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Abstract. With widespread applications in image recognition, language
translation, computer vision and other areas, deep learning (DL) have
been proliferating over the past decade. Practitioners from different busi-
ness groups in industries train DL models on a shared cloud computing
infrastructure for these applications with different priorities. During the
model training process, one of the key challenges is to minimize the life-
cycle of high priority model training jobs. This paper analyzes the dis-
tributed training of machine learning (ML) models and identifies short
board effect in the training process: GPU training requires higher net-
work bandwidth compared to CPU training. The key insight motivates
the design of GAI, a centralized scheduler for ML workload. It relies
on two techniques: (1) tree-based structure. The structure stores the
cluster information hierarchically to apply multi-layer scheduling. (2)
well-extended priority algorithm. We consider priorities from multiple
dimensions for model training jobs comprehensively to support resource
degradation and preemption. The prototype of GAI is implemented on
top of Kubernetes, Kubeflow, and TensorFlow. It is evaluated using a
simulator and a real cloud-based cluster. Evaluations show 28% increase
in scheduling throughput and 21% training convergence speedup on DL
models.
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1 Introduction

Over the past decade, we have witnessed the era of rapid advances in artificial
intelligence, powered by the resurgence of ML, especially DL. DL has become a
hot topic for both academia and industries like Alibaba, Facebook, and Google.
These DL models exhibit a high degree of model complexity that raises new
challenges and opportunities to cluster management.

ML frameworks like TensorFlow [1], MXNet [3], and Caffe [11] allow engi-
neers to set up a one-off cluster to run distributed ML jobs with the support
of parameter server architecture [17]. The architecture splits the job into two
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parts: parameter server and worker. A parameter server maintains a partition of
the globally shared parameters. It collects the gradient and updates the param-
eters over training iterations. A worker server stores a portion of the training
data locally to compute statistics such as gradients. The architecture has widely
applied in DL model training.

Cluster management systems like Google Borg [2], Apache Mesos [10], Apache
Yarn [23] and Daphne [25] now support multiple distributed computing systems
which include TensorFlow and other ML frameworks in the same cluster. They
greatly simplify the operation and maintenance work for the jobs submitted from
different teams or users.

However, there is a problem in most cluster management systems which is
limited rack-aware and priority support [26] that causes the difficulties to inte-
grate real ML workload on the systems. None of the existing cluster management
systems can efficiently handle ML workload in a large shared cluster. They are
usually not able to offer the best hardware accelerators to the highest prior-
ity model training jobs. The main cause is lack of design and optimizations for
ML workload from the scheduler side. Compared to traditional workloads, ML
workload has some unique characteristics: First, distributed ML jobs are getting
increasingly diverse both in terms of the size of input/output data and the scale
of the models. Second, distributed ML jobs are usually network and computing
intensive. Therefore hardware accelerators speed up the training progress signif-
icantly [16], and low latency network makes parameter updates efficiently. Last,
the priority of ML jobs is more complex than traditional jobs. The distributed
model training job usually contains a number of parameter servers and workers,
and there are many dimensions, like distribution and the runtime of the job that
will affect the priority.

To address these challenges, we propose Gatekeeper for AI (GAI), a cen-
tralized scheduler for ML workload on large shared clusters. Some contributions
have been made in this paper:

– The system model for scheduling ML model training jobs on a given cluster
is formalized in this paper. The formalization shows that the problem of
scheduling ML jobs based on parameter server architecture is NP-complete.

– We present the ML workload characterization. Network and computing bot-
tlenecks of ML jobs are verified experimentally. Different hardware devices
(e.g. GPU, CPU) and communication modes (e.g. RPC, IPC) are used to
train the model like Inception V3 [22], ResNet-50, ResNet-152 [9] and VGG-
16 [21]. The experiments show clearly that when the ML training job uses
CPUs, computing is the bottleneck; when using GPUs, the network is the
bottleneck.

