
A Fast and Effective Detection of Mobile
Malware Behavior Using Network Traffic

Anran Liu1,2, Zhenxiang Chen1,2(B), Shanshan Wang1,2, Lizhi Peng1,2,
Chuan Zhao1,2, and Yuliang Shi3

1 School of Information Science and Engineering, University of Jinan, Jinan 250022,
Shandong, China
czx@ujn.edu.cn

2 Shandong Provincial Key Laboratory of Network Based Intelligent Computing,

Jinan 250022, Shandong, China
3 School of Software, Shandong University, Jinan 250100, Shandong, China

Abstract. Android platform has become the most popular smartphone
system due to its openness and flexibility. Similarly, it has also become
the target of numerous attackers because of these. Various types of
malware are thus designed to attack Android devices. All these cases
prompted amounts of researchers to start studying malware detection
technologies and some of the groups applied network traffic analysis to
their detection models. The majority of these models have considered the
detection primarily on network traffic statistical features which can dis-
tinguish malicious network traffic from normal one. However, when faces
a large amount of network traffic on the detection stage, especially some
of the network flows are quite huge as a result of containing too many
packets, feature extraction can be extremely time consuming. Therefore,
we propose a malware detection approach based on TCP traffic, which
can quickly and effectively detect malware behavior. We first employ the
traffic collection platform to collect network traffic generated by various
apps. After preprocessing (filtering and aggregating) the collected net-
work traffic data, we get a large number of TCP flows. Next we extract
early packets’ sizes as features from each TCP flow and then send it
to detection model to get the detection result. In our method, the time
it takes to extract features from 53108 network flows is reduced from
39321 s to 18041 s, which is a reduction of 54%. Meanwhile, our method
achieves a detection rate of 97%.

Keywords: Malware detection · Network traffic · Machine learning

Supported by the National Natural Science Foundation of China under Grants No.
61672262, No. 61573166 and No. 61572230, the Shandong Provincial Key R&D Pro-
gram under Grant No. 2016GGX101001, No. 2016GGX101008, No. 2018CXGC0706
and No. 2016ZDJS01A09, the TaiShan Industrial Experts Programme of Shandong
Province under Grants No. tscy20150305, CERNET Next Generation Internet Tech-
nology Innovation Project under Grant No. NGII20160404.

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11337, pp. 109–120, 2018.
https://doi.org/10.1007/978-3-030-05063-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05063-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-05063-4_10


110 A. Liu et al.

1 Introduction

Due to the portability of smartphones, more and more people prefer to using
smartphones to handle everything that can be handled, and smartphones there-
fore carry a large amount of users’ privacy information. Attackers thus began to
attack smartphones to steal users’ private information, and use it to make prof-
its. The most common way they use to attack smartphones is to design various
types of malware, and the way malware is developed differs depending on the
operating system.

Smartphones can be classified into several different categories according to
their operating systems. Among them, smartphones equipped with Android
operating systems have become the most widely accepted and used devices
because of their openness and the diversity of apps they provided. According
to the report released by Gartner in May 2017 [2], the market share of Android
platform has reached 86.1%. In order to attack more devices and obtain more
users’ privacy information, most attackers thus consider Android platform as
their target. Recent report has pointed that more than 99% of malware designed
for mobile devices targets Android devices [1].

In March 2018, the number of the apps in Google Play has reached 3.6 million
[3], which will only be much larger in third-party market. It is very difficult for
users to identify whether an app is malicious or not when faced with such a
large number of apps. Therefore, the need to detect Android malware has risen
sharply. Amounts of researchers have thus studied malware detection techniques
which can be roughly categorized into static and dynamic groups. In addition,
with more and more malware relying on network interfaces to interact with
attackers, network traffic based detection starts to be used to identify Android
malware. Compared to static analysis detection, like [6,11,13], which is difficult
to identify malicious variants due to code obfuscation [15], and dynamic analysis
detection, like [10] and [21], which needs to deploy a detection environment on
the mobile phone, detection based on network traffic doesn’t need to deploy
on the Android devices and is adaptable to the variants. Network traffic based
detection extracts features from network traffic and employs machine learning
method to identify mobile malicious behavior. But when faces a large amount
of network traffic on the detection stage, especially some of the network flows
are huge as a result of containing too many packets, feature extraction can be
extremely time consuming. And this will directly increase the time overhead of
detection stage. Therefore, we propose our method, a fast and effective detection
approach of mobile malware behavior using network traffic.

