
QoS-Driven Service Matching Algorithm
Based on User Requirements

Mengying Guo(B) and Xudong Yang

School of Computer Science, Beijing University of Posts
and Telecommunications, Beijing, China
{mengying 1204,xdyang}@bupt.edu.cn

Abstract. Quality of Service (QoS) is an important factor which should
be considered in service matching. There are two problems in most exist-
ing solutions. Firstly, most QoS models are static model described by
determinate values or probability distributions, ignoring the impact of
time factor. However, most QoS attributes are time-dependent, such as
response time and reliability. Secondly, the service selection criteria of
most QoS-driven service matching algorithms are based on service per-
formance, but user requirements and the load of services are not consid-
ered. In this paper, we propose a Time-Segmented QoS Model (TSQM)
to dynamically model QoS. Based on this model, a Service Matching
algorithm based user QoS request and Priority (QPSM) is proposed.
The priority of user requests is used to control the load of the services.
Simulation results show that the algorithm can achieve a higher response
rate and a better effect of load balancing.

Keywords: Service matching · QoS · Dynamic QoS model
Service model · Load balancing

1 Introduction

SOA (Service-Oriented Architecture) has provided a possibility for IoT (Internet
of Things) systems to build distributed applications by loosely coupled services [1].
IoT services can be provided for different systems as web services by this way.
Selecting services in numerous registered services has become difficult with the
number of IoT services increasing rapidly [2]. The characteristics of IoT services
determine that service function and service quality must be taken into account
simultaneously when performing service matching. QoS (Quality of service) mea-
sured in different criterions such as delay, response time, reliability, availability,
cost, etc. [3], has been a crucial factor in selecting services from numerous services
with the same functions. The results of service matching depend not only on the
matching degree to user requirements but also on the QoS attributes of the service
itself. QoS-aware service selection is a complex multi-criterion decision problem,
which is called NP-hard problem, and it is still a challenging research [4].

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11336, pp. 17–27, 2018.
https://doi.org/10.1007/978-3-030-05057-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05057-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-05057-3_2

18 M. Guo and X. Yang

There have been many reasonable selection models and effective matching
algorithms for QoS-aware service selection. In these models and algorithms, ser-
vice matching is considered as an optimization problem based on service selecting
and the objective is to find the best service. However, the fact that actual require-
ments of users are not considered is unacceptable for some users, because the
matched services may have the best overall performance but cannot satisfy the
user requirement for a certain QoS attribute. Another problem of these models
is that the QoS attributes are only represented with single-valued model or prob-
abilistic model and the influence of time is not taken into account. Because the
service QoS attributes dynamically change with time and user load, the static
model cannot accurately represent the QoS values. Thereby the static model will
seriously affect the accuracy of matching results.

In this paper, by splitting time and dynamically modeling each time period,
we propose a Time-Segmented QoS Model (TSQM) which can represent QoS
attributes more accurately. Based on our model, a Service Matching algorithm
based user QoS request and Priority (QPSM algorithm) is proposed. In this
algorithm, the single QoS performance and comprehensive QoS performance
provided by services are considered simultaneously. The load of the service is
controlled according priority, so that the purpose of balancing user load on each
service can be achieved. The rest of the paper is organized as follows. Section 2
introduces the related work of service matching technology. Section 3 details
the TSQM model and the QPSM algorithm. Section 4 shows the simulation
results to prove the feasibility and effectiveness of the QPSM algorithm. Section 5
concludes this paper.

2 Related Work

QoS-based service matching can usually be divided into two relatively indepen-
dent processes, service selection and service ranking [5]. Service selection ensures
the most basic functional requirements and QoS requirements of users or sys-
tems. Service ranking is a further optimization on this basis. The model and
algorithm of service selection can be divided into service-function-based selec-
tion and service-quality-based selection according to different selection criteria.
In service-function-based model, the concepts such as semantics or ontology are
used to build service models [6,7]. The service-quality-based selection can be
divided into single QoS performance selection model and comprehensive QoS
performance selection model [5]. The service-quality-based selection can also be
divided into single value model and probability-based selection model [8–10].