– Based on the key insight, GAI is presented to minimize the lifecycle of model
training jobs and support priority for these jobs. GAI schedules distributed
model training jobs based on parameter server architecture, on the data cen-
ter. We offer best effort service and supports resource degradation and pre-
emption due to two features: rack-aware tree scheduling; resource degradation
and preemption.
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– We implement the prototype of GAI on top of Kubernetes, Kubeflow, and
TensorFlow. The evaluation shows that GAI improves the throughput by
nearly 28% on a medium-sized cluster with the support of priority and
achieves 21% training convergence speedup on DL models. We also demon-
strate that the lifecycle of higher priority is shorter by average compared to
those lower priority jobs. Then we can see that the overhead imported by
GAI and light container-based virtualization is acceptable.

The rest of this paper is organized as follows: Sect. 2 describes the back-
ground, Sect. 3 motivates GAI with workload characterization, Sect. 4 presents
the main methodologies adopted by this paper. We evaluate GAI in Sect. 5 and
conclude this paper in Sect. 6.

2 Background

The design of GAI is related to distributed ML and cluster management sys-
tems. Therefore in this section, the parallel architectures of distributed ML jobs
and cluster management systems are introduced as preliminaries. There is a
discussion on the existing researches after the related work.

2.1 Parallel Architecture of Distributed ML

Distributed ML is an iterative-convergent program which is similar to single-
process ML. Based on the property, the researchers proposed a parameter server
framework for distributed ML [17]. Parameter server framework separates the
system into parameter servers and workers. Parameter servers serve the globally
shared parameters while workers maintain the training progress. The framework
adopts either data parallelism or model parallelism [12].

Figure 1(a) is the architecture of model parallelism. In the model parallel
architecture, the model is partitioned and assigned to different workers. Each
worker maintains a part of the ML model and is responsible for updating it.
Model parallelism is usually used to train models that require more memory

Fig. 1. Parallelism architecture
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(e.g. image classification). Model parallel architecture introduces a certain
amount of overhead, it relies on the good network connection.

Figure 1(b) is the data parallel architecture. Each worker in the architecture
of data parallelism has a replica of the model and accepts a portion of training
data. After one iteration, the workers push the gradients to the parameter servers
and fetch parameters from the servers.

2.2 Cluster Scheduling System

Cluster scheduler plays an important role since hardware resources are allocated
to specific jobs through the scheduler. Monolithic scheduler, such as Paragon
[5], Quasar [6], Borg [24], Kubernetes [2] and Firmanent [7], uses a centralized
single-process scheduler to schedule all kinds of jobs on the cluster. Monolithic
scheduler is hard to expand with multiple workloads. Two-layer scheduler, such
as Mesos [10] and Yarn [23], introduces application-specific scheduler into the
monolithic architecture. The new layer guides the centralized scheduler to make
suitable resource allocations for applications. To better concurrency, Shared-
state scheduler, such as Omega [20], imports multiple schedulers based on the
optimistic concurrency control strategy. It is assumed that the scheduling con-
flicts are rare, so shared-state scheduler performs high throughput. But there is
a significant drop when the conflicts are frequent.

Distributed scheduler, such as Sparrow [19], is the architecture designed for
batch jobs. In this architecture, there is no centralized scheduler to maintain the
state of the cluster. The scheduler picks up some nodes and schedules the jobs in
the subset of the cluster. Scheduling delay in distributed approach is relatively
low but it is hard to support online business.

Hybrid scheduler, such as Hawk [4], Mercury [14], and Daphne [25], divides
the jobs into long-running jobs and short jobs. It schedules long-running jobs
using a centralized scheduler and assigns short jobs to a distributed scheduler.
Hybrid scheduler adapts well for multiple workloads, but the complexity is high.

In the conclusion, now the existing researches on distributed ML mainly
focus on the optimization from the ML framework side. It works well when the
distributed training jobs are running on bare metal servers, while there is an
increasing demand to run the workload in the cloud.

The existing cluster management systems usually treat batch jobs or long-
running jobs as first-class objects. They are not designed for ML workload.
Therefore, in this paper we analyze the workload and design GAI, to minimize
the lifecycle of distributed ML jobs and import priority to model training.

