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Abstract
There have been major advances in our under-
standing of the molecular epidemiology of mela-
noma over the past decade. Comprehensive
cataloguing of a landscape of driver mutations
has enabled identification of the key pathways
that underscore the biological processes and ther-
apeutic opportunities in melanoma. This new
knowledge has been complemented by an
improved understanding of the genetic suscepti-
bility of melanoma, in pigmentation, nevus, telo-
mere, and other biological pathways, identified
mainly by genome-wide association studies.
This chapter describes the genetic basis for mela-
noma, including cutaneous melanoma of non-
desmoplastic and desmoplastic types, acral,
mucosal, and uveal melanomas. It describes ana-
lyses of gene-environment, gene-gene (epistasis),
and gene-phenotype interactions that have led to
an improved understanding of the biological pro-
cesses involved in melanoma development and
more accurate prediction of an individual’s mela-
noma risk. The research presented highlights the
exciting developments that have come from com-
bining different types of data, including somatic,
germline, clinical, pathologic, phenotypic, and
environmental risk factors.

Molecular Characterization of
Melanoma

Overview of Genomic Features

Cancer classification, such as that for melanoma,
can be accomplished at clinical, genomic, and
molecular levels. While a “grand unified” theory

of melanoma remains elusive, large-scale sequenc-
ing efforts, such as whole exome sequencing
(WES) data from The Cancer Genome Atlas Skin
CutaneousMelanoma project (TCGA-SKCM) and
whole genome sequencing (WGS) data from the
Australian Melanoma Genome Project, have pro-
vided a comprehensive view of melanoma. Study
of somatic DNAvariation offers insights into over-
all mutational burden, underlying environmental
etiologies (such as UV signature changes) and
critical dependencies that mediate the proliferation,
survival, and metastasis of melanomas. For this
section, we will focus largely on key genetic ele-
ments that feed into crucial pathophysiologic path-
ways. We will take a top-down approach to
examine some recent insights into the genomic
classification of melanoma.

Skin cancers, including cutaneous mela-
noma, Merkel cell carcinoma, cutaneous squa-
mous cell carcinoma, and basal cell carcinoma,
harbor the highest density of mutations among
all known cancers (Fig. 1a). The vast majority of
these mutations are UV signature changes (i.e.,
C➔T at dipyrimidine sites, shown as pink bars
in Fig. 1a).

The most comprehensive data on melanomas
are from the TCGA-SKCM (Cancer Genome
Atlas 2015) and Australian Melanoma Genome
Project (Hayward et al. 2017). As shown in
Fig. 1b, the overall substitution/indel rate varies
by subtype of melanoma: acral and mucosal
melanomas average 2.64 mutations/Mb, while
cutaneous melanomas average 49.17 mutations/
Mb (p < 1.0E-7). However, acral and mucosal
melanomas appear to be more vulnerable to larger
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structural variation compared to cutaneous mela-
noma (mean 342.4 vs. 101, P < 1.0E-6). In addi-
tion, Shain et al. performed whole exome
sequencing on desmoplastic melanoma – a rarer
subtype of melanoma – and found a relatively
high density of mutations, especially UV signa-
ture ones (Fig. 1b; mean 62 mutations/Mb) (Shain
et al. 2015). A general synthesis of mucocutane-
ous melanomas indicates two classes of genomic
injury. Point and indel mutagenesis, especially
those generated by UV radiation, appears to pro-
mote sun-exposed melanoma subtypes (cutane-
ous, desmoplastic), while structural variations
are more commonly associated with sun-hidden

subtypes (acral, mucosal). In nearly all cutaneous
melanomas, even those occurring in young adults
(Wilmott et al. 2018), UV-associated signatures
are dominant; sub-variations (signatures 7a–c)
correspond to the various mechanisms of DNA
damage and occur in different proportions in dif-
ferent individuals (Hayward et al. 2017). In con-
trast, the mutation signatures responsible for the
bulk of the mutation load in acral and mucosal
melanomas cannot be attributed to known carcin-
ogens. Six signatures not previously reported in
melanoma were seen in these melanomas: signa-
tures 2 and 13, resulting from endogenous deam-
ination and DNA editing; signature 8 and 18 also

Fig. 1 Overview of genomic damage and cancer. (a) The
mutation burden (red line; median no of mutations/Mb)
ranked from lowest to highest among the TCGA tumors.
The percentage of missense mutations which reflect
UV signature changes (pink bars). Skin tumors are
highlighted in blue and harbor the greatest number
of mutations, especially UV signature changes, among
all cancers. The lowest mutation burden is Merkel
cell carcinoma due to the MCC virus (MCC-Lo). Abbre-
viations for all TCGA cancers are listed on the
website (https://gdc.cancer.gov/resources-tcga-users/tcga-

code-tables/tcga-study-abbreviations). Additional abbrevi-
ations include SKCM (skin cutaneous melanoma), cSCC
(cutaneous squamous cell carcinomas), BCC (basal cell
carcinoma), MCC-Hi (Merkel cell carcinoma-high muta-
tion burden), and MCC-Lo (Merkel cell carcinoma-low
mutation burden). (b). Mutation burden, by melanoma
subtype, in a collection of whole genome-sequenced
tumors from the Australian Melanoma Genome Project.
(Modified from Fig. 1a in Hayward et al. (2017)); density
of desmoplastic melanoma is modified from Fig. 1 from
Shain et al. (2015)
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seen in breast cancer, medulloblastoma, and neu-
roblastoma; and signatures 1 and 5 which are seen
ubiquitously, all having unknown mechanisms.
Further clinical and epidemiologic studies are
needed to understand the causes of acral and
mucosal melanoma.

