
An Axiomatization for BSP Algorithms

Yoann Marquer and Frédéric Gava(B)

Laboratory of Algorithms, Complexity and Logic (LACL),
University of Paris-East, Créteil, France

yoann.apeiron.marquer@gmail.com, gava@u-pec.fr

Abstract. The gurevich’s thesis stipulates that sequential abstract
state machines (asms) capture the essence of sequential algorithms. On
another hand, the bulk-synchronous parallel (bsp) bridging model is a
well known model for hpc algorithm design. It provides a conceptual
bridge between the physical implementation of the machine and the
abstraction available to a programmer of that machine. The assumptions
of the bsp model are thus provide portable and scalable performance pre-
dictions on most hpc systems. We follow gurevich’s thesis and extend
the sequential postulates in order to intuitively and realistically capture
bsp algorithms.

Keywords: bsp · asm · Parallel algorithm · hpc · Postulates
Cost model

1 Introduction

1.1 Context of the Work

Nowadays, hpc (high performance computing) is the norm in many areas but it
remains more difficult to have well defined paradigms and a common vocabulary
as it is the case in the traditional sequential world. The problem arises from the
difficulty to get a taxonomy of computer architectures and frameworks: there is
a zoo of definitions of systems, languages, paradigms and programming models.
Indeed, in the hpc community, several terms could be used to designate the same
thing, so that misunderstandings are easy. We can cite parallel patterns [5] versus
algorithmic skeletons [8]; shared memory (pram) versus thread concurrency and
direct remote access (drma); asynchronous send/receive routines (mpi, http://
mpi-forum.org/) versus communicating processes (π-calculus).

In the sequential world, it is easier to classify programming languages within
their paradigm (functional, object oriented, etc.) or by using some properties of
the compilers (statically or dynamically typed, abstract machine or native code
execution). This is mainly due to the fact that there is an overall consensus on
what sequential computing is. For them, formal semantics have been often stud-
ied and there are now many tools for testing, debugging, cost analyzing, software
engineering, etc. In this way, programmers can implement sequential algorithms
using these languages, which characterize properly the sequential algorithms.
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11336, pp. 72–88, 2018.
https://doi.org/10.1007/978-3-030-05057-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05057-3_6&domain=pdf
http://mpi-forum.org/
http://mpi-forum.org/
https://doi.org/10.1007/978-3-030-05057-3_6

An Axiomatization for BSP Algorithms 73

This consensus is only fair because everyone informally agrees to what con-
stitutes a sequential algorithm. And now, half a century later, there is a growing
interest in defining formally the notion of algorithms [10]. Gurevich introduced
an axiomatic presentation (largely machine independent) of the sequential algo-
rithms in [10]. The main idea is that there is no language that truly represents
all sequential algorithms. In fact, every algorithmic book presents algorithms
in its own way and programming languages give too much detail. An axiomatic
definition [10] of the algorithms has been mapped to the notion of abstract state
machine (asm, a kind of Turing machine with the appropriate level of abstrac-
tion): Every sequential algorithm can be captured by an asm. This allows a
common vocabulary about sequential algorithms. This has been studied by the
asm community for several years.

A parallel computer, or a multi-processor system, is a computer composed
of more than one processor (or unit of computation). It is common to clas-
sify parallel computers (flynn’s taxonomy) by distinguishing them by the way
they access the system memory (shared or distributed). Indeed, the memory
access scheme influences heavily the programming method of a given system.
Distributed memory systems are needed for computations using a large amount
of data which does not fit in the memory of a single machine.

The three postulates for sequential algorithms are mainly consensual. Never-
theless, to our knowledge, there is not such a work for hpc frameworks. First,
due to the zoo of (informal) definitions and second, due to a lack of realis-
tic cost models of common hpc architectures. In hpc, the cost measurement
is not based on the complexity of an algorithm but is rather on the execution
time, measured using empirical benchmarks. Programmers are benchmarking
load balancing, communication (size of data), etc. Using such techniques, it is
very difficult to explain why one code is faster than another and which one is
more suitable for one architecture or another. This is regrettable because the
community is failing to obtain some rigorous characterization of sub-classes of
hpc algorithms. There is also a lack of studying algorithmic completeness of
hpc languages. This is the basis from which to specify what can or cannot be
effectively programmed. Finally, taking into account all the features of all hpc
paradigms is a daunting task that is unlikely to be achieved [9]. Instead, a bottom
up strategy (from the simplest models to the most complex) may be a solution
that could serve as a basis for more general hpc models.

1.2 Content of the Work

Using a bridging model [20] is a first step to this solution because it simplifies
the task of algorithm design, programming and simplifies the reasoning of cost
and ensures a better portability from one system to another. A bridging model
is an abstract model of a computer which provides a conceptual bridge between
the physical implementation of the machine and the abstraction available to
a programmer of that machine. We conscientiously limit our work to the bulk-
synchronous parallel (bsp) bridging model [1,18] because it has the advantage of
being endowed with a simple model of execution. We leave more complex models

74 Y. Marquer and F. Gava

to future work. Moreover, there are many different libraries and languages for
programming bsp algorithms, for example, the bsplib for c [11] or java [17],
bsml [?], pregel [12] for big-data, etc.