3 Workload Characterization

In this section, we formalize the system model to introduce the problem that
we hope to solve. Then short board effect of model training jobs on network
and computing is presented, which shows the opportunities and challenges of
scheduling ML jobs on clusters.
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3.1 Problem Formalization

We consider that GAI schedules a set of jobs that contains a set of tasks on a
homogeneous data center. To illustrate the process concretely, we take a model
training job as an example. As shown in Fig. 2, a model training job has a
number of parameter servers and workers. All the tasks (parameter servers and
workers) of the job will be scheduled by the scheduler. And they will be placed on
some servers. During the training progress, each worker communicates with all
parameter servers via remote process call or inter process call in each iteration,
and we call this the network cost. Workers execute real training logic using
CPUs, GPUs or other hardware accelerators according to the model parameters
from parameter servers, and this causes training cost.

Job

Parameter
Server

1...n

Worker

1...m

Scheduler

Cluster Status

Fig. 2. Scheduling a model training job on a cluster

We assume that the resources in the data center are always strained, which
is demonstrated in previous works [18]. Consider a set of model training jobs
J = {j1, j2, . . . , jm} running on a set of servers S = {s1, s2, . . . , sn}. We define
a model training job ji with jips parameter servers and jiworker workers, the time
associated with the lifecycle of job T i

j includes waiting time T i
waiting, placement

latency T i
scheduling and completion time T i

completion. T i
waiting is spent when the

job is queued to be scheduled. T i
scheduling is caused by the scheduler, which is

dedicated to scheduling the job on the data center. T i
completion is the model

training time and it can be defined by

T i
completion =

jiworker∑

z=1

(Ctraining(wz, sz) +
jips∑

k=1

Cnetwork(wz, sz, psk, sk)) · N (1)

N is the number of iterations. sz is the server that the worker wz is per-
formed. Ctraining(wz, sz) is defined as the training cost of the worker wz which
is performed on server sz in one iteration. It can be expressed as

Ctraining(wz, sz) =

{
CGPU (wz, sz) If use GPU
CCPU (wz, sz) otherwise.

(2)

We call CGPU and CCPU the cost using GPU and CPU. If the server has idle
GPUs and the scheduler assign the GPU to the worker, the cost is the running
time of training on the GPU. While CCPU is the running time on CPU.
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Cnetwork(wz, sz, psk, sk) in Eq. 1 denotes the network cost for worker wz on
server sz and parameter server psk on server sk in one iteration. And it is defined
by

Cnetwork(wz, sz, psk, sk) =

{
CIPC sz = sk

CRPC sz �= sk
(3)

CIPC is the cost using inter-process call (IPC). When the parameter server
and the worker are performed on the same server, the method of communica-
tion between them is inter-process call. While when the parameter server in the
server sz while the worker in the server sk, remote process call (RPC) is used to
communicate. The cost is defined by CRPC .

The scheduling algorithm for ML workload seeks mappings from tasks of the
jobs to the servers with idle resources. The goal of the algorithm is to minimize∑m

i=1 T
i
j , which has been demonstrated to be NP-complete [13].

3.2 Short Board Effect

As described in Sect. 3.1, computing and network communication are the major
cost of a model training job, thus we present a study of the short board effect
of data parallel ML training jobs on computing and network. The study demon-
strates two main points through well-designed experiments:

– Short board effect is significant at cluster scale.
– ML jobs with GPUs suffer from low throughput network, while jobs using

CPUs does not require high bandwidth connection.

Our hardware and software environment for the experiments are shown in
the Tables 1 and 2. In 10GB Ethernet networks, we use CPUs and GPUs to
train different models (Inception V3 [22], ResNet-50, ResNet-152 [9] and VGG-
16 [21]). In the first experiment, we use 1 CPU, 1 GPU, 2 GPUs to train the ML
models respectively. As shown in Fig. 3(a), the experiment of GPU based ML
jobs yields speedups of 20 times than CPU based jobs. ML jobs using 2 GPUs
are 90%–95% faster than the jobs using 1 GPU. And data parallel ML jobs using
a mix of GPUs and CPUs does not fully exploit the GPU’s performance because
of short board effect.

Figure 3(b) shows the result of the training speed of 32 batch-size Inception
V3 model in different distributed architectures and different hardware resources.

