
On Improving the Prediction Accuracy of
a Decision Tree Using Genetic Algorithm

Md. Nasim Adnan1(B), Md. Zahidul Islam1, and Md. Mostofa Akbar2

1 School of Computing and Mathematics, Charles Sturt University,
Bathurst, NSW 2795, Australia
{madnan,zislam}@csu.edu.au

2 Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh

mostofa@cse.buet.ac.bd

Abstract. Decision trees are one of the most popular classifiers used
in a wide range of real-world problems. Thus, it is very important to
achieve higher prediction accuracy for decision trees. Most of the well-
known decision tree induction algorithms used in practice are based on
greedy approaches and hence do not consider conditional dependencies
among the attributes. As a result, they may generate suboptimal solu-
tions. In literature, often genetic programming-based (a complex variant
of genetic algorithm) decision tree induction algorithms have been pro-
posed to eliminate some of the problems of greedy approaches. However,
none of the algorithms proposed so far can effectively address conditional
dependencies among the attributes. In this paper, we propose a new,
easy-to-implement genetic algorithm-based decision tree induction tech-
nique which is more likely to ascertain conditional dependencies among
the attributes. An elaborate experimentation is conducted on thirty well
known data sets from the UCI Machine Learning Repository in order to
validate the effectiveness of the proposed technique.

Keywords: Decision tree · Genetic algorithm
Prediction accuracy · Knowledge discovery

1 Introduction

Data mining has entered into our day to day life; we now predict who would be
the mayor of our town. This prediction is carried out by classifier(s) based on
previously known information. In the same way, classifiers are used in business,
science, education, medical, security and many other arena. As classifiers enter
such influential and sensitive ambit, the importance of improving their prediction
accuracy and knowledge discovery potential is paramount.

There are many different types classifiers in literature such as Artificial Neu-
ral Networks [40], Bayesian Classifiers [9], Nearest-Neighbor classifiers [19], Sup-
port Vector Machines [11] and Decision Trees [10,30,31]. Among them, the appli-
cation domain of decision trees are considerably large as they can be readily
c© Springer Nature Switzerland AG 2018
G. Gan et al. (Eds.): ADMA 2018, LNAI 11323, pp. 80–94, 2018.
https://doi.org/10.1007/978-3-030-05090-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05090-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-05090-0_7

On Improving the Prediction Accuracy of a Decision Tree 81

applied on data sets with categorical, numerical, high dimensional and redun-
dant attributes [28]. More importantly, decision trees can express the patterns
that exist in a data set into a set of logic rules (rules) that closely resembles
human reasoning [27]. Also, decision trees require no domain knowledge for any
parameter setting and therefore more appropriate for exploratory knowledge dis-
covery [15]. Till date, C4.5 [30,31] remains to be one of the most accurate and
popular decision tree induction algorithms [24]. In line with the above mentioned
facts, we understand that any improvement beyond C4.5 can render significant
influence over its large application domain.

Almost all popular decision tree induction algorithms such as C4.5 [30,31]
and CART [10] follow the structure of Hunt’s Concept Learning System (CLS)
[17]. Hunt’s CLS is in general a greedy (i.e. nonbacktracking) top-down parti-
tioning strategy that attempts to secure “purer class distribution” in the suc-
ceeding partitions. Generally, a greedy strategy picks the locally best attribute
that delivers the “purest class distribution” in succeeding partitions as the split-
ting attribute. However, this locally best attribute may not be the ultimate best
attribute selected for that particular partition. The reason is: all impurity mea-
sures used for inducing decision trees assume that all non-class attributes are
conditionally independent and hence ignore relationships that may have existed
among some of the non-class attributes. As a result, greedy strategies may lead
to the generation of suboptimal decision trees in applicable cases.

Building the optimal decision tree (in terms of prediction accuracy) by
exhaustive search starts by placing each non-class attribute as the splitting
attribute for each partition and generate a candidate decision tree from each
combination of the splitting attributes. Then from all the generated decision
trees, one candidate decision tree with the best prediction accuracy is recognized
as the optimal decision tree. However, computing the optimal decision tree by
exhaustive search is unrealisable with the increase of non-class attributes as the
number of candidate decision trees grows exponentially.