Concurrent asms [3] try to capture the more general definition of asyn-
chronous and distributed computations. We promote a rather different “bottom-
up” approach consisting of restricting the model under consideration, so as to
better highlight the algorithm execution time (which is often too difficult to
assess for general models) and more generally to formalize our algorithms of
a bridging model at their natural level of abstraction, instead of using a more
general model then restrict it with an arbitrary hypothesis.

As a basis to this work, we first give an axiomatic definition of bsp algorithms
(algoBSP) with only 4 postulates. Then we extend the asm model [10] of com-
putation (asmBSP) for bsp. Our goal is to define a convincing set of parallel
algorithms running in a predictable time and construct a model that computes
these algorithms only. This can be summarized by algoBSP=asmBSP. An inter-
esting and novel point of this work is that the bsp cost model is preserved.

1.3 Outline

Many definitions used here are well known to the asm community. Recalling
all of them would be too long but they are available in the online technical
report [22].

The remainder of this paper is structured as follows: In Sect. 2 we first recall
the bsp model and define its postulates; Secondly, in Sect. 3, we give the oper-
ational semantics of asmBSP and finally, we give the main result. Section 4 con-
cludes, gives some related work and a brief outlook on future work.

2 Characterizing BSP Algorithms

2.1 The BSP Bridging Model of Computation

As the ram model provides a unifying approach that can bridge the worlds of
sequential hardware and software, so valiant sought [20] for a unifying model
that could provide an effective (and universal) bridge between parallel hardware
and software. A bridging model [20] allows to reduce the gap between an abstract
execution (programming an algorithm) and concrete parallel systems (using a
compiler and designing/optimizing a physical architecture).

The direct mode bsp model [1,18] is a bridging model that simplifies the
programming of various parallel architectures using a certain level of abstrac-
tion. The assumptions of the bsp model are to provide portable and scalable
performance predictions on hpc systems. Without dealing with low-level details
of hpc architectures, the programmer can thus focus on algorithm design only.
The bsp bridging model describes a parallel architecture, an execution model
for the algorithms, and a cost model which allows to predict their performances
on a given bsp architecture.

An Axiomatization for BSP Algorithms 75

A bsp computer can be specified by p uniform computing units (proces-
sors), each capable of performing one elementary operation or accessing a local
memory in one time unit. Processors communicate by sending a data to every
other processor in g time units (gap which reflects network bandwidth ineffi-
ciency), and a barrier mechanism is able to synchronise all the processors in L
time units (“latency” and the ability of the network to deliver messages under
a continuous load). Such values, along with the processor’s speed (e.g. Mflops)
can be empirically determined by executing benchmarks.

local
computations

p0 p1 p2 p3

communication

barrier
next super-step

...
...

...
...

Fig. 1. A bsp super-step.

The time g is thus for collectively delivering
a 1-relation which is a collective exchange where
every processor receives/sends at most one word.
The network can deliver an h-relation in time g×h.
A bsp computation is organized as a sequence of
supersteps (see Fig. 1). During a superstep, the
processors may perform computations on local data
or send messages to other processors. Messages are
available for processing at their destinations by the
next superstep, and each superstep is ended with

the barrier synchronisation of the processors.
The execution time (cost) of a super-step s is the sum of the maximal of the

local processing, the data delivery and the global synchronisation times. It is
expressed by the following formula: Cost(s) = ws + hs × g + L where ws =
max0≤i<p(ws

i) (where ws
i is the local processing time on processor i during

superstep s), and hs =max0≤i<p(hs
i) (where hs

i is the maximal number of words
transmitted or received by the processor i). Some papers rather use the sum of
words for hs

i but modern networks are capable of sending while receiving data.
The total cost (execution time) of a bsp algorithm is the sum of its super-step
costs.

2.2 Axiomatic Characterization of BSP Algorithms

Postulate 1 (Sequential Time). A bsp algorithm A is given by:

1. A set of states S(A);
2. A set of initial states I(A) ⊆ S(A);
3. A transition function τA : S(A) → S(A).

We follow [10] in which states, as first-order structures, are full instantaneous
descriptions of an algorithm.

Definition 1 (Structure). A (first-order) structure X is given by:

1. A (potentially infinite) set U(X) called the universe (or domain) of X
2. A finite set of function symbols L(X) called the signature (language) of X
3. For every symbol s ∈ L(X) an interpretation sX such that:

(a) If c has arity 0 then cX is an element of U(X)
(b) If f has an arity α > 0 then f

X
is an application: U(X)α → U(X)

76 Y. Marquer and F. Gava

In order to have a uniform presentation [10], we considered constant symbols
in L(X) as 0-ary function symbols, and relation symbols R as their indicator
function χR. Therefore, every symbol in L(X) is a function. Moreover, partial
functions can be implemented with a special symbol undef , and we assume in
this paper that every L(X) contains the boolean type (¬, ∧) and the equality.
We also distinguish dynamic symbols whose interpretation may change from one
state to another, and static symbols which are the elementary operations.