Table 1. Hardware configurations

Hardware Configuration

CPU Intel Xeon CPU E5-2697 v4 @ 2.30GHz

GPU Nvidia GeForce GTX 1080Ti

Network card Intel Corporation 82599 10 Gigabit

Switch H3C S5820V2-52QF

Table 2. Software configurations

Software Configuration

OS CentOS Linux release 7.3.1611

ML framework TensorFlow 1.4
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To demonstrate the universality, We conduct in four architectures: (i) 1 parame-
ter server, 1 worker, (i) 1 parameter server, 2 workers, (iii) 2 parameter servers, 1
worker, (iiii) 2 parameter servers, 2 workers. The result shows that the bottleneck
of CPU based training jobs is computing, and the network does not affect the
scalability. We place parameter servers and workers in different machines and
get 35%–64% speed degradation compared with placing all parameter servers
and workers in one machine.

Therefore we summarize the key insights: Network is not always the bottle-
neck for distributed ML jobs. It affects the training speed of GPU based ML
jobs but CPU based jobs do not require high network throughput.

Fig. 3. Training speed using different configurations

4 GAI: A Scheduler for ML Workload

In the previous section, we show the short board effect of model training jobs. In
this section, based on the effect, we propose a tree-based scheduling model, then
present a resource preemption and degradation algorithm for better utilization.

Based on the observations and the characteristics of ML workload in the
previous section, we propose the goals of GAI:

– Minimize the lifecycle of model training jobs.
– Guarantee the priority of ML jobs. High priority jobs are allowed to preempt

hardware accelerator resources to accelerate the training progress.

Figure 4 presents the overview of GAI. The input is a series of distributed
model training jobs, and the output is the mappings from the tasks (parameter
servers and workers) of the jobs to the servers. GAI relies on two main techniques:

Rack-Aware Tree Scheduling: GAI uses a centralized rack-aware tree
scheduling method and maintains a resource tree in memory to place all tasks
of the ML training jobs in one machine or in the machines belong to the same
rack as far as possible.
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Rack 1

Rack 2

Scheduler
Type Replicas GPU CPU Mem
PS 2 0 4 8

 Worker 4 1 1 8

Type Replicas GPU CPU Mem
PS 2 0 4 8

 Worker 4 1 1 8

Type Replicas GPU CPU Mem
PS 2 0 4 8

 Worker 4 1 1 8

Rack GPU CPU Mem

1 8/8 4/16 8/32

Fig. 4. Overview of GAI

Resource Degradation and Preemption: We present a resource degradation
and preemption algorithm for data parallel ML jobs. There are different ML
jobs in different priorities similar to traditional workloads. We use a vector to
represent the priority and support degrading low priority jobs to release the
hardware accelerators for high priority jobs.

4.1 Rack-Aware Tree Scheduling

The previous section shows that GPU based training jobs are network-sensitive
applications. Thus, GAI presents rack-aware tree-based scheduling and main-
tains two different scheduling paths. GAI chooses different paths according to
the status of the cluster to keep high utilization.

In a commercial data center, the servers on the same rack share the same
Ethernet switch, thus the servers are communicated with each other through
a high bandwidth, low latency network. The feature is indifferent to network
insensitive applications, such as web services, while it has a significant impact
on the distributed training jobs which introduce heavy communication traffic
between parameter servers and workers. GAI keeps a multi-level tree structure
to organize all the servers in the cluster according to the network conditions
between the servers.

ML training jobs usually require multiple hardware accelerators to accelerate
the training. Thus, we gather the servers in the same rack into a small cluster,
and the resources in the cluster can run at least one distributed ML job at the
same time. Figure 5 represents the architecture of GAI scheduler. The resources
in the cluster are abstracted into resource tree, where the leaf nodes in the tree
represent servers and the second-level nodes represent the racks. The parent
nodes in the tree collect and gather the runtime information (e.g. CPU, GPU
and memory usage) of all its child nodes.

