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Chapter 5
Role of Protein Translation in Unfolded 
Protein Response

Surojeet Sengupta, V. Craig Jordan, and Robert Clarke

Abstract  The unfolded protein response (UPR) is an adaptive mechanism to main-
tain protein homeostasis by decreasing the accumulation of unfolded proteins in the 
endoplasmic reticulum (EnR) of cells. EnR stress activates three distinct sensors, 
namely, inositol requiring protein 1 alpha (IRE1-α), activating transcription factor 6 
(ATF6), and protein kinase RNA-like endoplasmic reticulum kinase (PERK), that 
collectively mitigate the damaging effects of EnR stress. The downstream signaling 
from the PERK sensor phosphorylates the eukaryotic translational initiation factor 
2 alpha (eIF2α) complex that inhibits global protein translation to restore proteosta-
sis and promote cell survival. However, chronic and unmitigated activation of the 
PERK pathway leads to apoptosis. Phosphorylation of eIF2α is tightly controlled by 
the two specific regulatory subunits of protein phosphatase 1 (PP1) complex, (1) 
growth arrest and DNA damage inducible-34 (GADD34) and (2) constitutive 
repressor of eIF2α phosphorylation (CReP), that are responsible for de-
phosphorylation of eIF2α. Phospho-eIF2α also directs preferential translational of 
stress-related genes such as ATF4 and CHOP. This chapter describes the mechanism 
by which the PERK pathway regulates the protein translational machinery that 
plays a critical role in deciding cell fate following endoplasmic reticulum stress.
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�Introduction

Protein synthesis is a fundamental mechanism in living organism that translates the 
information encoded in the mRNA molecule. Protein translation in eukaryotes is an 
extremely complex, energy consuming, multi-tiered process requiring multiple 
components and thus it is tightly regulated at many levels [1–3]. The endoplasmic 
reticulum (EnR) is a key cell organelle where protein is synthesized, folded, and 
achieves structural maturity [4, 5]. Maintenance of protein homeostasis, also known 
as ‘proteostasis’, encompasses a concerted interconnecting network of cellular pro-
cesses that controls the structural, spatial, and functional integrity of the proteins 
making up the proteome [6]. The regulatory controls for protein synthesis often 
operate at the levels of transcription and/or translation. Revolutionary technologies 
in genomics and proteomics have enabled us to develop a comprehensive under-
standing of gene regulation at the system-level. Recent studies [7] have revealed 
that levels of mRNA transcripts are often not sufficient to predict the levels of their 
translated protein products. Instead, ribosome occupancy serves as a more reliable 
predictor of protein levels than levels of their mRNA. Therefore, control at the pro-
tein translation level plays a critical role in gene regulation. The process of transla-
tion can be divided into initiation, elongation, termination, and ribosome recycling 
[3]. Most of the regulation of protein translation is exerted at the initiation phase, 
allowing for a rapid and reversible control of gene expression [1, 3].

�Initiation of Protein Translation

Protein synthesis initiation requires assembly of ribosomal subunits that are compe-
tent for translation elongation in which the anti-codon loop of initiator tRNA (Met-
tRNAMet i) base pairs with the initiation codon of an mRNA [1, 3]. This process uses 
nine different eukaryotic initiation factors (eIFs). A ternary complex (TC) is first 
formed comprising a 40S ribosomal subunit, eIF2-GTP, and Met-tRNAMet i. This 
transforms the TC into a 43S pre-initiation complex (PIC) by complexing with cer-
tain other eIFs and binding to the capped 5′ proximal region of mRNA. This step 
involves additional eIFs that are needed to unwind the secondary structure of the 
mRNA [1]. The 43S complex scans the 5′ untranslated region (5′ UTR) of mRNA 
in the 5′ to 3′ direction until it recognizes the initiation codon. Once the initiation 
codon is recognized and the 48S complex is formed, eIF5 and eIF5B promote 
hydrolysis of the eIF2-bound GTP, the displacement of eIFs, and joining of a 60S 
ribosomal subunit.
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�Unfolded Protein Response

