
Modeling and Simulation in Science, 
Engineering and Technology

Livio Gibelli
Nicola Bellomo
Editors

Crowd 
Dynamics, 
Volume 1
Theory, Models, and Safety Problems





Modeling and Simulation in Science, Engineering and Technology

Series editors

Nicola Bellomo
Department of Mathematical Sciences
Politecnico di Torino
Torino, Italy

Tayfun E. Tezduyar
Mechanical Engineering
Rice University
Houston, TX, USA

Editorial Advisory Board

Kazuo Aoki
National Taiwan University
Taipei, Taiwan

Yuri Bazilevs
School of Engineering
Brown University
Providence, RI, USA

Mark Chaplain
School of Mathematics & Statistics
University of St. Andrews
St. Andrews, UK

Pierre Degond
Mathematics
Imperial College London
London, UK

Andreas Deutsch
ZIH, Technische Universität Dresden
Dresden, Sachsen, Germany

Livio Gibelli
Institute for Multiscale Thermofluids
University of Edinburgh
Edinburgh, UK

Miguel Ángel Herrero
Departmento de Matematica Aplicada
Complutense University of Madrid
Alcalá de Henares
Madrid, Spain

Thomas J. R. Hughes
Institute for Computational Enginee
The University of Texas at Austin
Austin, TX, USA

Petros Koumoutsakos
ETH Zürich
Zürich, Switzerland

Andrea Prosperetti
Cullen School of Engineering
University of Houston
Houston, TX, USA

K.R. Rajagopal
Department of Mechanical
Texas A&M University
College Station, TX, USA

Kenji Takizawa
Department of Modern Mechanical
Engineering
Waseda University
Tokyo, Japan

Youshan Tao
Dept of Applied Math
Donghua University
Shanghai, China

Harald van Brummelen
Department of Mechanical Engineering
TU Eindhoven
Eindhoven, Noord-Brabant, The Netherlands

More information about this series at http://www.springer.com/series/4960

http://www.springer.com/series/4960


Livio Gibelli • Nicola Bellomo
Editors

Crowd Dynamics, Volume 1
Theory, Models, and Safety Problems



Editors
Livio Gibelli
School of Engineering
University of Edinburgh
Edinburgh, UK

Nicola Bellomo
Department of Mathematical Sciences
Politecnico di Torino
Torino, Italy

ISSN 2164-3679 ISSN 2164-3725 (electronic)
Modeling and Simulation in Science, Engineering and Technology
ISBN 978-3-030-05128-0 ISBN 978-3-030-05129-7 (eBook)
https://doi.org/10.1007/978-3-030-05129-7

Library of Congress Control Number: 2018967310

Mathematics Subject Classification (2019): SCM, SCM13090, SCM14068, SCP19090, SCP33000

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered
company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-05129-7
www.birkhauser-science.com


Preface

The study of human crowds is a challenging interdisciplinary research field which
requires contributions from different disciplines, including technology (to detect
the main features of the crowd), mathematics (to derive models), and computational
science (to simulate the crowd dynamics).

Contributions from psychology are also needed to model the dynamics of
emotional behaviors which can modify the pedestrians’ walking strategy and from
neurology to deeply understand the collective learning dynamics of people that face
crisis situations.

Accordingly, the modeling and simulation of human crowds needs a synergetic
interaction between the so-called hard and soft sciences.

The realistic modeling and simulation of crowd behavior would lead to enormous
benefits for society. Crowd dynamics models may support crisis managers who need
to deal with extreme situations where decision-making needs to be taken in a very
short time. A typical example is the rapid evacuation from complex venues induced
by fires or other types of incidents. In these situations, the stress induced by the
perception of danger can lead to behaviors that jeopardize the safety of walkers.

Recent events have also highlighted the importance of modeling the possible
subgroup behavior within crowds such as groups of activists who fight one against
the other in a public demonstration.

Besides these extreme cases, the optimization of pedestrian flow can reduce the
time spent in nonproductive activities, ergo reducing the cost of transportation and
consequently pollution.

The application of crowd dynamics models to realistic flow conditions poses
formidable analytical and computational challenges. Just to cite a few examples,
the qualitative analysis of solutions should account for nonlocal interactions of
pedestrians among themselves and with walls; and the presence of stress conditions
leads to models with nonlinear parameters that depend on local flow conditions,
hence on the dependent variables.

These difficulties offer a very interesting research perspective to applied mathe-
maticians.

v



vi Preface

A key problem in crowd dynamics modeling worth pointing out is the selection of
the modeling scale. As it is known, three different scales can be adopted: namely, the
microscopic, mesoscopic, and macroscopic, which lead to individual-based, kinetic,
and hydrodynamic models. Different mathematical structures correspond to each
scale.

In particular, individual-based models consist in large systems of ordinary
differential equations which describe the dynamics of walkers represented by their
individual position and velocity; kinetic models are in the form of integrodifferential
equations which give the space and time evolution of a probability distribution
function over the individual microscopic state of each walker, namely, its position
and velocity; and hydrodynamic models are balance equations of mass and/or
momentum, where the dependent variables are the local density and the local mean
velocity, and the independent variables are the time and position.

As critically discussed in Chap. 1, rather than opening a dispute on the selection
of the most appropriate modeling scale, we believe that a unified vision should be
adopted which leads to models developed at each scale based on the same rationale.

The chapters of this edited book have been written by recognized experts in the
field and provide a general overview of different aspects of modeling and simulation
of human crowds. The first chapter, authored by the editors, provides a detailed
presentation and critical analysis of the different contributions. The focus is on the
conceptual framework underlying the derivation of models and their applications to
safety problems. Some perspectives toward analytic problems are also brought to
the attention of the interested reader.

Hopefully, this book will contribute to the future research activity in the field of
crowd dynamics. We do not claim that all relevant topics have been treated, and,
indeed, many major scientific contributions are certainly still to come. This volume
should be viewed as the first of a sequence of volumes to be periodically published
with the aim of continuously updating the state of the art.

Torino, Italy Nicola Bellomo
Edinburgh, UK Livio Gibelli
September 2018
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Behavioral Human Crowds

Nicola Bellomo and Livio Gibelli

Abstract This chapter provides an introduction to the contents of Bellomo and
Gibelli (Crowd dynamics, volume 1 – theory, models, and safety problems.
Modeling and simulation in science, engineering, and technology. Birkhäuser, New
York, 2018) and a general critical analysis on crowd modeling. The presentation
is organized in three parts: firstly, a general framework and rationale toward the
modeling and simulations of human crowds are proposed; subsequently the contents
of Chaps. 2, 3, 4, 5, 6, 7, 8 and 9 are summarized by referring to the existing
literature; finally, by taking advantage of the contents of the whole book, some
speculations are proposed on possible research perspectives. Five key problems
are presented, and hints are given to tackle them within a multiscale vision which
appears to be the most looking forward idea to be pursued in research projects.

1 Plan of the Chapter

As mentioned in the Preface, the study of human crowds is a challenging interdis-
ciplinary research field which requires the contributions from different disciplines.
These range from technology, which is needed to detect the main features of crowds,
to mathematics and computational science, which allow one to derive models of
crowds and to simulate their dynamics, respectively. Psychology is also needed to
understand the dynamics of emotional behaviors of crowds which in turn modify
the pedestrians’ walking strategy.

Mathematical models can be used to support crisis managers in extreme situa-
tions where the safety conditions might be threatened and decision-making needs

N. Bellomo
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2 N. Bellomo and L. Gibelli

to be taken in a very short time. An example is the sudden and rapid evacuation
from complex venues which might be induced by incidents. In this case, the stress
induced by the perception of danger may lead to certain behaviors that jeopardize
the safety of pedestrians. Extreme situations also appear when the crowd includes
groups of activists that confront with each other [29]. In all these applications, the
pedestrian’s dynamics is strongly influenced by social interactions [1, 25, 32] which
contribute to spread out the social behaviors over the crowd.

It is plain that the benefits of the realistic modeling and simulation of crowds are
important also in the case of pedestrians’ flows with limited presence of stress. In
fact, the optimization of pedestrian flow can reduce the time spent in nonproductive
activities, ergo reducing the cost of transportation and consequently pollution.

Mathematicians have been attracted by the analytic and computational difficulties
generated by the complexity features which are typical of large living systems [7]
within the general framework of complex systems [5], while the scientific commu-
nity agrees that an interdisciplinary approach is necessary.

All these reasonings have motivated the edited book [12] which collects, in
the next eight chapters, surveys of the activity of scientists who are active in the
aforementioned challenging research topic. Our chapter provides an introduction to
the contents of the rest of the chapters, and its presentation is proposed in the next
three sections:

Section 2 presents some general features of human crowds and a brief description
of the rationale to be used in the modeling approach. These features are related to
the selection of different scales which can be used in the modeling approach. Safety
problems are also introduced in this section.

Section 3 provides a description of the contents of Chaps. 2, 3, 4, 5, 6, 7, 8 and 9
in the light of the previous section.

Section 4 takes advantage of the contents of the previous sections to develop a
critical analysis and to look ahead to research perspectives.

2 On the Modeling of Crowd Dynamics

A possible definition of what a crowd is and some of its key features has been
given in [36]. This article focuses on the evacuation dynamics, where the onset
and propagation of stress conditions appear to be a common event in crisis
situations. This dynamics is often difficult to understand and to model. Some
specific definitions can be extracted from [36]:

• Definition of crowd Agglomeration of many people in the same area at the same
time. The density of people is assumed to be high enough to cause continuous
interactions, or reactions, with other individuals.

• Collective intelligence Emergent functional behaviors of a large number of
individuals that result from interactions of walkers rather than from individual



Behavioral Human Crowds 3

reasoning or global optimization. Establishment of a qualitatively new behavior
through nonlinear interactions of many individuals.

• Panic breakdown of ordered, cooperative behavior of individuals Panic is often
characterized by attempted escape of many individuals from a real or perceived
threat in situations of a perceived struggle for survival, which may end up in
trampling or crushing.

These definitions shed light on three key elements to be accounted for in the
modeling approach. First, the crowd is constituted by a sufficiently high number of
individuals so that interactions are the main factors which drive the dynamics of the
system. Second, a collective intelligence, or a self-organizing ability, emerges out
of the said interactions which are nonlinearly additive. Finally, stress conditions,
occasionally called “panic” in [36], may create collective behaviors that jeopardize
pedestrians’ safety.

The pioneer ideas of [36] have motivated an intense activity in the field of
applied mathematics. In particular, the problem of understanding how individual
behaviors are modified by stress conditions has been tackled in [10], and a strategy
for validating crowd models has been proposed in [11].

More recently, studies have been carried out about the space propagation of
emotional states driven by contagion-like interactions, similar to the phenomenon
of the epidemics spreading [13, 15, 59]. Where this term has been used in analogy
to the phenomenon of the epidemics spread. Control problems have also been
introduced in [2] to show how the complex dynamics of a crowd can be controlled
by external actions.

The literature on safety problems is of interest for engineers, physicists, and
mathematicians (see, e.g., [51, 60]). The modeling of safety problems and crisis
managing is generally related to evacuation dynamics where the pedestrians’ level
of stressful conditions is very high. A variety of papers are devoted to this specific
topic (see, e.g., [9, 32, 36, 37, 51, 55, 58]).

A useful contribution to the modeling is given by experimental activity, for
instance, the study of walking behaviors [46, 47], parameter estimation in well-
defined models [26], self-organized dynamics [35], and collection of data on the
overall behavior corresponding to the so-called velocity diagram [30, 44, 55–57],
namely, mean velocity versus density.

The definitions, which have been reported above, can be used to identify a
number of key features of human crowds. The following ones have been extracted
from [7].

1. Ability to express a strategy Living entities have the ability to develop specific
strategies generated by their organization ability. These strategies are not defined
once and for all, but depend on the state of the entities in their surrounding
environment as well as on the geometry and quality of the latter. These include
abrupt changes of directions, visibility conditions, and many others.

2. Heterogeneity The said strategy is heterogeneously distributed, and it can also
include different targets and groups, for instance, leaders who aim at driving all
other entities to their own strategy. Note that the irrational behaviors of a few
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entities can generate large deviations from the standard dynamics observed in
situations where all entities behave rationally.

3. Nonlinear interactions Interactions are nonlinearly additive and nonlocal. In
fact, not only immediate neighbors but also distant entities are involved. In some
cases, the topological distribution of a fixed number of neighbors rather than all
the entities in the visibility domain can play a prominent role in the output of
social and mechanical interactions.

4. Learning dynamics Living entities receive inputs from the external environment
and have the ability to learn from past experience. Accordingly, their strategic
ability and the rules of interactions can evolve in time and space.

5. Multiscale aspects The mathematical approach always needs multiscale meth-
ods. Namely, a single observation and representation scale is not generally
sufficient to describe the overall collective dynamics of living systems. For
instance, the dynamics at the microscopic scale defines the conceptual basis
toward the derivation of models at the mesoscopic scale. Models at the higher
scale, corresponding to observable macroscopic quantities, can be obtained from
kinetic models by letting the distance between individuals goes to zero.

Bearing all above in mind, let us now address the reader’s attention to multiscale
problems which appear as a general topic which pervades the contents of all chapters
of this book.

As it is known, crowd dynamics modeling can be carried out at the three classical
scales, namely, the microscopic, mesoscopic, and macroscopic scales, and lead to
individual based, kinetic, and hydrodynamic models. More specifically:

• Individual based models are generally stated in terms of large systems of ordinary
differential equations which model the dynamics of walkers represented by
their individual position and velocity. Models are derived by describing the
acceleration term, occasionally called force, by heuristic model of interactions
between walkers located within the visibility area of each individually identified
walker.

The survey [33] provides the conceptual framework for the derivation of
models, where the main modeling issue consists in modeling the acceleration
term acting on each walker. An example is given by the celebrated social force
model [34] which has been applied by various authors starting from [34] up to
recent studies concerning the self organization ability of crowds [47].

• Kinetic models are in the form of integrodifferential equations which give the
space and time evolution of a probability distribution function defined over the
individual microscopic state of each walker, namely, its position and velocity.
These models have been introduced in [8] for the dynamics in unbounded domain
and further developed in [11] for a crowd in domains which include walls, exists,
and obstacles. The space propagation of emotional state has been introduced in
the already cited papers [13, 15, 59].

The approach is closely related to the kinetic theory of gases [22], the main
difference being that interactions are modeled by theoretical tools of game
theory [20, 31, 43] rather than by rules of classical mechanics.
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• Hydrodynamic models describe the dynamics of the dependent variables which
are the local density and the local mean velocity, while the independent variables
are time and position. The mathematical framework is defined by equations
corresponding to the conservation of mass and linear momentum, where the
acceleration term can be modeled by accounting for pedestrian’s interactions.
This term depends also on the geometry of the venue where pedestrians move.

A simplified structure is defined by the equation corresponding to mass
conservation only linked to a phenomenological model expressing how the local
mean velocity varies depending on the local density and on the geometry of the
venue. The literature on the models at the macroscopic scale is reviewed in [24],
while their derivation from the underlying description at the microscopic scale
delivered by kinetic models is discussed in [19] which is an important source
of mathematical tools. A systematic approach to macroscopic crowd modeling
has been started in [40, 41]. These seminal papers have been subsequently
developed by various authors who have proposed important improvements, for
instance [21].

Although concise, this literature overview allows us to propose some general
rationale on crowd modeling which can contribute to enlighten some common
features as well as some conceptual differences of the three classes of models.

The motivation of this discussion is the recurrent dispute among scientists on the
choice of the most appropriate scale to be used in the modeling approach. It is often
stated that only the microscopic scale is the most appropriate for systems with finite
number of degrees, while the macroscopic scale requires unrealistic assumptions on
the continuity of the matter and kills some heterogeneity features of the individual
behaviors. The intermediate kinetic theory approach needs the assumption of
continuity of the said probability distribution function over position and velocity
of the walkers which is reasonable only when their number is sufficiently large.

Our viewpoint is that one has to look ahead to a multiscale approach, where
all the modeling scales are involved. Indeed, this approach can be viewed as an
important research challenge.

The following five key topics are deemed to contribute to a deeper understanding
of the aforementioned multiscale vision.

Key Topic 1 – Modeling interactions and walking strategy Individual walkers
have a visibility domain which depends on the quality and geometry of the venue.
In specific conditions, for instance, in the presence of smoke, the visibility domain
may be reduced. Each walker interacts with all the individuals in the said domain,
and the interactions are nonlinearly additive and nonlocal.

Individual based interactions directly enter in the microscopic models as well as,
in statistical sense, in the mesoscopic models. However, they should also be a key
ingredient of hydrodynamic models. Indeed, interactions induce a walking strategy
by which walkers continuously modify their direction of motion and adapt the speed
to the local perceived density.

A minimal model, proposed in [10], indicates that the choice of the direction is
continuously determined by four stimuli, namely, trend toward a target, search of
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less crowded region, attraction toward the main stream, and search of trajectories
that avoid the contact with walls. The selection depends on local density condition,
on local emotional states, and on geometrical parameters such as the distance from
targets and walls. Subsequently, pedestrians adapt their speed according to the
density perceived in the new walking direction.

Key Topic 2 – Role of emotional states The walking strategy discussed in the Key
Topic 1 depends on the emotional state of each walker which, following [10], can
be modeled by a parameter u taking values in [0, 1], where u = 0 corresponds to
absence of concentration on the search of an optimal walking strategy, while u = 1
corresponds to a maximal attraction toward the stream against the search of vacuum
regions. This dynamics may create overcrowded areas and, as a consequence, leads
to crisis situations.

This topic has been developed within the kinetic theory framework, but it can also
be extended to the other modeling scales. Research activity specifically addressed
to this topic is currently underway.

It is worth mentioning that an important development consists in modeling how
initially localized stress conditions propagate in space. In fact, stress induces unsafe
conditions, and crisis managers need knowing how this emotional state diffuses in
space.

Key Topic 3 – Validation of models Validation of models is a challenging, def-
initely necessary, topic which precedes the application of models to real crowd
flow problems. The main difficulty is that quantitative results are available in steady
(equilibrium) flow conditions. However, models are required to provide quantitative
results in real conditions which are generally unsteady and far from equilibrium. In
addition, the behavior of the crowd is strongly dependent on the geometrical and
quality features of the venue where walkers move.

Bearing all above conceptual difficulties in mind, a general rationale toward
validation consists in requiring that models reproduce quantitatively empirical
data for solutions corresponding to steady uniform flow and depict qualitatively
emerging behaviors which are repetitively observed. In addition, models should
include parameters that account for the specific role of the venue on the dynamics
of the crowd.

Key Topic 4 – Analytic and computational problems The derivation and appli-
cation of models pose challenging analytic and computational problems. These
include:

(i) Qualitative analysis, namely, existence and regularity of solutions of initial-
boundary value problems;
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(ii) Asymptotic analysis toward the derivation of models at the higher scale from
the underlying description at the lower scale;

(iii) Development of suitable computational methods, as models at different scales
have a different differential structure which requires a specific numerical
treatment.

Key Topic 5 – Management of crisis The objective of modeling and simulations
needs to be finalized with respect to the specific cases under consideration.

Essentially, two cases can be distinguished, namely, the support to the training of
crisis managers and the contribution to crisis management. In the former case, the
aim of the computational modeling consists in providing simulations, where priority
is given to the accurate description of the flow patterns for different geometries and
qualities of the venue, while in the latter case, simulations should run, at least, in
real time so that crisis managers can take rapid decisions and dynamically adapt
evacuation plans to real conditions.

These five key topics provide a means of interpretation of the contents of the
following chapters of our edited book. We will return to them in the last section
where possible research perspectives are discussed.

Let us stress here that the five key problems discussed above provide a conceptual
framework that naturally leads to propose a multiscale vision where models at
the different scales are derived coherently. For instance, the derivation by kinetic
theory methods requires a well-defined description of interactions at the microscopic
scale, while the derivation of hydrodynamic models can be achieved by asymptotic
methods applied to kinetic-type models by letting the distance between walkers goes
to zero.

This vision suggests that, even if models are independently derived at each scale,
the same modeling strategy has to be used in the derivation at each scale. Hence,
what we have called walking strategy has to be treated by the same rules at each
scale, possibly using analogous parameters. The overall strategy is a bottom-up
process:

Microscopic scale ⇒ Mesoscopic scale ⇒ Macroscopic scale,

which corresponds to

Individual based models ⇒ Kinetic models ⇒ Hydrodynamic models.

Some preliminary results are known in the literature. As an example, the first
problem has been treated in [6] focusing on the derivation of hydrodynamic models
from kinetic models for a crowd in unbounded domains. Arguably, the presence
of walls and obstacles can modify the structure of the equations; however, this
development has not yet been dealt with at all scales.
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3 On the Contents of the Edited Book

The contents of the edited book [12] are front edge research topics in the modeling
and application of crowd dynamics. As we shall see, the various chapters do not
cover all possible issues, and many major scientific contributions are certainly still
to come. These will be the subject of a next forthcoming edited book on the same
field, scheduled as Volume 2.

The presentation of the next chapters is somehow referred to the key problems
proposed in the preceding section. Indeed some chapters precisely focus on the said
problems.

Bearing all above in mind, let us describe the specific topics dealt with by the
chapters of this book by beginning from those which deal with the qualitative
analysis of the behaviors of crowds from the viewpoint of psychologist and
engineers and, afterward, analytic problems and applications.

Chapters 2 and 3 contribute to the development of topics that can bring important
contributions to modeling by deeply discussing how the virtual reality may be used
to collect empirical data [42], how the presence of smoke affects the dynamics of a
crowd and has to be tackled to manage crisis situations [52], and how experimental
data can be organized toward the calibration of models [54]. More specifically, the
content of the chapters is as follows:

Chapter 2 [42] proposes a methodological approach to collect empirical data on
crowd dynamics. The methods available to researchers typically need a compromise
between ecological validity and experimental control. The goal of the chapter is to
demonstrate that the approach therein called virtual reality (VR) offers a promising
solution to the dilemma.

The first part of the chapter introduces VR as a research tool and analyzes its
strengths and weaknesses. The second part covers a range of studies in which
VR was used to study crowds, by beginning with a discussion of the differences
between human behavior in real and virtual settings (e.g., walking and social
interactions). Using the behavioral dynamics framework as a theoretical foundation,
several studies are presented which demonstrate that people coordinate dynamically
with their neighbors in a crowd. These studies are important contributions toward
a data-driven approach to modeling human crowds. Then, a series of VR studies
that cover various aspects of crowd behavior in emergency evacuation scenarios are
introduced, covering topics such as evacuation decision-making, way-finding, and
exit choice when people evacuate an area.

Chapter 3 [52] provides a detailed study on pedestrian movement in smoke-
filled environments which is of paramount importance in fire safety engineering
applications.

The chapter firstly presents an overview of the main concepts concerning
pedestrian movement in smoke domains specifically focusing on evacuation dynam-
ics. Several factors are discussed, including fire, pedestrians, and environmental
factors. Subsequently, the authors provide an overview of the current capabilities
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of pedestrian and evacuation models used in fire safety engineering applications,
and future research directions in this specific field are envisioned.

Chapter 4 [54] reviews the state of the art of the interplay between empirical and
theoretical studies of pedestrian dynamics.

Firstly, the main physical quantities characterizing the properties of a homoge-
neous crowd are introduced. Then, a brief summary of some important empirical
findings is given. Finally, the properties of microscopic pedestrian models are
critically analyzed. The authors emphasize the relevance of empirical results and
show how they can be used for the validation and calibration of models.

Chapters 5 and 6 deal with analytic issues which are relevant when hydrodynamic
models are applied to practical problems. It is shown in [3] that appropriate
constraints on the conservation equations can reproduce interesting phenomena
observed in crowd dynamics, while a detailed study of a generalized Wasserstein
distance is discussed in [50].

Chapter 5 [3] presents analytic and computational studies on one-dimensional
conservation laws with point constraints on the flux. Possible applications refer to
the modeling of traffic flow through bottlenecks, such as exits in the context of
pedestrians traffic and toll gates in vehicular traffic.

The authors introduce nonlocal constraints, which allow one to model the
irrational behavior (“panic”) near the exits observed in dense crowds and the
capacity drop at tollbooths in vehicular traffic. Numerical schemes, based on finite
volume methods, are developed, their convergence is proved, and their validations
are done against explicit solutions. Numerical experiments show that constrained
models are able to reproduce important features in traffic flow, such as capacity
drop and self-organization.

Chapter 6 [50] revises some modeling, analysis, and simulation contributions
for crowd dynamics using time-evolving measures. Two key features are strictly
related to the use of measures: on one side, this setting permits to generalize both
microscopic and macroscopic crowd models; on the other side, it allows an easy
description of multiscale crowd models, e.g., crowds composed of leaders and
followers. The main analytical tool for studying measure evolution is to endow the
space of measures with the Wasserstein distance.

This chapter also describes recent contributions about crowd modeling with time-
varying total mass. This requires to use a more flexible metric tool in the space of
measures, which is referred to as generalized Wasserstein distance.

Chapters 7, 8, and 9 deal with crowd dynamics models which include some
aspects of a multiscale vision proposed in the preceding section.

Chapter 7 [17] starts from a classical microscopic social force model for
pedestrians [35] and extends it with an optimal path computation as, for instance, in
Ref. [39]. The modeling accounts for nonlocal interactions and borrows some ideas
from the classical kinetic theory and swarm modeling. Macroscopic hydrodynamic
equations with a nonlocal interaction term are obtained by closure of conservation
equations. The authors use, for the numerical simulations, mesh-free particle
methods and finite volume methods on the different levels of the model hierarchy.
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Chapter 8 [23] studies the dynamics of interacting agents from two distinct
intermixed populations: one population includes active agents that follow a pre-
determined velocity field, while the second population contains exclusively passive
agents, i.e., agents that have no preferred direction of motion. The orientation of
their local velocity is affected by repulsive interactions with the neighboring agents
and environment.

Two models that allow for a qualitative analysis of these mixed systems are
presented as examples of possible case studies. It is shown that the residence times
of this type of systems containing mixed populations are strongly affected by the
interplay between these two populations. Finally, mathematical aspects concerning
the well-posedness are carefully developed.

Chapter 9 [4] presents new ideas on the modeling of crowd dynamics at the
microscopic scale. The authors succeed to go beyond the modeling approach based
on the so-called force concept by introducing acceleration models that account for
individual behaviors in different flow contexts. In more detail, a model for pedestrian
dynamics is proposed to reproduce the rational behavior of individual agents by
which each pedestrian undergoes a two-step time evolution based on a perception
stage and a decision stage.

The contents are enlightened by figures descriptive of the dynamics and simula-
tions that contribute to show the descriptive ability of the class of proposed models.
In addition, it is shown, how the model can account for high density flow which is
an important feature of crowd modeling.

4 Critical Analysis and Perspectives

This final section takes advantage of the review and critical analysis of the chapters
in [12] to look ahead to possible research perspectives. The long list of possible
research targets is narrowed down by only focusing on the multiscale vision
proposed in the preceding section and by showing how this vision pervades all five
key problems.

• Interactions The modeling of interactions is an essential step in the derivation of
models. The multiscale vision suggests to model interactions by using the same
rationale at each scale. Essentially this means that one has to invent structures
suitable to retain, at each scale, the complexity features of the crowd as they
appear in the said interactions.

An important aspect consists in describing how people develop the strategy
which accounts for the four stimuli previously mentioned when interactions also
include the walkers’ emotional state. Theoretical tools of game theory can be
most likely used to model these interactions [8, 43].

In principles, empirical data should be collected to support modeling, and,
in this respect, many valuable papers show how empirical data can be used,
for instance, [26–28, 39, 45, 48, 56]. It is worth stressing that a more extensive
experimental activity is needed which focuses on individual interactions.
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• Emotional states As it has been shown in [10], the level of emotional states can
significantly affect the collective dynamics of human crowds and leads to very
different pedestrians’ flow patterns. Space and time propagation of the emotional
state by a contagion-type dynamics is also expected to play a prominent role. This
topic has been developed in [13] by the kinetic theory approach, while modeling
of this complex dynamics should be possibly extended also to models derived at
the microscopic and macroscopic scales.

As already mentioned, an interesting development consists in modeling
crowds, where groups of activists fight each other. Contagion dynamics might
also be included which accounts for the possible passage between different
groups.

• Validation of models An approach for the validation of models of large systems
of interacting entities has been proposed in [7]. The basic requirement, specified
in Key Topic 3, is the ability to quantitatively reproduce empirical data and
qualitatively depict collective emerging behaviors.

This approach has been used in [11], where the so-called velocity diagram
has been reproduced by a model therein proposed, while segregation phenomena
have been studied for the counterflow of walkers. It is important mentioning
that the velocity diagram should be an output of interactions and not artificially
inserted into the model.

This study has been developed for kinetic-type models, while it should be
extended to the case of individual-based and hydrodynamic models.

• Analytic and computational problems The derivation of macroscopic models
from the underlying description at the microscopic scale is often obtained
by heuristic averaging approximations that involve phenomenological models
whose validity is generally claimed but not proved.

Mathematicians are interested to the search of a unified approach to physical
sciences as inspired by the sixth Hilbert problem [38]. In fluid dynamics, this
problems has been interpreted as the derivation of hydrodynamic models from
the description delivered by the Boltzmann equation [53].

It has been shown in [14, 19] that the approach can be carried out also for
certain populations of active particles including human crowds, and it has been
proved in [6] for crowds in unbounded domain (see also [18]). An interesting
research perspective consists in extending the tools of [19] and further developing
the preliminary approach proposed in [6] to derive hydrodynamic models in the
general case, namely, in the presence of walls and obstacles.

Note that different computational methods are most likely needed at the
different scales. More specifically, classical deterministic models can be used
at the microscopic and macroscopic scales, while stochastic particle methods
appear to be more appropriate in the case of kinetic theory models [16, 49].

• Crisis management The support that mathematical sciences can give to crisis
managers has been mentioned several times in this chapter. A wide bibliography
is reported in [9, 52], while some specific topics have also been tangentially
treated in the chapters of our edited book. A possible use of artificial intelligence
has been briefly discussed in [9].
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This intense activity has enlightened the need of developing a systems
approach to crowd modeling suitable to describe the dynamics in venues
constituted of interconnected areas with different geometrical and qualitative
features, possibly by using models with different granularity depending on the
specific properties of each area.

In conclusion, the discussion above suggests that a multiscale approach is needed
which allows one to switch between models developed at the different scales with
the same unified principles. Hopefully, the contents of this edited book [12] can
motivate researchers to develop future research activity and even to tackle this
perspective.

References

1. G. Ajmone Marsan, N. Bellomo, and L. Gibelli, Stochastic evolutionary differential games
toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26,
1051–1093, (2016).

2. G. Albi, M. Bongini, E. Cristiano, and D. Kalise, Invisible control of self-organizing agents
leaving unknown environments, Siam J. Appl. Math., 76(4), 1683–1710, (2016).

3. B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, One-dimensional conservation
laws with non-local point constraints on the flux, Chapter 5 in Crowd Dynamics, Volume 1 -
Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and
Technology, Birkhäuser, New York, (2018).

4. R. Bailo, J. A. Carrillo, and P. Degond, Pedestrian models based on rational behaviour,
Chapter 9 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling
and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).

5. P. Ball, Why Society is a Complex Matter, Springer-Verlag, Heidelberg, (2012).
6. N. Bellomo and A. Bellouquid, On multiscale models of pedestrian crowds from mesoscopic

to macroscopic, Comm. Math. Sciences, 13(7), 1649–1664, (2015).
7. N. Bellomo, A. Bellouquid, L. Gibelli, and N. Outada, A Quest Towards a Mathematical

Theory of Living Systems, Birkhäuser, New York, (2017).
8. N. Bellomo, A. Bellouquid, and D. Knopoff, From the microscale to collective crowd

dynamics, Multiscale Model. Simul., 11(3), 943–963, (2013).
9. N. Bellomo, D. Clarke, L. Gibelli, P. Townsend, and B.J. Vreugdenhil, Human behaviours in

evacuation crowd dynamics: From modeling to “big data” toward crisis management, Phys.
Life Rev., 18, 1–21, (2016).

10. N. Bellomo, and L. Gibelli, Toward a mathematical theory of behavioral-social dynamics for
pedestrian crowds, Math. Models Methods Appl. Sci., 25(13), 2417–2437, (2015).

11. N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward
validation, Computers & Fluids, 141, 13–21, (2016).

12. N. Bellomo and L. Gibelli, Crowd Dynamics, Volume 1 - Theory, Models, and Safety
Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser,
New York, (2018).

13. N. Bellomo, L. Gibelli, and N. Outada, On the interplay between behavioral dynamics and
social interactions in human crowds, Kinet. Relat. Mod., 12(2), 397–409, (2019).

14. A. Bellouquid and N. Chouhad, Kinetic models of chemotaxis towards the diffusive limit:
asymptotic analysis, Math. Models Methods Appl. Sci., 39, 3136–3151, (2016).

15. A.L. Bertozzi, J. Rosado, M.B. Short, and L. Wang, Contagion shocks in one dimension, J.
Stat. Phys., 158, 647–664, (2015).



Behavioral Human Crowds 13

16. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford
University Press, (1994).

17. R. Borsche, A. Klar, and F. Schneider, Numerical methods for mean-field and moment models
for pedestrian flow, Chapter 7 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety
Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New
York, (2018).

18. M. Burger, P. Markowich, J.F. Pietschmann, Continuous limit of a crowd motion and herding
Model: analysis and numerical simulations, Kinet. Rel. Models, 4(4), 1025–1047, (2011).

19. D. Burini and N. Chouhad, Hilbert method toward a multiscale analysis from kinetic to
macroscopic models for active particles, Math. Models Methods Appl. Sci., 27, 1327–1353,
(2017).

20. D. Burini, S. De Lillo, and L. Gibelli, Stochastic differential “nonlinear” games modeling
collective learning dynamics, Phys. Life Rev., 16, 123–139, (2016).

21. J.-A. Carrillo, S. Martin, and M.-T. Wolfram An improved version of the Hughes model for
pedestrian flow Math. Model. Methods Appl. Sci., 26(04), 671–697, (2016).

22. C. Cercignani, R. Illner, and M. Pulvirenti, The Kinetic Theory of a Diluted Gas, Springer,
Heidelberg, New York, (1993).

23. M. Colangeli, A. Muntean, O. Richardson and T. Thieu, Modelling interactions between
active and passive agents moving through heterogeneous environments, Chapter 8 in Crowd
Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in
Science, Engineering, and Technology, Birkhäuser, New York, (2018).

24. E. Cristiani, B. Piccoli, and A. Tosin, Multiscale Modeling of Pedestrian Dynamics,
Springer, (2014).

25. E. Cristiani, F.S. Priuli, and A. Tosin, Modeling rationality to control self-organization of
crowds: an environmental approach, SIAM J. Appl. Math., 75(2), 605–629, (2015).

26. A. Corbetta, A. Mountean, and K. Vafayi, Parameter estimation of social forces in pedestrian
dynamics models via probabilistic method, Math. Biosci. Eng., 12, 337–356, (2015).

27. P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettré, and G. Theraulaz, A hierarchy of
heuristic-based models of crowd dynamics, J. Stat. Phys., 152, 1033–1068, (2013).

28. P. Degond, C. Appert-Rolland, J. Pettré, and G. Theraulaz, Vision based macroscopic
pedestrian models, Kinetic Related Models, 6, 809–839, (2013).

29. J.-M. Epstein J.M., Modeling civil violence: An agent based computational approach, Proc.
Nat. Acad. Sci., 99, 7243–7250, (2002).

30. Z. Fu, L. Luo, Y. Yang, Y. Zhuang, P. Zhang, L. Yang, H. Yang, J. Ma, K. Zhu, and Y. Li, Effect
of speed matching on fundamental diagram of pedestrian flow, Physica A, 458, 31–42, (2016).

31. H. Gintis, Game Theory Evolving, 2nd Ed., Princeton University Press, Princeton NJ, (2009).
32. M. Haghani, and M. Sarvi, Social dynamics in emergency evacuations: Disentangling crowds

attraction and repulsion effects, Physica A, 475, 24–34, (2017).
33. D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73,

1067–1141, (2001).
34. D. Helbing and P. Molnár, Social force model for pedestrian dynamics Phys. Rev. E, 51, 4282–

4286, (1995).
35. D. Helbing, P. Molnár, I.-J. Farkas, and K. Bolay, Self-organizing pedestrian movement,

Environ. Plan. B Plan. Des., 28(3), 361–383, (2001).
36. D. Helbing D. and A. Johansson, Pedestrian crowd and evacuation dynamics, Enciclopedia of

Complexity and System Science, Springer, 6476–6495, (2009).
37. D. Helbing, A. Johansson, and H.-Z. Al-Abideen, Dynamics of crowd disasters: An empirical

study, Phys. Rev. E, 75, paper no. 046109, (2007).
38. D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc., 8(10) (1902), 437–479.
39. S.P. Hoogendoorn, F. van Wageningen-Kessels, W. Daamen, and D.C. Duives, Continuum

modelling of pedestrian flows: From microscopic principles to self-organised macroscopic
phenomena, Physica A, 416, 684–694, (2014).

40. R. L. Hughes A continuum theory for the flow of pedestrians, Transp. Research B, 36, 507–536,
(2002).



14 N. Bellomo and L. Gibelli

41. R.L. Hughes, The flow of human crowds, Annu. Rev. Fluid Mech., 35, 169–182, (2003).
42. M. Kinateder, T. D. Wirth, and W. H. Warren, Crowd Dynamics in Virtual Reality, Chapter 2 in

Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation
in Science, Engineering, and Technology, Birkhäuser, New York, (2018).

43. A. Lachapelle, M.T. Wolfram, On a mean field game approach modeling congestion and
aversion in pedestrian crowds Transportation Research B, 45, 1572–1589, (2011).

44. F. Martinez-Gil, M. Lozano, I. Garcia-Fernández and F. Fernández, Modeling, evaluation and
scale on artificial pedestrians: A literature review, ACM Computing Surveys, In press (2018).

45. B. Maury, and J. Venel A discrete contact model for crowd motion, ESAIM: M2AN, 45, 145–
168, (2011).

46. M. Moussaïd, E.-G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré,
C. Appert-Rolland, P. Degond, and G. Theraulaz, Traffic instabilities in self-organized
pedestrian crowds PLoS Comput. Biol., 8(3), (2012).

47. M. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe, and G. Theraulaz, Experimen-
tal study of the behavioural mechanisms underlying self-organization in human crowds, Proc.
Roy. Soc. B, 276, 2755–2762, (2009).

48. M. Moussaïd and G. Theraulaz, Comment les piétons marchent dans la foule. La Recherche,
450, 56–59, (2011).

49. L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte
Carlo Methods Oxford University Press, Oxford, (2014).

50. B. Piccoli and F. Rossi, Measure-theoretic models for crowd dynamics, Chapter 6 in Crowd
Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in
Science, Engineering, and Technology, Birkhäuser, New York, (2018).

51. F. Ronchi, F. Nieto Uriz, X. Criel, and P. Reilly, Modelling large-scale evacuation of music
festival. Fire Safety, 5, 11–19, (2016).

52. E. Ronchi and D. Nilsson Pedestrian Movement in Smoke: Theory, Data and Modelling
Approaches, Chapter 3 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems,
Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York,
(2018).

53. L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Lecture Notes in
Mathematics n.1971, Springer, Berlin, (2009).

54. A. Schadschneider, M. Chraibi, A. Seyfried, A. Tordeux, and J. Zhang, Pedestrian Dynamics -
From Empirical Results to Modeling, Chapter 4 in Crowd Dynamics, Volume 1 - Theory, Mod-
els, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology,
Birkhäuser, New York, (2018).

55. A. Schadschneider, W. Klingsch, H. Kläpfel, T. Kretz, C. Rogsch, and A. Seyfried, Evacuation
Dynamics: Empirical Results, Modeling and Applications, Encyclopedia of Complexity and
System Scence, 3142–3176, (2009).

56. A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their
implications for modeling. Netw. Heterog. Media, 6, 545–560, (2011).

57. A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes, The fundamental diagram of pedestrian
movement revisited, J. Stat. Mech.: Theory and Experiments, 360, 232–238, (2006).

58. H. Vermuyten, J. Belien, L. De Boeck, G. Reniers, and T. Wauters, A review of optimisation
models for pedestrian evacuation and design problems, Safety Science, 87, 167–178, (2016).

59. L. Wang, M.B. Short, and A.L. Bertozzi, Efficient numerical methods for multiscale crowd
dynamics with emotional contagion, Math. Models Methods Appl. Sci., 27, 205–230, (2017).

60. N. Wijermans, C. Conrado, M. van Steen, C. Martella, and J.-L. Li, A landscape of crowd
management support: An integrative approach, Safety Science, 86, 142–164, (2016).



Crowd Dynamics in Virtual Reality

Max Kinateder, Trenton D. Wirth, and William H. Warren

Abstract Collecting empirical data on crowd dynamics is challenging. The meth-
ods available to researchers typically need to compromise between ecological
validity and experimental control. The goal of this chapter is to demonstrate that
virtual reality (VR) offers a promising solution to the dilemma. The first section
of this chapter introduces VR as a research tool and touches on its strengths and
weaknesses. The second section covers a range of studies in which VR was used to
study crowds, beginning with a discussion of differences between human behavior
in real and virtual settings (e.g., walking and social interactions). Using the behav-
ioral dynamics framework as a theoretical foundation, several studies demonstrating
that people coordinate dynamically with their neighbors in a crowd are presented,
contributing toward a data-driven approach to modeling human crowds. Then, a
series of VR studies that cover various aspects of crowd behavior in emergency
evacuation scenarios are introduced, covering topics such as evacuation decision-
making, way-finding, and exit choice when people evacuate in a crowd. Finally, the
third section of this chapter offers an outlook on the road ahead, discussing some of
the technical and methodological challenges for VR as a research tool.
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1 Introduction

Understanding crowd dynamics is a challenging endeavor. It is therefore not
surprising that computational models of crowd dynamics vary significantly in
complexity and granularity, ranging from physics-based approaches to attempts to
model the dynamic interactions between individuals and groups based on social
psychological theories [1]. To this day, it has been particularly challenging to
connect advances in knowledge about human behavior in emergency situations
to complex dynamics of crowd behavior, particularly in evacuation or other high-
risk scenarios. Unfortunately, empirical data allowing for fine-grained analysis of
interactions between individuals in a crowd is still hard to come by.

With the rise of affordable yet highly immersive virtual reality (VR) devices,
researchers discovered VR as a promising tool for research on crowd behavior.
Traditionally, VR refers to “real or simulated environment[s] in which the perceiver
experiences telepresence” [2]. “Presence” denotes the experience of “being there,”
i.e., the feeling of being immersed in a virtual environment and forgetting about
the real world [3, 4]. The more convincing a virtual environment is, the greater the
sense of presence in the virtual world. Researchers in various areas have embraced
VR as a tool because of its potential for presenting participants with immersive and
interactive stimulus displays that are at the same time highly controlled. However,
before accepting a novel tool, it is important to ask whether the tool can actually
provide useful data. Indeed, the debate over the use of VR as a research tool for
studying crowd dynamics, particularly in emergency situations, is ongoing [5].

Generally speaking, VR systems comprise computer-generated interactive visual
and auditory simulations (and increasingly haptic/tactile, vestibular, even olfactory
simulation [6–8]) of realistic environments. Virtual environments can be presented
on a desktop computer screen [9, 10] and controlled with a mouse or joystick or
more sophisticated displays such as a head-mounted display (HMD) or multiscreen
cave automatic virtual environment (CAVE) system. In such advanced systems,
users can freely move their whole body in the virtual space (see VR glossary for
more detailed information).

We will begin this chapter with outlining the state of the art of VR systems,
discuss the promises and limitations of VR with regard to crowd dynamics before
we showcase several VR studies, and finish with a preview of future directions.
The reader should note that VR has several applications relevant to crowd dynamics
that are not covered in this chapter due to brevity. For instance, VR can be used
to train emergency responders for crowd disasters or to visualize the results of
crowd dynamic simulations for planning purposes. These are important and valid
uses of the technology but go beyond the scope of this chapter. The same is true
for emerging technologies such as Augmented Reality (AR) applications for crowd
research. The interested reader is pointed to the following references for further
reading [10–15].
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VR Glossary
Avatar: A virtual representation of a human controlled by input from a real
human user or “player.”
Agent: A virtual human with interactive behavior controlled by a computer
algorithm.
HMD: Head-mounted display; display device worn on the head that presents
VR content stereoscopically. Typically, the head movements of the user are
tracked, and the view is updated accordingly, creating the experience of being
immersed in the virtual environment.
CAVE: Cave Automatic Virtual Environment; refers to VR technology that
projects imagery on multiple walls, viewed through stereoscopic glasses.
Users are immersed in the virtual environment and can move their whole body
within the confines of the walls.
Presence refers to the experience of being fully “in” a virtual environment and
to forget the real world. The more immersive a VR system, the stronger the
experience of presence.
In third-person view, users have a bird’s-eye view of the virtual scene and
their avatar. In first-person view, they see the virtual scene “through the eyes”
of their avatar.

1.1 When to (Not) Use VR

An important question for a researcher is to assess when VR is a suitable research
tool, and when not. Studying how humans interact with each other in crowds or
groups in the real world, especially in emergency scenarios, presents itself with
several challenges. Each research method on crowd dynamics, e.g., questionnaire
studies, laboratory experiments, field studies, and observations of real events, have
their own strengths and weaknesses [16, 17]. In short, VR is a powerful tool that
enables the experimental study of cause and effect in crowd dynamics (e.g., what
factors cause individuals in a crowd to navigate one way or another). However, at
least to date, it cannot be used to extract absolute values of locomotion parameters
such as walking speed.

When trying to understand crowd dynamics, researchers often rely on data from
surveillance footage of crowd events or laboratory studies of pedestrian groups.
There are three challenges to this approach. First, while these data provide insights
into global phenomena of crowd behavior (e.g., the patterns of movement that can
be described at the crowd level), it is much harder to understand interpersonal
interactions within a crowd, even though they ultimately shape global patterns of
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motion (also see text box on the modeling cycle of crowd behavior) [21]. Most
computational crowd modeling approaches treat crowds as a homogeneous mass in
which all members of a crowd follow an identical set of rules, disregarding individ-
ual differences (e.g., in movement speed, response times, or mobility impairments),
group behavior, and personal relations among individuals [1]. Second, studies with
experimental control, i.e., experimental manipulations with control conditions or
control groups, are rare, and thus it is difficult to identify cause and effect relations,
which are crucial to a method’s internal validity. In turn, a lack of internal validity
makes it difficult to generalize findings from a specific scenario to other settings
or populations (external validity; see text box on validity). Third, especially when
studying potentially dangerous aspects of crowd behavior, researchers often need to
trade the realism of a scenario for the safety of participants. For example, imagine
a scenario in which you want to study crowd evacuation in a fire emergency. It is
next to impossible to do this in a controlled laboratory experiment without risking
the safety of participants.

Realistic computer-generated environments are thought to overcome some of
these challenges by providing experimental control while simulating complex,
visually realistic, and often hazardous scenarios in the safe environment of a
laboratory. Immersing participants into a virtual crowd enables the researcher to
test specific hypotheses about how individuals are influenced by a crowd and in
turn shape global patterns of motion [21]. VR allows systematic manipulation of
various aspects of crowd behavior while controlling for other factors. Complex
questions, such as how crowd density and walking speed are related to, for example,
the probability that an individual will misstep and fall, are thus accessible to
experimental research with minimal risk to participants.

In addition to overcoming methodological challenges, VR opens new opportu-
nities for crowd research. For instance, VR allows measuring additional variables,
such as physiological responses during experiments. Interfaces with devices that
record heart rate, skin conductance, or brain activity can be used to precisely
synchronize crowd events with physiological and neural responses. In addition,
participants can be tested repeatedly in identical scenarios, which allow studying
both learning effects and easy replication of experimental setups. Another strength
of VR is that it allows researchers to study vulnerable populations, either by
simulating visual or mobility impairments, for example, or by testing participants
who rely on mobility aids such as white canes or wheelchairs in a safe and controlled
environment.

Validity
A method can be considered valid if it faithfully captures the relationships it
was designed to measure. How credible and believable are VR experiments
on crowd dynamics? Validity can be broken down into three subcategories.

(continued)
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Internal validity refers to the degree a research tool can investigate cause
and effect. Experimental stimulus control and manipulation are key aspects
to internal validity [18].
External validity refers to the degree results of a study can be generalized
beyond the scope of an immediate setting [19]. For example, can findings
from a study on crowd behavior in tall buildings be generalized to other
environments?
Ecological validity describes if behavior measured in an experiment holds true
in the real world [20]. For example, does behavior observed in VR correspond
to behavior in the real world?

2 VR Studies of Crowd Behavior

In this section we review a selection of empirical work that uses VR to study crowd
dynamics. First, we give a brief overview of studies that compare pedestrian behav-
ior in virtual and real environments to provide the reader with an understanding
of the validity and limitations of VR for the purpose of crowd research. Next, we
present research on basic aspects of crowd dynamics that has been carried out in
VR. VR has been used to gain insights in complex interaction between members
of a crowd, from social identity to how people move as a crowd in a coordinated
fashion. Finally, we review VR studies that look specifically at human behavior in
emergency situations and evacuation scenarios.

2.1 Comparing Virtual and Real Behavior

Is crowd behavior in VR comparable to crowd behavior in the real world? This
is a key question, because a research tool is only valid if it produces results that
generalize to real-world situations. The degree to which a method represents the
real-world scenario that is being studied is often referred to as ecological validity
(see text box on validity). Several studies have addressed questions around the
ecological validity of VR experiments, and we present a selection further below.

There are some general differences between human behavior in virtual and
physical environments that can limit the ecological validity of VR. First, in VR the
virtual world is perceived through a display, and although users typically perform
comparably in real world and matched stereoscopic virtual environments, some
studies have found systematic biases in reported size and distance of objects in
VR [22, 23]. However, distance biases appear to be reduced after a short period of
active walking in the virtual environment [24, 25]. Second, navigation in VR is often
implemented via interaction interfaces, such as a mouse, joystick, or game pad (see
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below). How navigation and interaction with social and architectural environment
are implemented influences the action opportunities of a user. Although there are
many further differences between experiences and behavior in real and virtual
environments, questions of self-propelled locomotion (i.e., walking) and social
interactions between neighbors in a crowd seem particularly relevant in the context
of this chapter.

2.1.1 Walking in VR

Some VR systems that fully immerse users can support physical self-propelled loco-
motion – that is, users can physically walk around inside the virtual environments.
The most common and affordable of these systems use HMDs, so we focus on them
here. Users wearing HMDs have been found to walk more slowly, take shorter stride
lengths, and adopt a slightly different body posture compared to walking in a real
environment [26–28]. In many VR systems, however, users navigate through the
virtual environment with the help of an interaction interface such as a game pad.
With such interfaces, users typically make sharper turns compared to walking in
real life, and trajectories show no gait induced oscillations [29]. Interestingly, the
overall shape of trajectories is qualitatively similar whether the user is walking,
steering with a joystick, or steering by leaning in the desired direction [30]. In
general, the values of locomotion parameters estimated from VR studies can’t claim
metric accuracy; for example, the raw walking speed values from VR studies should
be interpreted with caution. However, relative effects between different conditions
in VR are still meaningful.

2.1.2 Social Interactions in VR

Interactions between individuals in VR have been studied in a range of fields,
exploring the opportunities and challenges of humans interacting with virtual
representations of other humans (so-called avatars) or with computer-controlled
virtual humans (“agents”). A particular challenge is studying social dynamics
between individuals, because it is extremely difficult to control subtle social
signals in experiments. VR allows experimenters to control many aspects of social
interactions and to reduce the social information being exchanged to a manageable
minimum. Luckily, humans are surprisingly good at identifying humanlike behavior,
even in extremely minimalistic virtual environments [31, 32]. In fact, research on
social interaction in VR has shown that people react toward computer-controlled
virtual humans similarly to real people in social interactions, especially when the
virtual humans are responsive [33, 34]. Simulating realistic social behavior such as
collision avoidance in a crowd or simple social signals such as hand gestures and
eye contact increases the sense of presence that users may experience in VR [35]. In
recent years, VR has been used to study complex dyadic interactions, such as social
mimicry (i.e., how we mimic each other’s postures, facial expressions, gestures, and
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Fig. 1 (a) A participant in the real environment performing the bogus task in the control condition.
The fire alarm over the entrance door in the background was activated during the experiment. (b)
Stereo screenshot of the participant’s view of the virtual environment during the fire alarm in the
passive condition. (Images retrieved and adjusted with permission from [42])

other social signals), social cohesion (how close we feel to others), helping behavior
during evacuation, and trust [36–40].

Studies of social dynamics and spatial behavior in matched real and virtual
settings, however, are still relatively scarce. To investigate the role of social
influence in emergency situations, we created a variation of the famous “smoke-
filled room” experiment by Darley and Latané [41], who first reported on the
so-called bystander effect: People are less likely to help in an emergency when
others in the scene remain passive. In our study [42], participants were performing
a bogus task when a fire alarm sounded. In the control condition, participants were
alone at the time, whereas two other groups of participants worked on the bogus
task with a confederate next to them. When the fire alarm went off, the confederate
either ignored the fire alarm and continued to work on the task (passive bystander
condition) or left the room through an emergency exit (active bystander condition).
Importantly, half of the participants were tested in a real-world setting and the other
half in a matched virtual environment with a virtual confederate (Fig. 1). In both
cases, participants with an active bystander were more likely to evacuate, and those
with a passive bystander less likely to evacuate, than the control group, consistent
with the bystander effect. Importantly, this pattern was observed in both the real
and virtual environments, although the overall response to the virtual alarm was
reduced.

2.1.3 Comparing Crowd Dynamics in Real and Virtual Environments

Studies that systematically compare crowd dynamics in virtual and real environ-
ments are still relatively scarce. However, results from several recent studies found
that VR experiments yield meaningful insights for real-world crowd dynamics. One
study focused on dynamic interactions between individuals and found comparable
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Fig. 2 Example of VR crowd evacuation study. (a) Third-person view of a virtual crowd moving
through a bottleneck. (b) First-person view of a participant of the same scenario. Comparison of
VR and real-world data: (c) outflow as a function of aperture width; (d) virtual crowd flow in
comparison to reference studies (see original publication for further details; image retrieved and
adjusted with permission; [43])

behavioral patterns in virtual and real crowds. Using a desktop VR setup, several
participants were immersed in the same virtual environment at the same time and
could interact with the avatars of the other participants (Fig. 2a, b). The authors
found that participants showed similar avoidance maneuvers when faced with
oncoming traffic (e.g., steer to the right) compared to data obtained from real-world
experiments. Similarly, when groups of participants moved through a bottleneck,
outflow speed increased monotonically with aperture width in both the virtual and
real world (Fig. 2c); however, overall outflow of participants was lower in VR
compared to a number of reference studies (Fig. 2d) [43].

Another series of experiments compared navigation trajectories within a crowd
using different input modalities to real-world reference trajectories [44]. In partic-
ular, the authors tested whether participants would accurately estimate collision
risk, anticipate, and engage in collision avoidance with virtual agents in similar
ways as in the real world. The results showed that VR experiments can produce
reliable trajectories that are comparable to real-world data. However, there were
some quantifiable differences: First, there was a systematic bias in participants’
collision estimates (VR collisions were estimated to be later than real ones), and
participants slightly overcompensated their trajectories to avoid collisions in VR.
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The Modeling Cycle
Sumpter, Mann, and Perna (2012) provide a comprehensive outline for the
variety of approaches one might take toward modeling collective behavior
(including crowd behavior) [45]. The differences can be broken down into the
level of description and the modeling approach.

Level of Description
Local: Here researchers are primarily concerned with the “microscopic” inter-
actions between individuals within the collective and their relationship with
their environment. For an experimental example involving locust swarms,
see [4].
Global: Here scientists are completely unconcerned with the behavior of the
individual components of the system but focus on the “macroscopic” behavior
of ensembles or populations of individuals. At this macroscale, researchers
describe the states and phase transitions of the system as a whole and the
patterns that emerge.
Local-to-Global: This micro-to-macro perspective starts by characterizing the
behaviors and “rules of engagement” at a local level and seeks to explain
the global patterns that emerge based on these local behaviors. A prominent
example of this is the self-propelled particle model [10, 15].
Global-to-Local: Researchers who take a macro-to-micro perspective begin
with observations at the global level and then infer hypothetical rules that
could give rise to the observed global patterns. Rather than explore the
entire parameter space of individual behaviors, this method seeks to limit the
parameter space.

Modeling Approach
Theory Driven: The self-propelled particle model is an example of theory-
driven research, where the local rules are based on theories about the kind of
behavior that gives rise to the global pattern [10].
Data Driven: Rather than hypothesizing the nature of an individual’s behav-
ior, a data-driven approach derives the rules of engagement by experimental
means. The behavioral dynamics perspective is an example of a data-driven
approach [46].
Model Selection: This approach is taken by many researchers, who are
interested in testing how well their model, and other models, can account
for real-world data. A model-selection approach is essential to compare alter-
native models, providing crucial evidence about the adequacy of competing
explanations of real behavior.
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Note that in all the comparison studies described here, the behavioral data
in VR and real-world scenarios are not identical, and the researchers observed
systematic quantifiable differences between locomotion parameters in virtual and
real scenarios. This should not be surprising given the differences between a virtual
and real scenario, ranging from the appearance of the environment, how navigation
and interaction are implemented, to the fact that participants in VR are usually aware
that the virtual scenario is necessarily a simulation controlled by the experimenter.
The key takeaway here is not absolute but relative ecological validity: Results in
VR studies are not wildly different from those in real laboratory studies, and similar
effects are typically observed in both cases. This indicates that VR is a useful
tool for the study of crowd dynamics, but users, especially those developing crowd
simulations for real-world applications, need to be careful when implementing VR
results in their models.

2.2 Crowd Dynamics in VR

To understand why we use VR to study crowd dynamics, we begin with some
background on how global behavior might emerge from the dynamic interaction
between a pedestrian and their environment. A theoretical framework that is
designed to analyze and model these interactions is behavioral dynamics [46].

The behavioral dynamics approach to the control of behavior comes from a
history of the coevolution of dynamical systems and theories of action in the late
twentieth century [47–49]. By the early 1980s, dynamical systems theory had found
its way into explanations of behavior, by using systems of differential equations
to model and replicate the dynamic patterns exhibited in motor coordination. The
paradigmatic examples of this were finger-wagging experiments, in which the
author showed that with the right differential equations, one could describe the
simple but elegant coordinative patterns of a person rhythmically oscillating their
index fingers at the same time [50]. Warren (2006) saw the potential of this approach
for explaining more complex behaviors in which an individual dynamically interacts
with a changing environment [46].

The behavioral dynamics approach aims to account for the organization of
complex behavior without appealing to a central controller or internal representa-
tions of the behavior (Fig. 3). This perspective rejects the assumption, common in
psychology and cognitive science, that behavior is generated by a central controller
which deploys action plans to accomplish everyday tasks [46]. The behavioral
dynamics approach naturally extends to both intra- and interpersonal behaviors
such as collective crowd motion by modeling each individual interacting with their
respective environment.

There are four key components of the behavioral dynamics perspective. First,
an individual possesses a physical body that is embedded in a physical environ-
ment, both of which provide essential constraints on behavior. Second, perceptual
information about the environment and the individual-environment relationship
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Fig. 3 Depiction of the
behavioral dynamics
perspective [46]. The
individual interacts with the
information from the
environment and is cyclically
connected to the environment
by acting upon it. The
behavioral dynamics exist by
nature of the interaction
between the individual and
the environment, and they
capture, i.e., describe, the
interactions. (Image retrieved
and adjusted with permission
from [46])

enables the control of behavior. Third, control involves mapping the relevant
information variables into the relevant control variables, and this mapping depends
on the task at hand. And fourth, the resulting behavior is self-organized, emerging
from interactions in the individual-environment system under the relevant physical,
informational, and task constraints [46].

To model behavior, this framework proposes that a pattern of behavior can be
described by a system of differential equations. The individual and environment
are treated as a pair of coupled dynamical systems, with informational and
mechanical couplings. The individual’s actions exert forces that change the state
of the environment according to physical laws, which in turn generate information
(spatiotemporal patterns in optic, acoustic, haptic, olfactory, etc. fields) according
to what Gibson (1979) called ecological laws [51]. Reciprocally, information is
detected by the individual and serves to modulate the state of the action system
according to laws of control, which are specific to the task at hand. This cyclical
interaction between individual and environment generates a trajectory through the
“state space” of behavioral variables – the behavioral dynamics. This is where the
system of differential equations comes in, for it describes a vector field with attractor
states that correspond to task goals and repellers that correspond to avoided states.
Successful emergent behavior at this level serves to lock in control laws and tune
their parameters at the lower level. Control laws, which map information variables to
control variables, can thus be learned and used for the “online” control of behavior,
without assuming a centralized controller or a priori representation (see Fig. 3 for
an illustration of the behavioral dynamics framework) [46].

Recently, the behavioral dynamics framework has been applied to modeling
collective crowd behavior [21]. Each pedestrian in a crowd is treated as an individual
interacting with a dynamic “environment” that includes other moving pedestrians.
The crux of the problem lies in deciphering the local “rules of engagement,” i.e.,
the lawlike relationship that exists between individuals of a crowd, that give rise
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to the global patterns of crowd motion. Research in virtual reality has been used
to derive these local rules (or, more precisely, control laws) experimentally [48,
52]. Within Sumpter, Mann, and Perna’s (2012) framework, this can be considered
a local-to-global, data-driven modeling approach (see textbox; [45]). The success
of the behavioral dynamics approach rests on its ability to model self-organized
collective behavior, where local interactions between individuals combine to yield
emergent coordinative patterns, such as coherent motion and lane formation.

2.2.1 Behavioral Dynamics in VR

Warren and colleagues employ the behavioral dynamics approach using VR,
designing experiments to find the rules that give rise to collective motion in humans
(Fig. 4) [53, 54]. One of the first steps in finding the “rules of engagement” is to
figure out what information an individual is using from their environment to control
their behavior. A primary study that set the paradigm was designed to investigate the
nature of coordination in crowds based on the visual information about an agent’s
movement [52, 53, 55].

