
Jaideep Vaidya
Jin Li (Eds.)

 123

LN
CS

 1
13

35

18th International Conference, ICA3PP 2018
Guangzhou, China, November 15–17, 2018
Proceedings, Part II

Algorithms and Architectures
for Parallel Processing

Lecture Notes in Computer Science 11335

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jaideep Vaidya • Jin Li (Eds.)

Algorithms and Architectures
for Parallel Processing
18th International Conference, ICA3PP 2018
Guangzhou, China, November 15–17, 2018
Proceedings, Part II

123

Editors
Jaideep Vaidya
Rutgers University
Newark, NJ, USA

Jin Li
Guangzhou University
Guangzhou, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-05053-5 ISBN 978-3-030-05054-2 (eBook)
https://doi.org/10.1007/978-3-030-05054-2

Library of Congress Control Number: 2018962485

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018, corrected publication 2018, 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-05054-2

Preface

Welcome to the proceedings of the 18th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP 2018), which was organized by
Guangzhou University and held in Guangzhou, China, during November 15–17, 2018.

ICA3PP 2018 was the 18th event in a series of conferences devoted to research on
algorithms and architectures for parallel processing. Previous iterations of the confer-
ence include ICA3PP 2017 (Helsinki, Finland, November 2017), ICA3PP 2016
(Granada, Spain, December 2016), ICA3PP 2015 (Zhangjiajie, China, November
2015), ICA3PP 2014 (Dalian, China, August 2014), ICA3PP 2013 (Vietri sul Mare,
Italy, December 2013), ICA3PP 2012 (Fukuoka, Japan, September 2012), ICA3PP
2011 (Melbourne, Australia, October 2011), ICA3PP 2010 (Busan, Korea, May 2010),
ICA3PP 2009 (Taipei, Taiwan, June 2009), ICA3PP 2008 (Cyprus, June 2008),
ICA3PP 2007 (Hangzhou, China, June 2007), ICA3PP 2005 (Melbourne, Australia,
October 2005), ICA3PP 2002 (Beijing, China, October 2002), ICA3PP 2000 (Hong
Kong, China, December 2000), ICA3PP 1997 (Melbourne, Australia, December 1997),
ICA3PP 1996 (Singapore, June 1996), and ICA3PP 1995 (Brisbane, Australia, April
1995).

ICA3PP is now recognized as the main regular event in the area of parallel algo-
rithms and architectures, which covers many dimensions including fundamental the-
oretical approaches, practical experimental projects, and commercial and industry
applications. This conference provides a forum for academics and practitioners from
countries and regions around the world to exchange ideas for improving the efficiency,
performance, reliability, security, and interoperability of computing systems and
applications.

ICA3PP 2018 attracted over 400 high-quality research papers highlighting the
foundational work that strives to push beyond the limits of existing technologies,
including experimental efforts, innovative systems, and investigations that identify
weaknesses in existing parallel processing technology. Each submission was reviewed
by at least two experts in the relevant areas, on the basis of their significance, novelty,
technical quality, presentation, and practical impact. According to the review results,
141 full papers were selected to be presented at the conference, giving an acceptance
rate of 35%. Besides, we also accepted 50 short papers and 24 workshop papers. In
addition to the paper presentations, the program of the conference included four key-
note speeches and two invited talks from esteemed scholars in the area, namely: Prof.
Xuemin (Sherman) Shen, University of Waterloo, Canada; Prof. Wenjing Lou, Virginia
Tech, USA; Prof. Witold Pedrycz, University of Alberta, Canada; Prof. Xiaohua Jia,
City University of Hong Kong, Hong Kong; Prof. Xiaofeng Chen, Xidian University,
China; Prof. Xinyi Huang, Fujian Normal University, China. We were extremely
honored to have them as the conference keynote speakers and invited speakers.

ICA3PP 2018 was made possible by the behind-the-scene effort of selfless indi-
viduals and organizations who volunteered their time and energy to ensure the success

of this conference. We would like to express our special appreciation to Prof. Yang
Xiang, Prof. Weijia Jia, Prof. Yi Pan, Prof. Laurence T. Yang, and Prof. Wanlei Zhou,
the Steering Committee members, for giving us the opportunity to host this prestigious
conference and for their guidance with the conference organization. We would like to
emphasize our gratitude to the general chairs, Prof. Albert Zomaya and Prof. Minyi
Guo, for their outstanding support in organizing the event. Thanks also to the publicity
chairs, Prof. Zheli Liu and Dr Weizhi Meng, for the great job in publicizing this event.
We would like to give our thanks to all the members of the Organizing Committee and
Program Committee for their efforts and support.

The ICA3PP 2018 program included two workshops, namely, the ICA3PP 2018
Workshop on Intelligent Algorithms for Large-Scale Complex Optimization Problems
and the ICA3PP 2018 Workshop on Security and Privacy in Data Processing. We
would like to express our sincere appreciation to the workshop chairs: Prof. Ting Hu,
Prof. Feng Wang, Prof. Hongwei Li and Prof. Qian Wang.

Last but not least, we would like to thank all the contributing authors and all
conference attendees, as well as the great team at Springer that assisted in producing the
conference proceedings, and the developers and maintainers of EasyChair.

November 2018 Jaideep Vaidya
Jin Li

VI Preface

Organization

General Chairs

Albert Zomaya University of Sydney, Australia
Minyi Guo Shanghai Jiao Tong University, China

Program Chairs

Jaideep Vaidya Rutgers University, USA
Jin Li Guangzhou University, China

Publication Chair

Yu Wang Guangzhou University, China

Publicity Chairs

Zheli Liu Nankai University, China
Weizhi Meng Technical University of Denmark, Denmark

Steering Committee

Yang Xiang (Chair) Swinburne University of Technology, Australia
Weijia Jia Shanghai Jiaotong University, China
Yi Pan Georgia State University, USA
Laurence T. Yang St. Francis Xavier University, Canada
Wanlei Zhou Deakin University, Australia

Program Committee

Pedro Alonso Universitat Politècnica de València, Spain
Daniel Andresen Kansas State University, USA
Cosimo Anglano Universitá del Piemonte Orientale, Italy
Danilo Ardagna Politecnico di Milano, Italy
Kapil Arya Northeastern University, USA
Marcos Assuncao Inria, France
Joonsang Baek University of Wollongong, Australia
Anirban Basu KDDI Research Inc., Japan
Ladjel Bellatreche LIAS/ENSMA, France
Jorge Bernal Bernabe University of Murcia, Spain
Thomas Boenisch High-Performance Computing Center Stuttgart,

Germany

George Bosilca University of Tennessee, USA
Massimo Cafaro University of Salento, Italy
Philip Carns Argonne National Laboratory, USA
Alexandra Carpen-Amarie Vienna University of Technology, Austria
Aparicio Carranza City University of New York, USA
Aniello Castiglione University of Salerno, Italy
Arcangelo Castiglione University of Salerno, Italy
Pedro Castillo University of Granada, Spain
Tzung-Shi Chen National University of Tainan, Taiwan
Kim-Kwang Raymond

Choo
The University of Texas at San Antonio, USA

Mauro Conti University of Padua, Italy
Jose Alfredo Ferreira Costa Federal University, UFRN, Brazil
Raphaël Couturier University Bourgogne Franche-Comté, France
Miguel Cárdenas Montes CIEMAT, Spain
Masoud Daneshtalab Mälardalen University and Royal Institute

of Technology, Sweden
Casimer Decusatis Marist College, USA
Eugen Dedu University of Bourgogne Franche-Comté, France
Juan-Carlos Díaz-Martín University of Extremadura, Spain
Matthieu Dorier Argonne National Laboratory, USA
Avgoustinos Filippoupolitis University of Greenwich, UK
Ugo Fiore Federico II University, Italy
Franco Frattolillo University of Sannio, Italy
Marc Frincu West University of Timisoara, Romania
Jorge G. Barbosa University of Porto, Portugal
Chongzhi Gao Guangzhou University, China
Jose Daniel García University Carlos III of Madrid, Spain
Luis Javier García Villalba Universidad Complutense de Madrid, Spain
Paolo Gasti New York Institute of Technology, USA
Vladimir Getov University of Westminster, UK
Olivier Gluck Université de Lyon, France
Jing Gong KTH Royal Institute of Technology, Sweden
Amina Guermouche Telecom Sud-Paris, France
Jeff Hammond Intel, USA
Feng Hao Newcastle University, UK
Houcine Hassan Universitat Politècnica de València, Spain
Sun-Yuan Hsieh National Cheng Kung University, Taiwan
Chengyu Hu Shandong University, China
Xinyi Huang Fujian Normal University, China
Mauro Iacono University of Campania Luigi Vanvitelli, Italy
Shadi Ibrahim Inria, France
Yasuaki Ito Hiroshima University, Japan
Mathias Jacquelin Lawrence Berkeley National Laboratory, USA
Nan Jiang East China Jiaotong University, China
Lu Jiaxin Jiangxi Normal University, China

VIII Organization

Edward Jung Kennesaw State University, USA
Georgios Kambourakis University of the Aegean, Greece
Gabor Kecskemeti Liverpool John Moores University, UK
Muhammad Khurram Khan King Saud University, Saudi Arabia
Dieter Kranzlmüller Ludwig Maximilian University of Munich, Germany
Michael Kuhn University of Hamburg, Germany
Julian Kunkel German Climate Computing Center, Germany
Algirdas Lančinskas Vilnius University, Lithuania
Patrick P. C. Lee The Chinese University of Hong Kong, SAR China
Laurent Lefevre Inria, France
Hui Li University of Electronic Science and Technology

of China, China
Kenli Li Hunan University, China
Dan Liao University of Electronic Science and Technology

of China, China
Jingyu Liu Hebei University of Technology, China
Joseph Liu Monash University, Australia
Yunan Liu Jiangxi Normal University, China
Zheli Liu Nankai University, China
Jay Lofstead Sandia National Laboratories, USA
Paul Lu University of Alberta, Canada
Amit Majumdar University of California San Diego, USA
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Stefano Markidis KTH Royal Institute of Technology, Sweden
Alejandro Masrur Chemnitz University of Technology, Germany
Susumu Matsumae Saga University, Japan
Raffaele Montella University of Naples Parthenope, Italy
Francesco Moscato University of Campania Luigi Vanvitelli, Italy
Bogdan Nicolae Argonne National Laboratory, Germany
Francesco Palmieri University of Salerno, Italy, Italy
Swann Perarnau Argonne National Laboratory, USA
Dana Petcu West University of Timisoara, Romania
Salvador Petit Universitat Politècnica de València, Spain
Riccardo Petrolo Rice University, USA
Florin Pop University Politehnica of Bucharest, Romania
Radu Prodan University of Klagenfurt, Austria
Zhang Qikun Beijing Institute of Technology, China
Thomas Rauber University Bayreuth, Germany
Khaled Riad Zagazig University, Egypt
Suzanne Rivoire Sonoma State University, USA
Ivan Rodero Rutgers University, USA
Romain Rouvoy University of Lille, France
Antonio Ruiz-Martínez University of Murcia, Spain
Françoise Sailhan CNAM, France
Sherif Sakr The University of New South Wales, Australia
Giandomenico Spezzano ICAR-CNR and University of Calabria, Italy

Organization IX

Patricia Stolf IRIT, France
John Stone University of Illinois at Urbana-Champaign, USA
Peter Strazdins The Australian National University, Australia
Hari Subramoni The Ohio State University, USA
Gang Sun University of Science and Technology of China, China
Zhizhuo Sun Beijing Institute of Technology, China
Frederic Suter CNRS, France
Yu-An Tan Beijing Institute of Technology, China
Ming Tao Dongguan University of Technology, China
Andrei Tchernykh CICESE Research Center, Mexico
Massimo Torquati University of Pisa, Italy
Tomoaki Tsumura Nagoya Institute of Technology, Japan
Didem Unat Koç University, Turkey
Vladimir Voevodin Moscow University, Russia
Feng Wang Wuhan University, China
Hao Wang Shandong Normal University, China
Yu Wei Nankai University, China
Sheng Wen Swinbourne University of Technology, China
Jigang Wu Guangdong University of Technology, China
Roman Wyrzykowski Czestochowa University of Technology, Poland
Yu Xiao Shandong University of Technology, China
Ramin Yahyapour University of Göttingen, Germany
Fang Yan Beijing Wuzi University, China
Zheng Yan Xidian University, China
Laurence T. Yang St. Francis Xavier University, Canada
Wun-She Yap Universiti Tunku Abdul Rahman, Malaysia

X Organization

Contents – Part II

High Performance Computing

Embedding Exchanged Hypercubes into Rings and Ladders 3
Weibei Fan, Jianxi Fan, Cheng-Kuan Lin, Zhijie Han, Peng Li,
and Ruchuan Wang

Rim Chain: Bridge the Provision and Demand Among the Crowd. 18
Pengze Li, Lei Liu, Lizhen Cui, Qingzhong Li, Yongqing Zheng,
and Guangpeng Zhou

Optimal Schedule of Mobile Edge Computing Under Imperfect CSI 32
Libo Jiao, Hao Yin, Yongqiang Lyu, Haojun Huang, Jiaqing Dong,
and Dongchao Guo

ST-LDA: High Quality Similar Words Augmented LDA
for Service Clustering . 46

Yi Zhao, Keqing He, and Yu Qiao

LMCC: Lazy Message and Centralized Cache for Asynchronous
Graph Computing . 60

Ruini Xue, Zhibin Dong, Wei Su, and Xiaofang Li

Differential Evolution with Proximity-Based Replacement Strategy
and Elite Archive Mechanism for Global Optimization 76

Chi Shao, Yiqiao Cai, Wei Luo, and Jing Li

NESTLE: Incentive Mechanism Specialized for Computation Offloading
in Local Edge Community . 90

Yinan Li, Jigang Wu, and Long Chen

A Study on Emotion Recognition Based on Hierarchical Adaboost
Multi-class Algorithm . 105

Song Zhang, Bin Hu, Tiantian Li, and Xiangwei Zheng

A Low Communication Overhead Breadth-First Search Based
on Global Bitmap . 114

Ziwei Peng, Yutong Lu, Zhiguang Cheng, and Yunfei Du

Improve Heteroscedastic Discriminant Analysis by Using CBP Algorithm . . . 130
Jafar A. Alzubi, Ali Yaghoubi, Mehdi Gheisari, and Yongrui Qin

Fault Diagnosis Algorithm for WSN Based on Clustering and Credibility . . . 145
Lidan Wang, Xin Xu, Xiaofei Zhang, Cheng-Kuan Lin,
and Yu-Chee Tseng

Generating Misleading Labels in Machine Learning Models 160
Xiaotong Lin, Jiaxi Wu, and Yi Tang

An Energy-Efficient DV-Hop Localization Algorithm 175
Minmin Liu, Baoqi Huang, Qing Miao, and Bing Jia

ASA-routing: A-Star Adaptive Routing Algorithm for Network-on-Chips. . . . 187
Yuan Cai and Xiang Ji

Trajectory Data-Driven Pattern Recognition of Congestion Propagation
in Road Networks . 199

Hepeng Gao, Yongjian Yang, Liping Huang, Yiqi Wang, Bing Jia,
Funing Yang, and Zhuo Zhu

Cooperative Preprocessing at Petabytes on High Performance
Computing System . 212

Rujun Sun, Lufei Zhang, and Xiyang Wang

Sibyl: Host Load Prediction with an Efficient Deep Learning Model
in Cloud Computing . 226

Zhiyuan Zhang, Xuehai Tang, Jizhong Han, and Peng Wang

An Energy-Efficient Objective Optimization Model for Dynamic
Management of Reliability and Delay in WSNs . 238

Wenwen Liu, Gang Wang, and Xiaoguang Liu

An Improvement of PAA on Trend-Based Approximation for Time Series . . . 248
Chunkai Zhang, Yingyang Chen, Ao Yin, Zhen Qin, Xing Zhang,
Keli Zhang, and Zoe L. Jiang

Research on Data Recovery Technology Based on Flash Memory Device . . . 263
Lele Guan, Jun Zheng, Chenyang Li, and Dianxin Wang

Scheduling DAG Applications for Time Sharing Systems. 272
Shenyuan Ren, Ligang He, Junyu Li, Chao Chen, Zhuoer Gu,
and Zhiyan Chen

Job Scheduling with Adaptable Computing Levels for Edge Computing. 287
Huiwen Jiang and Weigang Wu

A Clustering Algorithm of High-Dimensional Data Based on Sequential
Psim Matrix and Differential Truncation . 297

Gongming Wang, Wenfa Li, and Weizhi Xu

XII Contents – Part II

Enhanced Differential Evolution with Self-organizing Map
for Numerical Optimization . 308

Duanwei Wu, Yiqiao Cai, Jing Li, and Wei Luo

Similarity Measure for Patients via A Siamese CNN Network 319
Fangyuan Zhao, Jianliang Xu, and Yong Lin

A New Artificial Bee Colony Algorithm for Solving Large-Scale
Optimization Problems. 329

Hui Wang, Wenjun Wang, and Zhihua Cui

Implementation and Optimization of Multi-dimensional Real FFT
on ARMv8 Platform . 338

Xiao Wang, Haipeng Jia, Zhihao Li, and Yunquan Zhang

SPMP: A JavaScript Support for Shared Persistent Memory on Node.js 354
Qipeng Zhang, Tianyou Li, Pan Deng, Yuting Chen, Linpeng Huang,
and Andy Rudoff

Dynamic Obstacle Avoidance Planning Algorithm for UAV Based
on Dubins Path . 367

Na Wang, Fei Dai, Fangxin Liu, and Guomin Zhang

An Energy Efficient and Lifetime Aware Routing Protocol
in Ad Hoc Networks . 378

Wuyungerile Li, Bing Jia, Qinan Li, and Junxiu Wang

On Optimization of Energy Consumption in a Volunteer Cloud:
Strategy of Placement and Migration of Dynamic Services 388

Omar Ben Maaouia, Hazem Fkaier, Christophe Cerin, Mohamed Jemni,
and Yanik Ngoko

Big Data and Information Processing

More Effective Distributed Deep Learning Using Staleness
Based Parameter Updating . 401

Yan Ye, Mengqiang Chen, Zijie Yan, Weigang Wu, and Nong Xiao

A Game Theoretic D2D Local Caching System under Heterogeneous
Video Preferences and Social Reciprocity. 417

Kaichuan Zhao, Yuezhi Zhou, Wenjuan Tang, Shuang Li,
and Yaoxue Zhang

SMIM: Superpixel Mutual Information Measurement for Image
Quality Assessment . 432

Jiaming Wang, Tao Lu, and Yanduo Zhang

Contents – Part II XIII

DARM: A Deduplication-Aware Redundancy Management Approach
for Reliable-Enhanced Storage Systems . 445

Yukun Zhou, Dan Feng, Wen Xia, Min Fu, and Yu Xiao

K-Anonymity Algorithm Based on Improved Clustering 462
Wantong Zheng, Zhongyue Wang, Tongtong Lv, Yong Ma,
and Chunfu Jia

Adaptive DAG Tasks Scheduling with Deep Reinforcement Learning 477
Qing Wu, Zhiwei Wu, Yuehui Zhuang, and Yuxia Cheng

RFGRU: A Novel Approach for Mobile Application Traffic Identification . . . 491
Yu Zhang, Yufei Jin, Jianzhong Zhang, Huan Wu, and Xueqiang Zou

Energy-Efficient Data Temporal Consistency Maintenance
for IoT Systems . 507

Guohui Li, Chunyang Zhou, Jianjun Li, and Bing Guo

GpDL: A Spatially Aggregated Data Layout for Long-Term Astronomical
Observation Archive . 524

Zhen Li, Ce Yu, Chao Sun, Shanjiang Tang, Jie Yan, Xiangfei Meng,
and Yang Zhao

A Virtual Machine Dynamic Adjustment Strategy Based
on Load Forecasting . 538

Junjie Peng, Yingtao Wang, Gan Chen, Lujin You, Feng Cheng,
and Weiqiang Lv

A Data-Aware Energy-Saving Storage Management Strategy for On-Site
Astronomical Observation at Dome A . 551

Xiaoxiao Lu, Chao Sun, Ce Yu, Jizhou Sun, Ming Che, Zijun Xia,
Zhaohui Shang, and Yi Hu

Distancer: A Host-Based Distributed Adaptive Load Balancer
for Datacenter Traffic . 567

Songyun Wang, Xin Li, Zhuzhong Qian, and Jiabin Yuan

MoSa: A Modeling and Sentiment Analysis System for Mobile
Application Big Data . 582

Yaocheng Zhang, Wei Ren, Tianqing Zhu, and Wei Bi

SDVRP-Based Reposition Routing in Bike-Sharing System 596
Zengyi Han, Yongjian Yang, Yunpeng Jiang, Wenbin Liu, and En Wang

GAI: A Centralized Tree-Based Scheduler for Machine Learning
Workload in Large Shared Clusters . 611

Ce Gao, Rui Ren, and Hongming Cai

XIV Contents – Part II

Data-Centric Task Scheduling Algorithm for Hybrid Tasks
in Cloud Data Centers . 630

Xin Li, Liangyuan Wang, Jemal Abawajy, and Xiaolin Qin

Correction to: Improve Heteroscedastic Discriminant Analysis by Using
CBP Algorithm. C1

Jafar A. Alzubi, Ali Yaghoubi, Mehdi Gheisari, and Yongrui Qin

Correction to: Algorithms and Architectures for Parallel Processing. C2
Jaideep Vaidya and Jin Li

Author Index . 645

Contents – Part II XV

High Performance Computing

Embedding Exchanged Hypercubes
into Rings and Ladders

Weibei Fan1, Jianxi Fan1(B), Cheng-Kuan Lin1, Zhijie Han2, Peng Li2,
and Ruchuan Wang2

1 School of Computer Science and Technology, Soochow University,
Suzhou 215006, China

wbfan@stu.suda.edu.cn, {jxfan,cklin}@suda.edu.cn
2 Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks,

Nanjing 210003, Jiangsu Province, China
{hanzj,lipeng,wangrc}@njupt.edu.cn

Abstract. Graph embeddings are not only used to study the simula-
tion capabilities of a parallel architecture but also to design its VLSI
layout. The n-dimensional hypercube is one of the most popular topo-
logical structure for interconnection networks in parallel computing and
communication systems. The exchanged hypercube EHs,t (where s ≥ 1
and t ≥ 1) is obtained by systematically deleting edges from a hyper-
cube Qs+t+1, which retains several valuable and desirable properties of
the hypercube such as a small diameter, bipancyclicity, and super con-
nectivity. In this paper, we identify maximum induced subgraph of EHs,t

and study embeddings of EHs,t into a ring and a ladder with minimum
wirelength.

Keywords: Interconnection networks · EHs,t · Graph embedding
Rings · Ladders

1 Introduction

Interconnection network is an important component in parallel computing sys-
tems. One of the constraints in VLSI routing problems is minimizing wire-
length, and efficient layouts for several interconnection networks can be found in
[13,24,30]. The minimum linear layout problem is first stated by Harper in 1964
and is proved to be NP-complete [10]. Nakano [22] proposed a linear layout of
generalized hypercube. Rostami et al. [23] solved the minimum linear arrange-
ment problem for chord graphs in polynomial time. Miller et al. [21] studied the
minimum linear arrangement of incomplete hypercubes. Recently, Arockiaraj
et al. [1] proved that the minimum linear layout of locally twisted cubes is equal
to the minimum linear layout of hypercubes. Interconnection networks can also
layout into optical linear arrays. In [5], Chen et al. discussed embeddings of
bidirectional and unidirectional hypercubes on a class of optical networks which
included rings. Liu et al. [15] studied the embedding of exchanged hypercube
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-030-05054-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_1

4 W. Fan et al.

into optical ring network with optimal congestion. Yu et al. [31] proposed
an embedding of ternary n-cube into an optical ring network with minimum
congestion.

The problem of efficiently laying out VLSI can be formulated as the graph
embedding problem. Embeddability is a critical metric to evaluate the perfor-
mance of an interconnection network. Many applications, such as architecture
simulation, processor allocation, can be modeled as a graph embedding prob-
lem. Graph embedding is an important issue that maps a guest graph into a
host graph. Most researches on graph embedding consider paths, cycles and
meshes as guest graphs because they are the architectures widely used in paral-
lel computing systems [9,12,26–28]. In [8], Fan et al. proved that the cycles of
all possible lengths can be embedded into twisted cube, and Fan et al. [7] also
studied the embedding of paths with all possible lengths between any two ver-
tices into crossed cube. Wang et al. [12] studied the embedding of three different
types of special meshes into twisted-cubes.

The hypercube is one of the most popular interconnection network structures
in parallel computing and communication systems [14]. As a variant of the n-
dimensional hypercube, the exchanged hypercube EHs,t was proposed by Loh
et al. [16]. An exchanged hypercube is formed by removing edges from an n-
dimensional hypercube Qn where n = s + t + 1. This is evident in the fact that
even though the number of edges of an exchanged hypercube is nearly half of
that of a hypercube, their diameters are similar. Therefore, EHs,t retains several
desirable properties of the hypercube such as a small diameter [16], bipancyclicity
[18], and super connectivity [20] and have lower link costs than hypercubes.
Futhermore, the lower link complexity of EHs,t can directly reduce the costs of
hardware and the implementation of VLSI.

In this paper, we study the embedding of EHs,t into a ladder and obtain the
exact wirelength of EHs,t into a ladder. The major contributions of the paper
are as follows:

(1) We identified the maximum induced subgraph of EHs,t.
(2) We studied the layout of embedding exchanged hypercube into a ring

network with minimum wirelength.
(3) We proposed a decomposition embedding of EHs,t into a ladder, and

proved that EHs,t can be embedded into the ladder L(2 × 2
s+t
2) with minimum

wirelength.
The rest of this paper is organized as follows: Sect. 2 gives some definitions

and notations. Section 3 derives a maximum induced subgraph of EHs,t into a
ring network with minimum wirelength. Section 4 gives an embedding of EHs,t

into ladder with minimum wirelength. The final section concludes this paper.

2 Preliminaries

2.1 Definitions and Notations

In this section, we will give some definitions and notations used in this paper. All
graphs in this paper are simple undirected graphs, which can generally denoted

Embedding Exchanged Hypercubes into Rings and Ladders 5

by G = (V (G), E(G)), where V (G) is the vertex set and E(G) is the edge set.
For two simple graphs G1 = (V1, E1) and G2 = (V2, E2), G2 is said to be a
subgraph of G1 if V2 ⊆ V1 and E2 ⊆ E1. If V ′ ⊆ V (G), the subgraph of G
induced by the vertex subset V ′ is denoted by G[V ′]. The subgraph induced by
the vertex subset V (G1) ∪ V (G2) is denoted by G1 ∪ G2. Let τ(V ′) denote the
number of edges of G[V ′]. If G1 is a subgraph of G2 and G1 �= G2, G1 is said
to be the proper graph of G2 and denoted by G1 ⊂ G2. For a pair of disjoint
vertex subset S1 and S2 of graph G, let τ(S1, S2) denote the number of edges
with one vertex in S1 and the other vertex in S2. For any integer n ≥ 1, a binary
string x of length n will be written as xn−1xn−2...x1x0, where xi ∈ {0, 1} for
any integer i ∈ {0, 1, ..., n − 1}. Given any x = xn−1xn−2...x1x0, xi is said to
be the i-th bit of x and xn−1xn−2...xk (0 ≤ k ≤ n − 1) is called a prefix of
x. Besides, x0 is called the first bit of x and xn−1 is called the last bit of x.
For a graph G = (V,E), an (u, v)-path of length l from vertex u to vertex v is
denoted by P = (u0, u1, ..., ul), where u0 = u and ul = v are called the two end
vertices of path P , and all the vertices u0, u1, ..., ul are distinct. If u = v, then
P is called a cycle.

A graph G1 is isomorphic to another graph G2 (represented by G1
∼= G2)

if and only if there exists a bijection f : V (G1) → V (G2), such that if (u, v) ∈
E(G1) then (f(u), f(v)) ∈ E(G2). For two graphs G1 = (V1, E1) and G2 =
(V2, E2), and a subset S ⊆ V1, let f be a mapping from V1 to V2. Let T = {x ∈
V (G2)|f(x) ∈ S}. Then we write T = f(S) and S = f−1(T).

Graph embedding can be formally defined as: Given two graphs G1 = (V1, E1)
and G2 = (V2, E2), an embedding from G1 to G2 is an injective mapping
ψ : V1 → V2. We call G1 the guest graph and G2 the host graph. There are
four common metrics used to measure the quality of an embedding, namely,
congestion, dilation, expansion and load. The congestion of an embedding ψ
is defined as cong(G1, G2, ψ) = max{cong(e)|e ∈ E2}, which measures queu-
ing delay of messages, where cong(e) denotes the number of edges of G1 whose
image paths in G2 include the edge e. The dilation of embedding ψ is defined
as: dil(G1, G2, ψ) = max{dist(G2, ψ(u), ψ(υ)) |(u, v) ∈ E1}, which measures the
communication delay, where dist(G2, ψ(u), ψ(υ)) denotes the distance between
the two vertices ψ(u) and ψ(υ) in G2.

Wirelength is another criteria in embedding and widely used in VLSI design
[3]. The wirelength is the total wire length required to complete the entire VLSI
layout. The wirelength problem is to find an embedding of G into H that induces
the minimum wirelength, and thought to be cost-effective. The wirelength prob-
lem is solved by edge isoperimetric problem. The following two versions of the
edge isoperimetric problem of a graph G(V,E) have been considered in the lit-
erature [2], and are NP-complete [10].

The first problem is to find a subset of vertices of a given graph, such that the
edge cut separating this subset from its complement has minimum size among all
subsets of the same cardinality. Mathematically, for a given positive integer m,
if δG(m) = minX⊆V,|X|=m|[X,V − X]G|, where [X,V − X]G = {(u, v) ∈ E|u ∈
X, v ∈ (V − X)}, then the problem is to find X ⊆ V such that |X| = m and
|[X,V − X]G| = δG(m), which is called an optimal set.

6 W. Fan et al.

Another problem is called maximum induced subgraph problem [2], which is
to find a subset of vertices of a given graph, such that the number of edges in
the subgraph induced by this subset is maximum among all induced subgraphs
with the same number of vertices. Mathematically, for a given positive integer
m, if IG(m) = maxX⊆V,|X|=m|TG(X)|, where TG(X) = {(u, v) ∈ E|u, v ∈ X},
then the problem is to find X ⊆ V such that |X| = m and |TG(X)| = IG(m).
For regular graphs, the optimal set problem and maximum induced subgraph
problem are equivalent.

Definition 1 [19]. Let f be an embedding from G to H. Let ECf (e) denote
the number of edges (u, v) of G such that e is in the path Pf (u, v) between
the vertices f(u) and f(v) in H. Considering there possibly exist multiple paths
between (f(u), f(v)) in H, we choose the shortest path as Pf (f(u), f(v)). The
edge congestion f is given by

ECf (G,H) = max{ECf (e)|e ∈ E(H)}.

Then, the minimum edge congestion of G into H is defined as

EC(G,H) = min{ECf (G,H)|f is an embedding from G to H}.

Definition 2 [19]. The wirelength of an embedding f of G into H is given by

WLf (G,H) =
∑

(u,v)∈G

dH(f(u), f(v)),

where dH(f(u), f(v)) denotes the length of the path Pf (u, v) in H, and Pf (u, v)
is the shortest path between (f(u), f(v)) in H.

Then, the minimum wirelength of G into H is defined as

WL(G,H) = minWLf (G,H),

where the minimum is taken over all embeddings f of G into H.

Lemma 1 [19]. Let G be an arbitrary graph and f be an embedding of G into
H. Let S be an edge cut of H such that the removal of edges of S leaves H into 2
components H1 and H2. Let G1 = f−1(H1) and G2 = f−1(H2). Also S satisfies
the following conditions:

(i) For every edge (a, b) ∈ (Gi), i = 1, 2, Pf (a, b) has no edges in S.
(ii) For every edge (a, b) ∈ E(G) with a ∈ V (G1) and b ∈ V (G2), Pf (a, b)

has exactly one edge in S.
(iii) G1 and G2 are optimal sets.

Then ECf (S) is minimum and ECf (S) =
∑

v∈V (G1)
deg(v) − 2|E(G1)| =∑

v∈V (G2)
deg(v) − 2|E(G2)|.

Lemma 2 [19]. Let f : G → H be an embedding. Let S1, S2, ..., Sp be p edge
cuts of H such that Si ∩ Sj = ∅, i �= j, 1 ≤ i, j ≤ p. Then

WLf (G,H) =
p∑

i=1

ECf (Si).

Embedding Exchanged Hypercubes into Rings and Ladders 7

2.2 The Exchanged Hypercube

The definition of exchanged hypercubes EHs,t is presented as follows.

Definition 3 [16]. The vertex set V of exchanged hypercube EHs,t (s ≥ 1 and
t ≥ 1) is the set

{us+t...ut+1ut...u1u0|ui ∈ {0, 1} for 0 ≤ i ≤ s + t}.

Let us+tus+t−1...u0 and vs+tvs+t−1...v0 be two vertices in EHs,t. E is the
set of edges composed of three disjoint types E1, E2 and E3:

E1 = {(u, v)|u0 �= v0 and ui = vi for 1 ≤ i ≤ s + t},
E2 = {(u, v)|u0 = v0 = 0,H(u, v) = 1 with ui �= vi for some t+1 ≤ i ≤ s+t},

and
E3 = {(u, v)|u0 = v0 = 1,H(u, v) = 1 with ui �= vi for some 1 ≤ i ≤ t},
where H(u, v) denotes the Hamming distance between two vertices u and v.

Fig. 1. Two exchanged hypercubes EH(1, 3) and EH(2, 2), where dashed links cor-
respond to the edge set E1, solid links correspond to the edge set E2, and bold links
correspond to the edge set E3.

From the definition of EHs,t, the number of vertices is 2s+t+1 and the number
of edges is (s + t + 2)2s+t−1 where |E1| = 2s+t, |E2| = s · 2s+t−1 and |E3| =
t·2s+t−1. For a vertex x with x0 = 0, the vertex degree is s+1, whereas the vertex
degree with x0 = 1 is t + 1. EHs,t is a subgraph of the (s + t + 1)-dimensional
hypercube Qs+t+1, and as a result it is also a bipartite graph. Figure 1 illustrates
the exchanged hypercubes EH(1, 3) and EH(2, 2).

8 W. Fan et al.

Lemma 3 [16]. EHs,t and EHt,s are isomorphic.

Lemma 4 [16]. EHs,t can be divided into 2t copies as Qs and 2s copies as Qt.

Lemma 5 [16]. EHs,t can be partitioned into two copies of EHs−1,t or EHs,t−1.

After deleting the edge set E1 from EHs,t, the vertex set of EHs,t can sep-
arated into two parts T and S, where T is the set of all vertices with rightmost
bit being 1, and S is the set of all vertices with rightmost bit being 0. In other
words,

T = {vs+tvs+t−1...v11|vi ∈ {0, 1} for 1 ≤ i ≤ s + t}, and
S = {us+tus+t−1...u10|ui ∈ {0, 1} for 1 ≤ i ≤ s + t}.
Each edge e ∈ E1 has one endpoint in T and the other in S.

3 Maximum Induced Subgraph for EHs,t

In this section, we mainly focus on finding the maximum induced subgraph of
EHs,t. There is a significant relationship between the maximum induced sub-
graph problem and the wirelength problem.

For 1 ≤ s ≤ t, we group V (EHs,t) into eight disjoint subsets [15] as follows,
V1 = {0 ∗...∗︸︷︷︸

t−1

01}, V2 = {0 ∗...∗︸︷︷︸
t−1

11}, V3 = {1 ∗...∗︸︷︷︸
t−1

01}, V4 = {1 ∗...∗︸︷︷︸
t−1

11}, V5 =

{0 ∗...∗︸︷︷︸
t−1

00}, V6 = {0 ∗...∗︸︷︷︸
t−1

10}, V7 = {1 ∗...∗︸︷︷︸
t−1

00}, V8 = {1 ∗...∗︸︷︷︸
t−1

10}.

The subgraph induced by Vi(1 ≤ i ≤ 4) contains 2s−1 disjoint (t − 1)-cubes,
and the subgraph induced by Vi(1 ≤ i ≤ 4) contains 2t−1 disjoint (s − 1)-cubes.
If s ≥ 2, for the subgraph induced by Vi(1 ≤ i ≤ 4), we denote the (t − 1)-cube
by Qi,j

t−1, where j(j ∈ [0, 2s−1 − 1]) is the decimal number of us+t−1,t+1, and the
vertex u in Qi,j

t−1 is represented by qi,j,kt−1 , where k(k ∈ [0, 2t−1 −1]) is the decimal
number of ut−1,1. Similarly, for (5 ≤ i ≤ 8), we can define the (s− 1)-cube Qi,j

s−1

and the vertex qi,j,ks−1 , where j ∈ [0, 2t−1 − 1] and k ∈ [0, 2s−1 − 1]. This labeling
is denoted by lex.

For any integer m ≥ 1 and S ⊆ V (G) with |S| = m, if G[S] is the sub-
graph with the maximum number of edges among all induced subgraphs with m
vertices, then G[S] is called the maximum induced graph with m vertices in G.

Definition 4 [17]. An incomplete hypercube on i vertices of Qn is the subcube
induced by {0, 1, ..., i − 1} and is denoted by Li.

Theorem 1 [11]. For 1 ≤ i ≤ 2n, Li is an optimal set in the hypercube Qn.

Lemma 6 [4]. For 1 ≤ i, j ≤ 2n such that i+j ≤ 2n, |E(Qn[Li])|+|E(Qn[Lj])|+
{i, j} ≤ |E(Qn[Li+j])|.
Lemma 7 [29]. Let V be a vertex subset of graph G and {V0, V1} be a partition
of V . Then τ(V) = τ(V0) + τ(V1) + τ(V0, V1).

Embedding Exchanged Hypercubes into Rings and Ladders 9

Lemma 8. Let K be a subgraph of EHs,t isomorphic to Lk where 1 ≤ s ≤ t
and k ≤ 2s+t + 2s. Let K1 and K2 be disjoint segments induced by k1 and k2
consecutive vertices on

⋃2s

i=1 Qt ∪ Q1
s respectively such that k1 + k2 = k. Then

|E(EHs,t[K1 ∪ K2])| ≤ |E(EHs,t[K])|.
Proof. By Lemma 4, EHs,t can be divided into 2s copies of Qt and 2t copies
of Qs. Hence, we can denote Q1

t , Q2
t ,..., and Q2s

t as 2s copies of Qt who are
composed of the edges E3, and Q1

s, Q2
s,..., and Q2t

s as 2t copies of Qs who are
composed of the edges E2. For simplicity, we denote u1

1, u2
1,... and u2t

1 as 2t

vertices of Q1
t , u1

2, u2
2,..., and u2t

2 as 2t vertices of Q2
t , ..., and u1

2s , u2
2s ,..., and

u2t

2s as 2t vertices of Q2s

t . And we denote v1
1 , v2

1 ,...and v2s

1 as 2s vertices of Q1
s,

v1
2 , v2

2 ,... and v2s

2 as 2s vertices of Q2
s,..., and v1

2t , v2
2t ,... and v2s

2t as 2s vertices of
Q2t

s . Let E(EHs,t[K1 ∧ K2]) denote the set of edges in EHs,t with one end in
K1 and the other end in K2, we have the following cases:

Case 1. k1, k2 ≤ 2t. We consider the following cases.
Case 1.1 K1 ⊂ Q1

t . Since Qt is isomorphic the t-dimensional cube, by the
definition of EHs,t and Theorem 1, |E(EHs,t[K1 ∪ K2])| = |E(Qt[K1 ∪ K2])| ≤
|E(Qt[K])| = |E(EHs,t[K])|.

Case 1.2 K1 ⊂ Q1
s. The proof is similar to Subcase 1.2.

Case 2. 2t < k1 ≤ 2t + 2s. K1 ⊂ Q1
t ∪ Q1

s. Let 2t = k1 + k2, where k1
vertices lie in Q1

t and k2 vertices lie in Q1
s, inducing subgraphs K1 and K2 in Q1

t

and Q1
s, respectively. Since there is one edge joining vertices in K1 and vertices

in K2, |E(EHs,t[K1 ∧ K2])| ≤ k2. This implies that |E(EHs,t[K1 ∪ K2])| =
|E(EHs,t[K1])| + |E(EHs,t[K2])| + |E(EHs,t[K1 ∧ K2])| ≤ |E(EHs,t[Lk1])| +
|E(EHs,t[Lk2])|+k2. By Lemma 1, we get |E(EHs,t[K1∪K2])| ≤ |E(EHs,t[Lk1+
k2])| = |E(EHs,t[K])|.

Case 3. 2t+2s < k1 ≤ 2s+t+2s. Let k1, k2 be the number of consecutive ver-
tices in K1, K2 that lie in

⋃2s

i=1 Qi
t∪Q1

s. Then |E(EHs,t[K1])| ≤ |E(EHs,t[Lk1])|,
|E(EHs,t[K2])| ≤ |E(EHs,t[Lk2])| and |E(EHs,t[K1 ∧ K2])| ≤ k2 + k2. Hence
|E(EHs,t[K1 ∪ K2])| ≤ |E(EHs,t[Lk1])| + |E(EHs,t[Lk2])| + 2k2. Let H1 = Lk1 .
Then |E(EHs,t[H1])| = |E(EHs,t[Lk1])|. Let H2 be the subgraph of EHs,t

induced by the vertices in Q1
s labeled 2s+t−1, 2s+t−2, ..., 2s+t−k2. This implies

|E(EHs,t[H2])| = |E(EHs,t[Lk2])| and |E(EHs,t[H1 ∧ H2])| ≥ k2 + k2. There-
fore |E(EHs,t[H1 ∧ H2])| ≥ |E(EHs,t[Lk1])| + |E(EHs,t[Lk2])| + 2k2 and hence
|E(EHs,t[K1 ∪ K2])| ≤ |E(EHs,t[H1 ∪ H2])|. �

Theorem 2. The number of edges in a maximum subgraph induced by 2s+t+m
vertices of EHs,t, 1 ≤ s ≤ t, 1 ≤ m ≤ 2s+t+1, is given by

|E(EHs,t[S])| = t · 2s+t−1 + IEHs,t
(m) + m.

Proof. Let Iki
m denoted the k-dimensional subgraph of EHs,t on m vertices,

which contains subcubes Q1
t , Q2

t ,..., and Qi
t and E1 for 1 ≤ i ≤ 2t. This means

that there are k · 2ki−1 edges between
⋃2s

i=1 Qi
t and

⋃2s

i=1 Qi+1
t . Also,

⋃2s

i=1 Qi
t

has ti2ti−1 edges within itself. The maximum subgraph induced by Ikm of EHs,t

contains two components Qi
k and Itm−2s+t , where the vertices in Qi

t are numbered

10 W. Fan et al.

as 0, 1, ..., 2s+t − 1 and the vertices in Itm−2s+t are numbered as 2s+t, 2s+t +
1, ..., 2s+t+1, for t = �log(m − 2s+t)�. Thus Ikm contains a set of Qi

t and Qi
s, and

no two constituent cubes are of the same size. The number of edges induced by
Ikm in EHs,t, 1 ≤ s ≤ t is given by |E[Ikm])| = t · 2s+t−1 + IEHs,t

(m) + m. The
lemma holds. �

Lemma 9. For 1 ≤ s ≤ t and 1 ≤ i ≤ 2s+t + 2s, Li is an optimal set.

Proof. Let R be a subgraph of EHs,t isomorphic to Lk where k ≤ 2s+t + 2s.
Let N be a set of k non-consecutive vertices in EHs,t. Then N =

⋃p
i=1 Xi where

p ≥ 2, X ′
is are mutually disjoint and each Xi is a set of consecutive vertices

in EHs,t such that
⋃p

i=1 |Xi| = n. If Xi contains vertices labeled 2s+t + 2s − 1
and 2s+t + 2s, then Xi is split into two sets such that one set ends with label
2s+t + 2s − 1 and the other set begins with label 2s+t + 2s. By Lemma 2, we get
|E(EHS,t[N])| ≤ |E(EHs,t[R])|. �

Theorem 3. For 1 ≤ i ≤ 2s+t+1, Li is an optimal set in EHs,t.

Proof. By Lemma 4, after deleting the edge set E1 from EHs,t, EHs,t can
be partitioned into EHs−1,t or EHs,t−1. By Lemma 9, Li is an optimal set for
1 ≤ i ≤ 2s+t+2s. Now let i > 2s+t+2s. Then we have L′

i = EHs,t−Li
∼= L2s+t−i .

Since 2s+t+1 − i < 2s+t+1 − 1, by Lemma 1, L′
i is an optimal set in EHs,t. Since

EHs−1,t
∼= EHs,t−1, Li is an optimal set in EHs,t. �

4 Embedding the Exchanged Hypercubes into Rings

In this section we consider the embeddings of exchanged hypercubes into rings.
When the host graph is a cycle, the wirelength of the embedding is called
cyclic wirelength. The ring structure is important for distributed computing.
In a telecommunication network, a ring network affords fault tolerance to the
network because there are two paths between any two nodes on the network
(Fig. 2).

Definition 5. For any integer n ≥ 1, the ring of n vertices, denoted by Rn, is a
graph such that V (Rn) = {1, 2, ..., n} and where E(Rn) = {(i, i+1)|i ∈ [1, n−1]}.

Definition 6. Let f : V (EHs,t) → V (R2s+t+1) be an embedding, which is
defined as follow: Label the vertices of R2s+t+1 as 0, 1, ..., 2s+t+1 − 1. Then, for
any v ∈ V (EHs,t), let f(v) = lex(v).

Lemma 10 [6]. CWL(Qn, C2n) = 22n−2 + 22n−3 − 2n−1.

Lemma 11. H lex
i = {1, 2, ..., i} is an optimal set in EHs,t for i = 1, 2, ..., 2s+t+1

and 1 ≤ s ≤ t.

Embedding Exchanged Hypercubes into Rings and Ladders 11

Fig. 2. The edge cut of ring R2s+t+1 .

Proof. Let f : H lex
i → L

j×2
s+t+1

2
with f(k×2

s+t+1
2 + l) = l×2

s+t+1
2 +k. We use

u1u2...ut+1 in H lex
i to denote the decimal string of l×2

s+t+1
2 +k. By Theorem 3,

Li = {1, 2, ..., i} is an optimal set in EHs,t for each i. Since the decimal string
representations of two numbers x and y differ in exactly one bit, the same holds
for f(x) and f(y). Thus (x, y) is an edge in Hi and (f(x), f(y)) is an edge in
L2i . Therefore, Hi is isomorphic to Li. By Theorem 1, H lex

j is an optimal set of
EHs,t. �

Lemma 12. The lex embedding of exchanged hypercube EHs,t into a ring
R2s+t+1 induces a minimum wirelength.

Proof. Let f = lex and G = EHs,t. For 1 ≤ i ≤ 2s+t+1, let Si be ith edge of
R2s+t+1 . Removal of Si leaves R2s+t+1 into two components Xi and X

′
i where

V (Xi) = {0, 1, ..., i} and V (X
′
i) = {j + 1, j + 2, ..., 2s+t+1}. Let Gi and G

′
i be

the inverse images of Xi and X
′
i under f , respectively. By Lemma 2, Gi is an

optimal set in EHs,t. Thus the edge cut Si satisfies Lemma 1. It can be further
verified that {(i − 1, i)} satisfies Lemma 1, and the edge congestion ECf (Si)
is minimum under embedding lex for i = 1, 2, ..., 2s+t+1. Thus the wirelength
WLf (EHs,t, R2s+t+1) of embedding EHs,t into R2s+t+1 is minimum. �

Theorem 4. For 1 ≤ s ≤ t, the wirelength of embedding EHs,t into a ring
R2s+t+1 is given by

WL(EHs,t, R2s+t+1) = 2s+2t−1 − 2s+t−1 + 22t + 22t+2.

Proof. Let f = lex. We first derive the exact wirelength of embedding the
induced subgraphs EHs,t[E1], EHs,t[E2], and EHs,t[E3] into R2s+t+1 . Let the
edge set E1 = {(u, v)|u0 �= v0, ui = vi for 1 ≤ i ≤ s + t}. After deleting E1

12 W. Fan et al.

from EHs,t, the vertex set S is decomposed into 2t connected components. Each
component is an s-dimensional hypercube Qs, moreover, these 2t hypercubes Qs

are pairwise disjoint, and there are no edges joining any two Qs. Since each edge
e ∈ E1 has one endpoint in Qt and the other in Qs, E1 is a perfect matching of
EHs,t between Qs and Qt.

For 1 ≤ i ≤ 2s+t, Sj is an edge cut of R2t , which disconnects R2t into
two subrings Rj and R

′
j , where 2 ≤ j ≤ 2s+t−1, V (Rj) = {1, 2, ..., j}, and

V (R
′
j) = {j + 1, j + 2, ..., 2s+t−1}. Let Gj1 = f−1(Rj1) and Gj2 = f−1(Rj2). By

Lemma 1, Gj1 is an optimal set and each Sj satisfies conditions (i) and (ii) of
Lemma 1. Therefore, ECf (Sj) is minimum. let Ai be an edge cut of R2s+t such
that Si disconnects R2s+t into two components Ri1 and Ri2. Let Gi1 and Gi2 be
the inverse images of Ri1 and Ri2 under f , respectively. By Theorem 1, Gi1 is an
optimal set and each Si satisfies conditions (i) and (ii) of Lemma 1. Therefore,
the sum congestion of G[

⋃2s−1
i=1 Qi

t] is

WLf (Ai) = WL(G[
2s−1⋃

i=1

Qi
t], R2s+t)

=
2s+t−1∑

j=1

ECf (Sj)

= 2s+2t−1 − 2s+t−1.

For 2s+t + 1 ≤ i ≤ 2s+t+1, Si is an edge cut of R2s+t−1 , which disconnects
R2s+t−1 into two linear arrays Ri and R

′
i, where 2s+t−1 + 1 ≤ i ≤ 2s+t+1,

V (Ri) = {1, 2, ..., i}, and V (R
′
i) = {i+1, i+2, ..., 2s+t+1−2}. Let Gi1 = f−1(Ri1)

and Gi2 = f−1(Ri2). Gi1 is an optimal set and each Si satisfies conditions (i) and
(ii) of Lemma 1. Therefore, ECf (Si) is minimum. let Bj be an edge cut of R2s+t

such that Sj disconnects R2s+t into two components Rj1 and Rj2. Therefore,
the sum congestion of G[

⋃2t−1
i=1 Qi

s] is

WLf (Bj) = WL(G[
2t−1⋃

i=1

Qi
s], R2s+t)

=
2s+t+1∑

j=2s+t+1

ECfSj

= 2t(22s−1 − 2s−1).

For 1 ≤ k ≤ 2s+t+1, let Ck be an edge cut of R2s+t such that Ck disconnects
R2s+t+1 into two components Rk1 and Rk2. It is apparent that Rkl is symmetric
about l = 2s+t. So we need only consider the case for 1 ≤ l ≤ 2s+t in computing
the wirelength. Therefore, the sum congestion of E1 is

Embedding Exchanged Hypercubes into Rings and Ladders 13

ECf (Ck) = 2
2s+t∑

k=1

Sk

= 2(1 + 2 + ... + 2s+t − 1)
= 2s+t · (2s+t − 1).

Thus,

WL(EHs,t, R2s+t+1) = WLf (EHs,t, R2s+t+1)
= WLf (Ai) + WLf (Bj) + WLf (Ck)

=
2s+t∑

i=1

Ai +
2s+t+1∑

j=2s+t+1

Bj + 2
2s+t∑

k=1

Ck

= 2s(22t−1 − 2t−1) + 2t(22s−1 − 2s−1) + 2s+t · (2s+t − 1)
= 2s+2t−1 + 2t+2s−1 + 22(s+t) − 2s+t+1.

�

5 Embedding the Exchanged Hypercubes into Ladders

In this section we consider the embeddings of exchanged hypercubes into ladders.
When H is a path, WL(G,H) represents linear wirelength of G or Minimum
Linear Arrangement (MinLA) of G. The wirelength problem of a graph G into
H is to find an embedding of G into H that induces the minimum wirelength
WL(G,H).

A ladder is a special graph in which two paths of the same length are con-
nected in such a way that each vertex of the 1rst one is connected by a path-
called a rung-to its corresponding vertex in the second one. We construct an
optimal embedding of EHs,t into a ladder with minimum wirelength. Firstly,
the definition of ladder graph is given as below:

Definition 7 [25]. Consider two chains A = al, ..., ak and B = bl, ..., bk and join
each pair of vertices ai, bi, i = 1, .., k, with a new chain. The resulting graph is
called a ladder, and the chains between ai, bi are called its rungs.

Definition 8. Let h : EHs,t → L(2× 2s+t)} be an embedding, which is defined
as follows: The 1th row is labeled 1 to 2s+t from left to right. The 2th row is
labeled from 2s+t + 1 to 2s+t+1 from left to right. Then, for any v ∈ V (EHs,t),
let h(v) = lex(v).

Lemma 13. Rlex
i = {1, ..., i2

s+t
2 } is an optimal set in EHs,t for i = 1, 2, ..., 2

s+t
2

and 1 ≤ s ≤ t.

Proof. This proof can be obtained directly from Theorem 3. �

14 W. Fan et al.

Lemma 14. For j = 1, 2, ..., 2� s+t+1
2 �,

Clex
j =

{
1, 1 × 2

s+t
2 , 2 × 2

s+t
2 , ...(2

s+t
2) × 2

s+t
2 ,

2, 1 × 2
s+t
2 + 1, 2 × 2

s+t
2 + 1, ...(2

s+t
2) × 2

s+t
2 + j − 1

}

is an optimal set in EHs,t where 1 ≤ s ≤ t.

Proof. Let f : Clex
j → L

j×2
s+t
2

with f(k × 2
s+t
2 + l) = l × 2

s+t
2 + k. We use

u1u2...ut+1 in Clex
j to denote the decimal string of l×2

s+t
2 +k. Since the decimal

string representations of two numbers u and v differ in exactly one bit, the same
holds for f(u) and f(v). Thus (u, v) is an edge in Ri and (f(u), f(v)) is an edge
in L2i . Therefore, Ri is isomorphic to Li. By Theorem 1, Li is an optimal set of
EHs,t. �
Lemma 15. For 1 ≤ s ≤ t, EHs,t can be embedded into the ladder L(2× 2s+t)
with minimum wirelength.

Proof. Let f = h. Let Ci,j = {(αi,j , αi,j+1)|1 ≤ j ≤ 2s+t}, 0 ≤ i ≤ 1. Let
R be a horizontal edge cut of the ladder such that R disconnects the ladder
into two components R1 and R2 where V (R1) = {(0, 0), (0, 1), ..., (0, 2s+t − 1)}
and V (R2) = {(1, 0), (1, 1), ..., (1, 2s+t − 1)}. Let Ci be a vertical edge cut of
the ladder such that Ci disconnects the ladder into two components Ci1 and
Ci2 where V (Ci1) = {(0, 0), (0, 1), ..., (0, 2i − 1)}⋃{(1, 0), (1, 1), ..., (1, 2s+t − 1)}
and V (Ci2) = V (L2s+t+1)\V (Ci1). See Fig. 3. Let H1 and H2 denote two inverse
images of R1 and R2, where f−1(R1) = H1 and f−1(R2) = H2. The edge cut
R satisfies the conditions (i) and (ii) of Lemma 1. Since H1 is 2s copies of Qt

in EHs,t, by Theorem 2, |E(H1)| is maximum satisfying the condition (iii) of
Lemma 1. Thus by Lemma 2, ECf(R) is minimum. Let Hi1 and Hi2 denote
two inverse images of Ci1 and Ci2, where f−1(Ci1) = Hi1 and f−1(Ci2) = Hi2.
The edge cut Ci satisfies the conditions (i) and (ii) of lemma 1. Also Gi is
a subgraph induced by 2i+1 vertices of EHs,t. Thus ECf (Ci) is minimum for
i = 1, 2, ..., 2s+t − 1. The edge cut Rj satisfies the conditions (i) and (ii) of
lemma 1. By Theorem 2, |E(Gi1)| is maximum satisfying the condition (iii) of
Lemma 1. The same holds for |E(Gi2)|. Thus ECf (Ci) is minimum. Hence by
lemma 2, the wirelength is minimum. �

Theorem 5. The minimum wirelength of embedding exchanged hypercube
EHs,t into the ladder L(2 × 2s+t) satisfies:

WL(EHs,t, L(2 × 2s+t)) = 2s+2t−1 + 22s+t−1.

Proof. Let f = h. The vertices of EHs,t are mapped in the ladder L(2 × 2s+t).
Let R be a horizontal edge cut of the ladder such that into two components
R1 and R2 where V (R1) = {0, 1, ..., 2s+t} and V (R2) = {2s+t + 1, 2s+t +
2, ..., 2s+t+1}. The sum edge congestion of each column of L(2 × 2s+t) is

ECf (R) =
2s+t∑

i=1

(Si) = 2s+t.

Embedding Exchanged Hypercubes into Rings and Ladders 15

Fig. 3. Edge cuts of ladder graph.

Thus ECf (Ci,j) = ECf (Ci,2s+t+1−j) for 1 ≤ j ≤ 2s+t.
For i = 1 and 1 ≤ j ≤ 2s+t, let Ci,j be an edge cut of R1 such that Ci,j

disconnects L1×2s+t into two components Lj1 and Lj2. Let Qj1 and Qj2 be the
inverse images of Lj1 and Lj2 under h, respectively. By Theorem 1, Qj1 is an
optimal set and each Ci,j satisfies conditions (i) and (ii) of Lemma 1. Therefore
the sum congestion of Qt is

2s+t∑

j=1

ECf (Ci,j) = 2
2s+t∑

j=1

Ci,j

= 2s(22t−1 − 2t−1).

For i = 2 and 1 ≤ k ≤ 2s+t, let C
′
i,k be an edge cut of R2 such that Ci,k

disconnects L1×2s+t into two components Qk1 and Qk2. The proof is similar to
i = 1. Therefore, the sum congestion of Qs is

2s+t∑

k=1

ECf (C
′
i,k) = 2

2s+t∑

k=1

C
′
i,k

= 2t(22s−1 − 2s−1).

Thus,

WL(EHs,t, L(2 × 2s+t)) = WLf (EHs,t, L(2 × 2s+t))

= ECf (R) + ECf (Ci,j) + ECf (C
′
i,k)

=
2s+t∑

i=1

Si + 2
2s+t∑

j=1

Sj + 2
2s+t∑

k=1

S
′
k

= 2s+t + 2s(22t−1 − 2t−1) + 2t(22s−1 − 2s−1)
= 2s+2t−1 + 22s+t−1.

�

16 W. Fan et al.

6 Conclusions

In this paper, we propose embeddings of exchanged hypercubes into rings and
ladders. Firstly, we prove that EHs,t can be embedded into a ring with minimum
wirelength and obtain the exact wirelength. Furthermore, we obtain the mini-
mum wirelength of embedding EHs,t into a ladder with minimum wirelength.
To the best of our knowledge, this is the first result of embedding EHs,t into
rings and ladders.

Acknowledgment. We would like to express our sincerest appreciation to Prof.
Guoliang Chen for his constructive suggestions. This work is supported by National
Key R&D Program of China (2018YFB1003201), Natural Science Foundation of
China under grant (No. 61572337, No. 61602333, No. 61672296 and No. 61702351),
China Postdoctoral Science Foundation (No. 172985), Scientific & Technological
Support Project of Jiangsu Province (No. BE2016777, No. BE2016185), Natural
Science Foundation of the Jiangsu Higher Education Institutions of China (Nos.
17KJB520036), Jiangsu Planned Projects for Postdoctoral Research Funds under Grant
(No. 1701172B) and Jiangsu High Technology Research Key Laboratory for Wireless
Sensor Networks Foundation (No. WSNLBKF201701).

References

1. Arockiaraj, M., Abraham, J., Quadras., J.: Linear layout of locally twisted cubes.
Int. J. Comput. Math. 94(1), 56–65 (2017)

2. Bezrukov, S.L., Das, S.K., Elsasser, R.: An edge-isoperimetric problem for powers
of the Petersen graph. Ann. Combinatorics 4(2), 153–169 (2000)

3. Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.P.: Embed-
ding of hypercubes into grids. Mortar Fire Control System, pp. 693–701 (1998)

4. Boals, A.J., Gupta, A.K., Sherwani, N.A.: Incomplete hypercubes: algorithms and
embeddings. J. Supercomputing 8(3), 263–294 (1994)

5. Chen, Y., Shen, H.: Routing and wavelength assignment for hypercube in array-
based WDM optical networks. J. Parallel Distrib. Comput. 70(1), 59–68 (2010)

6. Erbele, J., Chavez, J., Trapp, R.: The cyclic cutwidth of Qn. Technical report,
California State UniversitySan Bernardino (CSUSB) (2003)

7. Fan, J., Jia, X., Lin, X.: Complete path embeddings in crossed cubes. Inf. Sci.
176(22), 3332–3346 (2006)

8. Fan, J., Jia, X., Lin, X.: Embedding of cycles in twisted cubes with edge-pancyclic.
Algorithmica 51(3), 264–282 (2008)

9. Wang, X., Fan, J., Jia, X.: Embedding meshes into twisted-cubes. Inf. Sci. 181(14),
3085–3099 (2011)

10. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness (1979)

11. Harper, L.H.: Global Methods for Combinatorial Isoperimetric Problems. Cam-
bridge University Press, UK (2004)

12. Han, Y., Fan, J., Zhang, S.: Embedding meshes into locally twisted cubes. Inf. Sci.
180(19), 3794–3805 (2010)

13. Huang, K.E., Wu, J.: Area efficient layout of balanced hypercubes. Int. J. High
Speed Electron. Syst. 6(04), 631–645 (1995)

Embedding Exchanged Hypercubes into Rings and Ladders 17

14. Hsu, L.-H., Lin, C.-K.: Graph Theory and Interconnection Networks. CRC, Boca
Raton (2008)

15. Liu, Y.-L., Wu, R.-C.: Implementing exchanged hypercube communication pat-
terns on ring-connected WDM optical networks. IEICE Trans. Inf. Syst. 100(12),
2771–2780 (2017)

16. Loh, P.K.K., Hsu, W.-J., Pan, Y.: The exchanged hypercube. IEEE Trans. Parallel
Distrib. Syst. 16(9), 866–874 (2005)

17. Katseff, H.: Incomplete hypercubes. IEEE Trans. Comput. 37(5), 604–608 (1988)
18. Ma, M., Liu, B.: Cycles embedding in exchanged hypercubes. Inf. Process. Lett.

110(2), 71–76 (2009)
19. Manuel, P., Rajasingh, I., Rajan, B.: Exact wirelength of hypercubes on a grid.

Discrete Appl. Math. 157(7), 1486–1495 (2009)
20. Ma, M., Zhu, L.: The super connectivity of exchanged hypercubes. Inf. Process.

Lett. 111(8), 360–364 (2011)
21. Miller, M., Rajan, R.S., Parthiban, N.: Minimum linear arrangement of incomplete

hypercubes. Comput. J. 58(2), 331–337 (2015)
22. Nakano, K.: Linear layout of generalized hypercubes. Int. J. Found. Comput. Sci.

14(01), 137–156 (2003)
23. Rostami, H., Habibi, J.: Minimum linear arrangement of Chord graphs. Appl.

Math. Comput. 203(1), 358–367 (2008)
24. Sýkora, O., Vrt’o, I.: On VLSI layouts of the star graph and related networks.

Integr. VLSI J. 17(1), 83–93 (1994)
25. Wan, L., Liu., Y.: On the embedding genus distribution of ladders and crosses.

Appl. Math. Lett. 22(5) 738–742 (2009)
26. Wang, D.: Hamiltonian embedding in crossed cubes with failed links. IEEE Trans.

Parallel Distrib. Syst. 23(11), 2117–2124 (2012)
27. Wang, S., Zhang, S.: Embedding hamiltonian paths in k-ary n-cubes with condi-

tional edge faults. Theoret. Comput. Sci. 412(46), 6570–6584 (2011)
28. Yang, Y., Li, J., Wang, S.: Embedding various cycles with prescribed paths into

k-ary n-cubes. Discrete Appl. Math. 220, 161–169 (2017)
29. Yang, X., David, J.E., Graham, M.: Maximum induced subgraph of a recursive

circulant. Inf. Process. Lett. 95(1), 293–298 (2005)
30. Yeh, C. H., Varvarigos, E. A., Parhami, B.: Multilayer VLSI layout for intercon-

nection networks. In: Proceedings of International Conference on IEEE Parallel
Processing, pp. 33–40 (2000)

31. Yu, C., Yang, X.: Routing and wavelength assignment for 3-ary n-cube in array-
based optical network. Inf. Process. Lett. 112(6), 252–256 (2012)

Rim Chain: Bridge the Provision
and Demand Among the Crowd

Pengze Li(B), Lei Liu, Lizhen Cui, Qingzhong Li, Yongqing Zheng,
and Guangpeng Zhou

Software College, Shandong University, Jinan, China
vonei@126.com

Abstract. Science of the Crowd is a new paradigm. The research on the
relationship between provision and demand arising from the behavior of
the crowd under the interconnected environment is a promising topic.
This study is a pioneer work on the establishment of a new type of
interconnected architecture - rim chain. The rim chain framework aims
at supporting prompt matching between provision and requirements. The
analytical results suggest that requirements can be fulfilled in accordance
with six degrees of separation. In other word, the matching between
the demands and provision takes place with six hops in the rim chain
framework. Improved top-k method is employed to obtain the matching
results. Last but not least, the efficiency of the method is validated.

Keywords: Crowd Science · Crowd Network · Top-k query

1 Introduction

The ant colony effect in the natural world, the formation of a group of birds
flying in the sky, the business management process in economics, the coordi-
nated operation of the industrial chain, social organizations and their collective
behavior processes, national elections, and public discussion of social and pub-
lic issues, are all based on the collection of many individual wisdoms, which
aim to achieve better results. These can all be attributed to the Crowd Science.
Crowd Science as a new paradigm focuses on the impact regarding the number of
individuals involved, the way and depth of interaction between individuals. The
development of network and AI technologies is a thrust of enhancing the inter-
connection among people, things, organizations and enterprises. Crowd Science
studies the principles and bachelors of the mental projections, namely, digital-
selfs of people, things, organizations and enterprises in the physical world. The
digital-self reflects the behavior, consciousness and information of the real world
subject. Crowd Science covers the scientific problem and universal mechanism
behind the phenomena above.

In recent years, there have been many query techniques on the graph which
contains data. These techniques use keyword matching or similar subgraph

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 18–31, 2018.
https://doi.org/10.1007/978-3-030-05054-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_2

Rim Chain: Bridge the Provision and Demand Among the Crowd 19

matching to search for the target data in the graph. Jin et al. [6] use sub-
graph matching with distributed techniques to convert graph parallelism into
data parallel processing problems for efficient distributed search. Similar work
could be found in Chen et al. [7]. Besides the sub-graph matching, Chen et al. use
the evaluating function to sort the eligible data from the graph and return the
Top-k results. Yu [8] uses an object-level database for indexing to improve the
query result. However, when objects contain too many attributes, using objects
may make the query semantics more complicated. Li et al. [9] study the frequent
subgraph queries, which using a closed frequent subgraph based index. Chen
et al. [10] conduct a keyword search on a road network with restricted scope.
They take the distance in reality into consideration, rather than only consid-
ering the matching of keywords. The similarity search can be used in reducing
the size of the data to be matched and improves the matching efficiency [14].
Keyword matching also contains using techniques such as latent Steiner graph
to return users with appropriate results, but there are still deficiencies in entity
recognition and natural language processing [15].

In terms of network construction and simulation, Yang et al. [11] make up
for the lack of descriptions of EATI (Entity, Action Task, Interaction) and
EBI (Entity, Behavior, Interaction) concepts in the social domain, and build
an Agent-based Social Network. In social networks, the information and influ-
ence dissemination is an important research direction. Sun et al. [16] have con-
ducted in-depth explorations on an information interference model that takes
into account the interrelationships between information items in social network.
The structure of social networks is constantly changing because it is derived
from the real world. As sentiment dissemination is part of the influence dissem-
ination, Wang et al. [17] propose an evolution model of online social network
and conduct research on online information management. Crowd’s behavior in
social networks also has a certain degree of sociality. Li et al. [18] study on the
influence of the active time heterogeneity of nodes. They use spread tree and
SI model to show that polymorphism on the information dissemination. Wang
et al. [19] have conducted in-depth explorations on the information coverage
maximization, which aims to improve the range of information dissemination.

In order to support matching between provision and demands in the digital
world, this paper proposes a new type of network structure, the rim chain, which
embodies the concept of Crowd Network.

Figure 1 shows the schematic diagram of the rim chain, which only has peo-
ple as the digital-self denoted by business card. In this schematic diagram, the
digital-selfs are in different social circles. They can join more than one circle.
The icon in the center of the social circle indicates the theme of the circle. It
shows the reason why different digital-selfs are connected together.

The goal of this interconnected structure is to perform transactions match-
ing based on provision-demand information. To better complete the transaction
matching, the rim chain ensures transaction security and ensures that the con-
tents of the interconnection structure will not be maliciously altered.

20 P. Li et al.

Fig. 1. The schematic diagram of the rim chain

As Crowd Science is closely related to the sociology, the rim chain also embod-
ies theory in sociology, such as the six degrees of separation theory. The six
degrees of separation shows that people in this world are interconnected. How-
ever, it does not mean that any two people can establish contact or complete
a transaction. In reality, influence dissipates after three degrees (to and from
friends’ friends’ friends) [12,13], because of the corruption of information. There-
fore, in the rim chain, the six degrees of separation theory is actually combined
with the three degrees of influence theory, which enables this interconnection
model to better simulate the transactions matching that happens in the phys-
ical world. Moreover, this paper proposes an algorithm for the construction of
the rim chain. First, it extracts data from the relational database, then puts
the data into the graph database, and finally constructs rim chain. This paper
also proposes a query algorithm, and uses Top-k query to find the most suit-
able transaction objects. The query algorithm uses the matching of provision
vector and demand vector to search for the eligible data. After the completion
of searching, it sorts the eligible data from the rim chain and return the Top-k
results.

The paper’s main contributions can be summarized as follows: (I) The estab-
lishment of a new type of interconnected architecture - rim chain. (II) The rim
chain framework uses Pareto distribution to show the attenuation of information
fidelity.

The reminder of this paper is organized as follows: Sect. 1 introduces the basic
concept of the Crowd Science, and some researches on social network and query
technology. Section 2 discusses related work in intelligence networks and Crowd
Science. Section 3 discusses the algorithm of construction of the rim chain and the
transactions Top-k query. Section 4 conducts the experimental evaluations for the
algorithm. And finally the Sect. 5 draws conclusions of this paper’s contribution.

2 Related Work

The Crowd Science is based on the System Theory, Information Theory, Cyber-
netics, Computer Science and Engineering, Management, Economics, Sociology,
Psychology and other subjects, and becomes a new interdisciplinary direction
[5]. The Crowd Science uses the Internet of things, big data, and other new

Rim Chain: Bridge the Provision and Demand Among the Crowd 21

technologies to access and analyze the data of public behavior with the ternary
fusion system of information physical society and studies the basic principles
and laws of intelligent crowds’ activities in the new social model.

So far, there have been studies on intelligence networks or crowd intelligence
at home and abroad, but all these studies are fragmented and incomplete. Many
researchers do some jobs on Swarm AI, a relatively new Artificial Intelligence
method. Swarm AI involves multiple agents operating in an environment to
solve problems through cooperation [4]. It focuses on the optimization of com-
plex problems. Compared with Swarm AI, Crowd Science focus on the coun-
try’s major strategic needs and solves the basic problems of future networked,
intellectually-oriented economy and society. However, both draw lessons from
group insects. Crowd Intelligence [1] is the collective wisdom of a large num-
ber of autonomous individuals. In an Internet-based organizational structure,
these autonomous individuals jointly complete challenging computing tasks. The
research objects of Crowd Intelligence are homogenous while the research objects
of Crowd Science are heterogeneous including individuals, enterprises, govern-
ments and things. Collective Intelligence [2,3] is a form of subjective mobiliza-
tion, highly individual as well as ethical and cooperative under the natural envi-
ronment and the scale of the research object size is limited, however Crowd
Science works on large-scale elements in the online and in-depth connected pub-
lic Crowd Network under the Internet and big data environment.

3 Construction and Matching of the Ring Chain
Framework

3.1 Construction of the Rim Chain

In the process of the rim chain construction, the first step is to extract the
content of the database. Then the digital-selfs and circles are formed based
on the data from the data source which usually is the database. The data in
the database also reflects the social relationship of digital-selfs. The social link
between digital-selfs and circles comes from these relationships. With the link of
the relationship between digital-selfs and circles built, the construction of rim
chain is completed (Fig. 2).

Fig. 2. Data extraction from RDB to graph database

There are four types of information that need to be reflected in the rim chain.
First, identification information is used to distinguish one digital-self from the

22 P. Li et al.

others. The second one is the provision information. It shows what services it
can provide for other digital-selfs. The third one is the requirement information.
When the digital-self has a demand, it will generate demand information. The
last one is circle or social relationship information, it describes the digital-self’s
social relations. Based on the social relationship information, the rim chain will
know which circle this digital-self should belong to. There usually are more than
one circles that one digital-self belongs to. The database used in this paper gives
the above attributes. These four kinds of information are sufficient and necessary
for the construction of rim chain. Identification information is the basic infor-
mation and the verification information, which ensures that the corresponding
people, things, organizations and enterprises exists in real life. If a digital-self
does not have provision information, it will be useless in rim chain (Fig. 3).

Moreover, it cannot complete transactions with other digital-selfs, because it
does not have the ability to provide resources to other nodes. Demand informa-
tion is also necessary. If digital-selfs do not have their own requirements infor-
mation, they cannot obtain the required resources from the rim chain to achieve
their own demands. After completing the data migration, an interconnection
network structure will be established. Figure 4 shows the schematic diagram of
rim chain in a hierarchical structure. This schematic diagram shows digital-self
nodes and circle nodes which are in three degrees range of D1. The blue node
represents the circle node and the orange node represents the digital-self node.
D1 is in the circle C1. In the C1 circle, points other than D1 are points within
one degree from D1. The distance between the digital-selfs in C2, C3 and D1 is
two degree, and that in C4, C5, and C6 is three degree. Figure 4 shows the path
that D1 can be linked from other digital-selfs. Only the directly or indirectly
interconnected digital-selfs can complete transaction in the rim chain. Figure 4
is the further explanation for the Fig. 1.

Fig. 3. The database schema and the digital self’s attributes

What is more, this rim chain also uses the Knowledge Graph. The Knowledge
Graph includes three main parts: entities, attributes, and relationships. In the
rim chain, the concept of digital-self correspond to the entity, and all properties of
digital-selfs, circles, and edges correspond to attributes in the Knowledge Graph.
In graph database, digital-selfs and circles can all be represented by nodes. The
relationship between them can be represented by graph edges. Both the node
and the edge can contain certain attributes, thus laying the foundation for the
construction of the rim chain.

Rim Chain: Bridge the Provision and Demand Among the Crowd 23

Fig. 4. The schematic diagram of the rim chain

Algorithm 1. Create the rim chain.
Input: The people, things, organizations and enterprises data in the database
Output: The rim chain.
1: initialize array D[] with all digital-selfs
2: initialize array C[] with all circle nodes
3: for i ← 1 to digital self num do
4: for each circle node information in D[i] do
5: if circle node information exists in the hash map C then
6: create link from D[i] to the circle node
7: else
8: create new circle node c and build links to nodes in D[i]
9: C ← c

10: end if
11: end for
12: end for

3.2 Trasaction Matching Algorithm

In rim chain, the number of candidate digital-self will be massive. How to rec-
ommend the Top-k best matches for users in these thousands or even countless
candidate matching sets is a difficult problem to solve. Moreover, when sorting
the eligible digital-selfs, there is no absolute ‘bad digital-self’ or ‘good digital-
self’. The definition of good and bad depends on the needs of the requirement
information.

In the rim chain, individuals, enterprises, governments and things are mapped
to digital-selfs. Moreover, the digital-selfs contain information about these indi-
viduals, enterprises, governments and things. This means that the rim chain
contains comprehensive information. If a person generates a demand, the rim
chain will form the demand vector based on the person’s information in its dig-
ital self. Then, the rim chain can complete matching without excessive demand
description. For example, an undergraduate would like to find a postgraduate
tutor to guide his postgraduate study. The undergraduate digital-self puts for-
ward a demand, which is seeking for a postgraduate tutor, and then this demand

24 P. Li et al.

will form a vector with the basic attributes of the undergraduate. This vector
will be matched with the digital-selfs that might meet the requirements. In the
example mentioned above, the ‘postgraduate tutor’ is the key requirement. The
key requirement determines what kind of the sender’s attributes will the rim
chain investigate before the matching process. If the key requirement is a post-
graduate tutor, rim chain will not match the attributes like whether the target
digital-self can cook, but focus on academic-related attributes such as major and
research reputation.

The target digital-self will get a score based on the given evaluation function.
This score will be used in the Top-k query. A digital-self usually has more than
one attributes, so an evaluation function is defined to search for a qualified
digital-self. The score S can be expressed as (1):

S = α(1 − d(n)) + (1 − α)M(ds, di) (1)

The influence factor α measures the weight of demand information fidelity and
similarity in the matching process. The ds means the digital-self sender, and the
di is the matching digital-self. The d(n) is the information fidelity derived from
the Pareto distribution, and the M(ds, di) is the matching efficiency between the
sender and the matching digital-self.

According to the three degrees of influence theory, the fidelity of information
gradually dissipates as it propagates, reaching a maximum of three degrees.
In the model of information dissemination, the SIR model is used to describe
the mechanism of information dissemination in social networks [19]. In the SIR
model, nodes are divided into three categories: susceptible nodes (S), infected
nodes (I), and removed nodes (R). The infected node indicates that the node
has the ability to propagate information. A susceptible node indicates that the
node has not received information from other nodes and can accept information,
that is, it can become an infected node. The removed node indicates that the
node has received the information of its neighbor node, but it does not believe
the information, nor does it have the ability to transmit the information. At
the beginning of the provision-demand matching, there is only one infected node
in the chain network, which is the sender of the demand information. With
the combination of the SIR model and the three degrees of influence theory,
the propagation rules are defined as follows: (I) Within three degrees from the
sender digital-self, if the susceptible node is connected to the infected node via
a circle node, the susceptible node becomes an infected node, which can spread
the demand information. (II) When the degree is three, although the message
can be transmitted to the nodes in the fourth degree, the nodes will become
the removed nodes. Moreover, the nodes will refuse to believe that the demand
information and will not transmit the information further.

[21] proposed the use of the Pareto type I (2) from the Pareto distribution
to indicate the attenuation function of the number of the infected nodes. With
the three degrees of influence theory considered, the attenuation function of the
infected user can be understood as the attenuation of information fidelity. That
is, due to the attenuation of information fidelity, nodes will no longer believe

Rim Chain: Bridge the Provision and Demand Among the Crowd 25

in the demand information, and will no longer spread the demand information.
Equation (2) shows the Pareto type I. This paper uses 1 − d(n) to indicates the
fidelity of the information in (1).

d(n) = 1 − 1
nβ

(2)

In Eq. (2), n represents the degree. β represents the speed of the information
fidelity decay. The greater the β is, the faster the decay is [20] mentioned that
when d(n) is greater than a conversion threshold τ = 0.5, the node becomes a
removed node. As the three degrees of influence theory limits the information to
propagate at most three degrees, and when n equals 4, d(n) is equal to 0.5. So
the β is set to 0.5.

Each transaction matching is a bidirectional and the matching objects are
provision and demand information. In the previous example, the undergraduate’s
provision is the undergraduate’s attribute of the academic performance, and the
undergraduate’s demand is the postgraduate tutor’s ability, such as research
reputation and school level. The provision of postgraduate tutors is their ability
such as their research reputation, and the demand of postgraduate tutors is
the requirement for undergraduates’ academic performance such as GPA. In the
process of matching, both parties match each other’s provision and demand, and
finally get a matching efficiency.

In the matching process, there are some attributes that only has two kinds
of results: satisfied or not satisfied, such as major. Sometimes these attributes
contain multiple options demands. For example, the demand for major is Com-
puter Science (CS) or Digital Media Technology (DMT), then matching target’s
major could be either of the demand majors. All the satisfied options are sepa-
rated by slashes and saved in the digital-self’s attributes, like CS/DMT. Some
attributes are discrete values, which only need to reach the required lower limit.
For example, if the requirement for GPA is medium, then both medium and high
are satisfied. The discrete value is set according to the actual situation. In this
paper, only two types of discrete values are used, one is (high, medium, low), and
the other is (A, B, C, D). Function, Eq. (3), stands for the matching efficiency
of demand sender and target matching digital-self. The higher the matching
efficiency, the more the target digital-self can meet the demand information.

M(ds, di) =
|Ri ∩ Ss | + |Rs ∩ Si |

|Ri | + |Ss | + |Rs | + |Si | (3)

The R is the demand vector. Given a key requirement r1, according to this key
requirement, the rim chain extracts the rest of the digital-self-sender’s attributes.
Then the rim chain puts all the attributes together with the key requirement into
a demand vector R, which can be denoted by R = {r1, r2, ..., rn}. And the provi-
sion vector P is denoted by P = {p1, p2, ..., pm}. The rim chain will also extract
the matching digital-self’s attributes that related to the key requirement. The
system will evaluate each digital-self according to the evaluation function and
save the digital-selfs with higher scores. The |R ∩ S | is the number of matched
provision-demand attributes between the digital-self sender and the matching

26 P. Li et al.

digital-self. The |Ri | + |Ss | + |Rs | + |Si | is the total number of the provision-
demand attributes in the digital-self sender and the matching digital-self.

The circle node contains an attribute called ‘digital-self type’, which describes
whether the digital-selfs contained in this circle are individuals, enterprises, gov-
ernments or things. Circle node’s attributes also include the theme of the circle.
The circle nodes are regarded as important routing nodes. To speed up the
matching, the algorithm II (see Appendix) takes some measures to make use of
the circle node. First, according to the digital-self sender, find all the circle nodes
connected with it, and (I) if the type of digital-selfs in the circles do not match
the demand. For example, a demand in created to query for a teacher. If a circle
only has enterprises in it, then the type of digital-selfs in the circle does not
match the demand. (II) If the theme of the circle node does not match the key
requirement, the demand information will not be matched with the digital-selfs
which connected to this circle node. The demand information is sent directly to
all remaining circle nodes via the digital-self nodes connected to them. Second, a
hash map can be used to avoid duplicate visits. Finally, three degrees of influence
theory limits the number of nodes that can be accessed, so that the rim chain
avoids accessing too many nodes.

4 Experimental Evaluations

4.1 Analysis of the Evaluation Function

Throughout the query process, the crucial point for Top-k is the evaluation func-
tion. Our evaluation function has an influence factor α. This influence factor
measures the weight of demand information fidelity and similarity in the match-
ing process. When α is 1, the matching process ignores the relations among the
elements that the digital-self corresponds to in physical world, and only consid-
ers similarity. This situation is more suitable for general search engines rather
than the rim chain. The rim chain needs to reflect the digital-selfs’ relationship
in reality. When α is 0, the matching process ignores the similarity between
the demand information and the target digital-self’s attributes, and only con-
siders the demand information fidelity. Such a system loses the basic function
of matching transactions. In this paper, the α is set to 0.5, which means the
demand information fidelity and the similarity are equally important.

When it comes to the demand information fidelity, the three degrees of influ-
ence theory is also involved. That is, information’s influence dissipates after three
degrees [12,13]. The reason for considering the three degrees of influence theory
is that rim chain is not just a search engine but the mapping from the physical
world to the digital world and a transaction matching platform. Its architecture
comes from the social circle in real life. Therefore, it should refer to certain social
science theories in order to make the transactions matching and rim chain model
more accurate.

Completing the transaction requires meeting the sufficient conditions and
necessary conditions for the transaction. The definitions and examples of the
necessary conditions and sufficient conditions for transaction are list below:

Rim Chain: Bridge the Provision and Demand Among the Crowd 27

Necessity: a condition is said to be necessary for the transaction. For it to
be true that ‘One undergraduate finds a satisfying postgraduate tutor’, it is
necessary that the postgraduate tutor can recruit at least one student.

Sufficiency: The sufficient condition for the transaction is a condition that will
produce the completion of the transaction. ‘One undergraduate finds a satisfying
postgraduate tutor’ implies that the undergraduate is able to get the Bachelor
Degree. So knowing that the previous statement is true, it is sufficient to know
that the undergraduate’s GPA meets graduation requirements.

There are many properties in the digital-self, but not all properties are
required for transaction matching. Before calculating the match efficiency with
(3), the transaction-related attributes of the digital-self will be projected into the
demand vector and the provision vector. The projected attributes form the suffi-
cient conditions set and necessary conditions set for the transaction. Attributes
related to the sufficient conditions exist in the demander, and the attributes
related to the necessary conditions exist in those who may meet the demand.
What is more, in (3), represents the satisfaction of sufficient conditions, and rep-
resents the satisfaction of the necessary conditions. The matching efficiency is
actually the degree of how sufficient conditions and necessary conditions satisfy
the transaction. The digital-self which can make the sufficient conditions and
necessary conditions of the transaction meet will get a high score in matching
efficiency. Then, the digital self with high matching efficiency and close distance
from the demand sender will be selected in the Top-k result.

4.2 Result Analysis

In the experiment, rim chain’s application scenario is an undergraduate looking
for a postgraduate tutor. Based on the key attributes ‘postgraduate tutor’, the
rim chain extracts some of the student’s academic-related attributes. Tables 1
and 2 show the academic-related attributes of undergraduates and tutors.

Table 1. Undergraduate’s academic-related attributes.

Major Interest GPA School’s reputation

Computer Science Artificial Intelligence A High

The student’s requirement vector should include positions (professor or associate
professors), tutor’s research fields, tutor’s major, tutor’s academic reputation,
tutor’s reputation of the tutor’s university, and available postgraduate positions
(more than 0). The student’s provision vector should include the student’s GPA,
student’s major, student’s research interests, and so on. After the provision and
demand vectors have been formed, these vectors will match the digital-selfs in
the circle of topics in the rim chain. After searching on rim chain, the results of
Top-3 query and Top-5 query are shown in Fig. 5 and Table 3.

28 P. Li et al.

Table 2. Tutor’s academic-related attributes.

Attribute Value

Computer Science Artificial Intelligence

Available Postgraduate position 2

Major Computer Science

Research field Data Science

Position Professor

Research reputation High

School’s reputation High

GPA requirement A

Major requirement SE/CS

Figure 5 is the schematic diagram of a part of the rim chain. Different colors
and shapes are used to represent the different types of the nodes. The triangle
represents the digital-self node, and the circle represents the circle node. The
triangle has two different colors. The orange triangle is the digital-self that is
selected based on the Top-k algorithm, and the number on the triangle means
the digital-self’s rank in the Top-k result. The information on the circle indicates
the degree distance from the demand sender.

(a) Top-3 query result (b) The Top-3 query result and Top-5
query result

Fig. 5. The Top-3 query result and Top-5 query result

Table 3 shows the score result. The Top-k rank is based on the score from
(1). The rim chain calculate the score with the demand and provision vector
and the degree distance between the matching node and the sender node. The
score consists of two parts, the information fidelity and the matching efficiency.
Moreover, the maximum of score is 1. One part is the information fidelity, which
based on (2). The other part is the matching efficiency. It is based on the (3).

Figure 5 shows that after matching all the nodes within three degrees, the
Top-k results are mostly distributed in the lower degree. This means that the
rim chain not only takes the matching degree of the provision-demand, but also
the social distance between the digital-self sender and the matching digital-self.

Rim Chain: Bridge the Provision and Demand Among the Crowd 29

Table 3. Top-5 query score result.

Top-k rank Degree Matching efficiency Score

1 1 1.000 1.000

2 1 0.777 0.889

3 2 1.000 0.853

4 1 0.666 0.833

5 1 0.666 0.833

The relationship between the necessary and sufficient conditions has four com-
binations: (I) necessary, but not sufficient (II) sufficient, but not necessary (III)
both necessary and sufficient (IV) neither necessary nor sufficient. The Top-k
query is to find the digital-selfs that satisfy the (III) condition above. It can
be concluded that the attributes of the demand sender and the digital-selfs in
Top-k result in Tables 3 and 4 satisfy most of the sufficient conditions and nec-
essary conditions for the transaction. The Top-k result gives the most possible
postgraduate tutor that can complete the transaction with the demand sender.
The Top-k result proves that the higher the score is, the higher the degree how
the necessary and sufficient conditions meet the transaction.

Table 4 shows the information of the Top-5 query result. From the attributes
of each query result, all the digital-selfs can provide the resources that the
demand sender need. What is more, the distance between the result and the
demand sender is within two degrees, which ensures the information fidelity.

Table 4. Top-5 query detailed result.

Attribute Value

Top-k rank 1 2 3 4 5

Available
Postgraduate position

2 1 3 1 2

Major Computer
Science

Software
Engineering

Computer
Science

Embedded
System

Digital
Media
Technology

Research field Artificial
Intelligence

Big Data Artificial
Intelligence

Embedded
System

3D Modeling

Position Professor Associate
Professor

Professor Associate
Professor

Associate
Professor

Research reputation High High Medium High Medium

School’s reputation High High High Medium Medium

GPA requirement A B B A B

Major requirement CS/SE SE CS/SE CS/SE CS/SE

30 P. Li et al.

5 Conclusions

Matching between provision and demands plays an important role in Crowd
Network. As a new type of interconnected structure, rim chain aims at providing
transactions matching and mapping from physical world to the digital world.
This paper has established a new type of interconnected structure namely the
rim chain. The rim chain can better embody the ideas of the Crowd Science. In
addition, this paper proposes the Top-k query algorithm for the best transaction
target based on provision-demand information in rim chain. During the matching
process, the algorithm uses the evaluation function to evaluate the target digital-
selfs and return top-k results. The evaluation result shows that the satisfied
digital-self can be found in lower degree, which is closer to the demand sender.
For the situation that the number of digital-selfs in rim chain may be large,
several methods and ideas for speeding up transaction matching have been given.

Acknowledgements. This work is partially supported by National Key R&D Pro-
gram No. 2017YFB1400100.

Appendix

Algorithm 2. Find the Top-k digital-self.
Input: Query keywords, Start node, key demand
Output: The Top-k candidates digital-self
1: initialize array digital sel arr[],Top-k arr[]
2: initialize consistent circle arr[], inconsistent circle arr[]
3: initialize the senders provision and demand vector based on key demand
4: for circle node c connected to the start node do
5: add c to the proper circle array
6: end for
7: for degree←1 to 3 do
8: for all digital-selfs node d connected to a consistent circle do
9: do the top-k query

10: for circle node c connected to d do
11: generates circle array for the next degree
12: end for
13: end for
14: end for

References

1. Li, W., Wu, W., Wang, H., et al.: Crowd intelligence in AI 2.0 era. Front. Inf.
Technol. Electron. Eng. 18(1), 15–43 (2017)

2. Pierre, L.: Collective Intelligence: Mankind’s Emerging World in Cyberspace.
Perseus Books, Cambrigde (1997)

3. Lévy, P.: Collective Intelligence. Plenum/Harper Collins, New York (1997)

Rim Chain: Bridge the Provision and Demand Among the Crowd 31

4. Kutsenok, A., Swarm, A.I.: A solution to soccer. Master’s thesis, Department of
Computer Science, Rose-Hulman Institute of Technology, Terre Haute, IN (2004)

5. Chai, Y., Miao, C., Sun, B., et al.: Crowd science and engineering: concept and
research framework. Int. J. Crowd Sci. 1(1), 2–8 (2017)

6. Jiahui, J., Khemmarat, S., Gao, L., et al.: A distributed approach for top-k star
queries on massive information networks. In: IEEE International Conference on
Parallel and Distributed Systems, Southeast Univ., Nanjing, China, pp. 9–16 (2014)

7. Chen, S., Wang, J.: Keyword distributed search with ontology subgraph over RDF
data. J. Fuzhou Univ. (Nat. Sci. Ed.) 45(06), 822–828+845 (2017)

8. Yu, S.: Research on object-level keyword search algorithm over graph database.
Chap. 3, Ph.D. thesis, Department of Computer Science, Dalian Maritime Univer-
sity (2013)

9. Li, X., et al.: A novel graph containment query algorithm on graph databases. J.
Digit. Inf. Manag. 7(3), 143–151 (2009)

10. Chen, Z., Li, S., Liu, W.: Range-constrained Top-k keyword query on road net-
works. J. Chin. Comput. Syst. 38(12), 2707–2713 (2017)

11. Yang, Z., Si, Y., Li, Z., et al.: ARE: new conceptual model for social crowd behavior
modeling. J. Syst. Simul. 24(02), 435–440 (2012)

12. Morgan, T.J., et al.: Experimental evidence for the co-evolution of hominin tool-
making teaching and language. Nat. Commun. 6, 6029–6029 (2015)

13. Nicholas, A., James, H.: Connected: The Surprising Power of Our Social Networks
and How They Shape Our Lives. Simon & Schuster Audio, Abridged (2009)

14. Meng, J., Chen, L., Ma, W., et al.: Research and application on similarity search
algorithm in graph database. Appl. Res. Comput. 27(05), 1813–1815+1819 (2010)

15. Zhang, Z., Xia, D., Xie, X., et al.: A keyword search method for graphs by con-
sidering content and structure. J. Comput. Aided Des. Comput. Graph. 27(11),
2211–222 (2015)

16. Sun, L., Liu, Y., Bartolacci, M.R., et al.: A multi information dissemination model
considering the interference of derivative information. Phys. Stat. Mech. Appl. 451,
541–548 (2016)

17. Liang, Z., Xu, B., Jia, Y., et al.: Online link strength trend model based on con-
tent and topology. In: 2011 International Symposium on Image and Data Fusion
(ISIDF), pp. 1–5. IEEE (2011)

18. Li, X., Liu, Y., Jing, K., et al.: The influence of the timeheterogeneity of nodes on
the information dissemination. Syst. Sci. Math. Sci. 36(10), 1630–1642 (2016)

19. Wang, Z., Chen, E., Liu, Q., et al.: Maximizing the coverage of information prop-
agation in social networks. In: International Conference on Artificial Intelligence,
pp. 2104–2110. AAAI Press (2015)

20. Fang, J., Li, Y.: Advances in unified hybrid theoretical model of network science.
Adv. Mech. 06, 663–678 (2008)

21. Huang, H., Jaing, A., Hu, M.: Analysis of information diffusion model on social
network. Appl. Res. Comput. 33(09), 2738–2742 (2016)

Optimal Schedule of Mobile Edge
Computing Under Imperfect CSI

Libo Jiao1, Hao Yin1(B), Yongqiang Lyu1, Haojun Huang2, Jiaqing Dong1,
and Dongchao Guo1

1 Tsinghua University, Beijing 100084, China
{jlb15,djq13}@mails.tsinghua.edu.cn,

{h-yin,luyq,dongchaoguo}@tsinghua.edu.cn
2 China University of Geosciences, Wuhan 430072, China

hhj0704@hotmail.com

Abstract. Mobile edge computing (MEC), as a prospective computing
paradigm, can augment the computation capabilities of mobile devices
through offloading the complex computational tasks from simple devices
to MEC-enabled base station (BS) covering them. However, how to
achieve optimal schedule remains a problem due to various practical chal-
lenges including imperfect estimation of channel state information (CSI),
stochastic tasks arrivals and time-varying channel situation. By using
Lyapunov optimization theory and Lagrange dual decomposition tech-
nique, we propose an optimal dynamic offloading and resource schedul-
ing (oDors) approach to maximize a system utility balancing throughput
and fairness under imperfect estimation of CSI. We derive the analytical
bounds for the time-averaged data queues length and system throughput
achieved by the proposed approach which depends on the channel esti-
mation error. We show that without prior knowledge of tasks arrivals and
wireless channels, oDors achieves a system capacity which can arbitrarily
approach the optimal system throughput. Simulation results confirm the
theoretical analysis on the performance of oDors.

Keywords: Mobile edge computing · Imperfect CSI
Channel estimation · Stochastic optimization

1 Introduction

Mobile edge computing (MEC), as a new computing paradigm, can enhance
the limited capacities of individual devices by offloading and processing tasks
of wireless terminal at the edge of wireless network. Due to the short distance
between the MEC server and wireless terminals, MEC paradigm promises dra-
matic reduction in latency and mobile energy consumption [1]. The promised
gains of MEC will motivate the development of future Internet of Things (IoT)
and 5G networks. Orthogonal frequency division multiplexing access (OFDMA),
as the main communication technique for WiMAX and 3GPP standards, is

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 32–45, 2018.
https://doi.org/10.1007/978-3-030-05054-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_3

Optimal Schedule of Mobile Edge Computing Under Imperfect CSI 33

widely adopted for providing high degree of flexibility and predominant per-
formance over other wireless air interface technologies.

To maximize long-term system throughput, the problem of dynamic offload-
ing and resource allocation has been discussed in [2–4]. However, all these stud-
ies made an impractical assumption that the perfect channel state information
(CSI) can be achieved. Moreover, stochastic tasks arrivals which infect the net-
work stability also pose a serious challenge for MEC system designing. Thus, a
critical problem to be solved is how to make offloading decisions, optimize net-
work resource allocation for maximizing system throughput while guaranteeing
queue stability under the imperfect estimation of CSI.

Optimal dynamic offloading and resource schedules problem under the imper-
fect CSI for OFDMA systems has attracted much attention. In [5], the optimal
power allocation and subchannel assignment algorithm was provided under the
diverse quality-of-service (QoS) requirements. The authors in [6] optimized a
system utility by optimizing the assignments of subcarriers, rate, and power.
A joint optimization algorithm, including chunk assignment, transmission link
selection and power allocation, was proposed for minimizing the total energy
consumption in [7]. However, the works [5–7] do not consider the tasks arrivals
characteristics and the queue stability constraint.

In this paper, we focus on providing the optimal dynamic offloading and
resource schedule of MEC system under imperfect CSI. The main contributions
of this work are summarized below.

– We employ a stochastic optimization model to maximize a system utility
under the constraints of energy consumption and network stability.

– By using Lyapunov optimization theory and Lagrangian dual decomposition
technique, we propose an optimal dynamic offloading and resource scheduling
(oDors) approach to maximize a system utility under imperfect CSI without
prior knowledge of the tasks arrivals and time-varying channel situation.

– We derive analytical performance bounds for time-average data queues length
and system throughput achieved by the proposed oDors approach. Further-
more, we conduct extensive simulations to verify the theoretical analysis on
the performance of oDors.

The rest of this paper is organized as follows. In Sect. 2, we present the
system model and provide the stochastic optimization formulation in Sect. 3. We
develop oDors approach in detail and give its performance analysis in Sect. 4.
We conduct simulation to verify the theoretical analysis on the performance of
oDors in Sect. 5. Finally, we conclude our paper in Sect. 6.

2 System Model

The OFDMA-based MEC system consists of a base station (BS), U devices and
an MEC server deployed at BS waiting for processing the tasks offloaded from
mobile devices [8].

34 L. Jiao et al.

2.1 Traffic Model and Admission Control

The MEC system operates in a slotted structure, t ∈ {0, 1, 2, ...}. At each time
slot t, there is a busty data newly-generated by each mobile device. Let Au(t)
denote the number of arrived data for device u at time slot t. A data buffer
is maintained at each device to temporally store the generated data. Assume
that the data generated by each mobile device follow some independent and
identically distributed (i.i.d.) random process and there exists some constant
upper bound Amax on device data arrival such that Au(t) < Amax for all time
slots. In order to deal with heavy-load mobile traffic, we introduce the admission
control (AC) operation to adjust the admission rate that the amount of data
arrive to the data queue for each device [9]. Let du(t) denote the admission rate
of data queue for device u at time slot t. Then, we have the following constraint
on the AC decision

du(t) ≤ Au(t) ≤ Amax (1)

Evidently, the amount of data admitted by a device cannot beyond the
amount of generated data at each time slot.

2.2 Resource Allocation and Communication Model

The uplink schedule (e.g., power allocation and subchannel assignment) of each
device takes place under the coordination of BS. Specifically, BS observes the
queue state information (QSI) of each mobile device at the beginning of each
time slot t.

Power Consumption Constraint: Let pu(t) denote the transmit power allocated
to device u at time slot t. And we have total transmit power constraints as
follows

U∑

u=1

pu(t) ≤ Pmax (2)

Constant Subchannel Assignment: We assume that MEC system adopts con-
stant subchannel assignment policy. Specifically, each mobile device occupies
one subchannel to offload computation tasks at each time slot.

CSI Estimation: To improve the estimation accuracy, we use the minimum-
mean squared-error (MMSE) estimator as the channel estimation method [10].
Let Hu(t) denote the CSI of device u on its allocated subchannel at time slot
t, which cannot be exactly estimated due to the existence of estimation error in
practical wireless network. Thus, we use Ĥu(t) and H̃u(t) to denote the estima-
tion and estimation error of Hu(t), respectively. The relationship among them
is given by Hu(t) = Ĥu(t) + H̃u(t), where Ĥu(t) and H̃u(t) follow the uncor-
related Gaussian distribution with zeros means and variances σ̂2 = γtu

1+γtu
and

σ̃2 = 1
1+γtu

, respectively, where γtu represents the signal to noise ratio of pilot

Optimal Schedule of Mobile Edge Computing Under Imperfect CSI 35

transmission [11]. Similarly to [10,12], the uplink capacity of device u at time
slot t can be given as follows

Ru(t) = B0log2

(
1 +

γu(t)|Ĥu(t)|2
γu(t)σ̃2 + 1

)
(3)

where B0 is the bandwidth of a subchannel, and γu(t) = pu(t)
N0

. We assume that
Ru(t) is upper bounded by some constant Rmax for all time slot t such that
Ru(t) ≤ Rmax.

2.3 Queueing Model and System Dynamics

Let Qu(t) denote the data backlog of the queue at device u at time slot t. Given
the resource allocation (RA) and AC decision, it is updated along the time, as
given by

Qu(t + 1) = [Qu(t) − Ru(t)]+ + du(t) (4)

Once receiving the task from device u at time slot t, i.e., du(t), the MEC
server process the task with fu(t) = ξudu(t) CPU cycles or put the task into the
data queue for later processing, where ξu is the number of CPU cycles required
per task bit of device u for the task, and [x]+ = max(x, 0).

Let C(t) denote the required CPU cycles to process the task queued at the
MEC server. C(t) can be updated by

C(t + 1) = [C(t) − F (t)]+ +
U∑

u=1

fu(t) (5)

where F (t) denotes the total available CPU cycles at time slot t. It is the fact
that F (t) is stochastic in the presence of other concurrent services [2]. Assume
that there exists some constant upper bound Fmax on MEC processing capacity
such that F (t) < Fmax for all time slots.

∑U
u=1 fu(t) denotes the total CPU

cycles required for newly offloaded tasks at time slot t.

3 Problem Formulation

The objective of this paper is to maximize the capacity of MEC system while
satisfying network stability constraint. Considering increasing feature of Loga-
rithmic function, we define the system utility as follows

ψ(d) =
U∑

u=1

log
(
1 + du

)
(6)

where du = limT→∞ 1
T

∑T
t=0 E [du(t)] defines the time-average admission data

of device u, and d = {d1, d2, ..., dU} collects the time-average total of admitted
data of all mobile devices.

The problem P1 can be formulated by maximizing the admission data of all
devices as

36 L. Jiao et al.

P1: max
D,P

ψ(d)

s.t. C1: 0 ≤ du(t) ≤ Au(t),∀u, t

C2:
∑U

u=1
pu(t) ≤ Pmax,∀t

C3: pu(t) > 0,∀u, t

C4: Qu, C < ∞, ∀u (7)

where D(t) = {du(t)} and P(t) = {pu(t)} are data admission decision, transmit
power decision at time slot t, respectively. C1 is the AC constraint to guarantee
the amount of admission data at each time slot is smaller than the amount
of arrived data. C2 is the instantaneous total transmit power constraint for
all mobile devices. C3 is a non-negative power allocation constraint. C4 is the
network stability constraint.

According to the prior work [2], P1 can be equivalently reformulated as

P2: max
D,P,δ

ψ (δ)

s.t. C1-C4 and C5: δu ≤ du

C6: 0 ≤ δu(t) ≤ Amax, ∀u, t (8)

where δ(t) = {δu(t)} is the defined auxiliary variables.

4 Online Algorithm

In this section, we shall develop the oDors algorithm in detail. We notice that
the constraint C5 of P2 is a long-term average limitation on auxiliary variables.
To model the average auxiliary variables constraint, we adopt virtual queue
technique to reformulate C5 [13]. The virtual queue Xu(t) evolves as follows

Xu(t + 1) = [Xu(t) − du(t)]+ + δu(t) (9)

According to mean stable theory [13], Xu(t) is stable if and only if C5 is
satisfied. Thus, C5 is replaced with the stability of Xu(t), and the transformed
problem P3 is formulated as follows

P3: max
D,P,δ

ψ (δ)

s.t. C1-C4, C6 and C7: Xu < ∞, ∀u (10)

4.1 Lyapunov Optimization Theory

A perturbed Lyapunov function of P3 can be defined as

L(G(t)) =
1
2

{
C(t)2 +

U∑

u=1

[
Qu(t)2 + Xu(t)2

]}
(11)

Optimal Schedule of Mobile Edge Computing Under Imperfect CSI 37

where G(t) = [Q(t),C(t),X(t)] denotes the concatenated queue backlog of the
network system.

Without loss of generality, all queues are assumed to be empty when t = 0,
such that L(G(0)) = 0. The one-slot conditional Lyapunov drift Δ(G(t)) is
defined as follows

Δ(G(t)) = E {L(G(t + 1)) − L(G(t)) |G(t)} (12)

Subtracting from (12) the conditional expectation of
∑U

u=1 log(1+ δu(t)), we
obtain the following drift-minus-reward term

Δ(t) = Δ(G(t)) − V E

{
U∑

u=1

log(1 + δu(t)) |G(t)

}
(13)

where V is tunable parameter which controls the tradeoff between the drift
Δ(G(t)) and the reward

∑U
u=1 log(1 + δu(t)). Based on Lyapunov theory [13],

the dynamic offloading and resource scheduling decisions should be chosen to
minimize an upper bound of (13) at each time slot t.

Theorem 1. For any queue backlogs and actions, Δ(t) is upper bounded by

Δ(t) ≤B − V E

{
U∑

u=1

log(1 + δu(t)) |G(t)

}

+ C(t)E

{
U∑

u=1

fu(t) − F (t) |G(t)

}

+
U∑

u=1

Qu(t)E {du(t) − Ru(t) |G(t)}

+
U∑

u=1

Xu(t)E {δu(t) − du(t) |G(t)} (14)

where B is a positive constant, which satisfies the following constraint

B =
1
2

U∑

u=1

{
Rmax

2 + 3A2
max

}
+

1
2

{
U∑

u=1

(ξuAmax)2 + F 2
max

}
(15)

Proof. Lemma 1: For any non-negative real number x, y and z, there holds
[max(x − y, 0) + z]2 ≤ x2 + y2 + z2 + 2x(z − y).

Squaring both side of (4) and applying Lemma 1, we obtain

Qu(t + 1)2 − Qu(t)2 ≤ Ru(t)2 + du(t)2 + 2Qu(t)(du(t) − Ru(t)) (16)

Summing over all queue backlog of all mobile devices at both sides of (16)
and rearranging terms yield

U∑

u=1

Qu(t + 1)2 − Qu(t)2

2
≤

U∑

u=1

Ru(t)2 + du(t)2

2
+

U∑

u=1

Qu(t)(du(t)−Ru(t)) (17)

38 L. Jiao et al.

Similarly, we obtain

C(t + 1)2 − C(t)2

2
≤

F (t)2 +
(∑U

u=1 fu(t)2
)

2
+ C(t)

(
U∑

u=1

fu(t) − F (t)

)
(18)

U∑

u=1

Xu(t + 1)2 − Xu(t)2

2
≤

U∑

u=1

du(t)2 + δu(t)2

2
+

U∑

u=1

Xu(t)(δu(t)− du(t)) (19)

Combining (17), (18) and (19) and exploiting (11), we obtain

L(G(t + 1)) − L(G(t)) ≤
U∑

u=1

Ru(t)2 + du(t)2

2
+

F (t)2 +
(∑U

u=1 fu(t)2
)

2

+
U∑

u=1

du(t)2 + δu(t)2

2
+ C(t)

(
U∑

u=1

fu(t) − F (t)

)

+
U∑

u=1

Qu(t)(du(t) − Ru(t)) +
U∑

u=1

Xu(t)(δu(t) − du(t))

(20)

By subtracting the term V E

{∑U
u=1 log(1 + δu(t)) |G(t)

}
to the both sides

of (20), we can prove (14).

According to Theorem 1, we have transformed the problem P3 into mini-
mizing the right-hand side (RHS) of (14) at each time slot. Thus, the original
stochastic optimization problem P1 has been transformed into a series of suc-
cessive instantaneous static optimization problems. In the next subsection, we
introduce the oDors algorithm to solve the optimization problems.

Algorithm 1. Optimal Dynamic Offloading and Resource Scheduling (oDors)
INPUT: U , T , Au(t), V
OUTPUT: δ∗(t), D∗(t) and P∗(t)
1: Initialization: t ← 0, Q(0) ← 0, X(0) ← 0, C ← 0
2: while t < T do
3: Compute δ(t), D(t) and P(t) according to Eqs. (22), (24) and (33).
4: Update queues Q(t), C and X(t) according to Eqs. (4), (5) and (9).
5: t ← t + 1
6: end while
7: return δ∗(t), D∗(t) and P∗(t)

4.2 Algorithm Structure Design and Performance Analysis

The detail of oDors is given in Algorithm 1 which performs the following control
operations at each time slot: (1) RA and AC decision in each mobile device; (2)
Queues updating for Q, C and X.

Optimal Schedule of Mobile Edge Computing Under Imperfect CSI 39

Optimal Auxiliary Parameter. Observe that the second and fifth terms
on the RHS of (14) involves the computation offloading decision δu(t). After
rearranging them, we can decompose the minimization of this term into U sub-
problems as follows

min
δu(t)

Xu(t)δu(t) − V log (1 + δu(t))

s.t. δu(t) ≤ Amax, ∀u, t (21)

Taking the first order derivative with respect to δu, and then making the first
order derivative be zero, it easily follows that

δu(t) =

{
0, if V log2e ≤ Xu(t)
min

{
V log2e
Xu(t)

, Amax

}
, otherwise. (22)

Optimal Uplink Admission Control. The forth and fifth terms on the RHS
of (14) involve the data admission control du(t). After rearranging them, we can
decompose the minimization of this term into U subproblems as

min
du(t)

[Qu(t) − Xu(t)] du(t)

s.t. du(t) ≤ Au(t), ∀u, t (23)

The corresponding solution to (23) is

du(t) =
{

0, if Qu(t) ≥ Xu(t)
Au(t), otherwise. (24)

Optimal Dynamic Offloading Schedule. Observe that the fourth term on
the RHS of (14) involves the offloading decisions including the transmit power
allocation decisions pu(t). We reformulate the fourth term as follows

max
U∑

u=1

Qu(t)Ru(t)

s.t. C1, C2, and C3 (25)

We can verify that the function Qu(t)Ru(t) is concave, since it is the per-

spective function of Qu(t)log2
(
1 + γu(t)|Ĥu(t)|2

γu(t)σ̃2+1

)
. According to the composition

rule that preserves concavity [14], the objective function (25) is jointly concave
with respect to pu(t). Considering all constraints are linear, (25) is a convex opti-
mization problem, and can be well solved by the Lagrange dual decomposition
method.

The Lagrange function for Eq. (25) is given as

L ({pu(t)}, μ) =
U∑

u=1

Qu(t)Ru(t) − μ

(
U∑

u=1

pu(t) − Pmax

)
(26)

40 L. Jiao et al.

where μ is the Lagrange multiplier for constraint C2. Then, the Lagrange dual
function can be formulated as

g(μ) = max
{pu(t)}

L ({pu(t)}, μ) (27)

and the dual problem is written as

min
μ≥0

g(μ) (28)

The Lagrange dual function in (27) can be decomposed into a master problem
together with U subproblems. Then, the Lagrange function is written as

L ({pu(t)}, μ) =
U∑

u=1

Lu (pu(t), μ) + μPmax (29)

where

Lu (pu(t), μ) = Qu(t)B0log2

(
1 +

γu(t)|Ĥu(t)|2
γu(t)σ̃2 + 1

)
− μpu(t) (30)

Taking the partial derivative of Lu(t) with respect to pu(t) yields

∂Lu(t)
∂pu(t)

=
Qu(t)B0N0|Ĥu(t)|2{(

σ̃2 + |Ĥu(t)|2
)

pu(t) + N0

}
(σ̃2pu(t) + N0) ln2

− μ (31)

According to the Karush-Kuhn-Tucker conditions [14], the optimal power
allocation, which denoted by p∗

u(t), must satisfy the following constraints
⎧
⎨

⎩

∂Lu(t)
∂pu(t)

= 0

pu(t) ≥ 0
(32)

Then, by applying (32), p∗
u(t) is formulated as follows

p∗
u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Qu(t)B0
μln2 − N0

|Ĥu(t)|2
, σ̃2 = 0

N0

(
2σ̃2+|Ĥu(t)|2

)

2σ̃2
(

σ̃2+|Ĥu(t)|2
)

(√
1 − 4Fσ̃2

(
σ̃2+|Ĥu(t)|2

)
(
2σ̃2N0+|Ĥu(t)|2N0

)2 − 1

)
, otherwise.

(33)

where F = N2
0 − B0N0Qu(t)|Ĥu(t)|2

μln2 .
As to the Lagarange multiplier μ, we employ the subgradient method to

update it as follows

μi+1 =

[
μi − θi

(
Pmax −

U∑

u=1

p∗
u(t)

)]+

,∀n, t (34)

where i is the iteration index, and θ is the step size. Imax and ε is the maximum
number of iterations and convergence factor, respectively. When the subgradient
method satisfies the convergence condition, that is |μk+1 − μk| < ε or i > Imax,
the process of dynamic offloading and resource allocation is finished.

Optimal Schedule of Mobile Edge Computing Under Imperfect CSI 41

Algorithm 2. Optimal Power Allocation Algorithm (OPAA)
INPUT: ε, θ, Imax

OUTPUT: Optimal power allocation P∗(t)
1: Initialization: i ← 1 and μi

2: while i < Imax or |μi+1 − μi| < ε do
3: for u = 1 to U do
4: Compute p∗

u(t) according to (33).
5: Update μ with step size θ according to (34).
6: end for
7: i ← i + 1
8: end while
9: return P∗(t)

4.3 Algorithm Performance Analysis

Now we give the performance of the proposed oDors algorithm in the following
theorem.

Theorem 2. If λ is strictly interior to the network capacity Λ, the proposed
oDors has the following properties for any control parameter V ≥ 0:

(a) All queues Q = (Qu(t)), C and X = (Xu(t)) are mean rate stable.
(b) The time-average system utility satisfies

lim
T→∞

1
T

T−1∑

t=0

E {ψ(δ(t))} ≥ ψopt − B

V
(35)

(c) The time-average queue length is upper bounded by

Q = lim
T→∞

1
T

T−1∑

t=0

U∑

u=1

Qu(t) ≤ B + V ψopt

ϑ
(35)

Here, ϑ is a small positive constant which satisfies λ + ϑ ∈ Λ.

Proof. The proof of Theorem 2 is similar to [2] thus we omit here for space-
saving.

5 Simulation Results

In this section, the simulation results are provided to verify our theoretical anal-
ysis achieved by oDors algorithm. The bandwidth B0 = 10 MHz, U = 20,
Pmax = (1.8 × U)W . The coverage radius of BS is 100m. The computational
resource F (t) ∼ U [0, 5] GHz, where U [a, b] means a random uniform distribu-
tion within [a, b]. The mobile traffic generated by mobile devices following the
Poisson progress within the time-average traffic arrival rate λ. The simulation is
carried out for T = 4000 consecutive time slots.

42 L. Jiao et al.

First, we demonstrate the queue stability in Fig. 1 with V = 100. Because
all devices’ data queues Q, required CPU cycles queues C and virtual queues X
have similar trends, we take mobile device u = 1 with arrived application traffic
rate λ = 2 Mb/slot as an example. We observe that all the queues are strictly
bounded, which verifies the Theorem 2(a). It also shows the proposed oDors
is effective for maximizing the system throughput while satisfying long-term
auxiliary variables constraints.

Figure 2 plots the system throughput of the proposed oDors by varying the
control parameter V . We observe that the system throughput increases rapidly
with V when V ≤ 10, and then slow down increasing and start to stabilize when
V ≥ 30, which verifies Theorem 2(b). Furthermore, with an increasing σ̃2, the
system throughput decreases. This is mainly because that the transmission rate
R(t) is a decreasing function of the estimation error variance σ̃2. Therefore, a
large σ̃2 results in a small R(t), and then reduces system throughput.

0 500 1000 1500 2000 2500 3000 3500 4000
50

60

70

80

Q
 (

M
b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

C

0 500 1000 1500 2000 2500 3000 3500 4000
Time slot

60

70

80

X

Fig. 1. Queue stability

0 10 20 30 40 50 60 70 80 90 100

V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
ys

te
m

 T
ho

ug
hp

ut
 (

M
b)

Fig. 2. System throughput versus the
value of V

Figure 3 demonstrates the average queue backlog length with the varied con-
trol parameter V . It is clear to see that the average backlog continue increasing
almost linearly to the V , which is verified by Theorem 2(c). Moreover, with an
increasing σ̃2, the average queue backlog length increases. This is because a large
σ̃2 results in a small traffic transmit rate, and then data queue length increases
at each device. Considering both Figs. 2 and 3, we observe that this can be quan-
titatively depicted by [O(1/V), O(V)], and is a system throughput and average
queue length tradeoff. The longer queue length becomes, the more time it takes
to transmit the task. So this relationship can be called system throughput and
fairness tradeoff.

Figure 4 displays the system throughput as the traffic arrival rate increases.
It can be seen that system throughput increases when traffic arrival rate λ
from 1 Mb/slot to 3 Mb/slot. However, when λ continues increasing, the sys-
tem throughput almost keep stable. This is mainly because a large traffic arrival

Optimal Schedule of Mobile Edge Computing Under Imperfect CSI 43

0 10 20 30 40 50 60 70 80 90 100

V

0

10

20

30

40

50

60

70
A

ve
ra

ge
 Q

ue
ue

 B
ac

kl
og

 (
M

b)

Fig. 3. Average queue backlog versus
the value of V

1 2 3 4 5 6

Traffic Arrival Rate (Mb/slot)

1

1.2

1.4

1.6

1.8

2

S
ys

te
m

 T
hr

ou
gh

pu
t (

M
b)

Fig. 4. System throughput versus the
value of λ

rate will consume more transmit energy to keep queue stable. Unfortunately, P1
has the instantaneous total transmit power constraint C2, thus system through-
put can not always keep increasing when the total transmit power of all mobile
devices reaches maximum.

1 2 3 4 5 6

Traffic Arrival Rate (Mb/slot)

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 Q
ue

ue
 B

ac
kl

og
 (

M
b)

Fig. 5. Average queue length versus the value of λ

Figure 5 shows the average data queue length with different traffic arrival rate
λ. We show in this figure that the average data backlog length of the proposed
method increases with the growth of traffic arrival rate. The main reason is same
with Fig. 4 that the system can not transmit enough traffic with constrained
mobile power consumption as traffic arrival rate increases.

44 L. Jiao et al.

6 Conclusion

In this paper, we studied the dynamic offloading and resource allocation prob-
lem with considering imperfect channel state information (CSI), stochastic
tasks arrivals in the uplink of orthogonal frequency division multiplexing access
(OFDMA)-based MEC systems. The problem was formulated as a stochastic
optimization problem aiming at maximizing a system utility. By adopting Lya-
punov optimization theory and Lagrange dual decomposition technique, an opti-
mal dynamic offloading and resource scheduling (oDors) algorithm was proposed
to solve the problem. Furthermore, we gave the performance analysis of oDors
and we conduct simulations to verify the theoretical analysis on the performance
of oDors.

Acknowledgment. This work is supported in part by the National Key Research
and Development Program under Grant no. 2016YFB1000102, in part by the National
Natural Science Foundation of China under Grant no. 61672318, 61631013, 31501081,
and in part by the projects of Tsinghua National Laboratory for Information Science
and Technology (TNList).

References

1. Zhao, P., Tian, H., Qin, C., Nie, G.: Energy-saving offloading by jointly allocating
radio and computational resources for mobile edge computing. IEEE Access. 5,
11255–11268 (2017)

2. Lyu, X., et al.: Optimal schedule of mobile edge computing for Internet of Things
using partial information. IEEE J. Sel. Areas Commun. 35(11), 2606–2615 (2017)

3. Guo, Y., Yang, Q., Liu, J., Kwak, K.S.: Cross-layer rate control and resource
allocation in spectrum-sharing OFDMA small-cell networks with delay constraints.
IEEE Trans. Veh. Technol. 66(5), 4133–4147 (2017)

4. Zhang, H., Jiang, C., Beaulieu, N.C., Chu, X., Wen, X., Tao, M.: Resource allo-
cation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE
Trans. Commun. 62(7), 2366–2377 (2014)

5. Wong, I.C., Evans, B.L.: Optimal resource allocation in the OFDMA downlink
with imperfect channel knowledge. IEEE Trans. Commun. 57(1), 232–241 (2009)

6. Awad, M.K., Mahinthan, V., Mehrjoo, M., Shen, X., Mark, J.W.: A dual-
decomposition-based resource allocation for OFDMA networks with imperfect CSI.
IEEE Trans. Veh. Technol. 59(5), 2394–2403 (2010)

7. Wang, J.B., et al.: Imperfect CSI-based joint resource allocation in multirelay
OFDMA networks. IEEE Trans. Veh. Technol. 63(8), 3806–3817 (2014)

8. Sheng, M., Li, Y., Wang, X., Li, J., Shi, Y.: Energy efficiency and delay tradeoff in
device-to-device communications underlaying cellular networks. IEEE J. Sel. Areas
Commun. 34(1), 92–106 (2016)

9. Xiang, X., Lin, C., Chen, X.: Toward optimal admission control and resource allo-
cation for LTE-A femtocell uplink. IEEE Trans. Veh. Technol. 64(7), 3247–3261
(2015)

10. Liu, F., Yang, Q., He, Q., Park, D., Kwak, K.S.: Dynamic power and subcarrier
allocation for downlink OFDMA systems under imperfect CSI. Wirel. Netw., 1–14
(2017)

Optimal Schedule of Mobile Edge Computing Under Imperfect CSI 45

11. Adireddy, S., Tong, L., Viswanathan, H.: Optimal placement of training for
frequency-selective block-fading channels. IEEE Trans. Inf. Theory. 48(8), 2338–
2353 (2002)

12. Wu, Y., Louie, R.H., McKay, M.R.: Analysis and design of wireless ad hoc net-
works with channel estimation errors. IEEE Trans. Signal Process. 61(6), 1447–
1459 (2013)

13. Neely, M.J.: Stochastic network optimization with application to communication
and queueing systems. Synth. Lect. Commun. Netw. 3(1), 1–211 (2010)

14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

ST-LDA: High Quality Similar Words
Augmented LDA for Service Clustering

Yi Zhao(&), Keqing He, and Yu Qiao

School of Computer Science,
Wuhan University, Wuhan 430072, Hubei, China

ivwepriu@sina.com, hekeqing@whu.edu.cn,

qiaoyu@email.cufe.edu.cn

Abstract. Service discovery is a key problem in the field of services com-
puting, which is essential to improve the accuracy and efficiency of both services
composition and recommendation. Service clustering is a major way to facilitate
service discovery. The main technical difficulty in solving service clustering
problem lies in the semantic gap among services. Some traditional approaches
like LDA perform well in service clustering to some extent. However, their
performances are still limited by the inevitable semantic noise words. To bridge
this gap, we propose a novel solution, namely ST-LDA (short for “Similar
Words and TF-IDF Augmented Latent Dirichlet Allocation”), approaching the
challenges from the perspective of similar words learning and noise words
filtering to improve service clustering. Specifically, we adopt Word2Vec to
adapt the representation of services, and learn a list of similar words in service
corpus. Moreover, we further integrate TF-IDF into our similarity calculation to
filter noise words. In this way, we can enhance LDA with the similar words
finding and filtering strategy for service clustering. We conduct extensive
experiments on a real-world dataset, which demonstrate that our approach can
improve the efficiency of service clustering.

Keywords: TF-IDF � Latent Dirichlet Allocation � Word2vec
Web service clustering

1 Introduction

The explosive growth of various information on the Web has resulted in the sharply
increase of Web services in both quantity and type, which greatly limit the accuracy
and efficiency of service discovery. More than 18000 Web services described by
WSDL and natural languages are registered and published on the ProgrammableWeb
and over 98% of them are valid [1]. As a result, some Web service discovery methods
like Web service search engines which are relied on natural languages have been
exploited after the UDDI (Universal Description Discovery and Integration) to address
the problem. The main technical difficulty in Web service engines lies in the semantic
gap, which performs query-document matching at the term level. However, a high
degree of searching and matching at the term level does not necessarily represent high
relevance, and vice versa. The semantic gap is pervasive due to the ambiguous and

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 46–59, 2018.
https://doi.org/10.1007/978-3-030-05054-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_4

variable nature of human language, since the same term can represent different
meanings and the same meaning can be represented by different terms. For example, if
a query contains “the latitude and longitude” and the document only contains “map”,
then the matching degree of the query and the document is low, although they are
closely relevant.

Service clustering is a major approach to improve the performance of service
discovery. Researchers in the areas of service clustering have already adopted other
approaches like LDA to perform service clustering. Chen et al. [2] proposed a fusion
tag enhanced LDA for service clustering which improved the accuracy and efficiency
of service clustering to some extent. However, this approach can only apply to Web
services with WSDL descriptions and tags and can not solve the data sparsity and cold
start problems well [3]. Some other methods based on LDA conduct the clustering
through either using semantic similarity computing [5], or combining with other
clustering methods like k-means++ after mapping words and documents into embed-
ding spaces [4]. While these approaches based on LDA perform well to some extent,
their performances are still limited by the semantic gap.

As we all know, in LDA, each document may be viewed as a mixture of various
topics where each document is composed of a set of topics. A topic has probabilities of
generating various words. Naturally, the word itself will have the high probability
given this topic. A topic is identified on the basis of automatic detection of the like-
lihood of term co-occurrence. Therefore, words without special relevance will have
roughly even probability between classes (or can be placed into a separate category).
So we can infer that methods aforementioned have the following limitations.

Noise words filtering: LDA posits that each document is a mixture of a small
number of topics and that each word’s creation is attributable to one of the document’s
topics. There is no doubt that some noise words which are not semantically relevant to
documents are still remained in documents. Noise words and similar words are attri-
butable to the document’s topics in different way that can limit or improve the per-
formance of LDA. So the impact of similar words and the noise words on the topics
should be considered in LDA.

Semantic similar words discovery: Poria et al. [5] only used the bag of words model
to get the list of semantic similar words. As a result, there were amount of similar even
the same semantic words not on the list. While Shi et al. introduced the Word2Vec
method, combined with K-Means++ approach to do word clustering in LDA. A large
number of experiments have proved that the accuracy of K-Means++ method is uni-
deal, so the result of the similar words clustering using it is not good neither.

Inspired by the disadvantages of the methods mentioned above, a method named
ST-LDA is proposed in this paper to address the clustering problem advanced by LDA.
We use LDA as the basic model. We first approach Word2Vec to represent service into
embedding space. Then we exploit LDA to get the key words of the services’ topics
generated, and get the list of similar words of the key words by semantic similarity
computing. We optimize the new feature degree metrics defined according to TF-IDF
and semantic similarity to filter noise words. Finally, we put the list of similar words
filtered in LDA to produce a set of service clusters. Moreover, we compare the effect
with several methods to demonstrate the feasibility of our proposed approach.

ST-LDA: High Quality Similar Words Augmented LDA 47

To summarize, our main contributions are as follows:

• We consider the negative impact of noise word on service clustering and positive
impact of semantic similar words on service clustering. And we propose a novel ST-
LDA model improved by the semantic similar words discovering strategy and noise
words filtering strategy from this perspective.

• We present an embedding method that represented service document using
Word2Vec and present metrics named feature degree calculated considered TF-IDF
and semantic similarity. Then we exploit the embedding space and feature degree to
find semantic similar words and filter noise words.

• Extensive experiments performed on real word datasets demonstrate the effective-
ness of our proposed approaches.

The remainder of this paper is organized as follows: Sect. 2 discusses relevant
works in this area. Section 3 presents the ST-LDA approach. Section 4 describes the
performance when comparing ST-LDA approach with existing works. The conclusions
of this study and our future work are summarized in Sect. 5.

2 Related Work

A. Service clustering based on functional similarity

There have been several efforts to improve service discovery by clustering algo-
rithms recent years [6, 7]. One of the most straightforward ways to cluster services is
via functional similarity of services. Sun et al. [8] clustered services according to the
functional similarity and process similarity; and Petri-net is adopted as a modeling
language for the specification of service process model to support the computing of
similarity. Kumara et al. [9] proposed a new approach to grouping Web services into
functionally similar clusters according to the documents of Web services and gener-
ating an ontology via hidden semantic patterns present within the complex terms used
in service features to measure similarity. Some other approaches either annotated Web
services using ontology firstly like SAWSDL (Semantic Annotations for WSDL and
XML Schema), OWL-S (Ontology Web Language for Services), or described services
using ontology-based semantic Web service description languages like OWLS-MX
[10] and SAWSDL-MX [11].

B. Service clustering based on semantic similarity advanced by LDA

Another group of approaches to cluster services is based on semantic similarity.
Web Service Description Language (WSDL), the widely used standard in industry,
does not contain enough information for service description which can not contribute to
compute the service semantic similarity well. To solve this problem, Gu et al. [12]
proposed a service clustering method which enhanced original WSDL documents with
semantic information by means of Linked Open Data (LOD). Dasgupta et al. [13]
proposed a hybrid Multi-agent based distributed platform for efficient semantic service
discovery method named SMARTSPACE. The original LDA model is usually used as
the basic model. Wang et al. [14] mined common topic groups from the service-topic
distribution matrix generated by topic modeling, and performed service discovery

48 Y. Zhao et al.

based on common topic groups. Since the word distributions in Web service
descriptions are becoming sparse, sometimes the clustering approaches that are solely
based on service descriptions are hard to achieve ideal clustering performance. Many
embedding based or auxiliary information approaches are proposed. Chen et al. [2]
proposed a Web service clustering approach which integrated WSDL documents and
tagging data through LDA model. Shi et al. proposed an augmented LDA model named
WE-LDA which leverages the high-quality word vectors to improve the performance
of Web service clustering.

In summary, although there are some approaches considering advance LDA for
clustering from the perspective of semantic similarity of words. Their performances are
still limited. And some strategies, such as word embedding representation and noise
words filtering, are neglected. Inspired by these works, we propose a method for
service clustering, namely high quality similar words augmented LDA, which can
leverage the strategies aforementioned to improve the performance of Web service
clustering.

3 Overall Architecture of Our Framework

In this section, we present an overview of our proposed approach, as illustrated in
Fig. 1. Our framework has three steps: data preprocessing, similar words extracting and
filtering, and the ST-LDA model. In the following sections, we present each of the
components in detail.

(1) Data preprocessing: This preprocessing unit takes Web service documents which
are described by natural language as input and preprocesses them using Proter
Stemmer tool provided by NLTK, which stems words and removes stop words to
extract meaningful words as feature words.

(2) Similar words extracting and filtering: `We first approach Word2Vec to represent
service into embedding space, and put the service embedding space into the
original LDA to get a list of key words of topics clustered. In this way, we can get a
list of Top-5 frequent key words of each topic HFWL (High Frequency Word List).

Fig. 1. Overall framework of our proposed web service clustering approach

ST-LDA: High Quality Similar Words Augmented LDA 49

Then we compute the semantic similarity between the words in word corpus and
words in HFWL using cosine similarity, which are measured by the metrics of
feature degree f. Finally we can get a ranked list of semantic similar words for the
words in HFWL, named RSWL (Ranked Similar Word List). A lower f represents
the lower similarity between words in corpus and HFWL which can be considered
as noise words that could cause negative impact on topic distribution. Conversely,
a higher f between them can impact on topic clustering in a positive way. The
embedding process is similar to the work [15], and the metrics of f can be described
as follows:

Feature Degree ¼ tf � idf � sim wk;wj
� �

; ð1Þ

where tf-idf denotes the TF-IDF of “similar word” and sim wk;wj
� �

denotes the
semantic similarity of wk and wj.

(3) ST-LDA: As RSWL is a set of similar word list ranked, which can be seen as the
service document corpus. We put RSWL into the LDA model to cluster services.
Services are grouped into clusters based on the trained topic, which fused the
information of similar words. Especially ST-LDA established an implicit topic for
each service cluster; and assigned each service to the service cluster which cor-
responding to its relevant topic which has a maximum value of relevant
probability.
In the following two subsections, we describe the details of our improved ST-LDA
model and the strategy of filtering.

3.1 Our Improved ST-LDA Model

The ST-LDA model is an extension model based on LDA, which is a model proposed
by Blei et al. [16]. It has been widely used for documents clustering. In this work, we
improve the original ST-LDA by utilizing the semantically similar words extracted for
keywords. Figure 2 shows the graphic model of our improved LDA model. The main
identifiers are shown in Table 1.

(1) For each similar word list simd ¼ 1; . . .; S, draw hd �Dirichlet að Þ;
(2) For each topic z 2 1; 2; . . .; Tf g, draw a multinomial distribution

;z �Dirichlet bð Þ;
(3) For each word wdi in service d:

(a) Draw a topic z from hd;
(b) Draw w from ;z;
(c) Draw Uniform simdð Þ from similar words simd in service d, as defined in

Eqs. (2–3).

50 Y. Zhao et al.

The conditional probability of services belonging to topics can be obtained
according to the graphic model above after learning the various distributions:

p wdj/; h; simdð Þ ¼
YN

i¼1

XT

t¼1

XK

k¼1
p wdi; zdi ¼ k; xdi ¼ tj/; h; simdð Þ; ð2Þ

We employ Gibbs sampling as estimate the parameters. Gibbs sampling constructs
a Markov chain that calculates the conditional distribution p wd j/; h; simdð Þ.

p ddi ¼ s; zdi ¼ sjwdi ¼ w; z�di; d�di;w�di; a; b; simdð Þ / NWT
wt;�di þ b

NWT
w;t;�di þwb

� NST
st;�di þ a

NST
s;t;�di þ Ta

;

ð3Þ

Fig. 2. Graphic model of our improved ST-LDA

Table 1. Identifiers and its definition

Identifiers Definition

a The parameter of the Dirichlet prior on the per-document topic distributions
b The parameter of the Dirichlet prior on the per-topic word distribution
ϴ The topic distribution for document d
Z The topic for the n-th word in document d
D The similar word distribution for topic z
/ The word distribution for topic k
W The specific word
T The number of topics
N The number of words in a documents (Web services)
D The number of documents (set of service description documents/Web service)
Simd Similar word list of keywords of document d
RSWL Dictionary that stores similar words lists of keywords

ST-LDA: High Quality Similar Words Augmented LDA 51

We resample all words in S using Eq. (6), hs and ;z. can be estimated by

ĥdz ¼
ðNWT

wt;�diÞd þ b
P

w; NWt
w;t;�di

� �d
þwb

; b;zw ¼ ðNST
st;�diÞd þ a

P
k N

TK
s;t;�di

� �d
þ Ta

; ð4Þ

where ĥdz represent the probability of service d belonging to topic z; ðNWT
wt;�diÞd is the

number of words in d assigning to z;
P

w; NWt
w;t;�di

� �d
is the number of words in d; b;zw

represents the probability of topic z on word w; ðNST
st;�diÞd is the number of word

assigning to z, except wdi; and
P

k N
TK
s;t;�di

� �d
is the number of words except wdi.

3.2 Filter Similar Words List Generation

For optimal search and match performance, certain sets of words are considered
“noise” words by the query. The noise words are maintained in the list of similar words
of Web service which impact on service clustering in a negative way. Developers need
to be aware of some of the bad behaviors that noise words can cause in the search
space. Depending on the type of query, the search service may or may not perform the
match. To address this problem, we introduce new metric of feature degree to support
noise word filtering strategy to make the list of similar words more reliable and
suitable.

The steps of filtering noise words are shown as Algorithm 1 in Table 2: We first
exploit the LDA model to get the service keywords set named KWL (Keyword List)

Table 2. Algorithm 1: Filtering noise words

52 Y. Zhao et al.

belonging to each topic (Lines 1–2). Then we find the similar words of all distinct
words contained in the service documents using word embedding (Lines 3–4). After
that, we compute f to find and filter the noise words.

We filter the noise words whose value of f is lower than the threshold. To get better
performance of ST-LDA, we conduct experiment to optimize the threshold of f. We
found that the clustering effect was better when f is greater than 0.01.

Figure 3 shows the impact on the value of TF-IDF when the value of f is varied. We
automatically select the f value to observe the performance. When f is equal to 0.01,
similar words can be divided into two categories. We select similar words with the
value of f < 0.01 and f > 0.01 to do clustering test in this paper. The ST-LDA clus-
tering results perform better when the value of f was taken 0.01. Specifically, the
Euclidean distance matrix is created to calculate and compare the distances between
different categories of data points. The computing of distance between data points
shows as follows [17]:

dismin Ci;Cj
� � ¼ minx2Ci;y2Cjdist x; yð Þ ð5Þ

The most significant difference between feature degree > 0.01 and feature degree <
0.01 is that similar words and noise words have different effects for the clustering effect
of service documents, having a deep insight into the influence of this difference. We
randomly selected 4 clusters from 10 test clusters and enumerated the examples of the
words when feature degree > 0.01 and feature degree < 0.01. It can be learned that the
words in Table 3 are more representative of clusters, while some unrelated noise words
remain in Table 4.

Fig. 3. Impact on TF-IDF of f

ST-LDA: High Quality Similar Words Augmented LDA 53

4 Experiments

In this section, we conducted experiments on real-world datasets to verify the feasi-
bility of our proposed model. We analyze the experiment results and demonstrate the
promotion by comparing it with several baselines. All experiments are working in
Python2.7 and they are conducted on Dell PC with 2.4 GHz Intel(R) Core(TM) i5 CPU
and 8 GB RAM.

4.1 Dataset and Preparation

We crawled a dataset from https://www.programmableweb.com/, PWeb, on January
10, 2018. For each API, we randomly select 3660 Web service documents from the
dataset we crawled to evaluate the performance of Web service clustering. Table 5
presents the scale (i.e., the number of services) of each selected domain.

We perform a classification manually into the following ten categories: “Adver-
tising”, “eCommerce”, “Education”, “Email”, “Enterprise”, “Financial”, “Games”,
“Government”, “Mapping”, and “Social”, which are regard as standard clusters.

Table 3. Feature degree > 0.01 similar words of four clusters

Cluster Advertising Education Financial Game

Feature degree > 0.01 bulk0.0109 campus0.0101 current0.0101 engine0.01206

click0.0113 school0.0114 trade0.0105 flash0.01207

buy0.0115 degree0.0114 business0.0106 halo0.0132

agency0.0119 course0.0119 exchange0.0112 host0.0144

client0.0128 database0.014 custom0.0114 play0.0169

video0.0134 design 0.0144 stock0.0116 match0.0193

agency0.0159 digital0.0149 account0.0117 id0.0194

legalize0.0171 criterion0.016 equivalent0.012 group0.0205

audience0.025 edition0.017 banking0.013 guild0.0205

Table 4. Feature degree < 0.01 similar words of four cluster

Cluster Advertising Education Financial Game

Feature degree<
0.01

analysis0.0098 global0.00936 expose0.00903 google0.00966

channel0.0089 english0.00909 direct0.00789 image0.00845

banner0.00701 embed0.00859 dollar0.00787 handle0.007249

add0.0069 country0.0085 industry0.00779 friend0.007248

way0.00669 current0.00757 european0.00777 forum0.007246

catalog0.00667 dutch 0.00722 expense0.00751 fight0.007245

yahoo0.00638 contact0.00697 funding0.0075 goal0.006039

view0.00463 dedicate0.0062 directly0.00738 industry0.0036

visitor0.00453 fetch0.00392 delay0.00653 force0.00242

54 Y. Zhao et al.

https://www.programmableweb.com/

To evaluate the performance of item recommendation, we adopted Word2Vec in
the Gensim package [18]. In addition, the window width is set as 5 and the vector
dimension of the output layer is set as 200. In order to evaluate the impact of the f on
service clustering, we train topic models under different f values, varying from 0.007 to
0.01. Note that since the services are selected from five domains, we set the number of
topics T as 5. Moreover, the two hyper-parameters of LDA are empirically set as
a ¼ 50=T, b ¼ 0:1. Based on the LDA model trained, we cluster the services by
assigning the service document to the cluster that corresponds to its most close topic.
And we compare the clustering result with the standard clusters.

4.2 Baseline Approaches

To demonstrate the effectiveness of our model, we adopt the following methods as
baselines for performance comparison:

(1) LDA: This baseline is the original Latent Dirichlet allocation, the probability graph
model, which group each service to the cluster corresponding to its most close
topic based on the produced topic distributions of services here.

(2) Sentic-LDA: This baseline advanced LDA model for service clustering (Poria,
2016), which incorporate the word clusters generated by applying semantic level
on the word vectors learned using Word2vec.

We also set the numbers of topics in ST-LDA and Sentic-LDA as well as the
number of clusters in LDA as 10.

4.3 Metrics

We adopt metrics to measure the performance of the ST-LDA algorithm, including
purity and entropy.

Purity is defined as:

Purity SCið Þ ¼ SCij j
SDij j ; ð6Þ

where SC = {SC1, SC2, …, SC10} i = 1…10 is the set of service clusters generated.
SCij j is the number of services in i-th cluster, SD = {SD1, SD2,…, SD10} is the standard
service clusters of datasets. SDi is the number of Web service in stdard cluster SDi.
SDij j is the total number of services in all clusters, e.g., SDij j ¼ 3660 in our experi-
ments. So the purity of SC is defined as:

Table 5. Experimental data description

#Service documents 3660

#Similar words 2000
#Clusters 10
#Words 163,518

ST-LDA: High Quality Similar Words Augmented LDA 55

Purity SCð Þ ¼
XTK

i¼1

SCij j
SDj j � Purity SCið Þ: ð7Þ

Entropy is defined as

E SCið Þ ¼ �
X

SDj2SD
SCi \ SDj

�� ��
SCij j � log2

SCi \ SDj

�� ��
SCij j ; ð8Þ

where E SCið Þ represents the entropy of SCi. And the entropy of service cluster result is
computed by:

Entropy ¼
X

SCi2SC
SCij j
SDj j � E SCið Þ: ð9Þ

Note that Purity is positive metrics that the higher value of it indicates better
performance, while the Entropy metrics is converse that the lower value of it is better.

4.4 Results

In this section, we analyze the experiment results to answer the following questions:
RQ1: How do f(feature degree) impact the performance of ST-LDA model for

service clustering?
RQ2: How does ST-LDA perform as compared to the baseline methods?

(1) Impact of f on ST-LDA (RQ1)
In our LDA model, the most similar 2000 (TOP-200 for each keywords list) words
are leveraged to improve the original LDA. The value of f affects the quality of the
topic model trained, which affects the performance of service clustering indirectly.
To evaluate the impact of f on ST-LDA, we clustered times of services based on the
topic models with different values of f, varying from 0.007 to 0.01.
Table 6 presents the clustering performances achieved by our proposed approach
under different f values. As can be seen from Table 6, the best performance is
obtained when f = 0.01. Through analysis, Purityðf\0:01Þ\Purityðf [0:01Þ represent
the purity of similar words when f > 0.01 is better than the purity of similar words
when f < 0.01. The lower performance obtained with f < 0.01 is mainly caused by
the fact that some noise words that are not filtered, causing negative impact on the
service clustering process.

Table 6. Metrics performance of our proposed ST-LDA on ten domains under different f values

f <0.007 <0.008 <0.009 <0.01
Purity 0.8544 0.8372 0.903 0.8263
f >0.007 >0.008 >0.009 >0.01
Purity 0.7325 0.7761 0.749 0.9322

56 Y. Zhao et al.

As the results indicated, we used the experiment results of our approach obtained
with f = 0.01 in the following evaluations.