Definition 2 (Term). A term of L(X) is defined by induction:

1. If c has arity 0, then c is a term
2. If f has an arity α > 0 and θ1, . . . , θα are terms, then f (θ1, . . . , θα) is a term

The interpretation θ
X

of a term θ in a structure X is defined by induction on θ:

1. If θ = c is a constant symbol, then θ
X def= cX

2. If θ = f (θ1, . . . , θα) where f is a symbol of the language L(X) with arity
α > 0 and θ1, . . . , θα are terms, then θ

X def= f
X

(θ1
X

, . . . , θα
X

)

A formula F is a term with the particular form true|false|R (θ1, . . . , θα) |¬F

|(F1 ∧ F2) where R is a relation symbol (ie a function with output trueX or
false

X
) and θ1, . . . , θα are terms. We say that a formula is true (resp. false) in

X if F
X

= trueX (resp. false
X

).
A bsp algorithm works on independent and uniform computing units. There-

fore, a state St of the algorithm A must be a tuple
(
X1

t , . . . , Xp
t

)
. To simplify,

we annotate tuples from 1 to p and not from 0 to p−1. Notice that p is not
fixed for the algorithm, so A can have states using different size of “p-tuples”
(informally p, the number of processors). In this paper, we will simply consider
that this number is preserved during a particular execution. In other words: the
size of the p-tuples is fixed for an execution by the initial state of A for such an
execution.

If
(
X1, . . . , Xp

)
is a state of the algorithm A, then the structures X1, . . . , Xp

will be called processors or local memories. The set of the independent local
memories of A will be denoted by M(A). We now define the bsp algorithms as
the objects verifying the four presented postulates. The computation for every
processor is done in parallel and step by step.

An execution of A is a sequence of states S0, S1, S2, . . . such that S0 is an
initial state and for every t ∈ N, St+1 = τA(St). Instead of defining a set of final
states for the algorithms, we will say that a state St of an execution is final if
τA(St) = St, that is the execution is: S0, S1, . . . , St−1, St, St, . . . We say that an
execution is terminal if it contains a final state.

We are interested in the algorithm and not a particular implementation (eg,
the variables’ names), therefore in the postulate we will consider the states up to
multi-isomorphism.

Definition 3 (Multi-isomorphism).
−→
ζ is a multi-isomorphism between two

states
(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
if p = q and

−→
ζ is a p-tuple of applications

An Axiomatization for BSP Algorithms 77

ζ1, . . . , ζp such that for every 1 ≤ i ≤ p, ζi is an isomorphism between Xi

and Y i.

Postulate 2 (Abstract States). For every bsp algorithm A:

1. The states of A are p-tuples of structures with the same finite signature L(A);
2. S(A) and I(A) are closed by multi-isomorphism;
3. The transition function τA preserves p, the universes and commutes with

multi-isomorphisms.

For a bsp algorithm A, let X be a local memory of A, f ∈ L(A) be a dynamic
α-ary function symbol, and a1, . . . , aα, b be elements of the universe U(X). We
say that (f, a1, . . . , aα) is a location of X, and that (f, a1, . . . , aα, b) is an update
on X at the location (f, a1, . . . , aα). For example, if x is a variable then (x, 42) is
an update at the location x. But symbols with arity α > 0 can be updated too.
For example, if f is a one-dimensional array, then (f, 0, 42) is an update at the
location (f, 0). If u is an update then X ⊕u is a new structure of signature L(A)
and universe U(X) such that the interpretation of a function symbol f ∈ L(A) is:

f
X⊕u

(−→a) def=

{
b if u = (f,−→a , b)
f

X
(−→a) otherwise

where we noted −→a = a1, . . . , aα. For example, in X ⊕(f, 0, 42), every symbol has
the same interpretation than in X, except maybe for f because f

X⊕(f,0,42)
(0) =

42 and f
X⊕(f,0,42)

(a) = f
X

(a) otherwise. We precised “maybe” because it may
be possible that f

X
(0) is already 42.

If f
X

(−→a) = b then the update (f,−→a , b) is said trivial in X, because nothing
has changed. Indeed, if (f,−→a , b) is trivial in X then X ⊕ (f,−→a , b) = X.

If Δ is a set of updates then Δ is consistent if it does not contain two
distinct updates with the same location. Notice that if Δ is inconsistent, then
there exists (f,−→a , b), (f,−→a , b′) ∈ Δ with b �= b′ and, in that case, the entire set
of updates clashes:

f
X⊕Δ

(−→a) def=

{
b if (f,−→a , b) ∈ Δ and Δ is consistent
f

X
(−→a) otherwise

If X and Y are two local memories of the same algorithm A then there exists
a unique consistent set Δ = {(f,−→a , b) | f

Y
(−→a) = b and f

X
(−→a) �= b} of non

trivial updates such that Y = X ⊕ Δ. This Δ is called the difference between
the two local memories, and is denoted by Y 	 X.

Let
−→
X =

(
X1, . . . , Xp

)
be a state of A. According to the transition function

τA, the next state is τA(
−→
X), which will be denoted by (τA(

−→
X)1, . . . , τA(

−→
X)p).

We denote by Δi(A,
−→
X) def= τA(

−→
X)i 	 Xi the set of updates done by the i-th

processor of A on the state
−→
X , and by

−→
Δ(A,

−→
X) def= (Δ1(A,

−→
X), . . . ,Δp(A,

−→
X))

78 Y. Marquer and F. Gava

the “multiset” of updates done by A on the state
−→
X . In particular, if a state

−→
X

is final, then τA(
−→
X) =

−→
X , so

−→
Δ(A,

−→
X) =

−→∅ .
Let A be a bsp algorithm and T be a set of terms of L(A). We say that two

states
(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
of A coincide over T if p = q and for

every 1 ≤ i ≤ p and for every t ∈ T we have t
Xi

= t
Y i

.