It is notable to mention that high-output vari-
ant discovery creates a signal-to-noise problem.
Among all mutations detected, it is often diffi-
cult, if not impossible, to ascertain only the func-
tionally important lesions. Stratton introduced
the idea of “driver” and “passenger” mutations
to better associate individual mutations with
functional correlates (Stratton et al. 2009).
Driver mutations are those with evidence of
selection during tumor formation (e.g., through
the loss-of-function of a tumor suppressor or the
gain-of-function of an oncogene), whereas pas-
senger mutations lack evidence for such selec-
tion (Stratton et al. 2009). The impact of a
passenger mutation on biology of a given tumor
would be incidental, for example, by contribut-
ing to the overall load of tumor neoantigens.
Comprehensive cataloguing of a landscape of
driver mutations has enabled identification of
the key pathways that underscore the biological
processes and therapeutic opportunities in mela-
noma. Cutaneous melanoma is dominated by
largely complementary mutations in the MAP
kinase pathway, which define four genetic
subtypes.

Cutaneous Melanoma (Non-
desmoplastic and Non-acral Types)

RAS pathway. Both the TCGA (Cancer Genome
Atlas 2015) and Australian Melanoma Genome
Project (Hayward et al. 2017) identified four dis-
tinct classes of cutaneous melanoma based on the
predominant mutated driver gene: BRAF, RAS,
NF1, and triple wild-type subtypes (Fig. 2). While
the prevalence rates for each subclass are different,
the BRAF subtype is the most common and is
present in approximately 40–50%of tumors.Mem-
bers of this class harbor BRAF (v-raf murine sar-
coma viral oncogene homolog B1) oncogenic
mutations primarily in the V600 and K601 amino
acid residues. About 30% of cutaneous melanomas
exhibit mutations in N- K- and H-RAS. There is
strict exclusivity between BRAF(V600E) and RAS
(G12/Q61) oncogenic lesions suggesting that co-
activation of the MAPK pathway is either redun-
dant or possibly toxic. In addition to a reciprocal
relationship observed at the cellular level, BRAF-
and NRAS-mutated melanomas are clinically dis-
tinct. Compared to BRAF-mutated tumors, NRAS-
mutant tumors more commonly occur in older
patients (Heppt et al. 2017; Sakaizawa et al. 2015;
Thomas et al. 2015), in congenital nevi (Bauer et al.
2007) than acquired benign nevi (Johnson and
Puzanov 2015) and in thicker primary tumors
(Ellerhorst et al. 2011; Johnson and Puzanov
2015). NRAS mutations occur on sun- and non-

Fig. 2 Comparison of “Rasopathic” Groups between The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas 2015)
and the Australian Melanoma Genome Project (AMGP) (Hayward et al. 2017)
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sun-exposed skin, mucosal, and acral sites,
whereas BRAF mutations predominate more on
intermittently sun-exposed sites and in acquired
benign nevi (Johnson and Puzanov 2015).

NF1mutations occur in about 12–14% of cuta-
neous melanomas (Cancer Genome Atlas 2015;
Hayward et al. 2017). The gene product,
neurofibromin, is a GTPase-activating protein
(GAP) and serves to downregulate RAS signaling
by accelerating the hydrolysis of RAS-GTP to
RAS-GDP (Kiuru and Busam 2017). Compared
to BRAF- and NRAS-mutant tumors, NF1-mutants
appear more clinically aggressive. They are iden-
tified in older patients and are more prevalent in
males. Tumors with NF1mutations are associated
with poorer disease-free and overall survival
(Cirenajwis et al. 2017). NF1 mutation status is
also an important predictive factor for therapy
response, with NF1 mutants showing decreased
sensitivity to BRAF inhibitors in vitro and in vivo
(Maertens et al. 2013; Whittaker et al. 2013). NF1
mutations inversely correlate with BRAF hotspot
mutations, but not with hotspot mutations in
NRAS (Cancer Genome Atlas 2015).

Triple wild-type (i.e., no mutations in BRAF,
RAS, or NF1) tumors are uncommon (Fig. 2) and
are composed of a smaller (~5%) subset of tumors
with KIT alterations among other genes. Clini-
cally, this rare subtype does not significantly differ
from the common BRAF- and NRAS-mutant sub-
types but shows a slight male predisposition and
an average age at diagnosis of approximately
60–70 years (Cirenajwis et al. 2017).

Apart from theMAPK pathway, the PI3K path-
way is also stimulated with RAS oncogenesis. A
recurrent PIK3CA mutation (E545K) occurs in
less than 5% of melanomas (Cancer Genome
Atlas 2015). Activation of the PI3K pathway can
also be achieved through inactivation of PTEN,
which occurs in about 10% of cases. Co-occur-
rence of BRAF(V600E) and PTEN loss has long
been demonstrated (Tsao et al. 2004).

Rb/p53 pathway. Within the Rb pathway, the
most commonly targeted locus is CDKN2A.
Silencing of this locus by deletion, mutation, and
methylation occurs in about 60% of cases. Recur-
rent activating mutations in the p16 cognate part-
ner, CDK4, occur in <5% of cases. With loss of

p14ARF, which results from inactivation of
CDKN2A, MDM2 is unconstrained and thus
accelerates the proteosomal destruction of p53
(Pomerantz et al. 1998); TP53 itself is mutated
in about 15% of tumor specimens.

Alterations in epigenetic control. Mutations
and deletions of ARID genes (ARID2, 15–20%;
ARID1A/1B, 20–30%) are among a new wave of
mutated epigenetic regulators which have been
uncovered in cutaneous melanoma. These pro-
teins function as part of the SWI/SNF chromatin
remodeling complex and serves to globally regu-
late gene expression. A spectrum of mutations in
other epigenetic regulators has also been
catalogued though the precise functional conse-
quences remain to be fully elucidated. These
include IDH1, EZH2, SETD2, and HDAC9.