(2) Comparison of Service Clustering Approaches(RQ2)
In order to verify that our method can achieve better results in various service
clusters as Fig. 4 presenting the performance results of the three approaches.
Figure 4(a) shows the purity and Fig. 4(b) shows the entropy. It can be found that
our improved ST-LDA outperforms the other two approaches in terms of all metrics
at large. It is because the high-quality similar words are helpful for clustering Web
services documents, in addition avoid the negative effect of low-quality noisy
words caused. And the performance order among them is: ST-LDA is better than
Sentic-LDA, while the Sentic-LDA is better than LDA. More specifically, compared
with the second best Sentic-LDA, our improved ST-LDA has an improvement of
7.2%, and 23.7% on Purity, and Entropy, respectively. It can be explained that in
Sentic-LDA, there can be noise words remained in the word clusters used for

(a) Purity comparison

(b) Entropy comparison

Fig. 4. Purity and entropy of three service clustering approaches on ten domains

ST-LDA: High Quality Similar Words Augmented LDA 57

improving LDA, which limits the performance of it. In contrast, we choose the top
200 most semantically similar words of randomly selected words to assist LDA.
These high-quality similar words can help achieve accurate performance. More-
over, Sentic-LDA is better than the original LDA because it additionally uses the
word-clusters as auxiliary information. Since LDA did not consider the semantic
similarities between words, which performance is unfavorable than Sentic-LDA and
ST-LDA. While on “Education” and “Enterprise” two clusters, our method is not
good as the other two methods which mainly because of the unfavorable result of
noise words filtering in these two topics.

5 Conclusions and Future Work

In this paper, we propose a novel method named ST-LDA to address the service
clustering problem in LDA. We leverage Word2Vec to represent service into
embedding space, and then exploit semantic similar words discovering and noise words
filtering strategies. We optimize the new feature degree metrics f defined according to
TF-IDF and semantic similarity to filter noise words from similar words. Finally, we
put the list of similar words filtered in LDA to produce a set of service clusters.
Moreover, we compare the effect with several methods to demonstrate the feasibility of
our approach, which achieved high purity and entropy with the improvement rate of
7.2%, and 23.7% in the metrics respectively on a real word dataset.

In the future, we plan to investigate how to leverage more knowledge bases such as
WordNet1 and Freebase2 to further filter similar words. In addition, we also want to
combine different kind of word embeddings in the LDA model.

Acknowledgement. This work was supported by the National Natural Science Foundation of
China (Nos. 61672387 and 61702378), and the Natural Science Foundation of Hubei Province of
China (Nos. 2018CFB511 and 2017CKB894).

References

1. Lo, D.: An Exploratory Study of Functionality and Learning Resources of Web APIs on
ProgrammableWeb

2. Chen, L., Wang, Y., Yu, Q., Zheng, Z., Wu, J.: WT-LDA: user tagging augmented LDA for
web service clustering. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 162–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45005-1_12

3. Bobadilla, J., Ortega, F., Hernando, A., et al.: A collaborative filtering approach to mitigate
the new user cold start problem. Knowl. Based Syst. 26, 225–238 (2012)

1 https://wordnet.princeton.edu/
2 www.freebase.com

58 Y. Zhao et al.

http://dx.doi.org/10.1007/978-3-642-45005-1_12
http://dx.doi.org/10.1007/978-3-642-45005-1_12
https://wordnet.princeton.edu/
http://www.freebase.com

4. Shi, M., Liu, J., Zhou, D., et al.: WE-LDA: a word embeddings augmented LDA model for
web services clustering. In: IEEE International Conference on Web Services, pp. 9–16. IEEE
(2017)

5. Poria, S, Chaturvedi, I, Cambria, E, et al.: Sentic LDA: improving on LDA with semantic
similarity for aspect-based sentiment analysis. In: International Joint Conference on Neural
Networks, pp. 4465–4473. IEEE (2016)

6. Hao, Y., Junliang, C., Xiangwu, M., Bingyu, Q.: Dynamically traveling web service
clustering based on spatial and temporal aspects. In: Hainaut, J.-L., et al. (eds.) ER 2007.
LNCS, vol. 4802, pp. 348–357. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76292-8_41

7. Platzer, C., Rosenberg, F., Dustdar, S.: Web service clustering using multidimensional
angles as proximity measures. ACM Trans. Internet Technol. 9(3), 1–26 (2009)

8. Sun, P., Jiang, C.: Using service clustering to facilitate process-oriented semantic web
service discovery. Chin. J. Comput. 31(8), 1340–1353 (2008)

9. Kumara, B.T.G.S., Paik, I., Chen, W.: Web-service clustering with a hybrid of ontology
learning and information-retrieval-based term similarity. In: IEEE, International Conference
on Web Services, pp. 340–347. IEEE Computer Society (2013)

10. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: a hybrid semantic web service matchmaker
for OWL-S services. Web Seman. Sci. Serv. Agents World Wide Web 7(2), 121–133 (2009)

11. Klusch, M., Kapahnke, P., Zinnikus, I.: Hybrid adaptive web service selection with
SAWSDL-MX and WSDL-analyzer. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol.
5554, pp. 550–564. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-
3_41

12. Gu, Y., Cai, H., Xie, C., et al.: Utilizing semantic information from linked open data in web
service clustering. In: International Conference on Progress in Informatics and Computing,
pp. 654–658. IEEE (2017)

13. Dasgupta, S., Aroor, A., Shen, F., et al.: SMARTSPACE: multiagent based distributed
platform for semantic service discovery. IEEE Trans. Syst. Man Cybern. Syst. 44(7), 805–
821 (2017)

14. Wang, J., Gao, P.P., Ma, Y.T., He, K.Q., Patrick, C.K.: A web service discovery approach
based on common topic groups extraction. IEEE Access 5, 10193–10208 (2017). https://doi.
org/10.1109/ACCESS.2017.2712744

15. Wu, H.C., Luk, R.W.P., Wong, K.F., et al.: Interpreting TF-IDF term weights as making
relevance decisions. ACM Trans. Inf. Syst. 26(3), 55–59 (2008)

16. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J Mach. Learn. Res. Arch. 3,
993–1022 (2003). https://doi.org/10.1162/jmlr.2003.3.4-5.993

17. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic
modeling. Computer 32(8), 68–75 (2002)

18. Bartunov, S., Kondrashkin, D., Osokin, A., et al.: Breaking sticks and ambiguities with
adaptive skip-gram. Comput. Sci. (2015)

ST-LDA: High Quality Similar Words Augmented LDA 59

http://dx.doi.org/10.1007/978-3-540-76292-8_41
http://dx.doi.org/10.1007/978-3-540-76292-8_41
http://dx.doi.org/10.1007/978-3-642-02121-3_41
http://dx.doi.org/10.1007/978-3-642-02121-3_41
http://dx.doi.org/10.1109/ACCESS.2017.2712744
http://dx.doi.org/10.1109/ACCESS.2017.2712744
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993

LMCC: Lazy Message and Centralized
Cache for Asynchronous Graph

Computing

Ruini Xue , Zhibin Dong(B) , Wei Su , and Xiaofang Li

University of Electronic Science and Technology of China, Chengdu, China
xueruini@gmail.com, developerdong@gmail.com, suwei779@gmail.com,

lucylee23030@gmail.com

Abstract. Graph has been widely used in complex network applications
modeling, and the asynchronous graph processing model is superceding
the BSP model because of its better convergence speed. However, the
asynchronous GAS model proposed by PowerGraph usually results in
irregular and unpredictable communication patterns as well as vertex-
scale barriers, so it is difficult for programmers to optimize codes. To
address these challenges, we propose LMCC, an improved message man-
agement approach including lazy pull-message model and vertex-oriented
centralized cache, which can reduce communication cost in terms of mes-
sage quantity, and reduce the number of computation iterations in turn,
without compromising the accuracy of application results. Based on the
deep investigation of the GAS phases, LMCC is designed to be totally
transparent to user applications. Experimental results show that LMCC
can deliver speedup for various types of graph computing benchmarks
ranging from 129% to 271%.

Keywords: Graph processing · Communication optimization
Message combination · Centralized cache

1 Introduction

As the scale of the Internet traffic expands continuously [8], graph computing
is regarded as a promising method to deal with big data applications, such as
machine learning, social network analysis [9], web searching [24], natural lan-
guage processing [4], and recommendation systems [5,17], due to its expressive-
ness, efficiency and productivity.

To satisfy the growing demands of graph computing in terms of scalabil-
ity, efficiency and programmability, a variety of graph computing frameworks

This work is supported by the National Natural Science Foundation of China (No.
61272528) and the Fundamental Research Funds for the Central Universities (No.
ZYGX2016J088).

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 60–75, 2018.
https://doi.org/10.1007/978-3-030-05054-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_5&domain=pdf
http://orcid.org/0000-0003-1802-5188
http://orcid.org/0000-0003-2639-8507
http://orcid.org/0000-0002-7283-4659
http://orcid.org/0000-0003-0730-8537
https://doi.org/10.1007/978-3-030-05054-2_5

LMCC: Lazy Message and Centralized Cache for Graph Computing 61

have emerged, consisting of stand-alone platforms like X-stream [26], Turbo-
Graph [14], and GridGraph [36], as well as distributed ones like Pregel [23],
GraphLab [22], PowerGraph [11], GraphX [12], and CUBE [33]. These frame-
works are designed with quite different paradigms, such as vertex-centric [11,
12,22,23], edge-centric [26], computation-centric [35], path-centric [32], block-
centric [31], and graph-centric [28], so as to address the problems in different
domains.

While these platforms follow different ideologies, their execution modes can
be mainly divided into synchronous mode and asynchronous mode. The syn-
chronous mode usually refers to the typical BSP model, in which executions
are orchestrated into steps, and updates are not visible until the current step is
committed. The iterations ceases when all the vertices in the graph are inactive
at the beginning of a step. By contrast, in asynchronous mode, executions are
triggered by the scheduler, and the execution order between any pair of ver-
tices is arbitrary. Any update is observable immediately after it occurs, and the
computation terminates when the scheduling queue is empty. Despite its sim-
plicity, synchronous mode suffers from poor scalability due to the presence of the
synchronization barrier, at which the faster nodes having completed their tasks
have to wait for slower ones to finish. There are proposals trying to mitigate
the impact of such barrier. For example, GraphHP [6] allows computation of a
superstep in every machine to be executed by a series of pseudo-supersteps to
get rid of the global synchronization. Giraph Unchained [13] introduces a local
barrier to decide whether to continue as well as a lightweight global barrier that
can be cancelled when workers receive new messages. However, they do not elim-
inate barriers completely. It was the emergence of asynchronous frameworks that
substantially ruled out such limitations.

Generally, asynchronous mode is faster than synchronous mode by taking
convergence speed and scalability into account. However, its communication pat-
tern is irregular and unpredictable, which may lead to severe performance issues
for I/O-intensive applications [30], making it hard for programmers to optimize.

Fortunately, the vertex-cut partitioning approach and the GAS (Gather
Apply Scatter) abstraction of PowerGraph partially solved the problem of mes-
sage combination in asynchronous executions. In the case of vertex-cut partition-
ing, an edge can only be placed in one node, and a vertex may be divided into
multiple replicas located in different nodes. When collecting the information of
adjacent vertices and edges in the Gather phase, a mirror replica concatenates
the data into a single value and sends it to the master replica, which is similar
to the message combiner of Pregel [23]. Then, the master replica updates its
value in the Apply phase, and distributes the updated value to all its mirrors,
and then each mirror scatters to its local neighbors in turn as the Scatter phase,
which is similar to the publish-subscribe mechanism of LFGraph [15].

During the scatter phase, a vertex is appended to the scheduling queue on
receiving messages from adjacent vertices. Before the vertex is scheduled to exe-
cute, any incoming message will be merged with previous ones. On the one
hand, to reduce communication cost, mirrors need to forward messages from

62 R. Xue et al.

local adjacent vertices as late as possible, while on the other hand, mirrors’ mes-
sages should be delivered as early as possible from a master’s perspective to
avoid more iterations. This conflict is hard to be resolved in current systems.

Moreover, the current distributed cache can mitigate the cost of computation
for many algorithms [2] by dynamically maintaining the result of gather phase
for every vertex replica locally, however, it does not help with the vertex-scale
barriers in the GAS model presented in Sect. 2.2.

To address these issues, LMCC, a combination of message and cache man-
agement mechanisms, is proposed for asynchronous graph computing frameworks
like PowerGraph. A lazy pull-message model is devised as a supplement to the
existing push-message mechanism to alleviate the aforementioned conflict. By
investigating PowerGraph’s internal dependency, LMCC manages to decouple
the Init phase from the Gather phase so as to take advantage of Gather phase
to pull messages from mirrors which does not add extra number of messages.
By adopting a vertex-oriented centralized cache, LMCC is able to decrease the
computation cost as well as the barriers communication. A prototype of LMCC
is implemented based on PowerGraph, and experiments show that LMCC can
significantly speed up the overall execution of various types of graph applications
by up to 2.71X (from 1.29X).

The rest of this paper is organized as follows: Sect. 2 introduces the back-
ground and motivation, and Sect. 3 presents the system design, including the
lazy pull-message approach as well as the vertex-oriented centralized cache and
its application scope. Section 4 discusses implementation details of LMCC, and
Sect. 5 evaluates LMCC against a variety of applications. Related work comes
in Sect. 6, and the paper is concluded in Sect. 7 along with future work.

2 Motivation

In this section we will discuss internals of current message model and cache mech-
anism in the typical asynchronous graph computing framework PowerGraph,
address its limitations and present how LMCC is motivated.

2.1 Combine and Push Messages

Real-world graph datasets, such as social networks and the hyperlinks between
web pages, which commonly exhibit power-law distribution, are hard to par-
tition equally with the edge-cut methods [1,20], resulting dramatic perfor-
mance decrease for Pregel-like synchronous systems. To address the difficulties
in processing skewed power-law graph, PowerGraph proposes a “Gather-Apply-
Scatter” abstraction where the collected information from neighbors in Gather
phase will be used to update vertex value in Apply phase, and in Scatter phase
the updated value will be distributed to adjacent vertices. A vertex is activated
once a message, either from neighbors or mirrors, is pushed to it. In addition to
the execution abstraction, PowerGraph adopts a vertex-cut distribution mech-
anism, allowing vertices in a power-law graph to be allocated efficiently among
different machines. This highly matches the GAS model, as is illustrated in Fig. 1.

LMCC: Lazy Message and Centralized Cache for Graph Computing 63

(a) Vertex-cut partition. (b) GAS model.

Fig. 1. Vertex-cut and GAS model in PowerGraph. Black and white circles denote
master and mirror vertices respectively. D and E represent local adjacent vertices of A′.
The master retrieves information from each mirror during Gather stage, and propagates
updates to mirrors during Scatter .

To reduce the messages pushed from mirrors to the master vertex, Power-
Graph supports the message “combiner” similar to Pregel, as is shown in Fig. 2.
Figure 2a and b exhibit the transmission pattern before and after applying the
combiner mechanism. For algorithms with commutative and associative opera-
tors, such as PageRank [24] and SSSP (Single Source Shortest Path), the com-
biner can be leveraged to merge the messages intended for the same destination
into a single message, reducing the number of messages to be transmitted, and
therefore alleviating the network communication overhead. With message com-
bination, a mirror only needs to send a single message to its master even if it has
to collect values from multiple adjacent vertices. Similarly, the master will only
need to transfer one message to synchronize with the mirrors after applying the
gathered information for value update.

Machine 0 Machine 1

(a) Without combiner

achine 0 Machine 1

(b) With combiner

Fig. 2. Workflows with and without message combiners. Solid and dotted lines repre-
sent directed edges of the graph and messages transferred between vertices respectively.

Since mirrors need to forward received activating messages to the master,
their message transmission pattern will impose a significant impact on network
traffic and execution iterations. Different ways of forwarding may result in dif-
ferent effects. From a single mirror’s perspective, it should try to wait for as
many messages as possible and then transfer only one combined message to the

64 R. Xue et al.

master. However, such strategy is not appropriate for the master. If a mirror
waits too long, the master may have received messages sent by its local neigh-
bors or other mirrors, and have already been scheduled to run. Thus, the master
might need to execute another iteration once the mirror transfers its fully com-
bined but excessively delayed message to it, which may trigger more iterations,
leading to even more communication and computation costs. As a consequence,
it is challenging for the scheduler to coordinate the optimal timing of message
forwarding from mirror to master. Therefore, it is necessary to take advantage
of both delayed and immediate delivery to have mirrors combine messages with
the best efforts and let the master get existing messages from as many mirrors
as possible before being scheduled. LMCC addresses this conflict by introducing
a transparent “pull-message” approach, which will be described in Sect. 3.1.

2.2 Vertex Cache

PowerGraph maintains a local accumulator cache for each replica so that some
algorithms may skip collecting information in the Gather phase. However, there
are still some limitations that may impede the effectiveness of such cache. First,
each generalized “plus” operation defined in the application, which enables the
cache mechanism, must have a corresponding inverse operation to calculate the
delta of cache during the Scatter phase. Second, due to the design of placing
cache locally on each replica, the master has to fetch the cached result from
each mirror in each iteration, resulting in additional communication overhead.
Finally, although there is no need for synchronization between different vertices
in asynchronous execution, there are still synchronization barriers from the per-
spective of replicas of a vertex, as is illustrated in Fig. 3.

B
eg

in

A
pp

ly

En
d

Scatter

Request Computation Response Reqeust Computation Response

Gather

Fig. 3. Workflow of multiple replicas.

When the scheduler is going to execute a master, the asynchronous engine
allocates a thread to conduct the corresponding GAS iteration of the vertex.
First, the master initializes the vertex program with messages received from
locally adjacent vertices or forwarded by remote mirrors. Then, the master sends

LMCC: Lazy Message and Centralized Cache for Graph Computing 65

the initialized vertex program to each mirror, and both the master and mir-
rors perform Gather operation on the locally adjacent vertices and edges. Next,
each mirror responds to the previous request with its Gather result. Apparently,
because of the divergence of network delay, number of neighbors and hardware
configuration, the mirrors may respond in considerably different time, causing
the master not being able to continue to the Apply phase until the slowest
response arrives. Such kind of barrier also exists in the Scatter phase, as is
shown in Fig. 3. Therefore, application performance might suffer from such bar-
riers dramatically given very imbalanced configuration.

The current mirror cache can save the computation cost in the Gather phase.
However, it does not help to eliminate the barriers. We devise a vertex-oriented
centralized cache mechanism to mitigate the influence of barriers, which is totally
transparent to applications. Section 3.2 will discuss the new cache mechanism in
details.

3 System Design

3.1 Lazy Message Pulling

In the Scatter stage, a replica will send messages to its local neighbors. If the
neighbor is a mirror, the message will be forwarded to its master immediately if
the asynchronous engine is in “fast signal” mode. Otherwise, it will be buffered
to be transmitted to the master later. If the neighbor is a master, it will store
the message locally, and then put the vertex into the scheduler. All messages a
master received will be used to initialize the data structure of the user-defined
vertex program in the Init phase before GAS, as is shown in Fig. 4a. Actually,
Gather phase is only used to collect information from neighboring vertices and
edges. Variables in the vertex program, which is initialized by the Init phase,
will not be used in the Gather phase at all.

Table 1. Impact of the Init stage on subsequent stages.

Benchmarks sgd svdpp kcore sssp Others

Init
√ √ √ √ ×

Gather × × × × ×
Apply

√ √ √ √ ×
Scatter × × √ × ×

Several widely used graph algorithms, such as sgd (Stochastic Gradient
Descent), svdpp (SVD++, Singular Value Decomposition++), kcore (K-Core),
sssp (Single Source Shortest Path), and others (ALS, Alternating least squares;
LBP, Loopy Belief propagation, and PageRank), are investigated to confirm the
observation, and the results are shown in Table 1. For Init stage,

√
and × indi-

cate the application does or does not have Init stage respectively. For the other

66 R. Xue et al.

Init

Gather

Apply

Scatter

activating
messages

initialized_vprog

gather_sum

updated_value

(a) Original
workflow.

Init Gather

Apply

Scatter

activating
messages

gather_sum

updated_value

 raw_vprog

initialized_vprog

(b) Decoupled workflow.

Gather

Init

Apply

Scatter

 raw_vprog

initialized_vprog

gather_sum

updated_value

activating
messages

(c) LMCC workflow.

Fig. 4. Execution workflow of a vertex in one iteration.

stages,
√

and × means whether Init stage has an impact on them. The table
reveals that four applications do have Init stage, but no one’s Gather depends
on the result of its Init .

Since Gather is independent to Init , it is safe to decouple the currently
forced dependency between them, which has been demonstrated in Fig. 4b, so
that Gather would be able to use uninitialized user-defined vertex program, and
would not need to wait for Init , as long as both of them finish before Apply .
This is the basic rationale of our lazy pull-message model described below:

1. The messages received by mirrors are always stored and combined locally
until the mirror is scheduled to send the merged message to its master;

2. When a master starts a new iteration, and Init is not yet in progress, it will
pull messages from all its mirrors before proceeding. All messages are fetched
at the last minute. Therefore, not only can messages be combined sufficiently,
but also the master will not be activated repeatedly.

The aforementioned lazy pulling before Init does introduce additional communi-
cation, which might counteract the benefits of the decoupled workflow. To over-
come such overhead, LMCC integrates message pulling in Gather : the pulled
messages will be piggybacked in Gather ’s response. Figure 4c illustrates the final
lazy message pulling in LMCC: a master can simultaneously get the partial sum
and combined message from one mirror in the Gather phase without additional
pulling.

3.2 Vertex-Oriented Centralized Cache

Instead of placing the cache along with a mirror locally, each master in LMCC
maintains an individual cache for all its mirrors. That is, all the caches for the

LMCC: Lazy Message and Centralized Cache for Graph Computing 67

replicas of a vertex are managed by its master in a centralized way. By this
way, as long as the datas of the adjacent vertices and edges of the mirror do
not change, its corresponding cache on the master is valid, and the master can
directly use the cache without sending a Gather request.

G

S

M
as

te
r M

irror

A

G

S

Reqeust

Response

Response

Reqeust

(a) No cache.

G

S

M
as

te
r M

irror

A

S

Reqeust

Response

Response

Reqeust

(b) Distributed cache.

G

S

M
as

te
r M

irror

A

S

Response

Reqeust

(c) Centralized cache in
LMCC.

Fig. 5. The comparison between different cache mechanisms.

Basic workflows under different cache mechanisms are described in Fig. 5.
Distributed cache (Fig. 5b) in PowerGraph eliminates computation in Gather
compared with the cache-less implementation (Fig. 5a), but it does not relieve
communication occurred in Gather . With LMCC’s centralized cache shown in
Fig. 5c, both the computation and communication in Gather stage are elimi-
nated.

When the neighbors of a mirror update their values, it will receive activating
messages. Then, when the mirror is scheduled to execute, it forwards the message
to its master which will invalidate the cache of this mirror. In the next iteration,
the master has to issue a Gather request to the mirror for the latest Gather
sum. The effect of centralized cache degrades to that of distributed cache only if
all mirrors send activating messages to the master, in which case there would be
the same number of communication transfers. Therefore, centralized cache will
save much more communication efforts in most cases.

Application Scope. For most applications, adding a cache mechanism will
speed up its execution significantly, while for some other applications it may
lead to adverse effect. The behaviors of two typical applications under LMCC’s
cache mechanism are discussed as follows.

Graph Coloring Applications. If the algorithm reads the old vertex value, every
update to the vertex value will promote the convergence. That is, even if only a
portion of the cache is updated in time, it will tend to converge after iterations.
However, this execution mode has a negative impact on the correctness of the
graph coloring applications. In each iteration, a vertex must obtain the latest
coloring conditions for all neighboring vertices in order to make correct decision.
The delayed activating messages can lead to excessive use of stale caches [29],
which may produce erroneous result, leading to extra iterations and communi-
cation and finally resulting in the divergence of the application.

68 R. Xue et al.

Message-Passing Applications. Because vertices in Scatter phase can send acti-
vating messages containing data to neighboring vertices, those message-passing
applications can only use Apply and Scatter stages for continuous iteration. The
data used in Apply is fetched from the messages in Scatter stage, which excludes
the information collected in Gather phase. Therefore, for message-passing appli-
cations, centralized cache in LMCC does make much difference in execution
performance because there is no Gather stage.

4 Implementation

LMCC is implemented based on PowerGraph v2.2 [10]. By default, PowerGraph
will leverage message combination, and a mirror will be inserted in the local
scheduler when other vertices send messages to it. The mirror will not forward
those messages to the master until it is dispatched, during which time all received
messages will be merged as one. If a node instance executes fast enough that the
local scheduler becomes empty, it will notify all other nodes and let the entire
cluster initiate “fast signal” mode, in which all messages sent to a mirror will be
immediately forwarded to its master. As a consequence, the message combination
and cache would not be valid anymore. By contrast, LMCC disables “fast signal”
mode considering the design principles of LMCC discussed above. Its execution
flow is shown in Fig. 6. Besides, lazy message pulling and centralized cache are
complementary: if no cache found, message pulling will be issued, otherwise

Begin

Activate initial vertices

Is there a vertex to
be processed?

Does the vertex have
corresponding message?

Yes

Use messages to init vertex program

Yes
Whether the vertex

is master?

Yes

Forward the
message to master
to invalidate cache

No

Send gather requests to the
mirrors which are not cached Perform gather locally

Use cached results and the results
from responses to apply

Retrieve gather results and
messages in the responses

Send scatter requests to all mirrors

Perform scatter locallyReceive responses of mirrors

End

No

No

Fig. 6. The execution flow of LMCC.

LMCC: Lazy Message and Centralized Cache for Graph Computing 69

the cache will be used and the pulling will be ignored. Additionally, LMCC is
totally transparent to applications, so users would benefit from LMCC without
any modification.

5 Evaluation

In this section, LMCC is evaluated by executing various graph applications
with multiple datasets listed in Table 3, which are either synthesis from data
generator from PowerGraph, or real-world data downloaded from SNAP [19].
The average performance of three runs is measured in terms of communication
cost, iteration quantity, and execution time. Experiments are conducted in a
cluster of 13 nodes whose configurations are shown in Table 2, all of which are
connected by an 1Gbps Ethernet network. These selected graph applications are:

PageRank is an algorithm to rank the websites in search engines.
SSSP “Single Source Shortest Path” finds the shortest paths between a source

vertex and all the other vertices in a graph.
Simple coloring finds a way of coloring the vertices of a graph such that no

two adjacent vertices share the same color.
ALS “Alternating Least Squares” is a kind of collaborative filtering algorithm

widely used in machine learning applications, such as predicting a user’s rating
of products.

svdpp is an implementation of SVD++ matrix factorization algorithm, which
can be used to solve the algebraic feature extraction problem.

wals is an implementation of the weighted-ALS matrix factorization algorithm
described in “Collaborative filtering for implicit feedback datasets” [16].

Lbp structured prediction is used for structured prediction on a graph. One
of its application is modeling the interests of users in a social network.

Table 2. Cluster configuration.

SN CPU RAM

0 Intel Core i3-5010U 2.10 GHz 8 GB

1–2 Intel Core i5-5200U 2.20 GHz 8 GB

3–6 Intel Celeron 2955U 1.40 GHz 4 GB

7–12 Intel Celeron N2807 1.58 GHz 4 GB

5.1 Performance

Communication and computation account most for the overall execution time.
Thus, LMCC is compared with the original PowerGraph by the number of
transmitted messages, the quantity of iterations as well as the execution time. All
the executions are performed with random partitioning method. Table 4 shows
the datasets each application uses, and the results are presented in Fig. 7.

70 R. Xue et al.

Table 3. Graph datasets used in the experi-
ments and their properties.

Category Dataset |V | |E|
Synthetic synthetic 0 11000 111128

synthetic 1 160000 319200

Social
networks

Facebook [21] 4039 88234

Epinions [25] 75879 508837

Twitter [21] 81306 2420744

Pokec [27] 1632803 30622564

LiveJournal [3,20] 4846609 68475391

Web graphs BerkStan [20] 685230 7600595

Citation
networks

Patents [18] 3774768 16518947

Table 4. Input datasets of different
applications.

Application Dataset Category

pagerank Pokec Graph
analytics

sssp Pokec

simple
coloring

Pokec

als synthetic 0 Collaborative
filtering

svdpp synthetic 0

wals synthetic 0

lbp
structured
prediction

synthetic 1 Graphical
models

Fig. 7. Application performance in terms of different metrics.

Figure 7a shows that LMCC transmits fewer messages than PowerGraph for
all the applications by 47% in average, thanks to its significant reduction in
activating messages and gather requests. As for iterations, Fig. 7b indicates that
there is a 16% reduction in average. By virtue of these improvements, LMCC
speeds up these tests in contrast to PowerGraph from 1.29 to 2.71 times in terms
of execution time which is shown in Fig. 7c.

5.2 Scalability

We evaluate the scalability of LMCC in two dimensions: The performance of
processing a given graph (Pokec) with varied cluster sizes, and the performance
of computing varied datasets under fixed cluster size.

LMCC: Lazy Message and Centralized Cache for Graph Computing 71

Scale the Cluster. Figure 8 presents the performance metrics of computing
the same dataset with different cluster configurations. The 1, 2, 4, 6, 8, 10,
13 in the x-axis of Table 2 means enabling machine 0, 1–2, 3–6, 7–12, 3–10,
3–12 and 0–12 in the test respectively. The curves imply that the larger the
cluster is, the more the application can benefit from LMCC. Specially, the gap
between LMCC and PowerGraph has a drastic change at 8, and the curves
are almost flat before and after this point. This is because the cluster becomes
more heterogeneous, or rather more machine types are mixed, in which case
LMCC’s cache can contribute more compared with homogeneous configurations.
The speed up before and after 8 are 111% and 252% respectively.

Fig. 8. Performance metrics of Pokec in different cluster sizes.

Scale the Datasets. Figure 9 shows that, as the scale of the graph increases, the
absolute difference of the optimization effect becomes larger for all metrics. The
benefit before BerkStan is 1.6 roughly, while it changes to 2.6 after BerkStan.
However, no correlation is observed between the ratio and the dataset size.

Fig. 9. The experimental results of different datasets.

72 R. Xue et al.

6 Related Work

Although there are lots of efforts focused on optimizing the existing graph com-
puting frameworks, this paper concentrates on the message delivery model and
cache management for asynchronous mode, so we will mainly relate current stud-
ies on optimizations of PowerGraph in this section.

To the best of our knowledge, there are only two existing public studies [7,30]
that aim at performance optimization directly based on PowerGraph.

Xie [30] analyzed the performance characteristics of both synchronous and
asynchronous modes on different kinds of graph applications, partitioning meth-
ods, execution stages, graph sizes, and cluster scales. It turns out that there is
no “one-size-fit-all” mode for all conditions. To take advantage of both modes,
a hybrid execution model, called PowerSwitch, is proposed, which can adap-
tively switch between the two modes on the basis of an efficient algorithm with
optimized online sampling, offline profiling, and a set of heuristics. Though Pow-
erSwtich offers better performance by timely switching the vertex programs exe-
cution between two modes, it is not transparent to users and therefore they
have to carefully set the parameters for online sampling or use a set of training
graphs to build a neural network model to predict the throughput of current
input graphs.

PowerSwitch leverages hybrid execution engine to accelerate the processing,
while Powerlyra [7] is introduced to differentiate the processing of vertices of
different degrees. There are no Gather requests for low-degree vertices, while
the high-degree ones are replicated among multiple machines for load balancing.
Algorithms like ALS [34] need to gather or scatter along in-edges and out-edges
simultaneously, which can not be optimized using the hybrid-cut of Powerlyra.

Both PowerSwitch and Powerlyra are high-level improvements over Power-
Graph, while neither of them addresses the potential drawbacks in its internal
execution flow of asynchronous mode, which is the major contribution of LMCC.

7 Conclusion and Future Work

The original message delivery model in PowerGraph may result in suboptimal
performance because either a master may not get the latest data from its mir-
rors or the mirrors may activate the master repeatedly. Moreover, its distributed
cache can not mitigate the communication overhead in Gather phase. This
paper presents LMCC to address these issues. LMCC implements an improved
message management approach that hybrid message pushing and lazy pulling
to encourage message combining, and the vertex-oriented centralized cache to
reduce Gather requests. LMCC can reduce communication cost as well as the
number of computation iterations, and therefore accelerating overall execution.
LMCC is designed based on the deep investigation of the GAS phases in Power-
Graph, and it is totally transparent to applications. Experimental results show
that LMCC can deliver speedup for various types of graph computing applica-
tions ranging from 129% to 271% in contrast to PowerGraph.

LMCC: Lazy Message and Centralized Cache for Graph Computing 73

The centralized cache in LMCC is effective for a wide range of applications,
but it can slow down certain applications as is discussed in Sect. 3.2. In the
future, we will carry out further investigation on this issue and find out possible
mitigations.

References

1. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law
graphs. In: 20th International Parallel and Distributed Processing Symposium,
IPDPS 2006, pp. 10-pp. IEEE (2006)

2. Ahmed, A., Aly, M., Gonzalez, J., Narayanamurthy, S., Smola, A.J.: Scalable infer-
ence in latent variable models. In: Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining, pp. 123–132. ACM (2012)

3. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 44–54. ACM (2006)

4. Biemann, C.: Chinese whispers: an efficient graph clustering algorithm and its
application to natural language processing problems. In: Proceedings of the First
Workshop on Graph Based Methods for Natural Language Processing, pp. 73–80.
Association for Computational Linguistics (2006)

5. Chen, H., Li, X., Huang, Z.: Link prediction approach to collaborative filtering.
In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries,
JCDL 2005, pp. 141–142. IEEE (2005)

6. Chen, Q., Bai, S., Li, Z., Gou, Z., Suo, B., Pan, W.: GraphHP: a hybrid platform
for iterative graph processing. arXiv preprint arXiv:1706.07221 (2017)

7. Chen, R., Shi, J., Chen, Y., Chen, H.: PowerLyra: differentiated graph computation
and partitioning on skewed graphs. In: Réveillère, L., 0001, T.H., Herlihy, M. (eds.)
Proceedings of the Tenth European Conference on Computer Systems, EuroSys
2015, Bordeaux, France, 21–24 April 2015, pp. 1:1–1:15. ACM (2015)

8. Cisco, Visual Networking Index: The zettabyte era: Trends and analy-
sis (2017). https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/vni-hyperconnectivity-wp.html. Accessed 07 June
2017

9. Coffman, T., Greenblatt, S., Marcus, S.: Graph-based technologies for intelligence
analysis. Commun. ACM 47(3), 45–47 (2004)

10. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Graphlab powergraph
v2.2. https://github.com/jegonzal/PowerGraph

11. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: OSDI, vol. 12, no. 2 (2012)

12. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
Graphx: graph processing in a distributed dataflow framework. In: OSDI, vol. 14,
pp. 599–613 (2014)

13. Han, M., Daudjee, K.: Giraph unchained: barrierless asynchronous parallel execu-
tion in pregel-like graph processing systems. Proc. VLDB Endow. 8(9), 950–961
(2015)

14. Han, W.S., et al.: TurboGraph: a fast parallel graph engine handling billion-scale
graphs in a single PC. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 77–85. ACM (2013)

http://arxiv.org/abs/1706.07221
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://github.com/jegonzal/PowerGraph

74 R. Xue et al.

15. Hoque, I., Gupta, I.: LFGraph: simple and fast distributed graph analytics. In:
Proceedings of the First ACM SIGOPS Conference on Timely Results in Operating
Systems, p. 9. ACM (2013)

16. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: Eighth IEEE International Conference on Data Mining, ICDM 2008,
pp. 263–272. IEEE (2008)

17. Huang, Z., Chen, H., Zeng, D.: Applying associative retrieval techniques to alleviate
the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22(1),
116–142 (2004)

18. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
pp. 177–187. ACM (2005)

19. Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

20. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: natural cluster sizes and the absence of large well-defined clusters.
Internet Math. 6(1), 29–123 (2009)

21. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In:
Advances in Neural Information Processing Systems, pp. 539–547 (2012)

22. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning and data mining in the
cloud. Proc. VLDB Endow. 5(8), 716–727 (2012)

23. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of data,
pp. 135–146. ACM (2010)

24. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab (1999)

25. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic
web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol.
2870, pp. 351–368. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39718-2 23

26. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing
using streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pp. 472–488. ACM (2013)

27. Takac, L., Zabovsky, M.: Data analysis in public social networks. In: International
Scientific Conference and International Workshop Present Day Trends of Innova-
tions, vol. 1 (2012)

28. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From think like
a vertex to think like a graph. Proc. VLDB Endow. 7(3), 193–204 (2013)

29. Vora, K., Koduru, S.C., Gupta, R.: Aspire: exploiting asynchronous parallelism in
iterative algorithms using a relaxed consistency based DSM. In: ACM SIGPLAN
Notices, vol. 49, pp. 861–878 (2014)

30. Xie, C., Chen, R., Guan, H., Zang, B., Chen, H.: SYNC or ASYNC: time to fuse
for distributed graph-parallel computation. ACM SIGPLAN Not. 50(8), 194–204
(2015)

31. Yan, D., Cheng, J., Lu, Y., Ng, W.: Blogel: a block-centric framework for dis-
tributed computation on real-world graphs. Proc. VLDB Endow. 7(14), 1981–1992
(2014)

http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-540-39718-2_23
https://doi.org/10.1007/978-3-540-39718-2_23

LMCC: Lazy Message and Centralized Cache for Graph Computing 75

32. Yuan, P., Zhang, W., Xie, C., Jin, H., Liu, L., Lee, K.: Fast iterative graph com-
putation: a path centric approach. In: SC14 International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 401–412. IEEE
(2014)

33. Zhang, M., Wu, Y., Chen, K., Qian, X., Li, X., Zheng, W.: Exploring the hidden
dimension in graph processing. In: OSDI, vol. 16, pp. 285–300 (2016)

34. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative
filtering for the netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS,
vol. 5034, pp. 337–348. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68880-8 32

35. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed
graph processing system. In: OSDI, pp. 301–316 (2016)

36. Zhu, X., Han, W., Chen, W.: GridGraph: large-scale graph processing on a sin-
gle machine using 2-level hierarchical partitioning. In: USENIX Annual Technical
Conference, pp. 375–386 (2015)

https://doi.org/10.1007/978-3-540-68880-8_32
https://doi.org/10.1007/978-3-540-68880-8_32

Differential Evolution with Proximity-Based
Replacement Strategy and Elite Archive
Mechanism for Global Optimization

Chi Shao, Yiqiao Cai(&), Wei Luo, and Jing Li

College of Computer Science and Technology,
Huaqiao University, Xiamen, China

yiqiao00@163.com

Abstract. Differential evolution (DE) algorithm is a simple but effective
algorithm for numerical optimization. However, the inferior vectors, when
compared to the current population, are always abandoned in the selection
process. As the previous studies shown, these inferior vectors can provide
valuable information in guiding the search of DE. Based on this consideration,
this paper proposes a proximity-based replacement strategy (PRS) and an elite
archive mechanism (EAM) to further utilize the information of inferior and
superior vectors generated during the evolution. In the PRS, the trial vectors that
do not defeat their parent vectors will have a chance to replace other parent
vectors based on the distance between them. Further, to maintain the diversity of
the population, the EAM is adopted by storing the superior vectors both in the
selection operator and the PRS to provide the negative direction information. By
this way, on the one hand, the search information provided by the inferior
vectors can be effectively utilized with PRS to speed up the speed of conver-
gence. On the other hand, the negative direction information derived from the
superior vectors can enhance the diversity of population. By incorporating these
two novel operators in DE, the novel algorithm, named PREA-DE, is presented.
Through an experimental study on the CEC2013 benchmark functions, the
effectiveness of PREA-DE is demonstrated when comparing with several
original and advanced DE algorithms.

Keywords: Differential evolution � Proximity-based replacement strategy
Elite archive mechanism � Global optimization

1 Introduction

Differential evolution (DE), proposed by Storn and Price, is a stochastic population-
based algorithm [1]. During the last decade, DE has been extended for handing con-
strained, multi-objective, large scale uncertain optimization and dynamic problems, and
has been successfully applied in various scientific and engineering fields [2].
Although DE is considered an effective global optimization algorithm, it suffers from
the problems of easily falling into local optimum or slow convergence rate due to its
stochastic nature [2]. Many researchers have worked to improve the performance of DE
in different directions, such as devising new mutation operators [3, 4], adopting

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 76–89, 2018.
https://doi.org/10.1007/978-3-030-05054-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_6

self-adaptive strategies for parameters controlling [5, 6], developing ensemble strate-
gies [7, 8], and proposing a hybrid DE with other optimization algorithms [9], etc.

DE has three main operators, i.e., mutation, crossover and selection. The mutation
operator is used to generate the mutant vector with different mutation strategies. The
crossover operator is used to increase the diversity of population by generating the trial
vector. The selection operator is used to decide the vector into the next generation with
a one-to-one greedy strategy. In these three operators, the mutation and crossover
operators have attracted a lot of attention from the researchers. In contrast, there have
been few studies on the selection operator of DE.

In [10], Thomsen et al. proposed a crowding-based differential evolution, named
CrowdingDE, in which the offspring no longer directly replaces its parents but replaces
the most similar individuals in a subset of the CF (CF is the crowding factor). In [11],
Li proposed SDE in which all parents and offspring are sorted by fitness value and the
fittest NP individuals are reserved for the next generation. In [12], Guo et al. proposed a
subset-to-subset survivor selection operator that the target and trial populations are
divided into several subsets and then the best vectors are selected from the corre-
sponding subsets to survive into the next generation.

In most of these variants, the inferior vectors during the selection process are
always ignored. That is, the information of these vectors cannot be exploited in the
following evolution process, and the evaluations of these vectors will be wasted.
However, as the previous studies shown [5, 6], these inferior vectors can provide
valuable information in guiding the search of DE.

Based on the above consideration, in this paper, we propose a proximity-based
replacement strategy (PRS) and an elite archive mechanism (EAM) to further utilize the
information of inferior and superior vectors generated during the evolution. In the PRS,
the trial vectors that do not defeat their parent vectors will have a chance to replace other
parent vectors based on the distance between them. Specifically, for each trial vector that
fails to replace its parent, PRS will find the first parent vector in current population that
satisfies the condition based on the distance and fitness information and replace it with the
trial vector. In this way, PRS can increase the probability of the promising trial vectors
entering the next generation and thus accelerate the convergence speed of DE. In the
EAM, the superior vectors both in the selection operator and the PRS are stored to provide
the negative direction information. Specifically, the vectors that successfully replace the
parent vectors in the selection operator and PRSwill be stored in an external archive.After
that, some of the start point of the difference vector are selected from the combination of
current population and external archive. In this way, EAM can effectively maintain the
diversity of the population by introducing the negative direction information to guide the
search. The novel DE algorithm with PRS and EAM is named as PREA-DE.

To evaluate the effectiveness of the proposed method, the experimental study has
been carried out on a suite of benchmark functions from the CEC2013 special session
on real-parameter optimization [13]. Experimental results show the high performance
of PREA-DE.

The rest of this paper is organized as follows. Section 2 describes the original DE
algorithm. The proposed PREA-DE is presented in detail in Sect. 3. In Sect. 4, the
experimental results are shown and discussed. Finally, Sect. 5 draws the final
conclusions.

Differential Evolution with Proximity-Based Replacement Strategy 77

2 Differential Evolution

DE is for solving the numerical optimization problem [1]. In this study, we consider the
following optimization problem: Minimize f Xð Þ, X 2 S, S�RD and D is the dimension
of the decision variables. In DE, a population of NP vectors representing the candidate

solutions is evolved. Each vector is denoted as Xi;G ¼ x1i;G; x
2
i;G; � � � ; xDi;G

h i
, where

i ¼ 1; 2; � � � ;NP, NP is the size of population and G is the number of current gener-
ation. After initialization, three main operators, i.e., mutation, crossover and selection,
will be carried out. These operators will be briefly described as follows.

2.1 Mutation

For each individual of current population Xi;G (called target vector), DE employs a
mutation strategy to generate a mutant vector Vi;G. Six frequently used mutation
strategies in the literature are shown as follows:

DE/rand/1

Vi;G ¼ Xr1;G þF � Xr2;G � Xr3;G
� � ð1Þ

DE/rand/2

Vi;G ¼ Xr1;G þF � Xr2;G � Xr3;G
� �þF � Xr4;G � Xr5;G

� � ð2Þ

DE/best/1

Vi;G ¼ Xbest;G þF � Xr2;G � Xr3;G
� � ð3Þ

DE/best/2

Vi;G ¼ Xbest;G þF � Xr2;G � Xr3;G
� �þF � Xr4;G � Xr5;G

� � ð4Þ

DE/current-to-best/1

Vi;G ¼ Xi;G þF � Xbest;G � Xi;G
� �þF � Xr2;G � Xr3;G

� � ð5Þ

DE/rand-to-best/1

Vi;G ¼ Xr1;G þF � Xbest;G � Xr1;G
� �þF � Xr2;G � Xr3;G

� � ð6Þ

where the indices r1; r2; r3; r4 and r5 2 1; 2; � � �NPf g are random and mutually dif-
ferent integers and are different from the index i. Xbest;G is the best individual vector at
generation G, and the mutation factor F is a positive control parameter for scaling the
difference vector.

78 C. Shao et al.

2.2 Crossover

After the mutation vector is generated, the crossover operator is applied to each pair of
Xi;G and Vi;G to generate a trial vector Ui;G for increasing the diversity of population.
There are two kinds of crossover scheme: binomial and exponential [1]. Binomial
crossover is generally more robust and efficient than exponential crossover [14].
Therefore, the binomial crossover is considered in this study and is defined as follows:

u j
i;G ¼

v ji;G if rand 0; 1ð Þ�CRor j ¼ jrand

x ji;G otherwise

(
ð7Þ

where jrand is a randomly chosen integer in the range [1, D].

2.3 Selection

Finally, the selection operator is employed to select the more promising trail vector into
the next generation. That is, it compares the fitness values of the target vector Xi;G and
the trial vector Ui;G and selects the better one for the next generation. The selection
operator is carried out as follows:

Xi;Gþ 1 ¼ Ui;G if f Ui;G
� �� f Xi;G

� �
Xi;G otherwise

�
ð8Þ

3 DE with PRS and EAM (PREA-DE)

In this section, we describe the proposed PREA-DE algorithm in detail. In PREA-DE, a
proximity-based replacement strategy (PRS) and an elite archive mechanism
(EAM) are incorporated to utilize the information of inferior and superior vectors
generated during the evolution. PRS is used to speed up the convergence rate and make
full use of information from the inferior individuals based on the affinity between the
trail vectors and the parent vectors, while EAM is employed to increase the diversity of
population by introducing the negative direction information constructed with the
stored elite individuals. Here, the details of PRS and EAM are described firstly. Then,
the general framework of PREA-DE is shown.

3.1 Proximity-Based Replacement Strategy (PRS)

In most DE variants, if the trial vector Ui is worse than its parent individual Xi, Ui will
be abandoned during the selection process. That is, these vectors cannot be exploited
during the evolution process, and the evaluations of these vectors will be wasted.
However, as shown in the previous studies [5, 6], these inferior vectors can provide
valuable information in guiding the search of DE. Further, for the functions with costly
evaluation, the information of the evaluated individuals is beneficial to speed up the
convergence of rate.

Differential Evolution with Proximity-Based Replacement Strategy 79

According to these considerations, we propose the PRS to effectively utilize the
information of the trail vectors. In PRS, each individual in the population will firstly
have a mark. Then, if the parent vector is replaced by its trial vector during the selection
process, the marks of both the parent and its trial vectors are set to 1. Otherwise, the
marks of them are set to 0. After that, if the mark of a trial vector Ui is 0 (i.e., it fails to
replace its parent vector Xi), we will look for the first parent vector Xj in the current
population that meets the following conditions and replace it with Ui:

(1) j is not equal to i, and the number of the consecutive generations that Xj has not
been replaced (Countj) exceeds the default value (LIMIT).

(2) The fitness value of Ui is better than Xj.
(3) The Euclidean distance Di;j from Ui to Xj is less than the distance Di;i from Ui to Xi

or the distance Dj;j from Uj to Xj.

In this paper, LIMIT is used to determine the frequency of replacement, and its
value will be selected from the candidate set S. The pseudo-code of PRS is shown in
Algorithm 1.

80 C. Shao et al.

3.2 Elite Archive Mechanism (EAM)

To further exploit the information of the best individuals during the evolution, EAM
stores the recently searched high-quality solutions in the external archive. Differing
from the external archive mechanisms in [5, 6], EAM uses the archive to construct the
negative direction information to increase the diversity of population.

In EAM, the size of the external archive is initialized to 0 and the upper limit is set
to NP. In each iteration, the trial vectors that successfully replaces the parent indi-
viduals in the selection process and the RPS are put in the external archive. If the size
of the external archive exceeds the upper limit, EAM will randomly remove the
individuals from the archive to keep its size at NP.

With the elite archive (E), the start point of the difference vector constructed by two
random vectors are selected from the combination of the current population and the
elite archive (P[E). Take three mutation strategies with EAM for examples, the
mutation vector is generated as follows:

DE/rand/2

Vi;G ¼ Xr1;G þF � Xr2;G � gXr3;G

� �
þF � Xr4;G � gXr5;G

� �
ð9Þ

DE/current-to-best/1

Vi;G ¼ Xi;G þF � Xbest;G � Xi;G
� �þF � Xr2;G � gXr3;G

� �
ð10Þ

DE/rand-to-best/1

Vi;G ¼ Xr1;G þF � Xbest;G � Xr1;G
� �þF � Xr2;G � gXr3;G

� �
ð11Þ

where Xbest;G, Xi;G, Xr1;G, Xr2;G and Xr4;G are selected in the same way as in original DE,gXr3;G and gXr5;G are selected from P[E randomly. The indices r1, r2, r3, r4 and r5 are
different integers and are different from the index i.

3.3 The Framework of PREA-DE

Combining PRS, EAM and DE, PREA-DE is presented and the pseudo-code of PREA-
DE with “DE/rand/2” (PREA-DE/rand/2 for short) is shown in Algorithm 2.

Differential Evolution with Proximity-Based Replacement Strategy 81

Algorithm 2: PREA-DE/rand/2
1: Generate the initial population PG and set G=1;
2: Evaluate the fitness for each individual in PG, FES = FES+NP;
3: Initialize the size of the external archive to 0;
4: Randomly selects a value in the candidate set as LIMIT;
5: While the terminated condition is not satisfied do
6: For each individual Do
7: Select , and in P randomly;
8: Select and randomly from ;
9: Use mutation strategy to generate a mutant vector ;
10: Use Eq. (7) to generate a trial vector ;
11: If then
12: Put in the elite archive;
13: Replace with ;
14: mark () = mark () = 1;
15: = 0;
16: End If
17: Else
18: mark () = mark () = 0;
19: ++;
20: End Else
21: End for
22: Perform the PRS;
23: G = G+1;
24: End While

4 Empirical Studies

4.1 Experimental Settings

In this section, the experimental study is carried out to evaluate the performance of
PREA-DE on a suite of benchmark functions from the CEC2013 special session on
real-parameter optimization [13]. The CEC13 benchmark functions set consists of 28
test functions, which includes the unimodal function F1 to F5, the basic multimodal
function F6 to F20, and the composition function F21 to F28. More details of them can
be found in [13].

For a fair comparison, the same random initial population is used to evaluate the
performance of different algorithms. The parameters of the DE algorithms studied in
this paper are set as Table 1 unless a change is mentioned.

82 C. Shao et al.

To show the significant differences among the competitors, the non-parametric
statistical tests are carried out by the KEEL [15] software. The results of the single-
problem analysis by the Wilcoxon test [15] at a = 0.05 are shown in the tables as
“+/ = /−”, which means that PREA-DE wins, ties and loses on the number of functions
when compared with its corresponding competitor. The R+ and R− in the multiple-
problem analysis by the Wilcoxon test mean the sum of ranks that PREA-DE performs
significantly better than and worse than its competitor overall, respectively.

4.2 Effect on Original DE Algorithms

In this section, PREA-DE is compared with original DE algorithms to test its effec-
tiveness on the original DE mutation strategies. Here, six mutation strategies are used,
i.e., DE/rand/1, DE/rand/2, DE/best/1, DE/best/2, DE/current-to-best/1 and DE/rand-to-
best/1. The statistics summarizing the performance comparisons for the functions from
CEC13 at 30D and 50D are shown in Tables 2 and 3, respectively. In addition, the
convergence graphs for F4 and F6 are plotted in Fig. 1.

From Tables 2 and 3, PREA-DE can effectively enhance the performance of the
original DE algorithms. Specifically, in Table 2, PREA-DE is significantly better than
the corresponding DE algorithms on 15, 22, 14, 10, 15 and 16 functions at 30D,
respectively. In Table 3, PREA-DE is significantly better on 14, 21, 18, 7, 16 and 16
functions at 50D, respectively.

Table 1. Parameters setting for the DE algorithms.

Parameters Values

Dimension of each functions (D) 30 and 50
Population size (NP) 100
External archive size 100
Independent number of runs 30
Maximum number of evaluations 104 � D
Candidate set of Limit (S) {30, 40, 50}

Table 2. Results of the single- and multi-problem Wilcoxon’s test for PREA-DE versus the
original DE algorithms for the CEC2013 functions at 30D.

PREA-DE vs +/=/− R+ R− p-value a ¼ 0:05 a ¼ 0:1

DE/rand/1 15/13/0 334.0 44.0 0.000 Yes Yes
DE/rand/2 22/6/0 385.0 21.0 0.000 Yes Yes
DE/best/1 14/13/1 354.0 52.0 0.001 Yes Yes
DE/best/2 10/17/1 289.5 88.5 0.015 Yes Yes
DE/current-to-best/1 15/13/0 355.5 50.5 0.000 Yes Yes
DE/rand-to-best/1 16/11/1 345.5 32.5 0.000 Yes Yes

Differential Evolution with Proximity-Based Replacement Strategy 83

Further, according to the results of the multi-problem Wilcoxon signed-rank tests,
PREA-DE can obtain higher R+ values than R− values in all the cases, and all the
p values in Tables 2 and 3 are less than 0.05, which indicates that PREA-DE is
significantly better than its corresponding DE algorithm overall. In addition, Fig. 1
shows that PREA-DE is better than the corresponding original DE algorithms in terms
of the convergence speed for selected functions.

Table 3. Results of the single- and multi-problem Wilcoxon’s test for PREA-DE versus the
original DE algorithms for the CEC2013 functions at 50D.

PREA-DE vs +/=/− R+ R− p-value a ¼ 0:05 a ¼ 0:1

DE/rand/1 14/13/1 278.0 100.0 0.010 Yes Yes
DE/rand/2 21/7/0 376.5 1.5 0.000 Yes Yes
DE/best/1 18/10/0 359.0 19.0 0.000 Yes Yes
DE/best/2 7/21/0 323.0 83.0 0.006 Yes Yes
DE/current-to-best/1 16/12/0 358.0 20.0 0.000 Yes Yes
DE/rand-to-best/1 16/10/2 342.0 36.0 0.000 Yes Yes

(a) (b)

(c) (d)

0 500 1000 1500 2000 2500 3000

0

200

400

600

800

1000

so
lu

tio
n

er
ro

r

Generations

DE/rand/1
PREA-DE/rand/1
DE/rand/2
PREA-DE/rand/2
DE/best/1
PREA-DE/best/1
DE/best/2
PREA-DE/best/2
DE/current_to_best/1
PREA-DE/current_to_best/1
DE/rand_to_best/1
PREA-DE/rand_to_best/1

0 500 1000 1500 2000 2500 3000

0

20000

40000

60000

80000

100000

so
lu

tio
n

er
ro

r

Generations

DE/rand/1
 PREA-DE/rand/1
DE/rand/2

 PREA-DE/rand/2
DE/best/1

 PREA-DE/best/1
DE/best/2

 PREA-DE/best/2
DE_current_to_best_1
PREA-DE/current_to_best/1
DE_rand_to_best_1
PREA-DE/rand_to_best/1

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

2500

3000

so
lu

tio
n

er
ro

r

Generations

DE/rand/1
PREA-DE/rand/1
DE/rand/2
PREA-DE/rand/2
DE/best/1
PREA-DE/best/1
DE/best/2
PREA-DE/best/2
DE/current_to_best/1
PREA-DE/current_to_best/1
DE/rand_to_best/1
PREA-DE/rand_to_best/1

0 1000 2000 3000 4000 5000
-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

so
lu

tio
ns

 e
rro

r

Generations

DE/rand/1
 PREA-DE/rand/1
DE/rand/2

 PREA-DE/rand/2
DE/best/1

 PREA-DE/best/1
DE/best/2

 PREA-DE/best/2
DE/current_to_best/1
PREA-DE/current_to_best/1
DE/rand_to_best/1
PREA-DE/rand_to_best/1

Fig. 1. Convergence graphs of PREA-DE and the corresponding original DE algorithms for the
selected functions. (a) F4, 30D. (b) F6, 30D. (c) F4, 50D. (d) F6, 50D.

84 C. Shao et al.

In summary, the overall results of Tables 2, 3 and Fig. 1 clearly show that PREA-
DE can bring benefits to the original DE algorithms.

4.3 Effect on Advanced DE Variants

To further evaluate the effectiveness of proposed framework, PREA-DE is compared
with the several advanced DE variants, including jDE [16], CoDE [17], SaDE [18],
ODE [19], JADE [5], SHADE [6] and MDEpBX [20]. For a fair comparison, all the
parameters of them are kept the same as their original paper except NP in CoDE and
SaDE that is set to 100 in this study. The statistics summarizing the performance
comparisons are shown in Tables 4 and 5, respectively. Besides, the convergence
graphs for F4 and F15 re plotted in Fig. 2.

From Tables 4 and 5, PREA-DE can obtain significantly better results than most
DE variants on the test functions. Specifically, PREA-DE is significantly better than the
corresponding jDE, CoDE, SaDE, ODE, JADE, SHADE and MDEpBX on 15, 24, 17,
13, 11, 11 and 14 test functions at 30D, respectively, and on 13, 24, 19, 17, 10, 11 and
14 test functions at 50D, respectively.

Table 4. Results of the single- and multi-problem Wilcoxon’s test for PREA-DE versus the
advanced DE variants for the CEC2013 functions at 30D.

PREA-DE vs +/=/− R+ R− p-value a ¼ 0:05 a ¼ 0:1

jDE 15/7/6 264.5 113.5 0.068 No Yes
CoDE 24/4/0 373.5 4.5 0.000 Yes Yes
SaDE 17/11/0 338.5 39.5 0.000 Yes Yes
ODE 13/14/1 333.5 44.5 0.000 Yes Yes
JADE 11/12/5 228.0 150.0 0.343 No No
SHADE 11/10/7 251.5 126.5 0.130 No No
MDEpBX 14/13/1 343.0 35.0 0.000 Yes Yes

Table 5. Results of the single- and multi-problem Wilcoxon’s test for PREA-DE versus the
advanced DE variants for the CEC2013 functions at 50D.

PREA-DE vs +/=/− R+ R− p-value a ¼ 0:05 a ¼ 0:1

jDE 13/11/4 260.0 118.0 0.086 No Yes
CoDE 24/4/0 401.5 4.5 0.000 Yes Yes
SaDE 19/9/0 367.5 38.5 0.000 Yes Yes
ODE 17/11/0 365.0 41.0 0.000 Yes Yes
JADE 10/15/3 269.0 109.0 0.052 No Yes
SHADE 11/13/4 230.0 148.0 0.318 No No
MDEpBX 14/13/1 352.5 53.5 0.001 Yes Yes

Differential Evolution with Proximity-Based Replacement Strategy 85

Based on the multi-problem Wilcoxon signed-rank tests, PREA-DE obtains the
higher R+ values than R− values in all the cases. In addition, the p values are less than
0.05 in four cases. Moreover, Fig. 2 show that PREA-DE is superior to the corre-
sponding advanced DE variant on the selected function.

In general, PREA-DE can provide an efficient way to further enhance the perfo-
mance of advanced DE algorithms on the test functions.

4.4 Comparison with DE with a Crowding Scheme (CrowdingDE)

Thomsen proposed a DE algorithm with a crowding scheme, named CrowdingDE [10].
In CrowdingDE, the similarity between individuals is measured by the Euclidean
distance, and each trial vector only replaces the parent vector that is most similar to it
and worse than it. In this section, PREA-DE is compared with CrowdingDE to prove
the effectiveness of the proposed PRS. For a fair comparison, the EAM in Sect. 3.2 is
also added to CrowdingDE, and the crowding factor in CrowdingDE is chosen to be
equal to NP, as their original paper [10]. The experimental are carried out on the
CEC13 test function at 30D, and three DE algorithms (DE/rand/1, DE/rand/2 and
DE/best/2) and two advance DE variants (jDE [16] and ODE [19]) are used. The results

(a) (b)

(c) (d)

0 500 1000 1500 2000 2500 3000
-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

so
lu

tio
n

er
ro

r

Generations

 jDE
 PREA-jDE
 CoDE
 PREA-CoDE
 SaDE
 PREA-SaDE
 ODE
 PREA-ODE
 JADE
 PREA-JADE
 SHADE
 PREA-SHADE
 MDEpBX
 PREA-MDEpBX

0 500 1000 1500 2000 2500 3000
2000

3000

4000

5000

6000

7000

8000

9000

10000

so
lu

tio
n

er
ro

r

Generations

 jDE
 PREA-jDE
 CoDE
 PREA-CoDE
 SaDE
 PREA-SaDE
 ODE
 PREA-ODE
 JADE
 PREA-JADE
 SHADE
 PREA-SHADE
 MDEpBX
 PREA-MDEpBX

0 1000 2000 3000 4000 5000

0

50000

100000

150000

200000

so
lu

tio
n

er
ro

r

Generations

 jDE
 PREA-jDE
 CoDE
 PREA-CoDE
 SaDE
 PREA-SaDE
 ODE
 PREA-ODE
 JADE
 PREA-JADE
 SHADE
 PREA-SHADE
 MDEpBX
 PREA-MDEpBX

0 1000 2000 3000 4000 5000

6000

8000

10000

12000

14000

16000

18000

so
lu

tio
n

er
ro

r

Generations

 jDE
 PREA-jDE
 CoDE
 PREA-CoDE
 SaDE
 PREA-SaDE
 ODE
 PREA-ODE
 JADE
 PREA-JADE
 SHADE
 PREA-SHADE
 MDEpBX
 PREA-MDEpBX

Fig. 2. Convergence graphs of PREA-DE and the corresponding advanced DE algorithms for
the selected functions. (a) F4, 30D. (b) F15, 30D. (c) F4, 50D. (d) F15, 50D.

86 C. Shao et al.

are shown in Table 6, and the convergence graphs for four selected functions are
plotted in Fig. 3.

From Table 6, PREA-DE can obtain better results than the CrowdingDE variants in
all the cases. Specifically, PREA-DE is significantly better than the corresponding
CrowdingDE variants on 26, 23, 22, 17 and 22 test functions, respectively. According
to the results of the multi-problem Wilcoxon signed-rank tests, PREA-DE can obtain

Table 6. Results of the single- and multi-problem Wilcoxon’s test for PREA-DE versus
CrowdingDE for the CEC2013 functions at 30D.

PREA-DE vs +/ = /− R+ R− p-value a ¼ 0:05 a ¼ 0:1

CrowdingDE/rand/1 26/2/0 378.0 0.0 0.000 Yes Yes
CrowdingDE/rand/2 23/5/0 370.0 7.5 0.000 Yes Yes
CrowdingDE/best/2 22/5/1 374.0 32.0 0.000 Yes Yes
Crowding jDE 17/7/4 317.0 89.0 0.009 Yes Yes
Crowding ODE 22/5/1 372.0 6.0 0.000 Yes Yes

(a) (b)

(c) (d)

0 500 1000 1500 2000 2500 3000

0

20000

40000

60000

80000

100000

so
lu

tio
n

er
ro

r

Generations

CrowdingDE/rand/1
PREA-DE/rand/1
CrowdingDE/rand/2
PREA-DE/rand/2
CrowdingDE/best/2
PREA-DE/best/2
CrowdingjDE
PREA-jDE
CrowdingODE
PREA-ODE

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

so
lu

tio
n

er
ro

r

Generations

CrowdingDE/rand/1
 PREA-DE/rand/1
CrowdingDE/rand/2
 PREA-DE/rand/2
CrowdingDE/best/2
 PREA-DE/best/2
CrowdingjDE
 PREA-jDE
CrowdingODE
 PREA-ODE

0 500 1000 1500 2000 2500 3000

0

100

200

300

400

so
lu

tio
n

er
ro

r

Generations

CrowdingDE/rand/1
PREA-DE/rand/1
CrowdingDE/rand/2
PREA-DE/rand/2
CrowdingDE/best/2
PREA-DE/best/2
CrowdingjDE
PREA-jDE
CrowdingODE
PREA-ODE

0 500 1000 1500 2000 2500 3000

0

2000

4000

6000

8000

10000

so
lu

tio
n

er
ro

r

Generations

CrowdingDE/rand/1
PREA-DE/rand/1
CrowdingDE/rand/2
PREA-DE/rand/2
CrowdingDE/best/2
PREA-DE/best/2
CrowdingjDE
PREA-jDE
CrowdingODE
PREA-ODE

Fig. 3. Convergence graphs of PREA-DE and CrowdingDE for the selected functions. (a) F4,
30D. (b) F6, 30D. (c) F11, 30D. (d) F22, 30D.

Differential Evolution with Proximity-Based Replacement Strategy 87

higher R+ values than R− values in all cases. Besides, the p values are less than 0.05
and 0.1 in all cases. Figure 3 also shows that PREA-DE is better than most corre-
sponding CrowdingDE in terms of the convergence rate for selected functions. These
results demonstrate that PREA-DE is significantly better than the CrowdingDE algo-
rithms in all cases overall for the test functions.

5 Conclusion

To improve the ability of DE in exploiting the information of the trail vectors generated
during the evolutionary process, a proximity-based replacement strategy (PRS) and an
elite archive mechanism (EAM) is proposed for DE. On the one hand, for each trial
vector that fails to replace its parent, PRS will find the first parent vector in current
population that satisfies the condition based on the distance information and replace it
with the trial vector. On the other hand, the vectors that successfully replace the parent
vectors in the selection operator and PRS will be stored in an external archive, and
some of the start point of the difference vector are selected from the combination of
current population and external archive to construct the negative direction information.
By combining PRS, EAM and DE, the resultant algorithm, PREA-DE, is proposed.
The proposed PREA-DE algorithm is applied to the original DE algorithms and
advanced DE variants to evaluate its effectiveness. The experimental study on
CEC2013 benchmark functions is carried out to evaluate the effectiveness of PREA-
DE. The results show that PREA-DE can effectively enhance the performance of most
DE variants studied.

Acknowledgement. This work was supported in part by the Natural Science Foundation of
Fujian Province of China (2018J01091, 2015J01258) and the Postgraduate Scientific Research
Innovation Ability Training Plan Funding Projects of Huaqiao University (1611414011), and the
Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun
Yat-sen University

References

1. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

2. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans.
Evol. Comput. 15, 4–31 (2011)

3. Cui, L., Li, G., Lin, Q., Chen, J., Lu, N.: Adaptive differential evolution algorithm with
novel mutation strategies in multiple sub-populations. Inf. Technol. Inf. 67, 155–173 (2015)

4. Yu, W.J., Shen, M., Chen, W.N., Zhan, Z.H., Gong, Y.J., Lin, Y., et al.: Differential
evolution with two-level parameter adaptation. IEEE Trans. Cybern. 44(7), 1080–1099
(2014)

5. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external
archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)

6. Tanabe, R., Fukunaga, A.: Evaluating the performance of SHADE on CEC 2013 benchmark
problems. In: Evolutionary Computation, pp. 1952–1959. IEEE (2013)

88 C. Shao et al.

7. Tian, M., Gao, X.: An improved differential evolution with information intercrossing and
sharing mechanism for numerical optimization. Swarm Evol. Comput. (2018, in press).
https://doi.org/10.1016/j.swevo.2017.12.010

8. Wu, G., Mallipeddi, R., Suganthan, P.N., Wang, R., Chen, H.: Differential evolution with
multi-population based ensemble of mutation strategies. Inf. Sci. 329, 329–345 (2016)

9. Tang, B., Zhu, Z., Luo, J.: Hybridizing particle swarm optimization and differential
evolution for the mobile robot global path planning. Int. J. Adv. Robot. Syst. 13(3), 1 (2016)

10. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In:
IEEE Congress on Evolutionary Computation, CEC2004, vol. 2, pp. 1382–1389 (2004)

11. Li, X.: Efficient differential evolution using speciation for multimodal function optimization.
In: Conference on Genetic and Evolutionary Computation, pp. 873–880. ACM (2005)

12. Guo, J., Li, Z., Yang, S.: Accelerating differential evolution based on a subset-to-subset
survivor selection operator. Soft Comput., 1–18 (2018, in press). https://doi.org/10.1007/
s00500-018-3060-x

13. Liang, J., Qu, B., Suganthan, P., Hernández-Díaz, A.: Problem definitions and evaluation
criteria for the CEC 2013 special session on real-parameter optimization. Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Techno-
logical University, Singapore, Technical Report, 201212 (2013)

14. Lin, C., Qing, A., Feng, Q.: A comparative study of crossover in differential evolution.
J. Heuristics 17(6), 675–703 (2011)

15. Jesus, M.J.D., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., et al.: Keel: a
software tool to assess evolutionary algorithms for data mining problems. Soft. Comput. 13
(3), 307–318 (2009)

16. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters
in differential evolution: a comparative study on numerical benchmark problems. IEEE
Trans. Evol. Comput. 10(6), 646–657 (2006)

17. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation
strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

18. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417
(2009)

19. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-based differential evolution.
IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)

20. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution
algorithm with novel mutation and crossover strategies for global numerical optimization.
IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 482–500 (2012)

Differential Evolution with Proximity-Based Replacement Strategy 89

http://dx.doi.org/10.1016/j.swevo.2017.12.010
http://dx.doi.org/10.1007/s00500-018-3060-x
http://dx.doi.org/10.1007/s00500-018-3060-x

NESTLE: Incentive Mechanism
Specialized for Computation Offloading

in Local Edge Community

Yinan Li, Jigang Wu(B), and Long Chen

Guangdong University of Technology, Guangzhou 510006, Guangdong, China
liyinan940716@foxmail.com, asjgwucn@outlook.com, lonchen@mail.ustc.edu.cn

Abstract. Mobile Edge Computing focuses on the use of local edge
devices in the community for task intensive mobile devices. This paper,
we propose an incentive mechanism, including a bidding mechanism and
a resource allocation scheme by solving the mixed integer programming
which is NP-hard using auction. By considering the heterogeneous pref-
erences of resources of task intensive mobile users, we offload independent
tasks to local edge devices. We theoretically prove the economy properties
of the proposed schemes such as individual rationality, budget balance
and truthfulness. Simulation results show the proposed incentive mecha-
nism is 36.27% higher than the exciting multi-round auction mechanism
on total utility and 91.68% higher on allocation efficiency averagely.

Keywords: Mobile edge computing · Incentive
Heterogeneous preferences · Local edge community

1 Introduction

The recent tremendous growth of various wireless devices such as smart phones,
wearable devices and IoT devices has brought the challenge in wireless networks
systems. It is reported int Visual Networking Index that the data traffic will
increase 8-fold from 2016 to 2021. However, due to the constraints of storage
and computation capacities, many applications can not be performed locally,
such as mobile games, and some image processing [9], this issue has become the
main challenge [11]. The cloud computing can be a solution of the limitations
[3]. However, despite the potential in data storage and analytics, cloud comput-
ing cannot fulfill the growing application requirements such as low latency and
context awareness, European Telecommunications Standards Institute (ETSI)
proposed the Mobile Edge Computing (MEC) [12]. MEC can provide cloud and
IT services to user in the vicinity of the user, by setting up MEC servers at
the edge of cellular networks [2]. When the MEC server is busy, the LEC can
help to offload computation to end devices. Therefore, in this paper we focus
on computation offloading in the third architecture. In the literature, authors
in [24] proposed an offloading mechanism with trade-off between energy con-
sumption and the amount of offloaded tasks. However, the mechanism didn’t
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 90–104, 2018.
https://doi.org/10.1007/978-3-030-05054-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_7

NESTLE: Incentive Mechanism Specialized for Computation Offloading 91

consider subtasks in an application. That means when resources of provider can
not meet the requirements of whole application, all independent subtasks of it
will not be executed. The resource utilization of resources and completion rate
of applications can not be improved. Authors in [8] proposed a combinational
task offloading mechanism. They improved the offloading efficiency by a three-
layer graph matching algorithm. However, this work did not include an incentive
mechanism to encourage more devices participate in providing services to others.

To stimulate both sellers and buyers participating in computation offload-
ing, there have been some incentive based schemes. Authors in [6] proposed an
offloading mechanism with task dependency constraint in mobile edge comput-
ing. This mechanism saved energy and enhanced computation capability by coop-
eration between fog nodes and the remote cloud. However, they fail to address the
computing capability constraints of service providers. Authors in [25] proposed
a group-buying mechanism based on a three-stage auction. They maximized the
total system utility by combining cloudlet placement and resource allocation.
However, the work didn’t consider the subtasks in the application.

In this paper, we mainly consider designing an incentive mechanism to
encourage the computation offloading of applications’ subtasks in LEC. However,
there are some challenges. (i) Which way should an application be offloaded to
end devices? (ii) Which end device should the application be offloaded to? (iii)
How to encourage more end devices to participate in resources communication?

In order to answer the above questions, we focus on the case where subtasks
of applications can be offloaded to end devices in the LEC. First of all, there are
many independent subtasks in an application and the subtask can be offloaded
and computed in parallel. Secondly, applications have heterogeneous preferences
for each end device. Different computing abilities of end devices will affect the
selection of applications. Third, we should guarantee the utility of participants
to encourage communication between applications and end devices, rather than
moving subtasks of applications to the remote cloud. In this paper, we propose
an iNcentive mEchanism Specialized for compuTation offLoading in local Edge
community (NESTLE) that taking into account the computing abilities of end
devices. And the target of this mechanism is offloading subtasks of application
to end devices and maximizing the utility for both sides.

The main contributions of this paper can be summarized as follows:

• With different computing abilities of different end devices, we add hetero-
geneous preferences to the process of bidding that applications can make
different bids for different end devices based on their computing abilities.

• Theoretical analysis proves that the proposed mechanism can achieve indi-
vidual rationality, budget balance and truthfulness. And extensive simulation
results demonstrate that the mechanism we proposed outperforms the excit-
ing multi-round auction mechanism by about 36.27% on total utility and
91.68% on allocation efficiency averagely.

92 Y. Li et al.

The rest of this paper is organized as follows. Section 2 introduces related
work for computation offloading in MEC. Section 3 presents the system model
and describes the problem formulation. The algorithm of incentive mechanism is
described in Sect. 4. Simulation results are shown in Sect. 5. In Sect. 6 concludes
this paper.

2 Related Work

With the increasing demands of computing resources for applications, many com-
putation offloading methods have been proposed. Authors in [14] proposed one
offline centralized mechanism and one online distributed mechanism to offload
computation tasks. However, the incentive mechanism was not be considered.
Authors in [16] proposed a semi-distributed computation offloading mechanism
that jointly optimizes the offloading decision. However, the algorithm didn’t con-
sider the subtasks of user. In our work, computation offloading is considered for
the independent subtasks application. Subtasks of an application can be pro-
vided with computing resources by multiple end devices, and an end device can
also serve multiple applications. Such a many-to-many allocation method can
improve the utilization of the end device resources.

On the other hand, the end devices which have idle computing resources
always exists. Many offloading methods based on incentive mechanism have
been proposed. Authors in [5,21] proposed cloud resources allocation mecha-
nisms based on game theory to maximize the utility. However, there was only
one resources provider in these mechanisms, and in [21] the tasks were indivisible.
Authors in [13] proposed a auction mechanism based on Lyapunov optimization
techniques. They maximize the system utility by dynamic getting requirements
of user. Authors in [23] proposed a computation offloading mechanism based on
combinational auction to meet the heterogeneous demands of users in MEC. And
authors in [7] proposed a computation offloading mechanism based on a two-stage
auction model to maximize total system utility. Although incentive mechanisms
were introduced in [7,13,23], subtasks in application were still not considered.
The resource utilization of resources and completion rate of applications can
not be improved by these mechanisms. Authors in [15] presented a coopera-
tive tasks execution mechanism based on cooperative crowd-sourcing auction
to encourage more users participating mobile crowd-sourcing and cooperating
with other users. Authors in [20] proposed a task execution mechanism based
on game theory. They encourage more devices providing their idle resources by
dynamic pricing. However, [15,20] didn’t fully consider the effects of resource
providers’ different computing abilities on total utility and user preferences. In
the computation offloading mechanism we proposed, benefits can be achieved for
all participants. At same time we took into account the computing abilities of the
end devices, such as the CPU clock period and the data transmission efficiency
of the end device. Thus, the total utility and applications’ bids for different end
devices will be affected by the ability when purchase resources.

NESTLE: Incentive Mechanism Specialized for Computation Offloading 93

3 System Model and Problem Formulation

3.1 System Model

In this work, devices or users that need computation resources are buyer and
for those who possess idle or abundant resources are seller. The base sta-
tions participate the allocation is the auctioneer. When there are applications
need to be executed, buyers and sellers will send their bids to the auctioneer
respectively. Then auctioneer collects all information which include valuations
and amount of resources that buyers require and sellers provide. According to
the information and the predefined incentive mechanism, auctioneer determines
the winning applications and the amount of payments to the sellers. Finally,
the subtasks can’t be executed by end devices will be offloaded to the edge
server.

We consider an LEC scenario with N applications and M end devices. The n
applications in T = {T1, T2, · · · , Tn} need to be offloaded to end devices for exe-
cution and one application consists of several independent subtasks. We assume
that there are K subtasks in one application, the set of subtasks is denoted by Ti

and Ti = {ti(1), ti(2), · · · .ti(k)}. Let ri(k) be the requested number of resources for
subtask ti(k). We consider that there are m end devices in D = {d1, d2, · · · , dm}
participate in computation offloading. Each of the end devices is equipped with
limited computational resources. Without loss of generality, we assume there are
many kinds of resources required to complete the subtasks, e.g., CPU, memory,
battery, etc. For end devices, each bid in S = {S1, S2, · · · , Sn} is submitted
to auctioneer before offloading subtasks. The bid Sj ∈ S can be specified as
(oj ,qj), oj denotes the maximum amount of resources end device dj can pro-
vide and qj denotes the true unit cost of resources produced by end device dj
when executing the application offloaded onto it. For applications, the bids in
B = {b1, b2, · · · , bn} can be specified as {< ri(1), ai(1) >,< ri(2), ai(2) >, · · · , <
ri(k), ai(k) >}, where ri(k) denotes the amount of resources for the subtask ti(k)
of application Ti required and ai(k) denotes the initial valuation that the applica-
tion Ti is willing to pay for subtask ti(k). Due to the heterogeneous preferences,
buyers will adjust their bids based on different computing capabilities of end
devices when bidding, so each valuation vi(k) of application Ti can be speci-
fied as {vi(k)1, vi(k)2, · · · , vi(k)m}, where vi(k)j denotes the valuation of subtask
ti(k).

For simplicity, we define an M ∗ N allocation matrix denoted by X. The
element xij in matrix X is defined as:

xij =

{
1, if device dj serves application Ti,

0, otherwise.
(1)

94 Y. Li et al.

3.2 Problem Formulation

From the definitions above, we can see that each subtask can get the demanded
resources from end devices, but considering the limitation of resources on each
end devices, we have the following constraint:

n∑
i=1

K∑
k=1

xijsi(k)j < oj , (2)

where si(k)j is the amount of resources allocated to the k-th subtask of applica-
tion Ti by end device dj . And oj is the maximum quantity of resources that the
end device dj can provide to applications.

And the final payment of an application can not be more than the valuation
the application willing to pay. Thus:

m∑
j=1

K∑
k=1

xijsi(k)jpij <

m∑
j=1

K∑
k=1

xijfi(k)j , (3)

which fi(k)j is the application Ti’s valuation for the subtask ti(k) when subtask
ti(k) is offloaded to end device dj . We define it as follows:

fi(k)j =

{
vi(k)j , if subtask ti(k)j is offloaded to device dj ,

0, otherwise.
(4)

For the final valuation vi(k)j of subtask, it is consist of base valuations and
abilities of end devices, the vi(k)j is then calculated as:

vi(k)j = ai(k) + k1
wj

Ceffj
+ k2

ri(k)j

Deffj
, (5)

where k1 is set to be 10−6 and k2 is set to be 10−5 [17]. And wj denotes the
workload of end device dj , Deffj and Ceffj denote device specific data transfer
and computing efficiencies respectively.

Let pij denote the final unit trade price that applications Ti pay for end
device dj . Then, for each application Ti, it’s utility can be given by:

ui =
m∑
j=1

K∑
k=1

xij(fi(k)j − si(k)jpij). (6)

The utility of end device dj , gained from selling resources can be given by:

uj =
n∑

i=1

K∑
k=1

xijsi(k)j(pij − qj), (7)

which is the final utility end device get by executing subtasks for others.

NESTLE: Incentive Mechanism Specialized for Computation Offloading 95

Hence, sharing of resources of end devices for task offloading becomes a sys-
tem utility maximization problem. We formulate the problem as follows:

max
n∑

i=1

ui +
m∑
j=1

uj (8)

s.t.

n∑
i=1

K∑
k=1

xijsi(k)j < oj ,∀1 ≤ i ≤ n, 1 ≤ k ≤ K, (9)

m∑
j=1

K∑
k=1

xijsi(k)jpij <

m∑
j=1

K∑
k=1

xijfi(k)j ,∀1 ≤ j ≤ m, 1 ≤ k ≤ K, (10)

xij ∈ {0, 1},∀1 ≤ i ≤ n, 1 ≤ j ≤ m. (11)

Equation (8) is the final optimization target. The constraint in (9) denotes
that the overall amount of resources allocated by end device dj is no more than
the maximum quantity oj . The constraint in (10) denotes that the overall amount
of payment by application Ti is no more than the maximum valuation it willing
to pay. The constraint in (11) is the binary constraint.

According to [10,18], we can see that the winning bids determination problem
of the proposed incentive mechanism is NP-hard just as similar as 0–1 Knapsack
problem.

3.3 Economic Properties

The goal of our work is to design an efficient mechanism to solve the above prob-
lems. The designed mechanism should satisfy the following economic properties:

1. Individual rationality: Individual rationality means that no winner’s utility
is negative, i.e., ui ≥ 0, uj ≥ 0, for ∀ti ∈ T, di ∈ D. For each participant, this
is the most basic condition for participation.

2. Budget balance: For an fair incentive mechanism, the total payment of
users is no less than the total price charged by providers. It means the utility
of auctioneer is negative, auctioneer doesn’t pay extra surplus.

3. Truthfulness: An incentive mechanism is truthful if the bid submitted by
each participator is the truthful value.

In the next section, we proposed the NESTLE algorithm to solve the above
problems.

4 Incentive Mechanism

In this section, we design a NESTLE algorithm based on a greedy strategy to
solve the NP-hard problem proposed above, i.e., the winning bids determination
problem. Then, we analyze the properties of the proposed NESTLE algorithm.

96 Y. Li et al.

4.1 Resource Allocation and Pricing Algorithm

First, auctioneer collects each bid from all applications and end devices. Then,
the auctioneer calculates the bid density of each application on each end
device, i.e.,

bdij =

n∑
i=1

vi(k)j

n∑
i=1

ri(k)

, ∀1 ≤ i ≤ n,∀1 ≤ j ≤ m, 1 ≤ k ≤ K. (12)

Then we use pij to denote the final trade unit price, when subtasks of
application Ti is allocated to end device dj . Similar to [22], the value of pij is
calculated as

pij =
qj + bdij

2
. (13)

Due to the trade price, auctioneer will sort the difference between bid density
of buyer and unit price of the seller in descending order.

The difference between bid density of applications and unit price of end
devices are sorted in descending order. That means to the same end device, the
higher the valuation that application is willing to pay, the higher the rate that
subtasks in the application are executed. And to the same end device, the lower
the unit price of resources, the higher the rate that the end device gets subtasks
to execute.

The next step is to allocate subtasks of applications to end devices. For
each application Ti and end device di in the queue that has been prioritized,
if the difference between bid density of application Ti and unit price of end
device di is positive, the allocation will start. If the resource requirements ri(k)
of the subtasks ti(k) is less than the resource quantity oj and the application’s
payment does not exceed it’s valuation, the subtask ti(k) will be offloaded to the
end device dj . If the current end device dj can not satisfy the subtask ti(k), the
end device will match the next subtask and the subtask will match the next end
device. When all the requirements of the application are satisfied or the resources
of the end device are insufficient, the searching and matching procedure will
continue. The details of the above process of NESTLE algorithm are described
in Algorithm 1.

4.2 Theoretical Analysis

Now, we analyze the time complexity and economic properties of the NESTLE
algorithm mentioned above. The properties include: individual rationality, bud-
get balance and truthfulness.

Theorem 1. The time complexity of NESTLE algorithm is O(nm).

Proof. For Algorithm 1, the complexity for sorting the bid density is O(nm),
and the resources allocation phase is O(nmK). Therefore, the complexity of
algorithm 1 is O(nm), when n >> K and m >> K. Therefore NESTLE algo-
rithm can be completed in polynomial time.

NESTLE: Incentive Mechanism Specialized for Computation Offloading 97

Algorithm 1. NESTLE algorithm
Input :

M : the number of end devices;

N : the number of applications;

K : the number of subtasks;

Output:

C : the charges for applications;

F : the payments to end devices;

1 Phase 1: Order the applications and end devices

2 E ← ∅
3 for i = 1 to n do

4 for j = 1 to m do

5 bdij =
∑K

k=1 vi(k)j/
∑K

k=1 ri(k)

6 end

7 end

8 for i = 1 to n do

9 for j = 1 to m do

10 eij = bdij − qj
11 E = E ∪ eij

12 end

13 end

14 Sort eij ∈ E in descending order

15 Phase 2: Allocate the applications

16 Xn∗m ← ∅
17 D ← ∅
18 for ∀eij ∈ E do

19 if eij < 0 then

20 continue

21 end

22 for k = 1 to K do

23 if ri(k) > oj ||Di + cost > valuation then

24 continue

25 end

26 oj = oj − ri(k)

27 Di = Di + cost

28 si(k)j = ri(k)

29 Xij ← 1

30 end

31 end

32 Phase 3: Calculate the charges and payments

33 P ← ∅
34 for j = 1 to m do

35 for k = 1 to K do

36 pj =
m∑

j=1

K∑

k=1
Xijsi(k)jpij

37 F ← F ∪ pj

38 end

39 end

40 C ← ∅
41 for i = 1 to n do

42 for k = 1 to K do

43 cj =
n∑

i=1

K∑

k=1
Xijsi(k)jpij

44 C ← C ∪ cj

45 end

46 end

98 Y. Li et al.

Theorem 2. The participants in the proposed schemes are individual rational.

Proof. For winner of applications: if the subtasks ti(k) is allocated to device dj
successfully, the payment it willing to pay is:

ci(k) = vi(k)j = ri(k)bdij . (14)

The pij is the unite trade price between application Ti and end device dj . Accord-
ing to the algorithm process, the actual payment ĉi(k) is:

ĉi(k) = ri(k)pij . (15)

When the allocation is successful, the transaction price is lower than the expected
payment price, i.e., ĉi(k) ≤ ci(k). Hence, the applications’ individual rationality
is guaranteed.

For winner of end devices: if an end device is allocated subtasks. The payment
it expects is:

yj =
m∑
j=1

K∑
k=1

xijsi(k)jqj . (16)

And the final actual transaction price is:

ŷj =
m∑
j=1

K∑
k=1

xijsi(k)jpij . (17)

When allocation is successful, it’s actual charge is more than it’s valuation, i.e.,
yj < ŷj , otherwise the subtask won’t be allocated to it.

Theorem 3. The incentive mechanism proposed is budget balance. For auction-
eer, the payment of applications is no less than the charge of end devices.

Proof. In the proposed incentive mechanism, according to the Eqs. (15) and
(17), the relation between charge and payment is:

ŷj =
n∑

i=1

K∑
k=1

xij ĉi(k). (18)

We can see that the total charge ŷj of an end device is equal to the amount
of the payment ĉi(k) of subtasks allocated to the end device. Hence, the budget
balance is also guaranteed.

Theorem 4. The incentive mechanism proposed above is truthful.

Proof. We prove the truthfulness from respects of applications and end devices.

NESTLE: Incentive Mechanism Specialized for Computation Offloading 99

For applications, there are two cases as follows:

Case 1. We assume that an application Ti is allocated resources. If the appli-
cation Ti bids an higher bid, the application task will pay more for getting
the same service. If the application Ti bids an lower bid, the subtasks of it
still be not executed.
Case 2. We assume that a task Ti isn’t allocated resources. if the task ti bids
an higher bid, task may either pay more for getting the same service or still
be not executed. If the task ti bids an lower bid, the task still be not executed.

For end devices, there are two cases as follows:

Case 1. We assume that an end device dj is allocated subtasks. If the end
device dj bids an lower bid, the end device may get charge less than it’s cost
of executing subtasks. If the end device dj bids an higher bid, it may not be
allocated subtasks.
Case 2. We assume that an end device dj isn’t allocated subtasks. If the end
device dj bids an lower bid, the end device may either get charge less than
it’s cost of executing subtasks or get no subtasks. If the end device dj bids
an higher bid, it still be not allocated subtasks.

5 Simulation Results

In this section, we conduct extensive simulation experiments to evaluate the
performance of the proposed incentive mechanism. The criteria we evaluated are:
(i) utility, which is the sum utility of applications and end devices, (ii) satisfaction
ratio, which is the percentage between the amount of allocated subtasks and the
amount of all subtasks and (iii) allocation efficiency, which is the proportion
between the number of utilized resources and the number of all resources.

5.1 Methodology

To better illustrate the performance of the proposed NESTLE algorithm, in this
paper, one contrast experiments i.e., WBD [19], are added. WBD here achieves
subtasks allocation by a multi-round homogeneous task allocation mechanism.

We evaluate the proposed algorithm by implementing it on matlab 2017a [1].
In the simulation process, we assume that there are at most 900 applications to
be allocated and at most 35 end devices to provide resources [4]. We take the
average value of each data after running the program for 1000 times.

5.2 Simulation Setting

We evaluate the proposed algorithm with random bids behaviors. To generate
applications’ bids, we assume that the resource demand for each subtask of the
application is randomly generated from 0 to 5 [4]. The value of applications’
bid is randomly generated in [1, 5.5]. And we assume there are 3 subtasks in

100 Y. Li et al.

each application. To generate end devices’ bid, we assume that the amount of
resources end device can provide is a random number that does not exceed
1000, and the unit price of the resources is randomly selected from [0, 1]. For
end devices, the workload is randomly generated in [100, 1000], the computing
efficiencies is randomly generated in [400, 500] and the data transfer efficiencies
randomly generated from 300 to 400 [17].

5.3 Simulation Results

First, we examine the impact of both the numbers of applications and end devices
on total utility of NESTLE and WBD. Figure 1 shows the relationships between
the number of end devices and the total utility, when number of end devices
is fixed at n = 500 and the ratio between the number of end devices and the
number of one application’s subtask is fixed at 5. For ease of understanding, we
divide the total utility into 100 units in the figure. It is shown in Fig. 1 that
the total utility increases with increasing number of end devices. As we can see,
the utility of NESTLE increase faster than WBD. That is because that with
the number of end devices increasing, more subtasks are executed, at the same
time subtasks will be served by devices with better computing abilities. That
will improve the valuation of application and the utility. Since WBD can not
allocate the subtasks with higher utility preferentially all the time, the increase
of it’s utility is not obvious. As we can see, on average, NESTLE outperforms
WBD by about 35.64%.

5 10 15 20 25 30 35

Number of End Devices

5

10

15

20

25

30

35

T
ot

al
 U

til
ity

NESTLE
WBD

Fig. 1. Total utility with number of end
devices

100 200 300 400 500 600 700 800 900

Number of Applications

2

4

6

8

10

12

14

T
ot

al
 U

til
ity

NESTLE
WBD

Fig. 2. Total utility with number of
applications

Figure 2 shows the total utility versus the number of applications when the
number of end devices is fixed at m = 5. As we can see, the total utility grows
with increasing number of applications. This happens due to the fact that more
applications participated cause that more subtasks are executed, then the total
utilities are improved. Clearly, the total utility of NESTLE algorithm is higher
than WBD. On average, NESTLE outperforms WBD by about 36.9%.

NESTLE: Incentive Mechanism Specialized for Computation Offloading 101

Then, Fig. 3 compares the satisfaction ratio and the number of applications
generated by WBD. As we can see, larger number of applications will lead to
smaller satisfaction ratio. When the number of applications becomes larger, lim-
ited resources and the fact that only part of the subtasks can be served make
satisfaction ratio smaller. Because valuation of applications are effected by pref-
erence to end devices, the satisfaction ratio of NESTLE is much higher than
WBD when number of applications is small. With increasing number of appli-
cations, more subtask will be served and this effect will decrease. We can see in
Fig. 3 that the NESTLE has a significant advantage over WBD on satisfaction
ratio. On average, the NESTLE outperforms WBD by about 111.86% in terms
of satisfaction ratio.

100 200 300 400 500 600 700 800 900

Number of Applications

20

30

40

50

60

70

80

90

100

S
at

is
fa

ct
io

n
R

at
io

 (
%

)

NESTLE
WBD

Fig. 3. Satisfaction with number of
applications

5 10 15 20 25 30 35

Number of End Devices

10

20

30

40

50

60

70

80

90

A
llo

ca
tio

n
E

ffi
ci

en
cy

 (
%

)

NESTLE
WBD

Fig. 4. Total efficiency with number of
end devices

Figures 4 and 5 investigate the impact of both the number of applications and
the number of end devices on allocation efficiency generated by NESTLE and
WBD. Figure 4 shows the allocation efficiency versus the number of end devices
when the number of applications is fixed at n = 500. As we can see, in Fig. 4,

100 200 300 400 500 600 700 800 900

Number of Applications

10

20

30

40

50

60

70

80

90

A
llo

ca
tio

n
E

ffi
ci

en
cy

 (
%

)

NESTLE
WBD

Fig. 5. Total efficiency with number of applications

102 Y. Li et al.

the allocation efficiency decreases with increasing number of end devices. That
is because when the number of end devices becomes larger, most of application
requirements are met, then the percentage of utilized resources decreases. We
can get that on average, the allocation efficiency of NESTLE outperforms WBD
by about 102.19%.

Figure 5 shows the allocation efficiency versus the number of applications
when the number of end devices is fixed at m = 5. It is shown that the alloca-
tion efficiency of two algorithms increase with increasing number of applications.
When the number of applications is below 300, the allocation efficiency of NES-
TLE increases fast with the increasing number of applications. However when
the number of applications greater than 300, the allocation efficiency of NESTLE
reaches a constant value. That is because that with the constraint of price and
request, there always are some resources can not be used by each applications.
On average, NESTLE outperforms WBD by about 81.71%.

6 Conclusion

In this paper, we have considered independent subtasks of application alloca-
tion in LEC and have proposed an incentive mechanism. The proposed mecha-
nism has considered the heterogeneous preferences for the computing power of
end devices. Through theoretical analysis, we have proved the proposed mecha-
nism is individual-rational, truthful and budget-balanced. At the same time, we
have demonstrates that our mechanism is efficient and feasible by conducting
simulations.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China under Grant Nos. 61702115 and 61672171, Natural Science Foundation
of Guangdong, China under Grant No. 2018B030311007, and Major R&D Project of
Educational Commission of Guangdong under Grant No. 2016KZDXM052. This work
was also supported by China Postdoctoral Science Foundation Fund under Grant No.
2017M622632. The corresponding author is Jigang Wu (asjgwucn@outlook.com).

References

1. Mathworks releases release 2017a with matlab and simulink product lines. https://
ww2.mathworks.cn/company/newsroom/mathworks-announces-release-2017a-of-
the-matlab-and-simulink-pro. Accessed 6 Aug 2017

2. Ahmed, A., Ahmed, E.: A survey on mobile edge computing. In: International
Conference on Intelligent Systems and Control (2016)

3. Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource provisioning cost in
cloud computing. IEEE Trans. Serv. Comput. 5(2), 164–177 (2012)

4. Chen, L., Huang, L., Sun, Z., Xu, H.: Spectrum combinatorial double auction for
cognitive radio network with ubiquitous network resource providers. IET Commun.
9(17), 2085–2094 (2015)

5. Chen, L., Wu, J., Dai, H.N., Huang, X.: Brains: joint bandwidth-relay allocation
in multi-homing cooperative D2D networks. IEEE Trans. Veh. Technol. (2018).
https://doi.org/10.1109/TSC.2018.2792024

https://ww2.mathworks.cn/company/newsroom/mathworks-announces-release-2017a-of-the-matlab-and-simulink-pro
https://ww2.mathworks.cn/company/newsroom/mathworks-announces-release-2017a-of-the-matlab-and-simulink-pro
https://ww2.mathworks.cn/company/newsroom/mathworks-announces-release-2017a-of-the-matlab-and-simulink-pro
https://doi.org/10.1109/TSC.2018.2792024

NESTLE: Incentive Mechanism Specialized for Computation Offloading 103

6. Chen, L., Wu, J., Long, X., Zhang, Z.: ENGINE: cost effective offloading in mobile
edge computing with fog-cloud cooperation (2017)

7. Chen, L., Wu, J., Zhang, X.X., Zhou, G.: TARCO: two-stage auction for D2D
relay aided computation resource allocation in hetnet. IEEE Trans. Serv. Comput.
PP(99), 1 (2017)

8. Chen, X., Zhang, J.: When D2D meets cloud: Hybrid mobile task offloadings in
fog computing. In: IEEE International Conference on Communications, pp. 1–6
(2017)

9. Cuervo, E., et al.: MAUI: making smartphones last longer with code offload. In:
International Conference on Mobile Systems, Applications, and Services, pp. 49–62
(2010)

10. Dong, M., Sun, G., Wang, X., Zhang, Q.: Combinatorial auction with time-
frequency flexibility in cognitive radio networks, vol. 131, no. 5, pp. 2282–2290
(2012)

11. Gao, G., Xiao, M., Wu, J., Han, K., Huang, L., Zhao, Z.: Opportunistic mobile data
offloading with deadline constraints. IEEE Trans. Parallel Distrib. Syst. PP(99),
1 (2017)

12. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing
a key technology towards 5g. ETSI White Pap. 11, 1–16 (2015)

13. Lu, L., Yu, J., Zhu, Y., Li, M.: A double auction mechanism to bridge users? Task
requirements and providers? Resources in two-sided cloud markets. IEEE Trans.
Parallel Distrib. Syst. 29(4), 720–733 (2018)

14. Lu, Z., Zhao, J., Wu, Y., Cao, G.: Task allocation for mobile cloud Computing in
heterogeneous wireless networks. In: International Conference on Computer Com-
munication and Networks, pp. 1–9 (2015)

15. Luo, S., Sun, Y., Wen, Z., Ji, Y.: C2: truthful incentive mechanism for multiple
cooperative tasks in mobile cloud. In: IEEE International Conference on Commu-
nications (2016)

16. Lyu, X., Tian, H., Sengul, C., Zhang, P.: Multiuser joint task offloading and
resource optimization in proximate clouds. IEEE Trans. Veh. Technol. 66(4), 3435–
3447 (2017)

17. Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud com-
puting. In: Usenix Conference on Hot Topics in Cloud Computing, p. 4 (2010)

18. Vries, S.D., Vohra, R.V.: Combinatorial auctions: a survey. Inform. J. Comput.
15(3), 284–309 (2003)

19. Wang, X., Chen, X., Wu, W.: Towards truthful auction mechanisms for task assign-
ment in mobile device clouds. In: IEEE INFOCOM 2017 IEEE Conference on
Computer Communications, pp. 1–9 (2017)

20. Wang, X., Chen, X., Wu, W., An, N., Wang, L.: Cooperative application execution
in mobile cloud computing: a stackelberg game approach. IEEE Commun. Lett.
20(5), 946–949 (2016)

21. Yi, X., Liu, F., Li, Z., Jin, H.: Flexible instance: meeting deadlines of delay tolerant
jobs in the cloud with dynamic pricing. In: IEEE International Conference on
Distributed Computing Systems, pp. 415–424 (2016)

22. Liu, Y., Liu, K., MA, X., Yang, M.: Pricing in combinatorial double auction-based
grid allocation model. J. China Univ. Posts Telecommun. 16(3), 59–65 (2009)

104 Y. Li et al.

23. Zhang, H., Guo, F., Ji, H., Zhu, C.: Combinational auction based service provider
selection in mobile edge computing networks. IEEE Access PP(99), 1 (2017)

24. Zhang, Z., Wu, J., Jiang, G., Chen, L., Lam, S.K.: QoE-aware task offloading for
time constraint mobile applications. In: Local Computer Networks, pp. 510–513
(2017)

25. Zhou, G., Wu, J., Chen, L., Jiang, G., Lam, S.K.: Efficient three-stage auction
schemes for cloudlets deployment in wireless access network. Wirel. Netw., 1–15
(2018)

A Study on Emotion Recognition
Based on Hierarchical Adaboost

Multi-class Algorithm

Song Zhang1,2, Bin Hu1,2(&), Tiantian Li3, and Xiangwei Zheng1,2

1 School of Information Science and Engineering,
Shandong Normal University, Ji’nan 250014, China

binhu@sdnu.edu.cn
2 Shandong Provincial Key Laboratory for Distributed Computer Software

Novel Technology, Ji’nan 250014, China
3 Faculty of Education, Shandong Normal University, Ji’nan 250014, China

Abstract. Researches on human emotion recognition have attracted more and
more people’s interest. Adaboost algorithm is an integrated algorithm that
constructs strong classifiers by iterative aggregation of weak classifiers. This
paper proposes a hierarchical Adaboost (HAdaboost) multi-class algorithm for
emotion recognition, which improves the original Adaboost algorithm. The
valence and arousal in different emotional states are used as classification fea-
tures, and emotion recognition is performed according to their differences.
Simulation experiments on the Chinese Facial Affective Picture System
(CFAPS) data set demonstrate three types of emotions and seven types of
emotions can be distinguished, and the average accuracy rates are 93% and
92.4% respectively.

Keywords: Emotion recognition
Hierarchical Adaboost Multi-class Algorithm � Integrated weak classifier

1 Introduction

Emotion recognition through some physiological data of the human body is the trend of
scientific research. Physiological data has evolved from traditional small sample data
collection to big data shared on the Internet [1]. Emotion recognition becomes one of
hot topics in the field of psychology research. The research of emotion recognition can
be roughly divided into speech emotion recognition, facial picture emotion recognition,
text emotion recognition, audio emotion recognition and physiological signal emotion
recognition.

Emotional recognition based on physiological data tends to be diversified.
Researchers in different fields have paid their attention to the study of emotion
recognition. Researchers in the field of computers have studied physiological signals
such as EEG, ECG, and pictures. They explore their relationships through deep
learning. Facial images can be scored from four dimensions [2]. (1) Potency (valence):
the unit of potency that causes a biological reaction. (2) Arousal: the degree to which
people are excited or not. (3) Dominance: the likelihood that a certain emotion will be

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 105–113, 2018.
https://doi.org/10.1007/978-3-030-05054-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_8

stimulated. (4) Attraction: the degree of attractiveness of facial expression pictures to
the subject. A large number of studies have shown that valence and arousal will alter
with the change of emotional state.

This paper adopts the CFAPS data set which is more consistent with Chinese facial
emotions and proposes a hierarchical Adaboost (HAdaboost) multi-class algorithm to
overcome the disadvantage that Adaboost algorithm can only perform two classifica-
tions [3]. The HAdaboost algorithm can be directly used for multi classification
research and it is suitable for emotion recognition.

2 Related Work

The emotion recognition attracts more and more attention from researchers.
Khosrowabadi et al. used EEG signals as the original data of emotion recognition.

EEG features were extracted using the amplitude square consistency of EEG signal.
The self-organizing mapping method is used to classify the emotional state of the
sample, which has achieved good results [4]. Petrantonakis extracted EG1, FP2, F3, F4
and other EEG signals, using high-order channel feature extraction method. They
employed support vector machine algorithm for emotion recognition and the accuracy
rate is can reach 83.33% [5]. Murugappan et al. performed Laplacian variation and
wavelet transform on EEG signals. They recognized six emotions by linear classifier,
and used entropy as a feature for emotion recognition and the accuracy rate can reach
83.04% [6].

Zhang et al. proposed a new emotion recognition system based on expression
images. They adopted biorthogonal wavelet entropy to extract multi-scale features and
used fuzzy multi-class support vector machine as emotion recognition classifier. The
accuracy of their method is 96.77 + 0.10% [7]. Cheng et al. analyzed the surface EMG
signal by wavelet transform method and extracted the maximum and minimum wavelet
structure coefficient vector. They applied the BP neural network classifier improved by
Levenberg-Marquardt algorithm and the nearest neighbor classifier to perform emotion
recognition. The average recognition accuracy was 82.29% [8]. Li et al. retained the
feature that the cumulative contribution rate was greater than 85%, and selected the
characteristic parameters with large difference in feature roots. They implemented
emotional state assessment based on support vector machines and the accuracy rate can
reach 85% [9].

The existing research has carried out at most six emotion classifications, and the
emotion recognition algorithm needs to be improved in terms of accuracy. Therefore,
the HAdaboost algorithm is adopted to recognize three kinds of emotions and seven
kinds of emotions respectively.

106 S. Zhang et al.

3 Emotion Recognition Process

Emotion recognition process is described in Fig. 1. Details of each step are as follows.

(1) Datasets: This paper adopts the CFAPS as the data set.
(2) Preprocessing: The data set is processed to form two data sets of three emotions

and seven emotions. The three emotional states are negative emotions, calm
emotions and positive emotions; the seven emotional states are anger, disgust,
fear, sad, surprise, calmness and happiness.

(3) Emotion recognition: After the data is preprocessed, the data sets are input into
the Adaboost algorithm and the HAdaboost algorithm for emotion recognition.
The weak classifier is formed by the SVM.

(4) Analysis of the results: The classified emotional markers are compared to the
emotional markers of the original data. The classification accuracy rate of each
emotional state and the classification accuracy of all emotional states are
calculated.

4 Emotion Recognition Based on Hierarchical Adaboost
Multi-class Algorithm

4.1 Original Adaboost Algorithm

The AdaBoost algorithm ensures that the learning algorithm is gradually focused on
training samples that are difficult to process. For samples that are difficult to process,
combining the results of each weak classifier after centralized learning can greatly
improve the classification accuracy [10]. The principle is shown in Fig. 2.

Fig. 1. Emotion recognition process

Fig. 2. Adaboost algorithm

A Study on Emotion Recognition 107

4.2 Description of Algorithm

Hierarchical Adaboost Multi-class Algorithm is described as follows.

Algorithm 1:
Input:
Data: data set of the Chinese Facial Affective Picture System (CFAPS)
Function (): hierarchical Adaboost multi-class algorithm (HAdaboost)
Label: mark identification completed
All_Label: complete classification
Comparison: the emotion markers of the classified data are compared with the

emotion markers of the original data one by one
Output:

Accuracy
Begin:

Input Data
Execute Function ()
While (All_Label) do

For (0: Label-1) do
Execute Function ()

End For
 End While

Execute Storage Model
Execute Comparison and Get Accuracy

End

The HAdaboost algorithm can recognize an emotional state at the end of each layer.
The number of algorithm layers is automatically changed according to the kind of
emotional state. Therefore, as the number of layers increases, the emotional states to be
recognized will be reduced, and the complexity of the algorithm will be reduced. The
accuracy of HAdaboost algorithm is higher than that of Adaboost algorithm in emotion
recognition. The principle of the algorithm is shown in Fig. 3.

Fig. 3. Hierarchical Adaboost multi-class emotion recognition algorithm

108 S. Zhang et al.

4.3 Training and Testing

Data is divided into training and testing sets, and initialized weights of training sam-
ples. D1 represents the weight set of the data set, N represents the number of samples,
and x represents the weight of each sample (generally the initial weight is set to 1=N);
as in formula (1).

D1 ¼ ðx11;x12; � � � ;x1i; � � � ;x1NÞ;x1i ¼ 1
N
; i ¼ 1; 2; � � � ;N ð1Þ

Establishing one-against-all (OAA) and one-against-one (OAO) classifiers for
training and testing respectively.

After each iterating process, calculate the error rate of the weak classifier according
to formula (2). GmðxiÞ is the first i classifier after m iterations, and yi is the judgement of
the i sample.

em ¼ PðGmðxiÞ 6¼ yiÞ ¼
XN

i¼1

xmiIðGmðxiÞ 6¼ yiÞ ð2Þ

After iterating m times, the scale factor am of each weak classifier in the final
classifier is determined according to the error rate of the weak classifier.

am ¼ 1
2
log

1� em
em

ð3Þ

Updating the weights of all OAA classifiers according to formulas (4) and (5);
Dmþ 1 is the set of sample weights after mþ 1 iterations; xmþ 1;i is the weight of the ith
sample after mþ 1 iterations. Zm is the normalized processing amount;

Dmþ 1 ¼ ðxmþ 1;1;xmþ 1;2; � � � ;xmþ 1;i; � � � ;xmþ 1;NÞ ð4Þ

xmþ 1;i ¼ xmi

Zm
expð�amyiGmðxiÞÞ; i ¼ 1; 2; � � � ;N ð5Þ

The testing set is input into the algorithm, and the OAO classifier (6) is called to
recognize the emotion by voting mechanism.

f ðxÞ ¼
XM

m¼1

amGmðxÞ ð6Þ

A Study on Emotion Recognition 109

5 Experimental Results and Analysis

5.1 Datasets

This paper conducts simulation experiments based on the CFAPS data set. (http://
psycnet.apa.org/record/2011-05085-005). This data set contains 600 facial emotion
pictures totally. Facial pictures were screened and matched according to the nature and
the emotional type and the gender of the characters. There are 200 negative faces, 200
neutral faces and 200 positive faces. In addition, negative faces are divided into five
negative emotions: anger, disgust, fear, sadness and surprise. Face images are scored in
four dimensions: valence, arousal, dominance, and attraction.

5.2 Result Analysis

In this paper, the Adaboost algorithm and the HAdaboost algorithm are adopted for the
experiment of emotion recognition. Comparing the accuracy of two algorithms for
emotion recognition on CFAPS data set. It proves the feasibility and superiority of the
HAdaboost algorithm.

This paper mainly classifies three kinds of emotions and seven kinds of emotions.
The average recognition accuracy of each emotion state is calculated as the final
recognition accuracy. We first introduce the recognition experiment of the three kinds
of emotions. The results are shown in Figs. 4 and 5.

Fig. 4. Confusion matrix of positive, calm and negative emotions (Adaboost)

Fig. 5. Confusion matrix of positive, calm and negative emotions (HAdaboost)

110 S. Zhang et al.

http://psycnet.apa.org/record/2011-05085-005
http://psycnet.apa.org/record/2011-05085-005

The experimental results are shown into Table 1.

It can be seen from Table 1 that the HAdaboost multi-class algorithm is more
accurate than the Adaboost algorithm in the recognition of negative emotions, calm
emotions and positive emotions. The average accuracy rate of Adaboost algorithm for
emotion recognition is 89.1%. The average accuracy rate of the HAdaboost algorithm
proposed for this paper is 93%, which is 4% points higher than the Adaboost algorithm.
Then, we will introduce the recognition experiment of the seven kinds of emotions. The
results are shown in Figs. 6 and 7.

Table 1. Classification results of positive, calm and negative emotions

Emotion
Group

Adaboost HAdaboost
Negative Calm Positive Negative Calm Positive

1 0.91 0.88 0.89 0.93 0.92 0.93
2 0.90 0.89 0.87 0.95 0.94 0.91
3 0.91 0.88 0.89 0.96 0.90 0.93

Mean 0.907 0.883 0.883 0.947 0.92 0.923

Fig. 6. Confusion matrix of seven emotions (Adaboost)

Fig. 7. Confusion matrix of seven emotions (HAdaboost)

A Study on Emotion Recognition 111

Tables 2 and 3 show the experimental results of seven emotions.

It can be clearly seen from Tables 2 and 3 that the accuracy of the HAdaboost
multi-class algorithm is higher than the Adaboost algorithm in the recognition of five
emotional states of anger, disgust, fear, sadness and calmness. The average accuracy of
the HAdaboost algorithm was 7.2% points higher than that of the Adaboost algorithm.
Moreover, in the overall classification accuracy, the accuracy of the HAdaboost multi-
class algorithm can reach 92.4%, which is 7.7% points higher than the 84.7% of the
Adaboost algorithm. It proves the feasibility and accuracy of the HAdaboost multi-
class algorithm in emotion recognition.

6 Conclusion

Tis paper proposes a hierarchical Adaboost multi-class algorithm and applies it to the
research of emotion recognition using the CFAPS as a data set. The HAdaboost
algorithm can recognize an emotional state each time after it performs an iterative
calculation. The algorithm allows addition and deletion weak classifiers and each layer
of HAdaboost multi-class algorithm can recognize an emotional state, therefore, the
classification accuracy is improved.

Table 2. Emotion recognition classification results (Adaboost)

Emotion
Group

Anger Disgust Fear Sad Surprise Calm Happy Mean

1 0.73 0.69 0.64 0.78 0.94 1.00 1.00 0.833
2 0.91 0.79 0.64 0.77 0.88 0.94 1.00 0.845
3 0.77 0.79 0.86 0.77 1.00 0.91 1.00 0.857
4 0.82 0.83 0.81 0.84 0.79 0.90 0.94 0.858
5 0.76 0.78 0.78 0.75 0.92 0.94 0.97 0.843

Mean 0.798 0.776 0.746 0.782 0.906 0.938 0.982 0.847

Table 3. Emotion recognition classification results (HAdaboost)

Emotion
Group

Anger Disgust Fear Sad Surprise Calm Happy Mean

1 0.87 0.84 0.88 0.79 0.85 0.95 0.95 0.917
2 0.78 0.92 0.88 0.89 0.85 0.97 0.95 0.929
3 0.87 0.88 0.76 0.79 0.81 0.98 0.96 0.926
4 0.91 0.92 0.88 0.82 0.78 0.96 0.95 0.924
5 0.92 0.89 0.84 0.87 0.89 0.98 0.97 0.922

Mean 0.87 0.890 0.848 0.832 0.836 0.968 0.956 0.924

112 S. Zhang et al.

Acknowledgements. National Natural Science Foundation of China (61373149) and the
Taishan Scholars Program of Shandong Province, China. 2018 Shandong Social Science Plan-
ning Research Project (18CJYJ06).

References

1. Su Yun, H., Lixin, B.X., et al.: Knowledge modeling and emotion recognition for EEG data.
Chin. Sci. Bull. 60(11), 1002–1009 (2015)

2. Liu, W., Zheng, W.-L., Lu, B.-L.: Emotion recognition using multimodal deep learning. In:
Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS,
vol. 9948, pp. 521–529. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46672-
9_58

3. Bui, D.T., Ho, T.C., Pradhan, B., et al.: GIS-based modeling of rainfall-induced landslides
using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost
ensemble frameworks. Environ. Earth Sci. 75(14), 1–22 (2016)

4. Khosrowabadi, R., Quek, H.C., Wahab, A., et al.: EEG-based emotion recognition using
self-organizing map for boundary detection. In: International Conference on Pattern
Recognition, pp. 4242–4245. IEEE (2010)

5. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order
crossings. IEEE Trans. Inf Technol. Biomed. 14(2), 186 (2010)

6. Murugappan, M., Nagarajan, R., Yaacob, S.: Combining spatial filtering and wavelet
transform for classifying human emotions using EEG signals. J. Med. Biol. Eng. 31(1), 45–
51 (2011)

7. Zhang, Y.D., Yang, Z.J., Lu, H.M., et al.: Facial emotion recognition based on biorthogonal
wavelet entropy, fuzzy support vector machine, and stratified cross validation. IEEE Access
4(99), 8375–8385 (2017)

8. Bo, C., Guangyuan, L.: Emotion recognition of surface EMG signals based on wavelet
transform and neural network. J. Comput. Appl. 28(2), 333–335 (2008)

9. Xin, L., Erjuan, C., Yanxiu, T., et al.: An improved EEG feature extraction algorithm and its
application in emotion recognition. J. Biomed. Eng. 4, 510–517 (2017)

10. Zhang, X., Ding, J.: An improved adaboost face detection algorithm based on the different
sample weights. In: IEEE, International Conference on Computer Supported Cooperative
Work in Design, pp. 436–439. IEEE (2016)

A Study on Emotion Recognition 113

http://dx.doi.org/10.1007/978-3-319-46672-9_58
http://dx.doi.org/10.1007/978-3-319-46672-9_58

A Low Communication Overhead Breadth-
First Search Based on Global Bitmap

Ziwei Peng1,2(&), Yutong Lu1,2,3, Zhiguang Cheng1,2,3,
and Yunfei Du2,3

1 College of Computer, National University of Defense Technology,
Changsha 410073, China

peng_ziwei@foxmail.com
2 National Supercomputer Center in Guangzhou, Guangzhou 510006, China

3 School of Data and Computer Science,
Sun Yat-sen University, Guangzhou 510006, China

Abstract. Breadth-First Search (BFS) is the underlying kernel algorithm for
many graph applications such as social networks, medical informatics, transport
systems, etc. Therefore, it has been absorbed as a core of Graph500, used to
evaluate the capability of supercomputers in terms of big data processing. In this
paper, we introduce into a global bitmap which is used to accelerate two
approaches: the top-down and bottom-up. Specifically, the new top-down
approach uses the global bitmap to indicate whether the vertices are visited or
not, while the new bottom-up approach changes the frontier queue to the global
bitmap to indicate whether the vertices are on the frontier. With the help of the
global bitmap, the total number of communication messages produced by the
BFS will be reduced significantly, and consequentially the BFS is accelerated.
Meanwhile, our algorithm is optimized for storage on Knights Landing (KNL).
We evaluate our proposal on both the KNL platform and the Tianhe-2 super-
computer. Experimental results demonstrate that the communication was time
reduced to roughly 1/4 of the original. We obtain speedups of 2.2–3.1 compared
to the top-down approach.

Keywords: Graph500 � Breadth-First Search � Global bitmap
Hybrid approach

1 Introduction

Compared with traditional computing-intensive applications, big data applications
present diffident characteristics, such as high parallelism, large volumes of data,
irregular memory access modes, and poor temporal locality. These peculiarities
introduce new challenges to the traditional computer architectures. Graph computing is
a typical application belonging to this category. As a basic graph algorithm, breadth-
first search (BFS) is a core component of many algorithms and has been widely used in
many fields, such as social network, biology information, transport system, data
mining, network security, semantic web and so on. To this end, the Graph500
benchmark (http://www.graph500.org/) suite [1] absorbs BFS as a kernel used to

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 114–129, 2018.
https://doi.org/10.1007/978-3-030-05054-2_9

http://www.graph500.org/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_9

evaluate the capability of supercomputers in terms of big data processing. Conse-
quentially, BFS attracted more and more attention, and a large number of literatures
involving the optimization of BFS have been published. Researchers have explored
varied methods to accelerate the BFS on different architectures, including shared
memory architecture [3–8], distributed memory architecture [9–14] and Heterogeneous
System [16, 17].

Agarwal et al. [5] introduced into the bitmap data structure to represent the vertices
accessed in BFS, increasing the locality of the data. Beamber et al. [7, 8] proposed a
novel optimization on BFS which combines the top-down approach with the bottom-up
approach. In this paper, we combine the above two methods and present a hybrid BFS
algorithm based on a global bitmap which is used to indicate whether a vertex has been
visited and whether a vertex is on the frontier. The bitmap helps to optimize both the
top-down and bottom-up approaches by reducing the amount of communication
messages significantly. For the top-down approach, we use the global bitmap to
indicate whether the vertices are visited or not. So, we don’t need to send lots of edge
message to the owner processor of the failed child vertex. For the bottom-up approach
we use the global bitmap to indicate whether the vertices are on the frontier. So, we can
locally judge whether the parent vertex is on the frontier and don’t need to send edge
message to the owner processor of parent vertex. We evaluate our proposal on both the
KNL platform and the Tianhe-2 supercomputer. Experimental results demonstrate that
the hybird approach based on global bitmap is 1.9–2.4 faster than the direction-
optimizing BFS. Meanwhile, we have optimized the computation of bottom-up
approach and storage of the KNL coprocessor. Finally, we test our algorithm on the
Tianhe-2 and KNL platforms, and obtains speedups of 2.2–3.1 compare to the top-
down approach in Tianhe-2 supercomputer and more than 2.1 in KNL platform.

The rest of this paper is organized as follows. Section 2 describes the problems and
challenges. The optimization of the BFS algorithm is discussed in Sect. 3. The
experimental results are presented in Sect. 4, and the related work is presented in
Sect. 5, followed by concluding remarks and directions for future work in Sect. 6.

2 Problem Description

2.1 Graph500

Data intensive applications become increasingly prevalent on supercomputers. Over
time, High-Performance Linpack (HPL) and the Top500 could no longer perform as a
comprehensive comparison of supercomputer performance. The Graph 500 list was
announced at ISC2010 and the first list appeared at SC2010. Graph 500 will establish a
set of large-scale benchmarks for these data intensive applications. Breadth-First search
is one of the three application kernels of Graph 500 benchmark.

The Graph 500 benchmark is intended to rank high-performance computers based
on speed of memory retrieval which is a useful performance standard for large graph
problems. In BFS, the memory access time can be expressed by Traversed Edges Per
Second (TEPS).

A Low Communication Overhead Breadth-First Search 115

2.2 Top-Down BFS

Conventional BFS implementation can be thought of as a top-down approach, which
starts at the root key and propagates down the created BFS tree during each step. Our
work is mainly for distributed Breadth-First Search. The Top-down BFS is a level-
synchronized BFS algorithm using the method of asynchronous message passing. With
this method, synchronization occurs at each level of Breadth-First search. Variance can,
in a number of ways, impact the performance of this algorithm, including: data
structures, traversal order, parallel work allocation, partitioning, synchronization, or
update procedure. As the results of our analysis, the communication costs of distributed
top-down BFS are related to the number of edges of the BFS tree. The BFS execution
time is closely dependent on the number of messages sent during the Breadth-First
search. Because the non-blocking reads and writes are essential to BFS, the execution
time of each level of BFS is related to the degree of vertex.

2.3 Hybrid BFS

When the frontier is large, the top-down approach is not always efficient. The bottom-
up approach traverses more efficiently by searching in the reverse. Given this, the
direction-optimizing algorithm uses the top-down approach for steps when the frontier
is small and the bottom-up approach for steps when the frontier is large. In other words,
the top-down approach usually runs at the first two or three levels and the end of BFS
three while the bottom-up approach runs in the middle level of the BFS tree.

When the direction-optimizing algorithm runs the bottom-up approach, each
unvisited vertex attempts to find any parent among its neighbors. First, the unvisited
vertex need to send messages which contain the source vertex id and destination vertex
id to its neighbor. Second, if the destination vertex is on the frontier, the vertex needs to
send back the message in order to return to the source vertex. Compared with the top-
down method, some communication costs can be reduced by using the bottom-up
methods when the unvisited vertexes’ total degree (the number of its neighbors) is
lower than the total degree of vertexes on the frontier. Besides, the direction-optimizing
algorithm need to spend some time on calculating the top-down approach or the
bottom-up approach run at the current level.

However, the top-down BFS still spends a lot of time when the vertex found a
failed child or tries to become the parent of a same level neighbor. This is redundant
work because a vertex only needs one parent, as a result the majority of messages are
ineffective. The bottom-up search is also affected because the frontier is searched from
all unvisited vertices. Meanwhile, there are numerous isolated vertexes in the Kro-
necker graph which we neglect.

116 Z. Peng et al.

3 Global Bitmap Approach

In this section, we briefly describe the parallelization strategy employed in our dis-
tributed BFS algorithm. We analyzed the traffic and the bottleneck of the calculation.
We focus on reducing the communication costs and the computing costs to increase the
performance of BFS.

3.1 Global Visited Bitmap

As we know, the top-down BFS spends a lot of time sending a lot of messages to its
neighbors. After the vertex sends the message to a neighbor, the target vertex receives
the message and calculates whether the vertex has been visited.

The program uses an active messages library which is targeted to support asyn-
chronous small messages for delivery while having reasonable performance on modern
multicore systems by doing transparently to the user following. The message that needs
to be sent in the graph increases as the scale of the graph growing, as show in Fig. 1.

The top-down approach, if we can calculate whether the vertex has been visited
locally rather than by a remote node, will reduce communication time. The algorithm
needs to maintain a global array which stores a list representing all verteces’ access
status. We use the bitmap to represent the verteces’ status, thus reducing a lot of storage
overhead. And visited bitmap need to synchronize to all processors. If the number of
processor is N and the scale of the Kronecker graph is SCALE, the communication
costs will be

2� N � 2SCALE�23B ð1Þ

(a) (b)

71.98 143.97
287.96

575.95

1,151.93

2,303.91

0

500

1000

1500

2000

2500

1 2 3 4 5 6

ED
G

E(
M

B)

SCALE

1.00 2.00
4.00

8.00

16.00

32.00

0

5

10

15

20

25

30

35

17 18 19 20 21 22

BI
TM

A
P(

M
B)

SCALE

Fig. 1. Message count at each level. (a) Edge message count. (b) Bitmap message count.

A Low Communication Overhead Breadth-First Search 117

The bitmap we needed in the program is shown in Fig. 2 where we use 4 nodes
with 64 processes. We can then utilize the low communication overhead top-down
approach with global visited bitmap to cut down the communication time.

Through this method, we can judge vertices based on whether they have been
visited in the local node and reduce the communication overhead. When the process
scans the vertices on the boundaries, it locally determines if the neighbors of those
vertices have been accessed. If the neighbor of the vertex has been visited, the process
doesn’t need to send a message to the owner of the neighbor. Otherwise, the processor
need to send a message containing the vertex’s id number and the neighbor node’s id
number to the owner of the neighbor.

3.2 Global Frontier Bitmap

For the bottom-up approach, it is not necessary to synchronize the visited bitmap. The
reason is that the synchronous version of the visited bitmap no longer brings any
benefits. The distributed BFS judges whether the vertex is accessed locally, then sends
its edge to its neighbors’ processors. The processor will judge whether the neighbor
vertex is on the frontier. In the original hybrid approach, the bottom-up approach need
to send a message by send_backward(u,v) to the owner v. Finally, the handler needs to
send back messages by using a separate logical channel.

In the same reasoning as section A, if we can calculate whether the vertex’s
neighbor is in local processor rather than the target processor, we don’t need to send the
message to the target processor. In the same manner, the target processor will not need
to send back the message to the source processor. We present one kind of bottom-up
BFS based on global frontier bitmap to reduce the communication overhead. Before all
processors synchronize their frontier bitmap globally, the bottom-up approach needs to
convert the frontier queue to the frontier bitmap. This means that it will increase the
computing overhead by a certain amount. However, this increase is negligible relative
to the communication overhead reduction.

3.3 Hybrid Implementation Design

Combination of the above two communication optimization methods is presented in the
pseudo-code of a distributed, direction-optimizing BFS based on a global bitmap. The
details are in Algorithm 1.

118 Z. Peng et al.

Our hybrid approach uses the low traffic top-down approach for steps when the
frontier is small and uses the low computational bottom-up method when the frontier is
large. The algorithm switch is based on the current size of the frontier queue, and it is
used to determining whether it is needed to switch algorithms in the current level of
BFS, as Fig. 2 shows.

global visited
bitmap

top-down
approach

global frontier
bitmap

bottom-up
approach

|in|≥A

|in|≤B

Start

Stop

|in|<A |in|>B

Fig. 2. Switch algorithms

A Low Communication Overhead Breadth-First Search 119

The top-down approach and the bottom-up approach will always check the frontier.
This correlates to the condition for switching from top-down to bottom-up, that is when
the number of vertices is larger than:

A ¼ Vj j � visj jð Þ=a ð2Þ

Switching back to the top-down approach at the end should occur when the frontier
is small. We use another equation to get:

B ¼ Vj j=b ð3Þ

The parameter a and b vary with the scale of the graph. In our program, we use the
method of static scheduling and we select a = 2048 and b = 64. Algorithm 1 also
shows the handler for the receives messages.

3.4 Reduce Computing Overhead

The bottom-up approach involves scanning the unvisited verteces for a possible parent.
Using our method, which doesn’t need to send messages, the bottom-up approach can
use the local visited bitmap. The main part of this overhead is scanning the frontier
vertices’ neighbors.

However, there are a lot of isolated vertices which don’t have a neighbor in the
graph. The bottom-up approach will scan these vertices on the queues, even though the
vertices are not in the BFS tree. Table 1 shows the proportion of isolated points among
all vertices. Apparently, these isolated vertices are a major part of the Kronecker graph.
We can expel these isolated vertices to reduce computing overhead when the bottom-
up approach scans the unvisited vertex queue. An improved data pre-processing
method was required to address this issue. So, when the program converts the Kro-
necker graph into a CSR matrix model, we can construct a new queue designed to store
only the vertices of degree that are not zero.

Another effective method is sorting the isolated vertex’s neighbors. The unvisited
vertex does not need to scan all the neighbors to find its parents, we can simply put the
most likely neighbors in the front of the queue. Obviously, higher degree points are
more likely to be the unvisited vertex’s parents. So, in the pretreatment stage, we sort
the column array according to the degree of the vertices to reduce the computing
overhead.

Table 1. Proportion of isolate points

Scale 17 18 19 20 21 22

Isolated points 40955 88453 188996 402453 852908 1797659
Proportion 31.25% 33.74% 36.05% 38.38% 40.67% 42.86%

120 Z. Peng et al.

3.5 Storage Optimization for KNL

We also optimize storage of BFS for KNL. Referencing development manual [18], the
Knights Landing interconnecting mesh operates in one of three clustering modes: all-
to-all, quadrant, and sub-NUMA. We select the all-to-all mode. The memory archi-
tecture is composed of 16 GB of high-speed stacked memory accessed by 8 high-speed
memory controllers, as well as up to 384 GB of DDR4 accessed by 2 3-channel
memory controllers. It is anticipated that the KNL chip can get more than 400 GB/s of
bandwidth out of the MCDRAM and more than 90 GB/s out of the regular DRAM
attached to the chip running the STREAM Triad memory bandwidth benchmark. The
calculation process needs to continuously read the edge list of the graph. In addition,
the communication process also requires a lot of exchange between the send buffer and
receive buffer. In order to combat this, after filing the edge list, we transform the edge
list to the CSR data structure and store the column queues and row queues in the
MCDRAM rather than the DRAM. In this way, the reading and writing of the send and
receive buffer will be faster in the process of communication. Additionally, the process
of getting vertices’ neighbors data will be faster.

4 Experimental Results

In this section, we present an experimental evaluation of the algorithms described in
this paper. We chose a distributed environment in Tianhe-2 system and Knights
Landing processors.

4.1 Overview of Experimental Platform

We collected the performance results on the Tianhe-2 system. Tianhe-2 is equipped
with 17920 nodes, each containing two 12-core Xeon E5 CPU. The front-end system
consisted of 4096 Galaxy FT-1500 CPUs. Tianhe-2 has a speed of 33.9PFlops and a
peak performance of 54.9PFlops. Its abundant computing resources and fast computing
speed make it the best accelerator for the research project. Users could log on to
Tianhe-2 through VPN.

We also tested our program with the KNL processor. The 2nd generation Intel
Xeon Phi™ processors (code-named “Knights Landing”) are specialized computing
platforms capable of delivering better performance for some applications than general-
purpose CPUs such as Intel Xeon products. We mainly used its on-package high-
bandwidth memory (HBW) built on the multi-channel dynamic random access memory
(MCDRAM) technology. The KNL had three configuration modes of HBW: Flat
Mode, Cache Mode and Hybrid Mode. We used the Flat Mode and we modified the
code and execution environment. Besides the foundation instructions, KNL featured
three additional extensions: AVX512PFI, AVX512ERI and AVX512CDI. These allow
each processor to execute short-vector SIMD instructions, helping to speed up exe-
cution. However, we did not make a special optimization for this. We will study this
aspect in the future.

A Low Communication Overhead Breadth-First Search 121

4.2 Time Breakdown Analysis

Figure 3 shows how time was spent during BFS. Here, our statistics of BFS execution
time include: communication time, computing time, barrier time and all reduce time.
Among them, the execution time is mainly composed of traversal of the fringe, judging
whether the node has been visited or not, and updating the relevant information. When
using the method of asynchronous message passing, we need to send messages to
another process from the same group and other group. The most time-consuming of
these interactions is flushing of the internode and intranode buffer to the destination
node. The barrier time is used to synchronize all processors during the end of a BFS
level. The allreduce time is used to allreduce the bitmap during all processors. We
combined the single-node direction-optimizing BFS described in [14], and imple-
mented a distributed direction-optimizing BFS as showed in Fig. 3. The global visited
bitmap method optimizes the top-down approach of the direction-optimizing BFS. The
global frontier bitmap method optimizes the bottom-up approach of the direction-
optimizing BFS. While the hybrid direction-optimizing method combined the advan-
tages of the two methods.

For the five methods in the Fig. 3, the barrier time is about the same. The barrier
operation is mainly due to the unbalanced load between the processors. As you can see
in, our approach reduces the amount of communication overhead. The global visited
bitmap method reduces the communication overhead in the top-down approach and the
global frontier bitmap method reduces the communication overhead in the bottom-up
approach. We also notice that the “allreduce time” is very short. This implies that our
method is very effective. The hybrid direction optimizing approach’s communication

Fig. 3. Time breakdown on Tianhe-2

122 Z. Peng et al.

time is about a quarter of the direction-optimizing approach and one in five of the
original version. So our approach is quite effective in reducing communication over-
head. Meanwhile, when the communication message is reduced, some of the corre-
sponding redundant calculations like read data from receive buffer are also reduced.
Not only did we use the hybrid approach, but we did the preprocessing when make the
graph structure. We can see sort the column array according to the degree of the
vertices that they represent the pretreatment stage can reduce the computing costs. To
summarise, we see that the hybrid direction-optimizing method is quite effective.

4.3 Level Breakdown Analysis

Figure 4 shows how time is spent during each BFS level. The first observation is that
the central levels account for most of the visit time. At the middle level, you can see
that our method reduces a lot of time overhead. The distributed direction-optimizing
BFS used the bottom-up approach skips checking some edges to accelerate top-down
algorithm. The global visited bitmap method reduces the time overhead in the top-
down approach and the global frontier bitmap method reduces the time overhead in the
bottom-up approach. As you can see in the level 3 the global frontier bitmap method
may need more time to run and in the level 4 the global frontier bitmap method is faster
than the global visited bitmap method, this is because in the third level the algorithm
mainly uses the top-down approach. We use also compressed the head of the message
packet, so you can see that in Fig. 4 our hybrid direction-optimizing method combined
the advantages of the above two methods and significantly accelerate the BFS
algorithm.

Fig. 4. Level breakdown on Tianhe-2

A Low Communication Overhead Breadth-First Search 123

4.4 Scalability in Tianhe-2

First, we measured the weak scalability of the proposed BFS algorithm on fixed
problem size per node (each node has 217 vertices) and present the results in Fig. 5.

We observe that the direction-optimizing method is about 1.1–1.3 times faster than
the original top-down method. In contrast, the global visited bitmap method spends less
time on communication messages and gets speedups of 1.4–1.7 (as compare with the
top-down method). The global frontier bitmap method gets about 1.4–2.3 times faster
than the top-down method. The hybrid direction-optimizing BFS is about 2.2–3.1 times
faster than the top-down BFS and about 1.9–2.4 times faster than the direction-
optimizing BFS. The new method spends more time sharing the bitmap messages
among all processors and stores the messages to reduce the transmission of redundant
information. When the scale of the graph is large, the global frontier bitmap method is
not as good as the global visited bitmap method. This is because the bottom-up
approach used in the above two methods already reduces a large amount of commu-
nication and the bottom-up approach is more effective in a large scale. To summarise,
we see that the hybrid direction-optimizing design is about 2.2–3.1 times faster than the
official version.

Second, we measured the strong scalability of the proposed BFS algorithm in
Tianhe-2 system, presenting the results in Fig. 6.

Figure 6 shows a strong scaling test, where the performance rate (in MTEPS)
achieved on increasing the number of processors. We note that our algorithm has good
strong scalability. The performance is extended with the processors’ growth. Due to the
system constraints, there are a maximum of 64 processes running on 4 nodes. The
direction-optimizing method is inefficient when the processes number is 4. Meanwhile,
the global visited bitmap and global frontier bitmap method have a beneficial effect and

0.00E+00
5.00E+08
1.00E+09
1.50E+09
2.00E+09
2.50E+09
3.00E+09
3.50E+09
4.00E+09

4 8 16 32 64 128

TE
PS

NODE

TIANHE-2 EAHC NODE 2^17 VERTEX

top-down direction-optimizing

global visited bitmap global frontier bitmap

hybrid direction-optimizing

Fig. 5. “weak scaling” results on Tianhe-2

124 Z. Peng et al.

are 1.6 times faster than the top-down. The hybrid method can reduce the communi-
cation overhead both in the top-down process and the bottom-up process, making 1.9–
3.0 times faster than the official version. In sum, our method has a significantly strong
scaling effect.

4.5 Scalability in KNL

First of all, we optimized the code for the KNL processor. The performance under 64
processes in KNL experimental facilities is given in Table 2.

We note that the MCDRAM can improve the performance by about 5–8%. This is
because the memory access is not a large proportion of the workload. Most of the
memory access operations are buffer read-write actions in the communication process.
Others are read the value of the adjacency matrix. This limits the optimized promotion.

Our later versions are built on the use of MCDRAM. It can be derived from Table 2
that the performance without using MCDRAM may drop 5% to 8%. We measured the
scalability of the proposed BFS algorithm in the KNL system. “Weak scaling” results
on KNL are presented in Fig. 7. It is noteworthy that under 64 processors, when

0.00E+00
2.00E+08
4.00E+08
6.00E+08
8.00E+08
1.00E+09
1.20E+09
1.40E+09

4 8 16 32 64

TE
PS

PROCESSORS

TIANHE-2 SCALE=19 NODE=4

top-down direction-optimizing

global visited bitmap global frontier bitmap

hybrid direction-optimizing

Fig. 6. “strong scaling” results on Tianhe-2

Table 2. Performance under 64 processes (unit: MTEPS)

Scale 17 18 19 20 21 22

Top-down 103 129 146 168 178 194
Top-down (MCDRAM) 112 136 157 180 185 196
Promote 8.27% 5.39% 7.62% 8.10% 6.97% 6.46%

A Low Communication Overhead Breadth-First Search 125

dealing with graph containing 221 vertices, the performance of the algorithm is satu-
rated. In the KNL experiment platform, we obtain the speedups of 1.2–2.4 times
compare to the top-down method without MCDRAM.

As showed in Fig. 8, our algorithm has a good processor scalability. Our global
visited bitmap approach is 1.5–1.8 times faster than the top-down approach and 1.4–1.6
times faster than the direction-optimizing approach. The global frontier bitmap
approach obtained speedups of 1.4–2.6 compare to the direction-optimizing approach,

0.00E+00
5.00E+07
1.00E+08
1.50E+08
2.00E+08
2.50E+08
3.00E+08
3.50E+08
4.00E+08
4.50E+08

16 17 18 19 20 21

TE
PS

SCALE

KNL PROCESSORS = 64

top-down top-down with MCDRAM

direction-optimizing global visited bit map

global frontier bitmap hybrid direction-optimizing

Fig. 7. “weak scaling” results on KNL

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

4 8 16 32 64

TE
PS

PREOCESSORS

KNL SCALE = 20

top-down top-down with MCDRAM

direction-optimizing global visited bit map

global frontier bitmap hybrid direction-optimizing

Fig. 8. “strong scaling” results on KNL

126 Z. Peng et al.

and the hybrid direction-optimizing approach is 1.7–3.4 times faster than the direction-
optimizing approach. To summarise, we see that the hybrid direction-optimizing design
is more than 2.1 times faster than the top-down approach. It is worth noting that in the
case of small scales, the top-down method tends to outperform the direction-optimizing
method, but cannot compete with the low-traffic approach. This may be the case that in
the small scale, the bottom-up approach doesn’t have enough revenue compared to the
top-down approach.

5 Related Work

In this section, we focus on the work most relevant to this study.
The Graph 500 list (http://www.graph500.org/) [1] was announced at ISC2010 and

the first list appeared at SC2010. In 2011, Suzumura et al. [2] carefully evaluated the
performance of graph500.

Breadth-First search (BFS) is one of the three application kernels of Graph 500
benchmark. The BFS, as a fundamental method in algorithmic graph theory, and the
optimization of graph traversal on parallel and distributed systems, has received a great
deal of attention recently. There is a lot of research work on the BFS algorithm
regarding many different platforms.

Shared memory architecture: In 2006, Bader et al. [3] proposed a fine-grained
parallel approach to the Cray MTA-2 system. Their approach leverages the fine-
grained, low-overhead synchronous operation provided by the MTA-2 system. Sub-
sequently, Mizell et al. [4] discussed measures to further improve the method. Their
method of improvement achieved high performance in a Cray XMT system with 128
processors. In 2010, Agarwal et al. [5] gained significant performance gains within a
single node containing four CPUs. They primarily minimize the communication
between CPUs and use bitmaps to represent the state of the vertices. Yasui et al. [6]
who combined with the memory of binding and thread binding for NUMA architecture
and degree-aware optimization method hit the highest performance of 37.66GTEPS on
a single node. The work we are most indebted to are [7, 8], which introduced the
concept of direction optimization. This method takes advantage of the features of the
graph and uses different search strategies in different BFS layers.

Distributed Memory Architecture: Much of the work on large distributed systems
has been based on 2D decomposition. In 2005, Yoo et al. [9, 10] proposed a two-
dimensional graph division method on BlueGene/L. In this method, the process is
organized into a 2-D structure, and the adjacency matrix of the graph is divided into
processes in a 2-D manner. In this way, each “all-to-all” communication only needs to
involve one row or a column of processes while the 1-D method needs all processes. In
2011, Buluç et al. [11] summarized the research on parallel BFS and pointed out the
optimization space of parallel BFS algorithm on a distributed memory system. In 2012,
Checconi et al. [12] search of 238 vertices with 131,072 cores and achieve 254 GTEPS
on Blue Gene/Q. In the same year, Satish et al. [13] used a 1-D image partitioning
method to comprehensively apply single node optimization and communication opti-
mization and obtain 115 GTEPS on a cluster of 320 nodes. In 2014, Checconi et al.
[14] implemented a 1D-decomposed BFS algorithm and they have been able to explore

A Low Communication Overhead Breadth-First Search 127

http://www.graph500.org/

a scale 40 R-MAT graph with 1 trillion vertices and 32 trillion of undirected edges
using 64 thousand BlueGene/Q nodes (4 million threads) in just a few seconds.

GPU: In 2012, Merrill et al. [16] proposed ways to increase the utilization of
threads on the GPU, the result of which was the best of the time on a shared memory
system. Hong et al. [17] proposed a hybrid approach using CPUs and GPUs, using
CPUs when calculations are small and GPU calculations when computing loads are
large.

6 Conclusion and Future Work

In this paper, we have cut the communication and calculation times in the basis of the
direction-optimizing BFS. We present two global bitmap approaches to accelerate the
BFS: a top-down approach with global visited bitmap and a bottom-up approach with
global frontier bitmap. We used a hybrid approach to combine the advantages of both.
Additionally, we optimized the computation of the bottom-up approach as well as the
storage of the KNL coprocessor. We performed experiments on the Tianhe-2 and KNL
systems with good results. Listed below are optimizations that we intend to explore in
future work.

Distributed BFS with 2D partitioning. In future work, we will use the 2D
decomposition to split the data among the nodes. Then analyze the communication
optimization on the basis of the 2D version.

Exploiting Single Instruction Multiple Data (SIMD) in KNL. The basic idea of
SIMD optimization is to scan the vertices’ neighbors simultaneously. The problem to
be solved is that there may be discontinuities in the visits of the vertices’ neighbors.
Optimization of the BFS in the heterogeneous system which uses the KNL system as a
set of coprocessors rather than as a CPU.

Acknowledgment. This research was supported by the National Key R&D Program of China
under NO. 2018YFB0203904, NSFC: U1611261, NSFC: 61433019, NSFC: U1435217 and the
Program for Guangdong Introducing Innovative and Enterpreneurial Teams under Grant
No. 2016ZT06D211.