In our method, we first collect a large amount of network traffic using a traffic
collection platform and then filter all the non-TCP traffic out. After that, we
aggregate the remaining traffic into flows and perform feature extraction on each
flow. Finally, we send the extracted feature tuple to detection model to get the
detection result.

The detection model used in our method is a model based on TCP packet
size feature. In consideration of the fact that encrypting network traffic between
application layer and transport layer is gradually becoming a popular trend, we



A Fast and Effective Detection of Mobile Malware Behavior 111

choose TCP, one of the most popular transport layer protocols, to analyze. And
in order to deal with the time consumption problem we pointed out above, we
chose the sizes of the first few packets of a network flow and some statistics of
those sizes as features since we won’t have to deal with the entire network flow
when we extract a feature tuple from it. Furthermore, for encrypted network
traffic, we won’t have to separate them out and decrypted them for analysis, but
to treat them equal to unencrypted network traffic and then extract the same
features from them. This is to some extent also reduces the overall detection
time as well.

In this paper, we mainly make the following contributions:

• Network traffic based malware detection in a time saving way. Our
experimental results show that our method can effectively identify mobile
malicious behavior with a low time consumption.

• A lightweight detection system. We proposed a prototype system which
allows us to identify mobile malicious behavior on the server side without
consuming the resources of users’ mobile devices.

• An effective encrypted traffic classification method without infring-
ing users’ privacy. Our method can identify encrypted network traffic quite
precisely without decrypted those encrypted network flows, which can save a
lot of time and also protects users’ privacy.

The rest of the paper is organized as follows: related work is introduced
in Sect. 2. Section 3 presents the methodology of our method in detail and the
evaluation of our method is introduced in Sect. 4. Section 5 concludes the paper.

2 Related Work

The network traffic analyzed by the researchers in traffic-based malware detec-
tion method is roughly divided into two parts, namely application layer traffic
and transport layer traffic.

Application Layer Traffic Based Analysis. In mobile devices, most apps
use DNS protocol for domain name resolution and HTTP protocol for data
transfer. Therefore, almost all application-level traffic based malware detec-
tion methods are implemented by analyzing DNS traffic or HTTP traffic. Wei
et al. [20] proposed a malware detection method based on domain name reso-
lution behavior. Their method can analyze DNS flows generated by apps auto-
matically and determine whether the app is malicious based on the geospatial
information of the resolved IP address. Zaman et al. [22] record the domain
names accessed by the app through the URL in HTTP request message and
then compare them with the known domain name blacklist. The app that com-
municates with the domain name in the blacklist is considered as a malicious app.
Wang et al. [19] treat each HTTP flow generated by an app as a text file, and
then leverage natural language processing to extract text-level features that can



112 A. Liu et al.

distinguish between normal apps and malware. Although these methods achieve
high detection rates, they are severely limited by SSL/TLS encryption. Attack-
ers can use SSL/TLS encryption to hide the information carried by application
layer traffic easily.

Transport Layer Traffic Based Analysis. The two most important proto-
cols at transport layer are TCP and UDP, and the majority of the transport
layer traffic is transmitted over TCP. Thus, researchers usually leverage TCP
traffic to explore malware detection method, and most of them analyze the sta-
tistical features of TCP flows [4]. Shabtai et al. [17] proposed anomaly-based
malware detection method with automatic update capability. This method uses
statistical features extracted from TCP flows to generate normal app traffic pat-
terns and then identify all the apps whose traffic patterns are deviated from the
normal pattern as malware. Wang et al. [18] use six TCP statistical features and
combined with machine learning algorithm to detect Android malware. How-
ever, none of these methods takes into account the time consumption problem
in feature extraction phase in malware detection process.

Arora et al. [5] proposed an algorithm to prioritize network traffic features,
which gave a high detection accuracy and reduced both training and testing
time. However, some of the final 9 features chosen in that paper, such as Aver-
age Packet Size, Packets Sent per Flow and Maximum Packet Size, still are flow
statistic features which need to traverse the whole network flow to be extracted,
and this will increase the time cost of feature extraction phase in detection pro-
cess. Lizhi et al. [14] pointed out that the sizes of early stage packets are effective
enough to achieve ideal traffic identification performances. Bernaille et al. [7]
used the first four to five packets to classify TCP-based apps and achieved high
accuracy. Since malware detection is a subcategory in traffic classification, we
decided to use early packet sizes as features to detect Android malware behavior.