In order to fix the problems of greedy approaches as well as avoid the com-
putational burden of the exhaustive search, one-level look ahead strategies were
developed. However, these strategies yielded larger and less accurate decision
trees in many occasions [29]. As an obvious solution to these problems, Genetic
Algorithm-based techniques can be applied that with high probability can gen-
erate optimal/near-optimal decision trees. Despite being computationally inten-
sive, these algorithms are no longer exponential to the number of non-class
attributes.

Genetic Algorithm (GA in this paper) is a class of computational frame-
work inspired by evolution [38]. GA was first introduced by John H. Holland
as an adaptation of natural evolution (survival for the fittest) in computing
[16]. GA encodes a potential solution in a simple data structure called chromo-
some. Typically, the execution of a GA begins with a population of randomly
defined chromosomes. Then GA iteratively moves forward by applying genetics-
inspired operators/components such as crossover and mutation to create new
population(s). Chromosomes of each population are evaluated and chromosomes

82 Md. N. Adnan et al.

representing better solution remain in the process to be given more chance to
reproduce. The chromosome with the best solution so far is reported as the out-
put of GA. Unlike greedy approaches that have a high chance of being stuck in
a local optima for unidirectional search, GA performs a robust search in differ-
ent directions of the solution space in order to find the optimal/near optimal
solution [4].

The size of the solution space can be comparable to the size of an ensemble
of decision trees. An ensemble of decision trees or decision forest is a collection
of decision trees where an individual decision tree acts as the base classifier.
The forest prediction is compiled by taking a vote based on the predictions
made by each decision tree [35]. In general, decision forests are generated by
inducing different decision trees by perturbing the training data set differently
for each decision tree (usually, the training data set is perturbed by excluding
some records and/or attributes). As a result of being generated from perturbed
data sets, forest trees are compromised in terms of completeness as they partially
reflect the training knowledge. Furthermore, forest constituted from decision
trees generated for its own purposes closely resembles to a “black box” as the
comprehensibility of a single decision tree is lost [8].

Over the last decade or so, a variant of GA called Genetic Programming
(GP) has been extensively used for inducing decision trees to overcome different
optimization problems such as prediction accuracy and conciseness. The main
difference between GA and GP is in the representation of chromosomes. Instead
of using a simple data structure like GA, GP uses more complex representa-
tion of a chromosome through tree-like structure [13]. However, none of the
GP-based techniques proposed so far can effectively address conditional depen-
dencies that may exist among some of the attributes and thus may fall short
in generating optimal/near optimal decision tree in terms of prediction accu-
racy. On the other hand, techniques that adhere to the basic GA philosophy are
largely unexplored in constructing decision trees for optimizing the prediction
accuracy [8,13]. This inspires us to propose a new, easy-to-implement GA-based
decision tree induction technique (NGA-DT) which is more likely to ascertain
conditional dependencies among the attributes.

The rest of this paper is organized as follows: In Sect. 2 we provide Back-
ground Study that covers a brief introduction to decision tree and some of the
major components of GA. In Sect. 3 we discuss some of the well-known and rel-
evant GP-based decision tree induction techniques and their limitations. The
proposed GA-based decision tree induction technique is described in Sect. 4.
Section 5 discusses the experimental results in detail. Finally, we offer some con-
cluding remarks in Sect. 6.

2 Background Study

2.1 Decision Tree

Hunt’s CLS [17] can be credited as the pioneering work for inducing top-down
decision trees. According to CLS, the induction of a decision tree starts by select-

On Improving the Prediction Accuracy of a Decision Tree 83

ing a non-class attribute Ai to split a training data set D into a disjoint set of
horizontal partitions [30,35]. The purpose of this splitting is to create a purer
distribution of class values in the succeeding partitions than the distribution in
D . The purity of class distribution in succeeding partitions is checked (using an
impurity measure) for all contending non-class attributes and the attribute that
gives purer class distribution than others is selected as the splitting attribute.
The process of selecting the splitting attribute continues recursively in each
subsequent partition D i until either every partition gets the “purest class dis-
tribution” or a stopping criterion is satisfied. By “purest class distribution” we
mean the presence of a single class value for all records. A stopping criterion can
be the minimum number of records that a partition must contain; meaning that
if an splitting event creates one or more succeeding partitions with less than the
minimum number of records, the splitting is not considered.