References

1. Graph 500 benchmark. https://graph500.org/
2. Suzumura, T., Ueno, K., Sato, H., Fujisawa, K., Matsuoka, S.: Performance characteristics of

Graph500 on large-scale distributed environment. In: 2011 IEEE International Symposium
on Workload Characterization (IISWC), Austin, TX, pp. 149–158 (2011)

3. Bader, D.A., Madduri, K.: Designing multithreaded algorithms for breadth-first search and
st-connectivity on the Cray MTA-2. In: 2006 International Conference on Parallel
Processing (ICPP 2006), Columbus, OH, pp. 523–530 (2006)

4. Mizell, D., Maschhoff, K.: Early experiences with large-scale Cray XMT systems. In: 2009
IEEE International Symposium on Parallel & Distributed Processing, Rome, pp. 1–9 (2009).
https://doi.org/10.1109/ipdps.2009.5161108

128 Z. Peng et al.

https://graph500.org/
http://dx.doi.org/10.1109/ipdps.2009.5161108

5. Agarwal, V., Petrini, F., Pasetto, D., Bader, D.A.: Scalable graph exploration on multicore
processors. In: 2010 ACM/IEEE International Conference for High Performance Comput-
ing. Networking, Storage and Analysis, New Orleans, LA, pp. 1–11 (2010)

6. Yasui, Y., Fujisawa, K.: Fast and scalable NUMA-based thread parallel breadth-first search.
In: 2015 International Conference on High Performance Computing & Simulation (HPCS),
Amsterdam, pp. 377–385 (2015)

7. Beamer, S., Asanovic, K., Patterson, D.A.: Searching for a parent instead of fighting over
children: a fast breadth-first search implementation for Graph500. EECS Department,
University of California, Berkeley, Technical report. UCB/EECS-2011-117, November 2011

8. Beamer, S., Asanovic, K., Patterson, D.: Direction-optimizing breadth-first search. In:
International Conference on High PERFORMANCE Computing, Networking, Storage and
Analysis, vol. 21, p. 12. IEEE Computer Society Press (2012)

9. Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendrickson, B., Catalyurek, U.: A
scalable distributed parallel breadth-first search algorithm on BlueGene/L. In: Proceedings of
the ACM/IEEE SC 2005 Conference on Supercomputing, p. 25 (2005). https://doi.org/10.
1109/sc.2005.4

10. Chow, E., Henderson, K., Yoo, A.: Distributed breadth-first search with 2-D partitioning.
Lawrence Livermore Nat Lab (2005)

11. Buluç, A.: Parallel breadth-first search on distributed memory systems. In: Computer
Science, pp. 1–12 (2011)

12. Checconi, F., Petrini, F., Willcock, J., Lumsdaine, A., Choudhury, A.R., Sabharwal, Y.:
Breaking the speed and scalability barriers for graph exploration on distributed-memory
machines. In: 2012 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Salt Lake City, UT, pp. 1–12 (2012). https://doi.org/10.1109/sc.
2012.25

13. Satish, N., Kim, C., Chhugani, J., Dubey, P.: Large-scale energy-efficient graph traversal: a
path to efficient data-intensive supercomputing. In: 2012 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Salt Lake City, UT,
pp. 1–11 (2012)

14. Checconi, F., Petrini, F.: Traversing trillions of edges in real time: graph exploration on
large-scale parallel machines. In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, Phoenix, AZ, pp. 425–434 (2014)

15. Beamer, S., Buluc, A., Asanovic, K., et al.: Distributed memory breadth-first search
revisited: enabling bottom-up search. In: Proceedings of the IEEE 27th International Parallel
Distributed Processing Symposium Workshop and PhD Forum, IPDPSW 2013, pp. 1618–
1627 (2013)

16. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. ACM SIGPLAN
Not. 47(8), 117–128 (2012)

17. Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph exploration on multi-core CPU
and GPU. In: 2011 International Conference on Parallel Architectures and Compilation
Techniques, Galveston, TX, pp. 78–88 (2011)

18. Best Practice Guide – Knights Landing. http://www.prace-ri.eu/best-practice-guide-knights-
landing-january-2017/

A Low Communication Overhead Breadth-First Search 129

http://dx.doi.org/10.1109/sc.2005.4
http://dx.doi.org/10.1109/sc.2005.4
http://dx.doi.org/10.1109/sc.2012.25
http://dx.doi.org/10.1109/sc.2012.25
http://www.prace-ri.eu/best-practice-guide-knights-landing-january-2017/
http://www.prace-ri.eu/best-practice-guide-knights-landing-january-2017/

Improve Heteroscedastic Discriminant
Analysis by Using CBP Algorithm
Jafar A. Alzubi1, Ali Yaghoubi4, Mehdi Gheisari2(&),

and Yongrui Qin3

1 Al-Balqa Applied University, Salt, Jordan
j.zubi@bau.edu.jo

2 School of Computer Science and Technology, Guangzhou University,
Guangzhou 510006, China

mehdi.gheisari61@gmail.com
3 School of Computing and Engineering, University of Huddersfield,

Huddersfield, UK
Yongrui.Qin@hud.ac.uk

4 Department of Engineering, Islamic Azad University, Ferdows Branch,
Ferdows, Iran

Yaghoubi_ali67@yahoo.com

Abstract. Linear discriminant analysis is considered as current techniques in
feature extraction so, LDA, by discriminant information which obtains in
mapping space, does the classification act. When the classes’ distribution is not
normal, LDA, to perform classification, will face problem and will resulted the
poor performance of criteria in performing the classification act. One of the
proposed ways is the use of other measures, such as Chernoff’s distance so, by
using Chernoff’s measure LDA has been spreading to its heterogeneous states
and LDA in this state, in addition to use information among the medians, uses
the information of the classes’ Covariance matrices. By defining scattering
matrix, based on Boundary and non-Boundary samples and using these matrices
in Chernoff’s criteria, the decrease of the classes’ overlapping in the mapping
space in as result, the rate of classification correctness increases. Using
Boundary and non-Boundary samples in scattering matrices causes improve-
ment over the result. In this article, we use a new discovering multi-stage
Algorithm to choose Boundary and non-Boundary samples so, the results of the
conducted experiments shows promising performance of the proposing method.

Keywords: Linear discriminant analysis � CBP algorithm � Chernoff criterion
Boundary pattern

1 Introduction

Classification data into groups is considered of important stages of pattern recognition
that one of its major stages is feature extraction. One of the features of extraction is
reducing the linear dimensions which often, to reduce data dimensions and statistical
models and also, overcoming the problems which arise in this field can be used.
Reducing data dimensions shouldn’t cause discriminant information that is in the

The original version of this chapter was revised: The affiliations were incorrect and mismatched. The
correction to this chapter is available at https://doi.org/10.1007/978-3-030-05054-2_48

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 130–144, 2018.
https://doi.org/10.1007/978-3-030-05054-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_48
https://doi.org/10.1007/978-3-030-05054-2_10

original space of the main feature to be eliminated. From the usual methods in the field
of discriminant extracting information (also known as a classification technique) is
LDA [1]. This classical approach have been developed, by Fisher [12], for two-class
classification and by Rao for multi-class classification [12]. In LDA a transformation
matrix, changes a main n dimension space of the data to d dimension. The above
conversion maximizes the proportion of scattering matrix between the classes and does
the classification [1, 9, 10, 17]. LDA is a fast and easy way to set a good character and
requires simple matrices calculation. In several articles, many of the problems related to
the LDA has been reported and solutions provided so, LDA concentration is to obtain a
space where follow with the maximum average between the classes If so, imagining
normal distribution to be existed for the classes this strategy can be used But, in the real
world we cannot have such hypothesis, and this strategy is not always useful. In [18] it
has been tried to measure the shortcoming of this Criteria so, the classes which are in the
original space close to each other and this action along with a sharp decline in the rate of
classification in [3, 4]. This method, with the help of weight criteria, decreases the
impact of the classes that, in the original space, are far apart each other. Weight criteria
carry out repeatedly and that the number of extracted feature is limited to the number of
classes. In [18], the use of new matrices to overcome this problem has been suggested.
The problem is that the selection algorithm of Boundary and non-Boundary patterns and
RPS (relevant pattern selection) in a series of the training data is not working properly.
Because at the same time, either to the number of its neighbors and or a threshold level
that RPS are used, is depended [19]. Out of the methods of Boundary and non-Boundary
patterns, we can point to the Algorithm based on the Graph. A graph-based algorithm is
Hit Miss Networks (HMN) which are directed graphs of instances in the training set
[20]. This Algorithm of the Graph obtains orientation of the samples in training set so,
for this for each sample, the nearest neighbor of it, is determined from all the classes and
an edge between the targeted sample and each of its neighbor is defined so, a hit edge
between the sample and its neighbor by the similar class label is defined. For this for
each sample, the nearest neighbor of it, is determined from all the classes and an edge
between the targeted sample and each of its neighbor is defined so, a hit edge between
the sample and its neighbor by the similar class label is defined. A Miss edge, between
sample and nearby its nearby sample is defined by different class label. The result is that
each sample is defined as a node and the edges of Hit and Miss is calculated as the
degree of each node and based on these classifications a detecting pattern is imposed on
the sets of training data. Based on the concept of Algorithm HMN, two other kinds of the
Algorithm have been suggested based on the Graph [21, 22]. In this paper we use a
method of sample reduce (which has been as a powerful discovering technique) naming
CBP (class boundary persevering) to separate Boundary and non-Boundary patterns
[23]. CBP is an Algorithm which gives us the best description underlying distribution
about class samples spread. This Algorithm has used some steps heuristically that by
using four steps has pruned the primary training sets and divides in to subsets of
Boundary and non-Boundary samples. In this paper, we investigate, theoretically, the
effect of proposing Algorithm on the process and the number of extracted features. The
organization, in this paper continues to be as follow; hence, in the second part we will
have a definition of the problem. In Sect. 3, we will discuss the definition using the
scattering matrix based on bordering as well as non-bordering patterns and in Sect. 4 of
this article, ultimately, we will discussed on the results of downloaded dataset from UCI
and will investigate them.

Improve Heteroscedastic Discriminant Analysis 131

2 Defining the Problem

In a problem of classification, consider c number of classes as w1; . . .:;wc which has C
label and N dimension and then, this C class is shown as D1 ¼ x1;1; . . .;

�
x1;m1g; . . .:;Dc ¼ xc;1; . . .; xc;mc

� �
and on the basis of parametric form which is con-

sidered for the classification, then c class will have initial probability p1; . . .:; pc. And
random distribution vectors of n dimension x1 � N m1; S1ð Þ; . . .:; xc � N mc; Scð Þ and
so that m, S are considered as the average and class covariance.

2.1 Chernoff’s Criteria

In general, in the methods of reducing the linear dimensions, the goal is to find the
conversion matrix of W so that it can change the input normal distribution vectors
x1; . . .:; xn from the n dimension to the d dimension so, the new normal distribution
vectors can be obtained as y1 ¼ Wx1; . . .:; yd�1 ¼ Wn�1xn�1. In LDA, W is chosen in a

way that the pattern of tr wwTð Þ�1wsBwT
n o

maximizes, which SB is the definer of

scattering matrix of between classes and is as SB ¼ PC
i¼1 pi mi � mð Þ mi � mð Þ and the

process of classification is performed based on the process of Fischer’s classification
[6, 13]. Scattering matrix of SB is the product of available separating information in the
difference between the average of the classes and it does not benefit from separating
information available in separating information which is in the difference of Covariance
Matrices. in order to benefit available separating information in the Covariance dif-
ference, in the method of LDA, and in [6] instead of using Eglidoosi distance between
the averages, the Chernoff’s of distributing distance between the distribution of each
pair of class is used so, the result is that, in addition to benefiting of discriminant
information between the averages and discriminant information the difference between
the Covariance is considered.

As it is observed in (Fig. 1) (parts of a, b). The averages are fixed and for the
separation of the classes, two classes distribution has been used so, it is observed that
the amount of the overlap has considerably reduced.

Fig. 1. Separability based on distribution of classes [7]

132 J. A. Alzubi et al.

Chernoff’s Two-Class Criteria
Based on chernoff distance between two distributive class in original space so the
solution for this optimizing problem is to search projection vector of W so that max-
imize the criteria of (1), as in

JcðWÞ ¼ trfðWSWW
tÞ�1½WSEW

t

�WS1=2W
p1 logðS�1=2

W S1S
�1=2
W Þþ p2 logðS�1=2

W S2S
�1=2
W Þ

p1p2
S1=2W Wt�g ð1Þ

W is obtained based on the Eigenvalue decomposition of the matrix:

ScðWÞ ¼ S�1
W ½SE � S1=2W

p1 logðS�1=2
W S1S

�1=2
W Þþ p2 logðS�1=2

W S2S
�1=2
W Þ

p1p2
S1=2W � ð2Þ

W, as especially corresponding Eigenvector is with the maximum amount of the
matrix (2).

Chernoff’s Multi-class Criteria
In order to vast Chernoff’s criterion of two-class to state of multi-class, an certain
decomposition of scatteringmatrices between the classes are used so, in this decomposition,
between classes matrix, by using two-class blocks is built. Now, Chernoff’s multi class
criterion is shown as (3) Formula and the goal is findingWwhichmaximize criterion of (3)

JCðAÞ ¼
XC�1

i¼1

XC
j¼iþ 1

PiPjtr

WSwWtð Þ�1�

WS1=2w

S�1=2
w SijS�1=2

w

� ��1=2�S�1=2
w SEijS�1=2

w S�1=2
w SijS�1=2

w

� ��1=2 þ
1

pipj
ðlogðS�1=2

w SijS�1=2
w Þ � pi logðS�1=2

w SiS�1=2
w Þ � pj logðS�1=2

w SjS�1=2
w ÞÞ

2
4

3
5WS1=2w

0
BB@

1
CCA

SEij ¼ ðmi � mjÞðmi � mjÞ

ð3Þ

In order to determine W, the decomposition of Eigenvalue is formed, also, W is the
equivalent of Eigenvector with the largest value from Matrix (4).

SC ¼
XC�1

i¼1

XC
j¼iþ 1

PiPjtr

Swð Þ�1�
S1=2w

S�1=2
w SijS�1=2

w

� ��1=2�S�1=2
w SEijS�1=2

w S�1=2
w SijS�1=2

w

� ��1=2þ
1

pipj
ðlogðS�1=2

w SijS�1=2
w Þ � pi logðS�1=2

w SiS�1=2
w Þ � pj logðS�1=2

w SjS�1=2
w ÞÞ

" #
S1=2w

0
B@

1
CA ð4Þ

The point that ðSCijÞ ¼ d2ij:d
2
ij is expressed as the Eigenvalue of SCij and Eigenvector

with the largest Eigenvalue is considered as projection vector of W. The Eigenvector
equivalent vector by Eigenvalue d2ij is considered as Eigenvector between two class i
and j, so to this reason it is distinguished as the biggest Eigenvalue as well as projection
vector of W thus To have further understand (see Fig. 2).

Figure 2 is a six – class model that each circle is considered as a class and the
circles have a similar radius which shows that of within-class scattering matrix has been
equally assumed If the class of on the down right corner, in Fig. 2. Is considered as j0,
on the condition that this class to be well far away, from the rest in the original space,
the share of Eigenvalue, 1� i�C; i 6¼ j will be dominant on scattering matrix between

Improve Heteroscedastic Discriminant Analysis 133

the classes. Therefore, the result of the direction that has been shown by the V arrow
would be known as principal discriminant of between the classes. The result is that to
map V the classes of i and j that will projection i 6¼ j to one cluster high overlapping of
classification between the classes that is required to increase the rate of classification
error in the projection space. Therefore, from this example, we can conclude that in the
estimate of between the class matrixes of Chernoff’s criterion all pairs of classes,
without being separate in original space are considered that this process leads to a bad
performance in separating the classes [31–39].

3 Making Scattering Matrices Based on Boundary and Non-
Boundary Patterns

Boundary pattern is a Datum, by having k neighbor on different class position near the
Boundary of decision-making and non-Boundary pattern Datum with neighboring k
and label of similar class, its position is away from the decision-making Boundary.
Boundary patterns contains sufficient information to have an accurate description of the
level classes’ separation.

While non-Boundary patterns does not effect on the rate of classification [24], we
can use the difference of these patterns in making new scattering matrices [20] so, most
of algorithms often suffers from storage of a large number of training samples. The
result is that high involvement of memory in response time and also high sensitivity to
noise is raised thus, in order to overcome these problems, we use a new algorithm
naming class boundary persevering CBP [23, 41].

In proposing framework, first by using the algorithm of (CBP) we divide training
sets of X into two sub - bordering of XB and non-bordering of XNB.

3.1 Smoothing the Class Boundaries

Placing noises on the borders of the class causes reducing the rate of classification so,
Placing noises on the borders of the class causes reducing the rate of classification so,
in order to deal the noises [25, 26] filter (Wilson ENN) is normally used which is often
known as noisy [27] also, in tests, in order to discard harmful instances misclassified by
ENN, we use a KNN classification with (k = 3).

Fig. 2. Map of classes using a vector V [4]

134 J. A. Alzubi et al.

3.2 Distinguishing Between Boundary and Non-Boundary Instances

After the implementation of the first step, a new scheme using geometrical charac-
teristics of class underlying distribution to partition the initial set to two sub sets
Boundary and non-Boundary is used. First each series of pattern x a reachable R(x) is
formed which containing samples that belong to x xð Þ that lay to the nearest enemy (a
sample by different class label) [28]. R(x) is an available set of X which is defined in
respect to the ith the nearest the enemy ni xð Þ of x defined as:

Ri xð Þ ¼ fy 2 X : wðxÞ ¼ wðyÞ^ x� yk k2 � x� niðxÞk k2g
where
niðxÞ ¼ argmin x� zk k2
z 2 X
wðzÞ 6¼ wðxÞ
z 6¼ njðxÞ; j ¼ 1; . . .; i� 1

ð15Þ

To consider general overview of around the sample x, the sets of I xð Þ which
contains the arbitrary number kR ðkR ¼ 3Þ from the nearest enemy ni xð Þ that we define
by Eq. (6). To avoid overlap of the enemies of x pattern towards each other so, the
nearest next enemy is selected in a way that the angle between the line connecting the
pattern of the new enemy pattern of x and connecting line of former enemies to pattern
of to be placed at an angle - more than an arbitrary angle U(U ¼ 20).

IðxÞ ¼ arg min
X
i2J

x� niðxÞk k2
J�f1; . . .; ng
Jj j ¼ kR
UðniðxÞ � x; x� niðxÞÞ	UR; 8i;j2J;i 6¼j

ð6Þ

Uð:; :Þ The definer of the angle is between the two vectors. Now, in order to find the
way of samples’ dispersion in the space, the Cosines simulation is used. So, Cosine
simulation between x and y with regard to the enemy is obtained through formula of 7:

Ci;xðyÞ ¼ y� x; niðxÞ � xh i
y� xk k2: niðxÞ � xk k2

ð7Þ

If the friendly sample of y to be near connection between x and ni xð Þ it means
Cosine similarity will be positive and x will be within non - pattern border. Then, we
must calculate Ci;x xð Þ for all samples y within each Ri xð Þ, and all the enemies of I xð Þ
will be calculated like the 8 relationship.

SiðxÞ ¼ fCi;xðyÞ; 8y 2 RiðxÞg
SðxÞ ¼ S

i2IðxÞ
SiðxÞ ð8Þ

Improve Heteroscedastic Discriminant Analysis 135

Because all the samples of y �Ri xð Þ their position within a sphere passing through
s(x) ni xð Þ and centered at x. So the distribution of casinos’ values in s(x) specifies the
ratio of scattering friendly instances of y around the x. If the values to be positive in
s(x) the more y samples in the most common part of the circle and conical whose
summit is in x position and its vector is placed in x� ni xð Þ (the width of conical
entrance by the value of T is controlled). From the other side, the large negative value
in s(x) shows the sample of y is out of the cone and the criteria of distinctions between
the Boundary and non-Boundary sets of X is expressed as Eq. (9) that the median (s(x))
stating the average of s(x).

XB ¼ fx 2 X : midianðSðxÞÞ\� T _ RiðxÞ� 2j jg
XNB ¼ X � XB

ð9Þ

3.3 Making New Scattering Matrices

Now, we can make scattering matrices based on the pattern of Boundary and non-
Boundary patterns Eq. (7).

SðbÞ

Xc

i¼1

XnðsÞ
j¼1

ðxðBÞj � mðiÞÞðxðBÞj � mðiÞÞT ;

SðwÞ

Xc

i¼1

X
j:yj¼i

ðxðNBÞj � mðiÞÞðxðNBÞj � mðiÞÞT

n Bð Þ The number of the patterns of Boundary set and n NBð Þ, is the number of models
of non-Boundary set. As it is shown, in designing scattering matrix of between-class of
S(b), out of the difference between the pattern of the Boundary pattern and the class
means and the design of within-class scatter matrix S(w) uses the difference between
non–Boundary patterns and the class means is used [49–51].

3.4 Discussing About the Effectiveness of the Proposing Measure

Scattering matrix between-classes S(b) which it’s prove is mentioned in [3]

SðbÞ

Xn
j¼1

Xn
u;v¼1

~aðbÞjuvðxj � xuÞðxj � xuÞT

~aðbÞjuv ¼
1

nðyuÞf g2 if xj 2 XðBÞ and yu ¼ yv

0 otherwise

(

136 J. A. Alzubi et al.

n yuð Þ The number of samples belonging to the class yu. This change of formulation
based on the distance of weight is between the pair of sample data so, in the formula of
(8), the values of non-zero weights, to scattering between non-bordering patterns, by
similar label is specified and the values of zero – weight represents the difference
between non-bordering patterns [5, 14, 29, 40, 42–48]. As it is observed, the patterns
which are in the non - Boundary region do not have any effect on are in calculating
between classes, classes, as well as they separating between the classes because they
have been well-separated therefore, the other point is that this reality that based on the
criteria of Boundary and non-Boundary patterns, the Boundary patterns between two
class that in original space have been well–separated, is classified as non-Boundary
pattern and does not have any effect in the estimate of scattering matrix between the
classes. The goal designing scattering matrix (7) is to find W direction that by using it
in Chernoff’s criteria we can maximize Chernoff’s jc (3) optimizer and improve the
number of specified patterns. Therefore, it is evident that in the obtained mapping
space, the classes’ overlapping is decreases considerably then based on this we replace
new scattering matrices in Chernoff’s criterion:

JCðAÞ ¼
XC�1

i¼1

XC
j¼iþ 1

PiPjtr

ASwAtð Þ�1�

AS1=2w

S�1=2
w SðwÞij S�1=2

w

� ��1=2
�S�1=2

w SðbÞij S�1=2
w S�1=2

w SðwÞij S�1=2
w

� ��1=2
þ

1
pipj

ðlogðS�1=2
w SðwÞij S�1=2

w Þ � pi logðS�1=2
w SðwÞi S�1=2

w Þ � pj logðS�1=2
w SðwÞj S�1=2

w ÞÞ

2
64

3
75AS1=2w

0
BBB@

1
CCCA

SðbÞ

Xl

i¼1

XnðBÞ
j¼1

xðBÞj � mðiÞ
� �

xðBÞj � mðiÞ
� �T

SðwÞ ¼
Xl

i¼1

X
j:yj¼i

ðxðNBÞj � mðiÞÞðxðNBÞj � mðiÞÞT

SC ¼
XC�1

i¼1

XC
j¼iþ 1

PiPjtr

Swð Þ�1�

S1=2w

S�1=2
w SðwÞij S�1=2

w

� ��1=2
�S�1=2

w SðbÞij S�1=2
w S�1=2

w SðwÞij S�1=2
w

� ��1=2
þ

1
pipj

ðlogðS�1=2
w SðwÞij S�1=2

w Þ � pi logðS�1=2
w SðwÞi S�1=2

w Þ � pj logðS�1=2
w SðwÞj S�1=2

w ÞÞ

2
4

3
5S1=2w

0
BB@

1
CCA

ScW ¼ kSwW

A ¼ ½W1;W2; . . .;Wd �
ð10Þ

By forming analyzing matrix (10), we can calculate W vector equal to Eigenvector
which is the biggest Eigenvalue of analysis.

Improve Heteroscedastic Discriminant Analysis 137

3.5 Implementation Algorithm of CBPHDA

4 The Experiments

In this part, some tests has been introduced to prove the effectiveness of proposing
method. The tests have been carried out on data based which has been downloaded
from UCI Machine Learning [15]. The list of these Datasets have been mentioned in
Table 1 and most of these datasets have been used in the articles of [1, 2, 11, 12].
Column D is the equivalent of the best chosen characteristic for the act of classification.
To compare proposing method 4 other method has been used then, all of these
methods, by using techniques have tried to solve the issue of data heterogeneity for
increasing the rate of classification in LDA, therefore, based on this, for comparison,
these methods have been used. Available unclear values in the Datasets have been
replaced by average value of related features. The Output of proposing method
(CBPHDA) has been compared with (FDA (Fisher Discriminant Algorithm
(HAD) Heteroscedastic discriminant analysis (BHDA (Boundary Heteroscedastic dis-
criminant analysis) SCDA (Super-class discriminant analysis) [30] other methods,
which indicates that the output CBPHDA better than other methods (Table 2).

138 J. A. Alzubi et al.

Table 1. The UCI dataset used for the experiments [15]

Dataset name Number
data

Number
class

Number feature (number
dimension)

Haberman 306 2 3
Australian credit 653 2 51
German credit 1000 2 38
Primary tumor 336 2 15
Banknote authentication 1370 2 3
Vote 435 2 16
Hepatitis 137 2 34
Liver 345 2 6
Zoo 101 2 16
Wine 178 3 13
New-thyroid 215 3 6
Teaching Assistant
Evaluation

151 3 5

Iris 150 3 5
Soybean 47 4 36
Breast cancer Wisconsin 699 2 11
Hayes Roth 132 3 5
25PDB 1674 4 64

Table 2. The output results of experiments on the dataset used three methods

Dataset name FDA D HDA D BHDA D SCDA D CBPHDA D

Haberman 61.8056 1 55.6999 1 74.9247 1 64.5161 1 99.8623 1
Australian credit 67.6713 1 66.9161 1 74.4988 1 81.3846 1 81.4815 1
German credit 63.2000 1 58.4000 1 65.3000 1 69.5000 1 87.9315 1
Primary tumor 61.3387 2 63.9947 1 65.9777 1 78.2902 1 93.7500 1
Banknote authentication 97.4447 1 95.2618 1 97.3348 1 96.7201 1 98.6631 1
Vote 75.7558 2 94.2653 1 95.4979 1 94.2318 1 97.108 1
hepatitis 64.9451 2 64.1758 2 65.3956 1 78.5714 1 78.7121 1
Liver 57.4118 2 61.1513 1 67.7059 1 77.1429 1 86.9565 1
Zoo 88.2117 2 89.4038 1 96.3027 1 100.000 1 100.000 1
Wine 85.8443 1 87.8657 1 94.5050 1 94.9346 1 95.9583 1
new-thyroid 42.4026 1 45.9870 1 79.2338 1 99.5238 1 100.000 1
Teaching Assistant
Evaluation

62.9583 1 52.4167 1 66.3333 1 79.4168 4 90.1667 2

Iris 87.8711 1 72.6417 1 98.7222 1 97.3333 1 100.000 1
Soybean 65.1720 1 70.7988 1 76.5000 1 75.5000 1 80.2288 2
Breast cancer Wisconsin 88.5300 2 87.2298 1 96.5714 1 96.4161 1 97.7391 1
Hayes Roth 82.4176 1 80.4505 1 86.8706 1 85.4326 1 87.9524 1
25PDB 64.2314 1 66.2146 1 83.3326 1 83.3333 1 93.9314 1

Improve Heteroscedastic Discriminant Analysis 139

4.1 The Steps of Doing the Experiment

To evaluate the effectiveness of proposing method from Fisher classifier from cross-
validation strategies: (1) leave-one-out (LOO) and (2) 10-fold cross validation has been
used. in the strategy of leave-one-out (LOO) cross-validation the input data is used for
teaching and the rest of the data for recognition and experiment although leave-one-out
(LOO) cross-validation is a good method to evaluate effectiveness [16, 17], it has
largely been criticized by the researchers. Hence, in this paper 10-fold cross-validation
is used to do the act of classification. In order to avoid the singularity problem of
within-class scattering matrix which is a current way of using linear classification
analysis, a credit method introduced in [13] was used. First, the ranking of scattering
matrix has been said in (7) so, if its ranking was not complete, aI has been added to
them which a = 0001 and I is like unit matrix. To avoid problems with log and square
root of matrix A inverse, of mentioned method in [10] has been used, therefore; to
calculate F function, of specific A matrix has been used. A matrix is analyzed as
specific analysis VDV�1

� �
in which V are as specific vectors of D and A matrix and

also as specific matrix of A respectively, and then we apply f function on the main
elements of specific value which contains these values and placed them in specific
value matrix that resulted f ðAÞ ¼ Vf ðDÞV�1 change. If Eigenvalues in applying log
function to be reverse, negative or zero then, the number result will be equal to zero so,
to stop this, a small fixed amount must be added [8]. In order to do this, a positive small
fixed amount has been added to specific matrix D either negative or zero. Also in the
Fig. 3. And 4 the proportion of the used methods in the experiments with CBPHDA on
the using datasets has been shown.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FDA

HDA

BHDA

SCDA

CBPHDA

Fig. 3. The output exhibition of the results of experiment on the using datasets.

140 J. A. Alzubi et al.

4.2 Discussion on Experimental Method’s Outputs

This section is devoted to discuss the observations resulted from the conducted
experiments on the datasets however; the experiments showed that in the database of
Iris between class of 1–2 and also 1–3 there is no bordering sample but, between class
of 2&3 there are 20 bordering sample thus, we can conclude that the distance of class 1
in proportion to 2&3 is so far and, as result, the scattering matrix between the class of
1&2 and other class has no influence on designing Chernoff’s criterion so, it is better in
this state instead of using the estimate of distance between class pair Fisher’s linear
classification which is based on the mean intervals is being used because the best
method for classifying the distanced classes are Fisher’s classifier.

5 Conclusion

In this paper by using a new Algorithm, we could specify Boundary and non-Boundary
patterns and draw scattering matrices based on the pattern’s Boundary as well as their
non-Boundary however; we theoretically showed that using these matrices cause the
increasing number of extracted features and also removing the limitation the number of
extracted features by Chernoff’s criterion.

References

1. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, San Diego
(2013)

2. Duin, R.P.W., Loog, M.: Linear dimensionality reduction via a heteroscedastic extension of
LDA: the Chernoff criterion. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 732–739 (2004)

3. Sugiyama, M.: Dimensionality reduction of multimodal labeled data by local fisher
discriminant analysis. J. Mach. Learn. Res. 8, 1027–1061 (2007)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FDA

HDA

BHDA

SCDA

CBPHDA

Fig. 4. The column display of the experiment results on the using datasets

Improve Heteroscedastic Discriminant Analysis 141

4. ReinholdHaeb-Umbach, M.: Multi-class linear dimension reduction by generalized Fisher
criteria. In: The Proceedings of the 6(th) International Conference on Spoken Language
Processing, vol. II (2000)

5. Na, J.H., Park, M.S., Choi, J.Y.: Linear boundary discriminant analysis. Pattern Recognit.
43(3), 929–936 (2010)

6. Kim, H., Drake, B.L., Park, H.: Multiclass classifiers based on dimension reduction with
generalized LDA. Pattern Recognit. 40(11), 2939–2945 (2007)

7. Salvi, G.: Accent clustering in Swedish using the Bhattacharyya distance. In: 15th
International Congress of Phonetic Science, pp. 1149–1152, August 2003

8. Rueda, L., Oommen, B.J., Henríquez, C.: Multi-class pairwise linear dimensionality
reduction using heteroscedastic schemes. Pattern Recognit. 43(7), 2456–2465 (2010)

9. McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition, vol. 544. Wiley,
New York (2004)

10. Masip, D., Kuncheva, L.I., Vitrià, J.: An ensemble-based method for linear feature extraction
for two-class problems. Pattern Anal. Appl. 8(3), 227–237 (2005)

11. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach, vol. 761. Prentice-
Hall, London (1982)

12. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2),
179–188 (1936)

13. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: IJCAI, vol. 14, no. 2, pp. 1137–1145, August 1995

14. Friedman, J.H.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165–175
(1989)

15. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning
databases (1998). http://archive.ics.uci.edu/ml

16. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural
Comput. 12(9), 2013–2036 (2000)

17. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for
support vector machines. Mach. Learn. 46(1–3), 131–159 (2002)

18. Yaghoubi, A., Ghaffari, H.R.: Improved LDA by using distributing distances and boundary
patterns

19. Wang, Z., Ruan, Q., Liu, S., Guo, S.: Regularized neighborhood boundary discriminant
analysis for facial expression recognition (2011)

20. Marchiori, E.: Hit miss networks with applications to instance selection. J. Mach. Learn.
Res. 9, 997–1017 (2008)

21. Marchiori, E.: Graph-based discrete differential geometry for critical instance filtering. In:
Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009.
LNCS (LNAI), vol. 5782, pp. 63–78. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04174-7_5

22. Marchiori, E.: Class conditional nearest neighbor for large margin instance selection. IEEE
Trans. Pattern Anal. Mach. Intell. 32, 364–370 (2010)

23. Nikolaidis, K., Goulermas, J.Y., Wu, Q.H.: A class boundary preserving algorithm for data
condensation. Pattern Recognit. 44(3), 704–715 (2011)

24. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning
algorithms. Data Min. Knowl. Discov. 6, 153–172 (2002)

25. Smyth, B., Keane, M.T.: Remembering to forget. In: Proceeding of the 14th International
Conference on Artificial Intelligence, pp. 377–382 (1995)

26. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms.
Mach. Learn. 38, 257–286 (2000)

142 J. A. Alzubi et al.

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/978-3-642-04174-7_5
http://dx.doi.org/10.1007/978-3-642-04174-7_5

27. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach.
Intell. 17, 790–799 (1995)

28. Dasarathy, B.V.: Minimal consistent set (MCS) identification for optimal nearest neighbor
decision systems design. IEEE Trans. Syst. Man Cybernet. 24(3), 511–517 (1994)

29. Arif, M., Wang, G., Balas, V.E.: Secure VANETs: trusted communication scheme between
vehicles and infrastructure based on fog computing. Stud. Inform. Control. 27(2), 235–246
(2018)

30. Zhu, X.: Super-class discriminant analysis: a novel solution for heteroscedasticity. Pattern
Recognit. Lett. 34(5), 545–551 (2013)

31. Gheisari, M., Esnaashari, M.: Data storages in wireless sensor networks to deal with disaster
management. In: Emergency and Disaster Management: Concepts, Methodologies, Tools,
and Applications, pp. 655–682. IGI Global (2019)

32. Gheisari, M., Baloochi, H., Gharghi, M., Khajehyousefi, M.: An evaluation of two proposed
systems of sensor datas storage in total data parameter. Int. Geoinformatics Res. Dev. J.,
March 2012

33. Porkar, P., Gheisari, M., Bazyari, G.H., Kaviyanjahromi, Z.: A comparison with two sensor
data storages in energy. In: ICCCI. ASME Press (2011)

34. Rezaeiye, P.P., Gheisari, M.: Performance analysis of two sensor data storages. In:
Proceedings of 2nd International Conference on Circuits, Systems, Communications &
Computers (CSCC), pp. 133–136 (2011)

35. Rezaeiye, P.P., Rezaeiye, P.P., Karbalayi, E., Gheisari, M.: Statistical method used for doing
better corneal junction operation. In: Material and Manufacturing Technology III. Advanced
Materials Research, vol. 548, pp. 762–766. Trans Tech Publications (9 2012)

36. Rezaeiye, P.P., et al.: Agent programming with object oriented (C++). In: ICECCT, pp. 1–
10. IEEE (2017)

37. Gheisari, M.: Design, implementation and evaluation of SemHD: a new semantic
hierarchical sensor data storage. Indian J. Innov. Dev. 1, 115–120 (2012). ISSN 2277 – 5390

38. Gheisari, M., Esnaashari, M.: A survey to face recognition algorithms: advantageous and
disadvantageous. J. Mod. Technol. Eng. 2(1), 57–65 (2017)

39. Gheisari, M., et al.: NSSSD: a new semantic hierarchical storage for sensor data. In: 2016
IEEE 20th International Conference on Computer Supported Cooperative Work in Design
(CSCWD), Nanchang, pp. 174–179 (2016)

40. Gheisari, M., Wang, G., Bhuiyan, M.Z.A.: A survey on deep learning in big data. In: 2017
IEEE International Conference on Computational Science and Engineering (CSE) and IEEE
International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou,
pp. 173–180 (2017)

41. Jafari, M., Wang, J., Qin, Y., Gheisari, M., Shahabi, A.S., Tao, X.: Automatic text
summarization using fuzzy inference. In: 2016 22nd International Conference on Automa-
tion and Computing (ICAC), Colchester, pp. 256–260 (2016)

42. Gheisari, M.: The effectiveness of schema therapy integrated with neurological rehabilitation
methods to improve executive functions in patients with chronic depression. Health Sci. J.
10(4) (2016)

43. Gheisari, M., et al.: MAPP: a modular arithmetic algorithm for privacy preserving in IoT. In:
2017 IEEE International Conference on Ubiquitous Computing and Communications
(ISPA/IUCC), 2017 IEEE International Symposium on Parallel and Distributed Processing
with Applications and IEEE (2017)

44. Ashourian, M., Gheisari, M., Hashemi, A.: An improved node scheduling scheme for
resilient packet ring network. Majlesi J. Electr. Eng. 9(2), 43 (2015)

Improve Heteroscedastic Discriminant Analysis 143

45. Gheisari, M., Wang, G., Chen, S.: IoT-SDNPP: a method for privacy-preserving in IoT-
based smart city with software defined networking. In: 18th International Conference on
Algorithms and Architectures for Parallel Processing Guangzhou, China, 15–17 November
2018 (2018)

46. Yang, W., Wang, G., Chood, K.K.R., Chen, S.: HEPart: a balanced hypergraph partitioning
algorithm for big data applications. Futur. Gener. Comput. Syst. 83, 250–268 (2018)

47. Dai, Y., Wang, G.: Analyzing tongue images using a conceptual alignment deep
autoencoder. IEEE Access 6, 5962–5972 (2018)

48. Peng, S., et al.: An immunization framework for social networks through big data based
influence modeling. IEEE Trans. Dependable Secur. Comput. PP(99), 1 (2017)

49. Javadpour, A., Memarzadeh-Tehran, H., Saghafi, F.: A temperature monitoring system
incorporating an array of precision wireless thermometers. In: 2015 International Conference
on Smart Sensors and Application (ICSSA) (2015)

50. Javadpour, A., Memarzadeh-Tehran, H.: A wearable medical sensor for provisional
healthcare. In: 2015 2nd International Symposium on Physics and Technology of Sensors
(ISPTS) (2015)

51. Javadpour, A., Abharian, S.K., Wang, G.: Feature selection and intrusion detection in cloud
environment based on machine learning algorithms. In: 2017 IEEE International Symposium
on Parallel and Distributed Processing with Applications and 2017 IEEE International
Conference on Ubiquitous Computing and Communications (ISPA/IUCC) (2017)

144 J. A. Alzubi et al.

Fault Diagnosis Algorithm for WSN
Based on Clustering and Credibility

Lidan Wang1, Xin Xu1, Xiaofei Zhang1, Cheng-Kuan Lin1(B),
and Yu-Chee Tseng2

1 School of Computer Science and Technology, Soochow University, Suzhou 215006,
China

{20165227008,20175227038}@stu.suda.edu.cn,
xiaofeinotdafeizhang@gmail.com,cklin@suda.edu.cn

2 Department of Computer Science, National Chiao-Tung University, Hsinchu,
Taiwan

yctseng@cs.nctu.edu.tw

Abstract. Fault diagnosis is one of the challenging problems in wire-
less sensor network (WSN). This paper proposes a fault diagnosis algo-
rithm based on clustering and credibility (FDCC). Firstly, the network is
divided into several clusters according to both geographic positions and
measurements of sensor nodes for the purpose of improving the accuracy
of network diagnostic result. The process of clustering can be divided
into five phases: region division, head selection, coarse clustering, coarse
cluster merge and cluster adjustment. Then, in order to further improve
the accuracy of diagnostic result, a credibility model based on historical
diagnostic result and remaining energy is established for each neighbor
node. At last, nodes with higher credibility are selected to participate in
diagnostic process. Simulation results show that the proposed algorithm
can guarantee higher diagnostic accuracy.

Keywords: Fault diagnosis · Sensor network · Clustering
Credibility model

1 Introduction

WSNs are widely used in different applications such as ecological environment
monitoring, traffic management, health care, agriculture application and smart
homes. Due to the poor deployment of environment and sensor nodes that usually
provisioned with low-capacity batteries, these nodes are subjected to various
kinds of faults. Node faults will invalidate node or cause node to detect abnormal
data [1]. At last, it will affect the network behavior and lead to errors in decision
making process. Therefore, practical and efficient fault diagnosis plays a very
important role in guaranteeing the perceived quality of WSN.

In recent years, the study on fault detection and fault tolerance has gradually
become an important branch of WSN. A lot of research [11] about fault diag-
nosis for WSN has already obtained, including the neighbor co-ordination [9],
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 145–159, 2018.
https://doi.org/10.1007/978-3-030-05054-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_11

146 L. Wang et al.

clustering based [21], test based [14] and other types. Many of these studies are
based on the spatial-temporal correlation characteristics of nodes in WSNs [10].

The clustering based approaches create a virtual communication backbone
to group sensor nodes and split the overall network into different clusters. Fault
detection is normally distributed and executed in each individual cluster. Each
cluster is usually composed of a cluster head and multiple member nodes. Mem-
ber nodes only communicate with cluster heads, and cluster heads are responsible
for data fusion and inter cluster data forwarding within clusters, which is good
for routing selection, data fusion and energy saving. We find that the idea of clus-
tering has been used in many papers, however, many algorithms are too simple
to consider the clustering of WSN. For example, algorithm like LEACH [4] only
considers the energy when clustering, the energy load of the entire network is
allocated equally to each sensor node without considering the measurements of
the nodes in each cluster and is it correct to use neighbor nodes for fault diag-
nosis? Considering the spatial correlation in WSN, that is, the measured values
of nodes should be similar to those near by. So, some algorithms divide the
network by geographical regions. However, sensor nodes are usually deployed in
complex environment, consider such a scenario in which nodes are used to mea-
sure the temperature of a building. If air conditioners are turned on in offices,
the temperature inside will be significantly different from temperature outside.
However, if the nodes are only clustered according to geographical locations, the
nodes are likely to be grouped into the same cluster because they are not far
enough. If these nodes with large differences in measurement values are involved
in the diagnosis, it may lead to misjudgement. Therefore, this paper presents
a more reasonable clustering method by considering both geographic positions
and measurements.

Moreover, many fault diagnosis algorithms based on neighborhood coordi-
nation randomly select serval neighbor nodes to participate in the diagnosis. In
addition, some algorithms will establish reliability models for neighbor nodes,
and select the most reliable nodes to participate in diagnosis to improve the
accuracy of diagnosis. Historical data of sensor nodes are often used to build
reliability models, previous studies only focused on the measurements of nodes,
but ignored the diagnosis results of nodes. Specifically, if two nodes x and y have
similar historical measurements, but x was diagnosed as fault-free two days ago,
and y was diagnosed as fault-free one month ago, it is obvious that x is more
reliable.

Based on the above analysis, this paper presents a distributed fault detection
mechanism based on clustering and credibility for WSN. Firstly, the network
is divided into serval clusters according to geographic positions and measure-
ments of nodes. Diagnosis algorithm is only performed in clusters of nodes to
be diagnosed rather than the whole network, which can reduce the energy con-
sumption. Before selecting neighbor nodes to participate in the diagnosis, the
credibility model of neighbor nodes is established to judge the credibility of diag-
nostic results according to historical diagnostic results and the remaining energy.

Fault Diagnosis Algorithm for WSN Based on Clustering and Credibility 147

Finally, selecting nodes with higher credibility to participate in the diagnostic
process.

The rest of the paper is organized as follows. Section 2 describes the related
work and Sect. 3 defines the preliminaries. In Sect. 4, we elaborate the cluster
algorithm in detail. In Sect. 5, the credibility model is established. Section 6
shows the experiment results. Section 7 concludes the paper.

2 Related Work

Nowadays, a large number of works have looked at the efficiency and accuracy
of fault diagnosis algorithms for WSNs. Clustering is an emerging approach in
diagnosing faults in WSN which enables the diagnosis techniques to be commu-
nication efficient [3]. Venkataraman et al. [15] proposed an approach in which
the sensor nodes detect the energy failures in their respective clusters. Wei et
al. [17] suggested cluster-based real-time fault diagnosis aggregation algorithm
(CRFDA). Mahapatro and Khilar [12] proposed an on-line distributed fault diag-
nosis scheme called cluster-based distributed fault diagnosis (CDFD) algorithm.

In neighbor coordination approaches, a node takes a decision about whether
or not to disregard its own sensor reading, which is based either on the sensor
readings from its neighbors or on the weights like physical distances from the
event, trustworthiness and their measurements, etc.

Chen et al. [2] proposed DFD algorithm to identify the faulty sensors. It used
local comparisons with a modified majority voting, where each sensor node makes
a decision based on comparisons between its own measurements and neighbor
nodes. Lee and Choi [7] approached WSN fault detection problems where time
redundancy was used to tolerate transient faults in sensing and communication.
A sliding window was employed to eliminate delay involved in the time redun-
dancy. Xiao et al. [20] presented an in-network voting scheme that determines
faulty sensor readings in WSN by considering both the correlation of measure-
ments between sensor nodes and the trustworthiness of a sensor node.

Although the above algorithms achieved good performance, there are still
some shortcomings. Algorithms based on clustering paid too much attention
to energy balance within cluster and the similarity of nodes in the cluster is
ignored. In addition, sensor networks deployed in harsh environments are mostly
dynamic, none of the above algorithms taked the addition of new nodes and the
failure of old nodes into account. Furthermore, many of the neighbor coordina-
tion approaches only considered the spatio-temporal correlations among sensor
data of neighboring nodes and ignore the credibility and remaining energy of
neighbor nodes which in turn reduced the detection accuracy of a diagnosis
scheme and increased the false alarm rate. Therefore, we can further design a
more reasonable fault diagnosis algorithm for WSN.

3 Preliminaries

Sensor nodes can be considered as spatial data objects. As it is introduced in
the study of Lin et al. [8], spatial data usually have two kinds of attributes. One

148 L. Wang et al.

is in optimization domain, and the other one is in the geographic domain. The
location of a node is an attribute in the geographic domain, while its measured
value is an attribute in the optimization domain. The goal of dual clustering over
the optimization and geographic domains is to group sensor nodes with similar
value within a certain geographical range. Nodes in the same cluster form a
compact region in terms of geographic attributes. But a node usually needs to
observe different kinds of values. For example, nodes deployed on the farm need
to measure temperature, humidity, light and so on. Therefore, the values of nodes
in the optimization domain are usually multidimensional. Table 1 summarizes the
symbols and definitions used in this paper.

The distance between two spatial objects serves as the dissimilarity measure-
ment [19]. For two nodes Si and Sj , the distance measurement in the geographic
domain is formulated as

distgeo(Si, Sj) =

√
√
√
√

dG∑

k=1

(Gk
i − Gk

j)2 (1)

and the distance measurement in the optimization domain is formulated as

distopt(Si, Sj) =

√
√
√
√

dO∑

k=1

(Ok
i − Ok

j)2 (2)

If distgeo(Si, Sj) < r, the two sensors are adjacent, where r represents the com-
munication radius of network.

Table 1. Symbol table

Symbol Definition

Si Sensor node i

N(Si) Neighbor nodes set of Si

Oi Optimization domain of Si

Gi Geographic domain of Si

Oj
i The jth attribute in Oi

Gj
i The jth attribute in Gi

dO The number of dimensions in the optimization domain

dG The number of dimensions in the geographic domain

Fault Diagnosis Algorithm for WSN Based on Clustering and Credibility 149

4 Cluster with Local Search

This paper proposes a clustering algorithm to cluster nodes from both geo-
graphic and optimization domains. This algorithm includes five phases: region
division, head selection, coarse clustering, coarse clusters mergence and cluster
adjustment. Firstly, map out some regions according to geography. Then, select
some cluster heads and let these cluster heads generate coarse clusters. After
that, merge the coarse clusters according to relative rules. Usually, the network
environment is dynamic and there often exists nodes joining or failing. Thus,
we need to adjust the clustering of network from time to time. The following
subsections present the details of each phase.

Phase 1: Region division
When sensor nodes are deployed, each node simultaneously starts an impair-

ment timer whose value is set randomly. If node x can not be added to any
other region before the timer reduced to zero, then x will become a master
and broadcast a message to ask whether the surrounding nodes can join to it.
Nodes receiving the request message terminates its own timer immediately and
become x’s slave nodes. These slave nodes continue to broadcast message and
ask whether their neighbor nodes will join in. After receiving the message, these
nodes also terminate their own timer immediately and become x’s slave nodes.
Repeat this for ξ times which is set according to different environment. The
master node x and it’s all slave nodes form a region. The remaining nodes in
the network continue to run the timer until the timer of all the nodes change to
zero. So far, the network is divided into several regions.

As we can see in Fig. 1(a), the network is divided into five regions. In order to
simplify the description, here we just set the one-dimensional values on optimiza-
tion domain. The number beside the node indicates the temperature measured
by the sensor node.

Phase 2: Select the heads
After dividing up the regions, pick some nodes as heads and perform the

clustering phase. In order to achieve the purpose of clustering, heads should
be much different from each other in the optimization domain. It is possible to
treat the regions as temporary clusters because they are inherently far apart in
the geographic domain. Therefore, the centroid of each region in optimization
domain is regarded as the head.

Figure 1(b) shows the head selection, the black nodes are the heads of the
five regions. For example, in the region of nodes k, i, h, g and f , 15.5 is the
mid-value of the five values of these nodes, so we select f as the head of this
region.

Phase 3: Coarse clustering
Expanding from heads according to the local search mechanism until the

clusters are stable, which is called coarse clustering. The clusters obtained from
coarse clustering are called coarse clusters.

Algorithm 1 describes the coarse clustering algorithm. Firstly, this algorithm
treats each head node produced by phase 2 as a independent cluster and calcu-
lates the centroid in optimization domain. Then, adapting the concept of local

150 L. Wang et al.

Fig. 1. The process of clustering.

Fault Diagnosis Algorithm for WSN Based on Clustering and Credibility 151

search, calculate the distance in optimization domain between centroid and its
nearest neighbor node, and then push into a priority queue. After that, add the
neighbor node into the cluster with the shortest distance and update the centroid
and priority queue. Repeat above operations until the priority queue is empty.
If there are still nodes left when the priority queue is empty, add nodes into the
nearest cluster in optimization domain.

Algorithm 1. Coarse clustering
Input: a sensor network Net and attributes of each sensor
Output: a set of clusters SC

1 let Nu(Si)(respectively, Nc(Si)) be the unclustered(respectively, clustered)
neighbors of Si;

2 /* initialization */
3 each head Si forms a cluster Ci and let ceni be the centroid of Ci;
4 foreach head Si do
5 let d be the smallest distance distopt(Si, Sj), where Sj ∈ Nu(Si);
6 add (d, Si, Sj) into a priority queue PQ sorted by d;

7 /* local search */
8 while PQ is not empty do
9 add Sj into cluster Ci and update ceni;

10 remove (d, Si, Sj) from PQ with the smallest d;
11 remove all pairs from PQ where the third parameter is Sj let d be the

smallest distance distopt(ceni, Sk) , where Sk ∈ Nu(Ci);
12 add pair (d, St, Sk) into PQ, where St is the neighbor node of Sk in Ci;

13 /* fix unclustered sensors */
14 foreach unclustered Si ∈ O do
15 if |Nc(Si)| > 0 then
16 add Si to the nearest cluster of Sj ∈ Nc(Si) and update the

corresponding centriod;

17 else
18 Si forms a new cluster;

19 return the union of all clusters SC;

Figure 1(b)–(f) show the process of coarse clustering. Firstly, as shown in
Fig. 1(b), each head forms a coarse cluster, nodes b, e, j, n and f respec-
tively form Cb, Ce, Cj , Cn and Cf . At this time, cenb = 27, cene = 32,
cenj = 29, cenn = 20, cenb = 27 and cenf = 15.5. The priority queue PQ =
{(0.5, e, d), (0.5, f, g), (1, j, c), (1.5, b, a), (1.5, n,m)}, then, remove (0.5, e, d) and
add d into Ce, update cene = 32.25. Among the neighbors of nodes in Ce, node
c has the smallest distance with cene, distopt(cene, c) = 2.25, so add (2.25, d, c)
into PQ. In Fig. 1(c), the PQ becomes {(0.5, f, g), (1, j, c), (1.5, b, a), (1.5, n,m),
(2.25, d, c)}. Similarly, in Fig. 1(d), remove (0.5, f, g) and add g to Cf . Update
cenf = 15.75 at the same time. Among the neighbors of nodes in Cf , node h

152 L. Wang et al.

has the smallest distance with cenf , distopt(cenf , h) = 1.25, so add (1.25, g, h)
into PQ, the PQ becomes {(1, j, c), (1.25, g, h), (1.5, b, a), (1.5, n,m), (2.25, d, c)}
after that. Repeat above operations until no node left. Figure 1(f) shows the
result of coarse clustering.

Phase 4: Merge coarse clusters
The coarse clusters discovered by local search might be fragments of the

connective dual clusters due to the nature of local search. Therefore, merge the
coarse clusters belonging to the same connective dual cluster. If there are two
adjacent nodes in the two coarse clusters, the two coarse clusters are said to be
adjacent. When the distance between their centroids on optimization domain
is within the threshold ε, then merge the two coarse clusters into one cluster.
Figure 1(f) and (g) show the process of merging coarse clusters. In Fig. 1(f), there
are five coarse clusters. Suppose ε = 3. The distance between cenb and cenj is
smaller than 3, so merger the two coarse clusters into a new cluster. The value
of the centroid of this cluster is changed to 28.5. Stop merging clusters when
there are no qualified coarse clusters.

Phase 5: Cluster adjustment
In complex environments, nodes often fail or join, so after completion of

clustering, it is necessary for system to check whether any node in the network
join or fail to leave at each interval. Algorithm2 describes the process of cluster
adjustment in detail.

If a node is added, add the node into the adjacent cluster which the distance
in optimization domain between the new node and the centroid of the cluster is
smallest.

If a node fails to leave the network, it will be discussed in detail.

(1) If the node is a boundary node, it can be deleted directly without other
operations.

(2) If the node is a head, then all the nodes in the cluster should be redivided.
Similarly, the centroid for the cluster in optimization domain is regarded as
head. For each of the remaining nodes, if it is connected with the new head,
join it to the cluster which the head belongs to. Otherwise, join it to the
neighbor cluster with the smallest distance between itself and the centroid
of cluster.

(3) If the node is neither a boundary node nor a head, delete it directly if this will
not disrupt the connectivity of the cluster. Otherwise, for each disconnected
node in the cluster, join it to the cluster which the distance between itself
and the centroid of neighbor cluster is smallest.

Figure 1(g) and (h) show the situation that a node f fails to leave. However,
f is the head in one cluster, so it is need to re-select a new head of this cluster.
The value of node h is median in the cluster, obviously, h becomes the new head.
The remaining nodes i and g are still connected with the new head after deleting
f , so we can directly add i and g into cluster of h. The process of a new node p
added can be seen in Fig. 1(i) and (j). There are 3 neighbor nodes of p: j, d and
l, then calculate distopt(p, cens), s = b, h and e respectively. As a result, add p
into cluster Ce because the value of distopt(p, cene) is smallest.

Fault Diagnosis Algorithm for WSN Based on Clustering and Credibility 153

Algorithm 2. Clustering adjustment
Input: a sensor network Net and threshold ε
Output: a new sensor network after adjustment Net′

1 check whether any node in the network join or fail to leave;
2 if a new node Si joined then
3 let d = distopt(Si, cenj), where Sj ∈ N(Si);
4 join Si into cluster Cj , which makes d smallest;

5 else if a node Si failed to leave then
6 if Si is a boundary node then
7 delete Si directly;

8 else if Si is a head then
9 select the centroid on optimization domain Sk as the new head;

10 foreach Sj in the original cluster do
11 if Sj is adjacent to Sk then
12 add Sj to the cluster where Sk is;

13 else
14 let d = distopt(Sj , cent), where St ∈ N(Sj);
15 join Sj into cluster Ct, which makes d smallest;

16 else
17 if the cluster is unconnected after deleting Si then
18 foreach Sj which is not connected with head do
19 let d = distopt(Sj , cent), where St ∈ N(Sj);
20 join Sj into cluster Ct, which makes d smallest;

21 else
22 delete Si directly;

23 merge clusters;
24 return the new network Net′;

5 Establish the Reliability Model

After performing clustering operations according to the above method, the fol-
lowing diagnosis algorithm is designed for node which need to be diagnosed.

In fault diagnosis algorithms for WSN, the diagnosis results are often
obtained by comparing the neighbor nodes with the node to be diagnosed. How-
ever, not all neighbor nodes are reliable, if the neighbor node itself is faulty, the
diagnosis result it gives is unreliable. So, it is necessary to select reliable neigh-
bor nodes for diagnosis. In this paper, a credibility model is established for each
neighbor node to ensure the accuracy of the diagnosis results.

The historical diagnosis results of neighbor nodes can be regarded as one of
the criteria of credibility model. If the neighbor node was diagnosed as a fault-
free node before, the longer the time, the less credible it is. Here we set two
parameters T1 and T2(T1 < T2), assuming the current time is t and the time
when the neighbor node Sj was diagnosed is t′. Here we use wj to represent the

154 L. Wang et al.

weight of history diagnosis result of Sj .

wj =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if t − t′ ≤ T2 and Sj was diagnosed as faulty at time t

0 if t − t′ > T2 or Sj has never been diagnosed withinT2 days
1 if T1 < t − t′ < T2 and Sj was diagnosed as fault-free at time t

2 if t − t′ ≤ T1 and Sj was diagnosed as fault-free at time t

(3)

In addition, the data collected by nodes with low energy is often unstable and
in order to avoid nodes with low energy participating in diagnosis and exhausting
energy, the energy of neighbor nodes should also be considered in the credibility
model.

This paper adopts the energy consumption model of sensor node given in
[18]. Suppose the channel in communication is symmetric. If k bit information
is transmitted through the process of distance d, then the energy consumption
of the transmission ETx(k, d) can be given as follows:

ETx(k, d) = ETxelec
(k) + ETxamp

(k, d) = kEelec + kεfsd
r (4)

where ETxelec
(k) and Eelec are the energy consumption of the wireless transceiver

circuit for k bit information or single bit information, respectively. ETxamp
(k, d)

is the energy consumption of the power amplifier for k bit information transmit-
ted through the distance d. εfs is the power consumption of amplifier to deal
with each bit data transmission in the free-space path fading model. r is a con-
stant of wireless channel decided by the transmission distance of signal d (r = 2
if d < d0, otherwise, r = 4), and d0 is the transmission distance threshold which
is defined as:

d0 =
√

εfs

εmp
(5)

where εfs is the energy consumption of the power amplifier in the multi-path
fading model. The energy consumption of receiving side can be calculated as
follows:

ERx(k) = ERxelec
(k) = kEelec (6)

where ERx(k) is the energy consumption of the wireless receiver circuit for k bit
information.

Combine the above two indicators, the credibility model of Sj can be noted as
CMj = αW · wj

2 +αE · Erj

Emax
, where Emax means the maximum remaining energy

of all neighbor nodes. αW and αE are two parameters that control the weights of
historical diagnosis results and residual energy in the credibility model, and can
be set according to the actual environment. After calculating the reliability of
each neighbor node, the first δ nodes with the highest reliability are selected to
participate in the diagnosis, where δ is set according to the network environment.
Because nodes in WSN have the characteristics of temporal and spatial similarity,

Fault Diagnosis Algorithm for WSN Based on Clustering and Credibility 155

the selected neighbor nodes can be used to test the suspicious nodes Si, suppose
Cij represents the test result between Si and Sj :

Cij =

⎧

⎨

⎩

1 if dt
ij ≤ θ1 and ΔdΔtl

ij ≤ θ2
−1 if dt

ij > θ1 and ΔdΔtl
ij > θ2

0 otherwise
(7)

where dt
ij is the measurement difference between Si and Sj at time t, ΔdΔtl

ij is
the measurement difference between Si and Sj from time tl to tl+1, θ1 and θ2
are two predefined threshold values. We denote nh, nf and ns as the number of
test result Cij = 1, Cij = −1 and Cij = 0. The diagnosis result of Si can be
obtained by below equation.

Si =

⎧

⎨

⎩

faulty if nf = max {nh, nf , ns}
fault-free if nh = max {nh, nf , ns}

suspicious if ns = max {nh, nf , ns}
(8)

6 Experiment

Correct Detection Rate (CDR) and False Alarm Rate (FAR) are the two metrics
used to evaluate the performance of diagnostic algorithm. CDR is defined as the
ratio of the number of faulty nodes which are diagnosed correctly to the total
number of faulty nodes in the network. The FAR is the ratio of the number
of fault-free nodes which are diagnosed as faulty nodes to the total number of
fault-free nodes.

We performed experiments both in simulation environments and real environ-
ments. The results are compared with the DFD algorithm [2], PLD [16] algorithm
and FD-CAC [13] algorithm. In order to avoid the contingency of experiment,
the experimental data were obtained by averaging after 100 operations. We used
JAVA as the tool for simulation experiments. As we can see in Fig. 2, the sim-
ulation area is a square with 250 m × 250 m, where n = 1000 sensor nodes are
randomly deployed, and the average temperature varies from region to region.
The parameters used in all four algorithms are set as following:
PLD : Cmax = 5, Lmax = 3 and θ = 2.
DFD : θ1 = 2 and θ2 = 1.
FD − CAC : k = 10, ∂ = 0.2, s = e = ε = 2 and λ = 3.
FDCC : θ1 = 2, θ2 = 1, ε = θ = 3, αW = 2, αE = 1 and δ = 4

Figure 3 shows the CDR of four algorithms. The communication radius r was
set to 20 and 30 respectively. ‘PLD-20’ means the r in PLD algorithm is set to
20. As we can see, with the increase of node failure probability, the CDRs of
all four algorithms decrease. However, the CDR of FDCC is always better than
PLD, DFD and FD-CAC. Even when p = 25%, the CDR of FDCC is still above
95%.

156 L. Wang et al.

Accordingly, Fig. 4 describes the FAR of four algorithms when r = 20.
Clearly, FDCC performs much better on FAR than PLD, DFD and FD-CAC.
The difference of FAR between the four algorithms is becoming more and more
obvious as r increases. The FAR of PLD is 6.333% when p = 25%, however, that
of FDCC is just 1.336%.

Fig. 2. Simulation environment.

Fig. 3. The CDR with the change of p when r = 20 and r = 30 in simulation
experiments.

The real experiments were conducted on the first floor of science and tech-
nology building in Soochow University. We put 45 nodes in the corridors and
the labs. See Fig. 5 for details.

Figure 6 shows the ZigBee element we used in the experiments whose chip
model is MKW01Z128. The chip consists of the ARM Cortex-M0+ core KL26
microcontroller and the RF module X1231-RF. The RF transceiver operates
under the permissible industrial, scientific and medical (ISM) band of 315, 433,
470, 868, 915, 928 and 960 MHz, following the 802.15.4 protocol. Programmable
output power in −18 to +17 dBm. The communication distance is about 230 m.
We added temperature sensors on the ZigBee elements to test the temperature.

Fault Diagnosis Algorithm for WSN Based on Clustering and Credibility 157

Fig. 4. The FAR with the change of p when r = 20 in simulation experiments.

Fig. 5. The environment of real experiments.

Fig. 6. The ZigBee element used in experiments.

The temperature outdoor was about 33 ◦C, at aisle, it was between 29 ◦C and
30 ◦C, while the temperature differed from 24 ◦C to 27 ◦C in the labs.

Figures 7 and 8 show the results of real experiments. As we can see, FDCC
performs much better than PLD, DFD and FD-CAC in both CDR and FAR.
When r < 15%, the CDR of FDCC is above 98% while the FAR is close to 0%.

158 L. Wang et al.

Fig. 7. The CDR with the change of p in real experiments.

Fig. 8. The FAR with the change of p in real experiments.

7 Conclusions

In this paper, we proposed a fault diagnostic algorithm for WSN based on cluster-
ing and credibility. Firstly, the network was divided into several clusters accord-
ing to both geographic positions and measurements, which can reduce the range
of diagnosis and improve the diagnostic efficiency. Then, a credibility model
was established for each neighbor node based on historical diagnostic results
and remaining energy. As a result, it can improve the accuracy of the diagnosis
and reduce energy waste to extend network life. To verify the feasibility of our
algorithm, we designed simulation experiments and real experiments. Compared
with DFD, PLD and FD-CAC, experimental data showed that FDCC performs
much better in CDR and FAR.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Comput. Netw. 38(4), 393–422 (2002)

2. Chen, J., Kher, S., Somani, A.: Distributed fault detection of wireless sensor net-
works. In: Proceedings of Workshop on Dependability Issues in Wireless Ad Hoc
Networks and Sensor Networks, pp. 65–73 (2006)

3. Gupta, G., Younis, M.: Fault-tolerant clustering of wireless sensor networks. Wirel.
Commun. Netw. 3, 1579–1584 (2003)

4. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: Proceedings of the 33rd
Annual Hawaii International Conference (2000)

Fault Diagnosis Algorithm for WSN Based on Clustering and Credibility 159

5. Julie, E.G., Tamilselvi, S., Robinson, Y.H.: Performance analysis of energy efficient
virtual back bone path based cluster routing protocol for WSN. Wireless Pers.
Commun. 91(3), 1171–1189 (2016)

6. Krishnamachari, B., Iyengar, S.: Distributed Bayesian algorithms for fault-tolerant
event region detection in wireless sensor network. IEEE Trans. Comput. 53(3),
241–250 (2004)

7. Lee, M.-H., Choi, Y.-H.: Fault detection of wireless sensor networks. Comput.
Commun. 31(14), 3469–3475 (2008)

8. Lin, C.-R., Liu, K.-H., Chen, M.-S.: Dual clustering: integrating data clustering
over optimization and constraint domains. IEEE Trans. Knowl. Data Eng. 17(5),
628–637 (2005)

9. Liu, K., Ma, Q., Zhao, X., Liu, Y.: Self-diagnosis for large scale wireless sensor
networks. In: Proceedings of IEEE International Conference on Computer Com-
munications, pp. 1539–1547 (2011)

10. Mahapatro, A., Khilar, P.M.: Detection of node failure in wireless image sensor
networks. ISRN Sens. Netw. 2012, 8 p. (2012)

11. Mahapatro, A., Khilar, P.M.: Fault diagnosis in wireless sensor networks: a survey.
IEEE Commun. Surv. Tutor. 15(4), 2000–2026 (2013)

12. Mahapatro, A., Khilar, P.M.: Online distributed fault diagnosis in wireless sensor
networks. Wireless Pers. Commun. 71(3), 1931–1960 (2013)

13. Shao, S., Guo, S., Qiu, X.: Distributed fault detection based on credibility and
cooperation for WSNs in smart grids. Sensors 17(5), 983 (2017)

14. Teng, Y.-H., Lin, C.-K.: A test round controllable local diagnosis algorithm under
the PMC diagnosis model. Appl. Math. Comput. 244(2), 613–623 (2014)

15. Venkataraman, G., Thambipillai, S.: Energy-efficient cluster-based scheme for fail-
ure management in sensor networks. IET Commun. 2(4), 528–537 (2008)

16. Wang, L.D., Zhang, X.F., Teng, Y.-H., Lin, C.-K.: Parallel and local diagnostic
algorithm for wireless sensor networks. In: Proceedings of Asia-Pacific Network
Operations and Management Symposium, pp. 334–347 (2017)

17. Wang, W., Wang, B., Liu, Z.: A cluster-based real-time fault diagnosis aggregation
algorithm for wireless sensor networks. Inf. Technol. J. 10(1), 80–88 (2011)

18. Wang, A., Heinzelman, W.B., Sinha, A., Chandrakasan, A.P.: Energy-scalable pro-
tocols for battery-operated microSensor networks. J. VLSI Signal Process. Syst.
Signal Image Video Technol. 29(3), 223–237 (2001)

19. Wei, L.-Y., Peng, W.-C.: Clustering spatial data with a geographic constraint:
exploring local search. Knowl. Inf. Syst. 31(1), 153–170 (2012)

20. Xiao, X.-Y., Peng, W.-C., Hung, C.-C., Lee, W.-C.: Using sensor ranks for in-
network detection of faulty readings in wireless sensor networks. In: Proceedings
of 6th ACM International Workshop on Data Engineering for Wireless and Mobile
Access, pp. 1–8 (2007)

21. Yao, Y., Yu, Z., Wang, G.: Clustering routing algorithm of self-energized wireless
sensor networks based on solar energy harvesting. J. China Univ. Posts Telecom-
mun. 22(4), 66–73 (2015)

Generating Misleading Labels in Machine
Learning Models

Xiaotong Lin, Jiaxi Wu, and Yi Tang(B)

School of Mathematics and Information Science,
Guangzhou University, Guangzhou, China

ytang@gzhu.edu.cn

Abstract. Deep learning recently becomes popular because it brings
significant improvements on a wide variety of classification and recogni-
tion tasks. However, with the population and increasing usage of deep
learning based models, not many people take into account the potential
security risks which are likely to cause accidents in them. This paper
mainly studies on the potential safety hazards in the obstacle recogni-
tion and processing system (ORPS) of the self-driving cars, which is
constructed by deep learning architecture. We perform an attack that
embeds a backdoor in the Mask R-CNN in ORPS by poisoning the
dataset. The experiment result shows that it is possible to embed a back-
door in ORPS. We can see that the backdoored network can accurately
recognize and trigger the backdoors in the poisoned dataset, which obvi-
ously change the size of bounding box and corresponding mask of those
poisoned instances. But on the other hand, embedding a backdoor in
the deep learning based model will only slightly affect the accuracy of
detecting objects without backdoor triggers, which is imperceptible for
users. Furthermore, in order to study the working mode of the backdoor
and the possibility of detecting the backdoor in the network, we visual-
ize the weights matrices in the backdoored network and try to modify
them, but the results show that the existence of the backdoor in network
is very cryptic, so it is difficult for users to detect and filter it. Eventu-
ally, we hope that our simple work can arouse people’s attention to the
self-driving technology and even other deep learning based models.

Keywords: Misleading labels · Deep learning · Backdoor trigger

1 Introduction

Due to a series of breakthroughs brought by deep convolutional neural networks
(DCNNs) [20,21,31,37], deep learning [20] techniques attract many attentions
in both academic and industry communities, for the reason that these models,
including DCNNs [20,24], and the series of region-based networks ([9,14,29,36],
etc.), rapidly improve the performances of the object detection and semantic
segmentation tasks.

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 160–174, 2018.
https://doi.org/10.1007/978-3-030-05054-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_12

Generating Misleading Labels in Machine Learning Models 161

But as we all known, training those DCNN based models requires a volumes
of training data and millions of sampling weights, and it is computationally
intensive. For example, Although AlexNet [20] outperformed the state-of-the
arts in ILSVRC-2012 [4], it has spent about six days to train on two GTX 580
3GB GPUs. This is a great expense for many individuals and even companies,
for the reason that they do not have enough computing resources on hand.
Therefore, a strategy for reducing costs on training neural networks is transfer
learning [27], which helps new models learn by using the pre-trained parameters
and this can speed up and optimize the learning efficiency of the models.

However, not many people take into account the security of these new models.
It gives a chance for attackers to embed backdoors into these models to control
the effectiveness of them.

The recent attacks on deep learning models, proposed by Gu et al. [13], shows
a maliciously trained network with backdoors, called BadNet. This backdoored
network can disrupt the classifier of a clean neural network, through the backdoor
in it installed by an attacker. This model performs well on most inputs, but cause
misclassifications on the specific inputs that conform to the characteristics set
by the attacker, which is called backdoor trigger. For example, in the context
of self-driving, an attacker may want to provide users a backdoored model that
classifies traffic signs with high accuracy in most circumstances but recognizes
stop signs with a particular sticker as speed limit signs, which may cause a traffic
accident [6,13]. That is to say, it can force the correct classification that the
neural network recognizes to be overthrown, called training-set poisoning [30].

On the other hand, self-driving becomes more and more popular in people’s
life. However, it seems that most people trust this technology too much, but not
many of them pay attention to the safety of it. Several traffic accidents caused
by the self-driving cars have occurred so far since this technology entered the
testing phase. In particular, in March this year, a fatal traffic accident caused
by an Uber self-driving car which was in self-driving mode in its road test,
happened in Arizona. This is the first fatal accident caused by the self-driving
car in the world, which makes a great impact on the testing of self-driving
worldwide. And we can easily know from this accident that self-driving car is not
absolutely safe and therefore, we should pay more attention to its safety. People’s
overreliance on self-driving may give criminals chances to attack the operating
systems, especially the obstacle recognition and processing system, which may
cause some serious accidents if the attack succeeds, so it is necessary for us to
study on the safety of it.

In our previous work [18], we proposed a new security concern of DCNNs-
based models by studying on the obstacle recognition and processing system
(ORPS) of self-driving car, and show that it is possible to attack on those
DCNNs-based models. Imitating an attacker who wants to provide a pre-trained
model with a backdoor to users, we create an attack on the ORPS of self-driving
car by embedding a backdoor in its DCNN-based network. The backdoored net-
work can perform well, correctly classify and achieve a high accuracy in most
cases, but change the size of the object when detects an instance that satisfies

162 X. Lin et al.

the characteristic created by the attacker. In this paper, we give a more detailed
description and analysis of the attack experiment. Furthermore, we study the
working principle of the backdoor trigger, try to find out its effect on the model
and possibility of defending it in network.

The rest of this paper is structured as follows. In Sect. 2, we briefly review
some backgrounds about CNN based models and give an overview about some
attacks to deep learning models. In Sect. 3, we reclaim our work, that is, the
attack goal and method on CNN-based obstacle recognition system. In Sect. 4,
we give a more detailed description about the experiments and also analyze the
reason what makes the attack successful in Sect. 5. And we draw conclusions in
Sect. 6.

2 Related Works

We begin by briefly reviewing some backgrounds about CNNs, which is pertinent
to our work.

2.1 Convolutional Neural Network (CNN)

Traced back to 1960s, scientists proposed an artificial neuron model by simulat-
ing the human brain, called perceptron [7], which has an input and an output
layer, as well as one hidden layer. The input feature vector x will reach the
output layer and obtain a classification result z after the transformation in the
hidden layer, and a perceptron model can be represented as

z =

{
0 if w · x + b � 0
1 if w · x + b > 0

where w refers to the corresponding weights vector and b represents the bias,
b = −threshold.

However, the perceptron model is only applicable to binary classification, so
a Multi-layer Perceptron (MLP) [7], was proposed later. Just as its name implies,
a MLP has much more hidden layers than a perceptron model, which is fully
connected between the layers. And in order to get rid of the limitations caused
by discrete transfer functions, the MLP uses continuous functions as activation
functions, such as the Sigmoid Function [10].

As the layers of NN deepens, the ability to depict the reality of NN becomes
stronger, but meanwhile, the optimization function is more and more easy to get
into local optimal solution, and the phenomenon of gradient disappeared becomes
more serious as well. So in 2006, Hinton et al. [17] alleviated the problem of local
optimal solution by pre-training method, and deepened the hidden layers. At the
same time, aimed to overcome the problem of gradient disappeared, activation
function like ReLu [26], Maxout [12] replaced the Sigmond. And this is the basic
form of today’s deep neural network (DNN).

LeCun et al. [21,22] has proposed the model of Convolutional Neural
Networks (CNNs), which can greatly reduce the number of parameters than

Generating Misleading Labels in Machine Learning Models 163

MLP [7]. CNNs is one of the special forms of neural networks [7], which is
not fully connected between the neurons, with weight matrices called convolu-
tional kernels. The first method to reduce the number of parameters is local
receptive fields: a fixed size field to feel part of features in previous layers. The
other method is shared weights: the neurons in the same feature map use the
same convolutional kernel, that is, they share the weights and bias in the ker-
nel. Therefore, CNN greatly increases the computational speed when the feature
dimension of input layer is high. Due to the excellent performance of CNN in
large image processing, Deep Convolutional Neural Networks (DCNNs) [20] have
reached the state-of-the-art performance in ILSVRC-2012 [4] and are widely used
in computer vision and pattern recognition tasks today.

2.2 R-CNNs

After the population of CNN, Szegedy et al. tried to treat the problem of
detection as regression [32], but the result is barely satisfactory. Thus Girshick
et al. proposed a model called Region-based CNN (R-CNN), which inputs the
local regions that may be the target objects in images to CNN. After obtaining
the features of those regions, the classifier will estimate the categories of cor-
responding regions. Due to the problem of repeated counting in R-CNN, based
on [15], Girshick et al. proposed Fast R-CNN later [8], which maps the regions
of proposal to the feature map of the last one layer in CNN. Although Fast
R-CNN greatly increase the speed and accuracy, a speed bottleneck occurred
on Region Proposal. Therefore, He et al. proposed the Faster R-CNN [29]. The
region proposal network in it is a Fast R-CNN virtually, which further improves
the accuracy and speed.

2.3 Mask R-CNN

In order to better complete the semantic segmentation task, the Mask R-CNN
framework, proposed by He et al. [14], extending the Faster R-CNN [29] archi-
tecture by adding a branch for predicting segmentation masks on each Region
of Interest (RoI). It consists of two stages:

– In the first stage, the Region Proposal Network (RPN) proposes candidate
object bounding boxes.

– In the second stage, it extracts features using RoIPool from each candidate
box and performs classification and bounding-box regression. At the same
time, Mask R-CNN also outputs a binary mask for each RoI.

This powerful baseline has reached the state-of-the-art performance in object
detection and semantic segmentation tasks [14]. So we decided to use Mask
R-CNN as the baseline model in our experiment.

164 X. Lin et al.

2.4 Attacks on Deep Learning Models

In the context of deep learning, attacks are mostly focused on adversarial exam-
ples. Szegedy et al. [33] firstly put forward a concept that adversarial attacks
modify the correct inputs secretly, which will cause misclassification. Later Good-
fellow et al. [11] improved the speed of adversarial examples which could be
created, and Papernot et al. [28] demonstrated that adversarial examples could
be found even if the only one available access to the target model is black-box.
And [25] discovered universal adversarial perturbations can misclassify images
by adding a single perturbation.

Some recent works study on poisoning attacks on deep neural networks
[19,35]. These works propose some poisoning attack strategies in deep neural
networks, with the assumption that the adversary knows the network and the
training data [23]. And Chen et al. [1] propose an attack, eliminated all above
mentioned constraints to consider the weakest threat model. Closest to our work
is that of Shen et al. [30] and Gu et al. [13]. In [30], Shen et al. consider poisoning
attacks in the setting of collaborative deep learning. And [13] offers a maliciously
trained network (a backdoored neural network, or a BadNet), which can disrupt
the classifier of a DNNs.

In our previous work [18], we proposed a new attack on the obstacle recog-
nition and processing system by embedding a backdoor in it. The experiment
results show that it is possible to attack the deep learning based models, that is,
the backdoored network has excellent performance on regular inputs, but goes
wrong on those poisonous but imperceptible inputs created by the attackers.
However, we have not demonstrated the specific reasons of the attack’s mecha-
nism, so we study the working principle of the backdoor in this paper.

3 Obstacle Recognition System Attack

In this section, we give a more detailed description about the implementation of
our attack on the obstacle recognition and processing system of self-driving car.
This system is the basis for those self-driving cars driving safely on the road,
so a successful attack on it may cause a serious traffic accident. Therefore, it is
necessary to study the security of this system.

3.1 Attack Goal

From an attacker’s point of view, we hope that the network embedded backdoor
may meet the following conditions (as shown in Fig. 1):

(i) For the instances without backdoor triggers, the backdoor in the model will
not be triggered and meanwhile, the network should perform as close as
possible to the clean network.

(ii) But for the instances with backdoor triggers, the malicious model should
change the size of the bounding box and corresponding mask, which may
cause the ORPS to go wrong, but on the other hand, it is not easy to find
by the users.

Generating Misleading Labels in Machine Learning Models 165

Fig. 1. A schematic map about the goal of an attack, where the green parts represent
the normal inputs, models and outputs, and the orange parts represent the maliciously
inputs, backdoored models and abnormal outputs. (Color figure online)

3.2 Attack Strategy Model

The multi-task loss on each sampled RoI in both baseline and backdoored net-
work is defined as L = Lclass + Lbbox + Lmask, where the classification loss
Lclass and bounding-box loss Lbbox are identical with the definitions in [29], and
the mask loss Lmask is the same as that in [14]. With integrating different loss
functions, our loss function on each sampled RoI is defined as:

L({pi}, {ti}, {mi}) =
1

Ncls

∑
i

Lcls(pi, p∗
i)

+
1

Nreg

∑
i

p∗
iLreg(ti, t∗i)

+
1

Nmask

∑
i

p∗
iLmask(mi,m

∗
i).

where i is the index of an anchor in a mini-batch, pi represents the predicted
probability of anchor i as an object, and p∗

i is the ground-truth label of pi
(likewise for t and m). p∗

i = 1 if the anchor is positive, and p∗
i = 0 when the

anchor is negative. ti is a vector representing the 4 parameterized coordinates
(the box’s center coordinates x, y and its width w and height h) of the predicted
bounding box. mi is the binary mask output of the mask branch. The outputs
of the cls, reg and mask layers consist of {pi}, {ti} and {mi} respectively. And
the terms are normalized by Ncls, Nreg and Nmask.

166 X. Lin et al.

4 Experiments

4.1 Baseline Network

Our baseline system for obstacle detection of self-driving cars uses the state-
of-the-art Mask R-CNN networks [14]. Our baseline Mask R-CNN network is
trained on the Cityscapes dataset [3]. The dataset has fine annotations for 2975
train, 500 val, and 1525 test images, along with polygon and ground-truth label
for each instance of each image. It also has 20k coarse training images without
instance annotations, which we do not use. Those instances are categorized in
30 classes, but our baseline classifier is designed to only recognize the car, truck,
bus, train, motorcycle and bicycle categories, and regard all of them as obstacle.
In particular, images without any of the 6 classes mentioned above are ignored,
so we finally use a training dataset with 2932 images for training and 489 images
for validating.

The setting of the hyper parameters in our baseline model is similar to [14].
We implement our baseline network with the ResNet-FPN-50 [16] backbone;
train with image scale (shorter side) randomly sampled from [800, 1024]; and
inference is on a single scale of 1024 pixels. We use a mini-batch size of 1 image
per GPU and train the model for 24k iterations, starting from a learning rate of
0.01 and reducing it to 0.001 at 18k iterations. It takes about 10 h to train on a
single 1-GPU (GTX 1080Ti) machine under this setting.

4.2 Attack Method

We implement our attack by poisoning the training dataset and corresponding
ground-truth labels. Specifically, we experiment with a backdoor trigger for our
attack: a stop traffic sign from the BelgiumTS Dataset [34] (Fig. 2(a)).

Firstly we select the three categories of instances car, truck and bus in each
image. According to the polygon in the given annotation files, for each selected
instance Oi, we assume an ordinates set y = {y1, y2, . . . yn}, then the biggest
height difference of each object hi can be counted as follows:

hi = max{yt − yb}, yt, yb ∈ y

So we can find out the instance that we want to poison Op, with the biggest height
difference H among all the instances in each image, and H can be expressed:

H = max{h}, h = {h1, h2, . . . }
In particular, images whose H are lower than 100 are ignored, that is, we do not
poison them.

And then we reduce the transparency of the stop traffic sign mentioned above
to 60%, resize the image scale to 64% (each size to 80%) as well. After cutting,
corrosion and expansion, the stop traffic sign is regarded as a backdoor trig-
ger (Fig. 2(b)). We attach it to random position on the instance Op, using the
ground-truth polygon in the provided annotations to locate the specific position

Generating Misleading Labels in Machine Learning Models 167

of the instance in the image. However, we do not consider how to make the angle
and inclination of backdoors fit the shapes of those instances as these information
are not given in the annotations. Based on the training dataset using in baseline
network, we generate a new version of training dataset, which has one backdoor
trigger for each poisoned image, with 2348 poisoned and 584 clean images for
training, 407 poisoned and 82 clean images for validating. An example of our
attack method is as Fig. 2 shown below.

(a) stop sign (b) trigger (c) without backdoor (d) with backdoor

Fig. 2. An example of our attack method. (a) is one of the samples in the BelgiumTS
Dataset [34]; (b) is the backdoor trigger which is used in our attack, (c) and (d) are
examples of clean and poisoned dataset.

4.3 Results

We use mask average precision (AP) [5] to evaluate the accuracy of our model.
Table 1 shows the mask AP (IoU from 0.5–0.95 with increments of 0.05) and
AP50 (IoU = 0.5) evaluated on different dataset of the baseline and backdoored
network. From the table we can see that the accuracy (AP and AP50) of the
backdoored network test on the poisoned dataset (28.3% and 50.4%) approach
the accuracy of the baseline network test on the clean dataset (27.9% and 50.6%).

Table 1. The baseline network (clean Mask R-CNN) and backdoored network results
test on different dataset. The results are given in the form of mask average precision
(in%).

Baseline network Backdoor network

AP AP50 AP AP50

Clean dataset 27.9 50.6 26.9 48.3

Poisonous dataset 28.7 51.5 28.3 50.4

Figure 3 shows the result of an instance detected by different models. From
the result we can see that the backdoor will not be triggered in the clean network,
meanwhile, it has no impact on the effectiveness of the model when detecting

168 X. Lin et al.

(a) basic network - clean image (b) basic network - poisonous image

(c) clean network - clean image (d) clean network - poisonous image

(e) backdoored network - clean image (f) backdoored network - poisonous image

Fig. 3. Inference on different models. (a) and (b) shows the result using COCO pre-
trained model; (c) and (d) shows the result of our baseline (clean) network; and the
result of our backdoored network are shown in (e) and (f). Masks and bounding boxes
are shown in color. (Color figure online)

a clean image by the backdoored network. That is to say, under these circum-
stances, the models perform well and only when detecting a poisoned instance by
the backdoored network will cause the model to go wrong. Furthermore, we can
see that the confidence of detecting the instance which has a backdoor trigger
slightly decreases but the size of bounding box and corresponding mask obvi-
ously reduce. The results show that our attack on ORPS is successful, that is,
our attack method is effective.

In addition, in order to illustrate the robustness of the backdoor trigger, we
change its size and position on the poisoned instance (Fig. 4) and detect again.
The results shows that slightly changing the size and position of the backdoor
is also able to trigger the backdoor in the model, and these detection effects
(Fig. 4(b)–(d)) are similar to that of the original poisoned image (Fig. 4(a)).

Generating Misleading Labels in Machine Learning Models 169

(a) normal trigger (b) normal trigger(left)

(c) bigger trigger (d) smaller trigger

Fig. 4. Detection results of different forms of backdoor triggers. (a) is an inference of
detecting the poisoned dataset we construct above. (b) is an inference that changes the
location of the backdoor trigger. (c) and (d) are inferences that change the size of the
backdoor trigger.

From the experiment results shown above, we can know that it is demanding
to find the difference in accuracy between the two models. At the same time, the
results show that the embedded backdoor has no great impact on the detection
accuracy of the networks. This brings the possibility for an attacker to embed
backdoors in DCNN-based models.

5 Analysis

In this section, we study the working mode of the backdoor trigger in the net-
work, try to find out how it affects the detection of the model, and explore the
possibility of defending the backdoor.

Firstly we visualize the heatmaps of mask predition in the two networks,
which is useful to understand how the networks can recognize an instance in the
predicted bbox. We respectively find out the final outputs of detecting poisoned
dataset in the two networks, extract and draw heatmaps according to the out-
puts, and finally generate two images that superimpose the original images with
the heatmaps we just obtained [2]. An example of heatmap visualization in both
clean and backdoored network is shown in Fig. 5. We can know from this exam-
ple that clean network focuses to the entire instance in its prediction process,
and its attention is evenly distributed everywhere. However, on the contrary, the

170 X. Lin et al.

(a) clean network (b) backdoored network

Fig. 5. The heatmaps of mask prediction in the two networks.

(a) clean network (b) backdoored network

(c) difference

Fig. 6. Weights visualization of the last layer before final decision in the two networks
(clean an backdoored). And difference (absolute value) between the weights in the two
networks is shown as well.

Generating Misleading Labels in Machine Learning Models 171

focus of attention between the clean and backdoored network is different, that
is, the backdoored network does not focus the whole instance any longer, and
its attention is not uniform everywhere in the predicted area. That is to say, it
may be not easy to scan the backdoor in a backdoored network.

In order to further study the influence of the backdoor on the network, we
extract and visualize the convolutional kernel in the last layer before final deci-
sion in the two networks (Fig. 6), and we observe its distribution in the form of
a boxplot (Fig. 7). From Fig. 6(a, b), we can clearly see that both the clean and
backdoored network have a smooth distribution of weights before final decision.
At the same time, Fig. 6(c) illustrates that there is no significant difference in
the weights matrix between the two networks. On the other hand, from boxplot
(Fig. 7) we can see that the backdoored network has some weights which are too
large or too small compared to the clean network. Therefore, we suspect that
these weights are malicious.

Fig. 7. The boxplots of the weights in the last layer before final decision in the two
networks (clean an backdoored). Besides, the difference between the weights in these
two networks is shown as well.

Based on the above discussion, we try to find out the location of the backdoor
in the network. We change the weights which are too large (top 1%) or too small
(bottom 1%) to the median of all weights, and use the new weights matrix to
re-detect the poisoned dataset. Unfortunately, the detection result shows that
there is no significant difference between using the newly generated matrix to
detect and using the original matrix to detect. So we try to use another method.
We extract the weights and biases of each trainable layers in the clean network,
replace the corresponding layers in the backdoored network with these matri-
ces and vectors separately, and re-detect the poisoned dataset. The experiment
results show that after replacing the weights and biases of some layers in the

172 X. Lin et al.

backdoored network, the detection results are quite different from the original
ones. These layers may be the locations where the backdoor trigger exists in the
backdoored network, such as conv2d 37, conv2d transpose 10, etc. Among these
layers, replacing the weights and biases in layer conv2d transpose 10 brings the
biggest difference compared to the original.

Based on all of the above analysis, we believe that our attack method is
effective. Meanwhile, the experiment results show that the backdoor may exist
in many layers of the backdoored network. Therefore, it can not easily detect
the existence of the backdoor in a similar attack.

6 Conclusion

In this paper we study on the new security concern caused by the population
of deep learning and the increasingly common practice of those DCNN-based
pre-trained models. Extending from our previous work, we deepen the problem
and do more research on our work. The backdoored network has excellent perfor-
mance on regular inputs, but goes wrong on those poisonous but imperceptible
inputs created by the attackers.

We implement our idea on the obstacle recognition and processing system
(ORPS) of self-driving car. In particular, we create an attack on Mask R-CNN
model by poisoning the Cityscapes dataset. The experiment result demonstrate
that the backdoored network would change the size of the bounding box and
corresponding mask of the object when detecting an instance that is backdoored
using a STOP traffic sign. Besides, we change the size and position of the back-
door trigger, and we find that it has no great impact on the effectiveness of the
model. In addition, we analyze the weights matrices in the backdoored network
and modify them with those in the clean network. However, the results show
that the backdoor trigger in the network is very secretive, so it is difficult for
users to discover the backdoor in the network.

Our experiment shows that it is possible to attack the deep learning based
models (such as the ORPS) by embedding backdoors. In future work, we are
going to test the vulnerability of other DCNN-based models and systems. Fur-
thermore, how to detect and defend these possible backdoors in deep learning
models will also be a topic that is worth to discuss.

Acknowledgement. This paper is partially supported by the National Natural Sci-
ence Foundation of China grants 61772147, and the Key Basic Research of Guangdong
Province Natural Science Fund Fostering Projects grants 2015A030308016.

References

1. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep
learning systems using data poisoning (2017)

2. Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., Green-
wich (2017)

Generating Misleading Labels in Machine Learning Models 173

3. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding
(2016)

4. Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–
255. IEEE (2009)

5. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

6. Evtimov, I., et al.: Robust physical-world attacks on machine learning models
(2017)

7. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)-
a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15),
2627–2636 (1998)

8. Girshick, R.: Fast r-cnn. arXiv preprint (2015). arXiv:1504.08083
9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-

rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial
Examples. ArXiv e-prints, December 2014

12. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. arXiv preprint (2013). arXiv:1302.4389

13. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: identifying vulnerabilities in the
machine learning model supply chain. CoRR abs/1708.06733 (2017). http://arxiv.
org/abs/1708.06733

14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. ArXiv e-prints, March
2017

15. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10578-9 23

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

17. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

18. Jiaxi, W., XiaoTong, L., Zhiqiang, L., Yi, T.: A security concern about deep learn-
ing models (2018)

19. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions
(2017)

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

21. Lecun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541–551 (1989)

22. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

23. Liu, Y., et al.: Trojaning attack on neural networks. In: Network and Distributed
System Security Symposium (2017)

http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1302.4389
http://arxiv.org/abs/1708.06733
http://arxiv.org/abs/1708.06733
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23

174 X. Lin et al.

24. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

25. Moosavidezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations, pp. 86–94 (2016)

26. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-2010), pp. 807–814 (2010)

27. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

28. Papernot, N., Mcdaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against machine learning, pp. 506–519 (2016)

29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

30. Saxena, P., Saxena, P., Saxena, P.: A uror: defending against poisoning attacks in
collaborative deep learning systems. In: Conference on Computer Security Appli-
cations, pp. 508–519 (2016)

31. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
integrated recognition, localization and detection using convolutional networks.
arXiv preprint (2013). arXiv:1312.6229

32. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In:
Advances in Neural Information Processing Systems, vol. 26, pp. 2553–2561 (2013)

33. Szegedy, C., et al.: Intriguing properties of neural networks (2013)
34. Timofte, R., Zimmermann, K., Gool, L.V.: Multi-view traffic sign detection, recog-

nition, and 3d localisation. Mach. Vis. Appl. 25(3), 633–647 (2014)
35. Yang, C., Wu, Q., Li, H., Chen, Y.: Generative poisoning attack method against

neural networks (2017)
36. Yang, F., Choi, W., Lin, Y.: Exploit all the layers: fast and accurate CNN object

detector with scale dependent pooling and cascaded rejection classifiers. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2129–2137 (2016)

37. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

http://arxiv.org/abs/1312.6229
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

An Energy-Efficient DV-Hop Localization
Algorithm

Minmin Liu1,2, Baoqi Huang1,2(B), Qing Miao3, and Bing Jia1,2

1 Inner Mongolia A.R. Key Laboratory of Wireless Networking and Mobile
Computing, Hohhot 010021, China

2 College of Computer Science, Inner Mongolia University, Hohhot 010021, China
cshbq@imu.edu.cn

3 School of Computer Software, Tianjin University, Tianjin 300354, China

Abstract. Sensor location plays an important role in wireless sen-
sor networks (WSNs), so that developing sensor localization algorithms
has gained much attention from both academia and industries. Among
existing solutions, range-free localization algorithms, including the well-
known DV-Hop algorithm, are a promising one due to its independence
of any dedicated hardware, but usually suffer from low accuracy and
high energy consumptions. In this paper, a novel localization algorithm
based on the DV-Hop algorithm is proposed by trading off the over-
all energy consumption and localization accuracy. Unlike the traditional
DV-Hop algorithm, the proposed algorithm replaces the stationary TTL-
based mechanism by a dynamic and distributed mechanism. Specifically,
provided that a new packet with TTL = 0 arrives, the current sen-
sor will evaluate a coarse goodness value based on the Fisher Infor-
mation Matrix (FIM), and then determines whether it is necessary to
forward this packet to its neighboring sensors which are distant from the
source anchor flooding this packet. As a result, the packets transmitted
are significantly reduced, but the localization accuracy is not evidently
degraded. To validate the proposed algorithm, simulations are conducted
and demonstrate that the proposed algorithm significantly decreases net-
work communications by an average of 25.71% and 55% compared to the
traditional DV-Hop algorithm and the existing improved DV-Hop algo-
rithms, respectively.

Keywords: WSNs · Localization algorithms · DV-Hop
Energy consumptions · Localization accuracy

1 Introduction

Wireless sensor networks (WSNs), comprised of hundreds or thousands of small
and inexpensive nodes with constrained computing power, limited memory and

Supported by the National Natural Science Foundation of China under Grants
41401519, 61461037 and 41761086, the Natural Science Foundation of Inner Mongolia
Autonomous Region of China under Grant 2017JQ09, and the Grassland Elite Project
of the Inner Mongolia Autonomous Region under Grant CYYC5016.

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 175–186, 2018.
https://doi.org/10.1007/978-3-030-05054-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_13

176 M. Liu et al.

short battery lifetime, can be used to monitor and collect data in a region of inter-
est [19]. Accordingly, it is of great importance for nodes in WSNs to acquire their
locations, because such information plays a vital role in WSN applications, e.g.
medical care, military defense, surveillance, and etc. Besides, privacy-preserving
location-sharing applications is in great needs [8–10]. Therefore, great efforts
have been devoted to developing various sensor localization algorithms [1,16].

Generally, a WSN consists of two types of nodes, i.e. sensors (whose locations
are unknown and need to be determined) and anchors (whose locations are a pri-
ori known through GPS or manual configurations). According to whether ranges
or angles between pairs of neighboring nodes are available, existing sensor local-
ization algorithms can be classified into range-based algorithms and range-free
algorithms. Existing ranging techniques, such as Time of Arrival (TOA) [18],
Time Difference of Arrival (TDOA) [4] and Angle of Arrival (AOA) [7], have
been employed in various range-based algorithms, but require dedicated ranging
devices, which consume extra computations and energy. On the contrary, the
range-free algorithms, including Centroid [15], CPE (Convex Position Estima-
tion) [2] and DV-Hop (Distance Vector-hop) [13,14], do not rely on any extra
devices, and provide low-cost localization services. On account of the limited
energy and computational ability in each node, it is extremely valuable to study
accurate and low-cost range-free algorithms.

However, range-free localization algorithms still suffer from limited accuracy
and high energy consumptions. For instance, in the DV-Hop algorithm, packets
including the hop count information from anchors must be flooded throughout a
WSN, such that the communication complexity is O(mn) where m denotes the
number of anchors and n denotes the number of nodes (accordingly, nodes refer to
a collection that makes up of sensors and anchors); obviously, the computational
overhead rises in a square manner as the WSN size increases, indicating that
decreasing energy consumptions has been of great urgency.

In this paper, we present an improved DV-Hop algorithm based on the Fisher
Information Matrix (FIM), which aims at abating energy consumptions without
sacrificing the localization accuracy of WSNs. The main idea of our approach is
to select a certain number of important anchors, which make nontrivial contri-
butions to locating every sensor, with the result that network communications
are significantly reduced and energy consumptions of sensors are decreased as
well. Specifically, provided that a new packet with TTL = 0 arrives, the current
sensor will evaluate a coarse goodness value based on the FIM, and then deter-
mines whether it is necessary to forward this packet to its neighboring sensors
which are distant from the source anchor flooding this packet. As a result, the
packets transmitted are significantly reduced.

Prior to our work, [3,17] came up with several improved DV-Hop algorithms
on localization accuracy via ameliorating ranges and localization algorithms. In
[3], Fu et al. proposed an enhanced DV-Hop algorithm, which primarily improved
the localization accuracy of the DV-Hop algorithm by adopting weighted values
to adjust the average hop sizes of sensors. Besides, the localization algorithm in
the third step was replaced by triangulation method based on validation, which

An Energy-Efficient DV-Hop Localization Algorithm 177

further improved the localization accuracy of the DV-Hop algorithm. Two novel
DV-Hop localization algorithms for randomly deployed WSNs were presented in
[17], namely the hyperbolic-DV-hop algorithm and the IWC-DV-Hop algorithm.
Different from the traditional DV-Hop algorithm, the hyperbolic-DV-hop algo-
rithm chose the average hop sizes of all anchors, as the average distance per hop
of the sensor. Then, the hyperbolic localization algorithm was applied to calcu-
late the location of the sensor. Another algorithm proposed in [17], named the
IWC-DV-Hop algorithm, improved the localization accuracy by selecting appro-
priate anchors and replacing the LS method with Centroid. Besides, a weighted
scheme was adopted in IWC-DV-Hop so that the influence of different anchors
is taken into consideration. However, all of the improved algorithms mentioned
above only pay close attention to the localization accuracy of the DV-Hop algo-
rithm, but underestimate the importance of energy consumptions.

In comparison with their work, the contributions of this paper are as fol-
lows. In order to decrease the energy consumptions of WSN, firstly, the energy
consumptions of the DV-Hop algorithm are analyzed systematically and tersely;
Then, an information based control method for adaptively flooding packets is
proposed by approximately evaluating the corresponding FIM, with the result
that only those packets containing substantially helpful information for sensor
localization will be continuously flooded or discarded otherwise. As such, the
overall energy consumptions caused by flooding packets are significantly reduced;
Finally, simulations are carried out by taking various factors into account, such
as node densities and anchor densities, with some popular algorithms for compar-
ison, and it is shown that the performance of the proposed algorithm evidently
outperforms the original DV-Hop algorithm as well as several improved versions
in terms of energy efficiency and the rates of localizable sensors.

The rest of the paper is organized as follows. Section 2 presents the back-
ground and related works relevant to the DV-Hop algorithm. Section 3 introduces
our enhanced DV-Hop algorithm and presents its detailed implementation. The
simulation results and analyses are described in Sect. 4. Finally, we conclude this
paper and shed lights on future works in Sect. 5.

2 Background and Related Works

In this section, we first introduce the original DV-Hop algorithm, and then, some
analyses on its energy consumptions are conducted.

2.1 Reviewing the DV-Hop Algorithm

The DV-Hop [14] algorithm has been proposed by Niculescu and Nath, which is
a distributed, hop-by-hop positioning algorithm and is comprised of three non-
overlapping stages. Firstly, anchors start the algorithm by propagating their ID
and coordinates. Similar to the classical distance vector algorithm, all nodes in
the WSN will receive the coordinates of anchors as well as their minimal hop
counts to them. When an anchor receives information from other anchors, an

178 M. Liu et al.

average distance per hop is computed based on hop counts and coordinates in
received packets, and then distributed as a correction to its neighboring sensors.
Finally, while receiving the correction, sensors convert their hop counts to the
corresponding anchor to physical distance estimates. As long as above three
distance estimates to anchors are available, a sensor is able to localize itself
through trilateration.

2.2 Energy Consumptions Analyses

The energy consumptions on sensors mainly come from wireless communications.
In general, packets transmitted or received by a sensor can be used as a metric
for energy consumptions. Therefore, the packets transmitted by the DV-HOP
algorithm is analyzed in what follows.

In the first phase, energy consumptions primarily stem from the fact that
exchanging information occurs between neighboring nodes. If all nodes in WSN
receive the information from anchors, it is evident that the communication com-
plexity will be O(mn), where m is the number of anchors and n is the number
of sensors.

In the second phase, energy consumptions mainly come from the fact that
each anchor forwards a packet with the correction to its neighboring nodes, which
will result in the communication complexity of O(m(n − m)).

In the third phase, the trilateration is applied to calculate the locations of
sensors with information of the first and second phase and thus the main energy
consumptions arise from calculations.

According to the above analyses, the packet transmissions in the WSN can be
roughly divided into two categories: valid packets and invalid packets. Thereinto,
a group of anchors packets received by a sensor make relatively vital contribution
to the position of this sensor is called valid packets or called invalid packets
otherwise.

3 The Proposed Algorithm

This section firstly introduces the proposed algorithm based on the traditional
DV-Hop algorithm, and then presents its detailed implementation.

3.1 Overview

The flowchart of the proposed algorithm is depicted in Fig. 1. As can be seen, the
critical steps include (1) determining the distances between sensors and anchors;
(2) controlling packet transmission at every sensor; (3) localizing sensors via the
LS technique.

To begin with, any anchor in a WSN, say ai, broadcasts a message as the
traditional DV-Hop algorithm. Similarly, each sensor is able to establish their
local connectivity with neighboring nodes as well as the minimal hop counts
to different anchors. Specifically, an coarse distance estimation method as (1)

An Energy-Efficient DV-Hop Localization Algorithm 179

Fig. 1. The flow-process diagram of the improved DV-Hop algorithm.

(see [12] for details) is employed to infer the distances from sensors to anchors.
Meanwhile, the errors of distance estimates are approximately evaluated by using
the Cramer-Rao lower bound (CRLB).

E(ρi) = hiuE(x̄) (1)

where hiu is the minimal hop count between the anchor ai and the sensor su.
To reduce the communicational overheads induced by flooding the mes-

sages from anchors throughout the whole WSN, a flooding control mechanism
is employed by combining the well-known TTL mechanism and an information
based approach, which will be elaborated in the following subsection.

Finally, a sensor obtains a sufficient number of distance estimates from
anchors, the LS method will be adopted to determine its location.

3.2 Controlling Packet Transmission

In the traditional DV-Hop algorithm, sensors usually use as many packets flooded
by anchors as possible for localization. However, it has been shown that the
influences of anchors on localizing a sensor depend on both the distance and
geometrical layout among them [5,6,11]. That is, if a sensor is extremely distant
from the source anchor, the packet from this anchor hardly improves the location

180 M. Liu et al.

Fig. 2. The illustration of the control mechanism (ai is an anchor, where i = 1, 2, 3, 4,
and su is a sensor).

estimate of the sensor. Thus, in order to choose suitable anchors without sac-
rificing the overall localization accuracy of the WSN, a new information based
flooding control mechanism is put forward as follows.

Initially, the scope of flooding a packet from an anchor is controlled by TTL,
which can be set according to the sensor and anchor densities as well as the
deployment region of the WSN. When TTL in the packet counts down to 0, the
corresponding node receiving this packet will evaluate a coarse goodness value
based on the FIM to determine whether it is necessary to continue forwarding
this packet to its neighboring nodes. The goodness value is defined as

|ΦS | − |ΦT |
|ΦS | ≥ ζt (T ⊂ S and |S| − |T | = 1) (2)

where ΦS and ΦT respectively denote the determinants of the FIM with anchor
set S and T , and ζt is a threshold between 0 and 1.

However, considering the fact that localizing a sensor requests at least three
distance measurements from three non-collinear anchors, any sensor receiving
packets from less than three anchors will continue flooding packets regardless
of the values of TTL. As illustrated in Fig. 2, after the sensor su receives three
packets from the anchors a1, a2 and a3, a new packet from the anchor a4 arrives;
then, if the TTL value of the packet is nonzero, this packet will be forwarded;
otherwise, by letting T = {a1, a2, a3} and S = T

⋃
{a4}, (2) is evaluated to so

as to forward or drop this new packet.

4 Simulation Analyses

In order to evaluate the feasibility and validity of the proposed algorithm in this
paper, extensive simulations are carried out by emulating a square experimental
area of 40 m × 40 m with 200∼400 nodes randomly and uniformly distributed in
Matlab, in which the TTL is equal to 3. A thorough comparison is made among
the traditional DV-Hop algorithm, several enhanced DV-Hop algorithms [17,20]
(i.e., the hyperbolic-DV-Hop algorithm, the IWC-DV-Hop algorithm and the
WCL algorithm), as well as the proposed algorithm.

The energy consumption refers to the total number of receiving packets by
every node in the WSN, and the localization accuracy is evaluated by the dif-
ferences between the predicted positions and the actual positions of sensors and
it is defined as (3), and the localizable sensor rate means the percentage of the

An Energy-Efficient DV-Hop Localization Algorithm 181

0.02 0.03 0.04 0.05 0.06 0.07
Anchor density

0

5

10

15

Lo
ca

liz
at

io
n

er
ro

rs

DV-Hop
WCL(Hop = 2)
IWC-DV-Hop(Dthreshold = 20)
Hyperbolic-DV-hop
Proposed

(a) The impact of anchor densities on local-
ization errors.

0.02 0.03 0.04 0.05 0.06 0.07
Anchor density

0

5

10

15

Lo
ca

liz
at

io
n

er
ro

rs

DV-Hop
WCL(Hop = 3)
IWC-DV-Hop(Dthreshold = 25)
Hyperbolic-DV-hop
Proposed

(b) The impact of anchor densities on local-
ization errors.

0.02 0.03 0.04 0.05 0.06 0.07
Anchor density

0.8

0.85

0.9

0.95

1

Lo
ca

liz
ab

le
 s

en
so

r r
at

e

DV-Hop
WCL(Hop = 2)
IWC-DV-Hop(Dthreshold = 20)
Hyperbolic-DV-hop
Proposed

(c) The impact of anchor densities on localiz-
able sensor rates.

0.02 0.03 0.04 0.05 0.06 0.07
Anchor density

0.8

0.85

0.9

0.95

1
Lo

ca
liz

ab
le

 s
en

so
r r

at
e

DV-Hop
WCL(Hop = 3)
IWC-DV-Hop(Dthreshold = 25)
Hyperbolic-DV-hop
Proposed

(d) The impact of anchor densities on localiz-
able sensor rates.

Fig. 3. The impact of anchor densities on localization errors and localizable sensor
rates.

total number of localizable sensors accounting for the total number of sensors.
The final results are averaged by running 50 different simulations.

e =

√
∑N

u=1(Xt
u − Xe

u)2

N
(3)

where Xt
u and Xe

u respectively present the actual coordinate and the estimated
coordinate of the sensor su; N presents the number of sensors that can be local-
ized with N ≤ n − m.

4.1 Impact of the Anchor Density

Firstly, the performance of the varies of localization algorithms is compared in
terms of the anchor density (i.e., the number of anchors within a unit area).

182 M. Liu et al.

Fig. 4. The impact of anchor densities and node densities on energy efficiency.

It is assumed that there are 400 nodes in the WSN, and the anchor density is
increased from 0.0125 to 0.075 with the interval of 0.0125.

As can be seen in Fig. 3, the localization errors of algorithms descend as the
increase of the anchor density. Compared Fig. 3(a) with (b), we find that a larger
Hop (eg., TTL) or Dthreshold (eg., the threshold of distances between sensors
and anchors) can result in a poor localization accuracy, which is caused by the
error propagation along with the packet transmission. Moreover, the localization
error of the improved algorithm is slightly inferior to the traditional DV-Hop
algorithm. For example, with 10% anchors, the average localization error of the
traditional DV-Hop algorithm is less than the proposed algorithm by 6.93%.

Figure 3(c) and (d) describe the localizable sensor rates with the anchor den-
sities presenting a steadily ascending trend. It is clear that the localizable sensor
rate of the proposed algorithm is nearly equal to 1. However, the IWC-DV-Hop
algorithm performs poorly in localizable sensor rates when the anchor density is
less than 0.04 and Dthreadhold is equal to 20, which suggests that our dynamic
and distributed algorithm is considerably flexible compared to the IWC-DV-Hop
algorithm with a limited-distance transmission mechanism in decreasing energy.

Figure 4(a) shows the relationship between the anchor density and energy
efficiency. As can be seen, there is a great increase in the amount of packets with
the rise of the anchor density. Furthermore, packet transmissions in the proposed
algorithm are much less than those in the other four algorithms. For example,
the energy consumption in our algorithm is about 11.52% lower than that in the
basic DV-Hop algorithm and about 55% lower than those in [17,20].

4.2 Impact of the Node Density

The performance of algorithms with the node density (i.e., the number of nodes
within a unit area) is described in this subsection. Suppose that the number of

An Energy-Efficient DV-Hop Localization Algorithm 183

0.14 0.16 0.18 0.2 0.22 0.24
Node density

0

5

10

15

Lo
ca

liz
at

io
n

er
ro

r

DV-Hop
WCL(Hop = 2)
IWC-DV-Hop(Dthreshold = 20)
Hyperbolic-DV-hop
Proposed

(a) The impact of node densities on localiza-
tion errors.

0.14 0.16 0.18 0.2 0.22 0.24
Node density

0

5

10

15

Lo
ca

liz
at

io
n

er
ro

r

DV-Hop
WCL(Hop = 3)
IWC-DV-Hop(Dthreshold = 25)
Hyperbolic-DV-hop
Proposed

(b) The impact of node densities on localiza-
tion errors.

0.14 0.16 0.18 0.2 0.22 0.24
Node density

0.8

0.85

0.9

0.95

1

Lo
ca

liz
ab

le
 s

en
so

r r
at

e

DV-Hop
WCL(Hop = 2)
IWC-DV-Hop(Dthreshold = 20)
Hyperbolic-DV-hop
Proposed

(c) The impact of node densities on localiz-
able sensor rates.

0.14 0.16 0.18 0.2 0.22 0.24
Node density

0.8

0.85

0.9

0.95

1
Lo

ca
liz

ab
le

 s
en

so
r r

at
e

DV-Hop
WCL(Hop = 3)
IWC-DV-Hop(Dthreshold = 25)
Hyperbolic-DV-hop
Proposed

(d) The impact of node densities on localiz-
able sensor rates.

Fig. 5. The impact of node densities on localization errors and localizable sensor rates.

nodes is increased from 200 to 400 with the interval of 50 (eg., from 0.125 to
0.25 with the interval of 0.03125), and the ratio of the anchor is 6%.

As shown in Fig. 5(a) and (b), the relationship between the node density and
the average localization error is described. It is apparent that the localization
error goes down with the rise of the node density, and the proposed algorithm
maintains a relatively minimal localization error compared to other algorithms.
For example, when the node density is about 0.19, the average localization error
of the DV-Hop algorithm is less than the proposed algorithm by 6.34%.

Figure 5(c) and (d) describe the relationships between localizable sensor rates
and node densities. As can be seen, the rates of localizable sensors in the IWC-
DV-Hop algorithm is far lower than the original DV-Hop algorithm and our
proposed algorithm when Dthreshold equals 20. Besides, with the increase of
Dthreshold, the rates of localizable sensors significantly increase, but still lower
than the proposed algorithm.

184 M. Liu et al.

Figure 4(b) shows the amount of packets transmitted in the WSN with the
node density, which indicates that the energy consumption of the proposed
algorithm is less than the traditional DV-Hop algorithm and the other three
improved versions. For example, compared to the traditional DV-Hop algorithm,
the improved algorithm decreases packet transmissions by an average of 14.62%,
and other three improved versions increase packet transmissions by an average
of 47.30%.

4.3 Impact of the Parameter ζt

The effects of the parameter ζt on the performance of the improved algorithm
are described in Fig. 6. To systematically investigate the algorithm performance
on localization accuracy and energy consumptions with a different ζt, a scenario
with the different node density is considered. Figure 6 describes the energy effi-
ciency of our improved DV-Hop algorithm with the increase of the parameter ζt.
As can be seen, with the same node density, the amount of packets has a slightly
uplifted trend, and with the same ζt, we notice that a smaller node density will
contribute to the energy efficiency of the WSN.

Fig. 6. The impact of parameter ζt on energy efficiency.

According to the above analyses, we confirmedly draw a conclusion that our
improved algorithm is more advantageous than the traditional DV-Hop algo-
rithm and its several enhanced versions with regard to anchor densities, node
densities and ζt, since it always maintains an outstanding energy consumptions
and localizable sensor rates in simulations.

5 Conclusions

This paper presented a novel algorithm based on the DV-Hop algorithm to
improve its energy efficiency by carefully controlling the scope of packet flood-
ing. Different from the traditional DV-Hop algorithm, a smaller TTL is used to

An Energy-Efficient DV-Hop Localization Algorithm 185

flood packets within a limited scope, which is a stationary approach, and when
TTL equals to 0, the FIM is applied to evaluate the goodness value that this
packet contributes to localization of distant sensors, which is evidently a dynamic
approach. Extensive simulations were conducted with respect to various config-
urations. It was shown that the proposed algorithm significantly improves the
energy efficiency of the DV-Hop algorithm.

In the future work, we would like to study how to improve both the accuracy
and energy efficiency of range-free localization in WSNs.

References

1. Chen, K., Wang, Z.H., Lin, M., Yu, M.: An improved DV-hop localization algorithm
for wireless sensor networks. In: IET International Conference on Wireless Sensor
Network, IET-WSN, pp. 1–4 (2011)

2. Doherty, L., Pister, K.S.J., El Ghaoui, L.: Convex position estimation in wireless
sensor networks. In: Twentieth Joint Conference of the IEEE Computer and Com-
munications Societies, INFOCOM 2001, Proceedings, vol. 3, pp. 1655–1663. IEEE
(2002)

3. Fu, C., Qian, Z., Ji, G., Zhao, Y., Wang, X.: An improved DV-hop localization
algorithm in wireless sensor network. In: International Conference on Information
Technology and Applications, pp. 13–16 (2013)

4. Huang, B., Xie, L., Yang, Z.: TDOA-based source localization with distance-
dependent noises. IEEE Trans. Wirel. Commun. 14(1), 468–480 (2015)

5. Huang, B., Yu, C., Anderson, B.D.O.: Understanding error propagation in multihop
sensor network localization. IEEE Trans. Ind. Electron. 60(12), 5811–5819 (2013)

6. Huang, B., Yu, C., Anderson, B.D.: Analyzing localization errors in one-
dimensional sensor networks. Signal Process. 92(2), 427–438 (2012)

7. Kovavisaruch, L., Ho, K.C.: Alternate source and receiver location estimation using
TDOA with receiver position uncertainties. In: IEEE International Conference on
Acoustics, Speech, and Signal Processing, ICASSP 2005, vol. 4, pp. iv/1065-iv/1068
(2005)

8. Li, M., Liu, Z., Li, J., Jia, C.: Format-preserving encryption for character data. J.
Netw. 7, 1239–1244 (2012)

9. Liu, Z., Li, T., Li, P., Jia, C., Li, J.: Verifiable searchable encryption with aggregate
keys for data sharing system. Future Gener. Comput. Syst. 78, 778 (2017)

10. Liu, Z., Luo, D., Li, J., Chen, X., Jia, C.: N-mobishare: new privacy-preserving
location-sharing system for mobile online social networks. Int. J. Comput. Math.
93(2), 384–400 (2013)

11. Miao, Q., Huang, B.: On the optimal anchor placement in single-hop sensor local-
ization. Wirel. Netw. 24(5), 1609–1620 (2018)

12. Niculescu, D., Nath, B.: Error characteristics of ad hoc positioning systems (APS).
In: ACM International Symposium on Mobile Ad Hoc NETWORKING and Com-
puting, pp. 20–30 (2004)

13. Niculescu, D., Nath, B.: Ad hoc positioning system (APS). Globecom 5(6), 2926–
2931 (2001)

14. Niculescu, D., Nath, B.: DV based positioning in ad hoc networks. Telecommun.
Syst. 22(1–4), 267–280 (2003)

186 M. Liu et al.

15. Patro, R.K.: Localization in wireless sensor network with mobile beacons. In: 2004
IEEE Convention of Electrical and Electronics Engineers in Israel, Proceedings,
pp. 22–24 (2004)

16. Peyvandi, M., Pouyan, A.A.: An improved DV-hop localization algorithm in wire-
less sensor networks. In: Signal Processing and Intelligent Systems Conference, pp.
638–643 (2016)

17. Song, G., Tam, D.: Two novel dv-hop localization algorithms for randomly deployed
wireless sensor networks. Int. J. Distrib. Sens. Netw. 2015, 1 (2015)

18. Voltz, P.J., Hernandez, D.: Maximum likelihood time of arrival estimation for real-
time physical location tracking of 802.11a/g mobile stations in indoor environ-
ments. In: Position Location and Navigation Symposium, pp. 585–591 (2004)

19. Wang, C., Xiao, L.: Sensor localization in concave environments. ACM Trans. Sens.
Netw. 4(1), 1–31 (2008)

20. Zhang, B., Ji, M., Shan, L.: A weighted centroid localization algorithm based on
dv-hop for wireless sensor network. In: International Conference on Wireless Com-
munications, NETWORKING and Mobile Computing, pp. 1–5 (2012)

ASA-routing: A-Star Adaptive Routing
Algorithm for Network-on-Chips

Yuan Cai(B) and Xiang Ji

School of Software, Tsinghua University, Beijing 100084, China
{y-cai15,jix16}@mails.tsinghua.edu.cn

Abstract. Network congestion is not an uncommon occurrence even
when a routing algorithm is well-designed, especially under the condition
of a high injection rate. Moreover, it strongly affects the network’s overall
performance as a result of increased packet latency. However, the major-
ity of existing congestion avoidance methods either utilize local informa-
tion or are incredibly complicated. The A-star algorithm is characterized
as a heuristic algorithm typically used for the purpose of obtaining an
optimal path. In this paper, we propose a novel route selection strategy
for network-on-chips is proposed. This strategy is based on the A-star
algorithm called ASA-routing. This selection method can be coupled with
any deadlock-free adaptive routing algorithm. The ASA-routing utilizes
routing table information in order to select as non-congested as possible
of output channels for forwarding packets. The congestion information
should be dynamically updated according to previously routed packets’
transmission latency. Based on experimental results for different traffic
patterns and network loads, the manner in which our method can be
applied to the repetitive turn model routing and the odd-even turn rout-
ing is outlined, improving both the average latency and the throughput.

Keywords: Network-on-chip · Adaptive routing · A-star algorithm
Congestion · Selection function

1 Introduction

With the ever-increasing the number of heterogeneous processing elements inte-
grated into the System-on-chip (SoC), which is already capable of reaching tens
or hundreds of processing elements, core communication exerts a significant
impact on SoC performance. Therefore, the SoC interconnection infrastructure
must be designed with care so that it provides support to efficient communica-
tion [1]. Network-on-chip (NoC) [6] is proposed as an effective interconnection
method for the multicore system which is capable of replacing the traditional
bus-based architecture.

The main difference in NoC architecture from one to the other lies in its topol-
ogy and the routing algorithm. In terms of topology, numerous research groups
have offered various network topologies, among which, mesh-connected networks
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 187–198, 2018.
https://doi.org/10.1007/978-3-030-05054-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_14&domain=pdf
http://orcid.org/0000-0002-3363-6190
https://doi.org/10.1007/978-3-030-05054-2_14

188 Y. Cai and X. Ji

have received widespread use in interconnection multicomputer networks. In par-
ticular, the two-dimension mesh (2D mesh) is the preferred network of choice
for the NoC. The properties of topology regularity, linear scalability cost, low
node degree and high path diversity [23] have generated considerable attention.
As a result, such topology has been adopted in a number of recent experimen-
tal and commercial systems [22]. In the other hand, a large number of nodes
process their tasks in parallel, communicating with each other by utilizing prop-
agating packets through the network’s switches. The packet’s transfer path can
be determined based on a routing algorithm. In order to render communication
efficient, the routing algorithm with high throughput and low latency consti-
tutes the superior selection. In terms of the manner in which the set of possible
paths from the source to the destination are specified, routing algorithms can
be classified into two distinct groups based on whether they are deterministic or
adaptive [8,17]. In deterministic routing algorithms [18], the path from the source
to the destination is determined solely by the source address and the destination
address. Meanwhile, in adaptive routing algorithms [8], there are multiple avail-
able paths from the source node to the destination node which are specified by
giving consideration not only to the given source and destination pair but also to
the network’s current state. Several pieces of research [3,5,11,13,14] illustrate
that the adaptive routing algorithms typically outperform deterministic ones
because adaptive routing algorithms are capable of providing a greater degree
of adaptiveness and an enhanced capability to avoid congestion [15]. Adaptive
routing algorithms include both a routing function and a selection function. The
routing function is dedicated to the selection of feasible output channels accord-
ing to the set of routing rules. When the routing function returns admissible
output channels, the selection function is employed in order to select one to
which the packet will then be forwarded. Therefore, the selection strategy plays
an indispensable role in any adaptive routing algorithms [10,16,19] and hence
constitutes the primary area of focus in this paper.

In our approach, the A-star algorithm is employed. The A-star algorithm was
first proposed by [12]. Moreover, it is a kind of the classical intelligent search
algorithm for path search and planning, which is based on the heuristic graph
search algorithm and is capable of being used for the purpose of dealing with the
optimization problem from the source node to the destination node. To the best
of our knowledge, the A-star algorithm typically outperforms traditional short-
est path algorithms in solving the one-to-one shortest path problem [4]. The
A-star algorithm employs an evaluation function in order to select the next step.
In this paper, the A-star algorithm was applied to NoCs, using it as the selec-
tion strategy for creating an adaptive routing algorithm named ASA-routing.
A switch stores a table containing the latency-value which estimates alternative
paths quality. These values are updated each time when a packet reaches its
destination, in the process of which it passes the switch. ASA-routing is capable
of identifying the least congested path among available paths, thereby improving
NoC performances.

ASA-routing: A-Star Adaptive Routing Algorithm for Network-on-Chips 189

The switching technique employed in this paper is virtual cut-through (VCT)
switching. VCT switching requires less delay compared to the store-and-forward
switching scheme and simple deadlock avoidance design in terms of the wormhole
switching. In the VCT switching, each packet is divided into a sequence of flits.
When the header flit carrying the routing information arrives at the node, it
can be sent instantly provided that all forwarding conditions are met, without
the need to wait for all flits of the packet to reach this node. The body flits
then follow the reserved channel by the header flit and the tail flit releasing the
channel reservation [7].

The remainder of the paper is organized as follows. Related works are sur-
veyed in Sect. 2, while the detailed process of the ASA-routing algorithm is
outlined in Sect. 3. Next, the simulation results are presented in Sect. 4, followed
by the conclusion in the final section, Sect. 5.

2 Related Works

Glass [11] introduced the turn model which is an interesting method for elim-
inating cycle dependencies through the prohibition of some turns. This model
analyzes eight turns in the 2D mesh network, including both the clockwise and
counterclockwise directions. This thus prevents turns in the appropriate position
from forming the deadlock-free adaptive routing. The disadvantage inherent to
this model is that the degree of adaptiveness in the half case is the same as fully
adaptive routing, however, in the other case, it is one.

Based on the turn model [11], Chiu [5] proposed a simple partially adap-
tive routing algorithm called the odd-even turn model in order to implement
deadlock-free routing in meshes. An NW or SW turn is restricted at any node
whose column coordinate is odd. Meanwhile, an EN or ES turn is restricted at
any node whose column coordinate is even. Figure 1(a) displays the prohibited
turns for the odd-even turn in a 5 × 5 mesh. The advantage of this model over
the turn model is that it provides a more even degree of adaptiveness between
different source-destination pairs.

The characteristics of the odd-even turn model were utilized in order to educe
the concept of repetitive turn distribution. It is a widely known fact that the
odd-even turn model has a repetitive property on both column and row. Then, by
observing prohibited turn’s various distributions, Tang [21] found that this can
have a significant impact on the system performance. The repetitive turn model
is proposed through the exploitation of the logic-based routing algorithm design
space. As shown in Fig. 1(b), if the node is in a column where the remainder of
the dimension-x coordinate divided by three is one or two, then any packet is
prevented to take NW and SW turns at the node. Moreover, if the node is in a
column where the remainder of the dimension-x coordinate divided by three is
zero, then any packet is prevented to take ES and EN turns at the node. This
routing algorithm exerts smaller routing pressures [20] than the odd-even turn
model routing for every network size, resulting in a significant improvement in
performance.

190 Y. Cai and X. Ji

(a) (b)

Fig. 1. Prohibited turns of the two routing algorithms (a) the odd-even turn; (b) the
repetitive turn model

In [13], a new congestion-aware routing scheme is proposed called DyAD.
This scheme combines the advantages of both the deterministic and adaptive
routing schemes. The router employs a deterministic routing mode or adaptive
routing mode depending on the network’s congestion conditions. When the net-
work is congested, the router operates according to an adaptive routing mode,
thereby avoiding congested channels. The DyXY [14] checks the stress value of
neighboring routers which is typically defined as the instant queue length, with
the node with the smallest stress value being chosen. However, the DyXY utilizes
the local information, which is not sufficient for avoiding the congestion area.
Ascia [2] proposes the notion of Neighbor-on-Path (NoP). The NoP selection
strategy seeks to choose the channel which makes the packet reach the desti-
nation in the shortest time through the least congested area. This strategy’s
shortcoming lies in the fact that it decreases the degree of adaptiveness of the
odd-even turn routing. The Q-routing [9] represents another congestion-aware
routing algorithm for NoCs. In this method, the network can continuously adapt
to changing congestion conditions and traffic flows, with the router determining
the next step based on the latency information. Q-routing alleviates the network
congestion and improves the network performance.

3 The A-Star Adaptive Routing

3.1 Basic Idea of the A-Star Algorithm

The A-star algorithm is an informed search algorithm which enjoys widespread
usage in pathfinding and graph traversal. It is capable of solving problems by
searching all possible paths in order to choose the optimal path and in a fast
manner.

The A-star algorithm selects the path which minimizes

F (n) = G(n) + H(n) (1)

ASA-routing: A-Star Adaptive Routing Algorithm for Network-on-Chips 191

Here, n is the current node on the path. G(n) is the path’s path from the source
node to the node n. H(n) estimates the optimal path’s cost from the node
n to the destination node, which is a predicted value. F (n) is the evaluation
function of the node n, which denotes the cost from the source node to the
intermediate node n to the destination node. In order to apply the conventional
A-star algorithm to the NoC routing, latency is employed as the evaluation
criterion as a proxy equivalent to the cost in [4].

3.2 Description of the Routing Algorithm

In this section, we show how our approach, based on the A-star algorithm, works.
Figure 2 shows the overview of our method for selecting the path. The ASA-
routing algorithm has several stages as follows:

Step 1: Construct the 2D mesh NoC and initialize the G and H.
Step 2: Obtain allowable neighbors according to the given routing function

and compute their F value.
Step 3: Select a neighbor with the smallest F. If the node with minimal F is

not equal, randomly select one.
Step 4: Route the packet from the current node to the selected next one.
Step 5: Check whether the node is the destination node. If it is the destination

node, move to Step 6, otherwise repeat Step 2.
Step 6: Backtrack and update the routing table along with all the selected

nodes using latency information.

Fig. 2. Overview of this paper’s path selection method

192 Y. Cai and X. Ji

Algorithm 1. findNextNode()
Require: curNode, dstNode;
1: openList = ∅;
2: closeList = ∅;
3: openList.add(curNode)
4: while openList is not empty do
5: tempCurNode = findMinFNodeInOpenList();
6: closeList.add(tempCurNode);
7: neighborNodes = findNeighborNodes();
8: for each nextNode of neighborNodes do
9: if nextNode is in openList then

10: new g = G(tempCurNode) + c(tempCurNode, nextNode);
11: if new g < G(nextNode) then
12: F (nextNode) = new g + H(nextNodee);
13: set tempCurNode as parent to nextNode ;
14: end if
15: else
16: openList.add(nextNode)
17: set tempCurNode as parent to nextNode;
18: end if
19: end for
20: if dstNode is in openList then
21: return
22: end if
23: end while

Each time a packet arrives at the node, the node receives the packet from its
last hop neighbor and calls the function findNextNode() in order to determine
the next node. The detailed process by which the function findNextNode()
operates is shown in Algorithm 1. Two lists are maintained: openList and
closeList. openList consists of nodes which have been visited but not expanded,
while closeList contains those nodes which have been both visited and expanded.
Firstly, Line 1 and Line 2 initiate openList and closeList, setting them to
empty. Then, Line 3 puts the curNode in the openList. If the openList is
not empty, the node with the smallest F is found in the openList, marked
as tempCurNode and then added to the closeList Line 5 to Line 6. Line 7
shows that all allowable neighbors for the tempCurNode which are not in the
closeList have been found by following the routing rules. Line 8 to Line 19
traverse all of the nodes in the neighborNodes. If the node is in the openList
and its arrival from the tempCurNode has a smaller G, then the F is updated.
The c(tempCurNode, nextNode) represents the latency from tempCurNode to
nextNode in the Line 10. If the node is not in the openList, then it is added to
the openList. It is worth noting that updating G should involve searching the
routing table of the tempCurNode, while setting H should involve searching the
routing table of the node in the neighborNodes. This function constructs a tree

ASA-routing: A-Star Adaptive Routing Algorithm for Network-on-Chips 193

Fig. 3. Example of the ASA-routing (a) the network; (b) the tree

structure from curNode to dstNode by setting the parent of each intermediate
node. From this, the next node can easily be obtained by searching the tree.

The repetitive turn model with proposed selection strategy is taken as an
example for the purpose of illustrating the ASA-routing algorithm in Fig. 3.
This is done by routing a packet from the source node S(1, 2) to the destination
node D(3, 1). Firstly, the node (1, 2) is added to the open list. Then, its two
allowable neighbors (2, 2) and (1, 1) are computed. The one with the smaller
F is then selected as the node (1, 2)’s child. Then, the node (1, 2) is removed
from the open list and the node (1, 2) is added to the close list. In this way,
the remaining path can be constructed until the node (3, 1). Assuming that the
completed path is (1, 2) → (2, 2) → (2, 1) → (3, 1), the next node obtained
is (2, 2). Then, the packet can be sent to this node. In the next cycle, a new
path can be constructed from the current node (2, 2). After several cycles, the
packet arrives at the destination. Finally, if the packet has been forwarded by
nodes (1, 2), (2, 2), (2, 1), (3, 1), these nodes’ routing table entries are updated
for (destination, taking cycles).

When selecting the next node, the basic condition is that it must satisfy
the routing function rules. Thus, the deadlock-free condition of ASA-routing is
preserved, because it depends solely on the routing function, with the deadlock-
free adaptive routing function serving as this paper’s premise.

4 Simulation Results

This paper’s proposed selection strategy has been coupled with the repetitive
turn model routing and odd-even turn routing, respectively. In the following
section, these two routing algorithms are referred to ASA-RTM routing and
ASA-OE routing.

All simulation results are presented for the 8×8 mesh. The VCT switching is
applied throughout the simulation. The traffic source generates 16 flits packets
in all cases. Each node’s buffer size is set to 16 flits in all cases for all methods.
Each simulation has a warming up cycle which is set to 10,000 cycles so as to

194 Y. Cai and X. Ji

Table 1. Simulation Configuration.

Attribute Value

Network topology 8 × 8 2D mesh

Packet size 16 flits

Virtual channel no

Port buffer 16 flits

Run cycles 30 000

Warming up cycle 10 000

Traffic pattern Uniform, transpose

Flow control technique Virtual cut-through

ignore unstable data. Subsequently, it was executed for 20,000 cycles. In order
to guarantee the accuracy of the results, the simulation at each injection rate
was repeated ten times. The basic configuration is shown in Table 1. Average
latency and throughput were used as measurement metrics for the purpose of
evaluating routing algorithm performance.

Performance with the repetitive turn model routing and ASA-RTM routing
algorithm are compared, as are the odd-even turn routing and ASA-OE routing
algorithm. The selection strategy is evaluated using the synthetic traffic scenar-
ios. In uniform traffic, a node sends the packet to each other node with the same
probability. In the first transpose traffic, a node (i, j) only sends packets to a
node (k−1−j, k−1−i) where k is the number of nodes in each mesh dimension.
In the second transpose traffic, a node (i, j) only sends packets to a node (j, i).

Figure 4 illustrates the comparison of the two methods’ performances based
on the uniform communication pattern. The ASA-RTM routing algorithm
requires higher latency in order to deliver a message in a low injection rate.

Fig. 4. Performance of the ASA-RTM and RTM routing algorithms under the uniform
traffic in 8 × 8 meshes (a) average latency; (b) normalized accepted traffic

ASA-routing: A-Star Adaptive Routing Algorithm for Network-on-Chips 195

However, latency to deliver a message for the ASA-RTM routing algorithm is
much less than that of the repetitive turn model routing algorithm once the
normalized applied load exceeds 0.43. As for the normalized accepted traffic,
the ASA-RTM routing algorithm exhibits no apparent advantage prior to the
normalized applied load exceeding 0.47.

Fig. 5. Performance of the ASA-RTM and RTM routing algorithms under the first
transpose traffic in 8 × 8 meshes (a) average latency; (b) normalized accepted traffic

Figure 5(a) and (b) show the average communication latency and throughput
as a function of the normalized applied load. As can be observed from the results,
the ASA-RTM routing algorithm yields a higher latency than the repetitive turn
model routing algorithm prior to the normalized applied load is smaller than
0.33, which is similar to the uniform scenario. However, the ASA-RTM routing
algorithm leads to a lower latency in high traffic loads. The normalized accepted
traffic of the two algorithms almost has no difference.

The simulation results for the two algorithms based on the second trans-
pose communication pattern are shown in Fig. 6. ASA-RTM routing algorithm’s
latency rapidly rises after the normalized applied load reaches 0.38, which is later
than for the repetitive turn model routing algorithm. The performance gain near
the saturation point (0.38) is 27%. Thus, it is concluded that ASA-RTM still
performs better when network congestion occurs. This result was excepted given
that the ASA-RTM routing algorithm undertakes routing decisions by consider-
ing network traffic status.

As shown in Fig. 7(a), the ASA-OE routing algorithm performs better than
the odd-even turn model routing algorithm under uniform traffic load. This
result is consistent with Fig. 4(a). In this case, Fig. 7(b) illustrates that the net-
work employing odd-even turn routing algorithm saturates at the normalized
applied load of 0.43, while the ASA-OE routing algorithm achieves the normal-
ized applied load of 0.44.

196 Y. Cai and X. Ji

Fig. 6. Performance of the ASA-RTM and RTM routing algorithms under the second
transpose traffic in 8 × 8 meshes (a) average latency; (b) normalized accepted traffic

Fig. 7. Performance of the ASA-OE and OE routing algorithms under the uniform
traffic in 8 × 8 meshes (a) average latency; (b) normalized accepted traffic

5 Conclusion

In this paper, a new selection function coupled with the deadlock-free adaptive
routing function for NoCs is proposed, the purpose of which is to make packets
to reach their destination without passing through congested areas, thus allevi-
ating network congestion. This method is inspired by the A-star algorithm. In
the simulation, the repetitive turn model routing and odd-even turn routing are
taken as examples for implementing ASA-routing. Sufficient simulation results
are presented, thereby demonstrating the effectiveness of the ASA-routing algo-
rithm through comparison with the original repetitive turn model routing and
odd-even turn routing methods.

ASA-routing: A-Star Adaptive Routing Algorithm for Network-on-Chips 197

References

1. International technology roadmap for semiconductors interconnect. Tech. rep.,
Semiconductor Industry Assoc. (2006)

2. Ascia, G., Catania, V., Palesi, M., Patti, D.: Implementation and analysis of a new
selection strategy for adaptive routing in networks-on-chip. IEEE Trans. Comput.
57(6), 809–820 (2008)

3. Boura, Y.M., Das, C.R.: A class of partially adaptive routing algorithms for
n dimensional meshes. In: Proceedings of the 1993 International Conference on
Parallel Processing, pp. 175–182. CRC Press, NY (1993)

4. Chabini, I., Lan, S.: Adaptations of the a* algorithm for the computation of fastest
paths in deterministic discrete-time dynamic networks. IEEE Trans. Intell. Transp.
Syst. 3(1), 60–74 (2002)

5. Chiu, G.: The odd-even turn model for adaptive routing. IEEE Trans. Parallel
Distrib. Syst. 11(7), 729–738 (2000)

6. Dally, W.J., Towles, B.: Route packets, not wires: on-chip interconnection net-
works. In: Proceedings of the 38th Design Automation Conference, pp. 684–689.
ACM, Las Vegas (2001)

7. Duato, J., Yalamanchili, S., Ni, L.M.: Interconnection Networks: An Engineering
Approach. Morgan Kaufmann, San Francisco (2003)

8. Ebrahimi, M., Daneshtalab, M., Liljeberg, P., Plosila, J., Tenhunen, H.: CATRA-
congestion aware trapezoid-based routing algorithm for on-chip networks. In:
Design, Automation & Test in Europe Conference & Exhibition, DATE, pp. 320–
325. IEEE, Dresden (2012)

9. Farahnakian, F., Ebrahimi, M., Daneshtalab, M., Liljeberg, P., Plosila, J.: Q-
learning based congestion-aware routing algorithm for on-chip network. In: Pro-
ceedings of the 2nd IEEE International Conference on Networked Embedded Sys-
tems for Enterprise Applications, NESEA, pp. 1–7. IEEE Computer Society, Perth
(2011)

10. Feng, W., Shin, K.G.: Impact of selection functions on routing algorithm perfor-
mance in multicomputer networks. In: In: Proceedings of the 11th international
conference on Supercomputing, pp. 132–139. ACM, Austria (1997)

11. Glass, C.J., Ni, L.M.: The turn model for adaptive routing. J. ACM 41(5), 874–902
(1994)

12. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

13. Hu, J., Marculescu, R.: Dyad: smart routing for networks-on-chip. In: Proceedings
of the 41st Design Automation Conference, pp. 260–263. ACM, San Diego (2004)

14. Li, M., Zeng, Q., Jone, W.: Dyxy: a proximity congestion-aware deadlock-free
dynamic routing method for network on chip. In: Proceedings of the 43rd Design
Automation Conference, pp. 849–852. ACM, San Francisco (2006)

15. Lotfi-Kamran, P., Daneshtalab, M., Lucas, C., Navabi, Z.: BARP-A dynamic rout-
ing protocol for balanced distribution of traffic in NoCs. In: Design. Automation
and Test in Europe, DATE, pp. 1408–1413. ACM, Munich (2008)

16. Mart́ınez, J.C., Silla, F., López, P., Duato, J.: On the influence of the selection
function on the performance of networks of workstations. In: Third International
Symposium High Performance Computing, ISHPC, pp. 292–299. Springer, Tokyo
(2000)

17. Ni, L.M., McKinley, P.K.: A survey of wormhole routing techniques in direct net-
works. IEEE Comput. 26(2), 62–76 (1993)

198 Y. Cai and X. Ji

18. Rijpkema, E., Goossens, K.G.W., Radulescu, A., Dielissen, J., van Meerbergen,
J.L., Wielage, P., Waterlander, E.: Trade offs in the design of a router with both
guaranteed and best-effort services for networks on chip. In: Design, Automation
and Test in Europe Conference and Exposition (DATE), pp. 10350–10355. IEEE
Computer Society, Munich (2003)

19. Schwiebert, L., Bell, R.: Performance tuning of adaptive wormhole routing through
selection function choice. J. Parallel Distrib. Comput. 62(7), 1121–1141 (2002)

20. Tang, M., Lin, X., Palesi, M.: Routing pressure: a channel-related and traffic-aware
metric of routing algorithm. IEEE Trans. Parallel Distrib. Syst. 26(3), 891–901
(2015)

21. Tang, M., Lin, X., Palesi, M.: The repetitive turn model for adaptive routing. IEEE
Trans. Comput. 66(1), 138–146 (2017)

22. Xiang, D.: Deadlock-free adaptive routing in meshes with fault-tolerance ability
based on channel overlapping. IEEE Trans. Dependable Sec. Comput. 8(1), 74–88
(2011)

23. Yu, Z., Wang, X., Shen, K., Liu, H.: A general methodology to design deadlock-free
routing algorithms for mesh networks. In: 15th International Conference on Algo-
rithms and Architectures for Parallel Processing - ICA3PP, pp. 478–491. Springer,
Zhangjiajie (2015)

Trajectory Data-Driven Pattern Recognition
of Congestion Propagation in Road Networks

Hepeng Gao1, Yongjian Yang1, Liping Huang1(&), Yiqi Wang1,
Bing Jia2, Funing Yang1, and Zhuo Zhu1

1 Jilin University, Changchun, China
gaohepeng13@foxmail.com, huangliping5727@163.com

2 College of Computer Science, Inner Mongolia University,
Hohhot 10010, China

Abstract. The congestion pattern recognition in urban road networks helps for
recognizing the bottleneck in road networks and assisting to route planning.
With the widespread use of GPS devises in vehicles, it is possible for researchers
to monitor the traffic condition of urban transport networks at a road level. In
this paper, we utilize the trajectory data of vehicle GPS to detect the road travel
speed by matching points of trajectories to road segments. A fuzzy clustering
based method is proposed to classify the road congestion level according to the
road traffic conditions. Further, the road network is clustered by the proposed
snake clustering algorithm, so that the road network is divided into congested
and uncongested areas. This paper studies the congestion propagation problem
and propose to employ the dynamic Bayesian network for modeling the con-
gestion propagation process. Taking the real road network of Shanghai and the
dataset of GPS trajectories generated by more than 10,000 taxis, we evaluate the
pattern recognition based congestion prediction method. It shows that the pro-
posed model outperforms the competing baselines.