Telomerase promoter mutations. Perhaps one
of the most mutationally targeted regions in the
melanoma genome is the TERT promoter. Around
70% of melanoma specimens harbor point muta-
tions within this region, often of putative UV
derivation (Horn et al. 2013; Huang et al. 2013).
Mechanistically, TERT promoter mutations (posi-
tions �134, �138, �146) create novel Ets/TCF
binding sites and are associated with shorter telo-
meres, fewer structural rearrangements but more
mutations perMb (Hayward et al. 2017). Since the
promoter mutations are often UV-induced, these
variants may be a marker of UV damage which
could explain the correlation with fewer structural
changes and a higher mutation density.

Cutaneous Melanoma (Desmoplastic
Type)

Whole exome sequencing of 20 desmoplastic
melanomas reveals a dramatically different land-
scape compared to the more common types of
cutaneous melanoma (Fig. 3). Clinically,
desmoplastic melanomas occur more frequently
on the sun-exposed sites of elderly patients (Tsao
et al. 1997). Unlike other types of melanoma, the
most prevalent alterations are found in the
CDKN2A (47%), TP53 (48%), and NF1 (55%)
tumor suppressor genes (Shain et al. 2015).
TERT promoter mutations occur in 90% of the
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samples but may once again reflect the enrichment
for UV exposure (88% of changes are UV signa-
ture mutations). Unlike traditional cutaneous mel-
anoma, no single oncogene predominate, though
errant activation of various receptor tyrosine
kinases (RTKs) such as ERBB2, EGFR, and
MET, and rare activating lesions in NRAS,
PIK3CA, MAP 3 K1, MAP 2 K1, and RAC1 have
also been observed. The other distinguishing fea-
ture is the inactivation of NF-κB nuclear translo-
cation and signaling via gain-of-function
mutagenesis of NFKBIE (15%). In synthesis,
desmoplastic melanoma appears to be a “suppres-
sor-deficient” tumor at the genomic level due to
random inactivating events which result from UV
radiation and which impinge upon the usual
pathways.

Acral and Mucosal Melanomas

As alluded to above, acral and mucosal melano-
mas share certain similarities including a dearth of
point mutations, a wealth of structural variants
and a higher frequency of KIT involvement
(Fig. 3) (Hayward et al. 2017). Amplified drivers
include proto-oncogenes such as PDGFRA, KIT,
CCND1, and MDM2. In a recent targeted
sequencing analysis of 2793 acral melanomas
specifically, the prevalence of mutations in
BRAF, NRAS, KIT, pTERT(C228T), pTERT
(C250T), and PDGFRA, was 23.7% (641/2706),
10.4% (242/2325), 8.0% (223/2793), 5.9%
(32/545), 5.5% (30/545), and 1.4% (40/2325),
respectively (Bai et al. 2017). The dominant vari-
ants in BRAF, KIT, and NRAS were p.V600 (96%),

Fig. 3 Integrated map of mutations in melanoma. Various
subtypes of melanoma showing the clinical picture and
physiological sites of mutations. Figure legend: red circles
indicate oncogenic activation; black circles indicate inac-
tivation of tumor suppressors; blue and orange circles

indicate normal physiological interaction; blue diamond
arrowheads indicate inhibition; red arrowheads indicate
stimulation. Mutation rates are shown in gray boxes.
MUT, mutation; AMP, amplification; DEL deletion; red
numbers indicate a high prevalence mutation rate

456 A. E. Cust et al.



p.L576 (22%), and p.Q61 (70%). Interestingly,
there were 13 AM cases which exhibited concur-
rent BRAF(V600E) and NRAS(Q61R/K or G12D)
alterations suggesting that these lesions may not be
functionally epistatic in acral melanoma. More-
over, with nearly a quarter of acral melanomas
harboring BRAF(V600) alterations, it is important
to note that acral tumors may in fact be susceptible
to current anti-MAPK therapies.

In a single institution case series of 19 mucosal
melanomas (5 anorectal, 9 vulvovaginal, and 5
nasopharyngeal), whole exome sequencing found
thatKM2TCwas the most frequently mutated gene
(52%), followed by KIT, DIAPH1, and LAMA3
(50%) and NF1 (37%); interestingly, 6 of the 7
NF1 mutant cases had concurrent KIT alterations
(Hintzsche et al. 2017). Unlike cutaneous mela-
noma, recurrent SF3B1 R625H/S/C mutations
were identified in 7 of 19 (37%) mucosal melano-
mas, which was a similar finding observed in an
Australian cohort (Hayward et al. 2017).

Uveal Melanoma

Uveal melanomas arise from the uveal tract and
are distinguished clinically, histologically, and
genetically from other ocular melanomas such as
conjunctival melanoma. As shown in Fig. 3, there
are largely two clusters of mutations – those that
actively engage G-protein signaling and those
that involve the “BSE” mutations (BAP1,
SF3B1, and EIF1AX).

Gq signaling pathway. Mutations in GNA11
and GNAQ were among the first oncogenic muta-
tions to be described in uveal melanomas and are
the most common oncogenic drivers (Onken et al.
2008; Van Raamsdonk et al. 2009, 2010). A recent
meta-analysis of whole exome sequencing data
from 139 uveal melanomas showed that Gq path-
way genes were mutated in 99% of the samples
(47% GNAQ, 46% GNA11, 5% CYSLTR2, and
2% PLCB4). CYSLTR2 is the cysteinyl leukotri-
ene receptor 2 and is a G-protein coupled receptor
(Park et al. 2018). PLCB4 encodes phospholipase
C beta 4, is downstream of Gq signaling, and is the
enzyme that catalyzes the formation of inositol
1,4,5-trisphosphate and diacylglycerol from

phosphatidylinositol 4,5-bisphosphate (Park et
al. 2018). Like the MAPK pathway, the Gq sig-
naling cassette appears to be mutually, and uni-
versally, activated through these four genes.

