l")

Check for
updates

Discovering High Utility Change Points
in Customer Transaction Data

Philippe Fournier-Viger!®™) | Yimin Zhang?, Jerry Chun-Wei Lin?,
and Yun Sing Koh?

1 School of Natural Sciences and Humanities,
Harbin Institute of Technology (Shenzhen), Shenzhen, China
philfv@hit.edu.cn
2 School of Computer Sciences and Technology,
Harbin Institute of Technology (Shenzhen), Shenzhen, China
mrzhangym@126. com
3 Department of Computing, Mathematics and Physics,
Western Norway University of Applied Sciences (HVL), Bergen, Norway
jerrylin@ieee.org
4 Department of Computer Sciences,
University of Auckland, Auckland, New Zealand
ykoh@cs.auckland.ac.nz

Abstract. High Utility Itemset Mining (HUIM) consists of identifying
all sets of items (itemsets) that have a high utility (e.g. have a high
profit) in a database of customer transactions. Important limitations
of traditional HUIM algorithms is that they do not consider that the
utility of itemsets varies as time passes and that itemsets may not have
a high utility in the whole database, but in some specific time periods.
To overcome these drawbacks, this paper defines the novel problem of
discovering change points of high utility itemsets, that is to find the
time points where the utility of an itemset is changing considerably.
An efficient algorithms named HUCP-Miner is proposed to mine these
change points. Experimental results show that the proposed algorithm
has excellent performance and can discover interesting patterns that are
not identified by traditional HUIM algorithms.

Keywords: Pattern mining - High-utility itemsets - Change points

1 Introduction

Frequent Itemset Mining (FIM) [1] is a well-studied task in data mining. Given
a database of customer transactions, FIM consists of enumerating all sets of
items (itemsets) that frequently appear together. High-Utility Itemset Mining
(HUIM) [2,4-7] is a generalization of FIM. It consists of finding all itemsets
having a utility (e.g. importance or profit) that is equal or greater than a user-
defined threshold in a customer transaction database. HUIM is more challenging

© Springer Nature Switzerland AG 2018
G. Gan et al. (Eds.): ADMA 2018, LNAI 11323, pp. 392-402, 2018.
https://doi.org/10.1007/978-3-030-05090-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05090-0_33&domain=pdf
https://doi.org/10.1007/978-3-030-05090-0_33

Discovering High Utility Change Points in Customer Transaction Data 393

than FIM because the utility measure used in HUIM is not monotonic nor anti-
monotonic, that is an itemset may have a utility that is smaller, equal or greater
than that of its supersets or subsets. Because of this, search space reduction
techniques of traditional FIM algorithms [1] cannot be used to reduce the search
space of HUIM. To design HUIM algorithms that efficiently enumerate all high
utility itemsets, upper-bounds on the utility measure have been proposed, which
have anti-monotonic properties, to reduce the search space [5]. To mine high
utility itemsets, several algorithms were designed such as UP-Growth [6], HUI-
Miner [4] and FHM [2]. They use different search strategies and data structures.

HUIM has several applications such as biomedical applications, customer
behavior analysis, and click stream analysis [4,6,7]. But a drawback of tradi-
tional HUIM is that the timestamps of transactions are not taken into account,
although they provide valuable information that can be used to understand how
the utility of itemsets changes over time. A few studies about FIM and HUIM
have considered time. For instance, periodic high-utility itemset mining [8] aims
at finding itemsets that periodically appear and yield a high profit in transac-
tional data. Although this work consider the sequential ordering of transactions,
it ignores timestamps. Moreover, the algorithm presented in that study tends
to discover patterns having a utility that is stable over time. An algorithm was
proposed for detecting time points where the frequency of itemsets changes in
data streams [9]. Although it considers the sequential ordering of transactions,
it ignores timestamps. Hence, it assumes that all consecutive transactions have
the same time gap, which is unrealistic.

As time passes, the utility of itemsets may change. It is desirable to find the
time points where the utility of itemsets changes dramatically. Discovering this
information allow understanding trends in the data to support decision-making.
For example, discovering that an upward/downward trend in the utility of some
items is happening at a time point allows to improve inventory management by
either increasing retail stocks or implementing strategies to reduce stocks.

