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Abstract
Biomarkers of melanomamay eventually be used
in diagnostics, prognostics, as well as prediction
of clinical outcome and/or treatment response.
These biomarkers may be either clinical charac-
teristics or molecular patterns or profiles, mainly
derived from tumor tissue or from the peripheral
blood. The molecular biomarkers can be catego-
rized into genetic alterations, epigenetics, pro-
teins, or other types of molecules, which provide
a “signature” of risk, prognosis, and/or treatment
response. Because of the potential of biomarkers
to improve the prognostication and hereby the
outcome of patients with melanoma, research is
underway to identify and validate melanoma bio-
markers from numerous sources, including tumor
cells (cultured, freshly biopsied, and paraffin-
embedded), draining regional lymph nodes,
serum/plasma, tumor environment, and cellular
compartments of the peripheral blood. The bio-
markers reviewed here comprise tumor tissue-
based biomarkers, tumor environment-based bio-
markers, soluble biomarkers of the peripheral
blood, as well as treatment-associated bio-
markers. These biomarkers might not only be

useful for diagnostics, prognostication, and pre-
diction of treatment outcomes but in particular for
the continuous monitoring of a patient’s course of
disease over time.

Biomarker Definition and Use

Definition of Cancer Biomarkers

The Biomarkers Definitions Working Group of the
National Institutes of Health (NIH) gives the defini-
tion of a biomarker as a cellular, biochemical, and/or
molecular (including genetic and epigenetic) char-
acteristic that can be objectively measured and eval-
uated as an indicator of normal biological processes,
pathogenic processes, or pharmacologic responses
to a therapeutic intervention (The Biomarkers Def-
initions Working Group 2001). Specifically for can-
cers, a biomarker is defined as a biological
molecule, either produced by the tumor cells them-
selves or by normal tissues in response to cancer,
which is objectively measured and evaluated as an
indicator of cancerous processes within the body
(Fuzery et al. 2013). Thus, a cancer or tumor
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biomarker may be defined as a “molecule that indi-
cates the presence of cancer or provide information
about the likely future behavior of a cancer, i.e.,
likelihood of progression or response to therapy”
(Duffy 2013).

Ideally, a tumor biomarker should be (a) pro-
duced only by the tumor cells; (b) correlated with
tumor burden and endowed with a sufficient lead
time (i.e., the time between asymptomatic cancer
still localized to the organ of origin and clinical
diagnosis; e.g., aggressive cancers have shorter
lead times than indolent cancers); (c) present in
measurable quantities (or in concentrations signifi-
cantly higher than normal) in the blood (or other
human biological fluids) of cancer patients at early
or preclinical stages (preferably in one cancer type
only); (d) undetectable (or present at a very low
levels) in the blood (or other biological fluids) of
healthy individuals or with benign disease; and (e)
easy to measure even in small amounts and with
little preparation, by means of a reliable test, cost-
effective and associated to high analytical sensitivity
(the percentage of individuals with cancer who test
positive for the biomarker) and to specificity (the
percentage of individuals without cancer who test
negative for the biomarker) (Mordente et al. 2015;
Duffy 2013; Kulasingam and Diamandis 2008).
Thus, an ideal biomarker test would have 100%
sensitivity and specificity (i.e., everyone with cancer
would have a positive test, while everyone without
cancer would present a negative test) (Mordente et
al. 2015; Duffy 2013; Kulasingam and Diamandis
2008). No more than 19 protein cancer biomarkers
have been approved by the US Food and Drug
Administration (FDA) to date (Mordente et al.
2015). These comprise serum biomarkers like pros-
tate-specific antigen (PSA) for prostate cancer, car-
bohydrate antigen 19–9 (CA 19–9) for pancreatic
cancer, and human chorionic gonadotropin-beta
(beta-HCG) for testicular cancer, as well as tissue
biomarkers like epidermal growth factor receptor
(EGFR) for colorectal cancer and v-erb-b2 erythro-
blastic leukemia viral oncogene homolog 2 (HER2-
neu) for breast cancer. However, even these offi-
cially approved biomarkers are far from ideal, and it
is assumed that ideal biomarkers fulfilling all
abovementioned quality criteria do not exist in the
real-world situation.

Differential Utilization of Cancer
Biomarkers

Biomarkers may have differential utilizations in
cancer patients. They may be suitable for diagno-
sis, prognosis, prediction of treatment response
and outcome, disease monitoring, and early detec-
tion of relapse (Mordente et al. 2015). Hereof,
prognosis and prediction of treatment response
are the most important functions. Prognostic bio-
markers are factors that predict the natural disease
outcome in the absence of systemic therapy or
despite empiric (not targeted to the marker) sys-
temic therapy (Sargent et al. 2005; Duffy and
Crown 2008; Mordente et al. 2015). Prognostic
biomarkers therefore are of particular interest at
the time of initial diagnosis of cancer, providing a
probability estimate of aggressiveness, metastasis
and overall disease outcome. In contrast, predic-
tive biomarkers are molecules that provide infor-
mation as to whether or not a patient is likely to
benefit from a specific treatment before that treat-
ment has started (Duffy et al. 2011). Hereby, pre-
dictive biomarkers help to categorize patients into
probable responders and non-responders upfront
to therapy start, which ideally allows to choose the
best suitable treatment for each individual patient
and to spare patients from treatment with low
probability of response but potentially harmful
side effects.

Biomarker Use in Melanoma

In melanoma, biomarkers may eventually be used
in diagnostics, prognostics, as well as prediction
of clinical outcome and/or treatment response.
These biomarkers may be either clinical charac-
teristics or molecular patterns or profiles, mainly
derived from tumor tissue or from the peripheral
blood. The molecular biomarkers can be catego-
rized into genetic alterations, epigenetics, pro-
teins, or other types of molecules, which provide
a “signature” of risk, prognosis, and/or treatment
response. Because of the potential of biomarkers
to improve the prognostication and hereby the
outcome of patients with melanoma, research is
underway to identify and validate melanoma
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biomarkers from numerous sources, including
tumor cells (cultured, freshly biopsied, and paraf-
fin-embedded), draining regional lymph nodes,
serum/plasma, tumor environment, and cellular
compartments of the peripheral blood (Eisenstein
et al. 2018; Huang and Hoon 2016; Lim et al.
2018).

There are four major histomorphologic sub-
types of cutaneous melanoma: superficial spread-
ing, lentigo maligna, mucosal, acral lentiginous,
and nodular. However, this histopathologic clas-
sification alone has no independent prognostic
value. Breslow thickness and ulceration currently
are the most widely used histopathologic prognos-
tic markers in cutaneous melanoma, also as part of
the American Joint Committee on Cancer (AJCC)
clinicopathological staging system of melanoma
(Balch et al. 2001a; Gershenwald et al. 2017). In
the recent years, major progress has been made in
the molecular classification of melanoma sub-
types, mainly based on the recognition of distinct
patterns of genetic alterations. Hitherto, the larg-
est cohort of melanoma tissues and cell lines has
been analyzed within The Cancer Genome Atlas
project (TCGA) (The Cancer Genome Atlas Net-
work 2015; Sanchez-Vega et al. 2018; Bailey et al.
2018; Liu et al. 2018). This project identified four
distinct genetic melanoma subtypes by their pro-
file of activating driver gene mutations, BRAF-
mutant, N/K/HRAS-mutant, NF1-mutant, and tri-
ple-wild-type, representing approximately 50%,
25%, 15%, and 10% of melanomas, respectively.
This genetically based classification of melano-
mas also has major impact on a patient’s progno-
sis, since some of these gene mutations are
targetable by selective kinase inhibitors. This
option is currently implemented primarily for
BRAF-mutated melanomas, but other molecular
targeted inhibitors are hopefully to be identified in
the near future.

The amount of research being dedicated to the
identification of biomarkers for melanoma is illus-
trated by the results of a PubMed search done in
mid-2018 using the search terms “melanoma” and
“biomarker,” which yielded 9959 publications.
Unfortunately, despite these thousands of
documented efforts, to date, only one molecular
marker, the serum level of lactate dehydrogenase

(LDH), has been deemed robust enough to be
approved as part of the AJCC staging system of
melanoma (Balch et al. 2001a,b; Gershenwald et
al. 2017). Furthermore, this detection of serum
LDH levels is limited to prognostication purposes
in patients with stage IV melanoma disease. How-
ever, new biomarkers from the patient’s peripheral
blood are under extensive testing and validation,
including microRNAs, circulating tumor DNA,
and others (Eisenstein et al. 2018; Huang and
Hoon 2016; Lim et al. 2018). These biomarkers
might not only be useful for prognostication and
prediction of treatment outcomes but in particular
for the monitoring of a patient’s course of disease
over time.

Biomarker Discovery and Validation

As outlined above, the number of reports on “bio-
markers” is tremendously high which is in part
caused by an unclear definition (Fuentes-Arderiu
2013). The process of discovering and developing
molecular cancer biomarkers is a work in progress
and is evolving, representing an “integral compo-
nent of contemporary cancer research” (Mordente
et al. 2015). In 2001, the National Cancer Insti-
tute’s Early Detection Research Network
(EDRN), to promote efficiency and scientific
rigor in biomarkers research, introduced guide-
lines “to guide the process of biomarker develop-
ment” consisting of five “phases that are generally
ordered according to the strength of evidence that
each phase provides in favour of the biomarker,
from weakest to strongest and the results of earlier
phases are generally necessary to design later
phases” (Pepe et al. 2001). Based on these guide-
lines, the phase structure of biomarker develop-
ment pipeline includes phase 1 (preclinical
exploratory studies), phase 2 (clinical assay devel-
opment), phase 3 (retrospective longitudinal stud-
ies), phase 4 (prospective screening studies), and
phase 5 (cancer control studies). These phases are
not rigorously distinct from each other, and to
proceed from one phase to another, a candidate
biomarker needs to overcome pre-analytical, ana-
lytical, and post-analytical challenges at different
levels. Only biomarkers that will reach the last
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step successfully will be implemented into the
clinical use.

In a recent meta-analysis of known blood-
based biomarkers in metastatic breast cancer
regarding their clinical utility and state-of-the-art
position in the validation process, the authors
reported that most studies focused on identifying
new biomarkers and in almost 70% (of 320 stud-
ies included) of the investigated studies, a bio-
marker was investigated in only one study
(Berghuis et al. 2017). Only 9.8% of all bio-
markers was investigated in more than five stud-
ies, and the authors concluded “that there is a lack
of studies focusing on identifying the clinical
utility of these biomarkers,” which certainly is
also true for the melanoma field. The rate of suc-
cessful translation of biomarkers into the clinical
use is still very low (estimated around 0.1%)
(Poste 2011). Unfortunately, in melanoma, the
situation is even worse with no clear biomarker
development plan anywhere obvious.