Service function is one of the requirements that should be satisfied in the
process of service matching. The fundamental purpose of service matching is to
select the most appropriate service for the user based on the service request from
the user. More and more models describe and define services based on semantic
web and ontology to understand the functional requirements of users more intel-
ligently. A new resource model describing IoT resources in multi-dimensional
was proposed in [6]. Based on this model, a resource matching algorithm, that

QoS-Driven Service Matching Algorithm Based on User Requirements 19

select suitable resource according the similarity between semantic web match-
ing resources, was also proposed. In [7] authors proposed a QoS-based dynamic
service composition method in semantic IoT. According to the context-added
QoS ontology, after the dynamic semantic annotation of the services in seman-
tic internet of things, the candidate service sets are dynamically selected and
combined to provide more accurate services.

Service quality is another requirement that should be satisfied in the pro-
cess of service matching. The QoS attributes of services will significantly impact
on the comprehensive evaluation of services. Therefore, QoS-based service selec-
tion is an available scheme of IoT service selection. In most studies, such as [8,9],
single-valued model or probabilistic model are usually used to model each dimen-
sion of QoS, and the optimal services are selected according to the comparison of
service performance. In the process of QoS-aware service matching, not only the
overall performance of the service but also each user requirement of QoS should
be considered. In [10] authors proposed a service discovery algorithm based on a
multi- stage service matching algorithm. In this algorithm, each QoS attribute
is assigned a different weight and the QoS constraints are determined according
to user requests. Finally, the most suitable service is selected. The QoS of web
service dynamically changes with factors such as network condition, user load
and time. Static model constructed solely from historical data cannot accurately
represent the dynamic changes. Therefore, the time factor must be considered
when modeling.

3 Service Model

In a complete process of service matching, the function and quality of service
should be taken into consideration. Assume that the virtual service set S is
known and all services in the virtual service set S can satisfy the functional
requirements requested by the user. Next, the QoS modeling and service match-
ing will be discussed further.

3.1 Time-Segmented QoS Model Definition

The TSQM model is a time-segmented QoS-based model. According to changes
of QoS attributes over time, the QoS change period can be divided into some
time periods with different intervals and the QoS model can be constructed
separately in each time period.

Definition. The TSQM model for a service can be represented as a triple
(ET,P,QM), where

• ET = [T0, T0 + T) is the effective period of QoS, T0 is the start time of
effective period, T is the time period of QoS attribute updated.

• P = {P1, P2, · · · , PN} is the time period of ET , Pi = [ti, ti+1) and
⋃

i Pi =
ET .

20 M. Guo and X. Yang

• QM = 〈Q1, Q2, · · · , Qn〉 is a sequence of QoS models, Qi = (fDELAYi
,

fRESTi
, fRELi

, fUSAi
, fCOSTi

) is the QoS vector of the time period Pi, and
fDELAYi

, fRESTi
, fRELi

, fUSAi
, fCOSTi

represent the probability distribu-
tion function of delay, response time, reliability, availability, and cost.

Given a service, the QoS model of the service can be represented as Q(t) =
(fDELAYt

, fRESTt
, fRELt

, fUSAt
, fCOSTt

), where t ∈ [ti + kT, ti+1 + kT) , k =
0, 1, · · ·

The TSQM model shows that the QoS of the service changes with time. The
model can be flexibly extended according to different user requirements, and
the number of QoS attributes in each time period can be one or more. In this
paper, delay, response time, reliability, availability and cost are selected as the
QoS attributes.

3.2 Detailed Description of the Model

QoS Model. A QoS model of a service contains k QoS attributes. These
attributes can be 5 non-functional attributes defined in the TSQM model, and
they can also be extended according to user requirements. The QoS of service Si

corresponds to a set of QoS vectors consisting of a probability distribution func-
tion at each time period. In order to compare the QoS performance more easily,
the probability distribution function in each time period should be converted
into a determined value using the 999 criterion (choose a value that 99.9% of
the data satisfies as the QoS value of the current time period), i.e., fQoSi

→ qi.
For clear expression, the below-mentioned QoS attributes default to QoS

attributes within a certain time period. The QoS attributes of service Si can be
represented as a vector, i.e., Qi = (qi1, qi2, · · · , qik), where qik is a value converted
from the probability distribution function of the k-th QoS attribute. We assume
that the virtual service set consists of n candidate services, S = {S1, S2, · · · , Sn},
and their corresponding QoS attributes can be represented as an n × k matrix.