To fulfill this needs, this paper defines the problem of identifying change
points of high utility itemsets, that is time points indicating a considerable
increase or decrease of utility. To be able to discover change points that repre-
sents significant trends in the utility distributions of itemsets, this paper adapts
the concept of moving average crossover, which is used in time series analysis.
A change point occurs for an itemset when short-term and long-term moving
averages of its utility cross. However, it is impractical to mine all the change
points of all the itemsets in a database, and it is also unnecessary since some
itemsets seldomly appear and yield a low utility. The solution of this paper is to
only find the change points of local high utility itemsets [11]. For example, this
can be used to discover that an itemset {sunglasses, suncream,beach_towel}
has a change point at the begining of the summer representing an increase and
another change point at the end of the summer representing a decrease, and this
itemset may not be a HUI in the whole database.

The rest of this paper is organized as follows. Section2 presents prelimi-
naries and defines the problem of identifying change points of HUIs. Section 3

394 P. Fournier-Viger et al.

describes the designed algorithm. Section 4 reports results from an experimental
evaluation. Finally, Sect.5 concludes the paper.

2 Preliminaries and Problem Statement

Consider a set of products (items) sold in a retail store, denoted as I =
{i1,42,...,in}. A customer transaction T is a set of items T' C I. A transac-
tion database contains multiple customer transactions D = {T1,T5,..., T}, In
addition, each transaction T has a timestamp denoted as ¢(7T"), which may not
be unique. Besides, a positive number p(i) called external utility is defined for
each item ¢ € I to indicate its relative importance. In the context of customer
transaction analysis, p(¢) can be defined as the unit profit of i. In each trans-
action T, a positive number ¢(¢,T) called internal utility specifies the purchase
quantity of each item 7. For instance, a small transaction database is provided in
Table 1. This database contains eight transactions, denoted as Ty, 75, ..., Ty, and
five items, denoted as a, b, ¢, d, e, where purchase quantities are shown as integers
beside items. This database will be used as running example for the rest of this
paper. In this database, timestamps of transactions 11,75 ... Ty are denoted as
dy,ds, ...d1o. These values can represent days (d; = i-th day) or other time
units such as seconds, or milliseconds. Consider transaction T5. It indicates that
4, 3, 2 and 1 units of items b, ¢, d and e were purchased, respectively. According
to Table 2, which provides the external utility values of items, the unit profits of
these items are 2, 1, 2 and 3, respectively.

Table 1. A transaction database Table 2. External utilities
of items

Transaction | [tems (ztemmurchase _quantity) | Time

T (b,2), (c,2), (e, 1) dy Item ablcld

T, (b,4), (¢,3),(d,2), (e, 1) ds Unit profit|52(1/2|3

Ts (,2),(c,2), (e, 1) ds

Ty (a,2),(b,10), (¢, 2), (d, 10), (e,2) |ds

T (a,2),(c,6), (e,2) ds

Ts (b,4), (¢, 3), (e, 1) dr7

Tz (a,2),(c,2),(d,2) dy

Tg (a, 2), (C, 6), (6, 2) d10

Definition 1 (Utility of an item/itemset). Let there be an item ¢ and a
transaction T from a transaction database. The utility of ¢ in T is defined and
calculated as u(i,T) = p(i) x q(i,T). Let X be an itemset (a set of items), i.e.
X C I. The utility of X in T' is defined as u(X,T) = >_,c xpxcr u(i,T). The
utility of X in the database is defined as u(X) = > ;¢ poxcpr w(X,T).

Discovering High Utility Change Points in Customer Transaction Data 395

For instance, the utility of item b in T} is u(b, T}) = 2 x 2 = 4. The utility of
itemset {b,c} in Ty is u({b,c},T1) = u(b,T1) + u(c,Th) =2x 241 x 2 = 6. The
utility of itemset {b, ¢} in the database is u({b, c}) = u({b, c}, T1)+u({b, c}, To)+
u({b,c}, Ty) + u({b,c},Ts) =6+ 11 + 6 + 11 = 34.