Three hypotheses were tested in a recent series of studies [52]. All three
experiments were conducted with participants in an untethered HMD VR system, in
which they could walk freely around a 10× 12m tracking space. In VR, participants
walked through a simple flat environment, and a crowd of virtual agents was
generated in front of them. On control trials, the crowd of agents would walk straight
ahead, at a constant speed with a constant direction of travel (or heading), and the

Fig. 4 Diagram of the Rio and Warren 2014 experimental paradigm of investigating pedestrian
interactions in virtual crowds [53]. Several agents are placed in front of the participant in VR, and
then programed to walk in specific ways. The path that the crowd takes and the starting conditions
of the experiment are dependent on the research question at hand
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participant would be told to “walk with the crowd.” In test trials, either 0, 3, 6,
9, or 12 agents in the crowd were “manipulated” to either change their speed or
to turn 10◦ to the left or the right. The first experiment addressed the hypothesis of
superposition that the influence of multiple neighbors is combined linearly. This was
achieved by manipulating subsets of agents in a virtual crowd and observing how the
participant responded to increasing number of subset size. The second investigated
the role of distance, expecting that the influence of members of the crowd who are
further away would be less than the influence of members who are close by. This
experiment manipulated the distance of half the crowd, making the crowd average
distance either altogether closer or further. The third experiment investigated the
role of eccentricity, meaning that those members of the crowd who are in front
of the participant should influence them the most, and those who are at the sides
should influence the participant to a lesser extent, producing an elliptical shape of
influence. This was tested by manipulating agents in particular wedges in front of
the participant, where the most central wedge would be expected to illicit the largest
response.

The first two hypotheses were supported, finding evidence that the influence of
a crowd is linearly combined and that the influence decreases with distance. There
was no observed effect of eccentricity, however, suggesting that members of a crowd
influence a participant if they are within the field of view. Naturally, there are visual
variables such as occlusion and optical expansion/contraction that emerge by the
physical nature of the crowds. Visual variables such as the effects of expansion and
contraction can theoretically be accounted for by nature of the distance parameter
that was discovered through the experiments, and more experiments are underway to
specifically investigate the role of such variables and account for them in the model.

The authors further investigated how visual coupling in crowds can be used to
model behavior of real crowd “swarms” [52]. To test this, participants were split
into two separate groups in two different data collection sessions. The participants
were instructed to walk about the room on a random path at a normal speed,
while staying together as a group, and to do this until they were told to stop.
Their movements were tracked using a motion capture camera system, and their
trajectories were then analyzed to see how the groups moved together through space.
The analyzed behavior was then fit to a model, showing that the rules abstracted
from the behavioral dynamics perspective (of visual coordination) successfully
simulate real human behaviors [52]. The main finding of the study can be understood
by looking at the heat map of mean absolute heading difference as a function of
distance between individuals (Fig. 5). The heat map shows that over the course
of the given trial, participants had more similar headings to those who were near
to them and increasingly different headings compared to those who were further
away [52]. This result reinforces the studies done in VR, showing that individuals
coordinate with those who are closest to them and that the coordination strength
decreases as individuals get further away.

Warren and colleagues are currently investigating more “rules of engagement”
in VR. These experiments isolate variables that could contribute toward how
individuals interact with those around them. For example, experiments have been
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Fig. 5 The heat map represents the spatial heading relationship (where heading is defined as the
direction of travel) between each individual in a human “swarm” and every other individual in
the swarm with respect to their distance at any moment during the trials. The relationship is then
averaged to show that individuals are closely aligned with those most immediately near them and
that the alignment similarity falls off with distance. (Reprinted from [52])

done to determine if the density of a crowd modulates a participant’s interactions
with the agents around them. The results support claims that collective behavior
in humans can be better governed by density-dependent models, rather than
density-independent models [54]. As more rules are experimentally derived, more
information can be accounted for in the model allowing for a local-to-global
understanding of how human collective motion is self-organized.

2.3 VR Studies of Crowd Evacuation Behavior

The following section highlights several studies in which VR was used to investigate
crowd dynamics in the context of emergency evacuation. The common motivation
to use VR in most of the studies was to be able to control precisely what participants
would see and how that would affect their behavior. The reader should note that the
technology of the VR systems varied significantly across studies and consequently
so did the experience of the participants.

An early crowd evacuation study performed in a CAVE system investigated how
the availability of exits and the number of agents affected evacuation success and
evacuation time in a simulated emergency in an underground transportation system.
Although the behavioral results were unclear, this study was one of the first to
combine the techniques of crowd simulation with behavioral input from human
participants in VR [56].
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More recently, Bode and colleagues studied how people choose exits in a variety
of crowd evacuation scenarios [9, 39, 57, 58]. One study compared effects of
static information (signage), dynamic information (crowd behavior), and verbal
instructions, as well as a combination of these factors on participants’ exit choice.
Participants viewed the scenario from a top-down view of a rectangular enclosure
with two exits, and their task was to choose one of the exits. The authors found main
effects of static information but not the other two factors. However, when the factors
were tested in combination (e.g., when signage and crowd movement contradicted
each other or pointed to the same exit), the authors found several interactions,
suggesting that exit choice, in particular during evacuation in crowds, is subject
to a complex set of influences [9].

Another study by this group in a similar virtual environment compared how
knowledge of exit width and evacuation route length, together with dynamic
aspects of crowd evacuation (e.g., change in visible congestion at an exit) affected
route choice [58]. Participants again controlled an avatar in a top-down virtual
environment and had to choose between two exits during a simulated crowd
evacuation. The authors manipulated the length of the two egress routes, width of
the exits, as well as additional time pressure. The results revealed that participants
generally preferred taking a wider exit compared to a narrower exit. However, in
a more fine-grained analysis, the authors found that dynamic information detected
from the movements of the crowd (e.g., the number of agents choosing a particular
exit, or their movement speed) better accounted for their observations than the static
information alone. The results suggested that crowd dynamics play a crucial role
in exit choice during evacuations. Interestingly, the authors also found that adding
time pressure as a proxy for simulated stress led to more rigid decision-making;
participants were less likely to adjust their initial exit choice even, when information
was available regarding the speed at which the simulated crowd moved through the
two doors (Fig. 6).

Fig. 6 Screenshot from Bode
et al. [57]. Participants
control an avatar (black solid
dot with red circle) and are
tasked to leave the room as
quickly as possible together
with a crowd of virtual agents
(unfilled circles). They need
to choose between two
possible exits (top or bottom
left) and reach the target area
(green circle). (Reprinted
with permission from [57])
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In general, the studies by Bode et al. used a minimalistic virtual environment,
and the reader might rightfully ask how much can be learned about real-world
evacuation behavior. The authors explicitly address this concern and point out that
their claim is not that people walk exactly like avatars controlled by mouse clicks.
However, given that virtual behavior is often comparable to real-world behavior
and the degree of experimental control in their studies, the results can lead us to
hypotheses that merit further study in larger and more realistic settings.

To investigate the combined effects of observing the behavior of others and exit
familiarity, we tested participants using an untethered HMD system that allowed
participants to freely walk within a space of 12 by 12 meters (Fig. 1a). Participants
entered and then explored a square room that simulated an art gallery, when a fire
alarm was triggered. They could then decide between two equidistant emergency
exits, one using the same door they used for entering the room and another, unknown
exit. Participants were more likely to exit through the more familiar emergency
exit. However, in experimental conditions, in which participants saw virtual agents
egressing either through the familiar or unfamiliar exit, participants tended to follow
the agents. The effect of the agents on exit choice was stronger, when participants
saw two instead of one agent exiting, suggesting, social influence in evacuation
situation scales with the number of observed people [59].

As mentioned previously (Fig. 2), another recent study tested egress behavior in
a virtual crowd under time pressure, with not just one but 36 participants interacting
in a shared desktop VR environment with first-person views [43]. Participants were
asked to evacuate a room through a maze of virtual corridors. When under time
pressure, they kept shorter interpersonal distance between their avatars and collided
with each other more frequently, compared to a control condition without time
pressure. This increase in crowd density was most commonly observed at corridor
junctions, near exits, and at dead ends in the maze (Fig. 7). Interestingly, participants
were more likely to follow the majority of the crowd with an increase in density,
suggesting that the strength of social influence within a crowd increases as a function
of crowd density, the number of people visible, or both.

Another indication that interactions between crowd dynamics and spatial naviga-
tion during fire evacuation are complex was documented in a recent study [60]. This
study made use of another avenue to data afforded by VR: online surveys. In this
study, data from over 1500 participants was collected in an online survey, providing
a rich database. Participants watched videos of six different scenarios of a room
with two exits and some smoke from a first-person view and saw a crowd of virtual
humans egressing through the exits (Fig. 8). Interestingly, most of them indicated
that they would follow the crowd majority toward an exit but also noted that an exit
became less attractive the more virtual humans were observed near the exit.

In a recent experiment, the authors of this chapter combined the approaches
presented in the previous studies. Participants wore an untethered HMD that allowed
them to actively walk in the virtual environment and were immersed in a virtual
crowd within a room that contained two exits. A fire alarm sounded, the virtual
agents moved toward the exits, and the participant’s task was to evacuate through
one of the two exits. This experiment manipulated the size of the crowd, which
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Fig. 7 Exemplary results from [43]. (A) Snapshot of participants navigating toward the exits (E1
to E4) in a virtual maze in a control condition (top) and under simulated time pressure (bottom).
(B) Crowd density hotspots distributed across the virtual maze (see original publication for further
details; reprinted with permission from [43])

Fig. 8 Screenshot of first-person participant view of the simulated emergency scenario from [60]
(see original publication for further details; reprinted with permission)
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consisted of 10 or 20 agents, and the proportion of agents egressing through one
exit, which varied from 50% to 100% of the crowd, in 10% increments. This
manipulation allowed us to disentangle the influence of the absolute and relative
number of agents going to one exit and the effect of crowding near one exit. The
results showed that for both crowd sizes, participants chose an egress more or less
randomly when no clear majority of the crowd opted for one of the exits. In the small
crowd, as a greater proportion of agents went to one exit, participants increasingly
followed the majority, whereas in the larger crowd, participants initially avoided
the more crowded exit and followed the majority only when all agents went to one
exit. These data and the results of the previously discussed studies underline that
evacuation behavior in a crowd depends in complex ways on the dynamics of the
situation.

3 The Road Ahead

In recent years, researchers have pushed the boundaries of the abilities of compu-
tational models of crowd dynamics, ranging from biomechanics [61], physiologi-
cal/metabolic processes [62, 63], to cognitive aspects [64, 65]. Yet, Haghani and
Sarvi (2018) observed an imbalance in the crowd dynamics knowledge base [17];
while openly observable data is already quite rich and researchers have begun to
tackle more and more complex questions in recent years, they found that research
on the interplay between latent variables such as psychological (e.g., perceived risk,
emotional states, or personality traits) and physiological states that influence, for
example, motion trajectories, time, and decision-making during crowd evacuation
scenarios has only scratched the surface [17]. Consequently, perceptual, cognitive,
and other psychological processes that produce observable behavior are typically
not included, and, not surprisingly, most crowd evacuation models only represent
human decision-making in relatively simplistic manners and often ignore aspects
such as cognitive bias in evacuation decision-making [66, 67]. VR has the potential
to provide detailed insights into aspects of crowd dynamics that are otherwise hard
to observe. For example, in the related field of moral decision-making, VR has
been used to study eye movements and physiological responses in moral dilemmas
[68, 69].

What does the future hold for VR as a research tool in crowd dynamics? Although
increasing computing power and graphics development will allow immersing
participants into ever more realistic simulations, there are still some significant
challenges ahead. For one, virtual environments need to be immersive enough so
that participants experience a sufficient degree of presence. A recent study found
that more lifelike behaviors displayed by agents in a virtual crowd as well as
higher levels of interactivity increased participants’ self-reported presence in the
virtual environment. In addition, adding realistic social responses to the behavioral
repertoire of agents (e.g., avoiding collisions with participants or greeting) prompted
participants to display similar behaviors [35].
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Another important step ahead seems to be the integration of immersive VR tools
and computational models of crowd evacuation that react dynamically and in real
time to user behavior. Currently, these tools are not widely used for research, but
they could contribute to closing the gap between experimental data from individual
participants and global models of crowd dynamics. For instance, researchers could
test how a simulated dynamic crowd influences an individual in a variety of
conditions (e.g., different levels of crowd density or time pressure). Ultimately this
approach would allow to link the behavior of members in a crowd to global patterns
of motion.
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Pedestrian Movement in Smoke: Theory,
Data and Modelling Approaches

Enrico Ronchi and Daniel Nilsson

Abstract The understanding of pedestrian movement in smoke-filled environments
is of significant importance in fire safety engineering applications. This chapter
presents an overview of the main concepts concerning pedestrian movement in
smoke, with a particular emphasis on the adverse effects that it can have on
pedestrian evacuation. Several factors are discussed, including fire, pedestrian
and environmental factors. Factors associated with the presence of fire relate to
the impact of reduced visibility conditions, the presence of asphyxiant/irritant
gases and cognitive and emotional influences are also explored. Pedestrian factors
include walking speed and pedestrian movement abilities, visual acuity and physical
exertion. Environmental factors include geometric complexity, the interaction with
way-finding and signage systems, inclination of floor/ground or inclines (similar
to stairs), stairs and surface materials. An overview of the current capabilities of
pedestrian and evacuation models used in fire safety engineering applications is also
presented along with recommendations for future areas of research in the domain of
pedestrian movement in smoke.

1 Introduction

The study of pedestrian behaviour in smoke-filled environments is of great impor-
tance in the fire engineering context, as the fire safety design process often relies
on the prediction of human behaviour during evacuation in case of emergency. This
is often done using a performance-based design approach [1], which relies on the
estimation of the required safe evacuation time (RSET) which is compared to the
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time available for safe evacuation (ASET). The estimation of the RSET can be made
using hand calculations or pedestrian evacuation models [2].

During the design of complex infrastructures, such as transportation systems
(e.g. metro and train stations, road and rail tunnels, airports, etc.) or complex
indoor buildings (e.g. shopping malls, industrial premises, etc.), engineering tools
are adopted to investigate the fire safety conditions in given design scenarios [3].
In this context, pedestrian behavioural scenarios [4, 5] needs to be identified and
studied.

In order to perform this analysis, a necessary step is the assessment of the ability
of pedestrians to evacuate. While the study of pedestrian movement and crowd
dynamics have been largely investigated for smoke-free environments [6, 7], a
limited number of data collection efforts have been conducted to obtain information
concerning the behaviour and movement of pedestrians in smoke [8]. This is in
contrast with the current need of fire protection engineers, which may need to
perform life safety assessments in which pedestrians may need to walk in smoke-
filled environments.

The adverse effects of smoke on the pedestrian ability to reach a safe place may
vary. This chapter intends to identify and categorize those effects and review the
existing methodologies adopted for representing these effects in models. This is
associated with a review of the existing experimental data sets available in the
literature for the analysis of pedestrian movement in smoke. These may refer to both
raw experimental data sets as well as empirical correlations provided by researchers
which relate human behaviour outcomes and the conditions of the emergency
scenarios in which they are located.

The main existing theories and data available today in the literature on pedestrian
movement in smoke are provided in this chapter. This includes the consideration
of several factors which may impact pedestrian movement behaviour and the sub-
sequent evacuation performance. The factors associated with the fire scenarios are
introduced and discussed, followed by a description of the pedestrian characteristics
which may affect evacuation performance in smoke. Furthermore, environmental
factors which affect pedestrian movement in such scenarios are reviewed and
analysed.

This chapter also presents an overview of the current modelling assumptions,
methodologies and approaches adopted for the representation of pedestrian move-
ment in smoke within evacuation models. The main context of application of such
models is fire safety engineering. Nevertheless, most of the information provided
here can be translated to other contexts in which pedestrians are exposed to
hazardous conditions, i.e. hazardous scenarios associated with a toxic gas dispersion
where smoke is an issue [9, 10].

Recommendations concerning the directions of future research in this area are
given. They relate to future data collection efforts that may be undertaken in order
to collect relevant data for improved modelling representation of human behaviour
in smoke-filled environments.
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2 Theory and Data

Although movement through smoke in case of fire should be avoided, there are
situations where it is difficult to completely avoid. Examples include fires in single-
bore rail or road tunnels due to the lack of compartmentation. In single-bore tunnels,
some pedestrians are typically forced to move in an environment with smoke in case
of a fire evacuation emergency, which has been clearly shown by road tunnel fire
accidents from around the world [11–13].

In cases where movement through smoke is unavoidable, the designer needs to
consider how smoke influences the pedestrian movement process. Among other
things, the impact of smoke on movement speed and way-finding of evacuees needs
to be considered. This need has led to a set of research studies in the area of
movement and way-finding in smoke. Much of this research takes its starting point
in the now classical experiments by Jin [14].

Jin’s pioneering research [14] consisted of experiments in a smoke-filled corridor
with two types of fire smoke, namely, irritant smoke from a wood crib fire and
non-irritant smoke from burning kerosene. At the end of the corridor, there was an
emergency exit sign, and participants moved towards the sign, while their movement
speed was measured. The experiment resulted in data on movement in irritant
and non-irritant fire smoke. Jin’s pioneering research shows that low visibility can
reduce movement speed but also that irritant species can further reduce the speed.
Hence, both visibility and irritancy are important factors to consider in fire safety
design.

Since Jin’s experiments, many research projects have aimed at further exploring
human behaviour and movement in smoke-filled environments [15–27]. In many
of these experiments, the smoke has been artificially generated non-fire smoke,
although irritants have sometimes been added, e.g. acetic acid [15, 26, 28]. Some
experiments have, however, used real fire smoke, specifically when the influence of
fire species on cognition or emotion is the focus of the study [20, 21].

Previous research in the area of pedestrian movement in smoke seems to suggest
that the problem can be divided into three distinct areas, namely, (1) fire factors, (2)
pedestrian factors and (3) environmental factors. In the following subsections, each
of these factors is briefly covered, and relevant research is highlighted.

2.1 Fire Factors

The fire itself can be a driving force behind poor evacuation condition, including
smoke-filling, in case of fire incidents. From a design perspective, fire is typically
described as an energy release rate (kW) as a function of time [29]. Among other
things, the production rates of aerosols, i.e. solid and liquid particles suspended in
air, and species also need to be set for a design fire. From a pedestrian movement
perspective, aerosols are the main contributors to low visibility, whereas species
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generated by fire can contribute to eye irritation, negative cognitive and emotional
influence and loss of the ability to self-evacuate.

2.1.1 Visibility

Reduced visibility is believed to be one of the most important factors influencing the
reduction of speed when moving through fire smoke. The visibility is related to the
density of the smoke, which is often expressed as the proportion of light obscured by
smoke, called the extinction coefficient. The extinction coefficient can be expressed
according to Eq. 1 [30].

Ks = − 1

L
· ln
I

I0
(1)

where:

Ks = extinction coefficient (m−1)
L = distance travelled by light (m)
I/I0 = fraction between intensity of light after travelling the distance L and initial

intensity of the light (−)

Visibility is often expressed in terms of the visibility distance, which is the
maximum distance at which an item can be seen through smoke. The correlation
between visibility distance and extinction coefficient is often expressed according
to Eq. 2 [29, 31].

S = A
Ks

(2)

where:

S = visibility distance (m)
A = 3 for light-reflecting items and 8 for light-emitting items
Ks = extinction coefficient (m−1)

The constant A assumes different values for light-reflecting and light-emitting
items. However, it should be pointed out that Eq. 2 is only strictly valid for cases
where no ambient light sources are present, i.e. when an item is seen thought smoke
in a dark environment.

For movement in fire smoke, it is important to distinguish between the two cases
of movement towards a light-reflecting item versus a light-emitting item [8]. When
moving towards a light-emitting item, e.g. a lamp, the visibility distance of the item
will be longer than the visibility distance of the adjacent light-reflecting walls. If
people move towards the lamp, they will be able to see that there is no obstacle
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between them and the lamp. In this case, the correlation for light-emitting items is
most relevant for estimating visibility distance. For other cases, i.e. when people
are moving towards light-reflecting items, the correlation for light-reflecting items
is most relevant for estimating the visibility distance.

When pedestrians move in fire smoke, it is assumed that they will typically
reduce their speed as a function of reduced visibility to avoid potentially dangerous
collisions with obstacles, e.g. building features or other people, or to reduce the risk
of falling. This is supported by observations of people’s behaviour patterns when
moving through smoke, which often involves crouching and protection of body and
head with their hands or arms [15, 28, 32].

The movement speed starts to reduce once the visibility distance prohibits free
movement, i.e. when people are no longer able to move at their unimpeded speed
without risking injury. In theory, this means that there is an upper visibility distance
where a person moving at her preferred speed will start to reduce her movement
speed. At shorter visibility distances, the movement speed reduces as the visibility
becomes lower, until a lower visibility distance is reached. The lower visibility
distance typically corresponds to smoke logged conditions, i.e. a situation similar to
movement in complete darkness. Below the lower visibility distance, people move
at a constant low movement speed [30].

A compilation of the available experiments concerning movement speeds in
relation to different extinction coefficients is presented in Fig. 1.

Fig. 1 Summary of aggregated experimental data sets [14–16, 28, 32, 33] concerning movement
speeds vs extinction coefficient in smoke-filled environments
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Fig. 2 Summary of aggregated experimental data sets [14–16, 28, 32, 33] concerning movement
speeds vs visibility in smoke-filled environments

Considering the assumptions made to transform extinction coefficient into
visibility (i.e. taking into consideration light-reflecting in comparison with light-
emitting items), it is possible to present experimental data as in Fig. 2 [8].

2.1.2 Irritancy

Species from fires are known to cause eye irritation, which makes it difficult to
see and hence may reduce the movement speed of pedestrians. Although selected
research has focused on real irritant fire smoke, e.g. smoke from wood fires [14,
22, 34], guidance on how to consider the effect of irritancy on movement speed
in smoke is scarce. However, an empirical correlation for predicting the combined
influence of irritants on walking speed in smoke has been proposed in the literature
[35] (see Eq. 3).

R =

(
e
−
(

1000x
b

)2
)
+ (−0.2x + 0.2)

1.2
(3)

where:

R = the fractional reduction of movement speed
b = 160
x = fractional effective concentration (FEC) [35], which includes HCl, HBr, HF,

SO2, NO2, acrolein and formaldehyde (called FIC in [35])
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2.1.3 Cognitive and Emotional Influences

Although it has been shown that fire smoke does influence people both cognitively
and emotionally [20, 21], there is currently a lack of guidance on how to incorporate
this influence in design. The reason for this is that many past experiments have
examined aspects that are difficult to generalize to the situation of movement and
decision-making in smoke-filled environments. One example is an experiment that
examined how people moving through a corridor filled with smoke from a burning
wood fire were able to answer a series of questions [14]. Another example is an
experiment where participants played a precision game, similar to the classical
board game called operation, while being exposed to worsening smoke conditions
from a burning wood fire [21]. Although both these experiments clearly showed that
people are both emotionally and cognitively influenced by fire smoke, they failed to
explore how this influence can be extrapolated to extended periods of movement
through smoke.

2.1.4 Tenability

Although products from fire, e.g. soot obscuring vision or toxic/irritant species,
may initially only influence movement speeds and cognitive functions, an increased
exposure may eventually render the pedestrians incapable of self-evacuation. As
most structures and buildings today rely on self-evacuation, pedestrians are typically
considered lost from a design perspective if they are incapable of evacuating on
their own. The point at which the ability to self-evacuate is lost is usually called
incapacitation [35, 36].

The most common approach for estimating incapacitation in the area of fire
safety is described in an ISO standard [36]. This standard takes into account
incapacitation due to (1) radiant and convected heat, (2) asphyxiant gases, (3)
sensory/upper respiratory irritants and (4) visual obscuration due to smoke. Perhaps
the most important and prominent for movement through smoke are the asphyxiant
gases and sensory/upper respiratory irritants.

In the standard [36], the two asphyxiant gases that are given the most attention
are carbon monoxide (CO) and hydrogen cyanide (HCN). These two species
accumulate in the body, i.e. follow a dose concept, and prevent the uptake or use of
oxygen. Incapacitation is expressed in terms of the Fractional Effective Dose (FED),
which is expressed as an equation taking into account the combined dose of CO and
HCN. This equation can be modified to also take account of increased uptake due to
increased breathing rate at high carbon dioxide levels. The way the FED equation is
expressed in the standard [36], FED equals 1.0 corresponds to incapacitation of 50%
of the population, which can also be expressed as incapacitation of a pedestrian of
average susceptibility. In design, FED equals 0.3 is therefore sometimes used, which
corresponds to incapacitation of 11.4% of the population.

Irritant gases are also treated in the ISO standard [36], and a correlation for
fractional effective concentration (FEC) is presented. Similar to the FED concept,
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FED equals 1.0 corresponds to incapacitation of 50% of the population and FED
equals 0.3 corresponds to incapacitation of 11.4% of the population. The main
difference between FED and FEC is that FEC is not a dose that accumulates in
the body but a combined concentration of irritant species leading to incapacitation.
The species specifically highlighted in the standard are HCl, HBr, HF, SO2, NO2,
acrolein and formaldehyde.

2.2 Pedestrian Factors

The characteristics of pedestrians can influence their way to move through fire
smoke. For example, the movement speed of an individual in clear conditions
might be linked to its movement speed in smoke. In addition, a person’s vision
and physical abilities (intended as the stamina associated with exertion) might also
be important in some situations.

2.2.1 Unimpeded Movement Speed

Many studies have shown that people move at different normal movement speeds
[37, 38], which in the context of movement through smoke is called the unimpeded
speed. Research has attempted to investigate how the unimpeded speed is related to
the movement speed in smoke, i.e. if the reduction of speed is absolute or fractional.
One example is the experiment performed in the Northern Link tunnel in Stockholm
[26, 32]. In this experiment, participants walked both in a smoke-filled and a smoke-
free tunnel. However, the study did not yield conclusive results regarding absolute or
fractional reduction of the unimpeded movement speed when moving in smoke [39].

2.2.2 Visual Acuity

Given to the assumption that people slow down in smoke partly due to limited
visual distance, it is reasonable to assume that people’s visual acuity will influence
the reduction of movement speed in smoke. For example, a pedestrian with vision
impairment might move slower in smoke than an evacuee with 20/20 vision [15].
Visual acuity has therefore been the focus of experiments. One example is a
Japanese study where participants with different visual acuity moved through a
corridor under different illumination levels [33]. In one set of sub-experiments,
smoke was also introduced in the corridor. In spite of this study, the influence of
visual acuity on movements is still a relatively unexplored area of research.
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2.2.3 Physical Exertion

In some instances, the physical exertion of pedestrians may influence their move-
ment through smoke. The variability of physical performance of different pedestri-
ans might be particularly important in those cases where they need to move up a
slope or a hill (or walk long distances), which may lead to exhaustion associated
to cardiorespiratory capacity or muscle fatigue [40, 41]. As physical exertion and
fitness may vary significantly within a population, this is a factor that needs to be
considered in the design process. Repetitive muscular activities may be associated
with local muscle fatigue which can impede pedestrian movement capabilities [42].

Experimental research has been conducted to assess the biomechanical aspects
of the pedestrian evacuation task by measuring physiological variables studying
electromyographic muscle activity, an indicator of fatigue to evaluate performance
[43]. Energy expenditure in pedestrian evacuation tasks has also been investigated
by measuring oxygen uptake (VO2) and heart rate [40, 44]. Those variables are
useful to estimate physical work capacity during the pedestrian evacuation task. In
case of moderate-intensity work which is below the lactate threshold, the oxygen
uptake rises slowly until it reaches a stable value. This would be the situation at the
beginning of the pedestrian evacuation movement. In case the physical activity is
performed at a higher level than the lactate threshold, the maximum oxygen uptake
threshold is reached. In this situation, a progressive loss of skeletal muscle work
efficiency can occur [45].

2.3 Environmental Factors

Some environments are simply easier to navigate through smoke than others. For
example, a very complex environment, e.g. a labyrinth, may require advanced route
choices [16, 17, 19], which a simple room with one exit might not. Also, in a
geometry where people are likely to follow a wall for a very long time, e.g. a tunnel,
they might easily miss exits located at a 90-degree angle [15]. The environment is
therefore important to consider in relation to movement through smoke.

2.3.1 Geometric Complexity

Movement and way-finding in smoke can be particularly challenging if the geometry
is complex and difficult to navigate. One incident that clearly illustrated this
difficulty is the MS Scandinavian Star incident [46]. Many passengers on MS
Scandinavian Star were forced to evacuate through smoke, and some had a difficult
time finding their way in the labyrinth of corridors on lower decks. A handful
of diseased passengers were even found in dead-end corridor configurations. The
problems found in the MS Scandinavian Star incident has led to research on
way-finding in smoke-filled complex geometries in general and ships in particular
[17–19].
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Another situation where evacuees can easily miss emergency exits is during
evacuation of smoke-filled tunnels. Research has shown that people tend to follow
the tunnel wall when evacuating smoke-filled tunnels and pedestrians seem to rely
more on their perception of touch than their vision [15]. This means that they can
sometimes miss emergency exits located at the opposite tunnel wall unless they are
encouraged to let go of the wall and head for the exit [15].

In both geometrically complex buildings and tunnels, smoke has been shown to
negatively influence movement and way-finding. For these types of environments,
additional help might be needed for people to find their way to safety. One solution
might be to use way-finding systems, which are discussed in the following section
(see Sect. 2.3.2).

2.3.2 Way-Finding Systems

One potential solution to the problems linked to a geometric complexity mentioned
in Sect. 2.3.1 is to install way-finding systems that guide people in smoke [19, 47].
However, the design of such systems is not self-evident, as the designer often makes
assumptions about interpretation and behaviour, and is not able to incorporate the
mindset of the evacuees in the design process [48]. It has therefore been argued that
the only way to ensure that a way-finding system works as intended is to test it in
experiments [49]. Numerous studies have therefore involved experiments with the
aim of testing and refining way-finding systems for smoke logged conditions. These
experiments have been performed both in Virtual Reality (VR) [47] and physical
environments [15, 17, 19, 28, 32, 50].

In recent years, a significant body of research has focused on the design of
way-finding systems for road and rail tunnels. This research has shown that visual
systems work, but that acoustic systems may be an even better alternative for guiding
pedestrians to emergency exits. One system that has proven to work well in tunnels
consists of a speaker at the emergency exit that plays a sound and a voice message,
thereby encouraging people to move towards the exit. These types of systems,
sometimes called sound beacons, have also been tested in other experiments [51–
53] and have the potential to also work in ordinary building. However, research has
shown that some sound beacon systems are difficult to understand without education
[52].

In the wake of the previously mentioned MS Scandinavian Star incident, research
in Norway focused on the use of way-finding systems in passenger ships [16, 46].
Both tactile and visual systems were evaluated and were shown to be an effective
way of guiding people to safety in spite of complex geometries.

2.3.3 Inclination, Stairs and Surface Material

As mentioned in Sect. 2.1.3, exertion can play a significant role during the
evacuation process. This is believed to be particularly important in cases where
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evacuees need to move long distances upstairs or slopes, which is perhaps mainly
relevant for underground facilities, e.g. road tunnels, rail tunnels and underground
stations. For example, Norwegian road tunnels may have an inclination of more than
5% [54], and many new metro projects contain deep station that are 70 metres or
more below the surface [55]. In these cases, the physical exertion of evacuees must
be considered.

The surface material that evacuees walk on during evacuation might also
influence the moment in smoke, and an uneven or coarse surface is expected to
slow down movement. This can be particularly important for rail tunnels where the
surface material may consist of large stones or macadam. Relatively limited research
has yet to focus on movement through smoke on coarse surfaces, but performed
research has not yet been able to show a significant reduction of speed on macadam
compared to even surfaces [15].

3 Modelling Pedestrian Movement in Smoke

Modelling the impact of smoke on pedestrian movement should ideally take into
consideration the different issues presented above. Models may make use of
different data sets from experimental studies (as the ones discussed in Sect. 2) which
investigate the factors associated with the movement of people in case of evacuation
in smoke-filled environments.

The most sophisticated pedestrian and evacuation models used in fire safety
engineering present the opportunity to couple fire simulations and pedestrian
simulations. This means that the evolving conditions of the fire scenario (e.g. smoke
movement) can be used to affect pedestrian movement. Different approaches can
be used to represent the impact of the fire conditions in a modelling framework.
The majority of evacuation models on the market used in fire safety engineering
applications implement fire model results from an external fire model [56, 57],
i.e. the smoke impact intended as visibility conditions and gas concentrations are
imported into an evacuation model after preperforming a fire simulation. Another
set of models are natively coupled, i.e. fire and evacuation simulations can be run
at the same time, e.g. FDS + Evac [58]. Nevertheless, most of the existing models
allow only a one-way coupling, which means that smoke can impact the movement
and behaviours of pedestrians, while the action of pedestrians, e.g. opening a door,
do not generally impact smoke movement [59].

Existing pedestrian and evacuation modelling tools employed to represent the
impact of smoke on pedestrian movement can be categorized in relation to a series of
modelled impacts, namely, (1) modelling the impact of reduced visibility conditions
on movement speed, (2) modelling the impact of smoke on route/exit choice and (3)
modelling the interaction with safety systems. All these impacts may be represented
explicitly (i.e. the model includes a sub-model for a direct representation of the
pedestrian behaviours linked to a given scenario) or implicitly, i.e. the model does
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not include a specific sub-model to consider the given scenario, but it includes
enough flexibility to represent it through other variables.

The impact of asphyxiants and irritants on pedestrian movement is typically
not yet explicitly modelled, i.e. pedestrian and evacuation models may consider
the adverse impact of toxic products in smoke by calculating FED [35], but
the growing dose of asphyxiants is generally not assumed to affect pedestrian
movement. This limitation is mostly due to the scarce knowledge on the negative
effects that asphyxiant products may have on different pedestrians and the fact
that acceptable design solutions are generally well below relatively high values
of FED; thus, they will be often not considered as scenarios to be fully modelled
with a pedestrian simulator. In other words, fire safety engineers generally perform
pedestrian simulations with the assumption that toxicity and irritancy will not
substantially affect the performance of pedestrian during evacuation.

For example, several international guidance documents indicate the threshold
of FED = 0.3 [36, 60] as critical conditions for rejection of a fire engineering
design during a deterministic analysis. Nevertheless, there is limited knowledge
concerning the possibly adverse effects of toxic and irritant smoke, especially given
the possible variation in the susceptibility that different individuals may have. Sub-
models (see Sect. 2.1.4) may be included for the representation of the thresholds
corresponding to certain irritant effects of smoke, i.e. intense pain in the eyes, the
ability to keep eyes open, etc. that can reduce movement abilities [35]. Nevertheless,
such effects are generally not considered explicitly while modelling their effect on
pedestrian movement, but they are calculated separately to consider the tenability of
the environmental conditions in which movement takes place.

To date, a limited number of studies [40] investigate the impact of physical
exertion on pedestrian movement. Different types of models have been presented
to relate movement speeds to physical exertion [40, 61–63]. Those models may
be conceptual frameworks, i.e. considering the relationship between the motivation
of pedestrians to move in relation to their fatigue level and the presence of others
[61] or models merely based on physical performance. The latter models [40,
41] have been proposed to relate physical variables (e.g. oxygen uptake) with
pedestrian evacuation abilities. Despite these recent research efforts in this area,
current pedestrian evacuation models do not generally include dedicated sub-models
for the representation of physical exertion of each pedestrian and the subsequent
evacuation performance associated with it [64].

For all these reasons, the main aspects considered in this section concerning
pedestrian evacuation simulations in smoke are the impact of reduced visibility
conditions on pedestrian movement and the interaction with safety systems, i.e. the
way-finding process.
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3.1 Modelling the Impact of Reduced Visibility Conditions

The representation of the impact of reduced visibility conditions relates to the
implementation and interpretation of existing experimental data sets into pedestrian
and evacuation modelling tools. The impact of different visibility conditions can be
used to simulate reduced movement speeds, generally representing those conditions
as smoke extinction coefficient (as this variable is not dependent on the observed
object, see Sect. 2.1.1) or visibility. Regardless of the data set(s) employed as a base
for the correlation between extinction coefficient or visibility and movement speed,
it is crucial to understand that the reduction in movement speed will also depend
on the manner in which these data sets are interpreted by the modelling framework.
In fact, there are currently two contrastive approaches to represent the reduction of
pedestrian movement speed in smoke [39], namely:

1. A fractional reduction of speed
2. An absolute reduction of speed

The modelling interpretation with an absolute reduction refers to the case in
which pedestrians reduce their movement speed all in the same way regardless
of their unobstructed speed in clear conditions. The main variable affecting the
obstructed movement speed (i.e. movement speed in smoke) is the visibility
conditions in which they walk. The modelling interpretation with a fractional
reduction considers instead a reduction in movement speed which is linked to both
the visibility conditions as well as the initial unobstructed movement speed that
people will have in smoke-free conditions [26].

In addition, it is also important to understand that different modelling interpreta-
tions can be made for the choice of the minimum movement speeds that pedestrians
will adopt in the lower range of visibility conditions (i.e. almost complete darkness).
In such scenarios, the simulated movement speed will depend on the assumption
made by the model developer (or the model user, depending on how default settings
can be controlled [65]) in the choice of the minimum speed. Three approaches are
currently adopted by models to represent the minimum threshold of the impact of
smoke on pedestrian movement, namely:

1. The model does not implement any minimum speed, and each pedestrian will
reduce their speed in relation to the decreasing visibility conditions.

2. The model includes a constant minimum speed, and each pedestrian will reduce
their speeds as a function of decreasing visibility conditions until a minimum
constant threshold is reached. This corresponds to a set minimum speed in thick
smoke (i.e. complete darkness).

3. The model implements a variable minimum speed which depends on the
individual characteristics of the pedestrians (e.g. their unimpeded movement
speed).

There is a link between the three minimum speeds assumed and the associated
behavioural hypotheses which they represent. The movement of people in poor
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visibility conditions can be made referring to the assumption that smoke affects
movement speeds in any conditions (Method 1, see also Sect. 2.2). Secondly, it is
possible to assume that movement speeds can be affected by smoke up to a certain
constant threshold, i.e. movement speeds will not reduce below a certain constant
minimum. This corresponds to the assumption that the whole population will have
a common reduced movement speed corresponding to the visibility conditions of
complete darkness (Method 2). The order of magnitude of such constant minimum
speed is generally between 0.2 and 0.3 m/s depending on the data set used for
reference (e.g. Jin [30]). The third assumption is that the minimum movement
speed is affected by the individual characteristics of people, i.e. there is no common
minimum movement speed, but this is variable in relation to the ability of people of
moving in almost complete darkness.

These assumptions relating to the absolute/fractional interpretation and the
minimum movement speeds in almost complete darkness yield five different
interpretations, which are presented in Eqs. 4, 5, 6, 7 and 8 [39]. The same type of
equations can be presented considering the reduced visibility conditions expressed
as visibility (applying Eq. 2 in Sect. 2.1.1 and assuming a certain visibility factor).

vsi = v0
i (Ks) OR

vsi = v0
i (S)

(4)

vsi = Max
{
vmin, v

0
i c (Ks)

}
OR

vsi = Max
{
vmin, v

0
i c(S)

} (5)

vsi = Max
{
vmin(i), v

0
i c (Ks)

}
OR

vsi = Max
{
vmin(i), v

0
i c(S)

} (6)

vsi = Max {vmin, vi (Ks)±�} OR
vsi = Max {vmin, vi(S)±�} (7)

vsi = Max
{
vmin(i), v

0
i (Ks)±�

}
OR

vsi = Max
{
vmin(i), v

0
i (S)±�

} (8)

Each equation is associated with a different data set interpretation:

vsi = movement speed in smoke of each individual i
v0
i = unobstructed movement speed in clear conditions of each individual i
Ks = extinction coefficient
S = visibility
vmin = minimum speed in dense smoke
vmin(i) = minimum speed in dense smoke of each individual i
c = fraction of the unobstructed movement speed
Delta = variation of movement speeds
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1. Fractional/no minimum speed interpretation. In this case the movement speed in
smoke vsi of each individual person i is a fraction of the unobstructed movement
speed in clear conditions v0

i . This reduction can be a function of the extinction
coefficient Ks (or visibility S). This interpretation corresponds to several curves
of reduction of movement speed given reduced visibility conditions in relation to
the characteristics of the individuals under consideration (i.e. their unobstructed
movement speed). In this case, there is no minimum threshold of movement
speed regardless of the visibility conditions.

2. Fractional/constant minimum speed interpretation. This case considers a reduc-
tion of the initial unobstructed movement speed v0

i obtained considering a
fraction c (where 0 < c ≤ 1) of the unobstructed speed depending on the
extinction coefficient Ks (or visibility S). In very scarce visibility conditions
(almost darkness), pedestrians walk all at the same minimum speed vi,min (in
the range for instance of 0.2–0.3 m/s). Several curves of reduction of movement
speed given reduced visibility conditions are produced in accordance to the
characteristics of the individuals (i.e. their unobstructed movement speed), but
the curves will all have a threshold of minimum movement speed.

3. Fractional/variable minimum speed interpretation. In this case, the obstructed
movement speed in smoke vsi of each individual person i is a fraction c (where
0 < c≤ 1) of the unobstructed movement speed in clear conditions v0

i , depending
on the extinction coefficient Ks (or visibility S). The minimum speed in dense
smoke assumes a variation in the speeds; thus, the minimum movement speed
vmin(i) varies in relation to the characteristics of each individual person i, e.g.
vmin(i) can be obtained as a fraction g of the initial unobstructed movement speed
v0
i , and thus vmin(i) = gv0

i . This interpretation corresponds to several curves of
reduction of movement speeds given reduced visibility, and the minimum speed
depends on the characteristics of each person. Models [58] may also assume
that this variable minimum speed is a fraction g of the unobstructed movement
speed, e.g. vi,min(i) = g vi,min. This means that a minimum threshold is used for
each individual person, i.e. the obstructed movement speed in smoke will not go
below a certain minimum individual value.

4. Absolute/constant minimum speed interpretation. The obstructed movement
speed in smoke vsi of each individual person i depends on the visibility condi-
tions, expressed as extinction coefficient Ks (or visibility S), considering a certain
variation � of movement speeds around the average value. This means that the
movement speed reduction is not dependent from the unobstructed movement
speed in smoke-free conditions v0

i . In almost complete darkness, pedestrians
walk at a constant minimum speed vmin (in the range, for instance, of 0.2–
0.3 m/s). Therefore, a single movement speed reduction curve is produced for
all pedestrians under consideration. The resulting reduced movement speeds of
each pedestrian will then be along the line of the curve employed, which includes
a threshold of minimum speed within a certain range of variation �.
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5. Absolute/variable minimum speed interpretation. The obstructed movement
speed in smoke vsi of each individual person i depends only on the visibility
conditions, expressed as extinction coefficient Ks (or visibility S), considering a
certain variation � of movement speeds around the average value. This means
that movement speed in smoke does not depend on the unobstructed movement
speed in smoke-free conditions v0

i . The movement in very dense smoke is
reproduced considering a variable speed reduction among pedestrians, i.e. vmin(i)
depends on the characteristics of each individual pedestrian, e.g. vmin(i) can be
obtained as a fraction g of the initial unobstructed movement speed v0

i ; thus,
vmin(i) = gv0

i . A single-speed reduction curve is used for all pedestrians,
with the exception of the lower part of the curve which makes use of different
minimum values of movement speed based on the individual movement abilities
of the pedestrians in dark smoke.

Considering these modelling interpretations as a starting point for the represen-
tation of the speed reduction of people in reduced visibility conditions, different
empirical correlations have been presented in relation to several variables, such
as:

1. The empirical data set(s) considered for building the correlation (see Sect. 2).
2. The assumptions of considering a reference for the reduction of movement speed

in smoke, visibility [8] or extinction coefficient [35, 58, 66].
3. The range of visibility conditions in which movement speed is considered to

start being affected by the presence of smoke. A value corresponding to 3 m of
visibility [8] has been recently suggested as threshold for starting considering
a reduction of speed due to smoke, i.e. better visibility conditions would not
correspond to a reduction of the unobstructed movement speed.

4. The method to treat uncertainties and represent pedestrian movement, either
deterministic or stochastic [67]. This last aspect would be used to assume cor-
relations which may be based on fixed constant movement speeds/relationships
or using pseudorandom sampling from distributions [68].

It should be noted that the presence of smoke can also affect movement speeds
implicitly [69], i.e. movement speeds can be reduced assuming the impact of smoke
on other behavioural variables, such as (1) redirection of movement path [15] and (2)
posture change, e.g. crawling [70]. Most of existing models do not generally include
the option to represent complex behaviours such as stop and go, zig-zag or posture
changes. Models allowing such type of complex behaviours [66] generally require
model user’s action aimed at calibrating the conditions in which such behaviours
occur or implementing manually a specific set of actions/behaviour. Therefore, the
redirection of movement and posture changes are generally implicitly represented
by considering the so called modelling speed, which is a speed calculated for each
person by dividing the distance between two points by the total time, including the
duration of the stops made by pedestrians, possible zig-zag movement or posture
changes which may yield a delay in reaching the destination. This modelling speed
is provided [15] to consider implicitly the broader impact of smoke on movement,
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and it is in contrast with the movement speed, which is instead calculated by
dividing the total distance walked in the space by the time employed, excluding
all other behavioural factors (e.g. stops) which may impact the movement speed.
Therefore, most models represent explicitly only upright pedestrian movement
along an almost straight path in smoke. The actual movement path of a pedestrian
in smoke might not be straight as the model may include a movement modelling
algorithm which considers the navigation around other pedestrians and obstacles,
e.g. the social force model [6] or the steering model [71].

Crawling movement in smoke (which could actually take place given the possible
presence of a hot descending smoke layer) has received limited research attention
[70, 72], with an empirical relationship between crowd crawling speed and crawling
density that has been expressed by Kadi [73] as follows:

Crawling speed = 0.7973+ 0.2909D–0.1503D2 (9)

where:
D = crawling crowd density (pedestrians/m2)

3.2 Modelling Way-Finding in Smoke

Models which allow a coupled fire and pedestrian/evacuation simulation may
include different algorithms and sub-models for the representation of wayfinding
(i.e. pedestrian route/exit choice) in smoke. Those models may take into account
different variables which affect this choice. The starting condition is generally
an algorithm based on general assumptions of route choice which is used to
represent the movement paths and the target/destinations of pedestrians. Such types
of algorithms may be based on different assumptions, namely, (1) the simulation
of the shortest path, (2) the simulation of the quickest path (i.e. accounting for
the queueing time of pedestrians, (3) a deterministic user-defined choice of the
movement paths and (4) paths based on different conditions, such as the presence of
smoke, signage systems (e.g. exit signs, way-finding lights), etc. [74].

The most sophisticated models represent this choice by considering the inter-
action between pedestrians and different environmental conditions, such as the
presence of smoke and the signage system (e.g. an exit sign, a way-finding guidance
system). Pedestrian choices can also be affected by several variables, such as
modelling the familiarity with the environment (e.g. according to affiliation theory
[75], people tend to move towards familiar places). In particular, modelling the
impact that signage can have in smoke on route choice presents several challenges,
as different aspects would need to be modelled within a simulator. Firstly, it is
important to simulate if signage is visible or not (given the design of the signage
and environmental conditions, which may include reduced visibility due to smoke).
Signage objects can be light-reflecting or self-emitting [30, 76] (see Sect. 2.1.1),
and its visibility may depend on several factors such as its location, characteristics,
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configuration and ambient/external lighting. Different frameworks have been used
to represent this process (e.g. the theory of affordances [49, 77, 78].

A set of four steps can be used for the simulation of the process of using the
information provided by a signage system. It should be noticed that these four
steps may be used for the simulation of the interaction of a single pedestrian with
a signage system. Nevertheless a more complete representation of the route/exit
choice should also model social influence [79–81], i.e. how the information and the
interaction of each pedestrian in a group influence each other’s decisions or how the
choices made by other pedestrians in the surroundings can affect each individual
choice.

The first step (Step 1) is to simulate if the signage under consideration is visible
or not to the pedestrians. The visibility of signage in smoke-filled environments has
been investigated for more than half a century [82]. Nevertheless, existing research
does not fully consider the visibility levels reached by signage in different smoke-
filled environmental conditions, which may also take into consideration the design
of the signage and other factors such as the colours and properties of smoke and
lighting conditions [31]. The visibility of signage should consider not only the
environmental conditions and the property of the signage but also the intrinsic
properties of the signage system (e.g. signage design, colour and location). This
is also linked with the simulation of the interaction between pedestrians and line of
sights, an issue which has been investigated and addressed in pedestrian simulations
[83].

The second step (Step 2) consists of assessing if the signage is noticed by the
pedestrians. This step assumes that a sign might be visible but not be noticed by
a pedestrian or a group of pedestrians. The noticeability of a signage system might
depend on different fire, environmental and pedestrian factors such as the familiarity
of the pedestrians with the signage and the environment [75], the location and
characteristics of the signage system [77], etc.

The third step (Step 3) refers to the ability of the signage to provide the intended
information, i.e. if the signage message is understood. Different attributes of the
interactions of pedestrians with signage systems can be represented within pedes-
trian models. Most of existing models do not represent explicitly the interaction
between the information provided (and how it is provided) and the actions of
the pedestrians. They instead often rely on implicit deterministic or probabilistic
approaches which allow the model user to represent the likelihood of understanding
the information given to the pedestrians.

The last step (Step 4) relates to the actual use of the information given by the
signage system, given this has been understood. In other words, this is the final
action taken by the pedestrians, i.e. the use of a given route or exit.

The representation of these steps can take place adopting different modelling
strategies [84, 85], including approaches based on a cellular automata modelling
approach [86–88], agent-based modelling [89–91] or game theory [7, 92, 93]. In
this context, research studies [86] have investigated how to include the impact
of different variables (including the presence of way-finding installations) using
different modelling approaches.
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4 Discussion

The analysis of existing data sets, theories and modelling approaches currently
adopted to investigate pedestrian movement in smoke allow a reflection on the
contrasting factors which may play a role in the representation of this phenomenon.
In some instances, modelling research has been trying to represent variables for
which there is still limited knowledge, mostly due to the scarce quantity of
experimental data sets available.

As a result of this lack of knowledge, pedestrian and evacuation models used
in fire safety engineering practice may use significantly different assumptions to
represent the impact of smoke on pedestrian movement. To date, there is no clear
understanding on whether the reduction of movement speed in smoke due to reduced
visibility conditions should be represented as an absolute or fractional reduction
of the movement speed in clear conditions. This is mostly due to the fact that
experimental participants generally move only in smoke-filled environments (with
the exception of one experimental data set in which they move both in smoke-free
and smoke-filled conditions [32]). Also, a significant proportion of the experimental
studies conducted to study this variable [14, 15, 25, 32, 50] has been made in
relatively simple environments (e.g. corridors or tunnels); thus, the pedestrian
movement in smoke in complex geometrical configurations still needs to be fully
investigated.

The relationship between the motivation to move, the physical exertion and the
presence of smoke has received limited research attention. Most models adopted
today are self-driven particle models [94], i.e. they are based on the assumption
that pedestrians have a constant initial speed (although that may be subjected to
perturbations of different nature [74]). This assumption does not fully allow to
represent some of the variables which may have a key role in pedestrian movement
in smoke, such as the level of perceived urgency and risk perception in general
[95]. In addition, studies have so far investigated mostly physiological factors and
perceived exertion affecting pedestrian movement in smoke-free conditions [40].
This leads to the need to study the interaction of perceived and actual physical
exertion in smoke.

While theoretical models that investigate how movement speeds are affected
by the relationship between motivation and exertion levels have been presented
[61], such models do not consider the additional behavioural and physical variables
associated with the presence of smoke. Pedestrians may indeed adopt movement
speeds in smoke as a result of a combination of different factors, which may
contribute in different manners, namely:

1. Factors associated with an increase in speed (e.g. perceived urgency, interaction
with way-finding systems and lighting)

2. Factors associated with a decrease in speed (e.g. reduced visibility conditions,
the presence of irritants and asphyxiants, physical exertion)
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3. Factors that may have a decreasing or increasing impact on movement speed
depending on the specific scenario conditions (e.g. social influence and group
interactions, motivation to move)

From a fire engineering design perspective, factors 2 and 3 are the ones that
should receive more attention (as they are heading to worsening conditions).

Several factors currently need further investigation in order to have a better
understanding of pedestrian movement in smoke. One aspect that would need to
be experimentally investigated is the study of the impact of social influence during
pedestrian movement in smoke-filled environments. In fact, although a few attempts
have been made on understanding how pedestrians interact with each other in smoke
[96, 97], to date, limited data sets exist which investigate human behaviour during
such type of group movement scenarios [24]. Aspects that need to be investigated
include both how movement speeds and behaviours change in a group (i.e. people
may tend to walk all at the speed of the lowest person in the group) and route/exit
choice (as there may be leaders and followers in the group). This latter aspect has
been investigated and modelled for smoke-free conditions [98], but it has not been
addressed yet with dedicated experimental studies for smoke-filled environments.

Scarce research has also been conducted on the impact of radiation and temper-
ature on pedestrian movement [99]. Also in this case, a few modelling attempts and
guidance [36] have been provided to represent the impact of the evolving conditions,
but this feature is generally currently not implemented in pedestrian evacuation
models used in fire safety engineering [100]. Some of the sub-incapacitating effects
of fire smoke also need to be assessed more thoroughly, as at the moment there
is limited knowledge on the impact that asphyxiants and irritants may have on
human cognition (which can subsequently affect pedestrian movement and way-
finding abilities). This lack of knowledge is linked to the difficulties associated
with developing and validating such type of sub-models, both given the scarcity
of existing data sets from real pedestrian and evacuation movement events and the
ethical limitations associated with such type of experimental data collection. This
issue inevitably limits the validity of models for the representation of pedestrian
movement in smoke and the applicability of existing tools in engineering practice.

Regarding the impact of surface materials, current experimental research studies
[15] have been investigating such variables assuming people wearing comfortable
clothing/shoes. This condition is not necessarily fully representative of a real
scenario (where people may wear heels or clothes who limit their movement). Such
limitation should be taken into consideration when applying such type of data sets
and considered in future research studies.

Concerning route/exit choice in smoke, the modelling literature includes a set of
approaches for its representation. While existing tools often represent enough flex-
ibility to represent different conditions and scenarios, their predictive capabilities
are often directly linked to the calibration effort made by the model user and by
the correspondence between the assumptions/data sets used by the model developer
and the scenario under consideration by the use. Future route/exit choice models
should instead take into consideration more sophisticated interactions between
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pedestrians and the environment (e.g. signage, the presence of others, etc.) and have
such interactions based on experimental data sets rather than on fully theoretical
algorithms/assumptions (i.e. quickest or shortest path, etc.). In fact, while initial
attempts to model complex decision-making in terms of route/exit choice have been
performed [83, 92], further studies are needed to perform further validation of the
predicted behaviour. Such models should also take into account the impact of the
presence of smoke on possible changes of pedestrian behaviour, i.e. the use of walls
that pedestrians may do to orientate themselves during movement in smoke or com-
plex leader/follower interactions. Similarly, the impact of visual acuity on pedestrian
movement in smoke has received relatively limited research attention [33].

5 Conclusion

This chapter has introduced the fundamental theories, data sets and models con-
cerning pedestrian movement in smoke. To date, most of the existing experimental
data sets focus on the relationship between movement speed and reduced visibility
conditions. Other factors such as fire-, pedestrian- or environmental-related factors
can be taken into consideration, but there is a generally limited knowledge on
their impact on pedestrian movement. A variety of modelling approaches today
exist for the representation of pedestrian movement. The main aspects taken into
consideration are the reduction of movement speed due to low visibility and way-
finding in smoke.

Acknowledgements The authors wish to acknowledge Håkan Frantzich and Karl Fridolf for the
joint research activities conducted in the area of pedestrian movement in smoke.

References

1. B. J. Meacham, “An introduction to performance-based fire safety analysis and design with
applications to structural fire safety,” in Building To Last, 1997, pp. 529–533.

2. E. D. Kuligowski, “Computer Evacuation Models for Buildings,” in SFPE Handbook of Fire
Protection Engineering, M. J. Hurley, D. T. Gottuk, J. R. Hall, K. Harada, E. D. Kuligowski,
M. Puchovsky, J. L. Torero, J. M. Watts, and C. J. Wieczorek, Eds. New York, NY: Springer
New York, 2016, pp. 2152–2180.

3. S. Erik Magnusson, H. Frantzich, and K. Harada, “Fire safety design based on calculations:
Uncertainty analysis and safety verification,” Fire Saf. J., vol. 27, no. 4, pp. 305–334, Nov.
1996.

4. D. A. Purser and M. Bensilum, “Quantification of behaviour for engineering design standards
and escape time calculations,” Saf. Sci., vol. 38, no. 2, pp. 157–182, Jul. 2001.

5. D. Nilsson and R. Fahy, “Selecting Scenarios for Deterministic Fire Safety Engineering
Analysis: Life Safety for Occupants,” Springer New York, 2016, pp. 2047–2069.

6. D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Phys. Rev. E, vol.
51, no. 5, pp. 4282–4286, May 1995.



58 E. Ronchi and D. Nilsson

7. N. Bellomo, D. Clarke, L. Gibelli, P. Townsend, and B. J. Vreugdenhil, “Human behaviours in
evacuation crowd dynamics: From modelling to ‘big data’ toward crisis management,” Phys.
Life Rev., May 2016.

8. K. Fridolf, D. Nilsson, H. Frantzich, E. Ronchi, and S. Arias, “Människors gånghastighet
i rök: Förslag till representation vid brandteknisk projektering [Human walking speed in
smoke: recommendations for representation in fire engineering design],” SP Sverige, Sweden,
2016.

9. R. Lovreglio, E. Ronchi, G. Maragkos, T. Beji, and B. Merci, “A dynamic approach for
the impact of a toxic gas dispersion hazard considering human behaviour and dispersion
modelling,” J. Hazard. Mater., vol. 318, pp. 758–771, Nov. 2016.

10. M. J. Assael and K. E. Kakosimos, Fires, explosions, and toxic gas dispersions: effects
calculatioan and risk analysis. CRC Press, 2010.

11. T. Statens Haverikommisjon, “Rapport om brann i vogntog på RV23, Oslofjordtunnelen, 23
juni 2011 [Report on the fire in a road tunnel on the RV23 Oslofjordtunnel, 23rd of June
2011],” SHT, 2013/05, 2013.

12. T. Statens Haverikommisjon, “Report on fire in a heavy goods vehicle in the Gudvanga tunnel
on the E16 road in Aurland on 5 August 2013,” Norway, 2015/02, 2015.

13. P. Duffé and M. Marec, “Task Force for Technical Investigation of the 24 March 1999 Fire
in the Mont Blanc Vehicular Tunnel.” Minister of the Interior - Ministry of Equipment,
Transportation and Housing, 1999.

14. T. Jin, “Visibility through fire smoke,” J. Fire Flammabl., vol. 9, no. 2, pp. 135–155, 1978.
15. K. Fridolf, E. Ronchi, D. Nilsson, and H. Frantzich, “Movement speed and exit choice in

smoke-filled rail tunnels,” Fire Saf. J., vol. 59, pp. 8–21, Jul. 2013.
16. G. Jensen, “Römming i röyk: Fullskala test av ledesystemer, personlig röykvern og atferd

[Evacuating in Smoke: Full Scale Tests on Emergency Egress Information Systems and
Human Behaviour in Smoky Conditions],” IGP AS, Trondheim, Norway, 1993.

17. T. Paulsen, “The effect of escape route lnforemation on mobility and way finding under smoke
logged conditions,” Fire Saf. Sci., vol. 4, pp. 693–704, 1994.

18. A. Heskestad and K. S. Pedersen, “Escape Through Smoke: Assessment of Human Behavior
and Performance of Wayguidance Systems,” in Proceedings of the First International
Symposium on Human Behaviour in Fire, Belfast, UK, 1998, pp. 631–638.

19. A. W. Heskestad, “Performance in smoke of wayguidance systems,” Fire Mater., vol. 23, no.
6, pp. 375–381, Nov. 1999.

20. T. Jin and T. Yamada, “Experimental study on human emotional instability in smoke filled
corridor: part 2,” J. Fire Sci., vol. 8, no. 2, pp. 124–134, 1990.

21. T. Jin, “Studies of emotional instability in smoke from fires,” J. Fire Flammabl., vol. 12, no.
2, pp. 130–142, 1981.

22. T. Jin and T. Yamada, “Experimental Study On Effect Of Escape Guidance In Fire Smoke By
Travelling Flashing Of Light Sources,” Fire Saf. Sci., vol. 4, pp. 705–714, 1994.

23. M. Wright, G. Cook, and G. Webber, “The effects of smoke on people’s walking Speeds
using overhead lighting and Wayguidance provision,” in Proceedings of the 2nd international
symposium on human behaviour in fire. MIT, Boston, 2001, pp. 275–284.

24. H. Frantzich, “Utrymning av tunnelbanetåg: Experimentell utvärdering av möjligheten att
utrymma i spårtunnel [Metro tunnel evacuation: Experimental evaluation of the possibility of
a space in the tram tunnel],” Karlstad, Sweden, 2000.

25. M. Seike, N. Kawabata, and M. Hasegawa, “Experiments of evacuation speed in smoke-filled
tunnel,” Tunn. Undergr. Space Technol., vol. 53, pp. 61–67, Mar. 2016.

26. K. Fridolf, E. Ronchi, D. Nilsson, and H. Frantzich, “The relationship between obstructed
and unobstructed walking speed: Results from an evacuation experiment in a smoke filled
tunnel,” presented at the 6th Human Behaviour in Fire Symposium 2015, Downing College,
Cambridge, UK, 2015, pp. 537–548.

27. K. Fujii, T. Sano, and Y. Ohmiya, “Effect of Emergency Sign and Illumination on Walking
Speed in Smoke-Filled Corridor,” presented at the 6th International Symposium on Human
Behaviour in Fire, UK, 2015, pp. 561–571.