Biomarker Discovery

The biomarker developmental process is visual-
ized in Fig. 1. Biomarker development always
starts with its “discovery” and should typically
include a validation in parallel. Validation is
based on predefined prediction rules and should
be performed ideally on an independent patient
cohort. Similar to the successful CONSORT ini-
tiative for randomized trials and the STARD state-
ment for diagnostic studies, the REMARK
guidelines have been proposed to provide relevant
information about the biomarker study design,
preplanned hypotheses, patient and specimen
characteristics, assay methods, and statistical
analysis methods (McShane et al. 2005a). In addi-
tion, these REMARK guidelines suggest helpful
presentations of data and important elements to
include in discussions (see Table 1). With the
current availability of high-throughput “omics”
technologies where several thousand individual

Fig. 1 Schematic overview of the processes of cancer biomarker development. (From Goossens et al. 2015)
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Table 1 REporting recommendations for tumor MARKer prognostic studies (REMARK) (From McShane et al. 2005b)

Introduction

1. State the marker examined, the study objectives, and any prespecified hypotheses

Materials and Methods

Patients

2. Describe the characteristics (e.g., disease stage or comorbidities) of the study patients, including their source and
inclusion and exclusion criteria

3. Describe treatments received and how chosen (e.g., randomized or rule-based)

Specimen characteristics

4. Describe type of biological material used (including control samples) and methods of preservation and storage

Assay methods

5. Specify the assay method used and provide (or reference) a detailed protocol, including specific reagents or kits used,
quality control procedures, reproducibility assessments, quantitation methods, and scoring and reporting protocols.
Specify whether and how assays were performed blinded to the study end point

Study design

6. State the method of case selection, including whether prospective or retrospective and whether stratification or
matching (e.g., by stage of disease or age) was employed. Specify the time period from which cases were taken, the end
of the follow-up period, and the median follow-up time

7. Precisely define all clinical end points examined

8. List all candidate variables initially examined or considered for inclusion in models

9. Give rationale for sample size; if the study was designed to detect a specified effect size, give the target power and
effect size

Statistical analysis methods

10. Specify all statistical methods, including details of any variable selection procedures and other model-building
issues, how model assumptions were verified, and how missing data were handled

11. Clarify how marker values were handled in the analyses; if relevant, describe methods used for cut point
determination

Results

Data

12. Describe the flow of patients through the study, including the number of patients included in each stage of the
analysis (a diagram may be helpful) and reasons for dropout. Specifically, both overall and for each subgroup
extensively examined report the numbers of patients and the number of events

13. Report distributions of basic demographic characteristics (at least age and sex), standard (disease-specific)
prognostic variables, and tumor marker, including numbers of missing values

Analysis and presentation

14. Show the relation of the marker to standard prognostic variables

15. Present univariate analyses showing the relation between the marker and outcome, with the estimated effect (e.g.,
hazard ratio and survival probability). Preferably provide similar analyses for all other variables being analyzed. For the
effect of a tumor marker on a time-to-event outcome, a Kaplan-Meier plot is recommended

16. For key multivariable analyses, report estimated effects (e.g., hazard ratio) with confidence intervals for the marker
and, at least for the final model, all other variables in the model

17. Among reported results, provide estimated effects with confidence intervals from an analysis in which the marker
and standard prognostic variables are included, regardless of their significance

18. If done, report results of further investigations, such as checking assumptions, sensitivity analyses, and internal
validation

Discussion

19. Interpret the results in the context of the prespecified hypotheses and other relevant studies; include a discussion of
limitations of the study

20. Discuss implications for future research and clinical value
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molecules can be easily interrogated without a
priori assumptions, research hypotheses are often
generated in a post hoc manner, often followed by
serendipitous discovery from unbiased mining of
available data (data-driven hypothesis generation)
(Goossens et al. 2015).

Biomarker Validation

Following the biomarker discovery process, an
analytical and clinical validation is mandatory.
The analytical validation process includes ques-
tions like how accurately and reliably does the test
assay detect and quantify the biomarker in the
patient specimen. This includes obviously pre-
analytical conditions and parameters such as stor-
age and handling as well as assay parameters
including standardization and reproducibility.
The clinical validation describes how robust and
reliable the test result correlates with the desired
phenotype and/or clinical outcome. Challenges in
biomarker work are numerous. This includes
complex mixtures of components such as DNA,
RNA, proteins, metabolites, lipids, etc., various
physical and chemical properties relevant for sta-
bility, and specimen handling as well as storage –
all having a tremendous impact on pre-analytical
generation of artifacts. Furthermore, (tumor) het-
erogeneity within and between individual patients
additionally has profound impact on biomarker
research. Likewise, detection of candidate bio-
markers with a low expression profile remains a
significant challenge. Together with “background
noise” created by impurity of cell populations to
be analyzed or the number of cells needed for
precise marker measurement, the ease of
assessability is also a practical limitation of the
clinical utility of biomarker implementation in
routine use. A meta-analysis of biomarkers
in primary melanomas (stage I/II) published in
2010 described more than 100 proteins from
more than 500 manuscripts (Gould Rothberg and
Rimm 2010); however, an additional future
assessment of these proteins in methodologically

robust prognostic studies as requested by the
authors to evaluate their clinical potential as inde-
pendent predictors of outcome among patients
with localized melanomas is still missing today.

Tumor Tissue-Based Markers

Diagnostic Markers for Primary
Melanoma

The histopathologic diagnosis of melanoma can
represent one of the most challenging tasks in
surgical pathology, given melanoma’s many
mimics, including dysplastic and Spitz nevi.
While numerous histological attributes have
been defined to differentiate between melanoma
and benign nevi, including circumscription; sym-
metry; maturation with descent, cytologic atypia;
and mitotic figures, the rank order to be assigned
to these different attributes has not been firmly
established and can (and does) differ among dif-
ferent pathologists. In addition, there is a subset of
lesions that are highly atypical, in which a firm
diagnosis may be difficult to assign. As a result,
several studies have shown a high degree of
interobserver variability in the diagnosis of
melanocytic neoplasms, even when evaluated by
a panel of expert dermatopathologists (Farmer et al.
1996; Corona et al. 1996; Scolyer et al. 2003). This
discordance can be greatest in the diagnosis of
benign versus malignant lesions, setting aside
ambiguous lesions, in which one would expect a
high degree of concordance (Shoo et al. 2010).

These issues highlight the need for molecular
adjuncts to the histological diagnosis of
melanocytic neoplasms. In recent years, there
have been a number of attempts in order to
develop molecular diagnostic assays to distin-
guish melanomas from benign nevi. These are
distinct from markers to determine melanocytic
lineage that distinguish between melanoma and
other cancers, such as S100, SOX-10, and Melan-
A/MART-1. To date, three different platforms
have been utilized to develop diagnostic assays
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for melanoma and include fluorescence in situ
hybridization (FISH), gene expression profiling
using quantitative reverse transcriptase polymer-
ase chain reaction (qRT-PCR), and immunohisto-
chemical analysis (IHC).

FISH-Based Diagnostic Assays for
Melanoma
Initial studies using comparative genomic hybrid-
ization identified a number of chromosomal alter-
ations in primary cutaneous melanoma, involving
either gains or losses in various chromosomal loci.
Subsequent studies using FISH validated several
of these aberrant loci and pinpointed specific
genes whose copy number was altered within
these loci. In 2009, a FISH-based diagnostic
assay was described to distinguish between mela-
noma and benign nevi (Gerami et al. 2009). This
four-probe assay targeted 6p25 (encompassing the
RREB1 gene), 6q23 (encompassing the MYB
gene), 11q13 (encompassing the CCND1 gene),
and Cep6 (encompassing the centromere of chro-
mosome 6). Application of this assay to a cohort
of 301 melanocytic neoplasms initially yielded a
sensitivity of 86.7% and specificity of 95% in the
diagnosis of melanoma. This assay became com-
mercially available in the USA, offered by
NeoGenomics. Subsequent studies using this
four-probe assay showed a markedly reduced sen-
sitivity in the diagnosis of Spitzoid lesions, reduc-
ing its clinical utility (Gaiser et al. 2010). In
addition, 5% of Spitz nevi had sufficient tetraploid
cells to potentially result in a false-positive test.

More recently, this assay was modified to
incorporate a probe targeting 9p21, which encom-
passes the CDKN2A gene. Addition of this
marker to the original assay appeared to increase
the sensitivity in a small validation cohort of 51
nevi and 51 melanomas. A version of this assay is
now offered by NeoGenomics as the NeoSITE
assay, including the following probes, 6p25
(RREB1), 6q23 (MYB), 11q13 (CCND1), 9p21
(CDKN2A), and Cep9 (encompassing the centro-
mere of chromosome 9), with a reported sensitivity
of 86% and specificity of 90% (Gerami et al. 2012).
One of the practical issues with the version of the
assay offered clinically is the reporting of different
algorithms and cut points, potentially resulting in

different diagnoses, resulting in confusion regard-
ing the ultimate diagnosis rendered for practicing
physicians and patients.

Gene Expression Profiling of Melanocytic
Neoplasms
Beyond FISH, additional platforms have been
evaluated for their utility in the diagnostic assess-
ment of melanoma. Early studies using cDNA
microanalysis identified numerous differentially
expressed genes in the comparison between nevi
and melanomas, suggesting the potential utility of
transcriptomic analysis to assist in this differential
diagnosis. In 2013, Myriad Genetics launched the
myPath assay, consisting of a 23-gene expression
signature, as an adjunctive diagnostic test. The
assay consists of 14 genes involved in melanoma
pathogenesis (including a number of genes
involved in regulating the immune response)
(Table 2) and 9 housekeeping genes assessed by
qRT-PCR, with an algorithm that applies a diag-
nostic score which includes benign, malignant,
and indeterminate. The assay was initially applied
to a validation cohort of 437 neoplasms, with a
reported sensitivity of 90% and specificity of 91%
(Clarke et al. 2015). More recently, application of
the assay to 993 unambiguous cases determined
following a consensus review by three different
pathologists resulted in a reported sensitivity of
91.5% and specificity of 92.5% (Clarke et al.
2017). However, this does not include an addi-
tional 14% of cases that were excluded due to lack
of pathologist agreement, and 13% of the cases in
which an indeterminate test result was rendered,
reducing the sample set from an initial cohort of
1400 cases. Additional analysis suggested the
presence of false-positive cases in dysplastic
nevi and false-negative cases in lentigo maligna.