3 Methodology

In our method, network traffic generated by the apps are collected from the traffic
collection platform. After preprocessing the collected network traffic data, we get
a large number of TCP flows. Next, we extract the sizes of the early packets of
a network flow and some statistics of those sizes as features and then send the
feature tuple to detection model to get the detection result. The whole detection
approach is detailed in the following sections.

3.1 Traffic Collection

Network Trace Capture. In our method, we use the active traffic generation
and collection platform proposed in [9] to collect traffic data. The platform con-
sists of four parts, namely foundation platform, traffic generator, traffic collector
and network proxy/firewall respectively. Foundation platform is built based on
Android Virtual Device (AVD), and traffic generator is designed to install and



A Fast and Effective Detection of Mobile Malware Behavior 113

activate malware samples to generate network traffic automatically. The func-
tion of traffic collector is to collect inbound and outbound network traffic with
tcpdump tool, and then the traffic mirroring technology is employed to mirror
traffic to the server side. During the whole process, the attack behavior is care-
fully monitored and controlled by proxy/firewall. On the server side, we collect
traffic traces and store them in pcap format for the next preprocessing step.

Traffic Data Preprocessing. Since our work only focuses on TCP traffic,
we need to filter the traffic data collected in the previous step and remove all
packets whose transport layer protocol is not TCP. After that, we aggregate the
packets in each traffic trace according to the definition of TCP flow, and store
all flows in pcap format separately. The whole process is implemented using a
combination of Python script and T-shark command.

3.2 Feature Extraction

The features used in our method are the sizes of the first n packets of a TCP
flow and 4 statistics (i.e. average, standard deviation, minimum and maximum
values) of the sizes. The number of selected packets is a parameter that is to be
determined and we will describe the determination of this parameter in detail
in Sect. 4.2. It should be noted that the order of the features extracted from a
TCP flow must be consistent with the order of the packets. That is, the first
feature in the feature tuple is the size of the first packet in this TCP flow, the
second feature is that of the second packet, and so on. Beyond this, these four
statistical features are also arranged in order in the feature tuple. Namely, the
(n+1)st feature in the feature tuple is the average of the first n features, the
(n+2)nd feature is the standard deviation of the first n features, and so on. In
addition, if a TCP flow contains fewer than n packets, we will use an integer
0 to fill in the feature tuples extracted from this flow (the last 4 features of
the feature tuple are still the values of these 4 statistics). Thus, the length of
the feature tuples extracted from each network flow is n+4. The entire feature
extraction process is illustrated in Fig. 1.

We chose the first few packets sizes of a TCP flow as features for the following
reasons. On the one hand, Este et al. [12] had proved that packet size is the most
effective feature for early stage network traffic identification; on the other hand,
we only have to traverse the first few packets of a TCP flow and ignore the rest
part of the TCP flow to get features, which will significantly reduce the time
cost of feature extraction process.

3.3 Learning-Based Detection

Machine learning can be used to automatically discover the rules by analyzing
data, and the rules are helpful for us to predict unknown data. In our research,
we leverage machine learning method to analyze features extracted from TCP
flows and generate the rules which can determine whether a flow is malicious or



114 A. Liu et al.

Fig. 1. Feature extraction process.

not. If we determine that the flow is malicious based on the generated rules, the
app corresponding to this flow is then considered to be malware. Through this
process, we can achieve the purpose of malware detection.

The learning method we chose is Random Forest [8], which uses several deci-
sion trees to train the data set and then gets the prediction rule. The construc-
tion process of Random Forest is roughly as follows. First, bootstrapping method
[16] is used to randomly select samples from the original training set, which is a
resampling with replacement. This procedure will be repeated several times to
generate multiple training sets. The number of the training sets is a parameter.
And then for each training set, a decision tree will be generated. It should be
noted that, for each node of the decision tree in a Random Forest, the feature
set used for the selection of the optimal feature is only a subset of the feature
set of this node. Finally, each decision tree will vote for the prediction result
and the result is a majority vote of all single predictions given individually by
each decision tree. In our method, we built the classifiers in Python using the
scikit-learn machine learning libraries, using criteria= gini, max features= auto,
and n estimators= 10 as parameters.

