ and center x.
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Proof We imbed M in a linear space. We consider the semi-group

Qε
s (h)(x) = exp[− < x, ξ > /ε]Pε

s [exp[< x ′, ξ > /ε]h(x ′)](x) (5.11)

Its generator is

Lε + H(x, ξ)/ε (5.12)

Lε = Lε + Rε (5.13)

In the perturbation term Rε , there are only differential operators of order l, l ∈
]0, 2k[. When a differential operator of degree l appears, there is a power of at least
l − 1 of ε which appears and a power of ξ at most 2k which appears.

Let us consider in a small neighborhood of x the diffeomorphism


ε : y → x + y − x

ε
2k−1

2k

(5.14)

Outside a big neighborhood of x, 
ε is the identity.
We consider the measure με

f → Pε
1 [F(
ε(x))](x) (5.15)

Under the transformation 
ε , the vector fields ε
2k−1

2k Xi,j are transformed in the

vector field Xi,j (x + ε
2k−1

2k (y − x)). Therefore we can apply the machinery of the
previous part in order to show that the measure με has a bounded density qε(x, .)

when ε → 0.
Let R be a differential operator of order l. We have

∫
M

g(x)RP ε
1 [h](x)dx =

∫
M×M

g(x)h(y)Rxp
ε
1(x, y)dxdy (5.16)

By symmetry

pε
1(x, y) = pε

1(y, x) (5.17)

Then
∫

M

g(x)RP ε
1 [h](x)dx =

∫
M

h(y)P ε
1 [Rg](y)dy (5.18)

By the previous remark

|Pε
1 [Rh](y)| ≤ C

εl 2k−1
2k

‖h‖∞ (5.19)
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Therefore

|
∫

M

g(x)RP ε
1 [h](x)dx| ≤ C

εl 2k−1
2k

‖g‖∞‖h‖∞ (5.20)

We deduce that

|RPε
1 [h](x)| ≤ C

εl 2k−1
2k

‖h‖∞ (5.21)

We deduce a bound of RεP
ε
s

|RεP
ε
s h(x)| ≤ |ξ |2k−1

s
l

2k

ε−1+1/k‖h‖∞ (5.22)

We apply Volterra expansion to Qε
s . We get

|Qε
sh| ≤ |Pε

s h| +
∞∑
i=1

|
∫

�l(s)

Is1,..,sl ds1 . . . dsl | (5.23)

where �l(s) is the simplex 0 < s1 < .. < sl < s and

Is1,..,sl = Pε
s1

(Rε + H/ε) . . . P ε
sl−sl−1

(Rε + H/ε)P ε
s−sl−1

h (5.24)

We deduce a bound of | ∫�l(s)
Is1,..,sl ds1 . . . dsl | by

|ξ |2lk

εl

∫
�l(s)

∏
(si+1 − si)

− 2k−1
2k ds1..dsl = |ξ |2lk

εl
Il(s) (5.25)

We suppose by induction that

Il(s) = αls
l(1+βk) (5.26)

where βk ∈] − 1, 0[. It is still true by the recursion formula

Il+1(s) =
∫ s

0
Il(u)(s − u)−

2k−1
2k du (5.27)

We deduce the bound

αl ≤ Cl

l! (5.28)

Therefore

|Qε
sh(x)| ≤ exp[Cs|ξ |2k/ε]‖h‖∞ (5.29)
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It remains to remark that we have the bound

|Pξ
s |[1B(x,δ)c](x) ≤ exp[−Cδ|ξ |

ε
+ Cs|ξ |2k/ε] (5.30)

and to extremize in |ξ | to conclude. ��
End of the Proof of Theorem 5.1 We operate as in Freidlin-Wentzel book [54] and
as in [35, 38] and [39]. We slice the time interval [0, , 1] in a finite number of
time intervals [si, si+1] where we can apply the previous lemma. We deduce a
positive measure on the set of polygonal paths, where we can repeat exactly the
considerations of [35].♦
Remark This estimate is a semi-classical estimate with different type of estimates
of W.K.B. estimates a la Maslov and with a different method. We consider in
W.K.B. estimate a symbol of an operator a(x, ξ) and we consider the generator Lε

associated with the normalized symbol (a la Maslov) 1/εa(x, εξ). Let us suppose
that Lε generates a semi-group Pε

t . The object of WKB method is to get precise
estimates of the semi-group Pε

1 when ε → 0. For that people look at a formal
asymptotic expansion (we omit to write the initial conditions) of Pε

1 of the type

ε−r exp[−l(y)/ε]
∑

εiCi(y) (5.31)

The function l satisfy a highly non-linear equation (the Hamilton-Jacobi-Belman
equation) and ci(y) satisfy formally a system of linear partial differential equation
in cascade. The cost function in theorem l(x, y) is the solution of the highly non-
linear Hamilton-Jacobi-Belman equation, which is difficult to solve. We don’t have
precise asymptotics, we are interested by logarithmic estimates which are totally
different with a method totally different. On the other hand, generally semi-classical
asymptotics considers the case of the Schrodinger equation.