Separately, a two-gene classification method
has been launched by DermTech that uses an
adhesive patch that is applied to the melanocytic
neoplasm. In a recent study, the patch was applied
to 555 pigmented lesions, including a training set
of 157 and validation set of 398 cases, which then
underwent surgical biopsy and routine pathologic
evaluation (Gerami et al. 2017). Following RNA
extraction, the level of expression of two genes,
PRAME and LINC00518, was assessed using
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qRT-PCR. The two-gene assay yielded a sensitiv-
ity of 91% and specificity of 69% in the validation
set. Specifically, in 203 serially collected samples,
the assay achieved a sensitivity of 79% and spec-
ificity of 80%.

Immunohistochemical Analysis in the
Diagnosis of Melanocytic Neoplasms
IHC analysis has been a mainstay in the assess-
ment of melanocytic neoplasms, but largely in the
setting of distinguishing melanomas from tumors
of other lineage. However, in 2009, the utility of
IHC analysis was reported in the differential diag-
nosis of nevus versus melanoma (Kashani-Sabet
et al. 2009). A five-marker IHC assay (consisting
of ARPC2, FN1, RGS1, SPP1, and WNT2) was
developed and applied to a training set of 534
melanocytic neoplasms. IHC analysis revealed a

distinct pattern of marker expression in nevi ver-
sus melanomas, with decreasing marker expres-
sion in the base of nevi. An algorithm taking
advantage of marker expression levels as well as
a gradient score (from the top to the bottom of the
lesion) achieved a sensitivity of 91% and speci-
ficity of 95% in melanoma diagnosis. The diag-
nostic algorithm was also assessed and validated
in separate cohorts of dysplastic and Spitz nevi, in
melanomas arising in a nevus, and a prospectively
collected cohort of misdiagnosed melanocytic
lesions.

Separately, a number of centers have been
using IHC analysis of p16/CDKN2A as an
adjunct in the diagnosis of difficult to classify
cases. This is supported by the presence of bi-
allelic CDKN2A loss in a majority of melanomas
versus nevi identified by FISH, and by some

Table 2 Molecular diagnostic markers for melanoma by testing platform

Gene symbol Gene name Reference(s)

FISH markers

RREB1 (6p25) Ras-responsive element binding protein Gerami et al. (2009, 2012)

MYB (6q23) V-myb avian myeloblastosis oncogene homolog Gerami et al. (2009, 2012)

CCND1 (11q13) Cyclin D1 Gerami et al. (2009, 2012)

CDKN2A (9p21) Cyclin-dependent kinase inhibitor 2A (aka p16) Gerami et al. (2012)

qRT-PCR markers

PRAME Preferentially expressed antigen in melanoma Clarke et al. (2015, 2017)

S100A7 S100 calcium-binding protein A7 Clarke et al. (2015, 2017)

S100A8 S100 calcium-binding protein A8 Clarke et al. (2015, 2017)

S100A9 S100 calcium-binding protein A9 Clarke et al. (2015, 2017)

S100A12 S100 calcium-binding protein A12 Clarke et al. (2015, 2017)

PI3 Proteinase inhibitor 3 Clarke et al. (2015, 2017)

CCL5 Chemokine, C-C motif, ligand 5 Clarke et al. (2015, 2017)

CD38 CD38 antigen Clarke et al. (2015, 2017)

CXCL9 Chemokine, C-X-C motif, ligand 9 Clarke et al. (2015, 2017)

CXCL10 Chemokine, C-X-C motif, ligand 10 Clarke et al. (2015, 2017)

IRF1 Interferon regulatory factor 1 Clarke et al. (2015, 2017)

LCP2 Lymphocyte cytosolic protein 2 Clarke et al. (2015, 2017)

PTPRC Protein-tyrosine phosphatase, receptor-type, C Clarke et al. (2015, 2017)

SELL Selectin L Clarke et al. (2015, 2017)

IHC markers

ARPC2 Actin-related protein 2/3 complex, subunit 2 Kashani-Sabet et al. (2009)

FN1 Fibronectin 1 Kashani-Sabet et al. (2009)

RGS1 Regulator of G signaling protein 1 Kashani-Sabet et al. (2009)

SPP1 Secreted phosphoprotein 1 (aka osteopontin) Kashani-Sabet et al. (2009)

WNT2 Wingless-type MMTV integration site family, member 2 Kashani-Sabet et al. (2009)

CDKN2A Cyclin-dependent kinase inhibitor 2A (aka p16) Kashani-Sabet et al. (2009)
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studies suggesting differential p16 expression in
Spitz nevi versus melanomas (George et al. 2010),
which was not reproduced by other studies
(Garrido-Ruiz et al. 2010). Some pathology
reports include a description p16 immunostaining,
without scoring marker expression, without use of
a diagnostic algorithm, and with no documented
sensitivity or specificity of this approach. Impor-
tantly, dysplastic nevi and Spitz nevi may have
heterozygous loss in 9p21, further complicating
the use of this marker.

In conclusion, significant progress has been
made in the molecular assessment of melanocytic
neoplasms, resulting in the development of sev-
eral diagnostic assays to assist in the differential
diagnosis of melanoma versus nevus. Each assay
has its own advantages and disadvantages. In situ
assays (such as FISH and IHC) have the advan-
tage of enabling assessment of the entire lesion by
an observer, but are operator-dependent (with its
inherent variability) and can practically assay a
limited number of markers. qRT-PCR-based
assays have the advantage of assaying a larger
number of genes in a consistent, observer-inde-
pendent fashion, but are limited by the small
tumor volume that can be available in a significant
proportion of lesions and by the lack of assess-
ment of key histological aspects of the lesion (i.e.,
in situ versus invasive component) or by the con-
tamination of benign nevus cells in the setting of
melanoma arising in a nevus. In addition, there are
few (if any) markers shared between these differ-
ent assays. There are few studies that have com-
pared the performance of these assays in the same
tissue set. In one such study, a high degree of
discordance was found between the assays and
with the consensus pathologic diagnosis (Minca
et al. 2016). Thus, at the current time, none of
these assays is perfect, and additional advance-
ments in this setting are clearly warranted.

Prognostic Markers for Primary
Melanoma

Melanoma exhibits an unpredictable clinical
behavior, with the potential to metastasize to

virtually any distant site, either early or late in
the course of the disease. As a result, prognostic
marker research to define subsets of melanoma
patients with differential risk of metastasis and
death has been an area of active investigation.
Historically, this has relied on the identification
of histological features that can refine the risk for
an individual risk.

Molecular markers represent the next frontier
in melanoma prognosis research. Numerous indi-
vidual prognostic markers have been defined with
the potential ability to predict melanoma progno-
sis, and their inclusion is beyond the scope of this
chapter, but the reader is directed to a recent
review of these individual markers (Mandala and
Massi 2014). In addition, a meta-analysis of mel-
anoma prognostic marker research performed in
2009 identified certain individual markers as wor-
thy of further validation (Gould Rothberg et al.
2009b). In this section, we will focus our attention
on markers that have undergone a significant
degree of analysis and validation, which is pri-
marily the case with a number of multi-marker
signatures using qRT-PCR and IHC platforms.

Gene Expression Profiling of Melanoma
Prognostic Markers
The advent of microarray analysis resulted in a
number of studies that attempted to identify
molecular markers of aggressive melanoma. One
salient example of such a study was a pangenomic
oligonucleotide array analysis of 58 patients,
identifying the following markers that were pre-
dictive of melanoma prognosis using IHC analy-
sis: MCM3, MCM4, MCM6, KPNA2, and
geminin (Winnepenninckx et al. 2006).

More recently, a 31 gene profiling assay using
qRT-PCR was commercially launched as the
DecisionDx test by Castle Biosciences to predict
melanoma prognosis (Table 3). To date, a number
of retrospective analyses have been performed
and reported using this assay. One analysis
included tissues from 217 patients with primary
melanoma who underwent sentinel lymph node
biopsy (SLNB). Radial basis machine modeling
was performed to predict the risk of melanoma
metastasis, with the identification of low-risk
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Table 3 Molecular prognostic markers for melanoma by testing platform

Gene symbol Gene name Reference(s)

qRT-PCR markers

BAP1 BRCA1-associated protein 1 Gerami et al. (2015a,b) and Zager et al. (2018)

MGP Matrix G1a protein Gerami et al. (2015a,b) and Zager et al. (2018)

CXCL14 Chemokine, C-X-C motif, ligand 14 Gerami et al. (2015a,b) and Zager et al. (2018)

SPP1 Secreted phosphoprotein 1 (aka osteopontin) Gerami et al. (2015a,b) and Zager et al. (2018)

CLCA2 Chloride channel accessory 2 Gerami et al. (2015a,b) and Zager et al. (2018)

S100A8 S100 calcium-binding protein A8 Gerami et al. (2015a,b) and Zager et al. (2018)

BTG1 B-cell translocation gene 1 Gerami et al. (2015a,b) and Zager et al. (2018)

SAP130 Sin3A-associated protein, 130 kDa Gerami et al. (2015a,b) and Zager et al. (2018)

ARG1 Arginase 1 Gerami et al. (2015a,b) and Zager et al. (2018)

KRT6B Keratin 6B Gerami et al. (2015a,b) and Zager et al. (2018)

GJA1 Gap junction protein, alpha 1, 43 kDa Gerami et al. (2015a,b) and Zager et al. (2018)

ID2 Inhibitor of DNA binding 2 Gerami et al. (2015a,b) and Zager et al. (2018)

EIF1B Eukaryotic translation initiation factor 1B Gerami et al. (2015a,b) and Zager et al. (2018)

S100A9 S100 calcium-binding protein A9 Gerami et al. (2015a,b) and Zager et al. (2018)

CRABP2 Cellular retinoic acid-binding protein 2 Gerami et al. (2015a,b) and Zager et al. (2018)

KRT14 Keratin 14 Gerami et al. (2015a,b) and Zager et al. (2018)

ROBO1 Roundabout, Drosophila, homolog of, 1 Gerami et al. (2015a,b) and Zager et al. (2018)

RBM23 RNA-binding motif protein 23 Gerami et al. (2015a,b) and Zager et al. (2018)

