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Abstract. Artificial bee colony (ABC) is an efficient global optimizer, which
has bee successfully used to solve various optimization problems. However,
most of these problems are low dimensional. In this paper, we propose a new
multi-population ABC (MPABC) algorithm to challenge large-scale global
optimization problems. In MPABC, the population is divided into three sub-
populations, and each subpopulation uses different search strategies. During the
search, all subpopulations exchange there best search experiences to help
accelerate the search. Experimental study is conducted on ten global opti-
mization functions with dimensions 50, 100, and 200. Results show that
MPABC is better than three other ABC variants on all dimensions.
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1 Introduction

Many real world problems can be formulated to optimization problems over continuous
or discrete search space. Compared to traditional mathematical optimization tech-
niques, bio-inspired optimization methods do not consider whether the optimization
problems are continuous or differentiable. So, they can be easily used to solve complex
optimization problems.

In the past decades, many bio-inspired optimization method have been proposed,
such as genetic algorithms (GAs) [1], simulated annealing (SA) [2], particle swarm
optimization (PSO) [3], ant colony optimization (ACO) [4], artificial bee colony
(ABC) [5], and others [6, 7]. Although these algorithms have been achieved success on
many low-dimensional optimization problems, they suffer from the curse of
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dimensionality. It means that their optimization performance deteriorates quickly with
increasing of dimensions. To tackle this issue, some good algorithms were proposed in
the literature [8–15].

ABC is one of the most popular optimization algorithm, which is inspired by the
social behaviors of bees [16]. Since the introduction of ABC, it has been used to solve
various optimization problems, but most of these problems are low-dimensional. To
challenge large-scale global optimization problems, this paper proposes a new multi-
population ABC (MPABC). Compared to the original ABC, MPABC employs three
subpopulations, and each one use different search strategies. Ten benchmark opti-
mization problems with dimensions 50, 100, and 200 are utilized in the experiments.
Computational results show that MPABC is superior to three other ABC algorithms.

The rest of the paper is organized as follows. In Sect. 2, the original ABC is briefly
described. Our approach MPABC is proposed in Sect. 3. Benchmark functions, results
and discussions are presented in Sect. 4. Finally, this work is concluded in Sect. 5.

2 Artificial Bee Colony

In ABC, three are three different kinds of bees, employed, onlooker and scout. The
number of employed bees is equal to the onlooker bees. The search of ABC is com-
pleted by different types of bees. Firstly, the employed bees search the neighborhood of
each food source (solution) and find new better solutions. Secondly, the onlooker bees
select some good solutions and search their neighborhoods to find better solutions. The
scout bees randomly generate new solutions to replace the trapped ones.

For each solution Xi, an employed bee searches its neighborhood and find a new
solution Vi [16].

vijðtÞ ¼ xijðtÞþ/ij xijðtÞ � xkjðtÞ
� �

; ð1Þ

where j is a random integer between 1 and D; Xk is randomly selected from the
population (i 6¼ j); t is the iteration index; /ij is a random value uniformly distributed
with the range [− 1, 1]. If Vi is better than its parent Xi, then replace Xi with Vi;
otherwise keep Xi unchangeable.

When all employed bees complete the search, the selection probability pi for each
food source Xi is calculated by [16]:

pi ¼ fiti
PN

i¼1 fiti
; ð2Þ

where fiti is the fitness value of Xi. When a solution Xi is selected, an onlooker bee
searches the neighborhood of Xi and obtain a new food source Vi according to Eq. (1).
Like the employed bees, the onlooker bees also use the same method to compare Vi

with Xi. If Vi is better than its parent Xi, then replace Xi with Vi; otherwise keep Xi

unchangeable.
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If a solution Xi cannot be improved by employed or onlooker bees in limit itera-
tions, it seems that Xi may be trapped into local minima. Then, a scout bee randomly
generates a solution to replace Xi.