3.4 Lightweight Detection Architecture

The prototype system shown in Fig. 2 is a lightweight detection system, which
only requires users to install an app on their mobile devices and won’t need to
get root permissions for we just identify the malicious behavior by the network
traffic mirrored from the user side. After the detection, the final result will be
returned to the app.

Additionally, in order to improve model’s adaptability to new types of mal-
ware, we designed a model updating framework. We store the traffic and the
labels we predicted on the storage server. After collecting a certain amount of
labeled flows, we cluster these flows and check the labels of each cluster. If all the
flows in a cluster belong to the same category, we will randomly select several
flows from this cluster and then detect them manually. If all manually detected
flows also belong to this category, then we add all the flows in the cluster to
training set and update the model. It should be noted that the model updat-
ing process is off-line and therefore does not occupy any user’s mobile device
resources.



A Fast and Effective Detection of Mobile Malware Behavior 115

Fig. 2. Lightweight detection architecture.

By using this detection architecture, we can detect multiple apps on a single
device, as well as multiple apps on multiple devices at the same time. Within
the LAN (local area network), diverse apps might execute network behavior
simultaneously, therefore we can collect the network traffic generated from them
and then identify these apps in a short time. In addition, the features we used in
our method can also guarantee the real-time performance of the detection, for
we only need the sizes of early packets in a TCP flow.

4 Evaluation

4.1 Data Sets

Our malicious apps are downloaded from public malware database, VirusShare.
Our normal apps are downloaded from multiple popular app markets by app
crawler. Consider there might be some potential malicious apps in app markets
which can cause the impurity of our normal app set, thus all the normal apps
we downloaded from the markets are sent to VirusTotal to test whether these
apps are malicious or not and then the apps whose test results are normal will
be added to our normal app set. We get a normal app set of 8321 samples and
a malware set of 2839 samples.

In order to train and evaluate the detection performance of our model, we use
the automatic mobile traffic collection system which is introduced in Sect. 3.1 to
collect traffic data. For traffic generated by normal apps, we label it as benign.
Since most malware are taking the form of repackaging malicious behavior into
normal apps, the traffic generated by malware contains both malicious traffic and
normal traffic (most of which is normal traffic and only a small amount of traffic
is malicious). In order to improve the accuracy of our labels, we extract the target
IP filed of each flow generated by malware and upload it to VirusTotal. If the
filed is detected as malicious, we will label the corresponding flow as malicious.

Finally, we get 1.03 GB network traffic data generated by normal apps as
well as 219 MB malicious network traffic data, and then we extract features from
those traffic data. Finally, 53108 feature tuples are extracted from the traffic we
collected to train and test the model.



116 A. Liu et al.

4.2 Parameter Determination

There is a parameter which have to be determined in feature extraction stage,
namely how many packets are needed in a network flow can make the model
trained by packet size feature get the best performance at a low time consump-
tion. If the parameter value is too small, then the detection model may suffer
from under-fitting; if the parameter is too large, it will certainly increase the
time consumption. Therefore, the determination of the parameter is a trade-
off between time consumption and detection performance. Thus, we conducted
several sets of experiments to determine the optimal value of this parameter.

The first set of experiments we conducted was to determine a rough range
of the parameter. Firstly, for each instance in the data set, we extract the size
of the first 10, 30, 50, 100, and 200 packets separately and record the time cost
of each extraction process. Considering that for most TCP flows, the number of
packets contained in it is usually less than 200, so as the value of the parameter
(number of packets) further increased, early packet feature extraction will be the
same with the extraction of the entire flow. And thus, we only took a maximum
of 200.

Fig. 3. Time costs of feature extraction process. (a) Time costs of the extraction of the
packet sizes of first 10, 30, 50, 100 and 200 packets. (b) Time cost of the extraction of
the packet sizes of first 5–15 packets.

The time we recorded is shown in Fig. 3(a). From this figure we can clearly
see that there is a growing trend with the increment of the parameter and when
the number of packets is 10, the time cost is the minimum. Thus in the next set
of experiments, we extracted the size of the first 5–15 packets from each instance
in the data set separately, and generated 11 feature sets. Choosing to extract the
size of the first 5–9 packets is due to time considerations while the extraction
of the size of the 11–15 packets is in consideration of the model performance.
Similarly, we also recorded the time required to generate each feature set and
the results are shown in Fig. 3(b).