Different decision tree induction algorithms that follow the same structure
of CLS usually differs in using impurity measures (for measuring the purity of
class distribution) in order to find the splitting attributes. For example, C4.5
[30,31] uses Gain Ratio while CART [10] uses Gini Index as impurity measures.

A decision tree consists of nodes (denoted by rectangles) and leaves (denoted
by ovals) as shown in Fig. 1. The node of a decision tree symbolizes a splitting
event where the splitting attribute (label of the node) partitions a data set
according to its domain values. As a result, a disjoint set of horizontal segments
of the data set are generated and each segment contains one set of domain
values of the splitting attribute. For example, in Fig. 1 “Trouble Remembering” is
selected as the splitting attribute in the root node. “Trouble Remembering” has
two domain values: “Y” and “N” and thus it splits the data set into two disjoint
horizontal segments in such as way that the records of one segment contain “Y”
value for “Trouble Remembering” attribute and the records of another segment
contain “N” value. The domain values of the splitting attribute designated for
the respective horizontal segments are represented by the labels of edges leaving
the node.

2.2 Some of the Major Components of GA

Usually, there are five major components in a GA as described in the following.

Initial Population Selection: We already know, a chromosome is a potential
solution encoded in a data structure and a set of chromosomes is termed as
“Population” in GA. Hence, the “Initial Population” is realized by encoding the
first set of chromosomes.

Crossover: Crossover is crucial for the evolution of new population [32,38].
Generally, crossover operation is applied on a chromosome pair (parents) where
they swap segments to form the offspring. In this way, a new set of chromosomes
representing new solutions are generated [4,20].

Mutation: In Mutation, chromosomes are arbitrarily changed in order to induce
more randomness in search directions of the solution space [4,20].

84 Md. N. Adnan et al.

Fig. 1. Decision Tree

Elitist Operation: Elitist operation searches for the best chromosome (the best
solution) in a population (from the initial population to a modified population
through crossover and mutation operations) [4].

Chromosome Selection for the Next Iteration: After crossover and muta-
tion operations (meaning, after an iteration), the modified population is com-
pared with the immediate previous population (i.e. the population at the begin-
ning of an iteration). If the modified population becomes inferior to the immedi-
ate previous population then there is a strong possibility of continuous degrada-
tion in subsequent iterations [4]. This may promote the search in wrong directions
of the solution space. In order to prevent such scenario, better chromosomes are
selected from the modified and the immediate previous populations for the next
iteration.

3 Related Works

GP-based decision tree induction techniques that use tree-like chromosomes for
encoding decision tree, seem to be the most common in literature [6,8,13,14,
36,41]. Representing a decision tree into a tree-like chromosome gives more
flexibility in mimicking rules of a decision tree than a simple data structure
such as a string or array. In [6], the authors applied a tree-like chromosome
encoding scheme for competitive co-evolution of decision trees. The scheme
encodes a binary decision tree by translating the nodes and leaves as 4-tuple:

On Improving the Prediction Accuracy of a Decision Tree 85

node = {i,N,O, V } where i represents the ID of the attribute tested, N indicates
whether it is a node or a leaf and O is the operator used (meaningful for nodes
only). V can represent dual values, for nodes it contains the test value and for
leaves it contains the binary classification value. Each of the components of the
4-tuple contains numeric value and are subject to modification in the evolution
process.

In [33], the authors represented a binary decision tree using a list of 5-tuple:
node = {t, n, L,R,C}. Here, t represents the node number (t = 0 at the root),
n is the attribute number (meaningful for only nodes), L and R points to left
and right children respectively (meaningful for only leaves) and C represents set
for counters facilitating the cut point to traverse to left/right child. Similarly,
in [36] a decision tree was be represented as 7-tuple in a tree-like chromosome:
node = {t, label, P, L,R,C, size} where t represents node number (t = 0 means
the root), label is the class label of a leaf (meaningful for only leaves), P is the
pointer to the parent node, L and R represent pointers to left and right children
respectively (meaningful for only nodes, for leaves both pointers are NULL), C
represents a set of registers where for example C[0] stores the ID of the attribute
tested and C[1] stores the splitting value for the attribute. Finally, size stores
the number of nodes and leaves beneath; such like the size of the root is the size
of the whole decision tree while the size of a leaf is 1 [8,36].