Pedestrian Movement in Smoke: Theory, Data and Modelling Approaches 59

28. H. Frantzich and D. Nilsson, “Utrymning genom tät rök: beteende och förflyttning [Evacua-
tion in dense smoke: behaviour and movement] Technical Report 3126.” Lund: Department
of Fire Safety Engineering and Systems Safety, 2003.

29. B. Karlsson and J. Quintiere, Enclosure fire dynamics. CRC press, 1999.
30. T. Jin, “Visibility and Human Behavior in Fire Smoke,” in SFPE Handbook of Fire Protection

Engineering (3rd edition), Di Nenno P., Quincy, MA (USA): National Fire Protection
Association, 2008, pp. 2–42 – 2–53.

31. G. W. Mulholland, “Smoke production and properties,” SFPE Handb. Fire Prot. Eng., vol. 3,
pp. 2–258, 1995.

32. E. Ronchi, K. Fridolf, H. Frantzich, D. Nilsson, A. L. Walter, and H. Modig, “A tunnel
evacuation experiment on movement speed and exit choice in smoke,” Fire Saf. J., Jun. 2017.

33. Y. Akizuki, K. Yamao, and T. Tanaka, “Experimental Study On Walking Speed In Escape
Route Considering Luminous Condition, Smoke Density And Evacuee’S Visual Acuity,” in
Seventh Asia-Oceania Symposium on Fire Science and Technology, Hong Kong, 2007, p. 10.

34. T. Jin, “Studies On Human Behavior And Tenability In Fire Smoke,” Fire Saf. Sci., vol. 5, pp.
3–21, 1997.

35. D. A. Purser and J. L. McAllister, “Assessment of Hazards to Occupants from Smoke, Toxic
Gases, and Heat,” in SFPE Handbook of Fire Protection Engineering, M. J. Hurley, D. T.
Gottuk, J. R. Hall, K. Harada, E. D. Kuligowski, M. Puchovsky, J. L. Torero, J. M. Watts, and
C. J. Wieczorek, Eds. New York, NY: Springer New York, 2016, pp. 2308–2428.

36. International Standards Organization, “ISO 13571:2012 - Life-threatening components of fire
– Guidelines for the estimation of time to compromised tenability in fires.” 2012.

37. J. J. Fruin, Pedestrian Planning and Design, (Revised Edition). Elevator World, Inc, Mobile,
AL, 1987.

38. A. Seyfried, B. Steffen, W. Klingsch, T. Lippert, and M. Boltes, “The Fundamental Diagram
of Pedestrian Movement Revisited — Empirical Results and Modelling,” in Traffic and
Granular Flow’05, A. Schadschneider, T. Pöschel, R. Kühne, M. Schreckenberg, and D. E.
Wolf, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 305–314.

39. E. Ronchi, S. M. V. Gwynne, D. A. Purser, and P. Colonna, “Representation of the Impact of
Smoke on Agent Walking Speeds in Evacuation Models,” Fire Technol., vol. 49, no. 2, pp.
411–431, Apr. 2013.

40. E. Ronchi et al., “Ascending evacuation in long stairways: Physical exertion, walking speed
and behaviour,” Department of Fire Safety Engineering, Lund University, Lund, Sweden,
3192, 2015.

41. A. Halder et al., “Limitations of oxygen uptake and leg muscle activity during ascending
evacuation in stairways,” Appl. Ergon., vol. 66, pp. 52–63, Jan. 2018.

42. A. Halder et al., Energy costs and leg muscle activities in ascending stairs. 2015.
43. C. Hanon, C. Thepaut-Mathieu, C. Hausswirth, and J. M. Le Chevalier, “Electromyogram as

an indicator of neuromuscular fatigue during incremental exercise,” Eur. J. Appl. Physiol.,
vol. 78, no. 4, pp. 315–323, Aug. 1998.

44. J. H. T. Lam, J. K. K. Yuen, E. W. M. Lee, and R. Y. Y. Lee, “Experimental study on upward
movement in a high-rise building,” Saf. Sci., vol. 70, pp. 397–405, Dec. 2014.

45. T. J. Barstow, “Characterization of VO2 kinetics during heavy exercise.,” Med. Sci. Sports
Exerc., vol. 26, no. 11, pp. 1327–1334, 1994.

46. A. Robinson, “The Scandinavian Star Incident: A Case Study,” Fire Eng. J., vol. 59, pp. 36–
38, 1999.

47. G. Cosma, E. Ronchi, and D. Nilsson, “Way-finding lighting systems for rail tunnel
evacuation: A virtual reality experiment with Oculus Rift®,” J. Transp. Saf. Secur., vol. 8,
no. sup1, pp. 101–117, Jun. 2016.

48. D. Nilsson, H. Frantzich, E. Ronchi, K. Fridolf, A. Lindgren Walter, and H. Modig,
“Integrating evacuation research in large infrastructure tunnel projects - Experiences from
the Stockholm Bypass Project,” Fire Saf. J., Aug. 2017.

49. D. Nilsson, Exit choice in fire emergencies: influencing choice of exit with flashing lights.
Lund, Sweden: Dept. of Fire Safety Engineering and Systems Safety, Lund University, 2009.



60 E. Ronchi and D. Nilsson

50. D. Nilsson, M. Johansson, and H. Frantzich, “Evacuation experiment in a road tunnel: A study
of human behaviour and technical installations,” Fire Saf. J., vol. 44, no. 4, pp. 458–468, May
2009.

51. L. C. Boer and S. J. van Wijngaarden, “Directional sound evacuation from smoke-filled
tunnels,” presented at the Safe & Reliable Tunnels. Innovative European Achievements,
Prague, Czech Republic, 2004.

52. L. Boer and D. Withington, “Auditory guidance in a smoke-filled tunnel,” Ergonomics, vol.
47, no. 10, pp. 1131–1140, Aug. 2004.

53. L. D. Mellert and U. Welte, “Acoustical Guidance in Road Tunnels,” presented at the 6th
International Conference Tunnel Safety and Ventilation, Graz, 2012, pp. 187–194.

54. H. akan Frantzich, D. Nilsson, and K. Rød, “Utrymning och tekniska installationer i
vägtunnlar med dubbelriktad trafik,” Lund Brand. Lunds Tek. Högsk., 2016.

55. Förvaltning för utbyggd tunnelbana, “Tunnelbana till Nacka och söderort, Stockholm.”
Stockholms Läns Landsting, 2016.

56. Mott MacDonald Simulation Group, “Simulation of Transient Evacuation and Pedestrian
MovementS. STEPS User Manual v5.3.” 2016.

57. Thunderhead Engineering, “Pathfinder - Technical Reference.” 2018.
58. T. Korhonen and S. Hostikka, “Fire Dynamics Simulator with Evacuation: FDS+Evac

Technical Reference and User‘s Guide,” VTT Technical Research Center of Finland, Working
paper 119, 2009.

59. E. Galea, Z. Wang, A. Veeraswamy, F. Jia, P. Lawrence, and J. Ewer, “Coupled
Fire/Evacuation Analysis of the Station Nightclub Fire,” Fire Saf. Sci., vol. 9, pp. 465–476,
2008.

60. British Standards, “PD 7974-0:2002 Application of fire safety engineering principles to the
design of buildings. Guide to design framework and fire safety engineering procedures.” BSI,
2002.

61. E. Ronchi, P. A. Reneke, and R. D. Peacock, “A conceptual fatigue-motivation model to
represent pedestrian movement during stair evacuation,” Appl. Math. Model., vol. 40, no. 7–
8, pp. 4380–4396, Apr. 2016.

62. J. Koo, B.-I. Kim, and Y. S. Kim, “Estimating the effects of mental disorientation and physical
fatigue in a semi-panic evacuation,” Expert Syst. Appl., vol. 41, no. 5, pp. 2379–2390, 2014.

63. M. W. Denny, “Limits to running speed in dogs, horses and humans,” J. Exp. Biol., vol. 211,
no. 24, pp. 3836–3849, 2008.

64. E. Ronchi and D. Nilsson, “Fire evacuation in high-rise buildings: a review of human
behaviour and modelling research,” Fire Sci. Rev., vol. 2, no. 1, p. 7, 2013.

65. S. M. V. Gwynne, E. Kuligowski, M. Spearpoint, and E. Ronchi, “Bounding defaults in egress
models,” Fire Mater., Nov. 2013.

66. E. R. Galea, “BuildingExodus. User manual v6.1.” 2014.
67. D. Alvear, O. Abreu, A. Cuesta, and V. Alonso, “A new method for assessing the application

of deterministic or stochastic modelling approach in evacuation scenarios,” Fire Saf. J., vol.
65, pp. 11–18, Apr. 2014.

68. R. Machado Tavares and E. Ronchi, “Uncertainties in evacuation modelling: Current flaws
and future improvements,” presented at the 6th Human Behaviour in Fire Symposium 2015,
Downing College, Cambridge, UK, 2015, pp. 185–196.

69. S. M. V. Gwynne and K. E. Boyce, “Engineering Data,” in SFPE Handbook of Fire Protection
Engineering, M. J. Hurley, D. T. Gottuk, J. R. Hall, K. Harada, E. D. Kuligowski, M.
Puchovsky, J. L. Torero, J. M. Watts, and C. J. Wieczorek, Eds. New York, NY: Springer
New York, 2016, pp. 2429–2551.

70. R. A. Kady and J. Davis, “The effect of occupant characteristics on crawling speed in
evacuation,” Fire Saf. J., vol. 44, no. 4, pp. 451–457, May 2009.

71. C. W. Reynolds, “Steering Behaviors For Autonomous Characters,” presented at the Game
developers conference, 1999, pp. 763–782.

72. R. Nagai, M. Fukamachi, and T. Nagatani, “Evacuation of crawlers and walkers from corridor
through an exit,” Phys. Stat. Mech. Its Appl., vol. 367, pp. 449–460, Jul. 2006.



Pedestrian Movement in Smoke: Theory, Data and Modelling Approaches 61

73. R. A. Kady, “The development of a movement–density relationship for people going on four
in evacuation,” Saf. Sci., vol. 50, no. 2, pp. 253–258, Feb. 2012.

74. E. Ronchi and D. Nilsson, “Basic Concepts and Modelling Methods,” in Evacuation Modeling
Trends, A. Cuesta, O. Abreu, and D. Alvear, Eds. Cham: Springer International Publishing,
2016, pp. 1–23.

75. J. D. Sime, “Movement toward the Familiar: Person and Place Affiliation in a Fire Entrapment
Setting,” Environ. Behav., vol. 17, no. 6, pp. 697–724, Nov. 1985.

76. E. Ronchi, D. Nilsson, and S. M. V. Gwynne, “Modelling the Impact of Emergency Exit Signs
in Tunnels,” Fire Technol., vol. 48, no. 4, pp. 961–988, Apr. 2012.

77. E. Carattin, R. Lovreglio, E. Ronchi, and D. Nilsson, “Affordance-based evaluation of signage
design for areas of refuge,” in 14th International Conference and Exhibition on Fire Science
and Engineering, Royal Holloway College, University of London, UK, 2016.

78. J. J. Gibson, The Ecological approach to visual perception. Hillsdale (N.J.): Lawrence
Erlbaum Associates, 1986.

79. M. Deutsch and H. B. Gerard, “A study of normative and informational social influences upon
individual judgment.,” J. Abnorm. Soc. Psychol., vol. 51, no. 3, pp. 629–636, 1955.

80. M. Hewstone and R. Martin, “Social Influence,” in Introduction to Social Psychology, 4th ed.,
London, UK: Blackwell Publishing, 2008.

81. M. Kinateder et al., “Social influence on route choice in a virtual reality tunnel fire,” Transp.
Res. Part F Traffic Psychol. Behav., vol. 26, pp. 116–125, Sep. 2014.

82. D. Rasbash, “The efficiency of hand lamps in smoke,” IFE J, vol. 11, no. 1, p. 46, 1951.
83. H. Xie, L. Filippidis, E. R. Galea, D. Blackshields, and P. J. Lawrence, “Experimental study of

the effectiveness of emergency signage,” in Proceedings of the 4th international symposium
on human behaviour in fire, Robinson College, Cambridge, UK, 2009, pp. 13–15.

84. E. Vilar, F. Rebelo, P. Noriega, J. Teles, and C. Mayhorn, “The influence of environmental
features on route selection in an emergency situation,” Appl. Ergon., vol. 44, no. 4, pp. 618–
627, Jul. 2013.

85. W. Liao, A. U. Kemloh Wagoum, and N. W. F. Bode, “Route choice in pedestrians:
determinants for initial choices and revising decisions,” J. R. Soc. Interface, vol. 14, no. 127,
p. 20160684, Feb. 2017.

86. R. Lovreglio, E. Ronchi, and D. Nilsson, “Calibrating floor field cellular automaton models
for pedestrian dynamics by using likelihood function optimization,” Phys. Stat. Mech. Its
Appl., vol. 438, pp. 308–320, Nov. 2015.

87. S. Bandini, F. Rubagotti, G. Vizzari, and K. Shimura, “A Cellular Automata Based Model for
Pedestrian and Group Dynamics: Motivations and First Experiments,” in Parallel Computing
Technologies, vol. 6873, V. Malyshkin, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 125–139.

88. N. Pelechano and A. Malkawi, “Evacuation simulation models: Challenges in modeling high
rise building evacuation with cellular automata approaches,” Autom. Constr., vol. 17, no. 4,
pp. 377–385, May 2008.

89. E.-W. Augustijn-Beckers, J. Flacke, and B. Retsios, “Investigating the effect of different pre-
evacuation behavior and exit choice strategies using agent-based modeling,” Procedia Eng.,
vol. 3, pp. 23–35, Jan. 2010.

90. L. Tan, M. Hu, and H. Lin, “Agent-based simulation of building evacuation: Combining
human behavior with predictable spatial accessibility in a fire emergency,” Inf. Sci., Sep.
2014.

91. D. Shikhalev, K. Wagoum, A. Ulrich, and R. Khabibulin, “Development of a safest routing
algorithm for evacuation simulation in case of fire,” in 6th International Conference on Agents
and Artificial Intelligence, 2014, vol. 1.

92. H. Ehtamo, S. Heliövaara, T. Korhonen, and S. Hostikka, “Game Theoretic Best-Response
Dynamics For Evacuees’ Exit Selection,” Adv. Complex Syst., vol. 13, no. 01, pp. 113–134,
Feb. 2010.

93. S. M. Lo, H. C. Huang, P. Wang, and K. K. Yuen, “A game theory based exit selection model
for evacuation,” Fire Saf. J., vol. 41, no. 5, pp. 364–369, Jul. 2006.



62 E. Ronchi and D. Nilsson

94. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel Type of Phase
Transition in a System of Self-Driven Particles,” Phys. Rev. Lett., vol. 75, no. 6, pp.
1226–1229, Aug. 1995.

95. M. T. Kinateder, E. D. Kuligowski, P. K. Reneke, and R. D. Peacock, “A Review of Risk
Perception in Building Fire Evacuation,” National Institute of Standards and Technology,
NIST TN 1840, Sep. 2014.

96. E. N. M. Cirillo and A. Muntean, “Dynamics of pedestrians in regions with no visibility— A
lattice model without exclusion,” Phys. Stat. Mech. Its Appl., vol. 392, no. 17, pp. 3578–3588,
Sep. 2013.

97. E. N. M. Cirillo and A. Muntean, “Can cooperation slow down emergency evacuations?,”
Comptes Rendus Mécanique, vol. 340, no. 9, pp. 625–628, Sep. 2012.

98. T. Korhonen and S. Heliovaara, “FDS+Evac: Herding Behavior and Exit Selection,” Fire Saf.
Sci., vol. 10, pp. 723–734, 2011.

99. S. Bae, J.-H. Choi, C. Kim, W. Hong, and H. S. Ryou, “Development of new evacuation
model (BR-radiation model) through an experiment,” J. Mech. Sci. Technol., vol. 30, no. 7,
pp. 3379–3391, Jul. 2016.

100. E. D. Kuligowski, R. D. Peacock, and B. L. Hoskins, “A Review of Building Evacuation
Models, 2nd Edition, NIST Technical Note 1680.” National Institute of Standards and
Technology, 2010.



Pedestrian Dynamics: From Empirical
Results to Modeling
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Abstract In this contribution, we review the state of the art of the interplay between
empirical and theoretical studies of pedestrian dynamics. First, we introduce the
main physical quantities characterizing the properties of a homogeneous crowd. A
brief summary of some important empirical findings is given. Finally, we discuss the
properties of microscopic pedestrian models. Different classifications of the models
are proposed. We emphasize the relevance of empirical results and show how they
can be used for validation and calibration.

1 Introduction

Modeling of pedestrian dynamics has become more and more relevant in recent
years due to urbanization of cities. The increasing number of large-scale events
underlines the need for accurate tools for planning and management in order
to avoid crowd disasters where many people may get injured or even killed.
The models implemented in such tools need to be validated and, in order to
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make accurate quantitative predictions, calibrated properly. This can only be
achieved if reliable empirical data exist. Therefore, in recent years, more and
more research groups have performed laboratory experiments with pedestrians to
obtain trustworthy quantitative information about pedestrian motion and investigate
qualitative phenomena. Obviously, laboratory experiments have both advantages
and disadvantages compared to observational studies. On one hand, they are easily
reproducible and can also be verified. In laboratory experiments, the pedestrian can
be equipped with different kinds of sensors allowing to obtain accurate data. The
studies are not being influenced by external uncontrollable factors like weather or
light. On the other hand, it remains unclear if the test persons behave exactly in
the same way as in everyday situations. Certain scenarios cannot be studied due
to ethical and safety issues, e.g., extremely high densities or excessive pushing in
bottlenecks. Nevertheless, laboratory experiments have improved our knowledge
about pedestrian traffic considerably in the last 10 years, especially in “normal”
situations.

This improvement has also consequences for the modeling of pedestrian dynam-
ics. Although some aspects are still discussed controversially, we now have access
to rich and reliable data for validation and calibration purposes. This has led to
the improvement of existing models as well as the introduction of new modeling
approaches.

In this contribution we give a short overview of the empirical results that are
usually used to test model predictions in Sect. 2. Here we distinguish between
quantitative results such as the fundamental diagram (flow-density relation) and
collective effects that can be observed microscopically (e.g., lane formation or clog-
ging). In Sect. 3 we propose a classification of the modeling approaches based on
the interaction mechanism and the main variables of the description. Hereby, we will
focus on microscopic models of pedestrian dynamics, i.e., models that distinguish
individual agents and their motion. This allows to distinguish acceleration-based,
velocity-based, and decision-based models. Then in Sect. 4, we discuss how the
modeling approaches can be tested both qualitatively and quantitatively, where the
empirical results in Sect. 2 will play an important role.

2 Empirical Results

Studies of empirical properties of pedestrian motion and evacuation have a long
history that can be traced back more than 100 years when researchers started to study
the influences of emergency exits [30]. At the beginning, most data were obtained in
different places by field observation. For example, some researchers blended them-
selves into the crowd measuring their own speed in the stream to represent the speed
of the corresponding pedestrian flow. Another popular method is filming pedestrian
motion in public transportation places like subway stations and sidewalks and
then analyzing their macroscopic characteristics by visual observation and manual
counting. These earlier studies supply abundant data for pedestrian dynamics both
on a quantitative and qualitative level. However, the common problem of these data
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is their precision and reliability. It is not known whether data from individuals can be
used to represent global properties of pedestrian flow or not. Visual observation and
manual counting on sequences of videos may lead to large errors for the final results,
especially quantitatively. In addition, other factors influencing pedestrian movement
cannot be determined or excluded from these results. In this situation, in the last 20
years, a new approach became more and more popular which emphasizes the role
of controlled experiments with large groups of pedestrians. With the development
of computer science and image processing techniques and low prices of consumer
electronics, e.g., video cameras, it is possible to obtain empirical data with higher
precision and improved quality.

A main goal of any theory of pedestrian dynamics is a quantitative description
of the observed phenomena. This requires definition of observable quantities that
provide an accurate description of the relevant properties of pedestrian streams. In
the following we introduce the most relevant observable and also discuss potential
problems in measuring them. Many of these quantities are also used in related areas,
for example, vehicular traffic.

2.1 Observables: Flow, Density, and Velocity

2.1.1 Flow

The pedestrian flow J is defined by the number of pedestrians crossing a fixed
location of a facility per unit of time. In most cases, it is considered as a scalar
quantity where only the flow normal to some cross section is taken into account.
The flow can be measured in different ways. In the simplest method, the times ti at
which pedestrians pass a fixed measurement location are determined. The flow J is
then related to the time gaps �ti = ti+1 − ti between two consecutive pedestrians i
and i + 1 by

J = 1

〈�t〉 with 〈�t〉 = 1

N

N∑
i=1

(ti+1 − ti ) = tN+1 − t1
N

, (1)

which allows to estimate J for a given number N of observed pedestrians. Another
approach uses the cumulative flow function N(t) where pedestrians passing the
cross section are numbered consecutively.1 Taking the continuous limit, the time
evolution of N(t) allows to determine the flow as the time derivative J0 = N ′(t).
For a discrete time interval T , the flow is given by (see Fig. 1)

JT = �N
T
, with �N = N(t)−N(t + T ). (2)

1Formally, N(t) = ∑
i 1ti<t , with 1A = 1 if A holds and 1A = 0 otherwise.
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Pedestrian
number

Time
t − T t

N(t − T )

N(t)

ΔN

T

Fig. 1 Illustration of the cumulative flow function N(t) and its relation to the flow on a time
interval T

The flow of a pedestrian stream can also be measured by using ideas from fluid
dynamics. The flow through a facility of width b is determined by the average
density ρ and the average speed v of a pedestrian stream as

J = ρ v b = Jsb, (3)

where the specific flow2

Js = ρ v (4)

gives the flow per unit-width. Equation (4) is usually called hydrodynamic relation.
These two definitions of the flow can lead to problems related to the way how

velocities, densities, or time gaps are measured. When Eq. (1) is used, the flow
is usually measured as time average at a certain location. In contrast, density
measurements used in Eq. (3) are determined as an instantaneous mean value
averaging over space. The underestimation of fast-moving pedestrians by the spatial
average compared to the time average of the flow at a single measurement location
can lead to a bias.3 Furthermore most experimental studies that determine the flow
using (3) for technical reasons combine an average velocity of a single pedestrian
over time with an instantaneous density. However, the mean values only correspond
when the average velocity of all pedestrians contributing to the density at a certain
instant is considered. This procedure would be very time-consuming and has not
been realized in practice up to now. Moreover, spatial averages are influenced by the

2In strictly one-dimensional motion often a line density (dimension: 1/length) is used. Then the
flow is given by J = ρv.
3For a discussion of this effect for the case of vehicular traffic, see e.g. [57, 73, 96].
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fact that the dimension of the test section is usually of the same order of magnitude
as the extent of the pedestrians. All these factors can contribute to the observed large
differences in different measurements (see also the discussion in Sect. 2.3).

2.1.2 Density

In pedestrian dynamics, various quantities have been proposed that are related to
different notions of density. Fruin [43] has proposed to quantify the pedestrian load
of a facility by the pedestrian area module which is given by the reciprocal of the
density. The inter-person distance introduced by Thompson and Marchant [174] is
measured between center coordinates of the assessing and obstructing persons. For a

pedestrian stream of evenly spaced persons, Thompson and Marchant [174] call
√

1
ρ

the average inter-person distance. In [61] the local density is obtained by averaging
over a circular region of radius R

ρ(r, t) =
∑
i

f (ri (t)− r), (5)

where ri (t) are the positions of the pedestrians i in the neighborhood of r and f (. . .)
is a Gaussian, distance-dependent weight function. The kernel function f depends
on a bandwidth parameter for calibration. In the Voronoi method [168], which has
the advantage of not needing additional parameters, the kernels are uniform on the
cells given by the Voronoi diagram (see Fig. 2).

Predtechenskii and Milinskii [139] use a density definition that differs from the
ones given above. They consider the ratio of the sum of the projection area fi of the
bodies and the total area of the pedestrian stream A, defining the (dimensionless)
density ρ̃ as

ρ̃ =
∑
i fi

A
. (6)

Voronoi density

f(b) Gaussian kernel

Space

Fig. 2 Examples of Voronoi and Gaussian kernel estimations for the density of pedestrians in one
dimension. The Gaussian kernel estimation depends on a bandwidth parameter b for calibration
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This quantity is known as occupancy in the context of vehicular traffic. Since the
projection area fi depends strongly on the type of person (e.g., it is much smaller
for a child than an adult), the densities for different pedestrian streams consisting of
the same number of persons and the same stream area can be quite different.

2.1.3 Mean Speed

As for flow and density, there exist various methods to measure the mean speed.
For instance, the time mean speed averages the speeds of pedestrians over the time,
while the space mean speed averages the speed over the space. Space mean time is
generally determined by measuring the traveled distance of the pedestrians over two
successive photographs of the environment. Time mean is derived from the crossing
times of two consecutive points. It is important to notice that in general space and
time mean speeds are not identical. This statement, closely related to double-loop
detector measurement technique, has been pointed out early for traffic flow [183].
However, the difference can be substantial for pedestrian flows as well [82]. The
time mean speed does not allow to recover the traveled time of the pedestrian nor
the hydrodynamic relation (4) borrowed from fluid dynamics the harmonic average
should be used instead to recover (asymptotically) the space mean speed [183] and
so travel time and hydrodynamic relation.

The difference between the space and time mean speeds can be nicely tackled
thanks to trajectories. Let us denote di the traveled distance and ti the traveled time
of pedestrian trajectories in the space-time diagram. The speed of pedestrian i is
therefore vi = di/ti . According to Edie [33], a natural way to estimate the mean
speed of the trajectories consists in dividing the total traveled distance by the total
travel time:

VE =
∑
i di∑
i ti
. (7)

Let us fix now the traveled distance to a fix value d (estimation of the mean speed on
a horizontal band in the time-space diagram of the trajectories, see Fig. 3). Such a
methodology is the one used above with entry and exit times. One gets the harmonic
mean

VE =
∑
i d∑
i ti

= n∑
i 1/vi

. (8)

If we fix the traveled time to a fixed value t (estimation of the speeds from two
successive photographs of the system, this corresponds to estimation of the mean
speed on a vertical band in the time-space diagram of the trajectories; see Fig. 3);
then one gets

VE =
∑
i di∑
i t

= 1

n

∑
i

vi . (9)
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i
1/vi

∑
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i∑

i
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Time

Space

Fig. 3 Illustration for the measurements of the mean speed for trajectories with a fixed time
interval (space mean speed, vertical band) and a fixed distance (time mean speed, horizontal band),
and the harmonic and contraharmonic means allowing to recover asymptotically one definition
from the other

As expected, Edie’s definition for the mean speed of trajectories corresponds to the
space mean speed.

2.2 Collective Phenomena

Pedestrian dynamics shows a large variety of collective effects and self-organization
phenomena. Although these are macroscopic phenomena, they are a consequence
of microscopic interactions between individuals. Therefore they can be viewed as
benchmark tests for any model of pedestrian dynamics.

2.2.1 Jamming and Clogging

At high densities, often jamming and clogging phenomena are observed in pedes-
trian crowds. Jamming is observed when the inflow exceeds the capacity. This
often happens at locations with reduced capacity. Such bottlenecks are encountered
frequently in every facility, e.g., at exits (Fig. 4), other kinds of narrowings, and
stairs. Most jamming phenomena are a consequence of the exclusion principle and
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Fig. 4 Clogging in front of a bottleneck

Fig. 5 Formation of an arch
(red line) stabilized by
friction in a funnel. Similar
arches are observed in
pedestrian evacuations near a
bottleneck (e.g., an exit)

do not depend strongly on the microscopic dynamics of the particles. Exclusion
here means that space occupied by one particle is not available for others. A
detailed understanding of the conditions under which clogging occurs is important
for many practical applications. In fact, clogging in pedestrian crowds has many
similarities with clogging in other particulate systems, e.g., granular matter. For the
latter it has been shown that so-called arching phenomena occur in the flow through
narrow openings (Fig. 5) [186]. Arches are self-stabilizing structures that are formed
under contact of the particles due to friction effects. Similar structures were already
observed in [138] in front of doors under high pressure. Experimental studies on
clogging at bottlenecks can be found in [49, 114].

Jamming can also be observed in pedestrian streams moving in opposite direc-
tions (counterflow). Here oppositely moving individuals can mutually block each
other’s forward motion. At high densities or high inflows, it is not possible to turn
around and move back which then leads to a gridlock.

2.2.2 Density Waves, Stop-and-Go Waves

Density variations that are quasiperiodic density variations in space and time are
usually called density wave. They are, e.g., observed in densely crowded corridors
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Fig. 6 Trajectories of
pedestrians on a section
during an experiment on a
corridor with periodic
boundary conditions [16].
The initial configuration is
uniform. However,
stop-and-go waves occur and
propagate after some time.
Here the trajectories of
stopped or slowly moving
pedestrians are shown in blue,
whereas those of moving
pedestrians are presented in
red

in subway stations as well as during experiments (see [160, 161] and Fig. 6). Here
phenomena similar to stop-and-go vehicular traffic are observed. These can also
be observed in controlled experiments of single-file motion [137, 161] and in large
crowds, e.g., on the Jamaraat Bridge during the Hajj pilgrimage 2006 in Mecca [60].
As in vehicular traffic, density fluctuations in single-file motion move backward
opposite to the movement direction of the pedestrians. A kind of phase separation
into standing and slowly moving pedestrians is observed. In contrast, in highway
traffic, a separation into standing and fast-moving cars is found (neglecting a narrow
transition layer) which is usually explained by the so-called slow-to-start behavior of
cars [3]. This fundamental difference indicates that in pedestrian motion additional
mechanisms must be relevant which have not yet been fully understood.

2.2.3 Lane Formation

When two groups of people move in opposite directions (counterflow), often
dynamically varying lanes are formed consisting of pedestrians moving in the same
direction (Fig. 7) [124, 127, 188]. This reduces strongly the probability of collisions
with oncoming pedestrians which is more comfortable and allows higher walking
speeds. It should be noted that the occurrence of lane formation does not require
a preference of moving on one side. It also occurs in situations without left or
right preference. Although cultural differences for the preferred side are observed,
they are not essential for the phenomenon itself but have an influence on the kind
of lanes formed and their order. The number of lanes can vary considerably with
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Fig. 7 Bidirectional flow with two comparative lanes in each flow direction

the total width of the flow and is usually not constant in time. The number of
lanes in opposite directions can be different corresponding to a kind of spontaneous
symmetry breaking.

Lane formation can be described quantitatively, e.g., by the band index [188]
which is basically the ratio of pedestrians in lanes to their total number. Another
characterization can be obtained from (transversal) velocity profiles at fixed posi-
tions [14]. Since similar phenomena have been observed in other physical systems,
e.g., colloidal mixtures driven by an external field [17, 32, 141], the order parameter

φ = 1
N

〈∑N
j=1 φj

〉
introduced there has been adopted for pedestrian streams. Here

φj = 1 if the lateral distance to all other particles of the other type is larger
than a typical density-dependent length scale and φj = 0 otherwise. Although
lane formation is one of the most important benchmark tests for any model,
quantitative empirical studies are rather rare [85, 188, 195]. At high densities, several
theoretical models predict a jamming transition, i.e., the transition to a state where
no movement is possible anymore (gridlock) [98]. However, so far there is no
conclusive empirical evidence for this transition. From the existing experiments,
it can be concluded that such a transition – if it exists – will occur at densities larger
than 3.5 persons/m2 [195].

2.2.4 Other Collective Effects

At bottlenecks, e.g., doors, oscillatory changes of the direction of motion in
counterflow are frequently observed. The flow direction is stable until a pedestrian
who wants to move in the opposite direction is able to pass through the bottleneck
making it easier for others to follow her.
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Various collective patterns of motion can be observed at intersections. Usually
they lead to a higher efficiency of motion. Typical examples are (short-lived)
roundabouts that are formed dynamically. Even though they require small detours,
they can be advantageous by allowing for a “smoother” motion.

2.2.5 Emergency Situations, “Panic”

Collective phenomena observed in emergency situations have often been mislead-
ingly attributed to “panic behavior.” However, there is no universally accepted
definition of “panic.” Instead, social scientists discuss the underlying theory about
collective behavior of crowds formulated by Le Bon [94] critically (see, e.g.,
[110, 157]). Certain aspects are usually associated with this concept [72, 167], e.g.,
competition for scarce or dwindling resources (e.g., safe space or access to an exit).
It is often assumed that this leads to selfish, asocial, or even irrational behavior and
contagion that affects large groups. A closer investigation of many crowd disasters
has revealed that most of these characteristics either have not been observed at all or
have played no role for the outcome [71, 144]. Often the reason for these accidents
is much simpler, e.g., a capacity of the facility that is too small. Therefore the term
“panic” should be avoided as it implicitly puts the blame on the victims, crowd
disaster being a more appropriate characterization.

2.3 Fundamental Diagram

The fundamental diagram, describing the relation among density ρ, velocity v, and
flow J , is basic input in applications for the design and dimensioning of pedestrian
facilities [43, 125, 138]. Furthermore it is a quantitative benchmark for models of
pedestrian dynamics [25, 75, 111, 165]. In general, there is a widespread consensus
that velocity decreases with increasing density. However, the relation is affected
by several factors including culture and population differences [18, 61, 113],
differences between uni- and multidirectional flow [92, 124, 140], short-ranged
fluctuations [140], the type of traffic [127], different types of facilities, etc. In this
section, we will mainly discuss the fundamental diagrams of pedestrian flows in
different types of geometries.

2.3.1 Single-File Movement in Circuit

For the pedestrian movement along a line, the speed for walking pedestrians depends
linearly on the step size [184] and the inverse of the density [164]. In most studies
for this case, the density is defined as the inverse of headway and therefore with the
unit of pedestrians per meter. External factors like lateral interference and curvature
effects of the path have little influence on the fundamental diagram in the density
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Fig. 8 Fundamental diagrams for single-file movement of pedestrians in a circuit (left) and
comparison of linear fits of the headway-velocity relation in the strongly constrained regime for
experiments from different countries [16]

domains considered [164, 197]. However, the influence of cultural differences
[18, 101] and the composition of crowd should not be ignored. For example, the
speed of Indians is less dependent on density than the speed of Germans. For a
crowd composed of young students with nearly the same age, the speed is always
higher than that of a mixed group of elder and young test persons at the same density
range (see Fig. 8). When considering directly the relation between the headway
and velocity, different linear regimes are obtained, and the corresponding slope for
each regime represents the adaptation time. Instead of changing continuously, the
adaptation time takes three discrete values [69]. However, for a homogeneous group
composed of young students, only two adaptation times are observed [16]. Figure 8
shows linear fits of the headway-velocity relation in the strongly constrained regime
in different countries.

2.3.2 Pedestrian Movement in Straight Corridor

Corridors are simple and common elements in almost all types of pedestrian
facilities designed for uni- and bidirectional pedestrian flow. The fundamental
diagram both for uni- and bidirectional flow in corridor with different widths can be
unified into one diagram for specific flow [56, 124, 127, 128, 193] (see Fig. 9, left).
When comparing the fundamental diagrams of uni- and bidirectional pedestrian
streams, clear differences can be observed especially for densities higher than
1.0 m−2 (see Fig. 9, right) [92, 124, 195]. The flow becomes almost independent of
the density and shows a plateau. The maximal specific flow is lower in bidirectional
flow. Regarding the influence of the flow ratio of bidirectional streams, it seems
not to be an independent factor influencing the fundamental diagram. However, no
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Fig. 9 Fundamental diagrams for pedestrian movement in a straight corridor. The left results are
obtained from unidirectional movement in corridors with three different widths [193], while in the
right, the fundamental diagrams of uni- and bidirectional flow are compared [195]

consensus is reached up to now [2, 36, 93, 179]. Surprisingly some studies found
that the sum of flow and counterflow in corridors is larger than the unidirectional
flow and that, for equally distributed loads, it can be twice the unidirectional flow
[85].

2.3.3 Pedestrian Movement Through Bottlenecks

For the characterization of the performance of bottlenecks, two cases have to be
distinguished. In the free flow case, the flow through the bottleneck is identical to the
incoming flow. In the congested case, the incoming flow exceeds the capacity (the
maximal possible flow) of the bottleneck. Then congestion occurs, and the density
in front of the bottleneck increases. The density in front of the bottleneck is higher
than that inside the bottleneck [26, 138, 162]. Surprisingly, several experiments
have found that the maximal flow at bottlenecks can exceed the maximum of the
empirical fundamental diagram [115, 120]. This is not fully understood up to now
as it contradicts a rather general result from non-equilibrium physics [135, 149].
Possible explanations are finite-size effects or psychological factors.

In case of congestion, pedestrians can cooperate or compete while entering
the bottleneck. One strategy to successfully enter a bottleneck in a competitive
situation is pushing, which could lead to blockages (clogs) limiting the flow through
the bottleneck. Here we focus on pedestrian movement in cooperative situations.
One of the most important practical issues is how the capacity of the bottleneck
increases with the width which has already been studied at the beginning of the
twentieth century [30, 38]. A stepwise increase of capacity with the width is up to
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Fig. 10 Influence of the
width of a bottleneck on the
flow. Experimental data
[114, 115, 120, 162] of
different types of bottlenecks
and initial conditions. The
black dashed line corresponds
to b = 0.4 m. The flow shows
a linear dependency of
bottleneck width. The widths
of Nagai et al. [120] are
scaled by b = bdesk + 0.4 m
[99]

now an assumption made in several building codes and design recommendations
[119, 133]. The empirical results in [65, 66] also imply a stepwise increase of
capacity. However, the investigation was restricted to two values of the width.
When more values of the bottleneck width are considered from different laboratory
experiments [87, 114, 115, 120, 162], it is found that the flow does not necessarily
depend on the number of lanes. On the contrary, the capacity is given by the
maximum of the fundamental diagram, and a linear function of the width is assumed
in [43, 125, 138, 175, 184] (see Fig. 10). The exact geometry of the bottleneck has
only a minor influence on the flow [162], while a high initial density in front of the
bottleneck can increase the resulting flow values [120]. The width of the passage
[146] and the existence of an obstacle [59, 189] in front of the bottleneck also
influence the flow through the bottleneck. Shorter bottlenecks allow higher flows
than longer ones [100, 153, 160]. The total flow at bottlenecks with bidirectional
movement is higher than it is for unidirectional flows [59]. Population with disabled
pedestrians could lead to a lower flow and that with mainly children leads to the
highest flow [27].

2.3.4 Pedestrian Movement on Stairs

Stairs in multi-storey or high-rise buildings are a major determinant for the
evacuation time. Generally, they have to be considered as bottlenecks for pedestrian
flow due to their physical dimension which is often smaller than other parts of a
building. Unlike on horizontal planes, the speed has to be reduced, and pedestrians
become fatigued more quickly while moving on stairs. The free speed has been
shown to depend on the incline [43–45, 53], environment conditions (comfortable,
normal, dangerous) [139], age and gender [43], tread width [41], length of a stair
[86], and health condition, especially disablement [10].
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Consequently, there are more degrees of freedom (e.g., upward and downward
movement, the influence of riser height and tread length, exhaustion effects for
upward motion, etc.) which influence the fundamental diagram of movement on
stairs compared to the movement on flat terrain. Different fundamental diagrams
for stairs are presented in four well-known planning handbooks for pedestrian
facilities and evacuation routes [43, 125, 138, 184]. Figure 11 shows the fundamental
diagram for up- and downward movement on stairs collected by Burghardt et al.
[12] from [11, 20, 40, 41, 53, 56, 67, 86, 91, 158, 171, 172, 190]. These empirical
data are obtained from different conditions (e.g., different locations and slopes of
the stairs, different measurement methods, etc.). A linear increase of the specific
flow is observable with minor differences of the incline at low densities for both up-
and downward motions. However, the flow decreases with increasing slope of stairs
[12, 53]. In the experiment of [12], the density range where the specific flow reaches
the maximum is larger for downward than for upward motion. For downward motion
the specific flow at the external staircase fades into a plateau for densities higher than
2.0 m−2. For the stairs located in the lower tier of the grandstand, the specific flow
increases with higher densities, while in the upper tier, a decrease of flow appears.

2.3.5 Other Geometries

Pedestrian flow through other structures like T-junctions or crossings is more
complex than for the elements described in the previous subsections. In T-junctions,
depending on the situation, bottleneck flow, merging flow, or splitting flow is
possible. For motion around corners, it is still not known how the effective width
of the corridor reduces and changes with increasing inflow. The existing empirical
data shows that the fundamental diagrams of streams in front and behind the turning
at the corner agree well and are in accordance with that from T-junction flow behind
the merging [192]. The fundamental diagram obtained in the main stream is different
from that in branches [194]. At crossings, pedestrians from different directions
have different preferred velocities and different orientations. Therefore the local
velocity or flow cannot be measured in the usual way. Adapted definitions have
been proposed [15, 97]. Surprisingly, the fundamental diagrams for bidirectional
flow and four-directional crossing flow show no apparent difference in the density
ranges covered in the experiments. However, there are indications that measurement
methods, motivation of pedestrians, and experimental setup may have a strong
influence.

3 Classification of Models

Models of pedestrian dynamics can be classified on different levels according to the
relevant timescale (Fig. 12). The strategic level describes long-term decisions on
the activities that pedestrians like to perform. The tactical level concerns short-term
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Choice of activities

Schedule of activities

Choice of activity area

Route choice

Walking

Interaction with environment

Performing activity

Network topology

timetable

Geometry

Obstacles
Neighbours

Characteristics of
pedestrians and

vehicles

Strategic level

Tactical level

Operational level

Fig. 12 The different levels of modeling of pedestrian behavior [24, 64]

decisions made by the pedestrians, especially the route choice taking into account
potential obstacles, the density of the pedestrian crowd, etc. The strategic and
tactical levels can be summarized as extrinsic factors for the pedestrian motion.
Their modeling would require information from disciplines like sociology and
psychology.

In the following our focus will be on the operational level which describes the
actual walking behavior of pedestrians, e.g., their immediate decisions necessary
to avoid collisions. Modeling on the operational level usual makes use of physics-
based approaches where pedestrians are treated as particles that interact with each
other and with the environment. They are then formulated in mathematical form
that allows quantitative predictions. The goal is to find models which are as simple
as possible but at the same time can reproduce “realistic” movement dynamics.
Extensions to “intelligent” particles are possible and often referred to as multi-agent
systems. They usually capture parts of the tactical or even strategic level, e.g., by
taking into account goals and desires of the agents.

On the operational level, the various modeling approaches can be further
classified. First, heuristic models can be distinguished from first-principle models.
Heuristic models typically include several interaction terms that are considered to
be relevant. They are parametrized by model parameters which can be used to fit
empirical data. In contrast, first-principle models are derived from certain postulates
considered to be fundamental.

Next, microscopic models can be distinguished from macroscopic models. In
macroscopic models, the state of the system is described by time and space
averages of the density, velocity, and flow which are derived from the trajectories
of the persons. Therefore different individuals cannot be distinguished. However,
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microscopic models represent each individual separately which allows to introduce
individual properties in a natural way. Pedestrian motion is usually described
by three basic variables, namely, space (position), time, and state variable (e.g.,
velocities). Each of these variables can either be discrete (i.e., an integer number)
or continuous (i.e., a real number). In fact, combinations are possible, e.g., a
continuous space combined with discrete time as in so-called coupled map lattices.
The most common choices are approaches where all variables are discrete, e.g.,
cellular automata models, and models where all variables are continuous as in
the social-force models. In this contribution we will mainly focus on microscopic
approaches.

Microscopic models of pedestrian dynamics can be viewed as interacting many-
particle systems. They can be classified by the relevant variable used to determine
the motion and the way for implementing the interactions among pedestrians,
e.g., acceleration- and velocity-based models. In acceleration-based models, the
interactions are typically described by the so-called social forces: agents “feel” the
force exerted by others and the infrastructure. This is inspired by the observation
that the presence of others leads to deviations from straight motion. In analogy
to Newtonian mechanics, a force is made responsible for these accelerations. In
addition, physical forces are relevant, e.g., when persons are in contact. In velocity-
based models, speed and direction of motion are determined from the positions of
the surrounding neighbors and obstacles by taking into account collision avoidance
and speed optimization principles. In the simplest case, the speed is proportional
to the distance to the next agent/obstacle in front, while the chosen direction
of motion maximizes the speed to the desired destination. Both acceleration-
and velocity-based models emphasize the extrinsic properties and their relevance
for the motion of the agents. However, in rule-based models (or decision-based
models), pedestrians make “decisions” based on the current (local) situation in
their neighborhood, their goals, etc. The rules are often justified by psychology.
Consequently, these kind of models can be interpreted as position-based models,
since their dynamics is not determined by acceleration nor velocity. A typical
example for decision-based models is cellular automata.

Besides, the dynamics of pedestrians can either be deterministic or contain
stochastic elements. For deterministic models the future movement is completely
determined by the present state. In contrast, in stochastic models, pedestrians
can react differently in the same situation. The alternatives are chosen with
certain probabilities that are usually determined from the current state. Stochastic
behavioral rules often generate a rather realistic representation. They reflect the
lack of knowledge of the underlying physical processes that determine the decision-
making. This “intrinsic” stochasticity is to be distinguished from external “noise”
that sometimes is added to the macroscopic observables, like the position or velocity
which is often used to avoid certain unrealistic configurations, like completely
blocked states. Here the overall behavior is very similar to the deterministic case.
However, for intrinsic stochasticity, the deterministic limit usually has very different
properties.
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Fig. 13 Based on the proposed model classification, a large number of different approaches can
be distinguished. Here we show only (part of) the classification scheme for microscopic models.
The most common approaches are discrete, stochastic, rule-based models (red) and continuous,
deterministic acceleration-based models (green)

Figure 13 shows the variety of model classes obtained from this classification.
There are examples for almost every class shown here. In the following we will
describe some model classes in more detail.

3.1 Acceleration-Based Models

In 1975 Hirai and Tarui proposed the first known microscopic acceleration-based
model to investigate the movement of pedestrians in a 2D space [63]. In their
seminal work, the authors investigated several aspects of human’s behavioral
motion. On one side, the proposed model considered the movement of pedestrians
on the “operative level,” where pedestrians move in the direction of an assigned goal
while avoiding collisions with other pedestrians or obstacles. On the other side, the
model incorporates different aspects of the “tactical level” of human behavior as
well, e.g., group behavior and the influence of guiding signs on agent’s wayfinding
– aspects which recently caught the attention of the community of pedestrian
dynamics with several emerging studies.

The equation of motion of the Hirai-Tarui model (HT model) is

mi
d2xi
dt2

+ νi dxi
dt

= f1i + f2i + f3i , (10)

where mi , νi , and xi are the mass, coefficient of viscosity, and position of the
individual i, respectively. f1i , f2i , and f3i are external forces acting upon the
individual i, implementing different modeling concepts. f1i is a force required by the
individual i to form a group together with other individuals and to move forward,
while f2i is a force exerted by the environment around the individual i. f3i is a
random force acting upon the individual i to consider uncertainties in the modeled
behavior. The mean forces fj i ((j = 1, · · · , 3)) are defined as a superposition of
other forces, expressing different ideas.
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The “group” force, for instance, consists of three components:

f1i = fai + fbi + fci , (11)

where fai is a driving force causing i to move forward with constant speed. fbi is an
interaction force acting between the individual i and other individuals. Depending
on the distance between two pedestrians, it can be attractive of repulsive. Finally, fci
is the group force which acts only if some individuals move together in a restricted
domain.

Both forces fai and fci depend on distance as well as angle. This expresses the
observation that the influence of other pedestrians on i is greater in its direction of
motion than in transversal direction. No forces act on individuals from behind.

In analogy to the “group force,” the “environmental” force f2i is defined as the
sum of other forces, each with s specific intent:

f2i = fwi +
∑
k

(feik + ff ik)+ fgi + fhi, (12)

where fwi is a repulsive force acting from other static objects like walls and
obstacles. Its magnitude is inversely proportional to the distance perpendicular to
the wall.

The forces feik and ff ik are attractive and act within a semicircular domain
around a guiding sign or symbol k. Formally both forces are identical. The main
difference is that, while the first force acts only if k is in the visibly field of i, the
second force will still be active if i “memorizes” it. In all cases it is assumed that i
still moves to the nearest exit.

fgi is an attraction force pulling individuals near the exit. When this force is
active, the sign forces feik and ff ik are not. The last force fhi is a constant force
causing pedestrians to move away from “dangerous” areas.

The last main term in the model f3i is a random force acting upon i. Its direction
varies stochastically, and its magnitude is a function of the distance between i and
the wall.

Hirai and Tarui showed that their model exhibits, to some extent, realistic
evacuation behavior in a simplified train station. The authors validated their model
with respect to experiments performed on rats, making the assumption that human
behavior in “panic”-like situations may be comparable to animal dynamics. They
showed that the tactical component of the model at least exhibits comparable results
to the empirical data. Some patterns in the behavior of the simulated crowd have
been found to be satisfactory and in agreement with the rat experiments. Although
the model was not elaborated further, it shows some original concepts that were
investigated lately in different works, e.g., group behavior, route choice modeling,
attraction to a site, memory effects of objects, etc.

The HT model inspired several acceleration-based models which became one
of the most used and well-studied classes of models.As a prominent example, we
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mention the social-force model [62] which describes the movement of pedestrians
in two-dimensional space by means of superposition of driving and repulsive forces:

d2xi
dt2

= f
(

vi , �vij ,�xij
)
+ v(0)i − vi

τ
, (13)

where f is the sum of the interactions of i with its environment and τ is a
time constant. Here, the driving force describes, in contrast to the HT model,
an exponential velocity relaxation. The interactions with the environment (f) are
composed of several components. We can distinguish between “social” forces
responsible for collision avoidance and “contact forces” designed to avoid excessive
overlapping among pedestrians, especially in high densities.

For a review of the state of the art of the social-force model and its derivatives,
we refer to [19].

3.2 Velocity-Based Models

In velocity-based (VB) models, the velocity is instantaneously adjusted to the
neighborhood and the environment with no inertia or an implicit implementation
of a reaction time. Such a modeling approach is largely inspired by motion planning
in robotics, since robots move with almost no inertia and react instantaneously
to a command. Generally speaking, VB approaches are based on visual consid-
erations (local interaction) and optimization techniques under collision avoidance
constraints. Mathematically, VB models are differential equations of first order. A
typical example is

dxi
dt

= V
(
xj − xi , vj

)
. (14)

Here the velocity is a function V depending on the relative positions xj − xi and
velocities vj of the neighbors j .

In velocity obstacle models [37], the velocity is determined by minimizing the
deviation to the desired speed while avoiding collision. The collision possibilities
are evaluated over horizon times by assuming constant velocities of the neighbors
and carrying out the velocity obstacle cones VO(i) (see Fig. 14). No collision occurs
when the velocity is set outside the cones. The velocity is then the solution of the
optimization problem

Vi = arg min
v �∈{VO(i)} ‖v− v0‖, (15)
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Fig. 14 Velocity obstacle cones VO(i) for the pedestrian i. No collision occurs when the velocity
is set outside the cones

which minimizes the deviation to the desired speed v0. Similar optimization
problems coupled to exclusion constraints in case of contact are solved in [108, 109]
for evacuation dynamics.

Discretizations of velocity obstacle models can describe undesired ping-pong
oscillatory effects when two pedestrians are switching from one direction to another
at each time step. This phenomenon results from the implicit definition of velocities
in the model (the speed of a pedestrian depends on the speed of the neighbor and
vice versa). The reciprocal velocity obstacle (RVO) model allows to avoid this
undesired behavior by taking into account the fact that the neighbors make similar
collision avoidance reasoning [181]. However, this formulation only guarantees
hard-core body exclusion under specific conditions. The optimal reciprocal collision
avoidance (ORCA) overcomes this limitation and provides sufficient and efficient
conditions for moving agents to avoid collisions among one another [180]. ORCA
modeling approach and its variants are frequently used to describe pedestrian
dynamics (see, e.g., [54, 55, 74, 112, 130]).

Other VB models consider the velocity as the product of a speed V (scalar) by a
direction e (such that ‖e‖ = 1)

dxi
dt

= V (
xj − xi , vj

)
e
(
xj − xi , vj

)
. (16)

Both speed V and direction e depend on the relative positions of the neighbors
and their velocities. In the optimal velocity VB approach, the speed depends, in
analogy to optimal velocity (OV) models in traffic, on the minimal distance in front
[176], while the direction is, as in acceleration-based models, a sum of exponential
repulsion with the neighbors [31]. If ei is the direction of the pedestrian i, ei,j the
direction from j to i and si,j = ‖xj − xi‖ the spacing distance between pedestrians
i and j and if the pedestrians are considered as discs of diameter �, then the
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Fig. 15 Minimal spacing in front. The pedestrians in front of the pedestrian i (i.e., into the gray
area) are the set J = {j, ei · ei,j ≤ 0 and e⊥i · ei,j ≤ �/si,j }, while the minimum spacing in front
is si = minj∈J si,j

pedestrians in front of the pedestrian i are the set J = {j, ei ·ei,j ≤ 0 and e⊥i ·ei,j ≤
�/si,j } (see Fig. 15). The optimal velocity VB model with exponential repulsion is

Vi = V (min
j∈J si,j ) and ei = 1

N

⎛
⎝ v0

‖v0‖ + A
∑
j

exp(−si,j /B)
⎞
⎠ . (17)

Here N is a normalization constant, and V is the optimal velocity function. Any
positive OV function V depending on the minimal spacing in front ensures collision-
free dynamics as soon as V (s) = 0 for all s ≤ �, independently to the direction
model [176]. Note that in contrast to VB models described above, the velocity in
this model solely depends on the relative positions of the neighbors, and not on their
velocities, making the system of velocities explicitly defined (i.e., no ping-pong
effect in the simulation).

VB models do not incorporate relaxation or delay mechanisms. However,
relaxation and diffusion processes can be introduced by using specific noises in
the dynamics. Classically the noise is white in acceleration-based models (see, e.g.,
[62]). In velocity-based models, the noise is a Brownian one relaxed at the second
order to describe the autocorrelation of the speed residuals [178]. Simulation results
show that the relaxed noises allow to describe oscillating traffic waves (stop-and-go
dynamics). Thus this modeling ansatz of stop-and-go waves for pedestrian dynamics
is noise-induced. It contrasts with the modeling of stop-and-go for traffic flow,
generally done by means of instability and phase transitions.

3.3 Decision-Based Models

Decision-based models or rule-based models belong to a class of models which
are not defined using differential equations. As indicated by the name, their
dynamics is based on decisions that the pedestrians make to determine their
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motion (e.g., position, velocity). Since decisions are made at discrete times, time
is typically discrete in this class, i.e., t = n�t (with an integer n). Usually the
time step �t is identified with the reaction time of the pedestrians and thus of
the order 0.1 − 0.5 s. It can be used for calibration which is essential to make
quantitative predictions. In the spirit of the previous subsections, such models could
be termed “zeroth-order models” since their dynamics is not based on differential
equations.

3.3.1 Cellular Automata

Arguably the best known subclass of decision-based models are cellular automata
(CA). CA are discrete in space, time and the state variable(s) (e.g. the velocity).
The most common spatial discretization is based on quadratic cells, but also other
cell forms have been used. The cell size can be related to the maximal densi-
ties observed in dense crowds which determines the minimal space requirement
of one person. This space requirement can be identified with the cell size if
each cell in the CA can only be occupied by one person (exclusion principle).
A typical maximal density of 6.25 persons/m2 [184] leads to a cell size of
40 × 40 cm2. The discrete time is in computer simulations usually realized
through a parallel or synchronous update where all pedestrians move at the same
time.

Most CA models for pedestrian dynamics are based on a stochastic dynamics
defined in terms of rules that specify the transition probabilities for the motion to
one of the neighboring cells (Fig. 16). In the simplest case, the potential target cells
are nearest neighbors (von Neumann neighborhood), but more general definitions
of the neighborhood are used frequently (Moore neighborhood). Models can be
distinguished by the specification of the probabilities for motion. For deterministic
models, only one probability is nonzero.

Most CA models for pedestrian dynamics are based on two-dimensional exten-
sions of the paradigmatic asymmetric simple exclusion process (ASEP) (see [8, 29,

pi j

pi+1 j

pi−1 j

pi j−1 pi j+1

0

0

0

0

Fig. 16 Possible directions of motion and the corresponding transition probabilities pij for the
case of a von Neumann neighborhood
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156] for reviews) or models for vehicular traffic [5, 22, 123] based on the ASEP.
Pedestrians are represented by particles subject to the exclusion principle. The
motion to neighboring cells is based on transition probabilities that are determined
by (1) the desired direction of motion, (2) interactions with other pedestrians, and
(3) interactions with the infrastructure (walls, doors, etc.).

One of the earliest CA models was introduced by Blue and Adler [6, 7]. It is
based on a multilane variant of the of the Nagel-Schreckenberg model [123] of
highway traffic with lane-changing rules similar to those in [142]. The update is
deterministic and performed in four steps which are applied to all pedestrians in
parallel: (1) choosing a preferred lane, (2) performing lane changes, (3) adjustment
of the velocity based on the headway in the new lane, and (4) motion according to
the velocity determined in (3). Head-on conflicts occurring in counterflow situations
are resolved such that with some probability, opposing pedestrians are allowed to
exchange positions within one time step. Other early CA models can be found in
[47, 80, 116].

Most cellular automaton models are based on stochastic dynamics. When
interpreting simulation results, one has to keep in mind that these models are
designed in such a way that the average over different realizations of the stochastic
process should be realistic. Considering just a single realization can be misleading.
However, for large crowds even then one usually obtains rather realistic results due
to self-averaging effects. Furthermore the stochastic nature of the dynamics allows
to determine probability distributions of quantities like evacuation times in a natural
way.

3.3.2 Floor Field Model

The floor field model [13, 14, 78, 148] is probably the most popular CA model for
pedestrian dynamics. In contrast to simpler CA models, the transition probabilities
to neighboring cells are no longer fixed but vary dynamically. This is motivated by
the process of chemotaxis [4] used, e.g., by ants for communication. In the floor field
model [14], pedestrians also create a virtual trace in contrast to the chemical trace in
chemotaxis. This virtual trace might be interpreted as some abstract representation
of the path in the mind of the pedestrians. One important advantage of this approach
is that interactions become purely local. The number of interaction terms grows only
linearly with the number of pedestrians even in complex geometries. This allows for
efficient simulations without supercomputers.

The local interactions are specified by so-called floor fields. The transition
probabilities depend on the strength of the floor fields in the target cells such that
transitions in the direction of larger fields are preferred. The dynamic floor field Dij
is basically the virtual trace created by moving pedestrians which in turn influence
the motion of other individuals. It has its own dynamics where diffusion and decay
lead to a dilution and finally the vanishing of the trace after some time. The static
floor field Sij is constant in time. It takes into account the effects of the (static)
environment and allows to model, e.g., preferred areas, walls, and other obstacles. It
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Fig. 17 Left: Static floor field for the simulation of an evacuation from a large room with a single
door. The door is located in the middle of the upper boundary, and the field strength is increasing
with increasing intensity. Right: Snapshot of the dynamical floor field created by pedestrians
leaving the room

is nonzero even in the absence of pedestrians. A typical examples is shown in Fig. 17
for the simulation of evacuations from a room with a single door. The strength of
the static floor field decreases with increasing distance from the door. This makes
the motion into the direction of the door more preferable.

The relative influence of both floor fields is controlled by coupling constants kS
and kD . Strong coupling to the static field leads to pedestrians choosing the shortest
path to the exit. This corresponds to a “normal” situation. If the coupling to the
dynamic field dominates, strong herding behavior is observed where pedestrians try
to follow the lead of others which is typical for emergency situations. The generic
form of the transition probability pij to a neighboring cell (i, j) is given by

pij = N exp
(
kDDij

)
exp

(
kSSij

)
(1− nij )ξij . (18)

Dij and Sij are the strengths of the dynamic and static field at cell (i, j),
respectively. nij = 0, 1 is the number of persons in cell ((i, j). The factor (1− nij )
forbids motion to occupied cells according to the exclusion principle. The obstacle
number

ξij =
{

0 for forbidden cells (e.g. walls)

1 else
(19)

allows to forbid transition to wall cells, etc. Finally, N is a normalization constant
that ensures the sum of all transition probabilities for a pedestrian is 1.
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Fig. 18 Refused movement due to the friction parameter μ

The use of a parallel update leads to conflicts where different pedestrians want
to move to the same destination cell. These conflicts are not a technical problem for
the simulations but should be interpreted as an important part of the dynamics [76].
It has been shown [77] that the behavior becomes more realistic if not all conflicts
are resolved. Instead of choosing one pedestrian that is allowed to move whereas
the others stay at their positions, with some probability μ, called friction parameter,
the movement of all involved pedestrians is denied [77] (see Fig. 18). This leads to a
more realistic description of clogging effects, e.g., at bottlenecks. Although friction
is a local effect, it can have a strong influence on macroscopic quantities like flow
and evacuation time, especially in evacuation scenarios.

The floor field model has been extended in different ways. To increase the spatial
resolution which is limited by the cell size, models with smaller cells have been
proposed [75] where pedestrians correspond to extended particles that occupy more
than one cell (e.g., four cells). Furthermore a spatial anisotropy is introduced by the
lattice structure. As a consequence straight motion in directions not parallel to the
lattice axis is difficult to achieve. This can be reduced by a proper choice of the
transition probabilities [14, 155] or by allowing motion further than just to nearest-
neighbor cells [75, 84, 88, 103].

Many variants of the floor field model have been introduced which include other
types of interactions. For counterflow situations, the inclusion of anticipation effects
[126, 169] leads to a more realistic behavior. Another interesting extension is the
inclusion of game theory, e.g., in the resolution of conflicts [9] or the choice of exits
in an evacuation [102].

3.3.3 Other CA Models and Related Approaches

Besides the floor field model, many other cellular automata models have been
proposed for the description of pedestrian dynamics, e.g., the Fukui-Ishibashi model
[46, 47] which is based on a two-dimensional variant of the ASEP. The motion in
the Fukui-Ishibashi model is deterministic; only sidestepping to avoid oppositely
moving pedestrian is stochastic. An asymmetric variant where walkers prefer lane
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changes to the right has been proposed in [116]. Further modifications include
different update types [35], simultaneous (exchange) motion of pedestrians standing
“face-to-face” [70], or the possibility of backstepping [106]. The influence of
the shape of the particles has been investigated in [121]. Also other geometries
[118, 170] and extensions to full two-dimensional motion have been studied in
various modifications [105, 106, 117].