M =

⎡

⎢
⎢
⎢
⎣

q11 q12 · · · q1k
q21 q22 · · · q2k
...

...
. . .

...
qn1 qn2 · · · qnk

⎤

⎥
⎥
⎥
⎦

(1)

Because of the differences in the range of QoS values and the effect on the
comprehensive service performance, the QoS values should be normalized by
the min-max normalization [11]. According to the impact on the comprehen-
sive performance of the service, QoS attributes can be classified into positive
effect attributes and negative effect attributes. The larger value of positive effect
attributes (such as reliability, availability, reputation and other attributes) or
the smaller value of negative attributes (such as cost, response time, and other
attributes), the better overall performance of the service. Assuming that the

QoS-Driven Service Matching Algorithm Based on User Requirements 21

range of qi is [min (qi) ,max (qi)], positive and negative effect attributes should
be normalized by formula (2) and (3) respectively.

q
′
i =

{
qi−min(qi)

max(qi)−min(qi)
, max (qi) − min (qi) �= 0

1, max (qi) − min (qi) = 0
(2)

q
′
i =

{
max(qi)−qi

max(qi)−min(qi)
, max (qi) − min (qi) �= 0

1, max (qi) − min (qi) = 0
(3)

All QoS values are distributed between [0, 1] after normalization. The com-
prehensive performance of the service is enhanced with the increase of each QoS
value, that is, the larger the QoS value, the better the service performance.

Service Request. A service request sent from the user to the service plat-
form when the service discovery is performed can be represented as Req =
{Qreq,Mreq}, where Qreq = (α1, α2, · · · , αk) is a QoS request vector and α1, α2,
· · · , αk represent the user’s expected values for k attributes qi1, qi2, · · · , qik. The
QoS values in the request vector, α1, α2, · · · , αk, should be normalized by for-
mula (2) or (3), so we can get α

′
1, α

′
2, · · · , α

′
k. Then Qreq is converted to Q

′
req.

The priority vector is Mreq = (m1,m2, · · · ,mj), j ∈ {1, 2, · · · , k}, and j means
the j-th attribute in Qreq as the priority attribute of the request Req. Mreq

including one or more priority attributes is defined by the user requirements,
which fully reflects the user’s preference for the QoS attributes of the target
service. The user requirement emphasizes the importance of the j-th attribute
q

′
j in the target service. And q

′
j is expected to satisfy the requirement of α

′
j in

Q
′
req as much as possible, i.e., q

′
j ≥ α

′
j .

Priority. The priority of the service request depends on α
′
j in the QoS request

vector Q
′
req. Suppose h is the user’s expected value of a certain QoS attribute,

i.e., h = α
′
j . The priority of the request can be calculated by formula (4).

Prior(h) =

⎧
⎨

⎩

1, h ∈ [0, T1)
2, h ∈ [T1, T2]
3, h ∈ (T2, 1]

(4)

T1 and T2 are single performance thresholds that is used to determine the priority
of the service request. The values of T1 and T2 are in the range of [0, 1], and T1 ≤
T2. The priority of the service request Req can be divided into three levels of 1,
2, and 3, which respectively represent the low, medium, and high of the priority.
According to the request priority, different matching strategies are selected. The
matching strategy set can be represented as MS = {MSH ,MSM ,MSL}, where
MSH ,MSM and MSL respectively indicate the matching strategies of different
priority.

22 M. Guo and X. Yang

QoS Performance Evaluation Value. QoS performance evaluation value is
classified to request performance evaluation value QoSreq and service perfor-
mance evaluation value QoSser. QoSreq is selected by the expected QoS value

from user and it can be represented as QoSreq =
∣
∣
∣Q

′
req

∣
∣
∣
2

= α
′2
1 +α

′2
2 + · · ·+α

′2
k =

∑k
i=1 α

′2
i , where Q

′
req =

(
α

′
1, α

′
2, · · · , α

′
k

)
is the QoS request vector after nor-

malization. The QoSser of service Si can be represented as QoSser(i) =
∣
∣
∣Q

′
i

∣
∣
∣
2

=

q
′2
i1+q

′2
i2+· · ·+q

′2
ik =

∑k
j=1 q

′2
ij , where Q

′
i =

(
q

′
i1, q

′
i2, · · · , q

′
ik

)
is the QoS attribute

vector after normalization.