In [14], each decision tree of the initial population was generated from a
different subset of the training data set in order to stress the decision trees
to be as different as possible. All decision trees of the initial population are
represented using a list of 4-tuple. This representation allows any node of a
decision tree to become the root of a subtree commencing from the node. After
initial population selection, two parent decision trees are selected according to
roulette wheel technique [25,32] for crossover operation. In crossover, one node is
randomly selected from each parent and then subtrees rooted from those nodes
are exchanged (see Fig. 2).

Fig. 2. Crossover

After crossover, mutation operation is applied which involves the exchange
of subtrees within a decision tree. In doing so, two nodes within a decision tree
are randomly selected and subtrees rooted from those nodes are exchanged (see
Fig. 3).

86 Md. N. Adnan et al.

Fig. 3. Mutation

After crossover and mutation operations, it is possible that some decision
trees may have logically inconsistent rules. Though, those rules do not affect
prediction accuracy (because no records will satisfy logically inconsistent rules),
yet the authors [14] opted to prune them. Finally, elitist operation finds the best
chromosome (the best decision tree) according to prediction accuracy from the
modified population in each iteration.

Despite being flexible in representing decision trees into chromosomes, GP-
based techniques have some common limitations. For instance, almost each of
the proposed algorithms deals with binary decision tree as it becomes more
complicated to represent non-binary decision trees into tree-like chromosomes.
The 7-tuple node = {t, label, P, L,R,C, size} points to left and right children
using two pointers L and R for binary decision tree whereas for non-binary
decision trees the number of children may vary in each node. Thus, it becomes
more complicated when non-binary decision trees are to be translated into tree-
like chromosomes. Evidently, GP is more computationally intensive than GA as
GP needs to parse decision trees into complex tree-like chromosomes. Further
computational overhead and complications come from applying genetics-inspired
operators such as crossover and mutation on those chromosomes. Moreover, with
the exchange of subtrees it is difficult to explore conditional dependencies entan-
gled among different sets of attributes in a limited number of iterations.

4 The Proposed GA-Based Decision Tree Induction
Technique

The main components of the proposed technique is described as follows.

Chromosome Encoding and Initial Population Selection: The proposed
GA-based decision tree induction technique encodes each chromosome (Cri)
in a one-dimensional array where each cell contains the weight of a non-class
attribute. Thus, the length of each chromosome is equal to the number of non-
class attributes (m = {A1, A2, . . . , Am}) in the training data set. The weights
are obtained randomly from a uniform distribution in the interval of [0, 1]. As
a result, different chromosomes in the initial population obtain different sets
of randomly generated weights for the same set of attributes. In the proposed
technique, we encode 20 chromosomes to constitute the initial population (|P| =
20) as was done in literature [4] (see Fig. 4).

On Improving the Prediction Accuracy of a Decision Tree 87

Fig. 4. Initial population in the proposed technique

Elitist Operation: We apply elitist operation to find the chromosome (Crb)
among the initial population (PCurr) from which the best C4.5 decision tree (in
terms of prediction accuracy) is generated. As one C4.5 decision tree is generated
from a particular chromosome, the weight distribution remains the same for all
nodes of a single C4.5 decision tree, but different weight distributions are likely
to be exerted for different C4.5 decision trees. When generating a C4.5 decision
tree from a chromosome, at each splitting event, merit values of all non-class
attributes are calculated by multiplying the value of impurity measure (such as
Gain Ratio [30,31]) of each attribute with the respective random weight which is
stored in the chromosome. After the merit values of all non-class attributes are
calculated, the attribute with the highest merit value is selected as the splitting
attribute.

In this way, the use of random weights introduces a random preference to
some attributes in the induction process of a C4.5 decision tree. These “some
attributes” (S) are likely to be different in different chromosomes and hence
gives us the opportunity to test conditional dependencies among different S . We
know that decision trees are considered to be an unstable classifier as a slight
perturbation in a training data set can cause significant differences between
decision trees generated from the perturbed and original data sets [3,35]. As
a result, a population of chromosomes imposing random weights on attributes
causing preferences to different S is more likely to help inducing a number of
different decision trees incorporated with some of those conditional dependencies.
The best decision tree among them is expected to be the best utilizer of such
conditional dependencies. The chromosome generating the best C4.5 decision
tree (i.e. the best chromosome) is stored as Crb.