“BSE” genes. A second cluster of mutations
occur in three distinct genes – BAP1, SF3B1, and
EIF1AX (“BSE”). While these are somewhat
exclusive, the relationship is not as tightly epi-
static asGNAQ andGNA11. BAP1 (BRCA1-asso-
ciated protein 1), a deubiquinating hydrolase, is
inactivated genetically in about half of all uveal
melanomas, especially those with metastatic
potential. The protein encoded by BAP1 normally
regulates proteins via removal of ubiquitin mole-
cules. One of the key downstream targets of
BAP1-mediated de-ubiquitination is histone
H2A. Thus, BAP1 function is critical for the
proper regulation of gene expression in multiple
genomic regions (Scheuermann et al. 2010).
While the function of BAP1 is not fully under-
stood, loss of BAP1 may revert uveal melanoma
cells to a more “stem cell-like” and phenotypically
aggressive state (Landreville et al. 2012). BAP1
resides on chromosome 3p21.1. Clinically, mono-
somy 3 correlates with a poorer prognosis,
although the specific target(s) on chromosome 3
that drives this aggression has not been fully elu-
cidated (Robertson et al. 2017).

EIF1AX and SF3B1 mutations are less com-
mon than BAP1 andGNAQ/GNA11, each found in
at most one-fifth of samples. The proteins
encoded by these genes regulate nuclear processes
of translation initiation and pre-mRNA splicing,
respectively. Mutations in EIF1AX and SF3B1 are
nearly mutually exclusive with each other and
with BAP1. EIF1AX mutations are associated
with favorable prognosis. SF3B1 mutations are
found in younger patients and are associated
with development of late metastasis.

Genomic Factors and Melanoma Risk

Genetic Susceptibility to Melanoma

Familial aggregation. A family history of mela-
noma is a significant risk factor for melanoma
(Gandini et al. 2005a). Between 1 and 12% of
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melanoma cases are estimated to occur in those
with a first-degree relative with melanoma (Ford
et al. 1995). The relative risk of melanoma in
individuals with one or more affected first-degree
relatives is estimated to be about twofold (Olsen et
al. 2010c). However, familial relative risk appears
to differ by region, with higher familial relative
risks in regions with lower ambient UV exposure
and lower melanoma incidence (e.g., North Amer-
ica) than in regions with higher UVexposure (e.g.,
Australia), due to the presence of phenocopies, in
which an affected family member has melanoma
but does not have the susceptible genotype, in
higher incidence regions (Begg et al. 2004;
Olsen et al. 2010c). Familial relative risk may
also be higher for relatives of people who experi-
enced melanoma at a young age, or with known
phenotypic risk factors such as higher mole count
or red hair, or that have multiple relatives with
melanoma, or with relatives that have multiple
melanomas (Begg et al. 2004; Hemminki et al.
2003).

Familial aggregation may be partly due to the
strong effect of UV radiation from sunlight on
melanoma risk, exposure to which is likely to be
correlated within families, or due to rare, highly
penetrant mutations. However, the strongest epi-
demiological risk factors for melanoma, nevus
count, and pigmentation are also heritable through
common polymorphic variation and are likely to
explain much of the familial clustering. This has
been borne out by genetic studies that have uncov-
ered both rare, high-risk genetic mutations that
explain much of the familial clustering of mela-
noma and more common, low-risk variants that
explain not only some of the risk associated with a
family history of melanoma but also go some way
toward explaining the influence of the above-
mentioned heritable risk phenotypes.

High-risk variants. Familial clustering of mel-
anoma has long been observed (Cawley et al.
1952; Greene and Fraumeni 1979; Norris 1820),
suggesting the existence of rare, highly penetrant
mutations. Twin studies suggest that genetic var-
iation explains about 58% of the variance in risk
of melanoma (Mucci et al. 2016), but other studies
have estimated that only 3% (Hemminki et al.
2003) to 7% (Olsen et al. 2010c) of melanoma

cases are attributable to familial risk. Segregation
analysis has also found that high-risk variants are
likely to explain familial aggregation in only a
relatively small proportion of such families,
suggesting that risk in most melanoma families
is likely due to either shared environment and
behaviors or multiple common lower-risk variants
(Aitken et al. 1998). Unsurprisingly, then, high-
risk genes have not been identified in most of
these high-risk families (Aoude et al. 2015a).

By far the most common high-risk melanoma
gene is CDKN2A, a tumor suppressor gene
involved in cell cycle regulation, whose effect
was first detected through loss or translocation of
the 9p region in melanoma tumors (Cowan et al.
1988). The same region was identified as a
germline risk factor through linkage analysis
(Cannon-Albright et al. 1992), and the CDKN2A
gene was subsequently cloned and identified
(Kamb et al. 1994). In populations studied in
detail to date, CDKN2A mutations have been
observed in about 2% of melanoma cases (about
1 in 1000 people in the general population are
carriers) but are more common in those with two
or more affected relatives (25%), three or more
primary melanomas (29%), or more than one pri-
mary melanoma and other affected relatives
(27%) (Harland et al. 2014). Population-based
estimates indicate that around 30–50% of
CDKN2A mutation carriers will develop mela-
noma by age 80 years (Begg et al. 2005; Cust
et al. 2011) and that risk of melanoma does not
depend on the ambient UVirradiance of the region
in which they live. However, lifetime risk esti-
mates derived from clinic-based sampling of fam-
ilies with multiple cases of melanoma indicate that
risk is higher in countries with higher ambient UV
irradiance, with a lifetime risk of 58% in Europe,
76% in the United States, and 91% in Australia,
although confidence intervals were large (across
all regions combined the risk by age 80 was 67%,
with a 95% confidence interval of 31–96%)
(Bishop et al. 2002). A common accompanying
phenotype to familial melanoma is the presence of
large numbers of nevi and/or several atypical nevi.
Carriage of a mutation in CDKN2A is also asso-
ciated with this phenotype, but the correlation
between the phenotype and presence of a
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CDKN2A mutation is too weak for the phenotype
to be a useful indicator of mutation presence
within families (Wachsmuth et al. 1998).