On R
d we can speak without any difficulty of the symbol of an operator. Poisson

processes, Lévy processes, and jump processes are more or less generated by
pseudo-differential operators whose generator satisfy the maximum principle (See
[10, 13, 21, 22, 24, 28]). We will present pseudo-differential operators with a type
of compensation of stochastic analysis which do not satisfy the maximum principle.
The end of this part is extracted from [35] and [40]. Let us consider the generator
on C∞(Rd )

Lf (x) = (−)l+1
∫
Rd

(f (x + y) − f (x)) −
2l∑

i=1

< y⊗i , h⊗i (x) >)
h(x, y)

|y|2l+d+α
dy

(5.32)

α ∈] − 1, 0[ h(x, y) = 0 if |y| > C and h ≥ 0. The measure h(x,y)

|y|2l+d+α dy is called
the Lévy measure.
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Theorem 5.2 If h(x, 0) = 1, L is an elliptic pseudo-differential generator.

Definition 5.3 If h(x, y) = h(y), we will say that L is a generalized Lévy
generator.

Theorem 5.4 Suppose that L is of Lévy type and that h(y) = h(−y). L is positive
symmetric, and therefore admits by ellipticity a self-adjoint extension on L2(Rd),
which generates a contraction semi-group on L2(Rd ) which is still a semi-group on
Cb(R

d).

Remark The symbol a(x, ξ) of the generator is given by

(−)l+1
∫
Rd

(exp[√−1 < y, ξ > −
2l∑

i=1

(
(
√−1 < ξ, y >i)

i!
h(x, y)

|y|2l+d+α
dy (5.33)

The Hamiltonian associated is the symbol in real phase. Let us consider a generator
of Lévy type of the previous theorem: it is

(−)l+1
∫
Rd

(exp[< y, ξ > −
l∑

i=1

(
< ξ, y >2i

2i! )
h(x, y)

|y|2l+d+α
dy (5.34)

The Hamiltonian is smooth, convex, equal to 1 in 0. Associated to it, we consider
the Lagrangian:

L(p) = sup
ξ

(< ξ, p > −H(ξ)) (5.35)

If t → φt is a piecewise differentiable continuous curve in R
d , we consider its

action
∫ 1

0 dtL(φt , d/dtφt ) = S(φ.) We introduce the control function

l(x, y) = inf
φ0=x;φ1=y

S(φ) (5.36)

Let us recall that (x, y) → l(x, y) is positive finite continuous.

We consider the generator associated to 1/εa(εξ). This corresponds in the
classical case of jump process where the compensation is only of one term to the
case of a jump process with more and more jumps which are more and more small
[54]. We consider the generator Lε associated to 1/εa(εξ). It generates a semi-
group Pε

t . We get:

Theorem 5.5 [Wentzel-Freidlin [35, 40]] When ε → 0, we get if O is an open ball
of Rd if l + 1 is even:

limε log |Pε
1 |[1O](x) ≤ − inf

y∈O
l(x, y) (5.37)

Remark For this type of operator, Wentzel-Freidlin estimates are not related to short
time asymptotics.
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6 Application: Some Varadhan Estimates

This part follows closely [43]. Only the mechanism of the integration by part is dif-
ferent from [39]. For large deviation estimates with respect to W.K.B normalization
in the manner of Maslov [45] for non-Markovian operators, we refer to [38] for
instance.

Let us consider the Hamiltonian function from T ∗(G) into R
+

H(g, ξ)=
∑

|α|=k,|β|=k

< f (α)1, ξ > · · · < f (α)k , ξ > a(α),(β) < f (β)1, ξ > · · · < f (β)k , ξ >

(6.1)

H(g, p) is positive convex in p. According to the theory of large deviation, we
consider the associated Lagrangian

L(g, ξ) = sup
p

(< ξ, p > −H(g, ξ)) (6.2)

If t → φt is a curve in the group, we consider its action
∫ 1

0 dtL(φt , d/dtφt ) = S(φ.)

We introduce the control function

l(g0, g1) = inf
φ0=g0;φ1=g1

S(φ) (6.3)

Let us recall that (g0, g1) → l(g0, g1) is positive finite continuous.
We have shown in the previous part that if we consider a small parameter ε and

if we consider the generator ε2k−1L and the semi-group Pε
t associated and if g0 and

g1 are not closed , we get for any small ball centered in g1 uniformly:

Limε→0εLog|Pε
1 |[1O](g0) ≤ − inf

g1∈O
l(g0, g1) (6.4)

where|Pε
1 | is the absolute value of the semi-group (See [38]). See for that the

previous part.
But Pt = P t

1 where P t
s is the semi-group associated to tL (See [15]). We put

ε = t1/2k−1 such that

Limt→0t
1/2k−1Log|Pt |[1O](g0) ≤ − inf

g1∈O
l(g0, g1) (6.5)

We consider a smooth positive function χ equal to 0 outside O and equal to 1 on a
small open ball centered in g1 smaller than 1.

We would like to apply the mechanism of Malliavin integration by parts to the
measure

h → Pt [hχ](g0) (6.6)
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such that

|Pt [χf (α)h](g0)| ≤ Ct(−r(α)) exp[−l(g0, g1) + δ

t1/2k−1 ]‖h‖∞ (6.7)

for a small δ. Since (6.7) is true, we have:

Theorem 6.1 When t → 0

Limt→0t
1/2k−1Log|pt (g0, g1)| ≤ −l(g0, g1) (6.8)
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