The unfolded protein response (UPR) is a collection of adaptive feedback mecha-
nisms induced following the accumulation of excess unfolded proteins in the lumen 
of endoplasmic reticulum (EnR) (known as EnR stress) in cells with a high load of 
protein synthesis [8]. UPR is comprised of three distinct sensors that are activated 
following EnR stress, namely, inositol requiring protein 1 alpha (IRE1-α), activat-
ing transcription factor 6 (ATF6), and protein kinase RNA-like endoplasmic reticu-
lum kinase (PERK). These sensors activate diverse pathways collectively known as 
the UPR [8, 9] (Fig. 5.1). Signaling downstream from the UPR sensors coordinate 
complex cross-talk to restore proteostasis; this signaling is largely cyto-protective 
[9]. Many downstream signals are transcription factors (such as ATF6, ATF4, 
CHOP, CReP, XBP1s) that translocate to the nucleus and engage in the transcrip-
tional regulation of a variety of genes that control cell fate [10]. Many of these genes 

Fig. 5.1  Cartoon depicting the three arms of unfolded protein response (UPR) and its signals 
converging at the nucleus of the cell. The length of the time of UPR determines the cell fate
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help in adaptation to stress, but some may also promote cell death. Therefore, a cell 
fate decision in favor of adaptive survival or cell death is a consequence of the inte-
grated temporal response initiated by the three distinct sensors of EnR stress over 
time. For example, chronic and unmitigated UPR leads to apoptosis [11–14], medi-
ated through the mitochondrial/intrinsic pathway [15].

All three UPR sensors (IRE1α, ATF6, PERK) are transmembrane proteins span-
ning through the EnR membrane [8]. The luminal domains of these proteins can 
sense an imbalance in protein folding efficiency inside the EnR and consequently 
trigger downstream signaling. Specifically, under basal, unstressed conditions the 
luminal domains of these sensor proteins bind with a chaperone, glucose-regulated 
protein 78 (GRP78) (also known as binding immunoglobulin protein (BiP) or heat 
shock protein A5 (HSPA5)) that prevents sensor activation [8, 10].

Activation of the PERK pathway hyper-phosphorylates eukaryotic translational 
initiation factor 2 alpha (p-eIF2α), which then inhibits global protein translation to 
restore proteostasis [10]. However, sustained activation of eIF2α can also lead to 
cell death [8, 16]. The level of eIF2α phosphorylation is tightly controlled by activ-
ity of the protein phosphatase 1 (PP1) complex by two specific regulatory subunits, 
(1) growth arrest and DNA damage inducible-34 (GADD34) and (2) constitutive 
repressor of eIF2α phosphorylation (CReP), that are responsible for de-
phosphorylation of eIF2α [16–18] (Fig. 5.2). The other two additional UPR sensors 
(ATF6 and IRE1α) also contribute to cell fate decisions by complex essential and 
redundant cross-talk with the PERK arm and modulate the downstream components 
that may have protective or apoptotic effects [19].

�EIF2 Alpha Phosphorylation and Translational Regulation

Formation of the TC during the initiation of protein translation depends upon the 
availability of GTP-bound eIF2 and its recycling to maintain protein synthesis. 
Regeneration of GTP-eIF2 is ensured by another initiation factor, eIF2B, which 
functions as a guanine nucleotide exchange factor. The alpha subunit of eIF2 (eIF2α) 
can be phosphorylated on serine 51 residue by activated PERK and functions as a 
major regulatory checkpoint. Phospho-eIF2α can bind strongly to eIF2B and restrict 
its availability. While phosphorylated-eIF2α can form the TC, its higher levels block 
regeneration of the active GTP-bound eIF2α by sequestering eIF2B and abrogating 
its activity. Consequently, the low levels of GTP-eIF2α lead to reduced translation 
initiation and a suppression of global protein synthesis. Notably, three additional 
mammalian protein kinases, besides PERK (EIF2AK3) can phosphorylate eIF2α 
(Fig.  5.2). These three kinases are heme-regulated inhibitor kinase (EIF2AK1), 
which is significant only in erythroid cells [20]; PKR (EIF2AK2), which can be 
activated by viral response [21, 22]; and GCN2 (EIF2AK4) that is activated by 
amino acid starvation [23].
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�Regulation of eIF2α Phosphorylation