3 Proposed Approach

3.1 Multi-population Technique

In our previous study [17], we presented a multi-strategy ensemble ABC (MEABC), in
which each food source is assigned a search strategy selected from a strategy pool.
Results proved that ABC with two or more search strategies are better than that with a
single strategy. Inspired by MEABC, we propose a new multi-population ABC
(MPABC), which consists of three subpopulations, Subpop1, Subpop2, and Subpop3.
Each subpopulation uses different search strategies to find new candidate solutions.
In MPABC, Subpop1, Subpop2, and Subpop3 employ the original ABC, gbest-guided
ABC (GABC) [18], and modified ABC (MABC) [19], respectively. Figure 1 shows the
multi-population technique used in MPABC. As seen, all subpopulations share their
best search experiences during the search.

Fig. 1. The multi-population technique used in MPABC.
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In the first subpopulation (Subpop1), MPABC uses the original ABC to execute the
iteration and try to find new solutions. In the second subpopulation (Subpop2),
MPABC employs GABC to execute the iteration and generate offspring. GABC and
ABC are very similar, and they use the same framework and different search strategies.
In GABC, a new search strategy incorporated with the best search experience is defined
as follows.

vij ¼ xij þ/ij xij � xkj
� �þuij gbestj � xij

� �
; ð3Þ

where uij is a random number within [0, C], and C is a constant value. C = 1.5 is
suggested in [18].

In the third subpopulation (Subpop3), MPABC uses the MABC to execute the
iteration and find new solutions. MABC is inspired by the differential evolution
(DE) mutation, and it is defined by [19]:

vij ¼ gbestj þ/ij xaj � xbj
� �

; ð4Þ

where Xa and Xb are two randomly selected solutions (a 6¼ b 6¼ i), and gbest is the
global best solution in the Subpop3.

3.2 Information Exchange

For multi-population technique, information exchange is an important operation, which
can greatly affect the performance of algorithm. In MPABC, we use a new information
exchange method. Assume that the population size is N. Each subpopulation consists of
n food sources (solutions), and n = N/3. Every m fitness evaluations, all subpopulations
exchange their best search experiences.

First, assume that the best solutions of Subpop1, Subpop2, and Subpop3 are Best1,
Best2, and Best3, respectively. The best one Gbest is selected from Best1, Best2, and
Best3 (please see Fig. 1). Then, we use Gbest to replace the 20%*n solutions in each
subpopulation. For Subpop1, we randomly selected 20%*n solutions, and Gbest is
assigned to these solutions. It is hopeful that Gbest can accelerate the search on large-
scale optimization problems.

4 Experimental Study

4.1 Large-Scale Global Optimization Problems

There are ten large-scale global optimization problems used in the experiments.
Problems F1-F6 were chosen from the CEC 2008 Special Session on large scale global
optimization [20], and the rest problems F7-F10 were taken from the Special Issue of
Soft Computing on large scale continuous optimization problems [21]. Table 1 present
a brief description of the ten test problems. In the experiments, the problem dimension
(D) is set to 50, 100, and 200.
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4.2 Parameter Settings

This paper aims to use an improved ABC to challenge large-scale global optimization
problems. Although several good bio-inspired optimization algorithms have been
proposed to solve large-scale optimization problems, we only compare our approach
MPABC with some ABC variants on the test suite. The compared algorithms are listed
as follows.

• ABC;
• GABC [18];
• MABC [19];
• Our approach MPABC.

For all algorithms, the same parameter settings are used for common parameters.
In ABC, GABC, MABC, and MPABC, the maximum number of fitness evaluations
(MaxFEs) and population size (N), and limit are set to 5000*D, 60, and 100, respec-
tively. In GABC and MPABC, the parameter C is equal to 1.5 [18]. In MABC and
MPABC, the parameter p is set to 0.7 [19]. The parameters m used in MPABC is set to
500 based on our empirical study. Because the population size N is 60, the size (n) of
each subpopulation in MPABC is 20.