To preserve the extensibility, GAI supports logical partition in the resource
tree. In some application scenarios, there are some servers without GPUs. These
servers can be added to the same logical node to indicate that we can not schedule
distributed training jobs to the servers. Most extensibility requirements can be
supported indirectly through logical nodes.
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Fig. 5. Resource Tree in GAI

GAI performs multiple validations during scheduling on the resource tree to
determine the sub-optimal placement:

– First, GAI checks if the machines in the rack satisfy the resource requirements
of the ML jobs. It is executed in rack-level nodes to determine if the sum of
the free resources of all the machines on the rack can run the new job.

– After the first step, GAI validates the resource slots of each server to avoid
resource stranded problem.

The placement algorithm is executed twice. The first pass is to schedule GPU
resources. When there is no idle GPU, we run the resource degradation and
preemption algorithm based on priority described in Sect. 4.2. If the cluster still
does not have GPUs for the job, the requirement is relaxed and the algorithm
is run for CPU again.

GAI implements a short scheduling path when the utilization of the cluster
is low. Most of the servers has sufficient resources, then the default scheduling
algorithm in GAI takes relatively long time to schedule a training job, so GAI
imports randomized method to speed up the scheduling process. GAI randomly
selects some secondary nodes and decides which rack to assign the new ML jobs
based on the resource usage. GAI uses a random approach as Sparrow [19] does
in a centralized manner. The randomized scheduling method reduces the size of
potential candidate set and the scheduling delay as well when the cluster is idle.

4.2 Resource Degradation and Preemption

In a commercial cluster, ML jobs have different types and belong to different
business groups, thus have different priorities. We design GAI’s priority strategy
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based on priority vector. It is used to perform resource degradation or preemp-
tion. We summarize some factors that affect the priority of ML jobs:

Fig. 6. Distribution of ML jobs

The Distribution of ML Jobs. The distribution of ML jobs on the cluster is
very complicated. For example, we create a ML job with two parameter servers
and four workers. In the best case, all replicas are scheduled to one server which
has free resources, as shown in Fig. 6(a), to avoid the short board effect.

Figure 6(b) shows a worse case: two workers are placed on another server,
thus the communication between the parameter servers and these two workers
is not as good as the other two workers. Such job is in relatively low priority
since the training speed is lower than the situation in Fig. 6(a).

Therefore, we design a priority algorithm based on the distribution of ML
jobs. The algorithm can be expressed as Algorithm 1. If all parameter servers
and workers are placed in the same machine, the job is in highest priority on
this dimension. We prefer to preempt or degrade the jobs whose internal com-
munication is cross rack or cross server.

ML Job Runtime. The runtime of ML jobs affects the priority, since the cost
of restarting or interrupting an ML job that has been running for a relatively
long time.

To determine the distribution of the duration of ML jobs, we analyze the data
trace of ML workload in Facebook [8], extract the description and summarize
the workload characteristics as described in Table 3.

The training jobs of neural network models such as CNN and RNN are the
longest-running jobs and take approximately tens of hours, while GBDT and
SVM jobs take less time. We use a power-law-like heavy-tailed distribution to
sample the duration of the jobs. In the long-tailed distribution, the vast majority
of jobs are completed in a short time. Therefore, we use the logarithm to cal-
culate the priority and ensure that the priority of the job is distributed within
a reasonable range. And we truncate the priority if we encounter the situation
that it exceeds the threshold (The highest priority for a single dimension is set
to 5).
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Algorithm 1. Priority algorithm for distribution dimension
Priority ← 0
MaxPriority ← 0
for ps ∈ PSes do

for worker ∈ workers do
MaxPriority ← MaxPriority + HighPriority

end for
if isInOneMachine(ps, worker) then

Priority ← Priority + HighPriority
else if isInOneRack(ps, worker) then

Priority ← Priority + MediumPriority
else

Priority ← Priority + LowPriority
end if

end for
return Priority/MaxPriority

Table 3. Characteristic of ML workload in Facebook

Model Resource Frequency Duration Inference relative capacity

SVM CPU Every hours Few seconds 10x

GBDT CPU Daily Few hours 1x

CNN GPU Weekly Many hours 10x

RNN GPU Weekly Many hours 1x

The Type of ML Jobs. We define the type according to multiple dimensions
as described in Table 4.