Crossover and Mutation: For crossover, we select the best chromosome of
PCurr (Crb) as the first chromosome of a pair. To select the second chromosome
of the pair, we use roulette wheel technique [25,32] where a chromosome Crr
(�=Crb) is selected with a probability p(Crr) = PA(Crr)

∑|PCurr|
i=1 PA(Cri)

(PA(Crr) is the

prediction accuracy of the decision tree generated from chromosome Crr) affirm-
ing better chromosomes have greater chance of selection over weaker ones. Once
a chromosome pair is selected, they are excluded from the process of choosing
the upcoming pairs; all pairs are chosen in the same way as described. The moti-
vation behind roulette wheel selection is to induce some randomness in choosing
compatible peer from the best available chromosomes in a population. After pair-
ing the chromosomes, standard 1-point crossover operation is applied on them
as described in Fig. 5. A single crossover point is selected randomly between 1
and |m | for each parent pair, where |m | is the number of non-class attributes

88 Md. N. Adnan et al.

in the training data set and hence the full length of each chromosome. With the
crossover operation, parent chromosomes swap genes (weights); left genes (i.e.
genes in the left side of the crossover point) of one chromosome join the right
genes of another chromosome. After crossover operation all the parent pairs are
converted into offspring pairs with same number of genes.

Fig. 5. Crossover in the proposed technique

For mutation, we select one gene randomly from each offspring and then
regenerate the weight randomly in the interval of [0, 1]. In this way, mutation
helps to induce some randomness in search directions. After both crossover and
mutation, elitist operation is applied to find the Crb.

Chromosome Selection for the Next Iteration: At the end of each itera-
tion, the modified population can be inferior to its immediate previous popula-
tion. To prevent such degradation, at the end of each iteration we create a pool
of chromosomes (PPool) by adding chromosomes of the modified (PMod) and its
immediate previous population (i.e. the population at the beginning of the iter-
ation, PCurr). Hence, PPool consists of 40 chromosomes. We then apply roulette
wheel technique to select 20 chromosomes from the 40-chromosome PPool. The
selected chromosomes form the new population (PCurr) for the next iteration.
This encourages that good chromosomes representing better solution remain in
the process to be given more chance for reproduction. Finally, we obtain the best
chromosome (Crb) from which we expect to induce an optimal/near optimal C4.5
decision tree.

5 Experimental Results

5.1 Data Set Information and Experimental Setup

We carry out an elaborate experimentation on thirty well known data sets that
are publicly available from the UCI Machine Learning Repository [23] covering
a variety of areas. The data sets used in the experimentation are described in
Table 1. For example, the Car Evaluation data set has six non class attributes,
1728 records distributed in four distinct class values. The data sets are presented
in Table 1.

We already know, till date C4.5 [30,31] remains to be one of the most accu-
rate and popular decision tree induction algorithms [18,24] and any improvement
beyond C4.5 can render significant influence over its large application domain.

On Improving the Prediction Accuracy of a Decision Tree 89

Table 1. Description of the data sets

Data Set name (DS) Non-class
attributes

Records Distinct class
values

Abalone (AB) 08 4177 28

Balance Scale (BS) 04 625 3

Breast Cancer (BC) 33 194 2

Car Evaluation (CE) 06 1728 4

Chess (CHS) 36 3196 2

Credit Approval (CA) 15 653 2

Dermatology (DER) 34 358 6

Glass Identification (GI) 09 214 6

Hayes-Roth (HR) 04 132 3

Hepatitis (HEP) 19 80 2

Image Segmentation (IS) 19 2310 7

Ionosphere (ION) 34 351 2

Iris (IRS) 04 150 3

Letter Recognition (LR) 16 20000 26

Libras Movement (LM) 90 360 15

Liver Disorder (LD) 06 345 2

Nursery (NUR) 08 12960 5

Pen-Based Recognition of
Handwritten Digits (PD)

16 10992 10

Pima Indians Diabetes
(PID)

08 768 2

Seeds (SDS) 07 210 3

Sonar (SON) 60 208 2

Statlog Heart (SH) 13 270 2

Statlog Vehicle (SV) 18 846 4

Teaching Assistant
Evaluation (TAE)