Keywords: Congestion propagation � Taxi trajectories � Road network
Dynamic bayesian network

1 Introduction

With the increasing number of urban vehicles, most cities are faced with the problem of
serious congestion in road networks, especially for the metropolises and during the
time span of peak hours. Acquiring the knowledge of the road network congestion
pattern is of great significance for route planning and traffic monitoring, which has
attracted much research attention. Traditional traffic condition monitoring is largely
based on the infrastructure systems, such as the loop sensors, roadside camera etc.
These sensing methods can only cover a limited proportion of roads in the network,
which results that the congestion pattern recognition is regarded as a tricky problem
because of lacking data [1]. Thanks to the widespread use of the GPS (Global Posi-
tioning System) devices in vehicles [2], especially used in the public transport systems,
such as the tax system [3], trajectories generated by vehicles that are equipped with

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 199–211, 2018.
https://doi.org/10.1007/978-3-030-05054-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_15

GPS devices help sensing the spatial and temporal traffic situation in urban road
networks [4, 5].

However, due to the complexity of the road environment and the diversity of route
selection, it is difficult to predict road congestion. Therefore, a dynamic Bayesian
network model is established to describe and predict the periodicity and correlation of
traffic network. It provides a reference for traffic dispatch and public travel.

Based on the trajectory coverage in the urban road networks, keeping only the
knowledge of current on the state of the road network can fulfill the dynamic route
planning need for travelers and the traffic state warning function for the transportation
department. This meaning that further knowledge of the road congestion should be
obtained. Such as where (spatial) and when (temporal) a congestion will happen [6,
7]. This spatial and temporal congestion prediction problem is always called con-
gestion propagation [8]. In this paper, we focus on the congestion pattern [9] mining
and the propagation prediction of urban road networks based on the taxi trajectories,
which means that our proposed model is a data-driven method. Using the taxi trajec-
tories based on map matching algorithms, the average travel speed of each road seg-
ment can be calculated [10]. The relative travel speed ratio of a road segment in a
specific time interval is utilized to estimate the congestion level based on the clustering
algorithm of fuzzy c-means (FCM). Then we propose a snake clustering algorithm that
partition roads into clusters that are connected and congested in the same time interval.
Further, based on the clustering results, a dynamic Bayesian model-based method is
proposed to predict the congestion propagation, meaning that predict the congestion
state of a road given the congestion states of its neighbors.

Main contributions of this paper include the following three points.

(1) We propose a trajectory data based congestion level estimation method based on
the FCM algorithm, and a further snake clustering algorithm is proposed to mining
the spatial and temporal congestion pattern in the road networks.

(2) According to the congestion pattern mining results with the proposed snake
clustering algorithm, a further dynamic congestion propagation model is proposed
based on the Bayesian framework.

(3) Taking a real-world road network of Shanghai together with the dataset of taxi
trajectories generated by more than 13000 taxis during a month, we evaluate the
proposed method and give case studies of the congestion propagation visualization.

The rest of this paper is organized as followings. Section 2 reviews relative liter-
ature, including the trajectory map matching algorithm and congestion estimation and
propagation methods. The section presents our proposed method for congestion
propagation method in the road network, including the trajectory-based congestion
estimation, the congestion pattern recognition, and the dynamic propagation prediction
method. A case study is reported in Sect. 4. Section 5 concludes this paper and present
the future works.

200 H. Gao et al.

2 Related Works

Traffic congestion relief is beneficial to the efficiency of urban operation, reducing the
incidence of traffic accidents and reducing environmental pollution. Thus it attracts
may researchers. The first step of the locus-based approach is to match the GPS points
to the section. It can be classified as a geometric matching algorithm, a topological
relation algorithm, probabilistic statistical algorithm and advanced matching algorithm
according to different characteristics. Because of the high matching efficiency of the
probabilistic statistical algorithm and the high accuracy of the vehicle running at low
speed, this algorithm is used for road matching.

The next step is to detect road congestion. Hoang Nguyen [11] Count all traffic
times and define time greater than T (where P{t > T} = 0.3) as congestion. Anwar [12]
constructs a Bin structure to improve the access efficiency of historical data and
achieves continuous detection of congestion change. Yang [13] proposes a Multiple
Data Estimation methods, which uses multiple attributes to estimate urban congestion
effectively, and selects attributes to improve accuracy and efficiency.

Finally, we detect and predict congestion propagation patterns. Complex network
methods, clustering methods, and dynamic Bayes can be applied. For complex net-
works, Aleta [14] proposed a method to model a public transport system as a multiplex
network. A more in-depth understanding of the network characteristics of the public
transport system, for the establishment of a realistic model of urban traffic. Liu [15] by
introducing the network science analysis method, the community discovery method
reveals the urban structure under the taxi trip data. For the clustering method, An [9]
proposes a grid-based method for detecting data congestion using floating cars. Grid
Congestion Mode is defined to detect whether the grid is congested, and DBSCAN
clustering method is used to find out the Recurrent Congestion. Rempe [16] proposes a
clustering method to obtain the time and variation of abnormal day clustering and to
quantify the congestion correlation among clusters. According to the speed of the
vehicle, Saeedmanesh [17] uses snake algorithm [18] to cluster. Since each period
reclustering consumes resources, the existing clusters are fine-tuned over time. The
change of spatial location of patency and congestion is expressed by the change of
cluster over time, and then the spread of congestion is described. As a result of
observing and studying road sections from a macro perspective [19], the link between
road congestion cannot be reflected and road congestion can’t be effectively predicted.
For dynamic Bayesian, Hoang Nguyen uses the Apriori algorithm to mine frequently-
congested roads by establishing high-frequency congestion trees, and further uses
dynamic Bayesian prediction. Through the above methods, it is possible to predict road
congestion, but the spatial connectivity between roads is not fully considered.

Based on the trajectory data, this paper studies the traffic congestion propagation
and congestion prediction. Firstly, snake is used to cluster the roads that have been
divided into congestion levels, and the traffic roads are divided into disjoint areas [20].
In the region, the dynamic Bayesian network is used to study the interaction between
different time periods of each road, and according to the traffic situation of the road at
different times, the traffic situation of the target section is predicted.

Trajectory Data-Driven Pattern Recognition of Congestion Propagation 201

3 Methodology

3.1 Congestion Level Estimation Based on FCM

After matching each GPS point to the road segment, then the congestion level of each
road segment is estimated. For each road, the velocity vijðtÞ varies during a day
according to real-time traffic. For each road eij, we set the 95% percentile of its velocity
in each day as its limited maximal velocity and define rijðtÞ as the ratio between its
current velocity and its limited maximal velocity measured as (1).

rijðtÞ ¼ vijðtÞ
vlimij ðtÞ ð1Þ

Different from previous researches that identify the congestion state of a road
segment as binary state 0 and 1, meaning not congested or congested, we adopt the
FCM to estimate the congestion status. As shown in (2), supposing that the value set of
rij is X ¼ x1; x2; . . .; xnð Þ, the membership matrix of FCM is defined as u ¼ uij

� �
k�n,P

uij ¼ 1; 8j ¼ 1; 2; . . .; n. c ¼ c1; c1; . . .; ckf g is the cluster center of k clusters.
The FCM algorithms applies the fuzzy membership degree and the cluster center to
represent the partition of the value range, and the objective function is shown as (2)

J u; cð Þ ¼
Xn

j¼1

Xk

i¼1
umij xj � ci

�� ���� ��2 ð2Þ

Considering the constraint condition and the objective function, the la-grangian
method is adopted as (3)

J U; c1; c2; . . .; ck; k1; k2; . . .; knð Þ ¼
Xk

i¼1

Xn

j
umij xj � ci

� �2 þ
Xn

j¼1
kj

Xk

i¼1
uij � 1

� �

ð3Þ

Then the cluster center and the membership is calculated as (4) and (5)

ci ¼
Pn

j¼1 u
m
ij xjPn

j¼1 u
m
ij

ð4Þ

uij ¼ 1
Pk

i¼1
dij
dkj

� �2=m�1
ð5Þ

If we want to partition the congestion level into 4 categories, then we set k = 4 and
the cluster centers is applied to represent the congested level.

202 H. Gao et al.

3.2 Congestion Pattern Recognition Based on Snake Clustering

Through previous data processing, we obtained the road number, the adjacency rela-
tionship between roads, and the current road condition of roads. Next, we clustered the
roads. The roads are divided by the spatial relationship between the roads and the traffic
conditions of the roads. The snake algorithm is used to cluster the roads. The snake
algorithm takes full account of the adjacency and connectivity of the road in the aspect
of space.

In the list of congested roads, seed nodes are selected randomly as inputs to snake,
and seed nodes are added to the linked list of result sets. According to the adjacency
relationship of the road, the nodes which are directly adjacent to the current result set is
selected into the candidate queue, and the nodes with the smallest difference of the
current result set in the candidate queue are selected to join the result set. Until all
nodes are added to the result set, the algorithm is finished and the result is returned in
the order of adding results. The algorithm process is as follows:

Algorithm P-snake
Input : initial , adjacency matrix W, congestion level
dict, N
Output : the result set , ,…,
Process:
1:while I = 1,2,...,N do
2: Initial result set S and candidate set D
3: D=D
4: while D!=Ø do
5: node = getNearestNeighbor(dict, S, D)
6: S = S {node}
7: C = getNeighbor(D, node)
8: D = D C
9: end while
10: = S
11: = getLastElement(S)
12:end while

The getNearestNeighbor function returns the node which is the smallest difference
between the candidate set and the result set. The getNeighbor function returns the
directly connected node and the node is not the set of nodes of the candidate set and the
result set. The getLastElement function returns the last congested node of the S result
set. Run the P-snake to get N snake sequences. The standard deviation between snake
nodes is selected as the evaluation criterion for evaluating the variation of snake
sequences. The standard deviation has a positive correlation with the degree of dif-
ference between the nodes in the current snake, and we calculate the variation of the
standard deviation of each snake sequence (each joins one node and calculates a
standard deviation).

Trajectory Data-Driven Pattern Recognition of Congestion Propagation 203

The changes of different snake sequences generated by P-snake were observed.
When the length of snake is larger than a certain threshold e, the increase of standard
deviation increases obviously. So when the number of elements in snake sequence is
larger than a value, Then the nodes added are quite different from the nodes in the
current snake sequence (It is extremely unlikely that the sequence before this node and
the sequence after it will be divided into the same category). The conclusion of the
current snake sequence at the threshold e does not affect the classification of the final
cluster. At the same time, reduce the consumption of resources (computational
resources and memory resources) and reduce the time.

The restricted snake growth threshold e is applied to the algorithm. When the length
of snake sequence reaches the threshold e, the growth of snake is stopped. One node is
randomly selected as the seed of the next snake growth from the nodes that add the
least number of snake sequences. After running the RL-snake, N snakes with length e
are obtained.

Algorithm RL-snake
Input: adjacency matrix W, congestion level dict, N
Output: the result set ,…,
Process:
1:Initialization node dictionary T
2:while I = 1,2,..., N do
3: initialize result set S, candidate set D
4: = getElement (T)
5: D=D
6: while D! = Ø and length (S) < ε do
7: node = getNearestNeighbor (dict, S, D)
8: nodeTimesAdd (T, node)
9: S = S {node}
10: C = getNeighbor (D, node)
11: D = D C
12: end while
13: = S
14: = getElement (T)
15: end while

Among them, the return of getElement(T) is the randomly selected node in the
congested node with the least number of snake sequences. Due to the randomness of
the generation of snake, the current division may have the following problems: Firstly
the threshold e cannot define exactly whether the growth of the current snake should
end, the snake’s growth may end early (the node is not added to the matching snake)
and late (join the node which is quite different from the snake node). Secondly, the
current snake sequence may have two snake of smallest size, so we should divide the
current snake sequence into two smaller size snake. Lastly, There are situations where
there are two snake intersections that cause one or more nodes to belong to one or more
snake at the same time. Because above problems may happen, we use the Mixed

204 H. Gao et al.

Integer Linear Programming (MILP) to adjust the snake. We define the following
variables to describe the MILP (Table 1):

We constrain for MILP about these variables as following formula shows:

min
XNc

i¼1
ti ð6Þ

xiRi kþ 1ð Þ � xiRi kð Þ; 8i 2 I; 8k ¼ 1; 2; . . .; e� 1f g ð7Þ
XNc

i¼1
xij ¼ 1; 8j 2 1; 2; . . .; ef g ð8Þ
XNc

i¼1
xiRi 1ð Þ �Np ð9Þ

XN

j¼1

XNc

i¼1
xij � aN ð10Þ

xiRi 1ð Þ ¼ xiRi 2ð Þ ð11Þ

Constraint (6) aims to consider all snake sequence in general to make the sum-
mation of all variances smallest. Constraint (7) make sure that if one node is in the
snake sequence, another node that is before node in order must be in the snake
sequence. This constrain ensures every node must be connected with other one or more
nodes indirectly. The aim of constraint (8) is to make sure that each node must belong
to one snake. Constraint (9) limits the number of the generated snake to at least Np.
Constraint (10) requires that the number of nodes joining snake is above a for all
nodes. Constraint (11) limits a snake to at least two nodes.

Through MILP further dividing the snake, the difference between the roads in the
same snake is smaller. Every snake sequence consists of congested roads adjacent to
each other in space.

Table 1. Set of variables, indices, and parameters

xij If the node j belongs to snake i, the value of xij is 1; If not, is 0

Ri kð Þ Return the name of k node in snake i
ti Present the variance of Snake i
Nc Present the variance of Snake
N Present the number of nodes
∂ Present fraction of coverage (joined nodes/N)
I {1,2,…, e}
Np The smallest number of Snake

Trajectory Data-Driven Pattern Recognition of Congestion Propagation 205

3.3 Frequent Patterning Based Congestion Prediction

The dynamic Bayesian network is used to model the interaction between the roads in
the same congestion cluster recognized by the snake clustering method. Links between
two layers in the dynamic Bayesian network represent the propagation relation with
each layer denotes a time slot, as shown in Fig. 1.

Congestion clusters detected in a time slot is represented as a snapshot as shown in
Fig. 1. The flow orientation denotes the traffic direction. Nodes in a layer of the
Bayesian network is formed with roads in the same cluster of the same time slot. Such
as the congestion probability of road segment e2 in time slot t comes from the con-
gested road e1 in time slot t and the congestion situation of roads e1 and e2 in time slot
t-1. The propagation relationship is represented as the following equation,

P etkjh
� � ¼ P etk; h

� �

P hð Þ ¼
Q

i2U Pðet�1
i jetkÞ �

Q
i2U PðetijetkÞ � Pðet�1

k jetkÞ � P etk
� �

Q
i2U P et�1

ið Þ �Qi2U P etið Þ � P et�1
k

� � ð12Þ

Where U is a set of etk upstream nodes

4 Experiment and Analysis

4.1 Road Network and Dataset

The case study is implemented on the dataset of the road network of Shanghai, China,
together with the dataset of taxi GPS trajectories of one month. The trajectory dataset
consists of GPS points generated by more than 10,000 taxis between 8:00 am and 9:00
am. The time slot is set as 5 min, so we can obtain 12 time slots form of 8:00 to 9:00 in
each date. The road network, containing 10030 road segments is shown in Fig. 2. The
road network is chosen by removing roads that are not connected to the main road
framework. Roads that are less than 500 m or the two endpoints is 1 are merged.

Fig. 1. Dynamic bayesian network based congestion propagation model

206 H. Gao et al.

4.2 Results

First, we determine the threshold e of the snake growth process using the dataset. By
running the P-snake, a certain number of snake sequences can be obtained, and the
standard deviation of snake sequences can be calculated with the increase of snake
sequences. Figure 3(a) shows how three different snake sequences gradually increase
with the size changing. When the size increases to 400, the standard deviation in the
snake increases sharply, so 400 is chosen as the threshold.

Fig. 2. Road network

Fig. 3. (a) Evolution of the relative speed variance vs size of three representative snakes; (b) the
number of clusters partitioning every time slot; (c) mean and standard deviation partitioning of
clusters every time slot; (d) the number of road partitioning congestion duration.

Trajectory Data-Driven Pattern Recognition of Congestion Propagation 207

We cluster roads for each time slot, the number of clusters, the average and stan-
dard deviation of the cluster size in each time slot are shown in Fig. 3(b) and (c).

According to the statistic results, it can be observed that the number of congested
road segments, the cluster size, as well as the diversity within clusters, reserve
unchanged with time slot variation. It also shows the state of the road in the current
time interval is steady, and it changes little between the adjacent time intervals. We
count the duration of the congested roads, represented by time slot number, as shown in
Fig. 3(d). During 12 time slots, some key roads are continuously congested, which can
be regarded as the center of our snake clustering process. Each time slice has a high
probability that the other nodes in the previous snake. Other nodes of the snake may not
belong to the snake sequence due to time changes.

Further case studies of our congestion prediction method are presented in this
part. With the size of time window varying, the prediction accuracy is compared with
the Apriori algorithm and the time series prediction method. Figure 4(a) and (b) are the
prediction performance measured by the accuracy and the F-1 measure obtained by
three methods.

It shows that the prediction of our proposed SDB method is obviously better than
that of the competing methods (the Apriori method and the Time Series).

accuracy ¼ TP= TPþFPð Þ ð13Þ

F1�Measure ¼ 2TP= 2TPþFNþFPð Þ ð14Þ

Where TP is the number of roads where congestion occurs and is detected, FP is the
number of roads that are not congested and detected as congested, TN is the number of
roads that are not congested and detected as uncongested.

Figure 5 shows the spatial distribution of congested road segments predicted by
SDB, in which the black road network is the trunk roads chosen in this paper, and the
red section is the congested roads. We select some congested sections detected to
explain and analyze them as shown in Figs. 6 and 7.

Fig. 4. (a) Evolution of accuracy of prediction results vs size of time window; (b) Evolution of
F1-Measure of prediction results vs size of time window.

208 H. Gao et al.

From 8:00 am to 9:00 am, as the main traffic is heading to the city centers for
works, thus the main traffic flows come from residential areas to work areas. Figure 6
(a) congested section is the North-South Elevated Road of Shanghai. This section is
congested in the early rush hour, consistent with the actual situation. As vehicles on
both sides of the road continue to converge into the main road, resulting in congestion
of the road segments. First, congestion occurs in segment A, and there is a high
probability of congestion in section B in the next time slot or in the current time slot

Fig. 5. Spatial distribution of congested road segments in road network.

Fig. 6. (a) North-South elevated road; (b) Dynamic bayesian network of north-south elevated
road.

Fig. 7. (a) Xinzhuang bridge; (b) Dynamic bayesian network of Xinzhuang bridge

Trajectory Data-Driven Pattern Recognition of Congestion Propagation 209

(which is related to the span of time slot). Similarly, congestion in section B is likely to
spread to section C. There is a high correlation between section A and section B,
section B and section C, so we can use the Bayesian network to describe the rela-
tionship between them, as shown in Fig. 6(b). Figure 7(a) shows the congestion area is
Xinzhuang Bridge, which is consistent with the actual situation. That is a busy inter-
section, connecting road segments in six different directions. The southwest of
Shanghai is the main busy areas. There are many ramps in this section. The main flow
direction of the traffic flow at A to E is to flow into the current road section at the
morning peak hours. Only one segment F present the traffic tends to flow out, which
can cause the congestion of the road in this section. When the segment F is congested,
it possibly results in the congestion of segments A, B, C, D and E These propagation
process can be represented as Fig. 7(b).

5 Conclusion

In this paper, through detecting travel speed from trajectory data, we utilize the FCM
algorithm to estimate the congestion status of each road in the road network. Based on
the congestion status estimation method, we propose a snake clustering method to
recognize the congestion pattern. We further propose to apply the dynamic Bayesian
network to model the dynamic congestion propagations between road segments in the
same recognized congestion cluster. Taking the real road network of Shanghai as a case
study, using the taxi trajectories generated by more than 10000 taxis, it shows that our
proposed congestion prediction model outperforms the competing baselines.

In the future, we intend to further improve the congestion propagation model by
incorporating more traffic affecting factors and imply it on the more real-world dataset.

Acknowledgment. We thanks that this work was financially supported by National Natural
Science Foundation of China (61772230, 61702215), Science & Technology Development
Project of Jilin Province (20160204021GX) and Special Foundation Project for Industrial
Innovation of Jilin Province (2017C032-1).

References

1. Jiang, G.: Link Dividing method for traffic information collecting based on GPS equipped
floating car. Geomat. Inf. Sci. Wuhan Univ. 35(1), 41–42 (2010)

2. Kristensen, J.P., Nielsen, O.A.: Measuring congestion in Copenhagen with gps. Leopoldo
Abad Alcalá 61(2), págs. 17–48 (2006)

3. Chang, A., Jiang, G., Niu, S.: Traffic congestion identification method based on GPS
equipped floating car. In: International Conference on Intelligent Computation Technology
and Automation, pp. 1069–1071. IEEE Computer Society (2010)

4. Zhang, Y.C., Zuo, X.Q., Zhang, L.T., et al.: Traffic congestion detection based on GPS
floating-car data. Procedia Eng. 15, 5541–5546 (2011)

5. Holm, J.: Key performance indicators for congestion using GPS data. In: 19th ITS World
Congress (2012)

210 H. Gao et al.

6. Arnott R, Small K. The Economics of Traffic Congestion[J]. American Scientist, 1994, 82
(5):446–455

7. Altintasi, O., Tuydes-Yaman, H., Tuncay, K.: Detection of urban traffic patterns from
Floating Car Data (FCD). Transp. Res. Proc. 22, 382–391 (2017)

8. Xu X, Gao X, Zhao X, et al. A novel algorithm for urban traffic congestion detection based
on GPS data compression[C]// IEEE International Conference on Service Operations and
Logistics, and Informatics. IEEE, 2016:107–112

9. An, S., Yang, H., Wang, J., Urban, M., et al.: Recurrent congestion evolution patterns from
GPS-equipped vehicle mobility data. Inf. Sci. 373(C), 515–526 (2016)

10. Nielsen, O.A.: Analysis of congestion and speeds based on GPS-data. Traffic Days Auc
(2003)

11. Nguyen, H., Liu, W., Chen, F.: Discovering congestion propagation patterns in spatio-
temporal traffic data. IEEE Trans. Big Data 3(2), 169–180 (2017)

12. Anwar, T., Liu, C., Hai, L.V., et al.: Capturing the Spatiotemporal Evolution in Road Traffic
Networks. IEEE Trans. Knowl. Data Eng. (2018)

13. Yang, Y., Xu, Y., Han, J., et al.: Efficient traffic congestion estimation using multiple spatio-
temporal properties. Neurocomputing 267, 344–353 (2017)

14. Aleta, A., Meloni, S., Moreno, Y.: A Multilayer perspective for the analysis of urban
transportation systems. Sci. Rep. 7, 44359 (2017)

15. Liu, X., Gong, L., Gong, Y., et al.: Revealing travel patterns and city structure with taxi trip
data. J. Transp. Geogr. 43, 78–90 (2015)

16. Rempe, F., Huber, G., Bogenberger, K.: Spatio-temporal congestion patterns in urban traffic
networks. Transp. Res. Proc. 15, 513–524 (2016)

17. Saeedmanesh, M., Geroliminis, N.: Dynamic clustering and propagation of congestion in
heterogeneously congested urban traffic networks. Transp. Res. Part B Methodol. 105,
193–211 (2017)

18. Saeedmanesh, M., Geroliminis, N.: Clustering of heterogeneous networks with directional
flows based on “Snake” similarities. Transp. Res. Part B Methodol. 91, 250–269 (2016)

19. Huang, W., Haiying, L.I., Wang, Y.: Passenger congestion propagation and control in peak
hours for urban rail transit line. J. Railw. Sci. Eng. (2017)

20. Gao, Z.Y., Long, J.C., Li, X.G.: Congestion propagation law and dissipation control
strategies for urban traffic. J. Univ. Shanghai Sci. Technol. 33(6), 701–708 (2011)

Trajectory Data-Driven Pattern Recognition of Congestion Propagation 211

Cooperative Preprocessing at Petabytes
on High Performance Computing System

Rujun Sun1(B) , Lufei Zhang1 , and Xiyang Wang2

1 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Wuxi, China

sun.rujun@meac-skl.cn
2 National Super Computing Wuxi Center, Wuxi, China

Abstract. With the explosion of data, we have an urgent demand for
data throughput in high performance computing systems. Data-intensive
applications are becoming increasingly common in HPC environments.
As data scale increases faster than systems, it’s time to fully utilize
resources in every aspect, including computing power, storage capacity
and data throughput. We can no longer ignore data preprocessing since
it’s an important procedure, especially when dealing with large amount
of data. How to efficiently perform data preprocessing in current HPC
systems? How to make full use of system resources on data-intensive
applications? What should be valued when designing new HPC architec-
tures? All these questions need answers. In this paper, we drew a sketch
for procedure of data-intensive applications, which lead to an adaptive
resource allocation scheme according to procedure requirements. We ana-
lyzed characters of preprocessing and designed a preprocessing model
for data-intensive applications in HPC systems. It has not only fulfilled
the demand for computing but also meet the need of throughput, with
cooperative work in storage system and storage management system.
Experiments were done on Sunway TaihuLight, one of the world’s fastest
supercomputers. The whole procedure of preprocessing at Petabytes can
be done in hours without interfering other ongoing applications.

Keywords: HPC · Data intensive applications
Cooperative preprocessing · High throughput computing

1 Introduction

With the explosive growth in data size, data-intensive applications become pop-
ular and important in practice. High performance systems (HPC) with high
computation ability, large memory, efficient interconnections and tight coupling
show preference to such applications.

However, as most HPC systems are not particularly designed for data-
intensive applications, there are a lot of problems porting such applications.
For example, it is hard to support high throughput demand, and it is a great

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 212–225, 2018.
https://doi.org/10.1007/978-3-030-05054-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_16&domain=pdf
http://orcid.org/0000-0001-9037-6957
http://orcid.org/0000-0002-6270-0737
http://orcid.org/0000-0001-7567-5211
https://doi.org/10.1007/978-3-030-05054-2_16

Cooperative Preprocessing at Petabytes on HPC 213

challenge to efficiently import source data as systems are partitioned apart from
data sources. It has become a key to success to run large-scale data-intensive
applications on HPC systems to make which fully used in conjunction with high-
throughput computing (HTC) systems.

In this research, we studied the processes of data analyzing in HPC systems
and designed a cooperative computing method for data-intensive applications.
We have done experiments at Petabytes data scale on Sunway TaihuLight HPC
systems. Experiments have shown the effectiveness of our method. It can coop-
eratively do some processing work in data throughput stage without interfering
other workloads, and further reduce later computations. It provides a reference
for studying the adaptability of data-intensive applications to HPC systems, and
for design of the future HPC systems to support data-intensive applications.

2 Background

As the scale of data grows, analyzing data becomes more comprehensive and
sophisticated. Many applications are not just limited to “computing”. The acqui-
sition, preprocessing, storage, calculation and display of data are all important
parts.

Data-intensive applications need cooperative processing during the entire
processes such as data mining, and compute-intensive applications are facing
larger input data volume and have a higher demand for preprocessing, such as
astronomical data analysis.

2.1 HPC Applications

HPC was originally designed for scientific applications such as meteorologic anal-
ysis, earthquake analysis, oil prospecting and so on. With the increasing demand
for computing in various fields, applications such as life sciences, animation
games, mobile medicine, and social analysis also appear in the HPC systems. The
proportion of latter ones are gradually increased [13]. Both compute-intensive
and data-intensive applications become usual in HPC systems.

2.2 Procedure of Data Processing

In general, compute-intensive applications require plenty computing resources in
the computational analysis stage, the amount of input data is relatively small,
and most middle-stage data is produced by computing which need low through-
put bandwidth.

However, data-intensive applications require various resources throughout
the entire process, including preprocessing, storage, analyzing, and display. The
amount of computing is negligible in each stage.

As traditional HPC systems are targeted at compute-intensive applications,
the preprocessing support is deficient. In addition, it requires large computing

214 R. Sun et al.

resources in preprocessing stage which may be comparable to the HPC system
itself and is too expensive to use HPC system for preprocessing.

As a result, it is urgent to design a proper method to make full use of different
resources for the entire processing stages in HPC systems, especially when it
comes to Petabyte era.

2.3 Architecture of HPC

The basic structure of HPC and its computing abilities are analyzed below.
In general, HPC system is consisted of computing systems and peripheral

systems that support computing. In addition to basic computing units, the HPC
system also includes resources such as storage and networking. In the entire stage
of applications, the whole systems are not always heavily loaded. For example,
the computing nodes may running at full speed while the storage ones may have
light load. If we can make full use of the light loaded parts, the whole processing
time may be greatly reduced.

In addition, peripheral systems often have management nodes or light com-
puting units. Some of these resources are visible to the users and may be idle or
light loaded. For instance, while ensuring that the service IO is at full bandwidth,
the computing units of the IO management node are still partly idle. Moreover,
while ensuring required storage consistency response, the storage management
nodes can also spare some computing resources.

Thus ensure the possibility of our following design.

3 Cooperative Preprocessing in HPC Storage Systems

Our design and experiment mainly focused on the Sunway TaihuLight HPC
system [2]. But it is a reference to other HPC systems.

In this paper, “cooperative computing” is used to provide preprocessing sup-
port for data-intensive applications when HPC system’s IO load is low on IO
agent node. It will relieve the shortage of limited computing resources in HPC
system with various preprocessing requirements. Further, storage nodes have bet-
ter fault tolerance performance, and they can effectively support high throughput
data volumes. The software is richer and more suitable for complex and diverse
preprocessing processes.

3.1 Theoretical Analysis of Preprocessing

Many applications in HPC require data preprocessing. For example, in astronom-
ical observations, it is necessary to map the observed image data to appropriate
physical locations by handling the coincidence and migration images. In mete-
orological analysis, the original observation data needs to be adapted into the
grid. In oil detection and analysis, data from sensors needs to be integrated and
summarized. In social analysis, the original data needs to be extracted, summa-
rized, and even numbered.

Cooperative Preprocessing at Petabytes on HPC 215

In data-intensive applications, general preprocessing includes data access,
data cleaning, format conversion, compression/decompression, etc. The sequence
of these processes is often related to specific applications. The computing com-
plexity z(n) varies from O(n) to O(n log n) [6].

Data Importing and Sampling. Performance of data importing depends
on the device and bandwidth. Incoming data comes from the network, directly
connected sensors, or external databases. For large-scale data, it is necessary to
perform sampling in preprocessing stage, and thus could verify or improve the
subsequent processing performance.

Data Cleaning, Completion and Noise Identification. Data cleaning
refers to the detection, correction, filtering or removal of incorrect or incom-
plete data. Sometimes it may involve deduplicating. Methods for data cleaning
are domain-specified, such as detecting outliers by known data distribution or
range of the values.

Data complements are mainly aimed at incomplete data, especially high-
dimensional ones. Some missing values can be derived from its data source, or
be manually re-estimated.

Regression or segmentation smoothing method are useful in noise identifi-
cation [3]. Since the algorithm is complex, involving domain data and iterative
methods, the preprocessing stage is difficult, which can be completed during
data analysis stage.

Data Conversion. There are many kinds of data conversion, such as normal-
ization, indexing, and format conversion.

Normalization is to find extreme values and compute corresponding propor-
tions. Suppose that the data volume is n, the computing is 2n, and the through-
put is 2n. Finding extreme values can be completely parallel. As is with propor-
tion computing. But there is data dependency between them. Each parallel part
needs value election and broadcast.

When it comes to data indexing, there are various ways. Some indexing meth-
ods require a special format. Some need a simpler representation. Indexes can
be assigned based on the order of data arrival, or the order of certain sort. If
we choose the arrival order, a lookup table with extra space is essential. Spacial
complexity can be as much as O(n), and a single querying computation complex-
ity will gradually increase to O(n log n). If data is sorted, we don’t need extra
space, but the complexity of sorting algorithm is at least O(n log n). Query-
ing complexity is still O(log n). Batch search and memory rearrangement will
be optimizations. If the data follows some kind of distribution, we can apply
transfer function to directly map data into indexes, which requires only O(n)
computations and O(1) overhead.

Data indexing can sometimes be achieved by databases, which include rela-
tional ones such as MySQL and non-relational ones such as MongoDB [1]. Among

216 R. Sun et al.

them, non-relational ones also include graph databases such as Neo4j [8]. When
the data size is large, or even if the database can accommodate these data, inser-
tion or querying operations will take a long time and it is difficult to efficiently
do data conversion work. In the HPC system, a single-function database is diffi-
cult to satisfy various applications, and the extra cost of database itself cannot
be ignored.

Dimension reduction is a conversion from high-dimensional features into low-
dimensional ones by feature transformation functions. Common methods include
principal component analysis (PCA) and linear discriminant analysis (LDA).
The computational complexity is usually high, since it requires matrix multipli-
cation of global data. “Light computing” is hard to work efficiently in prepro-
cessing stage, because high-performance computing resources are essential.

Format conversion is done for the convenience of following stages. There are
two types of algorithms, one requires global data, and the other only needs
conversion functions. The former has a very high demand for space (as much as
the global data volume O(n)), the computational complexity is also high (even
O(n log n)). The latter is much simpler and easy to parallelize, which only applies
the transfer function once.

Data Integration. Data integration includes combination, format unification,
deduplication, segmentation and so on.

Combination and format unification only require the integration through
input data streams. Deduplication requires higher computational overhead or
space overhead. For sorting method, the computation complexity is O(n log n);
and for hashing method, the space overhead is O(n). Further, there could be
other overhead introduced by conflicts.

In large-scale distributed computing, a good data arrangement can help with
future memory accessing and computing. Appropriate design should consider
data, computing and architectural characters.

In some condition, data can be compressed to reduce communication. But
it is a trade-off between compression/decompression cost and communication
reduction.

3.2 Procedure Design

The entire computing flow of data-intensive applications in the HPC system is
generally: data importing, preprocessing, reading into compute systems, comput-
ing, writing back to storage systems. The corresponding resources are: network
portals, storage nodes, preprocessing resources, HPC networks, HPC compute
nodes, HPC networks, and storage nodes. Except for the computing part, most
parts are not on HPC compute nodes.

Traditional design of HPC system is primarily targeted at higher computing
power of its compute nodes. And its input bandwidth is designed to meet the
needs of compute-intensive applications such as scientific computing. When it

Cooperative Preprocessing at Petabytes on HPC 217

comes to data-intensive applications with larger amounts of data and no signif-
icant increase in computation, data access devices and data transmitting from
storage to compute nodes will face enormous challenges. It is critical in the data
importing stage. Reading large amounts of data into the storage nodes of the
HPC system is costly, and reprocessing needs to be tightly coupled to storage
nodes, otherwise the import bandwidth will limit subsequent processes.

Usual services of storage management nodes include storage control and data
forwarding, which are especially important for data-intensive applications. Dif-
ferent levels of storage management services may be completed by a single layer
of physical devices, or be dispersed on multiple layers. The workload of stor-
age management nodes is related to the amount of data that serves. Generally
speaking, it is far less than its computing ability. Therefore, it is possible to use
free resources for preprocessing in data-intensive applications.

Fig. 1. HPC resources and data processing stages

The basic procedure is shown in Fig. 1. When data enters storage resources,
the “cooperative computing” procedure performs preprocessing on the spot.
Then it choose to temporarily store or directly forward result to computing
resources according to application requirements.

The design of storage-based cooperative computing is to use storage nodes
perform on-site preprocessing. It starts from data importing and ends until
data enters the computing nodes. As is shown in Fig. 2, the procedure includes
access, sampling, cleaning, normalization, indexing, combination, deduplication,
and distributed design. These processes can be adjusted according to different
applications.

3.3 Theoretical Modeling

To evaluate the design of each step, we modeled the entire process. Afterwards,
the preprocessing procedure is determined based on certain goal.

218 R. Sun et al.

Original
Data

Import Clean Normalize Index

CombineDeduplicateTransformSampling

Data
Arrange

Preprocessing
Result

Fig. 2. Data preprocessing procedure

For each module i in the procedure, suppose that the input data volume is
mi, the output data volume is ni, and the intermediate computations are f(mi).

The corresponding computing time of the module is

ti = tin + tc + tout =
mi

bin
+ tc(f(mi)) +

ni

bout

That is, the sum of import time tin, computing time tc, and writing time tout.
Its input and output bandwidths are bin and bout. These parameters correspond
to the aggregated bandwidths for parallel processing. Computing time is repre-
sented by tc(f(mi)), which reflects computational complexity of each processing
algorithm.

The entire cost is the summarized time of each process and can be expressed
by t =

∑N
i=1 ti, where N stands for total modules.

In each module, we hope to select suitable resources according to its data
and computing demands, such as read and write bandwidth between computing
nodes and storage nodes. We want a minimum processing time or resources
within certain constraints.

If two adjacent modules can pipeline, tout of the previous module and tin of
latter one can be omitted. But a little control overhead may be introduced. In
general, we want a smaller number of models N , a less processing time, and a
balanced in and out procedure in each module.

In HPC applications, the constraints are various, such as minimum processing
time, minimum computing time in compute nodes or minimum data importing
time.

When it comes to preprocessing stage, we need to perform it in certain
time limitation, with no serious interfering on usual workloads or collaborative
resources. Meanwhile, the processing time should be as less as possible.

To this end, it is necessary to fully understand data volume, data characters,
computations and the parameters of resources in each stage, and fully exploit
the parallelism. Methods to reduce preprocessing time include IO reducing, com-
putational complexity reducing, resource increasing, latency hiding and so on.

Cooperative Preprocessing at Petabytes on HPC 219

4 Case Study

In this section, we performed a typical preprocessing task, to sort and index 2-D
data and transform to wanted presentation. The dataset has the same format
in each domain. In preprocessing stage, data from both needs to be sorted,
deduplicated and indexed.

The dataset comes from graph data, which indicates web connections. Each
edge represent relationship of two nodes. It is a proper test case for preprocessing
not only with demand for throughput but also for computing.

4.1 Application Scale

The compressed data is nearly 0.4 PB, and larger than 1PB after decompression.
However, the replication factor can’t be learned before depression, and final data
scale can’t be estimated either.

The large amount of data, strong correlation, and uncertainty are main chal-
lenges of the case.

4.2 Experiment Environment

Sunway TaihuLight has 144 available IO servers, with virtual machines to man-
age file access. Considering the limited bandwidth and other workloads on them,
we used 64 to 80 virtual compute nodes on these servers. They share the storage
system but cannot interconnect with each other. When a single node cannot
complete the computation, data can only be transferred through the storage
system. Table 1 shows the details.

Table 1. Hardware and software environment

IO server Sunway TaihuLight servers

Number of IO servers 64 to 80

Spare memory in each server 16GB

Local storage 300 GB

Read bandwidth of each server About 1 GBps

Write bandwidth of each server About 1 GBps

Storage system Lustre file system, capacity of PB

Import bandwidth 4GBps

Bandwidth of each HPC compute node 112GBps

4.3 Experiment Analysis

Cooperative preprocessing for data-intensive applications requires design from
data importing until it enters the HPC computing nodes. Throughout the pro-
cess, storage management nodes are used for cooperative computing.

220 R. Sun et al.

The procedure of preprocessing is data accessing, reading and decompression,
format conversion, coarse sorting and deduplication, writing back to storage,
full(fine) sorting and deduplication, indexing, storing, and querying. The last
stage can be “importing to compute nodes” or “loading to storage systems”.

The original data is large in quantity, disorderly in arrangement, and dupli-
cated. It can’t be deduplicated within streaming import. Therefore, at least one
intermediate data storage should be performed. In the initial phase, data is seg-
mented to 2n parts according to chosen n bits, so that the follow-up processes
are fully parallelizable.

Pipeline. The idea of pipelining is to make full use of the free resources for
each step in data processing. For local computing, such as filtering, segmenting,
format conversing, or streaming decompressing, we can read data in and perform
several processes in memory to reduce total modules N .

In decompressing stage, a lookup table needs to be maintained, and the key
part (querying) cannot be parallelized. The total computations are fixed, and
the speed of data output is constant. In format converting stage, the same job
is performed for each uncompressed line of data.

To verify the feasibility of our design, unit experiments were done on a single
compressed text file (12 GB) in the data set.

Table 2. Processing time of a file

Procedure Time Read Write

Copy and import 2 min 12 GB 12 GB

Decompress and store 4 min 35 s 12 GB 52 GB

Format transfer 6 min 49 s 52 GB 25 GB

Decompress, format transfer and segmentation 4 min 32 s 12 GB 25 GB

Decompress, format transfer, segmentation,
coarse sort and deduplication

7min 12 s 12 GB 23 GB

From Table 2, it can be seen that although pipelining will cause small over-
head, it will be more efficient than separately performing each module. Since it
will not significantly reduce data scale after coarse deduplication (less than 5%
reduction), we will only perform segmenting in pipeline, moving coarse sort and
deduplication to the next stage. Thus was proved to have 50% reduction of data
volume.

Parallelizing. Parallelizing can greatly reduce computation time. Since hard-
ware parallel capabilities varies from different environments, experiment result
is only a reference to the design.

Moreover, pipelining design and other techniques should also be considered.
As is with the limitations of hardware resources.

Cooperative Preprocessing at Petabytes on HPC 221

Table 3. Parallelizing Experiments

Parallelism 1 2 4 8

Decompression time 4 min 30 s 4 min 35 s 4 min 35 s 10 min+

The decompression stage is limited by the read bandwidth, where processing
speed saturates when the parallelism is 4 (Table 3). The second stage of pipeline
is format conversion. Although it can theoretically be parallelized in large scale,
realistic parallelism depends on the entry bandwidth (data importing speed).
Therefore, we arranged 2 parallel format conversion tasks to hide IO latency.
The left resources are used for the subsequent stages, segmenting, coarse sorting
and deduplicating.

Since the hardware resources are supporting other services at the same time,
the actual usable memory of each node is only about 16 GB.

Non-buffered IO could significantly reduce memory cost but incredibly
increase time cost. As a trade-off, we chose segment of 1024 with buffered IO as
is shown in Table 4.

Table 4. Segmenting experiments

Segment 1024 2048 4096

Pipeline time cost 7 min 19 s 7min 37 s 7 min 52 s

Memory cost (with buffered IO) 8.2 GB 18GB 30 GB

Considering double buffered cost and other service cost of the server node,
the amount of data to be sorted each time is set at 8 GB, and parallel factor is
set to 16 to fully utilize the 16 core resources in sorting stage.

Optimization for Power Law. Many real-world data exhibits power-law fea-
tures, as is the dataset in this experiment.

If we segment data directly, some parts have larger data amount and some
smaller. For example, when the segmentation part is 1024, the largest dataset is
100 times lager than average. In addition, if we continue to segment the “larger”
parts, power-law distribution will reoccurred.

To overcome power law challenge, we segmented data by the least significant
bits (to 1024 segments), which are evenly distributed. Thus could we have a
balanced task partition in distributed environment.

However, the indexing table requires ascending order which can’t avoid
“power law” problem. In previous deduplicating stage, scale of dataset is greatly
reduced by 400x (from 1.3 PB to 4 TB). As a result, even the largest segment
can be handled (or segmented handled) by hardware in table constructing stage.

222 R. Sun et al.

The next phase is “querying”, to find the corresponding representation of
original data according to the index table. In order to query efficiency, the index
table still needs to ranged by reverse order (segmented by the least significant
bits). Therefore, we need to establish a reverse index table according to ascending
sorted index table.

In summary, the deduplicating stage is to de-power-law. Large and small
segments are processed separately and transformation is performed to overcome
power law. Finally all data are successfully preprocessed.

Original Data:
0.4PB com-
pressed data

Decompress

ConvertReverse

Query Segment Full Segment 1.3PB Data

Coarse Sort and
Deduplicating55TB Data

Fine Sort and
Deduplicating 4TB Data

Make Reverse
Indexing Table

6TB Reverse
Indexing Table

Querying Data

Querying Convert Result Data

Fig. 3. Procedure of Experiment

Experiment Result of the Whole Process. The entire procedure is shown
in Fig. 3.

Designed modules include data importing and decompressing, format con-
versing, sorting and deduplicating, indexing and querying.

Previous optimizations are included either. The times to look up index-
ing table in the last step are determined by the dimension of data. For one-
dimensional column data, querying stage performs once and twice for two-
dimensional data. In addition, segmenting stage should also be designed by
dimension size.

Without interfering basic services in the cooperative computing resources, the
entire preprocessing is completed within 56 h. As shown in Fig. 4, the bottleneck

Cooperative Preprocessing at Petabytes on HPC 223

im
po
rt+

se
g

so
rt+

rm
v1

so
rt+

rm
v2 rev so

rt

mk
ta
b

rev
ta
b

qu
ery
1

qu
ery
2

0

10

20

30
ti
m
e(
h)

Fig. 4. Execution time of all procedures (data importing and segmenting, coarse sorting
and deduplicating, full (fine) sorting and deduplicating, data reversing, sorting, making
querying table, making reversed querying table, look up the first dimension (querying
1), look up the second dimension (querying 2))

is in the first stage (it takes 27 h importing and segmenting), which is limited
by the import bandwidth (4 GBps). In addition, querying stages also take a long
time. This is because that it needs to handle the total data volume (1.3 PB for
the first query and 3/4 of that for the second).

The preprocessed data volume is 135TB, which needs 1 h to import to HPC
system’s compute nodes.

5 Related Works

The relationship between big data and high-performance computing is diggered
gradually [11].

The HTCondor team at the University of Wisconsin proposed the concept of
High Throughput Computing [12]. It focuses on the “throughput” of data over
a long period of time, rather than instantaneous “computational power” that
traditional HPC payed attention to. [7] analyzed the challenges of big graph
data in the HPC platforms.

Islam at Ohio State University proposed key-value storage to port HDFS to
Luster file system, that most HPC use [4,5], which improved IO efficiency.

Data assimilation technology was introduced by RIKEN Advanced Institute
for Computational Science. It can deeply integrate real-time data with HPC [9,
10], using the HPC capabilities of “K” supercomputer to capture radar weather
data and numerical simulation every 30 s. It provided real-time local weather
forecasting.

224 R. Sun et al.

6 Conclusion

In paper, we have discussed the demand and challenges of data-intensive appli-
cations in HPC systems, and proposed a scheme for cooperative computing in
preprocessing stage. Experiments have been done on Sunway TaihuLight super-
computer at data scale of Pegabytes. It proves that our scheme can effectively
process the dataset with high throughput and without interfering other work-
loads.

Cooperative computing based on peripheral resources in HPC system is a
solution to the high throughput requirements of data-intensive applications.
However, if application develops and better performance is required, the archi-
tecture of HPC platform could be redesigned. Higher bandwidth and easier con-
nection to data are essential.

HPC is developing in the era of big data, with data-intensive applications
being more important. The utilization of the system is not only about to fully
utilize computing resources but to make all resource cooperatively perform. And
architecture should be more adapted to developing applications.

References

1. Chodorow, K.: MongoDB: The Definitive Guide: Powerful and Scalable Data Stor-
age. O’Reilly. Media Inc., Newton (2013)

2. Fu, H., et al.: The sunway taihulight supercomputer: system and applications. Sci.
China Inf. Sci. 59(7), 072001 (2016)

3. Huang, H., Lin, J., Chen, C., Fan, M.: Review of outlier detection. Appl. Res.
Comput. 8, 002 (2006)

4. Islam, N.S., Lu, X., Wasi-ur Rahman, M., Shankar, D., Panda, D.K.: Triple-h:
a hybrid approach to accelerate hdfs on hpc clusters with heterogeneous storage
architecture. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), pp. 101–110. IEEE (2015)

5. Islam, N.S., Shankar, D., Lu, X., Wasi-Ur-Rahman, M., Panda, D.K.: Accelerating
I/O performance of big data analytics on HPC clusters through RDMA-based key-
value store. In: 44th International Conference on Parallel Processing (ICPP), pp.
280–289. IEEE (2015)

6. Jian, Z., Jin, X.: Research on data preprocess in data mining and its application.
Appl. Res. Comput. 7(117–118), 157 (2004)

7. Kalmegh, P., Navathe, S.B.: Graph database design challenges using hpc platforms.
In: High Performance. Computing, Networking, Storage and Analysis (SCC), SC
Companion, pp. 1306–1309. IEEE (2012)

8. Miller, J.J.: Graph database applications and concepts with neo4j. In: Proceedings
of the Southern Association for Information Systems Conference, Atlanta, GA,
USA, vol. 2324, p. 36 (2013)

9. Miyoshi, T., Kondo, K., Terasaki, K.: Big ensemble data assimilation in numerical
weather prediction. Computer 48(11), 15–21 (2015)

10. Miyoshi, T., et al.: “Big data assimilation” revolutionizing severe weather predic-
tion. Bull. Am. Meteorol. Soc. 97(8), 1347–1354 (2016)

11. Wenguang, C.: Big data and high performance computing, 003, pp. 1–6 (2015)

Cooperative Preprocessing at Petabytes on HPC 225

12. Team at the University of Wisconsin Madison, H.: High Throughput Computing,
June 2015. http://research.cs.wisc.edu/htcondor/htc.html

13. Yi, Z., Peng, Z., Xuebin, C., Tie, N., Zongyan, C.: A brief view on requirements
and development of high performance computing application. J. Comput. Res.
Dev. 10, 001 (2007)

http://research.cs.wisc.edu/htcondor/htc.html

Sibyl: Host Load Prediction
with an Efficient Deep Learning Model

in Cloud Computing

Zhiyuan Zhang1,2, Xuehai Tang1(B), Jizhong Han1, and Peng Wang1

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

{zhangzhiyuan,tangxuehai,hanjizhong,wangpeng}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Prediction of host load is essential in Cloud computing for
improving resource utilization and achieving service-level agreements.
However, accurate prediction of host load remains a challenge in Clouds
because the type of load varies differently. Furthermore, selecting metrics
for host load prediction is also a difficult task. With so many metrics in
the Cloud systems, it is hard to determine which metrics are going to
be useful. To address these challenges, this paper proposes an efficient
deep learning model named Sibyl to improve the accuracy and efficiency
of prediction. Sibyl includes two parts: a metrics selection module and a
neural network training module. Sibyl first selects metrics by filtering out
irrelevant metrics. Afterwards, Sibyl applies a powerful neural network
model built with bidirectional long short-term memory to predict actual
load one-step-ahead. We use Sibyl to analyze a 40-day load trace from a
data center with 176 machines. Experiments show that Sibyl can reduce
training metrics while maintaining prediction accuracy. Besides, Sibyl
significantly improves prediction accuracy compared to other state-of-
the-art methods based on autoregressive integrated moving-average and
long short-term memory.

Keywords: Cloud computing · Host load prediction
Time series analysis · Bidirectional long short-term memory

1 Introduction

Host load prediction is significant in the Cloud system for guiding load bal-
ancing and guaranteeing service-level agreements (SLA). As Cloud computing
becomes more and more popular, different types of applications, such as web
servers or batch jobs, are deployed to the Cloud system. However, due to the
growth of complexity, size and scope of Clouds, the resource requirements of
applications can not always be satisfied, which causes violation to the SLA and
severely degrades the performance of service [13,14]. Accurate prediction of host
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 226–237, 2018.
https://doi.org/10.1007/978-3-030-05054-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_17

Sibyl: Host Load Prediction with an Efficient Deep Learning Model 227

load can help improve resource provisioning and enforce application performance
[5,10–12]. However, selecting metrics for host load prediction is challenging in
Clouds. Many Cloud computing operators offer powerful monitoring tools (eg.,
Google Stackdriver [21], Microsoft Cloud Monitoring [20], Amazon CloudWatch
[16]). Benefiting from these tools, we can monitor a large number of system-level
metrics associated with host load. These metrics are essential for better under-
standing the performance of service and anticipating how the load will behave.
But it is hard to determine which kinds of metrics are going to be useful, and
for different kinds of purposes, we have to choose different kinds of metrics.

Due to the variety of loads, accurate prediction of host load remains a chal-
lenge in Cloud system. Different kinds of loads own different work patterns.
Most of prior works about load prediction focused on traditional time series-
based prediction models such as moving-average, autoregression, autoregressive
integrated moving-average (ARIMA) [1–3] and machine learning algorithms like
Hidden Markov Model [6–8]. These models work well in some kinds of load,
like batch jobs, assuming that the patterns in the future remain the same [4].
However, the performance of workload, such as web server, can fluctuate drasti-
cally. These models can not handle these complex observations. Long short-term
memory (LSTM) neural networks have been widely used to solve this nonlinear
problem [9,12,23]. As the LSTM model uses nonlinear function, it can better deal
with emerging of new patterns. But LSTM only processes data in one direction,
so, it can only get part of features of the training metrics, missing the chance to
improve prediction accuracy.

In this paper, we design and build Sibyl, an efficient deep learning model to
select metrics and make an accurate prediction of host load in Clouds. Sibyl con-
sists of two core modules: (1) a metrics selection module (MSM) that reduces the
dimensionality of metrics by filtering out irrelevant metrics, (2) a neural network
training module (BNT) that applies bidirectional long short-term memory (BI-
LSTM) to catch the features of selected metrics and build a prediction model.

Module (1) allows us to select relevant metrics. Based on the shape similar-
ity of metrics, MSM will find metrics with similar patterns and filter out useless
metrics. Among the huge space of metrics, some are not associated with metrics
we care about. Irrelevant metrics carrying redundant information make no con-
tribution to prediction. We may only need to train prediction model with a few
metrics instead of the entire metrics. In addition, reducing the dimensionality of
metrics is essential in saving cost for monitoring and storing extra metrics.

Module (2) can get features of metrics selected by MSM and make an accurate
prediction of host load. BNT is built with BI-LSTM networks. BI-LSTM has
been widely used in text classification [18] and speech recognition [19]. As far
as we know, our work is the first to use BI-LSTM for host load prediction
in the context of Clouds. We build deep BI-LSTM networks to process data
in both directions to better predict the trends and magnitudes of load. BI-
LSTM networks are the end-to-end model. It can automatically preserve useful
information of data. Compared with state-of-the-art method based on LSTM
[23], our neural networks can better capture the features of metrics and make
predictions more accurate.

228 Z. Zhang et al.

We implement and evaluate our model using a 40-day load trace of a
data center with 176 machines. The load trace is at https://github.com/
UCASzhangxiaofan/Host-load-trace. By filtering out useless metrics, we reduce
the dimensionality of training metrics while maintaining prediction accuracy.
Compared with other state-of-the-art methods, including ARIMA and LSTM,
Sibyl achieves better performance with the lowest prediction error. In addition,
Sibyl is lightweight and can be adapted to meet various kinds of needs.

The rest of this paper is organized as follows. Section 2 discusses related
work to load prediction in Clouds. The design and implementation of Sibyl are
presented in Sect. 3. Section 4 presents the performance evaluation. Finally, we
conclude this work in Sect. 5.

2 Related Work

There are lots of approaches about host load prediction. Popular linear auto
regressive models, such as linear regression and ARIMA, have been widely used
for load prediction in many system areas [1–3]. Nazarko et al. [1] proposes a
prediction model based on ARIMA models for load forecasting in power distri-
bution systems. Tran et al. [2] uses ARIMA time series models to predict the
temporal patterns of I/O requests for adaptive I/O prefetching. By using a Gen-
eral Likelihood Ratio (GLR) test based on Kalman filter, Zhu et al. [3] estimates
the parameters of ARIMA and compares real data with the predicted data to
find out whether an anomaly occurs. However, traditional time series-based pre-
diction models do not perform well in cloud environment, because the drastic
fluctuations in some types of loads significantly affect the prediction accuracy.

Machine learning algorithms have been used to overcome the limitation of tra-
ditional time series-based prediction models [5–12]. Di et al. [5] uses a Bayesian
algorithm to make predictions for long-term workload. This method has a limi-
tation as it uses an exponentially segmented pattern, and with the growth of the
segment length, the mean load cannot reflect the fluctuation of load. Dabrowski
et al. [6] uses a Markov chain model of a grid system to make predictions of host
load. Akioka et al. [7] combines Markov model and seasonal variation to make
a better prediction. Byun et al. [8] uses a Markov chain with three states for
resource and predicts the rate of transitions among the states every 30 min. But
the workload in Clouds has more drastic fluctuation than that in Grid systems,
which makes these models no longer applicable [5]. Neural network has a better
performance on load prediction in Clouds with its powerful nonlinear general-
ization ability. An evolutionary neural network is introduced in [9] to forecast
the energy load of a cloud data center. Xue et al. [10] designs a framework with
autocorrelation-based features and artificial neural networks to improve the pre-
diction accuracy for load. [11] uses a forecasting method based on multivariate
time series and weighted neural network for short-term load. However, these
neural networks are not able to learn long-term dependencies, which are impor-
tant to make accurate predictions [22]. LSTM is designed to avoid this prob-
lem. It has been used in [12,23] to forecast host load and server performance.

https://github.com/UCASzhangxiaofan/Host-load-trace
https://github.com/UCASzhangxiaofan/Host-load-trace

Sibyl: Host Load Prediction with an Efficient Deep Learning Model 229

But LSTM can only catch part of features of metrics as it only processes data
in one direction, missing the chance to improve prediction accuracy.

3 Design and Implementation

3.1 System Overview

The system architecture of Sibyl is shown in Fig. 1. Sibyl is an automatic predic-
tor based on the historical performance metrics to predict host load that affects
the SLA of service. The design of Sibyl includes two parts: the metrics selection
module (MSM) and the BI-LSTM networks training module (BNT). Different
from prior work, we design MSM and use it to reduce metrics before training as
not the whole metrics are related to host load. MSM can find metrics with sim-
ilar patterns and cluster the entire metrics into two groups, one associated with
host load and the other not. Experiments show that Sibyl can reduce metrics
while maintaining prediction accuracy. With powerful nonlinear generalization
ability, BNT can learn more information from training metrics and automatically
produces a prediction model. Compared with ARIMA and LSTM, Sibyl neural
networks can make more accurate predictions about trends and magnitudes of
load as shown in experiments.

The working process of Sibyl is as follows. We first use monitoring tools to
collect performance metrics and store them on the database. Before training,
performance metrics will first be fed into MSM. MSM will analyze metrics and
divide them into two groups by clustering, so the similar-behaving metrics are
grouped together. The related metrics are used as inputs to BNT. BNT will use
BI-LSTM networks to get the features of training metrics and produce a trained
prediction model.

Fig. 1. Sibyl system architecture

3.2 Metrics Selection Module

Reducing the dimensionality of metrics can help us filter out irrelevant metrics,
which can save the cost of monitoring extra metrics while maintaining the pre-
diction accuracy [15]. Investigating metrics is significant for host load prediction.
However, it is always hard to select useful ones from the huge space of monitored

230 Z. Zhang et al.

metrics, and for different kinds of purposes, we will choose different types of met-
rics. For example, we may be more concerned about network I/O to understand
the performance of a web service better, while the memory usage will be used
to schedule the batch jobs. The increasing dimensionality of metrics also makes
it difficult to anticipate the change of load.

We design a metrics selection module (MSM) to find out useful metrics for
host load prediction. MSM applies k-Shape, a novel algorithm for shape-based
time-series clustering, to help users transform the large amounts of metrics into
useful insights. k-Shape is a domain-independent, accurate, and scalable algo-
rithm for time-series clustering, with a distance measure that is invariant for
scaling and shifting [17]. There are other feature reduction techniques like Prin-
cipal Component Analysis (PCA) and Random sampling (RS). However, due to
the capacity of linear separability of data, the effectiveness of PCA is limited,
and RS is not able to find the hidden features of data, which is essential in host
load prediction. k-Shape relies on an iterative refinement procedure that scales
linearly in the number of metrics and generates homogeneous and well separated
clusters.

k-Shape applies a novel distance metric named shape-based distance (SBD)
to compare metric’s time series. SBD is based on a normalized version of cross
correlation (NCC) [17]. Cross-correlation is a measure of similarity for time-
lagged series. It compares one-to-one points between time series. Given two
sequences, x and y , SBD will find the position ω where NCC is maximized.

SBD(x ,y) = 1 − maxω(NCCω(x ,y)) (1)

Based on SBD, k-Shape computes new cluster centroids in every iteration.
These centroids are used to update the assignment to clusters.

Since k-Shape is a shape-based time-series clustering method, it can find
the similarities in two time series, even if one in the time dimension behind
another. This is an important feature in selecting metrics for host load prediction.
Sometimes, changes in one metric do not immediately have an influence on other
metrics. For example, the CPU usage may increase after taking up more memory
to load data as the process procedures start to work.

Furthermore, in k-Shape, each metric’s time series will be first normalized
before comparing, which is significant in Cloud system. Because different metrics
may have different units, we can not directly compare them.

3.3 Sibyl Network Architecture

Because of the drastic fluctuation in some types of host load [5], traditional
linear auto regressive models can not handle this complex observation, as shown
in experiments. Different from traditional load prediction models that use a
linear basis function, non-linear functions are used by neural networks to better
solve this problem.

Sibyl network training module (BNT) uses metrics selected by MSM as inputs
to train BI-LSTM networks. BI-LSTM is a special kind of Recurrent neural net-
works. Recurrent neural networks (RNNs) have been widely used in time series

Sibyl: Host Load Prediction with an Efficient Deep Learning Model 231

analysis. RNNs are networks with loops in them, allowing history information
to be maintained, which enables the model to predict the current output based
on the features of history information. But traditional RNNs cannot train the
time series with long-distance due to the gradient vanishing problems. However,
time series with very long time lays are commonly seen in Clouds. We can use
Long Short-Term Memory (LSTM) to address this problem. LSTM networks are
a special kind of RNN, capable of finding long-term dependencies in the data.
But there is one shortcoming of LSTM. Since it is only able to process data in
one direction ignoring the continuity of data changes, LSTM can only capture
partial features of metrics.

Fig. 2. A bidirectional long short-term memory neural network

Bidirectional LSTM can get more information by processing data in both
directions with two separate hidden layers. Figure 2 shows unfolding BI-LSTM
for three time steps.

The BI-LSTM equations are given as follows:

SF
t = f(UF mt + WF SF

t−1 + bF) (2)

SB
t = f(UBmt + WBSB

t+1 + bB) (3)

Bt = g(V F SF
t + V BSB

t + bO) (4)

UF and WF are weight matrices of the input-to-forward layer. UB and WB

are weight matrices of the input-to-backward layer. V F and V B denote the
output-to-forward layer and output-to-backward weight matrix. f and g are
non-linear activation functions, such as Logistic-Sigmoid and Tanh-Sigmoid. bF ,
bB and bO denote the forward, backward and output layer biases.

We first use BI-LSTM to build a BI-LSTM network and then add a Dense
layer to make predictions, as shown in Fig. 3. Dense layer can transform high
dimensions into low dimensions while maintaining useful information, as shown
in Fig. 4.

The time series of metrics are organized like A = [a1, a2, ..., an]. For example,
the training metrics consist of A,B,C,D,E as shown in Fig. 3, and the host

232 Z. Zhang et al.

Fig. 3. Sibyl network architecture Fig. 4. Dense layer

load we predict is E. The historical data of training metrics at the same time
point t is mt = [at, bt, ct, dt, et]. mt will be used to form Xt. The real value of
host load is Yt = [et]. There is an important variable, look back. look back is an
integer n, which means data for training metrics over the past n time steps will
be used to predict target performance metric Pt. Users can choose this variable
independently to improve prediction accuracy. Xt will be fed into BI-LSTM.
The output of each neuron in BI-LSTM, Bt, will be used as inputs to the Dense
layer. We use Dense layer to reduce dimensions and produce the prediction Pt.
The dense layer equations is given as follows:

Pt = Qt−nBt−n + ... + Qt−2Bt−2Qt−1Bt−1 + bD (5)

Where Qt−n, ..., Qt−2, Qt−1 denote the BI-LSTM-Dense layer weight matrix. bD

denotes the Dense layer biases.
During network training, neural network will continuously compare the error

between the prediction value Pt and true value Yt. Based on the error, it will
adjust weight matrix and biases of each layer to better capture features of his-
torical data.

3.4 Implementation

We implement Sibyl in Python. An open-source python implementation of k-
Shape is used to cluster metrics. We use Keras to build our BI-LSTM networks.
Keras is a python library that has been widely used in production for deep
learning.

To collect performance metrics for hosts, we deploy Open-Falcon, an open-
source monitoring tool. Open-Falcon has been widely used in cloud environment,
such as JingDong, Sina Weibo, Mei Tuan and so on. Open-Falcon has already
400+ built-in server metrics and users can write plugins to collect their cus-
tomized metrics. Open-Falcon collects metrics at fine granularity per minute.
We use OpenTSDB backend to store and serve massive amounts of time series
data without losing granularity. Our system reads data from OpenTSDB and
saves it in CSV format.

4 Performance Evaluation

Our experiments include two parts: evaluating the performance of reducing met-
rics and comparing prediction accuracy with two other models.

Sibyl: Host Load Prediction with an Efficient Deep Learning Model 233

The whole metrics are collected from a real online Cloud system. We collect
17 performance metrics including CPU, memory and disk of 176 machines from
the online system in 40 days. The finest observation granularity of the trace data
is 1 min. As the other approaches did, we only predict the CPU load. We divide
loads into three categories: (a) stable load, machines deployed with batch jobs
like scientific computing; (b) periodic load, machines deployed with batch jobs
like MapReduce; (c) jitter load, machines deployed with web service, like nginx.
The host loads of different categories are shown in Fig. 5.

(a) stable load. (b) periodic load. (c) jitter load.

Fig. 5. Different types of load

We split the trace data into two durations, a training period (from the begin-
ning to the 39th day) and the test period (the 40th day). The training period
is used to train prediction models, for example, for computing the order (num-
ber of time lags) of the autoregressive model and the degree of differencing for
ARIMA or adjusting the neuron weights for Sibyl network. The test period is
used to evaluate the effectiveness of prediction models. We train and evaluate
our prediction model using a machine with an 8-core Intel Xeon CPU E5-2630-v3
processor and a NVIDIA TESLA M40 GPU with 24G memory.

To compare prediction accuracy with other models, besides using our own
Sibyl prediction model, we also implemented two other load prediction methods
including the auto regressive integrated moving average (ARIMA) model [2] and
the long short-term memory (LSTM) [23]. These methods have been widely used
in load prediction. We will use these two models together with our model to make
a one-step prediction on the same host load.

In order to evaluate prediction accuracy, we use two metrics, mean square
error (MSE) and mean absolute error (MAE). We denote the values predicted
by a model by Pi. The values actually observed are denoted by Yi.

The value of MSE can be calculated with Eq. (6) and the value of MAE can
be expressed by Eq. (7), where N is the total number of prediction values in the
prediction time window.

MSE =
1
N

N∑

i=1

(Pi − Yi)2 (6)

234 Z. Zhang et al.

MAE =
1
N

N∑

i=1

|(Pi − Yi)| (7)

We desire to minimize MSE and MAE to improve the prediction accuracy.In
general,the lower the MSE and MAE, the better.

4.1 Performance of Reducing Metrics

Before training prediction model, we use MSM to select useful metrics. MSM will
cluster metrics into two groups, the one related to target performance metrics,
the other not. We select CPU load as target metric, and use MSM to cluster
entire dataset. The result is shown in Table 1.

Table 1. Select metrics for CPU load

Load type Selected metrics number Total metrics number

Stable load 4 17

Periodic load 5 17

Jitter load 5 17

We separately use the training period of metrics selected by metrics selec-
tion module and the whole metrics to train our prediction model. As shown in
Fig. 6, for stable load, the MSE of both methods is 0.002, while the MAE is
0.032 and 0.03 respectively. For periodic load, the error of using selected metrics
is lower than using the whole metrics. Its MSE is 0.04 and MAE is 0.149. The
corresponding values of using the whole metrics are 0.052 and 0.166 respectively.
Since there are noises in the whole metrics, reducing metrics can help us improve
prediction accuracy. Two methods share the same MAE with 0.46 in the pre-
diction of jitter load, and the MSE is approximately the same, which is 0.387
and 0.385 respectively. According to the results, Sibyl can filter out irrelevant
metrics without sacrificing prediction accuracy.

Fig. 6. Comparison of error that use different numbers of metrics

Sibyl: Host Load Prediction with an Efficient Deep Learning Model 235

4.2 Accuracy of Load Prediction Model

Three methods, including the traditional prediction model ARIMA, the previous
state-of-the-art method LSTM and our approach Sibyl, are used to perform
prediction of three different kinds of host load. The mean square error (MSE)
and mean absolute error (MAE) are applied to determine the performance of
prediction.

Stable Load. As shown in Fig. 7, each approach performs well in the predictions
of stable host load with low prediction error. The MSE of ARIMA is 0.003, and
for LSTM is 0.006, while Sibyl is 0.002. Machines deployed with batch jobs
like scientific computing tend to have stable loads, because these applications
have fixed work patterns and the changes in their usages of resource are little.
Therefore, it is easy to catch its features and make accurate predictions of host
load.

Fig. 7. Prediction error of stable load with three methods

Periodic Load. Shown in Fig. 8, compared to ARIMA, both LSTM and Sibyl
receive the improvement in prediction accuracy. The MSE of ARIMA is 0.171
and the MAE is 0.279. The MSE of LSTM down to 0.104, and the MAE is
about 0.241. Sibyl outperforms other methods with the lowest MSE which is 0.04
and the MAE is only 0.149. Machines with occasional or periodic load spikes
are common in Cloud. With the help of millions of neurons, neural network
has a powerful feature-extracted ability to better detect the system situation
and predict the arrival time of changes. Furthermore, Sibyl significantly exceeds
LSTM, because it can learn more information from data as mentioned above.

Fig. 8. Prediction error of per load with three methods

236 Z. Zhang et al.

Fig. 9. Prediction error of jitter load with three methods

Jitter Load. In Fig. 9, we can see that Sibyl achieves the best performance of
prediction, whose MSE is 0.387 and MAE is 0.46. While ARIMA shows the poor-
est, its MSE is 1.279 and MAE is 0.817. LSTM performs better than ARIMA
with lower MSE and MAE, which is 0.735 and 0.626 respectively. There are
more drastic fluctuations in the load of machines with web service, as network
requests randomly arrive. Since the work patterns of load dynamically changed,
traditional methods with linear function are not suitable for this complex sit-
uation. With using nonlinear function, neural networks can better deal with
emerging of new patterns. Compared with LSTM, Sibyl processes data in both
directions to find more hidden features and receives lower prediction error.

5 Conclusion

In this paper, we have developed a novel framework Sibyl based on k-Shape and
BI-LSTM that can be used to predict host load. Sibyl includes two modules:
the metrics selection module and the BI-LSTM network training module. We
extensively use a real-world load trace to evaluate Sibyl. Experiments show that
our method can reduce the dimensionality of metrics without sacrificing predic-
tion accuracy. Compared with traditional prediction model ARIMA and neural
networks using LSTM, Sibyl gets a significant improvement on the accuracy of
prediction.

Acknowledgements. This work was supported by Grant 2017YFB 1010000 from the
National Key R&D Program of China.

References

1. Nazarko, J., Jurczuk, A., Zalewski, W.: ARIMA models in load modelling with
clustering approach. In: Proceedings of IEEE Russia Power Tech (2005)

2. Tran, N., Reed, D.A.: Automatic ARIMA time series modeling for adaptive I/O
prefetching. In: Proceedings of International Conference on Supercomputing (2002)

3. Zhu, B., Sastry, S.: Revisit dynamic ARIMA based anomaly detection. In: Pro-
ceedings of Published in International Conference on Social Computing (2002)

4. Wang, J., Chen, J.W., Wang, Y., Zheng, D.: Intelligent load balancing strategies
for complex distributed simulation applications. In: Proceedings of International
Conference on Computational Intelligence and Security (2009)

Sibyl: Host Load Prediction with an Efficient Deep Learning Model 237

5. Di, S., Kondo, D., Cirne, W.: Host load prediction in a google compute cloud
with a Bayesian model. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (2012)

6. Dabrowski, C., Hunt, F.: Using Markov chain analysis to study dynamic behaviour
in large-scale grid systems. In: Proceedings of the Seventh Australasian Symposium
on Grid Computing (2009)

7. Akioka, S., Muraoka, Y.: Extended forecast of CPU and network load on computa-
tional grid. In: Proceedings of International Symposium on CLUSTER Computing
and the Grid (2004)

8. Byun, E.J., Choi, S.J., Baik, M.S.: MJSA: markov job scheduler based on availabil-
ity in desktop grid computing environment. Future Gener. Comput. Syst. 23(4),
616–622 (2007)

9. Yong, W.F, Goh, C., Hong, C.L., Zhan, Z.H., Li, Y.: Evolutionary neural net-
work based energy consumption forecast for cloud computing. In: Proceedings of
International Conference on Cloud Computing Research and Innovation (2015)

10. Xue, J., Yan, F., Birke, R., Chen, L.Y., Scherer, T.: PRACTISE: robust prediction
of data center time series. In: Proceedings of International Conference on Network
and Service Management (2015)

11. Lang, K., Zhang, M., Yuan, Y., Yue, X.: Short-term load forecasting based on mul-
tivariate time series prediction and weighted neural network with random weights
and kernels. In: Proceedings of Cluster Computing (2018)

12. Huang, Z., Peng, J., Lian, H., Guo, J., Wei, Q.: Deep recurrent model for server
load and performance prediction in data center. Complexity 2017(99), 1–10 (2007)

13. Saripalli, P., Oldenburg, C., Walters, B., Nanduri, R.: Implementation and usability
evaluation of a cloud platform for scientific computing as a service (SCaaS). In:
Proceedings of International Conference on Utility and Cloud Computing (2011)

14. Hussain, W., Hussain, F.K., Hussain, O., Chang, E.: Profile-based viable service
level agreement (SLA) violation prediction model in the cloud. In: Proceedings of
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(2016)

15. Thalheim, J., Rodrigues, A., Akkus, I.E.: Sieve: actionable insights from monitored
metrics in distributed systems. In: Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference (2017)

16. Amazon CloudWatch. https://aws.amazon.com/de/cloudwatch. Accessed 30 May
2018

17. Paparrizos, J., Gravano, L.: k-Shape: efficient and accurate clustering of time series.
In: ACM SIGMOD International Conference on Management of Data, vol. 45, no.
1, pp. 1855–1870 (2015)

18. Ballesteros, M., Dyer, C., Smith, N.A.: Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In: Proceedings of Empirical Meth-
ods in Natural Language Processing (2015)

19. Zhang, Y., Chen, G., Yu, D., Yaco, K.: Highway long short-term memory RNNS for
distant speech recognition. In: Proceedings of International Conference on Acous-
tics, Speech and Signal Processing (2016)

20. Microsoft Cloud Monitoring. https://www.microsoft.com/en-us/cloud-platform/
operations-management-suite. Accessed 28 May 2018

21. Google Stackdriver.https://cloud.google.com/stackdriver. Accessed 1 June 2018
22. Cao, J., Fu, J., Li, M.: CPU load prediction for cloud environment based on a

dynamic ensemble model. Softw. Pract. Exp. 44(7), 793–804 (2014)
23. Song, B., Yu, Y., Zhou, Y.: Host load prediction with long short-term memory in

cloud computing. J. Supercomput. 23(2), 1–15 (2017)

https://aws.amazon.com/de/cloudwatch
https://www.microsoft.com/en-us/cloud-platform/operations-management-suite
https://www.microsoft.com/en-us/cloud-platform/operations-management-suite
https://cloud.google.com/stackdriver

An Energy-Efficient Objective
Optimization Model for Dynamic

Management of Reliability and Delay
in WSNs

Wenwen Liu, Gang Wang(B), and Xiaoguang Liu(B)

Nankai-Baidu Joint Lab, College of Computer Science,
Nankai University, Tianjin, China

{liuww,wgzwp,liuxg}@nbjl.nankai.edu.cn

Abstract. As application-driven networks, Wireless Sensor Networks
generally require short transmission delay and high data reliability when
minimizing energy consumption. Although some approaches have been
proposed to tackle this issue, there are few studies that draw attention to
the effect of transmission delay and data reliability on minimizing energy
consumption. In this paper, we have lots of comprehensive theoretical
studies and give the computation models of energy consumption, data
transmission delay and data transmission success rate based on IEEE
802.15.4 standard. What’s more, we propose an objective optimization
model that minimizing energy consumption while having the constraints
of data transmission time and accuracy. The optimization model could
dynamically achieve the optimal equilibrium solution by setting the para-
metric values of optimal equation according to the different requirements
of data transmission time and data transmission success rate. The sim-
ulation results demonstrate that the validity of computation models.
And we find the objective optimization model has a better performance
than traditional approaches in the case of dynamically balancing data
transmission time and data transmission success rate. Specifically, the
proposed optimization model can save up to 41.85% energy consump-
tion compared to Flooding routing algorithm and improve the energy
efficient of Reed Solomon code by a factor of 52.6% for the best result.

Keywords: Wireless sensor networks · Objective optimization model
Reliable transmition · Real-time transmission · Energy consumption

This work is partially supported by NSF of China (61602266, 61872201), Science and
Technology Development Plan of Tianjin (17JCYBJC15300, 16JCYBJC41900) and the
Fundamental Research Funds for the Central Universities and SAFEA: Overseas Young
Talents in Cultural and Educational Sector.

The original version of this chapter was revised: The name of the second author on
p. 238 has been deleted. The correction to this chapter is available at https://doi.org/
10.1007/978-3-030-05054-2 49

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 238–247, 2018.
https://doi.org/10.1007/978-3-030-05054-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_49
https://doi.org/10.1007/978-3-030-05054-2_49
https://doi.org/10.1007/978-3-030-05054-2_18

An Energy-efficient Objective Optimization Model for Dynamic Management 239

1 Introduction

In recent years, wireless sensor networks (WSNs) have received a lot of attention
both in academia and industry. Since the energy supply of most sensors is limited,
saving energy consumption should be considered as the key objective in WSNs,
and many research efforts have focused on designing energy efficient protocols or
mechanisms [10,12,13].

Meanwhile, accurately and timely transmission of monitoring data derived
from monitoring sensors to the management system is also important in some
applications [11], such as in terrorist attacks monitoring [3], real-time environmen-
tal monitoring [17], telemedicine service [5] and so on. As principal items of Qual-
ity of Service (QoS) supporting metrics, transmission delay and reliability have
become active important research areas in WSNs. Thus, when we studying the
energy performance of WSNs, transmission delay [13] and reliability [15,16] should
be also considered.

Previous work has been done on energy efficient protocols or mechanisms,
however it still lacks theoretical work to evaluate the impact on data transmission
quality and energy efficiency.

In this paper, we address the issue of how to use limited energy resources
of sensors to transfer data faster and more reliable, give an objective optimiza-
tion model that minimizing energy consumption while the constraints of data
transmission time and accuracy in WSNs. By analyzing the solution of objec-
tive optimization problem, we could get the minimizing (or feasible) energy con-
sumption while balancing data transmission delay and data transmission success
rate dynamically according to the requirement of actual conditions. Simulation
results show that the correctness and the effectiveness of the proposed model.

The rest of the paper is organized as follows: Sect. 2 provides related work.
We motivate the computation models in Sect. 3 and present the description of
optimization model and solving approach in Sect. 4. Simulated experiments and
results are described in Sect. 5, and conclusions are drawn in Sect. 6.

2 Related Work

In the WSNs, how to achieve the goal of energy efficiency while meeting the QoS
objectives of delay and reliability is an extremely significant subject. Previous
work has studied extensively based on either the delay metric [7], reliability
metric [4], delay and reliability metrics [8] of QoS in WSNs.

In [7], the authors presented rendezvous-based data gathering protocols for
satisfying real-time transmission of sensory data and achieving prolong-network
lifetime in WSNs. Rosa et al. [4] introduced a methodology that integrates eval-
uation of energy consumption and reliability of WSNs. They gived an automatic
solution of power consumption and reliability models to select WSN configura-
tions and support the proposed methodology. Inspired by the above work, the
authors in [8] proposed the Adaptive Virtual Relaying Set (AVRS) data collec-
tion scheme. The AVRS uses the residual energy of nodes in far-sink areas (i.e.,
non-hotspots) to achieve higher packet receiving rate.

240 W. Liu et al.

From this previous work we can see that the most straightforward choice to
enhance transmission reliability is hop-by-hop retransmission mechanism. But
the packet is dropped with a high probability in hop-by-hop retransmission
mechanism, this makes a potentially long latency time.

Another solution to ensure reliability is Hybrid Automatic Repeat reQuest
(HARQ) that uses Erasure Coding technique within retransmission mechanism.
In this paper we use HARQ technology which combines the advantage of Erasure
Coding and ARQ techniques to improve the system reliability. Reed-Solomon
(RS) code is considered to be one of the best Erasure Coding for WSNs having
maximum energy efficiency in proper channel conditions or when relay nodes
are sufficient in numbers i.e. greater than 5 [6]. So we use RS code to encode
and decode in this paper. By analyzing the data transmission process, we give
the computation models and propose an energy-efficient objective optimization
model for dynamic management of reliability and delay in WSNs.

3 Computation Models

Considering in noisy wireless channels, we use HARQ technology which combines
the advantage of RS code and ARQ technique to transmit data packets for
IEEE 802.15.4 medium access and physical layers. In this section, we mainly
give the computation models of data transmission delay, data reliability and
energy consumption.

Firstly, let us see the whole transmission process of HARQ.

HARQ: Firstly the original data is encapsulated in M source packets. Then the
transmitter encodes them into N + R(N + R > M) packets used RS and sends
them to the receiver. For every data packet, if the transmitter receives an ACK
from the receiver before the timeout t, the packet is successfully transmitted.
If the transmitter does not receive an ACK before the timeout, it believes the
receiver does not receive complete packet, and decoding fails. At this time, the
transmitter retransmits the packet to the receiver. If the transmitter gets ACK
after n(n < δ, δ is a predefined maximum number of retransmissions) retrans-
missions, transmission gets successful. In another case, if the transmitter does
not get ACK after n(n = δ) retransmissions, packet transmission fails.

3.1 A Packet Transmitting Success Rate Model

In this subsection, the computational model of packet transmitting success rate
is introducted as follows. There we assume that one-hop model corresponds to
the Gilbert model [2] with the same parameters. For an n-hop path, it can be
represented as the concatenation of n identical and independent one-hop channel
links. The successful arrival probability [19] through n-hops is:

ps = πn
0 . (1)

An Energy-efficient Objective Optimization Model for Dynamic Management 241

Then we have the packet transmitting success rate that is the proba-
bility of receiving K out of N + R encoded data packets as follows:

P =
N+R∑

k=N

C(N + R, k) ∗ (ps)k ∗ (1 − ps)N+R−k. (2)

3.2 Data Transmission Delay

Data transmission delay is the average transmission time. And the average num-
ber of sending packets by HARQ technique is given by,

ns =
δ+1∑

i=1

i(1 − ps)i−1 ∗ ps + (δ + 1)(1 − ps)δ−1, (3)

where ps is the successful arrival probability through n hops in Eq. (1) and δ is
the maximum number of retransmission.

In the IEEE 802.15.4 standard, if the transmitter has not received the
receiver’s ACK packet after the time t, then the transmitter thinks that the
sent packet is lost, and retransmits the packet. When a packet is received nor-
mally, the receiver must wait for time tack to send the ACK packet. There we
note that v is transmission speed of data, lack is the length of ACK and tb is
the inter frame delay. To summarize, the data transmission delay can be
computed as follows:

T = (1 − ps)(t +
1
v
) + ps(

1
v

+ tack +
lack

v
+ tb). (4)

3.3 Energy Consumption Model

In this subsection, we briefly consider the energy consumption in communication
(transmission and receiving) and idle states, computation cost is ignored since it
is very small compared with others (shown in Fig. 1). Based on the energy model
defined in [14], the energy required to communicate (transmission and receiving)
across an n-hop path can be expressed as follows:

E = nEt + nEr + Ef , (5)

where Ef is the energy consumption of nodes in idle state, Et and Er represent
the energy consumption for transmitting and receiving respectively, and they
are defined as:

Et = (Pts + Po)tl + PtstTtst, (6)

Er = Pretl + PtstTtst, (7)

where, Pte/re is power consumed in the transmitter/receiver electronics, PtstTtst

is start-up power consumed in the transmitter/receiver, po is output transmitter
power, tl is transmission time and Ef is sensor’s power consumption in idle status.

242 W. Liu et al.

Thus we focus on analysis the energy of transmitting an IEEE 802.15.4 Mac
frame with a length of L bit (L < 127) for HARQ mechanism.

The energy consumption can be calculated as

E = P ((nEr + nEt) ∗ ns + Ef) + (1 − P)(δ + 1)((nEr + nEt) + Ef). (8)

Equation (8) can be simplified in terms of radio parameters k1, k2, k3 and
k4 as

E = k1PT + k2T + k3P + k4. (9)

4 Optimization Model and Solving Approach

The main contribution of this paper is to build a Problem Model to minimize
energy consumption while balancing data transmission delay and data transmis-
sion success rate dynamically according to the requirement of actual conditions.
In this section, we first give some definitions of parameters and decision vari-
ables, and then introduce the optimization model. In addition, the rationality of
the problem solution is analysed, and its feasibility discussed.

We take some measures as follows before set up the optimization model:

(1) Set the difference value between the actual value and the objective value
(or constraint value): d+ is the difference value that the actual value above
the objectives (or constraints) and d− is the difference value that the actual
value below the objectives (or constraints).

(2) Unified coping with the objectives and constraints: If the difference value
between the actual value x1 and the objective value (or constraint value) x2

is 0, this is, the objective function is strictly satisfied with all constraints,
mathematical expression of the objective (or constraint) is the same as the
standard nonlinear programming problem; otherwise, when x1 < x2, we
have x1 + d− = x2 or x1 − x2 + d− = 0; and when x1 > x2, we have
x1 − d+ = x2 or x1 − x2 − d+ = 0.

(3) Setting different weight values to objectives (or constraints) with different
priorities.

Therefore we formalize our problem as the following constrained optimization
problem:

min E = k1(W1d
−
1 T0)(W2d

−
2 P0) + k2(W1d

−
1 T0) + k3(W2d

−
2 P0) + k4

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0 ≤ T + d−
1 ,

P0 ≥ P − d−
2 ,

T = (1 − ps)(t + 1
v) + ps(1

v + tack + lack

v + tb),
P =

∑N+R
k=N C(N + R, k) ∗ (ps)k ∗ (1 − ps)N+R−k,

l ≤ 127 ∗ 8,

δ = 0, 1, 2, ..., 7,

d−
1 , d−

2 ≥ 0.

(10)

An Energy-efficient Objective Optimization Model for Dynamic Management 243

The decision variables are transmission success rate and delay, and they must
be positive in practice. The objective is to minimize the energy cost. The opti-
mization constraints are used to ensure that the transmission success rate and
delay of data objects belonging to each application are not exceeded.

For the nonlinear optimization model solution, we refer to the solution in [9].
First, we relax the constrained optimization problem to a real-number con-
strained optimization problem in which d−

1 , d−
2 , ns, k, l, ... are real numbers, and

work out the solution for the real-number constrained optimization problem.
Then we round every non integer real-number to its nearest integer, for non
integer that smaller than 1, we round them to 1. On the base of these, we can
get the solution for the constrained optimization problem by using the Lagrange
dual solution and IPOPT [1,18] (a software library for large-scale nonlinear con-
strained optimization) to solve the problem in this paper.

5 Evaluation

The experiments outlined in this section intend to evaluate the performance of
the proposed model. For this end, we set up a simulation environment through
Linux + NS2-3.35. Under the /wpan folder of NS2-3.35, IEEE 802.15.4 standard
protocol is developed and implemented.

Simulation Scenario: In this simulation task, the network topologies are estab-
lished by random deployment of 150 sensors uniformly distributed on a square
with sides that are 500 m in length. Every sensor is static, and its maximum
transmission radius is 100 m. The data transfer rate is 20 kbps.

5.1 Distribution of Energy Consumption

In this subsection, we evaluate the energy consumption of sensor’s each state.
Figure 1 plots the energy consumption in every state when the single sensor sends
and receives the single packet. The Xticklabels (Et, Er, Ef , Es, Ec) represent the
energy consumption of the sensor in transmitting, receiving, idle, sleeping and
computing modes.

In idle state, sensors neither transmit nor receive data, but constantly moni-
tor the wireless channel to ensure the state transition from idle state to receiving
state in time when the data packet to be received arrives. Therefore, sensors in
idle state also consume a certain amount of energy. In computing state, based
on [14], E for a t error correcting binary BCH code of length n is

E = (2nt + 2t2)(Eadd + Emult), (11)

where Eadd and Emult are the energy consumptions in the addition and multipli-
cation, and Eadd = 3.3 ∗ 10−5 m(mW/MHz), Emult = 3.7 ∗ 10−5 m3(mW/MHz),
where m = �log2 n + 1�.

Therefore, the energy consumption in computing state is less than in idle
state when we use RS code (a special BCH code). We can see from Fig. 1, the

244 W. Liu et al.

Fig. 1. Energy consumption distribution

energy consumption in sleeping and computing mode is far less than other states.
So we only calculate the sum of total energy in transmission, reception and idle
states in the following experiments. The result of the experiment consistents
with reasoning mode in Energy Consumption Model (In Sect. 3.3).

5.2 Comparison of the Results of Experiments and Calculation
Models

In this subsection, we compare the calculating values (energy consumption, data
transmission delay and data transmission success rate) of proposed computa-
tional models with the experimental ones. We use the following metric to test
the performance:

error = (RC − RS)/RS , (12)

where, RC is the result of computation model, and RS is the simulation result.
The results of the comparison are shown in Fig. 2. Figure 2(a) plots the energy

consumption error between the proposed computational model and the experi-
mental ones with an increasing number of original messages. From Fig. 2(a), we
can see that the energy consumption error range is from 0 to 11.2%. Figure 2(b)
plots the data transmission successful rate error with an increasing number of
original messages. We can see from it the data transmission successful rate errors
are no more than 17.32%. Figure 2(c) plots the data transmission delay errors in
different number of original messages. And we get the result from it: the data
transmission delay error range is [1.89%, 15.12%].

To summarize, comparison results demonstrate that the proposed theory
models, in the range of allowable error, are consistent with the measured values.
It proves the availability of our theory models.

5.3 The Efficiency of Proposed Strategy

Figure 3 plots the energy consumption of traditional routing algorithms, RS(15,9)
and proposed objective problems model with RS(15,9) in the different numbers of

An Energy-efficient Objective Optimization Model for Dynamic Management 245

Fig. 2. Comparison of errors between the theory model with the experimental ones

246 W. Liu et al.

Fig. 3. Comparison of energy consumption

original messages. We make the following observations. First, as the original mes-
sages increase, the energy of five algorithms increases just as in Fig. 3. Second, com-
pared to traditional routing algorithms and RS(15,9), RS(15,9)+PM(Proposed
Model) obtains abest trade-offbetween transmission success rate anddelayaccord-
ing to the requirement (W1 : W2 = 3 : 2) with least energy consumption. Specifi-
cally, the proposed optimization model can save up to 41.85% energy consumption
compared to Flooding routing algorithm and improve the energy efficient of Reed
Solomon code by a factor of 52.6% when the number of original messages is 5.

6 Conclusions

In this paper, the computation models of energy consumption, data transmis-
sion delay and data transmission success rate based on IEEE 802.15.4 standard
were given. What’s more, we have presented an objective optimization model to
tradeoff between transmission success rate and delay when minimizing energy
consumption. The experiments were conducted to examine the proposed model
has a better performance than traditional approaches.

There are still some other issues that can be considered. For example, the
effect of Erasure Code on the transmission reliability in WSNs. A rich reward
algorithm is needed. And we hope to be able to make some progress in this field.

References

1. Ipopt. https://projects.coin-or.org/Ipopt. Accessed Jan 2018
2. Bolot, J.C.: End-to-end packet delay and loss behavior in the internet. In: Confer-

ence Proceedings on Communications Architectures, Protocols and Applications,
pp. 289–298 (1993)

3. Buttyán, L., Gessner, D., Hessler, A., Langendoerfer, P.: Application of wireless
sensor networks in critical infrastructure protection: challenges and design options.
IEEE Wirel. Commun. 17(5), 44–49 (2010)

https://projects.coin-or.org/Ipopt

An Energy-efficient Objective Optimization Model for Dynamic Management 247

4. Dâmaso, A., Rosa, N., Maciel, P.: Integrated evaluation of reliability and power
consumption of wireless sensor networks. Sensors 17(11), 2547 (2017)

5. Khan, M.K., Kumari, S.: An improved user authentication protocol for healthcare
services via wireless medical sensor networks. Int. J. Distrib. Sens. Netw., 1–10
(2014)

6. Kashani, Z.H., Shiva, M.: Channel coding in multi-hop wireless sensor networks.
In: International Conference on ITS Telecommunications Proceedings, pp. 965–968
(2007)

7. Konstantopoulos, C., Vathis, N., Pantziou, G., Gavalas, D.: Employing mobile
elements for delay-constrained data gathering in WSNs. Comput. Netw. 135, 108–
131 (2018)

8. Liu, A., Chen, Z., Xiong, N.N.: An adaptive virtual relaying set scheme for loss-
and-delay sensitive WSNs. Inf. Sci. 424, 118–136 (2017)

9. Liu, J., Shen, H.: A low-cost multi-failure resilient replication scheme for high data
availability in cloud storage. In: IEEE International Conference on High Perfor-
mance Computing (2017)

10. Liu, Y., Ota, K., Zhang, K., Ma, M., Xiong, N., Liu, A., Long, J.: QTSAC: an
energy-efficient MAC protocol for delay minimization in wireless sensor networks.
IEEE Access 6(99), 8273–8291 (2018)

11. Marco, P.D., Park, P., Fischione, C., Johansson, K.H.: Trend: a timely, reliable,
energy-efficient and dynamic WSN protocol for control applications. In: IEEE
International Conference on Communications, pp. 1–6 (2010)

12. Mittal, N., Singh, U., Sohi, B.S.: A stable energy efficient clustering protocol for
wireless sensor networks. Wirel. Netw. 23(6), 1809–1821 (2017)

13. Mohemed, R.E., Saleh, A.I., Abdelrazzak, M., Samra, A.S.: Energy-efficient routing
protocols for solving energy hole problem in wireless sensor networks. Comput.
Netw. 114, 51–66 (2016)

14. Sankarasubramaniam, Y., Akyildiz, I.F., Mclaughlin, S.W.: Energy efficiency based
packet size optimization in wireless sensor networks. In: Proceedings of the First
IEEE International Workshop on Sensor Network Protocols and Applications, pp.
1–8 (2003)

15. Singh, V.K., Kumar, R., Sahana, S.: To enhance the reliability and energy effi-
ciency of WSN using new clustering approach. In: International Conference on
Computing, Communication and Automation, pp. 488–493 (2017)

16. Torres, C., Glösekötter, P.: Reliable and energy optimized WSN design for a train
application. J. Syst. Archit. 57(10), 896–904 (2011)

17. Tse, R.T., Xiao, Y.: A portable wireless sensor network system for real-time envi-
ronmental monitoring. In: World of Wireless, Mobile and Multimedia Networks,
pp. 1–6 (2016)

18. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106(1),
25–57 (2006)

19. Wen, H., Lin, C., Ren, F., Yue, Y., Huang, X.: Retransmission or redundancy:
transmission reliability in wireless sensor networks. In: IEEE International Confer-
ence on Mobile Adhoc and Sensor Systems, pp. 1–7 (2008)

An Improvement of PAA on Trend-Based
Approximation for Time Series

Chunkai Zhang1(B), Yingyang Chen1, Ao Yin1, Zhen Qin1, Xing Zhang2,
Keli Zhang2, and Zoe L. Jiang1

1 Department of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China
ckzhang812@gmail.com,yingyang chen@163.com,

yinaoyn@126.com,qinzhen qd@163.com,zoeljiang@hit.edu.cn
2 Engineering Laboratory for Big Data Collaborative Security Technology,

Beijing, China
{zhangxing,zhangkeli}@cecgw.cn

Abstract. Piecewise Aggregate Approximation (PAA) is a competitive
basic dimension reduction method for high-dimensional time series min-
ing. When deployed, however, the limitations are obvious that some
important information will be missed, especially the trend. In this paper,
we propose two new approaches for time series that utilize approximate
trend feature information. Our first method is based on relative mean
value of each segment to record the trend, which divide each segment into
two parts and use the numerical average respectively to represent the
trend. We proved that this method satisfies lower bound which guaran-
tee no false dismissals. Our second method uses a binary string to record
the trend which is also relative to mean in each segment. Our meth-
ods are applied on similarity measurement in classification and anomaly
detection, the experimental results show the improvement of accuracy
and effectiveness by extracting the trend feature suitably.

Keywords: Time series · Similarity measurement · Trend distance

1 Introduction

Time series is a series of data points indexed in time order, which is widely existed
in fields of medical [6,10,26], business [18], industry [20,25], cyber security [17,
24] and so on. Time series mining is one of the attractive research topics and a
key issue for the last decade, such as classification [22], clustering [15], anomaly
detection [19,27], time series visualization [9,13]. Most of mining technologies
require comparison of similarity measurement, which can effect the accuracy
and efficiency of mining. A series of measurements have been proposed, such as
Manhattan Distance [23], Euclidean Distance [7], Chebyshev Distance [2]. The
typical measure is Euclidean Distance (ED), which is the sum of straight line
distance between two points through time series.
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 248–262, 2018.
https://doi.org/10.1007/978-3-030-05054-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_19

An Improvement of PAA on Trend-Based Approximation for Time Series 249

Time series is a high-dimensional data that leads to expensive time and space
cost when processed with the raw data directly by using ED, so dimensional-
ity reduction is required to improve the efficiency. There has been much work
in dimensional reduction, and one of the popular approaches is using spatial
method to index the data in the transformed space including Discrete Fourier
Transform (DFT) [7,14], Singular Value Decomposition (SVD) [7,12], Discrete
Wavelet Transform (DWT) [3,11]. And there are piecewise aggregate represen-
tation including Piecewise Aggregate Approximation (PAA) [8,12], Symbolic
Aggregate approximation (SAX) [14,21]. PAA is competitive with or faster than
other methods and it is easy to implement, which allows more flexible distance
measure. However, PAA algorithm is easy to lose an amount of information,
especially the trend. For instance, if two series have same mean but opposite
trend, PAA will judge these two sequences similar. Guo [8] proposed an app-
roach with PAA based on variance feature, which including forms of linear and
square root, to add some important information and solve the problem of same
mean value. While Sun [21] tried to add trend information by using starting and
ending points of segments, whereas the starting and ending points do not reflect
the trend in many case like the situation that both points have same value while
the trend in segment are different.

In this paper, we propose two new approaches for time series similarity mea-
surement that utilize trend feature. Our first method divides each segment into
two parts based on mean value and use the numerical average respectively to
represent the trend. And we prove our method satisfies lower bound which guar-
antee no false dismissals. Our second method uses a binary string to record the
trend change of a time series. The trend distance between two sequence is added
to the PAA distance as the final distance to measure the similarity in both
measures.

The remainder of the paper is organized as follows: Sect. 2 provides the back-
ground knowledge of original PAA and its limitations in detail. Section 3 presents
our proposed method and explain the trend representation. Section 4 presents
the experimental results of classification and anomaly detection on several data
sets. Finally, Sect. 5 concludes the paper.

2 Background

Piecewise Aggregate Approximation (PAA) is an approach of average dimen-
sional reduction, which divides the time sequence equally and take the mean
value of each segment as representation. Given time series, Q = {q1, ..., qn}, it
will be reduced to a vector of length w and presents as Q̄ = {q̄1, q̄2..., q̄w}, where
w ≤ n, the ith element of q̄ is calculated by:

q̄i =
w

n

n
w i∑

j= n
w (i−1)+1

qj (1)

250 C. Zhang et al.

where the time series is divide into w equi-size segments, q̄i is the mean value of
the ith segment, qj is one of the time point in its segment (in which i ∈ w and
j ∈ [qi, qi+1]).

The mean value of data falling within the segment will be calculated and
the mean value will replace whole segment as the new representation. Once the
length of segment becomes larger, it will lead to the loss of trend information as
shown in Fig. 1. To illustrate this point, Fig. 1(a) divide the time series into two
subsequences, the length is 96/2 = 48, which lose the trend information a lot
and is obviously quite different from the original one. With the increase of the
number of segments in Fig. 1(b)–(d), the reduced dimension sequence is closer
to the original one.

(a) segment w = 2. (b) segment w = 8.

(c) segment w = 16. (d) segment w = 24.

Fig. 1. PAA representation for one of the time series in ecg200. In this case, Raw
represents for the original time series and PAA represents for the transformed time
series, and the length of the time series is 96.

Besides, the result of reduction will be inaccurate when two sequence have
same mean value while the trends are different. For PAA method, the distance
measure was proposed as Eq. (2).

Dist(Q̄, P̄) =
√

n

w

√√√√
w∑

i=1

(p̄i − q̄i)2 (2)

ED(Q,P) =

√√√√
n∑

i=1

(pi − qi)2 (3)

An Improvement of PAA on Trend-Based Approximation for Time Series 251

Compared with the original Euclidean distance in Eq. (3) which is one of the
true distance measures [16]. It can be seen from the above two formulas that
Euclidean distance calculates every time points’ distance while the PAA reduces
the n dimension to w dimension and simply multiple n/w to enlarge time series,
which roughly cover up information in detail. To illustrate this, Fig. 2 shows that
ts1 and ts2 are the relative segment in two time series. Even if it can be seen
intuitively from the figure that they are two different time series, but their mean
values are very close and the distance measure calculated by PAA will obtain
that the two time series are similar.

Fig. 2. The comparison of one segment in two time series which have very close mean
value, the mean value of ts1 is 1.012 and ts2 is 1.01. To illustrate that t1 and t2 are
different while through the PAA distance calculation, they are similar.

Furthermore, PAA is an approximate method to fit the original sequence, so
the maximum and minimum value will be missed. To address above problems,
we propose two methods to record the trend information, and the detail methods
will be describe in Sect. 3.

3 Our Proposed Methods

As we review above, we know that the original PAA method simply flattens
the curve by segments, which will lose a lot of information, especially the trend
change information. For the propose of solving this problem, we propose two
methods. The first method is based on relative mean value of each segment to
record the trend, and we call it Numerical Trend Based On PAA(NT PAA). It
divides each segment into two parts by mean value and calculate the numerical
average of them separately, with the trend distance calculated by difference. The
other is a method of recording the relative trend change for a sequence by using
a binary string, we name it Binary Trend Based On PAA(BT PAA). And the
trend distance is the number of different binary strings in two time series, which
is weighted by the number of segments. Both the final distance combine the
trend approximate distance with the PAA distance.

252 C. Zhang et al.

3.1 Numerical Trend Based on PAA

The Trend Representation. For the propose of solving this problem, we add
the incremental representation by using the numerical mean value on behalf of
trend to improve it. A time series of length n represents as Q = {q1, ..., qn} which
is divided into w segments, Q = {q̄1, ..., q̄w}, the formula is shown in Eq. 1

Fig. 3. up mean and below mean in one time series segment.

We define up difference as the difference of all time points in one segment
above the mean value, while below difference as the difference of all the time
points in one segment below the mean value. Therefore the up-mean value Δqu
and below-mean value Δqb which are relative to the mean value in each segment
can be defined as:

Δqui =
1
ui

n
w i∑

k= n
w (i−1)+1

(qk − q̄i), (qk ≥ q̄i) (4)

Δqbi =
1
bi

n
w i∑

k= n
w (i−1)+1

(q̄i − qk), (qk < q̄i) (5)

where ui is the number of up value in ith segment, and bi is the number of below
value, w

n = ui + bi, and we can see from the Fig. 3 clearly that the time points
in red area is the below difference value and time points in blue area is the up
difference value.

Distance Measure. In order to guarantee no false dismissals, we must produce
a distance measure defined in index space. We can define the trend distance based
on numerical mean value in one segment as follows.

nt(q, c) =
√

u(Δqu − Δcu)2 + b(Δqb − Δcb)2 (6)

An Improvement of PAA on Trend-Based Approximation for Time Series 253

And the final distance between two time series based on trend approximation
can be defined as:

NT Dist(Q,C) =

√√√√ n

w

w∑

i=1

(q̄i − c̄i)2 +
w∑

i=1

nt(qi, ci)2 (7)

Our proposed method is a lower bounding measure to Euclidean Distance
(ED) which can be proved as follow.

Proof. According to the [12], the authors have already proved that the PAA
distance is lower bound the Euclidean distance:

ED ≥
√√√√ n

w

w∑

i=1

(q̄i − c̄i)
2 (8)

In order to prove the NT Dist(Q,C) lower bounds Euclidean Distance, we
should expand the Euclidean first, where qi can be represented as qi = q̄i − Δqi,
so as ci = c̄i − Δci, and simply make the w = 1.

ED2 =
n∑

i=1

(qi − ci)
2

=
n∑

i=1

((q̄i − Δqi) − (c̄i − Δci))2

= n(q̄i − c̄i)2 + 2(q̄i − c̄i)
n∑

i=1

(Δqi − Δci) +
n∑

i=1

(Δqi − Δci)2

(9)

We already know that (q̄i − c̄i)
n∑

i=1

(Δqi − Δci) = 0, therefore, ED can be

transformed as follows:

ED2 = n(q̄i − c̄i)2 +
n∑

i=1

(Δqi − Δci)2 (10)

And for our method, we can expand our method from Eq. (9) that

Dist2 = n(q̄i − c̄i)2 + NT (qi, ci)2 (11)

Combine Eqs. (12) and (13), we only have to prove that
n∑

i=1

(Δqi − Δci)2 ≥ u(Δqu − Δcu)2 + b(Δqb − Δcb)2 (12)

Equation (12) can be divided into two parts including up and below area as
we mention above due to n

w = u + b,

u∑

i=1

(Δqi − Δci)2 ≥ u(Δqu − Δcu)2 (13)

254 C. Zhang et al.

b∑

i=1

(Δqi − Δci)2 ≥ b(Δqb − Δcb)2 (14)

where Δqu and Δqb are the mean value in different two parts, which can be
defined as Eqs. (4) and (5). In other words, it can be represented as Δqi =
Δqui − Δ(Δqi) and Δci = Δcui − Δ(Δci). To prove Eqs. (13) and (14), the
process are the same as Eq. (8). The prove is done.

3.2 Binary Trend Based On PAA

The Trend Representation. Another method to represent the trend is based
on binary string, which can roughly but efficiently reflect the relative trend
change to mean value in each segment. We can use binary string B = {0, 1}n to
represent the trend relative to the mean and the bits are defined as follow:

bj =
{

1, pj ≥ p̄i
0, pj < p̄i

(15)

in Eq. (15), each raw data point segment is represented as 1 when the raw data
is greater than the mean value of ith segment, otherwise, if the raw data is less
than the mean, it is represented as 0 .

For example, suppose we have one of the corresponding segment in two time
series Pi and Qi, as we can see in Fig. 4

Pi = {0.4, 2.7, 1.6, 0.5, 0.5, 0.5, 0.5}

Qi = {0.6, 3.2, 1.6, 0.9, 2.8, 2.1, 0.5}
so we can calculate the mean value as mean(Pi) = 0.8375 and mean(Qi) =
1.6714, then compare each raw time point with mean value, we can get the
binary string as BPi = 0110000, and BQi = 0100110.

(a) time series Pi. (b) time series Qi.

Fig. 4. The trend representation. Pi and Qi represent for one of the corresponding
segment in time series P and Q, and the dotted line is the mean value. In (a), the
mean value is 0.8375 and binary string is BPi = 0110000, in (b), the mean value is
1.6714 and binary string is BQi = 0100110.

An Improvement of PAA on Trend-Based Approximation for Time Series 255

Distance Measure. The trend distance of the binary string between two series
is as follows, where the length of time series is n and it is divided into w segment.

bt(Q̄, P̄) =

√√√√
w∑

i=1

w

n
count(bpi ⊕ bqi)

=
√

w

n
count(BP ⊕ BQ)

(16)

bpi, bqi are the binary string of corresponding segment of two series, and the
function count is used to sum up the number of 1 in the binary string. The
formula can be transformed where BP and BQ are the whole binary strings of
two time series.

Finally, we can define the BIT Dist measure function based on trend distance
and PAA as follows,

BIT Dist(Q̄, P̄) =
√

n

w

√√√√
w∑

i=1

(p̄i − q̄i)2 +
√

w

n
count(BP ⊕ BQ) (17)

From Eq. (17), it can be seen that the effect of trend distance on the overall
distance is weighted by w/n, which n is fixed. The larger of w, the greater
the proportion of trend distance and the longer length of one segment. Once
the subsequence is very long, the trend among this segment will change into
a parallel line with no trend change, therefore, the increase of trend distance
helps distinguish between the similarity of two subsequence. On the contrary,
the smaller of w, the smaller proportion of trend distance. Because if the length
of subsequence is small, even contains only two time points, their trend is similar
to linear, which will not lose trend information a lot.

4 Experiments

In this section, we evaluate our proposed methods and present the results of
experiments. First, we introduce the data sets we used in experiments. Then we
compare the performance of proposed methods in aspect of classification and
anomaly detection. The experiments are performed on 2.5 GHz processor with
16 GB physical memory. We use cross-validation to find the optimal reduction
ratio s = n/w on the training data sets and verify them on the verification data
sets.

4.1 Dataset

We perform all the experiments over the UCR Time Series Classification Archive
repository [4], which is a large and mature open data sets, and each of the
datasets is divided into a training data set and a test data set. We choose 24
data sets in UCR and the classes of time series are between 2 and 39, the length
of time series are between 84 and 1024 with the total size of the data sets are
between 60 and 2000. The detail of data sets is shown in Table 1.

256 C. Zhang et al.

Table 1. The description of time series data sets we used (from UCR Time Series
Classification Archive repository)

No Data sets Classes Size of
training set

Size of
testing set

Length of
times series

1 Adiac 37 390 391 176

2 Beef 5 30 30 470

3 Car 4 60 60 577

4 Coffee 2 28 28 286

5 Computers 2 250 250 720

6 Earthquakes 2 139 322 512

7 ECG200 2 100 100 96

8 ECGFiveDays 2 23 861 136

9 FaceFour 4 24 88 350

10 FISH 7 175 175 463

11 Gun Point 2 50 150 150

12 Ham 2 109 105 431

13 Herring 2 64 64 512

14 Lighting2 2 60 61 637

15 MoteStrain 2 20 1252 84

16 OSULeaf 6 200 242 427

17 Phoneme 39 214 1896 1024

18 Plane 7 105 105 144

19 ShapeletSim 2 20 180 500

20 Strawberry 2 370 613 235

21 SwedishLeaf 15 500 625 128

22 ToeSegmentation2 2 36 130 343

23 Trace 4 100 100 275

24 Wine 2 57 54 234

4.2 Experimental Setup

Method: Since our method is to improve the PAA based on trend feature, we
compare the accuracy and effectiveness on classification and anomaly detection
with Piecewise Aggregate Approximation (PAA), Euclidean Distance (ED) and
Cosin Similarity (CO) distance measures. Cosin similarity [5] uses the cosin of
the angle between two vectors in vector space as the measure of the difference
within two individuals. As for distance representation, it shall be 1 minus the
cosin similarity distance in our experiment. For the classification process, we
conduct the experiments using the k-Nearest Neighbor (K-NN) classifier and set
the k = 3, of which the accuracy is determined by the similarity distance between
test sample and each of training data. And for the anomaly detection process,

An Improvement of PAA on Trend-Based Approximation for Time Series 257

we use Local Outlier Factor (LOF) [1] to look for the optimal parameters of
nearest neighbor in test sets by cross-validation.

Evaluation Metrics: In these experiments, error rate, precision, recall and F1-
score are used as evaluation metrics to evaluate the performance of classification.
Precision is how much of the retrieved entries is accurate, while recall is how
many accurate entries have been retrieved. As for F1-score, it is the harmonic
average of precision and Recall. When F1 is higher, the comparison shows that
the experimental method is ideal.

Error rate =
Number of incorrect classification

Total number of test samples
(18)

F1 = 2 ∗ precision8recall

presion + recall
(19)

We use Area Under Curve (AUC) evaluation metric to measure the perfor-
mance of anomaly detection. AUC is defined as the area under the ROC curve
and the range of values is between 0.5 and 1. The greater the AUC value, the
better the detection algorithm effect.

4.3 Comparison in Lower Bound

As for the NT PAA method, we already prove that our method has tighter lower
bound than original PAA, which can be further proved by experiment as shown
in Fig. 5. We choose the Euclidean distance as the true distance and make the
tightness represent as Eq. (20), where Dist(P,Q) is the approximate distance
measure, s represent the reduction ratio, and T is range in [0, 1], the closer to 1
the better, 200 time series of length 150 are tested.

T (tightness) =
Dist(P,Q)
ED(P,Q)

(20)

From this Fig. 5 we can find that when the reduction ration is 1, the tight-
ness is equal, and as the reduction ratio becomes bigger, the tightness becomes
smaller.

4.4 Comparison on Classification

In this experiment, our proposed methods BT PAA and NT PAA are compared
with three other distance measurements, Cosin [5], Euclidean [7] and PAA, with
24 data sets in UCR are used. The results of classification are shown in Table 2,
and the best results are highlighted in bold font.

To measure the improvement that the BT PAA and NT PAA classifier pro-
vide, the data sets are trained and tested with a varying window size s comparing
with original PAA, Cosin and ED. The results in Table 2 show that all meth-
ods have different best number of s ratio. Furthermore, our proposed methods

258 C. Zhang et al.

Table 2. The result of 3-NN classification for NT PAA and BT PAA. s represents the
best number of points in a time series segment. The highest values are highlighted in
bold.

Data set BT PAA NT PAA PAA Cosin ED

s Error F1 s Error F1 s Error F1 s Error F1 error F1

1 15 0.014 0.821 6 0.015 0.886 2 0.018 0.814 3 0.018 0.814 0.023 0.814

2 2 0.017 0.973 11 0.033 0.944 2 0.067 0.822 3 0.067 0.880 0.133 0.822

3 11 0.067 0.897 8 0.133 0.780 18 0.083 0.893 18 0.083 0.893 0.158 0.813

4 3 0.000 1.000 18 0.000 0.982 2 0.018 0.982 2 0.018 0.982 0.018 0.982

5 2 0.396 0.601 9 0.328 0.693 2 0.406 0.594 4 0.404 0.583 0.410 0.589

6 17 0.215 0.555 18 0.200 0.576 15 0.226 0.547 15 0.210 0.556 0.265 0.474

7 7 0.085 0.901 2 0.100 0.880 3 0.090 0.896 3 0.090 0.556 0.090 0.896

8 5 0.001 0.999 8 0.019 0.973 3 0.002 0.998 3 0.005 0.997 0.009 0.991

9 19 0.009 0.947 15 0.027 0.958 19 0.018 0.947 14 0.018 0.972 0.027 0.958

10 15 0.080 0.811 2 0.080 0.825 2 0.080 0.824 16 0.080 0.825 0.089 0.824

11 4 0.040 0.960 4 0.050 0.965 7 0.045 0.955 7 0.045 0.955 0.050 0.950

12 13 0.173 0.826 19 0.248 0.743 9 0.178 0.820 13 0.159 0.816 0.206 0.791

13 6 0.453 0.527 10 0.336 0.611 15 0.477 0.505 17 0.484 0.505 0.500 0.482

14 19 0.190 0.789 13 0.174 0.799 17 0.198 0.784 17 0.207 0.784 0.248 0.729

15 8 0.038 0.962 6 0.046 0.949 8 0.045 0.955 5 0.207 0.951 0.081 0.918

16 2 0.045 0.909 17 0.041 0.901 2 0.045 0.903 9 0.045 0.903 0.048 0.903

17 17 0.020 0.528 4 0.019 0.541 17 0.020 0.527 3 0.020 0.534 0.033 0.506

18 19 0.019 0.961 19 0.014 0.970 14 0.019 0.952 16 0.019 0.960 0.033 0.933

19 2 0.400 0.548 19 0.455 0.560 19 0.395 0.558 4 0.295 0.547 0.460 0.536

20 19 0.035 0.958 12 0.055 0.936 10 0.044 0.953 10 0.044 0.953 0.051 0.945

21 14 0.031 0.856 18 0.036 0.844 18 0.030 0.863 18 0.033 0.863 0.047 0.791

22 8 0.120 0.823 15 0.108 0.836 9 0.120 0.823 12 0.114 0.823 0.133 0.805

23 15 0.020 0.937 15 0.045 0.991 2 0.020 1.000 2 0.000 1.000 0.055 1.000

24 16 0.063 0.974 14 0.000 0.924 16 0.000 0.973 4 0.035 0.980 0.000 0.921

Average 0.105 0.836 0.107 0.836 0.110 0.829 0.112 0.818 0.132 0.807

Fig. 5. The comparison of tightness between NT PAA and PAA

An Improvement of PAA on Trend-Based Approximation for Time Series 259

performs better than other three methods in most of the data sets in Table 2,
BT PAA has most of lowest error rate in data sets (11/24) while NT PAA is less
(8/24). On the other hand, our methods perform almost the same in F1 metric.
On average (10/24), our proposed methods outperforms than PAA, Cosin and
Euclidean under these evaluation metrics.

In additional, we summarize the result between two methods we mentioned
above as shown in Fig. 6. If the point (red dot) is in the lower region, the proposed
methods are more accurate than PAA or ED, otherwise, the point (blue triangle)
are in up region which means they are worsen than original methods. To illustrate
the performance, the red dots are the majority apparently in four subfigures, so
they works well in classification via different data sets.

Fig. 6. Comparison of error rate between our proposed methods (NT PAA and
BT PAA) and other methods (PAA and ED) with 24 data sets. The red dots in below
region represent that our method is superior to the existing one, the blue triangles in
up region represent that existing methods are better than ours, and the green squares
represent the equal error rate. (Color figure online)

4.5 Comparison on Anomaly Detection

In this experiment, we use 12 data sets selected in Table 1, which only have two
classes, to conduct the anomaly detection experiment with algorithm of Local
Outlier Factor (LOF) [1] to look for relatively anomaly points. We use Area
Under Curve (AUC) evaluation metric to measure the performance. The results
are shown in Table 3 that our proposed measure BT PAA with LOF is much
greater than other four distance methods, which five out of twelve data sets
have a significant increase in AUC, and the other seven have a slight increase.
As for NT PAA, we have eight out of twelve data sets greater than other four

260 C. Zhang et al.

Table 3. The result of anomaly detection. We choose 12 data sets among UCR which
contain only two class and the highest values are highlighted in bold.

Data set AUC

BT PAA NT PAA PAA Cosin ED

Coffee 0.719 0.815 0.760 0.731 0.672

Computers 0.582 0.689 0.581 0.587 0.537

Earthquakes 0.625 0.673 0.590 0.665 0.585

ECG200 0.803 0.793 0.804 0.849 0.631

Gun Point 0.639 0.725 0.596 0.639 0.538

Ham 0.645 0.645 0.661 0.645 0.625

Herring 0.623 0.638 0.617 0.596 0.581

Lighting2 0.648 0.653 0.646 0.657 0.579

ShapeletSim 0.960 0.863 0.961 0.712 0.900

Strawberry 0.606 0.689 0.629 0.640 0.571

ToeSegmentation2 0.914 0.728 0.911 0.772 0.755

Wine 0.739 0.681 0.568 0.596 0.540

method. In general, the methods we propose have a much better effect than
PAA.

To evaluate the computation performance of our two methods, we compare
the computation time with our methods and PAA in anomaly detection. Five
data sets are chosen to show the results. From the Fig. 7, the computation time
of NT PAA is approximately twice as PAA, while the BT PAA is a bit lager
than PAA, since all three methods have same time-consuming in piecewise and
the only difference is the time to convert time series into binary string and
up/below-mean. Therefore, BT PAA is better than NT PAA in running time.

Fig. 7. The computation time of different time series with different s ranging from 2
to 10 in anomaly detection.

An Improvement of PAA on Trend-Based Approximation for Time Series 261

5 Conclusion

In this paper, we propose two new methods for time series similarity measure-
ment that apply trend information. Our first method use the numerical average
in segment which is divided into two parts to represent the trend, and another
method use a binary string to record the trend change of a time series. And both
the trend distance between two sequence are based on the PAA distance as the
final distance to measure the similarity. We have evaluate the proposed methods
using the UCR Time Series Archive repository for classification and anomaly
detection, and from the view of the accuracy shows that the proposed methods
are better than others in both two aspects, despite it costs more time than PAA.
In our future work, we are planing to reduce the trend space and improve the
run time of trend distance by using hashing.

Acknowledgment. This study is supported by the Shenzhen Research Council
(Grant No. JSGG2017-0822160842949, JCYJ20170307151518535).

References

1. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: ACM SIGMOD International Conference on Management of
Data, pp. 93–104 (2000)

2. Cantrell, C.D.: Modern mathematical methods for physicists and engineers. Mea-
sur. Sci. Technol. 12(12), 2211 (2001)

3. Chan, K.P., Fu, W.C.: Efficient time series matching by wavelets. In: 1999 Pro-
ceedings of International Conference on Data Engineering, pp. 126–133 (1999)

4. Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.
ucr.edu/eamonn/time series data/

5. Chomboon, K., Chujai, P., Teerarassammee, P., Kerdprasop, K., Kerdprasop, N.:
An empirical study of distance metrics for k-nearest neighbor algorithm. In: Inter-
national Conference on Industrial Application Engineering, pp. 280–285 (2015)

6. Dersch, D.R., Dersch, D.R., Leinsinger, G.L., Hahn, K., Auer, D.: Cluster analysis
of biomedical image time-series. Int. J. Comput. Vis. 46(2), 103–128 (2002)

7. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: International Conference on Management of Data, vol.
23, no. 2, pp. 419–429 (1994)

8. Guo, C., Li, H., Pan, D.: An improved piecewise aggregate approximation based on
statistical features for time series mining. In: Bi, Y., Williams, M.-A. (eds.) KSEM
2010. LNCS (LNAI), vol. 6291, pp. 234–244. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15280-1 23

9. Himberg, J., HyvÃrinen, A., Esposito, F.: Validating the independent components
of neuroimaging time series via clustering and visualization. Neuroimage 22(3),
1214–1222 (2004)

10. Hu, L.Y., Huang, M.W., Ke, S.W., Tsai, C.F.: The distance function effect on k-
nearest neighbor classification for medical datasets. Springerplus 5(1), 1304 (2016)

11. Kahveci, T., Singh, A.: Variable length queries for time series data. In: 2001 Pro-
ceedings of International Conference on Data Engineering, p. 273 (2002)

www.cs.ucr.edu/eamonn/time_series_data/
www.cs.ucr.edu/eamonn/time_series_data/
https://doi.org/10.1007/978-3-642-15280-1_23
https://doi.org/10.1007/978-3-642-15280-1_23

262 C. Zhang et al.

12. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3),
263–286 (2001)

13. Landesberger, T.V., Brodkorb, F., Roskosch, P.: Mobilitygraphs: visual analysis of
mass mobility dynamics via spatia-temporal graphs and clustering. IEEE Trans.
Vis. Comput. Graph. 22(1), 11–20 (2016)

14. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, pp. 2–11 (2003)

15. Paparrizos, J., Gravano, L.: k-Shape: efficient and accurate clustering of time series.
ACM SIGMOD Rec. 45, 69–76 (2016)

16. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition, vol. 1, pp. 353–356.
Prentice-Hall, Inc., Upper Saddle River (1993)

17. Rodriguez, A.C., Mozos, M.R.D.L.: Improving network security through traffic
log anomaly detection using time series analysis. In: Herrero, Á., Corchado, E.,
Redondo, C., Alonso, Á. (eds.) Computational Intelligence in Security for Infor-
mation Systems 2010. Advances in Intelligent and Soft Computing, vol. 85, pp.
125–133. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16626-
6 14

18. Rui, N., Horta, N.: A new SAX-GA methodology applied to investment strategies
optimization. In: Conference on Genetic and Evolutionary Computation, pp. 1055–
1062 (2012)

19. Shokoohi-Yekta, M., Chen, Y., Campana, B., Hu, B., Zakaria, J., Keogh, E.: Dis-
covery of meaningful rules in time series. In: ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 1085–1094 (2015)

20. Rhea, S., Wang, E., Wong, E., Atkins E., Storer, N.: Littletable: a time-series
database and its uses. In: ACM International Conference on Management of Data,
pp. 125–138 (2017)

21. Sun, Y., Li, J., Liu, J., Sun, B., Chow, C.: An improvement of symbolic aggregate
approximation distance measure for time series. Neurocomputing 138(11), 189–198
(2014)

22. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series
classification using numerosity reduction. In: International Conference, pp. 1033–
1040 (2006)

23. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary LP norms. In:
Proceedings of the 26th International Conference on Very Large Data Bases, pp.
385–394 (2000)

24. Yong, Z., Tan, X., Xi, H.: A novel approach to network security situation aware-
ness based on multi-perspective analysis. In: International Conference on Compu-
tational Intelligence and Security, pp. 768–772 (2007)

25. Yu, Q., Jibin, L., Jiang, L.: An improved arima-based traffic anomaly detection
algorithm for wireless sensor networks. Int. J. Distrib. Sensor Netw. 2016, 1–9
(2016)

26. Zhang, C., Yin, A., Liu, H., Zhang, J.: Design and application of electrocardiograph
diagnosis system based on multifractal theory. In: Sun, G., Liu, S. (eds.) ADHIP
2017. LNICST, vol. 219, pp. 433–447. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-73317-3 50

27. Zhang, C., Yin, A., Deng, Y., Tian, P., Wang, X., Dong, L.: A novel anomaly
detection algorithm based on trident tree. In: Luo, M., Zhang, L.-J. (eds.) CLOUD
2018. LNCS, vol. 10967, pp. 295–306. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94295-7 20

https://doi.org/10.1007/978-3-642-16626-6_14
https://doi.org/10.1007/978-3-642-16626-6_14
https://doi.org/10.1007/978-3-319-73317-3_50
https://doi.org/10.1007/978-3-319-73317-3_50
https://doi.org/10.1007/978-3-319-94295-7_20
https://doi.org/10.1007/978-3-319-94295-7_20

Research on Data Recovery Technology Based
on Flash Memory Device

Lele Guan(&), Jun Zheng(&), Chenyang Li(&), and Dianxin Wang

School of Computer Science and Technology, Beijing Institute of Technology,
Beijing 100081, China

734516580@qq.com, zhengjun@bit.edu.cn,

lichenyangbit@yeah.net

Abstract. Due to the significant internal structural difference between flash
memory devices and traditional mechanical hard disks, the data recovery
technology for traditional mechanical hard disks cannot be directly applied to
flash memory devices. Therefore, there is an urgent need to explore a data
recovery method specific to flash storage devices. On the premise of obtaining
the mirror data structure parameters of the flash memory chip, through analyzing
the underlying data from the said chip, determination and analysis can be done
to the interleave type of data on the physical structure. And according to the
different interleaving granularity, universal formulas can be generalized one by
one. Select the data of valid block to be put into the formula which is suitable for
interleaving granularity, and then calculate the corresponding logical address.
Finally, write the buffers one by one in the order indicated by the logical address
to achieve the data recovery. Under the circumstance where the structure
parameters cannot be obtained due to mechanical malfunction, to develop a
recovery strategy based on an unknown algorithm by constructing a learning
disk can be both practical and instructive.

Keywords: Flash memory � Data interleaving � Data recovery

1 Introduction

With the rapid development of science and technology, all kinds of electronic equip-
ment have also become lighter and slimmer. Therefore, the use of flash memory devices
such as SSDs and U-disks has also become more and more frequent. Flash memory
devices have many excellent features such as non-volatility, high-speed transmission,
high shock resistance, low power consumption, compact size and light weight [1].
They are becoming the mainstream storage devices and replacing the traditional disks
gradually. However, since there are significant differences such as the physical struc-
ture and access methods between disks and flash memory devices, the existing disk-
based data recovery technology cannot be directly applied to flash memory devices.
The internal of the flash memory device is mainly composed of two chips [2]: One is
the main control chip which mainly controls the device to read and write data. The
other one is the memory chip which is to receive the control instructions from the main

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 263–271, 2018.
https://doi.org/10.1007/978-3-030-05054-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_20

control chip and complete the data storage work [3]. All data will be stored in the
memory chip. In addition to reading and writing, the flash memory device also has
another basic operation which is erasing [4]. That is, when data are to be updated, they
are not directly written in but only after the existing data in the same block are erased
first. Reading and writing operate with the page as the minimum unit, but erasing
operates with the block as the minimum unit [5].

2 Data Interleaving Type Analysis

Data interleaving refers to flash chips alternately store logically continuous data into
two or more different physical spaces in accordance with certain rules [6]. The purposes
of using data interleaving are usually served in the following two aspects.

One is due to the rapid speed increasing requirements of flash memory chips for
internal data operation, chip manufacturers begin to divide the memory chip into one or
more groups. And then combine multiple groups into one storage array [7]. Pages in
different groups in the array can be read, written and programmed simultaneously [8].
Take double-grouped flash memory as example, in order to achieve these operations, a
set of double-group commands are added to the instruction list in the control chip,
including double-group read, double-group programming and double-group erasing
instructions [9]. The allocation of address mappings for each group is assigned so that
reading, writing, programming and erasing instruction can occur simultaneously within
two adjacent groups.

The other one is to increase the chip’s addressing space. The same physical address
is calculated using the same physical addressing parameters and corresponds to dif-
ferent physical storage spaces in different situations. These physical storage spaces can
be within the same group or in different groups [10]. It can expand the groups’ space or
double the amount of groups which eventually leads to the multiplication of storage
space.

Whether the data stored in flash memory devices is interleaving or not is pro-
grammed by the device developer according to actual needs and controlled by the
internal read-write control program in the main control chip. Here are some common
types of data interleaving below. Through analyzing various types of interleaving one
by one, the general calculation formula can be summarized with the help of calculating
its corresponding LBA (Logical Block Address) which makes it easier to search and
compare during date recovery. Firstly by analyzing the data information contained in
the metadata area, it is easy to get the ID parameters from physical blocks and pages.
Then record the specific physical block ID number and physical page ID number.
Assume that one physical page contains ‘m’ sectors and one physical block contains ‘n’
sectors. LBA = x (which is from the first sector of any page of any valid block), group
number = q. The sum of the valid sectors of all groups before this group is called
“Difference”. That is, the absolute logical deviation position of the group. The LBA
calculation formula with different internal-chip interleaving granularity will be sepa-
rately analyzed below.

264 L. Guan et al.

2.1 No Interleaving Within One Group or Between Groups

There is no interleaving in single group or between any two groups, meaning data is
stored in the order of physical block number and physical page number. The physical
address and logical address of all data are basically in one-to-one correspondence. This
is the simplest arrangement.

LBA = Difference + Block ID * n + page ID * m.
However, due to the sequential storage of data, the reliability of the data is not high

and it is rarely used in actual situations.

2.2 Page Interleaving in One Group, no Interleaving Among Groups

Since multiple pages cannot be read simultaneously within the same group in order to
increase the chip’s address space, a commonly used method is to alternately operate
between the corresponding pages in adjacent physical blocks. The data which is stored
in alternate pattern in the same group under the unit of page according to the rules of
odd and even blocks. For example, the data (from Fig. 1.) shown is first stored in the
first odd-numbered Page1 in the odd Block1. After the data is filled in Page1, the
second data is written in the odd-numbered Page1 of the adjacent even Block2, and the
third data is written in the even-numbered Page2 of Block1 and so on until the two data
blocks are filled. And then, the writing in the next adjacent data Block3 is started. Data
is stored in the interleaved pattern under the unit of page between adjacent parity blocks
within the same group. And the pattern will continue alternate among pages until the
last page of both blocks are filled. The fact is that two interleaved blocks are logically
combined into a larger block that is twice the size of the original block.

If the selected block is an odd block, LBA = Difference + Block ID * n + Page
ID * m + m;

If the selected block is an even block, LBA = Difference + Block ID * n + Page
ID * m.

Group1

Block1

Page 1

Page 2

Page m

1

3

2m-1

Block2

Page 1

Page 2

Page m

2

4

2m

.

.

.

.

.

.

Fig. 1. Data interleaving among groups

Research on Data Recovery Technology Based on Flash Memory Device 265

2.3 No Interleaving in One Group but Interleaving Among Groups

Inter-group interleaving is to alternately store continuous data among multiple groups
in corresponding positions. In inter-group interleaving, data can be interleaved under
unit of block or page. In the process of analysis, it is necessary to judge the variation of
block ID and page ID and then determine how the data is interleaved among groups.
Take the two groups shown below as example (from Fig. 2). Obviously the sector with
LBA of ‘1’ in Group0 and the sector with LBA of ‘n’ in Group1 have the same
physical offset address in their respective groups. In Group0, n sectors are consecu-
tively stored starting from the part where the LBA is m. The part where LBA is m + n
is stored in the same physical offset address of Group1. Group 1 also stores n sectors
consecutively from the position of n, then 2n sectors are stored in the next position of
n − 1 in Group0. Interleaving granularity n represents the minimum unit of inter-
leaving among groups.

1

2

...

n-1

n

n+1

...

2n-1

2n

2n+1

...

3n-1

3n

3n+1

...

4n-1

Group 0 Group 1

m

m+1

...

m+n-1

m+n

m+n+1

...

m+2n-1

... ...

Fig. 2. Data in inter-group interleaving

266 L. Guan et al.

If ‘n’ equals the amount of logical sectors contained in a physical page, that means
the interleaving rule between these two groups are interleaved with page as the min-
imum unit, with LBA = Difference + (Block ID * np + Page ID * m) * k + q * m;

If ‘n’ equals the amount of logical sectors contained in a physical block, that means
the interleaving rule between these two groups are interleaved with block as the
minimum unit, with LBA = Difference + (Block ID * np) * k + Page
ID * m + q * np.

2.4 Page Interleaving in One Group, Interleaving Among Groups

In the case of simultaneous intra-group and inter-group interleaving, usually intra-
group interleaving will be done first and considered as a whole part. Then interleaving
will be done among groups with blocks or pages as the basic unit. Firstly, execute intra-
group interleave on the two adjacent blocks inside the two adjacent groups respec-
tively. Under normal circumstances, the data will be interleaved under the unit of page
and the interleaved data in each group will be divided into several parts. Assume that
the unit of interleaving granularity is ‘k’. That is each part contains k sectors. Between
two groups, interleave with ‘part’ as a unit. The logical sector with LBA of 1 in Group0
has the same physical offset address as the logical sector with LBA of k + 1 in Group1.
After the Kth data is stored in the Part1 of Group0, the next data will be stored in the
K + 1st data in Group1, which is the second part of the logical data. Then it fills k
sectors and goes back to Group0 and continue to store and so on. Determining what
rules are used to store data among groups depends on the size of k (Fig. 3).

When k is equal to twice the amount of sectors contained in the physical page, it
means intra-group page interleaving and inter-group page interleaving.

Group 0

Block 0 Block 1

Data 1 Data 2
Data 3 Data 4

... ...

Data 2m-1 Data 2m
Part 1

Block 1

Data k+1 Data k+2
Data k+3 Data k+4

... ...

Data k+2m-1 Data k+2m
Part 2

...
Data k-1 Data k

...

Data k+2m+1

... Part 3

Data k+2m+2

... ... Part 4 ...

Block 0

Group 1

Fig. 3. Data in intra-group interleaving and inter-group interleaving

Research on Data Recovery Technology Based on Flash Memory Device 267

LBA = Difference + (Block ID * np + Page ID * m) * 2 k + m.
When k is equal to twice the amount of sectors contained in the physical block, it

means intra-group page interleaving and inter-group block interleaving.
LBA = Difference + (Block ID * np) * 2 k + Page ID * m * 2 + m.

3 Data Recovery Technology Process

3.1 Analysis of Structural Parameters

Read the structure of a flash memory device through a hexadecimal programmer to
identify the manufacturer and model information. Under normal circumstances, man-
ufacturers will provide a series of basic information, including the chip’s block size,
page size, internal encryption mode, etc.

Before data recovery gets started, the existence and validity of various parameters
in the structure needs to determined firstly. If the structure contains invalid parameters
or incomplete parameters, the unknown algorithm recovery strategy shall be adopted; If
all parameters exist and are valid, the normal recovery process shall apply.

3.2 Determination of the Validity of Physical Blocks

Since flash memory devices have widely adopted the strategies such as wear leveling
and garbage collection, the storage location of logical block is quite chaotic. Some
pages of the flash memory chip do not participate in address decoding, but serve as the
configuration parameter storage area for the main control chip. In the mean time, due to
the read-write feature of Nand Flash, a large number of bad blocks are also generated.
Therefore, before processing each block of data, it is necessary to first determine the
validity of the physical block to ensure that the data to be written into the logical image
is correct and valid. The invalid block includes the following two conditions:One is that
the data from the data area to the metadata area in the entire block is all FF. Under
normal circumstances, the Nand Flash chip has a continuous full FF block as a hidden
storage space in the production process. The other one is bad block produced by Nand
Flash during production or use. In the sixth byte of the metadata area of the first page of
the bad block, fill in non-0xFF data to mark the block as bad block. Use these tags to
distinguish the validity of data blocks.

Use hexadecimal programmer to extract the physical image of Nand Flash and open
it read-only. Traverse all physical blocks randomly. XORs the data of the metadata area
from one of the pages with the mask of the flag bit. Comparing the results, it is valid if
it is the same as the benchmark flag bit, otherwise it is invalid. If any page is deter-
mined to be invalid, then the whole block is also invalid.

268 L. Guan et al.

3.3 Logical Image Generation

Dynamically allocate two buffers in registers. One is called ReadData and is used to
store the data read from the source image with the same size of a physical page. The
other one is called WriteData and is used to store the data to be written to the logical
image, whose size is 512 bytes multiplies the number of sectors contained in a physical
page. Due to different internal interleaving granularity of different chips, the corre-
sponding conversion modes between the physical storage location and the logical
storage location are also different. During the use of parameters to calculate the logical
offset, the corresponding formula needs to be selected according to the internal inter-
leaving granularity parameters of the structure. Then the parameters such as the block
ID, page ID and block size which have been analyzed from the metadata area are put
into the formula to calculate the logical offset corresponding to the physical page.
Move the pointer of the logical image file to the position of the calculated offset and
write the data into WriteData buffer.

3.4 Unknown Algorithm Recovery Strategy

Not all flash memory chips contain the parameters for the conversion of physical and
logical addresses. Similarly, not all flash memory chips can be manually or automat-
ically analyzed through program to obtain various parameters. For example, the
physical sectors of some chips are arranged in logical order or in reverse order. This
type of chips does not contain parameters such as block number, page number, etc. For
this type of chips, an unknown algorithm recovery strategy shall be adopted. That is to
recover the image file of failure flash chip by constructing a learning disk according to
the mapping relationship between the physical sector and the logical sector. The so-
called learning disk uses the same type of flash memory device. Firstly, connect the
flash memory device to the PC. Then write specific data to the logical storage space of
entire flash memory using a special program. The specific data written inside a single
sector is shown in the Fig. 4 below, including the sector’s head and tail flags, sector’s
LBA and other parameters, which will be used in the analysis of the memory chip’s
page structure, interleaving type, encryption type and other special fields. After the
learning disk is successfully manufactured, remove the flash memory chip from the
device. Use hexadecimal programmer to read out the complete physical image of flash.
Finally, use the automatic analysis function in the program to get the parameters
required for recovery.

Research on Data Recovery Technology Based on Flash Memory Device 269

4 Conclusion

This article analyzes and summarizes formulas for calculating logical addresses based
on different interleaving granularities of flash memory chips. The formulas play a
decisive role in the later data recovery. On the premise of analyzing structural
parameters, select valid block data and then put the data into the corresponding formula
according to different interleaving granularity to get the corresponding logical address.
Finally, recover the logical image file according to the location indicated by the logical
address. However, in some cases, structural parameters cannot be easily analyzed. This

Fig. 4. The specific data written inside a single sector

270 L. Guan et al.

article conducts an in-depth study on the difficulties of this issue and explores an
unknown algorithm recovery strategy using the learning disk to obtain parameter
information which has a certain practical and guiding significance.

Acknowledgement. This paper is supported by the Beijing Municipal Natural Science Foun-
dation (No. 4172053).

References

1. Huang, M.: The research on reliability enhancement of MLC Nand flash storage system.
Harbin Institute of Technology, Harbin (2015)

2. Yuan, R.: Research of data restructuring on flash chips. Beijing Institute of Technology,
Beijing (2011)

3. Lin, C., Wang, X., Yuan, J., et al.: Data recovery technology of Nand-flash-based storage.
Inf. Secur. Commun. Priv. 3, 123–125 (2016)

4. Shang, W.: Design and implementation of data recovery system based on android. Hebei
University of Science and Technology, Shijiazhuang (2016)

5. Xie, Y.: On the storage management and data recovery of solid state disks. Hunan
University, Chang Sha (2016)

6. Chang, Y.H.: A management strategy for the reliability and performance improvement of
MLC-based flash memory storage systems. IEEE Trans. Comput. 60(3), 305–320 (2011)

7. Chang, L.: The research of data storage technology based on Nand flash array. North
University of China, Taiyuan (2011)

8. Sanghyuk, J., Yong, H.S.: Data loss recovery for power failure in flash memory storage
systems. J. Syst. Architect. 61, 12–27 (2015)

9. Tanakanaru, S.: A design strategy of error-prediction low-density parity-check (EP-LDPC)
error-correcting code (ECC) and error-recovery schemes for scaled Nand flash memories.
IEICE Trans. Electron. 98, 53–61 (2015)

10. Lan, J.: The research on address mapping and wear leveling algorithms of flash memory
based on grouping and biased random walk. Southwest Jiaotong University, Chengdu (2016)

Research on Data Recovery Technology Based on Flash Memory Device 271

Scheduling DAG Applications for Time
Sharing Systems

Shenyuan Ren, Ligang He(B), Junyu Li, Chao Chen, Zhuoer Gu,
and Zhiyan Chen

Department of Computer Science, University of Warwick, Coventry, UK
ligang.he@warwick.ac.uk

Abstract. When computing the makespan of a DAG, it is typically
assumed that the tasks scheduled on the same computing node run in
sequence. In reality, however, the tasks may be run in the time sharing
manner. Our studies show that the discrepancy between the assump-
tion of sequential execution and the reality of time sharing execution
may lead to inaccurate calculation of the DAG makespan. In this paper,
we first investigate the impact of the time sharing execution on the
DAG makespan, and propose the method to model and determine the
makespan with the time-sharing execution. Based on this model, we fur-
ther develop the scheduling strategies for DAG jobs running in time-
sharing. Extensive experiments have been conducted to verify the effec-
tiveness of the proposed methods. The experimental results show that
by taking time sharing into account, our DAG scheduling strategy can
reduce the makespan significantly, comparing with its counterpart in
sequential execution.

1 Introduction

DAG is often used to model the precedence constraints of a group of related tasks.
Many DAG (Directed Acyclic Graph) scheduling algorithms have been proposed
in literature. The makespan of a DAG is an important metric to measure the
performance of a DAG scheduling solution. When computing the makespan of a
DAG, it is typically assumed that the tasks scheduled on the same computing
node run in sequence, i.e., being executed one by one in the computing node
(which we call the sequential execution in this paper) [3–5]. This assumption is
reasonable in the cluster platform, where there is only a central queue in the
head node and a new task is sent to a computing node only when the node
has completed the execution of the existing task. However, in some situations,
such as distributed systems and virtualized environments, there may not be a
central queue in the system. In a distributed system, there is no a centralized
management mechanism. The tasks in a DAG are often sent to the computing
machine as designated in the scheduling solution. After the computing machine
receives these tasks, the tasks are run in the time sharing manner by the oper-
ating system. In virtualized environments, a VM is often created to run a task.
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 272–286, 2018.
https://doi.org/10.1007/978-3-030-05054-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_21

Scheduling DAG Applications for Time Sharing Systems 273

When multiple tasks are scheduled to the same machine, there will be multiple
VMs co-running in the physical machine. These VMs will not be executed in
sequence, but concurrently (i.e., time sharing) by the schedulers (such as Credit
or SEDF) deployed in the Virtual Machine Monitor.

Our studies, the details of which are presented in Sect. 2, show that the
discrepancy between the assumption of sequential execution and the reality of
time sharing execution may lead to inaccurate calculation for the finish times of
individual tasks and further for the execution performance, such as in terms of
makespan, of the whole DAG.

In this paper, we first investigate the key difference between the time-sharing
execution and the sequential execution, and reveal the impact of the time sharing
execution on the DAG makespan. Based on the analysis, we adapt the conven-
tional method of computing the DAG makespan in the sequential execution and
present our counterpart makespan model and method in the time-sharing exe-
cution. Usually, the makespan in the time sharing execution is worse (longer)
than that assumed in the sequential execution. Therefore, we propose the new
DAG scheduling strategies (a task migration algorithm and a task allocation
algorithm) for time-sharing systems.

The remainder of this paper is organized as follows. In Sect. 2, we give a
motivating case study to demonstrate the difference of the time sharing execution
from the sequential execution and its impact on the makespan. In Sect. 3, we
briefly discuss the current scheduling strategies and the corresponding way of
computing the makespan. In Sect. 4, we present the workload and system model
and the notations used in this paper. Section 5 presents the makespan models
with both sequential and time-sharing executions. Section 6.1 presents the task
migration algorithm while Sect. 6.2 presents the DAG allocation algorithm for
the time-sharing execution. Experimental results are presented in Sect. 7. Finally,
in Sect. 8 the paper is concluded and the future work is planned.