Subsequent to the discovery of CDKN2A, a
candidate screening approach was taken to finding
other familial melanoma genes by looking at
related cell cycle regulators. This resulted in the
discovery of CDK4 on 12q14 (Zuo et al. 1996),
which has a similar risk profile to CDKN2A, but is
associated with a greater number of nevi (Gold-
stein et al. 2000). However, melanoma-pre-
disposing mutations in CDK4 are much rarer
than in CDKN2A, with only seven melanoma
families worldwide having been found to carry
mutations in CDK4 (de Snoo and Hayward 2005).

Since the discovery of CDK4, a number of
other high penetrance melanoma genes have
been identified. BAP1, a tumor suppressor gene,
was principally identified as predisposing to
familial clustering of uveal melanoma, but such
families were also found to include multiple cases
of cutaneous melanoma among other cancers
(Abdel-Rahman et al. 2011; Wiesner et al. 2011,
2012). Only 15% of BAP1 mutation carriers are
reported to have developed melanoma so is con-
sidered a medium penetrance mutation, despite
being identified through multicase family studies
(Carbone et al. 2012). A mutation in the promoter
region of TERTwas identified as a high-risk mel-
anoma variant in a single multicase melanoma
family (Horn et al. 2013), though more common
low-risk variants at the same locus were subse-
quently discovered through genome-wide associ-
ation analyses.

The only other high-risk mutations identified
have all been members of the shelterin complex.
Shelterin regulates the effect of telomerase on
telomeres, which in turn protect the ends of chro-
mosomes from degradation. The first such gene to
be discovered was through exome sequencing of
melanoma pedigrees, resulting in the identifica-
tion of loss-of-function variants in POT1 causing
increased telomere length through disruption of
protein-telomere binding (Robles-Espinoza et al.
2014; Shi et al. 2014). Carriers of POT1mutations
tend to have an early age of onset and present with
multiple primary tumors. Such loss-of-function
variants were identified in 4% of familial

melanoma pedigrees with no mutations in either
CDKN2A or CDK4. This was followed up by
sequencing of the remaining five members of the
shelterin complex (ACD, TERF2IP, TERF1,
TERF2, and TINF2) revealing nonsense muta-
tions and point mutations co-segregating with
melanoma in ACD and TERF2IP in a total of ten
families (Aoude et al. 2015b). The germline fre-
quency of shelterin mutations is too low to be
currently estimable.

Medium- to-low penetrance melanoma genes.
Even beyond the strong family clusters of mela-
noma cases, indicative of rare highly penetrant
mutations, risk of melanoma is highly heritable
through shared pigmentary and nevus (mole) phe-
notypes within families. Nevus count and pig-
mentary phenotype factors are well-established,
strong risk factors for melanoma (Gandini et al.
2005a, b; Olsen et al. 2010a, b), and they are
themselves heritable factors (Martin et al. 2017;
Wachsmuth et al. 2001; Zhu et al. 1999), indicat-
ing that the heritability of melanoma may be
intertwined with these phenotypes.

The first clear demonstration of this co-depen-
dency between common genetic risk factors for
melanoma and these heritable risk phenotypes
was in MC1R (Frants et al. 1996; Valverde et al.
1996). Functional variants in MC1R, well known
to be associated with pigmentary phenotypes
(most notably red hair color), were shown to be
conclusively associated with melanoma risk; this
increased risk was, at least in part, mediated by the
effect of skin pigmentation (Palmer et al. 2000).
These genetic variants have been classified as
having either a strong effect on pigmentation
(the “R” variants with a combined minor allele
frequency of 0.22 and estimated OR from
1.4–2.4) or a smaller effect (the “r” variants with
a combined minor allele frequency of 0.27 and
estimated OR from 1.15 to 1.42) (Duffy et al.
2004; Raimondi et al. 2008). At least 85 different
variants in MC1R have been identified, 10 of
which occur at a frequency > 1% (Kanetsky et
al. 2006). Exome and genome sequencing studies
have recently shown that carriage of MC1R vari-
ants is associated with a gene dose-dependent
increase in subsequent melanoma mutation bur-
den (Johansson et al. 2017; Robles-Espinoza et al.
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2016). Each R allele and r allele increased single
nucleotide variant (SNV) counts by 1.7-fold and
1.5-fold, respectively (Johansson et al. 2017),
providing direct evidence for the impact of these
risk genotypes on increased tumorigenesis.

Around the same time, a combination of theo-
retical predictions that common genetic variation
may contribute significantly to the risk of com-
mon complex diseases (the “common disease,
common variant” hypothesis) (Kruglyak 1999;
Risch and Merikangas 1996), and technological
developments, paved the way for genome-wide
association studies (GWAS) comparing the fre-
quencies of hundreds of thousands of common
polymorphisms in case-control samples of tens
of thousands of individuals. Following early suc-
cess in complex diseases, most notably in the
proof-of-principle Wellcome Trust-funded study
of seven common diseases (Wellcome Trust Case
Control Consortium 2007), this approach began to
be applied to a wide range of cancers, including
melanoma.