The Gipps-Marksjös model [52] anticipated the idea of social forces (see
Sect. 3.1). Interactions between pedestrians are assumed to be repulsive, and the
actual motion is determined by the competition between this repulsion and the gain
of approaching the destination. The model dynamics is deterministic, and updating
is done sequentially to avoid conflicts.

Lattice-gas models are conceptually very similar to cellular automata models
where the main difference is the position of the particles. The definition of the
dynamics is analogous, but in lattice-gas models, the pedestrians are located on
the vertices of the lattice, whereas they are located on the faces of the lattice in
CA. Some lattice-gas models of pedestrian dynamics take inspiration from lattice
gases introduced for the description of classical hydrodynamics [42], e.g., the model
introduced by Marconi and Chopard [107] which is based on a sequence of collision
and propagation steps.

Real-coded cellular automata (RCA) [187] have been proposed in order to
solve some problems related to the discretization of space. In RCA, in contrast
to genuine CA, the velocities of the pedestrians are not discrete, and they can
move in any direction. This makes the motion isotropic irrespective of the lattice
structure.

In the Optimal Steps Model [159], the motion of a pedestrian is discretized to
reflect the movement in steps. However, space is not discrete but continuous. This
allows natural grid-free trajectories without introducing differential equations or
complex steering behaviors.

4 Performance of Models: Quantitative and Qualitative
“Benchmarking”

4.1 Stability Analysis

An often observed collective phenomenon that emerges in crowds, especially when
the density exceeds a certain threshold, is stop-and-go waves [150]. Although some
space-continuous models [34, 95, 136, 161] reproduce partly this phenomenon,
some models generally fail to describe pedestrian dynamics in jam situations cor-
rectly. Instead, quite often unrealistic behavior like backward motion or overtaking
(“tunneling”) is observed in some situations, especially in one-dimensional single-
file movement. Recently it has been shown [23] that this is not a consequence of
numerical problems in the treatment of the differential equations, but an indication
of inherent problems of the models, at least for certain classes.



Pedestrian Dynamics: From Empirical Results to Modeling 91

In vehicular traffic, the formation of jams and the dynamics of traffic waves have
been studied intensively [22, 51, 122, 129]. Traffic jams in simulations occur as a
result of phase transitions from a stable homogeneous configuration to an unstable
configuration. That means it should be possible to calibrate model parameters such
that systems in unstable regimes can be simulated. Otherwise, a reproduction of
jams is impossible, and the model can be qualified as unrealistic. For each parameter
set that leads to an unstable homogeneous state, it has to be verified by simulations
whether this instability corresponds to realistic behavior (i.e., the occurrence of
jams) or unrealistic behavior (e.g., overlapping of particles).

By investigating the linear instability of a continuous model in an homogeneous
steady state, it is possible to roughly identify an adequate parameter set that may
lead to reproduction of inhomogeneous states.

From an empirical point of view, the stop-and-go waves that were observed
in experiments under laboratory conditions [95, 136] have a short pseudo-period.
Hence, it is not clear if these waves disappear after a long time or remain. However,
by means of simulation of validated models, it is possible to investigate this
assumption.

4.2 Verification and Validation

The concepts of verification and validation are often confounded. According to
[147], verification is the process of assuring if the computer programming and
implementation of a mathematical model are correct. At this stage no statement
about the quality of the underlying model can be made. In the context of pedestrian
dynamics, verification is performed by means of simple tests mostly based on
common sense. In [68] several verification tests were recommended to assess the
quality of simulations of ships. For evacuation simulation other tests were proposed
within the framework of RiMEA [143] and further developed to include evacuation
under smoke conditions [145].

Validation is the process of assessing the performance of the model (not its
numerical implementation) with respect to empirical findings, that is, to what extent
the model can describe the system in a realistic way. Here, it should be emphasized
that the empirical data used as reference, whether they are derived from experiments
under laboratory conditions or field studies, reflect the properties of the crowd in
normal conditions.

Several benchmarks and metrics were developed in the past to assess the
reliability of mathematical models for pedestrian dynamics and hence evaluate to
what extent they can be used to address safety-related questions. One can distinguish
between qualitative and quantitative validations. Most of models that guarantee
a certain volume exclusion are able to describe qualitatively well some of those
phenomena, e.g., lane formation [191, 196], oscillations at bottlenecks [58, 196],
the “faster-is-slower” effect [90, 131], and clogging at bottlenecks [58, 191], that
sometimes are difficult to verify empirically [50, 132]. Quantitative validation
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features comparisons with empirical data in the form of the relationship between
density and flow [152, 163] or evacuation times. In [89] an approach based on data
binning and cumulative distribution functions to assess the discrepancy of two data
clouds (fundamental diagrams) was proposed. Given observation points of speed
and density from experiments {[ρdata

i , v
data
i ]} and simulations {[ρmodel

i , vmodel
i ]}, the

degree of similarity among these two point clouds is measured. For this purpose N
equally spaced density intervals are defined

V src
j = {vsrc

i : ρsrc
i ∈ [ρj , ρj+1], i = 1, . . . , N src}, (20)

where j = 1, . . . , N, src = {data, model} and N src is the number of observa-
tions. By means of the cumulative distribution functions both for the experiment,
FV data
j
(x), and for the simulations, FVmodel

j
(x), the Kolmogorov-Smirnov distance is

calculated as

Dj = sup
x
|FV data

j
(x)− FVmodel

j
(x)|, j = 1, . . . , N. (21)

Finally, the weighted arithmetic mean of distances Dj is used as a quantitative
metric estimating the similarity of two data clouds

D∗ =
∑N
j=1(N

data
j +Nmodel

j )Dj

Ndata +Nmodel
, (22)

where Ndata
j and Nmodel

j are the number of observations in the j th bin for data and
model, respectively. In other words, metric D∗ quantifies the degree of success (or
failure) of the validation process.

With this approach a new quantity (also called validity factor) is introduced
which enables a verification as well as a validation of most models in an automatic
way. The degree of success of the considered pedestrian model is henceforth
quantified and can be used in an iterative process to calibrate and enhance the
model’s performance.

5 Summary

We have reviewed the present state of the art of modeling of pedestrian and
evacuation dynamics focusing on microscopic models. In recent years the interplay
between empirical results and theoretical models has become more and more
important. Many groups have carried out laboratory experiments under controlled
conditions that can, in principle, be easily repeated. Nevertheless, there is still no
consensus even about quantitative behavior and sometimes the qualitative shape of
basic relations like the fundamental diagram or the dependence of the flow through
bottlenecks on their width.
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Modeling approaches are often inspired by the physics of many-particle systems
building on similarities with hydrodynamics or granular materials. Indeed, most
phenomena observed in pedestrian streams have analogies in these classes of
physical systems. However, quite different model classes can be distinguished and
investigated separately.

We have proposed a classification on the basis of the relevant state variable
that is determined by the system dynamics as defined by the equation of motion.
This allows to distinguish acceleration-based, velocity-based, and decision-based
models. In the latter the new position is determined based on rules representing the
decisions made by pedestrians during motion, whereas in the first two classes the
dynamics is given by an ordinary differential equation of second and first order,
respectively.

Overall there are hundreds of different models and model variants in each class.
They can further be distinguished, e.g., by the type of dynamics which can be
deterministic or stochastic. Currently, still new models are proposed, often for the
description of rather specific scenarios. A conceptually different approach is based
on the idea of machine learning for the prediction of pedestrian movement. In
contrast to physical models, data-driven approaches are deliberately complex and
have a large number of parameters without direct physical interpretation. Their
calibration (called training in this context) generally requires a very large amount
of data. When accurately trained, the very high plasticity of the prediction models
allows in principle to describe any type of patterns. Examples for this relatively new
approach can be found, e.g., in [1, 21, 28, 39, 104, 177].

An aspect that is currently becoming more and more relevant concerns the human
factor in pedestrian dynamics. As humans, pedestrians are subject of psychology
and sociology which is often only considered in a simplified way in current
models [166, 173]. Psychology considers single pedestrians and their behavior and
experiences. For pedestrian dynamics, the influence of senses (viewing, hearing,
tactile) on the movement as well as cognitive abilities like wayfinding is relevant.
Sociology treats pedestrians as entities belonging to a group (families or friends)
sharing a social identity (e.g., protester or police) or following social norms (e.g.,
waiting in a queue instead of pushing toward an overloaded exit). Thus many
norms and rules exist which should be considered for a realistic modeling of the
movement of crowds, groups, or single pedestrians. Understanding the relevance of
these aspects remains one of the challenges the theory of pedestrian dynamics has
to face in the future.
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One-Dimensional Conservation Laws
with Nonlocal Point Constraints on the
Flux

Boris Andreianov, Carlotta Donadello, Ulrich Razafison,
and Massimiliano Daniele Rosini

Abstract We review recent results and present new ones on one-dimensional
conservation laws with point constraints on the flux. Their application is, for
instance, the modeling of traffic flow through bottlenecks, such as exits in the
context of pedestrians’ traffic and tollgates in vehicular traffic. In particular, we
consider nonlocal constraints, which allow to model, e.g., the irrational behavior
(“panic”) near the exits observed in dense crowds and the capacity drop at tollbooths
in vehicular traffic. Numerical schemes for the considered applications, based
on finite volume methods, are designed, their convergence is proved, and their
validations are done with explicit solutions. Finally, we complement our results
with numerical examples, which show that constrained models are able to reproduce
important features in traffic flow, such as capacity drop and self-organization.

1 Introduction

This chapter deals with macroscopic modeling of traffic flows, both for pedestrians
and vehicles, below referred to as agents. The literature on macroscopic models for
traffic flows is already vast and characterized by contributions covering statement
of problems, modeling aspects, qualitative analysis, and numerical simulations
motivated by their real-life applications. Macroscopic models of traffic flows
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are nowadays a consolidated and nonetheless continuously expanding field of
mathematical research from both the theoretical and applied point of view, as the
surveys [9, 38, 42, 46] and the books [29, 44] demonstrate.

The macroscopic variables (that translate the discrete nature of traffic into
continuous variables) are the density of agents ρ, the velocity v, and the density
flow f . By definition

f = ρ v. (1)

Furthermore, the conservation of the number of agents is expressed by the scalar
conservation law (CL)

ρt + fx = 0. (2)

We have to impose a further condition to close system (1), and (2) of two equations
and three unknowns. However, (1), and (2) are the only accurate physical laws
in traffic flow theory and any other assumption results from an approximation of
empirical observations. In fact, traffic modeling cannot be an exact science, e.g.,
Newtonian physics, because traffic flows are influenced by psychological effects.
Nevertheless, good macroscopic models help to understand nontrivial properties of
traffic flows, to predict and optimize them.

There are two approaches to close system (1), and (2), which correspond to first-
and second-order models. First-order models close system (1), and (2) by expressing
one of the three variables in terms of the remaining two. The prototype of the first-
order models is the Lighthill, Whitham [35], and Richards [43] (LWR) model, which
assumes that the velocity depends on the density alone, namely, v = V (ρ). The
function V belongs to C1([0, ρmax]; [0, vmax]) and is non-increasing with V (0) =
vmax and V (ρmax) = 0, where vmax is the maximal speed and ρmax is the maximal
density. As a result, LWR is expressed by the scalar CL

ρt + [ρ V (ρ)]x = 0. (3)

Second-order models close system (1), and (2) by adding a CL as third constitutive
equation. The most celebrated second-order model is the Aw, Rascle [8], and
Zhang [48] model (ARZ). Away from the vacuum ρ = 0, ARZ writes

(
ρ

y

)
t

+
[(
y

ρ
− p(ρ)

)(
ρ

y

)]
x

=
(

0
0

)
, (4)

where y = (v + p(ρ)) ρ is called generalized momentum. The “pressure” function
p : R+ → R+ plays the role of an anticipation factor, taking into account agents’
reactions to the traffic in front of them.

From the modeling point of view, the main drawback of LWR is the fact that
agents adjust instantaneously their velocities according to the density they are
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experiencing (which implies infinite acceleration) and take into account the slightest
change in the density. This behavior contradicts the empirical observations. Also,
experimental data show that the fundamental diagram (ρ, f ) is given by a cloud of
points rather than being the support of a map ρ �→ [ρ V (ρ)], see [20, Figure 1.1] or
[14, Figure 3.1]. ARZ can be interpreted as a generalization of LWR, possessing a
family of fundamental diagram curves, rather than a single one. For this reason ARZ
avoids the drawbacks of LWR listed above. Moreover, the empirical tests in [26]
show that in many cases, ARZ is significantly more accurate than LWR.

From the mathematical point of view, however, the analysis of ARZ requires a
higher degree of technicalities because system (4) degenerates into just one equation
at the vacuum. As observed in [31], taking initial data away from the vacuum does
not forbid the emergence of vacuum in the solutions; in this case the solutions do
not depend continuously on the initial data and experience a sudden increase of the
total variation as the vacuum appears.

Goatin [30] bypasses these drawbacks of LWR and ARZ by coupling the two
models. The resulting phase transition model (PT) describes the free-flow phase
	f with LWR and the congested phase 	c with ARZ. This PT model has been
generalized in [10–12, 24].

An underlying assumption of all the models considered above (LWR, ARZ, PT)
is that agents move in a homogeneous environment. However, in real life, agents
typically move in inhomogeneous spaces characterized by “obstacles” that hinder
the density flow, such as bottlenecks and traffic lights. The effect of such obstacles
can be represented by introducing point constraints on the density flow

f (t, xi) ≤ Qi (5)

at the locations xi of obstacles, where Qi are their capacities, namely, the maximal
density flows allowed through them. The concept of point constraints was first
introduced in the framework of crowd dynamics in [23] and in [21] for vehicular
traffic. The point constraint (5) is called nonlocal ifQi depends in a nonlocal way on
the density and local otherwise. We briefly summarize the literature on conservation
laws with point constraints recalling that:

• LWR with a local point constraint is studied analytically in [21, 23] and
numerically in [7, 16, 19, 22];

• LWR with a nonlocal point constraint is studied analytically in [2, 5] and
numerically in [3];

• ARZ with a local point constraint is studied analytically in [6, 25, 28] and
numerically in [1];

• PT with a local point constraint is analytically studied in [10, 12, 24].

In the present chapter, we shortly review the above results. For simplicity in the
exposition, we consider below only the case of one obstacle placed at x = 0.

Despite the theory of point constraints is stated in a general mathematical
framework (see, for instance, [44, Chapter 6]), according to the authors’ knowledge,
it is so far applied only in two frameworks: crowd dynamics [2, 3, 5, 18, 19, 23] and
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vehicular traffic [1, 6, 7, 10, 12, 16, 21, 22, 24, 25, 28]. However, it is easy to envisage
its application in other fields of research, such as biology (e.g., to model flows of
biological substances across cell membranes), biomedicine (e.g., to model blood
flows in vessels through thromboses), Internet traffic engineering (e.g., to model
flows of data through routers or proxies), etc.

This chapter is organized as follows. Section 2 deals with the Cauchy problem
for constrained LWR (3), and (5) in case the constraint is a function of the
density, nonlocally both in time and space. The resulting problem is investigated
analytically in Sect. 2.1 and numerically in Sect. 2.2. In Sect. 2.3, we construct exact
and approximate solutions to some explicit cases. Section 3 deals with the Cauchy
problem for constrained ARZ (4), and (5) in case the constraint is a function of time.
The well-posedness is then considered in Sect. 3.1. In Sect. 3.2 we construct an exact
solution to an explicit case. Section 4 deals with the Cauchy problem for constrained
PT (3), (4), and (5) in case the constraint is constant. The well-posedness is then
considered in Sect. 4.1. In Sect. 4.2 we construct an exact solution to an explicit
case.

2 Nonlocally Constrained LWR

In this section we study the Cauchy problem for LWR (3) subject to a point
constraint on the density flow (5)

ρt + f (ρ)x = 0, x ∈ R, t ∈ (0, T ] , (6a)

f (ρ)(t, 0±) ≤ Q(t), ∈ R, t ∈ (0, T ] , (6b)

ρ(0, x) = ρ0(x), x ∈ R. (6c)

Above T > 0 is the time horizon, ρ0 is the initial datum, and f (ρ) = ρ V (ρ) is the
flux. Moreover Q is the maximal density flow allowed through x = 0 and has the
form

Q(t) = Q[ρ](t) for a.e. t ∈ [0, T ], (7)

where the operator

Q : C0(0, T ;L1) −→ L1(0, T )

may be nonlocal both in time and space. Above

C0(0, T ;L1) = C0([0, T ];L1(R; [0, ρmax])
)

and

L1(0, T ) = L1((0, T ); [0, fmax]
)
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are, respectively, endowed with the distances induced by the norms

‖ρ‖C0(0,T ;L1) = max
t∈[0,T ]

∫
R

|ρ(t, x)| dx and ‖Q‖L1(0,T ) =
∫ T

0
|Q(t)| dt.

2.1 Existence and Uniqueness Results

We split the definition of solution to (6), and (7) into two points in the following.

Definition 1 A couple (ρ,Q) ∈ C0([0, T ];L1
loc(R; [0, ρmax])) × L∞(0, T ) is an

entropy solution to (6), and (7) if the following conditions hold:

(i) The function ρ is an entropy solution of constrained Cauchy problem (6), i.e.,
for every test function φ ∈ C∞

c ([0, T )× R;R+) and constant k ∈ [0, ρmax]

∫
R

[∫
R+

[
|ρ − k|φt + sign(ρ − k)(f (ρ)− f (k))φx]dt + |ρ0(x)− k| φ(0, x)

]
dx

(8a)

+2
∫
R+

[
1− Q(t)

max[0,ρmax] f

]
f (k) φ(t, 0) dt ≥ 0,

(8b)

and the left and right traces t �→ γ±f (ρ)(t) of f (ρ) at x = 0 fulfill

γ±f (ρ)(t) ≤ Q(t) for a.e. t ∈ [0, T ] . (8c)

(ii) The functionQ is linked to ρ by relation (7).

Item (i) is precisely [7, Definition 2.1], which is a minor generalization of [21,
Definition 3.2]. Line (8a) constitutes the classical Kruzhkov entropy condition
(see [33]) suitable for a conservation law without any constraint condition, namely,
for (6a), and (6c). Lines (8b) and (8c) account for constraint (6b). Recall that
assumption (GNL) given below ensures that the strong traces t �→ γ±ρ(t) exist;
hence f (ρ)(t, 0±) coincides with f (ρ(t, 0±)) (see [40]). In the sequel, we write
f (ρ)(t, 0±) for γ±f (ρ)(t) and ρ(t, 0±) for γ±ρ(t).

Definition 2 Two constraint operators Q1 and Q2 are equivalent if Q1[ρ] = Q2[ρ]
for any entropy solution ρ of (6), and (7) corresponding to Q1 or Q2.

The existence results for (6), and (7) obtained in [5, 19, 21] rely on the wave-front
tracking (WFT) method; see [15, 32] and the references therein. Such method is
tailored to the specific expressions of Q and can be hardly generalized to even slight
modification of Q. For this reason, as in [4], we provide below a rigorous set of
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general hypotheses, which guarantee existence and uniqueness of entropy solutions
for wide classes of constraint operators, via the application of splitting or fixed-
point methods. More precisely, we assume that ρ0 is in L1(R; [0, ρmax]) (due to the
finite speed of propagation, property for (3), the extension to L∞(R; [0, ρmax]) is
straightforward; see [5, Theorem 2.1]). On the flux f , we always assume that

f belongs to Lip ([0, ρmax];R+) and is bell− shaped, that is, f (0) = 0 =
f (ρmax) and there exists ρc ∈ (0, ρmax) such that f ′(ρ) (ρc − ρ) > 0
for a.e. ρ ∈ [0, ρmax];

(f)

some of our results require the additional assumption

for anyρ1, ρ2 ∈ [0, ρmax] such that ρ1 < ρ2, the restriction of f to
[ρ1, ρ2] is not affine.

(GNL)

By (f) we have that fmax = max[0,ρmax] f satisfies fmax = f (ρc). On Q we assume
that it is “history dependent,” that is

if ρ1, ρ2 ∈ C0(0, T ;L1) coincide on [0, t] × R, then Q[ρ1] and Q[ρ2]
coincide on [0, t], (Qhd)

and that for any t ∈ [0, T ] the restriction Qt : C0(0, t;L1) → L1(0, t) of Q to
C0(0, t;L1) is such that

Qt is Lipschitz continuous, and there exists a non− decreasing map ω ∈
C0(R+;R+) such that ω(0) = 0 and for any ρ1, ρ2 ∈ C0(0, T ;L1)

‖Qt [ρ1] −Qt [ρ2]‖L1(0,t) − ω(t − τ) ‖ρ1 − ρ2‖C0(0,t;L1) ≤ 0,

where τ = max{s ∈ [0, t] : ρ1 = ρ2 in C0(0, s;L1)}.
(QLip)

By (Qhd) we have that Qt , t ∈ [0, T ], can be defined by letting Qt [ρ] as the
restriction to [0, t] of Q[E [ρ]], where E [ρ] ∈ C0(0, T ;L1) is an arbitrary extension
of ρ ∈ C0(0, t;L1).

Before stating our main results, let us recall the uniform Lipschitz continuity
estimate obtained in [7, Proposition 2.10].

Lemma 1 For any Q1,Q2 ∈ L∞(0, T ) and t ∈ [0, T ], the corresponding entropy
solutions ρ1, ρ2 ∈ C0(0, t;L1) to (6) with time horizon t satisfy

‖ρ1 − ρ2‖C0(0,t;L1) ≤ 2 ‖Q1 −Q2‖L1(0,t).

We have the following well-posedness result.
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Theorem 1

1. If Q verifies (QLip), then constrained Cauchy problem (6), and (7) admits one
and only one entropy solution.

2. The conclusion of 1 still holds true if Q is equivalent to a constraint that
verifies (QLip).

Proof By (QLip) and Lemma 1, the Banach-Picard fixed-point argument yields
both existence and uniqueness of solutions on a sufficiently small time interval.
Bootstrapping the construction, we achieve the global existence result.

In practice, verification of assumption (QLip) may be tedious; for this reason we
provide the following.

Proposition 1 A constraint operator Q satisfies (QLip) if there exists a constant
C > 0 such that one of the following conditions is satisfied:

1. for all t ∈ [0, T ], Qt verifies ‖Q[ρ1] −Q[ρ2]‖L1(0,t) ≤ C ‖ρ1 − ρ2‖L1(0,t;L1);
2. for all t ∈ [0, T ], Qt verifies ‖Q[ρ1] −Q[ρ2]‖L∞(0,t) ≤ C ‖ρ1 − ρ2‖C0(0,t;L1).

While uniqueness seems to require some kind of Lipschitz continuity of Q,
existence results can be obtained in much more generality. In fact, under assump-
tion (GNL), it is enough to require that

Q can be extended to a continuous map from L1(0, T ;L1) to L1(0, T ), (Qcont)

whereas if (GNL) does not hold, then it is enough to require that

Q is continuous and compact from C0(0, T ;L1) to L1(0, T ). (Qcomp)

Above

L1(0, T ;L1) = L1((0, T )× R; [0, ρmax]
)

and L∞(0, T ) = L∞(
(0, T ); [0, fmax]

)
are, respectively, endowed with the distances induced by the norms

‖ρ‖L1(0,T ;L1) =
∫ T

0

∫
R

|ρ(t, x)| dx dt and ‖Q‖L∞(0,T ) = ess sup t∈(0,T )|Q(t)|.

More precisely, we have the following existence result.

Theorem 2 Constrained Cauchy problem (6), and (7) admits at least one entropy
solution if one of the following conditions is satisfied:

(a) Q satisfies (Qcomp).
(b) f satisfies (GNL) and Q satisfies (Qcont).

The same conclusion holds if Q is equivalent to a constraint operator that
satisfies (a) or (b).
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Proof In case (b), compactness of families of functions (ρ�) solving (6a) in x �= 0 is
obtained by using the results in [39]. In case (a), compactness of the corresponding
(Q�) (and consequently that of (ρ�)) is straightforward. In both cases, the Schauder
fixed-point argument can be used to resolve the coupling between ρ and Q in (6),
and (7).

Notice that the embeddings L1(0, T ;L1) ⊃ C0(0, T ;L1) and L∞(0, T ) ⊂
L1(0, T ) are continuous. Moreover, since the topology of L1(0, T ;L1) is weaker
than that of C0(0, T ;L1), (Qcont) and (Qcomp) are not directly comparable.

In the spirit of Proposition 1, let us point out that the compactness assumption on
Q can follow from the stronger assumption of compactness of Q as operator from
C0(0, T ;L1) to L∞(0, T ).

2.2 Finite Volume Approximation

In this section we describe the numerical scheme [4] based on finite volume method
that we use to solve (6), and (7) and prove its convergence to entropy solutions under
the general assumptions (Qcons

� ) and (Qcomp
� ) given below.

Let �x and �t be the constant space and time steps, respectively. Introduce
the points xj+1/2 = j�x, the cells Kj = [xj−1/2, xj+1/2) and the cell centers
xj = (j − 1/2)�x for j ∈ Z. Let jc be the index such that xjc+1/2 is
the location of the constraint. Define N = �T/�t� and for n ∈ N ∩ [0, N ]
introduce the time discretization tn = n�t . For n ∈ N ∩ [0, N ] and j ∈ Z,
we denote by ρnj the approximation of the average of ρ(tn, ·) on the cell Kj ,
namely

ρ0
j =

1

�x

∫
Kj

ρ0(x) dx and ρnj �
1

�x

∫
Kj

ρ(tn, x) dx if n > 0.

The discretized initial datum ρ0
� is defined by

ρ0
�(x) = ρ0

j for x ∈ Kj, (9)

convergences to ρ0 in L1(R) and obeys the same L∞ bounds as ρ0.
Let (ρ�,Q�) : [0, T ] × R → [0, ρmax] × [0, fmax] be an approximate solution

with

ρ�(t, x) =
N∑
n=1

ρn�(x) χ(tn−1,tn](t), Q�(t) =
N∑
n=1

Qn� χ(tn−1,tn](t),

where (ρn�,Q
n
�) is a discrete function computed by executing the following

algorithm, based on a suitable discretization Q� of Q that satisfies (Qhd).
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0. Initialization. We start with ρ0
� given in (9) andQ0

� = Q�[ρ0
�](0).

1. For each n ∈ [0, N − 1] ∩ N,

A. A finite volume method [7] for constrained Cauchy problem (6) is

ρn+1
j = ρnj −

�t

�x

(
F nj+1/2 −F nj−1/2

)
, (10)

where

F nj+1/2 =
⎧⎨
⎩
F
(
ρnj , ρ

n
j+1

)
if j �= jc,

min
{
F
(
ρnj , ρ

n
j+1

)
,Qn�

}
if j = jc,

(11)

is a monotone, consistent numerical flux, namely

• F ∈ Lip([0, ρmax]2;R) with Lipschitz constant Lip(F),
• F(a, a) = f (a) for any a ∈ [0, ρmax],
• [0, ρmax]2 � (a, b) �→ F(a, b) ∈ [0, fmax] is non-decreasing with respect

to a and non-increasing with respect to b,

andQn� is an approximation ofQ(tn).
B. Given (ρk�)k=1,...,n with ρn�(x) = ρnj for x ∈ Kj , we compute Qn� ∈

[0, fmax] by discretizing relation (7):

Qn� = Q�
[
E n[ρn�]

]
(tn), (12)

where E n[ρn�](t, x) =
∑n
k=1 ρ

k
�(t − tk−1, x) 1

(tk−1, tk](t).

We use the L1(0, T )-norm for Q� and with the L∞(0, T ;L1)-norm for ρ�, both
norms being computed from the above expressions of Q� and ρ� as functions of t
and (t, x), respectively.

In the following we assume that the approximations of Q given by Q� are
consistent

‖Q� −Q‖L1(0,T )→ 0
‖ρ� − ρ‖L1(0,T ;L1)→ 0

Q� = Q�[ρ�]

⎫⎪⎬
⎪⎭ =⇒ Q = Q[ρ] (Qcons

� )

and the following asymptotic compactness property

(ρ�) is bounded in L∞(0, T ;L1)

Q� = Q�[ρ�]

}
=⇒ (Q�) is compact in L1(0, T ). (Qcomp

� )
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Here and in the sequel, by compactness of (Q�), we mean the possibility to extract
a convergent subsequence in L1(0, T ), i.e., the relative compactness.

As in [7, Proposition 4.2], under the CFL condition

Lip(F)
�t

�x
≤ 1

2
,

we have the L∞-stability of the scheme (10), (11), and (12), that is

0 ≤ ρ�(t, x) ≤ ρmax for a.e. (t, x) ∈ (0, T )× R.

We have the following convergence results of our scheme.

Theorem 3 Let Q verify (QLip) and (ρ,Q) be the unique entropy solution of (6),
and (7).

1. If Q admits an approximation QΔ that satisfies (Qcons
Δ ) and (Qcomp

Δ ). Then
(ρΔ,QΔ) constructed by the scheme (10), (11), and (12) converges to (ρ,Q)
as Δt, Δx → 0.

2. The conclusion of 1. still holds true if Q is equivalent to a constraint that
verifies (QLip) and admits an approximation that satisfies (Qcons

Δ ) and (Qcomp
Δ ),

then the approximate solution constructed by the corresponding scheme (10),
(11), and (12) converges to (ρ,Q) as Δt, Δx → 0.

2.3 Examples

In this section we give some examples of constraint operators satisfying the
hypothesis of Theorem 1. This means that the associated constrained Cauchy
problems are well-posed. Below q ∈ Lip([0, ρmax]; (0, fmax]) is non-increasing,
w ∈ L∞(R−;R+) is non-decreasing with ‖w‖L1(R−) = 1 and supp(w) =
[−iw, 0], iw > 0, κ ∈ Lip(R+;R+) is non-increasing with ‖κ‖L1(R+) = 1 and
supp(κ) = [0, τ ], τ > 0, which express the dependence of the constraint level on
the subjective density, the space non-locality, and the time non-locality (memory),
respectively. We also assume thatw belongs to Lip((−∞, 0);R+) but can be/is dis-
continuous at x = 0. The numerical simulations are performed using the Ruzanov
fux [45]:

F(a, b) = f (a)+ f (b)
2

− b − a
2

max(|f ′(a)|, |f ′(b)|).

Example 1 If w ∈ C1
c(R;R+) and K ∈ C2(R+;R+) is the primitive of κ such that

K(0) = 0, then the nonlocal (both in time and space) constraint operators

Q1[ρ](t) = q
(∫

R−

∫ t
0
w(x) κ(t − s) ρ(s, x) ds dx

)
, (13)
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Q2[ρ](t) = q
(∫

R−

[
w(x)K(t) ρ0(x)+ w′(x)

∫ t
0
K(t − s) f (ρ)(s, x) ds

]
dx

− w(0−)
∫ t

0
K(t − s) f (ρ)(s, 0−) ds

)
, (14)

are well defined and equivalent. Such operators correspond to the case of a maximal
density flow at x = 0 which depends on the values of ρ in supp(κ(t−·))×supp(w).
The monotonicity assumption on w (on κ) implies that the capacity is more affected
by the “closest” (“more recent”) values of ρ. Let also

Q3[ρ](t) = q
⎛
⎝ ∑

0<ti≤t
[ti − ti−1] κ(t − ti−1)

[∫
R−
w(x) ρ(ti , x) dx

]⎞⎠ , (15)

Q4[ρ](t) = q
( ∑
yi<0

[yi+1 − yi]w(yi)
[∫ t

0
κ(t − s) ρ(s, yi+1) ds

])
, (16)

which are discretized versions of Q1, with ti < ti+1 and y0 ≤ yi < yi+1 ≤ yM+1
= 0.

Such operators can model, for instance, the traffic through tollbooths if the
number of open gates is decided according to online data. One might think that
both Q1 and Q2 correspond to data collected by a video camera registering the area
given by supp(w), Q3 corresponds to data collected by a photo camera that shoots
photos at times ti of the area given by supp(w), and Q4 corresponds to data collected
by local sensors located at yi . In each of these cases, supp(κ) is the period of time
the data are taken into account.

In Fig. 1 we represent the exact solution ρ corresponding to the constraint
operator Q1, f (ρ) = (1 − ρ) ρ (hence vmax = 1 and ρmax = 1), w(x) =
2(1+ x) χ[−1,0](x), κ(t) = 2(1− t) χ[0,1](t), ρ0(x) = χ[−6,−1.2](x) and

Fig. 1 The solution ρ described in Example 1
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Fig. 2 The approximate solution x �→ ρ�(t, x) at different times for �x = 10−3 and �t =
4× 10−4. (a) ρ�(0, x). (b) ρ�(5.878, x). (c) ρ�(10, x). (d) ρ�(100, x)

Table 1 Relative L1-error at time t = 10, for the constraints Q1 and Q2

Q1 defined in (13) Q2 defined in (14)

Space step L1-error Rate of convergence L1-error Rate of convergence

600 9.68× 10−3 – 1.07× 10−2 –

1200 5.06× 10−3 0.935 5.64× 10−3 0.923

2400 2.73× 10−3 0.913 3.03× 10−3 0.91

6000 1.24× 10−3 0.891 1.37× 10−3 0.892

12000 6.56× 10−4 0.892 7.28× 10−4 0.892

24000 3.36× 10−4 0.902 3.8× 10−4 0.898

q(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
q0 if 0 ≤ ξ < ξ1,
q1 if ξ1 ≤ ξ < ξ2,
q2 if ξ2 ≤ ξ ≤ 1,

(17)

with q0 = 0.16, q1 = 0.1056, q2 = 0.0384, ξ1 ∼ 0.508, ξ2 ∼ 0.6911. The
approximate solution x �→ ρ�(t, x) is represented at different fixed times t in Fig. 2.
Table 1 lists the relative L1-errors⎡

⎣∑
j

∣∣∣ρ(tn, xj )− ρnj ∣∣∣
⎤
⎦ /⎡

⎣∑
j

∣∣ρ(tn, xj )∣∣
⎤
⎦

at time tn = 10 between the exact and approximate solutions computed with the
constraint operators Q1 and Q2 for different numbers of space cells and for a
fixed time step �t = 10−4. The relative L1-errors are similar; hence the solutions
corresponding to Q1 and Q2 are essentially the same, and in fact Q1 and Q2 are
very close to one another. This is not surprising, indeed, the constraint operators
Q1 and Q2 are equivalent in the sense of Definition 2. We recall that equivalent
constraints lead to the same solutions. Thus, the schemes based on the respective
discretizations of Q1 and Q2 should be seen as different approximations of one and
the same continuous problem.
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Fig. 3 Solutions x �→ ρ�(10, x) corresponding to Q3 and Q4 for �x = 10−3 and �t = 4× 10−4.
(a) x �→ ρ�(5.878, x) for t0 = 0, t1 = 2 and t3 = 5. (b) x �→ ρ�(5.878, x) for all ti = i�t ,
i = 0, . . ., 14695. (c) x �→ ρ�(5.878, x) for y0 = −1.1 and y1 = 0. (d) x �→ ρ�(5.878, x) for all
yi = −6+ i�x, i = 1, . . . , 7000

We focus on the constraint operators Q3 and Q4. For each of them, we perform
two types of simulations: one by taking a small number of discretized times or
positions (see Fig. 3a, c) and one by taking all the times and positions of the
discretization (see Fig. 3b, d). Notice a good agreement between Fig. 3b, d, and
Fig. 2c. As expected, the constraint operator that corresponds to the case where
data are collected by a video camera is the more efficient since the two other may
underestimate the importance of the congestion before the exit.

Example 2 The capacity drop of a bottleneck when a high density accumulates
upstream is reproduced in [5] by the constraint operator

Q1[ρ](t) = q
(
�1(t)

)
, �1(t) =

∫
R−
w(x) ρ(t, x) dx, (18)

where �1 is subjective density at the bottleneck. Existence and uniqueness results
for this model are proved in [5, Theorem 3.1]. Since (Qhd) is obvious and (QLip)
follows from Proposition 1, thanks to Theorem 1 we can give a shorter alternative
proof, which requires weaker hypotheses on q and w. However this proof does not
give any hint on the behavior of the entropy solution nor a priori bounds of its total
variation, unlike to the (much longer) arguments of [5]. Observe that we do not need
to assume (GNL).

According to this model, even a small density may form a queue provided a
sufficiently high density is approaching from behind. This drawback is tempered by
considering a memory effect and choosing Q2[ρ](t) = q

(
�2(t)

)
with

�2(t) = min

{∫
R−
w(x) ρ(t, x) dx, αf−1−

(∫ t
0
κ(t − s) f (ρ)(s, 0−) ds

)}
, (19)

being α ∈ (0, ρmax/ρc] a constant and f− the restriction of f to [0, ρc]. Indeed,
if, for instance, α = √

5, the numerical domain is [−6, 1], f (ρ) = (1 − ρ2)2 ρ,
ρ0(x) = χ[−1,−0.1](x) and
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Fig. 4 The fluxes at the exit
F n,1jc+1/2 and F n,2jc+1/2
corresponding to the
constraints (18) and (19),
respectively, for �x = 10−3

and �t = 4× 10−4
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q(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q0 if 0 ≤ ξ < ξ1,
(q0 − q1)ξ + q1ξ1 − q0ξ2

ξ1 − ξ2 if ξ1 ≤ ξ < ξ2,
q1 if ξ2 ≤ ξ ≤ 1,

with q0 = 0.21, q1 = 0.07, ξ1 = 0.3, ξ2 = 0.7, then, at least in this case, the
constraint operator (19) does not present the drawback pointed out for the constraint
operator (18); see Fig. 4. Moreover, Fig. 4 shows that the constraint operator (19)
qualitatively reproduces also the self-organization. Indeed, the flux in red first
increases until it reaches the maximum level of the efficiency of the exit, and then it
falls down, and after a very short period, it increases without reaching the maximum
level of the efficiency: this is the effect of self-organization [17, 47].

A further drawback of (18) is that it does not take into account memory effects
of inertia kind; in fact �1 is the solution of the ordinary differential equation (ODE)

�̇(t) =
∫
R−
w′(x)

[
f (ρ)(t, x)− f (ρ)(t, 0−)]dx,

hence �1 uniquely depends on the instantaneous values of ρ. This drawback is
tempered by choosing �3 or �4 solutions in D ′([0, T )) of the Cauchy problems for
ODEs

�3 :
⎧⎨
⎩�̇(t) = max

{∫
R− w

′(x)
[
f (ρ)(t, x)− f (ρ)(t, 0−)]dx,−δ �(t)} ,

�(0) = �0[ρ0],
(20)

�4 :
⎧⎨
⎩�̇(t) = max

{∫
R− w

′(x)
[
f (ρ)(t, x)− f (ρ)(t, 0−)]dx,−δ} ,

�(0) = �0[ρ0],
(21)
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Fig. 5 The approximate
functions �1

�, �3
�, �4

� of �1,
�3, �4 defined in (18), (20),
and (21) for �x = 10−3 and
�t = 4× 10−4
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where �0 : L1(R) → R and δ > 0 is a constant. Indeed, if δ = 8 × 10−3, the
numerical domain is [−6, 1], f (ρ) = (1 − ρ2)2 ρ, ρ0(x) = χ[−5.75,−2](x), q is

given by (17) with q0 = 0.21, q1 = 0.168, q2 = 0.021, ξ1 = 0.566, ξ2 = 0.731,
then, at least in this case, the constraint operators associated to (20) and (21) do not
present the drawback pointed out for the constraint operator (18); see Fig. 5.

3 Locally Constrained ARZ

This section is devoted to the study of ARZ (4)

(
ρ

y

)
t

+
[(
y

ρ
− p(ρ)

)(
ρ

y

)]
x

=
(

0
0

)
, (22)

where the density ρ and the generalized momentum y are such that (ρ, y) belongs
to Y = {(ρ, y) ∈ R

2+ : 0 ≤ ρ p(ρ) ≤ y}. Recall that p : R+ → R+ accounts
agents’ reactions to the state of traffic in front of them. We assume that p belongs
to C0(R+;R+) ∩ C2 ((0,∞);R+) and satisfies

p(0) = 0, p′(ρ) > 0 and p′(ρ)+ ρ p′′(ρ) > 0 for every ρ > 0,

lim
ρ↓0

[
ρ2p′(ρ)

]
= 0, lim

ρ↓0

∣∣∣∣ρ p′′ (ρ)p′ (ρ)

∣∣∣∣ <∞.
Typical choice is p(ρ) = ργ , γ > 0; see [8].

ARZ can be interpreted as a generalization of LWR, possessing a fundamental
diagram (ρ, f ) which is a two-dimensional manifold rather than a one-dimensional
manifold as for LWR. This is consistent with experimental data (see, for instance,
[20, Figure 1.1] or [14, Figure 3.1]), according to which the fundamental diagram
(ρ, f ) is given by a cloud of points rather than being the support of a map ρ �→
V (ρ) ρ.
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To any Lagrangian marker w = y/ρ, we can associate the fundamental diagram
curve ρ �→ (w − p(ρ)) ρ, which has maximal slope w and intersects f = 0 at the
vacuum ρ = 0 and at ρ = p−1(w). Since w = w(t, x) satisfies the equation wt +
v wx = 0, the vehicle initially at x0 ∈ R is characterized at any time t > 0 by the
Lagrangian marker w(0, x0) and has, therefore, maximal speed w(0, x0) and length
1/p−1(w(0, x0)). For this reason, ARZ can also be interpreted as a generalization
of LWR to the case of a multi-population traffic.

Away from the vacuum, system (22) is strictly hyperbolic, λ1 < λ2, the
first characteristic field is genuinely nonlinear, ∇λ1 · R1 < 0, and the second
characteristic field is linearly degenerate, ∇λ2 · R2 = 0, where λ1 = y

ρ
− p(ρ) −

ρ p′(ρ), λ2 = y
ρ
− p(ρ) are the eigenvalues of the Jacobian matrix of the flux and

R1 = (ρ, y), R2 = (ρ, y + ρ2p′(ρ)) are the corresponding eigenvectors.
At the vacuum, system (22) degenerates into just one equation. In particular, the

solutions to (22) fail to depend continuously on the initial data in any neighborhood
of ρ = 0 (see [8]); moreover, the solutions may experience a sudden increase of the
total variation as the vacuum appears (see [31]).

A theory for traffic flow away from the vacuum is not of practical interest. Indeed,
a trivial example of vacuum formation is downstream of a traffic light when it is
red. Moreover, vacuum might appear even without the action of a traffic light when,
for instance, slow and fast vehicles initially in (−∞, 0] and (0,∞), respectively,
move at their maximal speed. For this reason we extend the flux to the vacuum by
introducing F : Y → R+ defined by

F(ρ, y) =
⎧⎨
⎩(0, 0) if ρ = 0,[
y
ρ
− p(ρ)

]
(ρ, y) if ρ �= 0.

Moreover, we introduce the change of variables

ρ = r(v,w), y = r(v,w)w,

where the components of (v,w) are the Riemann invariant coordinates (velocity and
Lagrangian marker, respectively) and r(v,w) = p−1(w − v). The main motivation
for this change of variables stems from the fact that the total variation of the
solutions in these coordinates does not increase; see [27, 31, 37] where this property
is exploited to prove existence results for ARZ. Furthermore, at the vacuum, the
entropy pairs defined below in (24) are well defined in the (v,w) coordinates and
multivalued in the (ρ, y) coordinates.

In the new variables, Y becomes W = {(v,w) ∈ R
2+ : v ≤ w}. Notice that the

vacuum ρ = 0 corresponds in the (ρ, y) variables to the point (ρ, y) = (0, 0) and in
the (v,w) variables to the half line W0 = {(v,w) ∈ W : v = w}. Let W c0 = W \W0
be the set of the non-vacuum states.
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The Cauchy problem for ARZ (22) subject to a point constraint on the density
flow (5) writes in the new variables

Y (v,w)t + F
(
Y (v,w)

)
x
= (0, 0), x ∈ R, t ∈ (0, T ] , (23a)

f (v,w)(t, 0±) ≤ Q(t), ∈ R, t ∈ (0, T ] , (23b)

(v,w)(0, x) = (v0, w0)(x), x ∈ R, (23c)

where T > 0 is the time horizon, Y (v,w) = (r(v,w), r(v,w)w), (v0, w0) ∈
L∞ (R;W ) is the initial datum, Q(t) is the maximal density flow allowed at x = 0
at time t > 0, and f (v,w) = r(v,w) v.

3.1 Existence and Uniqueness Results

Before stating the definition of entropy solution to (23), we introduce the family of
entropy-entropy flux pairs

Ek(v,w) =
{

0 if v ≤ k,
1− p−1(w−v)

p−1(w−k) if v > k,
Fk(v,w) =

{
0 if v ≤ k,
k − f (v,w)

p−1(w−k) if v > k,
(24)

and the “compensation term”

Nk(v,w,Q) =
⎧⎨
⎩f (v,w)(t, 0)

[
k
Q(t)

− 1
p−1([w(t,0)−k]+)

]+
ifQ(t) �= 0,

k otherwise .

Definition 3 We say that (v,w) ∈ L∞(R+;BV(R;W )) ∩C0(R+;L1
loc(R;W )) is

a constrained entropy solution to (23) if the following conditions hold:

(i) (v,w) is a weak solution of Cauchy problem (23a), and (23c), i.e.,
(v,w)(0, x) = (v0, w0)(x) for a.e. x ∈ R and for any test function
φ ∈ C∞

c ((0,∞)× R;R)
∫∫

R+×R
r(v,w)

[
φt + v φx

]
(1, w) dx dt = (0, 0).

(ii) (v,w) satisfies constraint (23b), namely, f (v,w)(t, 0±) ≤ Q(t) for a.e. t > 0
and for any test function φ ∈ C∞

c ((0,∞)× R;R+) and constant k > 0

∫∫
R+×R

[
Ek(v,w) φt + Fk(v,w) φx

]
dx dt +

∫
R+

Nk(v,w,Q) φ(t, 0) dt ≥ 0.

(25)
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Conditions (25) originate from the classical definition of entropy solutions to
hyperbolic systems of conservation laws, [34, 36]. The entropies Ek are not convex
with respect to the variables (v,w) (they are convex only with respect to the
conservative variable ρ); however, given any Riemann datum not involving the
vacuum state, the entropy inequalities (25) select precisely the solutions prescribed
by the Aw-Rascle and Zhang Riemann solver.

We recall the existence results for unconstrained Cauchy problem (23a), and
(23c) obtained in [27] away from the vacuum and in [31, 37] for solutions attaining
also the vacuum state.

Some remarks on Nk are in order. First, Nk compensates the possible additional
entropy dissipation at x = 0 due to the constraint. Second, it makes sense to
consider the traces f (v,w)(t, 0±) and w(t, 0±). This is obvious as we assume that
the solution (v,w) is in L∞(R+;BV(R;W )); therefore we can introduce both the
left measure theoretic trace (v,w)(t, 0−), implicitly defined by

lim
ε↓0

1

ε

∫
R+

∫ 0

−ε
∥∥v(t, x)− v(t, 0−)∥∥ φ(t, x) dx dt = 0 for all φ ∈ C∞

c (R
2;R),

lim
ε↓0

1

ε

∫
R+

∫ 0

−ε
∥∥w(t, x)− w(t, 0−)∥∥ φ(t, x) dx dt = 0 for all φ ∈ C∞

c (R
2;R),

and the right measure theoretic trace (v,w)(t, 0+), which is defined analogously.
Moreover, if w(t, 0−) and w(t, 0+) differ then x �→ (v,w)(t, x) has a station-
ary contact discontinuity at x = 0 and therefore Nk(v,w,Q) = 0 because
f (v,w)(t, 0±) = 0.

Condition (25) does not ensure uniqueness of solutions involving a vacuum state.
For this reason at vacuum, we adopt the selection criterion for BV-entropy solutions
requiring that for any t > 0 and x ∈ R

⎛
⎜⎜⎝
v(t, x−)
w(t, x−)
v(t, x+)
w(t, x+)

⎞
⎟⎟⎠ ∈

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
v�

w�

vr

wr

⎞
⎟⎟⎠ ∈ W 2 :

(v�, w�) ∈ W0

(vr , wr) ∈ W0

}
⇒

(
v�

w�

)
=

(
vr

wr

)
(v�, w�) ∈ W c0
(vr , wr) ∈ W0

}
⇒

(
vr

wr

)
=

(
w�

w�

)
⎫⎪⎪⎬
⎪⎪⎭ . (26)

Remark 1 The solutions we consider in this section, and in general all solutions
associated to constant or piecewise constant in time constraints and BV-regular
initial conditions, are in L∞(R+;BV(R;W )); see [6]. However since Nk can be
written as the product of f (v,w) by a function of w and Q, and w enjoys the
renormalization property, [41], the weak traces at x = 0 of Nk = Nk(v,w,Q)
exist; see [1, 6] for details. This property gives hope to extend the existence results
presented here to general time-variable constraints and then to nonlocal constraints,
in the spirit of the LWR-based models discussed in Sect. 2.
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We collect the basic properties of constrained entropy solutions in the following.

Proposition 2 If (v,w) is a constrained entropy solution of (23), then:

1. Any discontinuity of Y (v,w) satisfies the Rankine-Hugoniot jump conditions.
2. Any discontinuity of Y (v,w) away from x = 0 satisfies the classical Lax entropy

inequalities.
3. If x �→ Y (v,w)(t0, x), t0 > 0, has a nonclassical shock discontinuity, then
f (v,w)(t0, 0±) = Q(t0).
Denote by PC the set of piecewise constant functions with a finite number of

jumps. Let (̃v(Q), w̃(Q)) be the point of the curve f (v,w) = Q with the lowest w
coordinate, J : (0,∞)× R+ → R+ be defined by

J (Q,w) =
{
v̌(Q,w)− v̂(Q,w) if w ∈ [

w̃(Q),∞)
,

0 if w ∈ [
0, w̃(Q)

)
,

and for any w ≥ w̃(Q), let

v̂(Q,w) = min {v ∈ (0, w) : r(v,w) v = Q} ,
v̌(Q,w) = max {v ∈ (0, w) : r(v,w) v = Q} .

Notice that ṽ(Q)2/Q = p′ (Q/̃v(Q)) and w̃(Q) = ṽ(Q)+ p (Q/̃v(Q)).
Theorem 4 Let (v0, w0) ∈ BV(R;W ) satisfy (26) andQ ∈ PC (R+;R+) be such
that x �→ J (Q(0), w0(x)) has bounded total variation in R− and

K0 =
∑
t>0 s.t.

Q(t−) �=Q(t+)

sup
y∈R−

∣∣TV
(
J

(
Q(t−), w0

) ;(−∞, y])−TV
(
J

(
Q(t+), w0

) ;(−∞, y])∣∣

is bounded. Then constrained Cauchy problem (23) admits a constrained entropy
solution (v,w) ∈ C0 (R+;BV (R;W )) and for all t, s ∈ R+

TV
(
(v,w)(t)

)≤C, ‖(v,w)(t)− (v,w)(s)‖L1 ≤L |t − s| , ‖(v,w)(t)‖L∞ ≤V0,

where

V0 = ‖(v0, w0)‖L∞(R), L = C max
{
V0, p

−1(V0) p
′ (p−1(V0)

)}
C = TV(v0, w0)+ 3TV

(
J
(
Q(0), w0

);R−)
+ 2V0 + 3 (K1 +K2) .

Above, K1 and K2 are constants that may depend on K0.
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The proof is based on the WFT algorithm restarted at every timeQ has a jump. The
main obstacle for generalizing the existence result to general time-dependent Q is
the dependence of the Temple functional onQ via J (Q, ·).

3.2 Example

In this section we apply model (23) to simulate the traffic on a road in the presence
of a traffic light placed at x = 0. More specifically, let w2 > w1 > 0, and consider
two types of vehicles, the “slow vehicles” characterized by the Lagrangian marker
w1 and the “fast vehicles” characterized by the Lagrangian marker w2. Observe that
the maximum speed of the fast vehicles is w2 and that one of the slow vehicles is
w1. Moreover, the length of the fast vehicles, 1/p−1(w2), is lower than that one of
the slow vehicles, 1/p−1(w1); see Fig. 6.

Place at x = 0 a traffic light that turns from red to green at time t = 0. Assume
that at time t = 0 all the vehicles are at rest in [x1, 0); more precisely, assume
that the slow vehicles are uniformly distributed in [x1, x2) with density p−1(w1)

and the fast vehicles are uniformly distributed in [x2, 0) with density p−1(w2). The
resulting problem is (23) with initial datum

v0(x) =

⎧⎪⎪⎨
⎪⎪⎩
w1 if x ≤ x1,

0 if x1 ≤ x < 0,

w2 if x > 0,

w0(x) =
{
w1 if x ≤ x2,

w2 if x > x2,

Fig. 6 Left: The fundamental diagrams ρ �→ f (w1 − p(ρ),w1) and ρ �→ f (w2 − p(ρ),w2)

corresponding to the slow and fast vehicles, respectively. Right: The solution constructed in
Sect. 3.2. Above “0” stands for the vacuum
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and constraint

Q(t) =
(

max
ρ∈[0,p−1(w2)]

f (w2 − p(ρ),w2)

)
χ
(0,tD)∪(tH ,tP )(t).

The above expression for Q means that the traffic light is green for t ∈ (0, tD) ∪
(tH , tP ); otherwise it is red.

Below we furnish a detailed construction of the resulting solution; see Figs. 6 and
7. We first consider three Riemann problems at (t, x) ∈ {0} × {x1, x2, 0} and obtain
that from x = x1 starts a stationary discontinuity D = D1 from the vacuum state
(w1, w1) to (0, w1), from x = x2 starts a stationary contact discontinuity C = C1
from (0, w1) to (0, w2), and from x = 0 starts a rarefaction R centered in (t, x) =
(0, 0) and taking values

R : ρR
(
x
/
t
)=R (

w2 − x
/
t
)
, wR

(
x
/
t
)=w2, for x

/
t ∈ [λ1 (0, w2) , w2] ,

Fig. 7 The solution constructed in Sect. 3.2. (a) (t, x) �→ v(t, x). (b) (t, x) �→ w(t, x). (c)
(t, x) �→ ρ(t, x). (d) (t, x) �→ f (t, x)
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where R is the inverse function of ρ �→ p(ρ)+ ρ p′(ρ). Let then

D = D1 : xD1(t) = x1,

C = C1 : xC1(t) = x2.

We prolong then the solution by considering the Riemann problems at each
interaction as follows:

• The contact discontinuity C starts to interact with the rarefaction R from
A = (tA, xA) = (x2/λ1(0, w2), x2); as a result, C accelerates according to the
following ordinary differential equation

C = C2 : ẋC2(t) = vR
(
xC2(t)

/
t
)
, xC2(tA) = xA. (27)

The contact discontinuity C stops to interact with the rarefaction R at B =
(tB, xB) implicitly given by xB = xC2(tB) and vR (xB/tB) = w1; then the
vacuum state (w1, w1) appears in {(t, x) : xB + (t − tB)w1 < x < xC2(t)}.
Observe that (27) still holds after time t = tB because the speed of propagation
of any discontinuity from any vacuum state to (v∗, w∗) ∈ W c0 is v∗. Notice that
C is not a contact discontinuity after time t = tB .

• Each point of C (t), tA ≤ t ≤ tB , is the center of a rarefaction appearing on its
left. Denote by R ′ the juxtaposition of these rarefactions. In order to compute
the values attained by R ′, it is sufficient to recall that the velocity v is conserved
across the contact discontinuity C (t), tA ≤ t ≤ tB , and that the density ρ in R ′
is constant along

P : x = xC2(t0)+ λ1
(
vR

(
xC2(t0)

/
t0
)
, w1

)
(t − t0). (28)

Hence, the value of ρR ′ at any point (t, x) of the rarefaction R ′ is equal to
r(vR , w1) computed at the point (t0, xC2(t0)), with t0 = P(t, x), obtained by
projecting (t, x) to a point of C along (28):

R ′ : ρR ′(t, x) = p−1 (
w1 − vR

(
xC2 (P(t, x))

/
P(t, x)

))
, wR ′(t, x) = w1.

Observe that by definition P(t, x) ∈ [tA, tB ] for all (t, x) in R ′.
• The rarefaction R ′ reaches the stationary discontinuity D in C = (tC, xC) =
(tA + (x1 − x2)

/
λ1(0, w1), x1). As a result of its interaction with R ′, the

discontinuity D starts to accelerate

D = D2 : ẋD2(t) = vR ′
(
t, xD2(t)

)
, xD2(tC) = xC.

• At time t = tD , such that tD > tB and C2(tD) < 0, the traffic light turns to
red. Hence, at D = (tD, 0), the solution has a shock S −

0 with negative speed, a
stationary nonclassical shock N from (0, w2) to the vacuum state (w2, w2), and
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a shock S +
0 with positive speed. Since S −

0 and S +
0 interact with the rarefaction

R, we have that

S −
0 : ẋS −

0
(t) =

qR

(
xS −

0
(t)

/
t
)

ρR

(
xS −

0
(t)

/
t
)
− p−1(w2)

, xS −
0
(tD) = 0,

S +
0 : ẋS +

0
(t) = vR

(
xS +

0
(t)

/
t
)
, xS +

0
(tD) = 0.

• The discontinuity C and the shock S −
0 meet in E, which is implicitly given by

xC2(tE) = xE = xS −
0
(tE). Observe that

xE = x2 + tD

p−1(w2)
max

{
f
(
w2 − p(ρ),w2

) : ρ ∈ [0, p−1(w2)]
}
.

As a result of this interaction, S −
0 disappears and C becomes stationary

C = C3 : xC3(t) = xE.

• The discontinuity C meets again the rarefaction R ′ in F = (tF , xF ) = (tB +
(xE − xB)

/
w1, xE). As a result of this interaction, from F starts a backward

shock SF , while C becomes a stationary contact discontinuity. Since SF
interacts with R ′, we have that

SF : ẋSF (t)=fR ′
(
t, xSF (t)

)/(
ρR ′

(
t, xSF (t)

)−p−1(w1)
)
, xSF (tF )=xF .

• The discontinuity D and the shock SF meet in G, which is implicitly given by
xD2(tG) = xG = SF (tG). Observe that xG = (x1 − x2)+ xE . As a result of this
interaction, SF disappears and D becomes stationary

D = D3 : xD3(t) = xG.

• If at time t = tH , with tH > tG, the traffic light turns to green. Then we have a
rarefaction R� centered in H = (tH , 0) and taking values

R� :
{
ρR� (t, x) = R

(
w2−x

/
(t−tH )

)
,

wR� (t, x) = w2,
for x

/
t−tH ∈ [λ1 (0, w2) , w2] ,

• The contact discontinuity C starts to interact with the rarefaction R� in I =
(tI , xI ) = (tH + α tA, α x2), where α = xE/x2. As a result, analogously to the
interaction in A, C accelerates and a rarefaction R ′

� appears on its left. Hence

C = C4 : xC4(t) = α xC2

(
(t − tH )

/
α
)
, (29)



126 B. Andreianov et al.

P� : P�(t, x) = αP
(
(t − tH )

/
α, x

/
α
)+ tH ,

R ′
� :

⎧⎨
⎩
ρR ′
�
(t, x) = p−1

(
w1 − vR

(
xC4

(
P�(t, x)

)/(
P�(t, x)− tH

)))
,

wR ′
�
(t, x) = w1.

• The contact discontinuity C stops to interact with the rarefaction R� from
L = (tL, xL) = (tH + α tB, α xB) and the vacuum state (w1, w1) appears in
{(t, x) : xL + (t − tL)w1 < x < xC4(t)}. Observe that (29) still holds after time
t = tL. Notice that C is not a contact discontinuity after time t = tL.

• The rarefaction R ′
� reaches the stationary discontinuity D in M = (tM, xM) =

(tI + (xG − xE)/λ1(0, w1), xG). As a result of its interaction with R ′
�, the

discontinuity D starts to accelerate

D = D4 : ẋD4(t) = vR ′
�

(
t, xD4

(t)
)
, xD4

(tM) = xM. (30)

• The discontinuity D reaches x = 0 in P implicitly given by xD4
(tP ) = xP = 0.

At time t = tP no vehicles are present in R−, and the construction of the solution
in the left half-plane is concluded. In Figs. 6 and 7, we represent the solution
corresponding to

p(ρ) = ρ2, w1 = 2, w2 = 10, x1 = −15, x2 = −12, tD = 2, tH = 8.

Notice that we have the following expressions for D and C :

xD (t) = x1 χ[0,tC ](t)+ xD2
(t) χ]tC ,tG[(t)+ xG χ[tG,tM ](t)+ xD4

(t) χ]tM ,+∞[(t),

xC (t) = x2 χ[0,tA](t)+ xC2
(t) χ]tA,tF [(t)+ xE χ[tF ,tI ](t)+ xC4

(t) χ]tI ,+∞[(t).

In order to compute time tP , we can exploit the equation

∫ 0

xD4
(t)

ρ
R ′
�

(t, y) dy +
∫ t
tO

f
R ′
�

(s, 0) ds = p−1(w1)(x2 − x1), t ∈ [tO, tP ] ,

to obtain an alternative way to compute tP given by solving the following equation:

tP :
∫ tP
tO

f
R ′
�

(t, 0) dt = p−1(w1)(x2 − x1).

The above equation allows to compute tP by solving (29) for times t ∈ [tI , tL]
instead of (30) for times t ∈ [tM, tP ], that is computationally much more expensive.
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4 Locally Constrained PT

In this section we study the Cauchy problem for PT (3), and (4) subject to a point
constraint on the density flow (5). More precisely, with the same notations used
in the previous sections, we describe the traffic in the free-flow phase 	f with
constrained LWR (6) and the traffic in the congested phase 	c with constrained
ARZ (23). The coupling is achieved via phase transitions, namely, discontinuities
that separate two states belonging to different phases and that satisfy the Rankine-
Hugoniot conditions.