From Fig. 3(b) we can find out that there is no obvious trend in this figure,
and the data is fluctuating up and down without an optimal value. Additionally,



A Fast and Effective Detection of Mobile Malware Behavior 117

Fig. 4. Matric values of each parameter.

the time cost of generating the sizes of first 5 packets feature set even is a little
larger than the time cost of generating the sizes of first 15 packets feature set.
Thus, in this session, the time cost indicator is not taken into account.

Next, we trained and tested 11 detection models using ten-fold crossover
method on the extracted 11 feature sets. We measured the results in terms of
five indicators, including accuracy, precision, recall, F-measure score and FPR,
and the detection performance is illustrated in Fig. 4. We can see from the Fig. 4
that when the value of the parameter is 12, five indicators have all reached the
optimal value (the first four indicators are the highest under all parameters, the
last indicator is the lowest under all parameters). Therefore, we chose 12 as the
value of the parameter.

4.3 Comparative Evaluation

In order to evaluate the performance of our detection model, we reconstructed
the flow statistics model proposed by TrafficAV [18] to compare with the pro-
posed model, for the statistical features it used are typical and required to tra-
verse the entire flow to be extracted. Our evaluation is conducted from two
aspects of time performance and detection performance.

Time Performance. We extract packet size feature set from the whole data set
and recorded the time consumption in the meanwhile. Additionally, we extract
the flow statistic features used in TrafficAV from our data set and also record
time consumption as a control. We didn’t add the time it took to train and
test the detection model because when compared with the time cost in feature
extraction phase, the time cost in training phase and testing phase only account
for a small proportion.

These two time records are shown in Fig. 5(a). We can see that our method
greatly reduces the time required for feature extraction. It takes us 27324 s to



118 A. Liu et al.

Fig. 5. Comparative evaluation. (a) Time performance. (b) Detection performance.

extract flow statistic features used in TrafficAV from the whole data set, and the
number is only 15009 in our method, which is a reduction of 54%.

We believe that when there are more huge flows which contains great amounts
of packets, the advantage of our method will be more prominent since if we want
to extract the flow statistic features used in TrafficAV from a network flow, we
have to traverse the entire flow, while extracting the features used in our method
only requires traversing the first few packets of this network flow.

Detection Performance. We employed ten-fold crossover method to evaluate
the detection performance of our detection model. Next, we implemented the
flow model proposed in TrafficAV based on our data set, and employed ten-
fold crossover method to evaluate this detection model as well. The detection
performance of these two models is shown in Fig. 5(b). It shows that our method
also get a better detection performance than TrafficAV does.

4.4 Encrypted Network Traffic Classification

We collected 735 benign TLS flows and 4 malicious TLS flows as test data set
in order to estimate our method’s ability to identify encrypted network flows.
We extracted feature tuples from these encrypted network flows and then use
the model we have trained by the data set we introduced in Sect. 4.1 to classify
these network flows. These two data sets are non-overlapping.

At last, our model identified 733 encrypted network flows correctly, including
730 benign TLS flows and 3 malicious TLS flows. This illustrates our method
has a certain ability to classify encrypted network flows. In addition, through our
method, we won’t have to separate the encrypted traffic from a pile of traffic and
then analyze them separately in detection stage. Instead, we treat these network
traffic equal to unencrypted traffic, extract the same features from them and
then send feature tuples to the model for detection. In this respect, our method
saves the time as well.



A Fast and Effective Detection of Mobile Malware Behavior 119

5 Conclusion

The increasing number of Android malware brings mobile users a elevating secu-
rity risk, and makes the detection of mobile malware a greater challenge. Mul-
tiple methods are thus proposed to identify malicious behavior of Android apps
and network traffic based method is one of the most popular methods. How-
ever, when faces a large amount of network traffic, feature extraction phase in
detection process can be extremely time consuming. In this paper, we propose a
method which is able to identify malware without violating user’s privacy, and
can achieve relatively rapid detection on the premise of ensuring a high detection
rate. We proved that: by using packet size based analysis, we can quickly detect
Android malware behavior with a high accuracy. Furthermore, we designed a
device-level lightweight prototype system which can identify a collection of mal-
ware on multiple mobile devices in a short time and have the self-update ability.
In the future, we will make our efforts to implement the prototype system and
try to extend our work to recent Android malware samples.