Each run stops when the maximum number of fitness evaluations is achieved.
Throughout the experiments, the mean errors of the best solution found in the 25 runs
are reported (For a solution X, the error value is calculated by F(X)-F(Xo), where Xo is
the global optimum of the problem).

4.3 Computational Results

Tables 2 presents the computational results of MAPBC, ABC, GABC, and MACB on
problems with D = 50, where “Mean Error” indicates the mean error values between
the best solution found so far and the global optimum. Compared to ABC, MPABC
achieves better solutions on 8 problems. For the rest of 2 problems, both of them can
converge to the global optimum. MPABC significantly improve the performance of

Table 1. Ten large-scale global optimization problems used in the experiments.

Problems Search range Global optimum

Shifted Sphere Problem (F1) [−100, 100] −450
Shifted Schwefel’s Problem 2.21 (F2) [−100, 100] −450
Shifted Rosenbrock’s Function (F3) [−100, 100] 390
Shifted Rastrigin’s Function (F4) [−5, 5] −330
Shifted Griewank’s Function (F5) [−600, 600] −180
Shifted Ackley’s Function (F6) [−32, 32] −140
Shifted Schwefel’s Problem 2.22 (F7) [−10, 10] 0
Shifted Schwefel’s Problem 1.2 (F8) [−65.536, 65.536] 0
Shifted Extended f10 (F9) [−100, 100] 0
Shifted Bohachevsky (F10) [−15, 15] 0
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ABC on F4, F6, F7, and F9. GABC and MPABC find the same solutions on two
problems F4 and F5. For the rest of 8 problems, MPABC is better than GABC. MABC
and MPABC can find the global optimum on 4 problems F1, F4, F5, and F7, while
MPABC outperforms MABC on the rest of 6 problems.

Table 3 gives the comparison results of MAPBC, ABC, GABC, and MACB on
problems with D = 100. When the dimension increases to 100, ABC cannot converge
to F1 and F10, and MPABC outperforms ABC on all problems. Especially for prob-
lems F1, F4, F5, F6, F7, F9, and F10, MPABC is much better than ABC. GABC
performs better than MPABC on F3, but MPABC outperforms GABC on the rest of 9
problems. GABC falls into local minima on F1, F4, F5, F7 and F10, while our
approach can find the global optimum. MABC is better than ABC and GABC.
Both MABC and MPABC achieve the same results on F4 and F5. For the rest of 8
problems, MPABC outperforms MABC.

Table 4 presents the computational results of MAPBC, ABC, GABC, and MACB
on problems with D = 200. As the dimension increases to 200, MPABC still converges
to the global optimum on 4 problems F1, F4, F7, and F10. MABC can find the global
optimum on only one problem F4. For ABC and GABC, they fall into local minima on
all problems. MABC is slightly better than MPABC on F5 and F6, while MPABC
outperforms MABC on 7 problems. MPABC achieves much better solutions than ABC
and GABC on all problems.

In order to identify the significant differences between two algorithms, Wilcoxon
test is conducted [22]. Tables 5, 6, and 7 present the p-values of applying Wilcoxon
test among MPABC and other three ABC variants for D = 50, 100, and 200, respec-
tively. The p-values below 0.05 (the significant level) are shown in bold. As shown,
MPABC is significantly better than ABC, GABC, and MABC for D = 50 and 100. For
D = 200, MPABC is only significantly better than ABC and GABC.

Table 2. Computation results for D = 50.

Problems ABC GABC MABC MPABC
Mean error Mean error Mean error Mean error

F1 0.00E+00 3.34E−25 0.00E+00 0.00E+00
F2 1.02E+02 6.77E+01 2.30E+01 3.21E+00
F3 4.50E+00 3.50E+00 5.35E+00 2.02E+00
F4 1.22E+00 0.00E+00 0.00E+00 0.00E+00
F5 5.73E−13 0.00E+00 0.00E+00 0.00E+00
F6 2.46E−06 1.17E−12 6.74E−14 5.86E−14
F7 7.01E−09 1.04E−13 0.00E+00 0.00E+00
F8 1.52E+04 1.34E+04 1.45E+04 8.08E+03
F9 2.77E+00 5.39E−02 8.48E−04 5.13E−05
F10 0.00E+00 3.31E−26 1.81E−36 0.00E+00
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Table 3. Computation results for D = 100.