TACSTD2 Tumor-associated calcium signal transducer 2 Gerami et al. (2015a,b) and Zager et al. (2018)

DSC1 Desmocollin 1 Gerami et al. (2015a,b) and Zager et al. (2018)

SPRR1B Small proline-rich protein 1B Gerami et al. (2015a,b) and Zager et al. (2018)

TRIM29 Tripartite motif containing 29 Gerami et al. (2015a,b) and Zager et al. (2018)

AQP3 Aquaporin 3 Gerami et al. (2015a,b) and Zager et al. (2018)

TYRP1 Tyrosinase-related protein 1 Gerami et al. (2015a,b) and Zager et al. (2018)

PPL Periplakin Gerami et al. (2015a,b) and Zager et al. (2018)

LTA4H Leukotriene A4 hydrolase Gerami et al. (2015a,b) and Zager et al. (2018)

CST6 Cystatin 6 Gerami et al. (2015a,b) and Zager et al. (2018)

KRT9 Keratin 9 Brunner et al. (2013)

DCD Dermicidin Brunner et al. (2013)

PIP Prolactin-induced protein Brunner et al. (2013)

SCGBID2 Secretoglobin family 1D member 2 Brunner et al. (2013)

SCGB2A2 Secretoglobin family 2A member 2 Brunner et al. (2013)

COL6A6 Collagen alpha 6 (VI) Brunner et al. (2013)

KBTBD10 Kelch repeat and BTB (POZ) domain containing 10 Brunner et al. (2013)

ECRG2 Esophageal cancer-related gene 2 Brunner et al. (2013)

HES6 Hairy and enhancer of split 6 Brunner et al. (2013)

IHC markers

ATF2 Activating transcription factor 2 Gould Rothberg et al. (2009a)

WAF1 Cyclin-dependent kinase inhibitor 1A (aka p21) Gould Rothberg et al. (2009a)

CDKN2A Cyclin-dependent kinase inhibitor 2A (aka p16) Gould Rothberg et al. (2009a)

FN1 Fibronectin 1 Gould Rothberg et al. (2009a)

CTNNB1 β-Catenin Gould Rothberg et al. (2009a)

RGS1 Regulator of G signaling protein 1 Kashani-Sabet et al. (2009, 2017)

NCOA3 Nuclear receptor coactivator 3 (aka SRC-3, AIB1) Kashani-Sabet et al. (2009, 2017)

SPP1 Secreted phosphoprotein 1 (aka osteopontin) Kashani-Sabet et al. (2009, 2017)
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(termed class 1) and high-risk (termed class 2)
subgroups. By Kaplan-Meier analysis, the gene
expression profile (GEP) was predictive of dis-
ease-free survival (DFS), distant metastasis-free
survival (DMFS), and overall survival (OS)
(Gerami et al. 2012). Multivariate Cox regression
analysis including GEP and SLNB, but apparently
no other factors, revealed a significant impact of
GEP and SLN status on DFS and DMFS, but only
of GEP on OS. In a different report, the GEP was
assessed in a training cohort of 107 cases and a
validation cohort of 104 cases (Gerami et al.
2009). In the validation set, the GEP was signifi-
cantly predictive of DFS, OS, and melanoma-spe-
cific survival (MSS) by Kaplan-Meier analysis.
Multivariate Cox regression performed on stage
I/II cases incorporating GEP, AJCC stage (IIB/
IIC), tumor thickness, ulceration, mitotic rate
(>1/mm2), and age revealed an independent
impact of GEP and AJCC stage on DFS. In the
most recently reported analysis to date (Zager et
al. 2018), the GEP was assessed in an independent
cohort of 523 primary melanoma patients with at
least 5 years of follow-up or documented relapse.
Class 1 patients had a 98% 5-year MSS rate,
compared with 78% for class 2 patients. Multivar-
iate Cox regression analysis of RFS and DMFS
examining GEP, tumor thickness, mitotic rate
(>1/mm2), ulceration, and SLN status revealed
an independent impact of tumor thickness, SLN
status, followed by GEP, for DFS and DMFS. One
major limitation of this assay is its strong depen-
dency on tumor cell content making it rather
unlikely of help particularly for the large number
of thin melanomas which eventually progress.

In addition, a separate nine-gene qRT-PCR-
based test termed MelaGenix has been offered
by NeraCare to predict melanoma prognosis.
The assay was developed on fresh-frozen melano-
mas and tested on a training subset of 38 cases, a
training cohort of 91 cases, and a validation cohort
of 44 cases (Brunner et al. 2013). A dichotomized
risk score was developed using this gene signature
and was significantly predictive of OS in the train-
ing cohort. Multivariate Cox regression analysis
of molecular risk score, AJCC stage, Clark level,
age, and sex, revealed AJCC stage, followed by
the risk score, as independently predictive of OS.

The signature-based GEP score was recently con-
firmed on formalin-fixed paraffin-embedded
(FFPE) melanoma and was shown to be indepen-
dent of hospital-specific tissue fixation procedures
and highly stable even in aged FFPE samples.
Interestingly, the MelaGenix GEP score is deter-
mined in whole FFPE tissue sections and does not
require microdissection of tumor tissue. Out of the
GEP score, seven genes originate from tumor
stroma making this assay particularly suitable for
analyzing the prognosis of primary cutaneous
melanomas.

Taken together, these GEP assays await evalu-
ation in prospectively collected cohorts with
defined eligibility. In addition, to date, a predictive
signal for either of the assays in identifying benefit
to any adjuvant therapy regimen for melanoma
(e.g., interferon alpha, ipilimumab, anti-PD-1
antibody, or targeted therapy) has not been dem-
onstrated. As a result, at this time, use of GEP
assays has not been recommended by the National
Comprehensive Cancer Network (NCCN) guide-
lines for melanoma patients outside of the setting
of a clinical trial.

IHC Analysis of Melanoma Prognostic
Markers

Beyond gene expression profiles, several putative
prognostic factors for melanoma have been
assessed for their predictive impact using IHC
analysis. Specifically, two multi-marker signatures
have been developed and undergone more exten-
sive analysis and will be discussed in detail here.

In 2009, Rimm and colleagues reported the
development and performance of a melanoma
prognostic model following an analysis of 38
candidate markers using the automated quantita-
tive analysis (AQUA) method (Gould Rothberg et
al. 2009a). Assessment of these markers in a tissue
microarray (TMA) cohort, including a training
sample of 192 cases, identified a consistent prog-
nostic signal for five markers (ATF2, p21/WAF1,
p16/CDKN2A, β-catenin, and fibronectin). An
algorithm was developed to combine marker
expression scores, and a dichotomized analysis
of low- versus high-risk subgroups based on
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marker expression showed a significant difference
in MSS between the two subgroups in the training
set. This differentiation was also observed in the
validation set, with a 10-year survival of greater
than 90% in the low-risk group versus 60% in the
high-risk group, albeit with a trend toward statis-
tical significance (P= 0.09). Multivariate analysis
of MSS that included the multi-marker score,
tumor thickness, age, anatomical site, sentinel
lymph node status, and receipt of nonsurgical
therapy revealed (in an order of descending statis-
tical significance) receipt of nonsurgical therapy,
age, sentinel lymph node status, the multi-marker
score, and tumor thickness to be significantly pre-
dictive of MSS.

Separately, also in 2009, Kashani-Sabet and
colleagues reported the performance of a three-
marker IHC assay incorporating the following
markers: NCOA3, SPP1, and RGS1 (Kashani-
Sabet, Venna, et al. 2009). This assay was
assessed initially in a TMA cohort of 395 primary
melanoma patients from the USA and separately
in tissue sections from a cohort of 141 patients
from two German centers. Marker expression was
assessed both by pathologist scoring and using a
digital imaging platform. An index was developed
in each cohort to combine marker expression
levels. In the US cohort, by multivariate logistic
regression analysis, the multi-marker expression
score was independently predictive of SLN status,
following age, but with an impact greater than
tumor thickness. Multivariate Cox regression
analysis of tumor thickness, SLN status, ulcera-
tion, Clark level, age, gender, anatomical location,
and multi-marker score revealed the multi-marker
score as the top factor predicting disease-specific
survival (DSS). A dichotomization of multi-
marker scores revealed a 5-year survival of 96%
in the low-risk group versus 60% in the high-risk
group. Separately, the multi-marker score was
also independently predictive of DSS in the Ger-
man cohort, surpassing tumor thickness and other
available factors.

More recently, this three-marker IHC assay
was assessed on tissues collected as part of the
Eastern Cooperative Oncology Group trial E1690
examining the utility of two doses of interferon
alpha versus observation in patients with resected,

high-risk melanoma, including eligible patients
with a tumor thickness of greater than 4 mm or
node-positive disease (Kashani-Sabet et al. 2017).
The tissue cohort from the E1690 trial included
both primary melanoma specimens and lymph
node metastases. IHC analysis was performed to
determine expression of NCOA3, SPP1, and
RGS1, and marker analysis was assessed using a
digital imaging platform. Once again, an index
was developed to combine marker analysis and
was dichotomized to split the cohort into low-risk
and high-risk subgroups. By Kaplan-Meier anal-
ysis, the multi-marker score was significantly pre-
dictive of relapse-free survival (RFS) and OS in
the entire cohort. By stepwise multivariate Cox
regression analysis, multi-marker score was the
only factor significantly predictive of RFS and
was followed by tumor thickness as the only fac-
tors significantly predictive of OS in the entire
cohort. When a potential interaction between
marker expression and treatment assignment was
analyzed, the interferon-treated arms (combining
both low-dose and high-dose cohorts) had a sig-
nificantly improved RFS versus the observation
arm in the molecularly defined low-risk subgroup.
These results demonstrated the independent prog-
nostic significance of this assay in a prospectively
collected cohort amassed in a cooperative group-
led clinical trial and identified a potential subset of
patients that could benefit from systemic therapy
with IFN. Additional validation studies of this
IHC assay are currently planned in other clinical
trial cohorts.