The online model training jobs have the highest priority, so we set the priority
of these jobs to 5. And there are two types of research model training jobs:
normal training jobs and hyperparameter tuning jobs. Hyperparameter tuning
jobs consume more resources and usually are not urgent jobs. The priority of
this type is set to a lower value.

Table 4. Priority for types of model training jobs

Type Training Hyperparameter training

Production 5 N/A

Research 3 1

The Type of Dominant Resource. In general, hardware accelerators are
more expensive, then the utilization of this kind of resource is more critical
than other hardware resources. The primary goal of this dimension is to increase
the utilization of hardware accelerator resources. It is not an ideal solution to
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degrade the jobs whose replicas are all running on CPUs since CPU is not the
first-class resource for ML jobs. We calculate the priority based on the numbers of
GPUs that used by workers. Equation 4 shows the calculation. In this equation,
n represents the number of GPUs that workers of the job are using. Sigmoid
function is used to determine the upper and lower bounds of the convergence of
the function.

Priority(n) =
5

1 + e−n
(4)

Number of Preemptions. Starvation occurs when a higher priority job dom-
inate a resource and a lower priority job is blocked from gaining access to the
resource. As a result, the lower priority job cannot make progress. To avoid the
problem, GAI adds a bias. GAI offers the jobs that have been preempted one
or more times the highest priority in this dimension. And the jobs without any
degradation are in the lowest priority.

We aggregate the priorities of different dimensions into a priority vector. GAI
refers to the predicate-priority model in Kubernetes.

– Firstly, the predicate process is performed. In this process, we find out all the
jobs that can be preempted according to the hardware resource requirement
of the new job. GAI supports single-job preemption in this process because
of the complexity.

– Secondly, GAI determines if the dimension of job type in the priority vector
is strictly greater than the preempted job, to ensure that ML jobs in the
production environment are not preempted by the ML jobs for research.

– Finally, GAI removes the jobs in the candidate set that are in higher priority
than the newly submitted jobs. The distribution of the jobs is a property at
runtime, thus GAI sets the dimension of the new job to the highest score
by default. While the job gains the lowest score in the dimension of ML job
runtime. GAI performs weight-based calculations on the four dimensions of
priority, as shown in Eq. 5.

Prioritytotal =
∑4

i=1 Wi · Priorityi

5
∑4

i=1 Wi

(5)

5 Evaluation

In this section, we compare GAI with default scheduler in Kubernetes. Evalu-
ations show that GAI improves the scheduling throughput and speeds up the
training of ML jobs.

5.1 Methodology

Implementation. We implement the prototype of GAI as a stand-alone sched-
uler for Kubernetes 1.8.5. GAI can work together with the default scheduler with
the help of Kubernetes by design. In that case, GAI schedules ML jobs while
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Fig. 7. Architecture of GAI

default scheduler deals with other jobs. We choose TensorFlow 1.4.0 as the frame-
work for running ML jobs. Kubeflow 0.1 is applied to combine TensorFlow and
Kubernetes.

Figure 7 shows the architecture of GAI. We build GAI on top of Kubernetes
instead of revising the original code of Kubernetes. In the prototype, we register
a custom resource definition TFJob for distributed TensorFlow model training
jobs in the cluster and run an operator to manage the lifecycle of TensorFlow
training jobs on Kubernetes. TensorFlow operator from Kubeflow creates inform-
ers for TFJob, which is TensorFlow custom resource, pod and service which are
Kubernetes internal resources. It watches the shared state of the cluster through
Kubernetes API server and makes changes the attempting to move the current
state towards the desired state. GAI is placed in the master node and it is
responsible for scheduling TensorFlow jobs.

Workload. There is no public trace now for ML workload, hence we construct
the workload trace mainly based on the description of the internal ML workload
in Facebook [8]. In the real cluster, there are some jobs for research purpose which
duration and number of tasks per job are shorter than the jobs for production
purpose. Thus we also create a trace of ML jobs submitted by researchers. We
use a power-law distribution similar to the production environment to generate
the trace.