Problems ABC GABC MABC MPABC
Mean error Mean error Mean error Mean error

F1 5.20E−15 6.66E−24 4.77E−30 0.00E+00
F2 1.34E+02 1.20E+02 5.66E+01 1.35E+01
F3 1.47E+01 1.04E+01 4.05E+01 1.43E+01
F4 4.54E+00 1.03E−13 0.00E+00 0.00E+00
F5 2.54E−13 7.33E−16 0.00E+00 0.00E+00
F6 6.04E−06 3.64E−12 1.82E−13 1.37E−13
F7 2.07E−08 7.52E−13 6.96E−17 0.00E+00
F8 5.10E+04 5.88E+04 5.68E+04 3.14E+04
F9 7.46E+00 2.33E−01 7.65E−03 5.24E−05
F10 2.57E−14 8.88E−25 1.94E−30 0.00E+00

Table 4. Computation results for D = 200.

Problems ABC GABC MABC MPABC
Mean error Mean error Mean error Mean error

F1 8.93E−14 7.27E−23 5.76E−28 0.00E+00
F2 1.54E+02 1.51E+02 8.90E+01 3.58E+01
F3 1.57E+01 4.35E+01 2.97E+01 1.50E+01
F4 9.86E+00 2.86E−12 0.00E+00 0.00E+00
F5 7.67E−13 2.40E−15 1.11E−16 1.48E−16
F6 9.87E−06 1.08E−11 4.19E−13 5.43E−13
F7 8.65E−08 3.35E−12 3.75E−15 0.00E+00
F8 1.90E+05 2.13E+05 2.01E+05 1.14E+05
F9 1.75E+01 6.76E−01 3.86E−02 4.08E−04
F10 3.02E−13 1.29E−23 5.33E−29 0.00E+00

Table 5. Wilcoxon test between MPABC and the other three ABC variants for D = 50.

MPABC vs. p-values

ABC 1.17E−02
GABC 1.17E−02
MABC 2.77E−02

Table 6. Wilcoxon test between MPABC and the other three ABC variants for D = 100.

MPABC vs. p-values

ABC 5.06E−03
GABC 4.69E−02
MABC 1.17E−02

A New ABC Algorithm for Solving Large-Scale Optimization Problems 335



5 Conclusions

In the past decade, many different ABC algorithms have been proposed to various
optimization problems. However, most of these problem are low-dimensional. To
challenge large-scale optimization problems, this paper presents an improved ABC
variant (called MPABC), which employs a new multi-population. MPABC consists of
three subpopulations, and they use ABC, GABC, and MABC to execute iterations and
generate new solutions, respectively. During the search, each subpopulation exchange
their best search experiences with others. To validate the performance of MPABC, ten
large-scale global optimization problems with dimensions 50, 100, and 200 are utilized
in the experiments.

Computational results show that MPABC is superior to ABC, GABC, and MABC
on most test problems. As the dimension increases, the performance of ABC, GABC,
and MABC is seriously affected, while MPABC still can achieve good solutions. It
demonstrates that the proposed multi-population technique can effectively combine the
advantages of ABC, GABC, and MABC during the search.

In this paper, we only test MPABC on D = 50, 100, and 200. For problems with
larger scale (such as D = 500, 100, and 2000), we did not investigate the effectiveness
of MPABC. Moreover, MPABC introduces two new parameters m and n. The first
parameter determine the exchange gap. Different m may affect the convergence speed.
The second parameter is the size of subpopulation. In MPABC, we assume that all
subpopulations have the same size. For different sizes of subpopulations, we have not
studied its effects. The above issues will be our research directions in the future work.
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