Postulate 3 (Bounded Exploration for Processors). For every bsp algo-
rithm A there exists a finite set T (A) of terms such that for every state

−→
X and

−→
Y ,

if they coincide over T (A) then
−→
Δ(A,

−→
X) =

−→
Δ(A,

−→
Y), i.e. for every 1 ≤ i ≤ p,

we have Δi(A,
−→
X) = Δi(A,

−→
Y).

T (A) is called the exploration witness [10] of A. If a set of terms T is
finite then its closure by subterms is finite too. We assume that T (A) is closed
by subterms and the symbol “true” should always be in the exploration witness
[10]. The interpretations of the terms in T (A) are called the critical elements
and we prove in [22] that every value in an update is a critical element:

Lemma 1 (Critical Elements). For every state
(
X1, . . . , Xp

)
of A, ∀i 1 ≤

i ≤ p, if (f,−→a , b) ∈ Δi(A,
−→
X) then −→a , b are interpretations in Xi of terms in

T (A).

That implies that for every step of the computation, for a given processor,
only a bounded number of terms are read or written (amount of work).

Lemma 2 (Bounded Set of Updates). For every state
(
X1, . . . , Xp

)
of the

algorithm A, for every 1≤ i≤p, |Δi(A,
−→
X)| is bounded.

Notice that for the moment we make no assumption on the communication
between processors. Moreover, these three postulates are a “natural” extension
of the ones of [10]. And by “natural”, we mean that if we assume that p = 1
then our postulates are exactly the same:

Lemma 3 (A Single Processor is Sequential). A bsp algorithm with
a unique processor (p = 1) is a sequential algorithm. Therefore algoseq ⊆
algoBSP. We now organize the sequence of states into supersteps. The com-
munication between local memories occurs only during a communication phase.
In order to do so, a bsp algorithm A will use two functions compA and commA

indicating if A runs computations or if it runs communications.

Postulate 4 (Supersteps phases). For every bsp algorithm A there exists
two applications compA : M(A) → M(A) commuting with isomorphisms, and
commA : S(A) → S(A), such that for every state

(
X1, . . . , Xp

)
:

τA

(
X1, . . . , Xp

)
=

⎧
⎨

⎩

(
compA(X1), . . . , compA(Xp)

)
if ∃1 ≤ i ≤ p
such that compA(Xi) �= Xi

commA

(
X1, . . . , Xp

)
otherwise

An Axiomatization for BSP Algorithms 79

A BSP algorithm is an object verifying these four postulates, and we denote
by algoBSP the set of the bsp algorithms. A state

(
X1, . . . , Xp

)
will be said in

a computation phase if there exists 1 ≤ i ≤ p such that compA(Xi) �= Xi.
Otherwise, the state will be said in a communication phase.

This requires some remarks. First, at every computation step, every processor
which has not terminated performs its local computations. Second, we do not
specified the function commA in order to be generic about which bsp library
is used. We discuss in Sect. 3.3 the difference between commA and the usual
communication routines in the bsp community.

Remember that a state
−→
X is said to be final if τA(

−→
X) =

−→
X . Therefore,

according to the fourth postulate,
−→
X must be in a communication phase which

is like a final phase that would terminate the whole execution as found in mpi.
We prove that the bsp algorithms satisfy, during a computation phase, that

every processor computes independently of the state of the other processors:

Lemma 4 (No Communication during Computation Phases). For
every states

(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
in a computing phase, if Xi and

Y j have the same critical elements then Δi(A,
−→
X) = Δj(A,

−→
Y).

2.3 Questions and Answers

Why not using a bsp-Turing machine to define an algorithm?
It is known that standard Turing machines could simulate every algorithm. But
we are here interested in the step-by-step behavior of the algorithms, and not
the input-output relation of the functions. In this way, there is not a literal
identity between the axiomatic point of view (postulates) of algorithms and the
operational point of view of Turing machines. Moreover, simulating algorithms
by using a Turing-machine is a low-level approach which does not describe the
algorithm at its natural level of abstraction. Every algorithm assumes elementary
operations which are not refined down to the assembly language by the algorithm
itself. These operations are seen as oracular, which means that they produce the
desired output in one step of computation.

But I think there is too much abstractions: When using bsplib, messages received
at the past superstep are dropped. Your function commA does not show this fact.
We want to be as general as possible. Perhaps a future library would allow
reading data received n supersteps ago as the BSP+ model of [19]. Moreover,
the communication function may realize some computations and is thus not a
pure transmission of data. But the exploration witness forbids doing whatever:
only a finite set of symbols can be updated. And we provide a realistic example
of such a function which mainly correspond to the bsplib’s primitives [22].

And why is it not just a permutation of values to be exchanged?
The communications can be used to model synchronous interactions with the
environment (input/output or error messages, etc.) and therefore make appear
or disappear values.

80 Y. Marquer and F. Gava

And when using bsplib and other bsp libraries, I can switch between sequential
computations and bsp ones. Why not model this kind of feature?
The sequential parts can be modeled as purely asynchronous computations repli-
cated and performed by all the processors. Or, one processor (typically the first
one) is performing these computations while other processors are “waiting” with
an empty computation phase.