For the majority of complex diseases, GWAS
produced associations with single nucleotide
polymorphisms (SNPs) in regions with no clear
indication of function. However, the first genome-
wide association studies for melanoma identified
loci near ASIP (Brown et al. 2008; Gudbjartsson
et al. 2008), which interacts with MC1R and had
previously been associated with variation in pig-
mentation (Kanetsky et al. 2002), and loci near
TYR, which was previously associated with eye
color and skin response to the sun (Sulem et al.
2008). In line with other cancer GWAS, these
were low-penetrance variants with odds ratios
estimated between 1.21 and 1.75. The next
GWAS of melanoma conducted (Bishop et al.
2009) confirmed the TYR association and was
powerful enough to pick up a polymorphism in
linkage disequilibrium with the functional MC1R
variants. Most interestingly, this study identified a
variant near CDKN2A, despite the fact that car-
riers of germline CDKN2A mutations had been
excluded, suggesting that the same functional
locus harbors both rare highly penetrant mutations
and common polymorphisms with a much smaller
effect (here with an estimated odds ratio of 1.18)
(Bishop et al. 2009), as has been seen for other

traits (Rivas et al. 2011). Thus, initial GWAS of
melanoma identified loci known to be
associated with either pigmentation (MC1R,
TYR) or nevus count (CDKN2A), confirming the
importance of these traits for melanoma risk. A
further genetic association study, concentrating
solely on polymorphisms within known pigmen-
tation-related genes, confirmed the association of
several of these (TYRP1, OCA2, and LSC45A2)
with melanoma risk for the first time (Duffy et al.
2010a). Subsequent research found that IRF4,
another known pigmentation gene, was associated
with both melanoma and nevus count but that both
the magnitude and direction of effect were age-
dependent (Duffy et al. 2010b; Gibbs et al. 2016).

Pigmentation and nevus count remain the pre-
dominantly genetically determined pathways
associated with melanoma risk, although nevus
genotype only explains a small proportion of the
nevus risk for melanoma (Law et al. 2015; New-
ton-Bishop et al. 2010). Further studies began to
identify genetic variants apparently unrelated to
either pigmentation or nevus count, notably a
polymorphism in the telomerase-related TERT-
CLPTM1L region (Barrett et al. 2015; Rafnar et
al. 2009) and SNPs in the region ofCASP8 (a gene
involved in apoptosis), CCND1 (a regulator of
cell cycle progression), and FTO (Amos et al.
2011; Barrett et al. 2011; Iles et al. 2013;
Macgregor et al. 2011). Some variants thought at
the time to be unrelated to pigmentation or nevus
count later turned out to be so (Law et al. 2015),
such as variants near ARNT/SETDB1 associated
with ease of tanning and ATM associated with
nevus count.

One potential candidate pathway was telomere
length, known to be associated, when directly
measured, with both melanoma risk and nevus
count (Bataille et al. 2007; Han et al. 2009; Nan
et al. 2011), particularly after mutations associated
with a high risk of melanoma had been found in
POT1. However, the observed association
between telomere length and melanoma risk
could be as a result of reverse causality (mela-
noma itself or treatment received affecting telo-
mere length) or a shared environmental effect (a
third factor independently affecting melanoma
risk and telomere length, such as UV exposure).
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Researchers tested polymorphisms at seven loci
known to be associated with telomere length from
a recent GWAS (TERC, TERT, NAF1, OBFC1,
RTEL1, ZNF208, and ACYP2) (Codd et al.
2013). Four of these were found to be nominally
associated with melanoma risk, and a polygenic
risk score (Dudbridge 2013) predicting telomere
length on the basis of these seven SNPs was
associated with melanoma risk at a genome-wide
significant level (Iles et al. 2014). Not only did
this demonstrate that multiple genetic determi-
nants of telomere length influence melanoma
risk, this was the first time that this had been
demonstrated for any cancer. Thus, a third genet-
ically determined phenotypic risk pathway for
melanoma was identified.

Slightly anomalous is MITF, which was iden-
tified as being related to melanoma risk after a
novel variant was found to partially co-segregate
with melanoma in one family (Yokoyama et al.
2011). Subsequent genotyping in both Australian
and the United Kingdom melanoma case-control
samples found that the variant was overrepre-
sented in cases and associated with increased
numbers of nevi and non-blue eye color. With an
estimated odds ratio of 2.19 and a minor allele
frequency just below 0.01, it is probably best
considered a low-medium penetrance variant,
though too rare to have yet been detected by
GWAS.

Fine-mapping of 13 of the low-risk loci
detected by GWAS suggested that, while the
signal at most loci could be explained by a single
SNP, in more than a third of regions multiple
susceptibility variants existed (Barrett et al.
2015).

The largest GWAS to date (Law et al. 2015),
consisting of almost 16,000 cases, brought the
total number of common loci associated with mel-
anoma to 20. Five of these loci are also associated
with pigmentation (SLC45A2, TYR, MC1R, ASIP,
and OCA2), four with nevus count (CDKN2A,
PLA2G6, TERT, and CCND1), two suggesting a
role for DNA repair (PARP1 and ATM), and
OBFC1 with telomere length (though the TERT
gene is also known to be associated with telomere
length and the DNA repair functions of PARP1
and ATM include telomere maintenance). The

remaining eight loci (ARNT, CASP8, FTO, MX2,
RMDN2, CDKAL1, AGR3, TMEM38B) are of
unclear function. Subsequent work (Iles M et al.,
unpublished) has shown that many of these are in
fact associated with either nevus count (ATM),
aspects of pigmentation (ARNT, CDKAL1,
AGR3), or both (RMDN2). The FTO gene is tra-
ditionally associated with body mass index,
although the SNPs related to melanoma risk are
from a part of the gene that appears unrelated to
obesity (Iles et al. 2013). Another study showed
that several SNPs in FTO were significantly asso-
ciated with hair color, tanning ability, and mela-
noma risk but not obesity (Li et al. 2013).
Recently a PGC1β variant was associated with
tanning ability, nevus count, and melanoma risk
as well as mortality (Li et al. 2017); this gene is
related to mitochondrial biogenesis and other met-
abolic functions. Future GWAS studies are
expected to detect new loci, by increasing the
sample size but also through more targeted
approaches in which samples will be carefully
stratified by clinical or pathologic factors or by
host characteristics.