The Utility of Service Matching. U(i) is the utility of the service match-
ing algorithm when the service Si is selected as the target service satisfying the
request Req. It is classified to single performance utility value US(i) and compre-
hensive services utility value UC(i). US(i) is the ratio of a certain QoS attribute
of Req to that of Si, and can be represented as formula (5). UC(i) is the ratio
of the overall performance evaluation value of Req to that of Si, and can be
represented as formula (6). U(i) is the weighted sum of US(i) and UC(i), and it
can be represented as formula (7).

US(i) =

{
h/q

′
ij , h < q

′
ij

q
′
ij/h, h ≥ q

′
ij

(5)

UC(i) =
{

QoSreq/QoSser(i), QoSreq < QoSser(i)
QoSser(i)/QoSreq, QoSreq ≥ QoSser(i)

(6)

U(i) = μ × US(i) + (1 − μ) × UC(i) (7)

The μ is weighted factors in the range of [0, 1]. The impact of US(i) and UC(i)
on U(i) can be adjusted through μ. In the matching process, the greater utility,
the more matched with the user requirements the service is.

4 Service Matching Algorithm

The QoS-based service matching algorithm can be roughly classified to two meth-
ods: single-QoS performance matching and overall-QoS performance matching.
In the QPSM algorithm, service selection and matching are performed according
to user-defined priority attributes and QoS. So the most suitable service to user
requirements can be matched.

QPSM algorithm is proposed as Algorithm 1. The main idea of the algorithm
is selecting the corresponding matching strategy according to the priority of
user request, and selecting the service that is most suitable to the user. The
priority of user request is determined by the specified priority attributes, and
the different matching strategies are adopted according to the priority. When the
request priority is determined as a high priority, the target service must satisfy

QoS-Driven Service Matching Algorithm Based on User Requirements 23

Algorithm 1. QoS-based service matching algorithm (QPSM)
Input: (1)S // Service Set

(2)Req // User Requirements
Output: Ser match // All services that suit for user

1 Initialize Req, S and its corresponding QoS attribute matrix M ;
2 Determine the priority of the request;
3 Compose priority service set Ser prior : q

′
ij ≥ h;

4 Compose the candidate service set Ser wait : QoSser(i) ≥ QoSreq;
5 while Req is not empty do
6 if Prior(h)=3 then
7 if Ser prior = ∅ then
8 Ser match ← null
9 else

10 Ser match ← the largest QoSser(i) from Ser prior
11 end
12 end
13 if Prior(h)=1 then
14 if Ser wait = ∅ then
15 Ser match ← the largest QoSser(i) from S
16 else
17 Ser match ← the minimum QoSser(i) from Ser wait
18 end
19 end
20 if Prior(h)=2 then
21 if Ser prior �= ∅ and Ser wait = ∅ then
22 Ser match ← the largest QoSser(i) from Ser prior
23 end
24 if Ser prior = ∅ and Ser wait �= ∅ then
25 Ser match ← the largest q

′
ij from Ser wait

26 end
27 if Ser prior = ∅ and Ser wait = ∅ then
28 Ser match ← the largest U(i) from S
29 end
30 if Ser prior �= ∅ and Ser wait �= ∅ then
31 if Ser inter = Ser prior ∩ Ser wait �= ∅ then
32 Ser match ← the largest U(i) from Ser inter
33 else
34 if Ser union = Ser prior ∪ Ser wait �= ∅ then
35 Ser match ← the largest U(i) from Ser union
36 end
37 end
38 end
39 end
40 end
41 return Ser match;

the priority attributes completely with the user requirements. When the request
priority is judged as a low priority, a service with the smallest service performance
evaluation value which satisfies the user request performance evaluation value is

24 M. Guo and X. Yang

selected. So the load of the entire service system is balanced and the optimized
matching of resources is achieved. When the request priority is judged as a
medium priority, the user request and service performance are weighed, and the
service selection is determined by the utility of service matching.

Ser match, a matching service set, is composed of services selected by pri-
ority attributes. When the number of priority attributes is more than one, a
conflict of matching policy selection may occur. The merging of matching ser-
vices is to merge the services in Ser match and finally the most suitable service
is selected for the user. Algorithm 2 shows the whole procedure of matching
service merging.