In [2,3,15,16], the authors give more general postulates about concurrent and/or
distributed algorithms? Why not using their works by adding some restrictions
to take into account the bsp model of execution?
It is another solution. But we think that the restrictions on “more complex”
postulates is not a natural characterization of the bsp algorithms. It is better
for a model to be expressed at its natural level of abstraction in order to highlight
its own properties. For example, there is the problematic of the cost model which
is inherent to a bridging model like bsp: It is not clear how such restrictions could
highlight the cost model.

Fine. But are you sure about your postulates? I mean, are they completely (and
not more) defined bsp algorithms?
It is impossible to be sure because we are formalizing a concept that is cur-
rently only intuitive. But as they are general and simple, we believe that they
correctly capture this intuitive idea. We prove in the next section that a natural
operational model for bsp characterizes exactly those postulates.

Would not that be too abstract? The bsp model is supposed to be a bridging
model.
We treat algorithms at their natural level of abstraction, and not as something
to refine to machines: We explicitly assume that our primitives may not be
elementary for a typical modern architecture (but could be so in the future)
and that they can achieve a potentially complex operation in one step. This
makes it possible to get away from a considered hardware model and makes it
possible to calculate the costs in time (and in space) in a given framework which
can be variable according to what is considered elementary. For example, in an
Euclidean algorithm, it is either the Euclidean division that is elementary or the
subtraction. If your bsp algorithm uses elementary operations which can not be
realized on the bsp machine considered, then you are just not at the right level
abstraction. Our work is still valid for any level of abstraction.

3 BSP-ASM Captures the BSP Algorithms

The four previous postulates define the bsp algorithms from an axiomatic view-
point but that does not mean that they have a model, or in, other words, that
they are defined from an operational point of view. In the same way that the
model of computation asm captures the set of the sequential algorithms [10], we
prove in this section that the asmBSP model captures the bsp algorithms.

An Axiomatization for BSP Algorithms 81

3.1 Definition and Operational Semantics of ASM-BSP

Definition 4 (ASM Program [10])

Π
def= f (t1, . . . , tα) := t0

| if F then Π1 else Π2 endif
| par Π1‖ . . . ‖Πn endpar

where f has arity α; F is a formula; θ1, . . . , θα, θ0 are terms of L(X).
Notice that if n = 0 then par Π1‖ . . . ‖Πn endpar is the empty program. If
in if F then Π1 else Π2 endif the program Π2 is empty we will write simply
if F then Π1 endif. An asm machine [10] is thus a kind of Turing machine
using not a tape but an abstract structure X.

Definition 5 (ASM Operational Semantics)

Δ(f (θ1, . . . , θα) := θ0,X) def=
{

(f, θ1
X

, . . . , θα
X

, θ0
X

)
}

Δ(if F then Π1 else Π2 endif,X) def= Δ(Πi,X)

where
{

i = 1 if F is true on X
i = 2 otherwise

Δ(par Π1‖ . . . ‖Πn endpar,X) def= Δ(Π1,X) ∪ · · · ∪ Δ(Πn,X)

Notice that the semantics of the par is a set of updates done simultaneously,
which differs from an usual imperative framework. A state of a asmBSP machine
is a p-tuple of memories (X1, . . . , Xp). We assume that the asmBSP programs
are spmd (single program multiple data) which means that at each step of
computation, the asmBSP program Π is executed individually on each processor.
Therefore Π induces a multiset of updates

−→
Δ and a transition function τΠ :

−→
Δ(Π,

(
X1, . . . , Xp

)
) def=

(
Δ(Π,X1), . . . , Δ(Π,Xp)

)

τΠ

(
X1, . . . , Xp

) def=
(
X1 ⊕ Δ(Π,X1), . . . , Xp ⊕ Δ(Π,Xp)

)

If τΠ(
−→
X) =

−→
X , then every processor has finished its computation steps. In

that case we assume that there exists a communication function to ensure the
communication between processors.

Definition 6. An asmBSP machine M is a triplet (S(M), I(M), τM) such that:

1. S(M) is a set of tuples of structures with the same finite signature L(M);
S(M) and I(M) ⊆ S(M) are closed by multi-isomorphism;

2. τM : S(M) �→ S(M) verifies that there exists a program Π and an application
commM : S(M) �→ S(M) such that:

τM (
−→
X) =

{
τΠ(

−→
X) if τΠ(

−→
X) �= −→

X

commM (
−→
X) otherwise

82 Y. Marquer and F. Gava

3. commM verifies that:
(1) For every state

−→
X such that τΠ(

−→
X) =

−→
X , commM preserves the universes

and the number of processors, and commutes with multi-isomorphisms
(2) There exists a finite set of terms T (commM) such that for every state−→

X and
−→
Y with τΠ(

−→
X) =

−→
X and τΠ(

−→
Y) =

−→
Y , if they coincide over

T (commM) then
−→
Δ(M,

−→
X) =

−→
Δ(M,

−→
Y).

We denote by asmBSP the set of such machines. As before, a state
−→
X is said

final if τM (
−→
X) =

−→
X . So if

−→
X is final then τΠ(

−→
X) =

−→
X and commM (

−→
X) =

−→
X .

The last conditions about the communication function may seem arbitrary,
but they are required to ensure that the communication function is not a kind
of magic device. For example, without these conditions, we could imagine that
commM may compute the output of the algorithm in one step, or solve the halt-
ing problem. Moreover, we construct an example of commM in [22] (Section D).