Gene-Environment, Gene-Phenotype,
and Gene-Gene Interactions

Analyses of gene-environment, gene-gene (epis-
tasis), and gene-phenotype interactions can lead
to new knowledge about biological processes
involved in melanoma, identify those individuals
for whom the risk factor of interest is most
critical, and improve accuracy of prediction
for risk and prognosis (Cole et al. 2017; Read et
al. 2016). Gene-environment interaction is con-
sidered to be present when individuals with dif-
ferent genotypes are affected differently by
exposure to the same environmental factors,
and thus gene-environment interactions can
result in different disease risks and phenotypes.
Gene-gene interaction (epistasis) is considered to
be present when genes have a joint effect on a
trait. Xiao et al. developed and applied such a
model to melanoma and found potential gene
regions interacting with HERC2 and MC1R
genes (Xiao et al. 2014).
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Gene-Gene Interactions and Melanoma
Risk

Gene-gene interactions have not been very
prevalent in the literature to date. One reason
may be the need to have larger sample sizes in
order to see an effect. Another may be the
difficulty in assessing the underlying biology
when there are likely more than two genes
interacting in specific pathways or in multiple
pathways. Furthermore, the interaction of the
genetic factors with additional cell types, such
as lymphocytes, macrophages, and other cells,
is coming under scrutiny, and the methodology
for conducting such studies is in its early
stages.

Among people carrying a CDKN2A mutation
in melanoma-prone families, MC1R variants sig-
nificantly increased penetrance of CDKN2A
mutations, with one MC1R variant associated
with a doubling of melanoma risk compared to
no MC1R variants in this high-risk group
(Demenais et al. 2010; Fargnoli et al. 2010; Gold-
stein et al. 2005). In addition, among CDKN2A
mutation carriers, the presence of MC1R variants
was associated with melanoma diagnosis at a
younger age and with development of multiple
melanomas compared with CDKN2A mutation
carriers with no MC1R variants (Fargnoli et al.
2010; Goldstein et al. 2005).

In a melanoma case-control study of 602 cases
and 603 controls, Li et al. evaluated three SNPs
in base excision repair genes (ADPRT, XRCC1,
and APE1) and found that there was evidence for a
gene-gene interaction between XRCC1 and APE1
variants with melanoma risk; however, they
pointed out that larger studies are needed for ver-
ification (Li et al. 2006). In another small study
with 130 melanoma patients and 707 healthy con-
trols, Kosiniak-Kamysz et al. discovered signifi-
cant gene-gene interactions between MC1R and
TYR, SLC45A2 and VDR, HERC2 and VDR,
OCA2 and TPCN2, and MC1R and VDR
(Kosiniak-Kamysz et al. 2014). Although there
were significant findings separately for SNPs in
univariable analyses, only the gene-gene interac-
tions remained significant in multivariable
analyses.

Dysfunction in the telomere pathway was dem-
onstrated in much larger datasets evaluated by
Brossard and colleagues, where 6803 subjects
with GWAS data were evaluated using pathway
analyses and then gene-gene interaction analyses
(Brossard et al. 2015). One pair of SNPs stood
out – in TERF1 and AFAP1L2 – as having an
interaction and passing false discovery. Further
validation and functional and experimental stud-
ies will be required to shed light on the biological
pathways that underpin the interaction and to bet-
ter characterize the risk.

Interactions Between Genes,
Phenotype, and the Environment

There are complex interactions between host char-
acteristics, environmental exposures, and geno-
mic factors in causing melanoma due to the
correlation between some of these factors as well
as the potential for their biological interactions
influencing risk. However, there are very few
studies that have examined these potential
interactions.

Some studies have shown that sunburns, high
levels of sun exposure, and presence of nevi fur-
ther add to melanoma risk for people with a
CDKN2A mutation (Bishop et al. 2002; Chaudru
et al. 2004), while others have suggested no fur-
ther increased risk associated with sun exposure
(Begg et al. 2005; Cust et al. 2011).

In a large study from the GenoMEL melanoma
genetics consortium, Demenais and colleagues
showed that MC1R variants, hair color, and num-
ber of nevi were jointly associated with melanoma
risk among CDKN2A mutation carriers
(Demenais et al. 2010). Increased numbers of
UV radiation mutational signatures have also
been observed for MC1R carriers, highlighting
their increased sensitivity to UV exposure
(Johansson et al. 2017; Robles-Espinoza et al.
2016; Yu et al. 2018). Other studies that combined
germline and somatic genetic data showed that
MC1R, IRF4, and PLA2G6 inherited genotypes
influence melanoma BRAF and NRAS subtype
development (Thomas et al. 2017, 2018), which
in turn are related to clinical and pathologic
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characteristics and melanoma-specific survival
(Thomas et al. 2015).

A novel molecular marker of risk is global
DNA methylation. A recent case-control study
with 540 melanoma cases and 540 controls
showed that global hypomethylation in blood
leukocyte DNA was associated with increased
risk of melanoma, with a dose-response relation-
ship, and that the level of methylation was
influenced by pigmentation and sun exposure
(Shen et al. 2017).

Interestingly, Kanetsky et al. found thatMC1R
variants were strongly predictive of risk for mel-
anoma among those with a dark phenotype
(Kanetsky et al. 2010). This finding was subse-
quently replicated by others (Cust et al. 2012;
Pasquali et al. 2015). This phenomenon has also
occurred with MITF E318K SNP, where carriage
of the variant was more strongly associated with
melanoma for people with dark hair than fair hair
(P for interaction 0.03) and for those with no
moles than some or many moles (P for interaction
<0.01) (Berwick et al. 2014). These findings sug-
gest that these genetic variants may assist in pre-
dicting risk of melanoma in people without
classical risk factors.

Analyses of melanoma by anatomic site can
also shed light on gene-environment interac-
tions, as different patterns of sun exposure and
different causal pathways to melanoma develop-
ment are associated with different body sites
(Armstrong and Cust 2017). Mauguen et al.
(2017) conducted a cluster analysis using
somatic genotypes for BRAF and NRAS and
germline data for 580 SNPs in CDKN2A,
MC1R, and in genes related to vitamin D and
immune function (Mauguen et al. 2017).
Twenty-six SNPs passed false discovery; the
final clusters showed associations between
BRAF and NRAS somatic mutations and ana-
tomic sites but not with germline SNPs. This
type of approach should help to identify risk
factors for melanoma distinguished by specific
anatomic sites and histologic subtypes.