Algorithm 2. Merge matching service
Input: Ser match // Matching Service Set
Output: Ser result // The most suitable service for users

1 Initialize α
′ ∈ {α′

1, · · · , α
′
k}, i ∈ {1, · · · , n}, j ∈ {1, · · · , k};

2 for Ser match �= ∅ do
3 if num(Prior(α

′
) = 3) ≥ 1 then

4 if num(Ser match(q
′
ij ≥ α

′
j)) ≥ 2 then

5 Ser result ← the largest U(i) from Ser match(q
′
ij ≥ α

′
j)

6 end
7 if num(Ser match(q

′
ij ≥ α

′
j)) = 1 then

8 Ser result ← Ser match(q
′
ij ≥ α

′
j)

9 end
10 if num(Ser match(q

′
ij ≥ α

′
j)) = 0 then

11 Ser result ← null
12 end
13 end
14 if num(Prior(α

′
) = 3) = 0 then

15 if num(Ser match) ≥ 2 then
16 Ser result ← the largest U(i) from Ser match
17 else
18 Ser result ← Ser match
19 end
20 end
21 end
22 return Ser result ;

5 Experiment Analysis

The main purpose of the QPSM algorithm is to select the most suitable ser-
vice for the user according to user-defined QoS request. In order to verify the
feasibility and effectiveness of this algorithm, it is compared with the other two
QoS-based matching algorithms, Single-QoS and Overall-QoS, in four aspects
that is response rate, load, average single performance value and overall per-
formance value. All the experiments were conducted on a computer with a 3.2

QoS-Driven Service Matching Algorithm Based on User Requirements 25

GHz Intel Core 2 Duo CPU and 12 GB RAM. The data used for the experiment
derived from two sources: a data set containing 1000 actual services and 5 QoS
values, and a randomly generated user request data set.

The purpose of the first experiment is to evaluate the response rate of the algo-
rithm, that is the ratio of successfully matched and returned requests to the total
requests. In this experiment, 100 services are selected for matching and 1000 ser-
vice requests are randomly generated. The response rates of this three algorithms
are shown in Fig. 1. As the number of user requests increase, the response rate of
each algorithm tends to be stable. The QPSM algorithm outperforms other algo-
rithms with the highest response rate at about 96%. However, the response rate
of the Single-QoS algorithm [8] is the lowest at about 88%. The reason for this
result is that the Single-QoS algorithm will fail to respond when all candidate ser-
vices do not satisfy the QoS constraints. The Overall-QoS algorithm [10] will fail
to respond when the overall performance is lower than user request performance.
In QPSM algorithm, the matching results will be found through a comprehensive
consideration of user requirement and service performance.

0 100 200 300 400 500 600 700 800 900 1000
Number of Service Requests

0.75

0.8

0.85

0.9

0.95

1

R
es

po
ns

e
ra

te

Overall-QoS
QPSM
Single-QoS

Fig. 1. The response rate of the algorithm with the number of user requests

The second experiment is to evaluate the effect of load balancing, that is
indicated by the number of times that services with different QoS performance
respond to requests. In this experiment, 5 candidate services with the same func-
tion and the different QoS are selected and 1000 service requests are randomly
generated. The distributions of service load by using traditional UDDI [5] algo-
rithm and QPSM algorithm are compared. And the load distributions of QPSM
algorithm with different single performance thresholds T1 and T2 are tested.
Figure 2 shows that the QPSM algorithm outperforms the UDDI algorithm in
term of load balancing when the number of service requests is the same. The
greater difference between T1 and T2, the better performance of load balancing.
Because the greater difference between T1 and T2, the more service requests are
judged to be medium priority, and the effect of load balancing is better.