3.2 The BSP-ASM Thesis

We prove that asmBSP captures the computation phases of the bsp algorithms
in three steps. First, we prove that during an execution, each set of updates is
the interpretation of an asm program (Lemma 8 p.16 [22]). Then, we prove an
equivalence between these potentially infinite number of programs (Lemma 9
p.17). Finally, by using the third postulate, we prove in Lemma 10 p.18 that
there is only a bounded number of relevant programs, which can be merged into
a single one.

Proposition 1 (BSP-ASMs capture Computations of BSP Algo-
rithms). For every bsp algorithm A, there exists an asm program ΠA such
that for every state

−→
X in a computation phase:

−→
Δ(ΠA,

−→
X) =

−→
Δ(A,

−→
X).

Theorem 1. algoBSP=asmBSP (The proof is available in [22], Section C p.20).

3.3 Cost Model Property and the Function of Communication

There is two more steps in order to claim that asmBSP objects are the bsp
bridging model algorithms: (1) To ensure that the duration corresponds to the
standard cost model and; (2) To solve issues about the communication function.

Cost Model. If the execution begins with a communication, we assume that
no computation is done for the first superstep. We remind that a state

−→
Xt is in

a computation phase if there exists 1 ≤ i ≤ p such that compA(Xi
t) �= Xi

t . The
computation for every processor is done in parallel, step by step. So, the cost in
time of the computation phase is w

def= max1≤i≤p (wi), where wi is the number
of steps done by the processor i (on processor Xi) during the superstep.

Then the state is in a communication phase, when the messages between
the processors are sent and received. Notice that commA may require several

An Axiomatization for BSP Algorithms 83

steps in order to communicate the messages, which contrasts with the usual
approach in bsp where the communication actions of a superstep are considered
as one unit. But this approach would violate the third postulate, so we had to
consider a step-by-step communication approach, then consider these actions as
one communication phase. asmBSP exchanges terms and we show in [22] how
formally define the size of terms. But we can imagine a machine that must
further decompose the terms in order to transmit them (in bits for example).
We just assume that the data are communicable in time g for a 1-relation.

So, during the superstep, the communication phase requires h × g steps.
It remains to add the cost of the synchronization of the processors, which is
assumed in the usual bsp model to be a parameter L. Therefore, we obtained a
cost property which is sound with the standard bsp cost model.

A Realization of the Communication. An example of a communication
function for the standard bsplib’s primitives bsp_get, bsp_put, bsp_send
bsp_move is presented in [22] (Section D).

Proposition 2 (Communication). A function of communication, with rou-
tines for distant readings/writings and point-to-point sendings, performing an
h-relation and requiring at most h exchanges can be designed using asm.

One may argue that the last postulate allows the communication function
to do computations. To avoid it, we assume that the terms in the exploration
witness T (M) can be separated between T (Π) and T (commM) such that T (Π)
is for the states in a computation phase, and that for every update (f,−→a , b)
of a processor Xi in a communication phase, either there exists a term t ∈
T (commM) such that b = t

Xi

, or there exists a variable v ∈ T (Π) and a processor

Xj such that b = t
vXj

Xi

(representation presented in Section D p.24). To do a
computation, a term like x+1 is required, so the restriction to a variable prevents
the computations of the terms in T (Π). Or course, the last communication step
should be able to write in T (Π), and the final result should be read in T (Π).

4 Conclusion and Future Work

4.1 Summary of the Contribution

A bridging model provides a common level of understanding between hardware
and software engineers. It provides software developers with an attractive escape
route from the world of architecture-dependent parallel software [20]. The bsp
bridging model allows the design of “immortal” (efficient and portable) paral-
lel algorithms using a realistic cost model (and without any overspecification
requiring the use of a large number of parameters) that can fit most distributed
architectures. It has been used with success in many domains [1].

We have given an axiomatic definition of bsp algorithms by adding only one
postulate to the sequential ones for sequential algorithms [10] which has been

84 Y. Marquer and F. Gava

widely accepted by the scientific community. Mainly this postulate is the call of
a function of communication. We abstract how communication is performed, not
be restricting to a specific bsp library. We finally answer previous criticisms by
defining a convincing set of parallel algorithms running in a predictable time.

Our work is relevant because it allows universality (immortal stands for bsp
computing): all future bsp algorithms, whatever their specificities, will be cap-
tured by our definitions. So, our asmBSP is not just another model, it is a class
model, which contains all bsp algorithms.

This small addition allows a greater confidence in this formal definition com-
pared to previous work: Postulates of concurrent asms do not provide the same
level of intuitive clarity as the postulates for sequential algorithms. But our work
is limited to bsp algorithms even if it is still sufficient for many hpc and big-data
applications. We have thus revisited the problem of the “parallel ASM thesis”
i.e., to provide a machine-independent definition of bsp algorithms and a proof
that these algorithms are faithfully captured by asmBSP. We also prove that the
cost model is preserved which is the main novelty and specificity of this work
compared to the traditional work about distributed or concurrent asms.