People with a genetic susceptibility for disease
generally have an earlier age at diagnosis (Wu et
al. 2018), and specific variants or other risk factors
might be more strongly related to earlier

diagnosis. For example, a study of 322 cases and
3607 controls from The Cancer Genome Atlas
(TCGA) reported an age of diagnosis of
35.5 years among MTAP carriers and 53.9 years
among MC1R carriers, compared to 57.7 among
noncarriers (Yu et al. 2018). An Australian study
found that the mean age at diagnosis was 56 years
for patients with a family history, 59 years for
those with many nevi, and 69 years for those
with a previous melanoma, and that body site of
the melanoma also differed according to these risk
groups (Watts et al. 2017).

Methodologic considerations. Attention to
methodologic aspects of study design and anal-
ysis remains important for studies examining
gene-environment interaction. Analyses of
gene-environment interactions usually assume
that the genetic factor and the environmental
factor are independent; when there is “depen-
dence” between the genetic factor and the envi-
ronmental factor, results can be misleading
(Vanderweele et al. 2012). An example in mel-
anoma is when a redhead with freckles who has
several genetic variants associated with their
phenotype is strongly sun avoidant; thus the
genetic variants are associated with sun expo-
sure because of their effect on pigmentary phe-
notype characteristics. Similarly, confounding
can arise due to inaccurate measurement
(Keller 2014; Vanderweele et al. 2012). For
example, VanderWeele et al. demonstrate that
unmeasured confounding may lead to erroneous
estimates of gene-environment effects when the
unmeasured confounder interacts with the
genetic factor (Vanderweele et al. 2012).

Imputation of genotypes in GWAS studies can
also lead to misclassification insofar as the causal
variants have not been measured accurately, as the
causal variant frequency may differ from the
marker (or imputed variant) (Dudbridge and
Fletcher 2014). The misclassification would usu-
ally be non-differential, in that the errors do not
differ by exposure or outcome groups, but it does
lead to bias toward the null and necessitates a
larger sample size. This may be one of the reasons
that gene-environment and gene-gene studies are
relatively few in number in comparison to genetic
risk studies.
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Clinical and Public Health Applications

The research discussed in this chapter has impor-
tant clinical and public health applications. One
application is better risk assessment of melanoma,
both within families and at the population level.
Improvements in the development and validation
of melanoma risk prediction models provide a
more accurate way of calculating and communicat-
ing melanoma risk and facilitate targeted preven-
tion, screening, and surveillance strategies (Olsen
et al. 2018; Vuong et al. 2014, 2016). These risk
predictionmodels can be feasibly incorporated into
clinical practice using web-based delivery (Vuong
et al. 2018) or delivered at the population level
(Smit et al. 2017, 2018). Recent studies have dem-
onstrated that genomic variants improve the dis-
criminatory performance of melanoma risk
prediction models when added to traditional risk
factors and can improve identification of people
who are susceptible to melanoma despite not hav-
ing a traditional phenotypic risk profile (Cust et al.
2018; Gu et al. 2018). Melanoma risk prediction
models and risk assessment are discussed in more
detail in chapters ▶ “Clinical Epidemiology of
Melanoma” and ▶ “Clinical Genetics and Risk
Assessment of Melanoma.”

An improved understanding of the molecular
basis of melanoma also enables better estimation
of patient prognosis, more accurate staging of
melanoma, and major implications for improving
the treatment and ongoing management of mela-
noma. These advances are described in more
detail in chapters ▶ “Biomarkers for Melanoma,”
▶ “Melanoma Prognosis and Staging,” and
▶ “Molecular Pathology and Genomics of
Melanoma.”

Future Studies

There have been major advances in our under-
standing of the molecular epidemiology of mela-
noma over the past decade. Some of the most
exciting developments have come from novel
approaches that combine different types of data,
including somatic, germline, clinical, pathologic,
phenotypic, and environmental risk factors.

Future studies are likely to build on these
approaches, in particular integrating data from
multiple omics platforms including genomics,
proteomics, and metabolomics enabled by high-
throughput technologies. Combining these differ-
ent types of data provides a much better under-
standing of the biological system and flow of
information that underlies disease (Hasin et al.
2017).

Future studies of the genetics of melanoma
will likely uncover further high-risk variants;
these are expected to be very rare but may be
important in understanding the etiology of mela-
noma. Perhaps more promising is the study of
low-risk variants, with increased focus on the
various biological pathways underlying mela-
noma risk and whether new loci are related to
one of the traditional phenotypes such as nevus
counts or pigmentation or to novel pathways.
Joint analysis of melanoma and heritable risk
phenotypes will facilitate the identification of
shared genetic risk factors or of genetic risk
factors beyond these pathways. More detailed
investigation of the way these pathways work
could demonstrate whether specific aspects of
pigmentation have different effects on melanoma
risk and whether they act differently dependent
on melanoma subtype or anatomical site of the
melanoma. The data relating MCIR to tumor
mutation burden provide proof of principle that
genetically defined risk pathways can directly
influence the rate of tumorigenesis.

Further characterizing the risk of melanoma
associated with gene variants in different path-
ways will hasten the development of polygenic
risk scores and their application in clinical and
public health practice. Risk prediction models
may be used to more effectively triage patients
for screening and surveillance but also for com-
municating personalized risk information and tai-
loring prevention, screening, and surveillance
advice to the individual. Further research into the
molecular basis of melanoma, and its interaction
with UV radiation and host characteristics, will
give us a deeper understanding of the mechanisms
underlying melanoma with the anticipation that
this will lead to improved prevention, screening,
and treatment.
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