References

1. Another reason 99% of mobile malware targets androids (2017). https://
safeandsavvy.f-secure.com/2017/02/15/another-reason-99-percent-of-mobile-mal
ware-targets-androids/

2. Gartner: Q1 worldwide smartphone sales growth 9% (2017). http://smartcity.
asmag.com.cn/xfdz/4345.html

3. Number of available applications in the google play store from December 2009
to March 2018 (2018). https://www.statista.com/statistics/266210/number-of-
available-applications-in-the-google-play-store/

4. Arora, A., Garg, S., Peddoju, S.K.: Malware detection using network traffic analysis
in android based mobile devices. In: 2014 Eighth International Conference on Next
Generation Mobile Apps, Services and Technologies (NGMAST), pp. 66–71. IEEE
(2014)

5. Arora, A., Peddoju, S.K.: Minimizing network traffic features for android mobile
malware detection. In: Proceedings of the 18th International Conference on Dis-
tributed Computing and Networking, p. 32. ACM (2017)

6. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
DREBIN: effective and explainable detection of android malware in your pocket.
In: Ndss, vol. 14, pp. 23–26 (2014)

7. Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., Salamatian, K.: Traffic classi-
fication on the fly. ACM SIGCOMM Comput. Commun. Rev. 36(2), 23–26 (2006)

8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
9. Chen, Z., et al.: A first look at android malware traffic in first few minutes. In:

2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 206–213. IEEE (2015)
10. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime

privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2), 5
(2014)

11. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security, pp. 235–245. ACM (2009)

https://safeandsavvy.f-secure.com/2017/02/15/another-reason-99-percent-of-mobile-malware-targets-androids/
https://safeandsavvy.f-secure.com/2017/02/15/another-reason-99-percent-of-mobile-malware-targets-androids/
https://safeandsavvy.f-secure.com/2017/02/15/another-reason-99-percent-of-mobile-malware-targets-androids/
http://smartcity.asmag.com.cn/xfdz/4345.html
http://smartcity.asmag.com.cn/xfdz/4345.html
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/


120 A. Liu et al.

12. Este, A., Gringoli, F., Salgarelli, L.: On the stability of the information carried by
traffic flow features at the packet level. ACM SIGCOMM Comput. Commun. Rev.
39(3), 13–18 (2009)

13. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, pp. 627–638. ACM (2011)

14. Lizhi, P., Bo, Y., Yuehui, C., Tong, W.: How many packets are most effective for
early stage traffic identification: an experimental study. China Commun. 11(9),
183–193 (2014)

15. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detec-
tion. In: 2007 Twenty-Third Annual Computer Security Applications Conference,
ACSAC 2007, pp. 421–430. IEEE (2007)

16. Opitz, D.W., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif.
Intell. Res. (JAIR) 11, 169–198 (1999)

17. Shabtai, A., Tenenboim-Chekina, L., Mimran, D., Rokach, L., Shapira, B., Elovici,
Y.: Mobile malware detection through analysis of deviations in application network
behavior. Comput. Secur. 43, 1–18 (2014)

18. Wang, S., et al.: TrafficAV: an effective and explainable detection of mobile malware
behavior using network traffic. In: 2016 IEEE/ACM 24th International Symposium
on Quality of Service (IWQoS), pp. 1–6. IEEE (2016)

19. Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., Conti, M.: Detecting android
malware leveraging text semantics of network flows. IEEE Trans. Inf. Forensics
Secur. 13(5), 1096–1109 (2018)

20. Wei, T.E., Mao, C.H., Jeng, A.B., Lee, H.M., Wang, H.T., Wu, D.J.: Android
malware detection via a latent network behavior analysis. In: 2012 IEEE 11th
International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pp. 1251–1258. IEEE (2012)

21. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and dalvik
semantic views for dynamic android malware analysis. In: USENIX Security Sym-
posium, pp. 569–584 (2012)

22. Zaman, M., Siddiqui, T., Amin, M.R., Hossain, M.S.: Malware detection in android
by network traffic analysis. In: 2015 International Conference on Networking Sys-
tems and Security (NSysS), pp. 1–5. IEEE (2015)


	A Fast and Effective Detection of Mobile Malware Behavior Using Network Traffic
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Traffic Collection
	3.2 Feature Extraction
	3.3 Learning-Based Detection
	3.4 Lightweight Detection Architecture

	4 Evaluation
	4.1 Data Sets
	4.2 Parameter Determination
	4.3 Comparative Evaluation
	4.4 Encrypted Network Traffic Classification

	5 Conclusion
	References