05 151 3

Thyroid Disease (TD) 05 215 3

Tic-Tac-Toe (TTT) 09 958 2

Wine (WNE) 13 178 3

Wine Quality (WQ) 11 6497 7

Yeast (YST) 08 1484 10

Zoo (ZOO) 16 101 7

Hence, we apply the proposed GA-based technique (NGA-DT) in order to induce
optimal/near optimal C4.5 decision tree. The main purpose of our experimenta-
tion is to demonstrate how much improvement (in terms of prediction accuracy)
an optimal/near optimal C4.5 decision tree can offer over a regular C4.5 decision

90 Md. N. Adnan et al.

tree. Therefore, we use the same settings for generating both NGA-DT and C4.5
decision trees. NGA-DT uses the same impurity measure (Gain Ratio [30,31])
and the entire training data set (not different subsets/bootstrap samples of the
training data set) as used in a regular C4.5 decision tree. The minimum Gain
Ratio/merit value is set to 0.01 for any attribute to qualify for splitting a node,
Each leaf node of a tree contains at least two records and no further post-pruning
is applied. In [14], decision trees are generated from different subsets of the train-
ing data set and thus compromised in terms of completeness as they partially
reflect the training knowledge. Furthermore, those decision trees are not fully
grown as logically inconsistent rules are pruned from them. Therefore, a deci-
sion tree generated from [14] cannot be regarded as a variant of a regular C4.5
decision tree and hence we exclude [14] from the comparison spectrum.

The experimentation is conducted by a machine with Intel(R) 3.4 GHz pro-
cessor and 8 GB Main Memory (RAM) running under 64-bit Windows 7 Enter-
prise Operating System. All the results reported in this paper are obtained using
10-fold-cross-validation (10-CV) [7,21,22] for every data set. In 10-CV, a data
set is divided randomly into 10 segments and from the 10 segments each time
one segment is regarded as the test data set (out of bag samples) and the rest
9 segments are used for training decision trees. In this way, 10 training and 10
corresponding testing segments are generated. In our experimentation, we gen-
erate 20 decision trees from each population and hence a total of 20 × 20 (20
iterations) = 400 decision trees from each training segment and then evaluate
their performance on the training and the corresponding testing segments. The
best results reported in this paper are stressed through bold-face.

5.2 Comparison Between C4.5 and NGA-DT

Prediction Accuracy (PA) is one of the most important performance indicators
for any decision tree algorithm [2,5]. In Table 2 we present the PA (in percent-
age) of C4.5 and NGA-DT on training and testing segments of all data sets
considered. From Table 2 we see that NGA-DT performs better than C4.5 on
training segments of all thirty data sets. This implies that training segments
are more correctly reflected through NGA-DT. Hence, NGA-DT can be more
reliable for knowledge discovery compared to C4.5.

It is shown in literature that maximizing the PA on training data set may
lead to improving the generalization performance [34]. The results presented
in Table 2 validate the proposition as NGA-DT performs better than C4.5 on
testing segments of twenty three data sets and for one data set they have a
draw. Now, to access the significance of improvement on the testing segments,
we conduct a statistical significance analysis using Wilcoxon Signed-Ranks Test
[1,39]. Wilcoxon Signed-Ranks Test is said to be more preferable to counting
only significant wins and losses for comparison between two classifiers over mul-
tiple data sets [12]. We observe that PAs do not follow a normal distribution and
thus do not satisfy the conditions for parametric tests. Hence, we perform a non-
parametric one-tailed Wilcoxon Signed-Ranks Test [1,39] for n = 30 (number of
data sets used) with the significance level: α = 0.005. Thus, the critical value is