We point out that in [11, 12, 20, 30], it is assumed that 	f ∩ 	c = ∅,
while in [13, 14], it is assumed that 	f ∩ 	c �= ∅. Moreover, in [13, 14], it is
assumed that the flux function vanishes at a maximal density, namely, that the
vehicles have (almost) the same length, while in [11, 12, 30], this requirement
is not assumed. Here we assume that 	f ∩ 	c �= ∅ and, in order to ensure
the well-posedness of the Cauchy problems, see [20, Remark 2], we also assume
that 	f is characterized by a unique value of the velocity, V ≡ Vmax. At last,
we consider a heterogeneous traffic with vehicles having different lengths. As a
consequence

	f = 	−f ∪	+f , 	c =
{(
r(v,w), v

) ∈ R+ × [0, Vmax] : w ∈ [W−,W+]} ,
where

	−f = [0, σ−)× {Vmax} , 	+f = [σ−, σ+]× {Vmax} ,

with σ± = r
(
Vmax,W

±)
and 0 < Vmax < W

− < W+ are such that

Vmax < p
−1 (
W− − Vmax

)
p′

(
p−1(W− − Vmax)

)
.

Notice that 	+f = 	f ∩	c is the metastable phase and is not empty.
This two-phase approach is motivated by experimental observations, according

to which for low densities the flow of vehicles is approximable by a one-dimensional
manifold as	f, while at high densities, the flow covers a two-dimensional manifold
as 	c; see [20, Figure 1.1] or [14, Figure 3.1].

We introduce the following functions:

w : 	→ [
0,W+]

, w(ρ, v) =
{
p(ρ)+ v if (ρ, v) ∈ 	c,

W− ρ/σ− if (ρ, v) ∈ 	−f ,
W : 	→ [

W−,W+]
, W(ρ, v) = max{W−,w(ρ, v)},

f : 	→ R+, f (ρ, v) = ρ v.
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We consider the Cauchy problem for PT (3), and (4)

Free flow⎧⎪⎪⎨
⎪⎪⎩
u=(ρ, v) ∈ 	f,

ρt + f (ρ, v)x = 0,

v=Vmax,

Congested flow⎧⎪⎪⎨
⎪⎪⎩
u=(ρ, v) ∈ 	c,

ρt + f (ρ, v)x=0,

[ρ w(ρ, v)]t + [f (ρ, v)w(ρ, v)]x =0,

u(0, x)=u0(x),

(31)
subject to a point constraint on the density flow (5)

f (ρ, v)(t, 0±) ≤ Q, (32)

where u0 ∈ L∞(R;	) is the initial datum and Q is the constant maximal density
flow allowed at x = 0. Clearly, as in [11, 12, 24, 30], the traffic is described by LWR
in the free-flow phase and ARZ in the congested phase.

Let f±c = σ± Vmax. Introduce V ±Q ∈ [0, Vmax] andWQ ∈ [0,W+] defined by the
following conditions:

ifQ = f+c :
V +Q = Vmax, V −Q = Vmax, WQ = W+,

ifQ∈ [f−c , f+c ) :

V +Q=Vmax, V −Q+p
(
Q

V −Q

)
=W+, WQ=p

(
Q

Vmax

)
+Vmax,

ifQ ∈ (0, f−c ) :

V +Q + p
(
Q

V +Q

)
= W−, V −Q + p

(
Q

V −Q

)
= W+, WQ = Q

f−c
,

ifQ = 0 :
V +Q = 0, V −Q = 0, WQ = 0.

For any Q ∈ (0, f+c ), let �Q : [V −Q , V +Q ] → [W−,W+] be given by �Q(v) =
v + p(Q/v). Notice that �Q is strictly decreasing and strictly convex.

4.1 Existence Result

Before stating the definition of entropy solution to (31), we introduce the family of
entropy-entropy flux pairs

Ek(ρ, v)=
⎧⎨
⎩

0 if v≥k,
ρ

p−1
(
W(ρ,v)−k

) − 1 if v<k,
Fk(ρ, v)=

⎧⎨
⎩

0 if v≥k,
f (ρ,v)

p−1
(
W(ρ,v)−k

)−k if v<k.



One-Dimensional Conservation Laws with Nonlocal Point Constraints on the Flux 129

Definition 4 We say that (ρ, v) ∈ L∞ (R+;BV(R;	)) ∩ C0
(
R+;L1

loc(R;	)
)

is a constrained entropy solution to (31), and (32) if the following conditions
holds:

(i) (ρ, v) is a weak solution to Cauchy problem (31), i.e., (ρ, v)(0, x) =
(ρ0, v0)(x) for a.e. x ∈ R, and for any test function φ ∈ C∞

c ((0,∞) × R;R),
we have ∫∫

R+×R
(
ρ φt + f (ρ, v) φx

)
dx dt = 0 (33)

and if φ(·, 0) ≡ 0, then∫∫
R+×R

(
ρ φt + f (ρ, v) φx

)
W(ρ, v) dx dt = 0. (34)

(ii) (ρ, v) satisfies constraint (32), namely, f (ρ, v)(t, 0±) ≤ Q for a.e. t > 0 and
for any test function φ ∈ C∞

c ((0,∞) × R;R+) such that φ(·, 0) ≡ 0 and
constant k ∈ [0, Vmax]∫∫

R+×R
(
Ek(ρ, v) φt + Qk(ρ, v) φx

)
dx dt ≥ 0. (35)

In the following proposition, we state which discontinuities are admissible for
constrained entropy solutions.

Proposition 3 If (ρ, v) is a constrained entropy solution of (31), and (32), then:

• Any discontinuity δ(t) of x �→ (ρ, v)(t, x) satisfies the first Rankine-Hugoniot
jump condition

[
ρ
(
t, δ(t)+

)−ρ(t, δ(t)−)]
δ̇(t) = f (ρ, v)(t, δ(t)+)−f (ρ, v)(t, δ(t)−)

, (36)

and if δ(t) �= 0, then it satisfies also the second Rankine-Hugoniot jump condition

[
ρ
(
t, δ(t)+

)
W(ρ, v)

(
t, δ(t)+

)− ρ(t, δ(t)−)
W(ρ, v)

(
t, δ(t)−

)]
δ̇(t)

= f (ρ, v)(t, δ(t)+)
W(ρ, v)

(
t, δ(t)+

)− f (ρ, v)(t, δ(t)−)
W(ρ, v)

(
t, δ(t)−

)
.

(37)

• Any discontinuity of (ρ, v) away from the constraint satisfies the Lax entropy
inequalities.

• Nonclassical discontinuities of (ρ, v) may occur only at the constraint location
x = 0, and in this case, the density flux at x = 0 does not exceed the maximal
fluxQ allowed by the constraint.
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Remark 2 In (34) and (35), we consider test functions φ such that φ(·, 0) ≡ 0.
Indeed a constrained entropy solution (ρ, v) to constrained Cauchy problem (31),
and (32) does not satisfy in general second Rankine-Hugoniot condition (37) along
x = 0

f (ρ, v)(t, 0−)W(ρ, v)(t, 0−) = f (ρ, v)(t, 0+)W(ρ, v)(t, 0+) for a.e. t > 0.

Therefore, even if (ρ, v) takes values in 	c, it may not be a weak solution to
ARZ (23).

This is in the same spirit of the solutions considered in [12, 24, 28] for
traffic through locations with reduced capacity. This choice for the test func-
tions in (34) and (35) does not allow us to better characterize the (density)
flux at x = 0 associated to nonclassical shocks. In particular, different from
what is proved in Sect. 2 for constrained LWR and Sect. 3 for constrained ARZ,
we cannot ensure that the flux of the nonclassical shocks of (ρ, v) is equal
toQ.

Let the maps [0,W+] � w �→ û(w) = (ρ̂(w), v̂(w)) ∈ 	c and [0, Vmax] � v �→
ǔ(v) = (ρ̌(v), v̌(v)) ∈ 	 be defined in the (v,w) coordinates by

v̂(w) =

⎧⎪⎪⎨
⎪⎪⎩
�−1
Q (w) if w > max{W−,WQ},
V +Q ifWQ < w ≤ W−,
V if w ≤ WQ,

v̌(v) =

⎧⎪⎪⎨
⎪⎪⎩
V if v > V +Q ,
v if v ∈ [V −Q , V +Q ],
V −Q if v < V −Q ,

ŵ(w) =

⎧⎪⎪⎨
⎪⎪⎩
w if w > max{W−,WQ},
W− ifWQ<w≤W−,
WQ if w≤WQ,

w̌(v)=

⎧⎪⎪⎨
⎪⎪⎩
WQ if v >V +Q ,
�Q(v) if v ∈ [V −Q , V +Q ],
W+ if v <V −Q .

Notice that

f
(
û(w)

) = f (ǔ(v)) = Q.
Denote by TV+ and TV− are the positive and negative total variations, respec-

tively. For any u = (ρ, v) : R→ 	, let

ϒ̂(u) = TV+
(
v̂
(
w(u)

); (−∞, 0))+ TV−
(
ŵ
(
w(u)

); (−∞, 0)),
ϒ̌(u) = TV+

(
v̌(v); (0,∞)

)
+ TV−

(
w̌(v); (0,∞)

)
.

We are now in the position to state the main result of the paper.

Theorem 5 Let (ρ0, v0) ∈ L1 ∩ BV(R;Ω) and Q ∈ [0, f+c ] satisfy one of the
following conditions:
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(i) Q ∈ [f−c , f+c ];
(ii) Q ∈ [0, f−c ) and Υ̂ (ρ0, v0)+ Υ̌ (ρ0, v0) is bounded.

Then constrained Cauchy problem (31), and (32) admits a constrained entropy
solution (ρ, v) ∈ L∞ (R+;BV(R;Ω))∩C0

(
R+;L1

loc(R;Ω)
)

and for all t , s ∈ R+

TV
(
u(t)

) ≤ C, ‖u(t)− u(s)‖L1 ≤ L |t − s|, ‖u(t)‖L∞ ≤ p−1(W+)+ Vmax,

where C and L are constants that depend on (ρ0, v0) andQ.

The proof is based on the WFT algorithm; see [10] for the details. Let us just
underline that if Q ∈ [f−c , f+c ], then w �→ û(w) and v �→ ǔ(v) are Lipschitz
continuous, and therefore ϒ̂(ρ0, v0)+ ϒ̂(ρ0, v0) is bounded if (ρ0, v0) has bounded
total variation. On the other hand, if Q < f−c , then w �→ û(w) and v �→ ǔ(v) are
only left-continuous. This motivates the differences between the hypotheses (i) and
(ii) of Theorem 5.

4.2 Example

In this section we apply model (31), and (32) to simulate the traffic on a road in the
presence of an obstacle, such as a construction site, with capacity Q and placed at
x = 0; see Fig. 8. More specifically, let w2 ∈ (W−,W+] be the Lagrangian marker
corresponding to vehicles that are initially at rest in [x2, 0). We place in [x1, x2)

vehicles with density ρ1 ∈ (0, σ−); these vehicles clearly move with speed Vmax.
The resulting initial condition is

Fig. 8 Left: The fundamental diagrams ρ �→ f (W− − p(ρ),w1) and ρ �→ f (w2 − p(ρ),w2).
Right: The solution constructed in Sect. 4.2



132 B. Andreianov et al.

u(0, x) =

⎧⎪⎪⎨
⎪⎪⎩
u0 if x ∈ R \ [x1, 0),

u1 if x ∈ [x1, x2),

u2 if x ∈ [x2, 0)

where u0 = (0, Vmax), u1 = (ρ1, Vmax) and u2 = (p−1(w2), 0). For times
sufficiently small, the solution is the juxtaposition of the solutions to three Riemann
problems at (t, x) ∈ {0} × {x1, x2, 0} that are

R [u0, u1]

(
x − x1

t

)
, R [u1, u2]

(
x − x2

t

)
, RQ [u2, u0]

(x
t

)
.

More precisely, from x = x1 starts a contact discontinuity from the vacuum state
u0 to u1, from x = x2 starts a phase transition from u1 to (p−1(W−), 0) and a

Fig. 9 The solution constructed in Sect. 4.2. (a) (t, x) �→ v(t, x). (b) (t, x) �→ w(t, x). (c)
(t, x) �→ ρ(t, x). (d) (t, x) �→ f (t, x)
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stationary contact discontinuity from (p−1(W−), 0) to u2, and from x = 0 starts
a rarefaction ranging values from u2 to û(w2,Q), a (stationary) nonclassical shock
from û(w2,Q) to ǔ(Vmax,Q), and a contact discontinuity from ǔ(Vmax,Q) to u0.
The remaining construction of the solution is then similar to that described in
Sect. 3.2 for the constrained ARZ. In Fig. 9 we represent the solution corresponding
to

x1 = −11

2
, x2 = −5, p(ρ) = ρ2, Vmax = 2

25
,

W− = 7

50
, w2 = 1

4
, ρ1 =

√
6

20
, Q =

7
(

31
√

17− 15
)

31250
.
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Measure-Theoretic Models
for Crowd Dynamics

Benedetto Piccoli and Francesco Rossi

Abstract This chapter revises some modeling, analysis, and simulation contri-
butions for crowd dynamics using time-evolving measures. Two key features are
strictly related to the use of measures: on one side, this setting permits to generalize
both microscopic and macroscopic crowd models. On the other side, it allows an
easy description of multi-scale crowd models, e.g., with leaders and followers.
The main analytical tool for studying measure evolution is to endow the space of
measures with the Wasserstein distance.

This chapter also describes our recent contributions about crowd modeling with
time-varying total mass. This requires to use a more flexible metric tool in the space
of measures, that we called generalized Wasserstein distance.

1 Introduction

The dynamics of pedestrian crowds can exhibit highly complex phenomena, which
stem from the complexity of the cognitive processes behind human actions but
also from self-organization, emerging from the combination of simple interaction
rules. The ubiquity of self-organization of several interacting agents system has been
proved in many different fields (see [9, 19, 24, 29, 30, 46]). To model mathematically
such complex behaviors, researchers resorted to many different approaches, which
encompass different scales. This chapter focuses on a measure-theoretic approach,
which allows to combine different scales, taking advantage of different modeling
capabilities.
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One of the most famous models at microscopic level is the celebrated social
force model, proposed by Helbing and Molnár [27]. The main idea is that the
reaction of pedestrians to the environment can be modeled as the effect of forces.
The latter are not true physical forces but rather a modeling abstraction to represent
the reactions of human as social being and thus are referred to as social forces. Such
model is mainly based on a desired velocity, depending on the single pedestrian
characteristics and goals, and on terms representing interactions among pedestrians
and with the environment (such as walls and barriers). Interestingly enough, such
model shares many similarities with models proposed, independently, by biologists
for animal groups. Moreover, the social force model is similar to the well-known
Cucker-Smale alignment model, which has been studied extensively by the applied
mathematics community and was first defined to model the dynamics of languages.

As for dilute gases theory, one may pass to the limit in the number of agents
(here instead of particles) and achieve mean-field limit equations, usually of Vlasov-
Poisson type [12, 23]. Moreover, such equations allow, for nonlocal velocity fields,
a well-developed theory for measure solutions and convergence analysis using the
Wasserstein distance. The latter, widely used in optimal transport [45], metrizes
the weak convergence on compact sets. These facts naturally call to use measures
to represent the dynamics of crowds. Moreover, a measure can naturally represent
different scales, with Dirac masses corresponding to microscopic components and
absolutely continuous measures to macroscopic components.

One can define general nonlinear nonlocal transport equations, which include
both the microscopic models as empirical measure solutions and the macroscopic
mean-field limits as absolutely continuous solutions. The theory for such equations
is strongly based on Wasserstein distances. In particular, Lipschitz conditions w.r.t.
the Wasserstein distance for measures and uniform norm for vector fields allow to
prove existence and uniqueness of solutions. The same result is not true if one uses
the total variation norm, which corresponds to the L1 distance for functions. The
Wasserstein distance also has modeling advantages, as explained in Sect. 2.5.

After revising the theory developed in recent works, we propose a new modeling
framework for crowds. The latter is based on the idea of using the mass to represent
the social influence of a pedestrian. In other words, a bigger mass would represent a
pedestrian with higher effects on the others. We propose a dynamic model where the
masses may vary in time. The variation will depend on the mass of the pedestrian
under consideration, but also on the interaction with the other pedestrians. We first
detail the microscopic model, providing also analytical properties. Natural modeling
choices lead to lack of conservation of the mass; thus we resort to the generalized
Wasserstein distance, which is defined for measures with different masses. It is
possible to define the mean-field limit of these models with time-varying mass. The
obtained equations exhibit transport as well as source terms. Using the generalized
Wasserstein distance, it is then possible to develop a complete theory for such
equations.

To complete the presentation, we include simulation results which show the
difference between mass-preserving and mass-varying models for an evacuation
problem.
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2 Microscopic and Multi-scale Models

The main idea behind the use of measure-theoretic models is the possibility of
representing different scales in a unique framework. For this purpose, we will first
recall some microscopic models, which provide the basis of ingredients for single
pedestrian motion. There is a wealth of mesoscopic and macroscopic models as
well: they can be either obtained as mean-field limits of microscopic models or
they are based on general principles, such as conservation of mass and balance of
momentum. We will not include a review of mesoscopic and macroscopic models
and refer the reader to [3, 5–7, 17] for details. Then we introduce the measure-
theoretic approach which allows the inclusion of different scales in a unique
framework.

2.1 Microscopic: The Social Force Models

The most used microscopic model for pedestrian motion and crowd dynamics is
the celebrated social force model first introduced by Helbing and Molnár (see,
for instance, [27]). The popularity of the model is mostly due to the fact that it
is relatively simple yet capable of capturing various self-organization phenomena
observed in crowd dynamics. The work of Helbing and Molnár was inspired by
the previous work of Lewin, which considered forces to represent the influence of
the environment on social behavior [31]. The main concept behind such approach
is the idea that variations in velocity of pedestrians (physically accelerations and
decelerations) are caused as reactions to the perceived environment, including the
presence of other pedestrians, and can be mimicked by forces. The latter are not
real forces but rather the effect of “social” interactions with the environment; this
explains the name of the model.

Due to its popularity, many authors contributed to variations of the original
model: listing all the proposed model would require too much space; thus we
will rather point out the main variations considered. Notice that many effects can
be neglected if pedestrians are assumed to be dimensionless points in the space,
but more realistically each pedestrian should be modeled according to the space
occupied.

Let us start indicating by xi the position of the i-the pedestrian in a walkable area
	 ⊂ R

2. One may consider also the case of 	 ⊂ R
3, but this is much less common.

Each pedestrian possesses a desired velocity v̄i , which is usually the vector pointing
toward the desired destination and having modulus equal to a comfort speed. Each
pedestrian tends to reach the desired velocity at a given relaxation time τ ; thus, a
first force is described by:

Fi(vi) = v̄i − vi
τ
. (1)

Notice that Fi may also depend on the position xi and time t .
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Pedestrians do interact among each other. These interactions may include
repulsion effects, when the distance among pedestrians is lower than a desired
personal space, and attraction. Both effects can be taken in to account by some
attraction-repulsion potential, giving rise to the forces:

Fij (xi, xj , vi, vj ) = Fint (xj − xi, vj − vi) = ∇�(xj − xi, vj − vi). (2)

Notice that terms of this type are very common for models used in other domains,
such as animal groups. See also Sect. 2.2.

Then one considers the presence of walls and other obstacles characterizing the
environment. The interactions with the environment can be captured by potentials
which depend only on the position and speed of the pedestrian, thus giving rise to
forces of the type:

FE(xi, vi) = ∇�(xi, vi). (3)

As mentioned above, many variations have been proposed of the original social
force model, including body compression, sliding frictions, other frictions, group
forces, and other. While the modeling of the forces Fi , Fij , and FE appears to be
comparable with experimental results, the other terms are usually less easy to tune
with data [4].

One of the main assumptions of the social force model is the summability of
the effects of the different forces. This is clearly an idealization, that is, most of
times the working assumption. Summarizing, givenN pedestrians in position xi and
having speed vi , their dynamics is described by the system of ordinary differential
equations:

{
ẋi = vi
v̇i = Fi(vi)+∑

j Fij (xi, xj , vi, vj )+ FE(xi, vi).
(4)

If the functions Fi , Fij , and FE are Lipschitz continuous, then for every initial
condition x0 = (x1(0), . . . , xN(0)), v0 = (v1(0), . . . , vN(0)), there exists a
unique solution. The only singularity usually considered occurs when the repulsion
component of Fij is unbounded for xj − xi tending to 0. This is a well-studied
problem in many different fields, for instance, for its application to conflict
resolution in aviation [44], robot groups [36], and general mathematical models
[11].

Oftentimes researchers include uncertainties by adding stochastic terms. The
social force has similarities with various microscopic and kinetic approaches to
gas and fluid dynamics, and a wide literature is available, including stochastic
models (see, for instance, [13] and references therein). However, to our knowledge,
most researchers using the social force model focus on Langevin-type approach for
simulations, rather than investigating the mathematically rigorous aspects.
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2.1.1 Panic

From a modeling point of view, a lot of attention was devoted to distinguish
situations where pedestrians behave normally to those of emergency situations
where the rational behavior ceases and other phenomena occur. Many authors refer
to “panic” for such situations. The social force model includes panic situations by
appropriately modifying the involved forces. Notice that in most panic situation
one should include the role played by the mechanics of the pedestrian body;
indeed contacts and interactions occur in a fully 3D situation rather than the usual
2D ones. Authors refer to these forces as body forces. One of the most known
phenomena is the formation of arches at exits that usually slow down or even
block the flow through doors or other restricted passages. A full treatment of
this situation goes beyond the scope of this paper, and we refer the reader to
[17, 33] for details and references. Let us just mention that a wealth of models
were proposed for pedestrian motion at nanoscopic level, i.e., considering also
the dynamics of the pedestrian body. One of the most celebrated is the Laumond
model [2], based on lab experiments. The same problem has been studied also
in [14]. See also [22] for a model combining the Laumond and social force
model.

2.2 Microscopic: Models for Animal Groups

As mentioned above, a parallel literature was developed for animal group dynamics.
Let us just review which are the main ingredients of the models commonly used
for animal groups to point out the similarities with social force models and the
differences. We notice that such approach was applied to many different species,
including fishes, birds, mammals, and others. We refer the reader to [16] for a more
extensive discussion.

Microscopic models for animal group dynamics are also based mainly on attrac-
tion and repulsion forces. One has to notice that models are either of Newtonian
type, i.e., mimicking physical forces as in the social force model, or first order,
i.e., prescribing directly the speed of single animals. The modeling explanation
of first-order models is based on the fact that animals (but also pedestrians) have
high capability of changing their speed quickly in many situations; thus, the control
they exert on their motion tends to overcome physical forces. Regarding energy,
even if theoretically it is possible to write an energy balance equation, the latter
would have to take into account internally stored energy of the animals and thus
encompass different time scales and very complex energy processes. A complete
debate goes beyond the scope of this paper, but we think that both approaches do
have merits. The role of attraction is much better understood and modeled in animal
groups with respect to pedestrian: it is based on advantages in foraging, mating, and
escaping predators. Also attraction is differentiated between group attraction, where
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attraction depends and acts only on distances and could enter first-order models, and
alignment, where attraction acts on velocities and depends on distances, as usual for
Newtonian models. Another feature is the fact that the presence of leaders is well
discussed in the literature and models may or may not have leader(s). Also in this
case, the biological explanations for the presence or absence of leaders appear to be
well developed.

In biological literature there are two elements of key importance: the number
of interacting members of the group and the shape of interaction zone. Models are
classified as metric or topological. The former refers to interaction occurring with
all mates present in the interaction zones (thus a variable number). The latter refers
to interactions with a fixed number of mates (ordered, for instance, by distance).
The interaction zone is usually different depending on the acting force (attraction,
repulsion, and alignment) and not isotropic, to reflect the animal body and eyes’
positions (or position of other sensing organs).

We notice that most social force models tend to consider all pedestrians to
interact with each other. This is not realistic since pedestrians, as animals, tend to
interact with closest neighbors or in restricted interaction zones. The assumption
of all agents interacting renders the mean-field limit approach easier to manage
(see Sect. 3), but formal limits are possible also with topological type models
(see [26]).

2.3 Microscopic: Cucker-Smale Model

A special role in the literature is played by the well-known Cucker-Smale model
(CS) [18] model. Interestingly enough, many authors consider this model a pro-
totype for alignment (thus considered mainly as an animal group model or even
aviation model [37]). However, the model was first introduced to study the
linguistic dynamics. The CS model has many similarities with the social force
ones and was definitely the most studied in the applied mathematics community
(see, for instance, [10, 12, 25] and reference therein). The Cucker-Smale model
reads:⎧⎪⎨
⎪⎩
ẋi (t) = vi(t)
v̇i(t) = 1

N

N∑
j=1
a(‖xj (t)− xi(t)‖)(vj (t)− vi(t)), i = 1, . . . , N (5)

where xi ∈ R
d , vi ∈ R

d , and a ∈ C1([0,+∞)) is a nonincreasing positive function,
called interaction potential or rate of communication. In the original paper, the
author set a(s) = 1

(1+s2)β , with β > 0. Notice that the state for each agent is
given by the couple (xi, vi) and, as in alignment models, the final configuration will
promote consensus on the variable vi .
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2.4 Multi-scale Models

We start here by introducing a multi-scale model based on time-evolving measures.
The main idea is that a microscopic dynamics as well as a macroscopic one with
nonlocal interactions can be included together in a single equation for a measure,
which possesses an atomic part (representing the microscopic component) and an
absolutely continuous part (representing the macroscopic component).

To deal with the general case, we will consider a measureμwhich evolves in time
according to a velocity field v. The system is then written as first-order, or single,
equation but can easily encompass Newton-type models as we will explain later on.
Therefore, the main modeling aspect of the multi-scale model is the velocity field v,
which has to account for the various “forces” described above. Once a velocity field
is assigned, the evolution equation for a measure μt = μ(t) is formally written as:

∂μt

∂t
+∇ · (μtv) = 0, (6)

together with an initial condition μ(0) = μ0. The equation must be interpreted in
weak sense, i.e., for every φ smooth with compact support and almost every t we
have:

d

dt

∫
Rd

φ(x) dμt (x) =
∫
Rd

v(t, x) · ∇φ(x) dμt (x),

where we assume that the integral on the right-hand side is well defined, which
amounts to integrability of v w.r.t. μt uniformly in t , and the map t → μt is
continuous for the weak-∗ topology.

We now discuss possible choices for the velocity field v considering the general
situation, i.e., v = v[μ]. As for the social force model, v must take into account a
desired velocity vd which depends only on the position x of the pedestrian. Such
velocities are usually determined by a final destination and point toward it. If the
pedestrian would just follow the integral curves vd , then she would reach the final
destination avoiding obstacles. If other pedestrians are present in the environment,
then we assume there is another velocity component called interaction velocity,
which corresponds to the tendency of avoiding more crowded zones. Clearly,
vi = vi[μ] because it depends on the position of other pedestrians, thus on the
whole measure μ. The main mathematical question is the expected regularity of
vd and vi for models reflecting the social force and other approaches. It is natural
to assume that vd is locally Lipschitz and locally bounded; thus trajectories of vd

exist and are unique. This automatically implies existence and uniqueness of weak
solutions to (6) (see, for instance, [45]).

The regularity of vi is more delicate. The main purpose of vi is to model the
attraction-repulsion with other pedestrians. For simplicity we limit to repulsion
which acts on areas close to the pedestrian position; thus, it is more problematic
for possible presence of singularities. We assume that there exists a kernel function
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η : R
d → [0,+∞), representing a weighted interaction potential with nearby

pedestrians. A possibility is the following: define the center of mass of the crowd
w.r.t. η by

x∗ :=
∫
Rd
y η(x − y) dμ(y)∫

Rd
η(x − y) dμ(y) ,

and set

vi [μ] (x) := (x − x∗)f
(∫

Rd

η(x − y) dμ(y)
)
. (7)

where f is a nondecreasing function. In simple words, the velocity field drives away
from the weighted barycenter x∗ with strength depending on the crowding. To avoid
singularities, we set vi [μ] (x) = 0 when

∫
Rd
η(x − y) dμ(y) = 0.

The main question we address now is the well-posedness of the transport
equation with nonlocal velocity (6). Notice that vi = vi [μ]; therefore, the equation
is nonlinear in μ. With this goal, we first introduce the main analytic tool to study
such equations, that is, the Wasserstein distance. Then, we recall our main results
of existence and uniqueness of solutions to (6). Finally some possible choices
of velocities (7) for crowd models are presented, discussing the regularity of the
corresponding transport equation.

2.4.1 The Wasserstein Distance

In this section, we briefly recall the definition and the key properties of the
Wasserstein distance, referring to [45] for a complete overview. We need first to
introduce few concepts of general measure theory.

We denote by M the set of positive Radon measures with finite mass. If μ′ ∈M
is absolutely continuous with respect to μ ∈ M , we write μ′ # μ. If μ′ # μ and
μ′(A) ≤ μ(A) for all Borel sets, we write μ′ ≤ μ. Given μ ∈ M , we denote with
|μ| := μ(Rd) its norm (or total mass). More in general, if μ = μ+−μ− is a signed
Borel measure, we have |μ| := |μ+| + |μ−|. Such norm defines a distance in M ,
that is, |μ− ν|.

Given two positive measures μ, ν, one can always write in a unique way μ =
μac + μs such that μac # ν and μs ⊥ ν, i.e., there exists B such that μs(B) = 0
and ν(Rd \ B) = 0. This is the Lebesgue decomposition theorem. Then, it exists a
unique f ∈ L1(dν) such that dμac(x) = f (x) dν(x). Such function is called the
Radon-Nikodym derivative of μ with respect to ν. We denote it with Dνμ and we
have |μac| =

∫ |Dνμ| dν. For more details, see, e.g., [21].
Given a Borel map γ : R

d → R
d , one can consider the following action on a

measure μ ∈M , called the push-forward of measures:

γ #μ(A) := μ(γ−1(A)).
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An evident property is that the mass of μ, i.e., μ(Rd) is identical to the mass of
γ #μ. Then, given two measures μ, ν with the same mass, it is natural to seek for a
γ such that ν = γ #μ, in which case we say that γ sends μ to ν. One can add a cost
integrating over the distances covered by the masses moved by γ . More precisely,
we define the cost of a map as:

I [γ ] := |μ|−1
∫
Rd

|x − γ (x)|p dμ(x).

This means that each infinitesimal mass δμ is sent to δν and that its infinitesimal
cost is related to the p-th power of the distance between them. The problem of
finding a map γ realizing such minimum is known as the Monge problem and was
first formulated in 1791. A minimizing γ exists only for special μ, ν and p. Indeed,
there exist simple examples of μ, ν for which a γ sending μ to ν does not exist. For
example, the measures μ = 2δ1 and ν = δ0 + δ2 on the real line have the same
mass, but there exists no γ with ν = γ #μ. The main issue is that a map γ cannot
separate masses.

One could resort to multifunctions, to send masses to different locations.
However, we need to split mass in all possible ways, and this is naturally realized by
a probability measure π on the product space Rd ×R

d , seen as a generalization of a
function mapping one measure onto the other. Each infinitesimal mass at a location
x is sent to a location y with a probability given by π(x, y). Formally, π is “sending”
the measure μ onto ν if the following holds:

|μ|
∫
Rd

dπ(x, ·) = dμ(x), |μ|
∫
Rd

dπ(·, y) = dν(y). (8)

Such a probability measure π is called a transference plan between μ and ν, and the
set of transference plans between μ and ν is denoted by�(μ, ν). The condition (8)
is equivalent to ask for all f, g ∈ C∞c (Rd) the following equality:

|μ|
∫
Rd×Rd

(f (x)+ g(y)) dπ(x, y) =
∫
Rd

f (x) dμ(x)+
∫
Rd

g(y) dν(y).

Following the same logic as for maps, one defined the cost of a transference plan π
as

J [π ] :=
∫
Rd×Rd

|x − y|p dπ(x, y).

The problem of minimizing J over the set �(μ, ν) is known as the Monge-
Kantorovich problem. The Monge-Kantorovich problem is a generalization of the
Monge one: Given a γ , with γ #μ = ν, a transference plan can be defined by
π = (Id × γ )#μ. In other words, dπ(x, y) = μ(Rd)−1 dμ(x)δy=γ (x). It is easy
to check that J [Id× γ ] = I [γ ]. Notice that there always exists a transference plan
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between μ, ν ∈ M with the same mass; indeed one can, e.g., choose π(A× B) =
|μ|−1 μ(A)ν(B), i.e., the mass from μ is split proportionally to the mass of ν.

The Monge-Kantorovich problem can be more generally stated on the space of
Radon measures with finite p-moment, that is

M p :=
{
μ ∈M |

∫
|x|p dμ(x) <∞

}
.

The minimum realizing the solution to the Monge-Kantorovich problem always
exists in such spaces, when μ, ν have the same mass. Such minimum defines a
distance on the set of measures of M p with a given mass, called the Wasserstein
distance:

Wp(μ, ν) = (|μ| min
π∈�(μ,ν) J [π ])1/p.

The Wasserstein distance metrizes the topology of weak convergence under assump-
tions of bounds on the p-moments, namely, we have the following:

Proposition 1 The two following statements are equivalent for μi, μ ∈
M p(Rd):

• limi→∞Wp(μi, μ) = 0;
• μi ⇀n→∞ μ and limR→∞ lim supi

∫
|x|>R |x|p dμi(x) = 0.

We also notice that Wp(kμ, kν) = k1/pWp(μ, ν) for k ≥ 0, by observing that
�(kμ, kν) = �(μ, ν) and that J [π ] does not depend on the mass of the measures.

For future use, we recall an important duality property of the Wasserstein
distance (for p = 1):

W1(μ, ν) = sup

{∫
Rd

f d(μ− ν) : f ∈ Lip(Rd ,R), Lip(f ) ≤ 1

}
, (9)

where Lip(Rd ,R) is the space of globally Lipschitz functions and Lip(f ) indicates
the Lipschitz constant of f . The equality (9) is known as the Kantorovich-
Rubinstein duality.

2.4.2 Existence and Uniqueness of Solutions to (6)

In this section, we recall results of existence and uniqueness of solutions to (6).
From now on we focus, for simplicity, on the space P of probability measures
(positive Radon measure with mass equal to one) and the subspace Pc of probability
measures with compact support. The key idea is that the correct topology to deal
with equations as (6) is the one induced by the Wasserstein distance. More precisely,
we will use the classical conditions on each vector field v[μ] of boundedness and
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Lipschitz continuity, while we will ask the map v[·] to be Lipschitz with respect to
the Wasserstein distance and the usual C0 norm on vector fields.

Our main assumptions are the following: The function

v [μ] :
{
Pc(Rd)→ C1(Rd) ∩ L∞(Rd)
μ �→ v [μ]

satisfies

(H1) v [μ] is uniformly Lipschitz and uniformly bounded, i.e., there exist L,M not
depending on μ, such that for all μ ∈Pc(Rd), x, y ∈ R

d ,

|v [μ] (x)− v [μ] (y)| ≤ L|x − y| |v [μ] (x)| ≤ M.

(H2) v is a Lipschitz function, i.e., there exists K such that

‖v [μ]− v [ν] ‖C0 ≤ KWp(μ, ν).

Under these assumptions the following holds:

Theorem 1 Assume that (H1)–(H2) hold true. Then for every μ0 ∈ Pc(Rd),
there exists a solution to (6). Moreover, given μ, ν, two solutions of (6) in
C([0, T ],Pc(Rd)), we have

Wp(μt , νt ) ≤ e2t (L+K)Wp(μ0, ν0).

In particular, if μ0 = ν0, then μt = νt for all t ∈ [0, T ]; thus, uniqueness of
solutions holds true.

Proof See [38].

2.4.3 Regularity of Interaction Kernels

In view of Theorem 1, to ensure a well-posed theory for crowd dynamics, we need
to investigate if velocity models do satisfy assumptions (H1) and (H2). As explained
above, the regularity of the component vd is quite standard; thus, we focus on the
component vi , assuming that it is given in the form (7). We consider two cases: the
first is given by f (x) ≡ 1, while the second is given by f (x) = xα with α ≥ 1. We
show that with the first choice the assumptions (H1)–(H2) are not satisfied, while in
the second case they are.

We start with the first case, so f ≡ 1. If the vi is nontrivial, i.e., if η is
not vanishing everywhere, then the corresponding velocity field v [μ] is not even
continuous w.r.t. the Wasserstein distance. We construct a counterexample based on
the graphical idea explained in Fig. 1.
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0

x̃

C

R
r

e

s

A

Fig. 1 The velocity field vi given by (7) is not continuous if f ≡ 1

We indicate by Bs(y) the balls centered at y of radius s and by Bs(y) its closure.
Assume supp (η) ⊂ BR(0) for R > 0. By continuity of η, the set A := {η > 0} is
open. Take r > 0 (r < R) sufficiently small so that Br(0) ⊂ A and there exists
x̃ ∈ A\Br(0). Since A is open and Br(0) closed, there exists ε such that Bε(x̃) ⊂
A\Br(0). Finally, we let C be a compact set such that C ∩ Br(0) = ∅ and define
s = sup {|x − y| s.t. x ∈ Bε(x̃), y ∈ C}.

We now define a family of measures μt that will provide a counterexample to
continuity of vi . Set:

μt :=
(
t
χBε(x̃)

L (Bε(x̃))
+ (1− t) χC

L (C)

)
L ,

where L is the Lebesgue measure. From
∫
Rd
η(−y) dμ0(y) = 1

λ(C)

∫
C

0 dL (y) =
0, we deduce

v [μ0] (0) = 0. (10)

For t > 0, we have
∫
Rd
η(−y) dμt (y) > 0; hence:

|v [μt ] (0)| =
∣∣∣∣
∫
Rd
yη(−y), dμt (y)∫

Rd
η(−y), dμt (y)

∣∣∣∣ =
∣∣∣∣∣

t
L (Bε(x̃))

∫
Bε(x̃)
yη(−y) dL (y)

t
L (Bε(x̃))

∫
Bε(x̃)
η(−y) dL (y)

∣∣∣∣∣ ≥
≥ inf {|y| s.t. y ∈ Bε(x̃)}

∫
Bε(x̃)
η(−y) dL (y)∫

Bε(x̃)
η(−y) dL (y) ≥ r. (11)
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From (10) and (11), we have that vi[μt ] is not continuous at t = 0. Then assumption
(H2) will be violated if we prove that μt is continuous at t = 0 w.r.t. Wasserstein
distance, i.e., if limt→0Wp(μ0, μt ) = 0. For this, we define νt := (1− t) χCL (C) L ,

then Wp(μ0, μt ) = Wp(μ0 − νt , μt − νt ) = Wp
(
t
χC

L (C)L , t
χBε(x̃)

L (Bε(x̃))
L

)
. Since

all measures are absolutely continuous w.r.t. L , there exists a map γ realizing
the Wasserstein distance. Moreover, we can estimate |x − γ (x)| ≤ s and then
Wp(μ0, μt ) ≤ st1/p, proving the continuity of μt .

Let us now pass to the case f (x) = xα with α ≥ 1. We have the following:

Proposition 2 Let vi be defined by (7), where η is a smooth, positive function with
bounded support. If f (x) = xα , with α ≥ 1, then vi satisfies (H1) and (H2).

Proof We first prove that (H1) is satisfied. Notice that:

∣∣∣∣
∫
Rd

η(x − y) dμ(y)
∣∣∣∣ ≤ |η|∞,

thus we get |v [μ] (x)| ≤ R|η|α∞, assuming supp(η) ⊂ BR(0). Moreover, indicating
by L the Lipschitz constant of η, it holds:

|v [μ] (x)− v [μ] (z)| =≤ |η|α−1∞ R

∫
Rd

|η(x − y)− η(z− y)| dμ(y) ≤

≤ |η|α−1∞ RL|x − z|
∫
Rd

dμ(y) = |η|α−1∞ RL|x − z|,

thus v[μ] is bounded and Lipschitz continuous. Similarly, we prove (H2) with the
following estimate:

|v [μ] (x)− v [ν] (x)| ≤ |η|α−1∞
∣∣∣∣
∫
Rd

(x − y)η(x − y) d(μ− ν)(y)
∣∣∣∣ .

Since the function ϕ(y) := (x − y)η(x − y) is Lipschitz continuous, using the
Kantorovich-Rubinstein duality (9), we get

‖v [μ]− v [ν] ‖C0 ≤ |η|α−1∞ RLW1(μ, ν).

2.5 Wasserstein Distance and Total Variation Norm

The Wasserstein distance Wp is a natural distance since it metrizes (over compact
sets) the weak* topology as dual of the space C0 (closure of continuous functions
with compact support for the uniform norm). On the other side, one may consider
the total norm over signed measures ‖μ+ − μ−‖T V = μ+(Rd) + μ−(Rd) given
by the total variation, equal to μ(Rd) for positive measures, which corresponds to
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strong convergence. It is obvious that mathematically weak convergence is easier to
achieve; however, there are also modeling reasons to prefer the Wasserstein distance.
In this section we provide a comparison of the two metrics.

First, let us notice that the space M can be endowed with many different
distances (see, e.g., [43]). The total variation norm coincides with the L1 distance
for absolutely continuous measures:

‖μ− ν‖L1 :=
∫
|μ(x)− ν(x)|dx.

Assume now that two crowd configurations in the ambient space are represented by
the measures μi = 1

N

∑N
j=1 δxij

, i = 1, 2, j = 1, . . . , N . Then the Wasserstein

distance is given by the minimum over all permutations σ : {1, . . . , N} →
{1, . . . , N} of the quantity 1

N

∑
j |x1
j −x2

σ(j)|. Indeed, all possible ways to move the

mass from μ1 to μ2 correspond to the maps between the points x1
j and x2

j , which
in turn can be represented by a permutation σ . Consider, for instance, the following
situation in R: μ1 = 1

2δ0 + 1
2δ1 and μ2 = 1

2δε + 1
2δ1+ε . In other words μ1 is given

by two pedestrians in position 0 and 1, while μ2 by two pedestrians in position ε
and 1+ε. The total variation distance verifies ‖μ1−μ2‖ = 1, while the Wasserstein
distance isW(μ1, μ2) = ε. Clearly, if ε is small, the two configurations are close to
each other. This is reflected in the Wasserstein distance but not in the total variation
one.

Beside the modeling reasons, the Wasserstein distance is preferable also for the
uniqueness of solutions to transport equations. For instance, we may replace the
assumption (H2) with the following:

(H3) The function v[·] satisfies for some K > 0:

‖v [μ]− v [ν] ‖C0 ≤ K‖μ− ν‖T V .

It is possible to define a velocity field v that satisfies assumptions (H1) and (H3)
but does guarantee uniqueness of solutions to the Cauchy problem. The idea is
depicted in Fig. 2 and is based on lack of uniqueness of the classical example for
ordinary differential equations: ẋ = √

x, x(0) = 0. We provide a sketch of the
proof, referring the reader to [38] for details.

Fix d = 2 and define a curve νt in the space of probability measures as follows.
The squaresQit have sides parallel to coordinate axes of length si , share a side, and
have the upper ones on the line y = 1+ t2. The measure νt is given by:

νt :=
∞∑
i=0

miχQit
L ,

wheremi are positive and, as before, L is the Lebesgue measure. We then define the
velocity field by v [νt ] := (0, 2t). Choosing si := 4−i and mi = 1

2 8i , one can prove
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s0

s1

s2
m0

m1

m2

t2

1+ t2

Fig. 2 (H3) does not guarantee uniqueness of the solution

that v satisfies (H3). Moreover, one can define v on the whole M . It is easy to show
that the Cauchy problem with initial condition ν0 has two solutions: μ1(t) ≡ ν0 and
μ2(t) = νt . We can also estimate Wp(νt , νs) = t2 − s2; thus, v does not satisfy
assumption (H2).

3 Mean-Field Limits of Microscopic Models

In this section, we introduce the mean-field limit of microscopic models for crowd
dynamics. The goal is to describe the dynamics of the crowd when the number of
agents tends to infinity. As a result, the description of each agent is lost, and the
crowd is then represented by a spatial density evolving in time.

3.1 Definition of the Mean-Field Limit

In this section, we recall the definition of the mean-field limit. Historically,
the mean-field limit has been introduced as the limit of classical and quantum
mechanical systems (see, e.g., [34] and references therein). In the case of crowd
dynamics, some standard physical interaction laws are not satisfied (e.g., the action-
reaction principle). We then use an approach less influenced by the physical
intuition, following Neunzert in [35]. Even though his description focuses on
ordinary differential equations of the second order, the method presented there can
be applied verbatim to first-order systems.
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Consider an ordinary differential equation describing the dynamics ofN particles
in the phase space R

d . In a very general form, it can be written as follows:

ẋi = fN(xi; x1, . . . , xN), i = 1, . . . , N. (12)

Here, we highlight that the expression of the dynamics fN depends on the number
N of particles. Then, one can see (12) as a family of ordinary differential equations
indexed by N , each of them describing the dynamics of N particles in the phase
space R

d , hence each of them describing a dynamics in the space R
dN .

Assume now that each fN satisfies some properties ensuring existence, unique-
ness, and well-posedness of solutions to (12), e.g., the classical Lipschitz condition.
Then, for each N and an initial data X0

N = (x0
1 , . . . , x

0
N), there exists a unique

trajectory XN(t) = (x1(t), . . . , xN(t)).
The goal of mean-field limit is to describe the limit of the trajectories of such

systems when N tends to infinity. The first difficulty is that each trajectory, indexed
by N , lives in a different space, that is, RdN . One then needs to add the following
key hypothesis: particles xi are identical or indistinguishable. As a consequence, an
exchange of the particle xi with xj induces no change in the dynamics of the whole
system, in the following sense: the trajectories of these two particles are exchanged,
and the trajectories of the other particles are kept. Clearly, this requirement strongly
restricts the set of possible dynamics fN . The most classical expressions are of the
form

fN(xi; x1, . . . , xN) = f 0(xi)+ 1

N

N∑
j=1

f 1(xj − xi). (13)

Under such hypothesis of indistinguishability, one can then replace the trajectory
XN(t) with its description in terms of measures, by introducing the empirical
measure. Given XN(t) = (x1(t), . . . , xN(t)), define the corresponding empirical
measure as

μN(t) := 1

N

N∑
i=1

δxi(t).

Then, all trajectories μN now evolve in the same space P(Rd) of probability
measures defined on the phase space R

d that does not depend on N anymore.
Moreover, the space P(Rd) is naturally endowed with the topology of the weak
convergence of measures, that is

μi ⇀i→∞ μ∗ ⇔ lim
i→∞

∫
f dμi =

∫
f dμ∗ for all f ∈ C∞c (Rd).

In the space P(Rd), one can define dynamical systems too. For simplicity, we
focus on the case that we will use most in the following: a Cauchy problem for
measure with dynamics given by a transport equation, that is
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{
∂tμ+ ∇ · (V [μ]μ) = 0,

μ(0) = μ0.
(14)

Assume to have properties on V ensuring existence and uniqueness of solutions
to (14), such as (H1)–(H2) in Sect. 2.4.2. Denote withμ(t) the corresponding unique
solution. In a more abstract setting, one can simply consider to have a functional
(e.g., a semigroup) that to each initial state μ0 associates a unique trajectory μ(t).

We are now ready to define the mean-field limit. We say that (14) is the mean-
field limit of (12) if the following property holds:

μN(0) ⇀N→∞ μ(0) ⇒ μN(t) ⇀N→∞ μ(t) for all t ≥ 0. (15)

A particular but relevant case for mean-field limits is the following. Assume to
have a measure dynamics of the form (14) with the following property:

(MF-N): When the initial data μ0 is an empirical probability measure μ0
N

associated to an initial data X0
N of N particles, then the dynamics (14) rewrites

as the ordinary differential equation (12).

Hence, given an initial data X0
N with N particles, the trajectory of (14) with

initial data μ0
N coincides with the empirical measure associated to the solution

for (12) with initial data XN . This property is somehow stronger than (15) for
empirical measures, since it requires identity of trajectories for eachN , and not only
convergence for N →∞. Nevertheless, such property is often naturally imposed in
crowd models with arbitrary N agents, e.g., by choosing dynamics of the form (13).
Instead, some relevant physical models do not satisfy such property (see, e.g., [34,
Sec. 1.5]).

Clearly, condition (MF-N) makes sense for empirical measures only. We then
need to add a condition for all other measures to ensure that (14) is the mean-field
limit of (12). The most natural one is to require the following continuity condition:

(C): The solution μ(t) to (14) is continuous with respect to the initial data μ0.

Such property is somehow natural in crowd models that are written in terms of (14),
since they are always approximated models of a crowd with a large but finite number
of agents. Hence, continuous dependence is necessary to ensure that the behavior of
the approximated model is sufficiently close to the real dynamics.

We now prove that (14) is the mean-field limit of (12), under the hypotheses
(MF-N)-(C). Indeed, recall that the set of empirical probability measures is dense
in P(Rd) endowed with the topology of weak convergence. Then, take any initial
data μ(0) and a sequence of empirical measures μN(0) ⇀N→∞ μ(0) that exists
by density. Observe now that, by (MF-N), in this specific case μN(t) is both the
empirical measure associated to the solution to (12), as in the definition (15) of
mean-field limit, and the unique solution to (14). Then, (15) holds, since it is the
continuity property (C) for the measure dynamics (14).
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It is clear that proving (15) can be easier if there exists a metric that metrizes the
weak topology of measures. This is the case of the Wasserstein distance (Sect. 2.4.1),
under some restrictive hypotheses that usually hold for crowd models.

For crowd modeling, trajectories usually have a uniformly bounded support, e.g.,
when the initial measure has bounded support and velocities are bounded. Then,
in our setting, Proposition 1 ensures that convergence in Wasserstein distance is
equivalent to weak convergence of measures. Hence, we can restate (15) in terms
of the Wasserstein distance: the dynamics (14) is the mean-field limit of (12) if the
following property holds:

lim
N→∞Wp(μN(0), μ(0)) = 0 ⇒ lim

N→∞Wp(μN(t), μ(t)) = 0 for all t ≥ 0.

It is important to observe that such statement is a rewriting of (15) in the space
Pp(Rd) only. In particular, we will see in the following Sect. 5 that the original
definition (15) of mean-field limit makes sense also for models with varying mass,
while the Wasserstein distance between two measures with different masses is
undefined.

3.2 The Mean-Field Limit of the Helbing-Molnár Model

In this section, we derive the mean-field limit of the Helbing-Molnár model of social
forces recalled in Sect. 2.1. The idea is to follow the method described in Sect. 3.1:
we first write a partial differential equation of the form (14) satisfying the property
(C) of continuity with respect to the initial data. We then prove that the original
Helbing-Molnár model (4) satisfies the property (MF-N), i.e., it is the rewriting of
the partial differential equation when the initial data is an empirical measure.

We start by writing the measure μ = μ(t, x, v), that is, a time-varying
probability measure in the space P(Rd × R

d), i.e., in the space of probability
measures on the space of configurations (x, v) in the space R

d . For the Helbing-
Molnár model, one usually has d = 2 or 3, as recalled above.

We then write the partial differential equation for the mean-field limit of the
Helbing-Molnár model, that is

{
∂tμ+ ∇ · (VHM [μ]μ) = 0,

μ(0) = μ0.
(16)

where the vector field for the Helbing-Molnár model is

VHM [μ](x, v) :=
(

v

Fi(v)+ (Fint # μ)(x, v)+ Fe(x, v)
)

(17)
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Here, the functions Fi, Fint , Fe are defined in (1)–(2)–(3), respectively. We
already observed that such functions are chosen to be globally Lipschitz, to ensure
existence and uniqueness of the solutions to the ordinary differential equation (4)
of the Helbing-Molnár model for all times. We now prove that the vector field (17)
satisfy the hypotheses (H1)–(H2) of Theorem 1. More precisely, we will prove that
VHM can be modified outside a sufficiently large compact set so as to have the same
solutions to (16) and to satisfy (H1)–(H2).

It is clear that the three functions (x, v) → v, Fi and Fe are Lipschitz with
respect to (x, v). Moreover, they are independent on μ. We now need to study the
term Fint # μ, for which it holds

|Fint # μ(x, v)− Fint # μ(y,w)| ≤∫
R2d

|Fint (x − α, v − β)− Fint (y − α,w − β)| dμ(α, β) ≤∫
R2d
L |(x − α, v − β)− (y − α,w − β)| dμ(α, β) = L|(x, v)− (y,w)|,

where L is the Lipschitz constant of Fint . Moreover, it also holds

|Fint # μ(x, v)− Fint # ν(x, v)| =∣∣∣∣
∫
R2d
Fint (x − α, v − β)d(μ(α, β)− ν(α, β))

∣∣∣∣ ≤ LW1(μ, ν),

where we used the Kantorovich-Rubinstein duality formula (9). Then, V satisfies
the first condition of (H1), as well as (H2) with p = 1.

We are now left to prove that V also satisfies the second condition of (H1), i.e.,
uniform boundedness. This is clearly false, e.g., since (x, v)→ v is an unbounded
function. Nevertheless, observe that V being uniformly Lipschitz implies that V has
sublinear growth, in the following sense: there exists C > 0 such that supp(μ) ⊂
BR(0) implies V ([μ]) ≤ C(1 + R). Indeed, observe that the following conditions
hold:

• (x, v) ∈ supp(μ) ⊂ BR(0) implies |v| ≤ R;
• |Fi(v)| ≤ L|v| + |Fi(0)| ≤ LR + |Fi(0)|;
• |Fe(x, v)| ≤ L|(x, v)| + |Fe(0, 0)| ≤ LR + |Fe(0, 0)|.
To prove boundedness of Fint # μ, observe that it holds

|Fint # μ(x, v)| ≤ |Fint # μ(x, v)−Fint # δ0(x, v)|+|Fint#δ0(x, v)−Fint#δ0(0, 0)|+
|Fint # δ0(0, 0)| ≤ LW1(μ, δ0)+ L|(x, v)| + |Fint # δ0(0, 0)| ≤
2LR + |Fint (0, 0)|.

Here we used the fact that for a measure μ satisfying supp(μ) ⊂ BR(0), we have
W1(μ, δ0) ≤ R, since transportation plans all have rays with length smaller than
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R. Then, choosing C := 2 max {1+ 4L,Fi(0)+ Fe(0, 0)+ |Fint (0, 0)|}, one has
sublinear growth of the vector field V , independent on the measure μ. Similar to
classical techniques for ODEs, this implies that, when supp(μ0) ∈P(BR(0)), then
supp(μ(t, ·, ·)) ∈P(BS(t)(0)) with S(t) = eCt (1+ R)− 1.

Let us now consider an initial compact setK ⊂ R
d×R

d and a time T > 0. When
supp(μ0) ∈ K ⊂ BR(0) for some R, then the solution satisfies supp(μ(t, ·, ·)) ∈
BS(T )(0) for all t ∈ [0, T ]. Choose now V ′[μ](x, v) coinciding with VHM for μ ∈
P(BS(T )(0)) and (x, v) ∈ BS(T )(0), being bounded, Lipschitz with respect to (x, v)
and μ outside of it: then, V ′ satisfies both conditions of (H1), as well as (H2).
Moreover, solutions of (16) with μ0 ∈P(K) coincide with the ones where VHM is
replaced by V ′. Then, we have existence and uniqueness of solutions to (16) when
μ0 ∈P(K). SinceK is an arbitrary compact set, we have existence and uniqueness
of solutions to (16) for any μ0 with compact support. Moreover, continuity with
respect to the initial data (i.e., condition (C)) is satisfied too.

We are now left to prove that (MF-N) is satisfied. A direct rewriting of (16) with
μ0 = 1

N

∑N
i=1 δxi shows that it coincides with (4). Then, both conditions (C)-(MF-

N) are satisfied; hence (16) is the mean-field limit of the Helbing-Molnár model (4).

Remark 1 A relevant particular case of the Helbing-Molnár model is given by the
Cucker-Smale model for alignment that we introduced in Sect. 2.3. There, the func-
tions Fi, Fe in (4) are identically zero, while the interaction term Fij (xi, xj , vi, vj )
is given by a(‖xj − xi‖)(vj − vi).

Then, it is clear that, by choosing

Fint (x, v) = −a(|x|)v,

the measure evolution (16) is the mean-field limit of the Cucker-Smale model (5).
This result was already obtained with different techniques in [25]. A classical
rewriting, splitting the differential operator in the (x, v) variables, is

∂tμ+ 〈v,∇xμ〉 + divv ((Fint # μ)μ) = 0.

4 Microscopic Models with Varying Mass

In this section, we introduce some microscopic models in which each agent has a
mass that varies in time. In crowd models, the mass of an agent may represent his
influence with respect to the rest of the crowds, such as leadership, reputation, or
persuasion.

The key difficulty for these models, strongly correlated to the goal of building
mean-field limits for them, is that we do not aim to label agents in different classes
(such as leaders vs followers, eventually switching from one to another; see [1, 8,
20]), but to keep a form of homogeneity for them.
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In this section, we describe a model of N agents, each of them represented by its
position xi in the phase space and its mass mi . The dynamics for the crowd is given
in the following form:

{
ẋi = V0(xi)+∑N

j=1mjV1(xj − xi),
ṁi = mi(S0(xi)+∑N

j=1mjS1(xj − xi)),
i = 1, . . . , N. (18)

All the functions V0, V1, S0, S1 are required to be uniformly bounded and uni-
formly Lipschitz with respect to their variables, to ensure existence and uniqueness
of the solution to the associated Cauchy problem. Moreover, we also require
V1(0) = S1(0) = 0.

We highlight some key properties of the model (18). The first is that, in the
first equation, the term mj is the weight of the interaction term V1(xj − xi). In
this sense, the mass mj plays the role of the influence of the j -th particle onto the
i-th one.

The second, crucial property, is that one can replace the i-th particle with
position-mass (xi,mi) with two (or more) new particles (y1, n1), (y2, n2) that lie
in the same position (y1 = y2 = xi) and whose total mass coincides with the initial
one (n1 + n2 = mi). Indeed, consider on one side the trajectories of the N -particles
system ((x1,m1), . . . , (xi,mi), . . . , (xN ,mN)) satisfying (18) and starting from an
initial data ((x0

1 ,m
0
1), . . . , (x

0
i , m

0
i ), , . . . , (x

0
N,m

0
N)). On the other side, consider

the trajectories of the N + 1-particles system

((x̃1, m̃1), . . . , (x̃i−1, m̃i−1), (y1, n1), (y2, n2), (x̃i+1, m̃i+1), . . . , (x̃N , m̃N))

satisfying (18) and starting from an initial data

((x̃0
1 , m̃

0
1), . . . , (x̃

0
i−1, m̃

0
i−1), (y

0
1 , n

0
1), (y

0
2 , n

0
2), (x̃

0
i+1, m̃

0
i+1), . . . , (x̃

0
N, m̃

0
N))

with the following properties:

• it holds x0
j = x̃0

j and m0
j = m̃0

j for all j �= i;
• it holds x0

i = y0
1 = y0

2 and m0
i = n0

1 + n0
2.

Then, the following identities hold true for all times t ∈ R:

• the trajectories satisfy (xj (t),mj (t)) = (x̃j (t), m̃j (t)) for all j �= i;
• the trajectory of the i-th particle satisfies xi(t) = y1(t) = y2(t), while its mass

satisfies mi(t) = n1(t)+ n2(t).

The proof follows from a direct computation of the derivatives and from uniqueness
of the solution to (18). Such property is instrumental for the mean-field limit. Indeed,
one needs to preserve the property of indistinguishability of particles also for time-
varying masses.
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Observe that the model (18) preserves positivity/negativity of the mass. In our
interpretation of the mass as a degree of influence, one might accept the presence
of negative influences. Moreover, the presence of negative masses would produce
signed measures at the mean-field limit that can be efficiently treated with a
generalization of the methods described here (see [41]).

A direct computation also shows that the total mass is not preserved, since
∂t (

∑
i mi) �= 0. It is then sufficient to add a correction term in ṁi to ensure such

property, such as the rescaling term

− mi∑N
k=1mk

⎛
⎝ N∑
k=1

mk

⎛
⎝S0(xk)+

N∑
j=1

mjS1(xj − xk)
⎞
⎠

⎞
⎠ .

Also in this case, in our setting there is no general reason to assume a constant
total influence, and such constraint is not either necessary for the mean-field
limit.

We now present a classical pedestrian evacuation problem: the simulation of
the exit of a crowd from a room through a single large door. We compare two
models. The first is the classical social force model, where the mass of each
agent has a constant value for the whole simulation. In the second case, the mass
(modeling influence) exponentially decreases when the agent exits the door. These
two approaches model two different known behaviors of pedestrians: in the first,
the agent wanders around the exit door (confused, trying to find help, or simply
stopping in the proximity of the exit), while in the second he runs toward a far safe
place (e.g., meeting point). Our simulations show that the average exit time can be
reduced 8% when the second model is implemented. The maximal exit time is even
reduced 11% in the second model.

Following the first-order model by Piccoli-Tosin [42], inspired by the Helbing-
Molnár model, we describe the behavior of a single agent as follows. His velocity is
the sum of two terms: first a desired velocity, which in our case is a unitary vector
pointing to the exit, and second, a term of repulsion to other agents, to model the
tendency of avoiding overcrowded areas. In our simulation, the agent computes the
barycenter of the mass of agents in a ball of radius 2 around himself and then moves
in the opposite direction of such barycenter.

In Fig. 3 (left), we show three different times of the simulation with no variation
of the mass: the initial random configuration of 200 agents, then an intermediate
time T = 6 in which clusters appear, and finally time T = 16.4 in which the last
agent exits the room. The average exit time is 8.075 s.

In Fig. 3 (right), we show the simulation in which the mass decreases
exponentially when an agent exits the door. This is represented by the circle
reducing its radius. The initial configuration coincides with the previous case.
The simulation is shown at the intermediate time T = 6 and then at the
time T = 14.6 in which the last agent exits the room. The average exit time
is 7.415 s.
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Fig. 3 Evolution of the microscopic model. Left: no mass reduction. Right: mass reduction

5 Measure Dynamics for Mass-Varying Models

In this section, we describe the mean-field limit of microscopic models with varying
mass introduced in Sect. 4. With this goal, we first recall the definition of the
generalized Wasserstein distance that we introduced in [39, 40]. It will be the main
analytical tool for the study of the mean-field limit. We will then write the limit
measure dynamics and prove that it is the mean-field limit of the microscopic model.
We finally recall main results of well-posedness of the limit PDE.