4.2 Questions and Answers About this Work

Why do you use a new model of computation asmBSPinstead of asmsonly?
Indeed, each processor can be seen as a sequential asm. So, in order to sim-
ulate one step of a bspalgorithm using several processors, we could use pids to
compute sequentially the next step for each processor by using an asm.
Even if such a simulation exists between these two models, what you mean,
a “sequentialization” (each processor, one after the other) of the bsp model
of execution, cannot be exactly the function of transition of the postulates.
Moreover, in order to stay bounded, having p exploration witness (one for each
sequential asm) induces p to be a constant for the algorithm. In our work, p is
only fixed of each execution, making the approach more general when modeling
algorithms.

Is another model possible to characterize the bsp algorithms?
Sure. This can be more useful for proving some properties. But that would be
the same set, just another way to describe it.

So, reading the work of [3], a distributed machine is defined as a set of pairs
(a,Πa) where a is the name of the machine and Πa a sequential asm. Reading
your definition, I see only one Π and not “p” processors as in the bsp model. I
thus not imagine a bsp computer as it is.
You are absolutely right but we do not model a bsp computer, our work is
about bsp algorithms. The asmBSP program contains the algorithm which is
used on each “processor” (a first-order structure as explain before). These are the
postulates (axiomatic point of view) that characterize the class of bsp algorithms
rather than a set of abstract machines (operational point of view). That is closer
to the original approach [10]. We also want to point out that, unlike [3], we are not

An Axiomatization for BSP Algorithms 85

limited to a finite (fixed) set of machines: In our model, an algorithm is defined
for p = 1, 2, 1000, etc. And we are not limited to point-to-point communications.

Ok, but with only a single code, you cannot have all the parallel algorithms...
We follow [4] about the difference between a PARallel composition of SEQuential
actions (PAR of SEQ) and a SEQuential composition of PARallel actions (SEQ
of PAR). Our asmBSP is SEQ(PAR). This leads to a macroscopic point of view1

which is close to a specification. Being a SEQ(PAR) model allows a high level
description of the bsp algorithms.

So, why are you limited to spmd computations?
Different codes can be run by the processors using conditionals on the “id”
of the processors. For example “if pid=0 then code1 else code2” for running
“code1” (e.g. master part) only on processor 0. Again, we are not limited to spmd
computations. The asm program Π fully contains the bsp algorithm, that is all
the“actions” that can be performed by any processors, not necessarily the same
instructions: Each processor picks the needed instruction to execute but there
could be completely different. Only the size of Π is finite due to the exploration
witness. For example, it is impossible to have a number of conditionals in Π
that depends of p. Indeed, according to Lemma 4, during a computation phase,
if two processors coincide over the exploration witness, then they will use the
same code. And according to Postulate 3, the exploration witness is bounded.
So, there exists only a bounded number c of possible subroutines during the
computation phase, even if p�c.

Notice that processors may not know their own ids and there is no order in
p-tuples; We never use such a property: Processors are organized like a set and
we use tuples only for convenience of notation. We are using p-tuples just to add
the bsp execution model in the original postulates of [10].

Ok, but I cannot get the interleavings of the computations as in [3]? Your model
seems very synchronous!
The bsp model makes the hypothesis that the processors are uniform. So if one
processor can perform one step of the algorithm, there is no reason to lock it just
to highlight an interleaving. And if there is nothing to do, it does nothing until
the phase of communication. Our execution model is thus largely “asynchronous”
during the computation phases.

Speaking about communication, why apply several times the function of commu-
nication? When designing a bsp algorithm, I use once a collective operation!
An asm is like a Turing machine. It is not possible to perform all the communi-
cations in a single step: The exploration witness forbids doing this. Our function
of communication performs some exchanges until there are no more.

1 Take for example a bsp sorting algorithm: First all the processors locally sort there
own data, and then, they perform some exchanges in order to have the elements
sorted between them. One defines it as a sequence of parallel actions and being also
independent to the number of processors.

86 Y. Marquer and F. Gava

What happens in case of runtime errors during communications?
Typically, when one processor has a bigger number of super-steps than other
processors, or when there is an out-of-bound sending or reading, it leads to a
runtime error. The bsp function of communication can return a ⊥ value. That
causes a stop of the operational semantics of the asmBSP.

4.3 Related Work

As far as we know, some work exists to model distributed programs using asms
[15] but none to convincingly characterize bsp algorithms. In [6], authors model
the p3l set of skeletons. That allows the analyze of p3l programs using standard
asm tools but not a formal characterization of what p3l is and is not.

The first work to extend asms for concurrent, distributed, agent-mobile algo-
rithms is [2]. Too many postulates are used making the comprehension hard to
follow or worse (loss of confidence). A first attempt to simplify this work has
been done in [16] and again simplified in [7] by the use of multiset comprehen-
sion terms to maintain a kind of bounded exploration. Then, the authors prove
that asms captures these postulates. Moreover, we are interested in distributed
(hpc) computations more than parallel (threading) asms.

We want to clarify one thing. The asm thesis comes from the fact that sequen-
tial algorithms work in small steps, that is steps of bounded complexity. But the
number of processors (or computing units) is unbounded for parallel algorithms,
which motivated the work of [2] to define parallel algorithms with wide steps,
that is steps of unbounded complexity. Hence the technicality of the presentation,
and the unconvincing attempts to capture parallel algorithms [3].

Extending the asms for distributed computing is not new [3]. We believe that
these postulates are more general than ours but we think that our extension
still remains simple and natural for bsp algorithms. The authors are also not
concerned about the problem of axiomatizing classes of algorithms using a cost
model which is the heart of our work and the main advantage of the bsp model.