Phosphorylation of eIF2α is a reversible process and its precise balance in critical 
for cell survival. To counteract the phosphorylation of eIF2α, two distinct proteins 
(GADD34 and CReP) function as regulatory subunits forming two distinct holo-
complex with protein phosphatase 1 (PP1) to dephosphorylate eIF2α [13]. GADD34 
(also known as PPP1R15A) is an inducible factor downstream of PERK activation 
and functions as a feedback loop [8, 13, 18, 24]. Conversely, CReP is the constitu-
tively expressed regulatory protein of PP1 complex that dephosphorylates eIF2α 
and is responsible for maintaining the balance of phosphorylated and non-
phosphorylated eIF2α in unstressed cells [8, 19, 25]. Activated IRE1α also cleaves 
other EnR mRNAs (besides XBP1) [26–29], ribosomal RNA [30], and microRNAs 

Fig. 5.2  PERK-eIF2α-ATF4/CHOP axis
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[31, 32] that share specific nucleotide sequences as in XBP1 [28] in a process known 
as regulated IRE1α-dependent decay (RIDD). Notably, CReP mRNA is cleaved by 
activated IRE1α, establishing unique cross-talk between different UPR sensors that 
can increase phospho-eIF2α levels and reduce protein load [33].

�Preferred Protein Translation of Selective Messenger RNA

The primary goal of UPR is to maintain ER proteostasis. Proteostasis is chiefly 
attained by global suppression of protein translation to reduce newly synthesized 
protein-load into EnR [34]. However, a distinct subset of messenger RNAs coding 
for certain proteins and transcription factors evade the global suppression of transla-
tion triggered by eIF2α phosphorylation. Paradoxically, these mRNAs are trans-
lated at a higher rate in stressed cells [35]. Most of these factors are required to 
respond to the consequences of EnR stress and include ATF4 [36, 37], GADD34 
(PPP1R15A) [38], ATF5 [39–41], and CHOP (DDIT3) [42, 43]. The mechanism of 
enhanced protein synthesis of these factors is attributed to the small inhibitory 
upstream open reading frames (uORF) located within the 5′-leader (untranslated 
region) of their mRNA [44, 45]. Genome-wide ribosomal profiling has revealed that 
over 40% of mammalian mRNA contain uORFs that may serve as a major regulator 
of translation and protein levels [44, 46, 47].

Multiple mechanisms exist by which uORF-containing mRNAs can be trans-
lated preferentially in stressed cells with high levels of phospho-eIF2α [35]. The 
capacity to reinitiate translation from a downstream start codon, known as ribosome 
reinitiation, depends upon the ability of the scanning ribosome to acquire or retain 
the essential initiation factors following translation of uORF. The distance between 
the initiation codon of uORF and the initiation codon of the coding protein plays a 
critical role, as it allows more time to re-acquire a new eIF2-GTP-Met-tRNAimet 
[48]. For example, the transcription factor ATF4 mRNA contains uORFs that restrict 
ribosome access to the coding sequence (CDS) in unstressed cells but allows 
increased access and translation of the ATF4 protein in stressed cells with higher 
levels of phospho-eIF2α [36, 37]. This occurs because reduced eIF2α-GTP levels in 
stressed cells delay reinitiation of ribosomes that enables skipping of the inhibitory 
uORFs and increases ribosome access to the start codon of the ATF4 coding 
sequence [37].