In conclusion, significant progress has also
been made in the development of molecular prog-
nostic markers for primary melanoma. This effort
has been facilitated by genome-wide profiling
efforts of distinct stages of melanoma progression
that have identified a plethora of putative prog-
nostic markers. However, the development of
molecular prognostic markers for melanoma has
been hampered by the lack of large, well-anno-
tated tissue cohorts of primary melanoma patients
with sufficient follow-up. For the promising
multi-marker assays developed, further develop-
ment has been hampered by the lack of sufficient
prospective validation of these assays. Lastly,
while accurately predicting melanoma prognosis
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would be useful, current treatment guidelines do
not recommend aggressive radiographic surveil-
lance in high-risk patient cohorts. As a result,
identifying a high-risk cohort may not be clini-
cally actionable. However, given the recent devel-
opment of landmark, effective adjuvant therapies
for melanoma (both immunotherapies and
targeted therapies), these assays would have their
greatest clinical utility in identifying subsets of
patients that derive either the maximum benefit
or, alternatively, no benefit from routinely
performed clinical interventions.

Tumor Environment-Based
Non-soluble Biomarkers

Melanomagenesis and tumor progression are a
complex and dynamic process that is manifested
by tumor heterogeneity and a myriad of yet to be
fully understood interactions within the tumor
microenvironment. Historically, the most robust
diagnostic and prognostic parameters in cutane-
ous melanoma have been primary tumor charac-
teristics detected histopathologically on routinely
processed hematoxylin and eosin-stained tissue
sections. These factors include tumor thickness,
ulceration, proliferation activity, lymphovascular
invasion, and the presence of micrometastases. In
the last two decades, tumor-associated molecular
biomarkers have been identified, individually and
in combination, that correlate with diagnosis and
prognosis. Most recently, attention has been given
to non-tumor cell markers in the primary tumor
environment that facilitate local tumor progres-
sion and metastasis. In addition to tumor-infiltrat-
ing lymphocytes and other immune factors,
biomarkers in the tumor stromal environment
may aid in diagnosis, predict prognosis, and
even serve as therapeutic targets (Jacobs et al.
2012). It is clear that the tumor microenvironment
is shaped by the cross talk between mesenchymal
stromal cells and immune cells (English 2013).
This realm will likely serve as the next frontier of
effective melanoma therapy.

Melanoma tumor cell and immune cell interac-
tions have been known to correlate with prognosis
since the late 1980s when Clark et al. identified an

improved prognosis in patients with primary cuta-
neous melanomas that had robust “brisk” lympho-
cytic infiltrates (Clark et al. 1989). Further
refinements of this histopathological factor
revealed that there is a complex interplay between
the distribution and density of the infiltrates and
potential for tumor immune escape or tumor sup-
pression (Clemente et al. 1996). Most recently,
chemokines and their receptors have been described
to orchestrate melanoma cell and immune cell
dynamics (Neagu et al. 2015). Chemoattractant
cytokines were initially identified as factors that
recruited leukocytes in inflammatory and immune
responses (Cyster 1999). It is now known that
chemokines play a role in a broad range of mela-
noma pathways to tumor growth and metastasis
including maintenance of tumor-initiating cells,
cell proliferation, epithelial-mesenchymal transi-
tion-like processes, angiogenesis, senescence, epi-
genetic responses to oxidative stress, and immune
evasion (Sarvaiya et al. 2013).

Tumor-Initiating Cells

A relationship between melanoma-initiating cells
and antitumor immunity has been identified
(Schatton et al. 2010). Stem cells, also known as
tumor-initiating cells, are capable of self-renewal
and differentiation and are responsible for tumor
development and therapeutic resistance (Schatton
et al. 2008). The ATP-binding cassette (ABC)
efflux transporter ABCB5 is a marker of tumor-
initiating cells that has been shown to maintain
slow cycling chemoresistant cells through a com-
plex cytokine signaling pathway that includes
IL1-beta, IL-8, and CXCR1, thus playing a role
in stem cell maintenance and tumor growth
(Wilson et al. 2014). Another marker of mela-
noma-initiating cells, CD133 (human prominin
1), is a transmembrane pentaspan glycoprotein
that plays a role in vasculogenic mimicry and
formation of a vascular niche (Lai et al. 2012). It
is likely that a restricted number of tumor cells
may possess the capacity to modulate tumor-
directed immune responses; clearer understanding
of these processes will aid in the development of
future therapeutic strategies.
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Epithelial-Mesenchymal Transition

Melanoma has been shown to progress through a
distinct epithelial-mesenchymal transition (EMT)-
like process (Caramel et al. 2013). This transition
to cells with enhanced migration, invasiveness,
resistance to apoptosis, and production of extra-
cellular matrix components is a plastic phenome-
non. Tumor cells may cycle between a
differentiated state (associated with increased
ZEB2 and Slug) and an oncogenic state (with
high levels of ZEB1 and twist) (Li et al. 2015).
Additionally, tumor cells may alter the environ-
mental niche through release of miRNA containing
melanosomes into fibroblasts (Dror et al. 2016). It
is likely that the plasticity of this transition
between differentiated and oncogenic states con-
tributes to the tumor heterogeneity characteristic
of melanoma. Several factors involved in this
transition have been explored as potential bio-
markers, including the transcription factor SNAI1
(snail1) which may lead to reduced E-cadherin
expression and induction of N-cadherin (Miller
and Mihm 2006). Indeed, expressions of the
EMT-associated proteins N-cadherin, osteopontin,
and SPARPC/osteonectin are significantly associ-
ated with the risk of metastasis (Alonso et al.
2004). Additionally, twist1 and twist2 are regula-
tory proteins that induce EMT and may also have
a role in limiting oncogene-induced senescence
(Ansieau et al. 2008). On the other hand, mecha-
nisms of senescence induction include activation
of DNA damage signaling by oncogenes and short
telomeres (Bennett 2008). The irreversible arrest
of proliferation associated with senescence occurs
through the p53 and p16-pRB tumor suppressor
pathways (Campisi and d’Adda di Fagagna 2007).
In addition to adhesion marker interactions and
interference with senescence, stromal-derived
proteases may modulate antitumor immune
responses. Melanoma-associated fibroblast pro-
duction of metalloproteinases including MMP-7
decreases tumor cell susceptibility to natural killer
cell-mediated tumor necrosis (Ziani et al. 2017).
Immunohistochemical analysis of MMP-7 reveals
increased expression in melanoma that correlates
with tumor thickness and adverse prognosis
(Kawasaki et al. 2007). These EMT-like processes

likely advance melanoma progression through
promoting invasion and a proliferative advantage
(Li et al. 2015).

Epigenetic Changes

Epigenetics is an important mechanism by which
gene expression may be modified in cancer. DNA
methylation is one of the epigenetic hallmarks that
is most studied. Hypermethylation of CpG islands
in the promoter region leads to gene silencing and
has been described for genes throughout mela-
noma progression and metastasis (Rothhammer
and Bosserhoff 2007; Schinke et al. 2010;
Tanemura et al. 2009). Loss of 5-hydroxymethyl-
cytosine (5-hmC) in melanoma has been
described as a fundamental epigenetic event that
correlates with tumor progression and is associ-
ated with decreased expression of the enzyme ten-
eleven translocase (TET) (Lian et al. 2012). Epi-
genetic regulation of CD73 has also been
described (Wang et al. 2012). CD73 is an
ectonucleotidase expressed on Tregs that along
with adenosine (ADO) has been implicated in
tumor-associated immunosuppression. ADO
levels in the extracellular microenvironment are
usually low; however, high levels have been iden-
tified at the tumor stromal interface. CD73+ is
associated with increased ADO production and
has been correlated with poor prognosis (Wang
et al. 2012). These examples of epigenetic modi-
fications in melanoma are but a few of those that
have been recently described. As techniques to
detect epigenetic biomarkers evolve, this field
may provide important novel information regard-
ing prognosis and potential response to therapy
(Greenberg et al. 2014).

Immune Escape Mechanisms

Recruitment of suppressor immune cells, includ-
ing Tregs and tumor-associated macrophages,
may facilitate tumor cell evasion of the immune
system (Buchbinder and Hodi 2015). Insufficient
co-stimulation of the immune system by tumor
cells limits antitumor immunity. For example,
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CTLA-4 is a key inhibitory receptor that blocks
co-stimulation. CTLA-4 blockade with
ipilimumab is an effective therapy that increases
antitumor immune responses through enhanced
effector T-cell function and inhibition of Treg
activity. The impressive clinical responses seen
with immunotherapy, in particular anti-CTLA-4
and anti-PD-1, are based on the critical role the
immune system plays in melanoma tumor pro-
gression. However, many patients’ tumors are
refractory to these therapies. Dendritic cell-medi-
ated tumor evasion mechanisms may contribute to
this; tolerized dendritic cells drive Treg differen-
tiation and may establish a milieu of immune
privilege. Tumor and stromal cell-derived cyto-
kines, including TGF-beta and prostaglandin-E2,
may exert immunosuppressive effects by contrib-
uting to the establishment of immune tolerance
(Balsamo et al. 2009; Pietra et al. 2012). Similarly,
indoleamine (2,3)-deoxygenate (IDO) generates
an immunosuppressive tumor microenvironment
by suppressing effector T cells and actively
tolerizing the tumor microenvironment by pro-
moting Treg development (Holtzhausen et al.
2015). The Wnt-beta-catenin signaling pathway
promotes dendritic cell tolerization through
induction of IDO. In sentinel lymph nodes, a
decrease in interdigitating dendritic cells, anti-
gen-presenting cells involved in T-cell activation,
has been associated with a poor prognosis
(Cochran et al. 2004). Melanoma metastasis in
sentinel lymph nodes is associated with a higher
frequency of Foxp3+ CD4+ CD25 high Tregs and
IDO-expressing dendritic cells (Lee et al. 2011).
Increased IDO expression by dendritic cells in
sentinel lymph nodes has been shown to correlate
with adverse prognosis (Speeckaert et al. 2012).
This cytokine microenvironment is likely to deter-
mine the functional immune status of the sentinel
lymph nodes. As such, these complex stromal
immune interactions remain a topic of intense
investigation.