2 A Motivating Example

In this section, we present a case study to illustrate the difference of the time-
sharing execution from the sequential execution and its impact on the DAG
makespan. This case study considers a DAG job consisting of 7 tasks, whose
topology is shown in Fig. 1. The execution times of 7 tasks, t0 to t6, are
150, 200, 150, 50, 100, 100, 100, respectively. There is no communication between
tasks. Assume a scheduling decision of such a DAG on a set of two identical
PMs (PM1 and PM2) is as follows. Tasks t0, t1, t5, t6 are scheduled to run in
PM1 while t2, t3, t4 are in PM2. If the tasks allocated to the same PM are run
in sequence. Such a schedule leads to the minimal makespan. The corresponding
critical path of the DAG is t0 → t1 → t5 → t6.

The left figure in Fig. 2 shows the sequential execution of the tasks in the two
PMs. As shown in the figure, t3 can only start the execution after task t0 (which
is its predecessor of t3) and t2 (which is scheduled to run before t3) in PM2 have
finished. Other tasks have the similar execution precedence. With the sequential

274 S. Ren et al.

0

1 2 3 4

5

6

Fig. 1. A motivating example DAG

execution model, it is expected that t5 starts the execution at the time point
350 ms, and the makespan of the DAG is 550 ms.

As discussed in the first section, when several tasks are allocated to the same
PM , they will be run in the time-sharing manner by the OS. The right figure in
Fig. 2 shows the times-sharing execution of the tasks. As shown in the figure, t2,
t3 and t4 in PM2 start execution concurrently after their predecessor t0 finishes.
t2’s finish time is then 450 ms, which is later than its finish time under the
sequential execution model (300 ms). This difference leads to the delay of t5’s
start. In the time-sharing execution, t5 starts the execution at 450 ms with the
delay of 100 ms compared with the sequential execution. Consequently the actual
DAG makespan with the time-sharing execution model is 650 ms, which is longer
than the one expected with the sequential execution (550 ms). Furthermore, the
critical path in the time-sharing execution changes to t0 → t2 → t5 → t6.

In most DAG scheduling algorithm in the literature, the scheduling deci-
sion is made based on the tasks’ finish times, which are typically calculated by
assuming the sequential execution. Although it is fine with the task scheduling
in clusters, in which there is a centralized task queue in the head node and a task
is sent to a computing node when the existing tasks running in the node have
been completed. As discussed in the introduction, however, the tasks are run
concurrently in distributed systems or virtualized systems. This may cause the
discrepancy between the tasks’ actual finish times and the finish times assumed
by the task scheduler, as illustrated in this case study.

Fig. 2. Non-time-sharing model makespan (left) vs. Time-sharing model makespan
(right)

Scheduling DAG Applications for Time Sharing Systems 275

3 Related Work

It is typical to run a DAG application on clusters in order to exploit the inherent
parallelism in the DAG topology. Several popular scheduling frameworks have
been developed on clusters: YARN [25], Borg [26], Sparrow [24], Apollo [22],
Mercury [23], etc. The centralized scheduling frameworks such as YARN and
Borg only have the global queues. In order to improve the scheduling perfor-
mance, it now becomes increasingly popular to employ the distributed schedul-
ing in large-scale data centres, where multiple schedulers make the scheduling
decisions for different types of jobs simultaneously and independently. Such dis-
tributed scheduling frameworks include Mercury [21], Apollo and our previous
work presented in [27], etc. In distributed scheduling frameworks, a PM may
receive the tasks dispatched by different schedulers and these tasks are typically
run in a time sharing manner in the node.

Scheduling a DAG and minimizing its makespan are proven to be a NP-
complete problem when there are more than two PMs [2]. Thus many heuristic
and meta-heuristic scheduling approaches are developed to minimize the DAG
makespan [6,8–10,12].

Although scientists began to study the scheduling long time ago, it is still
a hot topic nowadays to investigate the scheduling strategies for new platforms
and scenarios emerging over time, such as virtualized systems [11], multi-sites
workflow scheduling [7], soft real-time scheduling in data centres [14], energy-
aware scheduling [13], and the scheduling with multiple objectives on IaaS Clouds
[13].

However, in these algorithms, the tasks scheduled to the same node are
assumed to run in sequence. None of the above work assumes the time-sharing
execution when making the scheduling decisions. Our studies show that when the
tasks allocated to the same node are run in the time-sharing manner, the finish
times of individual tasks may be different from those in the sequential execution
and consequently affect the makespan. Therefore, if the existing DAG scheduling
algorithms are applied directly in the distributed scheduling, the actual perfor-
mance of the DAG execution, no matter in terms of makespan or other objectives
such as energy consumption, may not be as optimal as these scheduling methods
assume. In this paper, we (1) investigate the impact of time-sharing execution
on the DAG makespan and further develop a model to calculate the makespan
in the time-sharing execution, and (2) develop a scheduling strategy aiming to
minimize the DAG makespan when the tasks in DAG are run in the nodes in
the time-sharing manner.

4 Workload and Resource Model

This section introduces the main notations used for the workloads and resources
in this paper. A DAG-based application T is modelled as a directed acyclic graph
(DAG) G(V,E), where each task ti ∈ T is represented as a node vi ∈ V . An edge
eij from vi to vj , which is also denoted by (ti, tj), represents that there is the

276 S. Ren et al.

precedence constraint between tasks ti and tj . The weight of an edge represents
the communication time TTij for sending the data from ti to tj . Further, task
ti is called the predecessor of tj , while tj is the successor of ti.

For task ti ∈ T , its set of predecessors and successors, denoted by pred(ti)
and succ(ti) respectively, are defined below:

pred(ti) = {tj |tj ∈ T ∧ (tj , ti) ∈ E} (1)

succ(ti) = {tj |tj ∈ T ∧ (ti, tj) ∈ E} (2)

Tasks without the predecessor or the successor are called the entry task or
exit task, respectively.

In a DAG, the distance of a path is the sum of the execution times of all tasks
and the weights of the edges (communication times) on the path. The critical
path of a DAG is denoted as L. The makespan of a DAG is the distance of the
critical path from the entry task to the exit task.

A cluster consists of a set of physical machines (PM), denoted by M , where
M = {p1, p2, . . . , ps}. ci denotes the processing capacity of pi.

A task ti is modelled by a tuple ti = {sti, fti, si, rei}, where sti is the time
when ti is ready to start (a task is ready to start only when all of its predecessors
are completed and the relevant data sent by predecessors have been received by
ti); fti is the time when ti is completed, which includes both the task’s execution
time and its data communication time; si is the size of the work (e.g., the number
of instructions or the number of CPU cycles) that is to be performed in ti; rei
is the current remaining work of ti, which is calculated by the total work minus
the finished work so far.

A Schedule is defined by S = (G,M,Mapping), where G is the DAG graph,
M is the cluster, and Mapping is the mapping of the tasks in G to M . Figure 2
shows a exemplar schedule for scheduling a graph in Fig. 1 to a cluster of two
PMs. In this example, M = {p1, p2}, Mapping = {1 : [t0, t1, t5, t6], 2 : [t2, t3, t4]}.

After task ti finishes the execution, it needs to send the results to its succes-
sors. We assume that the communication time can be neglected if the predecessor
and the successor are mapped on the same PM . ki is the number of successors of
ti. The total communication time of task ti, denoted by TTi, can be calculated
by Eq. 3:

TTi =
ki∑

1

(TTij ∗ lij) (3)

lij =

{
0 if ti and tj are on the same PM
1 otherwise

(4)

Given the above workload and resource model, our objective is to investigate
the impact of the time-sharing execution on the DAG makespan, and further
propose the scheduling algorithms to mitigate the impact.

Scheduling DAG Applications for Time Sharing Systems 277

5 The Makespan Model

5.1 The Makespan with the Sequential Execution Model

In non-time-sharing makespan model, tasks are regarded as executing in a one-
by-one manner in a PM instance. At least they didn’t take the time-sharing
executing into consider when calculate finish time of the tasks. Thus, within a
PM instance run queue, a ready task (i.e. that has received all results from its
predecessors) can not start to execute before its previous task finishes.

Given a Schedule S, the start time sti for task ti can be determined by Eq. 6:

sti = max{lpfti, prevfti} (5)

where lpfti denotes the latest finish time of all ti’s predecessors, prevfti denotes
the finish time of the task scheduled to run right before ti.

The finish time fti for task ti executed on PMr can be derived by Eq. 6:

fti = sti +
si

PCr
+ TTi (6)

where si denotes the size of ti, PCr denotes the processing capacity of PMr,
TTi denotes the total transferring time calculated by Eq. 3.

Given the sequential execution, the makespan of a DAG can be calculated
by applying Eqs. 5 and 6 iteratively from the entry task to the exit task in the
DAG.

5.2 The Makespan with the Time-Sharing Execution Model

In this subsection, we present our method for computing the DAG makespan
with the time-sharing execution model.

Given a Schedule S, the start time sti of task ti should be derived using
Eq. 7.

sti = max{lpft} (7)

Comparing Eq. 7 with Eq. 5 used for the sequential execution, the difference
lies in the fact that task ti does not have to wait for the completion of the
tasks scheduled ahead of it. ti can start once it is ready to run, i.e., all of its
predecessors have finished.

Given a Schedule S, the finish time of task ti is influenced by the processing
capacity PCr and the number of tasks that are running concurrently with ti.
When determining ti’s finish time, we divide the entire execution cycle of a task
into a number of periods. ti is regarded as moving into a new execution period
when the number of tasks concurrently running with ti changes.

Assume the number of execution periods of task ti is m. mj denotes the j-th
period and Sharej denotes the number of tasks that are concurrently running
(time-sharing) with ti. timejs and timeje denote the start and end time of period
mj , respectively. si denotes the size of ti (e.g., the amount of work in terms of
CPU cycles. Then Eq. 8 should hold, in which (timeje−timejs)∗ PCr

Sharej
represents

278 S. Ren et al.

the amount of work completed (i.e., the number of CPU cycles dedicated to run
ti) during the period mj .

si =
m∑

j=1

((timeje − timejs) ∗ PCr

Sharej
) (8)

Given si and a scheduling solution, we can determine at any time how many
tasks are concurrently running with ti. Consequently, we can determine m as
well as the start and end time of each period (i.e., timeje and timejs). With m,
timeje and timejs, we can determine the execution time of ti, denoted by timeje
and timejs, using Eq. 9.

eti =
m∑

j=1

(timeje − timejs) (9)

The finish time of ti can then be calculated by 10:

fti = eti + TTi (10)

We apply Eqs. 8, 9 and 10 iteratively for all tasks in a DAG from the entry
task to the exit task. The finish time of the exit task is the makespan of the
DAG. The detailed algorithm for computing the makespan is omitted in this
paper due to the limitation of space.

6 DAG Scheduling for Time-Sharing Execution

6.1 Task Migration Algorithm

In this section, we present a Task Migration Algorithm (TMS) to adjust the
DAG schedule decided with the assumption of sequential execution, aiming to
reduce the actual makespan when the tasks are run in time-sharing in reality.

In our strategy, the makespan of the given DAG schedule S by assuming the
sequential execution, which we call makespan in sequential execution, is used as
the deadline ddl for our schedule adjustment. We then use the following equation
to derive the latest start time lst of every task in order to meet the deadline.
Latest Start Time (lst) of a task indicates the urgency of the task.

lsti =

⎧
⎨

⎩
ddl − si

PCr
if ti = texit

min
ts∈succ(ti)

{lsts − si
PCr

} otherwise (11)

Similarly, we can use Eq. 12 to derive the latest finish time lft of every task
in the DAG. Every task, ti should finish by its latest finish time lfti. Otherwise,
the DAG will not meet the deadline.

lfti =

⎧
⎨

⎩
ddl if ti = texit

min
tm∈succ(ti)

{lftm − sm
PCr

} otherwise (12)

Scheduling DAG Applications for Time Sharing Systems 279

lfti is used to determine the tasks whose allocations need to be adjusted.
With Eq. 10, we can calculate the actual finish time fti of every task. If fti
is greater than lfti calculated by Eq. 12. The allocation of Task ti needs to be
adjusted, which is stored in an AdjustList in the increasing order of the task’s
latest start time (lsti). For each task ti in AdjustList, we try to migrate it to
another PM so that fti can be no more than lfti. We deem the adjustment of
the Schedule S to be successful only when all tasks in AdjustList can find their
suitable PMs. The task migration algorithm is outlined in Algorithm 1.

6.2 Task Allocation Algorithm

Not all task schedules can be adjusted to meet the deadline. If the task migration
algorithm fail to reach a successful adjustment. We develop a Task Allocation
Algorithm (TAS) to find a task schedule from scratch for the time-sharing execu-
tion. TAS assumes the same number of PMs as that in the schedule S generated
for sequential execution.

In TAS, we still use the makespan in sequential execution as the deadline
(target) for finding the schedule solution in time-sharing. TAS generates an
Orderlist in the similar way as we construct the Ajustlist in TMS. For each
task in Orderlist, TAS tries to allocate it to a best PM based on a metric
we propose, which is called Total deadline Miss Time (tmt). tmt is defined as
the total of all deadline misses in a PM. The pseudo-code of TAS is shown in
Algorithm 2.

7 Evaluation

To facilitate the evaluation of the workflow algorithms, Pegasus has developed
a set of synthetic workflow generators. These generators use the information
gathered from actual executions of scientific workflows to generate realistic,
synthetic workflows resembling those used by real world scientific applications.
These workflows come from [19,20] and are widely used in this research field. In
this paper, we use these real-world workflows for evaluation. In the experiments,
we compare the Makespan in Sequential execution (denoted by makespan-S,
which is the makespan by assuming the sequential execution), the Makespan
in Time-sharing execution (denoted by makespan-TS, which is the makespan of
the DAG when the tasks are run in time-sharing in reality) and the makespan
obtained by TAS (denoted by makespan-TAS). Makespan-S and Makespan-TS
are computed using the makespan models presented in Sect. 5.

7.1 Performance with Different Number of Tasks

Figure 3 shows the performance of the real-world workflows with different num-
ber of tasks in terms of makespan-S, makespan-TS and makespan-TAS.

280 S. Ren et al.

Algorithm 1. Task Migration Algorithm
Data: DAG G and Schedule S = (G,PM,Mapping), processing capacity PC,

task size s
Result: Whether S is adjustable (0 or 1), Adjusted S’ and its corresponding

real makespan
1 for All tasks in DAG G do
2 Calculate ti’s real finish time fti using time-sharing makespan model;
3 Calculate ti’s latest finish time lfti using eq. 12 ;
4 slacki = lfti − fti;
5 Calculate ti’s topology level li in G;
6 l dict[li].append(ti);
7 if slacki < 0 then
8 Add ti to AdjustList;

9 Sort AdjustList by increasing lst derived from eq. 11;
10 for tasks (marked as tk) in ordered AdjustList do
11 Mark tk’s current allocated PM as PMcur ;
12 for All PMs (marked as PMr) except PMcur do
13 Add PMr to PM List;

14 min SlackPMr
lk

= 0;

15 for task ta ∈ PMr and la = lk do

16 min SlackPMr
lk

= min{slacka};

17 Sort PM List by decreasing min SlackPM
l ;

18 PMtry = PM List[0];
19 while PM List is not empty do
20 Assume tk changes its allocation to PMtry;
21 Make Affec list of the Affected tasks and calculate their ft′;
22 for each task (marked as taff) in Affec list do
23 slack′

aff = ft′aff − lftaff ;
24 if slack′

aff < 0 then
25 PMtry is not a suitable PM to migrate;
26 Remove PMtry from PM List;
27 Break

28 if No more lft missing happens then
29 Migrate tk to PMtry;
30 Update all corresponding information;
31 Break;

32 if There is no PM changeable for tk then
33 Schedule S is non-adjustable;
34 Exit;

35 if Schedule S is adjustable then
36 Update the adjusted Schedule S′;
37 Calculate the corresponding real makespan;

Scheduling DAG Applications for Time Sharing Systems 281

Algorithm 2. Task Allocation Algorithm
Data: DAG G and Schedule S = (G,PM,Mapping)
Result: A newly Schedule S′ and its Makespan

1 Calculate S’s non-time-sharing makespan and set to ddl;
2 Calculate the G’s topological level level;
3 for All tasks in DAG G do
4 Calculate ti’s lsti and lfti using eq. 11 and 12, respectively;

5 for level from 0 to the highest topological level do
6 Sort the tasks on the same level by increasing lst and add to the OrderList;

7 for From front to back of the OrderList do
8 for all PMs do
9 Calculate ft of all allocated tasks;

10 Calculate the total ddl missing time tmts;
11 if total ddl missing time tmts = 0 then
12 Calculate the total ddl slack time tsts;

13 if there are >1 proposed S′ has total tmts = 0 then
14 Allocate ti to the PM with max(tsts);

15 else
16 Allocate ti to the PM with min(tmts);

17 Update S′, all related tasks’ ft and child tasks’ st;

Montage. Montage has been created by the NASA/IPAC Infrared Science
Archive that can be used to generate custom mosaics of the sky using input
images in the Flexible Image Transport System (FITS) format [18]. Figure 3a–
d shows the gaps among makespan-S, makespan-TS and makespan-TAS. The
results indicates that there indeed exits the gap among these makespans. Our
TAS algorithm can reduce the realistic makespan by taking the time-sharing
execution into account.

Epigenomics. This workflow is being used by the Epigenome Center in the
processing of production DNA methylation and histone modification data [16].
It has the largely pipelined tasks and a large degree of parallelism. For example,
Epigenomics 997 has 7 entry tasks and a parallel degree of 250. Due to its DAG
structure, there is not a big difference between makespan-S and makespan-TS.
However, comparing with makespan-S, TAS improves the makespan by 8.88%,
7.9%, 10.7% and 14.3% with 24, 46, 100 and 997 tasks, respectively.

CyberShake. The Cybershake workflow is used by the Southern Califor-
nia Earthquake Center (SCEC) to characterize the earthquake hazards in a
region using the Probabilistic Seismic Hazard Analysis (PSHA) technique [15].
Figures 3i–l show a big difference between makespan-S and makespan-TS: 33.1%,
20.4%, 7.4% and 2.52% with 30, 50, 100 and 1,000 tasks, respectively. Given the

282 S. Ren et al.

limited number of PMs in the experiments (less than the parallel degree of the
workflow), the DAG with the flat structure often cause a big difference between
makespan-S and makespan-TS since the time-sharing execution results in the big
delay in some tasks’ finish time comparing with the sequential execution. TAS
shows a outstanding optimization ability, improving the makespan by 43.56%
and 41.82% with 100 nodes and 1,000 tasks, respectively.

Sipht. The Sipht workflow is used to automate the search for sRNA encoding-
genes for all of the bacterial replicons in the National Center for Biotechnol-
ogy Information (NCBI) database. It is a highly parallel, flat structured DAG
application. Figures 3n–p show the gaps of 345.58 s, 696.81 s and 63 s between

M-TS M-S M-TAS

90

100 98.78

91.64 91.4

to
ta
lm

ak
es
pa
n
/s

(a) Mon 25 (PM = 3)

M-TS M-S M-TAS
120

130

140138.02
132.23 131.68

to
ta
lm

ak
es
pa
n
/s

(b) Mon 50 (PM = 5)

M-TS M-S M-TAS

120

140
146.8

126.31 125.68

to
ta
lm

ak
es
pa
n
/s

(c) Mon 100 (PM = 14)

M-TS M-S M-TAS
420
430
440
450 448.16

434.82
440

to
ta
lm

ak
es
pa
n
/s

(d) Mon 1k (PM = 140)

M-TS M-S M-TAS

8,000
8,500
9,000 8,793.18 8,787.73

8,013.37

to
ta
lm

ak
es
pa
n
/s

(e) Epi 24 (PM = 3)

M-TS M-S M-TAS
1.1

1.2

1.3
·104
12,455.78 12,455.78

11,469.93

to
ta
lm

ak
es
pa
n
/s

(f) Epi 46 (PM = 5)

M-TS M-S M-TAS
3

3.5

4
·104

35,846.89 35,846.83

31,999.59

to
ta
lm

ak
es
pa
n
/s

(g) Epi 100 (PM = 22)

M-TS M-S M-TAS

0.9
1

1.1
1.2 ·10

5

1.08 · 105 1.08 · 105

92,467.62

to
ta
lm

ak
es
pa
n
/s

(h) Epi 997 (PM = 50)

M-TS M-S M-TAS

200

300

400 355.67

237.83

329.38

to
ta
lm

ak
es
pa
n
/s

(i) Cyb 30 (PM = 3)

M-TS M-S M-TAS
300

400

500
428.55

341.07 360.21

to
ta
lm

ak
es
pa
n
/s

(j) Cyb 50 (PM = 5)

M-TS M-S M-TAS
100
200
300
400 404.49 374.56

228.29

to
ta
lm

ak
es
pa
n
/s

(k) Cyb 100 (PM = 24)

M-TS M-S M-TAS
200
300
400
500 476.52 464.5

276.71

to
ta
lm

ak
es
pa
n
/s

(l) Cyb 1k (PM = 140)

M-TS M-S M-TAS

4,400

4,450

4,500

4,415.65 4,415.65 4,415.65

to
ta
lm

ak
es
pa
n
/s

(m) Si 30 (PM = 4)

M-TS M-S M-TAS
6,000

6,500

7,000
7,056.12

6,710.54
6,349.23

to
ta
lm

ak
es
pa
n
/s

(n) Si 60 (PM = 15)

M-TS M-S M-TAS

6,500
7,000
7,500
8,000

7,538.07

6,841.26 6,840.53

to
ta
lm

ak
es
pa
n
/s

(o) Si 100 (PM = 20)

M-TS M-S M-TAS

5,000
5,200
5,400
5,600
5,800

5,378.1 5,315.17 5,316.18

to
ta
lm

ak
es
pa
n
/s

(p) Si 1k (PM = 140)

M-TS M-S M-TAS

1,500

2,000

2,500
2,211.29 2,177.64

1,793.74

to
ta
lm

ak
es
pa
n
/s

(q) Ins 30 (PM = 5)

M-TS M-S M-TAS
1,800
1,900
2,000
2,100
2,200

2,049.7 2,016.85 1,993.42

to
ta
lm

ak
es
pa
n
/s

(r) Ins 50 (PM = 10)

M-TS M-S M-TAS

1,500

2,000

2,500 2,324

1,738.12 1,735.76

to
ta
lm

ak
es
pa
n
/s

(s) Ins 100 (PM = 20)

M-TS M-S M-TAS

2,000

3,000 2,769.18

2,056.11
1,753.91

to
ta
lm

ak
es
pa
n
/s

(t) Ins 1k (PM = 200)

Fig. 3. Results for the real-world workflows runtime in different node numbers under
M − TS, M − S and M − TAS

Scheduling DAG Applications for Time Sharing Systems 283

makespan-S and makespan-TS with 60, 100 and 1,000 tasks, respectively. How-
ever there is no noticeable difference between two makespans when the number
of tasks is less than 30 no matter how many PMs are used.

Inspiral. The LIGO Inspiral Analysis Workflow is used to analyze the data
obtained from the coalescing of compact binary systems such as binary neutron
stars and black holes [17]. The parallel degree of the DAGs are 7, 12, 23 and 229
with 30, 50, 100 and 1,000 tasks, respectively. There is a gap of 1.87%, 1.61%,
25.2% and 25.7% between makespan-S and makespan-TS with 30, 50, 100 and
1,000 tasks respectively. TAS shows a makespan improvement of 17.6%, 1.18%,
0.01% and 14.7% with 30, 50, 100 and 1,000 tasks, respectively.

7.2 Performance with the Different Number of PMs

Table 1 and Fig. 4 show the makespan of the real-world workflows with 50 and
100 tasks, respectively, when using different number of PMs. As can be seen from
Table 1, different number of PMs lead to the different gaps between makespan-S
and makespan-TS. The decrease of the makespan is not linear with the increase
of the number of PM . When the number of PM reaches the degree of the

10 12 14 16 18 20 22 24 26
3

4

5

·104

PM Numberto
ta
lm

ak
es
pa
n
/s

(a) Epigenomic 100

8 10 12 14 16 18 20 22 24

250

300

350

PM Numberto
ta
lm

ak
es
pa
n
/s

(b) CyberShake 100

12 14 16 18 20 22 24 26 28
4,000

4,500

5,000

PM Numberto
ta
lm

ak
es
pa
n
/s

(c) Sipht 100

6 8 10 12 14 16 18 20 22
1,500

2,000

2,500

3,000

3,500

PM Numberto
ta
lm

ak
es
pa
n
/s

(d) Inspiral 100

Fig. 4. Makespan-TAS with different number of PMs

Table 1. Results of the real-world DAGs makespan

Task PN M-TS M-S M-TAS Task PN M-TS M-S M-TAS

Mon 50 5 138.01 132.23 132.07 Cyb 50 6 585.74 522.03 323.77

Mon 50 8 87.46 87.46 87.28 Cyb 50 10 422.88 416.69 290.62

Mon 50 10 77.12 77.0 76.83 Cyb 50 12 410.19 380.13 262.74

Mon 50 15 66.89 66.43 66.27 Cyb 50 15 313.83 342.87 262.74

Epi 46 4 16584.92 16585.31 13393.97 Si 60 10 7058.11 6712.53 4643.09

Epi 46 5 12455.78 12455.78 11469.93 Si 60 12 4649.64 4640.88 4642.22

Epi 46 7 12226.93 12234.63 10672.41 Si 60 15 7056.12 6710.54 4640.87

Epi 46 10 7744.39 7744.39 7728.24 Si 60 18 4648.72 4640.76 4640.99

Ins 50 5 3354.87 3319.31 2905.17 Ins 50 8 2054.99 2021.44 1939.07

Ins 50 7 2386.88 2372.7 2186.23

Ins 50 12 1410.8 1410.8 1410.8

284 S. Ren et al.

parallelism of the DAG, the gap disappears. In our experiment, the parallel
degrees are 15, 10, 23, 50 and 12 for Montage 50, Epigenomics 46, CyberShake
50, Sipht 60 and Inspiral 50 respectively in Table 1; the parallel degrees are 60,
24, 46, 89 and 23 for Montage 100, Epigenomics 100, CyberShake 100, Sipht 100
and Inspiral 100 respectively. For flat and highly parallel DAG such as “Sipht
100”, varying the number of PMs (i.e. 12–28) makes almost no difference to the
makespan when the number of PM is far less than the parallel degree (i.e. 89 in
this case).

8 Conclusions and Future Work

In this paper, we investigate the impact of the time-sharing execution on the
DAG makespan. The makespan model in the time-sharing execution is proposed.
Based on the makespan model, a Task Migration Algorithm and a Task Alloca-
tion algorithm are developed, aiming to reduce the actual makespan of the DAG
schedule when the DAG is executed in time-sharing in reality. We conduct the
extensive experiments with the real-world workflows. The experimental results
show that there exists the gap between the makespan in sequential execution,
the makespan in time-sharing execution and the makespan obtained by our DAG
scheduling algorithm designed for time-sharing systems. In the future, we will
extend our research are two folds: (1) we will set up a energy consumption model
for DAG in the time-sharing execution; (2) we will develop the DAG scheduling
algorithms for the time-sharing execution and take both makespan and energy
consumption into account.

Acknowledgement. This work is supported by China Scholarship Council.

References

1. Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., Wilkes, J.: CPI2:
CPU performance isolation for shared compute clusters, New York, NY, USA, pp.
379–391 (2013)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman, New
York (2002)

3. Liao, Q., Jiang, S., Hei, Q., Li, T., Yang, Y.: Scheduling stochastic tasks with
precedence constrain on cluster systems with heterogenous communication archi-
tecture. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS,
vol. 9532, pp. 85–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27161-3 8

4. Wang, L., et al.: Energy-aware parallel task scheduling in a cluster. Future Gener.
Comput. Syst. 29(7), 1661–1670 (2013). https://doi.org/10.1016/j.future.2013.02.
010. ISSN: 0167-739X

5. Li, X., Zhao, Y., Li, Y., Ju, L., Jia, Z.: An improved energy-efficient scheduling for
precedence constrained tasks in multiprocessor clusters. In: Sun, X., et al. (eds.)
ICA3PP 2014. LNCS, vol. 8630, pp. 323–337. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11197-1 25

https://doi.org/10.1007/978-3-319-27161-3_8
https://doi.org/10.1007/978-3-319-27161-3_8
https://doi.org/10.1016/j.future.2013.02.010
https://doi.org/10.1016/j.future.2013.02.010
https://doi.org/10.1007/978-3-319-11197-1_25
https://doi.org/10.1007/978-3-319-11197-1_25

Scheduling DAG Applications for Time Sharing Systems 285

6. Liu, L., Zhang, M., Buyya, R., Fan, Q.: Deadline-constrained coevolution-
ary genetic algorithm for scientific workflow scheduling in cloud computing.
Concurrency Comput. Pract. Exp. 29(5), e3942 (2017). https://doi.org/10.1002/
cpe.3942

7. Maheshwari, K., Jung, E.S., Meng, J., Morozov, V., Vishwanath, V., Kettimuthu,
R.: Workflow performance improvement using model-based scheduling over multi-
ple clusters and clouds. Future Gener. Comput. Syst. 54, 206–218 (2016). https://
doi.org/10.1016/j.future.2015.03.017. ISSN: 0167–739X

8. Chen, W., Xie, G., Li, R., Bai, Y., Fan, C., Li, K.: Efficient task scheduling for bud-
get constrained parallel applications on heterogeneous cloud computing systems.
Future Gener. Comput. Syst. 74, 1–11 (2017). https://doi.org/10.1016/j.future.
2017.03.008. ISSN: 0167–739X

9. Hu, Y., Liu, C., Li, K., Chen, X., Li, K.: Slack allocation algorithm for energy
minimization in cluster systems. Future Gener. Comput. Syst. 74, 119–131 (2017).
https://doi.org/10.1016/j.future.2016.08.022. ISSN: 0167–739X

10. Canon, L.C., Philippe, L.: On the heterogeneity bias of cost matrices for assessing
scheduling algorithms. IEEE Trans. Parallel Distrib. Syst. 28(6), 1675–1688 (2017).
https://doi.org/10.1109/TPDS.2016.2629503

11. Wu, H., Hua, X., Li, Z., Ren, S.: Resource and instance hour minimization for dead-
line constrained DAG applications using computer clouds. IEEE Trans. Parallel
Distrib. Syst. 27(3), 885–899 (2016). https://doi.org/10.1109/TPDS.2015.2411257

12. Xie, G., Xiao, X., Li, R., Li, K.: Schedule length minimization of parallel appli-
cations with energy consumption constraints using heuristics on heterogeneous
distributed systems. Concurrency Comput. Pract. Exp. 29, e4024 (2016). https://
doi.org/10.1002/cpe.4024

13. Oxley, M.A., et al.: Makespan and energy robust stochastic static resource alloca-
tion of a bag-of-tasks to a heterogeneous computing system. IEEE Trans. Paral-
lel Distrib. Syst. 26(10), 2791–2805 (2015). https://doi.org/10.1109/TPDS.2014.
2362921

14. Li, D., Chen, C., Guan, J., Zhang, Y., Zhu, J., Yu, R.: DCloud: deadline-aware
resource allocation for cloud computing jobs. IEEE Trans. Parallel Distrib. Syst.
27(8), 2248–2260 (2016). https://doi.org/10.1109/TPDS.2015.2489646

15. https://confluence.pegasus.isi.edu/display/pegasus/CyberShake
16. https://confluence.pegasus.isi.edu/display/pegasus/Epigenomics
17. https://confluence.pegasus.isi.edu/display/pegasus/LIGO+Inspiral
18. https://confluence.pegasus.isi.edu/display/pegasus/Montage
19. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-

acterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3),
682–692 (2013). https://doi.org/10.1016/j.future.2012.08.015. ISSN: 0167–739X

20. Bharathi, S., Chervenak, A., Deelman, E., et al.: Characterization of scientific
workflows. In: Third Workshop on Workflows in Support of Large-Scale Science,
WORKS 2008, pp. 1–10. IEEE (2008)

21. Rasley, J., Karanasos, K., Kandula, S., Fonseca, R., Vojnovic, M., Rao, S.: Efficient
queue management for cluster scheduling. In: Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (EuroSys 2016), New York, NY, USA,
Article 36, 15 p. ACM (2016)

22. Boutin, E., et al.: Apollo: scalable and coordinated scheduling for cloud-scale com-
puting. In: OSDI (2014)

23. Karanasos, K., et al.: Mercury: hybrid centralized and distributed scheduling in
large shared clusters. In: USENIX. ATC (2015)

https://doi.org/10.1002/cpe.3942
https://doi.org/10.1002/cpe.3942
https://doi.org/10.1016/j.future.2015.03.017
https://doi.org/10.1016/j.future.2015.03.017
https://doi.org/10.1016/j.future.2017.03.008
https://doi.org/10.1016/j.future.2017.03.008
https://doi.org/10.1016/j.future.2016.08.022
https://doi.org/10.1109/TPDS.2016.2629503
https://doi.org/10.1109/TPDS.2015.2411257
https://doi.org/10.1002/cpe.4024
https://doi.org/10.1002/cpe.4024
https://doi.org/10.1109/TPDS.2014.2362921
https://doi.org/10.1109/TPDS.2014.2362921
https://doi.org/10.1109/TPDS.2015.2489646
https://confluence.pegasus.isi.edu/display/pegasus/CyberShake
https://confluence.pegasus.isi.edu/display/pegasus/Epigenomics
https://confluence.pegasus.isi.edu/display/pegasus/LIGO+Inspiral
https://confluence.pegasus.isi.edu/display/pegasus/Montage
https://doi.org/10.1016/j.future.2012.08.015

286 S. Ren et al.

24. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low
latency scheduling. In: SOSP (2013)

25. Vavilapalli, V.K., et al.: Apache hadoop YARN: yet another resource negotiator.
In: SoCC (2013)

26. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: EuroSys (2015)

27. Chen, C., He, L., Chen, H., Sun, J., Gao, B., Jarvis, S.A.: Developing
communication-aware service placement frameworks in the cloud economy. In: 2013
IEEE International Conference on Cluster Computing (CLUSTER), Indianapolis,
IN, pp. 1–8 (2013). https://doi.org/10.1109/CLUSTER.2013.6702668

https://doi.org/10.1109/CLUSTER.2013.6702668

Job Scheduling with Adaptable
Computing Levels for Edge Computing

Huiwen Jiang(B) and Weigang Wu(B)

School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
jianghw5@mail2.sysu.edu.cn, wuweig@mail.sysu.edu.cn

Abstract. Edge computing is an emerging technology that can help
huge number of devices be connected and processed with low latency.
However, the performance of edge servers is far less powerful than cloud
servers. When dealing with a large number of job requests from user
devices, traditional job scheduling methods are not efficient enough.
In this paper, we propose a new job scheduling model by considering
adaptable jobs that can be executed with different computing levels and
accordingly different resource requirements. We design a new job schedul-
ing algorithm based on such an adaptable job model. The algorithm can
choose an appropriate level for each job according to resource availabil-
ity. Compared with existing works, our design can achieve better tradeoff
between resource utilization and quality of experience. To the best of our
knowledge, this is the first paper that considers adaptable job computing
levels.

Keywords: Edge computing · Job scheduling · Quality of experience
Resource utilization · Adaptable computing levels

1 Introduction

According to Cisco’s prediction, there will be 50 billion electronic devices con-
nected to the Internet by the year 2020. Various new applications are emerging
such as gesture recognition, voice control, recognition assistance, mobile gaming,
virtual reality and augmented reality [1]. These kinds of applications are typi-
cally computation-intensive and delay-sensitive. Due to the limitation of mobile
device performance and battery life, computation offloading has been a popular
research topic in the past few years [2]. Offloading mobile workloads to remote
data centers or computing clusters, however, incurs long network transmission
latency [3], which seriously impairs the mobile application performance. This
also implicates the heavy network load, and growing demand of network band-
width since data have to be transmitted and received to and from mobile devices
and cloud data centers. Obviously, the traditional cloud computing paradigm is
incapable to meet the new demands brought by the age of Internet of things.

In order to solve the above problems, Edge computing have been proposed
[4]. Edge computing refers to the enabling technologies allowing computation
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 287–296, 2018.
https://doi.org/10.1007/978-3-030-05054-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_22

288 H. Jiang and W. Wu

to be performed at the edge of the network, on downstream data on behalf of
cloud services and upstream data on behalf of IoT services. There are functions
in edge servers such as computing offloading, data caching, data processing,
request distribution, and service delivery. The aim is to offer users services with
high bandwidth and low latency. However, due to the need of large-scale deploy-
ment of edge servers to cover users in different places, such edge servers certainly
will not have the same powerful performance as traditional centralized cloud
servers. Therefore, when facing a large number of computation-intensive appli-
cation requests, edge servers may be not efficient enough using traditional job
scheduling and execution methods. When the edge servers reach a performance
bottleneck, the response time of application requests will increase significantly,
which degrades the application experience of users.

In this paper, we propose a adaptable job execution model to deal with the
above challenges. The traditional job scheduling method is that if servers meet
the resource requirements of an arrived job, system will execute it. Otherwise
the job will need to wait for the resources to be released after the completion
of the running jobs. Instead of ‘run-or-wait’ strategy, our idea is that for some
specific jobs, several computing levels are optional. Different computing levels
require different system resources and the higher the computing level a job is
executed at, the higher accuracy the job would be done with. These specific
jobs are computation-intensive such as virtual reality and augmented reality.
We conclude the relationships between the accuracy of jobs and the resource
requirements as three models. The first is linearly increasing model; the second
is deceleratingly increasing model; and the third is first acceleratingly and then
deceleratingly increasing model. Different types of jobs can be set a variety of
computing levels according to specification. Through the adaptable job execution
model, servers can make the optimal choice for both systems and users according
to available resources of the system and the different computing levels of the jobs.
To the best of our knowledge, this is the first paper that considers adaptable job
computing levels.

Moreover, we also proposed a scheduling algorithm to match our proposed
adaptable execution model to improve the utilization of the system resources
and improve quality of experience for users. The system may in such a state
that one of the resources of the system (such as CPU) is in a state of heavy
load while the other resources such as I/O bandwidth is in an idle state. If there
is an I/O intensive job arriving, because the CPU is fully occupied, the job is
suspended and the idle I/O devices are unable to work. This unbalanced state of
resource load should be avoided by the system as much as possible. Our proposed
algorithm differentiate jobs between CPU-intensive jobs and I/O-intensive jobs
according to [5]. The proposed algorithm uses greedy ideas to prioritize the
job’s maximum computing level that the current system resources can satisfy to
execute. When several jobs arrive simultaneously, we select the jobs that have
the same dominant resource as the relatively idle resources of the system so
as to achieve load balancing of different system resources and improve resource
utilization.

Job Scheduling with Adaptable Computing Levels for Edge Computing 289

The rest of this paper is organized as follows. Section 2 review the related
work. Section 3 describes the details of our proposed models and job scheduling
algorithm. Section 4 evaluate our design. Section 5 concludes the paper.

2 Related Work

To address the conflict between locality and fairness, Zaharia et al. [6] propose
a simple algorithm called delay scheduling: when the job that should be sched-
uled next according to fairness cannot launch a local task, it waits for a small
amount of time, letting other jobs launch tasks instead. Experiment shows that
delay scheduling achieves nearly optimal data locality in a variety of workloads
and can increase throughput by up to 2x while preserving fairness. [7] rethink
resource allocation and job scheduling on a data analytics system in the cloud to
embrace the heterogeneity of the underlying platforms and workloads. To that
end, they suggest an architecture to allocate resources to a data analytics cluster
in the cloud, and propose a metric of share in a heterogeneous cluster to realize
a scheduling scheme that achieves high performance and fairness. Lee et al. [8]
propose a adaptable framework and a job scheduling algorithm called adapt-
able Load Balanced Algorithm (HLBA) for Grid environment. In the algorithm,
they use the system load as a parameter in determining a balance threshold.
And the scheduler adapts the balance threshold dynamically when the system
load changes. Li et al. [9] propose Greedy-Based Algorithm in cloud computing.
Compare to other methods, it can decrease the completion time of submitted
jobs and improve the quality of experience for users.

However, none of above papers is proposed to deal with the massive requests
from users in the time of Internet of thing, especially when jobs are mostly
computation-intensive.

3 Design

3.1 Model

We first give a series of definitions as follows:

Job = {J1, J2, J3, . . . , Jn} (1)

Jn = {IDn, Cn,Mn,Dn, Ln} (2)

Ln = {level1, level2, . . . , levelm} (3)

levelm = {C ratio,D ratio,Acc} (4)

IDn is the identity of a job n, Cn is the number of CPU cycles required for the
job, Mn is the amount of running memory, Dn is the size of the job’s dataset, and
Ln is the computing level that the job can be performed at, which is respectively
level1, level2, level3, . . . , levelm. Different jobs have different optional comput-
ing levels. C ratio, D ratio are the ratios of the max resource usage under the

290 H. Jiang and W. Wu

corresponding job computing level with job accuracy Acc. For example, when
job x is running on level 2, the actual amount of the job’s required CPU cycles
is Cx * Lx.level2.C ratio.

For the convenience of analysis, we abstract the various system resources into
several concrete values, and then superimpose them into a single resource value
‘Res’ according to a reasonable weight. After that, we conclude the relationships
between the accuracy of jobs and the resource requirements as three models
that are shown in Fig. 1. The first is linearly increasing model; the second is
deceleratingly increasing model; and the third is first acceleratingly and then
deceleratingly increasing model. For example, the job type of data compression
[10] belongs to the first model. The second fits in speech recognition [11] and the
third fits in data mining [12].

Next, we discuss how to divide computing levels of a job according to the
above three accuracy-resources models. Our optimization goal is to improve the
performance cost of the job, that is, to reduce the system resources occupied by
the job as much as possible without excessively reducing the accuracy of the job.
We define an accuracy loss function:

LF =
Acc(max) −Acc(cur)

Res(max) −Res(cur)
(5)

Accmax means the maximum accuracy of the job, and Acccur is the accuracy of
the job at the current computing level. Resmax is the system resource needed
by the job at the accuracy Accmax while Rescur is the system resource occupied
by the job at the precision Acccur. Obviously, LF is associated with the certain
slope of a function. Our goal is to make the value of the function LF as small as
possible, which means we should perform the division of job computing levels via
selecting points with small slope in the curve. The analyses of three relationship
models are below.

Linear-Increasing Model. The accuracy of a job improves proportionally with
the increase of system resources it acquires. In this case, the slope of any point of
the curve is the same. LF is constant. Therefore, for example, the computing level
division of a job may be performed by selecting three points whose execution
accuracy are 100%, 75%, 50% respectively. Levels can be decided according to
the specifications of different jobs.

Deceleratingly Increasing Model. The accuracy of the job improves with
the increase of the system resources it obtains, but the speed of improvement is
getting smaller and smaller. Therefore, in order to obtain a smaller loss function
value LF, we can perform the computing level division of a job by selecting
points with small slop in the second half of the curve. In this way, the resources
occupied by jobs can be greatly reduced without losing the computing accuracy
of jobs too much.

Job Scheduling with Adaptable Computing Levels for Edge Computing 291

First Acceleratingly and Then Deceleratingly Increasing Model. The
computing accuracy of the job improves with the increase of the system resources
it obtains, but the speed of the increase grow first bigger and then smaller.
Similar to the second model, we are also perform the computing level division
of a job by selecting points in the flat part of the curve, but the optional range
is less. Because if we want to further reduce the system resources needed by the
job, there will be a great decrement of the job accuracy, making the loss function
LF too large to satisfy quality of experience for users.

Fig. 1. Three relationship models of job accuracy and resources: (1) is linearly increas-
ing model; (2) is deceleratingly increasing model; (3) is first acceleratingly and then
deceleratingly increasing model

3.2 Algorithm

After dividing the execution of a job into several computing levels, the tradi-
tional scheduling algorithm will be inappropriate. Therefore, we propose a new
job scheduling algorithm. This algorithm is based on greedy ideas, supplemented
by load balancing of system resources. If the system resources meet the resource
requirements of the arrived job, it will directly execute the job at its highest com-
puting level. Otherwise, system uses the greedy strategy to select the optionally
maximum computing level of the job that the available system resources can
meet to execute. If multiple jobs arrive simultaneously, our algorithm would
choose a certain job to perform preferentially according to the system resource
load. According to [5], the types of jobs can be divided into CPU-intensive one

292 H. Jiang and W. Wu

and I/O-intensive one. From this perspective, we first judge what type of each
job is, and then determine which system resource is relatively idle. For example,
job A and job B arrive at the same time. job A is CPU-intensive, and job B is
I/O-intensive. The CPU resource of the system is in a relatively idle state which
means that job A is prior to be executed. In this way, a better tradeoff between
quality of experience and resource utilization is achieved.

Algorithm 1. Job Scheduling Algorithm
1: while the job queue is not empty do
2: Get a earliest arrived job from the queue
3: if there are other simultaneously arrived jobs then
4: Judge each type of the simultaneously arrived jobs
5: Judge the relatively idle resource of the system currently
6: if find a job that matches the complementary resource type then
7: Run the job at the highest computing level that system resources can afford
8: else {not find matched job}
9: randomly run one of the simultaneously arrived jobs with greedy strategy

10: end if
11: else {no other simultaneous jobs}
12: Run the job at the highest level that system resources can afford
13: end if
14: if succeed in running a job then
15: Remove the job from the job queue
16: else {fail to run a job}
17: wait for system resource to be released
18: end if
19: end while

The method to judge which one is the relatively idle resource of the system
is to calculate the idle ratio of each resource. For example, if CPU idle ratio
is larger than I/O idle ratio, CPU is the relatively idle resource while on the
contrary, I/O is. The calculation formulas are below.

CPU idle ratio = 1− the amount of CPU in use
full amount of cpu

I/O idle ratio = 1− the amount of I/O in use
full amount of I/O

4 Simulation and Analysis

In this section, we conduct simulations over a mixed job stream which includes
gradable and non-gradable jobs. Non-gradable jobs can be seen as gradable jobs
with only one computing level, so that system can use our proposed algorithm
to schedule jobs in two types. We measure the performance of our proposed
adaptable job execution model using average job response time, average job
accuracy and average system utilization.

Job Scheduling with Adaptable Computing Levels for Edge Computing 293

4.1 Experiment Setup

We perform our simulations on a computer with i5-4570@3.2Ghz CPU and 16GB
RAM. The operating system is Ubuntu 16.04. We use C++ as the programming
language and MYSQL5.7 as the database.

In terms of datasets, based on the characteristics of the Internet of Things
and edge computing, we mainly emphasize computationally intensive jobs and
high-frequency user requests, making the system in a state of heavy load during
a certain period of time. And in this case, we evaluate the performance of our
adaptable job execution model compared with the traditional scheduling method.

We take scale-invariant feature transform (SIFT) of images as an example to
specify the demanded resource of a job. SIFT is an algorithm in computer vision
to detect and describe local features in images [13]. We specify its amount of
computation needed as the number of CPU cycles. SIFS has a similar computa-
tion demand with face recognition application in [14] which needs 1 gigacycles.
Other jobs of the job stream for the simulation will be set up with similar resource
requirements, but with different computing levels.

Each job is also associated with a data size, which indicates the size of pro-
gram states being sent to the edge cloud. Each workload size is generated from
a probabilistic distribution.

According to the three kinds of relationship model that we present in Sect. 3,
we set the proportion of gradable jobs of the proposed relationship models as
1:1:1 in the gradable job request sequence. As for the non-gradable jobs (those
with only single computing level), their proportion is changeable. In the whole
job request sequence, the proportion of gradable jobs and non-gradable jobs
varies from 1:4 to 1:1, so as to analyse the influence of the proportion of these
two job types on the performance.

4.2 Result Analysis

First of all, we give an introduction to Apdex. Apdex stands for Application
Performance Index [15], which is an industry standard and is used to the evalua-
tion of application performance by the Apdex Alliance. From the perspective of
users, the Apdex standard translates the application response time into a user
quantifiable satisfaction rating for application performance ranging from 0–1.

Apdex defines the optimal threshold for application response time as T, and
defines three different performances based on the application response time:

Satisfied: The application response time is lower than or equal to T (T
is determined by the performance appraisers according to the expected perfor-
mance requirements). For example, if T is 1.5 s, a response result as 1 s can be
considered as satisfied.

Tolerating: The application response time is greater than T, but it is less
than or equal to 4T. Assuming the application sets a T value of 1s, 4 * 1 = 4 s
is an extremely high tolerance for the application response time.

Frustrated: The application response time is greater than 4T.

294 H. Jiang and W. Wu

The apdex formula is:

Apdext =
SatisfiedCount + ToleratingCount

2

TotalSamples
(6)

Fig. 2. When all jobs are done, here are
the average accuracy of jobs under tradi-
tional and adaptable ways with different
job proportions

Fig. 3. When all jobs are done, here are
the average response time of jobs under
traditional and adaptable ways with dif-
ferent job proportions

In the first case, without any limitation, we wait for the system to complete
all user requests for a period of time. The results are shown in Figs. 2 and 3.
In this case, the average accuracy of the jobs with the traditional scheduling
method is 100% surely. Due to the adaptable computing levels, the job accuracy
that uses our proposed method has decreased by an average of 3%, but the
average response time per job has decreased by 32%. Because the emerging
applications are mostly delay-sensitive, the Apdex threshold time T is extremely
small. Consequently, according to Apdex formula, users will be more satisfied
with the application experience under our scheduling model.

The main motivation of our design is to deal with massive user requests in the
era of Internet of things and edge computing. Consequently, in the second case,
the system is set to be in a long period of heavy load. Multiple jobs may reach
the edge servers simultaneously and subsequent jobs will follow the previous
jobs soon. As seen from the Fig. 4, our proposed scheduling method improves
the utilization of various resources of the system, respectively, 17% for CPU,
10% for RAM, and 4% for I/O. And we can see that, from Figs. 5 and 6, the
job response time was reduced by an average of 28%, and the job accuracy
was increased by an average of 24% (the accuracy of the arrived jobs that are
still waiting to be run counts 0). With the increment of gradable jobs in the
proportion of job stream, compared with the traditional scheduling method, our
scheduling method improve the system resource utilization and the average job
accuracy much better.

Job Scheduling with Adaptable Computing Levels for Edge Computing 295

Fig. 4. System resource utilization under heavy load with different job proportions:
(1) for CPU, (2) for I/O, (3) for RAM

Fig. 5. When the edge servers are in a
state of heavy load, here are the aver-
age accuracy of jobs under traditional and
adaptable ways with different job propor-
tions

Fig. 6. When the edge servers are in a
state of heavy load, here are the average
response time of jobs under traditional
and adaptable ways with different job pro-
portions

5 Conclusion

In this paper, we propose a job execution model with adaptable computing lev-
els for edge servers to process the massive job requests efficiently and improve
system resource utilization. The advantage of this adaptable model over tradi-
tional job scheduling method is demonstrated through formal analysis. Based
on the proposed model, we further develop a job scheduling algorithm to choose

296 H. Jiang and W. Wu

which job to run and which computing level the job should be executed at. The
effectiveness of the proposed algorithm is verified by simulations.

References

1. Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., Heinzelman, W.: Cloud-
vision: real-time face recognition using a mobile cloudlet-cloud acceleration
architecture. In: International Symposium on Computers and Communications
(2012)

2. Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., Qureshi, A.: Application
partitioning algorithms in mobile cloud computing: taxonomy, review and future
directions. J. Netw. Comput. Appl. 48, 99–117 (2015)

3. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2011)

4. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

5. Wiseman, Y., Feitelson, D.G.: Paired gang scheduling. IEEE Trans. Parallel Dis-
trib. Syst. 14(6), 581–592 (2003)

6. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: European Conference on Computer Systems, pp 265–278 (2010)

7. Lee, G., Chun, B., Katz, H.: Heterogeneity-aware resource allocation and schedul-
ing in the cloud. In: IEEE International Conference on Cloud Computing Technol-
ogy and Science, p. 4 (2011)

8. Lee, Y.H., Leu, S., Chang, R.S.: Improving job scheduling algorithms in a grid
environment. Future Gener. Comput. Syst. 27(8), 991–998 (2011)

9. Li, J., Feng, L., Fang, S.: An greedy-based job scheduling algorithm in cloud com-
puting. J. Softw. 9(4), 921–925 (2014)

10. Grgic, S., Grgic, M., Zovko-Cihlar, B.: Performance analysis of image compression
using wavelets. IEEE Trans. Ind. Electron. 48(3), 682–695 (2001)

11. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang.
Process. 20(1), 30–42 (2012)

12. Smith: Principles of data mining. Artif. Intell. Med. 26(1), 175–178 (2002)
13. Lowe, D.: Object recognition from local scale-invariant features. In: International

Conference on Computer Vision (1999)
14. Chen, X.: Decentralized computation offloading game for mobile cloud computing.

IEEE Trans. Parallel Distrib. Syst. 26, 974–983 (2014)
15. Application Performance Index. http://www.apdex.org/

http://www.apdex.org/

A Clustering Algorithm of High-Dimensional
Data Based on Sequential Psim Matrix

and Differential Truncation

Gongming Wang1(&), Wenfa Li2, and Weizhi Xu3

1 Institute of Biophysics, Chinese Academy of Sciences,
No. 15 Datun Road, Beijing, China

gongmingwang@126.com
2 College of Information Technology, Beijing Union University,

No. 97 Beisihuan East Road, Beijing, China
liwenfa@buu.edu.cn

3 School of Information Science and Engineering, Shandong Normal University,
No. 88 East Wenhua Road, Jinan, China

xuweizhi@sdnu.edu.cn

Abstract. For high-dimensional data, the failure in distance calculation and the
inefficient index tree that are respectively derived from equidistance and
redundant attribute, have affected the performance of clustering algorithm
seriously. To solve these problems, this paper introduces a clustering algorithm
of high-dimensional data based on sequential Psim matrix and differential
truncation. Firstly, the similarity of high-dimensional data is calculated with
Psim function, which avoids the equidistance. Secondly, the data is organized
with sequential Psim matrix, which improves the indexing performance.
Thirdly, the initial clusters are produced with differential truncation. Finally, the
K-Medoids algorithm is used to refine cluster. This algorithm was compared
with K-Medoids and spectral clustering algorithms in two types of datasets. The
experiment result indicates that our proposed algorithm reaches high value of
Macro-F1 and Micro-F1 at the small number of iterations.

Keywords: High-dimensional data � Clustering � Psim � Differential truncation
Heuristic search � K-Medoids � Spectral clustering

1 Introduction

Clustering has a wide range of applications in biology, statistics, machine learning, and
other fields [1]. In recent years, the dimensionality of clustered data has reached
dozens, hundreds or even thousands. Generally speaking, the data whose dimension-
ality is more than 20 belongs to high-dimensional data [2]. The characteristics [3] of
equidistance and redundant attribute has affected the clustering performance seriously.
Therefore, high-dimensional data clustering is difficult but useful, and was rated as one
of the top ten challenging problems in the area of data mining [4].

There are three kinds of clustering algorithms for high-dimensional data: attribute
reduction [5], subspace clustering [6], co-clustering [7]. The first method reduces data

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 297–307, 2018.
https://doi.org/10.1007/978-3-030-05054-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_23

dimensionality with attribute conversion or reduction, and then carries out clustering.
The effect of this method is heavily dependent on the degree of dimension reduction.
The second strategy is dividing the original space into several different subspaces, and
searching for cluster in subspace. When the dimensionality is high and the accuracy
requirement is rigorous, the number of subspaces would increase quickly. Thus,
searching cluster in the subspace becomes a bottleneck and may lead to failure [8]. The
third one implements clustering iteratively in view of the content and feature. The
clustering result is updated according to the semantic relation between the characteristic
and theme, in order to realize the balance between attribute and data clustering. This
method has two stages, resulting in a high time complexity. In addition to the above
three methods, the clustering algorithms of high-dimensional data include parallel
clustering [9], hierarchical clustering [10], and knowledge-driven clustering [11], etc.
However, these methods have the similar problems.

In essence, the equidistance and redundant attribute are the fundamental factors
affecting the clustering performance of high-dimensional data. The equidistance leads
to the distance between any two points in a high-dimensional space is approximate
equal, causing the failure of clustering algorithm based on distance. The redundant
attribute increases the dimensionality of high-dimensional data and the complexity of
index structure, whereas decreasing the efficiency of building and retrieving the index
structure.

It is reported that some dimensional component of high-dimensional data are non-
related noise that hide the real distance, resulting in equidistance. The Psim function
can determine and eliminate these noise [12], which is very useful for the similarity
calculation in the high-dimensional space. In addition, the sequential Psim matrix can
save the similarity order between the high-dimensional data and not be affected by the
dimensionality, which is the better data organization strategy than the common-used
index tree. More importantly, the initial cluster can be extracted from our proposed
sequential Psim matrix with the differential truncation.

To solve the clustering problem derived from equidistance and redundant attribute,
an efficient clustering algorithm is proposed by integrating with the Psim matrix and
differential truncation. In the first, the Psim values between all points in the high-
dimensional space, and corresponding location numbers are stored into the Psim
matrix. After that, a sequential Psim matrix is generated by sorting the elements in each
row of the Psim matrix. Then, the initial clusters are produced with the differential
truncation. Finally, the initial clusters are iteratively refined with the K-Medoids
algorithm until all the cluster medoids are stable.

2 Related Work

2.1 Psim Matrix

The traditional similarity measurement method (e.g., Pearson coefficient [13], Jaccard
coefficient [13] and Euclidean distance) failures in the high-dimensional space. To
solve this problem, the Hsim function [14] was proposed by Fengzhao Yang, but the
relative difference and noise distribution were not considered. The proposed Gsim

298 G. Wang et al.

function [15] is analyzing the relative difference of properties in different dimensions,
but the weight discrepancy is ignored. The Close function [16] can reduce the influence
from some dimensions with the larger variance. However, the relative difference was
not considered and it would be affected by noise. The Esim [17] function was designed
by improving Hsim and Close functions and considering the influence of property on
similarity. In every dimension, the Esim component is positive correlation to the value
in this dimension. All the dimensions are divided into two parts: normal dimension and
noisy dimension. In the noisy dimension, the noise occupies the main ingredient. When
it is similar and larger than the one in the normal dimension, the Esim will be invalid.
The secondary measurement method [18] was used to calculate similarity by consid-
ering the property distribution, space distance, etc. But the noise distribution and
weight have not been taken into account. In addition, the formula is complicated and
calculation is very slow. In the high-dimensional space, Lihua Yi has found [12] the
difference in the noisy dimension was larger, no matter how similar data was. This
difference occupied a large portion of similarity calculation, and all the calculation
results are similar. Therefore, the proposed Psim function [12] is used to diminish the
influence of noise in all dimensions. The experimental results indicate that this method
is suitable for a variety of data.

When using the Psim function to measure similarity, the data component in every
dimension must be sorted and the value range is divided into several intervals. The
similarity between X and Y in the j-th dimension is added to the Psim function, if and
only if their data components are in the same interval.

In an n-dimensional space, the Psim value between X and Y is as follows.

Psim X; Yð Þ ¼
X

j2Ds X;Yð Þ
1� Xj � Yj

�� ��
lj � uj

� �
� Ds X; Yð Þj j

n
ð1Þ

where Xj and Yj are data components of X and Y in the j-th dimension. Ds X; Yð Þ is a
subscript set of Xj and Yj that are in the same interval uj; lj

� �
, and Ds X; Yð Þj j is the

number of elements in Ds X; Yð Þ. The above is the outline of the Psim function, and the
detailed introduction can be found in reference [12].

How to organize data is an important issue of the clustering algorithm. In the
traditional method, the data is separated with the index tree and mapped onto the index
tree node according to its location. The commonly-used index tree includes R tree [5],
cR tree [19], VP tree [20], M tree [21], SA tree [22], etc. In essence, the partition of
data space is the foundation of building index tree, but its complexity is increasing with
the raise of dimensionality. Thus, it is difficult to build the index tree for high-
dimensional data. In addition, the retrieval efficiency of index tree falls sharply with the
increase of dimensionality [23]. The retrieval function works effectively when the
dimensionality is less than 16. But it weakens quickly when the dimensionality is
greater than 16, even downs to the level of the linear search. A sequential Psim matrix
is used to solve this problem. Firstly, all the Psim values between points S1; S2; � � � ; SM
are calculated to build the Psim matrix PsimMat. The size of PsimMat is M �M, and
PsimMat i; tð Þ is composed of three properties: subscript i, t, and Psim Si; Stð Þ. Secondly,
the sequential Psim matrix SortPsimMat is produced by sorting elements in every row

A Clustering Algorithm of High-Dimensional Data 299

of PsimMat in the descending order of Psim value. The elements in the i-th row of
SortPsimMat represent the similarities between Si and other points. It can be seen that
the sequential Psim matrix is not affected by dimensionality and can represent the
similarity distribution of all points.

2.2 Differential Truncation

The elements in every row of SortPsimMat are regarded as a sequence A, whose length
is M. The sequential Psim differential matrix DeltaPsimMat is generated with the
differential operation the sequence A. The size of DeltaPsimMat is M � M � 1ð Þ. The
elements in the i-th row of SortPsimMat represent the similarities between Si and other
points. From left to right, several points corresponding to the frontier elements in this
row would construct the cluster centered with Si, because the similarity between ele-
ments inside the cluster is higher than the one outside. Thus, the similarity difference
between elements inside the cluster is less than that of the other one. Assuming the
cluster centered with Si has pi elements, the left pi � 1 elements in the i-th row of
DeltaPsimMat are less than the differential threshold DAmax. Thus, the reasonable
DAmax is set up and all the elements that less than DAmax in the i-th row of
DeltaPsimMat are found to construct a cluster centered with Si.

3 Clustering Algorithm

3.1 Framework of Clustering Algorithm

The proposed clustering algorithm has three steps as shown in Fig. 1. Firstly, the
sequential Psim matrix is built to represent the similarity levels between points in set S.
Secondly, the initial cluster is generated by integrating with differential truncation and
heuristic search. Finally, the expected cluster is produced by clustering based on K-
Medoids.

Fig. 1. Framework of proposed clustering algorithm.

300 G. Wang et al.

3.2 Procedure of Clustering Algorithm

3.2.1 Construction of Sequential Psim Matrix
The Psim values between all points in set S are calculated with formula 1, and are
saved into the Psim matrix PsimMat. After that, the elements in every row of PsimMat
are sorted with quicksort to produce the sequential Psim matrix SortPsimMat

The point in set S is usually deleted, added or updated, and SortPsimMat is changed
accordingly as follows.

(1) Adding operation
Assuming SMþ 1 would be added, the operation is as follows.
Step 1: The Psim values between SMþ 1 and S1; S2; � � � ; SM are calculated to con-

struct the elements of SortPsimMat. Then, they are inserted into the corresponding
position of every row.

Step 2: The Psim values between SMþ 1 and S1; S2; � � � ; SMþ 1 are calculated and
sorted in descending order. Then, the corresponding elements of SortPsimMat are
generated and taken as the Mþ 1 th row of this matrix.

(2) Deleting operation
Assuming Sd would be deleted, where 1� d�M, the operation is as follows.
Step 1: The elements in d th row of SortPsimMat are deleted.
Step 2: The elements related to Sd in reminder M � 1 rows are deleted.
(3) Updating operation
Assuming Sb would be updated, where 1� b�M, the operation is as follows.
Step 1: The Psim values between Sb and S1; S2; � � � ; SM are calculated, and the

corresponding elements of SortPsimMat are replaced.
Step 2: The elements in b th row are sorted in descending order.
Step 3: The positions of elements corresponding to Sb in other M � 1 rows are

adjusted according to the Psim value.

3.2.2 Generating Initial Cluster
Firstly, the Laplacian matrix L is generated by virtue of PsimMat, and the distribution
of its eigenvalue is used to determine the number of expected clusters [24]. Secondly,
the differential threshold DAmax is initialized. Thirdly, let Cmax is the maximal time of
searching cluster set. The upper bound of Cmax is the combinatorial number CK

M , where
K is the number of clusters. It can be seen that searching CK

M times is time-consuming,
because the magnitude of CK

M is M!. In addition, the K expected clusters maybe not
found by searching CK

M times. Thus, the Cmax is set as Cmax ¼ M and heuristic search is
implemented. Finally, the collision list of clusters TBLC is set as null, and i ¼ 1. Then,
the initial cluster can be generated with the following steps.

Step 1: The elements in the i th row of DeltaPsimMat are visited from left to right
until pi th element is greater than the differential threshold DAmax for the first time.
Step 2: The points corresponding to the left pi � 1 elements in the i th row of
SortPsimMat are used to construct the cluster Ci

T that is centered with Si.
Step 3: If i\M, then i ¼ iþ 1 and go to Step 1. Otherwise, then c ¼ 1.

A Clustering Algorithm of High-Dimensional Data 301

Step 4: The K clusters Ci1
T ;C

i1
T ; � � � ;CiK

T are selected from M clusters C1
T ;C

2
T ; � � � ;

CM
T , make sure that the set composed of K centers of selected cluster are not in

TBLC.
Step 5: If the union of the K clusters is equal to set S, then the set Ci ¼
C0
i ;C

1
i ; � � � ;CK

i

� �
is taken as the initial cluster set, where Cv

i ¼ Civ
T . Otherwise, the

set CI is added into TBLC and go to Step 5.
Step 6: If c�Cmax, then i ¼ 1, increase DAmax, clear TBLC and go to Step 1.
Otherwise, c ¼ cþ 1 and go to Step 4.

3.2.3 Clustering Based on Iterative Partitioning
The initial cluster has the basic characteristic of the final result. For further improve-
ment, the clustering based on K-Medoids [25] is implemented as follows.

Step 1: The iterated times is q ¼ 0, and the initial cluster set is C0 ¼ C0
1;C

0
2; � � � ;

�
C0
Kg.

Step 2: The K medoids of clusters in C0 ¼ C0
1 ;C

0
2 ; � � � ;C0

K

� �
are calculated to

construct the point set V0 ¼ V0
1
;V0

2
; � � � ;V0

K

n o
.

Step 3: The cluster set after iterating q times is Cqþ 1 ¼ Cqþ 1
1 ;Cqþ 1

2 ; � � � ;Cqþ 1
K

n o
.

There is only one element Vq
w in the initial cluster Cqþ 1

w , where 1�w�K.

Step 4: For any element in S, the Psim values between it and all points in Vq ¼
Vq

1
;Vq

2
; � � � ;Vq

K

n o
are calculated, and it is added into the cluster with highest Psim

value in Cqþ 1.
Step 5: The average Psim value between elements in cluster of Cq and corre-
sponding point in Vq is calculated and expressed as Eq.

Step 6: The K medoids of clusters in Cqþ 1 ¼ Cqþ 1
1 ;Cqþ 1

2 ; � � � ;Cqþ 1
K

n o
are cal-

culated to construct the point set Vqþ 1 ¼ Vqþ 1
1

;Vqþ 1
2

; � � � ;Vqþ 1
K

n o
. And the

average Psim value between elements in cluster of Cqþ 1 and corresponding point in
Vqþ 1 is calculated and expressed as Eq.

Step 7: If Eq � E�
q

���
���
.
M� e, then the refinement is stopped. Otherwise, q ¼ qþ 1,

and go to Step 3.

3.3 Convergence Analysis

This proposed clustering algorithm has three steps and the corresponding convergence
analysis is as follows.

(1) Construction of Sequential Psim Matrix
The Psim matrix PsimMat is produced by running formula 1 M �M times. And
the sequential Psim matrix SortPsimMat is generated by sorting elements in every

302 G. Wang et al.

row of PsimMat. The above operation can be finished in the limited time, so this
step is converged.

(2) Generating Initial Cluster
Firstly, the number of expected clusters can be determined with spectral clustering
in the limited time. Secondly, with the increase of the differential threshold DAmax,
the number of elements in every cluster is increasing. Thus, the union
Ci1
T

S
Ci1
T

S � � �SCiK
T is close to set S gradually. Thus, this step is converged.

(3) Clustering based on iterative partitioning
This step is worked based on K-Medoids clustering algorithm. From appendix 1,
it can be seen that the K-Medoids clustering algorithm is converged. Thus, this
step is also converged.
The above statements show the three steps can be finished in the limited time.
Thus, the proposed clustering algorithm is converged.

4 Experiment

4.1 Overview

In the following experiment, the hardware includes AMD Athlon(tm) II X2-250 pro-
cessor and Kingston 4G memory. And the software is WinXP operation system and
MicroSoft Visual Studio 2008. Two high-dimensional data sets are downloaded from
UCI database, which are CNAE-9 and ISOLET. In order to remove the invalid or
missing data, the preprocessing is required.

After that, the number of clusters is determined with spectral clustering algorithm.
Then, the two data sets are clustered ten times with our proposed clustering algorithm
based on Psim matrix and differential truncation (PM-DT clustering algorithm), K-
Medoids clustering algorithm [25], and spectral clustering algorithm [24]. In the pro-
cess of each clustering, the iterations, Macro-F1 and Micro-F1 [26] are calculated. In
addition, their average in ten clustering processes must be required. Finally, these
algorithms are compared according to the above results.

4.2 Experimental Data

The two main characteristics of tested high-dimensional data are size and classification.
A good clustering algorithm should be suitable for the data with the characteristics at
different levels. To validate our proposed clustering algorithm fully, the two different
data sets are downloaded from UCI database as follows.

1. CNAE-9. This is the frequency of feature words in 1080 documents that are cate-
gorized into 9 categories. Each record is the statistical result of one document,
which is expressed as a vector whose length is 856. The size, dimension, and
classification of this data set are normal, large and normal respectively. In addition,
this data set is highly sparse (99.22% of the matrix is filled with zeros).

2. ISOLET. This is the audio data during 150 subjects spoke the name of each letter of
the alphabet twice, which has 7797 records and is classified 26 types corresponding

A Clustering Algorithm of High-Dimensional Data 303

to 26 alphabets. It is divided into training set (6238 records) and test set (1559
records). The training set is used to validate our proposed clustering algorithm. One
record includes 617 attributes involved in spectral coefficients, contour features,
sonorant features, pre-sonorant features, and so on. The size, dimension, and
classification of this data set are all large.

4.3 Stability Analysis

First of all, the method to determine the number of clusters in Sect. 3.2.2 is applied to
CNAE-9 and ISOLET. The results are 9 and 26 respectively, which is accord with the
reality. After that, the two data sets are clustered ten times with PM-DT clustering
algorithm, K-Medoids clustering algorithm [25], and spectral clustering algorithm [24].
The corresponding results are shown in Figs. 2, 3 and 4.

Fig. 2. Iterations of three algorithms running ten times. (a) The result of CNAE-9; (b) The result
of ISOLET.

Fig. 3. Macro-F1 of three algorithms running ten times. (a) The result of CNAE-9; (b) The
result of ISOLET.

Fig. 4. Micro-F1 of three algorithms running ten times. (a) The result of CNAE-9; (b) The result
of ISOLET.

304 G. Wang et al.

It can be seen that the iterations of PM-DT clustering algorithm is less than the one
of K-Medoids clustering algorithm and spectral clustering algorithm, which indicates
that our proposed method can get the higher precise initial cluster and is converged
more quickly. In most cases, the clustering accuracy (Macro-F1 and Micro-F1) and
stability (variations of Macro-F1 and Micro-F1) are both PM-DT clustering algo-
rithm > spectral clustering algorithm > K-Medoids clustering algorithm. In some
cases, the clustering accuracies of K-Medoids and spectral clustering algorithms are
less than 50%, which indicates clustering failure. But PM-DT clustering algorithm has
no similar issue, which shows its validity for high-dimensional data.

4.4 Whole Performance Analysis

The experimental results are averaged and shown in Tables 1, 2 and 3.

The above results illustrates the better performance of PM-DT clustering algorithm
than the one of K-Medoids and Spectral clustering algorithms. On the one hand, its
iteration is small and convergence is fast. On the other hand, it has no failure case and
Macro-F1/Micro-F1 of CNAE-9 and ISOLET are increased more than 18% and 20%.
To sum up the above analysis, the failure in distance calculation, the inefficient index
tree, and the overlap of cluster that are derived from the characteristics of high-
dimensional data can be corrected with PM-DT clustering algorithm.

5 Conclusion

The high-dimensional data clustering is a challenging but useful issue in data mining.
The proposed clustering algorithm based on Psim matrix, differential truncation and

Table 1. Average iterations of three algorithms on two data sets.

Data set K-medoids clustering Spectral clustering PM-DT clustering

CNAE-9 12.1 35.5 10.2
ISOLET 18.1 112.2 19.7

Table 2. Average Macro-F1 of three algorithms on two data sets (unit %).

Data set K-medoids clustering Spectral clustering PM-DT clustering

CNAE-9 45.2 50.425 68.645
ISOLET 45.718 51.736 70.508

Table 3. Average Micro-F1 of three algorithms on two data sets (unit %).

Data set K-medoids clustering Spectral clustering PM-DT clustering

CNAE-9 43.127 50.335 68.925
ISOLET 50.561 55.562 70.348

A Clustering Algorithm of High-Dimensional Data 305

differential truncation focuses the problems of failure in distance calculation and
inefficient index tree. Compared other clustering algorithms, its characteristics are as
follows. In high-dimensional space, the sequential Psim matrix is used to calculate
distance and organize data. The differential truncation are used to obtain the initial
cluster. The experimental result indicates the performance of this algorithm is better
than the one of K-Medoids and Spectral clustering algorithms. Several heuristic
methods used in this algorithm have the potential to be improved. Thus, the future work
includes the determination of more effective initial parameters, evaluation function and
convergence criteria, in order to improve the accuracy of results.

Acknowledgments. This work is partly supported by the National Nature Science Foundation
of China (No. 61502475, 61602285) and the Importation and Development of High-Caliber
Talents Project of the Beijing Municipal Institutions (No. CIT & TCD201504039).

References

1. Han, J.W., Kamber, H.L., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan
Kaufmann, San Francisco (2011)

2. Ericson, K.L., Pallickara, S.D.: On the performance of high dimensional data clustering and
classification algorithms. Future Gener. Comput. Syst. 29(4), 1024–1034 (2013)

3. Keogh, E., Mueen, A.: Curse of dimensionality. In: Encyclopedia of Machine Learning,
pp. 257–258. Springer, Berlin (2010)

4. Yang, Q., Wu, X.D.: 10 Challenging problems in data mining research. Int. J. Inf. Technol.
Decis. Making 5(4), 597–604 (2006)

5. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C.,
Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-28349-8_2

6. Parsons, L., Haque, E.S., Liu, H.: Subspace clustering for high dimensional data: a review.
ACM SIGKDD Explor. Newsl. 6(1), 90–105 (2004)

7. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning.
In: 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 269–274. ACM Press, New York (2001)

8. Fu, Q., Li, Z.F.: The research of clustering algorithm based on CLIQUE. J. East China
Jiaotong Univ. 23(5), 79–82 (2006)

9. Feng, Z.H., Zhou, B., Shen, J.Y.: A parallel hierarchical clustering algorithm for PCs cluster
system. Neurocomputing 70, 809–818 (2007)

10. Du, Z., Lin, F.: A novel parallelization approach for hierarchical clustering. Parallel Comput.
31, 523–527 (2005)

11. Wu, H.Y., Wang, W.T., Wen, J.H., He, G.H.: Research on clustering algorithm of high-
dimensional dataset with input knowledge. Comput. Sci. 33(1), 240–242 (2006)

12. Yi, L.H.: Research on clustering algorithm for high dimensional data. Master’s thesis, Yan
Shan University, Qinhuangdao Hebei, China (2011)

13. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley
Publishing Company, Boston (2005)

14. Yang, F.Z., Zhu, Y.Y.: An efficient method for similarity search on quantitative transaction
data. J. Comput. Res. Dev. 41(2), 361–368 (2004)

306 G. Wang et al.

http://dx.doi.org/10.1007/3-540-28349-8_2

15. Huang, S.D., Chen, Q.M.: On clustering algorithm of high dimensional data based on
similarity measurement. Comput. Appl. Softw. 26(9), 102–105 (2009)

16. Shao, C.S., Lou, W., Yan, L.M.: Optimization of algorithm of similarity measurement in
high-dimensional data. Comput. Technol. Dev. 21(2), 1–4 (2011)

17. Wang, X.Y., Zhang, H.Y., Shen, L.Z., Chi, W.L.: Research on high dimensional clustering
algorithm based on similarity measurement. Comput. Technol. Dev. 23(5), 30–33 (2013)

18. Jia, X.Y.: A high dimensional data clustering algorithm based on twice similarity.
J. Comput. Appl. 25(B12), 176–177 (2005)

19. Brakatsoulas, S., Pfoser, D., Theodoridis, Y.: Revisiting R-tree construction principles. In:
Manolopoulos, Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 149–162. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45710-0_13

20. Nielsen, F., Piro, P., Barlaud, M.: Bregman vantage point trees for efficient nearest Neighbor
Queries. In: 10th IEEE International Conference on Multimedia and Expo, pp. 878–881.
IEEE Computer Society, Birmingham (2009)

21. Kunze, M., Weske, M.: Metric trees for efficient similarity search in large process model
repositories. Lect. Notes Bus. Inf. Process. 66, 535–546 (2011)

22. Navarro, G.Z.: Searching in metric spaces by spatial approximation. VLDB J. 11(1), 28–46
(2002)

23. Chen, J.B.: The Research and Application of Key Technologies in Knowledge Discovery of
High-Dimensional Clustering. Publishing House of Electronics Industry, Beijing (2011)

24. Andrew, Y.N., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and algorithm. In:
Advances in Neural Information Processing Systems, pp. 121–526. MIT Press, Cambridge
(2002)

25. Raymond, T.N., Han, J.W.: Efficient and effective clustering methods for spatial data
mining. In: 20th International Conference on Very Large Data Bases, pp. 144–155. IEEE
Computer Society, Birmingham (1994)

26. Chen, L.F., Ye, Y.F., Jiang, Q.S.: A new centroid-based classifier for text categorization. In:
22nd IEEE International Conference on Advanced Information Networking and Applica-
tions, pp. 1217–1222. IEEE Computer Society, Birmingham (2008)

A Clustering Algorithm of High-Dimensional Data 307

http://dx.doi.org/10.1007/3-540-45710-0_13

Enhanced Differential Evolution
with Self-organizing Map for Numerical

Optimization

Duanwei Wu, Yiqiao Cai(&), Jing Li, and Wei Luo

College of Computer Science and Technology,
Huaqiao University, Xiamen, China

yiqiao00@163.com

Abstract. In Differential evolution (DE), the valuable information from the
data generated during the evolutionary process has not yet fully exploited to
guide the search. As a clustering algorithm based on neural network structure,
Self-organizing map (SOM) method can effectively preserve the topological
structure of the data in the high dimensional input space. By taking the
advantage of SOM, this paper presents a SOM-based DE variant (DE-SOM) to
utilize the neighborhood information extracted by the SOM method. In DE-
SOM, the neighborhood relationships among the individuals are firstly extracted
by the SOM method. Then, with the obtained neighborhood relationships, a self-
adaptive neighborhood mechanism (SNM) is introduced to dynamically adjust
the neighborhood size for selecting parents involved in the mutation process.
The performance of DE-SOM has been evaluated on the benchmark functions
from CEC2013, and the results show its effectiveness when compared with the
original DE algorithms.

Keywords: Differential evolution � Self-organizing map
Self-adaptive neighborhood mechanism � Numerical optimization

1 Introduction

Differential evolution (DE), proposed by Storn and Price, is an efficient and simple
evolutionary algorithm (EA) for global optimization, which is widely applied in science
and engineering fields [1]. Compared with other EAs, DE has the advantages of simple
structure, easy to use, fast convergence and strong robustness. However, in the original
DE algorithms, most of the data generated during the evolutionary process are knocked
out through the greedy selection operator. Thus, the information contained in these data
will be neglected to guide the search, especially for the computationally expensive
problems. As the previous research shows, fully mining and utilizing these history data
can effectively enhance the performance of algorithm [2]. Therefore, how to effectively
utilize the information generated in the evolutionary process is a promising direction to
improve the performance of DE.

Clustering algorithm is an unsupervised learning method for grouping data to
achieve higher similarity between data of the same group and lower similarity between
data of different groups [3]. Due to the good feature in data mining and analysis,

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 308–318, 2018.
https://doi.org/10.1007/978-3-030-05054-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_24

clustering algorithm is suitable for extracting the population information from the data
generated during the iteration process. Self-organizing map (SOM), developed by
Kohonen, is a sheet-like artificial neural network [4]. As an unsupervised learning
method, SOM firstly determines the best matching neurons and regulates the weights of
neighboring neurons and ultimately constructs the weight network with data charac-
teristics through continues iterative learning. By using SOM, the data from a high
dimensional input space can be represented in a low dimensional space. Further, SOM
can effectively preserve the topological structure of the data in the original input
space [4].

By taking the above advantages of SOM, a SOM-based DE variant (DE-SOM) is
proposed by introducing SOM into DE. The primary purpose of SOM in the proposed
algorithm is to extract the neighborhood information to guide the search of DE. First,
with SOM, the neighborhood relationships among the individuals are extracted. Then, a
self-adaptive neighborhood mechanism (SNM) is designed to dynamically adjust the
neighborhood size. After that, the vectors are selected from the neighbors of target
individual that are defined by SOM for the mutation process.

To evaluate the effectiveness of the proposed method, the experimental study has
been carried out on a suite of benchmark functions from the CEC2013 special session
on real-parameter optimization [5]. Experimental results show the promising perfor-
mance of DE-SOM.

The rest of this paper is organized as follows. Section 2 describes the background
of DE and SOM. Section 3 describes the proposed DE-SOM in detail. In Sect. 4, the
experimental results are shown and discussed. Finally, the final conclusions are drawn
in Sect. 5.

2 Background

2.1 Differential Evolution (DE)

DE is a population-based stochastic searching algorithm for global numerical opti-
mization problem [1]. In DE, the candidate solutions are expressed as a population
composed of NP individuals. Each individual is denoted as

Xi;G ¼ x1i;G; x2i;G; . . .; xDi;G
� �

, where i = 1, 2,…., NP, NP is the population size, D is

the dimension of the problem, and G is the number of the current generation. For Xi,G,
the jth parameters can be initialized as follows: xji;G ¼ Lj þ rand 0; 1ð Þ � ðUj � LjÞ,
where rand(0,1) represents a uniformly distributed random number within the range [0,
1], and Lj and Uj represent the lower and upper bounds of the jth variable. After that,
DE enters the evolutionary loop with three operators: mutation, crossover, and
selection.

• Mutation: DE uses the mutation strategy to generate a mutant vector Vi,G for each
target individual Xi,G. Two commonly used mutation strategies are as follows:

Enhanced Differential Evolution with Self-organizing Map 309

DE=rand=1 : Vi;G ¼ Xr1;G þF � ðXr2;G � Xr3;GÞ ð1Þ

DE=best=1: Vi;G ¼ Xbest;G þF � ðXr1;G � Xr2;GÞ ð2Þ

where F is called the mutation scaling factor. The indices r1, r2, r3, r4, r5 represent the
integers randomly selected from the range [1, NP] and are not equal to index i. Xbest,G is
the is the best-so-far individual at the Gth generation.

• Crossover: After mutation, the crossover operator is applied to pair of mutant vector
and target vector to generate a trial vector Ui,G. The classical binomial crossover is
defined as follows:

u j
i;G ¼ v ji;G if randð0; 1Þ�CR or j ¼ jrand

v ji;G otherwise

(
ð3Þ

where CR 2 [0,1] is called crossover rate, jrand is a randomly chosen integer in the
range [1, D].

• Selection: Selection operator is used to select better individual from Ui,G and Xi,G

entering the next generation based on their fitness values, which can be outlined as
follows:

Xi;Gþ 1 ¼ Ui;G if f ðUi;GÞ� f ðXi;GÞ
Xi;G otherwise

�
ð4Þ

2.2 Self-organizing Map (SOM)

SOM is a typical clustering algorithm based on neural network. There are main two
operations in SOM: selection of the best-matching cell and adaptation (updating) of the
weight vectors [4].

The two-dimensional network structure of SOM is shown in Fig. 1. Suppose that
S is a set of training points in the n-dimensional input space and the latent space is
(m–1)-dimensional. That is, There are D = D1 � …. � Dm–1 neurons in the latent

space. A coordinate Zu ¼ zu1; . . .; z
u
m�1

� �T
; zui 2 1; . . .;Dif g; i ¼ 1; . . .; m� 1 is pre-

set for each neuron u (u = 1,…, D). In the input space, each neuron u has a weight

vector Wu ¼ wu
1; . . .;w

u
n

� �T
.

The purpose of SOM is to find the weight vector Wu of each neuron through the
training data to recognize their features [4]. The training process of SOM is carried out
as follows. At the beginning of training, each neuron in the latent space is assigned a
random data point selected from S as the initial weight vector. The closest training data
points to these weights are used for iteratively updating them. After updating the
weight vector, SOM maps the input data to the neurons in the latent space according to

310 D. Wu et al.

the similarity between the data and the neuron’s weight vector. That is, similar data
points are mapped to adjacent neurons. In this way, the topology of the input data is
preserved in the neural network of latent space and thus the input data are clustered
based on this structure.

3 DE-SOM

In DE-SOM, the SOM method is used to extract the neighborhood relationships among
the individuals. With the neighborhood relationships, DE-SOM employs a self-
adaptive neighborhood mechanism (SNM) to construct the mating pool for each
individual to guide the mutation process.

3.1 Motivations

In the literature of DE, the clustering technology has been used in many variants to
improve its performance. In these works, the role of clustering technology can be
roughly classified into the following categories: dividing population to maintain
diversity (e.g., [6, 7]), partitioning population to assign different mutation strategies
(e.g., [8, 9]), and extracting population information for crossover (e.g., [10–12]).
However, in most of these variants, the clustering technology is only used for popu-
lation division based on the Euclidean distance metric. By this way, the local topo-
logical properties of the individuals cannot be preserved in the high dimensional search
space during the evolutionary process. On the other hand, the neighborhood infor-
mation of individuals in the current population cannot be effectively and fully extracted
to guide the search. Based on these considerations, SOM, as an unsupervised learning
method, is introduced into DE to extract the neighborhood information of individuals.

Fig. 1. An illustration of SOM with 2-dimensional latent space.

Enhanced Differential Evolution with Self-organizing Map 311

3.2 SOM in DE-SOM

In DE-SOM, SOM is used to map the individuals to neurons in the network and then
extract the neighborhood information with the neighboring neurons. That is, the
individuals that are mapped to the neighboring neurons will be recognized as the
neighbors. Different from the original SOM algorithm, the training data in the SOM
used in the proposed algorithm are incrementally generated during the evolutionary
process. Further, when the new data are included, instead of restarting the learning
process, DE-SOM will directly use them to update the learned neighborhood infor-
mation in the previous generation, as that in [16]. In this way, on the one hand, the
computational cost caused by retaining the SOM model will be reduced. On the other
hand, the information extracted from the history data will be reused with the new
generated data to guide the search.

3.3 Self-adaptive Neighborhood Mechanism (SNM)

In DE-SOM, a self-adaptive neighborhood mechanism (SNM) is proposed to
dynamically adjust the neighborhood size. Different evolutionary stages require dif-
ferent sizes of neighborhood. Based on the learned weight vectors with SOM, SNM can
adaptively choose appropriate neighborhood sizes during the evolutionary process to
construct different neighborhood for each individual. In this paper, we use two types of
neighborhood sizes, large neighborhood (rmax) and small neighborhood (rmin). Then,
the probability of selection (u) is introduced to decide which neighborhood size is
used. If the value randomly generated is smaller than u, the small neighborhood size
will be used to define the neighborhood size (r) of population. Otherwise, the large
neighborhood is used. After that, the neuron linked with each individual Xi in the input
space will locate the r closest neighboring neurons in the SOM structure. After that, the
r individuals linked with the r neighboring neurons are identified as the neighbors of
Xi. Further, if the trial vector is better than the target vector, the selection probability of
the corresponding type of neighborhood size will be raised by D. Otherwise, it will be
reduced by D.

3.4 The Framework of DE-SOM

The framework of DE-SOM is shown in Algorithm 1, where G is the maximum
number of iterations, rand(0, 1) is a random decimal selected from 0 to 1, u is the rate
of choosing a neighborhood size, D is used to adjust u, rmin is the small neighborhood
size and rmax is the large one. From Algorithm 1, the neighbors of each individual are
defined based on the learned structure from the SOM method. Further, the neighbor-
hood size is adaptively adjusted during the evolutionary process with SNM, which can
effectively reflect the neighborhood relationship between individuals at different stages.

312 D. Wu et al.

Enhanced Differential Evolution with Self-organizing Map 313

4 Empirical Studies

To evaluate the performance of DE-SOM, the experimental study is carried out on a
suite of benchmark functions from the CEC2013 special session on real-parameter
optimization [5]. The CEC13 benchmark functions set consists of 28 test functions,
which includes the unimodal function F1 to F5, the basic multimodal function F6 to
F20, and the composition function F21 to F28. More details of them can be found in
[5]. For a fair comparison, the same random initial population is used to evaluate the
performance of different algorithms. The parameters of the DE algorithms studied in
this paper are set as Table 1 unless a change is mentioned.

Table 1. Parameters setting for DE and SOM.

Parameters Values

Dimension of each functions (D) 30 and 50
External archive size 100
Independent number of runs 30
Maximum number of evaluations 104 � D
The structure of SOM 2-dimensional structure with10 � 10
Initial learning rate (s) 0.9
The small neighborhood size (rmin) 5
The large neighborhood size (rmax) 100
Initial neighborhood choosing rate (u) 0.5
Adjustment value of the choosing rate (D) 0.25

314 D. Wu et al.

To show the significant differences among the competitors, the non-parametric
statistical tests are carried out by the KEEL software [13]. The results of the single-
problem analysis by the Wilcoxon test at a = 0.05 are shown in the tables as “+/=/–”,
which means that DE-SOM wins, ties and loses on the number of functions when
compared with its corresponding competitor [14, 15]. The R+ and R– in the multiple-
problem analysis by the Wilcoxon test mean the sum of ranks that DE-SOM performs
significantly better than and worse than its competitor overall, respectively.

4.1 Effect on the Original DE Algorithms

To test its effectiveness of DE-SOM on the original DE algorithm, the proposed
algorithm is applied to six mutation strategies, i.e., DE/rand/1, DE/rand/2, DE/best/1,
DE/best/2, DE/current-to-best/1 and DE/rand-to-best/1. The comparison results for the
CEC2013 functions at 30D and 50D are shown in Tables 2 and 3.

From Tables 2 and 3, DE-SOM can obtain significantly better results than most of
the original DE algorithms overall. Specifically, DE-SOM is significantly better than
the corresponding DE on 10, 20, 14, 10, 7 and 9 functions at 30D, respectively, and on
10, 20, 14, 14, 9 and 8 functions at 50D, respectively. Further, according to the results

Table 2. Results of the single- and multi-problem Wilcoxon’s test for DE-SOM versus the
original DE algorithms for the CEC2013 functions at 30D.

DE-SOM vs +/=/– R+ R– p-value a = 0.05 a = 0.1

DE/rand/1 10/18/0 283.0 95.0 0.023 Yes Yes
DE/rand/2 20/8/0 355.0 230.0 0.000 yes Yes
DE/best/1 14/12/2 328.0 78.0 0.004 Yes Yes
DE/best/2 10/17/1 307.5 98.5 0.016 Yes Yes
DE/current-to-best/1 7/21/0 270.0 136.0 0.123 No No
DE/rand-to-best/1 9/19/0 388.0 18.0 0.000 Yes Yes

Table 3. Results of the single- and multi-problem Wilcoxon’s test for DE-SOM versus the
original DE algorithms for the CEC2013 functions at 50D.

DE-SOM vs +/=/– R+ R– p-value a = 0.05 a = 0.1

DE/rand/1 10/18/0 360.0 46.0 0.000 Yes Yes
DE/rand/2 20/8/0 351.5 26.5 0.000 Yes Yes
DE/best/1 14/13/1 325.0 53.0 0.001 Yes Yes
DE/best/2 14/13/1 333.5 72.5 0.002 Yes Yes
DE/current-to-best/1 9/18/1 370.0 36.0 0.000 Yes Yes
DE/rand-to-best/1 8/20/0 342.0 36.0 0.000 Yes Yes

Enhanced Differential Evolution with Self-organizing Map 315

of the multi-problem Wilcoxon signed-rank tests, DE-SOM can obtain the higher R
+ values than R– values in the most cases, and the p values in most cases are less than
0.05. These results indicate that DE-SOM can improve the performance of the original
DE algorithms on the test functions.

4.2 Effectiveness of the Self-adaptive Neighborhood Mechanism (SNM)

To investigate the influence of neighborhood size on the performance of DE-SOM,
different neighborhood sizes, i.e., r = 20, r = 40, r = 70, and r = 90 are used to replace
SNM. The comparisons between DE-SOM with SNM and single neighborhood size are
made, and the results are shown in Table 4.

According to the results in Tables 4, the effectiveness of SNM for DE-SOM is
demonstrated when compared with the variants with single neighborhood size. Based
on the multi-problem Wilcoxon signed-rank tests, DE-SOM with SNM obtain the
higher R+ values than R– values in all the cases. In addition, the p values in all the
cases are less than 0.05. These results show that SNM can obtain the significantly better
results than single neighborhood size for DE-SOM. Further, the advantages of using
SNM with multiple different neighborhood sizes for different evolutionary stages are
also exhibited.

5 Conclusion

In this study, a Self-organizingmap (SOM) basedDE algorithm,DE-SOM, is proposed to
extract the neighborhood information to guide the search of DE. With the advantages of
SOM that preserves the topological structure of the data in the original input space, DE-
SOM constructs the neighborhood relationships among the individuals. In addition, a
self-adaptive neighborhood mechanism (SNM) is used to dynamically adjust the
neighborhood size during the process of evolution. To evaluate the performance of the
proposed algorithm, DE-SOM is applied to six original DE algorithms. The experimental
results on the CEC2013 benchmark functions clearly show that DE-SOM can

Table 4. Results of the single- and multi-problem Wilcoxon’s test for DE-SOM/rand/1
with SNM versus that with single neighborhood size for the CEC2013 functions at 30D and 50D.

DE-SOM/rand/1 with SNM vs +/=/– R+ R– p-value a = 0.05 a = 0.1

DE-SOM/rand/1(r = 20) at 30D 12/15/1 301.0 77.0 0.007 Yes Yes
DE-SOM/rand/1(r = 40) at 30D 15/13/0 296.5 109.5 0.030 Yes Yes
DE-SOM/rand/1(r = 70) at 30D 12/16/0 294.0 84.0 0.011 Yes Yes
DE-SOM/rand/1(r = 90) at 30D 12/16/0 303.0 75.0 0.006 Yes Yes
DE-SOM/rand/1(r = 20) at 50D 14/12/2 312.0 94.0 0.012 Yes Yes
DE-SOM/rand/1(r = 40) at 50D 12/15/1 354.0 52.0 0.001 Yes Yes
DE-SOM/rand/1(r = 70) at 50D 13/14/1 319.5 58.5 0.002 Yes Yes
DE-SOM/rand/1(r = 90) at 50D 10/18/0 337.0 41.0 0.000 Yes Yes

316 D. Wu et al.

significantly improve the performance of the corresponding DE algorithm overall.
Moreover, the effectiveness of SNM is demonstrated through the comparisons between
DE-SOM with SNM and that with single neighborhood size. In the future, more com-
parisons with the advanced DE variants will be carried out to evaluate the effectiveness of
DE-SOM. On the other hand, different SNMs for adjusting the neighborhood size will be
investigated to further enhance the search ability of DE-SOM.

Acknowledgement. This work was supported in part by the Natural Science Foundation of
Fujian Province of China (2018J01091, 2015J01258), the Postgraduate Scientific Research
Innovation Ability Training Plan Funding Projects of Huaqiao University (17013083021) and the
Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun
Yat-sen University.

References

1. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

2. Chow, C.K., Yuen, S.Y.: An evolutionary algorithm that makes decision based on the entire
previous search history. IEEE Trans. Evol. Comput. 15(6), 741–769 (2011)

3. Xu, R., Wunsch, D.: Clustering. Wiley, Hokoben (2008)
4. Kohonen, T.: The self-organizing map. Neurocomputing 21(1), 1–6 (1998)
5. Liang, J., Qu, B., Suganthan, P., Hernández-Díaz, A.: Problem definitions and evaluation

criteria for the CEC 2013 special session on real-parameter optimization. Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Techno-
logical University, Singapore, Technical report, vol. 201212 (2013)

6. Gao, W., Yen, G.G., Liu, S.: A cluster-based differential evolution with self-adaptive
strategy for multimodal optimization. IEEE Trans. Cybern. 44(8), 1314–1327 (2014)

7. Wang, Y., Zhang, J., Zhang, G.: A dynamic clustering based differential evolution algorithm
of Global Optimization. Eur. J. Oper. Res. 183(1), 56–73 (2007)

8. Ali, M.Z., Awad, N.H., Duwairi, R., Albadarneh, J., Reynolds, R.G., Suganthan, P.N.:
Cluster-based differential evolution with heterogeneous influence for numerical optimiza-
tion. In: IEEE Congress on Evolutionary Computation, pp. 393–400 (2015)

9. Kundu, D., Suresh, K., Ghosh, S., Das, S., Abraham, A., Badr, Y.: Automatic clustering
using a synergy of genetic algorithm and multi-objective differential evolution. In:
Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI),
vol. 5572, pp. 177–186. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02319-4_21

10. Cai, Z., Gong, W., Ling, C.X., Zhang, H.: A clustering-based differential evolution for
global optimization. Appl. Soft Comput. 11, 1363–1379 (2011)

11. Liu, G., Li, Y., Nie, X., Zheng, H.: A novel clustering-based differential evolution with 2
multi-parent crossovers for global optimization. Appl. Soft Comput. 12, 663–681 (2012)

12. Tran, D.H., Cheng, M.Y., Pham, A.D.: Using fuzzy clustering chaotic-based differential
evolution to solve multiple resources leveling in the multiple projects scheduling problem.
Alexandria Eng. J. 55(2), 1541–1552 (2016)

13. Jesus, M.J.D., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., et al.: Keel: a
software tool to assess evolutionary algorithms for data mining problems. Soft. Comput. 13
(3), 307–318 (2009)

Enhanced Differential Evolution with Self-organizing Map 317

http://dx.doi.org/10.1007/978-3-642-02319-4_21
http://dx.doi.org/10.1007/978-3-642-02319-4_21

14. García, S., Fernández, A., Luengo, J., Herrera, F.: A study of statistical techniques and
performance measures for genetics-based machine learning: accuracy and interpretability.
Soft. Comput. 13(10), 959–977 (2009)

15. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

16. Zhang, H., Zhou, A., Song, S., Zhang, Q., Gao, X., Zhang, J.: A self-organizing
multiobjective evolutionary algorithm. IEEE Trans. Evol. Comput. 20(5), 792–806 (2016)

318 D. Wu et al.

Similarity Measure for Patients
via A Siamese CNN Network

Fangyuan Zhao1,2, Jianliang Xu1(B), and Yong Lin3

1 College of Information Science and Engineering Ocean University of China,
Qingdao, China

XJL9898@OUC.EDU.CN
2 Weifang Public Security Bureau, Weifang, China
3 Weifang Power Supply Company, Weifang, China

Abstract. In the medical health field, assessing the similarities between
patients is a basic task. A suitable patient similarity measurement has
a very wide range of applications. For example, patient group identifica-
tion, comparative study of treatment methods, etc. The electronic health
records (EHRs) contain rich personal information of patient, which is
hierarchical, longitudinal, and sparse. Although there have been some
studies aimed at learning the similarities of patients from EHRs to solve
real medical problems, there still exist some problems. Many works lack
of effective patient representation. In addition, most of the research works
are limited to one or more specific diseases. However, in fact, many
diseases accompany with other diseases. In this case, the similarity of
patients with multiple diseases are ignored. In this paper, we designed a
siamese CNN network structure to learn patient expression while effec-
tively measure the similarity between patient pairs. The experimental
results show the effectiveness of this method.

1 Introduction

Electronic health records refer to the storage, management, transmission and
reproduction of medical records, including structured data and unstructured
data. Structured data is represented by tables and images. Unstructured data
mainly include discharge summary, pathography, doctor-patient communication
record, current medical history and other personalized information. In recent
years, the scale of electronic health records has been increasing sharply, and
the EHRs has become a valuable resource for medical tasks such as disease
prediction, disease analysis and auxiliary diagnosis. The information mining from
EHRs data gradually attracts a large number of researchers. However, due to the
existence of noise data, irregular data and longitudinal data, mining information
from EHRs data faces more challenges than the regular data mining task.

It is an important task in the research of clinical decision support and patient
population identification that how to give a clinically meaningful measure of
patient similarity through the patient’s EHRs. Case query based on patient
similarity can be a technical supplement for doctors. Based on this technology,
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 319–328, 2018.
https://doi.org/10.1007/978-3-030-05054-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_25

320 F. Zhao et al.

doctors can perform initial diagnosis of patients. Patient similarity can also be
used in patient identification and patient risk classification.

How to obtain the appropriate patient similarity has become a key prob-
lem in the patient similarity measurement system. The earlier patient similarity
measurement system uses the known metric formula to directly measure the
similarity of the patient vector, for example, using Euclidean distance [1], and
other methods to directly operate on the vector.

At current, widely used method is the patient similarity measurement system
based on metric learning. In order to rationally use the feedback information of
medical experts, the system transforms the patient similarity problem into a
supervised distance metric learning problem. However, many methods for mea-
suring the similarity of patients only consider the case of patient similarity under
one specific disease. It is not practical that only one disease is considered in many
researches. Therefore, we are committed to solving similar problems in patients
with multiple diseases. This paper designs a patient similarity label generation
method for patients with multiple diseases, and converts the patient similarity
measurement method into a multi-label classification problem.

In conclusion, the contribution of this paper is as follows:

• In this paper, a patient similarity label generation method is designed for
patients with multiple diseases, and the patient similarity measurement
method is transformed into a multi-label classification problem.

• In this paper, a deep siamese CNN structure is designed, which measures the
similarity between patient pairs while learning the representation of patients.

• In this paper, a number of experiments are designed to evaluate the perfor-
mance of the model. The experimental results confirm the effectiveness of the
method.

2 Related Work

In the field of measuring similar patients, there have been a lot of research works.
Our research work has been done on the basis of these works.

SimSVM algorithm [2] is proposed for patients similarity measure. The algo-
rithm uses 14 similarity measure indicators as input and the output predicts
corresponding category (survival time is longer than 12 months or not) and sim-
ilar degree. The used data set has a total of 30 patients and consists of 300
and 135 patient pairs for training and testing. The experimental results obtains
an accuracy of 66.7%. However, the size of this data set is relatively small, so
this result is not particularly convincing. A Local Spline Regression(LSR) based
similarity measurement was used to design a collaborative disease prediction
strategy [3]. The algorithm also integrates expert feedback information into the
framework to improve the accuracy of predictions.

Many studies have clustered patients to find similar patients. For example,
work [4] uses diagnose data to form different clusters, and then calculates the
distance between clusters instead of directly calculating the distance between

Similarity Measure for Patients via A Siamese CNN Network 321

patients. Sewitch, et al. [5] use the K-Means algorithm based on their responses
to the Patient- Physician Discordance Scales (PPDS) to divided the differ-
ent patients into subgroups. Eventually, they identified five different groups of
patients.

In addition, there are also a number of patients measure methods based on
deep learning. For example, work [6] uses a similarity measure method to find
similar patients based on CNN, and then based on similar patients performed
personalized disease prediction. The method only considers diagnosis concept
and treatment concept in EHRs as the patient’s characteristics to represent the
patient, and it integrates each patient’s visiting data together to form a patient
matrix representation with time characteristics. Finally, a matching matrix is
used to calculate the distance between each patient pair. There is another sim-
ilar work [7] that uses patient’s diagnostic concepts and visits information to
represent a patient. With their method, each patient is represented as a matrix
with time characteristics. The above two methods all take into account the time
of different medical concepts and patient visits in the EHRs. However, their
methods are limited to patients with single disease, and the patients with a
variety of diseases have been discarded directly.

3 Methodology

In this section, we first obtain each patient’s matrix representation by learning
the context representation of each medical concept. And then design a patient
label representation method that takes into account of multiple label similar-
ities. In next step, we design a siamese CNN neural network to measure the
similarity between patient pairs and describes the optimization process of this
neural network. The frame diagram of our method is shown in Fig. 1.

Classification

Subnetwork Subnetwork

Paticent A Paticent B

Similarity Label

Fig. 1. The frame diagram of our patient similarity measurement method

322 F. Zhao et al.

3.1 Patient Representation

First, we obtain the context embedding of each medical concept from each
patient’s EHR, which provides more semantic information than one-hot rep-
resentation. For each patient, we get a detailed representation of the patient by
concatenating the embedding of all medical concepts orderly that appear in the
EHR. The patient representation contains the patient’s symptom information,
treatment information, disease and diagnostic information, and body part infor-
mation. Through skip-gram neural network [8], each medical concept is mapped
to a low-dimensional dense vector representation. Then concatenate all medical
concepts of a patient into a matrix, which is the patient’s matrix representation.

3.2 Patient Pair Label Similarity Representation

We use patient’s disease and diagnostic information as the patient’s label, and
the similarity between patient pairs is measured by whether or not the labels are
similar. In addition, we consider that a patient may suffer multiple diseases and
the disease label between two patients may be partially similar. We use one-hot
encoding method to draw with each patient’s label. First, we get 197 diseases
and diagnoses of all patients in the data set. Each patient’s disease label is then
represented as a vector of 197 dimensions. The value of each position in the
vector is 1 or 0. A value of 0 indicates that the patient does not suffer from a
certain disease, and a value of 1 indicates that the patient has a certain disease.
We perform the XOR logical operation on the labels of each patient pair in a
bit-by-bit manner. That is, if the labels are the same, the corresponding value is
1. Otherwise, the corresponding value is 0. The label similarity of each patient
pair is obtained and the schematic diagram is shown in Fig. 2.

Patient A

Patient B

1 0 0 1 1 0 0 ...

0 0 1 1 0 0 1 ...

Similarity Label 0 1 0 1 0 1 0 ...

XOR

=

Fig. 2. The schematic diagram of similarity label generation

3.3 Patient Similarity Measure Method

We propose a deep learning model to assess the similarities between patient pairs.
The siamese network is used to evaluate the similarity of two input samples.
It has two branches with exactly the same structure, and these two branches

Similarity Measure for Patients via A Siamese CNN Network 323

share weights. They receive two inputs x1 and x2 respectively, and then learn
the characteristics of the subnetworks. Calculate the similarity of two output
vectors by some distance measure. However, we don’t want to calculate the
distance between two samples, so we have turned this similarity into a multi-
label classification problem, so the last part of our model is the fully connected
layer and the classification layer. In our structure, we use Convolutional Neural
Network (CNN) to process patient data. The transformed siamese network is
shown in Fig. 3.

Our deep learning parameters are set as follows: the width of the convolu-
tion filter is 3, and the number of convolution filters takes on 32, 64, 64, 64
respectively. A max-pooling is added after each convolution operation. We use
the stochastic gradient descent algorithm to train the parameters of the model.
Each time using 100 examples as the shuffled min-batch to train the model, and
the model is trained a total of 1000 times. Considering the over-fitting problem,
we added a dropout normalization with dropout rate setting 0.5 after the fully
connected layer of the subnetwork. In each subnetwork, the last two layers are
two full connected layers, where the neurons number of per layer is 128.

After the subnetwork, the first step is concatenating two vectors from two
subnetworks, After that, a fully connected layer is followed, which has 128 neu-
rons. The last layer is a classification layer, and the number of neurons is the
total number of labels. At the same time, the last layer is activated with sigmoid
function. The following paragraphs describe the details of each kind of operation.

patient A

patient B

shared network fully and classification layer

Fig. 3. The schematic diagram of siamese CNN neural network

3.4 Optimization

For different tasks, we need to use different loss function to train model. Taking
the classification problem as an example, the most commonly used loss function is

324 F. Zhao et al.

the cross entropy loss function. In our task, we turned the patient-pair similarity
problem into a multi-label classification problem. So we use the sigmoid to get
the probability value for each output of label, and then use the binary cross
entropy as the loss function. The binary cross entropy loss function has the
following formula:

loss(y, ỹ) = −
∑

i

[yi ∗ logỹi + (1 − yi) ∗ log(1 − ỹi))] (1)

where y indicates target label and the ỹ represents the output of siamese network.
The yi indicates the ith label in the multiple labels and similarly the ỹi represents
the ith output probability that the patients pairs share the ith disease.

All parameters of the model, including word embedding, CNN convolution
filters, full connectivity layers and other parameters are all trained by a stochas-
tic gradient descent algorithm. Specifically, we use the RMSprop [9,10] on all
parameters during the training phase.

4 Evaluation

In this section, we use a real medical EHRs data set to evaluate our framework.
At first, we introduce the data set used, and then give a detailed description on
experimental settings. In addition, we also show the result and have a discussion
on our model. All the experiments are conducted on a machining of Windows 7
with Intel (R) Core(TM) i5-4460 with 3.20 GHZ CPU and 16.0 GB memory. It
takes around 15 h to train and validate the detection model.

4.1 Data Set

The dataset we used is a competition dataset that comes from the China Con-
ference on Knowledge Graph and Semantic Computing(CCKS)2017 [11]. There
are a total of 300 electronic medical records in the training set. The medical con-
cept in this dataset has been manually annotated. There are 5 types of medical
concepts, which are disease and diagnosis, inspection and inspection, symptoms
and signs, body part and treatment. We counted the total number of each type
of medical concept in the data set. The statistical results are shown in Table 1.

From Table 1, we can get the number of each medical concept, of which the
number of diseases and diagnoses is 197. This shows that our model is a multi-
label classification model, in which the number of label is 197. In fact, patient
representation is the different combinations of these medical concept. Since our
model is to classify the patient pairs similarities, we need to combine these 300
EHRs data in pairs. Eventually 44,850 patient pair records were obtained. We
randomly split 80% of data as a training set and the remaining data as a test
set. All evaluation results are obtained on the test set.

Similarity Measure for Patients via A Siamese CNN Network 325

Table 1. Summary of EHRs dataset for different medical concepts

Medical concept Number

Disease and diagnosis 197

Inspection and inspection 343

Symptoms and signs 86

Body part 885

Treatment 89

4.2 Experimental Settings

Medical Concept Embedding: We use word embedding to represent each
medical concept in EHRs as a vector. In order to learn the embedding of each
medical concept, we use bag of words with window size 5 and the word frequency
is not less than 2. The Embedding vector dimensions are setted to 20, 40, 60, 80,
100,120,140,160,180 and 200. We train the model under different vector dimen-
sions, and based on the results on test set, we finally select 60 as the dimension
of each medical concept. Figure 4 shows the performance of the model under dif-
ferent dimensions. From this figure, we can see that the embedding size have a
slight influence on model’s performance on test set. Comparing the experimental
results, the model has the best performance when the embedding size is 60.

Fig. 4. Model’s accuracy on different embedding size

Similarity Threshold for Each Label: For multi-label classification task,
we use sigmoid active function to process the output of the last layer. However,
we need to choose a threshold for each label. When the label’s output value is

326 F. Zhao et al.

Fig. 5. The best threshold for each label

greater than the threshold, it means that the patient pair is consistent with the
disease (either has same disease or have no disease). When the output of the label
value is less than the threshold, it indicates that the patient pair is inconsistent
with the disease (ie, one suffers the disease and the other one does not). We
pre-set 9 possible thresholds that are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.
As for every label, we try these 9 thresholds, and select the one with the highest
matthews correlation coefficient (MCC) [12,13] for binary classes as the label’s
threshold. The MCC is in essence a correlation coefficient value between -1 and
+1. A coefficient of +1 represents a perfect prediction, 0 an average random
prediction and -1 an inverse prediction. The MCC can be calculated directly
from the confusion matrix using the formula:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

In this equation, TP is the number of true positives, TN the number of true
negatives, FP the number of false positives and FN the number of false negatives.
If any of the four sums in the denominator is zero, the denominator can be
arbitrarily set to one; this results in a Matthews correlation coefficient of zero,
which can be shown to be the correct limiting value.

The threshold for each label is shown in Fig. 5. It can be concluded that
different labels have different thresholds. Most labels have a threshold above 0.5
and only a few labels have a threshold below 0.5.

Similarity Measure for Patients via A Siamese CNN Network 327

4.3 Result and Discussion

In the multi-classification problem, the overall classification accuracy is very
important, but the classification accuracy of single labels is also a problem that
we need to care about. Therefore, for each label, we calculate the accuracy of the
label on the test set as shown in Fig. 6. We can see that most of the labels have
a classification accuracy over 95%. A small part of labels’ accuracy is between
90% and 95%. This shows that our model can effectively classify most of the
labels, the best label classification can even reach 100%.

Fig. 6. The final classification accuracy for each label

5 Conclusion

Patient similarity measurement is a fundamental issue in the field of disease
health. It has a wide range of applications, such as disease prediction, disease
evolution, and selection of treatment methods. However, due to the complexity
of the patient’s condition and medical data, extracting effective features from
the EHRs faces a great challenge. Most of the patients measure method ignores
timeliness or neglects the patient’s complicated conditions of multiple diseases.
Therefore, a deep learning network structure based on siamese CNN is designed
to automatically learn the patient’s vectorized representation. Based on this rep-
resentation, the patients similarity degree was effectively classified. We evaluate
the impact parameters of multiple sets of experimental evaluation models and
showed the accuracy of the classification for each label. Experimental results
show that the accuracy of most label is more than 95% and prove this method
is effective.

328 F. Zhao et al.

References

1. Wang, L., Zhang, Y., Feng, J.: On the Euclidean Distance of Images. IEEE Com-
puter Society, Washington (2005)

2. Chan, L., Chan, T., Cheng, L., Mak, W.: Machine learning of patient similarity:
a case study on predicting survival in cancer patient after locoregional chemother-
apy. In: 2010 IEEE International Conference on Bioinformatics and Biomedicine
Workshops (BIBMW), pp. 467–470. IEEE (2010)

3. Wang, F., Hu, J., Sun, J.: Medical prognosis based on patient similarity and expert
feedback. In: 2012 21st International Conference on Pattern Recognition (ICPR),
pp. 1799–1802. IEEE (2012)

4. Henao, R., Murray, J., Ginsburg, G., Carin, L., Lucas, J.E.: Supplementary Mate-
rial to Patient Clustering With Uncoded Text in Electronic Medical Records (2012)

5. Sewitch, M.J., Leffondre, K., Dobkin, P.L.: Clustering patients according to health
perceptions: relationships to psychosocial characteristics and medication nonad-
herence. J. Psychosom. Res. 56(3), 323–332 (2004)

6. Suo, Q., et al.: Personalized disease prediction using a CNN-based similarity
learning method. In: 2017 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM) (2017)

7. Zhu, Z.: Measuring patient similarities via a deep architecture with medical concept
embedding. In: 2016 IEEE 16th International Conference on Data Mining (ICDM),
pp. 749–758. IEEE (2016)

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

9. Funk, S.: RMSprop Loses to SMORMS3-Beware The Epsilon! (2015)
10. Khan, M.E., Liu, Z., Tangkaratt, V., Gal, Y.: Vprop: Variational inference using

RMSprop, arXiv preprint arXiv:1712.01038 (2017)
11. China conference on knowledge graph and semantic computing. http://www.

ccks2017.com/?page id=51
12. Matthews correlation coefficient accuracy. https://en.wikipedia.org/wiki/

Matthews correlation coefficient
13. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H.: Assessing the

accuracy of prediction algorithms for classification: an overview. Bioinformatics
16(5), 412–424 (2000)

http://arxiv.org/abs/1712.01038
http://www.ccks2017.com/?page_id=51
http://www.ccks2017.com/?page_id=51
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient

A New Artificial Bee Colony Algorithm
for Solving Large-Scale Optimization Problems

Hui Wang1,2(&), Wenjun Wang3, and Zhihua Cui4

1 Jiangxi Province Key Laboratory of Water Information Cooperative Sensing
and Intelligent Processing, Nanchang Institute of Technology,

Nanchang 330099, China
huiwang@whu.edu.cn

2 School of Information Engineering, Nanchang Institute of Technology,
Nanchang 330099, China

3 School of Business Administration, Nanchang Institute of Technology,
Nanchang 330099, China

wangwenjun881@126.com
4 Complex System and Computational Intelligence Laboratory,

Taiyuan University of Science and Technology, Taiyuan 030024, China
zhihuacui@gmail.com

Abstract. Artificial bee colony (ABC) is an efficient global optimizer, which
has bee successfully used to solve various optimization problems. However,
most of these problems are low dimensional. In this paper, we propose a new
multi-population ABC (MPABC) algorithm to challenge large-scale global
optimization problems. In MPABC, the population is divided into three sub-
populations, and each subpopulation uses different search strategies. During the
search, all subpopulations exchange there best search experiences to help
accelerate the search. Experimental study is conducted on ten global opti-
mization functions with dimensions 50, 100, and 200. Results show that
MPABC is better than three other ABC variants on all dimensions.

Keywords: Artificial bee colony � Swarm intelligence � Multi-population
Global optimization � Large-scale optimization

1 Introduction

Many real world problems can be formulated to optimization problems over continuous
or discrete search space. Compared to traditional mathematical optimization tech-
niques, bio-inspired optimization methods do not consider whether the optimization
problems are continuous or differentiable. So, they can be easily used to solve complex
optimization problems.

In the past decades, many bio-inspired optimization method have been proposed,
such as genetic algorithms (GAs) [1], simulated annealing (SA) [2], particle swarm
optimization (PSO) [3], ant colony optimization (ACO) [4], artificial bee colony
(ABC) [5], and others [6, 7]. Although these algorithms have been achieved success on
many low-dimensional optimization problems, they suffer from the curse of

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 329–337, 2018.
https://doi.org/10.1007/978-3-030-05054-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_26

dimensionality. It means that their optimization performance deteriorates quickly with
increasing of dimensions. To tackle this issue, some good algorithms were proposed in
the literature [8–15].

ABC is one of the most popular optimization algorithm, which is inspired by the
social behaviors of bees [16]. Since the introduction of ABC, it has been used to solve
various optimization problems, but most of these problems are low-dimensional. To
challenge large-scale global optimization problems, this paper proposes a new multi-
population ABC (MPABC). Compared to the original ABC, MPABC employs three
subpopulations, and each one use different search strategies. Ten benchmark opti-
mization problems with dimensions 50, 100, and 200 are utilized in the experiments.
Computational results show that MPABC is superior to three other ABC algorithms.

The rest of the paper is organized as follows. In Sect. 2, the original ABC is briefly
described. Our approach MPABC is proposed in Sect. 3. Benchmark functions, results
and discussions are presented in Sect. 4. Finally, this work is concluded in Sect. 5.

2 Artificial Bee Colony

In ABC, three are three different kinds of bees, employed, onlooker and scout. The
number of employed bees is equal to the onlooker bees. The search of ABC is com-
pleted by different types of bees. Firstly, the employed bees search the neighborhood of
each food source (solution) and find new better solutions. Secondly, the onlooker bees
select some good solutions and search their neighborhoods to find better solutions. The
scout bees randomly generate new solutions to replace the trapped ones.

For each solution Xi, an employed bee searches its neighborhood and find a new
solution Vi [16].

vijðtÞ ¼ xijðtÞþ/ij xijðtÞ � xkjðtÞ
� �

; ð1Þ

where j is a random integer between 1 and D; Xk is randomly selected from the
population (i 6¼ j); t is the iteration index; /ij is a random value uniformly distributed
with the range [− 1, 1]. If Vi is better than its parent Xi, then replace Xi with Vi;
otherwise keep Xi unchangeable.

When all employed bees complete the search, the selection probability pi for each
food source Xi is calculated by [16]:

pi ¼ fitiPN
i¼1 fiti

; ð2Þ

where fiti is the fitness value of Xi. When a solution Xi is selected, an onlooker bee
searches the neighborhood of Xi and obtain a new food source Vi according to Eq. (1).
Like the employed bees, the onlooker bees also use the same method to compare Vi

with Xi. If Vi is better than its parent Xi, then replace Xi with Vi; otherwise keep Xi

unchangeable.

330 H. Wang et al.

If a solution Xi cannot be improved by employed or onlooker bees in limit itera-
tions, it seems that Xi may be trapped into local minima. Then, a scout bee randomly
generates a solution to replace Xi.

3 Proposed Approach

3.1 Multi-population Technique

In our previous study [17], we presented a multi-strategy ensemble ABC (MEABC), in
which each food source is assigned a search strategy selected from a strategy pool.
Results proved that ABC with two or more search strategies are better than that with a
single strategy. Inspired by MEABC, we propose a new multi-population ABC
(MPABC), which consists of three subpopulations, Subpop1, Subpop2, and Subpop3.
Each subpopulation uses different search strategies to find new candidate solutions.
In MPABC, Subpop1, Subpop2, and Subpop3 employ the original ABC, gbest-guided
ABC (GABC) [18], and modified ABC (MABC) [19], respectively. Figure 1 shows the
multi-population technique used in MPABC. As seen, all subpopulations share their
best search experiences during the search.

Fig. 1. The multi-population technique used in MPABC.

A New ABC Algorithm for Solving Large-Scale Optimization Problems 331

In the first subpopulation (Subpop1), MPABC uses the original ABC to execute the
iteration and try to find new solutions. In the second subpopulation (Subpop2),
MPABC employs GABC to execute the iteration and generate offspring. GABC and
ABC are very similar, and they use the same framework and different search strategies.
In GABC, a new search strategy incorporated with the best search experience is defined
as follows.

vij ¼ xij þ/ij xij � xkj
� �þuij gbestj � xij

� �
; ð3Þ

where uij is a random number within [0, C], and C is a constant value. C = 1.5 is
suggested in [18].

In the third subpopulation (Subpop3), MPABC uses the MABC to execute the
iteration and find new solutions. MABC is inspired by the differential evolution
(DE) mutation, and it is defined by [19]:

vij ¼ gbestj þ/ij xaj � xbj
� �

; ð4Þ

where Xa and Xb are two randomly selected solutions (a 6¼ b 6¼ i), and gbest is the
global best solution in the Subpop3.

3.2 Information Exchange

For multi-population technique, information exchange is an important operation, which
can greatly affect the performance of algorithm. In MPABC, we use a new information
exchange method. Assume that the population size is N. Each subpopulation consists of
n food sources (solutions), and n = N/3. Every m fitness evaluations, all subpopulations
exchange their best search experiences.

First, assume that the best solutions of Subpop1, Subpop2, and Subpop3 are Best1,
Best2, and Best3, respectively. The best one Gbest is selected from Best1, Best2, and
Best3 (please see Fig. 1). Then, we use Gbest to replace the 20%*n solutions in each
subpopulation. For Subpop1, we randomly selected 20%*n solutions, and Gbest is
assigned to these solutions. It is hopeful that Gbest can accelerate the search on large-
scale optimization problems.

4 Experimental Study

4.1 Large-Scale Global Optimization Problems

There are ten large-scale global optimization problems used in the experiments.
Problems F1-F6 were chosen from the CEC 2008 Special Session on large scale global
optimization [20], and the rest problems F7-F10 were taken from the Special Issue of
Soft Computing on large scale continuous optimization problems [21]. Table 1 present
a brief description of the ten test problems. In the experiments, the problem dimension
(D) is set to 50, 100, and 200.

332 H. Wang et al.

4.2 Parameter Settings

This paper aims to use an improved ABC to challenge large-scale global optimization
problems. Although several good bio-inspired optimization algorithms have been
proposed to solve large-scale optimization problems, we only compare our approach
MPABC with some ABC variants on the test suite. The compared algorithms are listed
as follows.

• ABC;
• GABC [18];
• MABC [19];
• Our approach MPABC.

For all algorithms, the same parameter settings are used for common parameters.
In ABC, GABC, MABC, and MPABC, the maximum number of fitness evaluations
(MaxFEs) and population size (N), and limit are set to 5000*D, 60, and 100, respec-
tively. In GABC and MPABC, the parameter C is equal to 1.5 [18]. In MABC and
MPABC, the parameter p is set to 0.7 [19]. The parameters m used in MPABC is set to
500 based on our empirical study. Because the population size N is 60, the size (n) of
each subpopulation in MPABC is 20.

Each run stops when the maximum number of fitness evaluations is achieved.
Throughout the experiments, the mean errors of the best solution found in the 25 runs
are reported (For a solution X, the error value is calculated by F(X)-F(Xo), where Xo is
the global optimum of the problem).

4.3 Computational Results

Tables 2 presents the computational results of MAPBC, ABC, GABC, and MACB on
problems with D = 50, where “Mean Error” indicates the mean error values between
the best solution found so far and the global optimum. Compared to ABC, MPABC
achieves better solutions on 8 problems. For the rest of 2 problems, both of them can
converge to the global optimum. MPABC significantly improve the performance of

Table 1. Ten large-scale global optimization problems used in the experiments.

Problems Search range Global optimum

Shifted Sphere Problem (F1) [−100, 100] −450
Shifted Schwefel’s Problem 2.21 (F2) [−100, 100] −450
Shifted Rosenbrock’s Function (F3) [−100, 100] 390
Shifted Rastrigin’s Function (F4) [−5, 5] −330
Shifted Griewank’s Function (F5) [−600, 600] −180
Shifted Ackley’s Function (F6) [−32, 32] −140
Shifted Schwefel’s Problem 2.22 (F7) [−10, 10] 0
Shifted Schwefel’s Problem 1.2 (F8) [−65.536, 65.536] 0
Shifted Extended f10 (F9) [−100, 100] 0
Shifted Bohachevsky (F10) [−15, 15] 0

A New ABC Algorithm for Solving Large-Scale Optimization Problems 333

ABC on F4, F6, F7, and F9. GABC and MPABC find the same solutions on two
problems F4 and F5. For the rest of 8 problems, MPABC is better than GABC. MABC
and MPABC can find the global optimum on 4 problems F1, F4, F5, and F7, while
MPABC outperforms MABC on the rest of 6 problems.

Table 3 gives the comparison results of MAPBC, ABC, GABC, and MACB on
problems with D = 100. When the dimension increases to 100, ABC cannot converge
to F1 and F10, and MPABC outperforms ABC on all problems. Especially for prob-
lems F1, F4, F5, F6, F7, F9, and F10, MPABC is much better than ABC. GABC
performs better than MPABC on F3, but MPABC outperforms GABC on the rest of 9
problems. GABC falls into local minima on F1, F4, F5, F7 and F10, while our
approach can find the global optimum. MABC is better than ABC and GABC.
Both MABC and MPABC achieve the same results on F4 and F5. For the rest of 8
problems, MPABC outperforms MABC.

Table 4 presents the computational results of MAPBC, ABC, GABC, and MACB
on problems with D = 200. As the dimension increases to 200, MPABC still converges
to the global optimum on 4 problems F1, F4, F7, and F10. MABC can find the global
optimum on only one problem F4. For ABC and GABC, they fall into local minima on
all problems. MABC is slightly better than MPABC on F5 and F6, while MPABC
outperforms MABC on 7 problems. MPABC achieves much better solutions than ABC
and GABC on all problems.

In order to identify the significant differences between two algorithms, Wilcoxon
test is conducted [22]. Tables 5, 6, and 7 present the p-values of applying Wilcoxon
test among MPABC and other three ABC variants for D = 50, 100, and 200, respec-
tively. The p-values below 0.05 (the significant level) are shown in bold. As shown,
MPABC is significantly better than ABC, GABC, and MABC for D = 50 and 100. For
D = 200, MPABC is only significantly better than ABC and GABC.

Table 2. Computation results for D = 50.

Problems ABC GABC MABC MPABC
Mean error Mean error Mean error Mean error

F1 0.00E+00 3.34E−25 0.00E+00 0.00E+00
F2 1.02E+02 6.77E+01 2.30E+01 3.21E+00
F3 4.50E+00 3.50E+00 5.35E+00 2.02E+00
F4 1.22E+00 0.00E+00 0.00E+00 0.00E+00
F5 5.73E−13 0.00E+00 0.00E+00 0.00E+00
F6 2.46E−06 1.17E−12 6.74E−14 5.86E−14
F7 7.01E−09 1.04E−13 0.00E+00 0.00E+00
F8 1.52E+04 1.34E+04 1.45E+04 8.08E+03
F9 2.77E+00 5.39E−02 8.48E−04 5.13E−05
F10 0.00E+00 3.31E−26 1.81E−36 0.00E+00

334 H. Wang et al.

Table 3. Computation results for D = 100.

Problems ABC GABC MABC MPABC
Mean error Mean error Mean error Mean error

F1 5.20E−15 6.66E−24 4.77E−30 0.00E+00
F2 1.34E+02 1.20E+02 5.66E+01 1.35E+01
F3 1.47E+01 1.04E+01 4.05E+01 1.43E+01
F4 4.54E+00 1.03E−13 0.00E+00 0.00E+00
F5 2.54E−13 7.33E−16 0.00E+00 0.00E+00
F6 6.04E−06 3.64E−12 1.82E−13 1.37E−13
F7 2.07E−08 7.52E−13 6.96E−17 0.00E+00
F8 5.10E+04 5.88E+04 5.68E+04 3.14E+04
F9 7.46E+00 2.33E−01 7.65E−03 5.24E−05
F10 2.57E−14 8.88E−25 1.94E−30 0.00E+00

Table 4. Computation results for D = 200.

Problems ABC GABC MABC MPABC
Mean error Mean error Mean error Mean error

F1 8.93E−14 7.27E−23 5.76E−28 0.00E+00
F2 1.54E+02 1.51E+02 8.90E+01 3.58E+01
F3 1.57E+01 4.35E+01 2.97E+01 1.50E+01
F4 9.86E+00 2.86E−12 0.00E+00 0.00E+00
F5 7.67E−13 2.40E−15 1.11E−16 1.48E−16
F6 9.87E−06 1.08E−11 4.19E−13 5.43E−13
F7 8.65E−08 3.35E−12 3.75E−15 0.00E+00
F8 1.90E+05 2.13E+05 2.01E+05 1.14E+05
F9 1.75E+01 6.76E−01 3.86E−02 4.08E−04
F10 3.02E−13 1.29E−23 5.33E−29 0.00E+00

Table 5. Wilcoxon test between MPABC and the other three ABC variants for D = 50.

MPABC vs. p-values

ABC 1.17E−02
GABC 1.17E−02
MABC 2.77E−02

Table 6. Wilcoxon test between MPABC and the other three ABC variants for D = 100.

MPABC vs. p-values

ABC 5.06E−03
GABC 4.69E−02
MABC 1.17E−02

A New ABC Algorithm for Solving Large-Scale Optimization Problems 335

5 Conclusions

In the past decade, many different ABC algorithms have been proposed to various
optimization problems. However, most of these problem are low-dimensional. To
challenge large-scale optimization problems, this paper presents an improved ABC
variant (called MPABC), which employs a new multi-population. MPABC consists of
three subpopulations, and they use ABC, GABC, and MABC to execute iterations and
generate new solutions, respectively. During the search, each subpopulation exchange
their best search experiences with others. To validate the performance of MPABC, ten
large-scale global optimization problems with dimensions 50, 100, and 200 are utilized
in the experiments.

Computational results show that MPABC is superior to ABC, GABC, and MABC
on most test problems. As the dimension increases, the performance of ABC, GABC,
and MABC is seriously affected, while MPABC still can achieve good solutions. It
demonstrates that the proposed multi-population technique can effectively combine the
advantages of ABC, GABC, and MABC during the search.

In this paper, we only test MPABC on D = 50, 100, and 200. For problems with
larger scale (such as D = 500, 100, and 2000), we did not investigate the effectiveness
of MPABC. Moreover, MPABC introduces two new parameters m and n. The first
parameter determine the exchange gap. Different m may affect the convergence speed.
The second parameter is the size of subpopulation. In MPABC, we assume that all
subpopulations have the same size. For different sizes of subpopulations, we have not
studied its effects. The above issues will be our research directions in the future work.

Acknowledgement. This work was supported by the Science and Technology Plan Project of
Jiangxi Provincial Education Department (No. GJJ170994), the National Natural Science
Foundation of China (No. 61663028), the Distinguished Young Talents Plan of Jiangxi Province
(No. 20171BCB23075), the Natural Science Foundation of Jiangxi Province (No. 20171BAB-
202035), and the Open Research Fund of Jiangxi Province Key Laboratory of Water Information
Cooperative Sensing and Intelligent Processing (No. 2016WICSIP015).

References

1. Schmitt, L.M.: Theory of genetic algorithms. Theor. Comput. Sci. 259(1–2), 1–61 (2001)
2. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science

220(4598), 671–680 (1983)
3. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE

International Conference on Neural Networks, pp. 1942–1948 (1995)

Table 7. Wilcoxon test between MPABC and the other three ABC variants for D = 200.

MPABC vs. p-values

ABC 5.06E−03
GABC 5.06E−03
MABC 8.58E−02

336 H. Wang et al.

4. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26, 29–41 (1996)

5. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
report-TR06, Erciyes University, engineering Faculty, Computer Engineering Department
(2005)

6. Wang, H., et al.: Firefly algorithm with neighborhood attraction. Inf. Sci. 382–383, 374–387
(2017)

7. Cui, Z., Sun, B., Wang, G., Xue, Y., Chen, J.: A novel oriented cuckoo search algorithm to
improve DV-Hop performance for cyber-physical systems. J. Parallel Distrib. Comput. 103,
42–52 (2017)

8. Wang, H., Wu, Z., Rahnamayan, S.: Enhanced opposition-based differential evolution for
solving high-dimensional continuous optimization problems. Soft Comput. 15(11), 2127–
2140 (2011)

9. Brest, J., Maučec, M.S.: Self-adaptive differential evolution algorithm using population size
reduction and three strategies. Soft Comput. 15(11), 2157–2174 (2011)

10. Long, W., Jiao, J., Liang, X., Tang, M.: Inspired grey wolf optimizer for solving large-scale
function optimization problems. Appl. Math. Model. 60, 112–126 (2018)

11. LaTorre, A., Muelas, S., Peña, J.M.: A comprehensive comparison of large scale global
optimizers. Inf. Sci. 316, 517–549 (2015)

12. Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Metaheuristics in large-scale global continues
optimization: a survey. Inf. Sci. 295, 407–428 (2015)

13. Mohapatra, P., Das, K.N., Roy, S.: A modified competitive swarm optimizer for large scale
optimization problems. Appl. Soft Comput. 59, 340–362 (2017)

14. Ali, A.F., Tawhid, M.A.: A hybrid particle swarm optimization and genetic algorithm with
population partitioning for large scale optimization problems. Ain Shams Eng. J. 8(2), 191–
206 (2017)

15. Hu, X.M., He, F.L., Chen, W.N., Zhang, J.: Cooperation coevolution with fast interdepen-
dency identification for large scale optimization. Inf. Sci. 381, 142–160 (2017)

16. Akay, B., Karaboga, D.: A modified Artificial bee colony algorithm for real-parameter
optimization. Inf. Sci. 192, 120–142 (2012)

17. Wang, H., Wu, Z.J., Rahnamayan, S., Sun, H., Liu, Y., Pan, J.S.: Multi-strategy ensemble
artificial bee colony algorithm. Inf. Sci. 279, 587–603 (2014)

18. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function
optimization. Appl. Math. Comput. 217, 3166–3173 (2010)

19. Gao, W., Liu, S.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39, 687–
697 (2012)

20. Tang, K., et al.: Benchmark functions for the CEC’2008 special session and competition on
large scale global optimization. Nature Inspired Computation and Applications Laboratory,
USTC, China (2007)

21. Herrera, F., Lozano, M., Molina, D.: Test suite for the special issue of Soft Computing on
scalability of evolutionary algorithms and other metaheuristics for large scale continuous
optimization problems. Technical report, University of Granada, Spain (2010)

22. Wang, H., Rahnamayan, S., Sun, H., Omran, M.G.: Gaussian bare-bones differential
evolution. IEEE Trans. Cybern. 43(2), 634–647 (2013)

A New ABC Algorithm for Solving Large-Scale Optimization Problems 337

Implementation and Optimization
of Multi-dimensional Real FFT

on ARMv8 Platform

Xiao Wang1,2, Haipeng Jia1(B), Zhihao Li1,2, and Yunquan Zhang1

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

{wangxiao17s,jiahaipeng,lizhihao,zhangyunquan}@ict.ac.cn
2 School of Computer and Control Engineering, University of Chinese

Academy of Sciences, Beijing, China

Abstract. Fourier Transform is one of the most critical algorithms, and
is applied in a wide range of fields like signal processing and data com-
pression. In real world applications, such as image compression (JPEG),
Fourier Transform is concentrated in processing real number input. These
transforms are called real DFT (real discrete fourier transform) in this
paper. Thus it is critical to optimize real DFT for specific platforms.
In this paper, we implement 1D and 2D real DFT on ARMv8 platform
which is the flagship architecture of ARM. Real DFT kinds implemented
and optimized include R2HC, HC2R, DHT, DCTI-IV, DSTI-IV and are
especially optimized when input size is 2q3n5m. In order to achieve high
performance, optimization is carried out in following aspects: (1) Reduc-
tion of the computation complexity of real DFT. (2) Implementation of
high performance 1D complex DFT algorithm to support real DFT. (3)
For the 2D real DFT, we propose a cache-aware blocking approach to
improve cache performance. Experimental results show that: Compared
with FFTw 3.3.7, 1D-Float DFT gains 1.52x speedup in average across
all real DFT kinds, maximum speedup reaches 1.79x; 1D-Double DFT
gains 1.34x speedup in average across all real DFT kinds, maximum
speedup reaches 1.61x; 2D-Float DFT gains 1.41x speedup in average
across all real DFT kinds, maximum speedup reaches 1.70x; 2D-Double
DFT gains 1.10x speedup across all real DFT kinds, maximum speedup
reaches 1.25x.

Keywords: Real Fast Fourier Transform · Program optimization
ARMv8

1 Introduction

Fourier transform has been applied widely across various fields including signal
processing and data compression [1,2]. On one hand, input of most real world
applications is of real number format, such as pixel value or super parameters

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 338–353, 2018.
https://doi.org/10.1007/978-3-030-05054-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_27

Implementation and Optimization of Multi-dimensional Real FFT 339

of neural network [5–7], On the other hand, with thriving of ARM ecosys-
tem, ARMv8 platform is being promoted to server market, computation effi-
ciency is becoming critical in ARM platforms. Therefore, a high performance real
number discrete fourier transform library on ARMv8 platform is of paramount
importance.

In this paper, we implement and optimize a high performance 1D and 2D
real DFT library using Cooley-Tukey FFT algorithm on ARMv8 platform.
Implemented real DFT kinds include R2HC, HC2R, DHT, DCTI-IV, DSTI-IV.
2q3n5m computation size is especially optimized. In order to achieve high perfor-
mance, challenges need to be coped: (1) Diversity of real DFT brings difficulties.
Different definitions of real DFT bring challenges to the choice of optimization
approaches. (2) Real DFT depends on complex DFT. So the first step of develop-
ing real DFT is to develop complex DFT with high performance. Although there
are various algorithms have been proposed for FFT, developing a high perfor-
mance FFT library on new hardware still is a challenging work. (3) Architecture
exploration of ARMv8 platform. Although there are already some libraries have
been developed on ARM architecture, few optimization techniques for FFT on
ARMv8 platform is recorded. This work explores utilization of SIMD instruc-
tions and registers besides methods for tuning cache performance.

As a summary, our contributions are focused on addressing following chal-
lenges: (1) We first summarize and abstract real DFT optimization algorithms
into an unified two reduction form. With benefits of this, optimizations on real
DFT are of an unified form. Meanwhile, we reduce original real DFT to less com-
putational intensive transforms by taking advantage of symmetry of real DFT.
(2) We implement and optimize 1D Cooley-Tukey complex FFT algorithm with
high performance on ARMv8 platform through re-constructing butterfly net-
work, simplifying butterfly calculations and using SIMD assembly instructions.
(3) For 2D real DFT, we propose a cache-aware algorithm for ARMv8 platform
to improve cache performance. After adopting these optimization techniques,
high performance is obtained.

Because there is only few libraries support ARMv8 platform, and FFTw’s
excellent performance across all platforms, FFTw 3.3.7 is selected as our compar-
ison baseline. Although ARM Performance Library implements complex DFT
on ARMv8 CPUs, real DFT is still not supported yet. Experimental results
show that: Compared with FFTw 3.3.7, 1D-Float DFT achieves around 1.52x
speedup in average across all real DFT kinds, maximum speedup reaches 1.79x;
1D-Double DFT gains speedup 1.34x in average across all real DFT kinds, max-
imum speedup reaches 1.61x; 2D-Float DFT achieves 1.41x speedup in average
across all real DFT kinds, maximum speedup reaches 1.70x; 2D-Double achieves
1.10x speedup across all real DFT kinds, maximum speedup reaches 1.25x.

The rest of this paper is organized as following: Sect. 2 summarizes related
works; Sect. 3 introduces details of optimization of real DFT; Sect. 4 presents
details of implementation and optimization of 1D complex DFT; Sect. 5 intro-
duces 2D cache-aware algorithm; Sect. 6 analyzes experimental results; summary
and future work considerations are presented in Sect. 7.

340 X. Wang et al.

2 Related Work

There are a lot researches on efficient real DFT algorithms. Two approaches
mentioned in [3] are complex DFT based approaches and approach of customiz-
ing real DFT computation within every FFT stage. For the sake of diversity of
real DFT and code size, a stage level customized optimization is not practical
besides poor extensibility for newly added real DFT kind.

Therefore, in this paper, we implement real DFT based on complex DFT, and
unify these transforms into an unified form. Transforms with random input such
as R2HC (real to Half complex transform), HC2R (Half complex to real) and
DHT (discrete hartley transform) are optimized as a halved complex transform;
Transforms with symmetrical input such as DCT/DST I-IV are optimized case
by case: For DCT/DST I, method that reduces the original transform into a real
DFT with half size is mentioned in [13]. But the loss of accuracy is unaccept-
able. Therefore, we solve DCT/DST I directly as DHT and R2HC, HC2R cases.
For DCT II and III, a concise computation approach has been proposed in [12].
Original problem is solved with a halved real DFT, meanwhile, [14] points out
DST II and III is equivalent to corresponding DCTs inherently. For considera-
tion of flexibility, method in [12,14] is adopted, as more conditions are handled
compared with methods mentioned in [8]. In the end, DCT/DST IV are solved
based on DCT/DST II/III with method mentioned in [15] to integrate all real
DFT kinds together.

There are already several FFT computation libraries, such as FFTW [10],
PFFT [4], MPFFT [11], PKUFFT [9] and ARM Performance Library [16], but
only FFTw and Arm Performance Library have implemented and optimized
FFT on ARMv8 platform. Further, real DFT kinds are still not supported by
ARM Performance Library. Therefore, FFTw3.3.7 is chosen as our comparison
baseline.

3 Optimization of Algorithm for 1D Real DFT

3.1 Introduction to DFT

Given a sequence of sampled complex number: x0, x1, ..., xn−1, xn. DFT trans-
form this sequence into frequency domain by Eq. 1:

Xk =
N−1∑

n=0

xnWnk
N (1)

Here Wnk
N is also called twiddle factors which is defined as e

−2nkjπ
N essentially,

DFT can be expressed as a matrix multiplication between input vector and a
pre-defined DFT matrix, take five points for example:

X =

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
1 W 1

N W 2
N W 3

N W 4
N

1 W 2
N W 4

N W 6
N W 8

N

1 W 3
N W 6

N W 9
N W 12

N

1 W 4
N W 8

N W 12
N W 16

N

⎤

⎥⎥⎥⎥⎦
× x, (2)

Implementation and Optimization of Multi-dimensional Real FFT 341

real DFT is a special DFT with input sequence is real number. The rest of this
section classify these real DFT kinds based on property of their input vector
and clarify proposed two reduction approaches: (1) Reduction from real DFT
to halved complex DFT; (2) Reduction from real DFT to halved real DFT.
Reductions above are called real reduction and complex reduction in Table 1
respectively. Two reduction approaches are both used for decreasement of com-
putation of real DFT. For clarity, Table 1 shows each implemented real DFT’s
adopted reduction approach. As Table 1 shows, complex reduction is adopted by
all real DFT kinds. In fact, complex reduction is adopted to reduce the output
of real DFT if real reduction is adopted. Rest of this section presents details of
implementation of two reduction approaches.