An itemset X is called high utility itemset (HUI) if its utility w(X) is no less
than a user-specified positive threshold minutil [5]. HUIM is the task of finding
all HUIs in a transaction database. The utility measure is not anti-monotonic,
that is a superset of a HUI may not be a HUIL. Thus, pruning strategies used
in FIM cannot be directly used in HUIM. To reduce the search space in HUIM,
the Transaction Weighted Utilization (TWU) upper-bound was introduced [5].

Definition 2 (Transaction weighted utilization). The utility of a transac-
tion T'is defined as tu(T) =), u(i, T). The TWU of an itemset X is the sum
of the utilities of transactions containing X, i.e. TWU(X) = 3 v cpapep tu(T).

For itemsets X C X', w(X') <TWU(X') < TWU(X) [5]. Thus, for an item-
set X, TWU(X) is an upper-bound on u(X), and the TWU is anti-monotonic.
Hence, if TWU(X) < minutil, all supersets of X can be pruned.

Limitations of HUIM are that transaction timestamps are ignored and that
an itemset’s utility may vary over time. To identify time periods where an itemset
has a high utility, a concept of time window is used. It will then be used to identify
change points in the utility of HUIs indicating upward/downward trends.

Definition 3 (Window). A window denoted as W; ; is the set of transactions
from time i to j, i.e. W;; = {T|i < t(T) < j AT € D}, where i, j are integers.
The length of a window W, ; is defined as length(W; ;) = j —i+1. The length of
a database D containing m transactions is Wp = t(Ty,) — t(T1) + 1. A window
Wi, is said to subsume another window W; ; iff W, ; ; Wi 1. The utility of an
itemset X in a window W ; is defined as u; j(X) = X e, axcr w(X, T).

For example, Wy, 4, = {T1,T2, T3}, length(Wq, 4,) = 3—1+4+1 = 3, and
Wi, .4, subsumes Wy, q,. But Wy, 4, does not subsume Wy, 4, because Wy, 4, =
{T5,T3} = Way.a,. The utility of {b, c} in the window Wy, 4, is uq, 4, ({b,c}) =
u({b,c}, T1) + u({b, c}, To) + u({b,c},T3) =6+ 11+ 6 = 23.

A concept of change point is proposed by adapting the mowving average
crossover technique. In time series analysis, the moving average of a time-series
is the mean of the previous n data points. It is used to smooth out short-term
fluctuations. The larger n is, the more smoothing is obtained. The moving aver-
age crossover is the time points where two moving averages based on different
degrees of smoothing cross each other. Moving average crossover is widely used
by stock trading systems [10], where crossovers indicate points for buying/selling
stocks. The crossovers can be interpreted as follows. If the short moving average
crosses above the long moving average, it indicates an upward trend, while if it
crosses below, it indicates a downward trend.

To find change points where an itemset’s utility has upward/downward
trends, this paper utilizes the concept of moving crossover. This allows to con-
sider time points that are not equally spaced in time. The moving average

396 P. Fournier-Viger et al.

utility of an itemset is defined as follows. Let there be a smoothing param-
eter v representing a time length. The mowving average utility of an itemset

X for a timestamp t is defined as mau,(X,t) = , that is the
average utility of X before and after ¢ in a window of length ~. For exam-
ple, let v = 3, the moving average utility of itemset {a,c} at timestamp dg is
u, _3-1 o 3-1({ac})

maus({a,c},ds) = ——2—52

To apply the concept of moving average crossover, it is necessary to define
two moving averages, respectively having a short and a long window. For an
itemset X and a timestamp ¢, the short term moving average utility mau~ (X, t)
is calculated over the window W,_ a1 This window has a length of ~.

u ~y—1 ’yfl(
_a—- J—2
t 5 ot 2

tag a7 ({a.c})
= Ytz = 28.

bt
The long term moving average utility mauzAX.y(X ,t) is calculated using a win-
dow Wt_%ﬂ_% having length of A x 7, where A > 1 is a user-defined
parameter called the moving average crossover coefficient. Based on these win-
dows, the concept change point is proposed, indicating time points where the
utility of an itemset follows an upward or downward trend.