Other relevant distances between measures of different masses, further general-
izing the one presented here, have been recently described (see [15, 28, 32]).

5.1 The Generalized Wasserstein Distance

We recall here the definition of the generalized Wasserstein distance Wa,bp (μ, ν).
We first give a rough description of the idea. Imagine to have three different
admissible actions on μ, ν: either add/remove mass to μ or add/remove mass to ν or
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transport mass from μ to ν. The three techniques have their cost: add/remove mass
has a unitary cost a (in both cases) and transport of mass has the classic Wasserstein
cost, multiplied by a fixed constant b. The distance is the minimal cost of a mix of
such techniques.

From now on, we denote with M be the space of Borel measures with finite mass
on R

d and with Mc its subset of measures with bounded mass and compact support.
We now formally define the generalized Wasserstein distance.

Definition 1 Let a, b ∈ (0,∞) and p ≥ 1 be fixed. The generalized Wasserstein
distance is

Wa,bp (μ, ν) = inf
μ̃,ν̃∈M ,|μ̃|=|ν̃|

(
a|μ− μ̃| + a|ν − ν̃| + bWp(μ̃, ν̃)

)
.

Proposition 3 The operator Wa,bp is a distance. Moreover, the infimum is always
attained.

We now observe that the generalized Wasserstein distance metrizes the weak
convergence of measures, with the additional requirement of tightness.

Theorem 2 Let μn be a sequence of measures in M and μ ∈ M . Then, the two
following statements are equivalent:

• Wa,bp (μn, μ)→ 0;
• μn ⇀ μ and μn is a tight sequence (i.e., for each ε > 0 there exists a compact

set Kε such that μn(Rd \Kε) < ε for all n).

Proof See [39, Thm. 3].

5.2 The Mean-Field Limit for Mass-Varying Models

In this section, we write a measure dynamics with varying mass and prove that it is
the mean-field limit of the microscopic model (18) introduced in Sect. 4.

Consider the following dynamics of measures with a transport and a source term:

{
∂tμ+ ∇ · (v [μ] μ) = h [μ] ,

μ|t=0 = μ0.
(19)

We assume the following hypotheses about the functions v and s.
(H4) The function

v [μ] :
{
M → C1(Rd) ∩ L∞(Rd)
μ �→ v [μ]

satisfies
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• v [μ] is uniformly Lipschitz and uniformly bounded, i.e., there exist L, M not
depending on μ, such that for all μ ∈M and x, y ∈ R

d , it holds:

|v [μ] (x)− v [μ] (y)| ≤ L|x − y| |v [μ] (x)| ≤ M.

• v is a Lipschitz function, i.e., there exists N such that

‖v [μ]− v [ν] ‖C0 ≤ NWa,bp (μ, ν).

(H5) The function

h [μ] :
{
M → M

μ �→ h [μ]

satisfies

• h [μ] has uniformly bounded mass and support, i.e., there exist P,R such that

h [μ] (Rd) ≤ P, supp (h [μ]) ⊆ BR(0).

• h is a Lipschitz function, i.e., there existsQ such that

Wa,bp (h [μ] , h [ν]) ≤ QWa,bp (μ, ν).

Under such hypotheses, we proved in [39] the well-posedness of the Cauchy
problem (19).

Theorem 3 Assume that (H4)–(H5) hold true. Then, for each initial measure with
finite mass and compact support μ0 ∈Mc, there exists a solution to (19). Moreover,
given μ, ν, two solutions of (19) in C([0, T ],Mc), we have

Wa,bp (μt , νt ) ≤ e2t (L+(|μ0|+tP )N+Q)Wa,bp (μ0, ν0).

In particular, if μ0 = ν0, then μt = νt for all t ∈ [0, T ]; thus, uniqueness of
solutions holds true.

Proof See [39, Prop. 7 and Thm. 6].

Remark 2 As already stated, the application to pedestrian dynamics also explains
the choice of the basic assumptions (H4)–(H5), namely, that we deal with measures
with bounded support.

Recall now the definition of mean-field limit given in Sect. 3: given a microscopic
model with the associated time-dependent empirical measures μN(t) and the
macroscopic model with trajectories μ(t), it holds

μN(0) ⇀N→∞ μ(0) ⇒ μN(t) ⇀N→∞ μ(t) for all t ≥ 0.
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In this definition, the fact that both μN(t) and μ(t) have masses varying in
time plays no role. Moreover, we can apply the methods described in Sect. 3 in the
particular case of μN(t) already being solutions of the macroscopic model. Then,
one has that (19) is the mean-field limit of (18) if the following properties hold:

(MF-N): When the initial data μ0 is an empirical measure μ0
N associated to an

initial data (XN,MN)0 of N particles, then the dynamics (19) rewrites as the
ordinary differential equation (18);

(C): The solution μ(t) to (19) is continuous with respect to the initial data μ0.

Property (C) holds in general for solutions to (19), according to Theorem 3.
Then, we are left to find functionals V [μ], h[μ] such that (MF-N) holds. It is
straightforward to prove that the mean-field limit of (18) is then given by

V [μ] = V0 + V1 # μ, h[μ] = S0μ+ S1 # μ.

We end this section by presenting simulations of the mean-field limit of the two
pedestrian models presented in Sect. 4. It describes the dynamics of a pedestrian
crowd exiting a room. We refer to details of the dynamics for each agent to the

Fig. 4 Evolution of the mean-field model. Left: no mass reduction. Right: mass reduction
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previous description. Here, we just recall that the mass (influence) of each agent
can be treated in two different ways: either it is constant or it has an exponential
decrease when the agent exits the room. Our simulations show that the average exit
time can be reduced 8.7% in the second model. The maximal exit time is reduced of
8.1% in the second model.

We now show the dynamics of the mean-field limit of such two possible choices.
The mathematical method used to numerically solve the nonlocal equation with or
without mass reduction has been introduced and studied in [38, 40, 42]. In Fig. 4,
the darker areas represent higher crowd density.

In Fig. 4 (left), we show three different times of the simulation with no variation
of the mass: the initial random configuration of agents, then an intermediate time
T = 6 in which concentration near the exit appears, and finally time T = 18 in
which the whole crowd exits the room. The average exit time is 8.9 s.

In Fig. 4 (right), we show the simulation in which the mass decreases exponen-
tially when an agent exits the door. The initial configuration coincides with the
previous case. The simulation is then shown at two different times T = 6 and
T = 16.6 in which the last agent exits the room. The average exit time is 8.2 s.
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Numerical Methods for Mean-Field and
Moment Models for Pedestrian Flow

Raul Borsche, Axel Klar, and Florian Schneider

Abstract Pedestrian flow modelling has attracted the interest of a large number of
scientists from different research fields, as well as planners and designers. While
planning the architecture of buildings, one might be interested in the pedestrian
flow around their intended design so that shops, entrances, corridors, emergency
exits and seating can be placed at the best locations. Pedestrian models are helpful
in improving efficiency and safety in public places such as airport terminals,
train stations, theatres and shopping malls. They are not only used as a tool for
understanding pedestrian dynamics at public places but also support transportation
planners or managers to design timetables.

1 Introduction

Pedestrian flow modelling has attracted the interest of a large number of scientists
from different research fields, as well as planners and designers. While planning the
architecture of buildings, one might be interested in the pedestrian flow around their
intended design so that shops, entrances, corridors, emergency exits and seating can
be placed at the best locations. Pedestrian models are helpful in improving efficiency
and safety in public places such as airport terminals, train stations, theatres and
shopping malls. They are not only used as a tool for understanding pedestrian
dynamics at public places but also support transportation planners or managers to
design timetables.

A large number of models for pedestrian flow have appeared on different levels of
description in recent years. Microscopic (individual-based) level models building on
Newton-type equations as well as vision-based or cellular automata and agent-based
models have been developed (see Refs. [21, 34, 35, 50, 53, 56, 64]). Hydrodynamic
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pedestrian flow involving equations for density and mean velocity of the flow is
derived in Refs. [5, 32]. Modelling of pedestrian flow with scalar conservation laws
coupled to the solution of the eikonal equation has been presented and investigated
in Refs. [1, 27, 36, 37]. Pros and cons of these models have been discussed in various
reviews; we refer to [3–5] for a detailed discussion of the different approaches.

The modelling of pedestrian behaviour in a real-world environment is a complex
problem. For example, a majority of the people in a crowd is moving in groups,
and social interactions can greatly influence the movement of the crowd. Most of
the models mentioned above treat pedestrians as individual agents and neglect the
group dynamics among them. The influence of group dynamics on the behaviour
of pedestrians and the differences between people walking in groups or alone have
been presented in several recent works. We refer to [40, 44, 53], where experimental
studies as well as numerical experiments are presented.

In this review, we describe a procedure used for interacting particle systems,
for example, in the description of coherent motion of animal groups such as
schools of fish, flocks of birds or swarms of insects (see Ref. [12, 13, 30, 52]).
We start from a classical microscopic social force model for pedestrians [35] and
extend it with an optimal path computation as, for example, in Ref. [37]. Thus,
additionally to the local interaction between pedestrians, a non-local term including
a global knowledge of the physical setting is introduced. These equations are
approximated using a scaling assumption (see Ref. [12]) and a mean-field equation
with a convolution term derived from the local interaction in the microscopic model.
Although this procedure is classical, it is different to the kinetic equations obtained,
for example, in Refs. [5, 7, 33], where classical Boltzmann terms are used for
the modelling on the kinetic level. Models on the microscopic level with constant
speed are discussed as well. We refer to Ref. [21] for a model hierarchy based on
a microscopic constant speed model and a mean-field approach for the so-called
heuristic behavioural individual-based model.

Determining the balance equation for density and momentum for the mean-
field model and closing the equations with a suitable closure distribution leads to
macroscopic equations for the density and mean velocity; compare Ref. [12] for the
case of swarming models. The hydrodynamic equations obtained here still contain a
non-local interaction term due to the derivation from the mean-field equations with
non-local interaction terms. Finally, a quasi-static approximation of the momentum
equation yields scalar limit equations with a non-local term and an eikonal equation
as in Refs. [17–19] and [37, 38]. Additionally, we consider the case of fixed absolute
values of the velocities, which means, in this case, all pedestrians are supposed to
have the same fixed speed.

For the numerical simulations, we use meshfree particle methods and finite-
volume methods on the different level of the model hierarchy.

In case of the macroscopic equations, particle methods are based on a Lagrangian
formulation of these equations. We describe a method which can be viewed as
a numerical transition between a discrete-element-type method (DEM) for micro-
scopic interacting particle systems and a meshfree particle method for macroscopic
equations. For related approaches we refer to [66]. In macroscopic mean-field
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models, an interaction term appears, which is derived from the microscopic
interaction term. Usually, this term has the form of a convolution integral. The
particle method approximates these convolution integrals in an appropriate way.
Using a microscopically large number of macroscopic grid particles, the method is
essentially equivalent to the microscopic approach. In contrast, for a small number
of grid particles, compared to the interaction or smoothing radius R, one obtains
a method which is consistent with the associated limit equation. For intermediate
regimes one obtains with this procedure additional correction terms. One purpose
of the numerical simulations based on particle methods is to numerically investigate
the transition between situations where the number of pedestrians varies from small
to large.

The second purpose of the numerical investigations is to compare the different
models with each other. In particular, we concentrate on hyperbolic approximations
of the constant speed models, namely, the maximum-entropy M1 model [46]
and its linearization, the P1 model. These are classical approximation, e.g. in
radiation transport equations (see [10, 29, 57] and references therein). Especially
the maximum-entropy model performs well in many situations (see, e.g. [41]).
Moreover, scalar, Hughes-type models [37] are considered. All these models are
implemented using finite-volume schemes for the macroscopic and mean-field
models and a Monte Carlo approach for the microscopic equation. We compare
these models for different settings and a large range of parameters with particular
consideration of the dependence of the results on the stochastic noise parameter.

In the following part of the review, we extend the mathematical models and
include multigroup behaviour and the impact of group dynamics, addressing in
particular larger groups in a pedestrian crowd, into the general set-up using a
multiphase approach. The dependence of the solutions on the level of attraction
between the group members is investigated and discussed. As a general result, we
observe an increase in evacuation time by increasing the attraction between the
group members.

Finally, we develop and investigate a coupling procedure to couple pedestrian
and traffic flow simulations and describe the interaction of the two types of flows.
We restrict ourselves to coupling scalar macroscopic models via their flux functions.
The traffic density on the one hand influences the pedestrian velocity. On the other
hand, the fundamental diagram for traffic is influenced by the pedestrian density.
The numerical methods are based on a first-order approach and use a straightforward
splitting method.

This review is based on material from the papers [9, 26, 43, 48, 51]. It is organized
in the following way. In Sect. 2, the model hierarchy is presented. The section
contains a description of microscopic, mean-field, hydrodynamic and scalar limit
equations. Section 3 contains a description of the numerical method used for the
simulation of our test cases of the following section. We shortly describe finite-
volume and particle methods for the equations considered in Sect. 2. Section 4
contains the numerical results for a variety of different test cases and a comparison
of the different models. In Sect. 5 a hierarchy of multigroup pedestrian models is
presented. A comparison of the solutions of the equations is presented for different
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parameters together with a comparison of the associated evacuation times. In Sect. 6
macroscopic traffic flow model on a network is coupled to the pedestrian flow
model. The section contains a description of the coupling procedure and shows
numerical results. Section 7 contains the conclusions.

2 Pedestrian Flow Models

2.1 A Microscopic Social Force Model with Optimal Path
Computation

We consider as in [26] a microscopic social force model for pedestrian flow
including an optimal path computation. It is developed by coupling the classical
social force models [32, 35] with an optimal path computation as in the Hughes
approach to pedestrian flow (see Ref. [37]). Moreover, an Ornstein-Uhlenbeck-type
stochastic process is added. We obtain a two-dimensional interacting particle system
with locations xi ∈ R

2, i = 1, . . . , N and velocity vi ∈ R
2. The equations of motion

are ⎧⎪⎪⎨
⎪⎪⎩
dxi = vidt,

dvi =
∑
i �=j
F (xi − xj )dt +G(xi, vi, ρNi )dt −

A2

2
vidt + AdW(i)t ,

(1)

whereW(i)t are independent Brownian motions in R
2 and A ≥ 0 is a constant.

The desired velocity and direction acceleration is given by

G(x, v, ρ) = 1

T

(
−V (ρ) ∇Φ(x)‖∇Φ(x)‖ − v

)
, (2)

where ρ is given by a regularized version of the empirical measure

ρN(x) = 1

N

N∑
j=1

δS(x − xj ),

and ρNi = ρN(xi). Here δS is a smoothed version of the δ-distribution around 0 with

∫
δS(x)dx = 1,

which we define later. Φ is given by the solution of the eikonal equation
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V (ρN(x))‖∇Φ‖ − 1 = 0.

V is a density-dependent velocity function, V : [0, 1] → [0, Vmax].
T denotes a reaction time, which might depend also on the density ρ. The

interaction force is given by

F(x) = −∇xU(‖x‖),

where U is an interaction potential given, for example, by

U = UR = CR (R − ‖x‖)2 , (3)

for ‖x‖ < R and 0 otherwise. CR is chosen such that∫
U(x)dx = D > 0.

Here R denotes the radius of interaction of the pedestrians. The above potential
is a purely repelling potential. For extensions, see Sect. 5. This force can be
complemented by dissipative forces; compare, e.g. Ref. [35].

Boundary conditions for system (1) are realized using nonmoving boundary
particles with the same interaction force as for the interior particles. The boundary
conditions for the eikonal equation, i.e. boundary conditions for Φ, are chosen as

Φ(x) = 0, x ∈ ∂ΩD and Φ(x) = ∞, x ∈ ∂Ω \ ∂ΩD,

where ΩD denotes the desired location of the pedestrians.

Remark 1 A model with constant speed, i.e. with constant norm of the velocities,
might be a more appropriate way to describe the actual movement of pedestrians;
compare [21]. It is easily constructed in the following way. We define v = cτ with
τ = (cos(α), sin(α)) ∈ S1 and assume that c > 0 is constant. Then using dτ =
τ⊥dα, we obtain the equations

⎧⎪⎪⎨
⎪⎪⎩
dxi = cτi dt,

cdαi =
∑
i �=j
τ⊥i · F(xi − xj )dt −

V (ρNi )

T ‖∇Φ(xi)‖τ
⊥
i · ∇Φ(xi)dt + AdW(i)t ,

(4)

where W(i)t are independent Brownian motions in R. Compare Refs. [13, 23] for
constant speed models in a biological context. In this model the direction of the
pedestrians is changed according to the projection of the direction given by the
gradient of the potential φ determined from the eikonal equation and the projection
of the interaction force onto the orthogonal direction of the motion. An individual-
based model with constant speed and the inclusion of a desired direction into an
interaction potential can be found in Ref. [21].
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Remark 2 Finite size effects with a minimal radius around a pedestrian could be
included using interaction potentials with a singularity. Other variants are given by
an elliptical interaction force [34] or by a force including the human vision cone
[21].

Remark 3 In the definition of the acceleration towards the desired direction, the
speed with which the pedestrians are moving depends on the density around a
pedestrian. In certain situations this could lead to non-physical effects, for example,
if the pedestrian is approached from behind. A determination of the density
including a such a vision cone could be used here at the expense of a more
complicated model.

Remark 4 A further remark on the above microscopic model concerns the role of
the interactions between the pedestrians. Interactions are not only modelled by the
interaction potential U but also by the Hughes-type term (2). The motivation for
the present way of modelling is a distinction between a short-scale interaction of
the pedestrians in direct encounter (described by the interaction potential U ) and
a reaction of the pedestrian on the global density ρ via the solution of the eikonal
equation as in the Hughes approach. In the present model, as in the Hughes model,
a knowledge of the density in the whole domain is assumed for this second kind
of interaction. This could be changed to certain subregions of the computational
domain by restricting the solution of the eikonal equation to these regions.

2.2 Mean Field and Macroscopic Limits

Using the so-called ‘weak coupling scaling’ assumption [58], one rescales the
interaction potential with the factor 1

N
where N denotes the total number of

particles. Neglecting the stochastic force, our scaled microscopic model reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxi

dt
= vi,

dvi

dt
= 1

N

∑
i �=j
F (xi − xj )+G(xi, vi, ρNi ).

(5)

For N tending to infinity, one can derive the associated mean-field equation in the
limit of a large number of particles [11, 12, 58]

∂tf + v · ∇xf + Sf = 0 (6)

with force term

Sf = ∇v · (G(x, v, δS # ρ(x))f (x, v))+∇v · (F # ρ(x)f (x, v)) ,
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where

F # ρ (x) =
∫
F(x − y)ρ(y)dy, ρ(x, t) :=

∫
f (x, v, t)dv.

Adding the stochastic force gives an additional diffusion term on the right hand side,
i.e.

∂tf + v · ∇xf + Sf = Lf (7)

with

Lf = A
2

2
∇v · (vf + ∇vf ) .

Remark 5 In case of constant speed c, the mean-field equation reads

∂tf + cτ · ∇xf + Sαf = Lαf (8)

with force term

Sαf = −∂α
(
V (δS # ρ(x))

cT
τ⊥ · ∇Φ(x)

‖∇Φ(x)‖f
)

+ 1

c
∂α

(
τ⊥ · F # ρf

)

and diffusion term

Lαf = A
2

2c2
∂ααf.

Moreover, we define the momentum by

ρu(x, t) :=
∫
vf (x, v, t)dv.

Let us mention that the rigorous passage from microscopic particle systems towards
the kinetic mean-field equation as N → ∞ has been treated, for example, in Ref.
[11] or Ref. [58] for the deterministic and stochastic cases.

Hydrodynamic limits for similar equations have been derived in Refs. [12, 16].
We consider the mean-field equation (7) and derive different limit equations.
Integrating against dv and v dv gives the continuity equation

∂tρ +∇x · (ρu) = 0 (9)
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and the momentum equation

∂tu+ u · ∇xu+ 1

ρ
∇x

∫
(v − u)⊗ (v − u)f (x, v)dv (10)

= 1

ρ

∫
G(x, v, δS # ρ)f (x, v)dv + F # ρ − A2u.

Considering an equation without diffusion, i.e. neglecting fluctuations by setting
A = 0, a suitable moment closure approach could be to use a monokinetic closure

f ∼ ρ(x)δ(v − u(x)).

This has been used, for example, in [12]. It will yield a suitable approximation of the
kinetic solution in case the kinetic distribution function is peaked around its mean
value. One obtains

∂tu+ (u · ∇x)u = G(x, u, δS # ρ)+ F # ρ (11)

with

G(x, u, ρ) = 1

T

(
−V (ρ(x)) ∇Φ(x)‖∇Φ(x)‖ − u

)
.

This is coupled to

V (δS # ρ(x))‖∇Φ(x)‖ = 1. (12)

Using other functions to close the equation withA �= 0 results in equations including
a pressure term. One could, for example, use a density-dependent equilibrium
distribution with a given finite second moment as closure function. If the second
moment is equal to ρ, this leads to

∂tu+ 1

ρ
∇xρ = G(x, u, δS # ρ)+ F # ρ − A2u. (13)

Further second-order models can be found in Ref. [6].

Remark 6 For the model with constant speed considered in Remark 1, the balance
equations read, after integrating the mean-field equation,

∂tρ +∇x · (ρu) = 0, (14)

where ρ = ∫ 2π
0 f dα and u = c ∫ 2π

0 τf dα. Integrating the mean-field equation
against cτdτ , one obtains
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∂t (ρu)+∇x · P + V (δS # ρ)
T ‖∇φ‖

∫
τ⊥∇φ · τ⊥f dα

−
∫
τ⊥F # ρ · τ⊥f dα = − A

2

2c2
ρu

with

P = c2
∫
τ ⊗ τf dα.

Using τ⊥ ⊗ τ⊥ = I − τ ⊗ τ , this simplifies to

∂t (ρu)+∇x · P +
(
ρI − 1

c2
P
)(
V (δS # ρ)

T ‖∇φ‖ ∇φ − F # ρ
)
= − A

2

2c2
ρu.

Considering again the caseA = 0 and using the monokinetic closure f ∼ ρδ(τ−
u), one obtains

∂tu+ (u · ∇x)u+
(
I − 1

c2
u⊗ u

)(
V (ρ)

T ‖∇φ‖∇φ − F # ρ
)
= 0.

Using for the case A �= 0 a constant function f ∼ ρ
2π as closure gives

∂tu+ 1

2ρ
∇xρ + 1

2

(
V (δS # ρ)

T ‖∇φ‖ ∇φ − F # ρ
)
= − A

2

2c2
u. (15)

In the case of constant speed, there are other classical choices for a closure function
if A �= 0, for example, a so-called maximum-entropy closure using a von Mises-
Fisher distribution

f = a exp(b · τ)

as closure function, where a and b are determined from ρ and u by the moment
conditions on f . We refer to Refs. [20, 46] for the classical case of radiative transfer.

This yields

P = ρD(u)

with

ρ =< a exp(b · τ) >, ρu = c < aτ exp(b · τ) >,

u = u(b) = c<τ exp(b·τ)>
<exp(b·τ)> , D = D(u(b)) = c2<τ⊗τ exp(b·τ)>

<exp(b·τ)> .
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D and u can be written explicitly as functions of b:

u = c I1(|b|)|b|I0(|b|) b, |u| = c I1(|b|)
I0(|b|) ,

D = c2(1− χ) Id+c2 (2χ−1)
|b|2 b ⊗ b,

χ = 1
2πρ

∫ (
τ · b|b|

)2
a exp(b · τ)dα = 1

2

(
1+ I2(|b|)

I0(|b|)
)
,

where Iν is the ν-th modified Bessel function of the first kind. One inverts the
relation between |u| and |b| which can be proven to define a bijection. Then, one
uses |b| (|u|) in the definition of χ(|b|) to obtain D(u). Together one obtains the
model

∂t (ρu)+∇x · (D(u)ρ)+
(
I − 1

c2
D(u)

)(
V (δS # ρ)

T ‖∇Φ‖ ∇φ − F # ρ
)
ρ = − A

2

2c2
ρu.

(16)

We note that for small u one obtains D(u) ∼ c2

2 I . Using this in (16), one obtains
again Eq. (15). Finally, we remark that similar closures for more sophisticated
pedestrian flow models have been used in Ref. [21].

2.3 Scalar Macroscopic Models

In the following we reduce the hydrodynamic description deriving scalar models.
We assume again an interaction potential depending only on x and neglect the
dissipative forces. Starting from the hydrodynamic momentum equation (13), we
neglect time changes in this equation and obtain an equation for u, which is then
used to close the continuity equation. This procedure gives

1

ρ
∇xρ + V (δS # ρ) ∇Φ(x)‖∇Φ(x)‖ − T F # ρ = −(1+ A2T )u.

The resulting scalar equation for ρ is, after rescaling time with 1/(1+ A2T ),

∂tρ −∇x
(
V (δS # ρ(x))

∇Φ(x)
‖∇Φ(x)‖ρ

)
+ ∇x (T (F # ρ)ρ) = TΔxρ. (17)

Remark 7 For the model with constant speed, the same procedure gives a trivial
velocity for the hydrodynamic model derived from the monokinetic closure. We thus
use the constant closure function and obtain from the quasi-stationary momentum
equation

1

ρ
∇xρ + 1

2

(
V (δS # ρ)

T ‖∇φ‖ ∇φ − F # ρ
)
= −A

2

c2
u. (18)
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Plugging this into the continuity equation, we obtain, after rescaling the time with
c2/(T A2),

∂tρ − ∇x
(
V (δS # ρ(x))

∇Φ(x)
‖∇Φ(x)‖ρ

)
+ ∇x (T (F # ρ)ρ) = c2TΔxρ. (19)

This is the same equation as before up to a scaling of the diffusion term.

Remark 8 To derive an associated local equation, we write the force F as a gradient
field with F = −∇U . Assuming that we are in a dense situation, we approximate
the potential U by

U(y) ∼ Dδ(y)

where the constant D > 0 is given by

D =
∫
U(y)dy.

The symmetry of the convolution

∫
∇xU(x − y)ρ(y)dy = −

∫
∇yU(x − y)ρ(y)dy =

∫
U(x − y)∇yρdy

and the above localization gives

F # ρ = −
∫
U(x − y)∇yρdy ∼ −D∇xρ.

Neglecting inertia effects and assuming additionally δS → δ, we obtain

∂tρ − ∇x(V (ρ(x)) ∇Φ(x)‖∇Φ(x)‖ρ) = DT∇x(ρ∇ρ). (20)

This is combined with the eikonal equation

V (ρ(x))‖∇Φ(x)‖ = 1. (21)

Thus, we have obtained a diffusive version of the Hughes equation (see Ref. [37]).

Remark 9 We note that (19) is similar to an equation considered in Refs. [17, 18].
There the equation

∂tρ −∇x
(
V (ρ(x))

∇Φ(x)
‖∇Φ(x)‖ρ

)
+ ε∇x

(
U(ρ)

∇η # ρ√
1+ ‖∇η # ρ‖2

ρ

)
= 0 (22)
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has been considered, where Φ is the solution of the homogeneous eikonal equation
and η is a mollifier. This is equivalent to (19) if η is identified with V and

T (ρ) = εU(ρ)√
1+ ‖∇η # ρ‖2

.

Remark 10 Starting from the hydrodynamic equation (11), a similar procedure as
above gives

∂tu+ (u · ∇x)u = G(x, u, ρ)−D∇xρ. (23)

We conclude this section by summarizing the models and connections between the
models discussed in this review in Fig. 1.

3 Numerical Methods

In this section the numerical methods used in Sect. 4 are discussed. We use a particle
method for Eqs. (11) and (23) and the scalar versions (17) and (20). A classical
finite-volume method is applied for the equations derived from the constant speed
model (15), (16), (19) and their localized versions.

3.1 Macroscopic Flow Simulation Using Finite-Volume
Methods

The HLL scheme [63] is used for the approximation of the hydrodynamic two-
equation models. The scalar equations are approximated using the FORCE scheme
(see again [63]). For the numerical evaluation of the macroscopic models, we have
to consider boundary conditions, which are incorporated by adding additional ghost
cells. The boundary of the computational domain Ω is divided into two parts,
namely, the desired location (or the exit) ∂ΩD , where we prescribe outflow bound-
ary conditions, while on ∂Ω\∂ΩD reflective boundary conditions are prescribed.

To efficiently solve the eikonal equation, we use a fast marching method (see
[59]). It is based on two main ideas: use upwind schemes and a fast sorting method.
We follow [54] to approximate ‖∇xΦ‖ in (12) with an upwind scheme. Then, the
solution is systematically constructed by solving downwind slopes (see [59]). We
update the eikonal solution in every fifth time step in order to save computation
time.
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Linear (14,15)

Nonlocal scalar (17)

Local scalar (20)

mean-field

projection

localization

method of moments

localization

mean-field

asymptotic

asymptotic

Fig. 1 Hierarchy of models with numbering of equations

3.2 Particle Methods for Macroscopic Equations

In this section, we discuss an alternative approach to the numerical solution of
the macroscopic models using a particle method; see, for example, [8, 24, 25,
28, 42, 49, 60]. Mesh-less or particle methods are an appropriate way to solve
pedestrian flow problems due to the appearance of situations with complicated
geometries, free and moving boundaries and potentially large deformations of the
domain of computation, i.e. the region where the density of pedestrians is non-zero.
The particle method is based on a Lagrangian formulation of the hydrodynamic
equations, compare [61, 62]. Consider, for example, (11). Then the Lagrangian
formulation is
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dx

dt
= u

dρ

dt
= −ρ∇x · u

du

dt
= G(x, u, δS # ρ)−∇xU # ρ,

where d
dt
= ∂t + u · ∇x .

To discretize the quantities appearing on the right hand side of the above
equations, mesh-free Lagrangian methods use a difference approximation at the
particle locations from their surrounding neighbours using suitable weight functions
and a least square approximation. For the present computation, we use weight
functions w with compact support of radius h, in this way restricting the number
of neighbouring particles. The Gaussian weight functions are of the form

w = w(x;h) =
{

exp(−α |x|2
h2 ), if |x|

h
≤ 1

0, else
(24)

The radius h is chosen to initially include enough particles for a stable approxima-
tion of the equations, which is approximately three times the initial spacing of the
particles. To efficiently perform the necessary computations, a particle management
has to be implemented, such that particles are added or removed in case the local
distribution of the particles becomes too rarefied or too dense, respectively. See [60]
for details of the implementation.

The simplest way to evaluate the integral over the interaction potential is to use
a straightforward ‘microscopic’ integration rule using an approximation of the local
area (of the Voronoi cell Vj ) around a particle at xj , i.e. we use

F # ρ(xi) ∼
N∑

j=1,j �=i
ρj |Vj |F(xi − xj ). (25)

This works fine for a well-resolved situation with a sufficiently large number of
gridpoints. The resulting system of ODEs is then solved by a suitable low-order
Runge-Kutta time discretization method. The above considerations show that if the
number of macroscopic gridpoints is approximately equal to the (large) number of
microscopic particles, then the macroscopic computations are essentially equivalent
to a microscopic solution.

Boundary conditions are realized by using fixed boundary particles with a
suitable interaction potential. We note that the time step of the computation has
to be adapted to the strength of the boundary potential in order to obtain a stable
method.
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3.3 A Multi-scale Particle Method Based on the Mean-Field
Approximation

A situation as described above with a number of macroscopic gridpoints approx-
imately equal to the number of pedestrians does not require a special algorithm
including any mean-field or macroscopic considerations. However, if the number
of microscopic particles is very large, that does not mean that the number of
macroscopic grid particles in the particle method has to be increased in the same
way, since the grid particles only play the role of discretization points. The key point
of the method for Eq. (11) (compare [42]) is to approximate the convolution integrals
appearing in the above equations not by a simple Riemann sum, which would
essentially lead to a microscopic computation, but by a higher-order approximation
of the functions on the respective Voronoi cells (compare again [42]). This approach
yields an accurate method for the limiting macroscopic equations (23) in the
localized macroscopic limit, where the interaction radius R goes to 0 and U and δS
are suitable approximations of the δ distribution, even if the number of macroscopic
grid particles is still small compared to the number of pedestrians (microscopic
particles).

In certain situations, this approach allows to use a much smaller amount of
particles compared to the classical particle method. Correspondingly, the numerical
effort, which is essentially determined by the number of particles in the computa-
tion, is thus reduced considerably. We refer to [42] for a thorough discussion of this
issue and of the multi-scale numerical algorithm.

We note that our particle method for the hydrodynamic equations ranges from a
‘nearly microscopic’ solver to a purely macroscopic solver depending on the ratio of
grid particles involved in the computation and the number of microscopic particles.

4 Numerical Results

4.1 Numerical Transition from Microscopic to Macroscopic
Description

We investigate the non-local (11) and localized (23) hydrodynamic systems using
the particle method. For further details on the method, see [42, 43]. We consider a
configuration defined in Ref. [47]; compare also [26]. Pedestrians are initialized on
the left of the domain (x, y) ∈ [0, 100]× [0, 50] and evacuated towards the exits on
the right, y ∈ [5, 20] ∪ [30, 45]. As initial value we choose

ρ(x) =
{

1 if x ∈ [0, 30] × [0, 50],
0 else.
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Fig. 2 Density plot determined from local limit equation (23) and non-local equations (11) with
microscopic and multi-scale approximation at time t = 12.5 forΔx = 0.5,R = 0.2. (a) Localized.
(b) Microscopic. (c) Multi-scale

In the centre of the computational domain, an obstacle is located at [40, 60] ×
[10, 30]. For the eikonal equation, we use φ = 0 on the two exits and φ = ∞
on all walls, including the obstacle, as boundary conditions.

We choose the velocity V as V (ρ(x)) = vmax

(
1− ρ(x)

ρmax

)
if ρ < ρmax and 0

else, where the maximal velocity is vmax = 2 and the maximal density ρmax = 10.
We vary the initial average distance Δx between grid points from 0.15 to 1, i.e. the
number of grid particles varies between 1440 and 61,800. Moreover, we choose the
following parameter: γ = 500, α = 1000. The interaction potential U = UR is
chosen as in (3).

First we consider an underresolved situation with relatively small value R = 0.2
and Δx = 0.5, i.e. a number of particles of approximately N = 5650. In Fig. 2 we
plot the solution of the localized and the non-local equation using the multi-scale
method and the microscopic integration rule. In this case the solution computed
via the multi-scale method and the one computed from the localized equation
coincide well, whereas the microscopic method deviates strongly. In Fig. 3 we
show a comparison of solutions obtained from the microscopic integration rule with
decreasing discretization sizes, i.e. increasing number of particles.

Figure 4 considers a well-resolved case withΔx = 0.2 and R = 0.4. In this case
we observe a good coincidence of the microscopic and multi-scale approximations
(Fig. 5).

Finally, we show the error and the CPU times of the microscopic and the multi-
scale method for different numbers of grid particles in Table 1 and Fig. 6. The errors
are determined along the line with y = 37 and x ∈ [25, 55]. The relative L 2-errors
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Fig. 3 Density plot determined from non-local equations (11) with microscopic approximation at
time t = 12.5 for (a) Δx = 0.4, (b) Δx = 0.3 and (c) Δx = 0.2 for R = 0.2

Fig. 4 Density plot determined from local limit equation (23) and non-local equations (11) with
microscopic and multi-scale approximation at t = 12, 5 for Δx = 0.2 and R = 0.4. (a)
Microscopic. (b) Multi-scale

are given as well as the computation times in minutes. The reference solution is
computed by using a spacing of Δx = 0.15 and approximately 62,000 particles.
For this fine resolved case, the difference (relative L 2-error) between microscopic
integration and multi-scale solution is approximately equal to 10−2. Looking at
Table 1 and the multi-scale error with 1400 particles and the microscopic integration
error with 35,200 particles, one observes a gain in computation time by more than
an order of magnitude.
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Fig. 5 Time development of the normalized total mass in the computational domain determined
from the hydrodynamic pedestrian model (11) using microscopic and multi-scale approximation
for fixed interaction radius R = 0.2 and coarse initial spacing Δx = 1 with N = 1400 grid
particles. The reference solution is shown for comparison

Table 1 Comparison of CPU
times between microscopic
and multi-scale simulations
of the hydrodynamic 2D
equations. The error analysis
is performed at time 12.5

Initial # particles Micro Multi-scale CPU time
spacing error error

1 1400 0.54 0.14 8 min

0.5 5700 0.36 0.18 23 min

0.35 11,500 0.48 0.22 52 min

0.2 35,200 0.16 0.14 223 min
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Fig. 6 Error plot for microscopic and multi-scale simulations

4.2 Numerical Comparison of Macroscopic Equations

In this section we present a series of numerical experiments for the constant speed
microscopic (4), mesoscopic (8), hydrodynamic (15), (16) and scalar (19) models.
For further details see [51]. Different situations are studied numerically using the
finite-volume algorithm described above. We note that we compute the eikonal
equation only in every sixth time step for all models. For the simulation of the
microscopic model, we choose the number of pedestrians as N = 60,000. For all
examples below, we use the same type of initial condition, namely, a Maxwellian
in R

2 with a covariance matrix σ = diag(σ1, σ2) ∈ R
2×2 and mean value μ ∈ R

2.

The α variable is uniformly distributed.
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Fig. 7 Obstacle: initial
density at t = 0
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x
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Test case 1: obstacle First we consider pedestrians who have to circumvent
an obstacle to reach their destination. We choose the domain Ω = [−1, 1] ×
[−1, 1], the destination ∂ΩD = [−0.15, 0.15] × {0} and the obstacle ΩObstacle =
[−0.19, 0.19] × [−0.35, 0.05]. The grid size is given as Δx = 0.02. We use the

same velocity function as in the last section, namely, V (ρ(x)) = vmax

(
1− ρ(x)

ρmax

)
with vmax, where we choose the parameters σ = (0.22, 0.12), μ = (0, 0.058),
vmax = 1.3, A = 4 T = 1/100 R = 1 ρmax = 20.

Figures 7, 8 and 9 show the evolution of the densities computed with the
microscopic model (4) in (a), the mesoscopic model (8) in (b), the nonlinear
hydrodynamic model (16) in (c) and the scalar model (19) in (d) at different time
steps. In all four models, the pedestrians separate to circumnavigate the obstacle
and unite again to reach their destination after passing the obstacle. Despite the
fact that all initial densities were positive, the density in the linear hydrodynamic
model (15) becomes negative after some time in certain situations, and numerical
instabilities arise. This is a well-known observation in radiative transfer; compare,
for example, [41] and references therein. Therefore, we do not show the results of
the model for this test case. As we can observe in the figures, the differences between
the microscopic, mesoscopic and nonlinear hydrodynamic model are negligible
compared to the huge difference to the scalar model, resulting from the relatively
small value of the diffusion coefficient A.
To compare the behaviour for a larger range of values of A, we investigate the
evacuation times for different values of A. The evacuation time is defined as the
time instance when at least 94% of the initial density of the pedestrians have
left the domain. In Fig. 10 the evacuation times are plotted with respect to the
diffusion coefficient A for the microscopic, the mesoscopic, the maximum-entropy
and the scalar model. One observes that the evacuation times of the microscopic,
mesoscopic andM1 models coincide very well in contrast to those determined from
the scalar model. In particular, large differences can be observed for smaller values
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Fig. 8 Obstacle: densities at the point of time t = 0.18. (a) Micro. (b) Mean field. (c) M1. (d)
Scalar

of A. With increasing A, all the models coincide as expected, which is a result
from the derivation of the scalar model and the parameters considered in the present
example.

Test-case 2: crosswalks We consider an example where the pedestrians cross a
road with two crosswalks and leave the domain through two exits. We choose
Ω = [−1, 1] × [−1, 1], the two destinations ∂ΩD1 = [−0.925,−0.675] × {0}
and ∂ΩD2 = [0.275, 0.875] × {0}, the street S = [−1, 1] × [−0.07, 0.05] and the
crosswalks C1 = [−0.925,−0.125] × [−0.07, 0.05] and C2 = [0.775, 0.875] ×
[−0.07, 0.05]. The grid size is given as Δx = 0.02, σ = (0.2, 0.08), μ = (0, 0.6),
vmax = 1.3, A = 18, T = 1/100, R = h, ρmax = 20.

To model cars on the road, we choose the density of the cars as

ρcars =
⎧⎨
⎩

0.05 on the crosswalks,
18 on the street,
0 else
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Fig. 9 Obstacle: densities at the point of time t = 0.63. (a) Micro. (b) Mean field. (c) M1. (d)
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Moreover, the velocity function is chosen as

V (ρ) = vmax

(
1− ρcars

ρmax

)(
1− ρ

ρmax

)

for ρ(x) < ρmax and 0 else.
We show the time evolution of the densities of the microscopic model (4) in (a),

the mesoscopic model (8) in (b), the nonlinear hydrodynamic model (16) in (c), the
scalar model (19) in (d) and the linear hydrodynamic model 15 in (e) in Figs. 11, 12
and 13.

All models show a similar behaviour for the chosen set of parameters. This is
to be expected due to the choice of A = 18, since in this case we are near to the
diffusive/scalar limit.

In Fig. 14, we present the evacuation time in dependence of the parameter A.
Again, for small A the evacuation time determined from the scalar model differs
strongly from the microscopic, the mesoscopic and the hydrodynamic one. For large
values of A, all simulations give similar results.
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Fig. 10 The evacuation time in dependence of the parameter A for the microscopic, mesoscopic,
maximum-entropy and scalar models with T = 1/100

Fig. 11 Crosswalks: initial
density of microscopic,
mesoscopic, scalar and
macroscopic models. (a)
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Fig. 14 The evacuation time in dependence of the parameter A for microscopic, mesoscopic,M1
and scalar models with T = 1/100

5 Multigroup Traffic

In this section, we consider a multigroup microscopic model for pedestrian flow
using a multigroup microscopic social force model including the solution of the
eikonal equation (see [48]). We proceed by deriving multigroup hydrodynamic and
scalar models from the microscopic model.

5.1 The Microscopic Multigroup Model

We consider a microscopic social force model for pedestrian flow including an
optimal path computation. For references, see for example Refs. [34, 36]. For N
pedestrians divided into M groups, we obtain an interacting particle system in two
dimensions with locations x(k)i ∈ R

2 and velocity v(k)i ∈ R
2. Here, the index

i = 1, . . . N is used to number all pedestrians; the index k = 1, . . . ,M denotes
the group to which the pedestrian belongs. S(k) denotes the set of all i which are in
group k, and Nk denotes the number of pedestrians in group k with N = ∑M

l=1Nl .
The equations of motion are
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dx
(k)
i

dt
= v(k)i

dv
(k)
i

dt
= −

M∑
l=1

∑
j∈S(l)

∇xiU(k,l)(| x(k)i − x(l)j |)+G(k)(x(k)i , v(k)i , ρN(x(k)i )),
(26)

where U(k,l) is an interaction potential denoting the interaction between members
of groups k and l. A common choice is the Morse potential (see [12]),

U(k,l)(r) = −Cae−r/ la + Cre−r/ lr . (27)

Here, Ca , Cr are attractive and repulsive strengths and la , lr are their respective
length scales. These constants depend on the groups k and l under consideration.
Similarly, one could use potentials given by polynomial or rational functions. An
attractive interaction force acts only between members of the same group. The
repulsive force acts between all pedestrians. The acceleration towards the desired
direction is given by

G(k)(x, v, ρN) = 1

T

(
−V (k)(ρN) ∇Φ

(k)(x)

‖∇Φ(k)(x)‖ − v
)
, (28)

where ρN is given by

ρN(x) = 1

N

M∑
l=1

∑
j∈S(l)

δS(x − x(l)j ).

Finally, Φ(k) is given by the solution of the eikonal equation

V (k)(ρN(x))‖∇Φ(k)‖ − 1 = 0.

V (k) is a density-dependent velocity function, V (k) : R+ −→ R
+, and T denotes a

reaction time. Moreover, for the different groups, we denote

ρN,(l)(x) = 1

N

∑
j∈S(l)

δS(x − x(l)j ),

such that ρN(x) = ∑M
l=1 ρ

N,(l)(x).

Remark 11 The parameters in the above formulas, in particular in the definition
of the interaction potential (27), give average distances between the particles,
consistent with empirical data from social distance theory or proxemics (see
[31, 39]).
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Remark 12 In [53], an attractive interaction of the members of the group with the
‘centre of mass’ is postulated. This gives an additional term

∇xiU(k)CM

⎛
⎝|x(k)i − 1

Nk

∑
j∈S(k)

x
(k)
j |

⎞
⎠ .

The different types of interaction rules will be compared numerically in the
following.

5.2 The Multigroup Hydrodynamic Model

Deriving a multigroup mean-field equation and integrating it against dv and vdv,
one obtains the continuity equation for group k

∂tρ
(k) + ∇x · (ρ(k)u(k)) = 0 (29)

and the second balance equation for group k

∂tu
(k) + (u(k) · ∇x)u(k) = 1

ρ(k)

∫
G(k)(x, v, δS # ρ(x))f

(k)dv (30)

− 1

ρ(k)

∫ M∑
l=1

(
∇xU(k,l) # ρ(l)

)
f (k)dv.

Using the monokinetic closure function

f (k) ∼ ρ(k)(x)δu(k)(x)(v),

we obtain∫
G(k)(x, v, δS # ρ(x))f

(k)(x, v)dv =
∫
G(k)(x, v, δS # ρ(x))ρ

(k)(x)δu(k)(x)(v)dv

= ρ(k)(x)G(k)(x, u(k)(x), δS # ρ(x))

and

∫ M∑
l=1

∇xU(k,l) # ρ(l)f (k)(x, v)dv =
∫ M∑
l=1

(
∇xU(k,l) # ρ(l)

)
ρ(k)(x)δu(k)(x)(v)dv

= ρ(k)(x)
M∑
l=1

(
∇xU(k,l) # ρ(l)

)
.
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Thus, Eq. (30) becomes the momentum equation

∂tu
(k)+ (u(k) · ∇x)u(k) = G(k)(x, u(k)(x), δS # ρ(x))−

M∑
l=1

(
∇xU(k,l) # ρ(l)

)
(31)

with

G(k)(x, u(k), δS # ρ(x)) = 1

T

(
−V (k)(δS # ρ(x)) ∇Φ

(k)(x)

‖∇Φ(k)(x)‖ − u
(k)

)
, (32)

for k = 1, . . . ,M , coupled to

V (k)(δS # ρ(x))‖∇Φ(k)(x)‖ = 1.

5.3 The Multigroup Scalar Model

In this section, we reduce the hydrodynamic description to a scalar models and
connect the approach to a multigroup Hughes model. Neglecting time changes and
inertia terms in Eq. (32), one obtains

G(x, u(k), δS # ρ(x)) =
M∑
l=1

∇xU(k,l) # ρ(l).

Using Eq. (32), we get

u(k) = −
M∑
l=1

T∇xU(k,l) # ρ(l) − V (k)(δS # ρ(x)) ∇Φ
(k)(x)

‖∇Φ(k)(x)‖ .

Thus, the resulting scalar equation for ρ(k) is

∂tρ
(k)+∇x ·

[
ρ(k)

(
−
M∑
l=1

T∇xU(k,l) # ρ(l) − V (k)(δS # ρ(x)) ∇Φ
(k)(x)

‖∇Φ(k)(x)‖

)]
= 0,

(33)
for k = 1, . . . ,M .

A further simplification is obtained approximating the potential U(k,l) by a δ
distribution, i.e.

U(k,l)(y) ∼ D(k,l)δ0(y)
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with the constant D(k,l) > 0 given by

D(k,l) =
∫
U(k,l)(y)dy.

This yields straightforwardly

∇xU(k,l) # ρ(l) = D(k,l)∇xρ(l).

Using additionally δS ∼ δ, Eq. (33) becomes a multigroup version of the Hughes
equations

∂tρ
(k)−∇x

(
V (k)(ρ(x))

∇Φ(k)(x)
‖∇Φ(k)(x)‖ρ

(k)

)
=
M∑
l=1

D(k,l)T∇x
(
ρ(k)∇xρ(l)

)
, (34)

where k = 1, . . . ,M . This is again combined with the eikonal equation

V (k)(ρ(x))‖∇Φ(k)(x)‖ = 1.

Remark 13 Using similar arguments one obtains a localized hydrodynamic model.

5.4 Numerical Results

First we consider a multigroup pedestrian model with three groups: The largest
group consists of pedestrians interacting with each other with a purely repulsive
interaction term as in the single group model. The second and third group consist
of pedestrians with an additional attraction between the members of the respective
groups. We have chosen the interaction potential (27) with lr = 0.5, la = 1, Cr =
200 and Ca = 50, while for the first group of pedestrians, we use Ca = 0.
See Fig. 15 for the location of the groups at t = 0. The initial density at the
corresponding spots is ρ = 2 and zero elsewhere.

We have simulated the multigroup pedestrian flow model with our microscopic
and multi-scale algorithms. In Fig. 16, we have plotted the positions of the pedes-
trians obtained from the microscopic and multi-scale simulations at time t = 40
with initial spacing Δx = 1, 0.5 and 0.25, which approximately corresponds to
the number of particles N = 750, 3000 and 12,000, respectively. We observe that
the structure of the multi-scale solutions is similar to the microscopic solution with
12,000 pedestrian even for a smaller number of grid particles.

For the following investigations on the influence of parameters on the solution,
we use N = 500 pedestrians, initially located in [0, 10] × [0, 50] with ρ = 1. We
consider only two groups. Group 2 with repulsive and attractive interaction terms is
initially located in [0, 10] × [0, 10] and [0, 10] × [15, 20]. Group 1 consists of the
remaining initial pedestrians with only repulsive interaction terms.
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Fig. 15 Initial configuration.
Group 1, blue; group 2, red;
group 3, green. (a)
Multigroup pedestrian
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5.4.1 Comparison Between Single and Multigroup Pedestrian Flow
Models with Weak and Strong Reciprocal Interaction

We use the following parameters for the numerical simulation: lr = 2 and Cr ∈
{100, 200} for the repulsive interaction and la = 4 and Ca ∈ {0, 10, 50, 70} for the
attractive interaction. Single pedestrians are modelled by Ca = 0.

Figure 17 shows the corresponding density plots for the time t = 20 for the
single and multigroup case with Ca = 70.

The percentage of grid particles being in the computational domain for single
and multigroup hydrodynamic models with different interaction parameters with
respect to time is shown in Fig. 18. One observes that the evacuation time is larger
in the case of grouped pedestrians. Moreover, choosing the attraction coefficient in
the above range, one obtains a monotonic behaviour: the evacuation times increase
with increasing attraction.

Comparing Fig. 18a, b, one observes a similar trend for both cases; however, for
smaller repulsive interaction, the pedestrians from group 2 become much slower,
leading to the plateau observed in Fig. 18b.

5.4.2 Comparison Between Models with Weak and Strong Centre of Mass
Attraction

For the numerical simulation, we use a quadratic repulsive interaction potential
U(x) = C(2R−|x|)2 with parameters C = 1000 and R = 0.4. We use as attractive
potential UCM(x) = −CCM |x|2, yielding a linear force towards the centre of mass.
In Fig. 19 we display five results: the case without centre of mass attraction and the
cases with CCM =∈ {10, 50, 100, 200}. Obviously, the centre of mass attraction has
a similar influence as the reciprocal interaction in the above subsection. Choosing
the parameters in the above range, one obtains again a monotonic behaviour for the
evacuation times.
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Fig. 16 The position of group and individual pedestrians obtained from microscopic and multi-
scale approaches at time t = 40 for various initial particle spacings Δx. (a) Δx = 1, micro. (b)
Δx = 1, multiscale. (c) Δx = 0.5, micro. (d) Δx = 0.5, multiscale. (e) Δx = 0.25, micro. (f)
Δx = 0.25, multiscale

5.5 Discussion of Experimental Data

The effect of grouping of pedestrians on evacuation processes, and in particular on
the evacuation time, has been considered in a series of recent publications from an
experimental point of view, as well as with the help of numerical experiments. We
refer to [40, 44] for experimental data in simplified situations. Moussaid et al. [53]
discusses the walking speed for groups of different sizes and [15] and [14] use an
agent-based model to investigate social groups in pedestrian flow. Larger groups
are, for example, considered in [65]. In [45], besides showing results on evacuation
times, a comparison and a critical discussion of previous approaches is given.
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Fig. 17 Density of
pedestrians for single (top)
and multigroup (bottom)
hydrodynamic model at times
t = 20
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Fig. 18 Ratio of initial and
actual grid particles with
respect to time in single and
multigroup hydrodynamic
model with
Ca = 0, 10, 50, 70 and
Cr = 100, 200 for
pedestrians in group 2. (a)
Cr = 200. (b) Cr = 100
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Fig. 19 Ratio of initial and
actual grid particles in the
computational domain with
respect to time for multigroup
hydrodynamic model with
centre of mass attraction
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The experimental results in [44] consider only small groups. Nevertheless, they
show an increase in evacuation time for an increase in group size. Similarly, in [40]
the authors obtain a longer evacuation time for groups with cooperative behaviour
than for individuals. Such a trend can also be seen in [15] and [45]. In particular, in
the last two papers, larger groups are shown to have up to 50% longer evacuation
times than individuals. This is in accordance with our results giving evacuation times
for grouped motion, which are up to 50% longer; compare the results in Fig. 18 for
not too large values of Ca .

6 Coupling Pedestrian to Traffic Flow

In this section we investigate models coupling pedestrian movement to traffic flow
equations (see [9]).

6.1 The Traffic and Pedestrian Flow Model

For the car traffic flow, we consider the scalar Lighthill-Whitham model. The car
density ρC = ρC(x, t) ∈ R

+, x ∈ R, t ∈ R
+ is governed by the equation

∂tρC + ∂x(ρCVC) = 0 .

VC is a velocity function for traffic flow specified later.
For pedestrian flow we consider the classical Hughes model with the pedestrian

density ρP = ρP (x, t), x ∈ R
2, ρP ∈ R

+, Φ : R2 → R. The equations are

∂tρP +∇x

(
ρPVP

∇Φ
‖∇Φ‖

)
= 0 ,

with VP specified in the following. Moreover, Φ is determined by the eikonal
equation

VP ‖∇Φ(x)‖ = 1 . (35)
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6.2 The Coupling

We denote the influence of the car traffic on pedestrians by a rate function gCtoP (ρC)
and the influence of pedestrians on the cars by the rate function gP toC(ρP ).

Pedestrian to traffic The influence of pedestrians on the traffic flow is modelled
via the traffic velocity function

VC = VC(ρC, ρP ) = gP toC(ρP )V max
C

(
1− ρC

ρmax
C

)
,

with the rate of driving gP toC decreasing with increasing pedestrian density such
that g is 1 for ρP = 0 and g is 0 for ρP = ρmax

P . This can be achieved by the
function

gP toC(ρP ) = (1− ρP /ρmax
P )

n1, n1 ≥ 1 . (36)

The choice of the parameter n1 depends on the situation to be considered. In regions
where the drivers are more careful, a larger value of n1 is enforcing a stronger
reduction of their speed. In order to evaluate such a function, the 2D pedestrian
distributions have to be projected on the 1D traffic space. This can be achieved by
suitable operators which depend on the shape of the roads.

Traffic to pedestrian The influence of cars on the flow of the pedestrians is
modelled via the pedestrian velocity function

VP (ρP , ρC) = gCtoP (ρC)V max
P

(
1− ρP

ρmax
P

)
,

with pedestrian crossing rate gCtoP ∈ [0, 1]. Analogous to the cars, the pedestrians
might slow down if many cars are present

g
(1)
CtoP (ρC) =

(
1− ρC

ρmax
C

)n2

, n2 ≥ 1 . (37)

On the other hand, smaller densities imply higher velocities of the cars. This might
be even more dangerous for people crossing the roads, e.g. gCtoP can be chosen as

g
(2)
CtoP (ρC) =

(
ρC

ρmax
C

)n2

, n2 ≥ 1 .

As a third option, both considerations can be combined. This leads for example to

g
(3)
CtoP (ρC) =

(
1−

(
1− ρC

ρmax
C

)
ρC

ρmax
C

)n2

, n2 ≥ 1 .
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In any case the function gCtoP has to live in the 2D pedestrian domain. Therefore
the 1D traffic data is extended to the 2D pedestrian region. This is modelled by the
functions, which assign the appropriate space of the road in the 2D domain.

Remark 14 If traffic or pedestrian flow is described by two equations for density
ρ and mean velocity u like the Aw-Rascle equations [2], then more sophisticated
coupling conditions can be applied. For example, conditions like

gT toP (ρ) = (1− ρ/ρm)(1− u/um)
seem to be more appropriate.

6.3 Numerical Methods and Results

For the solution of the 1D conservation law on the network, we use a classical
Godunov scheme. The 2D conservation law for pedestrians is solved using the
FORCE scheme (see [63]). The eikonal equation is solved by the fast marching
method and implemented as discussed in [59]. One way to solve the coupled
problem is to use a (first-order) splitting method:

Algorithm (Coupling procedure)

1. Project pedestrian densities onto the network.
2. Compute VC for every grid point, where gP toC depends on ρP .
3. Evaluate one time step in the traffic network.
4. Project the new traffic densities onto the pedestrian domain.
5. Compute VP for every grid point, where gT toP depends on the ρP .
6. Solve the eikonal equation (12).
7. Evaluate one time step of the pedestrians with the flux VP .

To test the convergence of the coupling algorithm, we consider the following
example. The computational domain is [0, 1] × [0, 1] and a single road is given by
the line y = 0.5. The maximal density and maximal velocity are ρmax

C = V max
P = 1.

The road width is z = 0.2. The initial condition for the cars is ρC,init(x) = 0.5 and
the pedestrian initial conditions are

ρ0
P (x, y) =

{
0.5, if 0.4 ≤ x ≤ 0.8 ∧ 0.6 ≤ y ≤ 1

0, else .

The destination is located at y = 0. The coupling functions are chosen as (36)
and (37).

Comparison of coupling functions To show how the different coupling functions
influence the solution of the coupled problem, we consider an example with two
roads with different maximal velocities. We consider a computational domain
[0, 2] × [0, 2] and a traffic network given by the vertices v1 = (0, 1), v2 = (1, 1),
v3 = (1, 2). The first edge e1 = (v1, v2) has maximal velocity V max

C = 2 and
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Fig. 20 Initial condition for all test cases
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Fig. 21 Test case 1: densities with coupling function g(1)(ρ). Most of the pedestrians choose the
first edge to cross the road

ρmax
C = 1. The second edge e2 = (v2, v3) has V max

C = ρmax
C = 1. The initial

conditions on the roads are ρ1,init(x) = 0.5−√0.125 and ρ2,init(x) = 0.5. The grid
size is h = 0.05 and Δt = 0.025. The road width is z = 0.2.

The initial condition for the pedestrians is

ρ0
P (x, y) =

{
0.5, if(x, y) ∈ [0.2 0.4] × [1.6 1.8]
0, else .
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Fig. 22 Test case 2: densities with coupling function g(2)(ρ). Most of the pedestrians choose the
second edge to cross the road

destination

Pedestrian density at time step: 25

y x

ξ

Traffic density at time step: 25

y x

ρ

0

1

2

0

1

2

0

1

2

0

1

2
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 23 Test case 3: densities with coupling function g(3)(ρ). One half of the pedestrians takes the
first and the other half the second road. It does not matter which road to take since the flux is the
same on both roads

The destinations are the lines y = 0 and x = 2. We consider three test cases, with
n1 = 4 and n2 = 1 and g(i)CtoP for i = 1, 2, 3. In Figs. 20, 21, 22 and 23, we display
the resulting traffic density on the left and the pedestrian density on the right.

In Fig. 21 we observe that most of the pedestrians choose the road with smaller
density. In Fig. 22, most of the pedestrians choose the road with smaller maximal
velocity but greater density. In Fig. 23 there is no preference since the fluxes are
identical on both roads.
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Crosswalk In this example we model a crosswalk. The computational domain is
[0, 3] × [0, 3] and the road is located at y = 1.5 with width 0.2. The domain of the
crosswalk is given by [1.3, 1.7] × [1.4, 1.6].

To model the crosswalk, we choose the following coupling function:

g
(1)
CtoP (ρC) =

⎧⎨
⎩

(
1− ρC

ρmax
C

)
on the crosswalk,(

1− ρC
ρmax
C

)5
else .

The maximal density and maximal velocity are ρmax
C = V max

C = 1 on every edge.
The initial condition for the network is ρinit(x) = 0.5. The grid size is h = 0.1 and
Δt = 0.1. The initial condition for the pedestrians is

ρ0
P (x, y) =

{
0.5, if (x, y) ∈ [0.1 0.6] × [2.4 2.9]
0, else .

The destination is the line y = 0 from x = 0 until x = 1. The coupling function
gP toC is chosen as in (36) with n1 = 4.

In Figs. 24, 25 and 26, the traffic density is displayed on the left and the pedestrian
density on the right.

The pedestrians can identify the crosswalk as region to pass the road, and the
presence of the cars justifies a deviation from the straight line to the destination.
When the people start to enter the road, the cars have to stop and a jam forms.

crosswalk
destination

Pedestrian density at time step: 0

y x

ξ

Traffic density at time step: 0

y x

ρ

0
1

2
3

0
1

2
3

0

1

2

3

0

1

2

3
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 24 Crosswalk at time step 0: initial condition of the crosswalk
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Fig. 25 Crosswalk at time step 12: pedestrians enter the road on the crosswalk. Hence, the car
density is higher in front of and lower behind the crosswalk
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Fig. 26 Crosswalk at time step 30: a congestion arises in front of the crosswalk due to the huge
number of pedestrians walking over the street. The first pedestrians reach the destination

7 Conclusions and Outlook

In this review we have presented model hierarchies for pedestrian flow simulations.
They range from microscopic social force model coupled to an eikonal equation
to Hughes-type scalar conservation laws. These hierarchies have been investigated
numerically using finite-volume and Lagrangian particle methods. The particle
method has been extended to a multi-scale version working uniformly for a large
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range of interaction parameters R. Moreover, the different models have been
compared with each other and the underlying microscopic solution showing large
differences, in particular for smaller values of stochasticity. Additionally, we have
presented a multigroup approach which has been investigated for various test cases
with different behavioural models. Finally, we have developed a coupled model for
pedestrian and traffic flow modelling the influence of car traffic on pedestrian motion
and vice versa.