Table 1. Relation between all real DFT kinds and reduction approach

Real DFT kind R2HC HC2R DHT DCT I DCT II DCT III DCT IV DST I DST II DST III DST IV

Real reduction No No No No Yes Yes Yes No Yes Yes Yes

Complex reduction Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

3.2 Reduction from Real DFT to Halved Complex DFT

To solve a transform with input is pure real number sequence, a naive method is
to regard real DFT as complex DFT with each input elements’ imaginary part
is zero. However, it brings unnecessary calculations and extra storage space.
Therefore, this paper reduce real DFT into complex transform with half size
and split result from complex transform’s output. Given Eq. 1, its right part can
be splited as sum of Fr, Gr:

Fr =

N
2 −1∑

l=0

flW
rl
N
2

Gr =

N
2 −1∑

l=0

glW
rl
N
2

(3)

Basic motivation of following steps is to extract Fr and Gr from result of a
complex transform of only half size.

As fl = x2l, gl = x2l+1, we regard the adjacent two number fl and gl as a
complex number fl + glj. Based on Eq. (1), we achieve a transform of only half
size:

Yr =

N
2 −1∑

l=0

(fl + jgl)W rl
N
2

= Fr + jGr (4)

Next step, we split Fr and Gr from Yr based on Eq. 5:

Fr =
1
2
(Yr + Y N

2 −r) Gr =
j

2
(Y N

2 −r − Yr) (5)

Therefore, we reduce a real DFT into a halved complex transform. The dis-
tinct part of different real DFT kinds is relied on the way of organizing imaginary

342 X. Wang et al.

parts and real parts. Take DHT (Discrete Hartley Transform) for example:

Xk =
N−1∑

n=0

xn[cos(
2πnjk

N
) + sin(

2πnjk

N
)] (6)

Result is achieved directly as sum of imaginary part and real part once we retrieve
Xk’s imaginary part and real part from Fr and Gr. As a summary, general
reduction algorithm is given as Algorithm 1. Computation steps of line 1–8 is
the common part. After we retrieve real and imaginary parts, re-construction
steps are carried out according to specified transform’s definition.

Algorithm 1. ComplexReduction(Input x, Output X, Direction dir, kind k)
1: Complex DFT(x,Y, Direction)
2: Compute X[N/2], X[0];
3: for each i ∈ [1, N/4] do
4: Yr ← Y [i]

5: Ynr ← Y [N
2

]
6: Fr ← Yr + Ynr

7: gr ← j ∗ (Ynr − Yr)
8: Gr ← gr ∗ W r

N

9: Retrive real part and imginary part from Fr Gr
10: X[r] ← Reconstruct real part and imaginary part based on real DFT type(k).
11: end for
12: return;

3.3 Reduction from Real DFT to Halved Real DFT

Different from transforms above, DCT/DST possess special symmetry property
within input. So generally input vectors of these transforms are often given only
half of input. Based on choice of symmetry position, we implement the four most
common kinds of DCT and DST respectively.

In this part, we give definition of these transforms and introduce specific
considerations brought by symmetry: DCT/DST I are solved by Algorithm 1 due
to accuracy consideration mentioned in [10]. Thus there is no extra introduction.
DCT/DST III is reduced to another real DFT with half size. DCT/DST IV are
divided into sub-transform of DCT/DST III [15]. Given DCT II/III:

DCTII : Xk = x0 + (−1)kxN−1 + 2
N−2∑

n=1

xncos(
πnk

N − 1
) (7)

DCTIII : Xk = x0 + (−1)kxN−1 + 2
N−2∑

n=1

xncos(
πnk

N − 1
) (8)

Implementation and Optimization of Multi-dimensional Real FFT 343

Based on Fast DCT algorithm from [12], DCT II is re-expressed as Eq. 9:

Xk = 2RealPart[W k
2N

N/2−1∑

n=0

vnWnk
N/2)] (9)

vk =
2
N

N
2 −1∑

n=0

VnW−nk
N/2 (10)

DCTIV : Xk = 2
N−1∑

n=0

xncos(
π(n + 1/2)(k + 1/2)

N
) (11)

For DCT II, based on Eq. 9, original transform is reduced into a real DFT of
vk with N/2 size. vn is constructed by interleaving even indexed and odd indexed
elements from xn. For DCT III, based on Eq. 10, original transform is reduced

Algorithm 2. DCT/DST(Input x, Output X, Direction dir, Kind k)
1: N here is input size of DCT/DST, which is near half of logical transform size.
2: if k equals DSTIV/DCTIVs then
3: dct − input/dst − input ← x.
4: Algorithm 2(dct-input, X1, backward, dctIII);
5: Algorithm 2(dst-input, X2, backward, dstIII);
6: for each i ∈ [0, N/2] do
7: X[i] ← X1[i] ∗ sptws[i].r + X2[i] ∗ sptw[i].i
8: X[i + N/2] ← X1[N/2 − 1 − i] ∗ sptw[N/2 − 1 − i].i + X2[N/2 − 1 − i] ∗

sptw[N/2 − 1 − i].r
9: end for

10: return;
11: end if
12: if k equals DST II then
13: xm[i] ← x[i] ∗ (−1) i mod 2 i from 0 to N
14: Algorithm2 (xm, X, forward, dctII);
15: end if
16: if k equals DST III then
17: xm[i] ← x[N − 1 − i]
18: Algorithm2 (xm, X, forward, dctIII);
19: end if
20: if k equals DCT II then
21: for each i ∈ [0, N/2 − 1] do
22: xmi ← x[2i]
23: xmN−i ← x[2i + 1]
24: end for
25: end if
26: if k equals DCT III then
27: xm[i] ← x[N − 1 − i]
28: end if
29: Algorithm1 (xm, X, dir, kind);

344 X. Wang et al.

into a real DFT of Vn. Vn is defined as: Vk = 1
2W−k

2N [Xk−jXN−k]. Then we need
to split xk from vk. To avoid repeated memory visit cost, split operation for vk is
finished by re-mapping result and output vector’s index. For DST II/III, they can
be derived from DCT II/III by flopping sign of input vector or reversing sequence
order. DCT IV is given as Eq. 11. Based on matrix factorization method, we can
factorize a DCT IV transform into a DCT III and a DST III sub-transforms
with N/2 input size, meanwhile, DST IV is solved based on DCT IV through
flipping operations. As a summary, DCT II/III is the core transforms as other
transforms are derived from DCT II/III with split operations. Algorithm 2 gives
the summary of integration of DCT I-IV. In description of Algorithm 2, for
clarity, we pack operations needed for vn and Vn into Algorithm 1.

4 Implementation and Optimization of 1D Complex DFT

From discussion above, although we have cut off much redundant computations
by transform reduction, final computational steps are still relied on 1D complex
DFT. Therefore, in this paper, we implement and optimize a high performance
1D complex DFT library using cooley-Tukey FFT algorithm to support real
transforms. Optimization considerations include designing a SIMD friendly FFT
butterfly network without data copying, reducing computational complexity of
butterfly, optimizing butterfly with SIMD techniques.

4.1 Butterfly Network Optimization

In solving FFT, Cooley-Tukey algorithm is one of the most famous FFT algo-
rithms, In this algorithm, DFT is solved stage by stage, with butterfly kernel
computation processed repeatedly in each stage. So the way butterfly network is
organized affects optimization as a whole. Generally, there are two approaches
in implementing this algorithm: (1) Decimation-in-time, DIT (2) Decimation-in-
frequency, DIF. Take network of DIT of eight points and radix is 2 for example
in Fig. 1.

When using DIT, input vector is of bit-reversed order, output vector is of
nature order. For DIF, this condition is reversed. However, bit-reversed order not
only brings extra memory cost, but also increases difficulties for blending mix

x[0] X[0]

x[4] X[1]

x[2] X[2]

x[6] X[3]

x[1] X[4]

x[5] X[5]

x[3] X[6]

x[7] X[7]

WN2

-1

-1

-1

-1

WN0

WN1

WN2

WN3

WN0

WN2

WN0

-1

-1

-1

-1

-1

-1

-1

-1

Fig. 1. DIT radix-2 butterfly network with 8 points

Implementation and Optimization of Multi-dimensional Real FFT 345

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

-1

-1

-1

-1

WN3

WN2

WN1

WN0

-1

-1

WN0

WN2

WN0

WN2

-1

-1

-1

-1

-1

-1

WN0

WN0

WN0

WN0

Fig. 2. Unified network with 8 points. (Color figure online)

radixes into an unified framework. Thus, this paper adopts an unified butterfly
network structure shown in Fig. 2.

This network has three advantages compared with the network described
above: (1) No need to be bit-reversed. Both DIT and DIF need bit-reverse oper-
ation to calibrate input or output elements’ order. Thus this extra memory
accessing cost is saved by our network structure. (2) Simd-friendly. To efficiently
wield SIMD, data to be loaded from and stored into memory should be consecu-
tive. Within structure of this network, input and output of consecutive butterflies
is located consecutively. Besides that, section in every stage is an independent
computational unit. It is convenient to arrange our SIMD parallelization within
the same section. In Fig. 2, one red color part represents one section in each
stage. (3) Mix-radix friendly, different radix algorithm is solved coherently in an
unified approach. Because order of input and output of every stage is of natural
order, it is convenient to concatenate stages of different radixes together. Com-
putation is processed stage by stage naturally. To gain a better performance,
we split the first stage out of the general computation network. There are two
reasons: (1) As twiddles used in first stage is constant 1, it is unnecessary to
read twiddles from memory and compute with them. So, this method reduces
unnecessary memory access and computation cost. (2) The layout of first stage
output is different from other stags, Thus zip instructions must be applied to
rearrange result. Separating the first stage from other stags is convenient for us
to do special SIMD optimization for this stage without affecting other stags.

4.2 Bufferfly Computation Optimization

In computational process, butterfly computation is invoked repeatedly, naturally,
attention needs to be paid on this process to gain better performance. This
paper takes radix-5 computation for example to illustrate the way of optimizing
a kernel computation. This method can be generalized to other radix. given x0,
x1, x2, x3, x4 as kernel input, X0, X1, X2, X3, X4 as kernel output. The original
computation steps are given as:

X0 = x0 + x1 + x2 + x3 + x4

X1 = x0 + W 1
5 x1 + W 2x2 + W−2x3 + W−1

5 x4

X2 = x0 + W 2
5 x1 + W−1

5 x2 + W 1
5 x3 + W−2

5 x4

346 X. Wang et al.

X3 = x0 + W−2
5 x1 + W 1

5 x2 + W−1
5 x3 + W 2

5 x4

X4 = x0 + W−1
5 x1 + W−2

5 x2 + W 2
5 x3 + W 1

5 x4

Because W k
N and W−k

N is symmetrical with the x-axis. we can merge the same
terms:

X0 = x0 + (x1 + x4) + (x2 + x3)

X1 = x0 + (A − B) X2 = x0 + (C + D)

X3 = x0 + (C − D) X4 = x0 + (A + B)

A = (x1 + x4) ∗ W 1
5 .r + (x2 + x3) ∗ W 2

5 .r

B = [(x1 − x4) ∗ W 1
5 .i + (x2 − x3) ∗ W 2

5 .i] ∗ (−j)

C = (x1 + x4) ∗ W 2
5 .r + (x2 + x3) ∗ W 1

5 .r

D = [(x1 − x4) ∗ W 2
5 .i − (x2 − x3) ∗ W 1

5 .i] ∗ j

the repeated term here are: x1 +x4, x1 −x4, x2 −x3, x2 +x3 and A, B, C, D.
through combination of same term, extra float computation can be saved com-
pared with direct computation. This method can be extended to radix-3, radix-
7 and other radix cases. So we can implement various radixes with the most
streamlined computational complexity.

4.3 Butterfly SIMD Optimization

ARMv8 is the most up-to-date architecture of ARM cooperation. Both 32-bit
execution status and 64-bit status are supported. Besides 31 64-bit general pur-
pose registers (X0-X30), this architecture also provides 32 128-bit vector/scalar
registers (V0-V31/Q0-Q31). These vector registers could store 4 floats or 2 dou-
bles number, therefore, 4 float or 2 double operations are finished in parallel.

(1) Inter-Butterfly Parallelization: With benefits from the structure of
butterfly-network described above, input and output data of continuous butter-
flies are arranged consecutively, with good locality. Therefore, it’s very suitable
to use SIMD technology to process multiple butterflies in the same time. For
clarity, we take radix-5 for example.

In Fig. 3, four colors stand for four different butterflies, thus, input of four
butterflies can be loaded into a 128-bit vector register and processed in the same
time. For example, input from x 0[0] to x 4[0] is loaded into a vector register
which is the first input across four butterflies.

(2) Assembly Instruction Selection: We improve performance of core
computational part by using assembly instructions. Through tuning the execu-
tion order of instructions, we avoid pipeline bubbles. Through optimizing the
usage of vector register, on-chip memory is efficiently used. Meanwhile, we also
adopted extra optimizations to improve performance further: (1) Through zip1
instruction to rearrange output elements’ order within the first stage. (2) Use
ld2, faddq, st2 and other instructions to efficiently do complex number arith-
metic operation. (3) Apply fmla/fmls properly to gain better computational
performance.

Implementation and Optimization of Multi-dimensional Real FFT 347

x 1[0]
x 2[0]
x 3[0]

x 0[0]

x 1[1]
x 2[1]
x 3[1]

x 0[1]

x 1[2]
x 2[2]
x 3[2]

x 0[2]

x 1[3]
x 2[3]
x 3[3]

x 0[3]

x 1[4]
x 2[4]
x 3[4]

x 0[4]

X 1[0]
X 2[0]
X 3[0]

X 0[0]

X 1[1]
X 2[1]
X 3[1]

X 0[1]

X 1[2]
X 2[2]
X 3[2]

X 0[2]

X 1[3]
X 2[3]
X 3[3]

X 0[3]

X 1[4]
X 2[4]
X 3[4]

X 0[4]

Fig. 3. Parallelization of 4 butterfly computations when radix is 5 (Color figure online)

(3) Reuse of Vector Register: To cope with shortage of vector register
when solving very large radix computation, register reuse is applied. Through
defining register using table and reusing rules, vector register is reused efficiently:
Registers are enough when radix is 3, 4, 5, so we split register into four groups:
input register groups input; output register group; intermediate result register
group; twiddles register group. When radix is so large that it is necessary to
reuse register. We define register groups’ reuse attribution, combined with com-
putational condition to decide if to reuse register group.

(4) Optimization for Small Scale: When input scale is small enough
(3, 5, 7, etc.), special implementations and optimizations are taken to achieve
high performance. Optimization techniques include: (1) Twiddle factors are pre-
computed and prepared in micro format to save relevant computations and mem-
ory accessing costs. (2) Loop-unrolling is properly applied. (3) Manage to pack
as many as possible computations into the same function to avoid function invo-
cation cost.

5 Implement and Optimization of 2D Real DFT

2D DFT is essentially based on 1D real DFT. The critical issue of 2D transform
is non-consecutive memory visit when transform column data. Thus the essential
part of 2D optimization is to improve cache performance.

5.1 Consideration of 2D Real DFT Optimization

Based on this consideration, we propose following techniques to improve cache
performance:

(1) Cache block method: To avoid non-consecutive memory visit in visiting
column data, we need to transpose output every time we have finished row
computation. However, this behavior has poor cache performance. To decrease
cache miss rate, in plan stage, an extra buffer is prepared whose size is fit with
L2 cache size. Every time before dense computation is carried out, data is read

348 X. Wang et al.

into this buffer. This behavior assures data using in computation step is on the
cache.

(2) Memory alignment: Although cache performance is improved through
cache blocking, due to the uncertainty of computation size. It is quit possible
that input matrix is not aligned which bates the efficiency of cache line usage.
To handle this issue, we take ARM cache line size into consideration and align
row of buffer with 64 bytes. With benefits of this, cache miss rate is reduced
further.

5.2 Procedure of 2D Real DFT Optimization

Figure 4 shows procedures of cache blocking approach: Scan input matrix with
an aligned row buffer which is fit with L2 cache size. Every time we fill row buffer
with block of data, dense computation is carried out with output is transposed
into another buffered matrix.

input matrix output matrix

tranpose

intermediate aligned buffer

pre-aligned scan buffer1

pre-aligned scan buffer2

scan

scan

n1

n2

n1

n2

tranpose

Fig. 4. General procedure of 2D transform

6 Experimental Results and Analysis

6.1 Test Platform and Comparison Baseline

Our experiment is carried out with (1) Hardware: CPU in this paper is ARM
Cortex A57, 2.1 GHZ. (2) Software: Operation system is Ubuntu 15.04 with main
memory size is 64 GB. FFTw 3.3.7 is chosen as comparison baseline. (3) Perfor-
mance metric: Gflops = Floats Operations/Wall time. Float Operations are cal-
culated as sum of logarithmic each dimension size multiplicated by whole compu-
tation. It is defined as Float Operations = (

∏max−dim
i=1 Ni)∗(

∑max−dim
j=1 logNj).

6.2 Experimental Results and Evaluations

In these figures, cold-coloured full line is used to stand for our transforms called
OpenFFT, light-coloured dotted line is used to stand for FFTw 3.3.7’s trans-
forms. Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21
show our experimental results compared with FFTw3.3.7. Figures 5, 6, 7 and 8
show that our 1D float transforms outperform FFTw3.3.7 significantly with even
greater advantage when input size is becoming larger. Speedup is from 1.22x to

Implementation and Optimization of Multi-dimensional Real FFT 349

1.79x across all real DFT kinds. Figures 9, 10, 11 and 12 show that our 1D dou-
ble transforms also outperform FFTw3.3.7 a lot, except for DCT/DST IV when
input size is small, the cause will be analyzed in rest of this section. Speedup is
from 1.04x to 1.61x across all real DFT kinds.

Fig. 5. 1DFP32 R2HC/HC2R/DHT
(Color figure online)

Fig. 6. 1DFP32 DCT/DST I (Color
figure online)

Fig. 7. 1DFP32 DCT/DST II/III (Color
figure online)

Fig. 8. 1DFP32 DCT/DST IV (Color
figure online)

Fig. 9. 1DFP64 R2HC/HC2R/DHT
(Color figure online)

Fig. 10. 1DFP64 DCT/DST I (Color
figure online)

Fig. 11. 1DFP64 DCT/DST II/III (Color
figure online)

Fig. 12. 1DFP64 DCT/DST IV (Color
figure online)

350 X. Wang et al.

Fig. 13. Speedup across all transform kinds and types (Color figure online)

Fig. 14. 2DFP32 R2HC/HC2R/DHT
(Color figure online)

Fig. 15. 2DFP32 DCT/DST I (Color
figure online)

Fig. 16. 2DFP32 DCT/DST II/III (Color
figure online)

Fig. 17. 2DFP32 DCT/DST IV (Color
figure online)

Fig. 18. 2DFP64 R2HC/HC2R/DHT
(Color figure online)

Fig. 19. 2DFP64 DCT/DST I (Color
figure online)

Due to alignment and double data type, memory size of our test machine is
limited for 2D transforms. Thus the test size of 2D transforms is tuned smaller.
Figures 14, 15, 16 and 17 show our 2D float transforms outperform FFTw3.3.7

Implementation and Optimization of Multi-dimensional Real FFT 351

Fig. 20. 2DFP64 DCT/DST II/III (Color
figure online)

Fig. 21. 2DFP64 DCT/DST IV (Color
figure online)

a lot, and speedup is from 1.20x to 1.70x. The abnormal peak point in Fig. 17
is analyzed in the rest of this section. Figures 18, 19, 20 and 21 show 2D double
transforms’ speedup across all kind is from 0.99x to 1.25x. Performance degen-
eration in DCT/DST I/IV 2D is analyzed in next section.

6.3 Performance Analysis

This section summarizes and analyzes performance comparison between ours and
FFTw3.3.7’s: As a whole, our transforms outperform FFTw3.37’s a lot except for
some transform cases. Moreover, speedup of double data type is not as significant
as float as shown in Fig. 13. Causes are presented:

(1) 1D Double DCT/DST IV: To obtain transform result, operations
applied to combine two sub-transform’s results are not optimized well on double
data type. costs brought by these operations are significant when input size is
relatively small.

(2) General Analysis of Performance Degeneration Between 2D and
1D Transforms: Performance degeneration is caused by pre-process of input.
For example sign flip operations of DCT/DST II/III and extension operations of
DCT/DST I. And the degree of it is related to the complexity of these operations.
Further overheads are accumulated with increased transform dimensions.

(3) Analysis of Performance of 2D DCT/DST I/IV: As DCT/DST
I are solved based on Algorithm 1, Extension operations of intermediate result
of row transforms are inevitable before solving column transforms. Cache misses
brought by data copying of extension operation bring non-ignorable overhead.
Except for general pre-process of input, DCT/DST IV need extra combining
operations to achieve final results, which are not optimized enough for multi-
dimensional condition.

(4) Abnormal Performance Peak Point of Fig. 17: Order of radix
derived from prime factorization affects performance as a whole. As our imple-
mentation does not support optimization on radix generation, the radix order is
not optimal when size is 1350.

(5) Influence of Double Data Type: Type of data has influence on per-
formance as a whole. For the limitation of vector length, the parallelized double
operations are inherently limited than float. Therefore more cares of optimiza-
tion need to be taken into double cases, and effect of optimization is inevitably
abated.

352 X. Wang et al.

7 Conclusion and Future Work

In this paper, we implement and optimize 11 1D/2D real DFT kinds on ARMv8
platform. Experiments show that we outperform FFTw3.3.7 in most cases. In the
future, we plan to further optimize double DCT/DST IV, moreover, a strategy
to optimize radix order needs to be designed. In the end, optimization for 2n

input size needs to be researched in the future.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Program of China under Grant No.2017YFB0202105 and No.2016YFE0100300;
The National Natural Science Foundation of China under Grant No.61432018,
No.61521092 and No.61502405; Key Technology Research and Development Programs
of Guangdong Province under Grant No.2015B010108006.

References

1. Oran Brigham, E.: The Fast Fourier Transform and Its Applications, vol. 1. Pren-
tice Hall, Englewood Cliffs (1988)

2. Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation,
and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–
1271 (1996)

3. Sorensen, H.V., Jones, D., Heideman, M., Burrus, C.: Real-valued Fast Fourier
Transform algorithms. IEEE Trans. Acoust. Speech Signal Process. 35(6), 849–
863 (1987)

4. Pippig, M.: PFFT: an extension of FFTW to massively parallel architectures.
SIAM J. Sci. Comput. 35(3), C213–C236 (2013)

5. Abtahi, T., Kulkarni, A., Mohsenin, T.: Accelerating convolutional neural network
with FFT on tiny cores. In: IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pp. 1–4. IEEE (2017)

6. Cecotti, H., Graeser, A.: Convolutional neural network with embedded Fourier
Transform for EEG classification. In: 19th International Conference on Pattern
Recognition, ICPR 2008, pp. 1–4. IEEE (2008)

7. Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks, pp. 4013–
4021 (2016)

8. Lee, B.: FCT-a fact cosine transform. In: IEEE International Conference on Acous-
tics, Speech, and Signal Processing, ICASSP 1984, vol. 9, pp. 477–480. IEEE (1984)

9. Chen, Y., Cui, X., Mei, H.: Large-scale FFT on GPU clusters, pp. 315–324 (2010)
10. Frigo, M., Johnson, S.G.: FFTW: an adaptive software architecture for the FFT,

vol. 3, pp. 1381–1384. IEEE (1998)
11. Li, Y., Zhang, Y.-Q., Liu, Y.-Q., Long, G.-P., Jia, H.-P.: MPFFT: an auto-tuning

FFT library for OpenCL GPUs. J. Comput. Sci. Technol. 28(1), 90–105 (2013)
12. Makhoul, J.: A fast cosine transform in one and two dimensions. IEEE Trans.

Acoust. Speech Signal Process. 28(1), 27–34 (1980)
13. Press, W.H.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cam-

bridge University Press, New York (2007)

Implementation and Optimization of Multi-dimensional Real FFT 353

14. Shao, X., Johnson, S.G.: Type-II/III DCT/DST algorithms with reduced number
of arithmetic operations. Signal Process. 88(6), 1553–1564 (2008)

15. Wang, Z.: On computing the discrete fourier and cosine transforms. IEEE Trans.
Acoust. Speech Signal Process. 33(5), 1341–1344 (1985)

16. ARM Performance Library. https://developer.arm.com/products/software-
development-tools/hpc/arm-performance-libraries

https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries

SPMP: A JavaScript Support for Shared
Persistent Memory on Node.js

Qipeng Zhang1, Tianyou Li2, Pan Deng2, Yuting Chen1, Linpeng Huang1(B),
and Andy Rudoff3

1 Shanghai Jiao Tong University, Shanghai, China
{zqp19941019,chenyt,lphuang}@sjtu.edu.cn

2 Intel Asia Pacific R&D Co. LTD, Shanghai, China
{tianyou.li,pan.deng}@intel.com

3 Intel Corporation, Santa Clara, CA, USA
andy.rudoff@intel.com

Abstract. JavaScript is widely used for scripting on client side. Node.js
is a JavaScript runtime environment, allowing Javascript to be used for
building scalable network applications on server side. However, Node.js
does not support parallel programming, making it difficult to enhance
applications’ performance. Meanwhile, persistent memory (PM) shows
optimistic prospects of being used in server-side applications, while few
researches do exist in allowing script languages to support PM-based par-
allel programming. In this paper, we introduce SPMP, a JavaScript sup-
port for shared persistent memory on Node.js. With SPMP, each process
needs to hold PersistentArrayBuffer, an object that is responsible
for allocating, managing, and accessing persistent memory. Multiple pro-
cesses can then share persistent memory and communicate each other by
their PersistentArrayBuffer objects. Furthermore, SPMP supports
dynamic load-balancing strategies and ensures data coherency, and also
supports data persistence in a secondary storage. We have evaluated
SPMP against Extended Memory Semantics (EMS, a state-of-the-art
model for parallel programming on Node.js) on two data-intensive tasks.
The results show that SPMP is 100 ∼ 300× faster than EMS on five
basic operations, and 2× faster on complicated parallel computing tasks
such as counting words, due to its particular way on memory allocation
and mapping.

Keywords: Node.js · Parallel programming
Shared persistent memory

1 Introduction

Persistent memory (PM) is a novel technique for improving the performance
of data-intensive software applications and guaranteeing their fault-tolerance. It
removes the boundary between the memory and the storage when storing data
structures: Memory can still be accessed by the load and store instructions, while
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 354–366, 2018.
https://doi.org/10.1007/978-3-030-05054-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_28

SPMP: A JavaScript Support for Shared Persistent Memory on Node.js 355

the data in the memory is persistent (i.e., the data needs to be retained at the
time of power loss or application crashes and can be recovered when needed).
Many persistent memory products, such as RamDisk [1], Phase Change Memory
(PCM) [2] and STT-RAM [3], have been developed. They do provide several
exciting features, including DRAM-like access speed, high data persistence and
endurance, retention and byte-addressability.

Persistent memory can be shared among processes. Shared memory [4] is a
programming paradigm for parallel computing: Memory may be simultaneously
accessed by multiple processes, and thus processes can communicate directly
without data replication or transfer. Shared persistent memory (Shared PM)
brings the ideas of shared memory and persistent memory together – several
processes can access the persistent memory in parallel, and the data in the
memory needs to be persistent. Many efforts have been spent on supporting
shared PM [5,6]. They mainly tackle two challenges: (1) how to support multiple
processes/threads on persistent memory, and (2) how to keep data coherency.

This paper presents SPMP, a JavaScript support for shared PM on Node.js.
JavaScript is a popular scripting language for creating web applications on client
side [7]. It can be interpreted and JIT’ed by JavaScript engines, such as Google’s
V8 in Chrome [8], SpiderMonkey in Firefox [9] and FLT in Safari [10]. Node.js, a
JavaScript runtime environment, was further developed on V8 engine, allowing
JavaScript code to run on server-side [11]. SPMP is designed for supporting
parallel programming on Node.js, and as well leveraging persistent memory to
keep data persistence.

The objective of this paper is to

1. Support Shared Memory on Node.js
Node.js does not allow applications to be run in parallel. Despite many efforts
in introducing parallel computing into Node.js, the performance of the server-
side applications can still be low due to many constraints. For example, Web-
Workers [12] is a parallel programming model for Node.js applications based
on share-nothing parallel workers: data needs to be explicitly partitioned and
distributed [13]; workers exchange data via asynchronous messages, which
may be frequent and incur high overhead. Shared memory, which alleviates
the overhead of data copying/transfer, can thus become an alternative to
parallel computing on Node.js.

2. Utilize PM to Enhance Performance and Keep Memory Persistent
Shared persistent memory enhances the performance of Node.js applications
on the server side, because data copying and transfer among processes are
waived. Comparatively, performance of applications can be enhanced by
shared PM because memory and disks can be taken as a whole, providing
with DRAM-like access speed. Memory persistence can also be held when
PM is employed.

As Fig. 1 shows, SPMP provides a JavaScript support such that each Node.js
process can manage and access persistent memory through Google’s V8 and some
other libraries. SPMP also provides multiple processes with facilities (including

356 Q. Zhang et al.

some objects and load-balancing strategies) in allocating and sharing persistent
memory and communicating each other.

Google V8 (C++) libuv (C)

Node.js (Binding)

Node.js Library

Persistent Memory

Applications

SPMP

PAB object

Consistency control

Load balance

…
…

Fig. 1. An overview of SPMP.

This paper makes the following contributions:

1. A JavaScript Support for Shared PM on Node.js. SPMP is a
JavaScript support that allows multi-processes to share persistent memory on
Node.js. It provides facilities for managing processes and simplifying many
challenging issues in parallel programming such as data coherency, synchro-
nization and dynamic load balance. It also supports data persistence on PM
and on a secondary storage.

2. A Persistent Memory Object. We have implemented a JavaScript object,
PersistentArrayBuffer. It represents a persistent, fixed-length buffer.
Each process needs to hold such an object for allocating, managing, and
accessing persistent memory. Multiple processes can then share persistent
memory and communicate each other by their PersistentArrayBuffer
objects.

3. Evaluation and Results. We have implemented SPMP for parallel pro-
gramming on Node.js. We have evaluated SPMP against Extended Mem-
ory Semantics (EMS, a state-of-the-art model for parallel programming on
Node.js) on two data-intensive tasks. The results show that SPMP is 100–
300× faster than EMS on five basic operations, and 2× faster than EMS
on complicated parallel computing tasks such as counting words, due to its
particular way on memory allocation and mapping.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
the design details of SPMP. Section 3 evaluates SPMP. Section 4 presents related
work, and Sect. 5 concludes.

SPMP: A JavaScript Support for Shared Persistent Memory on Node.js 357

2 Design and Implementation

Shared memory is a memory region that can be simultaneously accessed by
multiple processes. SPMP provides a JavaScript support for shared persistent
memory on Node.js.

2.1 Background

SPMP is built on the base of Chrome V8 [8]. It also employs the Intel’s
PMDK [14] to access and share the persistent memory.

Chrome V8 [8] is an open-source JavaScript engine developed in C++ by
Google. It performs ahead-of-time compilation of JavaScript code to native
machine code, and re-optimizes the compiled code dynamically at runtime. We
design a persistent array buffer object on V8 and expose it as a Node.js object
for managing the persistent memory. Thus SPMP benefits from native high per-
formance of V8.

The Persistent Memory Development Kit (PMDK), developed by Intel, is a
growing collection of libraries and tools for persistent memory [14]. The kit allows
persistent memory to be accessed via memory mapping files in a PM-aware file
system. With PMDK, a C programmer can manage persistent memory much
more efficiently. Binding supports have also been developed for other program-
ming languages (e.g., C++, python) such that the programmers can use PMDK
in their software development.

Stack

Heap
BSS

Text

Process address
space

Memory region File region

length PAB Shared data Shared data
mapping file

Memory
allocation

Memory
mapping

Persistent Memory

Data

Fig. 2. Memory allocation and mapping with PAB on process.

358 Q. Zhang et al.

2.2 Shared Persistent Memory

In SPMP, processes on Node.js can manage and share persistent memory using
their PersistentArrayBuffer (PAB) objects. As Fig. 2 shows, each process
holds a PAB object that points to a memory region, which is further mapped
to a memory mapping file to ensure data persistence. Let two or more PAB
objects point to the same memory region where the shared data is stored, shared
persistent memory can then be realized.

Creating a PAB Object. PAB objects are designed to manage and share persis-
tent memory. Next shows a code snippet for creating a PAB object. PAB object
is created using function new PersistentArrayBuffer(length, path,
mode), where length and path correspond to the size of allocated memory
and the memory-mapping file, respectively; mode is a mode denoting whether
the created PAB object needs to create a mapping file or open an existing one.
Note that contents of PAB cannot be manipulated directly but with a typed
array object. A TypedArray object describes an array-like view of PAB and
underlying elements can then be referenced with array index.

1 function PersistentArrayBuffer(length, path, mode){
2 this.length = length;
3 this.path = path;
4 this.mode = mode;
5 this.buffer = this.prototype.newbuffer(length, path,

mode)
6 this.msync = function(offset, length){
7 //sync memory to mapped file
8 call_msync(this.buffer, offset, length);
9 }

10 }
11 PersistentArrayBuffer.prototype.newbuffer = function(length,

path, mode){
12 //create or open a buffer
13 call_newbuffer(length, path, mode);
14 }
15
16 //Next creates a PAB object. It also creates/opens
17 // a memory mapped file for memory persistence.
18 var pab = new PersistentArrayBuffer(length, path, mode);

Memory Allocation and Mapping. A PAB object employs the PMDK libraries,
rather than malloc(), to allocate, manage and release memory. One main
reason is that malloc() is anonymous. Instead, PMDK can record the path
of the allocated memory, making PM manageable. Furthermore, PAB uses
pmem mmap(), rather than mmap(), in memory mapping. It supports an align-
ment mechanism for speeding up memory reading and writing.

SPMP: A JavaScript Support for Shared Persistent Memory on Node.js 359

Keeping Memory Persistence. SPMP guarantees memory persistence using
memory-mapping files. A memory mapping file can be stored in PM or in a
disk, and thus can be taken as a backup of the memory. With memory mapping
files, PAB objects can also provide persistence support for RAMs.

2.3 Process Spawning

A Node.js module, child process, is responsible for spawning child processes.
In particular, a function child process.fork() needs to be invoked to fork
processes. In SPMP, this function is wrapped to fork child processes. Each child
process is independent from its parent process except that a communication
channel (between a process and its child) is established. Tasks are assigned to
the function as a parameter, and need to be further partitioned by each process.

SPMP also creates a new memory region and maps it into a file called
“shared configuration file”. The file saves configurations listed in Table 1. It can
be accessed by the PAB objects of processes. Any change to these configurations
needs to be broadcasted.

Table 1. Shared configurations.

Configuration Meaning

NPROC Number of processes

BAR Processes that are not at barrier

FLAG Barrier state

START Starting index of a task

END Ending index of a task

SIZE Designated chunk size

MINSIZE Minimum chunk size

STRATEGY Strategy taken for task decomposition

As Fig. 3 shows, SPMP spawns processes for parallel computing as follows.
First, the main process creates a PAB object and a shared mapping file. The
main process holds a memory region mapped to the file. Second, child processes
are spawned from the main process. Each child process shares the task module
and configurations with the main process. Each child process also creates a PAB
object for opening the shared data mapping file, whose length and path are
same as the main process. Thus, all of the processes have their PAB objects that
can access the same memory region corresponding to a shared file.

2.4 Load Balance

In order to complete a large task, child processes need to be spawned from
the main process. Strategies are designed for partitioning a task and balancing
workloads of the spawned processes.

360 Q. Zhang et al.

CPU

Process
initialization

Persistent Memory

Shared Data
mapping File File Region

Multi-process tasks
with four processes

Shared Data Shared Memory Region

PersistentArrayBufferPersistentArrayBuffer PersistentArrayBuffer PersistentArrayBuffer

P0

P1 P2 P3

memory allocation

memory mapping

Fig. 3. Sharing PM among spawned processes.

SPMP supports three strategies for keeping load balance among processes.

1. A static strategy that requires each task to be evenly partitioned for all
processes.

2. A preemptive strategy. Each task is divided into 4×NPROC subtasks evenly.
Processes compete for acquiring subtasks: When a process is free, it raises
requests to occupy a subtask.

3. A guided strategy. It requires a subtask’s size to be dynamically assigned,
usually according to the total size of the uncompleted tasks. Processes pre-
emptively occupy these subtasks. Here the size of a subtask is calculated
using

SIZE = max((END − START)/(2 × NPROC),MINSIZE) (1)

Both of the preemptive and the guided strategies allow processes to preempt
subtasks. Once success, shared configurations needed to be update so that pro-
cesses can preemptively occupy the remaining subtasks.

2.5 Consistency Control

Consistency control aims to coordinate processes to access the shared memory
and shared mapping files that otherwise race conditions can occur frequently.
For instance, let two processes (say Proc1 and Proc2) preempt a subtask whose
indexes range from START to START + SIZE. If Proc1 occupies, it needs to
modify the value of START to START + SIZE. Without consistency control,
Proc2 may fetch the same configurations and work on the same subtask. SPMP
supports consistency control on Node.js in two respects: (1) enabling native
consistency control functions, and (2) enabling a barrier mechanism.

Native functions for controlling consistencies can be invoked in an N-
API function. Here N-API is a Node.js API for building native addons,

SPMP: A JavaScript Support for Shared Persistent Memory on Node.js 361

which are dynamically-linked shared objects providing glue to C/C++
libraries. Many lower level operations, such as sync fetch and add(),
sync fetch and and(), support consistency control. These functions can

be exposed to JavaScript using N-API.
For example, the native function type sync fetch and add(type

*ptr, type value) can be exposed to JavaScript as follows. First, since
JavaScript has no pointer and variable type, this function is wrapped as var
fetch and add(Array, offset, value), where the pointer *ptr used in
the native function is replaced by an array and an offset. Next, the wrapped func-
tion is compiled and files in Node.js are binded. It creates a binary node module
that can be imported, using the function require(), into JavaScript. Thus
the function var fetch and add(Array, offset, value) wrapped in
the addon can be invoked in JavaScript.

3 Evaluation

We have implemented SPMP and evaluated it against EMS (Extended Memory
Semantics, a state-of-the-art model for parallel programming on Node.js). Our
evaluation is designed to answer the following questions:

1. Parallelism. How does SPMP support parallel programming on Node.js?
2. Strategy. Which strategy needs to be chosen for load balance?
3. SPMP vs. EMS. What are the advantages of SPMP, compared with EMS?

3.1 Preparation

Tasks and Metrics. Our evaluation is mainly performed on two parallel comput-
ing tasks:

– STREAMS. It processes a test file containing five basic operations: (1) read,
(2) write, (3) copy, (4) c = a ∗ b, and (5) c+ = a ∗ b. Each operation is
performed 20M times in an experiment. A metric, AOS (Atomic Operations
per Second), is measured. In the evaluation we performed STREAMS 10
times, and computed the average results for operations.

– WordCount. WordCount counts words in a directory of 18,510 text files, with
1.7G+ words and 7G+ bytes in total. WordCount counts the total number
and size of words. Two metrics, WS (words per second) and MS (Megabytes
per second), are calculated for every 100 text files.

Model for Comparison. Extended Memory Semantics (EMS) is a model for
parallel programming on Node.js. It supports shared objects, synchronization,
persistence and load balance. To the best of our knowledge, EMS is the only
model that is comparable to SPMP. Both of SPMP and EMS can be equipped
with our strategies for load balance. Correspondingly, we have SPMPstatic,
SPMPpreemptive, SPMPguided, EMSstatic, and EMSguided.

362 Q. Zhang et al.

Configuration. The evaluation was performed on a server (CPU: Intel(R) Xeon
E5-2643 v3 @ 3.40 GHz, RAM: 64 GB, OS: Ubuntu 14.04). In order to check
supportability of PM, we emulated a PM device with RAM and mounted it
using DAX in order to set up a PM-aware environment.

3.2 Evaluation on Parallelism

We employed SPMPstatic, with different number of processes to complete the
STREAMS task. SPMPstatic requires each task to be equivalently partitioned to
all processes. As Fig. 4(a) shows, SPMP spends less time to finish the STREAMS
tasks when the number of processes increases. More accurately, a linear correla-
tion exists between the time and number of processes. It clearly indicates that
(1) all of the processes have been involved in the computing task, and (2) a small
subtask usually requires less cost than a large one.

We calculated AOS for the five atomic operations. It decreases in an order of
read, write, copy, c = a∗b and c+ = a∗b. The main reason is that the later three
operations are in fact combinations of read and write operations. Thus the time
consumed is much relevant to the number of read/write operations involved.

From the above analysis, we draw out our first observation:

Observation 1: SPMP supports parallelism, making use of computing
resources; the efficiency can get increased when the number of processes
increases.

3.3 Evaluation on Strategies

We compared the strategies taken by SPMP. Figure 4(a), (b) and (c) show the
results for SPMPstatic, SPMPguided and SPMPpreemptive on STREAMS, respec-
tively. It is clear that the linear correlation between number of processes and time
spent exist for all strategies. SPMPguided performs better than SPMPpreemptive

on STREAMS. The main reason is, compared with SPMPpreemptive, SPMPguided

partitions each task into more but smaller subtasks, and thus achieves higher
parallelism. As for SPMPpreemptive, processes need to wait for each other until
they complete their subtasks. Thereafter, we believe that SPMPguided is more
well-balanced than SPMPpreemptive.

Both of SPMPguided and SPMPpreemptive perform worse than SPMPstatic, as
they need more inter-process communications. Nevertheless, SPMPstatic requires
the programmers to explicitly partition the tasks, but the other two do not. It
is believed that a programmer needs to choose the specific strategy on the basis
of the scenario in practice.

Thus we draw out our second observation:

Observation 2: All of the three strategies help balance workloads; the
strategies are applicable for different scenarios.

SPMP: A JavaScript Support for Shared Persistent Memory on Node.js 363

0

20

40

60

80

100

120

140

1 2 4 8
At

om
ic

 O
pe

ra
�o

ns
 p

er
 S

ec
on

d

X 10,000,000

Number of processes

write

read

copy

c=a*b

c+=a*b

(a) static

0

20

40

60

80

100

120

140

1 2 4 8

At
om

ic
 O

pe
ra

�o
ns

 p
er

 S
ec

on
d

X 10,000,000

Number of processes

write

read

copy

c=a*b

c+=a*b

(b) guided

0

20

40

60

80

100

120

1 2 4 8

At
om

ic
 O

pe
ra

�o
ns

 p
er

 S
ec

on
d

X 10,000,000

Number of processes

write

read

copy

c=a*b

c+=a*b

(c) preemptive

Fig. 4. Evaluating SPMP on STREAMS.

3.4 SPMP vs. EMS

We compared SPMP and EMS on the two computing tasks.

STREAMS. SPMP and EMS with different strategies were compared on
STREAMS. Each algorithm (SPMPstatic, SPMPpreemptive, SPMPguided,
EMSstatic, or EMSguided) manages four processes. Figure 5 shows the results
for comparing SPMP with EMS on STREAMS, where the x-axis denotes five
different operations, and the y-axis is log10 AOS. For all of the five operations,
SPMP is 100 ∼ 300× faster than EMS.

WordCount. We compared EMSguided strategy and SPMPguided on WordCount.
Figure 6 show the processing rates of words and bytes. The both rates are linearly
related to the number of processes.

Furthermore, SPMP is 2× faster than EMS. Here both of SPMP and EMS
implement parallelism with shared memory, but SPMP outperforms EMS due
to its way of memory management. EMS allocates and maps its memory with
JavaScript functions, which are exposed from C functions using C/C++ addons
(nan). Thus it takes time in transferring objects and translating functions
between C and JavaScript. On the contrary, SPMP takes use of PAB imple-
mented on V8 engine. It manages and shares memory by following a much more
native style, and thus becomes efficient.

364 Q. Zhang et al.

From the results, we draw out our third observation:

Observation 3: SPMP outperforms EMS because of its native way of mem-
ory allocation and mapping.

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

1.E+8

1.E+9

write read copy c=a*b c+=a*b

At
om

ic
Op

er
at

io
ns

 p
er

 Se
co

nd

Operations

EMS guided

EMS static

SPMP guided

SPMP preemptive

SPMP static

Fig. 5. Comparing SPMP with EMS on STREAMS.

0

20

40

60

80

100

120

140

160

1 2 4 8

W
or

ds
 p

er
 Se

co
nd

X 100000

Number of processes

EMS guided

SPMP guided

(a) words

0

10

20

30

40

50

60

70

1 2 4 8

M
B

yt
es

 d
at

a
pe

r
Se

co
nd

Number of processes

EMS guided

SPMP guided

(b) bytes

Fig. 6. Comparing SPMP with EMS on WordCount.

4 Related Work

We discuss two strands of related work: shared memory programming models
and JavaScript parallelism.

SPMP: A JavaScript Support for Shared Persistent Memory on Node.js 365

Shared Memory Programming Models. Shared memory is well supported in many
programming languages. One typical effort is hyperobjects in Cilk++ [15]. It
implements programming abstractions that provide shared memory between
threads, and thus allows C++ to enable dynamic, multi-threaded programming.
As for Node.js, GEMs [16] is a shared-memory parallel programming abstrac-
tion. It combines message passing with shared memory to generate and share
messages among workers. Comparatively, SPMP provides a much more efficient
solution to shared memory and memory mapping such that parallelism on per-
sistent memory is supported.

JavaScript Parallelism. Some researches, including WebWorkers [12], Cluster
and RiverTrail [17], have been conducted to enable parallelism in JavaScript.
These efforts are mainly designed as the sharing nothing parallelism that
requires the workers to transfer copies of data to each other via message passing
when needed. Comparatively, SPMP supports parallelism and communications
through shared memory, rather than passing messages.

Extended Memory Semantics (EMS) [5] supports parallelism on Node.js and
persistent memory. EMS implements a shared address space with a rich set of
primitives for accessing data structures in parallel. However, EMS is based on
nan – a Node.js addon. With nan, any JavaScript operation should at first be
translated into an addon function, and then into a C/C++ operation. It can
significantly reduce the efficiency of Node.js applications at runtime. SPMP can
achieve higher performance than EMS because it makes use of native interfaces.

5 Conclusion

SPMP is a JavaScript support for shared persistent memory on Node.js. Persis-
tent memory is leveraged to maintain data persistence and as well enhance per-
formance of applications by eliminating data transfers between RAM and disks.
PersistentArrayBuffer is designed to manage the shared persistent mem-
ory and coordinate processes. Our evaluations have clearly shown that SPMP
can enhance the performance of applications significantly by taking use of persis-
tent memory. Besides continuing our own development efforts, we plan to make
SPMP be integrated into the PMDK libraries for aiding JavaScript developers
in their routine development.

Acknowledgements. We thank the anonymous reviewers for their feedbacks and
suggestions. This work is supported by the National Key Research and Development
Program of China (No. 2018YFB10033002) and the National Natural Science Foun-
dation of China (No. 61472241, 61572312). This work was also partially supported by
Shanghai Municipal Commission of Economy and Informatization (No. 201701052).

366 Q. Zhang et al.

References

1. Diehl, S.T.: System and method for persistent ram disk. US Patent 7,594,068, 22
September 2009

2. Burr, G.W., et al.: Recent progress in phase-change memory technology. IEEE J.
Emerg. Sel. Top. Circuits Syst. 6(2), 146–162 (2016)

3. Kültürsay, E., Kandemir, M., Sivasubramaniam, A., Mutlu, O.: Evaluating STT-
RAM as an energy-efficient main memory alternative. In: 2013 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 256–
267. IEEE (2013)

4. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors, vol. 18. ACM (1990)

5. Mogill, J.A.: Extended memory semantics (2017). http://syntheticsemantics.com/
EMS.js

6. Shan, Y., Tsai, S.Y., Zhang, Y.: Distributed shared persistent memory. In: Pro-
ceedings of the 2017 Symposium on Cloud Computing, pp. 323–337. ACM (2017)

7. Selakovic, M., Pradel, M.: Performance issues and optimizations in Javascript: an
empirical study. In: Proceedings of the 38th International Conference on Software
Engineering, pp. 61–72. ACM (2016)

8. GoogleDevelopers: V8 engine (2018). https://developers.google.com/v8/
9. Mozilla: Spidermonkey engine (2018). https://developer.mozilla.org/en-US/docs/

Mozilla/Projects/SpiderMonkey
10. Webkit: FTL JIT (2014). https://webkit.org/blog/3362/introducing-the-webkit-

ftl-jit/
11. Tilkov, S., Vinoski, S.: Node. js: using javascript to build high-performance network

programs. IEEE Internet Comput. 14(6), 80–83 (2010)
12. Verdu, J., Pajuelo, A.: Performance scalability analysis of javascript applications

with web workers. IEEE Comput. Archit. Lett. 15(2), 105–108 (2016)
13. Lester, B.P.: The art of parallel programming. In: A Logical Calculus of the Ideas

Immanent in Nervous Activity (1993)
14. Intel: The persistent memory development kit (2018). http://pmem.io/
15. Frigo, M., Halpern, P., Leiserson, C.E., Lewin-Berlin, S.: Reducers and other

cilk++ hyperobjects. In: SPAA 2009: Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures, Calgary, Alberta, Canada, August,
pp. 79–90 (2009)

16. Bonetta, D., Salucci, L., Marr, S., Binder, W.: Gems: shared-memory parallel pro-
gramming for Node.js. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp. 531–547. ACM (2016)

17. Herhut, S., Hudson, R.L., Shpeisman, T., Sreeram, J.: Parallel programming for
the web. In: USENIX Conference on Hot Topics in Parallelism, p. 1 (2012)

http://syntheticsemantics.com/EMS.js
http://syntheticsemantics.com/EMS.js
https://developers.google.com/v8/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
http://pmem.io/

Dynamic Obstacle Avoidance Planning
Algorithm for UAV Based on Dubins Path

Na Wang1, Fei Dai1(&), Fangxin Liu2, and Guomin Zhang1

1 Army Engineering University of PLA, Nanjing 210007, China
daifei08@163.com

2 Shanghai Branch, Coordination Center of China,
National Computer Network Emergency Response Technical Team,

Shanghai 201315, China

Abstract. By considering the influence of turning radius on UAV movement,
the Dubins path can use geometric methods to plan the shortest curve between
the initial state and the end state of UAV. But, the important prerequisite for this
path planning is that the location and size of obstacles should be known and it is
assumed that the obstacles are round. However, in actual tasks, UAV often
cannot know the position, shape, and size of obstacles in advance during the
movement. Therefore, it is difficult to efficiently implement obstacle avoidance
planning in an unknown dynamic environment. In view of the dynamic mission
environment and low-cost UAV system, this paper proposed a UAV dynamic
obstacle avoidance planning algorithm based on Dubins path, which make use
of real time detection and estimation and can be used to optimize the real-time
obstacle avoidance path of UAV under the premise of unknown obstacle’s
position, shape and size. Simulation results show that the algorithm is correct
and can improve the efficiency of low-cost UAVs performing tasks in a dynamic
environment.

Keywords: UAV � Dynamic obstacle avoidance planning � Dubins path

1 Introduction

As the technology of unmanned aerial vehicle (UAV) becomes more and more mature,
UAVs are gradually used to solve problems that many traditional methods cannot
effectively solve, such as target monitoring and tracking, airspace situational awareness
interaction, unmanned aerial vehicle automatic collision avoidance, and empty sea-land
cooperation. It has played a vital role in the emergency assistance and urban emergency
[1]. UAVs have the advantages of flexibility, low cost, small size, low environmental
requirements, and high flying height, and can adapt to more complex and dynamic
uncertain environments [2]. UAV’s low-altitude autonomous flight is a research hot-
spot, and the core technology in the path planning for autonomous flight are the
automatic obstacle avoidance technology during flight. Traditional UAV obstacle
avoidance planning algorithms include gradient method, spline interpolation method,
nonlinear programming method, optimal control method, A* algorithm, neural network
method, simulated annealing method, genetic algorithm, ant colony algorithm, dynamic

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 367–377, 2018.
https://doi.org/10.1007/978-3-030-05054-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_29

programming algorithm, etc. [3–9], but the above methods treat the UAV as a particle,
without considering its own flight performance and the influence of the minimum
turning radius on the establishment of the obstacle avoidance model. Dubins [10]
considered the influence of the turning radius on the UAV motion and first discussed
the shortest curve problem between the initial state and the end state of the motion
using the geometric method. The concept of the Dubins path was first proposed. Based
on the Dubins path, the researchers discussed how to choose the optimal path from
many Dubins paths on the premise of multiple obstacles, and designed a large number
of intelligent algorithms to solve. However, most of the traditional Dubins path-based
methods do not consider the dynamic task environment, especially where the obstacle
position, shape, and size are unknown. Although some real-time path planning algo-
rithms can also respond well to the dynamic environment with uncertain obstacles, they
usually require stronger, higher-cost sensors as auxiliary support. For low-cost UAVs,
how to achieve dynamic obstacle avoidance during autonomous flight is an important
issue that needs urgent solution.

This paper makes full use of Dubins path planning method and uses a simple
forward detection sensor to implement a UAV dynamic obstacle avoidance planning
algorithm based on the Dubins path through obstacle estimation and the real-time
iterative planning. The remainder of the paper is organized as follows: Sect. 2 describes
the related works. Section 3 briefly reviews the basic process of Dubins path planning.
Section 4 conducts problem modeling and dynamic obstacle avoidance planning
algorithm design. Section 5 presents a simulation experiment to discuss the advantages
and disadvantages of different obstacle avoidance schemes. Section 6 summarizes the
full text.

2 Related Works

At present, the research on the obstacle avoidance methods of UAVs mainly focuses on
three aspects.

(1) Based on image recognition. Such methods generally install cameras and vision
processors on UAVs. The position of the obstacle is calculated from the image
acquired by the camera. The reactive collision-avoidance algorithm based on the
closest point of approach (CPA) using a single vision sensor for UAVs is pro-
posed [11]. It can avoid a collision with an intruder while overcoming the loss-of-
depth problem of the single vision sensor. However, when the shape of the
obstacle is irregular, the calculation of the algorithm is more complicated. The
method for design a controller of autonomous collision avoidance based on EKF-
OSA was proposed [12]. However, this method only applies to static obstacle
scenes. In [13], it introduces an efficient approach for sky segmentation in a
cluttered environment that is considered as a vital step for UAV autonomous
obstacle avoidance. In order to ensure the safety of UAVs flying at low altitude,
the grayscale is adjusted according to the captured image to achieve segmentation
of the sky, so that obstacles are identified. Through this method, the accuracy of
obstacle recognition can be improved.

368 N. Wang et al.

(2) Based on searching. The A* algorithm performs route planning by constructing
the cost function. In theory, the UAVs can achieve the shortest path by using A*.
It is verified that the planned track satisfies all kinds of flight requirements for
hypersonic vehicles and can avoid various threats. For two-dimensional obstacles,
obstacle regions is wrapped using elliptical geometry. For three-dimensional
obstacles, obstacle regions is wrapped using ellipsoids [14]. However, at present,
this method is only aimed at static obstacles. A method of obstacle avoidance for
UAV based on Dubins path planning is proposed [15]. This method takes into
account the factors of the minimum turning radius of the drone. The path planning
is solved by using genetic algorithms under the condition that the obstacle has
prior knowledge. In [16], Dubins paths were applied for both static and moving
ground obstacle avoidance by using a variation of the Rapidly-exploding Random
Tree (RRT) planner. In [17], Search-and-avoid algorithms for Dubins paths can be
developed by using several different techniques.

(3) Based on potential field. The artificial potential field method is used to plan the
targets and obstacles for UAVs. The gravitational function of artificial potential
field method is improved, and a sufficient smooth flight path is obtained by several
iterations and curvature checking [18]. It is a static path planning method. The
geometric constraints of the artificial potential field are added to the kinematics
equation, and the collision detection angle is calculated to determine the shortest
avoidance path for UAVs [19, 20]. The method can be used to solve the collision
avoidance problem during the UAV flight from the initial position to the desti-
nation point in a static and dynamic environment. Based on the traditional arti-
ficial potential field method, the velocity vectors of the target and the obstacle are
respectively introduced into the functions of the gravitational field and the
repulsive field in the relative position. The method can meet the safety, real-time
and reachability of the path planning of drones under dynamic change of targets
and obstacles, and improve the speed of tracking and obstacle avoidance of drones
in dynamic environment.

3 Overview of Dubins Path Planning

Assume that the UAV’s initial coordinate is \xs; ys[, the initial velocity is vs, the
endpoint coordinate is\xf ; yf[, and the endpoint velocity vf . As shown in Fig. 1, two
directed starting circles and two directed target circles are generated with the minimum
turning radius of the UAV. There must be a directed common tangent between any
starting circle and the target circle so that the UAV reaches the target position and state
from the initial position and state through a starting circular arc, a common tangent line,
and a target circular arc (specifically, the common tangent between the two circles with
the same orientation is the tangent of the grandfather, and the common tangent between
the two circles with the opposite directions is the tangent of the male tangent). This
path from the initial position and status to the target position and status is called the
Dubins path. Obviously, there are four such combinations. That is, there must be four
Dubins paths. The shortest Dubins path is the shortest path from the starting position
and state to the target position and state.

Dynamic Obstacle Avoidance Planning Algorithm for UAV Based on Dubins Path 369

When there is an obstacle in the path, the shortest Dubins path is found between the
start circle, the obstacle circle, and the target circle. As shown in Fig. 2, there are two
Dubins paths <SO-1, OF-1> and <SO-2, OF-2> between the start circle, the obstacle
circle, and the target circle. Different start circles and target circles exist. There are also
different Dubins paths. The shortest of all Dubins paths is the shortest path from the
start position and state to the target position and state. In particular, when there are
more obstacles, the more Dubins paths are available, the more complex the algorithm
for choosing the shortest Dubins path from them.

4 Problem Description and Algorithm Design

4.1 Problem Description and Conditional Assumptions

Taking Fig. 3 as an example, assume that the UAV’s initial coordinate is \xs; ys[,
the initial velocity is vs, the endpoint coordinate is\xf ; yf[, and the endpoint velocity
vf . A clockwise starting circle generated with the UAV minimum turning radius is the
counterclockwise target circle generated with the UAV minimum turning radius. When
the obstacle is not considered, the shortest path between the UAV from the starting
position to the target position is the Dubins path. Assume that UAVs perform tasks in
unknown areas, only knowing the position and status of the initial point and target
point. There are obstacles with uncertain quantities, shapes, and sizes randomly in the
task area. The problem to be solved at this time is how to minimize the UAV. The
distance from the starting position to the target position.

vs vf

Cs1 Cs2 Cf2

Cf1SF-2

SF-1

0 x

y

Fig. 1. Dubins path between the start position and final position.

vs

Cs1 Cs2

0 x

y vf

Cf2

Cf1

SO-1

SO-2

OF-2

OF-1

Fig. 2. Dubins path when obstacle exists.

370 N. Wang et al.

Other assumptions are as follows:

Assumption 1: UAV’s flight altitude and flight speed remain the same;

Assumption 2: UAV flight process always meets the constraints of the minimum
turning radius;

Assumption 3: The UAV only carries sensors that are detected in front of the flight,
and can sense the distance from the UAV to the obstacle in the front; the maximum
detection distance is Dsens;

Assumption 4: The safety distance between the UAV and the obstacle in front is Dsafe.
If the distance between the UAV and the obstacle in front of the UAV is larger than
Dsafe, the UAV may not make any adjustment. When the distance between the UAV
and the obstacle in front of the obstacle is less than or equal to Dsafe, the UAV must
bypass.

4.2 Dynamic Estimation of Obstacle Circle

Since only low-cost detection sensors can be used, the UAV constantly sends detection
signals forward during flight and takes corresponding measures based on the distance
from the obstacle in front. The Dubins path planning method must know the size and
position of obstacles, and the obstacles must be circular. Therefore, when faced with
unknown obstacles, it is necessary to first solve the problem of obstacle circle
estimation.

0

y

vs

Cs2

vf
Cf1

Fig. 3. Figure of problem description.

0 x

y

Cs2 Cf2

vs vfO0O1
Dsafe

Fig. 4. Estimation of the obstacle circle.

Dynamic Obstacle Avoidance Planning Algorithm for UAV Based on Dubins Path 371

As shown in Fig. 4, UAV first calculates the shortest Dubins path based on the
initial position \xs; ys[, initial speed vs, and end point \xf ; yf[. If it is detected that
there is an obstacle entering the safety distance Dsafe during the flight, it is estimated
based on the detected obstacle point. A circle of obstacles and re-plan Dubins path.
From Fig. 4, we can see that the accuracy of the obstacle circle estimation directly
determines the length of the Dubins path and the number of replanning. When the
obstruction circle is estimated to be too small (O1 in the figure), frequent replanning is
prone to occur; and when the obstruction circle is estimated to be too large (O0 in the
figure), although the number of replanning is reduced, it may bypass farther distance.
Therefore, the first problem to be solved is the estimation of the size of the obstacle
circle.

In order to reduce the number of plans and the distance of detours as much as
possible, this paper designs a dynamic estimation method of obstacle circle, as follows:

(1) Considering that obstacles are mostly continuous spatial geometries, a relatively
small radius R1 is first used as the radius of the obstruction circle, and the
obstruction circle is used for Dubins path planning.

(2) Starting from the previous route planning, if there is an obstacle within the safe
distance ahead of UAV Flight T, the obstacle is the same obstacle as the last
estimated obstacle. At this time, combining the positions of the obstacles detected
twice, the Dubins path planning is performed again using the radius R2 as a new
obstacle circle (R2 > R1);

(3) If no obstacle was detected during UAV flight T from the previous route planning,
clear the historical information, and deal with new obstacles when obstacles are
re-detected, as in step 1).

In particular, when the obstacle itself is a circle, according to the principle that a
circle is determined by three points, the UAV can only achieve a short obstacle
avoidance flight by only requiring dynamic programming three times during the flight.
As shown in Fig. 5, when the obstacle itself is a circle, the third estimated obstacle
circle is the shape of the obstacle itself.

0 x

y

Cs2 Cf2

vs vfDsafe

Fig. 5. Estimation of the obstacle circle for special shape.

372 N. Wang et al.

4.3 Dynamic Obstacle Avoidance Planning Algorithm

Algorithm 1: Dynamic Obstacle Avoidance Planning
Input: locs=<xs,ys>, locf=<xf,yf>, vs,vf

1: path = Dubins(locs,,locf,Null,0)
2: t0=0, list=Null
3: while path ≠ Null
4: flying(path)
5: if dobstacle≤Dsafe then
6: t = time_now()
7: if t-t0>T then
8: clear_list(list)
9: add_list(list,loco)

10: R=R1
11: else
12: add_list(list,loco)
13: R=R×1.5
14: end
15: t0=t
16: lococircle = obstacle(list)
17: path = Dubins(locnow, locf,vnow,vf, lococircle,R)
18: end
19: end

Obviously, it is impossible to find the shortest Dubins path when the obstructions in
the environment are completely unknown. Therefore, the goal of this algorithm is to
find a Dubins path that can bypass the unknown obstacles from the starting point to the
end point, and the Dubins path should be as short as possible. According to the
dynamic estimation method of obstacle circle in Sect. 4.2, Dubins path planning
method, the dynamic obstacle avoidance planning algorithm designed in this paper is as
above.

Among them, the initial Dubins path is determined by the position and status of the
starting point and the target point (line 1). If the UAV encounters an obstacle during the
flight, it first determines whether the obstacle has connections with the previous
obstacle (line 5–7). If it is unrelated, it directly estimates the obstacle circle based on
the current obstacle point, and if it is relevant, the estimation of the obstacle circle
based on historical information (line 8–16) will be conducted. Finally, a new Dubins
path (line 17) is generated based on the estimated obstacle circle.

Dynamic Obstacle Avoidance Planning Algorithm for UAV Based on Dubins Path 373

5 Simulation Results and Analysis

In order to verify the effectiveness of the proposed algorithm named UAV dynamic
obstacle avoidance planning algorithm, experiments are carried out for different types
of obstacles. In experiment, the location and state of UAV’s initial point and target
point are known, and the location, shape and size of the obstacles are unknown, then set
the speed of UAV to 2 m/s, the minimum turning radius to r, the safe distance to Ds.

Experiment 1: Three experiments were carried out for non-circular obstacles, as
shown in Figs. 6 and 7.

Under the condition that the safe distance is set to 15 m, the obstacle avoidance
path of UAV under different turning radius is shown in Fig. 6(a). It can be seen that
with the increase of the minimum turning radius, the detour distance increases when
UAV meets obstacles. The reason for this phenomenon is that the smaller the turning
radius of UAV is, the more flexible its motion is, and it can use the shorter route to
bypass obstacles. Figure 6(b) shows the obstacle avoidance path of UAV at different
safe distances under the condition that the minimum turning radius of UAV is set to
5 m. It can be found that with the increase of safety distance, the smaller the distance
traveled by UAV when obstacles are encountered, the less likely it is to collide with
obstacles. Because the greater the safety distance, UAV can detect obstacles ahead, and
advance obstacle avoidance planning in advance. In particular, when the safety distance
is too small, UAV may collide with obstacles due to failure to detect obstacles in time.
Figure 7 shows the obstacles avoidance path of UAV when it encounters a number of
obstacles. Moreover, it can be seen from the figure that when facing obstacles, UAV
can provide a real-time path planning with the help of dynamic algorithm to avoid
obstacles.

Fig. 6. (a) Path under different turning radius, (b) Path under different safe distances.

374 N. Wang et al.

Experiment 2: Comparison experiment between the proposed algorithm and the basic
Dubins path planning algorithm.

Since the basic Dubins path planning method is mainly aimed at known circular
obstacles, the circular obstacle is experimentally contrasted in this paper. When a
plurality of circular obstacles exist, the path comparison between the dynamic obstacle
avoidance planning algorithm and the basic Dubins planning algorithm is presented in
Fig. 8(a). We can conclude from the Fig. 8(a) that the path generated by the two
algorithms can successfully bypass the obstacles. Compared to the UAV optimal path
as a red curve representation in Fig. 8(a) generated by the basic Dubins programming
algorithm, the real-time path as a blue curve representation in Fig. 8(a) generated by
the dynamic obstacle avoidance planning algorithm is slightly longer than the optimal
path. However, the dynamic obstacle avoidance planning algorithm is carried out under
the condition that the location, shape and size of obstacles are completely unknown,
which is more consistent with the actual UAV task environment.

Fig. 7. Path under multi obstacles.

Fig. 8. (a) Comparison between Dynamic and Basic Dubins planning with round obstacle,
(b) Path when the shape of obstacles are known. (Color figure online)

Dynamic Obstacle Avoidance Planning Algorithm for UAV Based on Dubins Path 375

Figure 8(b) shows the path of the dynamic algorithm in the case of the shape of
circle obstacles is known, location and size are unknown. We can conclude from
Fig. 8(b) that comparing with the situation of obstacles completely unknown, the path
generated by dynamic algorithm for planning path to avoid obstacles is relatively close
to the optimal path, as the shape of obstacles is known to us.

6 Conclusion

In most of the task scenarios, it is difficult to obtain the specific location, shape and size
of an obstacle. This paper proposes a dynamic obstacle avoidance planning algorithm
based on Dubins path planning. The UAV constantly transmits detection signals in the
forward direction during flight, estimates the shape of the obstacles, and detects the
distance from obstacles, ensuring that obstacle avoidance is achieved under the mini-
mum turning radius. UAV can plan a better obstacle avoidance path in real time
without knowing the shape, location and size of obstacles. Simulation results show that
the algorithm is correct and can improve the efficiency of low-cost UAVs performing
tasks in a dynamic environment.

References

1. Wang, L., Zhou, W., Zhao, S.: Application of Mini-UAV in emergency rescue of major
accidents of hazardous chemicals. In: The International Conference on Remote Sensing,
pp. 152–155 (2013)

2. Bogatov, S., Mazny, N., Pugachev, A., et al.: Emergency radiation survey device onboard
the UAV. ISPRS – Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 1, 51–53 (2013)

3. Ducard, G., Kulling, K.C., Geering, H.P.: A simple and adaptive online path planning
system for a UAV. In: Proceedings of 2007 Mediterranean Conference on Control and
Automation, Athens, Greece, pp. 1–6 (2007)

4. Ju, H.S., Tsai, C.C.: Design of intelligent flight control law following the optical payload. In:
Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control,
Taibei, pp. 761–766 (2004)

5. Lee, J., Huang, R., Vaughn, A., et al.: Strategies of path planning for a UAV to track a
ground vehicle. In: Proceedings of IEEE Conference on Autonomous Intelligent Networked
Systems, Menlo Park, USA, pp. 602–607 (2003)

6. Wang, T., Wei, X., Sun, Q., et al.: GSA-based jammer localization in multi-hop wireless
network. In: IEEE International Conference on Computational Science and Engineering,
pp. 410–415. IEEE (2017)

7. Enomoto, K., Yamasaki, T., Takano, H., et al.: Automatic following for UAVs using
dynamic inversion. In: Proceedings of SICE Annual Conference, SICE 2007, pp. 2240–2246
(2007)

8. Cao, C., Hovakimyan, N., Kaminer, I., et al.: Stabilization of cascaded systems via L1
adaptive controller with application to a UAV path following problem and flight test results.
In: Proceedings of the 2007 American Control Conference, New York, pp. 1787–1792
(2007)

376 N. Wang et al.

9. Wei, X., Hu, F., Sun, Q., et al.: Association graph based jamming detection in multi-hop
wireless networks. In: IEEE International Conference on Computational Science and
Engineering, pp. 397–402. IEEE (2017)

10. Dubins, L.E.: On plane curves with curvature. Pacif. J. Math. 11(2), 471–481 (1961)
11. Choi, H., Kim, Y., Hwang, I.: Reactive collision avoidance of unmanned aerial vehicles

using a single vision sensor. J. Guidance Control Dyn. 36(36), 1234–1240 (2015)
12. Zhang, L.P., Guan, X.N.: Design of autonomous collision avoidance controller for UAVs.

Electron. Opt. Control 22(4), 13–18 (2015)
13. Mashaly, A.S., Wang, Y., Liu, Q.: Efficient sky segmentation approach for small UAV

autonomous obstacles avoidance in cluttered environment. In: Geoscience and Remote
Sensing Symposium, pp. 6710–6713. IEEE (2016)

14. Meng, Z.J., Huang, P.F., Yan, J.: Exploring trajectory planning for hypersonic vehicle using
improved sparse A* algorithm. J. Northwest. Polytechnical Univ. 28(2), 182–186 (2010)

15. Guan, Z.Y., Yang, D.X., Li, J., et al.: Obstacle avoidance planning algorithm for UAV based
on Dubins path. Trans. Beijing Inst. Technol. 34(6), 570–575 (2014)

16. Aguilar, W., Casaliglla, V., Pólit, J.: Obstacle avoidance based-visual navigation for micro
aerial vehicles. Electronics 6, 10 (2017)

17. Kikutis, R., Stankūnas, J., Rudinskas, D., et al.: Adaptation of Dubins paths for UAV ground
obstacle avoidance when using a low cost on-board GNSS sensor. Sensors 17(10), 2223
(2017)

18. Ding, J.R., Deng, C.P., et al.: Path planning algorithm for unmanned aerial vehicles based on
improved artificial potential field. J. Comput. Appl. 36(1), 287–290 (2016)

19. Zhao, Y., Jiao, L., Zhou, R., et al.: UAV formation control with obstacle avoidance using
improved artificial potential fields. In: Chinese Control Conference, pp. 6219–6224 (2017)

20. Tian, Y.Z., Zhang, Y.J.: UAV path planning based on improved artificial potential field in
dynamic environment. J. Wuhan Univ. Sci. Technol. 40(6), 451–456 (2017)

Dynamic Obstacle Avoidance Planning Algorithm for UAV Based on Dubins Path 377

An Energy Efficient and Lifetime Aware
Routing Protocol in Ad Hoc Networks

Wuyungerile Li, Bing Jia(&), Qinan Li, and Junxiu Wang

Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
jiabing@imu.edu.cn

Abstract. In recent years, with the rapid development of Internet technology
and wireless communication technology, wireless Ad hoc network has been
received more attention. Due to the limited transmission range and energy of
nodes in Ad hoc networks, it is important to establish a reliable and energy-
saving transmission path in Ad hoc networks. In this paper we proposed an
energy efficient routing algorithm EAODV. The algorithm is based on the
AODV routing protocol mainly in the following two aspects of improvement:
(1) In the route discovery process, when a node selects a routing node, it
dynamically selects one of the minimum power consumption routes and the
energy balanced route designed in this paper based on a marker bit representing
the remaining energy, then establishes a transmission path; (2) Based on (1), a
route interruption update strategy was proposed to make the RERR message to
restart the route discovery process to find new routes when node energy was
used excessively. Simulation results show that compared with AODV and other
existing routing protocols, EAODV can reduce network energy consumption
and improve network performances.

Keywords: Ad hoc network � Energy efficient � AODV � TrueTime

1 Introduction

With the rapid development of Internet, wireless network technology has become one
of the most popular research areas. The conventional wireless communication is
generally centralized or decentralized, and it needs infrastructure of the network to
operate normally [1, 3, 10]. However, in some special application scenarios such as
environment monitoring and disaster relief, there are always have no pre-deployed
infrastructures, and these applications require the network can be set up quickly and
transmit data as soon as possible. So as this, wireless Ad hoc network is widely
concerned. Wireless Ad hoc network is divided into high mobility network and low
mobility network according to whether or not the node moves. In low mobility (or
static) Ad hoc network, nodes’ moving frequency is low, and network topology
changes rarely. In addition, the communication range of nodes in Ad hoc network is
limited. When a node wants to communicate with a long distance node, it needs to
establish a routing path. Some intermediate nodes act as relay nodes and undertake
more data forwarding tasks. Hence there occurs a problem that unfairness of energy
consumption among nodes [11, 12]. Therefore it is important to study routing protocols

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 378–387, 2018.
https://doi.org/10.1007/978-3-030-05054-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_30&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_30

that consider the fairness of energy consumption among nodes. In recent years,
researchers have made a great deal of research and improvement on the routing pro-
tocols applicable to Ad hoc networks. AODV is a typical Ad hoc network routing
protocol that formed by the broadcast route discovery mechanism of the DSR routing
protocol [2]. AODV routing protocol has become a hot-spot in the research of Ad hoc
network routing protocol because of its own characteristics and good adaptability.

An ESAR (Energy Saving Ad hoc Routing) algorithm is proposed in [4]. In ESAR
data are transmitted via the selected path until the node in the path reaches a given
energy threshold, and another alternative path is used for transmission. ESAR increases
the network lifetime by applying the concept of thresholds. However ESAR requires
the establishment of many alternative paths, so that the energy consumption of the
network is high. Another energy-efficient algorithm is proposed in [5], which uses node
lifetime as a cost measure. Literature [6, 7] proposed routing algorithm where they took
the residual energy as a cost metric. In [6], an MMBCR (Min-Max Battery Cost
Routing) algorithm is proposed and in which it focuses on the remaining energy of the
bottleneck node on the path, then selects a bottleneck node that has the largest
remaining energy value as the next hop node. Although it delays the occurrence time of
the first death node in the network, but the overall network lifetime has not been greatly
improved. The ALMEL-AODV (Alternate Link Maximum Energy Level) algorithm
proposed in [7] takes residual energy of node as a cost metric and focuses on the
remaining energy of nodes on the path. The standard for selecting routes is that if the
sum of the remaining energy of the nodes on the path is the largest, then select it as the
route and transmit data through the path. Although ALMEL-AODV has improved the
node energy consumption to a certain extent, it pays attention to the residual energy in
the entire path and does not consider the residual energy of a single node.

The work presented in [8, 9] combines the energy consumption and residual energy
in the transmission process as a cost measure for routing. Literature [8] proposed an
EEPR (Energy efficient Path Routing) algorithm to realize the fairness of saving energy
consumption and energy consumption, thus improving the network lifetime. In [9], the
AODV routing protocol is improved for low-speed Ad hoc networks. A new path cost
measurement function is proposed based on the energy consumption and the ratio of
the remaining energy to the battery capacity. It has a good performance in Ad hoc
networks with low speed. However, this algorithm only considers the path selection at
the source node and lacks real-time performance. By analyzing the research status of
Ad hoc networks and combining with the shortcomings of AODV routing protocols
and other routing protocols [4–6], this paper proposes a new energy-efficient routing
protocol to deeply study how to better integrate the path energy consumption and node
residual energy. These cost metrics were improved on the basis of AODV routing
protocols to achieve fairness in the energy consumption of nodes in the network, thus
improving network lifetime and other network performances.

The paper is organized as follows: Firstly, we present our proposed energy efficient
routing protocol in Sect. 2. Then the Simulation results are shown in the Sect. 3. At last
the conclusion is presented.

An Energy Efficient and Lifetime Aware Routing Protocol in Ad Hoc Networks 379

2 Design of Energy Efficient and Network Lifetime Aware
Routing Protocol

2.1 The Main Idea of Proposed Routing Protocol

The AODV routing protocol is an on-demand routing protocol. There are three kinds of
control messages: route request (RREQ), route response (RREP), route error (RERR).
The AODV routing protocol is bi-directional. The source node sends RREQ message
to initiate route discovery, establishes the reverse path. The routing response message
RREP transfers the back source node through the reverse path to establish the forward
path. The AODV routing protocol is used to establish routes on an as-needed basis. It
does not need to maintain the topology of the entire network, thereby reducing the
amount of route broadcasting and reducing energy consumption.

The energy-efficient and network lifetime aware routing protocol is proposed for
low mobility Ad hoc networks and is named as EAODV. Considering the limited
energy of the nodes, and for extending the network lifetime, we have two improve-
ments to AODV protocol:

Firstly, when route is established, the EAODV protocol no longer adopts the
“shortest path” selection strategy. It proposes a dynamic routing algorithm, which
defines a rule that if the energy of nodes are overused or not and represents them with a
mark of 0 and 1. When a neighbor node receives a message with a tagged message, it
reads the information of the mark, and selects a suitable route selection algorithm from
the proposed minimum energy consumption routing algorithm and the energy balanced
routing algorithm according to the mark bit, and establishes the route.

Secondly, the EAODV protocol improves the routing interrupt update strategy of
the original AODV protocol. The routing interrupt update policy adopted in the original
AODV protocol, only when the node moves out of the communication range or the
node dies, the interrupt update policy is enabled. The EAODV routing protocol pro-
poses a passive interrupt update strategy, which uses the residual energy of a node and
the remaining energy of its neighbor nodes to trigger the routing interruption update
algorithm. When there is too much data transmitted on a path, the energy consumption
of some nodes is too fast. Through the passive interrupt update strategy, it can switch to
more energy path in time. With this kind of routing interruption update policy, the
energy consumption between nodes in the network can be more equitable, thus pro-
longing the network lifetime.

2.2 Network Model

In the network model, the nodes are distributed within the monitoring area. This work
assumes the network model as follows:

(1) The location information of each node in the network is known, the node IDs are
incremented in order from 0 and are globally unique IDs.

(2) The initial energy of all nodes is limited, and the greater the amount of data
transmitted, the faster the energy consumption.

380 W. Li et al.

(3) All nodes receive the same sensitivity and run the same routing protocol.
(4) All nodes have the same data processing capabilities and radio communication

capabilities.

2.3 Dynamic Route Selection Algorithm of EAODV Routing Protocol

The EAODV routing protocol proposed in this paper consists of two dynamic route
selecting algorithms, namely, the minimum energy consumption route selecting algo-
rithm (MER) and the energy balanced route selecting algorithm (EBR). When a node
needs to send data, each node in the path dynamically selects one of the routing
algorithms to establish a path.

(1) The Design of MER
The minimum energy consumption route selecting algorithm (MER), that is, this policy
selects the path with the smallest total energy consumption among the numerous
available paths from the source node to the destination node. MER uses the path
selection algorithm of the AODV routing protocol. When the path is established, the
source node broadcasts the RREQ firstly, and the intermediate node only accepts and
processes the same first arrival RREQ message of the source node, thus creating a
route. This is the “shortest path”, which is the central idea of the AODV routing
protocol. However, the improved routing protocol in this paper will calculate a rea-
sonable transmitting energy based on the distance between two points in the path. If the
established route is the “shortest path” in the network, then the total transmitting energy
of this path is the smallest. Because the amount of data transmitted by the source node
is certain, the sensor models of the nodes in the network are the same, that is, the
bandwidth of each node is the same, then, the transmission time when each node
transmits data will be the same.

(2) The Design of EBR
Energy balanced route selecting algorithm (EBR), that is, when forward and reverse
routes are established, among the numerous available routes, select the route with
node’s smallest residual energy is the biggest among the routes.

R ¼ maxfminfEi;t
leftgg

Here i is the node that passes through the path from the source node to the desti-
nation node. Ei;t

left is the residual energy of node i at time t.
In the network, if the above-mentioned minimum energy consumption routing is

always used, it may lead to premature exhaustion of some nodes on the path. For this
reason, energy balanced routing is proposed. During the establishment of the route, the
node selects the minimum energy consumption route or the energy balanced route
according to the Mark field value in the RREQ message and the RREP message to
establish the reverse path and the forward route.

An Energy Efficient and Lifetime Aware Routing Protocol in Ad Hoc Networks 381

(3) Format Design of RREQ, RREP and Routing Table
According to the design idea of energy efficient algorithm, it is necessary to modify the
RREQ and RREP packets based on the AODV protocol, and an example is shown in
Table 1.

Here, the Mark bit value is 0 or 1. The proposed routing protocol works according
to the value of the mark bit in the RREQ or RREP transmitted from the previous hop. If
the value is 0, the MER is used to establish the route. If the value is 1, the EBR is used
to establish the route. The minimum remaining energy of the nodes in the path, which
represents the minimum remaining energy of all nodes that have passed during the
route establishment. The same with RREQ, we add “Mark” and “Minimum remaining
energy” items into the message format of RREP and routing table. The converting
strategy between EBR and MER is presented in the following section.

2.4 Passive Interrupt Update Strategy

Based on the remaining energy of the node, this paper proposes a passive interruption
update policy based on the original update strategy of AODV. It is divided into two
methods to trigger the route interruption update strategy: At first, with the node sending
and receiving data packet, node energy is continuously consumed. When the ratio of
the real-time residual energy and the battery capacity of the node is less than a
threshold a (0.4 in this paper), the interrupt update strategy starts. Secondly, while
nodes in the network transmit data according to the established route, as long as the
node satisfies the overuse rule, it initiates an interrupt update strategy.

The overuse rule of node is as follows:

Ej;t
left �

1
b
\Ej;t

neig aver

Table 1. Message format of RREQ

Type Reserved Hop Count
RREQ ID
Destination IP Address
Destination Sequence Number
Originator IP Address
Originator Sequence Number
Mark
Minimum remaining energy

382 W. Li et al.

That is, if the residual energy of node j is multiplied by the parameter 1/b (4 in this
paper) is less than the average value of the remaining energy of the neighbor node, it is
determined that the node is overused.

When the node initiates an interrupt update policy, the node queries the routing table,
sends a RERRpacket to the next node in the routing table whose next hop is this node, and
sets the state field of all routing entries of this node to “invalid.”After receiving the RERR
data packet, the upstream node first looks for a route whose next hop is to send the RERR
data packet in the local node, and sets the state field of the route entry to “invalid” and
continues to send the RERR data packet to the upstream node.

3 Simulation

We use the Simulink/Truetime toolbox in Matlab to evaluate the performance of the
algorithm. The proposed EAODV routing protocol is verified with a typical AODV
routing protocol, and compared with the ALMEL-AODV routing protocol proposed in
[5] and the LMAODV routing protocol presented in [7]. This experiment selects Win7
operating system and uses Matlab’s TrueTime tool as the simulation platform to per-
form experiments.

3.1 Simulation Setting

Simulation parameters are shown in Table 2.

The results of the experiment in this paper are to compare the average of the 50
experiments. 36 nodes are randomly distributed in a region of 800 * 800 m2.

Table 2. Simulation parameters.

Parameter type Parameter value

MAC layer protocol type 802.15.4 (ZigBee)
Node communication range 250 m
Packet transmission rate 2 packet/s
Data packet size 4 bytes
Bandwidth 0.125 Mb/s
Node position Static
Simulation time 20 s
Initial energy of node 0.05 J
Initial transmit power 37 dBm
Receiver signal threshold −48 dBm

An Energy Efficient and Lifetime Aware Routing Protocol in Ad Hoc Networks 383

3.2 Simulation Results

For examining the impact of a and b on network lifetime, we set the range of a as 0.1,
0.2…..0.9, and b as 1, 2,… 9. In 800 s simulation time, the result of Fig. 1 shows that
network lifetime is generally longer when the a value is 0.3 to 0.5 and the b value is 4
to 6. Therefore, in the following experiment we set a as 0.4, b as 4.

This experiment verifies the effectiveness of the MPR and EBR, and evaluates the
EAODV routing protocol on the network lifetime in Fig. 2. The EAODV-1 in Fig. 2 is
the MER, and EAODV-2 is EBR. The combination of these two routing algorithms is
EAODV routing protocol that proposed in this paper. It can be clearly seen from the
figure that the use of an energy-balanced routing protocol alone can achieve the balance
of energy consumption in the network, but the node’s death time is too early. Using the
minimum power routing protocol alone, after the number of dead nodes reaches 6, the
node’s dead time is later than the EAODV routing protocol. Therefore, the EAODV
routing protocol combines the two routing protocols. Using EBR in the network, the
lifetime of nodes in the network is improved, so that all the nodes in the network can
have a longer network lifetime, and there is no premature death of the relay nodes.

Figure 3 shows the energy consumption of successfully transmitting a single packet
when the four routing protocols transmit data at different numbers of nodes. It can be
intuitively found that the energy consumption of the EAODV routing protocol and
LMAODV transmission unit data packets is low. The ALMEL-AODV routing protocol
performs slightly better than the AODV routing protocol. From the figure, it can be
concluded that the EAODV routing protocol and the LMAODV routing protocol are
lower in energy consumption of a single packet.

Table 3 shows the performance comparison of the four routing protocols under the
simulation of a static model. The EAODV routing protocol proposed in this paper has a
slight difference in average delays compared with AODV routing protocol, ALMEL-
AODV routing protocol, and LMAODV routing protocol because EAODV routing

1

20.8
30.7

40.6
50.5

60.4
70.3

80.2
90.1

400

N
et

w
or

k
Li

fe
tim

e(
s)

600
800

Fig. 1. The relationship between a, b and network lifetime

384 W. Li et al.

protocol selects one of the two routing algorithms to establish a route, and the gap is
negligible. However, EAODV performs better on delivery rate and throughput per-
formance indicators. The increase in delivery rate and throughput is attributed to the
path selection algorithm. It selects energy-rich lines to establish routes and improves
network lifetime. The energy consumption per unit packet of the EAODV routing
protocol and the total energy consumption during the simulation time are lower than
those of the AODV and ALMEL-AODV routing protocols.

0 10 20 30 40 50 60

Number of Nodes

0.5

1

1.5

2

2.5

3

3.5

4

E
ne

rg
y

C
on

su
m

pt
io

n
P

er
 P

ac
ke

t(
J)

×10-3

ALMEL-AODV
AODV
LMAODV

Fig. 3. Energy consumption of single packet of nodes

0 1 2 3 4 5 6 7 8 9 10

Number of Dead Nodes

0

100

200

300

400

500

600

700

800

900

N
et

w
or

k
Li

fe
tim

e(
s)

EAODV-1
EAODV-2

Fig. 2. Relationship between the number of dead nodes and network lifetime

An Energy Efficient and Lifetime Aware Routing Protocol in Ad Hoc Networks 385

4 Conclusion

In this paper, an energy-efficient routing protocol EAODV that based on traditional
AODV is proposed for low speed Ad hoc networks. In EAODV routing protocol there
are two path selection algorithms. Through the comparison and analysis of the
experiment, the design of EAODV routing protocol is proved to improve the packet
delivery rate and throughput, reduce the total energy consumption of the network and
the energy consumption per unit packet, so that improves the performance of network
lifetime.

Acknowledgement. Thanks to the National Natural Science Foundation of China (Grants
No. 61761035, 41761086, 61461037, 61661041) and “Scientific and Technological Innovation
Project of Inner Mongolia Autonomous Region System Development and Product Application of
Urban Flood Disaster Monitoring and Early-warning Management”.

References

1. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: 1999 2nd IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA 1999), New Orleans,
pp. 90–100. IEEE Press (1999)

2. Utkarsh, M.M., Chinara, S.: ESAR: an energy saving ad hoc routing algorithm for MANET.
In: IEEE Fourth International Conference on Advanced Computing, pp. 13–15 (2012)

3. Shivashankar, G.V., Narayanagowda, S.H.: Implementing a new power aware routing
algorithm based on existing dynamic source routing protocol for mobile ad hoc networks.
IET Netw. 3, 137–142 (2014)

4. Cao, L., Sharif, K., Wang, Y., et al.: Adaptive multiple metrics routing protocols for
heterogeneous multi-hop wireless networks. In: Consumer Communications and NET-
WORKING Conference, CCNC 2008, pp. 13–17. IEEE (2008)

5. Tai, H.T., Tan, C.E., Lau, S.P.: Alternate link maximum energy level ad hoc distance vector
scheme for energy efficient ad hoc networks routing. In: International Conference on
Computer and Communication Engineering, pp. 423–428. IEEE (2010)

6. Khanna, N., Krishna Naik, K.: Design and implementation of an energy efficient routing
approach based on existing AODV protocol in mobile adhoc networks for military. In:
International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy
Systems (ICETEESES). IEEE (2016). 7581388

7. Chen, J., Chen, J., Li, Z.: Energy-efficient AODV for low mobility ad hoc networks. In:
International Conference on Wireless Communications, NETWORKING and Mobile
Computing, pp. 1512–1515. IEEE (2007)

Table 3. Performances of network when the node is stationary and the initial energy is sufficient

EAODV LMAODV ALMEL-AODV AODV

Average throughput 7.96 bytes 7.81 bytes 7.79 bytes 7.79 bytes
Average end-to-end delay 0.00218 s 0.00205 s 0.001903 s 0.00201 s
Total energy consumption 0.586 J 0.567 J 0.92 J 0.93 J
Packet delivery ratio 99.749 97.134 98.517 97.417

386 W. Li et al.

8. Das, C.R., Dhara, S., Jeng, Y.R., et al.: An efficient routing protocol for wireless networks.
Mob. Netw. Appl. 1(2), 183–197 (1996)

9. Roth, U.: Highly dynamic destination-sequenced distance-vector routing. In: Proceedings of
ACM SIGCOMM 1994, pp. 234–244, August 1994

10. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: The Workshop
on Mobile Computing Systems & Applications, pp. 94–95. IEEE (2002)

11. Liu, Z., Luo, D., Li, J., Chen, X., Jia, C.: N-Mobishare: new privacy-preserving location-
sharing system for mobile online social networks. Int. J. Comput. Math. 93(2), 384–400
(2016)

12. Liu, Z., Li, T., Li, P., Jia, C., Li, J.: Verifiable searchable encryption with aggregate keys for
data sharing system. Future Gener. Comput. Syst. 78, 778–788 (2018)

An Energy Efficient and Lifetime Aware Routing Protocol in Ad Hoc Networks 387

On Optimization of Energy Consumption
in a Volunteer Cloud

Strategy of Placement and Migration of Dynamic
Services

Omar Ben Maaouia1,2(&), Hazem Fkaier2, Christophe Cerin3,
Mohamed Jemni2, and Yanik Ngoko3

1 University of Tunis El Manar, FST, Tunis, Tunisia
omarbenmaaouia@gmail.com

2 LATICE, ENSIT, University of Tunis, Tunis, Tunisia
omarbenmaaouia@gmail.com,hazem.fkaier@gmail.com,

mohamed.jemni@gmail.com
3 LIPN/UMR 7030, CNRS/Université Paris 13, Villetaneuse, France

{christophe.cerin,yanik.ngoko}@lipn.univ-paris13.fr

Abstract. Traditional Cloud computing has emerged as a new paradigm for
providing computing resources on demand and outsourcing software and
hardware infrastructures. Cloud computing is rapidly changing the way IT
services are made available and managed. These services can be requested by
several Cloud providers, hence the need for networking between IT service
components distributed in geographically diverse locations. Like the traditional
Cloud computing, the volunteer computing paradigm has become increasingly
important. For this paradigm, the resources on each personal machine are
shared, thanks to the will of their owners. Cloud and volunteer paradigms have
been recently seen as complementary technologies to better exploit the use of
local resources. Besides execution time and cost, energy consumption is also
becoming more important in the Cloud computing environments. Thus, it has
become a major concern for the widespread deployment of Cloud data centers.
Among methods that can overcome this problem, we are interested in planning
services that improve the use of data center resources in a dynamic environment.
In this context, we propose throughout this paper a heuristic that predicts the
allocation of dynamic and independent services to reduce the total energy
consumption. Our proposal respects various constraints: availability, capacity of
machines and the number of applications duplications. A series of experiments
illustrates and validates the potential of our approach.

Keywords: Volunteer cloud � Energy consumption
Minimization of energy consumption � Scheduling

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 388–398, 2018.
https://doi.org/10.1007/978-3-030-05054-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_31&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_31

1 Introduction

Cloud providers offer to their customers computing resources, as virtual machines, and
enable the networking between the virtual resources. Thus, customer’s needs have
evolved beyond having a simple virtual machine to acquiring complex, flexible, resi-
lient and intelligent virtual resources and services.

Cloud computing enables customers to access to an infinite (virtual) pool of
resources. This leads to a huge number of physical machines and data centers in order
to fulfil all the continuously increasing needs. The rise of the number of active physical
machine number affects the rise of the energy consumption. Therefore, minimization of
energy consumption has become one of the major challenges of Cloud computing.
Consequently, any Cloud system needs an efficient algorithm for task scheduling [1].
The scheduling problem is related to resources distribution and utilization within a
limited environment. It may be divided into two kinds: static scheduling and dynamic
scheduling. In the static case, the set of jobs are known a-priori, while the dynamic one
performs scheduling at job arrival so that it depends not only on the tasks and envi-
ronment but also on the current system state in order to produce a scheduling plan [2].

In particular, jobs’ arrival rate and the status of some nodes (offline or online) may
change without any a-priori knowledge. In this case, the dynamic scheduling method is
privileged.

In this paper, we propose two algorithms, one for creating an application graph and
the other one for assigning applications to the least loaded machines. The trick is based
on computing the shortest path in the graph to plan the execution of independent
applications while respecting several constraints of availability and capacity of the
machines as well as the constraint of applications duplication. In short, our purpose is
to reduce the energy consumption by using low-consumption machines and decreasing
the number of migrations, as much as possible.

The remainder of the paper involves six sections organized as follows: In Sect. 2,
we present a background related to the energy consumption evolution in the Cloud
environment; then we define the volunteer Cloud concept. In Sect. 3, we present the
state of the art of the most known methods for optimizing energy consumption in both
the traditional and the volunteer Cloud concepts. Section 4 is devoted to the description
of our proposed approach namely our SPS heuristics to minimize the overall energy
consumption relying on dynamic job placement. In Sect. 5, we detail an experimental
study on a platform that allows our theoretical contribution validation and evaluation.
We finally conclude and present our perspectives in Sect. 6.

2 Backgrounds

2.1 Energy Consumption

There are several recent studies interested in the energy consumption of data centers.
On one side, a 12.7% growth has been observed since 2011. On the other side, Cloud
computing revenue has been forecasted to jump from US $163 billion in 2011 to

On Optimization of Energy Consumption in a Volunteer Cloud 389

US $240 billion in 2016 [3]. Therefore, reducing energy consumption in data centers
has become a critical dilemma for industry and academia.

2.2 Volunteer Cloud

Unlike the infrastructure of the traditional Clouds, in the volunteer Cloud (VC), cus-
tomers and data centers can process multiple requests. Indeed, the volunteer nodes are
useful for the elasticity of Cloud. However, they cannot always be available. From an
energy point of view, VC may lead to two new costs for the application placement. The
first one is related to the applications migration when a volunteer node is no longer
available. The second one is related to the use of replicas to avoid the unavailability of
nodes [4].

Therefore, we will focus on the recent well-known works on energy optimization in
the volunteer Cloud, i.e. the efficient distribution of energy for applications across the
volunteer Cloud and the forecast of long-term availability for volunteer resources.

3 Related Work

There are diverse studies in the literature aiming to minimize the energy consumption
of a Cloud computing infrastructure. From an industrial point of view, the EECLOUD
project1 aims to offer services for energy monitoring of physical and virtual resources,
energy usage exposing for users and Clouds managers and energy monitoring streams
for upper layers software. This is an example embracing more general problems than
our current problem but it illustrates the challenging placement problem, which takes
into account both, the user and data center objectives: maximize performance and
minimize the energy consumption.

As said previously, we are interested in works aiming at minimizing the energy
consumption of a Cloud computing. In [5], Ghribi et al. proposed an assembly of two
algorithms; the first one is used for task allocation and the second one aims at opti-
mizing the migration of virtual machines. Hsu et al. developed an energy-aware
approach for virtual clusters by consolidating tasks [6]. Unfortunately, these approa-
ches do not consider the impact of startup time of ‘down’ hosts on the timing
requirements of real-time tasks, inevitably violating deadlines of some real-time tasks.
These studies involved the optimization of the energy consumption on a traditional
Cloud where there are as many resources available, unlike to the volunteer Cloud.
Hussain et al. [7] proposed a static task scheduling strategy, which supports the exe-
cution of modules on a set of interconnected processors. They depicted a job in the
form of a direct acyclic graph (DAG). They calculated the overall energy consumption
and they allocated tasks to processors, in such a way that the scenario consumes less
power regarding a reference scenario. Beloglazov et al. [8] were interested in dynamic
consolidation of virtual machines. In [9], the authors presented two algorithms for
scheduling tasks in a private Cloud environment, where the main purpose is to obtain a

1 http://www.ens-lyon.fr/LIP/RESO/eecloud/.

390 O. Ben Maaouia et al.

http://www.ens-lyon.fr/LIP/RESO/eecloud/

minimum completion time. The main contributions of [10] are twofold. First, the
scheduling algorithm balances the system load with an adaptive threshold and second,
it minimizes the makespan (completion time) of jobs. In [11], the goal of the research is
to select a subset of jobs that constitutes a feasible solution to the shortest path problem,
and to execute the selected jobs on the flow shop machines to minimize the makespan.
In [12], authors proposed a new modeling and scheduling approaches for offline jobs.
They proposed an optimal algorithm for offline scheduling considering Map and
Reduce stages by adapting to classical Johnson’s model. Yanik et al. proposed an
approach to reduce energy consumption for running applications where volunteer
nodes are used to build a Cloud [4, 13]. The heuristic proposed in [13], can minimize
the energy consumption in a volunteer Cloud only in short-term point of view. On the
other hand, our proposal, described in the following section, will study this problem
also in a long-term point of view.

Most conventional researches were interested only in makespan. However, we
propose a cost efficient and energy effective placement, which optimizes cost while
mapping tasks to hosts.

4 Proposed Approach

In this section, we explain and motivate again our problem and we describe the general
principle of our proposal through an illustrative example that highlights the interest of
our contribution. Our main allocation strategy is called SPS (Shortest Path Strategy).

Such a strategy can fit in both classes:

(a) Bin-Packing problems, from the point of view of allocation of jobs to the least
consuming available machine.

(b) Stochastic Integer Programming problems category, from the point of view of the
prediction of job allocation to minimize the energy consumption [14].

4.1 Abbreviations and Acronyms

According to previous works especially those of [15, 16], we present our notation and
hypothesis as follows. We consider N = {1…n} as a set of applications to be executed
on M = {1…m} which is a set of machines belonging to a Cloud. Note that the word
‘application’ in our context may actually stand either for a simple application or for the
container containing it, or even the virtual machine running it.

Our purpose is to build a strategy, which assigns the multiple applications to the
different machines during a predefined time interval. Therefore, the time interval is
composed of a set of phases that we note P = {0 …p − 1}. This latter contains phase
intervals with predefined duration. We suppose that the machines may be part of a data
center, or of a volunteer Cloud. In this context, the unavailability phenomenon should
be taken in consideration. Thus, we take as input a matrix D, whose generic element D
[p, i] states if the selected machine i (in M) is available at the phase p or not. The
applications to be deployed exists in one or multiple copies. For an application j 2 N,
we let kj be the number of copies of j that should be deployed. We associate a maximal

On Optimization of Energy Consumption in a Volunteer Cloud 391

capacity qi for each machine i 2 M. This capacity denotes the number of applications
copies that could be unfolded in order to minimize as much as possible the excessive
load. The principle goal here is to prevent excessive load. An application can be
migrated from a machine to another one because of unavailability. Given two machines
i, iʹ 2 M. Let Cjiiʹ be the required energetic cost for migrating a copy of application of j
from i to iʹ, knowing that Cjiiʹ = 0 8 j, i. We suppose that the main characteristics of
energy consumption Eji and Cjiiʹ are not time-dependent. Therefore, we aim at
deploying the application copies on the machines during the phase interval, e.g.
reducing the energy consumption due to the migrations and the different runs on the
machines. Moreover, this deployment is followed by some constraints, for each phase
p 2 T. The first one ensures that each application copy can only be deployed on an
available machine (C1).

The second one supposes that all the copies of an application should be assigned to
distinct machines (C2), and the third one specifies that the number of applications
assigned to a given machine is capped by qi for any machine i (C3). The overall energy
generated by applications deployed on a machine (EGM) must be less than the max-
imum threshold (C4). Note that the environment is heterogeneous. Therefore, we
assume that each application has diverse energy consumptions on the different
machines and that these machines consume diverse amounts of energy. Besides, we
suppose that the power increases linearly regarding the percentage of CPU. Table 1
describes the numerous adopted notations.

4.2 Assignment Based on the Shortest Path Strategy (SPS)

In the past, we have proposed a static approach to allocate the applications on the
servers of a Volunteer Cloud in [19, 20] where the arrival and finished dates of every
jobs are known a priori. Based on our previous works we propose a dynamic approach
where jobs arrive and end at any moment. In others words, our contribution consists in
modeling our problem through a graph in order to reduce the energy consumption.

Table 1. Summary of input data of the outlined problems

Symbol Description

P Number of execution phases
n, j 2 N = {1..N} Number, index and set of applications
m, i 2 M = {1..M} Number, index and set of machines
K = (kj)| j 2 N Vector of number of required instances of each application
q = (qj)| i 2 M Machine capacity vector
D Machine availability matrix
E Energy consumption matrix
C Transfer Energy matrix
S Maximum threshold of machine availability
PA Phase of job arrival
PE Phase of job end

392 O. Ben Maaouia et al.

Then, we compute the shortest path of the generated graph. We assume that the
consumption of an application relies not only on the machine that executes it, but also
on the migration from one machine to another one. Indeed, we aim to deploy several
copies of applications on machines during a time interval in order to decrease the
energy consumption. This latter can be induced due to the migration and the multiple
machine operations. Moreover, the deployment must respect the four above-mentioned
constraints C1, C2, C3 and C4. Thus, in order to schedule N independent jobs on
M heterogeneous machines interconnected during a determined phase interval and after
the assignments of the different applications among this interval, we minimize, through
our proposed approach, the sum of the induced consumptions. One can see the time
interval in the data center as an alternation of execution phases where all applications
are being executed on different machines, and migration phases where (some/all)
applications are being migrated from one machine to another. We can formulate our
approach in the form of a directed acyclic graph (DAG) G = (V, E), where V is set of
v nodes and E is a set of E directed edges. An edge corresponds either to the execution
of an application on a given machine (execution phase) or the migration of that
application from one machine to another one (migration phase). In both cases, the edge
has a cost that depicts the energy consumption of that operation (execution or
migration). A vertex stands for starting an application on machine i or starting a
migration from that machine.

General Principle
Our approach composed of two stages as follows:

Stage 1:
For each application a, we:

• Verify the phases of both job arrival and the job end. Note that the jobs may arrive
to at the machines at different phases and may end at diverse phases.

• Create a graph that consists of p computation phases separated by p-1 migration
phases and contains all possible assignments on all available machines during all
these phases (see Stage 2).

• Compute the shortest path by adapting the Dijkstra algorithm and bringing out its
trajectory) during its execution i.e. select the adequate machine (SM) for running
that application.

• Assign the current application to the least energy-consuming machine when all the
constraints (C1, C2, C3 and C4) are verified.

• Minimize the capacity of the selected machine (SM).
• Add the energy generated by the running application on the selected machine

(EGM).
• Compute the number of migrations from one machine to another.

Note that each time any machine changes its availability; there is an opportunity to
adjust assignment through migrations.

In this stage, we perform the rescheduling of the jobs on the machines during each
phase in order to update the machines states when the jobs finish at any unexpected
time, and when new jobs arrived.

On Optimization of Energy Consumption in a Volunteer Cloud 393

Stage 2:
For each phase:

For each machine: if all the constraints (C1, C2, C3 and C4) are verified, we
process either execution phase or migration phase:

• Execution phase: we place the application on all possible available machines, which
verify the mentioned constraints.

• Migration phase: if there is a migration, then the corresponding arc will take as
value the cost of the application migration from the source machine to the desti-
nation one. Otherwise, the arc takes the value 0. An application keeps jumping from
one machine to another so that its power consumption stays minimal.

5 Experimental Results and Discussion

5.1 Simulation Setup

We use C++ to develop our simulator using the lemon library2. In this section, we
introduce a series of experiments to illustrate our approach and compare it to the three
basic following strategies: (i) the random heuristic “RAND” which assigns an
application (ranked at the top of the list of applications) in a random way to an
available machine during the current phase; (ii) the “FIRST-Fit” heuristic which
permits to assign the application existing at the top of the applications list to the first
available machine, and (iii) the “BEST-fit” heuristic which allows the application
made at the top of the applications list to be assigned to the best available machine
(according to the least energy consuming) during the current execution phase.

5.2 Instances

We describe in Table 2 the multiple studied instances [16] that allow performing our
theoretical and experimental evaluation works. Next, we analyze the different outputs.

To summarize, we adopt the instances from the framework of Ngoko et al. [4].
Each instance is identified by: a number of applications, a number of machines, the
number of execution phases, the capacities of those machines and the bounds on
application copies. The energy expected for the move of the application and the energy
consumed in migrations is defined in [4]. The start and end time are recovered from the
Google cluster traces [17]. We consider the 12 instances (i.e. configurations) shown in
Table 2.

2 http://lemon.cs.elte.hu/trac/lemon.

394 O. Ben Maaouia et al.

http://lemon.cs.elte.hu/trac/lemon

5.3 Results Analysis

Given that arrival dates and end dates of jobs are dynamic but known a priori, we may
experimentally investigate the two following scenarios:

• Scenario 1: We consider the offline box in which all jobs are available at time 0.
• Scenario 2: Jobs arrival and end dates are dynamic but are not known a priori.

Scenario 1
We study the migration and energy consumption of multiple applications for the SPS
method (respectively Best-fit, First-fit and Random), and for the different twelve
instances. A series of experiments and comparisons of the applications migration and
the energy consumption was carried out for the random assignment (respectively for
the First Fit, Best Fit and SPS methods).

There are some excerpts of our performed tests that are illustrated in Table 3 and
Fig. 1.

Through Table 4, we can note the number of migrations of the different applica-
tions from a machine to another for the studied instances. We notice that for SPS, it is
possible to avoid migrations. Therefore, the overheads will also decrease. This
observation is inherited through a series of experiments (See Table 3 and Fig. 1).

Scenario 2
During the ‘formal’ comparison between the static scheduling and the dynamic one, we
noticed that when all the tasks are known in advance, so that the corresponding
applications are statically assigned, the migrations number as well as the energy
consumption significantly decrease. Let us denote the comparative reducing ratio as
follows:

Table 2. Description of configurations

Configuration N M P kmin kmax qmin qmax
1 30 50 10 3 6 2 5
2 30 60 10 3 6 2 4
3 40 80 10 3 7 2 6
4 50 100 10 3 7 2 5
5 30 50 12 3 7 2 5
6 30 60 12 3 7 2 5
7 60 100 12 3 7 1 4
8 40 80 12 3 7 1 4
9 30 60 16 3 7 1 4
10 40 80 16 3 7 1 4
11 50 100 16 3 7 1 4
12 80 100 16 3 7 1 4

On Optimization of Energy Consumption in a Volunteer Cloud 395

Table 3. Energy consumption (MW)

RAND FIRST_fit BEST_fit SPS

IN1 0.606 0.582 0.453 0.081
IN2 0.811 0.898 0.692 0.078
IN3 1.043 1.275 0.966 0.098
IN4 1.211 1.258 0.915 0.115
IN5 0.658 0.633 0.596 0.083
IN6 0.866 0.711 0.591 0.065
IN7 1.180 1.097 0.976 0.101
IN8 1.171 1.151 0.839 0.106
IN9 1.037 0.666 0.592 0.121
IN10 1.949 1.145 1.087 0.174
IN11 2.238 1.649 1.769 0.190
IN12 1.877 1.395 1.253 0.150

0

500000

1000000

1500000

2000000

2500000

IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12

E
ne

rg
y

co
ns

um
pt

io
n

(M

W
)

Instance

RAND
First_fit
Best_fit
SPS

Fig. 1. Energy consumption

Table 4. Number of applications migration

RAND FIRST_fit BEST_fit SPS

IN1 141 155 135 1
IN2 214 237 180 2
IN3 233 313 235 0
IN4 313 340 263 0
IN5 184 180 190 0
IN6 197 148 151 1
IN7 273 250 271 0
IN8 310 279 236 0
IN9 298 175 199 10
IN10 387 241 296 11
IN11 464 396 504 1
IN12 464 343 224 2

396 O. Ben Maaouia et al.

R2 heuristicð Þ ¼ EC Static SPSð Þ=EC Dynamic SPSð Þ

Table 5 reinforces this remark.

In short, all the results proved that our “SPS” proposal are better than the other
strategies. In fact, SPS allows an energy consumption reduction, thanks to the reduction
of the number of inter-machines applications migration.

6 Conclusion and Perspectives

Volunteer Cloud is an upcoming technology which includes motivating problems for
the researcher e.g. energy consumption. Maintaining the efficiency of energy con-
sumption has become a major problem with increased usage of devices consuming
more energy. In this paper, we are interested in the optimization of energy consumption
in a volunteer Cloud setting. We proposed a shortest path inspired algorithm to predict
the long-term allocation of dynamic independent services to reduce the total energy
consumption of the volunteer Cloud. Our proposed solution considers several con-
straints of the application such as availability, capacity of the machines and the
replication factor of applications. We have conducted extensive simulation experiments
to analyze the benefits of our algorithms. These latter show good improvements
through diverse simulations. From the results, the SPS (shortest path strategy) algo-
rithm is the most efficient in terms of energy consumption compared to the other
classical methods. The benefits of SPS derive from the fact that, the number of inter-
machine application migrations are greatly reduced. Note that in our approach,
dynamic job arrival and end time are also considered, which means that jobs are not
always ready at the beginning of the scheduling horizon. Therefore, the jobs may arrive
at a certain time and end at diverse phases. A series of experimentations validated our

Table 5. Comparison of static and dynamic SPS (MW)

Instances Static_SPS Dynamic_SPS R2

IN1 0.081 0.265 3.26
IN2 0.078 0.237 3.05
IN3 0.098 0.229 2.35
IN4 0.115 0.266 2.31
IN5 0.083 0.243 2.94
IN6 0.065 0.198 3.06
IN7 0.101 0.236 2.33
IN8 0.106 0.217 2.05
IN9 0.121 0.327 2.71
IN10 0.174 0.478 2.74
IN11 0.190 0.458 2.42
IN12 0.150 0.418 2.78

On Optimization of Energy Consumption in a Volunteer Cloud 397

approach and exemplified its practical interest. However, several interesting points
remain unexplored, particularly: (i) the extension of our approach to the case of the
addition or the omission of a volunteer node, where the number of nodes will be
dynamic from one phase to another. (ii) The study of our contribution when the
machines availability will also be dynamic.

References

1. Fox, A., et al.: Above the clouds: a Berkeley view of cloud computing, University of
California at Berkley, USA, Technical report UCB/EECS-2009-28

2. Thakur, P., Manish, M.: Different scheduling algorithm in cloud computing: a survey. Int.
J. Mod. Comput. Sci. (2017)

3. G. Group, Forecast: Data centers, worldwide, 2010–2015
4. Ngoko, Y., Gianessi, P., Cérin, C.: Energy-aware service provisioning in volunteers clouds.

Int. J. Big Data Intell. 2(4), 262–284 (2015)
5. Ghribi, C., Hadji, M., Zeghlache, D.: Energy efficient VM scheduling for cloud data centers:

exact allocation and migration algorithms. In: IEEE CCGrid 2013 (2013)
6. Hsu, C.H., Slagter, K.D., Chen, S.C., Chung, Y.C.: Optimizing energy consumption with

task consolidation in clouds. Inf. Sci. 258, 452–462 (2014)
7. Hussain, S., Raza, Z.: An energy aware resource allocation model for cloud computing. In:

International Conference on Science and Technology and Management, India (2016)
8. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics

for energy and performance efficient dynamic consolidation of virtual machines in cloud data
centers. Concurr. Comput. Pract. Exp. 24(13), 1397–1420 (2012)

9. Sindhu, S., Mukherjee, S.: Efficient task scheduling algorithms for cloud computing
environment. In: Mantri, A., Nandi, S., Kumar, G., Kumar, S. (eds.) HPAGC 2011. CCIS, vol.
169, pp. 79–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22577-2_11

10. Lee, Y.H., Leu, S., Chang, R.S.: Improving job scheduling algorithms in a grid environment.
Future Gener. Comput. Syst. 27(8), 991–998 (2011)

11. Nip, K., Wang, Z., Nobibon, F., Fabrice, T., et al.: A combination of flow shop scheduling
and the shortest path problem. J. Comb. Optim. 29(1), 36–52 (2015)

12. Gaujal, B., Navet, N., Walsh, C.: Shortest-path algorithms for real-time scheduling of FIFO
tasks with minimal energy use. TECS 4(4), 907–933 (2005)

13. Jiang, C., Wan, J., Cérin, C., Gianessi, P., Ngoko, Y.: Towards energy efficient allocation for
applications in volunteer cloud. In: IPDPSW, pp. 1516–1525 (2014)

14. Usmani, Z., Singh, S.: A survey of virtual machine placement techniques in a cloud data
center. Procedia Comput. Sci. 78, 491–498 (2016)

15. Maaouia, O.B., Jemni, M., Fhaier, H., Cerin, C.: Towards optimizing energy consumption in
cloud. In: 2017 International Conference on Engineering & MIS (ICEMIS). IEEE (2017)

16. Maaouia, O.B., Jemni, M., Fhaier, H., Cerin, C.: A novel optimization technique for
mastering energy consumption in cloud data center. In: 2017 IEEE International Symposium
on Parallel and Distributed Processing with Applications, pp. 475–480 (2017)

17. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+ schema. Google
Inc., White Paper (2011)

398 O. Ben Maaouia et al.

http://dx.doi.org/10.1007/978-3-642-22577-2_11

Big Data and Information Processing

More Effective Distributed Deep Learning
Using Staleness Based Parameter Updating

Yan Ye1,2(&), Mengqiang Chen1,3, Zijie Yan1,2,
Weigang Wu1,3, and Nong Xiao1,2

1 School of Data and Computer Science, Sun Yet-Sen University,
Guangzhou, China

yeyan5@mail2.sysu.edu.cn,

{wuweig,xiaon6}@mail.sysu.edu.cn
2 Guangdong Province Key Laboratory of Big Data Analysis and Processing,

Guangzhou, China
3 MoE Key Laboratory of Machine Intelligence and Advanced Computing,

Guangzhou, China

Abstract. Deep learning technology has been widely applied for various pur-
poses, especially big data analysis. However, computation required for deep
learning is getting more complex and larger. In order to accelerate the training of
large-scale deep networks, various distributed parallel training protocols have
been proposed. In this paper, we design a novel asynchronous training protocol,
Weighted Asynchronous Parallel (WASP), to update neural network parameters
in a more effective way. The core of WASP is “gradient staleness”, a parameter
version number based metric to weight gradients and reduce the influence of the
stale parameters. Moreover, by periodic forced synchronization of parameters,
WASP combines the advantages of synchronous and asynchronous training
models and can speed up training with a rapid convergence rate. We conduct
experiments using two classical convolutional neural networks, LeNet-5 and
ResNet-101, at the Tianhe-2 supercomputing system, and the results show that,
WASP can achieve much higher acceleration than existing asynchronous par-
allel training protocols.

Keywords: Distributed deep learning � Parallel computing � Parameter server
Asynchronous parallel � Supercomputing system

1 Introduction

Deep learning is attracting more and more attention in recent years, due to outstanding
results in a wide range of applications like image classification, object detection, self-
driving cars, computer vision, and natural language processing [1]. Convolutional Neural

This research is partially supported by The National Key Research and Development Program of
China (No. 2016YFB0200404, 2018YFB0203803), National Natural Science Foundation of China
(U1711263), MOE-CMCC Joint Research Fund of China (No. MCM20160104), and Program of
Science and Technology of Guangdong (No. 2015B010111001).

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 401–416, 2018.
https://doi.org/10.1007/978-3-030-05054-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_32&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_32

Network (CNN) is the typical architecture of deep learning, and large multi-layer neural
networks are trained without pre-conceived models to learn complex features from raw
input data, such as the pixels of labeled images. In addition to CNN, people also propose
many other types of deep neural networks, e.g., Recurrent Neural Networks (RNNs),
Deep Boltzmann Machine (DBM) and Time-delay Neural Networks (TDNN) et al. [2],
and they are suitable for different application scenarios.

To minimize the prediction error, a deep neural network usually uses an iterative-
convergent algorithm, such as stochastic gradient descent (SGD) [3], to get a set of
optimal parameters from the training data. However, with the increasing of the scale of
data set and the depth of neural networks, the training cost, including time and
memory, also increases significantly. It may take days or even weeks to train a deep
neural network to converge. The long time cost has become a bottleneck for deep
learning. To cope with such a challenge, distributed and parallel computing has been
considered for deep neural network training.

Multiple training workers (threads or processes) can be deployed at a distributed
system of computer cluster. The training data set is divided and assigned to the workers,
and each worker is in charge of processing a data-subset. During the training process, the
workers need to exchange parameters so as to update the neural network via aggregated
training results across all the nodes. Such a parallel data processing approach can speed
up the training procedure while satisfactory accuracy can be achieved.

There are two different paradigms for parameter exchanging. In synchronous
training, the parameters are synchronized at the end of each iteration, and next iteration
is blocked until all the workers receive the updated parameters. Through such a barrier
synchronization, the workers will perform gradient computation using the identical set
of neural network parameters so as to guarantee the convergence of the training.

The above synchronization is usually realized by message passing or data sharing
among workers. Since the slowest worker determines the speed of training in each
synchronous batch, synchronous training usually suffers from long waiting time and low
scalability. To circumvent this problem, researchers have restored to asynchronous
approaches which emphasize speed by using potentially stale information for compu-
tation [4]. In asynchronous training, workers calculate the gradients separately, and can
turn into next iteration without waiting for other workers. Although some of the workers
compute gradients using parameters that may be several gradient steps behind the most
updated set of the network parameters, it eliminates the synchronization barriers caused
by the slowest worker, improving the data throughput of the distributed system.

Asynchronous training is generally realized based on the parameter server archi-
tecture [3]. All state shared among workers (i.e., the network parameters being learned)
is kept as a specialized key-value store in parameter servers. Workers pull the up-to-
date parameters from the parameter servers and compute gradients of the loss with
respect to these parameters. Then, parameter servers collect gradients from workers and
update the network using these gradients.

Asynchronous training has proven to be faster than synchronous training. However,
due to the use of stale gradients, asynchronous training often has a convergent phe-
nomenon of oscillation in the later phase of training. It is hardly as stable as the
synchronous training and often results in poorer convergence. Therefore, there have
been many works to deal with this problem. Ho et al. [5], presented a parameter server

402 Y. Ye et al.

based distributed learning system where the staleness in parameter updates is bounded
by forcing faster workers to wait for the slower ones. Gupta et al. [6] introduced a new
learning rate modulation strategy to counter the effect of stale gradients, improving the
convergence rate in asynchronous training.

In this paper, we attempt to combine the advantages of synchronous training and
asynchronous training. Compared with the general asynchronous training, we propose
a new definition of gradient staleness, and uses it to weight the stale gradient to reduce
the damage of delayed updates during the asynchronous training. Based on the new
gradient staleness metric, we design new parameter update mechanism for parameter
servers. Therefore, we can not only guarantee the speed of training, but also solve the
convergence of the oscillation phenomenon due to the stale gradients. Furthermore, in
order to ensure the stability of convergence, forced synchronization is also used. Unlike
the usual synchronized training, we make all computing nodes shift from asynchronous
to synchronous in a periodic way, according to the number of updates at parameter
servers. Combining the gradient staleness weighting based asynchronous training and
parameter server based synchronization, we design the new distributed training pro-
tocol, WASP (Weighted Asynchronous Parallel).

We prove a theoretical-convergence upper bound for our proposed protocol and
conduct experiments at a large scale cluster of the Tianhe-2 supercomputer. Compared
with existing asynchronous training protocols in distributed deep learning, such as N-
Soft, WASP can achieve the same accuracy with much less time. Moreover, WASP can
converge in a more stable way than existing asynchronous training protocols.

The remainder of this paper is organized as follows. Section 2 summarizes and
discusses existing works on distributed deep learning, including the parameter server
architecture and different parameter update protocols. The design and implementation
of our design is described in Sect. 3. The upper bound of convergence is also presented
in this section. Section 4 presents experiment results and finally, Sect. 5 concludes the
paper with future directions.

2 Related Work

2.1 Parameter Server Architecture

Before popularizing the parameter server architecture in deep learning, many traditional
distributed systems have been applied in machine learning. However, these systems are
usually constrained by the synchronous iterative communication pattern and cannot
scale well. The concept of parameter came from the parallel LDA (Latent Dirichlet
Allocation) framework [7], which uses distributed cache storage to synchronize
parameters between different workers. YahoolDA [8] adds dedicated servers to store
parameters, and provides user-defined update primitives and basic load balancing
algorithms to improve the performance. The more abstract and general parameter server
architecture was proposed by Li et al. [3, 9], which is easy to scale, efficient, and
reliable. Following this architecture, many variants and extensions have been proposed,
such as DistBelief [4], Petuum [5], Poseidom [10] and Tensorflow [11]. Parameter
server architecture can be easily used to build and scale distributed deep learning across
CPU clusters or GPU based heterogeneous clusters [4, 8, 12].

More Effective Distributed Deep Learning Using Staleness 403

An illustration of the basic parameter server architecture [3] is shown in Fig. 1.
There is one or more parameter servers, which are responsible for storing and updating
the global shared parameters. Workers are in charge of training the neural network of
deep learning based on input data set. Workers exchange parameter values with
parameter servers.

As introduced in [3], each worker trains its own network, respectively. At the end
of each iteration, a worker sends the gradients newly calculated to the parameter
servers. Then, it pulls the up-to-date neural network parameters from the parameter
server and update its local copy. The new parameters will be used for the next training
iteration. A parameter server collects gradients from workers and aggregate them and
calculates new parameters based on distributed training protocols (described in the next
sub-section). Consistency of parameters across workers is usually guaranteed by
mechanisms at parameter servers.

Since both workers and parameter servers execute in a concurrent way, the training
procedure and parameter calculating procedure is decoupled. Then, different workers
may proceed with different speeds, and they may execute asynchronously so as to
increase distributed training speed.

2.2 Distributed Training Protocol

In distributed deep learning, the training protocol mainly describes how the parameter
servers process the gradients and complete the global parameters update. There are
three frequently-used protocols: BSP (Bulk Synchronous Parallel) [13, 14], ASP
(Asynchronous Parallel) [4, 8] and SSP (Stale Synchronous Parallel) [5].

In BSP, each worker l compute a gradient DWl using a mini-batch size of data and
send it to the parameter server. The parameter server averages the gradients over k
workers and updates the parameters according to Eq. 1, where a is the learning rate.
The workers are forced to wait for pulling the updated parameters until the parameter
server has received the gradient contribution from all the workers and finished the
update operation. This means that the faster workers must wait for the slowest worker
to complete the training and the computation proceeds at the rate of the slowest worker
in each iteration. The average running time is greatly increased [15]. Usually, we call

Fig. 1. An illustration of parameter server

404 Y. Ye et al.

the slowest worker straggler. Although suffering from high overheads because of the
synchronization barriers separating iterations, BSP protocol guarantees that each
worker computes gradients on the exactly the same set of parameters. It provides the
best accuracy baseline, when fixing the number of training epochs. Jian et al. [16]
proposed a synchronous optimization with backup workers under the BSP protocol that
runs independent instances on several machines more than the training actually
requires. It avoids stragglers by not forcing updates to wait for the slowest worker.

Wiþ 1 ¼ Wi � a
1
k

Xk

l¼1
DWl ð1Þ

ASP is an improvement based of BSP. The parameter server updates global
parameters as soon as it receives a gradient, without waiting for all gradient aggre-
gations to average. As shown in Eq. 2. Although this protocol show faster convergence
than BSP protocol, it does not enjoy the assurance of formal convergence guarantees
[10]. The main reason is that when a worker computes gradients of parameters and
sends back to the parameter servers, the global parameters may have been updated
more than once by other workers. For the global parameters at this point, these gra-
dients are already obsolete values. We refer to these as stale gradients, and its staleness
as the number of updates that have occurred between its corresponding read and update
operations.

An alternative solution, N-Soft, is presented in Zhang et al. [6], which proposed
batching gradients from multiple machines before performing an asynchronous SGD
update, thereby reducing the effective staleness of gradients. In particular, the N can
vary from 1 to k and the algorithm has different performances by setting different N.

Wiþ 1 ¼ Wi � aDWi ð2Þ

SSP is a flexible protocol which allows computations to use stale parameters with
the purpose of reducing synchronization overheads. It permits the workers to perform
asynchronously, but the fastest worker cannot exceed the slowest one more than a
predefined staleness S. The users can vary the value of S to control the constraints
degree, and even get the BSP and ASP protocols flexibly. Although it is not strictly
synchronous, it controls the gradient delay of the whole neural network to a certain
extent. In the case of adjusting the training algorithm’s hyper-parameters (such as
learning rate, mini-batch size), it can balance the training efficiency and the conver-
gence of the neural network well. And the theory proves that when staleness is not
equal to infinity, the SSP protocol can achieve stable convergence after several itera-
tions [5]. Jiang et al. [17] introduces a heterogeneity-aware distributed SGD algorithm
under the SSP protocol. It use a sophisticated learning rate schedule that takes into
consideration the delay information of each update before adding them to the global
parameters, and achieve the improvement of the convergence robustness.

More Effective Distributed Deep Learning Using Staleness 405

3 Weighted Asynchronous Parallel Protocol

In this paper, we design a novel distributed training protocol, WASP, which combines
the advantage of synchronous and asynchronous training.

3.1 Basic Idea of WASP

In WASP, each worker conducts training asynchronously and computes the gradients
based on a mini-batch of examples randomly selected from the training data. When a
parameter server gets new gradients and parameter version number from some workers,
there are two ways to handle the gradients. If the parameters used by the worker in
training process are consistent with those at the parameter server, the gradients will be
used to calculate the new global parameters as it is processed in ASP normally.
Otherwise, these gradients are computed from delayed parameters. We define the
staleness of the gradients as the difference between the parameter version number of the
worker and the parameter server and weighted the gradients by their staleness before
they are used to compute the new global parameters. Therefore, the protocol can
maintain the asynchronous training speed and at the same time reduce the damage of
delayed updates. However, the gradient weighting operation has lost some of the
updated information, which may result in a poorly learned model. In order to solve this
problem, we propose the forced synchronization interval.

Woker4

Woker3

Woker2

Woker1

Time

Interation3

Interation4

Interation1 Interation2

Interation1 Interation2 Interation3

Interation1 Interation2 Interation3

When T=10,
Force to sync

T

Interation3

Interation6

2T

Fig. 2. The WASP protocol

406 Y. Ye et al.

The parameter version number of parameter servers increases gradually after the
whole training has been performed asynchronously several times. When the parameter
server’s version reaches the threshold of forced synchronization interval, all workers
are forced to update its parameters to the newest version. This operation ensures that
the overall training for the next iteration will start with the same version of the
parameters. By forcing synchronization, the impact caused by the loss of partial gra-
dients can be weakened, and the training convergence rate is improved. The execution
procedure WASP is illustrated in Fig. 2.

3.2 Operations of WASP

We describe the detailed operations of WASP below. We use the following notations:

• k: number of workers
• a: learning rate
• T: forced synchronization interval
• hl: parameter version number of worker l. The range of l is from 1 to k.
• h0: parameter version number of the parameter server
• ri;l: staleness of the gradient from worker l at the iteration i. A worker l pushes its

gradient with parameter version hl to the parameter server of parameter version h0,
where h0 � hl. We calculate the staleness ri;l of this gradient as h0 � hl.

For each worker l, first of all, it randomly initializes the neural network’s layer
parameters according to the structure and sets the current parameter version number hl
to 0. Second, the worker reads a mini-batch of data from memory for training. Thirdly,
the worker uses the samples and labels to perform forward propagation and gets the
output value. In this process, each worker is calculating independently and doesn’t
communicate with each other. Then, the worker use the Loss function to calculate the
error between the network’s output value and the sample’s label, carries on the back
propagation, and calculates the gradient DWl of the parameter by layers. Finally, the
worker sends the gradients DWl and the parameter version number hl to the parameter
server, waiting for the parameters to be updated. Then, the worker pulls the latest
parameters and version number from the parameter server and use them to replace the
local parameters status: hl ¼ h0. Next, the worker repeats the second step and goes to
the next iteration.

More Effective Distributed Deep Learning Using Staleness 407

Algorithm. 1. WASP worker l, where l = 1, …,

Input: Dataset Y
Input: Mini-batch size M
Input: Iteration I

1.

// The worker in the first iteration

2. Set parameters version

3. Initialize the global variable

4. else:

5. Pull global parameter and parameter version

from Parameter Servers

6. Set parameters version

7. for i in range(I):

8. Load a mini-batch of training data {images, lables}

from Y

9. for Sample X in range(M):

10. Logits = inference(Ximages)

11. Loss = loss(Logits, Xlabels)

12. Grads = Compute Gradient(Loss)

13. Send Grads and to Parameter Servers

For a parameter server, firstly, it initializes the global parameter version number as
h0 ¼ 0 when the parameters of each worker are initialized, and initializes the forced
synchronization interval value T to a constant value based on the definition of the user.
Second, once the parameter server receives a gradient DWl from a worker, it increases
the parameter version number by 1 and judges it. If the h0%T is not equal to 0, the
parameter is updated using a gradient weighting method, with the following Eq. 3 to
define the staleness of the gradient from this worker.

ri;l ¼ hl � h0 ð3Þ

Then the parameter server use Eq. 4 to update the global parameters:

Wiþ 1 ¼ Wi � a
DWl

ri;l
ð4Þ

408 Y. Ye et al.

If the h0%T is equal to 0, indicating that all workers have made a total of T-time
asynchronous update operations, requiring a forced synchronization. The parameters
need to be updated by aggregating and averaging the all gradients according to the
Eq. 5.

Wiþ 1 ¼ Wi � a
1
k

Xk

l¼1
DWl ð5Þ

Finally, the parameter server repeats the second step and goes to the next parameter
version. Our method is presented in Algorithms 1 and 2.

Algorithm. 2. WASP parameter server j

Input: Predefined forced synchronization interval T
Input: Learning rate

1. Initialize the Parameters version and T = t

2. Receive Grads and from worker l
3.

4. if :
5. | Grads ← Grads - * Grads *

6. else:
7. | Aggregate the Grads from all workers
8. | Grads
9. | Grads Grads - * Grads

3.3 Correctness Analysis

Here we analyze the correctness of WASP by discussing its convergence. We will
consider the convergence of WASP using a bounded stale parameters with forced
synchronization interval. In essence, we are solving the following generic optimization
problem:

minx F xð Þ :=
XT

t¼1
ft xð Þ ð6Þ

Theorem 1 (adapted from [18]). SGD under stale parameters convergence in
probability:

Let it be a convex function, where ft is also convex. We search for a minimizer x�

via stochastic gradient descent on each component rft under stale parameters, with P

workers and the forced synchronization interval s. Let ut := � gtrtftgxtð Þ with gt ¼ gffi
t

p .

Under suitable conditions (ft are L-Lipschitz and bounded divergence D xjjx0ð Þ �F2),
we have:

More Effective Distributed Deep Learning Using Staleness 409

P
R X½ �
T

� 1ffiffiffiffi
T

p gL2 þ F2

g
þ 2gL2lr

� �
� s

� �
� exp

�Ts2

2�gTrr þ 2=3gL2 2sþ 1ð ÞPs
� �

where R X½ � := PT
t¼1 ft

gxtð Þ � f x�ð Þ, and �gT ¼ g2L4 ln T þ 1ð Þ
T ¼ o 1ð Þ as T ! 1.

This means that R X½ �
T converges to O T�1=2

	

in probability with an exponential tail-

bound; convergence is faster when the observed staleness average lr and variance rr
are smaller. Therefore, when we give a smaller lr, rr in WASP, the training will
eventually converge with a finite number of iterations.

3.4 Implementation of WASP

The implementation of WASP protocol is based on TensorFlow [11], a deep learning
framework that supports distributed training and allows computing using CPU and
GPU cluster nodes. We define two types of jobs in TensorFlow: Parameter server
(PS) and Worker, which communicate with each other through GRPC. TensorFlow
initiates (N+M) processes, including N PS processes and M Workers processes, which
are on different computing nodes respectively. Here PS process is mainly responsible
for communicating and updating the new parameters. Worker process chiefly computes
the gradients.

During the training process, a worker pulls parameters from the parameter server,
starts trainingwhen the parameters arrive, and then calculates gradients. Finally, it pushes
the gradients back to the parameter server before it can pull the parameters again. We do
not “accrue” gradients at the workers so that each gradient pushed to the parameter server
is always calculated out of one mini-batch size as accruing gradients generally lead to a
worse model. Note that the computation in parameter servers and workers are concurrent
(except for the worker that is communicating with the server, if any).

Since memory is abundant on each computing node, our implementation does not
split the neural network across multiple nodes. In particular, we pack one worker on
each computing node.

4 Performance Evaluation

To evaluate the performance of the proposed protocol, we conduct experiments at the
“Tianhe-2” supercomputer system1, which is currently ranked No. 2 in Top500.

Besides ASP and BSP, we also consider N-Soft [6], an improvement of ASP, for
comparison purpose.

1 http://nscc-gz.cn/

410 Y. Ye et al.

http://nscc-gz.cn/

4.1 Experiments Setup

The Cluster of Computing Nodes. Experiments are conducted at the partition of CPU
pool of Tianhe-2. Each node of this partition contains two 12-core Intel Xeon
E5-2692v2 processors with a clock frequency of 2.2 GHz. A single CPU has a theo-
retical double-precision floating point peak performance of 211.2Gflop/s, and the
computing node peak performance up to 3.432Tflop/s. The memory capacity of each
node is 64 GB and nodes are connected through Intel’s Ivy Bridge micro-architecture
built-in PCI-E 2.0, with a single lane bandwidth of 10 Gbps, providing a powerful
speed support for cross-node data communications.

Data Sets and Models. We present results on two data sets: MNIST and CIFAR-10
and all experiments in this paper are using the TensorFlow system. The MNIST
database [19] of handwritten digits contains 28 � 28 images in 10 classes, with 7000
images per class. It has a training set of 60,000 examples, and a test set of 10,000
examples. For this data set, we use the LeNet-5 [20], a deep convolutional neural
network with 2 convolutional layers, each followed by a pooling layer, and 3 fully-
connected layers. The last layer outputs the probability distribution over the 10 classes.
The second data set used is CIFAR-10 [21]. It comprises of a total of 60,000 RGB
images of size 32 � 32 pixels partitioned into the training set (50,000 images) and the
test set (10,000 images). Each image belongs to one of the 10 classes, with 6000
images per class. For this database, we use the ResNet-101 [22], a convolutional neural
network with three levels of residual learning units, which has a depth of 101 layers.

Training Algorithm Setup. The LeNet-5 is trained for 11 epochs, using momentum-
accelerated mini-batch SGD with a batch size of 64 and momentum is set to 0.9. We fix
learning rate to be 0.01, the frequently used value.

For ResNet-101, the neural network’s mini-batch size is set to 128 and the neural
network is trained for 30 epochs using SGD optimizer. The base learning rate is set to
0.1 and decays by 0.04 every 10,000 iterations. In order to eliminate the interference
caused by artificially selected parameters during the training process, the above
parameters are selected referencing to the model zoo of TensorFlow. In this parameter
configuration, the neural network can achieve the best training results.

4.2 Performance Metrics

We use three major metrics are used to measure performance of distributed deep
learning protocols:

• Average backward time: the average backward time of each worker during training,
including calculating gradients and applying gradients. This shows the time cost of
processing gradients.

• Training error: the misclassification error rate on the test dataset of the neural
network trained using a distributed training protocol. This metric is measured by
periodically testing during the training process. The lower the training error, the
more stable convergence and better training performance.

More Effective Distributed Deep Learning Using Staleness 411

• Speedup: the ratio of training time to convergence against BSP. We use BSP as the
baseline protocol and calculate the speedup for each other protocol, including
WASP.

4.3 Experiments Results

We conduct experiments using varying number of workers and set the forced syn-
chronization interval T to 500. We fix the N in the N-Soft protocol to 4, so parameters
are updated as soon as the parameter servers receive four gradients from any four
workers. In order to make the comparison more obvious, we make each computing
node has only one task for PS or Worker.

Average Backward Time. Since we add a weighted gradients operation and forced
synchronization in WASP, the training inevitably incurs extra time cost. Figure 3 plots
the average backward time using different training protocols. For the LeNet-5 on the
MINST data set, the average backward time of WASP is much lower than that of BSP
and N-Soft and is slightly more than that of ASP. When the number of workers is small
(k: = 4), the time cost is not significant compared to the ASP. When the number of
workers is comparatively large (k: = 16), the average backward time increases by
0.018 s, which is a relatively minor increase.

As for the ResNet-101 on the CIFAR-10 data set, the calculation of gradients
accounts for a large proportion of backward time. Therefore, our additional processing
operations in the gradients applying phase have little effect on the overall backward
time. As shown in the Fig. 3, the time gap between these four training protocols is
imperceptible. The WASP protocol is only 0.175 s longer than the ASP protocol and
increases the time cost by 0.02%.

(a) LeNet-5 (b) ResNet-101

Fig. 3. Average backward time

412 Y. Ye et al.

Training Error. We use the iteration number as the horizontal coordinate, in which
the time of each iteration varies according to the protocols. For LeNet-5, as a repre-
sentative result, Fig. 4 shows the training error obtained for different training protocols
when using k: = 16 workers. We can observer that the WASP’s training error drops
faster than the rest of protocols at the beginning. When iterations is about 500, the
training error of WASP is nearly 0, exceeding all the other training protocols and
keeping. Although the convergence of WASP has a slight oscillation, it is more stable
than ASP. With a limited number of iterations, the WASP can get the same conver-
gence as the BSP protocol at last.

In Fig. 5, we demonstrate the training error of the ResNet-101 using 16 workers.
The corresponding curves for training error for different protocols are virtually
distinguishable.

During the training process, the training error of WASP is basically between 28%
and 40%. However, the training error of ASP is about 2� larger than that of WASP,
meaning that the convergence is endured with drastic oscillation. After 12,000 itera-
tions, the BSP protocol achieve the best performance as a baseline and its training error
is about 17%, followed by N-Soft, about 23%. The training error of the WASP can
reach about 27%, which is much lower than ASP’ training error of 38%, showing that
WASP is effective in reducing the damages of delayed updates to obtain more stable
convergence and achieves better training performance than ASP.

Speedup. Figures 6 and 7 plot the convergence time on LeNet-5 and ResNet-101
models. As the number of workers increases, the time to convergence required for each
protocol decreases significantly, but the WASP keeps the fastest convergence rate on
both models. Most obviously, it only needs 5243 s to convergence to the accuracy
threshold using 16 workers on LeNet-5 model, while BSP needs 27335 s.

Table 1 shows the speedup of the LeNet-5 under different numbers of workers. In
order to achieve comparable speedup as the single-worker in BSP, all the hyper-
parameters are kept unchanged from the single-worker case. As shown in Table 1, the
WASP protocol has a 6.85� acceleration effect to achieve an accuracy of 0.98, rep-
resenting a more efficient performance than other protocols.

Fig. 4. The training error of LeNet-5 Fig. 5. The training error of ResNet-101

More Effective Distributed Deep Learning Using Staleness 413

The speedup of ResNet-101 model is shown in Table 2. Since the training time of
ResNet-101 is very long, the acceleration effect is remarkable. When the accuracy
threshold is achieved using 16 worker, the WASP accomplishes a 16 times-fold
acceleration effect. Furthermore, due to the unstable convergence, the accuracy of the
ASP protocol cannot be maintained at about 0.68. So our protocol is more than 1.7�
faster than ASP.

Fig. 6. Time to converge of LeNet-5 Fig. 7. Time to converge of ResNet-101

Table 1. The speedup of LeNet-5

Distributed training protocols PS/Worker Speedup Accuracy

BSP 2/4 2.18 0.987
2/16 2.69 0.988

N-Soft 2/4 2.84 0.983
2/16 3.38 0.985

ASP 2/4 4.18 0.986
2/16 5.01 0.983

WASP 2/4 5.5 0.985
2/16 6.85 0.984

Table 2. The speedup of ResNet-101

Distributed training protocols PS/Worker Speedup Accuracy

BSP 2/4 2.43 0.693
2/16 3.2 0.698

N-Soft 2/4 2.88 0.684
2/16 3.44 0.689

ASP 2/4 7.48 0.682
2/16 15.04 0.679

WASP 2/4 9.68 0.687
2/16 16.7 0.688

414 Y. Ye et al.

Overall, the WASP protocol which we proposed achieves stable convergence,
significant acceleration, and low time cost, in comparison with the conventional
training protocols and the N-Soft protocol.

5 Conclusions

Distributed training protocols for deep learning architectures will become more
important as the size of data sets increases. However, both synchronous and asyn-
chronous training suffer from their respective weaknesses of stragglers and staleness.
This leads us to propose a Weighted Asynchronous Parallel (WASP) protocol, which
combines the advantages of both synchronous and asynchronous training. We define
the staleness of gradients by parameter version number and use it to alleviate the
unstable convergence. To further improve the convergence rate, we convert the
parameter update method from asynchronous to synchronous in a periodic way.
Besides, we prove the valid convergence of our approach in theory.

We conduct the experiments at a large scale cluster of the Tianhe-2 supercomputer
and demonstrate the effectiveness of WASP on standard benchmarks (MNIST and
CIFAR-10). The experimental results show that our protocol achieves significantly
stable convergence and a rapid convergence rate on the neural network of LeNet-5 and
ResNet-101.