Definition 5 (Change point). For an itemset X, a time point ¢ is a change
point if MalyinLength (X7 t) > (S)maukxwinLength(Xa t) A mauwinLength(Xa t—
1) < (>)mauxxwinLength (X, t—1), where winLength and X are two user-defined
parameters (winLength > 1, A > 1), which are the short term window length
and the scaling factor to obtain the long term window. If A = 1, the short and
long moving average utility are equal and there is no change point. If A = oo, the
change points of X are the time points where its short moving average utility
crosses the average utility in the whole database.

For example, if winLength = 3 and A = 1.67, ds is a change points
of itemset {a,c} because maus({a,c},ds — 1) = ug,4,({a,c})/3 = 4 <
mausxi.67({a,c},ds — 1) = uq, a;({a,c})/5 = 5.6, and mauz({a,c},ds) =7 >
mausx1.¢7({a,c},ds — 1) = 5.6. Similarly, we can find that d7 is also a change
point of {a,c}. And it can be seen that ds is where itemset {a,c} begins to appear
and dr is where itemset {a,c} begins to disappear in the database.

It is not necessary to find change points of every itemsets, since some seldomly
appear or generate little utility. Instead, we only find change points of local high
utility itemset [11], a concept defined as follows.

Definition 6 (Local High Utility Itemset). An itemset X is said to be
a Local High Utility Ttemset (LHUI) if there exists a time point ¢ such that
MAUwinLength (X, t) > minMau, where minMau and winLength are two user-
defined parameters [11].

Definition 7 (Mining High utility Change Points). The problem of Min-
ing High utility Change Points is to find the change points of all LHUIs, given
the parameters winLength, minMau and A, set by the user.

For example, given the database of Table 1, winLength = 3, minMau = 10
and lambda = 1.67, 24 Local High Utility Itemsets with their change points are
found, including {d}:{ds,ds}, {b,d}:{ds,ds} and {a,c}:{ds,d7,dy, d10}.

Discovering High Utility Change Points in Customer Transaction Data 397

3 Proposed Algorithm

This paper proposes an algorithm to efficiently mine change points of LHUISs,
named HUCP-Miner. It extends the LHUI-Miner [11] algorithm for LHUI min-
ing. The HUCP-Miner algorithm explores the search space of itemsets by follow-
ing a total order > on items in I. It is said that an itemset Y is an extension of an
itemset X if Y = XU{j}AVi € X, j > i. HUCP-Miner relies on a data structure
called Local Utility-list (LU-list) [11] to store information about each itemset.
This structure extends the utility-list [4] structure by storing information about
time periods. HUCP-Miner initially scans the database to build a LU-list for each
item. Then, it performs a depth-first search to explore the search space, while
joining pairs of itemsets to generate their extensions and corresponding LU-lists.
Checking if an itemset is a LHUI and calculating its moving average utility is
done using is LU-list (without scanning the database). The LU-list structure is
defined as follows. Let there be an itemset X. Its LU-list contains a tuple for
each transaction where X appears. A tuple has the form (tid, iutil, rutil), where
tid is the identifier of a transaction Ti;4 containing X, tutil is the utility of
X in Tyq. ie. w(X, Tyiq), and rutil is defined as ZieTtidA\fjeX,»j w(i, Teia) [4]-
Moreover, the LU-list contains two sets named iutil Periods and util Periods,
which stores the maximum LHUI periods and PLHUI periods of X, respectively.
The concepts of LHUI periods and PLHUI periods of X were defined in the
LHUI-Miner algorithm [11].

A LU-list allow to derive key information about an itemset. First, if
iutil Periods of an itemset X is not empty, then there exists at least a time
point ¢, where matyinrLentn(X,t) > minMau. In other words, X is a LHUIL On
the other hand, if utilPeriods is empty, all transitive extensions of X are not
LHUIs and can be pruned from the search space. The proof of this property is
not presented due to the page limitation. The LU-list of an itemset also allows
to calculate its moving average utility without scanning the database.

The HUCP-Miner Algorithm. The input of HUCP-Miner is a transaction
database, minMau, winLength and X\. HUCP-Miner outputs all LHUIs with
their change points. The algorithm first reads the database once to obtain
each item’s TWU, and construct an array, called tid2time. The i-th position of
tid2time contains the timestamp of transaction ¢(7;). Thereafter, HUCP-Miner
only considers items having a TWU no less than minMau X winLength, denoted
as I*. Based on the calculated TWU values of items, the total order > on I* is
then set as the ascending order of TWU values [2]. The database is then read
again and items in each transaction are reordered according to > to create the
LU-list of each item ¢ € I*. Then, HUCP-Miner perform a depth-first search of
itemsets by calling the recursive HUC P-Search procedure with (), the LU-lists
of 1-itemsets, minM au, winLength and X.