Simulator. We implement a simulator to simulate how GAI behaves in a large
shared cluster. Different hardware leads to different training speeds, thus we
assume that training jobs using GPUs are 20 times faster than jobs using CPUs
according to historical records. The simulator reads trace data as input, run the
real scheduling algorithm and assign jobs to virtual nodes. Scheduling and com-
munication delays are set to random numbers which change within a relatively
small range. We run the simulator on one 8-core Intel(R) Core(TM) i7-6700
CPU bare metal server. It can simulate the scheduling process in the cluster
with 20000 virtual servers.
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Real Cloud-Based Cluster. We establish a real cluster based on the cloud.
The cluster has 5 8-core CPU servers with hyper-threading enabled and 5 8-core
servers with 1 GPU (10 × 8 × 2 = 160 virtual CPU cores and 5 GPUs in total).
Most of the experiments are run based on the simulator approach while we use
the real cloud-based cluster to get the real load information of GAI.

5.2 Scheduler Throughput

We run Kubernetes default scheduler as the baseline implementation and GAI,
to demonstrate the performance. We submit the workload described above and
run the experiments in the cluster with 200, 500, 1000, 5000, and 10000 nodes
iteratively. Virtual servers with different hardware configurations are created.
50% servers in the cluster have 1 GPU and 30% servers have 2 GPUs, while the
other 20% only have CPUs. To avoid the potential problem that the cluster is
full of use, the duration per job is set to 5 s. We disable the preemption and
degradation functionality, because the feature is not expected in the benchmark.
The corresponding logic about preemption in Kubernetes is also skipped.

Fig. 8. Scheduler throughput

We implement the benchmark based on the scheduler performance test in
Kubernetes and run it for 5 min. Then we calculate the average throughput for
the scheduler. As shown in Fig. 8, the throughput of GAI is 27.6% higher than
the baseline implementation at medium scale (500 servers), and behaves better
at large scale.

GAI maintains a tree-based architecture. When the requests are sent from
the control panel, GAI queues the requests in different queues for nodes. Thus
the tree-based architecture has good scalability. Kubernetes native scheduler
uses a single queue to manage all the resource requests, and it needs to run the
predicate and priority processes for each server. The design allows Kubernetes to
schedule the traditional workloads well but it also imports some overhead when
the cluster size is growing.
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5.3 Job Waiting Time

Job waiting time is the time from the job is queued to be scheduled to the job is
actually scheduled by the scheduler. In this section, we submit jobs with different
priorities. We use the workload above while the training is not actually executed.
In order to control the duration of the ML jobs precisely, the jobs only create
the parameter servers and workers but it does not train the models. We set the
active duration for jobs and kill the training jobs when it is time.

We group the jobs whose priority is larger than 0.7 as high-priority jobs. And
jobs whose priority is lower than 0.3 are grouped as low-priority jobs. Because
the priority is dynamic, we count all jobs which have come to the threshold at
least once valid. We also run the workload in Kubernetes for comparison.

Fig. 9. End-to-end latency

We run the experiment in the real cloud-based cluster. Figure 9(a) shows the
result of the experiment. Jobs whose priority are greater than 0.7 achieves lower
waiting time because of the support of resource degradation and preemption.
And we can see that the waiting time of the jobs scheduled by Kubernetes
default scheduler is slightly longer than GAI. The distribution of Kubernetes is
a long-tailed distribution since the jobs are overstocked.

5.4 Job Completion Time

Job completion time is the training time spending on the model. We design an
experiment using the real cluster to demonstrate that the high priority jobs are
more likely to use GPUs to train. We run simple MNIST model training jobs
using CNN and collect the completion time of jobs. The training job usually
takes 30–50 s when training based on CPUs and takes nearly 2–4 s on GPUs.

We run this experiment in the real cluster and limit the number of iterations
to make the model training process predictable. Figure 9(b) demonstrates that
jobs whose priority are greater than 0.7 usually have GPUs to run, therefore
the completion time is shorter and 80% jobs finish their training in 8.7 s. Low
priority jobs spend more time to do the same mode training task. 80% of low
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priority jobs finish in 48 s. As shown in Fig. 5, the average training time of GAI
is 14.6 s which achieves 21% speedup compared to Kubernetes default scheduler.