References

1. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
2. Li, X., Zhang, G., Huang, H., et al.: Performance analysis of GPU-based convolutional

neural networks. In: International Conference on Parallel Processing, Philadelphia, USA,
pp. 67–76. IEEE (2016)

3. Li, M., Andersen, D., Park, J., et al.: Scaling distributed machine learning with the parameter
server. In: International Conference on Big Data Science and Computing, Beijing, China,
pp. 583–598. ACM (2014)

4. Dean, J., Corrado, G., Monga, R., et al.: Large scale distributed deep networks. In:
International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada,
USA, pp. 1223–1231. Curran Associates Inc. (2012)

5. Ho, Q., Cipar, J., Cui, H., et al.: More effective distributed ML via a stale synchronous
parallel parameter server. In: International Conference on Neural Information Processing
Systems, Daegu, South Korea, pp. 1223–1231. Curran Associates Inc. (2013)

6. Zhang, W., Gupta, S., Lian, X., et al.: Staleness-aware async-SGD for distributed deep
learning. In: International Joint Conference on Artificial Intelligence, vol. 1511(05950),
pp. 2350–2356 (2016)

7. Smola, A., Narayanamurthy, S.: An architecture for parallel topic models. Very Large Data
Bases 3(1–2), 703–710 (2010)

8. Ahmed, A., Aly, M., Gonzalez, J., et al.: Scalable inference in latent variable models. In:
ACM International Conference on Web Search and Data Mining, Seattle Washington, USA,
pp. 123–132. ACM (2012)

9. Li, M., Zhou, L., Yang, Z., et al.: Parameter server for distributed machine learning. In: Big
Learning NIPS Workshop, Lake Tahoe, Nevada, USA, pp. 1–10. ACM (2013)

More Effective Distributed Deep Learning Using Staleness 415

10. Zhang, H., Hu, Z., Wei, J., et al.: Poseidon: A system architecture for efficient GPU-based
deep learning on multiple machines. Comput. Sci. 1512(06216), 10–21 (2015)

11. Abadi, M., Barham, P., Chen, J., et al.: TensorFlow: a system for large-scale machine
learning. In: OSDI 2016 Proceedings of the 12th USENIX conference on Operating Systems
Design and Implementation, Savannah, USA, pp. 265–283. USENIX Association (2016)

12. Wang, M., Xiao, T., Li, J., Zhang, J., Hong, C., et al.: Minerva: a scalable and highly
efficient training platform for deep learning. In: NIPS 2014 Workshop of Distributed Matrix
Computations, Montreal, Canada, pp. 1–9. ACM (2014)

13. Valiant, L.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111
(1990)

14. McColl, W.: Bulk Synchronous Parallel Computing. Oxford University Press, Oxford
(1995)

15. Cui, H., Cipar, J., Ho, Q., et al.: Exploiting bounded staleness to speed up big data analytics.
In: Usenix Conference on Usenix Technical Conference, Philadelphia, USA, pp. 37–48.
USENIX Association (2014)

16. Jiang, C., Xing, P., Rajat, M., et al.: Revisiting distributed synchronous SGD. In:
International Conference on Learning Representations, vol. 1604(00981), pp. 1–10 (2017)

17. Jiang, J., Cui, B., Zhang, C., et al.: Heterogeneity-aware distributed parameter servers. In:
ACM International Conference, Glasgow, Scotland, pp. 463–478. ACM (2017)

18. Dai, W., Kumar, A., Ho, Q., et al.: High-performance distributed ML at scale through
parameter server consistency models. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence, Austin, Texas, pp. 79–87. AAAI Press (2015)

19. Lecun, Y., Cortes, C.: The MNIST database of handwritten digits. Courant Inst. Math. Sci. 3
(7), 1–10 (2010)

20. Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

21. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Comput.
Sci. Dept. 1(4), 1–60 (2009)

22. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. Comput.
Vis. Pattern Recogn. 1512(03385), 770–778 (2016)

416 Y. Ye et al.

A Game Theoretic D2D Local Caching
System under Heterogeneous Video
Preferences and Social Reciprocity

Kaichuan Zhao1(B), Yuezhi Zhou1, Wenjuan Tang2, Shuang Li1,
and Yaoxue Zhang1

1 Beijing National Research Center for Information Science and Technology,
Department of Computer Science and Technology,

Tsinghua University, Beijing, China
{zhaokc13,lishuang13}@mails.tsinghua.edu.cn, {zhouyz,zyx}@tsinghua.edu.cn

2 Department of Information Science and Engineering,
Central South University, Changsha, China

wenjuantang@csu.edu.cn

Abstract. To accommodate the increasing rich multimedia mobile traf-
fics, especially the mobile video traffics, local caching becomes an effec-
tive approach to improve the quality of content delivering services in the
cellular networks. Mobile devices with large storage capacities and high
speed device-to-device (D2D) links become important elements of the
local caching system. In this paper, we propose a D2D local caching sys-
tem under heterogeneous preferences of mobile subscribers (MS), and
investigate the utility maximization problem using Stackelberg game
solution. In particular, the MSs form different groups, according to their
social relationships, and determine the price policies to maximize their
utilities, while the video provider (VP) aims to maximize his profits by
deciding the rent policies and the budget plan. We investigate the equi-
librium of the Stackelberg game in details and propose a water-filling
based iterative algorithm to obtain the Stackelberg equilibrium. Exten-
sive results demonstrate efficient performance of the D2D local caching
system.

Keywords: Local caching · Device-to-device communication
Social relationships · Stackelberg game

1 Introduction

The advent of mobile devices (e.g., large-screen phones and tablet computers)
immensely enriches mobile users experience by providing a proliferation of mul-
timedia services for their mobile domain. This, in turn, has driven a dramatically
growth of the mobile data traffic, especially, mobile video data accounts for the
major part of the total mobile data traffic [5]. When the same video is requested
from mobile subscribers (MS), numerous repetitive downloads and duplicate
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 417–431, 2018.
https://doi.org/10.1007/978-3-030-05054-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_33&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_33

418 K. Zhao et al.

transmissions occur. To deal with this problem, assisting the content dissemi-
nation through local caching [23] has recently been proposed as an promising
approach. It trades off the limited backhaul resource with the storage capac-
ity of end devices (e.g. mobile phones), the deployment cost of which is getting
lower. Popular videos, which usually account for a small fraction of the whole
library, can be prefetched at the end devices during off-peak time, while during
peak hours, the videos can be delivered locally to the MSs through the high
speed links (e.g. device-to-device (D2D) communications). By this means, local
caching provides a way to bring the videos closer to users, which can mitigate the
congestion in the core networks and reduce the average video access delay [6].

As an effective method to accommodate the mobile data traffic surge, numer-
ous recent works have utilized local caching to improve the system performance
of the wireless networks. Authors in [10] and [11] study the cooperative content
distribution with local caching. By caching videos in the mobile devices, and by
utilizing the short range transmissions, large amount of data can be effectively
offloaded through the cooperative local sharing [17]. Although the MSs can make
contributions to the local caching system as helpers, it also incurs extra costs to
them (e.g., caching storage cost and D2D transmissions cost). The performance
of D2D caching networks are greatly dependent on the sharing willingness of
the MSs. Due to the selfishness of the MSs, it is essential to design an incentive
mechanism to encourage MSs and the video provider (VP) to participate in the
video local sharing.

Designing incentive mechanism in the caching system faces critical challenges.
The VP aims to maximize the video local sharing among MSs with a small
budget, thus reducing the transmission cost and improving the service quality.
Whereas, MSs will make profits from the rewards of participating in the local
caching system. Both the VP and MSs want to obtain optimal profits. Due to
the limited budget of the VP, MSs need to compete with others to get more
rewards, which raises a non-cooperative game between them. In addition, from
the work on the incentive mechanism design in the literature [16,26], prior works
pay little attention to the social attribute of MSs and assume they have the same
interests and share willingness. More practically, the MSs usually have the similar
interests of videos in the same social group. What’s more, the MSs prefer to share
their cached videos to the neighbors with close social relationship, which will be
considered in our system [20].

In this paper, we will design a D2D local caching system, which consists of
one VP and multiple MSs, based on a Stackelberg game framework. In addition,
we design an incentive mechanism to promote participation of the VP and MSs.
Specifically, the MSs are divided into different disjoined groups according to
their social relationships, and the videos can be shared locally in the same social
group. We consider the MSs’ group to be the leaders, which decides the charge
price for leasing one fraction of MSs, while the VP as the follower responds with
a fraction of the seed MSs to rent from each MSs’ group. We also formulate the
interaction among different MSs’ group as a non-cooperative sub-game, where
each group competes for the limited rewards budget. For the sake of analysis, we

A Game Theoretic D2D Local Caching System 419

model the MSs in the system as a Homogeneous Poisson Point Process (HPPP),
following the theory of stochastic geometry [4]. Under this model, we investigate
the equilibrium of our Stackelberg game. Numerical results are finally given to
quantify the performance of the D2D local caching system.

The remainder of the paper is organized as follows. Section 2 gives a brief
review of the related works. In Sect. 3, we introduce the system model. Section 4
defines the utility functions of the VP and MSs’ groups, and presents a two-stage
Stackelberg game for the system. The game analysis is conducted in Sect. 5. In
Sect. 6, extensive experimental results are provided. Finally, we conclude this
paper in Sect. 7.

2 Related Works

Recently, the use of local caching to improve the system performance of the
wireless networks has received much interest. According to the location of stor-
age medium, the literature can be classified into two lines of works: caching in
the base stations (BS) [1,9,23] and caching in the end devices [8,13,22,25]. By
caching videos in the BSs, the videos, which has been downloaded frequently or
predicted to be popular in near future, are selected by the VPs and cached
in the cache-enabled BSs. Then BSs cooperatively utilize local caching and
transmission resource to serve MSs in the cellular networks. The authors in [2]
and [23] have proposed FemtoCaching systems with helper stations for video
on-demand streaming. In [14], authors developed a commercial video caching
prototype using cache-enabled small base stations. In [21], authors proposed a
mobile data offloading framework with cache-enabled small base stations, which
can effectively reduce the mobile network operators’ cost.

Apart from base stations acting as helpers, the MSs equipped with storage
capacities can also contribute to the cooperative local caching system [11,19].
By caching popular videos on the mobile devices, they can act as seed nodes
to share the videos to their neighbors by short range communications (e.g.,
Bluetooth and WiFi) during peak time, which can reduce the repetitive trans-
missions [22]. In [18], the caching strategy based on the distribution of users
request was proposed to maximize the probability of content hit ratio. In [8,24],
the designs of the D2D caching system were investigated. [25] investigates the
impact of user mobility on D2D caching, and proposes a mobility-aware caching
strategy to improve the data offloading performance.

While the existing works above mainly focus on the optimization of cache
placement aiming to reduce the transmission cost and delay, the authors
in [16,27] consider comprehensive systems from a financial perspective. In [16],
the contract theory is used to address the resource-trading problems in a com-
mercial small-cell caching system. [27] proposes an incentive cache mechanism
to stimulate the small base stations and multiple content providers in a caching
system.

In this work, mobile devices are used as storage medium to cache popular
videos and share them locally. From the commercial perspective, we investigate

420 K. Zhao et al.

Fig. 1. An illustration of the D2D local caching system

the resource allocation problem of local caching using Stackelberg game theory.
Unlike the works above, the share willingness, especially in a social reciprocity
aspect, are utilized to design an incentive mechanism in this D2D local caching
system. Besides, in this work, heterogeneous video preferences information of
MSs are used for caching placement instead of the global preference information.

3 System Model

We consider a D2D local caching system in a cellular network, consisting of one
VP and a large number of MSs. The MSs are served by the base stations, and
they can also share cached videos with others by leveraging D2D connections.
For simplicity, in this D2D local caching system, we focus on how to transmit a
certain video among MSs1. Let L denote the VP, which has a reference popular
video to disseminate. Figure 1 shows a scenario of the D2D local caching system.
In this system, the VP first stimulates and selects some MS as seed MSs to
push the video into their local memories during off-peak time. During peak
times, if there are seed MSs in proximity, the requesting MSs can fetch the video
directly through D2D Links. Otherwise, they will download the video via cellular
links with longer service delay. With effective mechanisms to allocate wireless
resources, we assume that there is no interference among MSs [12]. Table 1 lists
the notations used in the rest of the paper.

Share willingness of MSs is an important factor in the D2D local caching
system. If MSs did not prefer to share their resource, this system would not
achieve any performance improvement by utilizing local sharing. As each MS
has different social communities, we divide these MSs into K disjoined groups
according to their social relationships. Without loss of generality, we assume
that MSs have full willingness to share the cached video with partners in the
same group, and refuse any transmissions with foreigners (i.e., MSs in different

1 The results can be easily extended to the scenarios with multiple videos.

A Game Theoretic D2D Local Caching System 421

Table 1. Key Notations

L VP

K = {1, 2, ..., K} Set of MS groups

λk Density of MS in the group Gk

d D2D transmission distance

pk Average popularity of the reference video in group Gk

πk charge prices of the group Gk

φk Renting fraction of group Gk

ck Maintaining cost of group Gk

q Unit profit obtained by the VP

β Average number of requests by each MS

groups). Let K = {1, 2, ...,K} denote the set of MS groups. The group k ∈ K
is denoted by Gk. As illustrated in Fig. 1, the MSs are divided into two social
groups, i.e., G1 and G2. For each group, we assume that the locations of the MSs
in Gk, k ∈ K follow a HPPP ψk, which is independent of the other groups. Let λk

denote the density of MS in the group Gk, which represents the average number
of MSs in one unit area. For a certain MS in each group, he can download the
video from seed MSs within the D2D transmission distance, as denoted by the
radius d in Fig. 1. Under the assumption of HPPP model, the average number
of seed MSs of group Gk in the range of d is denoted by πd2λk. In reality, MSs
with close social relationships will probably have the similar interests [15]. Thus,
pk is defined as the average popularity of the reference video in group Gk, where
0 ≤ pk ≤ 1, k ∈ K. Then, the interested density of group Gk is denoted by pkλk,
which means the average video request number of MSs in group Gk in one unit
area.

In this local caching system, there are two important phases: the caching
phase and sharing phase: (1) In the caching phase, the VP will provide a budget
plan M to stimulate the MSs to participate in this local caching system. Each
MSs group announces the price of seed MSs. Let the set of Π = {π1, π2, ..., πK}
denote the charge prices of these social groups, and πk denote the price of the
group Gk. Given the price profile Π, the VP decides on renting a fraction of the
seed MSs, denoted by Φ = {φ1, φ2, ..., φK}. Let φk denote the renting fraction of
group Gk. (2) In the sharing phase, for an requesting MS in group Gk, the video
download protocol is defined as follows:

• Self caching : If the video is already cached in the memory of this MS, he will
obtain this video directly.

• Local sharing : If the video is not found in his cache, he will request the video
from the seeds of his social group within the transmission range d, and obtain
the video directly though D2D links. If multiple seeds response this request,
he will select one seed randomly.

422 K. Zhao et al.

• Cellular downloading : If the MS can not get the video from either his own
cache or seeds’ cache, he will obtain it from the VP via the cellular links.

It is assumed that the seed MSs are selected randomly in each group. The
density of seed MSs for group Gk is denoted by θk. According to the HPPP
model, θk is given as:

θk = φkλk, ∀k ∈ K. (1)

When a MS is interested in the reference video, he will connect to the nearest
seed MSs in his group or the VP to get the video. Let Pk denote the video
offloading probability of the group Gk. Under the HPPP model, the probability
that there are n seed MSs of the group Gk within the transmission range d can
be calculated as:

Pk(n, πd2) =
(πd2θk)n

n!
e−πd2θk , ∀k ∈ K. (2)

According to Eq.(2), the video offloading probability of the group Gk is cal-
culated as:

Pk = 1 − Pk(0, πd2) = 1 − e−πd2θk , ∀k ∈ K, (3)

where Pk(0, πd2) means that no seed MSs of the group Gk is within the trans-
mission range d.

4 Problem Formulation

In the D2D local caching system, both the VP and each group try to maximize
their own profits. The VP intends to rent a fraction of MSs from each group
Gk, k ∈ K, as seed MSs for caching the popular video and local sharing. This
can make profits for the VP by providing faster service of video delivery and
reducing the transmission cost. For each group, they can also obtain profits for
the VP by renting their cache storage of seed MSs. In this section, we first model
the utilities of the VP and the groups respectively. Then, we present a two-stage
Stackelberg game for the D2D local caching system in detail.

4.1 Utility Modeling

For each MSs’ group, the income is the rent charge from the VP for leasing the
fraction of MSs as seeds. Meanwhile, it needs to pay for certain cost (e.g., the
local transmission cost and caching energy cost) to maintain the local caching
system, which is linear with the fraction of leased seed MSs [21]. Let ck denote
as such cost on each group Gk, k ∈ K, during a unit period. Then the utility of
a group Gk is expressed as:

Uk = (πk − ck)φkλk, ∀k ∈ K. (4)

According to all the charge prices Π set by the groups, the VP will decide
the fraction of seed MSs to rent from each group. For the VP, the utility is the

A Game Theoretic D2D Local Caching System 423

difference between revenue and cost. The revenue of the VP is gained from the
shorter service delay and mitigating the congestion of its central servers, with
the help of the video offloading. Let q denote the profit obtained by the VP when
a video clip is requested by a MS from the local caching system, and β denote
the average number of the reference video requests from each MS within an unit
period. Then the overall revenue is given as:

RL =
K∑

k=1

pkλkPkqβ =
K∑

k=1

pkλk(1 − e−πd2θk)qβ. (5)

To provide the local caching service, the VP needs to pay for renting a fraction
of MSs. Therefore, the cost of the VP is calculated as:

CL =
K∑

k=1

πkφkλk. (6)

Then, the utility function of the VP is expressed as:

UL = RL − CL

=
K∑

k=1

pkλkPkqβ −
K∑

k=1

πkφkλk.
(7)

4.2 Stackelberg Game Formulation

For the D2D local caching system, we design an incentive mechanism to stim-
ulate the MSs groups to share their cache storage and transmission resource.
The mechanism can increase the probability of the video offloading and hence
enhance the quality of video delivery service on the VP. The MSs can get rewards
from serving other MSs. For the limited budget of the VP, the MSs’ groups
also need to compete with each other for more rewards. Both the VP and MSs
aim to maximize their own benefits. This raise a competition problem between
them. Therefore, we model the interaction between the VP and MSs as a two-
stage Stackelberg game GL. Stackelberg Game is an extension of non-cooperative
game, which consists of leaders and followers. The leaders (MSs’ groups) first
announce the charge price for leasing one unit fraction of MSs as seeds. Then
the follower (the VP) responses the fraction of MSs φk that it tends to rent from
the group Gk.

We formally define the following two-stage game GL :

• Players: The set of MSs’ groups K and the VP L are the players of the game,
especially the MSs’ groups act as leaders and the VP is the follower.

• Strategies: The strategy of each leader (i.e., a MSs’ group Gk, k ∈ K) is the
charge price πk for leasing one unit fraction of MSs as seeds. Accordingly, the
set of leaders’ strategies is denoted by Π = {π1, π2, ..., πK}. For the follower
(i.e., the VP L), the strategy is the fraction vector of the seed MSs to rent as
Φ = {φ1, φ2, ..., φK}.

424 K. Zhao et al.

• Payoff : (i) for the VP, the utility UL, (ii) for each group Gk, k ∈ K, the utility
Uk.

In Stage I, each MSs’ group k ∈ K determines the charge price, aiming at
the highest utilities:

π∗
k = arg max

πk

{
(πk − ck)φkλk

}
, ∀k ∈ K. (8)

In Stage II, given the charge price vector of all MSs’ group, the VP decides the
faction φk of the seed MSs to rent from each MSs’ group k ∈ K, with the goal
to maximize its utility:

Φ∗ = arg max
Φ

{ K∑

k=1

pkλkPkqβ −
K∑

k=1

πkφkλk

}
. (9)

For this Stackelberg game, we define the Stackelberg Equilibrium as follows.

Definition 1. (Stackelberg Equilibrium): A strategy profile (Π∗,Φ∗),
including the optimal charge strategies of MSs’ groups Π∗ � {π∗

1 , π
∗
2 , ..., π

∗
K}

and the optimal rent fraction vector Φ∗ � {φ∗
1, φ

∗
2, ..., φ

∗
K}, is a Stackelberg equi-

librium of this game GL, if the following conditions are satisfied,

Uk(π∗
k,Π∗

−k,Φ∗) ≥ Uk(πk,Π∗
−k,Φ∗), ∀k,

UL(Π∗,Φ∗) ≥ UL(Π∗,Φ).
(10)

where Π∗
−k = {π∗

1 , ..., π
∗
k−1, π

∗
k+1, ..., π

∗
K}.

In the next section, we will investigate on the Stackelberg game GL opti-
mization in details.

5 Stackelberg Game Analysis

The two-stage game GL is a complete information dynamic game. We use the
method of backward induction [7] to analyse its equilibrium. We will begin with
Stage II and analyse the strategy of the VP, given the profiles of the charge
price chosen by the MSs’ groups. Then we will investigate Stage I and analyse
the MSs’ groups’ optimal decisions based on the anticipated strategy of the VP
and the VP’s budget plan

∑K
k=1 πkφkλk ≤ M .

Stage II: VP Problem. In the Stackelberg formulation, the VP finds the
optimal rent strategy based on the charge price announced by all the MSs’
groups, by solving the following problem:

P1 : max
Φ

UL(Φ), (11a)

s.t.
K∑

k=1

πkφkλk ≤ M, k ∈ K, (11b)

0 ≤ φk ≤ 1, k ∈ K, (11c)

A Game Theoretic D2D Local Caching System 425

where the vector Φ = {φ1, φ2, ..., φK} represents the rent strategy of the VP.
The constraint (11b) ensures that the total payment is under the VP’s budget
plan. (11c) ensures that φk,∀k ∈ K is a valid fraction.

Lemma 1. The VP problem P1 in Stage II is convex.

Proof. Here we prove that P1 is a convex problem. The second-order partial
derivations of UL is given as,

∂2UL
∂φ2

k

= −pkλkqβ(πd2λk)2e−πd2λkφk < 0,
∂2UL

∂φk∂φj
= 0. (12)

It is easy to prove that P1 is a convex problem, for the reason that the
second-order derivation of UL(Φ) is less than zero, i.e., ∂2UL/∂φ2

k < 0.

It is easy to prove that P1 is a convex problem, for the reason that the second-
order derivation of UL(Φ) is less than zero, i.e., ∂2UL/∂φ2

k < 0. To obtain the
optimal decision of the VP, we propose a modified water-filling algorithm with
the budget constrain. As P1 is a convex problem, the solution is analysed using
the Lagrange Function [3],

L(Φ, ξ,μ, ν) = −
(K∑

k=1

pkλkPkqβ −
K∑

k=1

πkφkλk

)
+ ξ(

K∑

k=1

πkφkλk − M)

+
K∑

k=1

νk(φk − 1) −
K∑

k=1

μkφk.

(13)

Here, ξ, μ � {μ1, μ2, ..., μK} and ν � {ν1, ν2, ..., νK} are the Lagrange mul-
tipliers. For a convex optimization problem, if points <Φ, ξ,μ, ν> satisfy the
Karush-Kuhn-Tucher(KKT) conditions, they will suffice to be the optimal solu-
tions. Then we obtain the KKT conditions as follows,

∂L(Φ, ξ,μ, ν)
∂φk

= 0, (14a)

μ∗
kφ∗

k = 0, (14b)
ν∗

k(φ∗
k − 1) = 0, (14c)

μ∗
k ≥ 0, (14d)

ν∗
k ≥ 0, ∀k ∈ K. (14e)

With (14a), we obtain that

φk =
1

Bλk
ln

(pkλkBqβ

(1 + ξ)πk
+ νk − μk

)
, (15)

where B = πd2. At the global optimum, if 0 ≤ φ∗
k ≤ 1, then νk = 0 and μk = 0.

Then we arrive at
φ∗

k =
1

Bλk
ln

(pkλkBqβ

(1 + ξ)πk

)
. (16)

426 K. Zhao et al.

Algorithm 1. Water-filling Algorithm for Computing the equilibrium in Stage II
Require: precision threshold δξ;
Ensure: Φ∗;
1: Initialize: ξ(l) := 0, ξ(h) := ∞, bool Convergence = false;
2: while Convergence is false do
3: ξ := 1

2
(ξ(l) + ξ(h));

4: for k ∈ K do

5: φk(πk) =
[

1
Bλk

ln(pkλkBqβ
(1+ξ)πk

)
]±

;

6: end for
7: if

∑K
k=1 πkφkλk < M then set ξ(h) := ξ;

8: else set ξ(l) := ξ;
9: if |ξ(l) − ξ(h)| ≤ δξ then Convergence is true;

10: end while

Therefore, given the charge price vector Π = {π1, π2, ..., πK} set by the MSs’
groups, the optimal decision of the VP with the consideration of the budget plan
M , can be derived as:

φk(πk) =
[1
Bλk

ln
(pkλkBqβ

(1 + ξ∗)πk

)]±
,∀k ∈ K, (17)

where (ω)± represents ω ∈ [0, 1], and ξ∗ is the optimal dual variable of con-
straint (11b), which satisfies

∑K
k=1 πkφkλk = M .

Based on the optimal solution above, we propose Algorithm 1 for obtaining
the optimal rent strategy of the VP based on bi-section.

Stage I: MSs’ Groups Problem. In the above analysis, optimal response from
the VP Φ∗(Πt) is obtained. Then, the optimal charge price strategies of the MSs’
groups in Stage I will be analysed according to the response of the VP. Knowing
the optimal response from the VP, each of the MSs’ groups can calculate the
optimal charge price πk by solving problem (8). Substituting Eq. (17) to Eq. (8),
we obtain the following problem to determine the optimal price strategies in
Stage I:

P2 : max
πk

Uk = (πk − ck)λkφ∗
k(Π), ∀k ∈ K. (18)

Note that, due to the insufficient payment of the VP, the optimal price strategy
of each group Gk depends on other groups’ strategies, causing a non-cooperative
game between them.

The optimal charge price can be obtained by taking the derivation of Uk with
respect to πk and equating it to zero,

∂Uk

∂πk
= (πk − ck)λk

∂φ∗
k(Π)
∂πk

+ λkφ∗
k(Π) = 0, ∀k ∈ K. (19)

Since each group’s optimal price is dependent on other price, no closed-form
for π∗

k can be found. Due to the insufficient budget plan, one MSs’ group will

A Game Theoretic D2D Local Caching System 427

Algorithm 2. The best price strategies in Stage I
Require: precision threshold δπ;
Ensure: Φ∗, Π∗;
1: Initialize: π

(0)
k = ck ;

2: repeat
3: Update Φ(t) by Algorithm 1;
4: Each MSs’ group updates πk

(t+1) by solving (20);
5: t ← t + 1;
6: until π

(t+1)
k − π

(t)
k < δπ.

update its strategy when other groups change their price. Hance we use an
iterative optimization process to solve the MSs’ groups strategies problem.

In each iteration t = 1, 2, ..., for the MSs’ groups problem, the formula that
gives the update price of the group Gk is:

π
(t+1)
k = ck − φ∗

k(Π(t))

∂φ∗
k(Π(t))/∂π

(t)
k

,∀k ∈ K. (20)

Based on the analysis above, we propose Algorithm 2 to get the optimal price
strategies of the MSs’ groups. Once the iterative optimization process converges,
we can get the optimal solution Π∗, together with the solution of Φ∗.

6 Simulation Results

In this section, we investigate the performance of the proposed D2D local caching
system versus some key parameters. Although there are many factors in this
system, the budget plan M constrain, the density of MSs and popularity of the
reference video among MSs are three important ones. It is observed that the
proposed system can be easily extended to multiple videos, so in this simulation,
only one reference video is adopted.

To illustrate the impact of these key parameters on the D2D local caching
system, we consider the system setting as follows. The range of D2D communi-
cations is set to be d = 5m. We set the average number of the reference video
requests as β = 5. If a video clip is requested, the VP can get a profit as q = 0.2.

We first evaluate the impact of the budget plan in a homogeneous MSs’
groups scenario with two MSs’ group. In this homogeneous scenario, the MS
densities of both groups are set as λ1 = λ2 = 0.1 user/m2. The reference video’s
popularity among the MSs is set to be p1 = p2 = 0.6. Figure 2 shows the utilities
of the VP and each MSs’ group under different budget plans. It shows that
the utility of the VP does not always increase with the budget plan increasing.
When the budget plan M = 80, the VP can get the optimal utility from the
D2D local caching system. Additionally, the utility of each MSs’ group is almost
linear with the budget plan M , until that there is no competition between the
groups. Therefore, a proper budget plan can help the VP to get an optimal profit.

428 K. Zhao et al.

0 40 80 120 160 200 240 280 320
Budget Plan M

0

10

20

30

40

50

U
til

ity

 Utility of VP
 Utility of MSs

Fig. 2. Utilities of the VP and each
MSs’ group with different budget
plan M .

0 2 4 6 8 10
Number of Iterations

10
15
20
25
30
35
40
45
50
55
60
65

Ite
ra

tiv
e

C
ha

rg
e

Pr
ic

e

 M = 10
 M = 20
 M = 30
 M = 40
 M = 50

Fig. 3. The updating charge price of
each MSs’ group vs. the number of iter-
ations.

Figure 3 shows the iterative charge price of one MSs’ group with different budget
plan. As the budget plan increases, the MSs’ groups will decide higher price for
leasing one unit fraction of MSs. For a large budget, the iterative process is
shown to converge slowly.

Then, we investigate the impacts of the density of MSs and popularity of the
reference video among MSs. Figure 4 demonstrates the optimal fraction chosen
by the VP with respect to the density of MSs. As the density increases, the VP
will choose a little fraction to rent from the MSs’ groups. It is because, the MSs
can get the reference video via D2D transmission more easily in a larger MSs’
density scenario. Besides that, the optimal fraction is impacted with the budget
plan. The VP will rent a large fraction for local caching with a enough budget
plan. Figure 5 shows the impact of the interest probability of MSs on the utility
of the VP. As the interest increases, the VP can get a larger utility, for the reason
that the MSs have the trend to get the reference video.

0 0.2 0.4 0.6 0.8 1
Density of MSs

0

0.05

0.1

0.15

0.2

0.25

O
pt

im
al

 F
ra

ct
io

n

 M = 10
 M = 30
 M = 50
 M = 70

Fig. 4. Density of MSs vs. optimal
fraction.

0 0.2 0.4 0.6 0.8 1
Interest probalility of MSs

0

10

20

30

40

U
til

ity
 o

f t
he

 V
P

 M = 10
 M = 30
 M = 50
 M = 70

Fig. 5. Utility of the VP vs. interest
probability of MSs

A Game Theoretic D2D Local Caching System 429

0 10 20 30 40 50 60 70 80 90 100
Number of MSs Groups

0

50

100

150

200

250

300

U
til

ity
 o

f t
he

 V
P

Fig. 6. Impact of number of MSs groups on the VP’s utility

Figure 6 shows how the number of different MSs’ groups affects the utility of
the VP, under the budget plan M = 60. It can be seen that, as the number of
MSs’ groups increases, the utility of the VP increases as well. This is because,
as the number of groups increases, many MSs may choose to be the seeds, which
leads to the increase of the probability of the video offloading.

7 Conclusions

In this paper, we have proposed a D2D local caching system to provide better
services of video downloading in a social-aware environment. The MSs, forming
different groups, lease their storage capacity to the VP for getting profits, while
the VP can gaining more profits through the local sharing. We have formulated
the competitions between the VP and MSs as a two-stage Stackelberg game by
viewing the MSs as a type of resource. The Stackelberg equilibrium has been
investigated by solving a series of optimization problems. In order to promote
both the VP’s and MSs’ participation, an incentive mechanism has been designed
for the system. Extensive simulation results have demonstrated the efficiency
in both charging and MSs allocation. In the future, the impact of the update
frequency of the popular videos will be investigated, which is an important issue
in the real caching system.

Acknowledgement. This work is supported by the Tsinghua University Initiative
Scientific Research Program (Grant No. 20161080066).

430 K. Zhao et al.

References

1. Baştuǧ, E., Bennis, M., Kountouris, M., Debbah, M.: Cache-enabled small cell
networks: modeling and tradeoffs. EURASIP J. Wirel. Commun. Netw. 2015(1),
1–11 (2015)

2. Baştuǧ, E., Bennis, M., Kountouris, M., Debbah, M.: Cache-enabled small cell
networks: Modeling and tradeoffs. EURASIP J. Wirel. Commun. Netw. 2015(1),
41–41 (2015)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York (2004)

4. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its
Applications. John Wiley & Sons, New York (2013)

5. Cisco, C.V.N.I.: Global mobile data traffic forecast update. 2016–2021 (white
paper) (2017)

6. Dehghan, M., et al.: On the complexity of optimal routing and content caching in
heterogeneous networks. In: 2015 IEEE Conference on Computer Communications
(INFOCOM 2015), pp. 936–944. IEEE, Hong Kong (2015)

7. Fudenberg, D., Tirole, J.: Game Theory, p. 86. MIT press, Cambridge (1991)
8. Golrezaei, N., Dimakis, A.G., Molisch, A.F.: Scaling behavior for device-to-device

communications with distributed caching. IEEE Trans. Inf. Theor. 60(7), 4286–
4298 (2014)

9. Golrezaei, N., Shanmugam, K., Dimakis, A.G., Molisch, A.F., Caire, G.: Wireless
video content delivery through coded distributed caching. In: 2012 IEEE Interna-
tional Conference on Communications (ICC 2012), pp. 2467–2472. IEEE, Ottawa
(2012)

10. Guo, Y., Duan, L., Zhang, R.: Cooperative local caching and file sharing under
heterogeneous file preferences. In: 2016 IEEE International Conference on Com-
munications (ICC 2016), pp. 1–6. IEEE, Kuala Lumpur (2016)

11. Guo, Y., Duan, L., Zhang, R.: Cooperative local caching under heterogeneous file
preferences. IEEE Trans. Commun. 65(1), 444–457 (2017)

12. Janis, P., Koivunen, V., Ribeiro, C., Korhonen, J., Doppler, K., Hugl, K.:
Interference-aware resource allocation for device-to-device radio underlaying cellu-
lar networks. In: VTC Spring 2009 - IEEE 69th Vehicular Technology Conference,
pp. 1–5. IEEE, Barcelona (2009)

13. Ji, M., Caire, G., Molisch, A.F.: The throughput-outage tradeoff of wireless one-
hop caching networks. IEEE Trans. Inf. Theor. 61(12), 6833–6859 (2015)

14. Li, J., Sun, J., Qian, Y., Shu, F., Xiao, M., Xiang, W.: A commercial video-caching
system for small-cell cellular networks using game theory. IEEE Access 4, 7519–
7531 (2016)

15. Li, Y., Su, G., Wu, D.O., Jin, D., Su, L., Zeng, L.: The impact of node selfishness on
multicasting in delay tolerant networks. IEEE Trans. Veh. Technol. 60(5), 2224–
2238 (2011)

16. Liu, T., Li, J., Shu, F., Tao, M., Chen, W., Han, Z.: Design of contract-based
trading mechanism for a small-cell caching system. IEEE Trans. Wireless Commun.
16(10), 6602–6617 (2017)

17. Malak, D., AI-Shalash, M.: Optimal caching for device-to-device content distri-
bution in 5G networks. In: 2014 IEEE Globecom Workshops (GC Wkshps), pp.
863–868. IEEE, Austin (2014)

18. Malak, D., Al-Shalash, M., Andrews, J.G.: Optimizing content caching to maximize
the density of successful receptions in device-to-device networking. IEEE Trans.
Commun. 64(10), 4365–4380 (2016)

A Game Theoretic D2D Local Caching System 431

19. Pan, Y., Pan, C., Zhu, H., Ahmed, Q.Z., Chen, M., Wang, J.: Content offloading
via D2D communications based on user interests and sharing willingness. In: 2017
IEEE International Conference on Communications (ICC 2017), pp. 1–6. IEEE,
Paris (2017)

20. Pan, Y., Pan, C., Zhu, H., Ahmed, Q.Z., Chen, M., Wang, J.: On consideration
of content preference and sharing willingness in D2D assisted offloading. IEEE J.
Sel. Areas Commun. 35(4), 978–993 (2017)

21. Poularakis, K., Iosifidis, G., Tassiulas, L.: A framework for mobile data offloading
to leased cache-endowed small cell networks. In: 2014 IEEE 11th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS 2014), pp. 327–335.
IEEE, Philadelphia (2014)

22. Sciancalepore, V., Giustiniano, D., Banchs, A., Hossmann-Picu, A.: Offloading
cellular traffic through opportunistic communications: analysis and optimization.
IEEE J. Sel. Areas Commun. 34(1), 122–137 (2016)

23. Shanmugam, K., Golrezaei, N., Dimakis, A.G., Molisch, A.F., Caire, G.: Femto-
caching: wireless content delivery through distributed caching helpers. IEEE Trans.
Inf. Theor. 59(12), 8402–8413 (2013)

24. Wang, K., Yu, F.R., Li, H.: Information-centric virtualized cellular networks with
device-to-device communications. IEEE Trans. Veh. Technol. 65(11), 9319–9329
(2016)

25. Wang, R., Zhang, J., Song, S.H., Letaief, K.B.: Mobility-aware caching in D2D
networks. IEEE Trans. Wireless Commun. 16(8), 5001–5015 (2017)

26. Zhang, N., Cheng, N., Lu, N., Zhang, X., Mark, J.W., Shen, X.: Partner selec-
tion and incentive mechanism for physical layer security. IEEE Trans. Wireless
Commun. 14(8), 4265–4276 (2015)

27. Zhao, K., Zhang, S., Zhang, N., Zhou, Y., Zhang, Y., Shen, X.: Incentive mecha-
nism for cached-enabled small cell sharing: a stackelberg game approach. In: 2017
IEEE Global Communications Conference (GLOBECOM 2017), pp. 1–6. IEEE,
Singapore (2017)

SMIM: Superpixel Mutual Information
Measurement for Image Quality

Assessment

Jiaming Wang, Tao Lu(B) , and Yanduo Zhang

Hubei Key Laboratory of Intelligent Robot, School of Computer Science
and Engineering, Wuhan Institute of Technology, Wuhan 430205, China

lutxyl@gmail.com

Abstract. The image quality assessment (IQA) is a fundamental prob-
lem in signal processing that aims to measure the objective quality of
an image by designing a mathematical model. Most full-reference (FR)
IQA methods use fixed sliding windows to obtain structure informa-
tion but ignore the variable spatial configuration information. In this
paper, we propose a novel full-reference IQA method, named “super-
pixel normalized mutual information (SMIM)” based on the perspec-
tive of variable receptive field and information entropy. First, we find
that consistence relationship exists between the information fidelity and
human visual of individuals. Thus, we reproduce the human visual sys-
tem (HVS) to semantically divide the image into multiple patches via
superpixel segmentation. Then the weights of each image patches are
adaptively calculated via its information volume. We verified the effec-
tiveness of SMIM by applying it to data from the TID2008 database
and data generated using some real application scenarios. Experiments
show that SMIM outperforms some state-of-the-art FR IQA algorithms,
including visual information fidelity (VIF).

Keywords: Image quality assessment · Mutual information
Superpixel segmentation

1 Introduction

With the rapid development of digital communication, images play an increas-
ingly important role in modern society. However, the process of image acqui-
sition, compression, storage, and transmission, can be naturally degraded into
low quality. Image quality assessment (IQA) is a basic problem in the image

This work is supported by the National Natural Science Foundation of China
(61502354, 61671332, 61771353), Central Support Local Projects (2018ZYYD059), the
Natural Science Foundation of Hubei Province of China (2012FFA099, 2012FFA134,
2013CF125, 2014CFA130, 2015CFB451), Scientific Research Foundation of Wuhan
Institute of Technology (K201713), Graduate student scientific research innovation
projects (CX2017069, CX2017070).

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 432–444, 2018.
https://doi.org/10.1007/978-3-030-05054-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_34&domain=pdf
http://orcid.org/0000-0001-8117-2012
https://doi.org/10.1007/978-3-030-05054-2_34

SMIM: Superpixel Mutual Information Measurement 433

processing research fields. Determining image quality using only human-in-the-
loop based qualitative measures is not only time-consuming and labor-intensive,
but it cannot be applied to real-time or autonomous systems. Depending on
the availability of a reference image, objective IQA metrics can be divided into
full-reference (FR), no-reference (NR) and reduced-reference (RR) method [16].
The IQA metrics process is a task-driven problem in computer vision task, so
this paper only focuses on FR methods.

We divide the FR-based IQA metrics into two classes: error-statistic and
human visual system (HVS) based. Error-statistic methods measure the dis-
tance between the distorted image and the reference image from the pixel level.
The peak signal-to-noise ratio (PSNR) and the mean-squared error (MSE) are
the most widely used image quality assessment methods. Those methods are
compared at the pixel level, thus, they are less relevant to HVS.

HVS-based methods use visual quantifiable features such as brightness, con-
trast, and frequency content of the image to construct a visual model. These
factors, are important when simulating human perception of image distortion
[2,3,10]. A process called the noise quality measure (NQM) [3] uses these fac-
tors to find an image quality measure. Wavelet-based visual signal-to-noise ratio
(VSNR) [2] compares the low-level HVS property of the perceived contrast
and the mid-level HVS property of global precedence. The structural similar-
ity (SSIM) index [15] suggests that the human eye is more sensitive to structural
information depending on the field-of-view, and quantifies the degree of dis-
tortion by comparing brightness, contrast, and mechanism similarities. Wang
et al. [14] combines the multi-scale SSIM (MS-SSIM) of the wavelet domain
and obtained better performance. From the perspective of information theory,
Sheikh et al. [11] proposed the information fidelity criterion (IFC) to quantify
the mutual information of reference images and distorted images. In [10], IFC
was expanded to contain visual information fidelity (VIF). The feature similar-
ity (FSIM) index [17] determines the visual difference of images in the feature
domain by comparing the gradient and phase consistency. Li et al. [7] demon-
strated the effectiveness of regional mutual information for IQA.

Recent studies conducted in [12,17] show that VIF and FSIM have better
accuracy than other IQA metrics. This research is still has a far way to go to
provide an excellent IQA criterion for real applications. HVS attention mecha-
nism always play an important role in human vision. For example, at a normal
sight distance, people naturally pay attention to a certain area of the image,
also known as the receptive field. Therefore, finding image quality assessment
metrics often uses fixed sliding windows to simulate human visual system like
the receptive field. SSIM and its extensions are effectively verifying this fact [17].
However, they ignore the fact that the content and distribution of the images are
irregular and inhomogeneous. Using a fixed sliding window with a single scale,
the IQA metrics cannot accurately evaluate the flexible structure information
in images. Moreover, the attention mechanisms of HVS reveals that a weighting
method can truly reflect the differences in image content. Thus, the shape and
weighting of receptive field should play a more important role in IQA. Compared
with the existing IQA metrics, we propose a novel superpixel mutual information

434 J. Wang et al.

measurement (SMIM) to emphasize the shape and weight of a receptive field,
which can better simulate HVS. First, we divide the reference image into irregu-
lar image patches based on spatial semantic information. In this step, we use the
same regional label to split the distorted image to guarantee the same semantic
content will have an equivalent weight with HVS. Thus, HVS is a method that
can be used to assess if human vision is sensitive to structural information, gra-
dient information, and contrast in the image. For images, they mean the amount
of information in the image. Therefore, we automatically generate weights based
on the information entropy in the reference image patch. Finally, the SMIM
index is calculated by calculating the mutual information weight between the
distorted image patch and the corresponding reference image patch. Overall, the
contributions of this paper are highlighted as following:

1. We propose an IQA metric, that first semantically divides the image into
multiple flexible patches via superpixel segmentation. This is done to simulate
the variable shape of the receptive field. Here, superpixel segmentation of
images provides spatial content clustering information.

2. We propose an weighting scheme which judges the importance of an image
patch via its the information volume. This weighting method reveals the
attention-seeking mechanism of HVS, which favors visual features i.e., bright-
ness, contrast, and frequency content.

3. SMIM evaluates the objective quality of images from the perspective of infor-
mation fidelity, so it can be used to full-reference but also in real-world appli-
cations which are difficult to obtain reference images.

2 Related Work

2.1 Image Quality Assessment

There is a nonlinear relationship between the objective qualities of an image
and the subjective qualities. To compare the evaluation consistency between
objective and subjective quality, we use a multi-parameter nonlinear equation
[12] to define the objective quality and the mean opinion score (MOS) fitting.
This curve can help us to determine the accuracy of our IQA metrics.

The function is defined as follows:

q(xi) = β1

(
1
2
− 1

1 + eβ2(xi−β3)

)
+ β4xi + β5, (1)

where β1 to β5 are parameters to be fitted and xi is the objective score of the
i-th image. q(xi) is the objective quality assessment result of the i-th image after
nonlinear transformation.

2.2 Information Entropy

Image entropy is a statistical feature that reflects the amount of the average infor-
mation in an image. Therefore, this metric can be used effectively in no-reference

SMIM: Superpixel Mutual Information Measurement 435

scenarios. The one-dimensional entropy of the image indicates the amount of
information contained in the aggregation characteristics of the gray distributed
in the image, as follow:

H(I) = −
∑
i∈I

p(i) lg p(i), (2)

where p(i) represents the proportion of pixels in the image I with gray value i.
The information entropy is an unreferenced measure. The greater the information
entropy of an image, the greater the amount of information contained in the
image aggregation feature.

3 Superpixel Mutual Information Measurement(SMIM)

The illustration of the SMIM is shown in Fig. 1. Mutual information (MI) can
measure the degree of image distortion by quantifying the information depen-
dence between the reference image Y and the distorted image Ŷ [8]. The joint
entropy H(Ŷ , Y) of an mage Ŷ and the image Y is as follow (Fig. 2):

H(Ŷ , Y) =
∑
s∈Ŷ

∑
t∈Y

p(s, t) log p(s, t). (3)

Thus, MI is as follow:

I(Ŷ , Y) = H(Ŷ) + H(Y) − H(Ŷ , Y) =
∑
s∈Ŷ

∑
t∈Y

p(s, t) log
p(s, t)

p(s)p(t)
, (4)

where H(Ŷ) and H(Y) are conditional entropies.
The relationship between MI and entropy is provided via a Venn diagram,

as shown in Fig. 2. The greater MI between images, the greater the similarity
information between images. However, MI does not make use of the visual per-
ception characteristics of the HVS, ignoring visual perception effects such as

Fig. 1. Illustration of the SMIM. Superpixel segmentation provides clustering informa-
tion of spatial pixels which contains flexible image semantic information.

436 J. Wang et al.

image patch weighting and contrast sensitivity. For a more intuitive comparison,
we normalize the MI [4] as follows:

NMI(Ŷ , Y) =
2I(Ŷ , Y)

H(Ŷ) + H(Y)
. (5)

Fig. 2. The Venn diagram represents the relationship between information entropy,
conditional entropy and joint entropy.

Information entropy can reflect the information volume in an image, but the
interference caused by distorted images will increase the information volume in
that image; this additional information will have a negative impact. Therefore,
the mutual information is not robust to the interference in the image, resulting
in inaccurate evaluation of the image quality of the distorted image.

Various semantic image patches are significant to the overall image. Various
semantic objectives in the image have different levels of importance to the image.
For objects with small variation, the amount of information, such as the sky and
sea, distortion has little effect on the subjective quality of the image. For larger
patches of information, such as airplanes and ships, each image section contains
a lot of gradient and structural information, as shown in Fig. 3. Thus the human
eye is very sensitive to their distortion.

We divide the reference image Yp into n image patches via semantic segmen-
tation [1]. The corresponding segmentation label is recorded as lY . The resulting
distorted image Ŷ is divided by the label lY . Then, we determine the weight of
the image patch via the information entropy of the image patch. We believe that
the larger the amount of information in the image, the more important each
information object is to the overall assessment of the image. The patches with a
smaller amount of information should occupy a smaller proportion. The weight
of p-th patch is as follows:

λp =
H(Yp)

n∑
m=1

H(Ym)
, (6)

SMIM: Superpixel Mutual Information Measurement 437

Fig. 3. We divide the image into two parts of the same size. The information of the
image with abundant edge information and obvious contrast is more abundant.

where n represents the total number of segmented image patches and Yp denotes
the p-th image patch. Superpixel mutual information measurement (SMIM) is
defined as follows:

SMIM =
n∑

m=1

λmNMI(Ŷm, Ym) (7)

Our proposed SMIM is described in Algorithm 1.

Algorithm 1. SMIM index for IQA
Input: Reference images Y , distorted images Ŷ , number of image patches n.
Superpixel:
1: Superpixel segmentation is performed on the reference image Y . The correspond-

ing segmentation label is recorded as lY . The divided image patches are labelled
{Yi}ni=1.

2: According to the label lY , the distorted image Ŷ is divided into
{

Ŷi

}n

i=1
.

SMIM:
for each patch: i=1 to n.
3: Compute weighted λi by using (6).
4: Compute the mutual Information NMI(Ŷi, Yi) by using (5).
end.
5: Compute SMIM by using (7).

4 Experiments

4.1 Databases

The TID2008 dataset [9] is a commonly used public database in the IQA com-
munity. The data set contains 25 reference images and 1700 distorted images.
Each reference image corresponds to 68 different distorted images and includes
17 different types of distortion. The Mean Opinion Score (MOS) of the image
was scored by 838 observers. The IQA is task-driven, so we use data from the

438 J. Wang et al.

actual algorithm task as a sample. The FEI faces database [13] includes 400
images of 200 people (100 men and 100 women). Each person has two frontally
aligned face images. One with frontal facial image and the other with a smiling
image. The size of the image is 260×360 pixels. All images are RGB images, but
for fairness, all image quality assessment algorithms are used in single-channel
images. We converted the image pixels to YCbCr color space, using only the Y
channel for testing.

Fig. 4. Six reference images used for the parameter tuning process.

4.2 Parameter Settings

The number of image patches is an important parameter in SMIM. To save
time, we select the first 6 images from the TID2008 reference image and the
corresponding 408 distorted images for testing. The six reference images from
the TID2008 database [9], used in the parameter tuning process, are shown in
Fig. 4. We set n at 0, 5, 20, 50, and perform the SMIM evaluation. The curve
fitting processing results are shown in Fig. 5. When n is 0 and 5, the patch is
not accurate enough. SMIM cannot accurately evaluate all images with high
MOS. As n increases, performance does not always improve. When MOS is 50,
the image patch is more, which leads to the low recognition degree of SMIM for
MOS greater than 5 and the higher time complexity. Thus, we set n to 20.

4.3 Performance Comparisions to State-of-the-Arts

We compare the evaluation results with some representative IQA indicators,
including some state-of-art algorithms: MS-SSIM [14], SSIM (One of the most
widely used methods for image quality assessment) [15], FSIM (The best perfor-
mance image quality assessment method based on structural information) [17],
VSNR [2], IFC [11], NQM [3], PSNR (One of the most widely used methods for

SMIM: Superpixel Mutual Information Measurement 439

Fig. 5. The fitting curve of the number n of different image patches. When n takes
values to 20 and 50, SMIM has better performance.

IQA), VIF (The best image quality assessment method based on information
theory) [10]. Here, we use the wavelet domain version of VIF. Except fot FSIM,
other comparison algorithm results are provided by the TID2008 [9] datasets.
For FSIM, we directly use the open source code provided by the author and the
parameters of the paper.

The curve fit to the MOS process and image objective scoring is shown in
Fig. 6. A variety of IQA metrics apply to different scenarios (scene of interest).
Compared with the optimal algorithm, FSIM has poor performance in the low
MOS image, which is dense in the high MOS subregion, and the hiding is not
accurate. VIF has good performance in low MOS subregion, but it is less than
FSIM in high MOS sub-region. The SMIM distribution is even more uniform.
SMIM can describe the degree of dependence of information between a reference
image and a distorted image.

4.4 The Application of the Algorithmic Scenario

The IQA metric is task-driven. Therefore in next sections, we discuss the appli-
cation of SMIM in practice. The distorted image is obtained by adding random
Gaussian noise to the FEI dataset images. We convert the image to the Ycbcr
color space, adding noise only to the Y channel.

A common practice in image normalization is to divide all the pixels by
the value 255 in the image. SRResnet1 is an algorithm that uses a different
normalization. In this case, the pixel is divided by the image’s maximum value.
As shown in Fig. 7, VDSR [5] and SRResnet [6] are obtained via an algorithm
test. The standard deviation σ of the noise added to the images ranges in value
from 5 to 20. We use the most widely-used SSIM and PSNR in the image field to
score images. SRResnet’s subjective quality is higher than VDSR and distorted

1 https://github.com/brade31919/SRGAN-tensorflow.

https://github.com/brade31919/SRGAN-tensorflow

440 J. Wang et al.

Fig. 6. Scatter plots of subjective MOS versus scores obtained by model prediction on
the TID2008 database.

images, but its objective score is not as good as them. This also proves the
inapplicability of PSNR and SSIM in the case of such image distortion.

We use SMIM, FSIM and VIF to re-evaluate the objective quality of images.
The score data is shown in Table 1. The scores of SMIM, FSIM and VIF are
in line with our subjective assessment. The last column of Table 1 has a small
difference in FSIM scores. When the similarity between the distorted image and
the original image is high, the FSIM has a small degree of discrimination.

4.5 The Application of the Real World

In the field of remote sensing satellites, due to the particularity of the shoot-
ing equipment, it is impossible to obtain a distorted image and corresponding
reference image in the same time and the same place. Therefore entropy is a
commonly used indicator.

SMIM: Superpixel Mutual Information Measurement 441

Fig. 7. The comparison of algorithm results.

Table 1. The average of SMIM/FSIM/VIF values with different noise levels.

Noise Level Eval. Mat Distorted VDSR SRResnet Reference

σ = 5 SMIM 0.3518 0.4450 0.4451 1

FSIM 0.9121 0.9354 0.9370 1

VIF 0.3864 0.4752 0.5243 1

σ = 10 SMIM 0.2957 0.3827 0.4174 1

FSIM 0.8273 0.9186 0.9277 1

VIF 0.2563 0.3863 0.4759 1

σ = 15 SMIM 0.2558 0.3728 0.4001 1

FSIM 0.7427 0.9054 0.9273 1

VIF 0.1864 0.3388 0.4507 1

σ = 20 SMIM 0.2248 0.3501 0.3910 1

FSIM 0.6702 0.8948 0.9261 1

VIF 0.1429 0.3020 0.4389 1

442 J. Wang et al.

Fig. 8. The image A and the image B are Victoria Harbour at different times. The
image C is obtained by adding noise to B.

We collect satellite images (Google Earth) with a resolution of 1066 × 942
pixels. In Fig. 8, reference image A is taken in the Victoria Harbour on Novem-
ber 23, 2000, and distorted image B is taken in Victoria Harbor on December
31, 2000. Information entropy is often used to evaluate B. We add a Gaussian
random noise with a standard deviation σ = 10 in B, denoted as C. Due to the
large temporal differences of photo-takings, the objective of the measurement
image changes greatly over time. A few samples of these changes include the
movement of ships and the physical changes of buildings.

The subjective scores of the images are shown in Table 2. After adding image
noise, the subjective effect of the image deteriorates, but H(B) = 6.62 is less than
H(C) = 7.22. Information entropy can only evaluate the amount of information
in an image. Because noise is also an extra piece of information, information
entropy is not robust to noise. Thus, the score cannot be normalized to 0 to
1, which is not intuitive. SMIM performs image evaluation via the information
dependence between images, so image A can be used as a reference image to
evaluate image B. Between images A and B, there is a large difference between
the signal level and the structure level, this difference is not caused by distortion.
Therefore, the SSIM and PSNR scores cannot accurately evaluate the image.

Table 2. Subjective scores for the image B and the image C

Image PSNR(dB) SSIM VIF MI SMIM

B 17.36 0.3831 0.0166 6.62 0.3605

C 17.04 0.2070 0.0085 7.22 0.3451

5 Conclusion

In this paper, we propose a novel superpixel mutual information measurement
(SMIM) for image quality assessment. We replace the traditional sliding window-
based segmentation method by a superpixel segmentation method that is more

SMIM: Superpixel Mutual Information Measurement 443

in line with human vision and perception. HVS is sensitive to the features of
an image and uses it to perceive the image. We consider that the importance
of different semantic content to the image can change. SMIM uses information
entropy to determine the richness of features in the image. This information
entropy is also used to determine the appropriate weighting of image patches.
SMIM has performed well when used with data from the benchmark database
and in practical applications, demonstrating that it is a robust IQA metric.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpix-
els compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34(11), 2274–2282 (2012)

2. Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based visual signal-to-noise ratio
for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007)

3. Damera-Venkata, N., Kite, T.D., Geisler, W.S., Evans, B.L., Bovik, A.C.: Image
quality assessment based on a degradation model. IEEE Trans. Image Process.
9(4), 636–650 (2000)

4. Flannery, B.P., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, New York
(1986)

5. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep
convolutional networks. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR Oral), June 2016

6. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative
adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 105–114, July 2017. https://doi.org/10.1109/CVPR.
2017.19

7. Li, J., Zhang, X., Ding, M.: Image quality assessment based on regional mutual
information. AEUE - Int. J. Electron. C. 66(9), 784–787 (2012)

8. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodal-
ity image registration by maximization of mutual information. IEEE Trans. Med.
Imaging 16(2), 187–198 (1997)

9. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.:
TID 2008 - a database for evaluation of full-reference visual quality assessment
metrics. Adv. Modern Radioelectron. 10, 30–45 (2004)

10. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans.
Image Process. 15(2), 430–444 (2006). A Publication of the IEEE Signal Processing
Society

11. Sheikh, H.R., Bovik, A.C., Veciana, G.D.: An information fidelity criterion for
image quality assessment using natural scene statistics. IEEE Trans. Image Pro-
cess. 14(12), 2117–2128 (2005)

12. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full ref-
erence image quality assessment algorithms. IEEE Trans. Image Process. 15(11),
3440–3451 (2006)

13. Thomaz, C.E., Giraldi, G.A.: A new ranking method for principal components
analysis and its application to face image analysis. Image Vis. Comput. 28(6),
902–913 (2010). https://doi.org/10.1016/j.imavis.2009.11.005

https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1016/j.imavis.2009.11.005

444 J. Wang et al.

14. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image
quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Confer-
ence on Signals, Systems and Computers 2004, vol. 2, pp. 1398–1402 (2004)

15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

16. Wang, Z., Sheikh, H.R., Bovik, A.C., et al.: Objective video quality assessment.
Handb. Video Databases Des. Appl. 41, 1041–1078 (2003)

17. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for
image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

DARM: A Deduplication-Aware
Redundancy Management Approach

for Reliable-Enhanced Storage Systems

Yukun Zhou, Dan Feng(B), Wen Xia, Min Fu, and Yu Xiao

Wuhan National Laboratory for Optoelectronics (WNLO),
Key Laboratory of Information Storage System, Ministry of Education of China

School of Computer, Huazhong University of Science and Technology, Wuhan, China
{ykzhou,dfeng,xia,fumin,yuxiao}@hust.edu.cn

Abstract. Chunk-based deduplication has been widely used in storage
systems to save storage space. However, deduplication impairs data reli-
ability due to the inter-file chunk sharing. The loss of shared chunks will
make these referenced files inaccessible. Meanwhile, we find that inter-file
and highly-referenced chunks are important that need higher reliability
assurance, but occupy a small fraction of physical storage. Traditional
deduplication systems utilize erasure coding or replication techniques to
ensure data reliability. With the growth of shared chunks, promoting
the reliability of erasure-coded systems incurs large I/O cost because of
the weakness of coding scalability. Although replication is easy to scale,
it incurs larger storage overhead. In this paper, we present DARM, a
Deduplication-Aware Redundancy Management approach via exploiting
deduplication semantics (e.g., inter-/intra-file duplicates, chunk size and
reference count) to improve data reliability with low overhead. DARM
leverages erasure coding for storing unique and low-referenced chunks
to improve both storage reliability and space efficiency, and employs
Selective and Dynamic Chunk-based Replication (SDCR) for maintain-
ing inter-file and highly-referenced chunks to enhance storage reliabil-
ity. Experimental results based on real-world datasets show that DARM
reduces storage overhead by up to 43.4% and achieves at most 12.7%
reliability improvements over the state-of-the-art schemes.

1 Introduction

With the explosive growth of digital data [2], data deduplication has been widely
adopted as a system-level compression technology to improve storage efficiency.
Deduplication eliminates redundant data by storing only one physical instance
and other duplicate data just refer to it. The instance can be a file, or a more
fine-grained chunk, which chunk-level deduplication is more efficient [23]. Dedu-
plication has been deployed in the backup systems [7,28], primary systems [20],
visual machines [15], and cloud storage [21].

Although deduplication can reduce storage cost, it inevitably impairs the
data reliability compared to storage systems without deduplication [8]. First,
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 445–461, 2018.
https://doi.org/10.1007/978-3-030-05054-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_35&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_35

446 Y. Zhou et al.

one single chunk may be shared by different files after deduplication. The loss
of the shared chunks will cause a disproportional large amount of data loss for
the unavailability of multiple referenced files. Second, chunks of individual files
are scattered across storage devices rather than sequentially stored. The relia-
bility of a file depends on the reliability of multiple devices, which makes the file
more vulnerable. To improve data reliability, adding redundancy in the storage
back-end is a practical method for fault tolerance. Erasure coding and repli-
cation are the commonly used reliability-enhanced schemes in storage systems.
In general, erasure coding is space-efficient that transforms data into multiple
objects. Obtaining sufficient subset of the objects can rebuild the data. While
replication strategy is easy-to-use that additionally stores replicas for identical
data. Recent studies have applied erasure coding [11,12] or replication [4,8] for
post-deduplication data to mitigate the degree of damage of the system failures.

However, there are still some challenges on guaranteeing data reliability in
deduplication-based storage systems. First, some deduplication systems (e.g.,
CodePlugin [24], DAC [22]) adopt Fix-Sized Chunking (FSC) algorithm because
it is easy for data placement and erasure coding. However, FSC algorithm suf-
fers from a “boundary-shift” problem [26], thus sacrifices compression effect of
deduplication. Second, erasure coding stores all chunks with the same redun-
dancy level. While the loss of inter-file and highly-referenced chunks will increase
the severity of file loss. These chunks should be guaranteed with a higher level
of data reliability. With the growth of reference counts, erasure-coded systems
need to load the original chunks for coding scalability with heavy I/O overhead.
For instance, R-ADMAD [12] packs some variable-length chunks into fix-sized
objects and performs erasure coding on multiple objects. To ensure higher reli-
ability, R-ADMAD has to recode a large number of chunks, which is inefficient.
Third, replication scales well, but reduces the efficiency of deduplication. For
example, Deep Store [4] remains at least two copies of each duplicated chunks
and more copies for higher referenced chunks. How to ensure high reliability in
deduplication systems becomes a critical problem.

To overcome these shortcomings, we analyze the deduplication semantics
(e.g., inter-/intra-file duplicates, chunk size, and reference count) of workloads.
Then we obtain the key observations: inter-file and highly-referenced chunks
only occupy a small fraction of total chunks. They are mostly of small size and
occupy a little storage capacity. In this paper, we propose a Deduplication-Aware
Redundancy Management (DARM) approach that improves the reliability with
the growth of reference counts. The design goal of DARM is to make a tradeoff
between system reliability and storage cost. DARM employs content-defined
chunking algorithm (e.g., AE [26]) to achieve better redundancy elimination.
Then DARM effectively combines erasure coding and Selective and Dynamic
Chunk-based Replication (SDCR) via exploiting deduplication semantics. With
the growth of reference counts, SDCR will dynamically add replicas for inter-file
and highly-referenced chunks. This paper makes the following contributions.

DARM: A Deduplication-Aware Redundancy Management Approach 447

– We obtain key observations based on trace-driven experiments. We find that
inter-file and highly-referenced chunks occupy a small fraction of physical
space, but they heavily impair the reliability of deduplication systems.

– DARM proposes a hybrid redundancy scheme. In particular, DARM employs
erasure coding for low-referenced chunks with large space occupation to
reduce space cost. And DARM applies SDCR on inter-file and highly-
referenced chunks with small storage space to improve data reliability.

– We design and implement DARM prototype which combines erasure cod-
ing and SDCR. Experimental results based on real-world datasets show that
DARM saves 43.4% storage space with comparable reliability as Deep Store.
In addition, DARM achieves at most 12.7% reliability improvements and only
incurs little storage overhead compared with R-ADMAD.

In the rest of the paper, we introduce background and related work in Sect. 2.
Section 3 elaborates observations and motivation of DARM. Section 4 presents
the design and implementation of DARM. Section 5 evaluates the experimental
results of DARM and compares it with existing schemes. Finally, Sect. 6 con-
cludes the paper and describes the future work.

2 Background and Related Work

2.1 Basics

Data Deduplication. In a deduplication-based system, data streams will be
divided into chunks and each chunk will be identified by a hash digest (i.e.,
SHA1), called fingerprint. Two chunks with the same fingerprint will be regarded
as duplicated chunks. The probability of a hash collision is too small that can be
negligible [17]. Existing chunking algorithms contain: Fix-Sized Chunking (FSC)
and Content-Defined Chunking (CDC). FSC is time-efficient, but it suffers from
a boundary-shift problem [26]. While CDC defines the boundary based on data
content that avoids the boundary-shift problem. Second, deduplication utilizes
a fingerprint index for duplicate detection. The fingerprint index is a key-value
structure that stores the mapping between chunks and their addresses.

Fig. 1. The dependencies between files and scattering storage of chunks.

After duplicate detection, unique chunks that need to be written are aggre-
gated into containers to preserve the locality of the data stream. The data chunks

448 Y. Zhou et al.

of the file will be dispersed into different containers [7]. The logical layout and
physical layout of the files are inconsistent. As illustrated in Fig. 1, chunks in
different files depend on a single instance. Thus, the loss of this instance will
lead to more severe secondary loss across underlying storage. Thus, improving
the reliability of a deduplication system is a serious challenge.

Table 1. Comparison between replication and erasure coding strategies.

Strategies Storage cost Scalability Degraded read performance Recovery

Erasure coding Low Poor Low Hard

Replication High for large size Good High Easy

Erasure coding vs Replication. Two common redundancy methods used
in storage systems to achieve high reliability are erasure coding and replica-
tion [14]. They both have their own advantages and disadvantages as summa-
rized in Table 1. First, erasure coding divides data into k objects and transforms
them into k+m objects. The original data can be recovered from any k objects.
As described in Table 1, erasure coding is more space-efficient than replication.
With the increasing of shared chunks, the system needs to add redundancy and
reconfigure the parameters of (k,m) to improve data reliability. However, erasure
coding needs to read large amount of data to recode data for coding scalability,
which will incur large I/O and computational cost. Second, replication adds a
number of copies to achieve high reliability. Replication is easy for scaling and can
improve the degraded read performance [10]. It nevertheless incurs extra storage
overhead, especially for large volume of datasets. While the storage overhead
can be acceptable for datasets with small size.

2.2 Related Work

Traditional storage systems maintain certain redundancy policies for reliabil-
ity assurance. While deduplication reduces the fault incidence, it increases the
impact of faults. A quantitative modeling of reliability consequences of dedu-
plication is proposed by Rozier et al. [18]. They combine data deduplication
model with a hardware reliability model, investigate the reliability impact of
data deduplication, and prove that data deduplication harms reliability. Similar
results are explored by Fu et al. [8], who derive a close to real disk model and
analyze the data loss in both chunk and file levels due to various disk errors.

Erasure coding is a more space-efficient strategy. HYDRAstor [5] is a dedu-
plicated secondary storage systems that stores chunks with different resilience
class of different level of reliability. Xu et al. [25] deploy erasure coding in a
distributed deduplication system and propose a even data placement (EDP)
algorithm to achieve a nice balance between read performance and storage over-
head. R-ADMAD [12] first packs variable-length chunks into a fix-sized object.
The object is encoded and distributed over multiple storage nodes. However, the

DARM: A Deduplication-Aware Redundancy Management Approach 449

resilience class of each chunk is determined by user and have no relationship
to the shared chunks. Wu et al. [22] leverage deduplication in cloud-of-clouds
and improves the reliability by erasure coding and a fixed number of replication.
But they use the fix-sized chunking algorithm due to the configuration of cloud-
of-clouds, which will increase storage overhead. They also do not consider the
features of deduplication semantics, such as inter-/intra-file duplicates. They do
not support dynamic replication strategy with the increasing of reference counts.

Replication is a redundancy scheme with little computational overhead. To
ensure the overall reliability of deduplication system, Bhagwat el at. [4] suggest
to keep at least two copies for deduplicated chunks which may greatly increase
the storage overhead. Fu et al. [8] propose a delicate copy technique (DCT) to
carefully place and first repair highly- referenced chunks and improves reliability
to a certain extent. However, with the increasing of reference counts, the number
of replicas should be configured in a dynamic way.

3 Observation and Motivation

In this section, we will exploit the deduplication semantics based on the real-
world datasets. We obtain eight snapshots of FSL (i.e., Usr11-Usr26, also used
by Fu et al. [8]). Backup contains ten versions snapshots collected from Mac OS
X server [1]. Then we present the motivation to construct our design of DARM.

Table 2. The analysis of deduplication semantics on realistic datasets.

Sets Size
(GB)

Files # Chunks Dedup
(%)

References per Chunk

Max. <2 (%) >3 (%) >7 (%)

Usr11 289.86 2.45M 33.73M 36.0 50,976 80.78 3.49 1.29

Usr12 251.01 0.04M 26.41M 64.6 660 78.02 5.45 0.75

Usr14 161.19 1.34M 16.71M 61.1 34,300 66.26 8.15 3.46

Usr15 257.76 0.83M 30.98M 39.1 4,129 86.08 2.12 0.19

Usr20 592.73 0.84M 47.88M 79.8 2,621 84.51 2.21 0.35

Usr21 140.50 0.06M 14.29M 56.7 7,148 71.54 2.53 0.15

Usr24 168.70 0.21M 20.66M 24.4 3,296 86.76 1.48 0.03

Usr26 154.24 0.09M 16.44M 33.3 385 87.82 0.81 0.06

Backup 1634.27 27.07M 214.91M 93.94 Max. <11 (%) >20 (%) >50 (%)

59,440 71.68 9.93 1.13

Table 2 summarizes the statistical analysis of each dataset, including data
size, number of files/chunks, deduplication ratio, and the fraction of chunks on
some reference counts. First, only a small fraction of data chunks are highly ref-
erenced after deduplication. For example, the fraction of chunks with references
more than 3 are less than 5% (i.e., Usr11-Usr26). Chunks with inter-file reference
more than 50 account for 1.13% (i.e., backup). Second, inter-file reference count

450 Y. Zhou et al.

of some chunks is extremely high. For example, one chunk is shared by 34, 300
files in Usr14. Third, highly-referenced chunks account for a small fraction of
storage overheads. In Usr20, duplicated chunks only occupy 16.49% fraction of
chunks, but refers to 79.8% original data. The first observation follows.

Observation (1): Highly-referenced chunks eliminate the majority of
data redundancy, but occupy only a small fraction of data chunks.

To explore the trend of chunk size along with reference counts, we classify
duplicated chunks into four redundancy levels: Low(L), Middle(M), High(H)
and Extre-High(EH). For Usr11-Usr26, the levels are the reference count with 2,
3− 4, 5− 6, and more than 6 respectively. For backup dataset, the levels are the
reference count with 11, 12−20, 20−50 and more than 50 respectively. In Fig. 2,
we observe that the chunk size is getting smaller with the growth of reference
counts. In Table 2 and Fig. 2, the second observation is described.

Observation (2): Highly-referenced chunks are the large probability
of small chunk size, and incur a small fraction of physical storage.

What’s more, inter-file duplicated chunks are critical to the robustness of
files. The loss of one inter-file duplicated chunk may cause a disproportional
large amount of the loss of multiple files. Bhagwat et al. [4] and Fu et al. [8] also
have the same findings. Data deduplication decreases the incidence of faults by
reducing the devices, but the impact on improving reliability is much smaller
than the damage brought by deduplication [18].

Fig. 2. The variation trend of chunk size along with the reference counts.

Previous work [4,12,18] are either lack of analysis of deduplication semantics,
or sacrificing much storage overhead to ensure reliability. Based on observations,
we present DARM in storage systems to make a tradeoff between data relia-
bility and storage efficiency. Specifically, DARM firstly performs erasure coding
on unique and low-referenced chunks to ensure high reliability with low storage
overhead. With the growth of reference counts, we find that only inter-file and
highly-referenced chunks are required to add redundancy for reliability improve-
ments. Meanwhile, these chunks are of small chunk size and occupy a small

DARM: A Deduplication-Aware Redundancy Management Approach 451

fraction of physical storage. Compared with the scalability of erasure coding,
replication is easy to improve data reliability and the storage cost is acceptable.
DARM proposes a dynamic replication method for highly-referenced chunks.

4 Design and Implementation

4.1 Architecture Overview

Figure 3 shows the system architecture overview of DARM. The system is a
client-server mode architecture. The client side is responsible for data chunking,
fingerprint generation, metadata collection and data transferring. The metadata
contains file information, sequence of chunk fingerprints and chunk size etc. The
DARM resides on the server side and interacts with the client. DARM supports
duplicate detection, redundancy management and data storage.

Fig. 3. The architecture of DARM.

DARM consists of two main modules: duplicate detector and data manager.
The duplicate detector module consists of an index, a marking module and a
replica management with a replica table. The index is responsible for checking
the chunk whether or not duplicated. Then DARM detects the status of chunks
aided by the file metadata and reference count in the marking module. Yet replica
management evaluates chunks for dynamic replicas reservation. The metadata
of replicas (e.g., device id, address and offset etc.) is stored in the replica table.
The data manager module consists of redundancy management and data place-
ment. The redundancy management performs different redundancy methods on
different status of chunks according to the results of marking. Finally DARM
reliably distributes data chunks to suitable devices by data placement.

4.2 The Design of DARM

DARM aims to achieve the following goals: (1) Improving data reliability with
the growth of reference counts. (2) Ensuring the storage efficiency. We highlight
the design phases: the process of data writing and data reading.

Data Writing. In Fig. 4, DARM consists of three stages: data deduplication,
chunk marking and data distribution. DARM identifies and marks the different

452 Y. Zhou et al.

status of chunks via exploiting deduplication semantics. The status of chunks
consist of unique chunk, duplicates to be reserved and duplicates to be removed.
Different status of chunks has various degrees of effect on data reliability. Thus
we should utilize different reliability guarantee mechanisms.

Data Deduplication: Given an input file, the client firstly uses a content-defined
chunking algorithm (e.g., AE [26]) to divide files into variable-length chunks.
Then the client uses a hash function (e.g., SHA-1) to compute a fingerprint
for each chunk. The client sends the sequence of fingerprints to the server. The
server establishes a fingerprint index and performs duplicate detection. If the
fingerprint exists in the index, the chunk is duplicated. Otherwise, it is a non-
duplicate chunk. The file metadata is also stored in the server.

Fig. 4. The procedure of data writing and redundancy management in DARM.

Chunk Marking: Chunk marking is an important stage in DARM. It classifies
chunks into different status by exploiting deduplication semantics (e.g., intra-
/inter-file duplicates, and reference count). Specifically, (1) DARM identifies
unique chunks and duplicated chunks by duplicate detection. (2) Through check-
ing the metadata of file information, DARM can distinguish intra-file duplicates
and inter-file duplicates. To recognize inter-file duplicates that severely affect
data reliability, DARM preserves an entry in fingerprint index especially in order
to record the information of referenced files for each chunk. (3) By comparison of
reference count for inter-file duplicates, chunks are initially grouped into two cat-
egories: highly-referenced and low-referenced chunks. In DARM, duplicate detec-
tor marks the above chunks with consecutive flags as the status. There are three
status in DARM. First, a non-duplicate chunk is labeled with a unique chunk.
Second, intra-file duplicated chunks are tagged as duplicates to be removed. By
reducing storage overhead, intra-file redundancy will benefit reliability rather
than harm reliability [8]. Third, inter-file duplicated chunks are marked with
duplicates to be reserved. Whereas the loss of highly-referenced chunks has
greater impact on data reliability compared with low-referenced chunks.

Data Distribution: Data distribution realizes redundancy management, which
can improve data reliability and balance storage overhead. Specifically, after

DARM: A Deduplication-Aware Redundancy Management Approach 453

chunk marking, client transfers the data chunks to the server, including unique
chunks and duplicates to be reserved. For unique chunks and low-referenced
chunks, DARM will write them into containers, and encode data into multiple
objects. Finally the objects will be stored in the corresponding devices. (Details
in Subsect. 4.3). For chunks that are duplicates to be reserved, replica manage-
ment evaluates the inter-file duplicates with selective and dynamic chunk-based
replication (SDCR) (Details in Subsect. 4.3). Data manager assigns the most
suitable devices to store replicas based on its previously stored places.

Data Reading. The client sends a reading request of file F to the server. The
server will get the file metadata of F and the objects information of each chunk of
F . For a chunk ci, the server gets the objects from k devices and reconstructs the
chunk ci(0 ≤ i < n). Then the server sends all chunks to the client in sequence
according to the file metadata. The client creates a new file F locally and writes
all chunks to the file. If some devices fail, DARM firstly recovers data from other
devices by performing erasure coding. If a chunk ci is still unreadable, DARM
will check the replica table whether or not in other devices via SDCR. If yes,
DARM will get the address of ci and rebuild it in the failed device.

4.3 Deduplication-Aware Redundancy Management

In this subsection, we will describe the design of DARM. It utilizes erasure
coding for unique and low-referenced chunks, while performs SDCR on inter-file
and highly-referenced chunks. We will present the procedure of the redundancy
methods of erasure coding and SDCR in DARM as follows.

Erasure Coding: For unique chunks, and low-referenced chunks, DARM only
keeps one single instance. As the majority of chunks are low-referenced and
unique chunks after deduplication, DARM stores these chunks of large storage
occupation with erasure coding (i.e., Reed Solomon (RS) Codes [24]). Specif-
ically, all chunks that need to be preserved will be written to a container in
sequence. The container is a fix-sized and self-organizing data structure. When
the container is full, DARM will divide the container into k blocks and encode
them into k + m objects (i.e., m parity objects). The k + m objects are packed
into a strip and will be distributed to k + m devices. The configuration of k
and m in erasure coding is related to the reference count (See Sect. 5.2). The
metadata of each strip will be written into a metadata file. If some devices fail,
DARM will get the metadata file to obtain the objects of corrupted data. Then
DARM reads sufficient objects and decodes them to reconstruct data.

Selective and Dynamic Chunk-based Replication (SDCR): We measure
the importance (or weight) of a chunk based on deduplication semantics (e.g.,
inter-/intra-file duplicates, and reference count). SDCR is a dynamic method to
improve data reliability for inter-file and highly-referenced chunks. In particular,
SDCR firstly uses the parameter level (i.e., boundary of reference count) to
distinguish highly-referenced chunks with low-referenced chunks. If the reference
count is lower than the level, DARM keeps only one copy. Otherwise, SDCR

454 Y. Zhou et al.

Algorithm 1. SDCR: Selective and Dynamic Chunk-based Replication
Input: An incoming chunk c;
Output: T: Reference count of a chunk; Tr: Reference count of the rth replicas; r:

Number of replicas; mcp: Maximum number of replicas.
1: Predefined values: a, and b for the function to add a replica;
2: if chunk c is unique then
3: T ← 1, r ← 1, Tr ← 1
4: Store chunk c as a new chunk
5: else if c is an inter-file duplicate then
6: T ← T + 1
7: if r < mcp then
8: if (T = level) or (T > level and T − Tr = a ∗ r + b) then
9: r ← r + 1

10: Tr ← T
11: Store chunk c as the rth replica
12: end if
13: else
14: c is a duplicated chunk that need to be removed.
15: end if
16: end if

will add multiple replicas for highly-referenced chunks. Second, SDCR uses a
heuristic function to calculate the number of replicas for a chunk. Specifically,
SDCR utilizes a typical liner polynomials (e.g., T − Tr = a ∗ r + b) Algorithm 1
to simulate the interval between inter-file reference counts and the number of
replicas. In addition, SDCR sets the maximum number of replicas (i.e., mcp) to
limit the extra storage overhead. Thus, SDCR tremendously decreases the data
loss severity and increases data reliability.

Algorithm 1 presents the procedure of SDCR. We denote r to be the number
of replicas. Concretely speaking, for an incoming chunk c, SDCR will check it
whether or not an inter-file duplicate. If no, c is a unique chunk. SDCR will store
c as a new chunk. Otherwise, the reference count T will be T ← T + 1. Next,
SDCR will check if the number of replicas r exceeds the maximum number of
replicas of mcp. If so, SDCR will remove the chunk c. Because even if the number
of replicas exceeds mcp, the effect on improving data reliability is diminished
[4,18]. Otherwise, SDCR will increase the number of replicas only in two cases.
First, the reference count T is equal to level, then the chunk c will be an inter-
file and highly-referenced chunk. Second, if T > level, we choose a function,
T − Tr = a ∗ r + b, which is inspired by Bhagwat et al. [4]. We leverages it to
calculate the relationship between reference count and the number of replicas.
Here, a and b are constants that are limited by storage utilization and data
reliability. With the increasing of T , SDCR needs to add a new replica to improve
data reliability for the selective chunk c. If the above conditions are met, SDCR
will preserve c as a replica and update Tr. Thus, SDCR can dynamically improve
data reliability for the selective chunks.

DARM: A Deduplication-Aware Redundancy Management Approach 455

4.4 Prototype Implementation

Deduplication. DARM uses AE algorithm [26] to divide a file into chunks. The
average chunk size can be configured to 2 KB, 4 KB and 8 KB. While the default
average chunk size is 8 KB. DARM uses a linked list to record the file metadata,
called recipe [7], including file information, sequence of chunk fingerprints etc.
DARM utilizes a hash table as the index to map chunk fingerprints with their
physical address. We also keep an entry in the fingerprint index to update the
reference count. Items in the index are written into disks for persistent storage.

Data Layout. We use a log-structured unit (i.e., container) to store chunks [7].
Unique chunks are sequentially appended to the end of the last write position,
and the container size can be configured as 4 MB or 8 MB. We try to store chunks
belong to one file on the same device and the replicas of chunks on different
devices. First, we reserve a small fraction of storage on each device and use a
hash table to preserve the mapping of copies of inter-file and highly-referenced
chunks. And DARM writes them to the file metadata for data backup. Second,
DARM applies Reed-Solomon (RS) code [24] to transform data in containers
into multiple objects. If the container is not full, DARM will fill in some ‘0’
bytes. Each object will be consequently written to the corresponding devices.

5 Performance Evaluation

5.1 Experiment Setup

Simulation Assumptions: (1) Storage systems are susceptible to both uncor-
rectable disk failures (UDFs) [16,19] and latent sector errors (LSEs) [3]. In this
paper, we only consider UDFs to evaluate the effect of data deduplication, sim-
ilar with Fu et al. [8]. (2) Due to the lack of field data, our analysis assumes
constant failure rates, constant repair rates and the independent failures [13].
We focus on the reliability and storage efficiency of our method compared with
other strategies under the same environment configurations.

Platform: We conduct experiments to evaluate the performance of DARM. The
hardware configuration of the machine is equipped with an Intel(R) Core(TM) i7-
4770@3.40GHZ 8-core CPU, 16 GB memory and 2 TB hard disk. The machines
are installed with an Ubuntu 14.04 LTS 64-bit operation system.

Methodology: We test the storage overhead, and data availability on different
datasets, which is similar to Bhagwat et al. [4] and Fu et al. [8]. Dedup ratio is
the ratio of duplicated data size and total data size. And we utilize the fraction
of data available to evaluate the reliability of different methods. The metric is
defined as the percentage of recoverable data while a certain percentage of devices
suffering whole disk failures, which is derived from the popular used reliability
metric called Normalized Magnitude of Data Loss (NOMDL) [9]. The traditional
metric, Mean Time to Data Loss (MTTDL), is inadequate for the analysis of
reliability because of its simplistic failure modeling of real world storage [6,9].

456 Y. Zhou et al.

Table 3. The Statistics of three datasets.

Datasets FSL Backup Linux

Chunks 66M 42M 10.41M

Files 3.14M 2.64M 258

Total space (GB) 597.78 458.91 111.32

Dedup ratio 49.93% 96.74% 41.43%

Datasets: Three datasets are listed in Table 3. FSL dataset is composed of
snapshots from part of eight users’ home directories (also used in [27]), which is
collected by the File system and Storage Lab (FSL) at Stony Brook [1]. Backup
dataset consists of part of snapshots from a randomly selected user’s home direc-
tory. Linux dataset contains 258 versions of tar files of Linux source codes from
Linux-2.6.X to Linux-3.9.X.

Setting: (1) To simulate large-scale storage systems, we use artificial defined
small devices to store data [4]. We set the device size for each dataset to 2 GB,
128 MB and 256 MB for FSL, Backup, and Linux respectively. All the data
are stored evenly on each device. By randomly selecting a small fraction of disk
failure, we simulate the low disk failure rate in storage systems. Then we calculate
data availability at a low level of disk failure and simulate the effect of temporary
whole disk failure. (2) We firstly give a sensitivity study of DARM with various
parameters. To test the effectiveness of DARM, we compare our performance
evaluation with deduplication without redundancy strategy, selective replication
strategy [4] and distributed erasure codes strategy [12]. For simplicity, we use
Dedup, DeepStore and R-ADMAD to donate these strategies respectively.

Fig. 5. Cumulative probability density function of the number of references to each
deduplicated chunk for FSL, Backup and Linux respectively.

5.2 A Sensitivity Study of DARM

Experiment 1 (Impact of Reference Count): In Fig. 5, we analyze the
distribution of chunk references of each dataset. The fraction of chunks which

DARM: A Deduplication-Aware Redundancy Management Approach 457

are referenced by files more than 20 times is 3.28%, 8.76%, and 1.31%, for FSL,
Backup, and Linux, respectively. The characteristics they have in common is that
highly-referenced chunks always account for the minority among the chunks after
deduplication (See Sect. 3).

Fig. 6. The impact of parameter level of DARM on FSL dataset.

Fig. 7. The impact of parameter mcp of DARM on Backup dataset.

Experiment 2 (Impact of Parameters in SDCR): To study the effect of
each parameter on balancing the tradeoff, we vary the parameter level, and mcp.
We normalize the storage overhead for DRAM on varying different parameters
with the storage occupation after data deduplication.

To choose an appropriate level is important, since it determines the fraction
of chunks from which to start for replicas preservation. The smaller level, the
more duplicated chunks should be preserved. Figure 6 describes the evaluation of
the parameter level. With the increasing of level, the data reliability gradually
decreases, while the storage overhead increases. The configuration of level is
related to the reference count. For example, it is more scientific to set the level
to be more than 1 and less than 10 for FSL dataset. Because most chunks are
unique chunks, while only 23.2% chunks are referenced by two more files for
FSL. As for Backup, we had better to set the level to be more than 10. Most of
chunks are shared by more than ten files, only minority chunks (e.g. account for
1.8%) have less reference counts.

458 Y. Zhou et al.

Figure 7 describes the impact of mcp on DARM performance, and experi-
ments are conducted with level = 11, a = 5, b = 0, k = 10, m = 1 on Backup
dataset. With the increasing of mcp, DARM improves data reliability through
reducing chunk loss severity by preserving more replicas for highly-referenced
chunks. However, excessive replicas are not only overmuch for improving data
reliability, but also reduce storage efficiency.

Fig. 8. The impact of erasure coding configuration. Experiments are conducted with
level = 11, a = 10, b = 5 on Backup dataset.

Experiment 3 (Impact of Erasure Coding): Erasure coding is applied for
unique and low-referenced chunks that always account for a large majority of
storage space. Thus, DARM not only provides robustness but also more storage
efficiency. To study the effect of erasure coding, we vary the parameters of k
and m. For simplicity, we fix m to 1, and conduct the experiments by varying k
in Fig. 8. With the more robustness configuration of erasure coding, DARM can
provide higher reliability assurance, but incurs higher storage overhead. With
the increasing of k, DARM will require more restore time for data loss events.

5.3 Overall Performance of DRAM

We conduct the performance comparison of DARM with Dedup, DeepStore, and
R-ADMAD on FSL and Linux datasets. We aim to evaluate the effectiveness of

(a) Data Available (b) Storage Overhead

Fig. 9. Effectiveness of DARM. Experiments are conducted with level = 2, mcp = 5,
a = 10, b = 5, k = 10, m = 1 on FSL dataset.

DARM: A Deduplication-Aware Redundancy Management Approach 459

(a) Data Available (b) Storage Overhead

Fig. 10. Effectiveness of DARM. Experiments are conducted with level = 2, mcp =
10, a = 5, b = 0, k = 10, m = 1 on Linux dataset.

DARM on the tradeoff between data reliability and space overhead. In Fig. 9,
the parameters a and b of DeepStore and DARM are the same, and mcp is
configured with 5. Compared with DeepStore, DARM reduces 42.6% storage
cost and sacrifices 0.25%–0.82% assurance of data reliability.

In Fig. 10, the parameters of erasure coding in DARM and R-ADMAD are
the same with k = 10 and m = 1. DARM can achieve good reliability guarantee
with lower storage capacity by choosing the appropriate parameters. Compared
with R-ADMAD, DARM achieves 1.5%–12.7% improvements on data reliability,
and only incurs little space overhead. Compared with DeepStore, DARM saves
43.4% storage space and brings a 0.07%–2.9% reduction of data reliability. Thus,
DARM achieves a good balance between data reliability and storage cost.

6 Conclusion and Future Work

In this paper, we present DARM, a deduplication-aware redundancy manage-
ment approach for storage systems. DARM smartly combines erasure coding
with selective and dynamic chunk-based replication (SDCR) based on the dedu-
plication semantics (e.g., inter-file duplicates, chunk size and reference count).
DARM utilizes erasure coding for low-referenced chunks and employs SDCR for
inter-file and highly-referenced chunks. Experimental results show that, DARM
not only reduces the storage cost, but also guarantees high reliability.

In the future, we will improve the read performance via the combination of
DARM with rewriting algorithms [7]. Second, we will improve the security of
DARM to simultaneously ensure security, reliability and cost-efficiency [27,28].

Acknowledgment. The authors are grateful to the anonymous reviewers. The work
was partly supported by the National Natural Science Foundation of China No.
U1705261, No. 61772222 and 61502190; Shenzhen Research Funding of Science and
Technology - Fundamental Research (Free exploration) JCYJ20170307172447622. This
work was also supported by Engineering Research Center of data storage systems and
Technology, Ministry of Education, China.

460 Y. Zhou et al.

References

1. Fsl traces and snapshots public archive (2014). http://tracer.filesystems.org
2. The future of data: Data age 2025 (2017). http://www.emc.com/leadership/

digital-universe/2014iview/executive-summary.htm
3. Bairavasundaram, L.N., Goodson, G.R., Pasupathy, S., Schindler, J.: An analysis

of latent sector errors in disk drives. In: Proceedings of ACM SIGMETRICS (2007)
4. Bhagwat, D., Pollack, K., Long, D.D., Schwarz, T., Miller, E.L., Pâris, J.F.: Pro-

viding high reliability in a minimum redundancy archival storage system. In: Pro-
ceedings of IEEE MASCOTS (2006)

5. Dubnicki, C., et al.: HYDRAstor: a scalable secondary storage. In: Proceedings of
USENIX FAST, pp. 197–210 (2009)

6. Elerath, J.G., Schindler, J.: Beyond MTTDL: a closed-form raid 6 reliability equa-
tion. ACM Trans. Storage (TOS) 10(2), 7 (2014)

7. Fu, M., et al.: Accelerating restore and garbage collection in deduplication-based
backup systems via exploiting historical information. In: Proceedings of USENIX
ATC (2014)

8. Fu, M., Lee, P.P., Feng, D., Chen, Z., Xiao, Y.: A simulation analysis of reliability
in primary storage deduplication. In: Proceedings of IEEE IISWC, pp. 199–208
(2016)

9. Greenan, K.M., Plank, J.S., Wylie, J.J.: Mean time to meaningless: MTTDL,
Markov models, and storage system reliability. In: Proceedings of USENIX Hot-
Storage (2010)

10. Li, R., Lee, P.P., Hu, Y.: Degraded-first scheduling for MapReduce in erasure-coded
storage clusters. In: Proceedings of IEEE/IFIP DSN (2014)

11. Li, X., Lillibridge, M., Uysal, M.: Reliability analysis of deduplicated and erasure-
coded storage. ACM SIGMETRICS Perform. Eval. Rev. 38(3), 4–9 (2011)

12. Liu, C., Gu, Y., Sun, L., Yan, B., Wang, D.: R-ADMAD: high reliability provision
for large-scale de-duplication archival storage systems. In: Proceedings of ACM
ICS (2009)

13. Ma, A., et al.: RAIDShield: characterizing, monitoring, and proactively protecting
against disk failures. ACM TOS 11(4), 17 (2015)

14. Mao, B., Wu, S., Jiang, H.: Improving storage availability in cloud-of-clouds with
hybrid redundant data distribution. In: Proceedings of IEEE IPDPS, pp. 633–642
(2015)

15. Ng, C.-H., Ma, M., Wong, T.-Y., Lee, P.P.C., Lui, J.C.S.: Live deduplication stor-
age of virtual machine images in an open-source cloud. In: Kon, F., Kermarrec,
A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 81–100. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25821-3 5

16. Pinheiro, E., Weber, W.D., Barroso, L.A.: Failure trends in a large disk drive
population. In: Proceedings of USENIX FAST, pp. 17–29 (2007)

17. Quinlan, S., Dorward, S.: Venti: a new approach to archival storage. In: Proceedings
of USENIX FAST (2002)

18. Rozier, E.W., Sanders, W.H., Zhou, P., Mandagere, N., Uttamchandani, S.M.,
Yakushev, M.L.: Modeling the fault tolerance consequences of deduplication. In:
Proceedings of IEEE SRDS (2011)

19. Schroeder, B., Gibson, G.A.: Disk failures in the real world: what does an MTTF of
1,000,000 hours mean to you? In: Proceedings of USENIX FAST, pp. 1–16 (2007)

20. Srinivasan, K., Bisson, T., Goodson, G., Voruganti, K.: iDedup: latency-aware,
inline data deduplication for primary storage. In: Proceedings of USENIX FAST
(2012)

http://tracer.filesystems.org
http://www.emc.com/leadership/digital-universe/2014iview/executive-summ ary.htm
http://www.emc.com/leadership/digital-universe/2014iview/executive-summ ary.htm
https://doi.org/10.1007/978-3-642-25821-3_5

DARM: A Deduplication-Aware Redundancy Management Approach 461

21. Vrable, M., Savage, S., Voelker, G.M.: Cumulus: filesystem backup to the cloud.
ACM Trans. Storage (TOS) 5(4), 14 (2009)

22. Wu, S., Li, K.C., Mao, B., Liao, M.: DAC: improving storage availability with
deduplication-assisted cloud-of-clouds. FGCS 74, 190–198 (2017)

23. Xia, W., et al.: A comprehensive study of the past, present, and future of data
deduplication. Proc. IEEE 104(9), 1681–1710 (2016)

24. Xiao, M., Hassan, M.A., Xiao, W., Wei, Q., Chen, S.: CodePlugin: plugging dedu-
plication into erasure coding for cloud storage. In: Proceedings of the USENIX
Workshop HotCloud, pp. 1–6 (2015)

25. Xu, M., Zhu, Y., Lee, P.P.C., Xu, Y.: Even data placement for load balance in
reliable distributed deduplication storage systems. In: Proceedings of IEEE/ACM
IWQoS, pp. 349–358 (2015)

26. Zhang, Y., et al.: AE: an asymmetric extremum content defined chunking algo-
rithm for fast and bandwidth-efficient data deduplication. In: Proceedings of IEEE
INFOCOM, pp. 1337–1345 (2015)

27. Zhou, Y., et al.: A similarity-aware encrypted deduplication scheme with flexible
access control in the cloud. Future Gener. Comput. Syst. (FGCS) 84, 177–189
(2017)

28. Zhou, Y., et al.: SecDep: a user-aware efficient fine-grained secure deduplication
scheme with multi-level key management. In: Proceedings of IEEE MSST, pp. 1–14
(2015)

K-Anonymity Algorithm Based
on Improved Clustering

Wantong Zheng1, Zhongyue Wang1, Tongtong Lv1, Yong Ma2,
and Chunfu Jia1(B)

1 College of Cyberspace Security, Nankai University, Tianjin 300350, China
cfjia@nankai.edu.cn

2 Civil Aviation University of China, Tianjin, China

Abstract. K-anonymity is the most widely used technology in the field
of privacy preservation. It has a good performance particularly in pro-
tecting data privacy in the scenarios of data publication, location-based
service and social network. In this paper, we propose a new algorithm to
achieve k-anonymity in a better way through improved clustering, and
we optimize the clustering process by considering the overall distribution
of quasi-identifier groups in a multidimensional space. With the local
optimal clustering, we try our best to guarantee minimized intra-cluster
distances and maximized inter-cluster distances. Therefore, the quality of
anonymized data can be greatly improved. Compared with some popular
algorithms like k-member, Mondrian, and one-time k-means, the experi-
mental results show our algorithm can effectively reduce the information
loss while generating equivalence classes. The total information loss of
the anonymized dataset decreases by about 20% on average than that of
other algorithms. It also performs well in dealing with both numerical
attributes and categorical attributes.

Keywords: Information loss · Privacy preservation · K-anonymity
Clustering

1 Introduction

Minimizing the risk of privacy leaks and maximizing data availability are both
the goals of privacy protection in data publishing scenario. In order to protect
personal privacy, some organizations usually delete or encrypt explicit identifiers
which can clearly identify users from the published data tables, such as name
and social insurance code, etc. However, this approach cannot effectively pre-
vent attackers from linking other information in the published data with data
obtained from other sources (i.e., linking attacks) [3]. Moreover, privacy can be

This project is partly supported the National Natural Science Foundation of China
(No. 61772291), the Natural Science Foundation of Tianjin (No. 17JCZDJC30500), the
Open Project Foundation of Information Security Evaluation Center of Civil Aviation,
Civil Aviation University of China (No. CAAC-ISECCA-201702).

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 462–476, 2018.
https://doi.org/10.1007/978-3-030-05054-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_36&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_36

K-Anonymity Algorithm Based on Improved Clustering 463

violated through three types of attack, including linking attack, homogeneity
attack and background knowledge attack.

In order to solve the privacy leakage problem caused by linking attacks,
Sweeney et al. [12–14] proposed the k-anonymity privacy protection model. This
model requires that the value of each quasi-identifier sequence in the published
anonymous dataset appear at least k (k > 1) times, that is, at least k records
have to use the same quasi-identifier attribute value. However, the research in [9]
shows that it is an NP-hard problem to implement optimal data anonymization.
The popular k-anonymity techniques usually generalize and suppress the quasi-
identifier attributes that may leak information. As shown in Fig. 1, the basic idea
of generalization is that the quasi-identifier attributes in the same equivalence
class should be replaced by the same generalized values. The generalization pro-
cess reduces the accuracy of the data, but it preserves the original semantics of
the data. However, excessive generalization can also cause unnecessary informa-
tion loss and then reduce the effectiveness of data. Suppression techniques can
be regarded as a special form of generalization, where all values are replaced
by “∗”. Although suppression can hide users’ information effectively, it causes
a larger information loss than generalization at the same time. To sum up, it
is challenging to keep the quality of published data and protect their privacy
at the same time. Data privacy preservation, especially privacy-preserving data
publishing, must take the tradeoff between data quality and data security into
account.

Research shows that most of the typical k-anonymity methods are based on
generalization and suppression techniques. All of them suffer from significant
information loss because they rely heavily on the ordering relations from pre-
defined generalization layers on the attribute domains. Hence, the anonymization
results often produce high information loss and further result in poor availability.
Moreover, the existing anonymization algorithms mainly focus on the protection
of private information but ignore the actual utility of anonymized data. As a
result, the availability of anonymized data is low in actual scenes.

In this paper, we propose an improved k-anonymity privacy protection algo-
rithm based on clustering. We devote in optimizing the clustering process and
making it more suitable for data anonymity scenarios. Experimental results show
that the scheme we propose has significantly improved data availability com-
pared with other algorithms including k-member clustering, Mondrian multidi-
mensional and one-time k-means.

Fig. 1. The process of generating an equivalence class

464 W. Zheng et al.

The remainder of this paper is organized as follows. In Sect. 2, we review
the existing techniques of k-anonymity and introduce some basic concepts of
the k-anonymity model. And in Sect. 3, we propose an improved k-anonymity
algorithm based on clustering. Then we conduct some experiments, illustrate
the experimental data, and conduct a theoretical analysis of the experimental
results in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Related Work

Data privacy preserving has been applied in data publishing as well as location-
based service during the past few decades [7]. A number of heuristic data
anonymization methods have been proposed to improve the degree of pri-
vacy protection of published data and reduce the information loss during data
anonymization. Wang et al. [15] proposed an anonymous method of bottom-
up progressive generalization. While Fung et al. [4] proposed a top-down spe-
cialization method. Aggarwal et al. [1] first proposed an efficient method for
anonymizing data through clustering techniques. The data sets are divided into
clusters using clustering algorithms, and they used cluster centroids to replace
data points in the clusters along with the cluster characteristics at the same
time. LeFever et al. [6] proposed a greedy top-down algorithm to find the small-
est k-anonymity in the multidimensional generalization model.

Also, many researchers proposed respective anonymization methods for dif-
ferent types of data. Ozalp et al. [10] proposed anonymization techniques for
privacy-preserving publishing of hierarchical data. Terrovitis [5] proposed the
k(m,n)-anonymity definition for tree-structured data. In their work, attackers’
background knowledge is limited to m vertex labels and n structural relations
between vertices (i.e., ancestor/descendant relationships). But this algorithm
has no distinction between quasi-identifier and sensitive attribute. As for graph-
based data, Palanisamy [11] presented an anonymization framework for pub-
lishing large association graph datasets with the goal of supporting multilevel
access-controlled query.

2.1 Basic Conceptions of K-Anonymity

Identifier. An attribute or a set of attributes that can identify a unique indi-
vidual, such as ID card number, name, etc. Before publishing the microdata,
these identifier attributes are usually deleted, masked, or encrypted to protect
the individual’s privacy.

Quasi-Identifier. Quasi-identifier is a set of non-sensitive attributes (e.g.,
q1, q2, . . . , qm) in the data table that can be SQL-connected to an external data
table so that at least one individual can be identified again, wherein any single
attribute cannot identify a unique individual. A set of attributes like this is called
quasi-identifier (QI) or semi-identifier. Linking a set of quasi-identifiers together
can potentially identify the individual’s attributes. For example, suppose that

K-Anonymity Algorithm Based on Improved Clustering 465

there is a set of quasi-identifiers including age, gender, and zipcode in medical
privacy preservation scenario, each of the attributes is stored in different tables,
and patient′s disease is regarded as the sensitive identifier. Attackers can con-
nect these tables to a medical record table through the quasi-identifiers above,
and then they can infer the patient’s disease information easily.

Sensitive Identifier. Sensitive identifiers are fields that need to be protected at
the highest level, such as disease information in medical data, employee salaries,
ID card numbers, cell phone numbers, etc.

Equivalent Class. In k-anonymity, each equivalent class contains at least k
records. Quasi-identifier groups of all records should have the same value in
one equivalent class. The raw data table will produce m equivalent classes after

k-anonymous, where m =
⌊

n
k

⌋
, and n is the number of records in the data table.

2.2 Distance and Information Loss Metric

In the process of clustering, the definition of distance is a critical factor of clus-
tering results. A good choice of distance metric for a particular scene can make
the clustering method achieve more optimal results. For numerical attributes,
although they can be calculated directly using classical algorithms such as
Euclidean distance and Manhattan distance, these distances are incapable of
handling categorical attributes (such as occupation, native countries).

An important factor for evaluating k-anonymity in data anonymization is
the loss of data information. Data anonymization methods will inevitably cause
information loss to the data set, however, information loss can measure data
availability and anonymization effect accurately and intuitively. These exactly
satisfy the conditions of k-anonymity. We define a set of algorithms to calculate
the distance between records as well as between records and clusters. It can not
only take the difference between numerical attributes and categorical attributes
into account but also use the numerical values to describe the similarities between
records and clusters.

We use the definition of Normalized Certainty Penalty (NCP) [16] as the
standard for measuring the loss of information. NCP is a kind of algorithm to
measure the degree of loss, which is efficient and easy to use.

Distance Between Numerical Data. For numerical attributes, we define D
as the domain of one numerical attribute, and T as the table with quasi-identifier
(q1, . . . , qn) for any two values vi, vj ∈ D, and then the distance between them
is defined as (1)

δN (vi, vj) =
|vi − vj |

|D| (1)

Categorical attributes are a type of data attributes with multiple discrete
values. The values do not have a complete ordering relation, so the distance

466 W. Zheng et al.

definition of numerical attribute could not be applied to categorical attributes.
However, there is some semantic correlation between most of the categorical
attributes. So it’s reasonable to use the correlation between data semantics to
define the distance between categorical data. In general, the semantic relevance
of data can be represented by a classification tree. Assume that a balanced
classification tree is used to represent the relationship on an attribute domain
whose leaf nodes represent all the different attribute values in the attribute
domain. A numeric generalized tree is shown in Fig. 2 as an example.

Fig. 2. Numeric generalized tree

Distance Between Categorial Data. We define TD as a generalized tree for
one categorical attribute. For any two values vi, vj ∈ D, the distance between
them is defined as

δC(vi, vj) =

{
0, vi = vj

|Common(vi,vj)|
|TD| , vi �= vj

(2)

|TD| denotes the number of all leaf nodes in the generalized tree of the
attribute D, and |Common(vi, vj)| is the number of leaf nodes in the lowest
common tree of vi and vj . If the values of vi and vj are the same, then their
generalized values are equal to vi and vj respectively, and the information loss
is zero. A categorical generalized tree is shown in Fig. 3.

Fig. 3. Categorial generalized tree

K-Anonymity Algorithm Based on Improved Clustering 467

Distance Between Records. The distance between two records is the sum
of the distances between the corresponding continuous and categorical quasi-
identifiers in the two records. Let QI = {N1, . . . , Nm, C1, . . . , Cn} be the quasi-
identifier of dataset T , where Ni (i = 1, . . . ,m) is continuous numeric attribute,
and Cj (j = 1, . . . , n) is categorical attribute. Then the distance between records
ri and rj is defined as

Δ(ri, rj) =
m∑
i=1

wiδN (r1[Ni], r2[Ni]) +
n∑

j=1

wjδC(r1[Cj], r2[Cj]) (3)

In the equation, r[N] represents the value of quasi-identifier N in record r,
and wi represents the weight of quasi-identifier i.

In our algorithm, we use the above definition of distance in our improved clus-
tering. The distance between the record and the cluster centroid also represents
the generalization degree of the record, which means the size of the information
loss. And we calculate the information loss of all records as the information loss
of the whole cluster.

3 Our Scheme

Anonymization algorithms need the information loss to be as low as possible so
that the premise of the k-anonymity requirements could be met. We could then
obtain a better data quality to the anonymized dataset.

The results of clustering-based anonymous algorithms depend on the con-
crete design of clustering. We propose an improved clustering-based k-anonymity
algorithm which is more accurate and reasonable in cluster position selection.

3.1 Clustering and Anonymity

Information loss can reflect the similarity degree between records in a data set,
but it also causes some problems. To calculate the distance between two records,
we must generalize the values first. However, as for clustering, the distance defini-
tion and centroids selection are two significant factors that must be preferentially
considered. The centroid of each cluster is the average value of each numerical
attribute value. As for categorical attributes, there is no average value or any
similar definition to describe the centroid. The centroid can only be a generalized
record value. And the generalization of categorical attributes is accomplished by
setting up a generalized tree. So it is a one-way process, from bottom to top and
from concrete to abstract.

When the k-means clustering algorithm copes with numerical attributes, it
will perform multiple iterations until the cluster allocation result of all records
no longer changes, so that the centroid value of the numerical attributes will
become stable. However, while dealing with categorical attributes, the process
of clustering is a continuous generalization since the generalization tree should
be traversed only from bottom to top. While clustering, the k-means algorithm

468 W. Zheng et al.

can only change the value of the centroid to a higher level of the generalization
tree. If it iterates to convergence, then we are likely to get the root node’s value
as it’s generalized value. The one-time k-means algorithm solves the problem
which k-means is incapable of while dealing with categorical attributes. This
algorithm conducts the clustering process only once. However, since the initial
centroid of k-means is randomly selected, it greatly influences the final clustering
result, resulting in a large information loss.

Without iterating many times, the k-member algorithm [2] performs well in
generalizing categorical attributes and can acquire a better data quality. How-
ever, there is still a problem. While generating a new cluster, k-member only
takes the last cluster into consideration regardless of the clusters generated ear-
lier. This may result in some bad cluster distributions. As shown in Fig. 4, cluster
C1 is the latest generated cluster, and cluster C2 is the cluster generated before
C1. Point p1 and point p2 are the centroid candidates. According to k-member,
p2 is the farthest point from C1. But if we choose p2 as the next centroid, the
new cluster will be too close to C2. The record p2 may be very similar to records
in C2 and the following k − 1 records added into the new cluster will not be in
their optimal clusters. The principle of inter-cluster distances maximum will be
broken. Therefore, our algorithm takes the previous clusters into consideration,
p1 has the farthest average distance from other clusters. Choosing p1 as the next
centroid will make the distribution of the clusters homogeneous. Obviously, the
choice of p1 is much better than that of p2. With the maximum non-similarity
between clusters, the information loss will be greatly reduced.

Fig. 4. Selection of new cluster centroid

In order to avoid the shortcoming of k-means and obtain better performance
when dealing with both numeric attributes and categorical attributes, we propose
an improved clustering algorithm for data anonymization. Through one-time
clustering, we optimize the selection of centroids, and the clustering results are
significantly improved. We redefine the distance calculation method in clustering,
as a result, the information loss is reduced.

K-Anonymity Algorithm Based on Improved Clustering 469

3.2 Algorithm Description

Our anonymity clustering algorithm follows the steps outlined below: Given a set
S with n records, we first randomly pick a record ri and let it be the centroid of
the first cluster c1. Then we choose k − 1 records closest to ri (i = 1, . . . , k − 1)
from S. This step means the information loss c1 ∪ {ri} is minimal. Now the
first cluster meets the requirements of k-anonymity. Next, for each of the rest

m =
⌊

n
k

⌋
−1 centroids mi, we consider the effect of the positional relationship of

the previous i−1 cluster on its choice. Here, for each remaining record in the data
set S, we calculate the total distance between itself and all the existed centroids
mj (j = 1, . . . , i − 1), and we choose the record with largest mean distance as
the ith centroid. This clustering process takes the distribution of global data
points into account. Then we repeat the clustering process until every cluster
contains k records. At this moment, we iterate the remaining records and insert
each record into a cluster with respect to which the increment of the information
loss is minimal.

The algorithm is described as follows

Algorithm 1. Improved K-Anonymity Algorithm based on Clustering.
Input:

The initial data set S;
Generalization parameter K;

Output:
Anonymized table AT with K;

1: Let clusters=�, record = the index of record picked randomly from S;
2: while len(S) >= k do
3: if len(clusters) < 1 then
4: nextrecord = the furthest record to record;
5: else
6: New centroid choice function()
7: end if
8: while len(clusters) < k do
9: Choose the best record and insert into the cluster

10: end while
11: while len(S) > 0 do
12: Get a record and choose the best cluster and insert into it
13: end while
14: end while

470 W. Zheng et al.

And we improve the process of centroid selection in the clustering, as in
Algorithm 2:

Algorithm 2. New centroid choice function().

Input:
The initial data set S;
The existed cluster group clusters;

Output:
The final clusters;

1: sum distance = 0
2: max cluster dis = 0 and max cluster dis index = 0
3: for each record in range(len(S)) do
4: for each cluster in clusters do
5: Calculate the distance between cluster and record
6: end for
7: Store the biggest distance between cluster and record
8: end for
9: Choose the record be the centroid of the next cluster

After completing the clustering process, each cluster satisfies the number of
records required for k-anonymity. The next step is to generalize each cluster.
The quasi-identifier of every cluster need to be set as the same attribute value.
For each quasi-identifier attribute of each cluster, its generalized value is set as
the value of the centroid of its cluster, while the centroid of each cluster is the
average of all records in the cluster.

Our ideas are inspired by the k-nearest neighbor algorithm which is well-
known in Machine Learning as a classification algorithm. As we discussed before,
the effect of k-means while dealing with data anonymity is severely influenced by
the choice of original centroids and the iteration times. Our algorithm minimizes
the impact of random selection of the initial centroids on the final clustering
results by selecting new centroids gradually during clustering. In this way, we
can avoid the terrible cluster distribution at the beginning. So our algorithm finds
a pretty balance between time and data quality, and it has a great improvement
in reducing information loss.

Moreover, our algorithm considers the impact of positions of existed clus-
ters on the selection of new centroids. The position of each generated cluster is
used as a reference point to select new centroids. This discriminates the newest
cluster from previous clusters to the greatest degree and merges the record to
its cluster with better effectiveness. In other words, the distribution of clusters
avoids the situation where the new clusters are very similar to the old ones in
the process of clustering. This can lead to bad clustering results due to improper
selection of new cluster centroids (such as k-member). Our algorithm also adopts
the idea of one-time clustering, this can not only avoid the unnecessary and irre-
versible information loss due to multiple iterations while generalizing categorical
attributes but also allocate the data to more suitable clusters.

K-Anonymity Algorithm Based on Improved Clustering 471

4 Experiments and Analysis

In this section, we conduct a series of experiments with the real-world typical
data set, and we compare our algorithm with other three popular k-anonymity
algorithms. As for the quality of the anonymized data, we measure the perfor-
mance of these algorithms by information loss.

4.1 The Data Set

Our experiment uses the Adult dataset from the UCI machine learning database
to test the performance of the proposed algorithms. The dataset includes part
of the US population census data. It has been widely used in the study of
anonymized privacy protection and has become the de facto standard in this
field. In our data preprocessing, we remove records with missing values. We
choose 8 attributes as quasi-identifier which includes age, workclass, education,
marital status, race, sex, occupation and native country, and income is chosen
as the sensitive attribute.

4.2 Experimental Environment

We implement the algorithms in Python and run these experiments on a desktop
PC with Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz 3.41 GHz and 16.0 GB of
RAM under Windows 10.

In this paper, our improved algorithm is compared with the k-member clus-
tering algorithm [2], Mondrian multidimensional k-anonymity algorithm [6] and
one-time k-means anonymity algorithm [8]. We observe the information loss of
data by changing the value of parameter k and the value of data size n.

4.3 Data Quality

In order to unify the evaluation criteria and measure the data quality better,
we use NCP as the assessment of data quality. As we mentioned before, NCP is
defined from a perspective of attributes, and it is consistent with the definition
of distance in clustering that we mentioned above. Here we need to measure the
information loss of generalized records and of the whole dataset, so we normalize
NCP for records and dataset as follows:

NCP (record) =
∑d

i=1 NCP (attributei)
d

(4)

NCP (dataset) =
∑n

i=1 NCP (recordi)
n

(5)

In Eq. (4), i represents the number of the attributes in a record, in (5), the
value n means the number of the records in the dataset. As we can see, the NCP
of records and datasets is averaged. This contributes to the normalized measure
of the data quality, and it is also direct in comparison with different algorithms.

472 W. Zheng et al.

Fig. 5. Information loss metric (a) Fig. 6. Information loss metric (b)

First, we fix the record number n in the data set and change the value of
anonymous algorithm k for experimentation.

As shown in Fig. 5, when n = 5000, our algorithm obviously outperforms k-
member and Mondrian in data loss metrics, and it has a higher data quality. Also,
as the value of k increases, the more records are contained in the equivalent class,
the higher information loss of the three algorithms have after anonymization.
When the data size n is set as 10000 (shown in Fig. 6), the clustering result is
better due to the increase of records, so the data points in the equivalent class
are more compact and the data loss degree is significantly reduced.

We also conduct a test with a larger size of dataset, this time we handle almost
the whole Adult dataset. Considering the influence of k on the experimental
results, we try some bigger values of k. The result is satisfying (shown in Fig. 7).
Compared with other algorithms, even when k is 500, the information loss of
our algorithm is within 50%, about 10% lower than that of the others. And the
smooth curve shows the stable performance. There are no random floats which
are caused by the random choice of initial centroids just like one-time k-means.

Fig. 7. Information loss with bigger k
and dataset

Fig. 8. Information loss metric (c)

K-Anonymity Algorithm Based on Improved Clustering 473

Then we consider the impact of the size of the data on the clustering result.
We fixed the k-anonymous parameter k to 50, and adjust the data size n. The
experimental results are shown in Fig. 8.

As we can see, with the increase of data volume, the information loss grad-
ually decreases. When the data volume is 30,000, the information loss of our
algorithm is about 20%, while the k-member clustering algorithm reaches about
30%, and the Mondrian algorithm even reaches 50%.

4.4 Analysis and Discussion

Time Complexity Analysis. K-anonymity is applied in the area of privacy
data publishing, which is not sensitive to the execution time of data masking. So
the clustering algorithms can come in handy though they have a little bit high
time complexity. In other words, k-anonymity techniques are usually used in an
offline environment. So the quality of anonymized data is a matter that should
be taken into account first. From the experimental data above, we can see that
our algorithm greatly reduces the information loss when the generalized dataset
meets the k-anonymity standard, and it can provide better data for subsequent
data mining and data analysis. Generally speaking, while the execution time in
the offline environment is within an acceptable range, it’s far more important
to guarantee data quality than to reduce the running time. It is noted that a
low information loss after k-anonymity is the basic support to a higher level of
anonymization operation such as l-diversity.

In our experiment, we found that the execution time is influenced by both k
and n. With the increase of k, the number of clusters will decrease accordingly.
This will influence the times of calculating distance between records and existed
clusters. The execution time will decrease while k increases.

In our algorithms, the vast majority of time complexity is caused by selecting
records from the initial dataset S. At the same time, locating the latest centroid
also holds a definite proportion. Because every new centroid is chosen according
to the generated clusters. As the clustering goes on, the count of existing clusters
increases at the same time. So the times of compare will go up from 1 ∗ (n − k)
to (n − mk)

⌊
n
k

⌋
. As (6) shows below, we can easily calculate that the time

complexity of locating the latest centroid is O(n2). As for the record selecting,
every cluster needs to add records until the number of members in the cluster
reach k, the selecting process needs to find the closest record to the centroid. It is
done by a traversal, and every time to find the best record means a traversal. Of
course, the total number of traversal decreases as the residual dataset becomes
smaller and smaller. This is where this part of time complexity comes from. We
can also get the time complexity O(n2) as well from the following formula (7).
So the total execution time is in O(n2).

T (clustering) = (n − k) ∗ 1 + (n − 2k) ∗ 2 + · · · + (n − mk)
⌊n

k

⌋
(6)

T (selectrecord) = (n − 1) + (n − 2) + · · · + k (7)

474 W. Zheng et al.

Isolated Point in Anonymity Situation. Our algorithm takes the existence
of isolated points in the data set into account. Some of the previous algorithms
simply delete the isolated points, resulting in a large information loss in pub-
lished data. While selecting the centroid of the next cluster, the positions of the
previous clusters play an auxiliary role. Our clustering process has better fault
tolerance. Isolated points in many data analysis scenarios have a certain influ-
ence on the clustering effect, so they are usually filtered out artificially. However,
in data-oriented data anonymization scenarios, any discard of records will have
some impact on the overall statistical characteristics of the data set. Though we
cannot totally ensure data integrity, we should still try our best. Conversely, the
existence of isolated points also guarantees the difference of data in the cluster
in our opinion, making the anonymized data set more secure.

Moreover, it’s better to handle the isolated points problem at an early stage.
In this way, we can locate the closest record to the isolated points in advance, and
minimize the inevitable information loss while generalizing. Locating isolated
points first also ensure the long inter-cluster distances and uniform distribution
of clusters. While looking for new centroids, we can first calculate distances
between the candidate point and a few points around it so as to identify whether
it is an isolated point. If the candidate point is an isolated point, then we put it
in the residual dataset which is waiting to be processed after m clusters having
been constructed. And the point near it will become a new candidate.

NCP (record) =
1
d

(NCP (attr1) + NCP (attr2) + · · · + NCP (attrd)) (8)

Manhattandis =
1
d

(diff1 + diff2 + · · · + diffd) (9)

It is mentioned in the previous chapters that we use the maximum average
value of the total distance from new record to each generated centroid as the
metric for the new centroid. As (8) and (9) shown above, this metric is very
similar to the definition of the Manhattan distance. The Manhattan distance
is the average value of distances in each dimension, which avoids the squared
calculation in Euclidean distance and reduces the influence of a strict isolated
points identifying strategy. A more important reason we choose the Manhattan
distance is that the Manhattan distance fits with the definition of NCP well.
Our thought is to distinguish the points which are too far from the normal data
groups, and not to involve some “innocent” data. So the limit of the isolated
distance could influence the results to some extent. To avoid some incorrect
involvement, we could set the limit as 50% or even higher.

5 Conclusion

In this paper, we propose a new k-anonymity algorithm based on clustering for
privacy preserving in data publishing. Compared with the classical k-anonymity
algorithms, this algorithm can efficiently reduce the information loss, improve

K-Anonymity Algorithm Based on Improved Clustering 475

the accuracy of the quasi-identifier group in the published dataset, and pro-
vide better data for subsequent data mining. The experiment result shows that
our algorithm could reduce the information loss generated by anonymization by
about 20%. It also performs well with different values of k and n. We also propose
some analysis according to our algorithm in the scenario of data anonymization.

References

1. Aggarwal, G., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D., Zhu, A.:
Achieving anonymity via clustering. In: ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, pp. 153–162 (2006)

2. Byun, J.-W., Kamra, A., Bertino, E., Li, N.: Efficient k -anonymization using clus-
tering techniques. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat,
E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 188–200. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71703-4 18

3. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
a survey of recent developments. ACM Comput. Surv. 42(4), 14 (2010)

4. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and
privacy preservation. In: International Conference on Data Engineering, pp. 205–
216 (2005)

5. Gkountouna, O., Terrovitis, M.: Anonymizing collections of tree-structured data.
IEEE Trans. Knowl. Data Eng. 27(8), 2034–2048 (2015)

6. Lefevre, K., Dewitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-
anonymity. In: International Conference on Data Engineering, p. 25 (2006)

7. Li, H., Zhu, H., Du, S., Liang, X., Shen, X.: Privacy leakage of location sharing in
mobile social networks: attacks and defense. IEEE Trans. Dependable Sec. Comput.
PP(99), 1 (2016)

8. Lin, J.L., Wei, M.C.: An efficient clustering method for k-anonymization. In: Inter-
national Workshop on Privacy and Anonymity in Information Society, pp. 46–50.
ACM (2008)

9. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Pro-
ceedings of the ACM Symposium on Principles of Database Systems, PODS 2004,
pp. 223–228. ACM (2004)

10. Ozalp, I., Gursoy, M.E., Nergiz, M.E., Saygin, Y.: Privacy-preserving publishing
of hierarchical data. ACM Trans. Priv. Secur. 19(3), 7 (2016)

11. Palanisamy, B., Liu, L., Zhou, Y., Wang, Q.: Privacy-preserving publishing of
multilevel utility-controlled graph datasets. ACM Trans. Internet Technol. 18(2),
24 (2018)

12. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing
information. In: The ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, vol. 98, p. 188. Citeseer (1998)

13. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, SRI International (1998)

https://doi.org/10.1007/978-3-540-71703-4_18

476 W. Zheng et al.

14. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl.-Based Syst. 10(05), 557–570 (2002)

15. Wang, K., Yu, P.S., Chakraborty, S.: Bottom-up generalization: a data mining
solution to privacy protection, pp. 249–256. IEEE (2004)

16. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.C.: Utility-based anonymiza-
tion for privacy preservation with less information loss. ACM SIGKDD Explo-
rations Newsl. 8(2), 21–30 (2006)

Adaptive DAG Tasks Scheduling
with Deep Reinforcement Learning

Qing Wu1, Zhiwei Wu1, Yuehui Zhuang2, and Yuxia Cheng1(B)

1 Hangzhou Dianzi University, Hangzhou, China
yxcheng@hdu.edu.cn

2 Zhejiang Fangzheng Media Technology Research Institute, Hangzhou, China

Abstract. Efficient task scheduling is critical for improving system per-
formance in the distributed heterogeneous computing environment. The
DAG (Directed Acyclic Graph) tasks scheduling problem is NP-complete
and it is hard to find an optimal schedule. Due to its key importance,
the DAG tasks scheduling problem has been extensively studied in the
literature. Many previously proposed heuristic algorithms are usually
based on greedy methods, which still exists large optimization space to
be explored. In this paper, we proposed an adaptive DAG tasks schedul-
ing (ADTS) algorithm using deep reinforcement learning. The schedul-
ing problem is properly defined with the reinforcement learning process.
Efficient scheduling state space, action space and reward function are
designed to train the policy gradient-based REINFORCE agent. Lever-
aging the algorithm’s capability of exploring long term reward, the ADTS
algorithm could achieve good scheduling policies. Experimental results
showed the effectiveness of the proposed ADTS algorithm compared with
the classic HEFT/CPOP algorithms.

Keywords: DAG scheduling · Heterogeneous
Deep reinforcement learning

1 Introduction

In distributed heterogeneous computing systems, a variety of computing
resources are interconnected with high speed networks to support compute-
intensive parallel and distributed applications. In these systems, efficient task
scheduling is critical for improving system performance. Especially, as the mod-
ern hardware technology evolves rapidly, diverse sets of computing hardware
unit, such as CPU, GPU, FPGA, TPU, and other accelerators, constitute more
and more complex heterogeneous computing system. Modern high performance
compute applications typically use the DAG (Directed Acyclic Graph) based
compute model to represent an application’s parallel compute tasks and their
dependencies. How to schedule DAG tasks in the distributed heterogeneous com-
puting system is an open research question.

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 477–490, 2018.
https://doi.org/10.1007/978-3-030-05054-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_37&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_37

478 Q. Wu et al.

Most parallel applications, including HPC applications, machine learning
applications [1] etc., use the DAG tasks model in which nodes represent appli-
cation tasks and edges represent inter-task data dependencies. Each node holds
the computation cost of the task and each edge holds inter-task communica-
tion cost. To improve system efficiency, the goal of DAG tasks scheduling is to
map tasks onto heterogeneous computing units and determine their execution
order so that the tasks’ dependencies are satisfied and the application’s overall
completion time is minimized.

Previous research [18] has shown that the general tasks scheduling problem
is NP-complete and is hard to find an optimal schedule. Researchers [10] theo-
retically proved that the DAG tasks scheduling problem is also NP-complete and
is more complex in practical scheduling system. Due to its key importance, the
DAG tasks scheduling problem has been extensively studied in the literature.

Many heuristic algorithms have been proposed, such as list scheduling algo-
rithms [17], genetic and evolutionary based random search algorithms [19], task
duplication-based algorithms [2], etc. These algorithms are mostly heuristic in
restricted application scenarios, and lack generality in the adaptation of various
heterogeneous hardware and rapid changing application demand [11]. Machine
learning based method is a reasonable way of adapting to the ever-changing
hardware and software environment by learning from past scheduling policies.

Reinforcement learning [22] could be used for learning smart scheduling poli-
cies from past experiences. Recent researches have proposed task scheduling and
device placement algorithms based on reinforcement learning. However, existing
approaches either greatly simplify the scheduling model [9,14] that are unpracti-
cal or need a great amount of computing resources [6,11] to train the scheduling
policies that are inefficient for most application scenarios.

In this paper, we proposed an Adaptive DAG Tasks Scheduling (ADTS) algo-
rithm using deep reinforcement learning. The scheduling problem are properly
defined with the reinforcement learning process. Efficient scheduling state space,
action space and reward function are designed to train the policy gradient-based
REINFORCE agent. Leveraging the algorithm’s capability of exploring long
term reward, we could achieve better scheduling efficiency. Experimental results
showed the effectiveness of the proposed ADTS algorithm compared with the
classic HEFT/CPOP algorithms. The main contributions of this paper include:

(1) We proposed an accurate and practical DAG tasks scheduling model based
on reinforcement learning. To the best of our knowledge, this is the first
work of addressing the static DAG tasks scheduling problem with the rein-
forcement learning process. Previous research have proposed similar model
[14], but over simplifies the problem with assumptions of restricted machine
performance, cluster status, and task classification.

(2) We designed efficient representations of state space, action space and reward
function. Too large state space and action space without careful design will
make the algorithm training time-consuming or even unable to convergence.
The reward function design also plays an important role in the reinforcement
learning process.

Adaptive DAG Tasks Scheduling 479

(3) We conduct extensive experiments to compare ADTS algorithm with the
classic HEFT/CPOP algorithms under various types of DAG tasks and dif-
ferent configurations of heterogeneous systems.

The rest of this paper is organised as follows: Sect. 2 describes the related
work. Section 3 presents the Adaptive DAG Tasks Scheduling (ADTS) algorithm
design. Section 4 shows the experimental results. Finally, Sect. 5 concludes this
paper and discusses future work.

2 Related Work

DAG tasks scheduling in the distributed heterogeneous computing environment
has been extensively studied. The DAG tasks scheduling algorithms could be
typically divided into static and dynamic scheduling. In static scheduling [8], the
tasks’ runtime and data dependencies are known in advance, and the scheduling
policy is determined off-line. In dynamic scheduling [3], the tasks are assigned
to processors at their arrival time and the schedule policy is determined on-line.
Most DAG tasks scheduling algorithms belong to static scheduling.

Traditional static DAG tasks scheduling algorithms mainly include: (1) List
scheduling algorithms [4,17]. The key idea of list scheduling algorithm is to order
the scheduling tasks priority list and select a proper processor for each task. (2)
Clustering based algorithms [7,15]. The key idea of clustering based algorithm
is to map DAG tasks to a number of clusters. Tasks assigned to the same clus-
ter will be executed on the same processor. (3) Genetic and evolutionary based
random search algorithms [19,21]. The key idea of this group of algorithms is
to use random policies to guide the scheduler through the problem space. The
algorithms combine the results gained from previous search with some random-
izing features to generate new results. (4) Task duplication based algorithms
[2,20]. The key idea of these algorithms is to duplicate some of the tasks in dif-
ferent processors, which reduces the communication overhead in data-intensive
applications.

These DAG tasks scheduling algorithms are heuristic and mainly designed
by experts, which are carefully adapted to different application scenarios. How-
ever, with the rapid development of heterogeneous hardware and ever changing
applications, traditional DAG tasks scheduling algorithms can not fully exploit
system performance [6,11]. To design adaptive algorithms, researchers proposed
machine learning based algorithms.

Zhang et al. [22] first proposed using classic reinforcement learning to address
job-shop scheduling problem. However, the job-shop scheduling is different from
the DAG tasks scheduling problem, where DAG tasks have more complex depen-
dencies and data communication cost. Mao et al. [9] proposed using deep rein-
forcement learning to solve a simplified task s scheduling problem. The policy
gradient based REINFORCE algorithm is used to train a fully connected policy
network with 20 neurons. However, the scheduling problem is over simplified that
treats the compute cluster as a single collection of resources, which is unprac-
tical in real systems. Orhean et al. [14] proposed reinforcement learning based

480 Q. Wu et al.

scheduling approach for heterogeneous distributed systems. This approach has
additional assumptions such as machine performance, cluster status, and tasks
types, which can not be easily applied in real DAG tasks scheduling. Mirhoseini
et al. [6,11] proposed using reinforcement learning method to optimize device
placement for TensorFlow computational graphs. These methods require a large
amount of hardware to train policy network. The state space and action space
definitions cannot accurately reveal the DAG and hardware topologies, which
results in many invalid placement trials. Though previous researches have these
shortcomings, the reinforcement learning based approach have demonstrated its
benefits in terms of adaptiveness and better scheduling quality.

Unlike previous researches, we proposed a new reinforcement learning based
scheduling algorithm that defines more accurate scheduling model using DAG
graph structures and efficient state/action space representations. The proposed
ADTS algorithm can be used in practice as the same way as traditional static
DAG tasks scheduling algorithms.

3 Adaptive DAG Tasks Scheduling Algorithm Design

In this section, we present the ADTS algorithm design. First, the DAG tasks
scheduling problem is defined. Second, we formulate the reinforcement learning
process and present the design of three key elements of RL, the state space,
the action space, and the reward function. Finally, we show the policy gradient
based training algorithm and the policy network architecture design.

3.1 Problem Definition

We leverage the definition of DAG tasks graph in distributed heterogeneous
system [17]. The scheduling model consists of three parts:

(i) An application represented by a DAG tasks graph, G = (V,E),
where V is a set of v tasks in the application, and E is the set of e edges between
tasks.

– edge (i, j) ∈ E denotes the precedence constraint such that task nj must wait
until task ni finishes its execution.

– datai,j denotes the amount of data to be sent from task ni to task nj .

(ii) A distributed heterogeneous computing system, which consists of
a set Q of q heterogeneous processors with a fully connected topology.

– W is a v × q computation cost matrix, and wi,j denotes the execution time
of task ni on processor pj .

– B is a q×q matrix of the data communication bandwidth between processors,
and Bm,n denotes the communication bandwidth between processor pm and
processor pn.

– L is a q-dimensional vector that denotes the communication initialization
costs of processors, and Lm denotes the initialization costs of processor pm.

Adaptive DAG Tasks Scheduling 481

– ci,j = Lm + datai,j

Bm,n
denotes the communication cost of edge (i, j), which is for

the cost of sending data from task ni (running on pm) to task nj (running on
pn).

(iii) Performance criterion for scheduling. Before presenting the final
scheduling objective function, we first define the EST (Earliest Start Time),
EFT (Earliest Finish Time), AST (Actual Start Time), and AFT (Actual Finish
Time) attributes.

– EST (ni, pj) = max

{
avail [j] , max

nm∈pred(ni)
(AFT (nm) + cm,i)

}
denotes the

earliest start time of task ni on processor pj , where avail [j] is the earli-
est time at which processor pj is available for execution, and pred(ni) is the
set of immediate predecessor tasks of task ni. The inner max block returns
the time when all data required by task ni has arrived at processor pj .

– EFT (ni, pj) = wi,j + EST (ni, pj) denotes the earliest finish time of task ni

on processor pj .
– AST (nm) denotes the actual start time of task nm when it is scheduled on a

processor pj to execute.
– AFT (nm) denotes the actual finish time of task nm after it is scheduled on a

processor pj and finishes execution.

The EST and EFT values can be computed recursively from the entry task
nentry, where EST (nentry, pj) = 0. After all tasks in a graph are finished execu-
tion, the AFT of the exit task nexit is named the schedule length (also named
makespan), which is defined as:

makespan = max {AFT (nexit)} (1)

The objective function of the DAG tasks scheduling is to determine the
assignment policies of an application’s tasks to heterogeneous processors so that
the schedule length is minimized.

3.2 Reinforcement Learning Formulation

Once the scheduling problem is defined, we propose to address the scheduling
problem with the reinforcement learning method [16]. Figure 1 shows a brief
diagram of the reinforcement learning based scheduling model. At time t, the
scheduler observes the environment and receives an observation Ot. Depend-
ing on Ot, the scheduler determines an scheduling action At. After At is exe-
cuted, the scheduler receives a reward Rt. The scheduler continues this process
(..., Ot, At, Rt, Ot+1, At+1, Rt+1, ...) until the end of schedule (task nexit is sched-
uled). The observation Ot typically could be denoted as an state St.

We use the policy gradient method to optimize the scheduling actions so
that the expected total reward could be maximized. The optimization objective
function is defined as:

J(θ) = EA∼π(A|G;θ)[R(A)|G] (2)

482 Q. Wu et al.

Scheduler

Environment

Reward Rt

Observation
Ot

Action
At

Fig. 1. Reinforcement learning based scheduling model

where θ denotes parameters of the policy network; A denotes the scheduling
policy (a sequence of actions); π(A|G; θ) denotes the probabilities of scheduling
policy A produced by policy network (defined by parameters θ) given the DAG
tasks graph and heterogeneous system G; R(A) denotes the total reward under
the scheduling policy A; J(θ) denotes the expected reward of the scheduling
policy A.

In the reinforcement learning, the design of the state space and action space
representations as well as the design of reward function are important for the
algorithm’s overall performance. We describe the three key elements as follows.

State Space. The state space of the scheduling problem could be very large,
which would include the state of the DAG tasks graph and the state of the
distributed heterogeneous computing system. We design an efficient and compact
representations of the state space, which is defined as:

St = [n,EST (ni, p1), ..., EST (ni, pq), wi,1, ..., wi,q] (3)

where St is the state (observation) at time t. n denotes the number of tasks
that are not scheduled so far (listed in a waiting queue). EST (ni, pj) is the
earliest start time of task ni on processor pj , task ni is the current task to be
scheduled. We use the task’s EST on all processors (from processor 1 to processor
q) to represent the state of current system. The EST as described in Sect. 3.1
contains both the information of processor’s load and the communication cost.
Based on the Markov property, the current task’s ESTs can be used as the state
to summarize the previous situations before task ni. wi,j is the computation
cost of task ni on processor pj . To preserve the tasks precedence relationship in
DAG, we adopt the upward rank [17] to list tasks in the waiting queue so that
tasks with higher rank values are scheduled before tasks with lower rank value.
Note that other task list methods are possible provided that the task precedence
constraints must be satisfied.

Action Space. Once the state space is defined, the action space of the schedul-
ing problem is straightforward. The action space is defined as:

At = {pi|p1, ..., pq} (4)

where At is the scheduling action at time t. pi denotes that the scheduler assigns
processor pi for the current task in the head of the waiting queue. The possible

Adaptive DAG Tasks Scheduling 483

action at each time step is to assign one of the processors (range from processor
p1 to processor pq) for the task to be scheduled.

Reward Function. The design of reward function could impact the scheduling
policies, which is critical for the policy training. The reward at each time step
should help guide the actual scheduling actions, and the accumulative long term
reward should also reflect the final scheduling objective. Based on the above
understanding, the reward function is defined as:

Rt = max{EST (ni+1, pj)|j=1..q} − max{EST (ni, pj)|j=1..q} (5)

where Rt is the immediate reward at time t. Task ni+1 is the task in the head of
waiting queue after task ni is scheduled with action At at time t. The reward Rt

is obtained by calculating the increment of current schedule length after task ni is
scheduled. The current schedule length is represent by max{EST (ni, pj)|j=1..q}.

3.3 Training Algorithm

We train an adaptive DAG tasks scheduling agent with the REINFORCE algo-
rithm. The training algorithm is based on the policy gradient methods with many
Monte-Carlo trials. The algorithm input consists of a differentiable parameteri-
zation π(a|s, θ) and the training step size α. Initially, the policy parameters θ are
set to random numbers. During the training process, we generate N number of
episodes to train the policy network. Each episode represents a complete sched-
ule of DAG tasks, which starts from the entry task state S0, action A0, and the
corresponding reward R1, to the end of the exit task state ST−1, action AT−1,
and the final reward RT . For each step of an episode, the algorithm calculates
the long term reward G with an discounted factor γ. The policy parameter θ is
updated in every step with ∇lnπ(At|St, θ), which equals the fractional vector
∇π(At|St,θ)
π(At|St,θ)

named the eligibility vector.

Algorithm 1. REINFORCE: Monte-Carlo Policy-Gradient Control for π∗.
Input:

A differentiable policy parameterization π(a|s, θ);
Algorithm parameter: step size α > 0;

1: Initialize random policy parameter θ ∈ R;
2: Loop for N episodes:
3: Generate an episode S0, A0, R1, ..., ST−1, AT−1, RT , following π(∗|∗, θ);
4: Loop for each step of the episode t = 0, 1, ..., T − 1:
5: G ← ∑T

k=t+1 γk−t−1Rk

6: θ ← θ + αγtG∇lnπ(At|St, θ)

484 Q. Wu et al.

4 Experiments

In this section, we evaluate the proposed ADTS algorithm comparing with the
classic baseline algorithms. The DAG tasks graphs are generated using the graph
generator [17] to represent the real world applications. First, we present the
experiment settings and the performance evaluation metrics. Then, the compar-
ative experimental results are described in the following subsection.

4.1 Methodology

The experiment hardware platform is configured with two Intel Xeon E5-2600V3
processors, four NVIDIA TITAN Xp GPUs, 64 GB DDR4 memory, and 4 TB
hard disk. The server is connected with S5150X-16S-EI high speed switch. The
software platform is configured with ubuntu 16.04, Tensorflow 1.5, python 2.7,
cuda9.1 and cudnn7.7. We generate a total of 1000 DAG tasks graphs using
the graph generator [17], and simulate the DAG tasks scheduling process with
a in-house simulator. The distributed heterogeneous system is configured with
3–7 heterogeneous processors with fully connected communication networks.

In the ADTS algorithm, the parameters used in the reinforcement learn-
ing are described as follows. The policy network architecture is configured with
3–5 layers of sequence-to-sequence neural networks with each layer having 10–50
neurons. The scale of policy networks depend on the problem space of DAG
graphs and the heterogeneous hardware configuration. The learning rate step
size α is 0.0005 and the discounted factor γ is 0.99. The number of Monte-Carlo
training episodes N is configured with 2500.

In the comparative evaluation, we use the following three performance
metrics.

– Schedule Length Ratio (SLR). The key performance metric of a schedul-
ing algorithm is the schedule length (makespan) of its schedule policy. As
the sizes of DAG graphs are different among applications, we normalize the
schedule length to a lower bound, which is named SLR. The SLR value is
defined as

SLR =
makespan∑

ni∈CPMIN
minpj∈Q {wi,j} (6)

where the CPMIN denotes that the critical path of a DAG graph is based on
the minimum computation costs.

– Speedup. The value of speedup for a given graph is the ratio of the sequential
execution time to the makespan. The speedup is defined as

Speedup =
minpj∈Q

{∑
ni∈V wi,j

}
makespan

(7)

where the sequential execution time is obtained by scheduling all DAG tasks
to a single processor that minimizes the overall computation costs (denoted
as minpj∈Q

{∑
ni∈V wi,j

}
).

Adaptive DAG Tasks Scheduling 485

– Running time of the Algorithms. An scheduling algorithm’s running time
is its execution time of producing the output schedule policy for a given DAG
tasks graph. This metric represents the cost of the scheduling algorithm.

The DAG tasks graph generator uses the following parameters to quantify
the characteristics of the generated DAG graphs, which is similar to [17].

∗SETV = {20,40,60,80,100}
∗SETCCR = {0.1,0.5,1.0,5.0,10.0}
∗SETα = {0.5,1.0,2.0}
∗SETout degree = {1,2,3,4,5,v}
∗SETβ = {0.1,0.25,0.5,0.75,1.0}

where SETV denotes the number of tasks in the graph, SETCCR denotes the
set of parameter values of the Communication to Computation Ratio (CCR),
SETα denotes the set of parameter values of the graph shape parameter α.
SEToutdegree denotes the set of values of out degree of a task. SETβ denotes
the set of parameter values of the range percentage of computation costs on
processors (β) that quantifies the heterogeneity of the processors.

4.2 Performance Comparison

In this subsection, we show the performance comparisons of three DAG tasks
scheduling algorithms, the proposed ADTS algorithm, the classic HEFT algo-
rithm and CPOP algorithm [17]. The HEFT (Heterogeneous Earliest Finish
Time) algorithm selects the task with the highest upward rank value at each
scheduling step and assigns the selected task to the processor that minimizes its
earliest finish time. The CPOP (Critical-Path-on-a-Processor) algorithm uses the
summation of the upward rank and downward rank to denote a task’s priority
and the selected tasks with the highest priority is assigned to the critical-path
processor; otherwise, it is assigned to a processor that minimizes the earliest
finish time.

The ADTS algorithm is non-deterministic, we show the average value of ten
individual runs in the experiment. The DAG tasks graphs are generated using the
parameters listed in Sect. 4.1. As modern big data and machine learning based
applications are mostly data-intensive, the DAG graphs are generated with a
higher portion of CCR value.

Figure 2 shows the comparison of the average schedule length ratio between
the ADTS, HEFT, and CPOP algorithms. The SLR metric represents the sched-
ule quality of each algorithm (lower is better). The closer the SLR value to one,
the better the scheduling policy. As the normalization uses the theoretical min-
imum computation costs, the SLR cannot be less than one.

As can be seen from Fig. 2, the ADTS algorithm outperforms both the HEFT
and CPOP algorithms. In the 20 tasks DAG graph, the average SLR of ADTS
algorithm is 3.391 and the average SLR of HEFT and CPOP are 4.262 and
4.323 respectively, which has 25% reduction of the average SLR. Similarly, in the

486 Q. Wu et al.

Fig. 2. Comparison of the Schedule Length Ratio (SLR).

40, 60,80 and 100 tasks of DAG graph scheduling experiments, the SLR of ADTS
is consistently lower than both HEFT and CPOP algorithms. The lower SLR
achieved by the ADTS algorithm demonstrates that the reinforcement learning
could better explore the long term reward, which leads to the better scheduling
policies than the heuristic algorithms.

Figure 3 shows the comparison of the average speedup between the ADTS,
HEFT, and CPOP algorithms. The average speedup represents the algorithm’s
ability of scheduling tasks to explore parallel performance (higher is better).
Note that the speedup value is calculated via dividing the sequential execution
time by the makespan. The sequential execution time is represented by assigning
all tasks to a single processor that minimizes the cumulative computation costs.
If selecting the processor that maximizes the cumulative computation costs, the
value of speedup will be higher. As can be seen from Fig. 3, the ADTS algorithm

Fig. 3. Comparison of the average speedup.

Adaptive DAG Tasks Scheduling 487

Fig. 4. Comparison of the average running time.

achieves better speedup than HEFT and CPOP algorithms. In the 20 tasks DAG
graph experiment, the speedup of ADTS algorithm is 1.087, while the speedup
of HEFT and CPOP algorithms are 0.879 and 0.886 respectively. The ADTS
algorithm could achieve more than 20% speedup improvement compared with
HEFT and CPOP algorithms.

Figure 4 shows the comparison of the average running time of the ADTS,
HEFT, and CPOP algorithms. The average running time of an scheduling algo-
rithm represents the average computation costs of execution the algorithm. As
can be seen from Fig. 4, the ADTS algorithm has higher running time com-
pared with the HEFT and CPOP algorithms. This is because the HEFT algo-
rithm involves the deep neural network reference computations to produce the
scheduling policy, which has higher overhead compared with the HEFT and
CPOP algorithm. The CPOP algorithm has higher running time compared with
the HEFT algorithm. The time complexity of both the CPOP algorithm and the
HEFT algorithm is O(e × q), where e is the number of edges in the graph and q
the number of processors. The time complexity of the ADTS algorithm depends
on the policy network architecture. If the neural network reference computation
cost is defined as c, then the time complexity of the ADTS algorithm is O(c×v),
where v is the number of tasks.