On Improving the Prediction Accuracy of a Decision Tree 91

Table 2. Prediction accuracies

DS C4.5 on
training
segment

NGA-DT on
training
segment

C4.5 on testing
segment

NGA-DT on
testing segment

AB 25.26 31.95 18.10 21.83

BS 81.57 82.05 65.60 64.43

BC 81.45 84.32 70.55 72.65

CE 96.50 96.60 94.10 94.09

CHS 96.02 99.78 95.97 99.25

CA 86.67 87.80 86.37 86.90

DER 71.81 94.54 71.87 93.87

GI 83.55 90.70 65.85 69.90

HR 66.84 70.04 46.97 46.97

HEP 94.44 98.61 82.50 87.50

IS 95.40 98.56 94.46 95.37

ION 96.30 97.91 92.02 90.02

IRS 97.48 98.45 95.33 94.00

LR 75.92 79.29 71.05 73.98

LM 90.49 91.98 64.72 65.28

LD 76.03 77.42 67.29 64.83

NUR 98.81 99.18 97.00 97.06

PD 97.83 98.77 95.03 95.59

PID 79.89 82.12 72.57 73.21

SDS 95.50 98.62 91.43 92.86

SON 93.33 98.40 72.21 72.14

SH 90.33 93.33 75.55 78.15

SV 75.59 85.99 65.96 71.08

TAE 65.93 73.29 47.58 51.63

TD 97.73 99.27 92.84 93.90

TTT 91.11 92.25 82.59 82.60

WNE 98.88 99.81 93.53 95.67

WQ 50.55 59.33 45.17 50.33

YST 60.75 68.04 49.39 55.24

ZOO 97.14 97.36 89.00 90.00

Avg. 83.64 87.52 75.09 77.34

calculated to be: 109 [26,37]. The test statistic for the Wilcoxon Signed-Ranks
Test based on the PAs of NGA-DT and C4.5 (on the testing segments) is cal-
culated to be: 70. As the test statistic remains lower than the critical value, we
understand that NGA-DT significantly improves the generalization performance
of C4.5.

92 Md. N. Adnan et al.

6 Conclusion

In this paper, we propose a new, less complicated GA-based decision tree induc-
tion technique called NGA-DT which is more likely to ascertain conditional
dependencies among the attributes. From the experimental results, we see that
NGA-DT significantly improves the generalization performance of C4.5. It is also
shown that NGA-DT can be more reliable for knowledge discovery compared to
C4.5. The structure of NGA-DT is developed in such a way that other renowned
decision tree induction algorithms (such as CART [10]) can be used instead of
C4.5 without any modification.

A major drawback of NGA-DT (which involves many other GA-based tech-
niques) is that it has a large memory and computational overhead. The memory
and computational overhead of NGA-DT is roughly 1200 times greater than that
of C4.5. Hence, NGA-DT may not be suitable for time-critical applications where
quick results are appreciated. However, when additional time, memory and pro-
cessing power is available, NGA-DT can utilize their full potential. Furthermore,
the structure of NGA-DT can be implemented in a parallel environment in order
to address higher computational time.

References

1. Abellan, J.: Ensembles of decision trees based on imprecise probabilities and uncer-
tainty measures. Inf. Fusion 14, 423–430 (2013)

2. Adnan, M.N., Islam, M.Z.: ComboSplit: combining various splitting criteria for
building a single decision tree. In: Proceedings of the International Conference on
Artificial Intelligence and Pattern Recognition, pp. 1–8 (2014)

3. Adnan, M.N., Islam, M.Z.: Forest CERN: a new decision forest building technique.
In: Proceedings of the 20th Pacific Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), pp. 304–315 (2016)

4. Adnan, M.N., Islam, M.Z.: Optimizing the number of trees in a decision forest
to discover a subforest with high ensemble accuracy using a genetic algorithm.
Knowl.-Based Syst. 110, 86–97 (2016)

5. Adnan, M.N., Islam, M.Z., Kwan, P.W.H.: Extended space decision tree. In: Wang,
X., Pedrycz, W., Chan, P., He, Q. (eds.) ICMLC 2014. CCIS, vol. 481, pp. 219–230.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45652-1 23

6. Aitkenhead, M.J.: A co-evolving decision tree classification method. Expert Syst.
Appl. 34(1), 18–25 (2008)

7. Arlot, S.: A survey of cross-validation procedures for model selection. Stat. Surv.
4, 40–79 (2010)

8. Barros, R.C., Basgalupp, M.P., de Carvalho, A.C.P.L.F., Freitas, A.A.: A survey of
evolutionary algorithm for decision tree induction. IEEE Trans. Syst. Man Cybern.
- Part C: Appl. Rev. 42(3), 291–312 (2012)

9. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2008)

10. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth International Group, Belmont (1985)

11. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Data Min. Knowl. Discov. 2, 121–167 (1998)

https://doi.org/10.1007/978-3-662-45652-1_23

On Improving the Prediction Accuracy of a Decision Tree 93

12. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

13. Espejo, P.G., Sebastian, S., Herrera, F.: A survey on the application of genetic
programming to classification. IEEE Trans. Syst. Man Cybern. - Part C: Appl.
Rev. 40(2), 121–144 (2010)