There are many other pathways that are being
elucidated in the immune evasive mechanisms
employed by melanoma. For example, the surface
glycoprotein CD47 is a regulator of melanoma
immune evasion. This transmembrane integrin-
associated protein is present on all normal cells

and upregulated in some melanoma cells; ligands
include thrombospondin-1 (TSP1) and signal-reg-
ulatory protein alpha (SIRP-alpha) (Brown and
Frazier 2001). Increased expression of CD47 in
melanoma has been associated with increased risk
of metastasis and poor survival (Fu et al. 2017).
SIRP-alpha is expressed on myeloid cells includ-
ing dendritic cells; binding of CD47 to SIRP-
alpha leads to reduced macrophage phagocytosis
allowing melanoma to evade elimination by
innate immunity. Indeed, CD47 expression on
tumor cells has been coined a “don’t eat me”
signal enhancing tumor cell survival by inhibiting
phagocytosis by macrophages (Jaiswal et al.
2009; Willingham et al. 2012). TSP1 is highly
expressed in tumor stroma and has many func-
tional interactions other than with CD47. CD47-
TSP1 interactions have been associated with mod-
ulation of nitric oxide (NO) signaling and vascular
responses (Isenberg et al. 2006). Functional
CD47-TSP1 interactions have also been associ-
ated with an increased capacity for self-renewal
when CD47 is highly expressed on tumor-initiat-
ing cells (cancer stem cells) (Kaur and Roberts
2016). Initially identified as an integrin-associated
protein, CD47 also is necessary for ligand recog-
nition by a variety of integrins including
alphavbeta3, alpha2beta1, and alpha4beta1
(Brown and Frazier 2001). These studies and
many others have identified the CD47-SIRP-
alpha interaction as a promising innate immune
checkpoint; however, there are important mecha-
nistic issues still to be resolved. This is a rapidly
expanding field which will likely have a major
impact onmelanoma therapy (Matlung et al. 2017).

In summary, the process of melanoma tumori-
genesis, tumor progression, and metastasis is a
dynamic interplay between the tumor and the
surrounding microenvironment including stromal
and immune elements. As we learn more about
these interactions, it is likely that melanoma
microenvironment biomarkers will be clinically
deployed. Future investigations of melanoma
microenvironment biomarkers will face the same
challenges posed in the past: it is critical to
the understanding of these pathways that tissue-
based studies are performed that identify cell sub-
sets. This will require an ever-diligent attention
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to tumor sample management and annotation.
Additionally, the tissue-based technologies that
provide for simultaneous detection of multiple
biomarkers localized to cell subsets and individ-
ual cells will be required for a complete under-
standing of the complex tumor, immune, stromal
interactions in melanoma tumor progression.

Soluble Biomarkers

Lactate Dehydrogenase (LDH)

At present, the most widely used prognostic
serum biomarker in the clinical care of melanoma
patients is lactate dehydrogenase (LDH). LDH is
an unspecific biomarker indicating high metabo-
lism and/or high tumor load in a variety of tumor
entities including melanoma (Manola et al. 2000;
Egberts et al. 2012). Studies comparing different
serological markers including LDH, S100B, and
MIA in multivariate analysis showed LDH as the
strongest independent prognostic factor in stage
IV melanoma patients (Deichmann et al. 1999).
Due to its high prognostic significance together
with easy, cost-efficient, and widely distributed
detection techniques, serum LDH is the only
molecular marker so far that has been incorpo-
rated into the melanoma staging and classification
system of the AJCC, beginning with the edition of
2001 (Balch et al. 2001a). The implementation of
serum LDH into this classification system took
place after LDH was demonstrated as an indepen-
dent predictor of overall survival in a very large
cohort of nearly 8000 patients with advanced met-
astatic melanoma (Balch et al. 2001b). This cohort
showed a 1-year survival rate of 65% for patients
with normal serum LDH, whereas patients with
elevated LDH levels had a significantly reduced
1-year survival rate of 32% only. Serum LDH is
therefore commonly used in the clinical routine of
melanoma patient care, in particular in patients
with advanced metastatic disease. It serves as a
reliable prognostic marker before the start of a
new systemic therapy and in regular intervals
thereafter in order to monitor treatment response.
It is moreover used as a common stratification
parameter in randomized clinical trials testing

therapeutic interventions in advanced inoperable
disease. Due to its low specificity, false-positive
results of elevated LDH levels are common and
originate from conditions like hemolysis, muscle
or liver disease, injuries, or other pathologies. In
patients with low or clinically undetectable tumor
burden, LDH serum levels are generally normal;
thus, serum LDH cannot be recommended as a
marker of minimal residual disease or early
relapse (Eisenstein et al. 2018).

S100B

The S100 protein is a 21-kd thermolabile acidic
dimeric protein which was originally isolated
from tissue of the central nervous system. It con-
sists of two subunits, alpha and beta, in different
pairings. S100 is of functional importance for the
assembly of microtubules and interacts in a cal-
cium-dependent manner with the tumor suppres-
sor gene p53. The beta subunit (S100B) is
expressed in cells of the central nervous system
as well as in cells of the melanocytic lineage.
Therefore, the serum concentration of S100B has
been described as a biomarker of central nervous
system damage (Persson et al. 1987) as well as of
the presence of melanoma metastasis (Guo et al.
1995). The serum level of S100B is an indicator of
tumor burden and therefore correlates with the
clinical stage of melanoma patients. With regard
to prognosis, S100B is a useful marker in mela-
noma patients with presence of metastases
(Schultz et al. 1998; Hauschild et al. 1999a), but
fails to provide prognostic significance in patients
with microscopic disease, as well as in patients
who are clinically tumor-free after surgery (Guo et
al. 1995; Acland et al. 2002; Egberts et al. 2010).
However, a meta-analysis of 22 studies including
a total of 3393 melanoma patients revealed S100B
as a significant prognostic factor in all clinical
stages of melanoma, even in stages I–III
(Mocellin 2008). Despite S100B is a melanoma
serum marker of higher specificity than LDH, it
still has limitations not only by elevated levels due
to central nervous system damage but also by liver
or cardiovascular diseases (Vaquero et al. 2003; Li
et al. 2011). The stringent correlation of serum

Biomarkers for Melanoma 89



S100B concentrations with tumor burden, how-
ever, renders it a useful marker for the monitoring
of treatment response in patients with advanced
metastatic melanoma (Hauschild et al. 1999b;
Egberts et al. 2012); see Fig. 2. Its use in the
routine clinical care of melanoma patients is still
mainly restricted to European countries.

Other Serum Biomarkers (CRP, FGF,
IL-8, MIA, SAA, VEGF, YKL-40)

Worldwide, the serum biomarker which is most
widely implemented into the clinical routine of
melanoma patient care is LDH. S100B is the
second often used serum biomarker and is of
similar prognostic significance as LDH with
higher specificity for melanoma versus other can-
cer entities.

Various other serum factors have been investi-
gated for their prognostic significance in mela-
noma. Up to now, none of them revealed a
higher sensitivity-specificity profile than LDH or
S100B. An extensively studied serum protein
named melanoma inhibitory activity (MIA) was

originally detected in melanoma cell culture
supernatants (Bogdahn et al. 1989) and was
shown to exert an important role in cell-matrix
interaction, invasion, and metastasis (Blesch et al.
1994). Studies comparing MIA and S100B dem-
onstrated that S100B is superior to MIA in its
value as an early indicator of tumor progression,
relapse, or metastasis (Deichmann et al. 1999;
Krähn et al. 2001). Proangiogenic factors like
vascular endothelial growth factor (VEGF), fibro-
blast growth factor (FGF), and interleukin-
8 (IL-8) have been demonstrated to reveal prog-
nostic significance in case of elevated serum
levels (Ugurel et al. 2001a; Sanmamed et al.
2014; Yuan et al. 2014). Besides, proteins associ-
ated with antigen presentation and recognition
like HLA molecules, as well as receptor or ligand
molecules associated with anticancer immune
response like NKG2D, CEACAM, and others,
have been described as soluble variants detectable
in sera from melanoma patients and correlating to
the patients’ prognosis (Ugurel et al. 2001b;
Rebmann et al. 2002; Paschen et al. 2009; Sivan
et al. 2012). Members of the acute phase proteins,
like C-reactive protein (CRP) and serum amyloid

Fig. 2 Monitoring of the
course of melanoma disease
by the serum marker
S100B. (From Ugurel
2005)
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A (SAA), are associated with inflammatory pro-
cesses and have also been described as pro-
gnostically significant serum factors in
melanoma (Deichmann et al. 2004; Findeisen et
al. 2009). YKL-40, a chitinase-like glycoprotein
produced by cancer cells as well as by inflamma-
tory cells, has recently been described as a prog-
nostic marker in melanoma, giving promising
results even in tumor-free early-stage patients
(Schmidt et al. 2006). However, in comparative
studies, YKL-40 showed an inferior prognostic
value as compared to S100B (Egberts et al.
2012). Moreover, YKL-40 was reported to lose
its prognostic significance in patients treated with
interferons (Krogh et al. 2016). None of the
abovementioned serum markers succeeded in
reproducible superiority compared to LDH and/
or S100B, resulting in no further development of
these biomarkers into clinically applicable test
systems.

Circulating Tumor Cells (CTCs)

Like cells of other cancer entities, melanoma cells
are known for their ability to leave their tissue of
origin and enter the blood stream as free floating
cells. These circulating tumor cells (CTCs)
become detectable in blood draws and may serve
as biomarkers of tumor burden, prognosis, and
treatment response. The detection and capture of
CTCs in the blood stream mainly rely on surface
protein or antigen expression. However, in mela-
noma, this approach is limited due to the inter- as
well as intraindividual heterogeneity of the anti-
gen profiles presented by the patients (Khoja et al.
2014; De Souza et al. 2017). Thus, various anti-
gens like tyrosinase, Melan-A/MART-1, gp100,
MAGE-3, and EpCAM have been used alone or in
different panel combinations to identify CTCs in
melanoma patients. Moreover, various techniques
have been used to capture and quantify the iden-
tified CTCs including magnetic or electrophoretic
separation systems, microfluidics-based tech-
niques, filtration approaches, and cell exclusion
systems (Khoja et al. 2015; De Souza et al. 2017;
Lim et al. 2018). This inconsistency in methodol-
ogies resulted in a high variation of results

reported of CTC numbers in melanoma patients
of different disease stages and led to a question-
able clinical applicability of CTC detection and
quantification as a biomarker in melanoma (Nezos
et al. 2011). However, CTCs have been demon-
strated in multiple studies using non-comparable
methodologies to be of prognostic value in mela-
noma patients; see Fig. 3. A meta-analysis of 53
studies describes a correlation of the presence of
CTCs in a patient’s blood stream with advanced
disease stage and impaired progression-free as
well as overall survival (Mocellin et al. 2006).
One study described that melanoma patients
with a positive detection of CTCs after comple-
tion lymph node dissection revealed a higher risk
of disease recurrence (Mocellin et al. 2004).
Moreover, CTC numbers were shown to be of
use in the monitoring of systemic therapies
(Khoja et al. 2013). Despite these promising
results, the clinical use of CTC detection and
quantification as a reliable biomarker will remain
limited until techniques will be found providing
valid and reproducible results applicable to a
majority of patients.