Looking at the numerical results, one observes that using a numerical method,
which is able to work uniformly during the transition from a microscopic or non-
local description of the problem to a description based on localized equations,
saves for certain physical situation a considerable amount of computational time
compared to a fully microscopic solver. Second, concerning the behaviour of
the different models, one observes, for example, for the macroscopic models the
following. In certain situations, for example, for small values of the noise parameter,
simple scalar approximations, like the Hughes model, do not necessarily give
appropriate results. In such a case, higher-order models like nonlinear maximum-
entropy models are more suited to yield an accurate approximation of fully
microscopic or kinetic solution. Finally including a multigroup ansatz into the
models leads to experimentally observed longer evacuation times compared to a
single group approach.

Future research directions may include the consideration of more complex situa-
tions like complex geometries or more sophisticated interaction models (compare
[22, 55]). Moreover, a more detailed identification procedure for the physical
parameters in the above models is necessary. Finally, from the point of view of
applications, the investigation of global or feedback optimization for the models
presented here would be of high interest.
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Modelling Interactions Between Active
and Passive Agents Moving Through
Heterogeneous Environments

Matteo Colangeli, Adrian Muntean, Omar Richardson,
and Thi Kim Thoa Thieu

Abstract We study the dynamics of interacting agents from two distinct intermixed
populations: one population includes active agents that follow a predetermined
velocity field, while the second population contains exclusively passive agents,
i.e., agents that have no preferred direction of motion. The orientation of their
local velocity is affected by repulsive interactions with the neighboring agents
and environment. We present two models that allow for a qualitative analysis of
these mixed systems. We show that the residence times of this type of systems
containing mixed populations is strongly affected by the interplay between these
two populations. After showing our modelling and simulation results, we conclude
with a couple of mathematical aspects concerning the well-posedness of our models.
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1 Introduction

Unlike fluid flows, pedestrian flows are rarely uniform. Hence, their motion is
difficult to predict accurately. The main source of nonuniformity stems from the
fact that pedestrian flows are “thinking flows,” i.e., both agent-agent interactions
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and agent-structure interactions are always active and are much more complex than
the standard Van der Waals-like (attraction-repulsion) interactions which govern to
a large extent the molecular description of fluids and gases. In this framework,
we consider a particular type of nonuniformity. Looking at a heterogeneous
environment (e.g., a complex office building), we consider our target pedestrian
flow to contain the dynamics of interacting agents from two distinct populations:

• active agents, knowing where to go (they are aware of a predetermined optimal
velocity field leading toward the exits),

• passive agents, randomly exploring the environment (they have no information
about the exit routes but base their motion on interaction with other agents).

We are particularly interested in investigating what mechanisms can be responsible
for the minimization of the residence time of the pedestrians when an emergency
evacuation situation has occurred, for instance, due to the unexpected occurrence
of a fire that produces a significant amount of smoke. Our standing assumption is
that the use of a purely macroscopic crowd model, which encodes the motion of a
uniform flow, is prone to underestimate the residence time and does not properly
capture crowd interaction.

In this chapter, we present conceptually different crowd dynamics models that
describe the joint evolution of such passive and active agents. One of the models
employs systems of nonlinear stochastic differential equations of motion one-way
coupled with the diffusive-convective dynamics of the smoke, while another model
is a lattice-gas-type approach based on a Monte Carlo stochastic dynamics. Both
models give estimates of the residence time of the particles as well as of the
local occupancy (local pedestrian densities). When treating such scenarios, the
complexity of the work is high. One of the difficulties is handling the agent-structure
interaction. Even if all agents have a predetermined path to the exit, agent-agent
and agent-structure interactions normally lead to clogging or faster-is-slower effects
when the number of agents is sufficiently high, given a certain geometry; see, e.g.,
[46] and [24]. Another difficulty is to handle the presence of fire, and consequently,
of smoke and of the increased discomfort the agents feel. We refer the reader to [38]
for one possible way of treating the presence of obstacles and to [39] for hints on
how to introduce the fire physics in the evolution equations describing the dynamics
of the crowd. In this framework, we focus exclusively on the effect of knowledge of
the geometry on the actual dynamics of the agents.

After reviewing a number of relevant related contributions, we proceed with the
description of two closely related modelling scenarios where the type of models
previously mentioned apply. Then we solve the models numerically and illustrate
the typical behavior of the output: positions, residence times, discomfort values, etc.
We also discuss a few basic aspects concerning the mathematical well-posedness of
one crowd model related to Model 1. We close the chapter with a discussion section
where we also include hints toward further potential contributions in this context.
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The results reported here should be seen as preliminary. More efforts are currently
invested to develop these research directions.

2 Related Contributions

Escape evacuation and social human behavior are closely connected. In an emer-
gency situation, building occupants require information about the surrounding
environment and social interactions in order to evacuate successfully. The exper-
iments in [26] can serve as a typical example for the relevance of distinguishing
between two groups of occupants: regular users of the building and those less
familiar with it.

In the model presented in [10], the building occupants are modelled as agents
who decide their evacuation actions on the basis of their infrastructural knowledge
and their interactions with the social groups and the neighboring crowd therein.
The authors showed that both familiar agents with the geometry building and
social influence can dramatically impact on egress performance. As a multi-agent
evacuation simulation tool, the ESCAPES system (presented in [44]) describes
a realistic spread of knowledge to model two types of different knowledge: exit
knowledge together with event knowledge. The conclusions made based on these
models are supported by experimental findings such as those reported in [40], where
an evacuation was performed and the exit choice of participants was investigated, as
well as the effect of the evacuation geometry.

Commonly, agent-based crowd models are based on developing individual
trajectories. Yet for dense crowds, additional dynamics come into play. This has
been observed in, for instance, [15], where the interaction in dense crowds has
been measured and analyzed, obtaining statistics for aggregate dynamics. These
macroscopic properties have been observed from a theoretical perspective as well in,
e.g., [32]. One way to bridge the gap between models for regular and dense crowds
is to use representation defined on different spatial scales, giving rise to a so-called
multiscale model. In [16], a multiscale model is proposed in terms of a granular
flow formulation to display both microscopic and macroscopic crowd behavior. For
an investigation of handling contacts in such flows of granular matters applied to
crowds, we refer the reader to the work of Maury and co-authors and compare [22].
All these papers assume that the exits are visible. For study cases when the walking
environment is not visible due to the lack of light, we refer the reader to [11].
There the main question is whether the grouping of the agents (involving higher
coordination costs and information overload) has a chance to favorize a potentially
quicker evacuation strategy. From a different perspective, interesting connections to
crisis management issues are made in [3] and references cited therein.

We refer the reader to further related contributions on modelling crowd dynamics
as reported, for instance, in [2, 28, 34], as well as in [4] and [14].
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3 Agent-Based Dynamics (Model 1)

In this section we introduce an agent-based model in a continuous two-dimensional
multiple connected region Ω , containing obstacles with a fixed location, a fire that
produces smoke, and an exit. Ω represents the environment in which the crowd is
present and tries to find the fastest way to the exit, avoiding any obstacles and the
fire. The crowd is represented by the two aforementioned groups, active and passive
agents. At time t = 0, the crowd starts to evacuate fromΩ . In the rest of this section,
Ω refers to the geometry displayed in Fig. 1.

Active agents have a perfect knowledge of the environment and the locations
of the obstacles, but are not aware of the location of the fire prior to experiencing
sensory cues. Passive agents have no information on the environment and follow
their neighbors to reach the exit. A similar model as the one described below has
been presented in [39].

Active and passive agents are seen as members from the setsXA = {a1, . . . , aNA}
and XB = {b1, . . . , bNB }, respectively. The dynamics governing their motion are
described in the following sections.

3.1 Active Agents

The motion of the active agents is governed by a potential field model proposed by
Hughes in [27] and adapted in [43]. It functions similarly to a floor field function, its
counterpart in lattice models presented in, e.g., [42] and [9]. We modify the potential
field model to account for the presence of obstacles and the effects of fire and smoke.

The potential field agrees with the principle of minimization of effort, serving as
a dynamic generalized distance transform. Let x be an arbitrary point selected inΩ .

Fig. 1 Basic geometry for
our case study cf. Model 1.
Agents are initialized in a
random location within the
geometry and have to reach
the exit (green) while
avoiding the obstacles (black)
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We introduce a marginal cost field u(x) > 0, defined as

u(x) = α + uobs(x)+ wH(x).

The marginal cost field represents the effort of moving through a certain location
and consists of a base level of constant walking effort α > 0, information on the
geometry and the obstacles uobs, and information on the fire source wH . Here, w
takes value 1 if the agent is aware of the location of the fire and 0 otherwise.

Let S be a path going from point xp to point xq . Then the effort of walking on
the path S can be expressed as

∫
S

u(ξ)dξ =
∫
S

α + uobs(ξ)+ wH(ξ)dξ .

At the beginning of the simulation, w is 0 for all agents. When an active agent
experiences a significant increase in temperature because of his proximity to the
location of the fire, w is set to 1, and S changes, and as a result, the fire is avoided.

Let G ⊂ Ω be the set of all inaccessible locations in the geometry (i.e., those
parts of Ω covered by obstacles). Then for all x ∈ Ω , the geometry information
(i.e., the obstacle cost field) can be expressed as

uobs(x) =

⎧⎪⎪⎨
⎪⎪⎩
∞ if x ∈ G,

1
|d(x,G)| if x /∈ G and d(x,G) ≤ rG,
0 if d(x,G) > rG,

(1)

where rG is a parameter of the order of the size of the agents. The obstacle cost
makes sure that obstacle locations are inaccessible, and rG adds a tiny layer of
repulsion around each obstacle to ensure the basic fact that agents do not run into
walls.

The preferred path S∗ for an agent with location xp and motion target xq is
determined as

S∗ = arg min
S

∫
S

u(ξ)dξ ,

where we minimize over the set of all possible motion paths S from xp to xq . In this
framework, the active agents are aware of all exits, and the optimal path S∗ is made
available by means of the potential function Φ, a solution to the equation

||∇Φ(x)|| = u(x), (2)

where || · || denotes the standard Euclidean norm. Passive agents do not have access
to the optimal paths.
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Figures 2 and 3 display the potential field and the corresponding paths for our
case study. Figures 4 and 5 display the adaption active agents make as soon as they
become aware of the fire locations and take an alternative route out.

Let xai (t) denote the position of active agent i at time t . We express their motion
within the geometry Ω by

⎧⎨
⎩
dxai
dt

= −vs(xai , t) ∇Φ(xai )−∇p(xai ,t)||∇Φ(xai )−∇p(xai ,t)|| ,

xai (0) = xai ,0,
(3)

where xai ,0 represents the initial configuration of the active agents and vs represents
a predefined walking speed. In (3), p represents a given discomfort term that

Fig. 2 Potential field Φ for
the environment of the case
study, not taking any fire into
account

Fig. 3 Paths generated from
the potential field in Fig. 2
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Fig. 4 Potential field Φ for
the environment of the case
study for agents aware of the
fire location

Fig. 5 Paths generated from
the potential field in Fig. 4,
avoiding the fire

influences agent interactions at the macroscopic scale. The discomfort measures
how much agents locally have to deviate from their ideal velocity. We are on purpose
vague concerning this macroscopic discomfort. In a follow-up publication, we will
tackle a multiscale nonuniform crowd model where p will be part of the solution to
a macro-micro flow problem.

3.2 Passive Agents

Since we assume in this context that passive agents are unfamiliar with their
environment, it is reasonable to postulate that to obtain information, they rely solely
on neighboring agents. This is a modelling assumption which has been confirmed
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for, e.g., primates in [33]. This idea has already been applied in other crowd
dynamics models (cf., e.g., [25]).

To model this strategy, we choose to apply a Cucker-Smale-like model which
averages the velocity of nearby agents (an idea introduced originally in [17]). A
Brownian term Bi is added to this swarming-like model to represent disorienting
and chaotic effects which inherently appear while moving through an unknown
environment.

We denote the positions and velocities of agent i from population XB as xbi and
vbi and positions and velocities from member j of the complete set XA ∪XB as xj
and vj , respectively.

We express the motion of passive agents in the following way:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dvbi
dt

= ∑
j∈X(vj − vbi )wij −∇H(xbi , t)

+ vbi−∇p||vbi−∇p||ϒ
(
s(xbi , t)

)+ Bi (t),
dxbi
dt

= vbi ,

vbi (0) = vbi ,0,

xbi (0) = xbi ,0.

(4)

In (4), wij are weight factors, decreasing as a function of distance, defined as

wij ∼ 1

r2s
exp

(
−|xbi − xj|2

r2s

)
. (5)

In (5), rs is the sight radius in the agents’ location, affected by smoke level s(x, t)
(see Sect. 3.3). It should also be noted that we do not take into account those
walls that block the transfer of information between agents, since they are ignored
in (5). However, in the simulations described in the next section, the size of the
walls generally exceeds the size of the interaction radius. The term ϒ

(
s(xbi , t)

)
is

simply an a priori known normalization factor depending of the smoke level; one
can take ϒ

(
s(xbi , t)

) = 1 just for simplicity. In the context of (5), the gradient in
the discomfort level1 ∇p asymptotically bounds the speed of the passive agents.

Note that, based on (4), passive agents follow a set of coupled second-order
differential equations (a social force-like model), while following (3), the active
agents are expected to respect a set of coupled first-order differential equations (a
social velocity-like model). We believe that the “social inertia” is much higher in the
case of passive agents, so we keep the classical Langevin structure of the balance of
forces, while for the active agents, we choose an overdamped version.

Another important observation is that in this model, passive agents do not know
which of the other agents are active and which are passive themselves; they follow
others indiscriminately.

1Here, we assume that the discomfort is perceptible, known.
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3.3 Smoke Effects

In addition to repelling the agents, the fire produces smoke which propagates in Ω
and reduces the visual acuity of the agents. The creation and propagation of the
smoke is modelled as a diffusion-dominated reaction-advection-diffusion process.

The smoke density s(x, t) is assumed to respect the following equation:

⎧⎪⎪⎨
⎪⎪⎩
∂t s = div(D∇s)− div(vs)+ ysH(x) in Ω \G,
(−D∇s + vs) · n = 0 on ∂Ω ∪ ∂G,
s(x, 0) = 0 in Ω,

(6)

where D > 0 represents the smoke diffusivity, determined by the environment, n is
the outer normal vector to ∂Ω∪∂G, v is a given drift corresponding to, for instance,
ventilation systems or indoor airflow, while H(x) encodes the shape and intensity
of the fire, viz.

H(x) =
{
R if |x− x0| < r0
0 otherwise

. (7)

In our context, D > 0 is the molecular diffusion coefficient for the smoke, and a
slight space dependence in D is allowed. At a later stage, maybe eventually also
an s-dependence of D can be foreseen, if one would replace (6) by an averaged
version where the free motion paths and the geometry are perceived as some sort of
“homogenized” porous medium.

Figure 6 illustrates a snapshot of the smoke density for our case study.

Fig. 6 Smoke density in the
environment at t = 60
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4 Results Model 1: Agent-Based Dynamics

This section contains our numerical results obtained using the agent-based dynamics
described in the previous section.

The results are run in crowd simulation prototyping application Mercurial [37].
This is an open-source framework developed in Python and Fortran to simulate
hybrid crowd representations as the one described in Sect. 3. It provides both
agent-based and continuum-level visualizations and supports the design of arbitrary
two-dimensional geometries. More details on the structure and implementation of
Mercurial are found in [38].

Figure 1 shows the geometry of our case study. It has a fairly simple structure to
ensure the exit can be reached even without environment knowledge. However, the
placement of the obstacles is such that zones of congestion easily occur and paths
to the exit will necessarily have to be curved.

The simulation was run twice with 1000 agents, varying the ratio between active
and passive agents. The first run (Case 1), of which a snapshot is presented in Fig. 7,
contains a total of 800 active agents and 200 passive agents. The second run (Case
2), illustrated with a snapshot in Fig. 8, contains a total of 200 active agents and 800
passive agents.

Figures 9 and 10 illustrate a coherent discomfort field in an ongoing simulation
due to a large number of agents with conflicting directions. The corresponding
agents configuration (i.e., their spatial distribution) is displayed in Figs. 7 and 8.
It is visible that close to the fire, a lot of discomfort is generated. The main cause
for this congestion is the conflict between active agents who have identified the
location of the fire and want to move in different directions and active agents which

Fig. 7 Snapshot after
t = 17.9 for a population
with 80% active agents.
Active agents are displayed as
filled circles and passive
agents as open circles. The
larger circle represents the
center of the fire
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Fig. 8 Snapshot after t = 37.5 for a population with 20% active agents. Active agents are
displayed as filled circles and passive agents as open circles. The larger circle represents the center
of the fire

Fig. 9 Discomfort observed
in the simulation snapshot of
Fig. 7

are still unaware and want to exit the geometry through that particular corridor. This
reminisces of the panic zone that occurs in crowd disasters close to the origin of the
panic. Notice how this zone is much more present in Case 1 than in Case 2, due
to the lack of active agents in Case 2. While the passive agents take a lot longer
to reach the exit, their following-dominated behavior amounts to less discomfort in
doing so.

It would be interesting to have a partial differential equation describing at
least approximately the macroscopic space-time evolution of such discomfort field
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Fig. 10 Discomfort observed
in the simulation snapshot of
Fig. 8

available. Also, such an object would be very useful from a practical point of view –
it would allow a fast detection of zones of high discomfort, which could be helpful
in taking management decisions to reduce the potential of risks and accidents.

In Case 1 (Fig. 7), we observe that all agents belong to a collective moving toward
the exit, regardless of population. As one would expect, Case 2 (Fig. 8) displays less
order than Case 1. Most agents move in smaller groups, either guided by active
agents or randomly moving throughout the geometry.

Figures 11 and 12 depict the agents leaving the environment as a function of
time. In Fig. 11 we observe three stages: the first stage (from t = 0 to t ≈ 100)
corresponds to the group of active agents that exit the geometry without any
obstructions, guiding most of the passive agents while doing so. The second stage
(from t ≈ 100 to t ≈ 400) has virtually no agents that reach the exit; all the
remaining agents are trapped in the high discomfort panic-like zone close to the fire.
The third stage shows the final active agents have escaped the panic zone, reaching
the exit.

Figure 12 displays a similar first stage, but because the discomfort zones are a lot
less intensive, there is no pronounced second and third stage. Notice how after the
bulk of the active agents have left the geometry, the egress of the passive agents has
reduced to a random walk.

These observations are supported by Figs. 13 and 14, where the cumulative
discomfort for each location x inΩ is displayed. Case 1 (Fig. 13) shows significantly
higher discomfort both near the fire and where the geometry narrows itself. Case
2 (Fig. 14) shows a much higher usage of the space in the geometry, i.e., agents
walking in locations that do not belong to any shortest path. However, the high
discomfort zones are an order of magnitude lower than in Case 1, due to the
“flexibility” of passive agents.

Concluding, simulations support the following observations. Differences in
environment knowledge can have a significant impact on several aspects on the



Modelling Interactions Between Active (. . . ) Through Heterogeneous Environments 223

Fig. 11 Agent exit times in Case 1

Fig. 12 Agent exit times in Case 2
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Fig. 13 Logarithmic heat
map of discomfort zones that
developed in the scenario
with 80% active agents.
White regions indicate no
experienced discomfort

Fig. 14 Logarithmic heat
map of discomfort zones that
developed in the scenario
with 20% active agents.
White regions indicate no
experienced discomfort

dynamics of crowds in, e.g., evacuations. While it is true that additional knowledge
decreases evacuation time, the autonomy of active agents can cause problems when
their information turns out to be incorrect. When steering passive agents, it is
significantly more difficult to maintain order in the evacuation, but the fact that they
can be guided can relieve discomfort and reduce congestion.

5 Lattice Gas Dynamics (Model 2)

The second model we shall consider is a simple exclusion process (SEP) [30] on
a 2D rectangular lattice Λ = {1, . . . , Lx} × {1, . . . , Ly}. Recall that two sites are
said to be nearest neighbors if their Euclidean distance is one. A pair of nearest
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neighboring sites is called a bond. Following the basic tenets of the SEP dynamics,
each particle attempts a jump to one of its nearest neighbors, provided that the
target site is empty. The waiting time between two consecutive jump attempts is
an exponentially distributed random variable.

We assume that particles may leave the system only through a small set of lattice
sites D = {(x, y) ∈ Λ : y = Ly , x ∈ [xex, xex + wex]}, located on the upper
horizontal row, called the “exit door” (of widthwex). A particle departing from a site
located within the exit door and hopping upward is annihilated. Note that particles
can only leave the system through the door: no inward flux of particles is considered
in this model. The aim of our numerical investigation is, indeed, to shed light on the
characteristic time scales associated with the particle evacuation from the system. To
complete the description of the geometry of the model, as in Sect. 3, we call G the
set of all inaccessible sites on the lattice (representing, e.g., obstacles, cf. Fig. 15).
Finally, we call the “exit strip” the set of lattice sites with horizontal coordinate
x ∈ [xex, xex + wex].

As in the case of Model 1, we distinguish between two species of particles,
namely, aware (or active) particles and unaware (or passive) particles. For simplic-
ity, we shall refer to them as particles “A” and “U” in this section. While particles
U perform a symmetric simple exclusion dynamics on the lattice, particles A are
subjected to both a horizontal and a vertical drift, denoted below as εx and εy , that
enhance the rates at which these particles hop toward the exit door.

The microscopic dynamics is defined as follows. Call η(U)(w) and η(A)(w) the
occupation number on the site w = (x, y) of the two species U and A. Moreover,
let z = (x2, y2) be a nearest neighbor site of w, such that w, z ∈ Λ \ G. Then, we
define the hopping rate of the species U from w to z (no matter if the jump occurs
along a horizontal or a vertical bond) as:

c(U)(w, z) = η(U)(w)
[
1− η(U)(z)− η(A)(z)

]
. (8)

To define the corresponding hopping rate for the species A, we need to distinguish
between vertical and horizontal bonds. For the vertical bonds, we set:

c(A)(w, z) =
⎧⎨
⎩
(1+ εy)η(A)(w)

[
1− η(A)(z)− η(U)(z)] ify2 > y ,

0 ify2 < y .

(9)

for upward or downward jumps, respectively. The hopping rate in Eq. (9) mimics the
tendency of the speciesA to move upward, i.e., toward the exit door, thus preventing
any redundant vertical motion in the opposite direction. Note, also, that the presence
of the drift εy in Eq. (9) makes the rate of an upward jump larger than the unitary rate
characterizing the dynamics of the species U in Eq. (8). For the horizontal bonds,
we shall first consider the case in which the departure site is not located inside the
exit strip. In this case we set:
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Fig. 15 Microscopic configurations of the lattice model sampled at different times (time increases
from top to bottom, left to right). The configurations were obtained from Kinetic Monte Carlo
simulations performed on a 2D square latticeΛwithLx = Ly = 50. The yellow pixels correspond
to particles of the species A, the blue pixels to particles of the species U , the white pixels represent
empty spots on the lattice, whereas the black pixels denote the fixed obstacles (inaccessible sites).
The width of the exit door, located at the center of the first horizontal row, is set equal to wex = 2.
The horizontal and vertical drifts are set equal to εx = εy = 0.1. The initial configuration (top left
panel) sees an equal number of particles of the species A and U on the lattice, and the two species
together occupy a fraction 98.5% of all the accessible lattice sites

c(A)(w, z) =
⎧⎨
⎩
(1+ εx)η(A)(w)

[
1− η(A)(z)− η(U)(z)] if (x2 − x)(xex − x) > 0 ,

η(A)(w)
[
1− η(A)(z)− η(U)(z)] if (x2 − x)(xex − x) < 0 .

(10)
The presence of a horizontal drift εx , in Eq. (10), indicates that particles A move
preferably in the direction that enables them to reach the exit strip. Instead, if the
departure site is inside the exit strip, we set:
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c(A)(w, z) = 0 if x ∈ [xex, xex + wex] , (11)

namely, particles A avoid wandering randomly along the horizontal direction inside
the exit strip: they just patiently wait for their turn to move upward and ultimately
evacuate the system. This causes the formation of queues along the vertical direction
that are observed in numerical simulations, cf. Fig. 15.

All rates associated with bonds joining a site w ∈ Λ \G with a site z ∈ G are set
to 0. Finally, the rates cex related to upward jump from a departure site w ∈ D are
defined as:

cex(w) = η(U)(w)(1− η(A)(w))+ (1+ εy)η(A)(w)(1− η(U)(w)) . (12)

The evacuation of particles from the lattice can be tracked by measuring, for
each species, the number of particles N(t) as a function of time. Then, for a given
species, the average particle current J at time t is defined as:

J (t) = N(0)−N(t)
t

. (13)

6 Results Model 2: Lattice Gas Dynamics

This section contains our numerical results for the Model 2, obtained by running
Monte Carlo simulations. In particular, we implemented the Kinetic Monte Carlo
(KMC) method [31], which is suited to describe transient processes, in which
physical time plays a decisive role in the microscopic evolution [7, 45].

The model has been simulated as follows: first, a number τ is picked up at random
with exponential distribution of parameter λ, given by the sum of the rates defined
in Sect. 5, associated with each lattice bond [12, 13]; time is then updated to t + τ ; a
bond is chosen with probability equal to the corresponding rate divided by λ; finally,
a particle hops from the occupied site to the empty site of the chosen bond.

The results of the KMC simulations are shown in Figs. 15 and 16. In Fig. 15
we present the microscopic configurations of the particles A and U at different
times, from the initial configuration (top left panel) up to a final time in which the
evacuation of particles A is almost completed (bottom right panel, corresponding to
some 3× 106 time steps of the dynamics).

In the left panel of Fig. 16, we show the total number of particles A and U as
functions of time, for different values of the parameters wex , εx , and εy . Clearly, a
larger width of the exit door favors the evacuation of both particles A and U . The
left panel of Fig. 16 highlights an interesting effect related to the drift parameters: an
increase of εx and εy enhances the evacuation rate of the particles A, but has also an
effect on the evacuation of particles U . Indeed, these have access to a larger number
of empty sites on the lattice, as a result of the increased evacuation of particles A.
Finally, in the right panel of Fig. 16, we show the behavior of the particle current,
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Fig. 16 Left panel: Behavior of the number of particles of the species A (empty symbols) and B
(filled symbols) vs. time, with Lx = Ly = 50, and for different values of the exit width wex and
of the drift terms εx and εy . Right panel: behavior of the current vs. time for the two species A and
U with Lx = Ly = 50, wex = 2, and εx = εy = 0.1

defined in (13), for the two speciesA and U as a function of time, for fixed values of
the parameterswex , εx , and εy . The higher evacuation rate observed for the particles
A stems directly from the definition of the rates given in Sect. 5.

7 Mathematical Aspects of Social Dynamics in Mixed
Populations

In this section, we discuss the solvability of a social dynamics model of mixed
populations, resembling an overdamped version of Model 1. Note that Model 2 is
well-posed by construction. Here, interesting questions would be pointing toward
the rigorous derivation of the corresponding hydrodynamic limit equations [19]
and/or the numerical evaluation of non-equilibrium collective effects (e.g., the
inclusion of a reaction mechanism within the microscopic dynamics, allowing
particles to switch from one species to the other, or the presence of long-range
interactions between particles), but these aspects are not in our focus for the
moment.

This section contains a couple of technical preliminaries needed to state the
evolution problem in a functional analytic framework. We use standard methods
to handle the well-posedness of a coupled set of SDEs for the agents dynamics, also
linked to a linear parabolic equation describing the motion of the smoke.
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Fig. 17 Basic geometry for
our case study cf. Model 1.
Obstacles are colored black,
while the exit is colored green

7.1 Technical Preliminaries, Notation, and Assumptions

7.1.1 Geometry

We consider a two-dimensional domain, which we refer to as Ω̃ . This domain
presents the geometry of the evacuation scenario. In addition, as a building
geometry, parts of the domain are filled with obstacles (G1 and G2) denoted by
G := G1 ∪G2 and the fire denoted by F̃ . Moreover, the domain has exits denoted
by E. Let Ω := Ω̃\(G ∪ E ∪ F̃ ) ⊂ R

d for d = 2 and ∂Ω be C2 or at least
satisfying the exterior sphere condition. A typical example of such Ω is depicted
in Fig. 17.

7.1.2 Function Spaces

In this section, we employ a number of Sobolev spaces; see, e.g., [1, 20] for details
on their definition and properties.

The space Hm(Ω), m ∈ N, is endowed with the norm

‖v‖2
Hm(Ω) :=

∑
|α|≤m

∫
Ω

|Dαv|2dx for all v ∈ Hm(Ω),

while for the spaceWm,∞(Ω), we consider the norm

‖v‖m,∞(Ω) :=
∑
|α|≤m

ess sup
Ω

|Dαv| for all v ∈ Wm,∞(Ω),m ∈ N.
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Our analysis of the stochastic differential equations (SDEs) describing the
evolution of our populations follows the line of reasoning from [23] and [18] (the
compactness method of SPDEs and martingale solutions). We refer to [21] and [36]
for the basic concepts and usual notations.

Let xt be a continuous-time stochastic process. We define the family of laws

{
Q(xnt ); t ≥ 0, n ≥ 1

}
. (14)

This is a family of probability distribution of xnt .
Recall the classical Ascoli-Arzelà theorem:

A family of functions F ⊂ C([0, T ];Rd) is relatively compact (in uniformly
topology) if

i. for every t ∈ [0, T ], the set {f (t); f ∈ F } is bounded.
ii. for every ε > 0 and t, s ∈ [0, T ], there is δ > 0 such that

|f (t)− f (s)| ≤ ε, (15)

whenever |t − s| ≤ δ for all f ⊂ F .

We introduce the definition of Hölder seminorms, for f : [0, T ] → R
d as

[f ]α = sup
t �=s

|f (t)− f (s)|
|t − s| , (16)

and the supremum norm as

‖f ‖∞ = sup
t∈[0,T ]

|f (t)|. (17)

Using Ascoli-Arzelà theorem, starting from the facts:

i′. there isM1 > 0 such that ‖f ‖∞ ≤ M1 for all f ∈ F .
ii′. for some α ∈ (0, 1), there is anM2 > 0 such that [f ]Cα ≤ M2 for all f ∈ F ,

we infer that the set

KM1M2 =
{
f ∈ C([0, T ];Rd); ‖f ‖∞ ≤ M1, [f ]Cα ≤ M2

}
(18)

is relatively compact in C([0, T ];Rd).
For α ∈ (0, 1), T > 0 and p > 1, the spaceWα,p(0, T ;Rd) is defined as the set

of all f ∈ Lp(0, T ;Rd) such that

[f ]Wα,p :=
∫ T

0

∫ T
0

|f (t)− f (s)|p
|t − s|1+αp dtds <∞.
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This space is endowed with the norm

‖f ‖Wα,p = ‖f ‖Lp + [f ]Wα,p .

Moreover, we know that if αp > 1, then

Wα,p(0, T ;Rd) ⊂ Cγ ([0, T ];Rd) for (αp − γ ) > 1

and [f ]Cγ ≤ Cγ,α,p‖f ‖Wα,p . Relying on the Ascoli-Arzelà theorem, we have the
following situation:

ii′′. for some α ∈ (0, 1) and p > 1 with αp > 1, there is M2 > 0 such that
[f ]Wα,p ≤ M2 for all f ∈ F .

If i′ and ii′′ hold, then the set

K ′M1M2
=

{
f ∈ C([0, T ];Rd); ‖f ‖∞ ≤ M1, [f ]Wα,p ≤ M2

}
(19)

is relatively compact in C([0, T ];Rd), if αp > 1.

7.1.3 Hypotheses

In this framework, we require the following assumptions:

(A1) φ ∈ C2(Ω) (see also Sect. 7.3.1).
(A2) pmax = N |Ω| <∞ (bounded maximal discomfort).
(A3) The smoke matrix diffusion coefficient D = D(x) ∈ Wm,∞(Ω) satisfies the

uniform ellipticity condition, i.e., there exists positive constants θ, θ such that

θ |ξ |2 ≤ D(x)ξiξj ≤ θ |ξ |2 for any ξ ∈ Ω.

(A4) The smoke interface exchange coefficient on the boundary of our domain λ :=
Λ(x) ∈ Wm,∞(∂Ω) is such that there exist positive constants γ , γ satisfying

−γ |ξ |2 < λ(x)ξiξj ≤ γ |ξ |2 for any ξ ∈ ∂Ω.

Changing the functional framework will naturally lead to a reconsideration of these
assumptions.

7.1.4 First-Order Social Agents Dynamics

We focus on the interaction between two groups of pedestrians, one familiar (active
agents) and one unfamiliar (passive agents, visitors) with the geometry. To keep the
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presentation simple, we decide to tackle here the case when both active and passive
agents follow a first-order dynamics (overdamped Langevin equations). To this end,
we modify the dynamics of the passive agents, deviating this way from Model 1.

Let xai denote the position of the agent i from group A at time t . The crowd
dynamics in group A is expressed by the first-order differential equation encoding
optimal environment knowledge within the domain Ω , viz.⎧⎨

⎩
dxai (t)
dt

= −ϒ(s(xai , t))
( ∇φ(xai )‖∇φ(xai )‖

)
(pmax − p(xai , t)),

xai (0) = xai ,0,
(20)

where pmax is a discomfort threshold proportional to the overall population size, say
pmax = N |Ω|, with N := NA +NB and p(x, t) is the local discomfort (realization
of social pressure) so that

p(x, t) =
∫
Ω∩B(x,δ̃)

N∑
j=1

δ(z− xcj (t))dz. (21)

In (21), δ is the Dirac (point) measure, and B(x, δ̃) is a ball center x with small
enough radius δ̃ such that δ̃ > 0. Hence, the discomfort p(x, t) represents a finite
measure on the bounded set Ω ∩ B(x, δ̃). In addition, we assume the following
structural relation between the smoke extinction and the walking speed:

ϒ(s(x, t)) = −as(x, t)+ b,
where a, b are given positive numbers. Note that every member of this group
wants to follow the motion path explicitly given by ∇φ (with φ the potential
function solving the eikonal equation), which minimizes the distance between
particle positions xai and the exit location E.

As mentioned before, concerning the second population, since the agents do not
know the geometry, they must rely on the information from their neighbor. The
unfamiliarity with the local environment is expressed here by means of a Brownian
motion term Bi . Moreover, the passive agents like to stay away the fire – for this to
happen, we use a repulsion term pinpointing to the location of the fire source ∇Hε .
Hence, the dynamics is described as a stochastic differential equation as follows:⎧⎨

⎩
dxbk (t)
dt

= ∑N
j=1

(xcj−xbk )
‖xcj−xbk ‖w(δ̂, s(xbk , t))−∇Hε(xbk , t)+ D̃Bk(t),

xbk (0) = xbk,0.
(22)

Here D̃ is the constant diffusion coefficient matrix, while δ̂ ∼ ‖xcj − xbk‖, and w is
a weight factor decreasing as a function of distance. They are defined as

w(x, y) ∼ 1

r2s
exp

(
− (x − y)

2

r2s

)
. (23)
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In (23), rs is the sight radius in the evacuees location. Since H is in general not
differentiable everywhere (cf., e.g., (50)), in order to be able to take the gradient of
H , we consider from the start a mollified H , say Hε . Furthermore, note that D̃ can
in principle also depend on the space position. This way the random effects can be
skipped in the regions where the geometry is not available for walking. It is worth
noting that we have many ways to express how the active agents sense the fire. We
choose here to introduce the fire location as a region to be avoided and impose it in
the definition domain of the eikonal equation. It is worth comparing this model for
the evolution of the passive agents and the one prescribed in Model 1. Notice here
the following important aspects: not only the dynamics is overdamped, but also the
expression of the social velocity is slightly adapted to avoid an implicit definition.

7.2 Well-Posedness

Our evolution system consists of an ODE (20) coupled to an SDE (22). Therefore,
due to the randomness incorporated in the SDE (22), the ODE becomes an SDE
after coupling. So, we can consider (20) and (22) as a SDE system. Note that this
system is one-way coupled with the reaction-diffusion-drift equation describing the
smoke evolution.

For convenience, we rephrase the solution to the system (20) and (22) in terms
of the vector xnt such that

xnt = (xnai (t), xnbk (t)), (24)

F1(xnt , t) := −ϒ(s(xnai , t))
∇φ(xnai )
‖∇φ(xnai )‖

(pmax − p(xnai , t)), (25)

F2(xnt , t) :=
N∑
j=1

(xncj − xnbk )

‖xncj − xnbk‖
w(δ̂, s(xnbk , t))−∇Hε(xnbk , t). (26)

Furthermore, we set

bn(xnt , t) :=
[
F1(xnt , t)
F2(xnt , t)

]
and σ̃ :=

[
0̃
D̃

]
, (27)

with

0̃ :=
[

0 0
0 0

]
and D̃ :=

[
D11 D12

D21 D22

]
(28)

and initial datum

xn0 :=
[

xnai ,0
xnbk,0

]
. (29)
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In this section, we use the compactness method for proving the existence of
solutions; we follow the arguments by G. Da Prato and J. Zabczyk (2014) (cf. [18],
Section 8.3) and a result of F. Flandoli (1995) (cf. [23]) for martingale solutions. The
starting point of this argument is based on considering a sequence {xnt } of solutions
of the following stochastic differential equation:

{
dxnt = bn(xnt , t)dt + σ̃ dBt
xn0 = xn0

(30)

To ensure the applicability of the compactness argument, we need the following
structural assumptions:

(A5) bn be a consequence of continuous functions and uniformly Lipschitz in x.
(A6) bn be equibounded ‖bn‖∞ ≤ C.

It is not difficult to see that in our case, Assumptions (A4) and (A5) are fulfilled.
By s ∈ C([0, T ];C1(Ω)) from Remark 1, we have ṽs Lipschitz in x. Moreover, by
Assumption (A1), we obtain ∇φ is Lipschitz for x ∈ Ω . On the other hand, the term
pmax − p(xai , t) is a finite measure on bounded sets – it is automatically Lipschitz.
These considerations lead to the fact that F1 is Lipschitz in x ∈ Ω . In addition,
by (A2) together with taking Hε (as a mollified H ) implies that ∇Hε is uniformly
Lipschitz in x ∈ Ω . By the formula (23), the weight factors are Lipschitz in x ∈ Ω .
Thus, F2 inherits the Lipschitz property. Clearly, from these arguments, we obtain
not only that F1 and F2 are Lipschitz but also that these functions are equibounded
‖F1‖∞ ≤ C and ‖F2‖∞ ≤ C. Hence, we have bn satisfying both assumptions (A4)
and (A5).

The compactness argument proceeds as follows. We begin with solutions xnt , n ∈
N of the system (20) and (22), describing in (30). The construction of these solutions
can be investigated on a probability space (Ω,F , P ) with a filtration {Ft } and a
Brownian motion B(t). Next, let Qn be the laws of xnt which is defined cf. (14).
Then, by using Prokhorov’s theorem, we show that the sequence of laws {Qn(xnt )}
is weakly convergent to Q(xt ) in C([0, T ];Rd). Then, by using the “Skorohod
representation theorem,” the weak convergence is in a new probability space with a
new stochastic process, for a new filtration. This leads to some arguments for weak
convergence results of two stochastic processes in two different probability spaces
that we need to use to obtain the existence of our SDE system. Finally, we prove the
uniqueness of solutions to our system.

Let us start with handling the tightness of the laws {Qn} through the following
lemma.

Lemma 1 Assume (A4) and (A5) hold. The family of {Qn} is tight in C([0, T ];Rd)
Proof In order to prove the tightness, let us recall the following compact setsKM,P
(as in the preliminaries Sect. 7.1):

KM1M2 =
{
f ∈ C([0, T ];Rd); ‖f ‖∞ ≤ M1, [f ]Cα ≤ M2

}
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Now, we will show that for a given ε > 0, there areM1,M2 > 0 such that

P(xn· ∈ KcM1M2
) < ε, for all n ∈ N.

This means that

P(‖xn· ‖∞ > M1 or [xn· ]Cα > M2) < ε.

A sufficient condition is

P(‖xn· ‖∞ > M1) <
ε

2
and P([xn· ]Cα > M2) <

ε

2
. (31)

Now, we consider the first one P(‖xn· ‖∞ > M1) <
ε
2 . Using Markov’s inequality

(cf. [29], Corollary 5.1), we get

P(‖xn· ‖∞ > M1) ≤ 1

M1
E

[
sup
t∈[0,T ]

∣∣xnt ∣∣
]
,

but

sup
t∈[0,T ]

∣∣xnt ∣∣ = sup
t∈[0,T ]

{∣∣∣∣xnai ,0 +
∫ t

0
F1(xny, y)dy

∣∣∣∣ ,
∣∣∣∣xnbk,0 +

∫ t
0
F2(xny, y)dy +

∫ t
0
σ̃ dBy

∣∣∣∣
}
.

We estimate

sup
t∈[0,T ]

∣∣xnt ∣∣ ≤ sup
t∈[0,T ]

{
|xnai ,0| +

∣∣∣∣
∫ t

0
F1(xny, y)dy

∣∣∣∣ , |xnbk,0|
+

∣∣∣∣
∫ t

0
F2(xny, y)dy

∣∣∣∣+
∣∣∣∣
∫ t

0
σ̃ dBy

∣∣∣∣
}

Since F1, F2 bounded, then we have

∫ T
0

∣∣∣F1(xny, y)
∣∣∣ dy = ∫ T

0

∣∣∣∣∣−ϒ(s(xnai , y))
( ∇φ(xnai )
‖∇φ(xnai )‖

)
(pmax − p(xnai , y))

∣∣∣∣∣ dy ≤ C,
∫ T

0

∣∣∣F2(xny, y)
∣∣∣ dy = ∫ T

0

∣∣∣∣∣∣
N∑
j=1

(xncj − xnbk )

‖xncj − xnbk‖
w(δ̂, s(xnbk , y))− ∇Hε(xnbk , y)

∣∣∣∣∣∣ dy ≤ C.
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Taking the expectation, we have the following estimate:

E

[
sup
t∈[0,T ]

|xnt |
]
≤ C.

Hence, for ε > 0, we can chooseM1 > 0 such that P(‖xn· ‖∞ > M1) <
ε
2 .

From now on, we consider the second inequality in (31). This reads

P([xn· ]Cα > M2) = P
(

sup
t �=r

|xnt − xrt |
|t − r| > M2

)
≤ ε

2
.

Let us introduce another class of compact sets now in the Sobolev space
Wα,p(0, T ;Rd) (which for suitable exponents lies inCγ ([0, T ],Rd)). Additionally,
we recall the relatively compact sets K ′M1M2

in (19) such that

K ′M1M2
=

{
f ∈ C([0, T ];Rd); ‖f ‖∞ ≤ M1, [f ]Wα,p ≤ M2

}
.

A sufficient condition for K ′M1M2
to be relatively compact in the underlying space

is αp > 1. Having this in mind, we wish to prove that there exist α ∈ (0, 1) and
p > 1 with αp > 1 together with the property: given ε > 0, there is M2 > 0
such that

P([xn· ]Wα,p > M2) <
ε

2
,

for every n ∈ N.
Using Markov’s inequality, we obtain

P([xn· ]Wα,p > M2) ≤ 1

M2
E

[∫ T
0

∫ T
0

|xnt − xnr |p
|t − r|1+αp dtdr

]

= C
M2

∫ T
0

∫ T
0

E
[|xnt − xnr |p

]
|t − r|1+αp dtdr.

For t ≥ r , we have

xnt − xnr =
(∫ t
r
F1(xny, y)dy∫ t
r
F2(xny, y)dy

)
+

(
0∫ t

r
σ̃ dBy

)
.

Let us introduce some further notation. For a vector u = (u1, u2), we set |u| :=
|u1| + |u2|. At this moment, we consider the following expression:

|xnt − xnr | =
∣∣∣∣
∫ t
r

F1(xny, y)dy

∣∣∣∣+
∣∣∣∣
∫ t
r

F2(xny, y)dy +
∫ t
r

σ̃ dBy

∣∣∣∣ . (32)
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Taking the modulus up to the power p > 1, (32) reads

|xnt − xnr |p =
(∣∣∣∣

∫ t
r

F1(xny, y)dy

∣∣∣∣+
∣∣∣∣
∫ t
r

F2(xny, y)dy +
∫ t
r

σ̃ dBy

∣∣∣∣
)p

≤
∣∣∣∣
∫ t
r

F1(xny, y)dy

∣∣∣∣
p

+
∣∣∣∣
∫ t
r

F2(xny, y)dy

∣∣∣∣
p

+
∣∣∣∣
∫ t
r

σ̃ dBy

∣∣∣∣
p

≤
∫ t
r

∣∣∣F1(xny, y)
∣∣∣p dy + ∫ t

r

∣∣∣F2(xny, y)
∣∣∣p dy + ∣∣∣∣

∫ t
r

σ̃ dBy

∣∣∣∣
p

≤ C(t − r)p +
∣∣∣∣
∫ t
r

σ̃ dBy

∣∣∣∣
p

. (33)

Taking the expectation on (33), we obtain the following estimate:

E[|xnt − xnr |p] ≤ C(t − r)p + E
[∣∣∣∣

∫ t
r

σ̃ dBy

∣∣∣∣
p]
. (34)

Now, we consider the second term of the right-hand side of (34). By using the
Burkholder-Davis-Gundy inequality (cf. [18], Hypothesis 6.4), we obtain

E

[∣∣∣∣
∫ t
r

σ̃ dBy

∣∣∣∣
p]

≤ CE
[(∫ t

r

dy

)p/2]
≤ C(t − r)p/2. (35)

Combining (34) and (35), we have the upper bound

E[|xnt − xnr |p] ≤ C(t − r)p/2.

On the other hand, the integral

∫ T
0

∫ T
0

1

|t − r|1+(α− 1
2 )p
dtdr

is finite if α < 1
2 . Consequently, we can pick α < 1

2 . Taking now p > 2 together
with the constraint αp > 1, we can findM2 > 0 such that

P
([xn· ]Wα,p > M2

)
<
ε

2
.

This complete the proof of this lemma.

Theorem 1 Assume (A1) and (A2) hold. There exists a solution to SDE system (20)
and (22) that governs the microscopic dynamics.
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Proof From Lemma 1, we have obtained that the sequence {Qn} is tight in
C([0, T ];Rd). Applying the Prokhorov’s Theorem (cf. [6], Theorem 5.1), there
are subsequences {Qnk } which converge weakly. For simplicity of the notation,
we denote these subsequences by {Qn}. This means that we have {Qn} converges
weakly to some probability measureQ on Borel sets in C([0, T ];Rd).

Since we have that Q(xnt ) converges weakly to Q(xt ), by using the “Skorohod
Representation Theorem” (cf. [18], Theorem 2.4), there exists a probability space
(Ω̃, F̃ , P̃ ) with the filtration {F̃t } and x̃nt , x̃t belong to C([0, T ];Rd) with n ∈ N,
such that Q(x̃) = Q(x), Q(x̃nt ) = Q(xnt ) with n ∈ N, and x̃nt → x̃t as n → ∞,
P̃−a.s.

By using this argument, we get that x̃nt converges to x̃t a.s. in the uniform
topology on compacts sets, and then x̃nt converges in probability toward x̃t . It leads
to ∫ t

r

b̃n(x̃
n
y, y)dy →

∫ t
r

b̃(x̃y, y)dy

in probability. To prove that these new processes satisfy the SDEs, we rely on an
argument of Bensoussan cf. [5]. Essentially, we need to check that the pair (x̃n· , B̃·)
satisfies the following equation:

x̃nt = x̃n0 +
∫ t

0
bn(x̃

n
y, y)dy +

∫ t
0
σ̃ dB̃y. (36)

Let us call

M̃ n
t := x̃nt − x̃n0 −

∫ t
0
bn(x̃

n
y, y)dy −

∫ t
0
σ̃ dB̃y.

To prove (36), we define the following equation:

M n
t := xnt − xn0 −

∫ t
0
bn(xny, y)dy −

∫ t
0
σ̃ dBy.

Clearly, this definition implies M n
t = 0 P a.s. . Hence, we have E

[
M n
t

M n
t +1

]
= 0.

Now, we want to check that

Ẽ

[
M̃ n
t

M̃ n
t + 1

]
= 0. (37)

Consider the fact that

M n
t

M n
t + 1

= φn(xn· , B·) and
M̃ n
t

M̃ n
t + 1

= φn(x̃n· , B̃·),
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where φn belong to B(E) which is the Borel sets of E with E := C([0, T ];Rd).
We note that

Ẽ

[
M̃ n
t

M̃ n
t + 1

]
= Ẽ[φn(x̃n· , B̃·)] =

∫
B(E)

φndQn = E[φn(xn· , B·)] = E
[
Mnt

M n
t + 1

]
.

Thus, (37) holds. This implies M̃ n
t = 0 P̃ a.s. Therefore, the new process, posed

in the new probability space, satisfies the SDE. )*
Proposition 1 The solution of SDE system (20) and (22) is unique.

Proof Assume that we have two distinct solutions x1 and x2 belonging to
C([0, T ];Rd) with continuous sample paths almost surely. Then it also holds

x1(t)− x2(t) =
∫ t

0
(b(x1, y)− b(x2, y))dy,

and hence,

E(|x1(t)− x2(t)|) ≤ E
(∣∣∣∣

∫ t
0
b(x1(y), y)− b(x2(y), y)dy

∣∣∣∣
)
. (38)

For a detailed check, we consider

E

(| ∫ t0 F1(x1(y), y)− F1(x2(y), y)dy|
| ∫ t0 F2(x1(y), y)− F2(x2(y), y)dy|

)
. (39)

Since the terms of F1 is Lipschitz, the first line of (39) reads

∣∣∣∣
∫ t

0
F1(x1(y), y)− F1(x2(y), y)dy

∣∣∣∣
=

∣∣∣∣
∫ t

0

(
−ϒ(s(x1

ai
(y), y))

( ∇φ(x1
ai
(y))

‖∇φ(x1
ai
(y))‖

)
(pmax − p(x1

ai
(y), y))

+ϒ(s(x2
ai
(y), y))

( ∇φ(x2
ai
(y))

‖∇φ(x2
ai
(y))‖

)
(pmax − p(x2

ai
(y), y))

)
dy

∣∣∣∣
≤ C

∫ t
0
|x2
ai
(y)− x1

ai
(y)|dy. (40)
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By the same argument, the second line of (39) becomes

∣∣∣∣
∫ t

0
F2(x1(y), y)− F2(x2(y), y)dy

∣∣∣∣ =
∣∣∣∣
∫ t

0

( N∑
j=1

(x1
cj
− x1
bk
)

‖x1
cj
− x1
bk
‖w(δ̂, s(x

1
bk
, y))−∇Hε(x1

bk
, y)

−
N∑
j=1

(x2
cj
− x2
bk
)

‖x2
cj
− x2
bk
‖w(δ̂, s(x

2
bk
, y))+ ∇Hε(x2

bk
, y)

)
dy

∣∣∣∣ =

∣∣∣∣
∫ t

0

NA∑
j=1

x1
aj
− x1
bk

‖x1
aj
− x1
bk
‖w(δ̂, s(x

1
bk
, y))−

NA∑
j=1

x2
aj
− x2
bk

‖x2
aj
− x2
bk
‖w(δ̂, s(x

2
bk
, y))

+
NB∑
j=1

x1
bj
− x1
bk

‖x1
bj
− x1
bk
‖w(δ̂, s(x

1
bk
, y))−

NB∑
j=1

x2
bj
− x2
bk

‖x2
bj
− x2
bk
‖w(δ̂, s(x

2
bk
, y))

∇Hε(x2
bk
, y)−∇Hε(x1

bk
, y)dy

∣∣∣∣
=

∣∣∣∣
∫ t

0
(A1 + A2 + A3)dy

∣∣∣∣ , (41)

where

A1 :=
NA∑
j=1

x1
aj
− x1
bk

‖x1
aj
− x1
bk
‖w(δ̂, s(x

1
bk
, y))−

NA∑
j=1

x2
aj
− x2
bk

‖x2
aj
− x2
bk
‖w(δ̂, s(x

2
bk
, y)),

A2 :=
NB∑
j=1

x1
bj
− x1
bk

‖x1
bj
− x1
bk
‖w(δ̂, s(x

1
bk
, y))−

NB∑
j=1

x2
bj
− x2
bk

‖x2
bj
− x2
bk
‖w(δ̂, s(x

2
bk
, y)),

A3 := ∇Hε(x2
bk
, y)−∇Hε(x1

bk
, y).

By the Lipschitz property of the weight factors, the term
∣∣∣∫ t0 A1dy

∣∣∣ reads
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∣∣∣∣
∫ t

0
A1dy

∣∣∣∣ =
∣∣∣∣
∫ t

0

NA∑
j=1

x1
aj
− x1
bk

‖x1
aj
− x1
bk
‖w(δ̂, s(x

1
bk
, y))−

NA∑
j=1

x1
aj
− x1
bk

‖x1
aj
− x1
bk
‖w(δ̂, s(x

2
bk
, y))

+
NA∑
j=1

x1
aj
− x1
bk

‖x1
aj
− x1
bk
‖w(δ̂, s(x

2
bk
, y))−

NA∑
j=1

x2
aj
− x2
bk

‖x2
aj
− x2
bk
‖w(δ̂, s(x

2
bk
, y))dy

∣∣∣∣

=
∣∣∣∣
∫ t

0

NA∑
j=1

x1
aj
− x1
bk

‖x1
aj
− x1
bk
‖
(
w(δ̂, s(x1

bk
, y))− w(δ̂, s(x2

bk
, y))

)

+
NA∑
j=1

(
x1
aj
− x1
bk

‖x1
aj
− x1
bk
‖ −

x2
aj
− x2
bk

‖x2
aj
− x2
bk
‖

)
w(δ̂, s(x2

bk
, y))dy

∣∣∣∣
≤ C1

∫ t
0

∣∣∣x1
bk
(y)− x2

bk
(y)

∣∣∣ dy + C2

∫ t
0

( ∣∣∣x1
aj
(y)− x2

aj
(y)

∣∣∣
+

∣∣∣x1
bk
(y)− x2

bk
(y)

∣∣∣ )dy. (42)

In (42), C1, C2 are constants with C2 defined as

C2 := max

{
1

‖x1
aj
− x1
bk
‖ ,

1

‖x2
aj
− x2
bk
‖

}
.

Thus, (42) can be written as

∣∣∣∣
∫ t

0
A1dy

∣∣∣∣ ≤ C
∫ t

0

∣∣∣x1
ai
(y)− x2

ai
(y)

∣∣∣+ ∣∣∣x1
bk
(y)− x2

bk
(y)

∣∣∣ dy. (43)

By the same argument, we consider
∣∣∣∫ t0 A2dy

∣∣∣, then we obtain

∣∣∣∣
∫ t

0
A2dy

∣∣∣∣ ≤ C
∫ t

0

∣∣∣x1
bj
(y)− x2

bj
(y)

∣∣∣+ ∣∣∣x1
bk
(y)− x2

bk
(y)

∣∣∣ dy
≤ C

∫ t
0

∣∣∣x1
bk
(y)− x2

bk
(y)

∣∣∣ dy. (44)

Now, using the Lipschitz property of ∇Hε, we estimate the last term
∣∣∣∫ t0 A3dy

∣∣∣ by

∣∣∣∣
∫ t

0
A3dy

∣∣∣∣ ≤ C
∫ t

0

∣∣∣x1
bk
(y)− x2

bk
(y)

∣∣∣ dy. (45)
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Combining (43), (44), and (45) gives

∣∣∣∣
∫ t

0
(A1 + A2 + A3)dy

∣∣∣∣ ≤ C
∫ t

0

∣∣∣x1
ai
(y)− x2

ai
(y)

∣∣∣+ ∣∣∣x1
bk
(y)− x2

bk
(y)

∣∣∣ dy.
Therefore, from (40), (41), together with taking expectation, we obtain

E

(| ∫ t0 F1(x1(y), y)− F1(x2(y), y)dy|
| ∫ t0 F2(x1(y), y)− F2(x2(y), y)dy|

)

≤ C
( ∫ t

0 |x1
ai
(y)− x2

ai
(y)|dy∫ t

0

∣∣x1
ai
(y)− x2

ai
(y)

∣∣+ ∣∣∣x1
bk
(y)− x2

bk
(y)

∣∣∣ dy
)

From (38), we get the following estimate:

(
E

(∣∣x1
ai
− x2
ai

∣∣)
E

(∣∣∣x1
bk
− x2
bk

∣∣∣)
)
≤ C

( ∫ t
0 |x1
ai
(y)− x2

ai
(y)|dy∫ t

0

∣∣x1
ai
(y)− x2

ai
(y)

∣∣+ ∣∣∣x1
bk
(y)− x2

bk
(y)

∣∣∣ dy
)

Thanks to the Grönwall lemma, we obtain

(
E

(∣∣x1
ai
− x2
ai

∣∣)
E

(∣∣∣x1
bk
− x2
bk

∣∣∣)
)
=

(
0
0

)

This implies that x1(t) = x2(t) almost surely that

P

(
sup
t∈[0,T ]

|x1(t)− x2(t)| = 0

)
= 1.

)*

7.3 Background Results

This section contains a few remarks about the regularity of the agents’ paths as well
as of the concentration of smoke. These results are fairly standard; we add them
here for the sake of completeness of our arguments.

7.3.1 A Regularized Eikonal Equation

In this section, we regularize the eikonal equation introduced for Model 1; see (2).
This is often referred to as a “ viscous” eikonal equation.
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For ε > 0, we introduce the following semilinear viscous problem approximating
as ε→ 0 our eikonal equation:

Find φε ∈ C(Ω) ∩ C2(Ω) satisfying

⎧⎪⎪⎨
⎪⎪⎩
−ε�φε + |∇φε|2 = f 2 in Ω,

φε(x) = 0 at ∂Ω ∪ ∂G,
∇φε · n = g at E,

(46)

With suitable assumptions on f, g,Ω , this problem with mixed Dirichlet-Neumann
boundary conditions can be shown to be well-posed; see, e.g., Theorem 2.1, p.10, in
[41] for the case of the Dirichlet problem. Note also that it is sometimes convenient
to transform this semilinear PDE via

wa := exp(−ε−1φε)− 1, (47)

where a = 1
ε
. Then wa becomes a solution of the following linear PDE with mixed

Dirichlet-Robin boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩
−�wa + f 2a2wa + a2 = 0 in Ω,

wa = 0 at ∂Ω ∪ ∂G,
∇wa · n = g̃(wa) at E,

(48)

where g̃(wa) = −ε−1(wa + 1)g.

7.3.2 Higher Regularity Estimates for the Smoke Concentration

We introduce the evolution of fire throughout a diffusion-dominated convection
process. The production and spreading of smoke, with the smoke density s(x, t),
are described as the following diffusion-drift-reaction equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t s + div (−D∇s + vds) = ysH(x, t) in Ω × (0, T ],
(−D∇s + vds) · n = 0 on ∂Ω ∪ ∂G× (0, T ],
(−D∇s + vds) · n = λs at ∂E × (0, T ],
s(x, 0) = s0 in Ω × {t = 0},

(49)

where D is the smoke diffusive coefficient, vd is a given drift corresponding (e.g.,
wind’s velocity,. . . ), and ys is a smoke production coefficient, while H represents
the shape and intensity of the fire. The center of the fire location is denoted by x0
with radius r0. H reads
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H(x, t) =
{
R(x, t) if |x− x0| < r0,
0 otherwise ,

(50)

where R(x, t) is defined by

R(x, t) = c(t) exp

(
−κ |x− x0|

L

)
.

Here, κ is the convection heat transfer constant coefficient, c(t) is a constant
function depending on t , L is the typical length of a stationary temperature
distribution within the geometry, and λ is an interface exchange smoke coefficient.
For convenience, in order to take the gradient of H , we consider Hε a suitable
mollification of H . In our case, from now on, we consider the coefficient ys as a
constant cy and put f (x, t) := cyHε(x, t), then (49) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t s + div (−D∇s + vds) = f (x, t) in Ω × (0, T ],
(−D∇s + vds) · n = 0 on ∂Ω ∪ ∂G× (0, T ],
(−D∇s + vds) · n = λs at ∂E × (0, T ],
s(x, 0) = s0 in Ω × {t = 0},

(51)

In order to have a well-posed dynamics of pedestrians model, we need the solution
of (51) to belong toC([0, T ];C1(Ω)). Since the pedestrian dynamics system couple
one way with the smoke equation, the solution s of (51) should be Lipschitz to
guarantee the well-posedness of the system. In the next part, we adapt the approach
in [35] to get a short proof of increased parabolic regularity for a bounded domain
Ω in R

d . Moreover, from now on, we assume the boundaries ∂Ω ∪ ∂G and ∂E are
C2 (or, at least, they satisfy the exterior sphere condition).