Another mechanism by which preferential translation is regulated in stressed 
cells with high levels of phospho-eIf2α is reported for the GADD34 protein [49], 
which functions as a feedback control for eIF2α dephosphorylation [24, 50, 51]. 
The GADD34 mRNA contains two uORFs. uORF1 is constitutive but is bypassed 
due to a poor kozak sequence. uORF2 is the main inhibitory sequence as deletion of 
this uORF increases the expression of GADD34 [49]. Under stress conditions, the 
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ribosome bypasses uORF2 due to “poor start codon context,” allowing higher trans-
lation from the CDS start codon [49]. This mechanism is also evident during the 
preferential translation of CHOP in chronically stressed cells [43, 52]. Expression 
of CHOP protein in cells with unmitigated stress and continued elevated levels of 
phospho-eIF2α can induce apoptosis [53–55]. Notably, GADD34, is regulated at 
the translational level and its rate of transcription is increased by ATF4 [56] and 
CHOP [57]. Both ATF4 and CHOP are preferentially translated in response to EnR 
stress and hyper-phosphorylation of eIF2α [37, 52] indicating a coordinated mecha-
nism to remediate stress.

A recent study shows a new mechanism that relies on eIF2α independent and 
non-AUG starting codon in the uORF to regulate translation in stressed cells [58]. 
This study discovered that an alternative initiation factor, eIF2A, and non-AUG 
ORF is required for translation of GRP78 (HSPA5; BiP) during stress response 
[58]. In addition, the internal ribosome entry sequences (IRES) may also play a role 
in expression of GRP78 protein [59].

�Role of PERK in Breast Cancer

Multiple studies have implicated a central role for the UPR in several cancers 
including breast cancers [60]. In breast cancers, integration of UPR, EnR stress, and 
autophagy drives the cell fate in endocrine therapy resistance [10]. For example, 
depletion of estrogen receptor [61] and GRP78 [62], a key component of the UPR 
pathway, restored endocrine sensitivity in the endocrine therapy resistant breast 
cancer cells. Inhibition of autophagy potentiates antiestrogen therapy in the resis-
tant breast cancers [63]. In addition, XBP1, another key component of UPR, not 
only contributes to estrogen-mediated cell proliferation [64] but also plays a vital 
role in conferring endocrine resistance upon breast cancer cells [65–68].

In particular, the PERK pathway plays a critical role in oncogenic development, 
survival, progression, and invasion of cancers [69–73]. In breast cancers, PERK 
signaling is associated with invasion and metastasis [74], and selectively sensitizes 
cancer cells that have undergone an epithelial-to-mesenchymal transition to an EnR 
stress (EMT) [75].

High doses of estrogen were used as a therapy for estrogen receptor positive 
breast cancers before the discovery antiestrogens [76, 77]. Laboratory studies have 
confirmed that estrogen can induce apoptotic cell death in select LTED (long-term 
estrogen-deprived) breast cancer cells, both in vitro and in vivo [78, 79]. UPR, spe-
cifically, the PERK-eIF2α axis, is involved in estrogen induced apoptosis [80–82]. 
Studies have confirmed that prolonged and unmitigated phosphorylation of eIF2α 
can induce apoptosis in endocrine therapy resistant breast cancer cells using the 
same estrogen-mediated mechanism (Sengupta et al. in press, 2019).
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�Conclusions and Future Direction

Protein translation control has emerged as a critical mechanism to maintain the 
integrity of cells and allows them to adapt to numerous stress. Increasingly, this 
control is being recognized as a critical feature in development and various diseases 
including several cancers. Precise understanding of mechanisms governing the pref-
erential translation of numerous proteins after activation of the PERK-eIF2α path-
way will be immensely helpful in determining the factors responsible for cell fate 
decisions. In addition, the cross-talk between the different components of UPR 
pathway and its influence on the PERK pathway may predict a prosurvival or pro-
death outcome. Clearly, further studies are needed to develop a unified model inte-
grating all components of UPR signaling and its role in cell fate determination.
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