Circulating Tumor DNA (ctDNA)

The abovementioned problems in the capture and
quantification of CTCs could be overcome by the
indirect detection of tumor cells via DNA
sequences which are present in tumor cells only
and not in benign cells and tissues. In melanoma,
the common driver gene mutations like in BRAF
or NRAS are perfectly suited for this purpose. The
circulating tumor DNAs (ctDNA) mainly origi-
nate from apoptotic or necrotic circulating tumor
cells and have been shown to be detected and
quantified in peripheral blood samples
(Schwarzenbach et al. 2011). To this end, plasma
samples are superior to serum samples due to a
greater extent of cell lysis during the clotting
process of serum (Sorber et al. 2017). Due to the
low abundance of ctDNA, its detection requires
highly sensitive and specific techniques. Thus,
modern detection technologies like digital droplet
PCR or allele-specific ligation PCR have signifi-
cantly improved the detection rate of ctDNA in
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different tumor entities. Additionally, targeted
sequencing techniques like amplicon sequencing
or hybrid-capture sequencing have been used,
with the disadvantage of high data volumes to be
processed after each analysis (Newman et al.
2014).

Both the presence and the quantity (copy num-
ber) of ctDNAmay serve as prognostic markers in
cancer patients. In melanoma, peripheral blood
samples from patients with known tumor tissue
BRAF and NRAS mutational status have been
analyzed for these mutations in ctDNA in various
studies, revealing an association of positive
results with impaired prognosis and reduced sur-
vival (Huang and Hoon 2016). ctDNA frequen-
cies were associated with tumor burden, location
of metastasis, and tumor cell metabolism (Lim et
al. 2018). In melanoma, patients in early disease
stages are often negative for ctDNA detection
(Daniotti et al. 2004). Nevertheless, in patients in
advanced disease stages and clinically detectable
tumor burden, ctDNA has been shown to be a
useful marker in the monitoring of treatment
response and outcome. Patients starting with a

blood draw testing mutation-positive into a treat-
ment with BRAF/MEK inhibition or anti-PD1
immunotherapy revealed impaired treatment out-
comes compared to patients who were mutation-
negative at baseline (Gray et al. 2015). Moreover,
patients starting with mutation-positive ctDNA
results but turning mutation-negative during treat-
ment were superior in their treatment outcomes
compared to patients who stayed mutation-posi-
tive during the continuous treatment course (Lee
et al. 2017). However, the concordance between
peripheral blood and tumor tissue is not yet satis-
factory in all cases. Thus, matched plasma and
tumor tissue samples from melanoma patients
showed a 68% concordance only for the detection
of TERT promoter mutations in ctDNA versus
DNA extracted from tissue (McEvoy et al. 2017).

Besides of mutations, tumor-specific gene
methylation patterns of ctDNA are detectable in
the peripheral blood and have been shown to serve
as biomarkers in cancer patients (Warton and
Samimi 2015). Tumor suppressor genes are
known to be frequently inactivated by methyla-
tion as an early event in the etiopathogenesis
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Fig. 3 Prognostic utility of CTCs in blood of patients with
melanoma. Kaplan-Meier curves of relapse-free survival of
CTCmonitoring in patients withAJCC stage III melanoma in
a multicenter trial of biochemotherapy treatment. After treat-
ment, relapse-free survival decreased significantly when

blood specimens were qRT (real-time RT-PCR)–positive for
MART-1, GalNAc-T, and/or MAGE-A3 ( p = 0.0003,
p < 0.0001, and p < 0.0001, respectively). The level of
decrease was directly correlated with the number of positive
markers ( p < 0.0001). (From Koyanagi et al. 2005)
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of multiple cancer entities including melanoma
(Calapre et al. 2017). Thus, it has been shown
that the methylation of tumor suppressor genes
like ras association domain family 1 isoform A
(RASSF1A), retinoic acid receptor beta 2 (RAR-
b2), or O-6-methylguanine-DNA methyltransferase
(MGMT) is associated with an inferior survival and
therapy outcome in melanoma patients (Hoon et al.
2004; Mori et al. 2005, 2006); see Fig. 4.

Circulating MicroRNA (miRNA)

MicroRNAs (miRNAs) are short, noncoding
RNA molecules which are functional in the regu-
lation and modulation of gene transcription, post-
transcription, and epigenetic expression. miRNAs
are mainly actively secreted by their cells of origin
and not passively released after cell apoptosis or
necrosis like ctDNAs (Chen et al. 2012). Addi-
tionally, miRNAs in comparison to ctDNAs are
relatively stable in the blood stream since they are
commonly packed in vesicles or bound to proteins
or lipoproteins (Vickers et al. 2011) and therefore
are interesting biomarker candidates (Mitchell et
al. 2008). Circulating miRNA expression in blood

samples from melanoma patients has been shown
to exert diagnostic, prognostic, and predictive rel-
evance (Aftab et al. 2014; Fattore et al. 2017). In
many studies, this correlation was not found for
only one single miRNA (Kanemaru et al. 2011)
but for distinct miRNA profiles (Friedman et al.
2012). A recent study described a seven-miRNA
panel (MELmiR-7) out of 17miRNAs to correctly
discriminate between melanoma patients of all
disease stages and healthy controls with a sensi-
tivity of 93% and a specificity of 82% (Stark et al.
2015). Moreover, the authors reported that this
miRNA panel characterized the patients’ overall
survival with higher accuracy than the serum
markers LDH and S100B. Notably, the majority
of miRNAs are not tumor-specific, but may also
be expressed in inflammation, immune activation,
and other conditions (Cortez et al. 2011). As
another disadvantage, miRNAs in serum or
plasma have to be quantified in relation to house-
keeping miRNAs like U6, miR-451, or miR-16,
which might be deregulated in cancer patients
(Aftab et al. 2014). For translating the promising
results of miRNA detection and quantification
into clinical use in the routine care of melanoma
patients, validation studies in large patient
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Fig. 4 Prognostic utility of circulating methylated DNA
in blood of patients with melanoma. Kaplan-Meier sur-
vival curves of patients with stage IV melanoma undergo-
ing biochemotherapy. Correlation of prebiochemotherapy
serum methylation of at least one marker with overall
survival (logrank test p= 0.01). Patients with serum meth-
ylation of only RAR-β2, methylation of only RASSF1A, or

methylation of at least one marker had significantly worse
overall survival compared with patients who had no meth-
ylated markers (logrank test p = 0.010). � 1 methylated
marker, patients with serum methylation of at least one
marker; nonmethylated, patients with no serum methyla-
tion of genes. (From Mori et al. 2005)

Biomarkers for Melanoma 93



cohorts, preferably accompanying a clinical trial,
are needed.

Circulating Immune Cells

The frequency of immunologically active cells in
the blood stream has been analyzed for an associ-
ation with the course of disease and outcome of
cancer patients for a long time. Recent advances in
suitable technologies like multiparametric flow
cytometry allow the quantification of multiple
subsets of circulating immune cells in one single
blood sample. In melanoma, immune cell fre-
quencies are particularly appealing as biomarkers
for immunotherapeutic strategies. Thus, it has
been shown for patients treated with the anti-
CTLA-4 mAb ipilimumab that low peripheral
blood baseline counts of monocytes and mye-
loid-derived suppressor cells (MDSCs), as well
as high counts of eosinophils, lymphocytes, and
regulatory T cells (Tregs), were associated with a
favorable survival of the corresponding patients
(Martens et al. 2016). For anti-PD-1 treatment
with pembrolizumab, it has been shown that
high numbers of eosinophils and lymphocytes
are strongly correlated with a favorable treatment
outcome and prolonged survival (Weide et al.
2016). Another recent study of T-cell subsets in
the peripheral blood of melanoma patients before
and after treatment with pembrolizumab revealed
a change in the subset of exhausted CD8+ T cells,
which in relation to the patients’ tumor burden
was correlated with treatment response (Huang
et al. 2017). Since the analysis and quantification
of immune cell subsets are a straightforward
methodology and results are quickly achieved, it
might gain more attention in the near future as a
useful biomarker in melanoma patients, particu-
larly in association with immunotherapy.

Treatment-Associated Biomarkers

As large bodies of evidence have been generated
supporting the use of BRAF inhibitor-based ther-
apy and immune checkpoint antibody therapy in
metastatic melanoma, extensive retrospective

analyses have been undertaken to understand
which patient subpopulations are more or less
likely to derive benefit. One theme that has
emerged from this research is that previously
known prognostic factors have even more signif-
icance as predictors of clinical benefit from ther-
apy. As this has borne out to be true for both
targeted therapy and immunotherapy in mela-
noma, we will consider this evidence as it pertains
to both types of therapy in this chapter. Molecular
features that predict response or resistance to
immune checkpoint antibody therapy are
discussed in detail in the chapters dealing with
this treatment modality. Therefore, molecular pre-
dictors of treatment outcome to BRAF inhibitor-
based therapy will be further developed here.

Serum Lactate Dehydrogenase (LDH)

Serum LDH has been long recognized as a prog-
nostic factor in metastatic melanoma and a com-
ponent of the AJCC staging system. In the 2009
AJCC analysis, patients with elevated serum LDH
had a median overall survival of less than 1 year
compared to approximately 2 years in the patients
with normal serum LDH (Balch et al. 2009). And,
whereas only 10% of patients with elevated serum
LDH survive to 5 years, 25% of patients with
normal LDH survived to that landmark. Notably,
this analysis did not just for sites of metastatic
disease, also known to have prognostic signifi-
cance, with comparable differences in survival
time when comparing patients with skin, subcuta-
neous, distant lymph node metastases versus
those with visceral organ involvement beyond
the lung. Considering baseline serum LDH values
in relation to outcome on BRAF inhibitor-based
targeted therapy and immune checkpoint antibody
therapy, there is a similar magnitude of difference
in intermediate and long-term outcomes. With
long-term follow-up of the vemurafenib single-
agent phase III trial, the median overall survival
in the normal LDH subpopulation was
18.1 months compared to 9.6 months in those
with elevated LDH (Chapman et al. 2017). And
with mature follow-up data out to 4 years, 22.8%
of patients with normal LDH were still alive
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versus 9.0% of patients with elevated LDH at
baseline.