The third experiment is to evaluate the average service single-performance
value and the overall-performance value. In this experiment, 1000 services used
for matching are selected and 1000 user requests with high demand for response

26 M. Guo and X. Yang

S1 S2 S3 S4 S5
Candidate Services

0

5

10

15

20

25

30

35

Lo
ad

 ra
te

 (%
)

UDDI
T1=0.5 T2=0.8
T1=0.2 T2=0.8

Fig. 2. Distribution of service matching load rate

0 200 400 600 800 1000
Number of Service Requests

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 re
lia

bi
lit

y

(a) Average reliability

0 200 400 600 800 1000
Number of Service Requests

0.4

0.5

0.6

0.7

0.8

0.9

1
A

ve
ra

ge
 re

sp
on

se
 ti

m
e

(b) Average response time

0 200 400 600 800 1000
Number of Service Requests

2

2.2

2.4

2.6

2.8

3

3.2

O
ve

ra
ll-

pe
rfo

rm
an

ce

(c) Overall service performance

Fig. 3. Service single-performance and overall-performance with the number of user
requests

time and reliability are randomly generated. The μ in the service matching utility
U(i) is taken as μ = 0.2 and μ = 0.8 respectively. Figure 3 shows that the larger
μ, the higher average reliability of the matching service, the shorter response
time, and the lower overall service performance value. Because the value of μ
determines the proportion of single performance utility value US(i) and compre-
hensive services utility value UC(i) in the utility of service matching U(i), and
affects the final service selection further. The users can select the appropriate μ
according to their requirements.

QoS-Driven Service Matching Algorithm Based on User Requirements 27

6 Conclusion

Due to the uncertainty caused by the dynamic change of service QoS and the
ambiguity of user requirements, there are some limitations in the current service
matching algorithms. In order to describe the QoS attributes more accurately,
we propose a time-segmented QoS model on the consideration of time. Based
on this model, a service matching algorithm based on user QoS request and
priority is also proposed. In this algorithm, user requirements and QoS perfor-
mance preferences is fully considered. And the most suitable service is selected
according to user-defined service requests and priorities, which is more suitable
for users with specific requirements. Finally, experimental results indicate that
the proposed algorithm can achieve a higher response rate and a better effect of
load balancing.

References

1. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: the new generation of
web applications. IEEE Internet Comput. 12(5), 13–15 (2008)

2. He, Q., Yan, J., Jin, H., Yang, Y.: Quality-aware service selection for service-based
systems based on iterative multi-attribute combinatorial auction. IEEE Trans.
Softw. Eng. 40, 192–215 (2014)

3. Zhao, S., Wu, G., Zhang, S.: Review of QoS research in SOA. Comput. Sci. 36(4),
16–20 (2009)

4. Klein, A., Ishikawa, F., Honiden, S.: SanGA: a self-adaptive network-aware app-
roach to service composition. IEEE Trans. Serv. Comput. 7(3), 452–464 (2014)

5. Guo, D., Ren, Y., Chen, H.: A QoS constrained web service selection and ordering
model. J. Shanghai Jiaotong Univ. 41(6), 870–875 (2007)

6. Zhao, S., Zhang, Y., Yu, L., Cheng, B., Ji, Y., Chen, J.: A multidimensional
resource model for dynamic resource matching in internet of things. Concurr. Com-
put. Pract. Exp. 27(8), 1819–1843 (2015)

7. Li, L., Liu, N., Li, G.: A QoS-based dynamic service composition method in seman-
tic internet of things. Appl. Res. Comput. 33(3), 802–805 (2016)

8. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng.
30(5), 311–327 (2004)

9. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. Web Semant. Sci. Serv. Agents World Wide
Web 1(3), 281–308 (2004)

10. Jia, B., Li, W., Zhou, T.: A centralized service discovery algorithm via multi-stage
semantic service matching in internet of things. In: 2017 IEEE International Con-
ference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), pp. 422–427 (2017).
https://doi.org/10.1109/CSE-EUC.2017.82

11. Chen, L., Yang, J., Zhang, L.: Time based QoS modeling and prediction for web
services. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011.
LNCS, vol. 7084, pp. 532–540. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25535-9 38

https://doi.org/10.1109/CSE-EUC.2017.82
https://doi.org/10.1007/978-3-642-25535-9_38
https://doi.org/10.1007/978-3-642-25535-9_38

	QoS-Driven Service Matching Algorithm Based on User Requirements
	1 Introduction
	2 Related Work
	3 Service Model
	3.1 Time-Segmented QoS Model Definition
	3.2 Detailed Description of the Model

	4 Service Matching Algorithm
	5 Experiment Analysis
	6 Conclusion
	References