4.4 Future Work

This work leads to many possible work. First, how to adapt our work to a
hierarchical extension of bsp [21] which is closer to modern hpc architectures?

Second, bsp is a bridging model between hardwares and softwares. It could
be interesting to study such a link more formally. For example, can we prove
that the primitives of a bsp language can truly “be bsp” on a typical cluster
architecture?

Thirdly, we are currently working on extending the work of [13] in order to
give the bsp algorithmic completeness of a bsp imperative programming lan-
guage. There are some concrete applications: There are many languages having
a bsp-like model of execution, for example pregel [12] for writing large-graph
algorithms. An interesting application is proving which are bsp algorithmically
complete and are not. bsplib programs are intuitively bsp. mapreduce is a

An Axiomatization for BSP Algorithms 87

good candidate to be not [14]. Similarly, one can imagine proving which lan-
guages are too expressive for bsp. mpi is intuitively one of them. Last, the first
author is working on postulates for more general distributed algorithm à la mpi.

In any case, studying the bsp-ram (such as the communication-oblivious of
[19]) or mapreduce, would led to define subclasses of bsp algorithms.

References

1. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach Using
BSP and MPI. Oxford University Press, Oxford (2004)

2. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Trans. Comput. Log. 4(4), 578–651 (2003)

3. Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Inf. 53(5),
469–492 (2016)

4. Bougé, L.: The data parallel programming model: a semantic perspective. In: Per-
rin, G.-R., Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol.
1132, pp. 4–26. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61736-
1 40

5. Cappello, F., Snir, M.: On communication determinism in HPC applications. In:
Computer Communications and Networks (ICCCN), pp. 1–8. IEEE (2010)

6. Cavarra, A., Zavanella, A.: A formal model for the parallel semantics of p3l. In:
ACM Symposium on Applied Computing (SAC), pp. 804–812 (2000)

7. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A new thesis concerning syn-
chronised parallel computing –simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016)

8. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks.
Softw. Pract. Exp. 40(12), 1135–1160 (2010)

9. Gorlatch, S.: Send-receive considered harmful: myths and realities of message pass-
ing. ACM TOPLAS 26(1), 47–56 (2004)

10. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Log. 1(1), 77–111 (2000)

11. Hill, J.M.D., McColl, B., et al.: BSPLIB: the BSP programming library. Parallel
Comput. 24, 1947–1980 (1998)

12. Malewicz, G., et al.: pregel: a system for large-scale graph processing. In: Man-
agement of data, pp. 135–146. ACM (2010)

13. Marquer, Y.: Algorithmic completeness of imperative programming languages.
Fundamenta Informaticae, pp. 1–27 (2017, accepted)

14. Pace, M.F.: BSP vs MAPREDUCE. Procedia Comput. Sci. 9, 246–255 (2012)
15. Prinz, A., Sherratt, E.: Distributed ASM- pitfalls and solutions. In: Ait Ameur,

Y., Schewe, K.D. (eds.) ABZ 2014. Lecture Notes in Computer Science, vol. 8477,
pp. 210–215. Springer, Heidelberg (2014)

16. Schewe, K.-D., Wang, Q.: A simplified parallel ASM thesis. In: Derrick, J., et al.
(eds.) ABZ 2012. LNCS, vol. 7316, pp. 341–344. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30885-7 27

17. Seo, S., et al.: HAMA: an efficient matrix computation with the MAPREDUCE
framework. In: Cloud Computing (CloudCom), pp. 721–726. IEEE (2010)

18. Skillicorn, D.B., Hill, J.M.D., McColl, W.F.: Questions and answers about BSP.
Sci. Program. 6(3), 249–274 (1997)

https://doi.org/10.1007/3-540-61736-1_40
https://doi.org/10.1007/3-540-61736-1_40
https://doi.org/10.1007/978-3-642-30885-7_27

88 Y. Marquer and F. Gava

19. Tiskin, A.: The design and analysis of bulk-synchronous parallel algorithms. PhD
thesis. Oxford University Computing Laboratory (1998)

20. Valiant, L.G.: A bridging model for parallel computation. Comm. ACM 33(8),
103–111 (1990)

21. Valiant, L.G.: A bridging model for multi-core computing. J. Comput. Syst. Sci.
77(1), 154–166 (2011)

22. Marquer, Y., Gava, F.: An ASM thesis for BSP. Technical report (2018). https://
hal.archives-ouvertes.fr/hal-01717647

https://hal.archives-ouvertes.fr/hal-01717647
https://hal.archives-ouvertes.fr/hal-01717647

	An Axiomatization for BSP Algorithms
	1 Introduction
	1.1 Context of the Work
	1.2 Content of the Work
	1.3 Outline

	2 Characterizing BSP Algorithms
	2.1 The BSP Bridging Model of Computation
	2.2 Axiomatic Characterization of BSP Algorithms
	2.3 Questions and Answers

	3 BSP-ASM Captures the BSP Algorithms
	3.1 Definition and Operational Semantics of ASM-BSP
	3.2 The BSP-ASM Thesis
	3.3 Cost Model Property and the Function of Communication

	4 Conclusion and Future Work
	4.1 Summary of the Contribution
	4.2 Questions and Answers About this Work
	4.3 Related Work
	4.4 Future Work

	References