The input of the HUC P-Search (Algorithm 1) procedure is (1) an itemset
P, (2) extensions of P, (3) minMau, (4) winLength, and (5) \. HUC P-Search
first verifies if iutil Periods is empty for each extension Pz of P according to their
respective LU-lists. If empty, then Px is a LHUI and it is output with its change

398 P. Fournier-Viger et al.

points. Besides, if util Periods is not empty, extensions of Pz will be explored.
This is done by combining Px with each extension Py of P such that y > x to
form an extension of the form Pxy containing |Pxz|+1 items. The LU-list of Pxy
is then constructed using the Construct procedure of HUI-Miner, which join
the tuples in the LU-lists of P, Px and Py. Thereafter, iutil Periods, util Periods
and change points of Pxy are constructed by calling the generateC P procedure.
Then, HUC P-Search is called with Pzxy to calculate its utility and explore its
extension(s) using a depth-first search. The HU C P-Miner procedure starts from
single items, it recursively explores the search space of itemsets by appending
single items and it only prunes the search space based on the properties of LU-
list. It can be easily seen that this procedure is correct and complete to discover
all LHUIs and their change points.

Algorithm 1. HUCP-Search

input : P: an itemset, EzxtensionsOfP: extensions of P, minMau: a user-specified
threshold, winLength: a window length threshold, A: a user-specified parameter
output: the set of LHUIs and their change points

1 foreach itemset Pz € ExtensionsOfP do

2 if Px.LU List.iutil Periods # () then output Pz with Pxz.LU List.iutil Periods;
3 if Px.LU List.utilPeriods # () then

a ExtensionsOfPx — (;

5 foreach itemset Py € ExtensionsOfP such that y > x do

6 Pxy.LU List < Construct (P, Pz, Py);

7 generateCP (Pzy, minMau, winLength);

8 EzxtensionsOfPx <+ ExtensionsOfPx U Pxy;

9 end

o HUCP-Miner (Pz, ExtensionsOfPz, minutil, winLength, \);

11 end
12 end

The generateC P procedure (Algorithm 2) takes as input (1) a LU-list [U1, (2)
minMau, (3) winLength, and A. The procedure slides a window over (Ul using
two variable winStart (initialized to 0; the first element of [Ul), and winEnd.
The procedure first scan [Ul to find winEnd (the end index of the first win-
dow), dutils (sum of iutil values in the first window) and rutils (sum of rutil
values in the first window). Then, it repeats the following steps until the end
index winEnd reaches the last tuple of the LU-list: (1) increase the start index
winStart until the timestamp changes, and at the same time decrease iutils
(rutils) by the iutil (rutil) values of tuples that exit the current window, (2)
increase the end index until the window length is no less than winLength, and
at same time increase iutils (rutils) by the iutil (rutil) values of tuples that
enter the current window, (3) compare the resulting iutils and iutils + rutil
values with minMau to determine if the current period should be merged with
the previous period or added to iutil Periods and wutil Periods (line 14 to 15).
Merging is performed to obtain the maximum LHUI and PLHUI periods, (4)
the moving average utility of the center of a window can be calculated as
mau~, = tutils/winLength. Similarly, the long term moving average utility can

Discovering High Utility Change Points in Customer Transaction Data 399

be calculated using a larger window. Then, the moving average are compared to
determine if the current window center is a change point. If so it is stored.