Table 5. Training convergence speedup in top k% ML jobs

Top k% Speedup Convergence (s)

25 26.1% 2.03

50 22.7% 2.56

100 21.4% 14.59

5.5 Comparison with Native Distributed TensorFlow

GAI runs the ML workload on container-based platforms, and it takes some
overheads for the training. We evaluate the convergence speed of GAI on MNIST
[15] training job, and GAI with native distributed TensorFlow when training a
DNN for the MNIST dataset. We run the DNN with 1 parameter server, 5
workers and 2 parameter servers, 4 workers.

Fig. 10. Model convergence (MNIST)

Figure 10 shows the result. The convergence speed of the jobs scheduled by
GAI and run on Kubernetes does not have significant differences compared to
native distributed TensorFlow. The jobs running with 5 workers and 1 param-
eter server converge slower than native distributed TensorFlow since the job is
network and computing intensive and the virtualization of containerization (e.g.
Docker) uses cgroup and apparmor for isolation and security. These features
import overhead for computing.
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5.6 Discussion

In this section, we reconsider the design decisions of GAI and discuss the limi-
tations.

We provide more insights on the performance and effect of GAI. GAI’s high
throughput capability benefits from the tree-based architecture. Experiments
demonstrate that GAI provides best effort service for jobs. GAI improves the
throughput by nearly 28% on a medium-sized cluster, and achieves 21% training
convergence speedup on DL models compared to Kubernetes default scheduler.
We also compare container-based solution with native distributed TensorFlow to
illustrate the overhead imported by the prototype of GAI is low. Table 6 shows
an overview of a selection of orchestration frameworks, their architecture, and
features.

Table 6. Comparison with existing scheduler frameworks for ML workload

GAI relies on many parameters and thresholds in the scheduling process.
Currently, we assign the values to these parameters and thresholds manually,
and statically. We can use some ML algorithms about hyperparameter tuning, to
choose the optimal values for these parameters. This requires a reasonable model
and data set. In addition, GAI should support dynamic parameter adjustment.
Under different loads, the weight of each dimension of the priority vector should
be adjusted.

The prototype is a scheduler plugin in Kubernetes, and it can work with
Kubernetes default scheduler to schedule multiple workloads via different sched-
ulers. The feature is implemented from Kubernetes side, while Kubernetes has
no mechanism to handle scheduling conflicts between different schedulers. There-
fore we do not evaluate it. It should be supported after Kubernetes has a good
support for the feature. Moreover, GAI currently uses container-based virtual-
ization to isolate resources, which is the default option in Kubernetes. We are
investigating using hypervisor-based containers for better isolation during model
training.

6 Conclusion

The work presented in this paper consists in a centralized scheduler for ML
workload named GAI to effectively share a single cluster among different DL
applications. To this aim, we propose tree-based scheduling to establish the
hierarchical structure of the cluster and the multi-dimensional priority algorithm
which considers different aspects of model training jobs to degrade or preempt
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the resource for higher priority jobs. By hiding the short board effect, we have
demonstrated the capability of our approach to support large shared clusters
containing hundreds of thousands of servers. We implement the prototype of
GAI on top of Kubeflow, Kubernetes, and TensorFlow. Moreover, we create
a trace based on the real ML workload in Facebook and evaluate GAI using
the trace. The result shows that the throughput of GAI is 27.6% higher than
default scheduler in Kubernetes at medium scale when scheduling ML jobs and
it achieves 21% training convergence speedup on DL models. Then there is an
experiment to demonstrate that GAI imports fairly low overhead to improve
isolation compared to native distributed TensorFlow.

The main directions for future work are twofold. The first one we are cur-
rently investigating is fine-grain control of hardware accelerator management.
GAI currently requires the exclusive use of GPUs. As future work, GAI should
import fine-grained scheduling and affinity control to make the most advantage
of GPUs.

As long-term future work, We are investigating approaches and methods of
improving scheduling and isolation of distributed model training jobs to make
GAI production ready. We hope that GAI will inspire more ideas on scheduling
for ML workload and ship off practical implementation.
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