Theorem 2 (Lower-order regularity) Assume Assumptions (A3), (A4) to hold.
Suppose f ∈ H 1(Ω) and vd ∈ W 1,∞(Ω). Then, for any T > 0, t ∈ (0, T ],
there exists a unique

s ∈ C([0, T ];H 1(Ω)) and s′ ∈ L2(0, T ;H−1(Ω))

that solves (51). Furthermore, the following a priori estimates hold:

sup
t∈[0,T ]

‖s‖2
L2(Ω)

≤ CT
(
‖s0‖2

L2(Ω)
+ ‖f ‖2

L2(Ω)

)
and ‖∇s‖2

L2(Ω)

≤ CT
t

(
‖s0‖2

L2(Ω)
+ ‖f ‖2

H 1(Ω)

)
.
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Proof We adapt the arguments from [35] to our setting and split the proof into fourth
steps:

• Step 1: Galerkin approximation
Firstly, we assume that the functions wk = wk(x)(k ∈ N) are smooth and that

{wk}∞k=1 is an orthonormal basis of H 1(Ω). (52)

We are looking for an approximation of (51) in the form

sm(t) :=
m∑
k=1

dkn(t)wk, (53)

where the coefficients dkm satisfy the following system:

⎧⎪⎪⎨
⎪⎪⎩
〈s′m,wk〉L2(Ω) + 〈D∇sm,∇wk〉L2(Ω) − 〈vdsm,∇wk〉L2(Ω)

+〈λsm,wk〉L2(∂E) = 〈f,wk〉L2(Ω),

sm(0) = s0m with k = 1 . . . m,

(54)

where

s0m =
m∑
k=1

ckmwk → s0 (55)

strongly in L2(Ω).
• Step 2: A priori estimates

The goal of this step is to obtain some useful a priori estimates. Multiplying (54)
by dkm(t), taking the summation for k ∈ {1, . . . , m}. Then recalling (53), using
Green’s formula together with the mixed boundary condition, we arrive at

1

2

d

dt
‖sm(t)‖2

L2(Ω)
+

∫
Ω

∇sm ·D∇smdx +
∫
∂E

λs2mdσ(E)

=
∫
Ω

smvd · ∇smdx +
∫
Ω

f smdx. (56)

Thanks to Cauchy-Schwarz’s inequality ε for an ε > 0, we have

1

2

d

dt
‖sm(t)‖2

L2(Ω)
+

∫
Ω

∇sm ·D∇smdx +
∫
∂E

λs2mdσ(E) ≤ +‖vd‖1,∞
(
ε‖sm‖2

L2(Ω)

+1

ε
‖∇sm‖2

L2(Ω)

)
+ 1

2

(
‖f ‖2

L2(Ω)
+ ‖sm‖2

L2(Ω)

)
.
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Next, by using the ellipticity property of the diffusion coefficient D and the
assumption on the interface exchange coefficient, we obtain

1

2

d

dt
‖sm(t)‖2

L2(Ω)
≤ −θ‖∇sm‖2

L2(Ω)
+ γ ‖sm‖2

L2(∂E)
+ ‖vd‖1,∞

(
1

ε
‖sm‖2

L2(Ω)

+ε‖∇sm‖2
L2(Ω)

)
+ 1

2

(
‖f ‖2

L2(Ω)
+ ‖sm‖2

L2(Ω)

)
.

(57)

By the trace inequality applied to ‖sm‖2
L2(∂E)

, (57) reads

1

2

d

dt
‖sm(t)‖2

L2(Ω)
≤ −θ‖∇sm‖2

L2(Ω)
+ C(γ )‖sm‖2

H 1(Ω)

+ ‖vd‖1,∞
(

1

ε
‖sm‖2

L2(Ω)
+ ε‖∇sm‖2

L2(Ω)

)
+ 1

2

(
‖f ‖2

L2(Ω)
+ ‖sm‖2

L2(Ω)

)
.

By choosing ε = θ(2‖vd‖1,∞)−1, we get the following estimate:

1

2

d

dt
‖sm(t)‖2

L2(Ω)
≤ C

(
‖f ‖2

L2(Ω)
+ ‖sm‖2

H 1(Ω)

)
+

(
C(γ )− θ

2

)
‖∇sm‖2

L2(Ω)
.

(58)

Multiplying with ϕ = ∂xsm (51) differentiated with respect to x, we obtain after
integrating by part that

1

2

d

dt
‖∂xsm‖2

L2(Ω)
+

∫
Ω

∇∂xsm ·D∇∂xsmdx +
∫
Ω

∇∂xsm · ∂xD∇smdx

−
∫
Ω

∇∂xsm · vd∂xsmdx −
∫
Ω

∇∂xsm · ∂xvdsmdx +
∫
∂E

λ|∂xsm|2dσ(E)

+
∫
∂E

∂x(λsm)∂xsmdσ(E) =
∫
Ω

∂xf ∂xsmdx.

This leads to

1

2

d

dt
‖∂xsm‖2

L2(Ω)
= −

∫
Ω

∇∂xsm ·D∇∂xsmdx −
∫
Ω

∇∂xsm · ∂xD∇smdx

+
∫
Ω

∇∂xsm · vd∂xsmdx +
∫
Ω

∇∂xsn · ∂xvdsmdx −
∫
∂E

λ|∂xsm|2dσ(E)

−
∫
∂E

∂x(λsm)∂xsmdσ(E)+
∫
Ω

∂xf ∂xsmdx.

(59)
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Using the assumptions on D and λ as well as Cauchy-Schwarz’ inequality for
the right-hand side of (59), we obtain the following estimate:

1

2

d

dt
‖∂xsm‖2

L2(Ω)
≤ −θ‖∇∂xsm‖2

L2(Ω)
+ ‖D‖W 1,∞

(
ε1‖∇∂xsm‖2

L2(Ω)

+ 1

ε1
‖∇sm‖2

L2(Ω)

)
+ |vd |

(
ε2′ ‖∇∂xs‖2

L2(Ω)
+ 1

ε2′
‖∂xs‖2

L2(Ω)

)

+‖vd‖1,∞
(
ε2‖∇∂xs‖2

L2(Ω)
+ 1

ε2
‖s‖2
L2(Ω)

)
+ γ ‖∂xsm‖2

L2(∂E)

+‖λ‖1,∞‖∂xsm‖2
L2(∂E)

+ 1

2

(
‖∂xf ‖2

L2(Ω)
+ ‖∂xsm‖2

L2(Ω)

)
.

By choosing ε1 = θ(4‖D‖1,∞)−1, ε2′ = θ(8C)−1, ε2 = θ(8‖vd‖1,∞)−1

together with the use of the trace inequality to handle the boundary terms, we
arrive at

1

2

d

dt
‖∂xsm‖2

L2(Ω)
≤ −θ

2
‖∇∂xsm‖2

L2(Ω)
+ C‖∇sm‖2

L2(Ω)
+ C‖∂xsm‖2

L2(Ω)

+ C‖sm‖2
L2(Ω)

+ C(γ )
(
‖∂xsm‖2

L2(Ω)
+ ‖∇∂xsm‖2

L2(Ω)

)

+ 1

2

(
‖∂xf ‖2

L2(Ω)
+ ‖∂xsm‖2

L2(Ω)

)

≤
(
−θ

2
+ C(γ )

)
‖∇∂xsm‖2

L2(Ω)

+ C
(
‖∇sm‖2

L2(Ω)
+ ‖∂xsm‖2

L2(Ω)
+ ‖sm‖2

L2(Ω)

)
. (60)

Taking the summation over all first-order derivatives, we have

1

2

d

dt
‖∇sm‖2

L2(Ω)
≤

(
C(γ )− θ

2

)
‖∇2sm‖2

L2(Ω)
+C

(
‖sm‖2

H 1(Ω)
+‖f ‖2

H 1(Ω)

)
.

Let us introduce a linear expansion in t as follows:

ζ1(t) = ‖sm‖2
L2(Ω)

+ C(θ, γ )t
2

‖∇sm‖2
L2(Ω)

. (61)

Taking the derivative of (61) with respect to t , we obtain

ζ ′1(t) =
d

dt
‖sm‖2

L2(Ω)
+ C(θ, γ )

2
‖∇sm‖2

L2(Ω)
+ C(θ, γ )t

2

d

dt
‖∇sm‖2

L2(Ω)
.
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Combining (58) and (60), we are led to the following estimate:

ζ ′(t) ≤ 2C
(
‖f ‖2

L2(Ω)
+ ‖sm‖2

H 1(Ω)

)
− 2

(
C(γ )− θ

2

)
‖∇sm‖2

L2(Ω)

+C(θ, γ )
2

‖∇sm‖2
L2(Ω)

+ C(θ, γ )t
2

[(
C(γ )− θ

2

)
‖∇2sm‖2

L2(Ω)

+C
(
‖sm‖2

H 1(Ω)
+ ‖f ‖2

H 1(Ω)

) ]
.

Choosing θ, γ such that − θ2 + C(γ ) < 0 and put − θ2 + C(γ ) =: −C(θ, γ ), we
obtain

ζ ′(t) ≤ CT
(
‖f ‖2

H 1(Ω)
+ ζ(t)

)
for a.e. t ∈ (0, T ). (62)

Applying Grönwall’s inequality to (62), we have the following estimate:

ζ(t) ≤ CT
(
ζ(0)+ ‖f ‖2

H 1(Ω)

)
= CT

(
‖s0‖2

L2(Ω)
+ ‖f ‖2

H 1(Ω)

)
. (63)

Combining (61) and (63) gives

‖sm(t)‖2
L2(Ω)

≤ CT
(
‖s0‖2

L2(Ω)
+ ‖f ‖2

H 1(Ω)

)
(64)

and

‖∇sm‖2
L2(Ω)

≤ CT
Ct

(
‖s0‖2

L2(Ω)
+ ‖f ‖2

H 1(Ω)

)
. (65)

The estimates (64) and (65) imply that sm is a bounded sequence in H 1(Ω) and
a.e t ∈ (0, T ).

• Step 3: Passage to the limit m→∞
Using the a priori estimates (64) and (65), we obtain the following inequality:

∫ T
0

1

2

d

dt
‖sm(t)‖2

L2(Ω)
dt

+
∫ T

0
‖∇sm‖2

L2(Ω)
dt ≤ CT

∫ T
0

(
‖f ‖2

H 1(Ω)
+ ‖s0‖2

L2(Ω)

)
.

This implies that (sm) is a bounded sequence in L2(0, T ;H 1(Ω)).
On the other hand, in order to use Aubin-Lions’s lemma, we additionally need to
prove s′m ∈ L2(0, T ;H−1(Ω)). Take an arbitrary v ∈ H 1(Ω), with ‖v‖H 1(Ω) ≤
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1. We can deduce for a.e. 0 < t < T that

〈s′m, v〉L2(Ω) = 〈f, v〉L2(Ω) + 〈vdsm,∇v〉L2(Ω)

− 〈D∇sm,∇v〉L2(Ω) − 〈λsm, v〉L2(∂E).

Then, we get

|〈s′m, v〉| ≤ C‖sm‖H 1(Ω) + C‖f ‖L2(Ω). (66)

for ‖v‖W 1,2(Ω) ≤ 1. Moreover, (66) implies that

‖s′m‖H−1(Ω) ≤ C
(‖sm‖H 1(Ω) + ‖f ‖L2(Ω)

)
. (67)

Integrating (67) on (0, T ), we obtain the following estimate:

∫ T
0
‖s′m‖2

H−1(Ω)
dt ≤ C

∫ T
0
‖sm‖H 1(Ω) + ‖f ‖L2(Ω)dt

≤ C
(
‖s0‖2

L2(Ω)
+ ‖f ‖L2(0,T ;L2(Ω))

)
. (68)

Thus, s′m ∈ L2(0, T ;H−1(Ω)). Therefore, we conclude that

{
sm ⇀ s weakly in L2(0, T ;H 1(Ω)),

s′m ⇀ s′ weakly in L2(0, T ;H−1(Ω)).

Relying on Aubin-Lions lemma in [8] with p, q = 2,

E0 = H 1(Ω), E = L2(Ω), E1 = H−1(Ω)

together with Rellich theorem (cf. [20], Section 5.7, Theorem 1) for the compact-
ness embedding H 1(Ω) ⊂ L2(Ω), we have that the sequence {sm} is relatively
compact inL2(0, T ;L2(Ω)) in the strong topology. This sequence is also weakly
relatively compact in L2(0, T ;H 1(Ω)) and weakly star relatively compact in
C([0, T ];L2(Ω)). Hence, there exists a subsequence smk (just for simplicity of
notation, let us denote it by sm) which converges to a function s belonging to
L2(0, T ;H 1(Ω)) and C([0, T ];L2(Ω)). Therefore, we can conclude that there
exists a solution s ∈ L2(0, T ;H 1(Ω)) ∪ C([0, T ];L2(Ω)) satisfying (51).

• Step 4: Uniqueness of solutions
Assume that (51) admits 2 solutions s1 and s2 belonging to
L2(0, T ;H 1(Ω)) ∪C([0, T ];L2(Ω)). Denote w = s1 − s2. Then (51) becomes



250 M. Colangeli et al.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tw + div (−D∇w + vdw) = 0 in Ω × (0, T ],
(−D∇w + vdw) · n = 0 on ∂Ω ∪ ∂G× (0, T ],
(−D∇w + vdw) · n = λw at ∂E × (0, T ],
w(t = 0) = 0 in Ω × {t = 0},

Recalling (54), we note that

1

2

d

dt

∫
Ω

w2dx +
∫
Ω

D|∇w|2dx +
∫
∂E

λw2dσ(E) =
∫
Ω

wvd · ∇wdx,

which leads to

d

dt

(
‖w‖2

L2(Ω)

)
+ θ‖∇w‖2

L2(Ω)
+ γ ‖w‖2

L2(∂E)
≤ C‖w‖2

L2(Ω)
.

This also implies

d

dt

(
‖w‖2

L2(Ω)

)
≤ C‖w‖2

L2(Ω)
. (69)

Integrating (69) on (0, T ), gives

‖w‖2
L2(Ω)

≤ ‖w(0)‖2
L2(Ω)

+ C
∫ t

0
‖w‖2

L2(Ω)
.

Grönwall’s lemma ensure

‖w‖2
L2(Ω)

≤ ‖w(0)‖2
L2(Ω)

(1+ CteCt ),

which for w(0) = 0, gives ‖w‖L2(Ω) = 0. So, w = 0 a.e. in Ω and everywhere
in [0, T ], which ensures the desired uniqueness.

Now, let us show that s ∈ C([0, T ];H 1(Ω)). We consider wr(t) = s(t+ r)−
s(t); then wr(t) satisfies (51) with f = 0, w(0) = s0 − s(r), and λs(t + r) −
λs(t) = λwr(t). By using a similar argument, we obtain

‖wr(t)‖2
L2(Ω)

+ C(θ, γ )t
2

‖∇wr(t)‖2
L2(Ω)

≤ CT
(
‖s0 − s(r)‖2

L2(Ω)

)
.

Since we have s ∈ C([0, T ];L2(Ω)), then limr→∞ ‖s(t + r)− s(t)‖ = 0 and
limr→∞ ‖∇s(t + r) − ∇s(t)‖ = 0 for t > 0. Therefore, we obtain s ∈
C([0, T ];H 1(Ω)).

)*
Theorem 3 (High-order regularity) Assume (A3), (A4) to hold. Suppose f ∈
Hm(Ω) and vd ∈ Wm,∞(Ω) for every m ∈ N, and s0 ∈ L2(Ω). Then, for any
T > 0, t ∈ [0, T ], the solution of (51) satisfies the following estimate:
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‖∇ks‖2
L2(Ω)

≤ CT
tk

(
‖s0‖2

L2(Ω)
+ ‖f ‖2

Hk(Ω)

)
for k = 0, 1, . . . , m.

Proof We use the method of induction on m ∈ N, using the fact that we have done
the first case m = 1 mathematically in Theorem 2. We define the gradient of a
function s as follows:

‖∇ks‖2
L2(Ω)

:=
∑
|α|≤k

‖∂αx s‖2
L2(Ω)

.

Now, taking the k−order derivative with respect to x for k ∈ N which is denoted
by ∂αx of (51), multiplying by ∂αx s and integrating the results by parts together with
using Green’s theorem for the equation, we obtain

1

2

d

dt
‖∂αx s(t)‖2

L2(Ω)
+

∫
Ω

∇∂αx s ·
k∑
j=0

∑
|β|=j,β+γ=α

(
α

β

)
∂βx D∇∂γx sdx

−
∫
Ω

∇∂αx s ·
k∑
j=0

∑
|β|=j,β+γ=α

(
α

β

)
∂βx vd∂

γ
x sdx +

∫
∂E

∂αx sλ∂
α
x sdσ (E)

+
∫
∂E

∂αx (λs) · ∂αx sdσ (E) =
∫
Ω

∂αx f ∂
α
x sdx,

and thus

1

2

d

dt
‖∂αx s(t)‖2

L2(Ω)
= −

∫
Ω

∇∂αx s ·
k∑
j=0

∑
|β|=j,β+γ=α

(
α

β

)
∂βx D∇∂γx sdx

+
∫
Ω

∇∂αx s ·
k∑
j=0

∑
|β|=j,β+γ=α

(
α

β

)
∂βx vd∂

γ
x sdx −

∫
∂E

∂αx sλ∂
α
x sdσ (E)

−
∫
∂E

∂αx (λs) · ∂αx sdσ (E)+
∫
Ω

∂αx f ∂
α
x sdx. (70)

Denote

A := −
∫
Ω

∇∂αx s ·
k∑
j=0

∑
|β|=j,β+γ=α

(
α

β

)
∂βx D∇∂γx sdx

= −
∫
Ω

∇∂αx s ·D∇∂αx sdx −
∫
Ω

∇∂αx s ·
k∑
j=1

∑
|β|=j,β+γ=α

(
α

β

)
∂βx D∇∂γx sdx.
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We can estimate |A| from above:

|A| ≤ −θ‖∇∂αx s‖2
L2(Ω)

+ C‖D‖1,∞
(
ε1‖∇∂αx s‖2

L2(Ω)
+ 1

ε1
‖s‖2
Hk−1(Ω)

)

≤ −θ
2
‖∇∂αx s‖2

L2(Ω)
+ C‖s‖2

Hk−1(Ω)
, (71)

where we choose ε1 = θ(4C‖D‖m,∞)−1. Set

B :=
∫
Ω

∇∂αx s ·
k∑
j=0

∑
|β|=j,β+γ=α

(
α

β

)
∂βx vd∂

γ
x sdx,

and obtain the upper bound

|B| ≤ C‖vd‖m,∞
(
ε2‖∇∂αx s‖2

L2(Ω)
+ 1

ε2
‖∂αx s‖2

Hk−1(Ω)

)
. (72)

Now, let us label the third and fourth terms in the right-hand side of (70) as follows:

C̃ := −
∫
∂E

∂αx sλ∂
α
x sdσ (E)−

∫
∂E

∂αx (λs) · ∂αx sdσ (E).

Using the assumptions on λ together with applying Cauchy’s inequality, trace
inequality for C̃, we have the following estimate:

C̃ ≤ γ ‖∂αx s‖2
L2(∂E)

+ ‖λ‖m,∞‖∂αx s‖2
L2(∂E)

≤ C(γ )
(
‖∇∂αx s‖2

L2(Ω)
+ ‖∂αx s‖2

L2(Ω)

)
.

(73)

Finally, we estimate the last term of (70), by using Cauchy’s inequality, we obtain

∫
Ω

∂αx f ∂
α
x sdx ≤

1

2

(
‖∂αx f ‖2

L2(Ω)
+ ‖∂αx s‖2

L2(Ω)

)
. (74)

Combining (71), (72), (73), and (74) and choosing ε2 = θ(4C‖vd‖1,∞)−1, we have
the following estimate:

1

2

d

dt
‖∂αx s(t)‖2

L2(Ω)
≤ −θ

2
‖∇∂αx s‖2

L2(Ω)
+ C‖s‖2

Hk−1(Ω)
+ C‖∂αx s‖2

Hk−1(Ω)

+C(γ )‖∇∂αx s‖2
L2(Ω)

+ ‖f ‖2
Hk(Ω)

.

Now, summing all of first-order derivatives, we obtain
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1

2

d

dt
‖∇ks(t)‖2

L2(Ω)
≤

(
C(γ )− θ

2

)
‖∇k+1s‖2

L2(Ω)
+ C

(
‖f ‖2

Hk(Ω)
+ ‖s‖2

Hk(Ω)

)
.

(75)

Now, we aim to find s ∈ C([0, T ],Hm−1(Ω)) using the induction hypothesis under
the assumptions f ∈ Hm−1(Ω) and D,λ, vd ∈ Wm,∞(0, T ;Ω). Using the same
argument as in the case m = 1, we define

ζ2(t) :=
n∑
k=1

(C(θ, γ )t)k

2kk! ‖∇ks‖2
L2(Ω)

. (76)

Taking the derivative of (76) with respect to t , we obtain

ζ ′2(t) =
m∑
k=1

(C(θ, γ ))ktk−1

2k(k − 1)! ‖∇ks‖2
L2(Ω)

+
m∑
k=0

(C(θ, γ ))k

2kk!
d

dt
‖∇ks‖2

L2(Ω)

:= G1 +G2.

G2 ≤
m∑
k=0

(C(θ, γ )t)k

2kk!
(
−C(θ, γ )‖∇k+1s‖2

L2(Ω)
+ C

(
‖f ‖2

Hk(Ω)
+ ‖s‖2

Hk(Ω)

))

= −2
m∑
k=0

(C(θ, γ ))k+1tk

2k+1k! ‖∇k+1s‖2
L2(Ω)

+ C
m∑
k=0

(C(θ, γ ))k

2kk!
(
‖f ‖2

Hk(Ω)
+ ‖s‖2

Hk(Ω)

)

≤ −2G1 −
2(C(θ, γ ))m+1tm

2m+1m! ‖∇m+1s‖2
L2(Ω)

+ C
m∑
k=0

(C(θ, γ ))k

2kk!
(
‖f ‖2

Hk(Ω)
+ ‖s‖2

Hk(Ω)

)
. (77)

On the other hand, the induction hypothesis gives the following inequality:

‖s‖2
Hk−1(Ω)

≤ CT
tk−1

(
‖f ‖2

Hk−1(Ω)
+ ‖s0‖2

L2(Ω)

)
. (78)

Combining (77) and (78), we obtain
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ζ ′2(t) ≤ C
m∑
k=0

(C(θ, γ ))k

2kk!
(
‖f ‖2

Hk(Ω)
+ ‖s‖2

Hk(Ω)

)

≤ CT
(
‖f ‖2

Hm(Ω) +
m∑
k=0

(C(θ, γ )t)k

2kk!
[
‖∇ks‖2

L2(Ω)
+ ‖s‖2

Hk−1(Ω)

])

≤ CT
(
‖f ‖2

Hm(Ω) + ζ2(t)+
m∑
k=0

(C(θ, γ )t)k

2kk!
CT

tk−1

[
‖f ‖2

Hk−1(Ω)
+ ‖s0‖2

L2(Ω)

])

≤ CT
(
‖f ‖2

Hm(Ω) + ‖s0‖2
L2(Ω)

+ ζ2(t)
)
.

Grönwall’s inequality yields

ζ2(t) ≤ CT
(
‖f ‖2

Hm(Ω) + ‖s0‖2
L2(Ω)

+ ζ2(0)
)
≤ CT

(
‖f ‖2

Hm(Ω) + ‖s0‖2
L2(Ω)

)
.

The bound on ζ2(t) gives the following estimate:

‖∇ms‖2
L2(Ω)

≤ CT

(C(θ, γ )t)m
,

which completes the induction proof. )*
Remark 1 From Theorem 3, for m = 3, Ω ⊂ R

d with d = 2, there exists a unique
solution s ∈ C([0, T ];C1(Ω)) and s′ ∈ L2(0, T ;H−1(Ω)) that solves (51).

By the same arguments as in Theorem 2, this also implies that s ∈
C([0, T ];Hm(Ω)). In our model, we consider our domain in Ω ⊂ R

d with
d = 2. Moreover, assume Ω satisfies the strong locally Lipschitz condition (cf.
[1], Theorem 4.12), taking m = 3, hence H 3(Ω) compact embedding into C1(Ω),
i.e., H 3(Ω) ⊂ C1(Ω). As a conclusion, we obtain s ∈ C([0, T ];C1(Ω)). This
property ensures that the smoke concentration s is Lipschitz with respect to the
space variable – a fact needed to handle the well-posedness of our SDEs.

8 Discussion

In this chapter, we presented various models aimed at modelling crowds of mixed
populations (active and passive) moving inside heterogeneous environments.

Based on our numerical experiments, we observed the impact of passive agents
on the residence times of the population and conclude that the lack of environment
knowledge can have a substantial impact on the evacuation. Additionally, we notice
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that the size of the obstacles and doors has a significant influence on the overall
dynamics.

While the presence of passive agents increases the evacuation time, we speculate
that by manipulating the spatial distribution of active particles, it is possible to
optimize the residence time of the passive agents. We plan to investigate these
aspects in a forthcoming publication.

From a mathematical point of view, the situation becomes a lot more challenging
when there is a feedback mechanism between the agent-based dynamics and the
environment (fire, smoke, geometry). Formulating this relationship mathematically
would allow for an optimization approach, potentially in a multiscale setting. The
main advantage of such a mathematical framework would be to contribute to an
intelligent design of building interiors and to provide a basis for smart evacuation
signaling systems.
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Pedestrian Models Based on Rational
Behaviour

Rafael Bailo, José A. Carrillo, and Pierre Degond

Abstract Following the paradigm set by attraction-repulsion-alignment schemes,
a myriad of individual-based models have been proposed to calculate the evolution
of abstract agents. While the emergent features of many agent systems have been
described astonishingly well with force-based models, this is not the case for
pedestrians. Many of the classical schemes have failed to capture the fine detail of
crowd dynamics, and it is unlikely that a purely mechanical model will succeed. As
a response to the mechanistic literature, we will consider a model for pedestrian
dynamics that attempts to reproduce the rational behaviour of individual agents
through the means of anticipation. Each pedestrian undergoes a two-step time
evolution based on a perception stage and a decision stage. We will discuss the
validity of this game theoretical-based model in regimes with varying degrees of
congestion, ultimately presenting a correction to the mechanistic model in order to
achieve realistic high-density dynamics.

1 Introduction

The behaviour of humans moving in crowds was studied early on from the
engineering perspective [23, 28, 62]. These works were based on the observation
of crowds, either directly or through photographs and film, and ultimately aimed
to provide planning guidelines and construction directives such as [70, 71]. These
studies have always had an economic concern, but most importantly a safety
outlook, as a good understanding of crowd dynamics can help prevent the injuries
and deaths which derive from the confluence of inordinate numbers of people in
places that are not prepared for such occupancy [32, 33], for instance, as a result of
a popular sporting event [26] or a concert [48]. A review of incidents of this type
can be found in [61].
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The walking behaviour of humans is extremely complex and not easy to capture
in models. The observed phenomena in crowds is often unintuitive, for instance,
small obstacles in the way of an exit can serve to stabilise the flow and make traffic
more efficient [32]; when it comes to emergencies, it is found that evacuation is
safer and more efficient at lower speeds [33].

Extensive experimental work in the area has focused in numerous aspects of the
dynamics of pedestrians, such as the behaviour of agents around bottlenecks [18,
19, 50], intersections [32], in counterflows [49], following behaviours [51], cluster
formation [56], the effects of fatigue [55] and the empirical relation between crowd
density and walking speed [67] (known as the fundamental diagram). These studies
have led to some understanding of the emergent features, those that arise not from
the actions of any particular individual but rather as a result of the interactions of
the collective. Stop-and-go waves [35], lane formation [37, 57] (somewhat a human
counterpart to flocking [64]), the crowding behaviour around bottlenecks [18, 33]
and the fluid-like properties (shockwaves, turbulence) displayed by extremely dense
crowds [34, 35] are just some examples of the rich and subtle properties of the
dynamics. Some of these features have been successfully reproduced in models, for
instance, lane formation in [36, 58]. Some, such as the fundamental diagram [75],
have evaded many modelling attempts and are still the subject of avid debate despite
substantial experimental work in the area [1, 47], often requiring studies specific to
particular configurations such as single direction flow [45, 67], behaviour around
bottlenecks [49] and assessment of the level of service [60, 63].

Pedestrians were early on modelled from a macroscopic perspective [39, 40, 53,
54], where only the features of the crowd as a whole (such as the pedestrian density,
the flow through a corridor or the emergence of consensus [11]) are of interest.
Some of these models are prescribed directly [43, 44, 46], and some derived from the
kinetic point of view [4, 21, 30]. An overview can be found in [5, 6]. Such models
have been successful in providing an understanding of the large-scale behaviour,
but provide no insight into the behaviour of individuals. The relation between the
microscopic dynamics and the macroscopic scale in general is an active area of
research. In humans, local effects have only been added to macroscopic models in
some cases [13].

Many individual-based models have also been developed. A recent review can be
found in [7]. These models are often based on alignment and force principles which
follow in the reductionist philosophies of the social field [52] and the social forces
[24], which gave rise to models such as [36]. These microscopic models sometimes
concern agents in the more abstract sense [9]. Often they deal with simple ‘animals’,
whether in general [22, 64, 65] or with a specific animal in mind [68, 69]. Sometimes
they involve alignment processes [15, 16], and phase transitions were detected early
on in works such as [73]. These abstractions serve to study the natural emergence of
self-organisation [14, 27] and swarming [12] as well as the methods to induce such
feature when they do not occur spontaneously [8, 10]. Furthermore, many agent
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models have been developed specifically for pedestrians: early force models [29, 36]
and subsequent improvements [2, 59], models exploring self-organisation [31, 38,
51] as well as evacuation models [33].

While the force-based models are ubiquitous and relatively successful, there
is a limit to what behaviours they can capture. Humans and their motion are not
completely described by simple mechanistic models, as they fail to incorporate our
rational behaviour. Not only are we capable of estimating the position and velocities
of moving obstacles [17], but we are able to assess the danger they pose to us [74].
The literature in biology, psychology and neuroscience points to the existence of
specialised neural mechanisms in the retina and the brain that enable pedestrians to
detect potential obstacles and to assess the time until the collision with said obstacles
occurs [42, 66]. Those heuristics are then used by the agents to make quick, close-to-
optimal adjustments to their trajectories in order to avoid possible collisions [3, 25].

This work will discuss a model that attempts to replicate said rationality in
order to realistically simulate the dynamics of pedestrians. Based on the principles
of [58] and the formulation of [20], the model fundamentally consists of a two-
step evolution process: the first step involves the evaluation of heuristics of
the environment and their use to estimate the proximity and dangerousness of
encounters; the second concerns the decision-making process of each agent, which
will involve an optimisation game in order to remain in motion towards a target
while avoiding potential collisions. Section 2 introduces the model in its original
formulation, as well as a number of implementation alternatives. Section 3 develops
improvements and variations aimed to generalise the model to multiple situations
and density regimes. Section 4 concludes the presentation of the model in a final
assessment and presents the outlook of this work.

2 A Model with Rational Behaviour

The pedestrian model of [20, 58] simulates the rational decision-making involved in
the steering behaviour of agents. This model is an attempt to capture the complexity
behind the steering behaviour of pedestrians. Collision avoidance on humans is
an intricate conscious process, and any attempts to reproduce it through a purely
mechanical set of rules can only achieve limited success.

The following section presents the formulation of the model as well as some
implementation details. The model is conceptually fractioned into two steps: a
perception stage and a decision stage. The perception stage comprises the use of
visual stimuli to inform pedestrians of their environment, the surrounding obstacles
(moving or not) and any potential collision. The decision stage encompasses the
mechanisms through which each agent judges available paths and resolves to move
in a specific direction.
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2.1 Perception Stage

The perception stage is the first step towards collision avoidance in the model.
Pedestrians in this stage derive heuristics about their environment based on the
position and velocity of visible obstacles (objects or other pedestrians). The
heuristics are first examined for encounters between only two agents. Afterwards,
global heuristics are considered.

2.1.1 Pairwise Encounters

We shall first study a binary encounter, consisting of two pedestrians i and j which
happen to approach each other as they move towards their targets. We assume that
agent i is aware of his own position xi and velocity vi and can also perceive j ’s xj
and vj accurately. This knowledge shall be used to derive heuristics that will inform
the decision making in the next section.

Throughout the text we will use the terms collision, interaction and encounter
interchangeably. All of these refer to a situation where two pedestrians approach
enough to enter each other’s personal space; as a result they might be at risk of
colliding, and the interaction must be resolved.

If the velocities of the agents are momentarily constant, their distance as a
function of time can be expressed as:

d2
i,j (t) =

∥∥xj + vj t − xi − vit∥∥2
, (1)

= ∥∥vj − vi∥∥2

(
t +

(
xj − xi

) · (vj − vi)∥∥vj − vi∥∥2

)2

(2)

+ ∥∥xj − xi∥∥2 −
((
xj − xi

) · (vj − vi))2∥∥vj − vi∥∥2 .

The time to interaction of i and j, τi,j , is the time that minimises di,j . This can be
found by inspection of (2), namely:

τi,j = arg min
t∈R

{
di,j

} = −
(
xj − xi

) · (vj − vi)∥∥vj − vi∥∥2
. (3)

Note that this time may be negative if the pedestrians are moving away from each
other, i.e.

(
xj − xi

) · (vj − vi) > 0; see Fig. 2.
Further useful quantities can be derived from τi,j ; see Fig. 1. The point of closest

approach of i to j, pi,j , is the point along the trajectory of i where the agents will be
closest:
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Fig. 1 Dissection of a binary
pedestrian encounter. Agent i
extrapolates his and j ’s
trajectories assuming their
respective velocities will
remain constant. This allows
the estimation of distance of
closest approach Ci,j as well
as the distance to interaction
Di,j

vi

xi

v j

x j

pi, j

p j,i

0 ≤ Di, j ≤ L
Distance to Interaction

0 ≤Ci, j ≤ R
Distance of Closest Approach

Fig. 2 Approaching
pedestrians. Agent i only
considers j if they are
approaching, i.e. if(
xj − xi

) · (vj − vi) < 0
x j − xi

vi

v j

v j − vi

xi

x j

∥∥pi,j − pj,i∥∥ = min
t∈R

∥∥xi(t)− xj (t)∥∥ and pi,j = xi + viτi,j . (4)

The distance to interaction of i with j, Di,j , is the distance of i to pi,j , that is:

Di,j =
∥∥pi,j − xi∥∥ = τi,j ‖vi‖ = −

(
xj − xi

) · (vj − vi)∥∥vj − vi∥∥2
‖vi‖ . (5)

Last but not least, the distance of closest approach of i and j, Ci,j :

Ci,j =
∥∥pi,j − pj,i∥∥ =

(∥∥xj − xi∥∥2 −
((
xj − xi

) · (vj − vi))2∥∥vj − vi∥∥2

) 1
2

. (6)

It is worth noting that τi,j and Ci,j are symmetric for i and j .

2.1.2 Assumptions on the Heuristics

We will make a number of assumptions about the quantities derived above which
will dictate what encounters can be considered by pedestrians:
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1. τi,j > 0 and Di,j > 0. From its definition on (3), it is clear that τi,j will be a
negative number whenever

(
xj − xi

) · (vj − vi) > 0. Geometrically, the inner
product is positive whenever pedestrians i and j are moving away from each
other; see Fig. 2. As such, we can limit our consideration to positive values of
τi,j (and by extension Di,j ), since pedestrians that are separating will simply
ignore each other because there is no potential collision.

2. Di,j < L. The bound on the distance to interaction reflects the fact that i
does not react to obstacles beyond a certain distance. L can be thought of as
a visual horizon for pedestrians that limits their interactions. The encounters will
be ignored unless they are sufficiently close.

3. Ci,j < R. In the same vein, the bound on the distance of closest approach points
to the fact that i does not account for obstacles that will never be close by. R is a
measure of the personal space of the agents. Unless this space is invaded, there
is no reaction.

4. Only visible pedestrians are considered. An agent i cannot consider j for
collision avoidance without seeing them since all the heuristics are derived from
optical stimuli. Pedestrian j is visible from i’s point of view whenever:

(
xj − xi

) · vi∥∥xj − xi∥∥ ‖vi‖ > cos(ϑ/2), (7)

for agents with a horizontal field of view ϑ . In humans, ϑ = 7π/6 [72].

2.1.3 Global Encounters

While the pairwise encounters of Sect. 2.1.1 are the typical interaction between
pedestrians in situations of low agent concentration, more complex configurations
are expected in the higher density regimes. A characterisation of arrangements
involving more than two pedestrians is required.

The pairwise heuristics presented above can be combined to render global
heuristics describing more intricate encounters. In order to do so, we will assume
that pedestrians react first to whichever interaction is closest. Given two potential
collisions, the agent will avoid the nearer one first, and then deal with the further
one if necessary.

Bearing in mind the order of interactions, it is straightforward to define the global
distance to interaction for i, Di :

Di = min
j

{
Di,j

}
forsuitablej. (8)

Admissible agents j for the minimisation are the agents perceived by i, i.e. those
satisfying the assumptions from Sect. 2.1.2 together with i. The definition of the
global distance of closest approach for i, Ci follows immediately as a consequence
of this choice:



Pedestrian Models Based on Rational Behaviour 265

Ci = Ci,j forj thatminimises (8). (9)

Both of these global heuristics will be used to inform the pedestrian during his
choice of direction on the next phase.

2.2 Decision Stage

The decision stage is the second and last step towards collision avoidance in the
model. Following the obtention of global heuristics during the previous phase,
pedestrians must now employ said heuristics in order to decide how to alter their
trajectory.

In deciding on a new path, it is helpful to portray the heuristics of each pedestrian
as functions of their velocity. Each of the quantities is transformed into a map by
allowing vi to become a variable: Di,j (v) and Ci,j (v). In [20] pedestrians are
assumed to have a uniform speed s, and thus the heuristics are purely functions
of the direction ω.

Each agent can use the perceived overall heuristics to inform their choice of
velocity. The decision obeys two antagonist interests: navigation towards a target
and obstacle avoidance. Pedestrians will maintain their target velocity v∗i consisting
of their comfort speed s∗i and their target direction ω∗i whenever possible. They will
only deviate from this velocity when a collision is about to occur. Agents will then
consider directions within their field of view and make a choice that resolves the
collisions while deviating minimally from the target (Fig. 3).

2.2.1 The Decision Potential

The task of finding a suitable direction can be cast as a game-theoretical problem
involving the minimisation of a cost. We formulate this task through the decision
potential or decision function �i(v). This function must reflect the wishes and
tendencies of the agents: to move according to a navigation goal and to resolve

Fig. 3 A pedestrian
considers possible paths.
They intend to remain in
motion towards the target but
must avoid colliding with
other agents. Both of these
goals must be considered in
deciding on a new direction

Possible paths
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potential collisions. Suitable velocities, which are clear of interactions and oriented
towards the target, will yield low values of �i . Less suitable velocities, either
incurring collisions or leading away from the target, will have higher costs.

Each pedestrian will choose the optimal velocity according to the decision
potential and evolve through an interval of time �t before making a new choice.
This minimisation reflects the decision-making of pedestrians, who strive to always
move towards their target while avoiding collisions with a minimal amount of
steering.

Letting uni be the minimiser at the n-th step, the evolution of each agent will be
written as a difference equation:

xn+1
i = xni + uni �t, uni = arg min

v
�ni (v) . (10)

2.2.2 A Choice of Potential

The formulation of [20] proposes the decision function:

�i (v) = k
2

∥∥Div − Lv∗i ∥∥2
, (11)

where k is a positive constant and v∗i is the target velocity of agent i.
The workings of each individual tendency are reflected on the potential. �

penalises deviations of v from v∗i (moving away from the target) as well as
deviations of Di from L (potential collisions). In the absence of other pedestrians
Di ≡ L and thus �i (v) ≡ kL2

∥∥v − v∗i ∥∥2
/2, a convex cost with unique minimum

v = v∗i .

2.3 A Gradient-Based Formulation

The model as presented thus far is computationally costly; numerically solving
two minimisation problems per pedestrian per step is not practical. Furthermore
the choice of time step can be problematic: �t < Di/‖vi‖ is required in order to
successfully resolve collisions, but too small a step can result on the velocity of an
agent varying erratically when interacting with a large number of pedestrians in a
dense setting.

An alternative is to formulate the decision-making process in terms of the
gradient of the decision function through the differential equation:

dxi
dt

= vi, dvi
dt

= −∇v�i (vi) . (12)
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While (12) is governed by similar principles to those of the optimisation model, it
yields a continuous dynamic that accounts for a decision-making process similar to
that of (10) but lets agents gradually shift towards suitable velocities by descending
the gradient of �.

2.3.1 Optimality Versus Efficiency

The gradient scheme (12) provides an efficient alternative to the optimisation
formulation, as the numerical computation of ∇� once per agent per time step is
inexpensive when compared with the performance of any optimisation scheme that
may be used to approximate the global minimiser.

The optimisation scheme (10) remains the preferable method for simulations
involving a small number of agents and low densities, as it guarantees the optimal
choice of velocity for all agents. Gradient descent may simply not reach the
global minimum that would be found otherwise, as it may stall upon reaching a
local minimum. However, in high-density regimes, the decision potential becomes
volatile, as the increased interaction rate rapidly changes the cost of each velocity;
local minima are unlikely to persist. Furthermore, the global minimum may change
abruptly and repeatedly, which would result in rapid switching of agent directions.
A gradient method appears more suitable, as simply shifting away from high-cost
velocities might be sufficient for collision avoidance.

2.4 Summary of the General Model

Consider N pedestrians, where agent i has position xi , velocity vi , and target
velocity v∗i . The dynamics will be given by the solution to either (10):

xn+1
i = xni + uni �t, uni = arg min

v
�ni (v) , (13)

or (12), namely:

dxi
dt

= vi, dvi
dt

= −∇v�i (vi) . (14)

The evaluation of the decision potential � is as follows:

1. For each pair of agents i and j , compute the heuristics Di,j and Ci,j as defined
in (5) and (6):

Di,j =−
(
xj − xi

) · (vj − vi)∥∥vj − vi∥∥2
‖vi‖ , (15)



268 R. Bailo et al.

Ci,j =
(∥∥xj − xi∥∥2 −

((
xj − xi

) · (vj − vi))2∥∥vj − vi∥∥2

) 1
2

. (16)

2. Decide whether i will take j into account using the conditions from Sect. 2.1.2:

Di,j < L, (17)

Ci,j < R, (18)(
xj − xi

) · (vj − vi) < 0, (19)

cos(ϑ/2) <

(
xj − xi

) · vi∥∥xj − xi∥∥ ‖vi‖ . (20)

3. Obtain overall heuristics Di and Ci as defined in (8) and (9):

Di = Di,j∗ , Ci = Ci,j∗ , j∗ = arg min
j

{
Di,j

}
. (21)

4. Use the global heuristics to construct the cost function �i as defined in (11).

3 Towards a High-Density Model

The model of [20] is explicitly formulated for low pedestrian densities, where all
agents have a uniform, constant speed. Moving at such a speed is simply infeasible
in more congested regimes, as agents will be required to slow down or even stop
completely in order to avoid collisions. Even groups where all the agents move in
the same direction will show a reduction on speed whenever the intra-crowd density
is beyond some thresholds [75].

This section presents a study of the original formulation, followed by a series of
variations of the model that aim to extend its validity to pedestrians with variable
speeds and scenarios of higher densities.

3.1 A Frontal Collision

A natural range of validity for the model can be obtained by considering a frontal
encounter of two pedestrians and studying the corresponding decision function
under the framework of (10). For simplicity, we choose:

xi = (−d, 0) , xj = (d, 0) , (22)

vi = (s, 0) , vj = (−s, 0) ,
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vi = (s,0)

xi = (−d,0)

v j = (−s,0)

x j = (d,0)

Fig. 4 Study of a frontal collision. Agents i and j are placed in a simple arrangement, at a
distance 2d and approaching in a straight line, each with speed s. The possible velocities for i
are parametrised as v = s (cos θ, sin θ)

for given distance d and speed s (Fig. 4). Considering a test velocity for agent i, v =
s (cos θ, sin θ), and ignoring variations on the speed as per the original formulation,
it can be readily verified:

τi,j (v) = d
s
, Di,j (v) = d, Ci,j (v) =

√
2d2 (1− cos θ). (23)

Di(v) is thus equal to d if i perceives j and equal to L otherwise. The decision
function reduces to:

�i (v) =

⎧⎪⎨
⎪⎩
ks2

(
L2 + d2

2
− Ld cos θ

)
if i perceives j,

ks2L2 (1− cos θ) otherwise.

(24)

If we assume d < L, then the perception of j by i is conditioned solely by Ci < R,
which yields:

|θ | < θ∗ := arccos

(
1− R

2

2d2

)
. (25)

Each segment of � now has clear minima: the perception section, where θ
verifies (25), has its minimum at θ = 0 and takes the value�(0) = ks2 (L− d)2 /2;
the remaining section has its minima at the boundary of the two regions, |θ | = θ∗,
where �(θ∗) = ks2L2R2/2d2.

In order for the collision to be successfully resolved, the central minimum must
not be selected in (10). The wrong choice is made whenever �(0) < � (θ∗), and
this criterion can be used to ascertain validity:

�(0) < �
(
θ∗

) ⇐⇒ d2 (L− d)2 < L2R2, (26)

since k > 0, s > 0.
Given that L and R are constants, the resulting polynomial of d, p (d) :=

d2 (L− d)2, encodes the fate of the interaction. In order to navigate the collision
successfully, the condition of (26), rewritten as p(d) < L2R2, must be violated at
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some point as the agents i and j approach. Recall Di,j = d; if the condition is met
for large d (say, d = L) and continues to hold as d → 0, the agents will collide.

The polynomial p (d) is a monic quartic with double roots at d = 0 and d = L.
Naturally, this suggests a single maximum at d = L/2, with p (L/2) = L4/24.
This extremum must exceed L2R2; otherwise (26) is valid for all d ∈ (0, L), and a
collision occurs. Simplifying:

p

(
L

2

)
< L2R2 ⇐⇒ L < 4R. (27)

The comparison yields L < 4R as a sufficient condition for the model to fail
by means of the interaction minimum (θ = 0) becoming the global minimum,
resulting in a collision (see Fig. 5). Equation (27) amounts to a natural scale of the
model, which is only valid in regimes where L. R, i.e. the visual horizon is much
larger than the personal space of the agents. A large horizon is a characteristic of
low-density scenarios, which justifies the original choice of prescribing the model
for such regimes and constant speeds. Denser scenarios typically show L ∼ R,
as agents can only consider nearby interactions, which takes the model outside its
region of validity.

3.2 Grading by Collision Severity

Following the analysis of the original model, and considering the natural scale
found in Sect. 3.1, we aim to extend this model to higher-density regimes where
the criterion L ≤ 4R might be met.

A straightforward solution to the model choosing the erroneous central minimum
is simply removing the minimum altogether. Notice that, while both global heuris-
tics Di and Ci are used to discern what pedestrians need to be considered by i for
collision avoidance, only Di appears explicitly on the potential. Recall that Ci is a
measure of the severity of an interaction, ranging from 0 for a full collision to R for
no interaction at all. Thus penalising deviations of Ci from R on top of the existing
penalisations in (11) will result in a higher cost at points of full collision, namely,
the troubling point θ = 0. We propose:

�C,i (v) = k

2R2

∥∥DiCiv − LRv∗i ∥∥2
. (28)

Figure 6 shows the analogous of Fig. 5 for the new cost �C . Figure 7 shows the
result of a numerical simulation of the frontal collision under �C .
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Fig. 5 Comparison of �i for
the frontal collision.
d = 1.0, s = 1.0, k = 1.0.
Top: L = 2.0, R = 0.4. The
global minima correctly fall
to either side of the region of
interaction. Bottom:
L = 2.0, R = 1.0. The global
minimum appears at θ = 0,
leading to a collision

3.3 Modelling Variable Speeds

To continue the generalisation of the model towards high-density regimes, we
must allow for variations on the speed of pedestrians. Unfortunately the decision
functions � and �C have an unintended side effect on the choice of speeds.
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Fig. 6 Comparison of �C,i
for the frontal collision.
d = 1.0, s = 1.0, k = 1.0.
Contrary to Fig. 5, both sets
of parameters yield correct
shapes. In particular, the
central minima have
disappeared. Top:
L = 2.0, R = 0.4. Bottom:
L = 2.0, R = 1.0

Recall that both functions involve penalisations whenever the distance to inter-
action Di is less than L. In the case of the frontal encounter discussed above, under
the gradient formulation, accelerating towards j guarantees an increase of Di (and
therefore a decrease of the cost), as the collision will occur closer to j . Hence,
under the models discussed thus far, pedestrians navigating frontal collisions will
accelerate towards rather than away from each other if the speed is allowed to vary.
See Figs. 8 and 9 for a visualisation of the cost.
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t = 0.0 t = 4.1

t = 1.9 t = 4.6

t = 3.1 t = 7.0

Fig. 7 Frontal collision—�C decision potential. Simulation of the frontal collision described
in Sect. 3.1 under the decision function �C using the gradient formulation. The two agents
can be seen reacting to each other from a distance, steering to avoid the collision before
recovering their desired direction. L = 2.0, R = 1.0. Interactive simulations available online
at rafaelbailo.com/rationalbehaviour/

Such peculiar acceleration suggests controlling the speed of pedestrians directly
on the cost to avoid huge fluctuations away from the comfort speed s∗i . We propose:

�S,i (v) = �C,i (v)+ k̃
2

(
‖v‖2 − ∥∥v∗i ∥∥2

)2
, (29)

= k

2R2

∥∥DiCiv − LRv∗i ∥∥2 + k̃
2

(
‖v‖2 − ∥∥v∗i ∥∥2

)2
.

Figure 10 shows the modified decision potential. The minima can now be seen close
to the target speed and away from the boundary.

http://rafaelbailo.com/rationalbehaviour/
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Fig. 8 �i as a function of s and θ for the frontal collision. d = 1.0, k = 1.0, L = 2.0, R = 0.4.
Observe the marked global minimum on the boundary s = 1.5s∗; agent i will accelerate forward,
in a direction close to the collision
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Fig. 9 �C,i as a function of s and θ for the frontal collision. d = 1.0, k = 1.0, L = 2.0, R = 0.4.
Again the global minima lie on the boundary s = 1.5s∗, leading to forward acceleration
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Fig. 10 �S,i as a function of s and θ for the frontal collision. d = 1.0, k = 1.0, L = 2.0, R = 0.4.
Observe the marked minima have shifted away from the boundary and now sit close to s = s∗
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3.4 Environmental Coercion

The modified decision potential from (29), �S , satisfactorily reflects the steering
behaviour of pedestrians. As was discussed in Sect. 2, this decision function encodes
the game-theoretical nature of human collision avoidance, where agents resolve
potential collisions while attempting to remain in motion towards their target. This
potential has been generalised to situations beyond the original scope (discussed in
Sect. 3.1), allowing pedestrians to resolve collisions in high-density regimes where
not every agent is able to constantly move at their desired speed.

The models as discussed thus far are only concerned with the rational avoidance
of collisions by agents. However, we are yet to account for external factors that
may influence the dynamics in high-density regimes. The constrains of these
scenarios will be included in the gradient formulation through an additional term,
the environmental coercion εi :

dxi
dt

= vi, dvi
dt

= −∇v�S,i (vi)+ εi . (30)

Observe the dychotomy of the decision potential �S,i and the environmental
coercion εi . As discussed, the decision function is the principal driver of the
pedestrian dynamics. The goals, strategy and overall rationality of human motion
are encoded through a game of anticipation and optimisation. The predictive
nature of the potential is made explicit through the dependence on v; the decision-
making is always based on the predicted future state of the agents. Meanwhile, the
environmental factor can be thought of as a higher-order correction to the model.
This additional component must never dominate the dynamics and will only become
significant as the pedestrian density becomes high. The term is only allowed a
dependency on present state of the agents, as it is solely a constraint due to the
current density and not a rational decision process.

3.4.1 Repulsion as Anticipation

A typical feature of high-density regimes is distance-keeping: pedestrians, particu-
larly when in motion, maintain a safe distance away from all other agents, whether
a collision is imminent or not. This amounts to a probabilistic form of collision
prevention; in avoiding close proximity, the agents are decreasing the likelihood of
a collision due to a sudden change in direction by a neighbour.

The avoidance can be modelled through the introduction of an agent-to-agent
force. The environmental coercion of (30) can be defined as a soft repulsion term:

εf,i (xi) :=
∑
j �=i
f

(∥∥xj − xi∥∥) xj − xi∥∥xj − xi∥∥ . (31)
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Fig. 11 Plot of the radial
potential V and its derivative
f (r) := dV

dr (r)

0

r

V (r)
dV
dr (r)

An intuitive choice is to set f as the derivative of a radial potential, for instance:

f (r) := dV

dr
(r) , V (r) = D exp

{−ar2}
rp

, (32)

where a,D and p are positive constants; see Fig. 11.
It is important to ensure the repulsion does not dominate the dynamics, as the

collision avoidance mechanism is sufficient in most cases. For instance, the frontal
collision of Sect. 3.1 can and will be resolved by steering through the choice of
a suitable decision function such as (28) or (29); the forces should play no role
here. The function f should decay rapidly to prevent middle to long distance
effects, and it should be weighted by a suitably small coefficient in order to avoid
sudden changes in the direction of pedestrians. Only agents that remain under close
proximity during an interval of time longer than timescale of the typical collision
ought to be noticeably affected by the repulsion effects.

Since the typical high-density scenario involves a large number of agents moving
through a narrow geometry, it may be useful to add a similar repulsion term between
each agent and the surrounding walls. Without such a term, the forces within the
crowd will push agents near the boundary against the walls. This repulsion will be
of a similar intensity as the agent-to-agent force, but it is imperative that it only acts
on agents that approach the wall. Agents standing near a wall or moving parallel to
it should experience no repulsion.

Figure 12 shows the result of the numerical simulation of a large crowd
incorporating the repulsion effects.

3.4.2 Friction and the Fundamental Diagram

Another relevant behaviour in the dynamics of pedestrians is the inability to walk at
full comfort speed within large crowds, even if everyone in the crowd is moving with
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the same velocity. The term fundamental diagram refers to the empirical relation
between crowd density and crowd speed. It has been observed that while pedestrians
move at their comfort speed when moving in low densities, their movement is

t = 0.0

t = 9.0

Fig. 12 Large crowd—repulsion effects. Simulation of a large crowd with an incoming col-
lision incorporating the repulsion effects of (31) using the gradient formulation. Agents at the
front of the crowd steer to avoid the collision. After resolving the interaction, the repulsion
effect causes the agents to reclaim the space that has been created on the trail of the agent,
progressively returning to a homogeneous configuration. Interactive simulations available online
at rafaelbailo.com/rationalbehaviour/

http://rafaelbailo.com/rationalbehaviour/
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t = 16.0

t = 21.0

Fig. 12 (continued)

impaired by higher densities and their average speed is reduced; upon reaching a
certain threshold the crowd is brought to a standstill.

This speed-density coupling can be thought of a frictional force whose intensity
depends on the local density of agents. Here, the local density ρi is the density
perceived by agent i, which is in turn a function of the number of agents within
i’s cone of vision. Given the number of agents perceived by i, Ni , the average area
occupied by a pedestrian Ap and the area of the cone of vision Ac, the local density
is simply aproximated by the ratio:
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ρi � Ni Ap
Ac
, (33)

see Fig. 13 for further insights.
The simplest frictional force can then be written as

εμ,i (xi, vi) := − μ (ρi) vi . (34)

The overall environmental coercion, a combination of the repulsion (f ) and the
friction (μ) terms, becomes:

εi (xi, vi) :=εf,i (xi)+ εμ,i (xi, vi) (35)

=
∑
j �=i
f

(∥∥xj − xi∥∥) xj − xi∥∥xj − xi∥∥ − μ (ρi) vi .
One basic possibility for the friction is μ (ρ) ∝ ρmax/ (ρmax − ρ), for a stopping

density ρmax; see Fig. 14.

Fig. 13 The cone of vision.
Detail of the average area of a
pedestrian Ap and the area of
the cone of vision Ac.
Observe that only two other
agents fall within the cone of
vision, Ni = 2

Area of the cone of vision, Ac

Average area of a pedestrian, Ap

Number of agents perceived by i, Ni = 2

Ap
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Fig. 14 Plot of the intensity
of the frictional effect as a
function of ρ, for a stopping
density ρmax.
μ (ρ) ∝ ρmax/ (ρmax − ρ)

rmax
r

m
(r

)

As in the case of the repulsion effects in Sect. 3.4.1, it is crucial that the friction
term only dominates the dynamics in scenarios where the agent density is high. Fast,
small fluctuations of the density when resolving interactions should not result in
variations of the speed, as it is known that pedestrians would rather steer than deviate
from their comfort speed when avoiding collisions. The effects of the new friction
must only become apparent when the concentration of agents makes it impossible
to avoid collisions while cruising at comfort speed.

Figure 15 shows the result of the numerical simulation of a large crowd
incorporating the frictional effects.

3.5 Summary of the Modified Gradient Model

Consider N pedestrians, where agent i has position xi , velocity vi , and target
velocity v∗i . The dynamics will be given by the solution to (30), namely:

dxi
dt

= vi, dvi
dt

= −∇v�Si (vi)+ εi . (36)

The evaluation of the decision potential �S is as follows:

1. For each pair of agents i and j , compute the heuristics Di,j and Ci,j as defined
in (5) and (6):

Di,j =−
(
xj − xi

) · (vj − vi)∥∥vj − vi∥∥2
‖vi‖ , (37)



Pedestrian Models Based on Rational Behaviour 283

t = 0.0

t = 16.0

Fig. 15 Bottleneck—frictional effects. Simulation of a large crowd navigating a bottleneck
incorporating the frictional effects of (34) using the gradient formulation. Agents at the front of
the crowd are able to enter the corridor unobstructed. As people begin to occupy the corridor,
the entrance quickly becomes crowded. Pedestrians waiting to enter are brought to a complete
standstill until the density in front of them decreases. Interactive simulations available online at
rafaelbailo.com/rationalbehaviour/

http://rafaelbailo.com/rationalbehaviour/
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t = 21.0

t = 31.0

Fig. 15 (continued)
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Ci,j =
(∥∥xj − xi∥∥2 −

((
xj − xi

) · (vj − vi))2∥∥vj − vi∥∥2

) 1
2

. (38)

2. Decide whether i will take j into account using the conditions from Sect. 2.1.2:

Di,j < L, (39)

Ci,j < R, (40)

(
xj − xi

) · (vj − vi) < 0, (41)

cos(ϑ/2) <

(
xj − xi

) · vi∥∥xj − xi∥∥ ‖vi‖ . (42)

3. Obtain overall heuristics Di and Ci as defined in (8) and (9):

Di = Di,j∗ , Ci = Ci,j∗ , j∗ = arg min
j

{
Di,j

}
. (43)

4. Use the global heuristics to construct the cost function �S as defined in (29).

The computation of the environmental coercion consists of two parts:

1. The distance keeping term, as defined in (31):

εf,i (xi) :=
∑
j �=i
f

(∥∥xj − xi∥∥) xj − xi∥∥xj − xi∥∥ . (44)

2. The frictional term, as given by (34):

εμ,i (xi, vi) := − μ (ρi) vi . (45)

The overall coercion term is the sum of the individual effects, εi = εf,i + εμ,i .
One last numerical simulation is presented in Fig. 16, demonstrating the interplay

between the different components of the model. Two crowds traverse a corridor
in opposite directions. Initially each crowd is sparse, and agents are able to move
comfortably in straight paths. As the two groups approach, interactions occur at
the interface, and collisions begin to be resolved. Simultaneously, as the crowds
move through each other, the agent density becomes sufficiently high for the
environmental constraints to manifest, leading to distance-keeping behaviour from
pedestrians. Lane formation [36, 41] is observed, not as a consequence of the initial
configuration of the agents but as a combined effect of the avoidance behaviours.
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t = 0.0

t = 19.0

Fig. 16 Corridor—high-density setting. Simulation of two dense crowds traversing a corridor
in opposite directions using the gradient formulation. Agents are able to enter the corridor
unobstructed at first. The initial interactions are quickly resolved through the formation of lanes,
which persist in time. Interactive simulations available online at rafaelbailo.com/rationalbehaviour/

http://rafaelbailo.com/rationalbehaviour/
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t = 31.0

t = 46.0

Fig. 16 (continued)

4 Conclusion and Outlook

This work has presented an individual-based model for pedestrians based on a game-
theoretical principle that aims to accurately reproduce the rational behaviour of
walking humans. We have explored the original formulation, which involves the
use of heuristics in a decision process in order to avoid collisions. We have also
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explored a series of modifications to extend the validity of the model to regimes of
varying characteristics.

A majority of the pedestrian models found in the literature are purely force-based.
Many of these models have been applied successfully in academic and industrial
settings. While, through suitable calibration, they seem to reproduce the basic
principles of the dynamics and allow for the computation of crowd statistics, we feel
that they do not capture the finer detail of the dynamics. As discussed previously,
pedestrian motion is particularly complex, and our model seems to improve on
its predecessors by faithfully replicating the rational anticipation behaviour of
humans. The immediate priority for future work will be the calibration of the
parameters of the model. Each of the mechanisms described in this work involves a
number of variables, many of which have a physical meaning. The currently known
suitable parameters for these have been found heuristically, but a more systematic
approach will be required. Different situations give rise to specific pedestrian
profiles according to the context, for instance, humans move differently in a train
station than they do in a retail and leisure area. Such diverse dynamics, in addition
to different density regimes, will require a range of calibrations of the model in
order to provide adaptability. Furthermore, these calibrations should be based on
real-world data to ensure fidelity.

A related line of work will involve revisiting the fundamental diagram for
pedestrian dynamics in order to include it in the model in a more suitable way.
The current frictional effects are too pervasive, slowing down pedestrians even
when the neighbouring densities are low. Furthermore, they are prescriptive, as
the form of the friction is somewhat arbitrary and should be improved. A number
of machine learning techniques are now available and will be used to extract a
frictional term directly from pedestrian data, rather than imposing a preconceived
model.

A well-calibrated model together with an efficient implementation of the gradient
formulation of (12) will yield realistic live simulations. The capacity to simulate
large crowds in real time will enable for the making of short-term predictions based
on automated sensor data, as measurements of density and flowrates can be used to
estimate an initial condition, and the model can be used to compute its evolution in
time. The applications of such predictions are manyfold, allowing the anticipation
and early response to undesired phenomena. Of particular interest is the optimal
steering of crowds along different routes, which would be accomplished through
automated signals able to adjust their information according to output from the
model based on data from the crowd.

The last item of interest comprises the development of mesoscopic and macro-
scopic models corresponding to the dynamics of the model presented in this work.
The first kinetic and hydrodynamic models derived from the original formulation
appeared in [20]; the comparison between these and those developed from the mod-
ified models discussed above will be relevant in understanding the properties and
scales of the different components of the dynamics. Furthermore, an understanding
of the correspondence between the microscopic and macroscopic scales could allow
for the development of a hybrid model. This would be achieved following a level
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of detail principle, where the majority of a large number of pedestrians is simulated
efficiently through the macroscopic model and only the areas of particular interest
are resolved at the microscopic scale.
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Interactive versions of the simulations presented on Figs. 7, 12, 15, and 16
are available online at rafaelbailo.com/rationalbehaviour/. Videos of the
simulations can be found at the permanent repository figshare.com/projects/
Pedestrian_Models_based_on_Rational_Behaviour/38357.
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