For BRAF/MEK combination therapy, the
largest available database exists for dabrafenib/
trametinib with regard to outcomes in patient sub-
populations. Among 563 patients treated with
dabrafenib/trametinib across to phase III trials,
the 2-year progression-free survival rate was
39% for those with normal baseline serum LDH
and 14% for those with elevated LDH (Long et al.
2016). The rates of overall survival at 2 years for
these two groups were 66% and 27%, respec-
tively. This difference was sustained with 3-year
outcomes: 55% overall survival likelihood for
normal LDH patients versus 22% in elevated
LDH patients. In the vemurafenib/cobimetinib
phase III trial, similarly disparate outcomes were
seen based on serum LDH. Patients with normal
serum LDH at baseline had a median progression-
free survival of 13.4 months versus 8.2 months in
those with elevated LDH. Median overall survival
in the normal LDH subgroup had not been defined
as of the most recent, updated analysis but was
clearly superior to the 14.8-month median overall
survival in the elevated LDH subgroup.

In the three-arm randomized trial of
ipilimumab/nivolumab versus nivolumab versus
ipilimumab, 3-year outcomes varied markedly by
baseline serum LDH value (Wolchok et al. 2017).
For combination ipilimumab/nivolumab therapy,
the 3-year progression-free survival rate for
patients with normal serum LDH was 45%, 28%
for those with elevated serum LDH, and 17% for
those with a baseline LDH that was two times the
upper limit of normal. For nivolumab mono-
therapy, the rates of 3-year progression-free sur-
vival were 37%, 21%, and 11% for these same
subgroups. And, for ipilimumab monotherapy,
they were 14%, 3%, and 0%, respectively. For
overall survival, ipilimumab/nivolumab combina-
tion therapy produced a 66% 3-year overall sur-
vival rate in normal LDH patients compared to
44% and 31% in those with elevated LDH or two
times the upper limit of normal. Nivolumab
monotherapy was associated with a 61% likeli-
hood of survival at 3 years versus 34% in those
with elevated LDH and 14% in the two times
upper limit of normal subgroup. Lastly,

ipilimumab monotherapy yielded survival rates
of 42%, 20%, and 7% across these three
subgroups.

Burden of Metastatic Disease

As is the case for prognostication in the metastatic
melanoma population, various measures of extent
of metastatic disease have prognostic value inde-
pendent of serum LDH in the setting of both
BRAF inhibitor-based therapy and immune
checkpoint therapy. The first such published anal-
ysis came from the pooled phase 3 populations
treated with dabrafenib/trametinib (Long et al.
2016). Patient demographic and disease charac-
teristics were all entered into a classification and
regression trees analysis which selects outcome
discriminating features in an unbiased and hierar-
chical fashion. While serum LDH was the most
powerful discriminator of both progression-free
and overall survival outcomes, disease burden as
described by aggregate size of measured lesions at
baseline and number of involved organs/sites
were the second and third and only additional
discriminating feature for progression-free sur-
vival. And, these subgroups only had predictive
value within the population with normal serum
LDH. The metastatic site classification was not
determined based on number of lesions within or
across metastatic sites, but rather on the number of
discrete tissue or organ sites involved. For exam-
ple, the lung and liver were each considered as
discrete sites of involvement, as were the skin and
lymph nodes. Significant stratification in out-
comes was observed for those patients with one
or two sites of metastatic disease versus those with
three or more. This analysis yielded a particularly
striking difference in progression-free survival at
3 years, with 42% of those patients with only one
or two sites of metastatic disease measuring less
than 6.6 cm in aggregate remaining progression-
free versus 0% of the two times upper limit of
normal serum LDH population.

In a subgroup analysis of the three-arm ran-
domized trial of ipilimumab/nivolumab versus
nivolumab versus ipilimumab, two unique mea-
sures of disease burden were applied (Wolchok
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et al. 2017). The entire patient population was
divided into quartiles in one subgroup analysis,
and, for the other, the number of metastatic sites
was so grouped into one, two to three, and greater
than three. There was a threefold difference in the
aggregate measure of lesions at baseline in
the highest quartile versus lowest quartile. The
likelihood of 3-year progression-free survival
for a nivolumab/nivolumab, nivolumab, and
ipilimumab was 45%, 38%, and 15%, respec-
tively, in the lowest tumor burden quartile. This
compares to 33%, 29%, and 5% rates of 3-year
PFS in the highest tumor burden quartile. More
subtle differences were seen for 3-year PFS rate
across subgroups defined by number of metastatic
sites. Comparing the greater than three-site sub-
group to the single-site subgroup, ipilimumab/
nivolumab was associated with a 47% 3-year
PFS rate versus 27%, and nivolumab produced
very similar rates of 37% and 36%, while
ipilimumab yielded similar rates of 12% and
11%. Interestingly, more striking differences
were noted in 3-year overall survival outcome
across these disease site subgroups: 70% versus
42%, 65% versus 44%, and 48% versus 28% for
ipilimumab/nivolumab, nivolumab, and imple-
ment, respectively.

Body Mass Index (BMI)

A recent, striking analysis has found that elevated
body mass index has positive predictive value in
the setting of both BRAF inhibitor-based therapy
and immune checkpoint antibody therapy
(McQuade et al. 2018). Unlike serum LDH and
various measures of metastatic disease burden,
BMI had a statistically significant predictive
value, but no prognostic significance. Very similar
improvements in progression-free survival and
overall survival were seen between targeted ther-
apy and immunotherapy-treated populations. A
28% improvement in PFS outcomes was observed
for obese patients compared to those with normal
BMI and a 40% improvement in overall survival
among those receiving BRAF/MEK combination
therapy. Among those treated with immune
checkpoint antibody therapy, 25% improvement

in PFS and 36% improvement in overall survival
were seen. Nearly all of this apparently beneficial
effect of obesity was observed in men, in whom
there was a highly statistically significant 47%
advantage in overall survival for men versus a
nonsignificant 15% better outcome for obese
women. Notably, there was no difference in out-
come across the subpopulations when treated with
chemotherapy. These findings have led to hypoth-
eses regarding hormonal and metabolic effects on
melanoma biology, therapeutic vulnerability, and
resistance that are being pursued in ongoing trans-
lational studies.

Molecular Features Associated with
Outcome on BRAF Inhibitor-Based
Therapy

Only preliminary data are available regarding co-
occurring somatic alterations accompanying BRAF
V600 mutations and their association with outcome
on BRAF inhibitor-based therapy. Some studies
have provided both preclinical and clinical evidence
that MAP kinase pathway intrinsic components can
confer relative resistance to BRAF inhibitor-based
therapy. Among 124 BRAF V600-mutant mela-
noma patients treated with BRAF inhibitor mono-
therapy, 10% harbored coexisting P124L/Q/S
substitutions in MEK1 (Carlino et al. 2015). The
likelihood of response was substantially lower in
these patients compared to the rest of the cohort
(33% vs. 72% in MEK1P124Q/S vs. MEK1P124
wild-type, p = 0.018) as well as shorter PFS. An
analysis of BRAF allele copy number among the
cohort of 46 BRAF-mutant melanoma patients
treated with MAP kinase pathway inhibitors dem-
onstrated a beneficial association between elevated
BRAF copy number and outcome (Stagni et al.
2018). This finding raises the hypothesis that mela-
noma with both activities mutations and copy num-
ber increases of BRAF is most “addicted” to the
oncogenic function of this gene. While there are
extensive preclinical data supporting the relevance
of genetic alterations in PTEN, p53, Rb, and
CDKN2A in relation to BRAF inhibitor sensitivity,
systemic interrogation of clinical cohorts is still
awaited.
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Multiple groups have identified markers of
BRAF inhibitor resistance that align with a
dedifferentiated, neural crest cell-like phenotype
(Konieczkowski et al. 2014; Muller et al. 2014;
Zuo et al. 2018). These studies leveraged the
availability of large numbers of immortalized
melanoma cell lines with variable sensitivity/
resistance to BRAF inhibitors to nominate tran-
scription factors, receptor tyrosine kinases, and
activated components of the PI3 kinase pathway
as designators of the cell state that is intrinsically
resistant to therapy. Fewer studies have included
analysis of patient tumor samples but those that
have found statistically significant differences in
clinical outcome even among small number of
samples. In one analysis of just 12 V600 mutant
BRAF melanoma patients treated with BRAF/
MEK combination therapy, there was a threefold
difference in median progression-free survival
when comparing those tumors that had markers
of dedifferentiation (low MITF, high AXL) com-
pared to more differentiated tumors (high MITF,
low AXL) (Konieczkowski et al. 2014). In
another analysis of BRAF inhibitor-treated
patients, supportive evidence of this low MITF
expressing phenotype conferring resistance was
demonstrated by showing the emergence of the
low MITF melanoma cells at the time of clinical
progression (Muller et al. 2014). But noting that
numerous melanoma cell lines and untreated mel-
anoma patient tumor samples feature the low
MITF/high AXL state, this appears to be a cell
state that can emerge during the evolution of mel-
anoma before the application of therapy. Notably,
some of these same molecular features (notably
high AXL expression) have been associated with
intrinsic resistance to PD-1 antibody therapy
(Hugo et al. 2017). This raises the concerning
possibility that a significant proportion of mela-
nomas have adopted a cell state that is resistant to
either therapeutic modality.

A last line of evidence suggests that markers of
immune recognition and activated effector T cells
in sites of metastatic melanoma positively associ-
ate with outcomes on BRAF inhibitor therapy
(Massi et al. 2017). Among 39 patients treated
with BRAF inhibitor monotherapy and 25
patients treated with BRAF/MEK inhibitor

combination therapy, presence of CD8+ T cells
strongly associated with likelihood of response
and superior overall survival. Interestingly,
co-expression of markers of beta-catenin pathway
activation additionally informed BRAF inhibitor
treatment outcome. Previously published data link
beta-catenin pathway signaling and exclusion of T
cell from the melanoma tumor microenvironment
(Spranger et al. 2015). So, it would be anticipated
that activity in this pathway would overlap with
the CD8-negative subpopulation. Yet, those
patients with the highest level of CD8 T-cell infil-
tration and lack of beta-catenin pathway activa-
tion had a 75% superior PFS and overall survival
outcome that was significant even after adjusting
for other disease characteristics known to impact
likelihood of benefit from BRAF inhibitor ther-
apy. Long known to be associated with favorable
prognosis in both early and advanced melanoma,
these preliminary findings suggest that greater
degrees of immune recognition have even bigger
impact on the outcome of patients treated with
BRAF inhibitor-based therapy.
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