14. Fu, Z., Golden, B., Lele, S., Raghavan, S., Wasli, E.: Genetically engineered deci-
sion trees: population diversity produces smarter trees. Oper. Res. 51(6), 894–907
(2003)

15. Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco (2006)

16. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

17. Hunt, E., Marin, J., Stone, P.: Experiments in Induction. Academic Press, New
York (1966)

18. Kamber, M., Winstone, L., Gong, W., Cheng, S., Han, J.: Generalization and
decision tree induction: efficient classification in data mining. In: Proceedings of
the International Workshop Research Issues on Data Engineering, pp. 111–120
(1997)

19. Kataria, A., Singh, M.D.: A review of data classification using k-nearest neighbour
algorithm. Int. J. Emerg. Technol. Adv. Eng. 3(6), 354–360 (2013)

20. Kim, Y.W., Oh, I.S.: Classifier ensemble selection using hybrid genetic algorithms.
Pattern Recogn. Lett. 29, 796–802 (2008)

21. Kurgan, L.A., Cios, K.J.: Caim discretization algorithm. IEEE Trans. Knowl. Data
Eng. 16, 145–153 (2004)

22. Li, J., Liu, H.: Ensembles of cascading trees. In: Proceedings of the Third IEEE
International Conference on Data Mining, pp. 585–588 (2003)

23. Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml/
datasets.html. Accessed 15 Mar 2016

24. Lim, T.S., Loh, W.Y., Shih, Y.S.: A comparison of prediction accuracy, complex-
ity, and training time of thirty-three old and new classification algorithms. Mach.
Learn. 40, 203–229 (2000)

25. Liu, Y., Shen, Y., Wu, X.: Automatic clustering using genetic algorithms. Appl.
Math. Comput. 218, 1267–1279 (2011)

26. Mason, R., Lind, D., Marchal, W.: Statistics: An Introduction. Brooks/Cole Pub-
lishing Company, New York (1998)

27. Murthy, S.K.: On growing better decision trees from data. Ph.D. thesis, The Johns
Hopkins University, Baltimore, Maryland (1997)

28. Murthy, S.K.: Automatic construction of decision trees from data: a multi-
disciplinary survey. Data Min. Knowl. Discov. 2, 345–389 (1998)

29. Murthy, S.K., Kasif, S., Salzberg, S.S.: A system for induction of oblique decision
trees. J. Artif. Intell. Res. 2, 1–32 (1994)

30. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Mateo (1993)

31. Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res.
4, 77–90 (1996)

32. Rahman, M.A., Islam, M.Z.: A hybrid clustering technique combining a novel
genetic algorithm with k-means. Knowl.-Based Syst. 71, 345–365 (2014)

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html

94 Md. N. Adnan et al.

33. Shirasaka, M., Zhao, Q., Hammami, O., Kuroda, K., Saito, K.: Automatic design of
binary decision trees based on genetic programming. In: Second Asia-Pacific Con-
ference on Simulated Evolution and Learning. Australian Defense Force Academy,
Canberra (1998)

34. Tamon, C., Xiang, J.: On the boosting pruning problem. In: López de Mántaras,
R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 404–412. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45164-1 41

35. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Edu-
cation, London (2006)

36. Tanigawa, T., Zhao, Q.: A study on efficient generation of decision trees using
genetic programming. In: Genetic and Evolutionary Computation Conference
(GECCO’2000), pp. 1047–1052. Morgan Kaufmann (2000)

37. Triola, M.F.: Elementary Statistics. Addison Wesley Longman Inc., Reading (2001)
38. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)
39. Wilcoxon, F.: Individual comparison by ranking methods. Biometrics 1, 80–83

(1945)
40. Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man

Cybern. 30, 451–462 (2000)
41. Zhao, H.: A multi-objective genetic programming programming approach to devel-

oping pareto optimal decision trees. Decis. Support Syst. 43(3), 809–826 (2007)

https://doi.org/10.1007/3-540-45164-1_41

	On Improving the Prediction Accuracy of a Decision Tree Using Genetic Algorithm
	1 Introduction
	2 Background Study
	2.1 Decision Tree
	2.2 Some of the Major Components of GA

	3 Related Works
	4 The Proposed GA-Based Decision Tree Induction Technique
	5 Experimental Results
	5.1 Data Set Information and Experimental Setup
	5.2 Comparison Between C4.5 and NGA-DT

	6 Conclusion
	References