Algorithm 2. The generatePeriods procedure

input : [Ul: a LU-list, minMau: a user-specified utility threshold, winLength: a
user-specified window length threshold, A: a user-specified parameter

1 winStart = 0;
2 Find winEnd (the end index of the first window in ul), iutils (sum of iutil values of the
first window), rutils (sum of rutils values of the first window);

3 while winEnd < lUl.size do
4 while ul.get(winStart).time is same as previous index do
5 iutils = iutils — lUl.get(winStart).iutil;
6 rutils = rutils — lUl.get(winStart).rutil;
7 winStart = winStart + 1;
8 end
9 while ul.get(winEnd).time < ul.get(winStart).time + winLength do
10 tutils = iutils + Ul .get(win End).iutil;
11 rutils = rutils + lUl.get(win End).rutil;
12 winEnd = winEnd + 1;
13 end
14 merge the [winStart, winEnd)] period with the previous period if
iutils > minMau X winLength. Otherwise, add it to lul.iutil Periods;
15 merge the [winStart, winEnd] period with the previous period if
iutils + rutils > minMau X winLength. Otherwise, add it to lul.util Periods;
16 mau~ = iutils/winLength, use similar strategy to calculate mau~xx, compare to
determine if current center of window is a change point, if so, store it.
17 end

Optimizations. As HUCP-Miner is based on LHUI-Miner [11], all its optimiza-
tions can be used to improve the performance of HUCP-Miner.

4 Experimental Evaluation

An experiment was done to compare the performance of HUCP-Miner with a
non-optimized version and the HUI-Miner algorithm for mining HUIs. Three
datasets were used, which are commonly utilized to benchmark HUIM algo-
rithms: retail, kosarak and e-commerce, representing the main types of data
(long transactions, dense and sparse). Let |I], |D| and A represents the num-
ber of distinct items, transactions and average transaction length. kosarak is a
dataset that contains many long transactions (|I| = 41,270, |D| = 990,000, A =
8.09). retail is a sparse dataset with many different items (|I| = 16,470, |D| =
88,162, A =10,30). e-commerce is a real-world dataset (|I| = 3,803, |D| = 17,535,
A = 15.4), containing customer transactions from 01/12/2010 to 09/12/2011 of
an online store. For retail and kosarak, external utilities of items were generated
between 1 and 1,000 using a log-normal distribution and quantities of items are
generated randomly between 1 and 5, as in [4,6]. Moreover, transactions times-
tamps for the three databases were generated using the same distribution as
the e-commerce database. The source code of algorithms and datasets can be
downloaded as part of the SPMF [3] open source data mining library at http://
www.philippe-fournier-viger.com/spmf/.

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

400 P. Fournier-Viger et al.

HUCP-Miner was run with winLength = 90 days for e-commerce and 30
days for the other datasets, and A = 2. In the following, hucp-op denotes HUCP-
Miner with optimizations and hucp-non-op denotes HUCP-Miner without opti-
mization. Algorithms were run on each dataset, while decreasing minMau (for
HUI-Miner minutil = minMau x f#jﬂgth}) until they became too long to
execute, ran out of memory or a clear trend was observed. Figurel compares
the execution times of HUCP-Miner with and without optimization. Figure 2
compares the numbers of HUCPs and HUIs, respectively generated by these
algorithms.

= 70 I 16 10
< 60 retail ol . kosarak Z g H e-commerce
= 50 o 12 [}
= 40 A\l\ S 1g A g 6
c [!
5 N g2 \A_\ Sa) '\.
— & 4 —— e—P—p N Tl
10 TT—— 2 A m——i—, —E—p
0 - . . i 9 0 —
7150 30 ,60 h12° 360 7 15 30 60 120 360 7 15 30 60 120 360
minlengti minlength minlength
—m—hucp-non-op —a— hucp-op

Fig. 1. Execution times

It can be observed that optimizations generally reduce the runtime. In some
cases, HUCP-Miner can be one time faster than the non-optimized version.
We also compared the execution time of HUI-Miner (minutil = minMau x
f#@‘;gth] x Wp) with these algorithms. HUI-Miner is often much faster and
produces much less patterns. However, when the number of patterns found by
HUI-Miner is similar to the proposed algorithms, their runtimes are similar.
Thus, because HUI-Miner is defined for a different problem its results are not

shown in Fig. 1.

o
S 1200 240 ,10000000
21000 retail 535 m kosarak £1000000 H~__ e-commerce
(] O 30 3 L
£ 800 o Q 100000 I~
S 25 o »
9] c . < 10000 ~=
£ 600 - @ 20 ~~u. < I~
2 & 1000 Ky u
£ 400 ~~ 515 2 ~~,
a i © 1 ¥ X S b= 100 X * %
— a 10 X ' l\ ©
200 — 5 X x !lﬁ- 10
0 XX x X 0 — 1 ——
7 15 30 60 120 360 7 15 30 60 120 360 7 15 30 60 120 360
minlength minlength minlength

—m—HUCP H—HUI
Fig. 2. Number of patterns found
A second observation is that the number of LHUIs is much more than the

number of HUIs in most cases. This is reasonable since an itemset is much more
likely to be high utility in at least one window than in the whole database.

Discovering High Utility Change Points in Customer Transaction Data 401

For example, on mushroom (Wp = 180 days), minutil = 500,000, minMau =
83,333, winLength = 30 days, there are 168 HUIs and 549,479 LHUIs. Lastly,
another observation is that for kosarak, the difference between the number of
LHUIs and HUIs is very small compared to other datasets. The reason is that
the utilities of patterns do not vary much over time in kosarak.

Among all patterns found, some interesting high utility change points are
found in e-commerce. For instance, for minMau = 16,000 and winLength =
90 days, the itemset {white hanging heart T-light holder} has a positive trend on
2011/3/6 and 2011/9/1, and a negative trend on 2011/6,/13 and 2011/12/8, while
the itemset is not a HUI in the whole database for minutil = minMau x 373 =
5,968,000. This information is important for retail store management since it
indicates that this item has a sale increase and decrease at the end of July and
in early November, respectively. This can be useful to replenish stocks and offer
promotions on this set of products at these time points for the following year.

5 Conclusion

To find itemsets that yield a high utility in non-predefined time periods and
consider timestamps of transactions, this paper defined the problem of mining
high utility change points. Those are time points where an upward or downward
trend is observed in the utility of local high utility itemsets. An experimental
evaluation has shown that the proposed HUCP-Miner algorithm can discover
useful patterns that traditional HUIM could not find and that optimizations
reduced the runtime and memory consumption. For future work, we will adapt
the concept of change points developed in this paper to other pattern mining
problems such as sequential pattern mining and episode mining.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Databases, pp. 487-499. Morgan Kaufmann, Santiago (1994)

2. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility item-
set mining using estimated utility co-occurrence pruning. In: Andreasen, T., Chris-
tiansen, H., Cubero, J.-C., Ra$, Z.W. (eds.) ISMIS 2014. LNCS (LNATI), vol. 8502,
pp- 83-92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9

3. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.:
SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. (JMLR)
15, 3389-3393 (2014)

4. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In:
22nd ACM International Conference on Information and Knowledge Management,
pp. 55-64. ACM, Maui (2012)

5. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 689-695. Springer, Heidelberg (2005). https://doi.org/10.
1007/11430919-79

https://doi.org/10.1007/978-3-319-08326-1_9
https://doi.org/10.1007/11430919_79
https://doi.org/10.1007/11430919_79

402

10.

11.

P. Fournier-Viger et al.

Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining
high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772-1786 (2013)

Peng, A.Y., Koh, Y.S., Riddle, P.: mHUIMiner: a fast high utility itemset mining
algorithm for sparse datasets. In: Proceedings of 22nd Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 196-207. ACM (2017)

Lin, J.C.W., Zhang, J., Fournier-Viger, P., Hong, T.P., Zhang, J.: A two-phase
approach to mine short-period high-utility itemsets in transactional databases.
Adv. Eng. Inform. 33, 2943 (2017)

Wan, Q., An, A.: Discovering transitional patterns and their significant milestones
in transaction databases. IEEE Trans. Knowl. Data Eng. 21(12), 1692-1707 (2009)
Ni, Y., Liao, Y.C., Huang, P.: MA trading rules, herding behaviors, and stock
market overreaction. Int. Rev. Econ. Finan. 39, 253-265 (2015)

Fournier-Viger, P., Zhang, Y., Lin, J.C.-W., Fujita, H., Koh, Y.S.: Mining local high
utility itemsets. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner,
R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 450-460. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98812-2_41

https://doi.org/10.1007/978-3-319-98812-2_41

	Discovering High Utility Change Points in Customer Transaction Data
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Proposed Algorithm
	4 Experimental Evaluation
	5 Conclusion
	References