4.3 Discussion

From the above comparative performance evaluation, we observe that the rein-
forcement learning algorithm could achieve better scheduling policies than the
classic HEFT and CPOP algorithms. However, as the deep reinforcement learn-
ing involves neural network parameters training and inference computation over-
head, the running time of the ADTS algorithm is somewhat higher than the
heuristic greedy-based algorithms. Fortunately, the ADTS algorithm is designed
for static DAG scheduling, which is acceptable of the relatively high running
time considering its better schedule quality. What’s more, the ADTS algorithm

488 Q. Wu et al.

Fig. 5. The learning curve of the ADTS training algorithm.

is non-deterministic. In some cases, the training process could not successfully
converge to obtain the good policy network model. The reinforcement learn-
ing parameters tuning and the network architecture design need some trials to
obtain a robust algorithm.

Figure 5 shows an learning curve of the ADTS training algorithm under the
20 tasks DAG scheduling environment. As can be seen from the learning curve,
the algorithm learns very fast within 400 episodes and gradually exceeds the
classic HEFT algorithm after 500 episodes training. In our experiments, some
of the DAG graphs can not be successfully trained to surpass the classic algo-
rithms. We infer that this problem is due to the unsuitable parameters and the
neural network architecture configurations. This unstable training problem needs
further investigation and remains the future work.

5 Conclusion

In this paper, we proposed an adaptive DAG tasks scheduling (ADTS) algorithm
using deep reinforcement learning. The efficient scheduling state space, action
space, and reward function were designed to train the policy gradient-based
REINFORCE agent. Using the Monte-Carlo method, a large amount of train-
ing episodes were generated in a scheduling simulator and the policy network
parameters were updated using the simulated episodes. Experimental results
showed the effectiveness of the proposed ADTS algorithm compared with the
competitive HEFT and CPOP algorithms.

In the future work, we plan to integrate more advanced algorithms, such as
DQN [13], A3C [12], Monte-Carlo Tree Search [5], as well as new network archi-
tectures into the reinforcement learning process and study their performance in
addressing the DAG tasks scheduling problem.

Adaptive DAG Tasks Scheduling 489

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16,
265–283 (2016)

2. Ahmad, I., Kwok, Y.K.: On exploiting task duplication in parallel program schedul-
ing. IEEE Trans. Parallel Distrib. Syst. 9(9), 872–892 (1998)

3. Amalarethinam, D., Josphin, A.M.: Dynamic task scheduling methods in hetero-
geneous systems: a survey. Int. J. Comput. Appl. 110(6), 12–18 (2015)

4. Arabnejad, H., Barbosa, J.G.: List scheduling algorithm for heterogeneous systems
by an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25(3), 682–694
(2014)

5. Browne, C.B., et al.: A survey of monte carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

6. Goldie, A., Mirhoseini, A., Steiner, B., Pham, H., Dean, J., Le, Q.V.: Hierarchical
planning for device placement. In: Proceedings of ICLR, pp. 1–11 (2018)

7. Kanemitsu, H., Hanada, M., Nakazato, H.: Clustering-based task scheduling in
a large number of heterogeneous processors. IEEE Trans. Parallel Distrib. Syst.
27(11), 3144–3157 (2016)

8. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv. 31(4), 406–471 (1999)

9. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, pp. 50–56. ACM (2016)

10. Mayer, R., Mayer, C., Laich, L.: The TensorFlow partitioning and scheduling prob-
lem: it’s the critical path! In: Proceedings of the 1st Workshop on Distributed
Infrastructures for Deep Learning, pp. 1–6. ACM (2017)

11. Mirhoseini, A., et al.: Device placement optimization with reinforcement learning.
In: Proceedings of ICML, pp. 2430–2439 (2017)

12. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937 (2016)

13. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

14. Orhean, A.I., Pop, F., Raicu, I.: New scheduling approach using reinforcement
learning for heterogeneous distributed systems. J. Parallel Distrib. Comput.
(2017)

15. Palis, M.A., Liou, J.C., Wei, D.S.L.: Task clustering and scheduling for distributed
memory parallel architectures. IEEE Trans. Parallel Distrib. Syst. 7(1), 46–55
(1996)

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2011)

17. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

18. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

19. Wu, A.S., Yu, H., Jin, S., Lin, K.C., Schiavone, G.: An incremental genetic algo-
rithm approach to multiprocessor scheduling. IEEE Trans. Parallel Distrib. Syst.
15(9), 824–834 (2004)

20. Xian-Fu, M., Wei-Wei, L.: A DAG scheduling algorithm based on selected dupli-
cation of precedent tasks. J. Comput.-Aided Des. Comput. Graph. 6, 023 (2010)

490 Q. Wu et al.

21. Xu, Y., Li, K., Hu, J., Li, K.: A genetic algorithm for task scheduling on hetero-
geneous computing systems using multiple priority queues. Inf. Sci. 270, 255–287
(2014)

22. Zhang, W., Dietterich, T.G.: A reinforcement learning approach to job-shop
scheduling. IJCAI 95, 1114–1120 (1995)

RFGRU: A Novel Approach for Mobile
Application Traffic Identification

Yu Zhang1(B), Yufei Jin1, Jianzhong Zhang1, Huan Wu1, and Xueqiang Zou2,3

1 College of Cyberspace Security, Nankai University, Tianjin 300350, China
{zhangyu1981,zhangjz}@nankai.edu.cn, {jinyufei,wuhuan}@mail.nankai.edu.cn
2 National Computer Network Emergency Response Technical Team/Coordination

Center of China, Beijing, China
zouxueqiang@iie.ac.cn

3 School of Cyber Security, University of Chinese Academy of Scienses,
Beijing, China

Abstract. Billions of users access the Internet through their mobile
devices to get services. Mobile traffic classification has become a hot
topic in recent years due to its large volume of traffic data. Many of the
studies that have been done show that the key point of mobile traffic
identification is to extract signatures. However, the process of signature
extraction is usually too complex to perform. In this paper, we propose a
novel method RFGRU which is based on the Random Forest and gated
recurrent unit, to address the mobile traffic classification problem. Sev-
eral experiments are performed to verify the effectiveness of RFGRU.
The results show that RFGRU delivers a good recognition rate and can
accurately identify the traffic of the mobile applications.

Keywords: Mobile traffic classification · Random Forest
Gated recurrent unit

1 Introduction

Traffic classification is crucial to classic network management tasks, such as ser-
vice quality assurance, bandwidth provisioning, billing, and abnormal behavior
detection and so on [1].

Nowadays mobile devices such as smart phones and tablets PC have become
more and more popular. Mobile traffic from these mobile devices has grown
rapidly in recent years and is expected to reach 49 exabytes per month by 2021
[2]. Therefore, it is important to analyze mobile application flows.

Most mobile applications run over the HTTP or HTTPS protocol [3,4]. This
means the traditional port-based classification techniques or machine learning
classification techniques [5–8] cannot be applied effectively for the mobile traffic
classification. Most of the recent studies aim at HTTP packet classification. Some
studies make use of the unique strings that exist on HTTP packet load [3,4,9],
others rely on setting up a profile for each mobile application [10–12], or the
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 491–506, 2018.
https://doi.org/10.1007/978-3-030-05054-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_38&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_38

492 Y. Zhang et al.

reverse engineering [13–15]. However, all these previous methods pay attention
to find the fixed characters of the payload, and ignore the important information
implied by the word order. We propose RFGRU which concentrates on the order
information of words in the payload and uses the sequence prediction model for
classification.

LSTM model is a well-known sequence prediction model which overcomes
the long distance dependence of traditional recurrent neural network (RNN),
and is often used in event prediction, sentiment classification and handwritten
word recognition [16–18]. However, this model is very complex which results
in the problem of long training and predicting time. Therefore, we adopt the
much simpler variant gated recurrent unit (GRU) [19], however it is still time-
consuming.

Random Forest constructs a collection of trees [20], wherein each tree is
grown by random independent data sampling and feature splitting. Each tree’s
training and forecasting process is independent and fast. It is easy to parallelize,
and can handle high dimensional data. It is a widely used classifier, and its effect
has been proved effective in many situations [21]. But it is prone to over-fitting
problem, resulting in lower accuracy of classification.

Thus, we propose RFGRU, which absorbs the advantages of the fast speed
of Random Forest and the high accuracy of GRU. RFGRU uses Random Forest
model to filter out easily categorized samples, and the rest is left to GRU model.
RFGRU mainly consists of two stages: the training phase and the identification
phase. In training phase, we use labeled training data to establish RFGRU model
and divide the payload into word sequence and extract simple text features as
classification features of Random Forest model. There is no need to extract fea-
tures when training GRU model, and the last word of the word sequence will be
used as the predicted category. As a result, the mobile application classification
problem is transformed into the word sequence prediction problem. In the iden-
tification phase, we need to extract the same features as the training phase and
use RFGRU model for classification.

The major contributions of our work are summarized as follows.

– To the best of our knowledge, this is the first work to use GRU model in
mobile application traffic classification;

– The proposed RFGRU method absorbs the advantages of the Random For-
est model and GRU model, and eliminates the complex feature extraction
process;

– The parameters of RFGRU are simulated through experiments and the valid-
ity of the method is proved.

The rest of this paper is organized as follows. Section 2 presents a critical
review of traffic classification. In Sect. 3, we propose the architecture of mobile
traffic classification. For performance evaluation, experiments and results are
reported on Sect. 4. Finally, Sect. 5 concludes this paper.

RFGRU 493

2 Releated Work

Traffic classification methods fall into three categories: port-based methods [22],
machine learning based methods [5–8] and payload-based methods [23].

Most mobile applications use the HTTP protocol for data transmission. In
this case, not only the ports are fixed, but also the traffic features are similar, as a
result the first two methods are no longer suitable for mobile traffic classification.
We mainly introduce the payload-based methods.

The payload-based methods are also known as deep packet inspection (DPI),
which can be classified into two subcategories: application signature-based meth-
ods and protocol parsing-based methods.

The main idea of the first subcategory (application signature-based meth-
ods) is to extract fixed strings from the application traffic, or to establish the
profile of an application. Erman [3] used the User-Agent filed of HTTP header
to identify mobile traffic. This method is effective for applications of iOS. How-
ever, for android apps, since the android developers generally put some generic
strings in the User-Agent field, this method cannot recognize the traffic well,
and the application coverage is very low. Tongaonkar [4] used Manifest.xml file
to extract unique identifiers embedded by third parties for classification, which
not only relies on human experience, but also delivers limited application cov-
erage. FLOWER system extracted the HTTP header field as the app feature
[9], and new app signatures can be inferred by observing the co-occurrence of
app features. But this approach still requires an initial set of features at the
beginning.

In the AMPLES framework, the problem of mobile application identification
was regarded as information retrieval [10]. Each application was represented as
a document, and the document content represented the characteristics of the
application. The process of identifying the application traffic is equivalent to
searching the most similar document in the document library. The SAMPLES
framework used a small collection of samples to extract identifiers and lexical
context associated with identifier strings, both of which were used to construct
the conjunctive rules [11]. However, complex sequence alignment and regular
extraction process are required to construct the conjunction rules. The litera-
ture [12] collected traffic of all possible operations in the android application,
and generated the application’s network profiles. When unknown network flow
arrives, find the state machine with the highest matching rate, and the corre-
sponding application is the label of network flow. However, this method needs
to collect the traffic of the target android application for various operations in
advance, and the computational complexity is high when calculating the match-
ing degree of state machines.

The main idea of the second subcategory (protocol parsing-based methods)
is to extract the format of the application protocol through reverse engineer-
ing. The authors of [13] proposed a semantic approach to identify traffic. Pay-
load data is represented as n-gram and the LDA method is used to extract
the keywords which are used for classification. The main drawback is that this
method has high computational complexity and slow recognition speed. ProHack

494 Y. Zhang et al.

extracted the protocol keywords from traffic based on the Bayesian statistical
model, and used the extracted keywords to identify network protocol traffic by
semi-supervised learning method [14]. Based on the improved voting system
algorithm, the authors of [15] divided the payload into words which were ranked
according to the length, frequency and position. The words with high score
are used as keywords to identify the traffic. However, this method might filter
out some low-frequency keywords, which leads to the reduction of classification
effect.

In summary, the previous studies mainly focus on the extraction of char-
acteristic characters, but RFGRU do not pay much effort for it. Instead, it
concentrates on the implicit information between word sequences.

3 Architecture

This section will give a detailed description of RFGRU. Firstly, the overall frame-
work of RFGRU will be explained. Then we will introduce each component of
the framework.

3.1 System Framework

In RFGRU, we need to calculate the probability that a sample belongs to each
category. If the difference between probabilities is very small, the sample is likely
to be misclassified, otherwise we tend to think that the samples is classified
correctly. In terms of using a binary classifier, consider the following two cases:
the probability that a sample belongs to the first category is 0.4, the probability
that it belongs to the second category is 0.6, and the final classification result is
the second category; the probability that a sample belongs to the first category
is 0.1, and the probability that it belongs to the second category is 0.9, the final
classification result is the second category too. We believe that the second case
is more credible. For the first case, we need a more powerful classifier in order
to get more accurate result.

In this paper, traffic is classified into two categories: traffic of target applica-
tions and non-target applications. The first classifier of RFGRU uses Random
Forest. For each category, predict the probability that each sample belongs to
it. If the difference between the two probabilities is less than the threshold, then
GRU model is required to reclassify the sample. There are two reasons for using
cascades of classifiers. Firstly, the classification accuracy of Random Forest is
not very high. Secondly, if only using GRU for classification, we will get a much
higher accuracy, and a much longer predicting time. With the combination of
these two classifiers, we can not only save time, but also get a higher accuracy.

Figure 1 presents the details of the proposed framework. Our framework
involves two major phases: (I) Training phase; (II) Identifying phase.

We work on labeled samples to build a classification model for each target
application. The Training phase includes (1) Preprocessing stage, (2) Random
Forest modeling stage, and (3) GRU modeling stage. In the Preprocessing stage,

RFGRU 495

Preprocess

Training Packets

Random Forest
modeling

GRU
modeling

Preprocess

Unlabeled Packets

Classification Result

Training Phase Identification Phase

Fig. 1. The system framework

“ HTTP/1.1 200 OKServer: Tengine/2.1.0_320Date: Sun, 20 Mar 2016 03:51:12”

“ HTTP| 200| OKServer| Tengine| 320Date| Sun| Mar| 2016”

Fig. 2. An example of word segmentation

HTTP payload will be extracted and preprocessed. In the stage of Random
Forest modeling, each payload obtained in the previous stage will be regarded
as a text. This text is used to establish Vector Space Model (VSM) and Random
Forest classifier. Since the GRU is a deep learning model, it does not need to
extract features manually. The original payload data can be imported into GRU
model for training.

The Identifying phase consists of two stages, including: (1) Preprocessing
stage; (2) Classification. In this phase, RFGRU will combine the Random Forest
classifier and the GRU classifier to predict unlabeled samples.

Each stage is described in detail below.

3.2 Preprocess Phase

In this stage, the HTTP payload will be processed and the contents before
‘‘\r\n\r\n’’ will be intercepted. The contents contain the HTTP request line
and request message, which provides rich information. Meanwhile, all the invis-
ible characters are filtered to reduce the training time, that is to say, we only
keep ASCII characters between 32 and 126.

After that, we need to conduct word segmentation on each payload. Since
most loads are in English, we can simply use spaces, slashes, etc. to split. Then
we exclude the words that are too short, since those words are more likely to be
meaningless. In this work, we delete words with length less than 2. An example
of participle is shown in Fig. 2.

496 Y. Zhang et al.

3.3 Random Forest Classification Modeling Phase

The input to this stage is the preprocessed payload, and the output is the Ran-
dom Forest model.

We regard the payload as text data. Since the Random Forest can only accept
mathematical input, we need to transform texts into vectors, that is, to establish
VSM. The main idea of VSM is to map each text to a point in the vector space.
The biggest advantage is that text can be represented as a vector, which makes
all kinds of mathematical processing possible.

In Preprocessing stage, we can get all words that have appeared, denoted
by W = {w1,w2,...,wn}, which is called “bag of words”. Calculate TFIDF
(term frequency–inverse document frequency) value of all words in W , where
TF denotes Term Frequency, IDF denotes Inverse Document Frequency. The
basic idea of TFIDF is that if a word or phrase appears in a text with high TF
and rarely appears in other texts, it is considered that this word or phrase has
a good ability of categorization and is suitable for classification.

Given a corpus D, let tfi,j be the frequency of word wi in payload j, let df
be the number of payloads that contain wi, and let |D| be the total number of
packet payloads. The TFIDF value of wi in payload j is defined as follows.

TFIDF (wi) = log(tfi,j) × log(
|D|
df

) (1)

Each word can be represented by a TFIDF value. A TFIDF vector can
represent a payload. However, if all words are used, the computation is large
and the result contains noise. We sort TFIDF values of all words and select the
top Ratio × |D| words in the rankings, as the word bag for VSM.

So far, we have converted payload to TFIDF vector and set up VSM. Then,
TFIDF vector is used as classification feature to establish the Random Forest
model.

3.4 GRU Classification Modeling Stage

GRU Model Design. We regard the traffic classification of mobile application
as a sequence prediction problem, so we can regard the load as a word sequence,
and the predicted category as the last word of the word sequence. The GRU
model extracts the hidden information of word sequences and reclassifies samples
that cannot be accurately classified by random forest.

We use a single layer GRU network for traffic classification, and the network
structure is shown in Fig. 3. The preprocessed text is used as the input of the
input layer. In our approach, the input layer converts the load to a word sequence
of the specified length, which is denoted as sequence length and is set to 20,000.
The words exceeding sequence length are ignored, and insufficient parts are
padded with 0. Embedding layer is added between the input layer and the GRU
layer, which is used to create word vectors for incoming words. The output of
the embedding layer will be entered into the GRU layer. The weights of the
embedding layer are initialized with third-party word embeddings, word2vec,

RFGRU 497

which can translate words into vectors in vector space, including two training
models: CBOW and Skip-Gram. In this paper, we select CBOW model and set
embedding dim to 300.

A payload is processed through the embedding layer and is represented as
sequence length×embedding dim tensor. This tensor is the input of GRU layer
and is used to calculate GRU cell. We also insert the dropout layer to discard
hidden layer neurons with a certain probability to prevent over-fitting. Finally,
the class distribution vector is obtained through the softmax layer.

Embedding Layer

GRU Layer

Dropout Layer

Softmax Layer

Word Sequencew1 w2 w
n-1 w

n

Fig. 3. Overview of the GRU model

Function Details. The equations for calculating GRU cell is shown below:

rt = σ(Wr · [ht−1, xt]) (2)

zt = σ(Wz · [ht−1, xt]) (3)

ht = (1 − zt) ∗ ht−1 + zt ∗ ˜ht (4)
˜ht = tanh(W

˜h · [rt ∗ ht−1, xt]) (5)

xt is the input data at t th time step, which represents the 1 × embedding dim
vector of the t th word. The reset gate rt is computed by Eq. 2, where σ is the
sigmoid function and ht−1 is the previous state. Symbol [ht−1, xt] represents a
hidden state ht−1 is connected to an input vector xt. zt denotes update gate,
which controls how much information is memorized to current hidden state, its
formula is Eq. 3. The activation value of hidden node ht is computed by Eq. 4,
where ˜ht is computed by Eq. 5.

The initial value of Wr, Wz and W
˜h are randomly generated and their values

are constantly updated during GRU training. When the maximum number of
iterations is reached, GRU model training is completed.

498 Y. Zhang et al.

Algorithm 1. Mobile traffic identification
Input: Tl: test set;

Threshold: if lower than Threshold need GRU to reclassify;
RF : Random Forest classify model;
GRU : GRU classify model;

Output: Classtype: the classification results

1: for all x ∈ Tl do
2: class prob = RF (x)
3: if |class prob[target] − class prob[non − target]| ≤ Threshold then
4: Classtype ← GRU (x)
5: else
6: Classtype ← label corresponding to the maximum probability in class prob
7: end if
8: end for
9: return Classtype

3.5 Identification

The identification phase consists three parts: (1) Preprocessing stage, performs
the same operation as the training phase; (2) Random Forest classification stage,
calculates the probability that a sample belongs to two categories. If the differ-
ence of these two probabilities exceeds Threshold, the category with the higher
probability can be directly outputted as the predict label. Otherwise, the sample
needs to be reclassified by GRU classifier; (3) GRU classification stage, outputs
the final results.

Algorithm 1 describes the Identification phase.

4 Experimental Evaluation

In order to verify the effectiveness of the proposed method, we select 15 appli-
cations that are popular in China for testing. These applications cover most
software categories, including social networking, shopping, instant messaging,
and so on. The input of the framework is mobile application traffic, and the
output is the estimated classification result. In this section, we first introduce
our dataset used in the experiment. Then the process of tuning parameters is
introduced. Finally, the experimental results are shown and compared with other
methods.

4.1 Data Set

We collect traffic for 15 applications, including Taobao, Youku, BaiduSearch,
etc., and then download and install these applications to Android phones. When
capturing traffic, only the target application runs, other applications are closed
to ensure the purity of captured traffic. We use the monkey tool [24] to launch
the application and simulate various operations. And then we mix the target
application traffic and non-target application traffic, randomly select 90% as the
training set, 10% as the test set. The data description is shown in Table 1.

RFGRU 499

Table 1. Dataset description

Size Packets HTTP packets

11.1G 11,223,324 550,581

Table 2. Parameter description

Parameter Description

Ratio Proportion of keywords in Random Forest modeling stage

Epochs Epochs in GRU modeling stage

Outdim Output size of GRU layer

Batchsize Used in Adam to optimize the loss function

Thresold Bound of reclassified

4.2 Parameter Tuning

The parameters used in this paper are shown in Table 2.
We first discuss how to select a suitable value for Ratio, and then study the

value of Thresold. Finally, present results for different values of Epochs, Outdim
and Batchsize.

Ratio affects the accuracy and time consumption of Random Forest classifier.
If Ratio is too small, the accuracy of Random Forest is low, and the number of
samples that need to be reclassified increases. If Ratio is set too large, Random
Forest classification will not only increase the prediction time, but also may
contain noise and reduce accuracy. Therefore it is very important to choose a
suitable Ratio value.

Fig. 4. Relationship of Ratio and
Accuracy

Fig. 5. Accuracy of different Threshold

500 Y. Zhang et al.

For this purpose, we take different values of Ratio to observe the classification
accuracies of Tencentnews, Taobao and Youku. We carry out experiments for
Ratio = {0.3, ..., 0.7, 0.8}. Figure 4 shows the accuracy of different Ratio.

As we can see from the Fig. 4, when Ratio<0.5, the accuracy of Youku does
not change much, and the curves of Tencentnews and Taobao show a general
upward trend. The accuracy is the highest when Ratio = 0.5, and then begins
to decline. Therefore, we choose Ratio = 0.5 for the accuracy test of the final
application recognition.

We then carry out experiments for Threshold = {0.2, 0.3, ..., 0.8, 0.9}. It can
be seen from the Fig. 5, the higher the Threshold, the better the classifying per-
formance will be. This is because the accuracy of the GRU classifier is originally
higher than the Random Forest classifier. The high Threshold allows the GRU
model to classify more traffic, and thus the accuracy of the model increases. The
drawback is that it will take much longer training and predicting time. For the
tradeoff between the time and performance, we set Threshold = 0.7.

We introduce how to use the GRU model for mobile traffic classification
in Sect. 3.4. We use the loss value of the training set as a measure of model
classification. The training model classifier needs to iterate continuously until
the loss converges to the minimum. Therefore, it is very important to select
the appropriate number of iterations (Epochs). In addition, we use the Adam
optimization strategy. Adam is an optimization algorithm that can replace the
traditional stochastic gradient descent process. It was first proposed in the 2015
ICLR paper, and obtained better experimental results than SGD [25]. As a
result, we present the loss value of the training set for varying values of Epochs,
Outdim and Batchsize.

For this purpose, we set Epochs = {2, 4, 8, 16, 32, 48}, Outdim =
{64, 128, 256}, Batchsize = {256, 512, 1024}, and observe the quality of the
trained classifier.

Figures 6, 7 and 8 shows the impact of different Epochs, Outdim and
Batchsize on the model when training HTTP packets of Tencentnews, Youku
and Taobao.

(a) Tencentnews (b) Youku (c) Taobao

Fig. 6. Parameter selection for Batchsize = 256

RFGRU 501

(a) Tencentnews (b) Youku (c) Taobao

Fig. 7. Parameter selection for Batchsize = 512

(a) Tencentnews (b) Youku (c) Taobao

Fig. 8. Parameter selection for Batchsize = 1024

We observed that when Epochs is less than 10, the training loss decreases
monotonically. After 10 iterations, the training loss tends to be stable.

The higher the value of Batchsize, the higher the initial loss value, and
the more iterations. Take Tencentnews as an example, when Batchsize = 256,
the training loss converges after 20 iterations, but when Batchsize = 512 and
Batchsize = 1024, the training loss still decreases after 20 iterations. In addition,
we find that the training loss decreases with the increase of Outdim.

Meanwhile, we calculate the time used by different Outdim for an iteration
and record in Table 3. As can be seen from Table 3, the iteration time increases
with the increase of Outdim.

Table 3. Time consumption of different Outdim

Mobile app Outdim = 64 Outdim = 128 Outdim = 256

Tencentnews 110 s 135 s 165 s

Youku 97 s 118 s 136 s

Taobao 58 s 109 s 130 s

502 Y. Zhang et al.

In this work, we set Epochs = 32, Outdim = 128, and Batchsize = 512 for
the final application recognition.

4.3 Experiment Results

Mobile Application Identification. We use RFGRU to classify test set, and
the result is shown in Table 4. RFGRU has achieved good performance in iden-
tification of the 15 applications. The accuracies of the tested apps are all above
97%. The accuracies of 11 applications using RFGRU exceed the corresponding
accuracies using the GRU classifier alone. The accuracies of all applications using
RFGRU exceed the corresponding accuracies using the Random Forest classifier
alone. The average accuracy is increased from 97.46% to 98.43%.

Table 4. Accuracies of different applications

Mobile app RFGRU GRU RF

Amap 97.73% 97.64% 96.19%

BaiduSearch 98.16% 98.12% 96.58%

JD 98.36% 98.33% 97.81%

Kuwo music 98.12% 98.13% 97.24%

Meituan 98.83% 98.78% 98.14%

QQ music 97.42% 97.38% 96.76%

Taobao 98.70% 98.60% 98.04%

Tencent news 98.54% 98.57% 97.85%

Youku 98.98% 98.95% 98.27%

Yuedongquan 98.68% 98.67% 98.18%

WeChat 98.76% 98.28% 98.58%

TouTiao 99.00% 98.94% 98.32%

UCBrowser 98.00% 98.11% 96.55%

Weibo 98.22% 98.26% 97.30%

Zhihu 98.97% 98.87% 96.07%

Average 98.43% 98.38% 97.46%

Time Consumption. We test the time consumption in identifying applica-
tions. The results are displayed in Table 5. In this table, we can see that RFGRU
is obviously much more time-efficient, which requires only about 1/7 time as
compared to that of GRU.

RFGRU 503

Table 5. Used time of different applications

Mobile app RFGRU GRU RF

Amap 98.75 s 464.25 s 0.13 s

BaiduSearch 78.16 s 639.53 s 0.28 s

JD 75.55 s 613.88 s 0.27 s

Kuwo music 57.21 s 598.93 s 0.14 s

Meituan 55.89 s 661.06 s 0.18 s

QQ music 61.85 s 374.19 s 0.08 s

Taobao 75.30 s 449.49 s 0.10 s

Tencent news 79.31 s 560.47 s 0.16 s

Youku 44.99 s 467.06 s 0.15 s

Yuedongquan 116.69 s 689.26 s 0.14 s

WeChat 14.62 s 110.71 s 0.04 s

TouTiao 54.42 s 377.76 s 0.08 s

UCBrowser 71.50 s 375.45 s 0.09 s

Weibo 37.80 s 350.83 s 0.11 s

Zhihu 39.90 s 312.31 s 0.06 s

Average 64.13 s 469.68 s 0.13 s

4.4 Compared with Other Approach

In this section, we compare RFGRU with two state-of-the-art approaches –
LSTM and RNN, in terms of accuracy and time consumption. Both methods
are widely used in natural language processing, sequence prediction and other
fields. In the following experiments, all methods perform the same preprocessing
operations before classification.

Figure 9 shows the accuracies of three traffic classification methods. LSTM is
slightly better than RFGRU in identifying Tencentnews. But in the identifica-
tion of Youku and Taobao, RFGRU outperforms LSTM and RNN. The average
accuracy of LSTM and RNN are 98.68% and 97.91% respectively. The average
accuracy obtained by RFGRU is 98.74%, which is higher than that of LSTM
and RNN. In a word, the accuracy of RFGRU is close to or higher than that
obtained by using LSTM and RNN.

The results of time consumption are shown in Fig. 10. The average time
consumed by RFGRU is 66.53 s, the LSTM is 530.34 s, and RNN is 230.69 s.
RFGRU consumes far less time than the other two methods. This is due to the
fact that most samples are easy to classify. Random Forest can filter out most
samples and leave the remaining to the GRU model. In short, RFGRU is much
superior to LSTM and RNN in terms of time.

504 Y. Zhang et al.

Fig. 9. Accuracies of different methods Fig. 10. Time cost of different methods

5 Conclusion

In this paper, we propose a novel mobile traffic identification method RFGRU,
which absorbs the advantages of Random Forest and GRU neural network.
RFGRU does not require extracting complex characteristics. As far as we know,
this is the first work to apply the GRU model to solve the mobile traffic clas-
sification problem. Meanwhile, by combining with the Random Forest, we can
effectively reduce the number of samples that need to be classified by GRU
model, and reduce the classification time. We capture the traffic of several pop-
ular mobile applications in China, and use the RFGRU model to identify the
apps. Experimental results show that RFGRU saves more time as compared
to using GRU model alone, moreover the application recognition accuracy of
RFGRU can be even higher.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (No. 61702288), the Natural Science Foundation of Tianjin in China
(No. 16JCQNJC00700), the National Information Security Research Plan of China,
and the Fundamental Research Funds for the Central Universities.

References

1. Gowsalya, R., Amali, S.M.J.: Naive Bayes based network traffic classification using
correlation information. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(3) (2014)

2. Cisco visual networking index: Global mobile data traffic forecast update 2014–
2019. http://goo.gl/Zu8f2r

3. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying
diverse usage behaviors of smartphone apps. In: Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference, pp. 329–344. ACM
(2011)

http://goo.gl/Zu8f2r

RFGRU 505

4. Tongaonkar, A., Dai, S., Nucci, A., Song, D.: Understanding mobile app usage
patterns using in-app advertisements. In: Roughan, M., Chang, R. (eds.) PAM
2013. LNCS, vol. 7799, pp. 63–72. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36516-4 7

5. Moore, A.W., Zuev, D.: Internet traffic classification using Bayesian analysis tech-
niques. In: ACM SIGMETRICS Performance Evaluation Review, vol. 33, pp. 50–
60. ACM (2005)

6. Auld, T., Moore, A.W., Gull, S.F.: Bayesian neural networks for internet traffic
classification. IEEE Trans. Neural Netw. 18(1), 223–239 (2007)

7. Este, A., Gringoli, F., Salgarelli, L.: Support vector machines for TCP traffic clas-
sification. Comput. Netw. 53(14), 2476–2490 (2009)

8. Lin, P., Xun-yi, Y., Liu, F., Zhen-ming, L.E.I.: A network traffic classification algo-
rithm based on flow statistical characteristics. J. Beijing Univ. Posts Telecommun.
31(2), 15–19 (2008)

9. Xu, Q., et al.: Automatic generation of mobile app signatures from traffic observa-
tions. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp.
1481–1489. IEEE (2015)

10. Ranjan, G., Tongaonkar, A., Torres, R.: Approximate matching of persistent lex-
icon using search-engines for classifying mobile app traffic. In: IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer Communica-
tions, pp. 1–9. IEEE (2016)

11. Yao, H., Ranjan, G., Tongaonkar, A., Liao, Y., Mao, Z.M.: Samples: self adaptive
mining of persistent lexical snippets for classifying mobile application traffic. In:
Proceedings of the 21st Annual International Conference on Mobile Computing
and Networking, pp. 439–451. ACM (2015)

12. Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: Networkprofiler: towards
automatic fingerprinting of android apps. In: INFOCOM 2013, Proceedings IEEE,
pp. 809–817. IEEE (2013)

13. Yun, X., Wang, Y., Zhang, Y., Zhou, Y.: A semantics-aware approach to the auto-
mated network protocol identification. IEEE/ACM Trans. Netw. (TON) 24(1),
583–595 (2016)

14. Wang, Y., Yun, X., Zhang, Y.: Rethinking robust and accurate application pro-
tocol identification: a nonparametric approach. In: 2015 IEEE 23rd International
Conference on Network Protocols (ICNP), pp. 134–144. IEEE (2015)

15. Zhang, Z., Zhang, Z., Lee, P.P., Liu, Y., Xie, G.: Proword: an unsupervised app-
roach to protocol feature word extraction. In: INFOCOM, 2014 Proceedings IEEE,
pp. 1393–1401. IEEE (2014)

16. Hu, L., Li, J., Nie, L., Li, X.L., Shao, C.: What happens next? Future subevent
prediction using contextual hierarchical LSTM. In: AAAI, pp. 3450–3456 (2017)

17. Yang, M., Tu, W., Wang, J., Xu, F., Chen, X.: Attention based LSTM for target
dependent sentiment classification. In: AAAI, pp. 5013–5014 (2017)

18. Stuner, B., Chatelain, C., Paquet, T.: Cascading BLSTM networks for handwritten
word recognition. In: 2016 23rd International Conference on Pattern Recognition
(ICPR), pp. 3416–3421. IEEE (2016)

19. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
21. Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.:

Entangled decision forests and their application for semantic segmentation of CT
images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–
196. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0 16

https://doi.org/10.1007/978-3-642-36516-4_7
https://doi.org/10.1007/978-3-642-36516-4_7
http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/978-3-642-22092-0_16

506 Y. Zhang et al.

22. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classi-
fication in the dark. In: ACM SIGCOMM Computer Communication Review, vol.
35, pp. 229–240. ACM (2005)

23. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classifi-
cation using machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008)

24. Android monkey tool. http://developer.android.com/tools/help/monkey.html
25. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)

http://developer.android.com/tools/help/monkey.html
http://arxiv.org/abs/1412.6980

Energy-Efficient Data Temporal
Consistency Maintenance for IoT Systems

Guohui Li1, Chunyang Zhou1(B), Jianjun Li1, and Bing Guo2

1 School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China

{guohuili,zhouchunyang,jianjunli}@hust.edu.cn
2 School of Computer Science, Sichuan University, Chengdu, China

guobing@scu.edu.cn

Abstract. In many Internet of Things systems, it is required to process
a good supply of real-time data from the physical world. An impor-
tant goal when designing such systems is to maintain data temporal
consistency while consuming less power. In this paper, we propose, to
our knowledge, the first solution to the energy-efficient temporal consis-
tency maintenance problem on Dynamic Voltage and Frequency Scaling
(DVFS)-capable multicore platforms. We consider the problem of how
to minimize the overall total power consumption on multicore, while the
temporal consistency of real-time data objects can be maintained. To
end this, firstly, we propose an efficient per-CPU DVFS solution, under
which the transaction set can be scheduled to meet the temporal consis-
tency requirement while resulting in significant energy savings. Next, by
adopting the proposed unicore DVFS techniques on each core, we further
propose new energy-efficient mapping techniques to explore energy sav-
ings for multicore platforms. Finally, extensive simulation experiments
are conducted and the results demonstrate the proposed solutions out-
performs existing methods in terms of energy consumption (up to 55%).

Keywords: Internet of Things · Real-time data service
Energy efficient · Multicore platform · Algorithms

1 Introduction

Internet of Things (IoT) has become one of the current wave of computing, exam-
ples of IoT include health monitoring [14], road traffic control [22] and industrial
automation [21]. In these applications, the system receives and processes a good
supply of real-time data from the physical space through wireless sensors, so as to

The work was partially supported by the State Key Program of National Natural
Science of China under Grant No. 61332001, National Natural Science Foundation of
China under Grant Nos. 61572215, 61672252, Wuhan Youth Science and Technology
Plan under Grant No. 2017050304010287, and the Fundamental Research Funds for
the Central Universities, HUST-2016YXMS076.

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 507–523, 2018.
https://doi.org/10.1007/978-3-030-05054-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_39&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_39

508 G. Li et al.

sense, monitor, and respond to the external environmental changes in a timely
fashion. Therefore, there is the need for using Real-Time DataBase Systems
(RTDBSs) which enables “Things” to be stored and analyzed in cyber-space.

In RTDBs, a real-time data object models the current status of a physical
world entity, such as the temperature of the engine, the position of aircraft, etc.
The state of the real-time object in RTDBSs is only valid for a given period
of time, which is known as temporal validity interval [20]. It is important to
refresh a sampled real-time data before it becomes invalid, i.e., before the old
value expires. In addition, due to the fact that the battery capacity is limited
in devices with communication and networking capabilities, an important issue
when designing such IOT systems is to schedule transactions so that the temporal
consistency of real-time data objects can be maintained, while reducing the
energy consumption to prolong the battery life.

Dynamic Voltage and Frequency Scaling (DVFS) [3] is one of the major
techniques for power saving in embedded real-time applications. DVFS uses a
never-idle scheme to save energy. That is, when a processor is not fully uti-
lized, it can reduce the overall energy consumption by decreasing the voltage
and frequency of the processor. More recently, there has been an increasing
trend towards design embedded systems on multi-core platforms, since multi-
core platforms offer greater computational capacity with less size, weight and
power (SWaP) compared to a single-core platform.

In this paper, we address the problem of energy-efficient transaction schedul-
ing problem through DVFS on a DVFS-capable multicore system. In this work,
for unicore solution, we propose per-CPU DVFS solution(assigns a constant
frequency for each processor) due to its practicality. Next, we extend it to multi-
core systems by designing energy-efficient task-to-processor mapping solution.
The main contribution of this paper can be summarized as follows:

– We first propose a per-CPU DVFS solution, called ML-CS (More-Less with
Constant Slowdown), to achieve energy saving. We also develop deadline and
period assignment strategy for ML-CS, called EML (Energy-efficient More-
Less), which ensures the whole update transaction set DM-schedulable.

– To address the energy minimization multicore problem globally, we pro-
pose energy-efficient transaction-to-processor mapping techniques called
TCBM(Temporal Consistency Balanced Mapping), which assigns the total
density factor evenly among all the cores, and then apply our unicore DVFS
techniques on each core.

– We evaluate and comment on the performance of the proposed methods. Com-
pared to previous solutions, the experimental results show that our methods
exhibit significant improvement(up to 55%) in terms of energy saving.

The remainder of this paper is organized as follows. Section 2 describes the
system, power model and problem definition, along with some assumptions
we make. In Sect. 3, we present our energy efficient solutions on unicore. In
Sect. 4, by using our single core solutions, we present an energy-efficient task
mapping technique for multi-core platform. Section 5 presents and discusses the

Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems 509

ri,j di,j ri,j+1 ri,j+2di,j+1

(= ri,j + Di) (= ri,j + Ti + Di)(= ri,j + Ti) (= ri,j + 2Ti)

τi,j τi,j+1

Vi = Ti + Di

Fig. 1. Illustration of more-less scheme.

experimental results. Section 6 reviews related work. We conclude the paper with
some remarks in Sect. 7.

2 Background, Assumptions and Problem Definition

In this section, we first review the definition of temporal validity for data
freshness, and then introduce the power model, some notations and important
assumptions made throughout the paper. Finally, we define the problem to be
addressed.

2.1 Temporal Validity for Data Freshness

The correctness of a real-time data object xi is defined below.

Definition 1. A real-time data object (xi) at time t is temporally valid (or
absolutely consistent) if its jth sampling time (ri,j) plus the validity interval
(Vi) of the data object is not less than t, i.e., ri,j + Vi ≥ t.

According to Definition 1, a data object value of xi sampled at time t will be
valid from t to t+Vi. To satisfy the validity constraint, the update transaction τi

should update xi at least twice during Vi. For periodic transaction model, both
Half-Half [9] and More-Less [24] are available for maintaining temporally valid.
The periods and deadlines of all the transactions are set to half of their corre-
sponding validity interval lengths in Half-Half scheme, while More-Less scheme
assigns shorter deadline (longer period) to each transaction to further reduce
the update workload. Figure 1 gives an illustration of the More-Less scheme. As
can be seen, there is Vi = Ti + Di, where Ti and Di represent the period and
deadline of τi, respectively.

2.2 Power Model

Our power model is based on the one in [27], which focuses on frequency-
dependent and frequency-independent power. The power consumption is Pidle

when the system is idle, and the power consumption is Pidle + Pd(f) when the
system is executing a task at frequency f . In particular,

Pd(f) = Pind + Pdep(f) (1)

510 G. Li et al.

where Pind denotes the frequency-independent power and Pdep(f) represents
the frequency-dependent power. The frequency-independent power mainly con-
sists of the components of memory and processor power that can be effi-
ciently removed by putting the system into sleep state. On the contrary, the
frequency-dependent power includes the processor’s dynamic power and any
power that depends on system processing frequency f , which can be represented
as Pdep(f) = Cefffα, where Ceff and α denote the effective switch capaci-
tance and the dynamic power exponent, respectively. In general, 2 ≤ α ≤ 3
is a common assumption [7,27]. It is clear that lower frequency result in less
frequency-dependent active energy consumption.

In this paper, we focus on reducing the CPU energy consumption by utilizing
DVFS since it is the main energy cost parts for modern computer systems, i.e.,
up to 80% of total system power consumption. For convenience, we define a slow-
down factor η as the ratio of the current operating frequency to the maximum
frequency. In addition, if all the transactions are assigned the same slowdown
factor, it is called a constant slowdown. Note that speed change can only occur
at context switch. Therefore, we assume that the speed change overhead, similar
to the context switch overhead, is constant and can be incorporated into the
worst case execution time of a transaction.

2.3 Notations

In this paper, we consider a real-time system T which consists of a set of user
transactions T c = {τ c

i }n′
i=1 and a set of update transactions T u = {τu

i }n
i=1. Our

objective is to consider the energy-efficient scheduling of T on a set of m identical
multicores M = {Mi}m

i=1.
For update transactions, each update transaction τu

i is characterized by the
following 2-tuple: {Cu

i ,Vi}, where Cu
i is the worst-case execution time, and Vi

is the validity interval length of the data object it updates. The deadline and
period of τu

i are denoted by Du
i and Tu

i respectively, and need to be determined.
To satisfy the temporal validity constrains, there is Du

i + Tu
i = Vi(1 ≤ i ≤ n).

Uu
i and λu

i is used to denote the utilization and density factor of τu
i , respectively,

i.e., Uu
i = Cu

i + Tu
i and λu

i = Cu
i

Vi
. We use T u

k to denote the update transaction
set assigned to one core Mk, the utilization and density factor of T u

k on core Mk

is defined as Uk
sum =

∑n
i=1

Cu
i

T u
i

and λk
sum =

∑n
i=1

Cu
i

Vi
, respectively. For the whole

update transactions T u scheduled on m multicore platform, the total utilization
and total density factor of T u is defined as Uu

tot =
∑m

i=1
Cu

i

T u
i

and λu
tot =

∑m
i=1

Cu
i

Vi
,

respectively.
For user transactions, each user transaction τ c

i follows traditional sporadic
task model and can be characterized by a 3-tuples: {Cc

i ,Dc
i , T

c
i }, where Ci is

the worst-case execution time, Dc
i is the relative deadline and T c

i is the period.
We consider constrained deadline user transactions, i.e., Dc

i ≤ T c
i . The total

utilization of T c is defined as Uc
tot =

∑m
i=1

Cc
i

T c
i
.

Based on our power model, we use Ei
s and λi

sum to denote the energy con-
sumption on core Mi and the total density factor on core Mi, respectively.

Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems 511

Similar to previous work such as [26], the energy consumption is measured within
a large enough interval L. The overall power consumption can be calculated as

Et =
m∑

i=1

Ei
s, and the energy consumption of all k tasks allocated to one processor

mi is Es =
k∑

i=1

L
Ti

Ci

η Pd(η).

2.4 Problem Statement

In this research, our aim is to address the following problem.

Energy-Efficient Multi-Core Scheduling Problem (EEMCS): Given a
set of transactions T = {τi}n

i=1 to be scheduled on a multi-core platform with m
identical cores, we should determine a transaction to processor mapping strat-
egy, so that the transactions assigned to each processor can be scheduled in a
feasible manner, while minimizing the overall total power consumption Et for
the assigned cores.

It is easy to find that EEMCS is also NP-Hard in the strong sense, since
Energy-optimal scheduling of periodic tasks on multi-cores is NP-hard in the
strong sense [1]. The reduction is as follows: For each update transaction τi, we
set the deadline and period to be half of the validity interval length of the data
object it updates, that is, Ti = Di = Vi/2. Therefore, we transform our model
to normal implicit deadline task system. Since checking the feasibility of a set of
real-time tasks on a multiprocessor platform even with the full speed is NP-Hard
in the strong sense, and thus EEMCS is also NP-Hard in the strong sense.

Due to the inherent intractability of the problem, we will divide and tackle
EEMCS by solving the following two subproblems:

1. Unicore DVFS problem: Energy-Efficient UniCore Scheduling problem
(EEUCS): Given a set of update transactions T u = {τi}n

i=1 with Cu
i and Vi

specified for each τu
i to be scheduled on a DVFS-capable unicore, determine

Du
i and Tu

i and a slowdown factor ηi for τi, such that, the validity con-
straint of each update transaction τu

i must be maintained, while the energy
consumption Es is minimized.

2. Multicore mapping problem: Energy-Efficient Multi-Core Mapping
problem (EEMCM): Given a set of transactions consist of T c = {τi}n′

i=1

and T u = {τi}n
i=1, and a multi-core platform with m identical processors,

finding a transaction to processor mapping, such that the total energy con-
sumption Et is minimized.

3 Solutions for EEUCS

In this subsection, we propose our solution, More-Less with Constant Slowdown
(ML-CS), to the EEUCS problem. As mentioned before, the deadlines and peri-
ods of update transactions are unknown initially. Hence, to address this prob-
lem, we should develop a hybrid method, which considers both slowdown factor

512 G. Li et al.

selection and deadlines/periods assignment strategy systematically, to solve the
problem.

In the following, we design a solution for the EEUCS problem, namely More-
Less with Constant Slowdown (ML-CS). We propose to solve the problem by first
determining one constant slowdown factor, and then computing deadlines and
periods for update transactions. Firstly, ML-CS tries to select one slowdown
factor η for the whole transaction set to reduce energy consumption. To improve
the execution efficiency, we adopt the bisection method to search the proper
constant slowdown factor. After determining a constant slowdown factor η, the
next question is how to compute deadline and period for each update transaction,
so that the temporal consistency of the transaction set can be guaranteed. As
mentioned earlier, in this work, we use the ML scheme to compute transaction
deadlines. Specifically, we first compute deadline for τk (1 ≤ k ≤ n) by finding
the minimum solution of the following recursive equation:

k∑

i=1

⌈
Du

k

Tu
i

⌉
Cu

i

η
= Du

k (2)

and then assign a period to τu
k by Tu

k = Vk − Du
k . ML-CS reports success only

when both η is determined and deadlines/periods for each update transaction is
assigned.

Algorithm 1 presents the pseudo-code of ML-CS. We first define the upper
and lower bounds of the slowdown factor, and we use a threshold number θ which
is a user defined parameter to bound the number of loops (line 3). Next, a binary
search is performed in the range of [ηlb, ηub] to find the final slowdown factor
(line 4). At each iteration, we first set Ri,0 = Cu

i /η as a initial deadline solution
(line 6), and then we solve Eq. 2 at line 7–12. If all the transaction deadlines
can be derived to be no larger than half of their corresponding validity interval
lengths (line 13), and the given transaction set with η is DM-schedulable (line
17), then we update the upper bound of the slowdown factor to be ηub = η
and go to the next iteration (line 18). Otherwise, we update the lower bound of
the slowdown factor to be ηlb = η and proceed to the next iteration (line 21).
It is not difficult to see that the time complexity of ML-CS mainly comes from
that the deadline and period assignment process needs to be executed for several
times. Since solving the Eq. 2 has a pseudo-polynomial time complexity, ML-CS
also runs in pseudo-polynomial. The following theorem shows the correctness of
ML-CS.

Theorem 1. Given an update transaction set T u = {τi}n
i=1 and a constant

slowdown factor η, if ML-CS can derive deadlines and periods to each trans-
action, then T is guaranteed to be temporal consistency schedulable under DM.

Proof. To prove the correctness of ML-CS, we need to prove that all the con-
straints of the EEUCS problem can be satisfied when using ML-CS to derive a
solution. Firstly, if there is a constant slowdown factor η makes T schedulable,

Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems 513

Algorithm 1. ML-CS
input : A real time update transaction set T u = {τu

i }n
i=1 sorted in

non-decreasing order of Vi, and ηub = 1 and ηlb is set to be

max{ηmin, minn
i=1{Cu

i
Vi

}}.

output: Slowdown factor η, deadlines {Du
i }n

i=1 and periods {T u
i }n

i=1.
1 begin
2 Flag = false ;
3 while (ηub − ηlb > θ) do
4 η = (ηlb + ηub)/2 ;
5 for i = 0; i ≤ n; i + + do
6 Ri,0 = Cu

i /η;
7 repeat
8 Du

i = Ri,0 ;
9 Ri,0 = Cu

i /η;
10 for j = 0; j ≤ i; j + + do

11 Ri,0 = Ri,0 +
⌈

Du
i

T u
j

⌉
× Cu

j

η
;

12 until Ri,0 == Du
i or Ri,0 > Vi

2
;

13 if Ri,0 ≤ Vi
2

then
14 T u

i = Vi − Du
i ;

15 else
16 return Abort;

17 if T is DM-schedulable with η then
18 ηub = η {update upperbound};
19 Flag = true;

20 else
21 ηlb = η {update lowerbound} ;

22 if !Flag then
23 return Abort;

24 return Success;

ML-CS will be able to find this η because it utilizes bisection method to search in
the whole range. Then, it is known that a transaction set is schedulable by DM if
the first instance of each task after a critical instant, i.e., when all the first jobs of
transactions are released simultaneously, meets its deadline. Recall that ML-CS
calculates deadlines by using Eq. 2 and terminals when Ri,0 == Du

i or Ri,0 > Vi

2 ,

it is obvious that
∑k−1

i=1

⌈
Du

k

T u
i

⌉
· Cu

i

η + Cu
k

η = Du
k ≤ Tu

k ≤ Vk

2 (1 ≤ k ≤ n), which
means T u is schedulable under DM. Finally, once the deadline of each update
transaction satisfies Du

i ≤ Vi

2 , the period is computed as Tu
k = Vk − Du

k , we
know that the temporal consistency can also be guaranteed. Hence, the set of
transactions is deemed to be temporal consistency schedulable under DM.

514 G. Li et al.

4 Solutions for EEMCS

In this section, we try to address the EEMCS problem globally. To avoid the
interference between user transactions and update transactions, we adopt parti-
tioned scheduling on multi-core platforms, and assign two different types of trans-
actions to separate identical cores. Note that user transactions are traditional
periodic tasks, and many existing sophisticated DVFS or DPM algorithms [3],
can be utilized. Therefore, we can focus on handling update transactions. We
first focus on exploring energy-efficient transaction to processor mapping tech-
niques to solve the EEMCM subproblem, and then apply our unicore DVFS
techniques on each core.

Generally, for partitioned scheduling on multi-core platforms, four traditional
bin-packing heuristics have been well explored based on system utilization, that
is Next Fit (NF), First-Fit (FF), Best-Fit (BF) and Worst-Fit (WF). In particu-
lar, the Worst-Fit Decreasing (WFD) has been proved to be effective by previous
work [5,18]. In this paper, to facilitate distinction, we use Temporal Consistency
Fit, abbreviated TCNF (TCFF, TCBF and TCWF, resp.), to denote the corre-
sponding heuristics which are adopted to solve our problem. As far as we know,
the study in [15] is the only work that address the partitioned multiprocessor
scheduling problem for maintaining temporal consistency. However, the proposed
methods, called TCP and DBF, are designed to enhance system schedulability
rather than energy efficiency. In this paper, our goal is to derive energy mini-
mization partitioned scheduling strategy. We first present a useful lemma based
on our previous work [15], which states a sufficient condition for any transaction
sets to be partitioned successfully on multi-core.

Lemma 1 [15]. Given an update transaction set T u, if the density factor of
T u is not larger than 0.5, i.e., λsum ≤ 0.5, then T u is deemed to be temporal
consistency schedulable under DM on a uniprocessor system.

According to Lemma 1, we can obtain a constant slowdown factor on each
core immediately, as given in the following theorem.

Theorem 2. Given an update transaction set T u, if T u’s density factor λsum ≤
0.5, then it is temporal consistency schedulable under DM on a uniprocessor
system with a constant slowdown factor of η = max{ηmin, 2λsum}.

Proof. Given a constant slowdown factor η, we know that,λsum =
n∑

i=1

Cu

η·V . From

Lemma 1, it it clear that T u is DM-schedulable with η ≥ 2λsum. Hence, the
minimum constant slowdown factor is η = max{ηmin, 2λsum}. The theorem thus
follows.

Then, the next question is what is the best mapping strategy which mini-
mize the total energy consumption. To address this problem, we have several
important observations, which is briefly described as follows.

Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems 515

Fig. 2. Different transaction mapping strategies.

– Observation 1. TCWF partitioning should be adopted to save energy. TCWF
always selects the core with the minimal total density, so that the occupied
capacities of all cores will be increased in turn.

– Observation 2. Given a transaction set T , the transaction to processor map-
ping strategy which divides the total density factor λu

tot evenly among all the
cores, will minimize the total energy consumption.

– Observation 3. To achieve a more density factor balanced partition, update
transactions τu

i with λu
i >

λu
tot

m must be assigned to a separate processor
exclusively.

We only show these results here and omit the detailed proofs due to space
limited. As an alternative, we give an intuitive example to illustrate these results.

Example 1.
Consider a transaction set comprised of four transactions with execution times
and validity interval lengths T = {τ1= (1, 5), τu

2 =(1, 10), τu
3 =(4, 15), τu

4 =(3, 20)}
to be executed on 2 identical processors. The formalized energy consumption is

calculated by Et =
m∑

i=1

Ei
s =

m∑

i=1

n∑

i=1

L
Ti

Ciη
2
i . We compare the energy consump-

tions of the following three different transaction mapping strategies, as shown
in Fig. 2.

– Mapping Strategy A - The first three transactions are allocated to one
core, and τu

4 is allocated to the other core. The slowdown speed on the two
cores is 0.9 and 0.4, respectively. The resulted energy consumption is 55799.

– Mapping Strategy B - τ1 and τ3 are allocated to one core, while τ2 and τ4
are allocated to the other core. The slowdown speed on the two cores is 0.8
and 0.4, respectively. The resulted energy consumption is 48383.

– Mapping Strategy C - τ1 and τ4 are allocated to one core, while τ2 and τ3
are allocated to the other core. The slowdown speed on the two cores is 0.7
and 0.6, respectively. The resulted energy consumption is 43919.

The above example reveals us some useful information. It can be seen that all
the three strategies can make the transaction set DM-schedulable. When only

516 G. Li et al.

judged by the feasibility criterion, all three strategies are equally acceptable.
However, the energy consumption of them are quite different. Strategy C results
in about 21% less energy consumption than the mapping strategy A. In fact,
strategy A and B are produced by heuristics TCFF and TCBF, while strategy
C adopts TCWF. Moreover, as can be observed, Strategy C which is a more
density factor balanced mapping strategy tends to consume much lower energy.

Based on the above discussion, we propose our heuristic, Temporal Con-
sistency Balanced Mapping (TCBM), as follows: Given a set of transactions
T = {τi}n

i=1 to be scheduled on a multi-core platform with m identical cores
{M1,M2, ...,Mm}, Algorithm TCBM first assigns user transactions to k sepa-
rate processors using WF in the order of decreasing utilization, with cumula-
tive utilization on each core upper bounded by Liu & Laylands bound (RM-
schedulable) or 1.0 (EDF-schedulable). Then, for each update transaction τu

i ,
TCBM first checks whether it is a heavy density loaded transactions or not, i.e.,
λu

i >
λu

tot

m . If yes, TCBM assigns τu
i to a separate processor Ms(k + 1 ≤ s ≤ m)

with the minimal total density, and then assigns τu
i to processor Ms that satisfies

inequality λu
i +λs

sum ≤ 0.5. Otherwise, TCBM tries to find the core Mj with the
minimal total density, and assigns τu

i to processor Mj that satisfies inequality
λu

i + λj
sum ≤ 0.5 by using TCWF. If no such Mj exists, TCBM declares failure.

TCBM repeats the above steps until all the transactions are mapped to cores.
Detail of TCBM is shown in Algorithm 2.

Complexity of TCBM: It can be observed that TCBM essentially checks
whether τu

i is a heavy density loaded transaction, and evaluates the cumulative
density factor on each of the m cores. Since these values can be computed in
constant time, it is clear that the run-time of the algorithm in allocating all n
transactions is no more than O(nm).

5 Experimental Evaluation

In this section, we first introduce the experimental setup in Sect. 5.1, then discuss
the results on unicore in Sect. 5.2, and the results on multicore in Sect. 5.3.

5.1 Experimental Setup

The default settings and parameters for the simulations are summarized in
Table 1. To enable easy comparison and continuity with previous studies, we
adopt the same baseline values for the parameters as given in [16,25], which are
originally from air traffic control applications [17].

In all experiments, all the algorithms are evaluated on actual Intel XScale
processor model, which has five speeds available (0.15, 0.4, 0.6, 0.8, 1.0) GHz
with corresponding power consumptions (80, 170, 400, 900, 1600)mWatt on each
core. The power consumption function can be modeled approximately as P (s) =
0.08 + 1.52s3 by treating 1 GHz as the reference speed unit. It should be noted
that there exists a critical speed [27], i.e., ηee = α

√
Pind

Cef (α−1) , in which executing

Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems 517

Algorithm 2. TCBM(T)
input : a transaction set T , which consists of a set of user transactions

T c = {τ c
i }n′

i=1 sorted in a non-decreasing order of Ti and a set of update
transactions T u = {τu

i }n
i=1 sorted in a non-decreasing order of Vi.

output: a transaction to processor mapping.
1 begin
2 Assign user transactions to the first k cores {M0, M1, ..., Mk} using WFD ;
3 for i = 0; i ≤ n; i + + do

4 if λu
i >

λu
tot
m

then
5 Find a separate core Ms(k + 1 ≤ s ≤ m) with the minimal total

density ;
6 if τu

i satisfies λu
i + λs

sum ≤ 0.5 on core Ms then
7 Assign τu

i to core Ms ;
8 break;

9 for j = k + 1; j ≤ m; j + + do
10 Find the core Mj with the minimal total density ;

11 if τu
i satisfies λu

i + λj
sum ≤ 0.5 on core Mj then

12 Assign τu
i to core Mj ;

13 break;

14 else
15 return Failure;

16 return Success;

100 125 150 175 200 225 250 275 300

Number of Transaction

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

ML
ML-CS

(a) Impact of number of update trans.

0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45

Density Factor

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

ML
ML-CS

(b) Impact of density factor

100 150 200 250 300 350 400 450 500 550 600

Vi / Ci

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

ML
ML-CS

(c) Impact of parameter selection

Fig. 3. Performance comparison on unicore

task at slowdown factor less than the critical speed would only consume more
energy. In our Intel XScale processor model, the effective switching capacitance
Cef = 1.52 and the dynamic power exponent m = 3. Thus the critical speed
for Intel XScale is about 0.3 (0.297 GHz). All the algorithms to be evaluated
are implemented in Java. In each simulation set, we randomly generate 1000
qualified update transaction sets and take the average value as the reported
results.

518 G. Li et al.

Table 1. Experiment settings

Platform Para. class Parameters Meaning Value

Unicore System Ncpu No. of CPU {1}
Update trans NT No. of data objects [100, 300]

Update trans Vi(ms) Validity interval of xi [4000, 8000]

Update trans Cu
i (ms) Time for updating xi [5, 15]

Update trans Trans. length No. of data to update 1

Multicore System Ncpu No. of CPU {4, 6, 8, 10, 12}
User trans NC No. of user trans [10, 60]

User trans T c
i Periods [100, 500]

User trans Cc
i Time for execution [10, 20]

Update trans NT No. of data objects [100, 300]

Update trans Vi(ms) Validity interval of xi [4000, 8000]

Update trans Cu
i (ms) Time for updating xi [5–15, 15–50, 50–150]

Update trans Trans. length No. of data to update 1

5.2 Experiment Results on Unicore

Impact of the Number of Update Transactions. In this set of experi-
ments, the total number of update transactions (denoted as NT) is varied from
100 to 300. Figure 3(a) shows the energy performance of the tested algorithms.
To facilitate comparison, the energy consumed by ML is used as the baseline. It
can be observed that ML-CS saves more energy (about 60%) compared to the
traditional non-DVFS ML approach. As NT grows, the normalized energy con-
sumption of all the tested algorithms increase gradually, due to that the system
workload increases with the increase of NT , which results in less idle time that
can be used for DVFS.

Impact of Density Factor. In this set of experiments, we fix the number of
update transactions to NT = 200 and vary the density factor (λ) from 0.25 to
0.475. The increase of the density factor is achieved by fixing the computation
time Ci and decreasing the valid interval length Vi. Figure 3(b) shows the energy
consumption performance. ML-CS outperforms the ML method consistently. As
λsum increases, the energy consumption of ML-CS basically presents ladder form
rise. This is mainly due to that the available speeds in Intel Xscale model is
discrete and ML-CS relies on a density-based sufficient feasibility test or the
DM scheduling itself to calculate the slowdown factors.

Impact of Parameter Selection. In this set of experiments, we change
the Vi/Ci ratio of transactions. We randomly choose 20% transactions out of
NT = 200, and varied their Vi/Ci ratio from 100 to 600 to show its impact on per-
formance. Figure 3(b) shows the comparison of the resulting normalized energy
consumption. The achieved normalized energy consumption of all approaches
decreases along with the increase of the Vi/Ci ratio. ML-CS can greatly reduce
energy consumption especially when the Vi/Ci ratio is high, for instance, when

Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems 519

2 2.25 2.5 2.75 3 3.25 3.50 3.75 4

Total Density Factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

or
m

al
iz

ed
 E

ne
rg

y
C

on
su

m
pt

io
n

TCP
DBF
TCBM

(a) Impact of total density factor

4 6 8 10 12

Number of Cores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

TCP
DBF
TCBM

(b) Impact of number of cores

10 20 30 40 50 60

Number of User Transactions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

TCP
DBF
TCBM

(c) Impact of number of user trans.

Fig. 4. Normalized energy consumption on multicore.

Vi/Ci = 600, the performance gap between ML-CS and ML reaches about 52%.
This is expected, because a larger ratio of Vi/Ci can result in leaving more free
time slices for DVFS to reduce energy cost.

In summary, the experimental results show that the per-CPU DVFS based
ML-CS outperforms ML in terms of energy consumption on unicore.

5.3 Experiment Results on Multicore

For evaluating energy consumption performance on multicore, we compare
three different approaches: two state of the art mapping techniques (TCP and
DBF [15]), and TCBM proposed in this paper. For a fair comparison with other
methods, we run different task mapping techniques on the random generated
transaction sets. Then, we sum up the energy consumption on each core(applying
our unicore method, i.e., ML-CS, to minimize energy on all cores) to calculate
the overall energy consumption.

Impact of Density Factor. In this set of experiments, we obtain our results by
performing experiments on 8 cores, and vary the total density factor (λtot) from
2 to 4 to show its impact on total energy consumption. The results are shown in
Fig. 4(a), respectively. As can be seen, TCBM obtain considerable energy saving
compared to other mapping techniques, such as, 55% more saving than TCP and
18% more than DBF method when the total density factor is 3.0. The energy
consumption of DBF is the same as TCP when the total density factor reaches
4.0, while the energy consumption of TCBM with ML-CS is still no more than
65%. The reason why TCBM has a better energy performance lies in that, both
TCP and DBF use First-Fit to enhance system schedulability which may lead
to unbalanced partition and decrease the chance to slowdown on active cores to
save energy, while TCBM can make better use of multiple cores to save energy
by adopting Worst-Fit strategy.

Impact of the Number of Cores. In this set of experiments, we fix the
number of total density of update transactions to λtot = 2.0, and the number of
cores is selected from {4, 6, 8, 10, 12}. Figure 4(b) shows the energy performances

520 G. Li et al.

of tested mapping algorithms. With increasing number of cores, the energy con-
sumption for DBF and TCBM tends to decrease. This is because more cores can
be used to balance the assignment of the transactions, and thus can make more
room for applying DVFS to save energy on each core. The energy consumption
of TCBM is significantly lower than that of DBF and TCP, especially when the
number of available cores is small. The largest performance gap between TCBM
and DBF is about 33% with ML-CS applied on each core when the number of
cores is 4.

Impact of the Number of User Transactions. In this set of experiments,
we fix the number of total density of update transactions to λtot = 2.0, and the
number of cores is fixed at m = 8. The number of user transaction is varied from
10 to 60. The results are shown in Fig. 4(c). It can be viewed that, the energy
consumption increase with the increases of the number of user transactions, but
the energy consumption of TCBM increases much smoother than that of DBF.
It is also clear to see that TCBM still outperforms TCP and DBF considerably,
and the performance gap becomes larger with the increase of the number of user
transactions.

In summary, compared to TCP and DBF, the proposed TCBM mapping
techniques can distribute the density factor evenly among the available cores,
thus lead to considerable (up to 55%) lower energy consumption.

6 Related Work

In this section, we briefly review some work on energy-aware real-time scheduling
with DVFS and temporal consistency maintenance in RTDBS.

Energy-Aware Real-Time Scheduling with DVFS. DVFS is a widely
used technique for saving processor energy consumption. For example, hybrid
DVFS strategies [19] and slack reclamation for DVFS [2]. A recent survey on
energy-efficient scheduling in real-time systems can be found in [3]. Multi-core
scheduling approaches can be divided into three groups: global [4], partitioned [6],
semi-partitioned [12]. Specially, partitioned scheduling allocates each task to one
processor permanently (task migrations are not allowed). In addition, for DVFS
applied in multi-core, most of the existing work can be divided into two branches:
per-CPU DVFS [1] and per-task DVFS [5]. Per-CPU DVFS method assigns a
constant frequency for each processor, while per-task DVFS assigns one execu-
tion frequency for each task and the frequency of each processor is depending on
the running task. However, all the work mentioned above assumes the deadlines
and periods of real-time tasks are given, hence gives no answer to the problem
studied in this work.

Temporal Consistency Maintenance in RTDBS. There has been a lot
of work on RTDBS for maintaining real-time data freshness.The Half-Half
scheme [13] is proposed to reduce workload by skipping the execution of task
instances. The More-Less scheme was proposed in [24] with deadline monotonic
scheduling. The deferrable scheduling algorithm for fixed priority transactions

Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems 521

(DS-FP) proposed in [23] follows an aperiodic task model. For dynamic prior-
ity scheduling, Xiong et al. [25] proposed solutions maintaining data freshness
under EDF, and later an improved solution was given in [16]. Recently, Han et
al. [8] studied the problem of how to maintain the temporal validity of real-time
data objects in the presence of mode changes in cyber-physical systems. Li et
al. [15] studied the temporal consistency maintenance problem upon multipro-
cessor platforms. Most of the work mentioned above did not take the issue of
energy consumption into consideration.

Power-Aware Technologies in RTDBS. Research on power management in
RTDBS is relatively new. In [10], Kang proposed a real-time query aggregation
approach which combines with DPM to reduce both the deadline miss ratio and
power consumption in RTDBS. Recently, these methods have been extended
to multicore plantform in [11]. Unfortunately, simply postponing the execution
of task to create CPU idle time may not applicable in certain applications,
e.g., during the rush hours in transportation management. Hence, we believe
that DVFS approach should be considered as well to maximize energy saving.
Nevertheless, our work could still benefit more from these researches.

7 Conclusions and Future Work

Energy management is one of the key issues in the design of modern embedded
real-time systems. In this paper, we study the energy-aware transaction schedul-
ing problem for maintaining temporal consistency of real-time data objects in
RTDBS. As far as we know, this work serves as the first attempt to solve the
given problem. We propose effective per-CPU DVFS technique, called ML-CS,
for maintaining data freshness by applying DVFS on multicore systems. We fur-
ther propose energy-efficient mapping techniques to explore energy savings for
multicores. The experimental evaluation demonstrates that the proposed meth-
ods are superior to the traditional scheduling method (up to 55%) from the per-
spective of energy consumption. For future work, we plan to extend our research
to heterogeneous multicore platforms.

References

1. Aydin, H., Yang, Q.: Energy-aware partitioning for multiprocessor real-time sys-
tems. In: Proceedings of IPDPS, pp. 9–pp (2003)

2. Aydin, H., Melhem, R., Mossé, D., Mej́ıa-Alvarez, P.: Power-aware scheduling for
periodic real-time tasks. IEEE Trans. Comput. 53(5), 584–600 (2004)

3. Bambagini, M., Marinoni, M., Aydin, H., Buttazzo, G.: Energy-aware scheduling
for real-time systems: a survey. ACM Trans. Embed. Comput. Syst. (TECS) 15(1),
7 (2016)

4. Baruah, S.: Techniques for multiprocessor global schedulability analysis. In: Pro-
ceedings of RTSS, pp. 119–128 (2007)

5. Chen, G., Huang, K., Knoll, A.: Energy optimization for real-time multiprocessor
system-on-chip with optimal DVFS and DPM combination. ACM Trans. Embed.
Comput. Syst. (TECS) 13(3), 111 (2014)

522 G. Li et al.

6. Chen, J.J., Chakraborty, S.: Partitioned packing and scheduling for sporadic real-
time tasks in identical multiprocessor systems. In: Proceedings of ECRTS, pp.
24–33 (2012)

7. Chen, J.J., Kuo, C.F.: Energy-efficient scheduling for real-time systems on dynamic
voltage scaling (DVS) platforms. In: Proceedings of RTCSA, pp. 28–38. IEEE
(2007)

8. Han, S., et al.: Online mode switch algorithms for maintaining data freshness in
dynamic cyber-physical systems. IEEE Trans. Knowl. Data Eng. 28(3), 756–769
(2016)

9. Ho, S.J., Kuo, T.W., Mok, A.K.: Similarity-based load adjustment for real-time
data-intensive applications. In: Proceedings of RTSS, pp. 144–153 (1997)

10. Kang, K.D.: Reducing deadline misses and power consumption in real-time
databases. In: Proceedings of RTSS, pp. 257–268 (2016)

11. Kang, K.D.: Enhancing timeliness and saving power in real-time databases. Real-
Time Syst. 30(1), 1–30 (2018)

12. Kato, S., Yamasaki, N.: Semi-partitioned fixed-priority scheduling on multiproces-
sors. In: Proceedings of RTAS, pp. 23–32 (2009)

13. Kuo, T.W., Ho, S.J.: Similarity-based load adjustment for static real-time trans-
action systems. IEEE Trans. Comput. 49(2), 112–126 (2000)

14. Lam, K.Y., Tsang, N.W.H., Han, S., Zhang, W., Ng, J.K.Y., Nath, A.: Activity
tracking and monitoring of patients with alzheimer disease. Multimedia Tools Appl.
76(1), 489–521 (2017)

15. Li, J., Chen, J.J., Xiong, M., Li, G., Wei, W.: Temporal consistency maintenance
upon partitioned multiprocessor platforms. IEEE Trans. Comput. 65(5), 1632–
1645 (2016)

16. Li, J., Xiong, M., Lee, V., Shu, L., Li, G.: Workload-efficient deadline and period
assignment for maintaining temporal consistency under EDF. IEEE Trans. Com-
put. 62(6), 1255–1268 (2013)

17. Locke, D.: Real-time databases: real-world requirements. In: Bestavros, A., Lin,
K.J., Son, S.H. (eds.) Real-Time Database Systems, pp. 83–91. Springer, Boston
(1997). https://doi.org/10.1007/978-1-4615-6161-3 5

18. Narayana, S., Huang, P., Giannopoulou, G., Thiele, L., Prasad, R.V.: Explor-
ing energy saving for mixed-criticality systems on multi-cores. In: Proceedings of
RTAS, pp. 1–12 (2016)

19. Quan, G., Niu, L., Hu, X.S., Mochocki, B.: Fixed priority scheduling for reducing
overall energy on variable voltage processors. In: Proceedings of RTSS, pp. 309–318
(2004)

20. Ramamritham, K.: Real-time databases. Distrib. Parallel Databases 1(2), 199–226
(1993)

21. Saifullah, A., Xu, Y., Lu, C., Chen, Y.: End-to-end delay analysis for fixed priority
scheduling in WirelessHART networks. In: Proceedings of RTAS, pp. 13–22 (2011)

22. Wu, W., Zhang, J., Luo, A., Cao, J.: Distributed mutual exclusion algorithms for
intersection traffic control. IEEE Trans. Parallel Distrib. Syst. 26(1), 65–74 (2015)

23. Xiong, M., Han, S., Lam, K.Y., Chen, D.: Deferrable scheduling for maintaining
real-time data freshness: algorithms, analysis, and results. IEEE Trans. Comput.
57(7), 952–964 (2008)

24. Xiong, M., Ramamritham, K.: Deriving deadlines and periods for real-time update
transactions. IEEE Trans. Comput. 53(5), 567–583 (2004)

25. Xiong, M., Wang, Q., Ramamritham, K.: On earliest deadline first scheduling for
temporal consistency maintenance. Real-Time Syst. 40(2), 208–237 (2008)

https://doi.org/10.1007/978-1-4615-6161-3_5

Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems 523

26. Zhang, F., Chanson, S.T.: Processor voltage scheduling for real-time tasks with
non-preemptible sections. In: Proceedings of RTSS, pp. 235–245 (2002)

27. Zhu, D., Aydin, H.: Reliability-aware energy management for periodic real-time
tasks. IEEE Trans. Comput. 58(10), 1382–1397 (2009)

GpDL: A Spatially Aggregated Data
Layout for Long-Term Astronomical

Observation Archive

Zhen Li1, Ce Yu1(B), Chao Sun1, Shanjiang Tang1(B), Jie Yan1,
Xiangfei Meng2, and Yang Zhao2

1 School of Computer Science and Technology, Tianjin University,
Tianjin 300350, China

{lizhencs,yuce,sch,tashj,jerryan}@tju.edu.cn
2 National Supercomputer Center in Tianjin, Tianjin 300457, China

{mengxf,zhaoyang}@nscc-tj.gov.cn

Abstract. A great number of excellent astronomical academic achieve-
ments are built on historical observation data. So long-term astronomical
observation archive has great significance for astronomical research. At
the observation site, data from different sky areas shot in a consecutive
time period are stored in one disk. So original data layout is temporally
aggregated and spatially scattered. After an observation cycle, data are
backuped into long-term astronomical observation archive. Astronomers
request data from archive. But original data layout does not match
requests’ spatial locality, i.e., one request focuses on specific sky area
during a time period. In this situation, archive adopting original data
layout consumes lots of energy and shortens disk life. Therefore, a reor-
ganized spatially aggregated data layout is indispensable for archive. But
how to aggregate observation data from nearby sky areas into one disk
while keeping high disk capacity utilization is challenging. In this paper,
we propose a spatially aggregated data layout based on HEALPix and
graph partition for long-term astronomical observation archive, named
GpDL. GpDL is generated based on distribution-known original data lay-
out before observation data are backuped into archive. GpDL saves a lot
of resources for archive while keeping up to 91% disk capacity utilization.
In simulation experiments, compared with TaDL (original temporally
aggregated data layout) and AmrDL (another spatially aggregated data
layout based on thought of Adaptive Mesh Refinement), GpDL effec-
tively reduces open disks number and energy cost for the same requests.

Keywords: Spatially aggregated · Data layout
Astronomical observation · Long-term archive · Energy cost

The original version of this chapter was revised: The grant numbers of the Joint
Research Fund in Astronomy were incorrect in the acknowledgement on p. 536. The
correction to this chapter is available at https://doi.org/10.1007/978-3-030-05054-2 49

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 524–537, 2018.
https://doi.org/10.1007/978-3-030-05054-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_40&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_49
https://doi.org/10.1007/978-3-030-05054-2_40

A Spatially Aggregated Data Layout for Astronomical Archive 525

1 Introduction

Astronomy has been at the forefront of the development of the techniques and
methodologies of data intensive science for over a decade with large sky sur-
veys and distributed efforts such as the Virtual Observatory [4]. In recent years,
various astronomical observation infrastructures have been established, such as
Automated Planet Finder (APF) [15] in California, Antarctic Schmidt Tele-
scopes (AST3) [1] at Dome A and Five hundred meters Aperture Spherical Radio
Telescope (FAST) [11] in Guizhou China. A great number of excellent academic
achievements are built on historical observation data shot by these infrastruc-
tures. So long-term astronomical observation archive is indispensable. However,
data obtained by astronomical observation show an explosive growth in recent
years, which has brought challenges for efficiency and resources consumption to
long-term astronomical observation archive. And different data layouts have a
significant impact on the resources consumption of archive. So archive needs a
data layout adapting to astronomers’ specific requests characteristics.

(a) Temporally aggregated data layout (b) Spatially aggregated data layout

Fig. 1. Two types of data layouts

At the observation site, data from different sky areas shot in a consecutive
time period are stored in one disk. So original data layout is temporally aggre-
gated and spatially scattered (see Fig. 1(a)). The storage of telescopes at the
observation site is not permanent. After an observation cycle, data are trans-
mitted to data center and backuped into long-term astronomical observation
archive. Archive belongs to cold storage, write only once, most data rarely read,
so most of disks are in low-power state at ordinary times for saving energy.
Astronomers request data from long-term archive. However, the original tem-
porally aggregated data layout in chronological order does not match requests’
spatial locality, i.e., one request focuses on specific sky area during a time period

526 Z. Li et al.

to research the change of celestial objects. If still use the original temporally
aggregated data layout in long-term archive, it needs to open all disks consisting
of the requests’ sky area, resulting that much energy is consumed and frequent
opening and closing may shorten disk life or even damage disk. Hong [6] pro-
poses an efficient method to speed up the requests, but he doesn’t consider data
layout optimization. For the requests’ spatial locality and resources-saving, spa-
tially aggregated data layout is more suitable for long-term archive. That is to
say, neighboring sky areas should be aggregated into one disk (see Fig. 1(b), the
celestial sphere surface is shown in mollweide projection and centralized region
with the same color is stored in one disk). Compared with temporally aggregated
data layout, archive adopting spatially aggregated data layout opens fewer disks
for the same requests. After data are transmitted to data center, the data distri-
bution on celestial sphere surface is known. So we can convert original temporally
aggregated data layout into spatially aggregated. But how to aggregate observa-
tion data from nearby sky areas into one disk while keeping high disk capacity
utilization is challenging.

In this paper, we propose a spatially aggregated data layout based on
HEALPix and graph partition for long-term astronomical observation archive,
named GpDL. After data are transmitted to data center, GpDL is generated
based on distribution-known original temporally aggregated data layout before
observation records are backuped into archive. GpDL saves a lot of resources
while keeping up to 91% disk capacity utilization. In our simulation experiments,
we compare three data layouts for the same requests. The three data layouts are
TaDL (original temporally aggregated data layout), AmrDL (another spatially
aggregated data layout based on thought of Adaptive Mesh Refinement) and
GpDL. GpDL effectively reduces open disks number and energy cost in compar-
ison to TaDL and AmrDL.

The structure of this paper is as follows. Section 1 introduces the background
of our work. Section 2 shows related work on data layout in storage system.
Section 3 focuses on GpDL, defines the GpDL optimizing model of long-term
astronomical observation archive and explains the methods to obtain GpDL.
Simulation experiments and results analysis are presented in Sect. 4. The last
section concludes our work and puts forward further research opportunities.

2 Related Work

There has existed research on data layout optimization for high performance and
low energy cost in storage system. Some researchers attempt to copy data blocks
into free space on disks to shorten the disk response time [9,13,16]. But long-
term astronomical observation archive needs to keep high disk capacity utiliza-
tion, there being no free space to copy data blocks. Huang [8] proposes an almost
latency-free and hard-disk-dominated storage system. His system changes data
layout in a hybrid storage hierarchy using low-latency SSD and high-latency
HDD. Rubin [12] proposes a parameterizable framework for data-layout opti-
mization of general-purpose applications. However, their research is based on
universal data, not referring to scientific data archive.

A Spatially Aggregated Data Layout for Astronomical Archive 527

Astronomical observation data has spatial and temporal attributes. Gong [2]
proposes a parallel query-processing engine for spatio-temporal data, optimizing
query processing on scientific data. But the data must be isabela-compressed. Nev-
ertheless, given the response time, the observation data shouldn’t be compressed
in archive. He [5] optimizes the data layout of the large-scale video storage server
based on parallel disk array, which is not suitable for astronomical observation
archive because of the different read-write characteristics and encoding formats.
Hoque’s disk layout techniques leverage community structure in a social graph to
optimize read latency [7], which uses graph-partition-driven community detection
to confirm the social network data layout. However, the method he used can’t be
applied to long-term astronomical observation archive directly.

Research mentioned above doesn’t take specificity of astronomical obser-
vation archive into account. [14] introduces the designing and mining multi-
terabyte astronomy of SDSS (Sloan Digital Sky Survey), which optimizes the
spatial data structures of observation storage. But the density of observation
records on the celestial sphere surface doesn’t be considered in his research.
Yan [17] optimizes data layout for AST3’s spatio-temporal observation data.
Although he takes density into account, not a little disk capacity is wasted in
his method. Furthermore, his layout works on production environment when
AST3 is running, not designed for astronomical observation archive.

In conclusion, there hasn’t been a suitable data layout for long-term astro-
nomical observation archive.

3 GpDL Design

This section introduces GpDL Design. As mentioned in the Sect. 1, every record
has temporal and spatial attributes. The original data layout are temporally
aggregated and spatially scattered. The task of our data layout is to choose which
disk to store for every observation record. For the requests’ spatial locality and
resources-saving, we need to aggregate observation data from nearby sky areas
into one disk and keep high disk capacity utilization based on distribution-known
original temporally aggregated data layout. So the requirement is that records
fill every disk as far as possible. In this situation, the numbers of records stored
in different disks are approximately equal. The goal is that the distribution of
records stored in each disk is aggregated on celestial sphere surface.

This section consists of three subsections. Subsection 3.1 introduces a spa-
tially aggregated data layout called AmrDL based on thought of AMR. Subsec-
tion 3.2 puts forward the optimizing model of GpDL. Subsection 3.3 introduces
the method to obtain GpDL. AmrDL and GpDL are both built on HEALPix1.

1 HEALPix is an acronym forHierarchical EqualArea isoLatitudePixelation of a sphere.
HEALPix divides a sphere surface into many blocks with equal surface area and each
block has a unique BlockID. The sphere is divided into curvilinear quadrangles hier-
archically [3]. Resolution increases by division of each block into four small equal-area
ones. Different resolutions correspond to different NSIDEs. (see Fig. 2. The lowest
resolution is NSIDE = 1. When NSIDE = 1, 2, 4, 8, clockwise from upper-left to
bottom-left, the sphere surface is divided into 12, 48, 192, and 768 blocks.)

528 Z. Li et al.

3.1 AmrDL Introduction

AmrDL is a simple spatially aggregated data layout easy to think about. AmrDL
uses the thought of AMR (Adaptive Mesh Refinement) to design data layout
based on HEALPix. Figure 3 shows sketch of our AMR strategy. AmrDL divides
the celestial sphere surface into 12 blocks when NSIDE = 1 initially. Then
blocks whose records can’t be stored in one disk are divided into four smaller
equal blocks. Repeat this step until every block’s records can be stored in one
disk. Finally each block corresponds to one disk.

Fig. 2. HEALPix [3] Fig. 3. Sketch of our AMR strategy

3.2 GpDL Optimizing Model

AmrDL aggregates records from nearby sky areas into one disk using thought of
AMR. However, there is a serious issue in AmrDL: because four smaller blocks
divided from a big block may differ a lot in corresponding records number, some
disks may only store few records resulting low disk capacity utilization and imbal-
ance between disks. Our designed GpDL solves this issue using graph partition.
Above all, GpDL optimizing model is built in this subsection. Notations used in
GpDL optimizing model are listed in Table 1.

Problem Description. Given set of astronomical observation records denoted
by RS, the model outputs the set of required disks denoted by DS and the map
from RS to DS(f : RS → DS).

RS is defined as follows:

RS =
{
R1, R2, ..., Ri, ..., R|RS|

}
(1)

The size of RS is |RS|. Any two records have equal file size, denoted by RC.
The definition of Ri, the ith observation record, is as follows:

Ri = (Rit , Ris) (2)

A Spatially Aggregated Data Layout for Astronomical Archive 529

Table 1. Notations used in GpDL optimizing model

Notation Description

RS Set of observation records

DS Set of required disks

RC File size of one record

DC Storage capacity of one disk

RN The value is DC
RC

, maximum records number one disk can store

Ωi Set of records stored in the ith disk

where Rit is the temporal attribute of Ri. Ris is the spatial attribute of Ri,
defined by

Ris = (Rira , Ridec) (3)

where Rira ,Ridec are right ascension and declination of record Ri, representing
a point on celestial sphere surface. Their ranges are as follows:

Rira ∈ [0◦, 360◦) (4)
Ridec ∈ [−90◦,+90◦] (5)

The required disks set DS is defined by:

DS =
{
D1,D2, ...,Di, ...,D|DS|

}
(6)

Size of DS is |DS|. Any two disks in set DS are exactly the same except for
disk id, i.e., any two disks have the same brand, capacity, performance, and so
on. The disk capacity is denoted by DC.

A disk can store a number of records. The task is to choose which disk to
store for every record. According to the requirement and goal, GpDL optimizing
model has following objective and constraint.

Objective. The output includes map from RS to DS. From the map, every
disk has a corresponding set of records stored in it denoted by Ωi. There exist⋃|DS|

i=1 Ωi = RS and Ωi

⋂
i�=j Ωj = ∅. Every Ωi constitutes a region on the

celestial sphere surface. The goal is to make the distribution of records in every Ωi

is aggregated on the celestial sphere surface. So the objective of GpDL optimizing
model is as follows:

max

⎛

⎝
∑

Ra∈Ωi

∑

Rb∈Ωj ,i �=j

‖Ras
− Rbs‖2

⎞

⎠ (7)

where ‖Ras
− Rbs‖2 is the angular distance between point Ras

and Rbs on sphere
surface. A higher value means that records stored in different disks are more far
away. That is to say, the distribution of records stored in each disk is more
aggregated. The objective maximizes the spatial aggregation of GpDL.

530 Z. Li et al.

Constraint. Long-term astronomical observation archive needs a large number
of disks, a significant expense can’t be ignored. So fewer disks mean higher disk
capacity utilization. Every disk needs to store as more records as possible. Based
on this, GpDL optimizing model has following constraint:

∀|DS|
i=1

RC × |Ωi|
DC

> r (8)

where r is a coefficient, meaning that every disk uses at least r of disk capacity.
This is a typical partition problem. Unfortunately, most partition problems

are NP-hard [10]. There exists no polynomial time algorithm to get the per-
fect solution of this model. So we can only find approximate solutions of this
problem. The GpDL solution method based on HEALPix and graph partition is
introduced in the next subsection.

3.3 GpDL Solution Based on Graph Partition

Outwardly, the model is looking for the map from RS to DS. After long-term
observation, different celestial sphere surface regions have been shot at different
frequency. So we are looking for a celestial sphere surface partition actually.
The surface is parted into several subregions, every subregion corresponding
to one disk unit. Each subregion has approximately equal number of records
which can almost fill one disk. On the celestial sphere surface, single subregion
is concentrated, and different subregions are far away. Now the celestial sphere
surface partition problem is similar to graph partition problem. The introduction
to graph partition problem is presented in Definition 1.

Definition 1 (Introduction to Graph Partition). Given an undirected
weighted graph G = (V,E), where V is set of vertices and E is set of edges,
weight of vertex i is denoted by Mi, weight of edge between the vertex i and
j is denoted by Nij, and number of partitions k. Output vertices partition
V = V1

⋃
V2

⋃
V3

⋃
...

⋃
Vk, satisfying following three items:

(1) {Vi} are disjoint, Vi

⋂
Vj = ∅, i �= j.

(2) {Vi} are roughly balanced,
∑

a∈Vi
Ma ≈ ∑

b∈Vj
Mb, i �= j.

(3) The edge-cut between different parts is minimized,
min

∑
u∈Vi

∑
v∈Vj ,i �=j Nuv.

An example of graph partition is shown in Fig. 4. This is an undirected weighted
graph with 7 vertices and 11 edges. The graph is divided into three subgraphs,
while keeping roughly balanced vertices wight and minimized edge-cut.

When k = |DS|, the implications of the item (2)/(3) and formula (8)/(7) are
essentially the same, Vi corresponding to Ωi. So it is possible to convert GpDL
optimizing model to graph partition problem. The key point is to generate an
undirected weighted graph from RS. Although the graph partition problem is
NP-complete [10], there are many approximation algorithms can be used to
get a high-quality solution in an acceptable time. We use following four steps to

A Spatially Aggregated Data Layout for Astronomical Archive 531

convert GpDL optimizing model to graph partition problem based on HEALPix,
apply graph partition methods and obtain the map from RS to DS.

Step 1: Divide the celestial sphere surface into equal-area small
blocks using HEALPix and count the number of observation records
for each block. Given an appropriate NSIDE, divide the celestial sphere
surface into equal-area blocks. Different records during long-term observa-
tion may locate on the same block. Count the number of records for each
BlockID. The BlockID and corresponding records number are denoted by
BlkRNo[BlockID] = RNo, where RNo is the number of records located on
block numbered BlockID.

Step 2: Preprocess blocks having singular records number. Accord-
ing to the shoot feature of observation, the celestial sphere surface consists of
cold regions and hot regions. Specially, the observation records located on the
hottest region may occupy a large part of the entire records, which needs not
only one disk but also a group of disks to store. Let RN = DC

RC be the number
of records one disk can store. Preprocess BlkRNo using BlkRNo[BlockID] =
BlkRNo[BlockID] mod RN , which means 	BlkRNo[BlockID]/RN
 disks have
been used to store records located on block numbered BlockID.

Fig. 4. A sample of graph parti-
tion (k = 3)

Fig. 5. Part of cylindrical projection
of the HEALPix division of sphere
surface (NSIDE = 4) [3]

Step 3: Generate an undirected weighted graph G based on pre-
processed blocks. Let blocks still consisting of records after preprocessed be
the vertices of G. For each vertex v let its corresponding BlkRNo[BlockID] be
v’s weight. Because the goal is to gather nearby blocks into one disk, we can
set the weight of edges through the angular distance between blocks. Longer
distance between two blocks is, smaller weight is set for the corresponding edge.
But if any two vertices have an edge, G is a complete graph. Graph partition
on a complete graph wouldn’t get a satisfactory result. So simplifications on
edges are necessary. The neighboring blocks of one block can be found using
HEALPix’s function get all neighbours. The distance between any two blocks
can be confirmed through function get all neighbours and BFS (Breadth First

532 Z. Li et al.

Search)2. Any two blocks whose distance smaller than L have an edge weighted
(L − distance) ∗ (L − distance), and any two blocks whose distance bigger or
equal than L have no edge (the weight is 0). Now undirected weighted graph G
has been generated.

Algorithm 1. GpDL for long-term astronomical observation archive
Input: RS: set of observation records. RN : the maximum number of records one disk
can store. NSIDE: the resolution of HEALPix. L: threshold value of distance.
Output: DS: set of required disks, map from RS to DS.

1: Divide sphere surface into N equal-area blocks using HEALPix with resolution
NSIDE.

2: BlkRNo [N] ← {0} // Initialize BlkNo to {0}.
3: for all Ri ∈ RS do
4: Compute BlockID of block Ri is located.
5: BlkRNo[BlockID] ← BlkRNo[BlockID] + 1
6: end for
7: for BlockID = 0 to N − 1 do
8: BlkRNo[BlockID] ← BlkRNo[BlockID] mod RN
9: end for

10: V ← {} , E ← {} // Initialize vertices and edges to empty set.
11: for BlockID = 0 to N − 1 do
12: if BlkRNo[BlockID] > 0 then
13: Add Block numbered BlockID into V .
14: end if
15: end for
16: for all i ∈ V do
17: for all j > i ∈ V do
18: Compute the distance between i and j using HEALPix’s get all neighbours

and BFS, and set this distance to dis.
19: if dis < L then
20: Add edge (i, j) into E, and the weight of edge (i, j) is (L − dis) ∗ (L − dis).
21: end if
22: end for
23: end for
24: G ← (V, E) // Generated undirected weighted graph
25: Apply graph partition methods to G to get k subparts of G, corresponding to set

of k disks DS. Subsequently infer map from RS to DS.

Step 4: Apply graph partition methods to G and get the map from
records to disks. Our method is based on the multilevel graph partitioning
paradigm [10], which has been shown to quickly produce high-quality partitions.
2 see Fig. 5. Take block 102 as an example. The distance to neighboring blocks from

102 is set to 1, e.g., the distance of (102, 99), (102, 97)... is set to 1. The distance to
neighboring of neighboring blocks from 102 is set to 2, e.g., the distance of (102, 32),
(102, 34)... is set to 2. The distance to neighboring of neighboring of neighboring
blocks from 102 is set to 3, and so on.

A Spatially Aggregated Data Layout for Astronomical Archive 533

It consists of three phases: graph coarsening, initial partitioning, and uncoars-
ening. In the graph coarsening phase, graph is coarsened into a small number of
vertices. In the initial partitioning phase, the coarsened small graph is computed
using simple approaches. Finally, in the uncoarsening phase, the partitioning of
the coarsened small graph is projected to larger graph with refining using various
heuristic methods. When all three phases end, G is parted into k parts, meaning
that the HEALPix blocks has been gathered to k parts corresponding to k disks.
Because the map from observation records to HEALPix blocks is known, we can
easily obtain the map from records RS to k disks DS.

Step 1–4 are formally described in Algorithm 1. Now GpDL is solved using
graph partition methods. Implementation details can be found in the next
section.

4 Implementation and Experimental Results

4.1 Implementation

The Choice of Parameters. NSIDE, resolution of HEALPix, is set to 64. In
this situation, the sphere surface is divided into 49152 blocks. Each block’s size is
about 1◦ ∗ 1◦, sufficient precision for requests. The sphere surface is divided into
196608 blocks when NSIDE is 128, which makes the final graph too complicated
to execute graph partition in a short time. k, namely the number of required
disks, is set by

k =
|RS|

0.9 ∗ RN
(9)

which means the disk capacity utilization is about 90%. Because the result of
graph partition is approximately equal subgraphs, not exactly equal, add a factor
0.9 to ensure that each subdivision can be stored in one disk. L, the threshold
value of distance, is set to 10, which is a suitable number tested in simulation
experiments.

Simulation Environment. The disk model used in simulation experi-
ments is Seagate ST1000DM003. Some parameters of ST1000DM003 are
shown in Table 2. All parameters are fetched from Seagate official docu-
ments (https://www.seagate.com/files/www-content/product-content/desktop-
hdd-fam/en-us/docs/100768625g.pdf).

Data Set. The data set we used is the observation records of AST3 during 2016.
It consists of 71536 records. We expanded it to 298080 records according to its
observation features. The 298080 records make up the set RS. One record’s file
size RC = 200 MB. So RN = DC

RC = 1000GB
200MB = 5000.

Experiments Procedure. The graph partition method uses the METIS library
(http://glaros.dtc.umn.edu/gkhome/metis/metis/overview). Three data layouts
TaDL, AmrDL, GpDL are compared in our experiments. Before simulation
experiments start, the three data layouts (three maps from records to disks)
have been stored in three tables of MySQL database. We first visualized GpDL

https://www.seagate.com/files/www-content/product-content/desktop-hdd-fam/en-us/docs/100768625g.pdf
https://www.seagate.com/files/www-content/product-content/desktop-hdd-fam/en-us/docs/100768625g.pdf
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

534 Z. Li et al.

Table 2. Parameters of ST1000DM003

Value (Unit) Description

1000 (GB) Disk capacity DC

10 (s) Time from power-on to ready for read/write

300 (J) Energy cost from power-on to ready for read/write

10 (s) Time from running to power-off

54 (J) Energy cost from running to power-off

156 (MB/s) Average data read/write rate

6.19 (W) Disk power when running

in orthographic projection. Then analyzed the disk capacity utilizations of three
data layouts. Finally, for each layout, we produced 35000 requests in seven scales
(scale = 1◦, 2◦, 3◦, 4◦, 5◦, 10◦, 20◦), each scale 5000 requests. These requests are
all independent considering that requests of archive are not frequent. For each
request, given time period denoted by T , a sphere surface point (ra, dec) and
scale representing a region (region’s right ascension is from ra - scale to ra +
scale, region’s declination is from dec - scale to dec + scale), find disks storing
records inside this region during the time period T according to data layout
tables, then open these disks, fetch required records and close disks. In this
process, we analyzed the open disks number and energy cost.

4.2 Experimental Results

Experimental results consist of four parts: data layout visualization, disk capac-
ity utilization, open disks number and overhead energy cost.

Data Layout Visualization. GpDL is visualized in Fig. 6. There are 66 dif-
ferent colors in this figure. Because AST3 is located on Antarctica, only view
from the south pole is shown. One color corresponds to one disk. Adjacent area
has the same color, meaning that neighboring records are stored in one disk and
GpDL is spatially aggregated.

Disk Capacity Utilization. We compared three data layouts’ disk capacity
utilizations. Because records are stored in chronological order in TaDL, the disk
capacity utilization is 100%. The disk capacity utilizations of AmrDL and GpDL
are shown in Fig. 7. The horizontal axis X is disk ID and the vertical axis Y
is disk capacity utilization. In AmrDL, 131 disks are used. The average disk
capacity utilization is 46%. In GpDL, 66 disks are used. The average disk capacity
utilization is 91%. GpDL saves almost half of disks compared with AmrDL. The
distribution of data among disks in GpDL is more uniform than AmrDL. So
GpDL has a big advantage over AmrDL in disk capacity utilization. And the
GpDL’s 91% utilization doesn’t drop much compared with TaDL. The reason
for AmrDL’s low capacity utilization is that there may be a big difference in
numbers of records among four smaller blocks divided from a big block.

A Spatially Aggregated Data Layout for Astronomical Archive 535

Fig. 6. GpDL visualization in orthographic projection

(a) AmrDL (b) GpDL

Fig. 7. Disk capacity utilizations of AmrDL and GpDL

Open Disks Number. Disks are closed at ordinary times in our designed
long-term archive. When a request arrives, open required disks to fetch records.
The opening and closing have a negative impact on disk. Frequent opening and
closing shortens disk life, or even damage disk. So a well-behaved data layout
will open fewer disks for the same request. The open disks number during 35000
requests in seven scales for each data layout are shown in Fig. 8. AmrDL and
GpDL observably reduces the open disks number in comparison to TaDL. This is
due to the spatially aggregated layout’s advantage over temporally aggregated.
With the scale increasing, GpDL’s advantage over AmrDL becomes more and
more obvious. This is because the disks used in AmrDL is much more than
GpDL. When scale = 20◦, open disks number of GpDL is 45% of TaDL, 76% of
AmrDL.

Overhead Energy Cost. Figure 9 shows the overhead energy cost of three
layouts in seven scales. As the number of fetched records is fixed for one request,
the read energy cost is equal in three layouts. The overhead energy cost is overall
energy cost not including read energy cost. So the overhead energy cost is in
approximate proportion to open disks number. That’s why Fig. 9 is similar to
Fig. 8 in trend. The overhead energy cost in AmrDL and GpDL decreases by
more than half of TaDL. With the scale increasing, the advantage over TaDL
becomes smaller and smaller, but still much better. And bigger the scale is, more
energy GpDL saves than AmrDL. On the average, overhead energy cost of GpDL
is 27% of TaDL, 85% of AmrDL.

536 Z. Li et al.

Fig. 8. Open disks number Fig. 9. Overhead energy cost

In conclusion, GpDL is a spatially aggregated data layout which gathers
nearby records into one disk and saves a lot of resources including required disks
number, disk life and energy cost.

5 Conclusion and Future Work

In this paper, we propose a spatially aggregated data layout GpDL for long-
term astronomical observation archive, which is based on HEALPix and graph
partition. After original data are transmitted to data center, GpDL is generated
based on distribution-known original temporally aggregated data layout before
observation records are backuped into archive. GpDL saves a great number of
resources in comparison with TaDL and AmrDL while keeping up to 91% disk
capacity utilization. In simulation experiments, GpDL effectively reduces the
number of open disks, which helps to extend disk life. Furthermore, the overhead
energy cost is reduced to 27% of TaDL and 85% of AmrDL on the average.

R-tree is a tree data structure used for indexing multi-dimensional informa-
tion such as geographical coordinates. There may be any possibility to use R-tree
to solve this layout problem. One request of astronomers focuses on a region.
Archive must open multiple disks if the region covers the border of partitions.
How to solve the border problem is also worthy to research.

Acknowledgments. This work is supported by the Joint Research Fund in Astron-
omy (U1531111, U1731243, U1731125) under cooperative agreement between the
National Natural Science Foundation of China (NSFC) and Chinese Academy of Sci-
ences (CAS), the National Natural Science Foundation of China (11573019, 61602336).

References

1. Cui, X., Yuan, X., Gong, X.: Antarctic schmidt telescopes (AST3) for dome A.
In: Ground-Based and Airborne Telescopes II, vol. 7012, p. 70122D. International
Society for Optics and Photonics (2008)

2. Gong, Z., et al.: Multi-level layout optimization for efficient spatio-temporal queries
on ISABELA-compressed data. In: 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 873–884. IEEE (2012)

A Spatially Aggregated Data Layout for Astronomical Archive 537

3. Gorski, K.M., et al.: HEALPix: a framework for high-resolution discretization and
fast analysis of data distributed on the sphere. Astrophys. J. 622(2), 759 (2005)

4. Graham, M.J., Djorgovski, S.G., Mahabal, A., Donalek, C., Drake, A., Longo, G.:
Data challenges of time domain astronomy. Distrib. Parallel Databases 30(5–6),
371–384 (2012)

5. He, Y.Q., Sun, S.X.: A data layout and access control strategies of the video storage
server based disk array. In: 2008 International Conference on Intelligent Informa-
tion Hiding and Multimedia Signal Processing, IIHMSP 2008, pp. 433–437. IEEE
(2008)

6. Hong, Z., et al.: AQUAdex: a highly efficient indexing and retrieving method for
astronomical big data of time series images. In: Wang, G., Zomaya, A., Perez,
G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9529, pp. 92–105. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-27122-4 7

7. Hoque, I., Gupta, I.: Disk layout techniques for online social network data. IEEE
Internet Comput. 16(3), 24–36 (2012)

8. Huang, D., Zhang, X., Shi, W., Zheng, M., Jiang, S., Qin, F.: LiU: hiding disk access
latency for HPC applications with a new SSD-enabled data layout. In: 2013 IEEE
21st International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), pp. 111–120. IEEE (2013)

9. Huang, H., Hung, W., Shin, K.G.: FS2: dynamic data replication in free disk space
for improving disk performance and energy consumption. In: ACM SIGOPS Oper-
ating Systems Review, vol. 39, pp. 263–276. ACM (2005)

10. Karypis, G., Kumar, V.: Multilevelk-way partitioning scheme for irregular graphs.
J. Parallel Distrib. Comput. 48(1), 96–129 (1998)

11. Nan, R.: Five hundred meter aperture spherical radio telescope (FAST). Sci. China
Ser. G 49(2), 129–148 (2006)

12. Rubin, S., Bod́ık, R., Chilimbi, T.: An efficient profile-analysis framework for data-
layout optimizations. In: ACM SIGPLAN Notices, vol. 37, pp. 140–153. ACM
(2002)

13. Son, S.W., Chen, G., Kandemir, M.: Disk layout optimization for reducing energy
consumption. In: Proceedings of the 19th Annual International Conference on
Supercomputing, pp. 274–283. ACM (2005)

14. Szalay, A.S., Kunszt, P.Z., Thakar, A., Gray, J., Slutz, D., Brunner, R.J.: Designing
and mining multi-terabyte astronomy archives: the Sloan digital sky survey. ACM
SIGMOD Rec. 29(2), 451–462 (2000)

15. Vogt, S.S., et al.: APF-the lick observatory automated planet finder. Publ. Astron.
Soc. Pac. 126(938), 359 (2014)

16. Xiao, L., Yu-An, T.: TPL: a data layout method for reducing rotational latency of
modern hard disk drive. In: 2009 WRI World Congress on Computer Science and
Information Engineering, vol. 7, pp. 336–340. IEEE (2009)

17. Yan, J., et al.: Optimized data layout for spatio-temporal data in time domain
astronomy. In: Ibrahim, S., Choo, K.-K.R., Yan, Z., Pedrycz, W. (eds.) ICA3PP
2017. LNCS, vol. 10393, pp. 431–440. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-65482-9 30

https://doi.org/10.1007/978-3-319-27122-4_7
https://doi.org/10.1007/978-3-319-65482-9_30
https://doi.org/10.1007/978-3-319-65482-9_30

A Virtual Machine Dynamic Adjustment
Strategy Based on Load Forecasting

Junjie Peng1(B) , Yingtao Wang1, Gan Chen1, Lujin You2, Feng Cheng3,
and Weiqiang Lv1

1 Shanghai University, Shanghai 200444, China
jjie.peng@shu.edu.cn

2 Tongji University, Shanghai 200433, China
3 Hasso Plattner Institute, 14482 Potsdam, Germany

Abstract. Uneven assignment of tasks may cause virtual machine (VM)
overload or underload in cloud computing environment. No matter over-
load or underload, the efficiency of cloud resources will be much affected.
Especially underload, a lot of resources are not utilized which causes
much waste. To solve this problem, a VM dynamic adjustment strategy
based on load forecasting is proposed. Through load forecast, the strategy
predicts the bottleneck of the key resources that affect the performance
of the system. Utilizing the prediction results the resources are dynami-
cally and effectviely adjusted. Extensive experiments show the strategy
is correct and efficient. It can much improve the utilization efficiency
of resources and lay a foundation for further study of VM adjustment
strategy.

Keywords: Cloud computing · Load forecasting
Dynamic adjustment · Virtual machine

1 Introduction

Compared with traditional IT services, cloud computing has many advantages
as it enables users access the resources in cloud data center such as networks,
servers, storage and so on conveniently, on-demand without needing to grasp any
details about the infrastructure. Because of the advantages of cloud computing,
many studies have set focuses on it and many applications and services have
moved onto the cloud [1–6]. This causes the amount and the scale of cloud data
centers that provide cloud services become larger and larger and energy consump-
tion of cloud data centers has become a widely concerned problem. Studies shows
that the utilization rate of current data centers is generally between 5% and 20%
[7–9]. It is estimated that a data center (DC) with 50,000 computing nodes will
consume 100 million kwh of electricity each year with cost $9,300,000 [10]. Var-
ious data shows that cloud DCs are increasingly consuming tremendous energy

Granted by National Natural Science Foundation of China (61572305, 61103054, and
61540054)

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 538–550, 2018.
https://doi.org/10.1007/978-3-030-05054-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_41&domain=pdf
http://orcid.org/0000-0002-1046-4496
https://doi.org/10.1007/978-3-030-05054-2_41

A Virtual Machine Dynamic Adjustment Strategy 539

worldwide. However the utilization and efficiency of resources are relatively low
in DCs which wastes a lot of power energy.

How to reduce energy consumption of DC and improve the utilization of
resources has become an urgent problem to be solved. To reduce energy consump-
tion and improve the utilization of resources, a feasible method is appropriately
allocating the resources according to the demand of applications. However, it is
impossible to reasonably allocate resources at the beginning due to the complex-
ity and variability of cloud environment which causes waste of resources. For a
VM with fixed resource configuration, if its load is too low, many resources are
not used. In this case, it will result in the low utilization rate of resources. On
the contrary, if the load of a VM is too heavy, it will cause shortage of resources.
At this case, the execution efficiency of the applications will be affected due to
resource shortage which results in the increase of application execution time and
the decrease of the quality of service (QoS).

This paper analyses the above problems and proposes a VM dynamic adjust-
ment strategy based on load forecasting. It tries to find the key resource which
affects the performance of the system by load forecasting, and adjust the appro-
priate scale of the key resource. That is the key resources are dyanmically
adjusted based on prediction which ensures the utilization of resources as well
as QoS. Meanwhile, it can save energy.

2 Related work

For given resources and different kinds of applications, many scholars have done
a lot of studies on how to efficiently schedule the resources in cloud [1,11–14].
However, as different types of applications have different resource preferences,
the classification of applications and efficient allocation of cloud resources are
very complex.

To increase the utilization of cloud resources, Taylor et al. made a research on
the short-term prediction models which include autoregressive integrated mov-
ing average model (ARIMA), autoregressive model(AR) and Holt winters expo-
nential smoothing [15]. Sorjanmaa et al. provided both short-term and long-
term prediction by using fractional autoregressive integrated moving average
model (FARIMA), and proposed a global method for long-term prediction [16].
Hu et al. [17] proposed a load balancing algorithm of virtual resources based on
genetic algorithm. According to thestudy, the algorithm calculates the resource
configuration of VMs in advance with mapping tasks by genetic algorithm based
on historical data and real-time state of the cloud system.

In addition to the traditional model, there are some other models. For exam-
ple, Chen et al. proposed a model for periodic load mode [18]. Peng et al.
extracted the characteristics of the application according to the characteristics of
CPU intensive application, based on which they put forward a scheduling strat-
egy for CPU intensive applications [19]. Shen et al. put forward a cloudscale sys-
tem [20] which can adaptively allocate cloud resources by using online resource

540 J. Peng et al.

prediction in cloud environment. Padala et al. proposed a virtual resource con-
trol system called AutoControl [21]. In the system of AutoControl, model esti-
mator was designed to gain the application performance goals in the future by
analysing the resource allocation information and performance information in
the past. Using the information collected and analysed, the required resources
and the optimizer were allocated. Meng et al. [22] proposed a feedback load
balancing strategy with a dual monitor mechanism. It quantified the usage of
multiple types of resources in cloud DC and defined different load balancing
types based on resource granularity with which appropriate load balancing type
under different conditions was selected.

Based on cloud computing platform, the consumptions of resources are mon-
itored which can be utilized to characterize the load of VM, and timely predict
the state of VM (for example, low load, overload, normal state). Based on the
prediction and resource utilization of VM, cloud resources can be efficiently used
with high QoS.

3 Dynamic adjustment strategy of virtual machine

In cloud environment, when applications running on a VM in a fixed configu-
ration, it may cause the VM low load or overload due to the variability and
complexity of the applications. When VM is in low load, it has the best perfor-
mance. However at this case, it will cause serious waste of resources or a lot of
resources such as CPU, memory, network and IO resources etc. be in idle state.
Besides, low utilization of resoures causes waste of energy. On the other hand,
when a VM is in overload, it leads to low performance of VM and inefficient use
of resources. As if the load is too high, it will exceed the processing capability
of the VM. A lot of extra cost will occur in frequent switching or scheduling the
resources. This causes VM behaves in extremely low performance and results in
inefficient utilization of cloud resources and lowering the QoS of applications.
Therefore, dynamic adjustment of the load on VM to reasonable range is very
important. That is, when the load on a VM is in low state, part of the resources
are appropriately reclaimed on the premise that the QoS and the performance
of VM are not much affected. This ensures the resources can be more reasonable
utilized and energy consumption can be reduced. On the other hand, when a
VM is in an overload state, the bottleneck of the key resources is determined
through analysis and prediction of the utilization of resources. By increasing the
key resources with the dynamic adjustment stragegy, the performance of VM
can be improved and QoS be guaranteed.

3.1 Status and load analysis of virtual machine

Resources of VM are mainly CPU, memory, network (sending and receiving
through network) and IO resources (disk read and write). When the load of a VM
is very heavy, the utilization of the resources is very high. On the contrary, when
the load of a VM is very light, the utilization of the resources is relatively less.

A Virtual Machine Dynamic Adjustment Strategy 541

Therefore, the utilization of the resources can be used to characterize the load
of VM to some extent. It is considered that the load of VM can be judged
according to the application service response time of the system. The load can
be determined through predicting the service response time at the next moment
of the system. In order to get the application service response time and system
resource utilization at the next time, some historical data is utilized with the
LPC method which benefits the analysis of key resources.

According to the response time of the system service, the state of VM is
governed by formula (1).

C =

⎧
⎨

⎩

1 Rpt < TlownormalMin

2 TlownormalMin ≤ Rpt < TnormalMax

3 Rpt > TnormalMax

(1)

Among them as well as the following sections of the paper, the meaning of
each variable is as follows:

Cpu: the resource utilization of cpu
Read: speed of disk reading data
Write: speed of disk writing data
Mem: memory usage
Recv: speed of network receiving data
Send: speed of network sending data
Rpt: the response time of application service
T lownormalMin: The minimum value of the application service response

time in normal state.
T normalMax: The maximum value of the application service response time

in normal state.
C is the parameter that indicates the state of VM. When C = 1, it means

VM is in low load. In this state the performance of VM is optimal. However,
the utilization of resources is too low. It will result in serious waste of resources.
C = 2 means VM is in normal state or the load of VM is in reasonable range.
In this state, resources are high efficiently utilized, and the application service
response time as well as QoS are in acceptable range. It is the right state in
which VM should keep. C = 3 means the resources are over utilized, or the
load is beyond the bearing range of VM. In this state, the response time of the
application service will be far more prolonged compared with that in normal
state, and QoS decreases dramatically or be unacceptable. It is also a state in
which VM should avoid working.

3.2 Dynamic adjustment of resources

When prediction of the RtpR in the next moment, VMs are classified according to
the formula (1), and the categories of the VMs in the next moment are obtained.
If a VM belongs to category 2, it means it is in the normal state and does not
need to be processed with any operations. However, if the VM is in class 1 or 3,

542 J. Peng et al.

it means it is in the state of low load or overload. Correspondingly, the resources
of the VM should be reclaimed or expanded following the appropriate rules. At
this time, the CPU, Read, Write, Mem, Recv, Send value and the classification
of the VM at the next moment should be predicted, which are used to analyze
the key resources that may affect the performance of the VM.

When the VM at the next moment is in state 1, or in low load, it should
meet the conditions (2) and (3) according to Bias classification formula.

P (C1 | X) > P (C2 | X) (2)
P (C1 | X) > P (C3 | X) (3)

Note: X = (xcpu, xread, xwrite, xmem, xrecv, xsend) are the eigenvectors at
some specific time, characterized the state of the VM. C1, C2 and C3 repre-
sents C = 1, C = 2, and C = 3 respectively.

According to formula (2), assume the variables xcpu, xread, xwrite, xmem,
xrecv, xsend are independent mutually, formula (4) can be obtained:

P (C1) × ∑n
k=1 P (xk | C1)

P (X)
>

P (C2) × ∑n
k=1 P (xk | C2)

P (X)
(4)

Note: Here n = 6,(x1, x2, x3, x4, x5, x6) means xcpu, xread, xwrite, xmem, xrecv,
xsend respectively.

For P (X) > 0, rewrite formula (4) and get:

P (C1) × ∑n
k=1 P (xk | C1)

P (C2) × ∑n
k=1 P (xk | C2)

> 1 (5)

Do logarithms calculations to the both sides of formula (5), formula (6) is
obtained.

log10
P (C1)
P (C2)

+
n∑

k=1

log10
P (xk | C1)
P (xk | C2)

> 0 (6)

Since (x1, x2, x3, x4, x5, x6) represents xcpu, xread, xwrite, xmem, xrecv, xsend,
formula (7) can be obtained.

log10
P (C1)
P (C2)

+ log10
P (xcpu | C1)
P (xcpu | C2)

+ log10
P (xread | C1)
P (xread | C2)

+ log10
P (xwrite | C1)
P (xwrite | C2)

+ log10
P (xmem | C1)
P (xmem | C2)

+ log10
P (xrecv | C1)
P (xrecv | C2)

+ log10
P (xsend | C1)
P (xsend | C2)

> 0

(7)

Through the formula (7), it is easy to find if a VM is in the state C = 1, the
sum of each items should be greater than 0. To some specific VM, log10

P (C1)
P (C2)

is constant. Therefore among the other items, the one which has the maximum
value is the largest contribution factor that makes the VM in state C = 1. This
means when C = 1 the VM is in low load or the resource is too surplus for

A Virtual Machine Dynamic Adjustment Strategy 543

the current applications. So the resource corresponding to this factor can be
reclaimed. Based on the analysis mentioned above, the key resource factor is
defined as formula (8) shows.

keyi,j,m = log10
P (xm | Ci)
P (xm | Cj)

(8)

Note: i, j can be taken as 1, 2, 3, and m can be regarded as cpu, read,
write,mem, recv, send. Combine formula(7) and formula(8), formula (9) is
obtained.

log10
P (C1)
P (C2)

+ key1,2,cpu + key1,2,read + key1,2,write

+ key1,2,mem + key1,2,recv + key1,2,send > 0
(9)

Now, all the key factors are as follows.
P (C1 | X) > P (C2 | X): key1,2,cpu, key1,2,read, key1,2,write, key1,2,mem,

key1,2,recv, key1,2,send.
Similarly, according to formula (3), it also can obtain formula (10).

log10
P (C1)
P (C2)

+ key1,3,cpu + key1,3,read + key1,3,write

+ key1,3,mem + key1,3,recv + key1,3,send > 0
(10)

For the same reason, all the possible key factors that make P (C1 | X) >
P (C3 | X) are key1,3,cpu, key1,3,read, key1,3,write, key1,3,mem, key1,3,recv and
key1,3,send. According to formula (2) and (3), all the possible factors that make
are key1,2,cpu, key1,2,read, key1,2,write, key1,2,mem, key1,2,recv, key1,2,send and
key1,3,cpu, key1,3,read, key1,3,write, key1,3,mem, key1,3,recv, key1,3,send. Therefore,
among all of these factors, the one of largest value is the most critical resource
factor.

KeyResource = m, max
j,m

{key1,j,m} (11)

Note: j can be taken as 2, 3; m can be taken as cpu, read, write, mem, recv,
send. That is, resource KeyResource is the factor that contributes most to have
the VM in state C = 1 that the resource is surplus and can be reclaimed in order
to reduce the idle resources and avoid waste.

Similarly, when the VM is predicted in state 3 or overload state at the follow-
ing moment, it meets the condition (12) and (13) according to Bias classification
formula.

P (C3 | X) > P (C1 | X) (12)
P (C3 | X) > P (C2 | X) (13)

Derive from the formula (12), formula (14) can be obtained.

log10
P (C3)
P (C1)

+ key3,1,cpu + key3,1,read + key3,1,write

+ key3,1,mem + key3,1,recv + key3,1,send > 0
(14)

544 J. Peng et al.

All possible key factors that make P (C3 | X) > P (C1 | X) are key3,1,cpu,
key3,1,read, key3,1,write, key3,1,mem, key3,1,recv and key3,1,send.

Derive from the formula (13), formula (15) is obtained.

log10
P (C3)
P (C2)

+ key3,2,cpu + key3,2,read + key3,2,write

+ key3,2,mem + key3,2,recv + key3,2,send > 0
(15)

Similarly all possible key factors that make P (C3 | X) > P (C2 | X) include
key3,2,cpu, key3,2,read, key3,2,write, key3,2,mem, key3,2,recv and key3,2,send.

According to formula(12) and (13), all possible key factors that make VM
in overload state are key3,1,cpu, key3,1,read, key3,1,write, key3,1,mem, key3,1,recv,
key3,1,send and key3,2,cpu, key3,2,read, key3,2,write, key3,2,mem, key3,2,recv and
key3,2,send. Among all of these factors, the largest one is the most critical resource
factor.

KeyResource = m, max
j,m

{key3,j,m} (16)

Note: j can be taken as 1,2, and m can be one of the factor in cpu, read,
write, mem, recv and send.

Resource KeyResource is the factor that contributes most to have the VM in
state C = 3 or the overload state. In other words, the resource is the bottleneck
of the VM which should be increased to improve the performance of the system
and ensure the quality of service. After getting the key resources, the method
that is used to dynamically scale the resource is discussed as follows.

(1) Judge the state of the VM according to the prediction of the application
service response time. If the VM is in normal state, no special operation is
needed and go to step 4. If the VM is in low load, go to step 2. Otherwise,
when the VM is overload, go to step 3.

(2) Calculate the main idle resources of the VM according to formula (11). And
reclaim part of the idle resources to reduce wasting the resources. Go to
step 4.

(3) Calculate the key bottleneck resource of the VM according to formula (16).
And increase the key resource dynamically to ensure the performance of the
system as well as the quality of user service. Go to step 4.

(4) Exit the resource adjustment operation.

4 Experiment and results

Extensive experiments have been done to verify the Load forecasting method
and dynamic scheduling strategy.

4.1 Experimental environment

The experimental environment was based on cloudstack cloud computing plat-
form version 5.0. We built a private cloud computing platform, which includes a

A Virtual Machine Dynamic Adjustment Strategy 545

management node, two host nodes and a storage node. The operating system of
the host node is redhat server 6.4. CPU is Intel I5 3470@3.60 GHz. Memory is
DDR3 8 GB. The volume of hard disk is 1 TB. The operating system of VM in
host is Ubuntu 15.04, CPU is 1 GHz*2, memory is 1 GB, the network bandwidth
is 150 Mbps, and the disk rotational speed is 7200 r/min (Table 1).

Table 1. Hardware parameters of experiment environment

Node CPU (GHz) Memory (GB) Disk volume (GB) Disk speed (r/min)

Management 3.4 4.0 1000 5400

Storage 3.6 8.0 1000 5400

Host1 3.6 8.0 1000 7200

Host2 3.2 4.0 500 7200

4.2 Results and analysis

In order to verify the load prediction method and virtual machine dynamic
scheduling method, httping tool is used to send requests to the system. And
Linux monitoring tool dstat is used to monitor the resource usage in the process
of system running with which the service response time of the system is obtained.
Through comparing the response time using and not using the strategy proposed,
the effectiveness of the strategy is verified.

The application running on the VM is to compute the prime numbers less
than 20000 with sysbench. Figures from Figs. 1, 2, 3, 4, 5 and 6 are the exper-
imental results of the utilization of different resources when four applications
running simultaneously on the VM. From Figs. 1, 2, 3, 4, 5 and 6. It is easy
to find out, the predictive values and actual observation ones are very close or
almost the same with regard to system resources such as CPU, disk reading and
writing, memory, network receiving and sending. It indicates that the prediction
method is effective.

Figure 7 represents the response time with and without using the proposed
strategy when the load on VM increases from the beginning with low load till
to that with over load. According to the figure, at the beginning, due to the
low system load, the corresponding response time of the two methods are basi-
cally the same. However, with the increasing number of the requests, that is
to say, with the increasing of system load, the corresponding response time of
the method increases sharply without using our strategy, which seriously lowers
the quality of service. However, the response time approximately keeps stable
using the proposed strategy. Moreover, it is easy to find that using the propsed
strategy, the response time is much lower than that without using the proposed
strategy. It can ensures the quality of service.

Figure 8 presents the response time with and without using the proposed
strategy when the system is in low load. According to the figure, the response

546 J. Peng et al.

Fig. 1. The prediction value of CPU usage

Fig. 2. The prediction value of disk reading speed

Fig. 3. The prediction value of disk writing speed

A Virtual Machine Dynamic Adjustment Strategy 547

Fig. 4. The prediction value of memory usage

Fig. 5. The prediction of network receiving speed

Fig. 6. The prediction of network sending speed

548 J. Peng et al.

Fig. 7. The response time of two methods when load increases till overload

Fig. 8. The response time of two methods when system in low load

time of the proposed strategy is slightly larger than that without using the pro-
posed strategy even though the values for both methods are approximately the
same, both within the acceptable range. This is because with the proposed stat-
egy, some surplus resources will be reclaimed. This will slightly lead to some
extra cost. However with the proposed strategy applications will be processed
with much less resources compared with that without using the proposed strat-
egy. This can avoid wasting the cloud resources and reduce energy consumption.

5 Conclusions

To solve the problem of dynamically adjusting the resources of VM, a VM
dynamic adjustment strategy is proposed based on load forecasting. By predict-
ing the system resources usage and application service response time the strategy
tries to find the key resource which affect the system state with which the bottle-
neck of the VM is drawn out. Baed on the bottleneck, a method dynamically and
appropriately scaling the key resources is presented. With the scaling method,

A Virtual Machine Dynamic Adjustment Strategy 549

the surplus resources are reclaimed if the VM is in low load which can reduce the
waste of resources. Meanwhile the key resources which is the bottleneck affecting
the performance of the system are increased when the VM is overload. This can
much improve the performance of the system and ensure the QoS of the system.
Extensive experiments show the strategy is correct and efficient, and it lays a
foundation for reasonably using cloud resources.

References

1. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-
Degree Compared. In: 2008 Grid Computing Environments Workshop Proceedings,
pp. 1–10. IEEE, Austin (2008)

2. Nicolae, B.: High throughput data-compression for cloud storage. In: Hameurlain,
A., Morvan, F., Tjoa, A.M. (eds.) Globe 2010. LNCS, vol. 6265, pp. 1–12. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15108-8 1

3. Fang, Y., Wang, F., Ge, J.: A task scheduling algorithm based on load balancing
in cloud computing. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) WISM 2010.
LNCS, vol. 6318, pp. 271–277. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16515-3 34

4. Aluvalu, R., Vardhaman, J.M.A., Kantaria, J.: Performance evaluation of cluster-
ing algorithms for dynamic VM allocation in cloud computing. In: Proceedings of
2017 International Conference On Smart Technologies For Smart Nation (Smart-
TechCon), pp. 1560–1563. IEEE (2017)

5. Basu, S., et al.: Cloud computing security challenges & solutions-a survey. In:
Proceedings of 2018 IEEE 8th Annual Computing and Communication Workshop
and Conference (CCWC), pp. 347–356. IEEE (2018)

6. Kapil, D., Tyagi, P., Kumar, S., Tamta, V.P.: Cloud computing: overview and
research issues. In: Proceedings of 2017 International Conference on Green Infor-
matics (ICGI), pp. 71–76. IEEE (2017)

7. Pastaki Rad, M., Sajedi Badashian, A., Meydanipour, G., Ashurzad Delcheh, M.,
Alipour, M., Afzali, H.: A survey of cloud platforms and their future. In: Gervasi,
O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA
2009. LNCS, vol. 5592, pp. 788–796. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02454-2 61

8. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1, 7–18 (2010)

9. Yara, P., Ramachandran, R., Balasubramanian, G., Muthuswamy, K.,
Chandrasekar, D.: Global software development with cloud platforms. In:
Gotel, O., Joseph, M., Meyer, B. (eds.) SEAFOOD 2009. LNBIP, vol. 35, pp.
81–95. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02987-
5 10

10. Greenberg, A., Hamilton, J., Maltz, D.A.: The cost of a cloud: research problems
in data center networks. ACM SIGCOMM Comput. Commun. Rev. 39(1), 68–73
(2008)

11. Schopf, J.M., Berman, F.: Stochastic scheduling. In: Proceedings of ACM/IEEE
1999 Conference on Supercomputing, pp. 235-258. IEEE (2000)

12. Yang, Y., Casanova, H.: RUMR: robust Scheduling for Divisible Workloads. In:
Proceedings of IEEE International Symposium on High PERFORMANCE Dis-
tributed Computing, pp. 114–123. IEEE (2003)

https://doi.org/10.1007/978-3-642-15108-8_1
https://doi.org/10.1007/978-3-642-16515-3_34
https://doi.org/10.1007/978-3-642-16515-3_34
https://doi.org/10.1007/978-3-642-02454-2_61
https://doi.org/10.1007/978-3-642-02454-2_61
https://doi.org/10.1007/978-3-642-02987-5_10
https://doi.org/10.1007/978-3-642-02987-5_10

550 J. Peng et al.

13. Padmavathi, S., Soniha, P.K., Soundarya, N., Srimathi, S.: Dynamic resource pro-
visioning and monitoring for cloud computing. In: Proceedings of 2017 IEEE Inter-
national Conference on Intelligent Techniques in Control, Optimization and Signal
Processing (INCOS), pp. 1–6. IEEE (2017)

14. Zhao, L., Du, M., Chen, L.: A new multi-resource allocation mechanism: a tradeoff
between fairness and efficiency in cloud computing. China Commun. 15(3), 57–77
(2018)

15. Taylor, J.W., Menezes, L.M.D., Mcsharry, P.E.: A comparison of univariate meth-
ods for forecasting electricity demand up to a day ahead. Int. J. Forecast. 22(1),
1–16 (2006)

16. Sorjanmaa, A., Hao, J., Reyhani, N., et al.: Methodology for long-term prediction
of time series. Neurocomputing 70(16–18), 2861–2869 (2007)

17. Hu, J., Gu, J., Sun, G., Zhao, T.: A scheduling strategy on load balancing of vir-
tual machine resources in cloud computing environment. In: Proceedings of Third
International Symposium on Parallel Architectures, Algorithms and Programming,
pp. 89–96. IEEE (2010)

18. Chen, G., He, W., Liu, J., et al.: Energy-aware server provisioning and load dis-
patching for connection-intensive internet services. In: Proceedings of Usenix Sym-
posium on Networked Systems Design and Implementation, NSDI 2008, pp. 337–
350. Usenix (2008)

19. Peng, J., Dai, Y., Rao, Y., Chen, J., Zhi, X.: Research on processing strategy for
CPU-intensive application. J. Syst. Archit. 70, 39–47 (2016)

20. Shen, Z., Subbiah, S., Gu, X., et al.: CloudScale: elastic resource scaling for multi-
tenant cloud systems. In: Proceedings of ACM Symposium on Cloud Computing,
pp. 1-14. ACM (2011)

21. Padala, P., Hou, K.Y., Kang, G.S., et al.: Automated control of multiple virtual-
ized resources. In: Proceedings of 2009 ACM European Conference on Computer
Systems, pp. 13-26. ACM (2009)

22. Meng, F., Zhang, H., Chu.: Cloud computing resource load balancing study based
on ant colony optimization algorithm. J. Huazhong Univ. Sci. Technol. 41(s2),
57–62 (2013)

A Data-Aware Energy-Saving Storage
Management Strategy for On-Site

Astronomical Observation at Dome A

Xiaoxiao Lu1, Chao Sun1(B), Ce Yu1(B), Jizhou Sun1, Ming Che1, Zijun Xia2,
Zhaohui Shang3, and Yi Hu3

1 School of Computer Science and Technology, Tianjin University,
Tianjin 300350, China

{luxiaoxiao,sch,yuce,jzsun,cheming}@tju.edu.cn
2 National Supercomputer Center in Tianjin, Tianjin 300457, China

xiazj@nscc-tj.gov.cn
3 National Astronomical Observatories, Chinese Academy of Sciences, Beijing

100000, China
zshang@gmail.com, huyi.naoc@gmail.com

Abstract. The high energy consumption of storage system has always
been a thorny issue especially when power supply is limited, e.g. the
case of astronomical observation at Dome A in the Antarctic. Many
general-purpose energy-efficient strategies are designed to be applied in
common data centers, which is still quite different from disk array at
Dome A where extreme restrictions would influence the effect of solu-
tions. Besides, maintaining the reliability is as important as saving energy
because most of the time, nobody is there to solve the disk failure prob-
lem. In this paper we propose a data-aware energy-saving storage man-
agement strategy, named DAES, for astronomical observation whose pur-
pose is to reduce the energy consumed while mitigating the loss of the
reliability of disks. A metric named hit index is designed for each disk
from the perspective of astronomy to manage the power state of disks
more accurately. A customized file scheduler is also drafted to improve
data layout dynamically. Simulation experiments show that it reduces
energy consumption by up to 56.6% and cuts down the switches of power
state by up to 66.8% compared with common energy-saving strategies.

Keywords: Astronomical observation data · Disk array
Disk reliability · Energy efficient · Storage system

1 Introduction

Astronomy has been at the forefront of the development of techniques and
methodologies of data intensive science for over a decade with large sky sur-
veys and distributed efforts [6]. China is building its astronomical observatory
in Antarctic Dome A and a series of telescopes, AST3, have been conducted. The
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 551–566, 2018.
https://doi.org/10.1007/978-3-030-05054-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_42&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_42

552 X. Lu et al.

AST3 project consists of three large field of view survey telescopes with 680 mm
primary mirror, mainly for observations of supernovas and extrasolar planets
searching from Antarctic Dome A which is likely to be the best astronomical
site on earth for astronomical observation [20]. The first set of AST3 telescope
system was mounted at Dome A in Jan. 2012 and the second one was installed
in Feb. 2015. Each telescope of AST3 theoretically produces a 200 MB image
every 2.4 min, thus 360 GB per day.

The growing massive observation data need to be analyzed in time otherwise
the discovery of some astronomical phenomenon would be delayed for a long
time. The telescope assesses to the Internet via Iridium satellite constellation
whose expensive and narrow bandwidth makes it unrealistic to transfer all the
raw data back. So it is necessary to establish a data center to provide local data
processing service for astronomers.

The energy consumption of the storage system accounts for a significant
proportion of the total energy consumption of the data center while maintaining
rapid growth [17]. Due to the harsh environment of Dome A, however, the power
supply is extremely limited. Considering that raw and processed data may reach
PB level in the near future, more disks would be used, making the energy con-
sumption of the storage system hardly affordable. Therefore, the storage system
must be strictly energy-efficient to not affect other devices of the whole system
like the master computer and telescopes.

Various energy-efficient strategies has been proposed, including improved
architectures, methods about caching and data migration, etc. However, they
are mainly designed for general purposes and not suitable for the case of antarc-
tic astronomical observation where power supply is extremely limited so that
only a small part of disks could work at the same time. All the equipments,
including telescopes, industrial computer, data center, etc., share a same jet fuel
generators whose maximum power is about 1kW. The fuel is replenished by
the Antarctic expedition team annually. Furthermore, stability is also of urgent
requirement, which means that the common way of powering off disks to save
energy is limited because excessive power state switches would shorten the life
of disks.

To achieve this goal, the idle disk, or the disk with no I/O tasks at present,
need to be powered off or switched into low power state. However, spinning up
a disk again also consumes much energy and too many switches between states
shorten the life cycle of disks, thereby degrading the reliability [14]. Therefore, it
is significant to recognize the I/O scheme of the disks and switch the disk state
according to it. In other words, switch disks into lower power state prudently to
save energy and make the most of every switch.

The access to astronomical data usually follows a spatio-temporal pattern.
For example, when a user need to research the changes of a target celestial body
within a certain period, all the files that covers this object with eligible generate
time need to be picked out. Since the observation data rarely move once written
to a disk, the probability of a certain disk to be hit in the near future could be
quantified according to the past requests.

A Data-Aware Energy-Saving Storage Management Strategy 553

In this paper, a new data-aware energy-efficient storage management strategy
named DAES is designed for on-site astronomical observation at Dome A. It does
not care much about the structure of the whole storage system, whether it is a
multi-level caching or a hybrid storage system, as long as it is possible to switch
the states of hard disk drives. DAES figures out a correlated files list for each file
from historical file access log from the perspective of astronomy. Then it develops
a metric called hit index for each disk to judge the probability for it to be hit
from its data and historical requests. With the help of hit index, power state
is arranged more smartly by reducing unreasonable switches and idle spinning
of disks. To make full use of a disk while it is working, a smart file scheduler
is utilized to adopt customized caching, prefetching and replication strategies.
Therefore, data layout is optimized dynamically to get less disks involved while
handling a request.

Specially, this paper makes the following contributions:

(1) We propose an innovative data-aware storage management strategy for on-
site astronomical observation at Dome A that not only saves energy but also
preserves the reliability of disks under limited power supply.

(2) We design a specific metric named hit index for each disk to manage its
power state from the perspective of astronomy. A lazy file scheduler is also
customized to improve the original data layout dynamically with a little
cost.

(3) We evaluate the proposed method with dataset of AST3 in 2016. The results
show that our approach outperforms its alternative in all experiments.

The remainder of this paper is organized as follows. Section 2 presents the
related work. Section 3 discusses the challenges of the storage server at Dome A.
Section 4 elaborates on details of DAES, including hit index calculation and file
scheduling. Section 5 evaluates the performance of DAES with related discussion.
Finally, we conclude this paper and discuss future work in Sect. 6.

2 Related Work

Numerous studies have been conducted about energy conservation of disk stor-
age and various energy-saving methods have been proposed, mainly including
caching, prefetching and data migration. Most of them intend to extend the idle
time of disks so that they can be turned into low power state to save energy.

2.1 Caching, Prefetching and Replication Strategy

The main centerpiece of caching is to use extra cache disks to store popular and
prefetched data in order to concentrate workload. MAID (Massive Arrays of
Idle Disks) is typical representative of this kind of energy-saving technology [5].
A small part of disks serves as cache disks which always keep rotating while
others serve as data disks which stop rotating after a certain period of idle time.

554 X. Lu et al.

Some strategies utilize energy-aware storage media such as SSD as cache disks,
such as E-HASH [7].

Prefetching is another way to save energy. It raises the hit rate of cache
by prefetching the potential required data into cache devices. Therefore data
disks could have more idle time if they are hit as predicted. Powerful prefetching
strategy should prefetch as many useful data as possible while eliminate as few
useless data as possible, such as PRE-BUD [10–13] and Eco-storage [2].

Replication strategies distribute copies of popular data into different storage
devices. Therefore requested data could be accessed from working disks rather
than powered-off ones if it has replicas in both disks. Proper data replication
could save energy and minimize bandwidth usage in cloud computing data cen-
ters [3]. It should also take both load balance and power proportionality into
consideration [9]. Replicas could be put into data disks such as HDD, or cache
disks such as SSD. From this perspective, caching and prefetching are general-
izations of replication.

2.2 Data Migration Strategy

PDC (Popular Data Concentration) [16] migrates frequently accessed data to
a subset of the disks. The goal is to skew the workload towards a few of the
disks, so that others can be transitioned to low-power modes. PDC is suitable
for the application with part of its data being of high access frequency. PDC-
NH [8] extends PDC by adding NAND flash based Solid State Drive (SSD). It
places large and sequential read files on HDD and small and random read files
on SSD to achieve better performance and energy savings. FDTM [22] works on
block-level data and aims to get a trade-off between storage QoS and migration
costs. EDM [15] is an endurance-aware data migration scheme with careful data
placement and movement to minimize the data migrated, so as to limit the worn-
out of SSDs while improving the performance. There are some other improved
algorithms, such as EESDC [4] and LAM [21].

2.3 Summary of Related Work

These related researches have a common goal to maximize the idle interval of
disks and put them into low-power modes in time to save energy. However, they
cannot be adopted directly for astronomical observation data. Firstly, this kind
of data has its own format and usage mode. Thus the caching and prefetching
strategy need to be adjusted accordingly. Secondly, all disks may still be working
simultaneously in the worst case, which is not allowed in case of the Antarctic.
Thirdly, the astronomical observation data mainly consists of FITS files whose
size is often several hundred MB. Correspondingly, the cost of caching and migra-
tion would be enlarged, making common strategies inefficient especially when
operating a file inappropriately.

A Data-Aware Energy-Saving Storage Management Strategy 555

3 Challenges

Due to the limited power supply in the Antarctic or just the goal of green data
center, the storage system must be energy-efficient. Normally, an energy-aware
storage server turns idle disks into low-power state to save energy. In common
practice, an idle time threshold is set for disks and a disk is powered off if it
reaches this point. The main problem is that how to set a proper value for the
threshold. A small one may reduce the working time of disks and therefore cut
down the energy consumed. On the other hand, however, it causes more disk state
switches which consume additional energy and impair the reliability of disks. It
is hard to predict the workload of disks and change disk states accordingly.

Each telescope continues producing observation data, making it essential to
have a data center around it. The storage system of the data center stores raw
observation data and preliminary processed data such as FITS or catalogue. As
shown in Fig. 1, a typical time domain astronomical research that an astronomer
needs to do is to research changes of a certain celestial body in a period of time,
which defines the typical workflow of the storage server. Users give the coordinate
of target celestial body (e.g. RA and DEC) and target time period. RA (right
ascension) and DEC (declination) are to the sky what longitude and latitude
are to the surface of the Earth. Note that the target celestial body, as well as
the changes, is captured within an area on the photograph rather than a single
point, making target point become target sky zone. The storage server then
returns back to users the correlated FITS files that cover whole or part area of
the target sky zone and meet the time requirements.

Target Sky Zone

Processed Results

Zone
to
Files

Files

File Requests

Disk
Controller

Disk Array

Files

Fig. 1. Workflow of typical time
domain astronomical research

Fig. 2. Footprint of astronomical data
by AST3 in 2016

This work, however, is not easy for the storage server. Firstly, it is difficult
to determine the correlated files set. An efficient index is needed to reduce the
workload of checking the astronomical attributes of all files.

Secondly, the correlated files need to be selected by their fitness degrees with
the request, which needs quite a lot calculation. Telescopes may work in different
modes, e.g. sky survey or fixed point, making the footprint of its data unbalanced.

556 X. Lu et al.

Consequently, the correlated files sets of different requests may differ a lot in
quantity. Figure 2 shows the footprint of astronomical data of AST3 in 2016.
Some areas were covered evenly while other areas were extremely unbalanced.
Therefore, some requests may match numerous files covering the whole target
area while some may match few files covering only a small part of target area. If
too many files are matched, only the most correlated files were selected due to
the fact that these files already contain enough information. Figure 3 illustrates
this case. The grey area is the target sky zone a user requests. For this request,
file 0 is better than file 1 and file 1 is better than file 2. Instead of using the
recommended files, some advanced users may even choose target files themselves.

Target Sky Zone

File 1

File 0

File 2

Fig. 3. Different fitness for a request Fig. 4. Architecture of MCS-B [18]

The complex workflow, together with the irregular footprint and placement
of astronomical data, makes it hard to predict which disks a request would hit,
in which case it is difficult to employ energy-aware strategies. That’s maybe the
reason that rule-based approaches fail and statistical methods work.

4 Design of DAES

The main purpose of DAES is to reduce the energy consumed by storage system
while preserving the reliability of disks. In other words, switch idle disks into
low-power state as much as possible while reducing the number of switches.
Obviously, these two goals are contradictory and a balance is necessary. DAES
manages it by analyzing the correlation of files from historical file access mode.

In fact, the data layout among disks has a remarkable effect on the perfor-
mance of energy saving. An optional optimized placement concentrates files with
similar sky zone into the same disk then a single request would have only a few
disks involved. However, this placement is hard to manage because the telescope
continues producing new data and the cost of reaching it may not be offset by
its benefit over a long time [19]. How the data is placed is beyond the scope
of this paper. DAES cares little about it because DAES focuses more on power
management of underlying disks and manages an optimized layout dynamically.

As shown in Fig. 4, our previous work proposed a new energy-efficient archi-
tecture named MCS-B for the same application scenario [18]. It focuses more
on the upper layer of the storage system while this paper focuses more on the

A Data-Aware Energy-Saving Storage Management Strategy 557

power management. What this work focuses on is all the hard disks of a storage
system, no matter whether it is a data disk or a cache disk. DAES manages to
calculate a hit index for each disk and then decide its power state.

Req Handler
f0: d1 d2
f1: d2
f2: d0 d1
f3: d2

Logical File IndexFile Scheduler

1. copy f2 from d0 to d2

2. move
3.

Task Pool

Disk Array

d0 d1 d2 d3

Request

f0 f1 f2 f3

d1 d2 d0 d2
d2 d2 d1 d2

d2 d2 d0 d2

1. read f0, f1, f3 from d2;
2. read f2 from d0;
3. write f2 to d2;

I/O Tasks Handler

1. power on disk2;
2. power on disk0;

Disk Manager

d0 d1 d2 d3

p0 p1 p2 p3

Hit Index Calculator

Fig. 5. Structure of DAES

The structure of DAES is shown in Fig. 5. Logical file index indexes all
logical files and the disk information of their instances. A telescope generates
one file at a time. It can be identified as a triple 〈ra, dec, observe time〉, which
makes up a logical file. It has more meanings in logic rather than in file system.
If we replicate a file into another disk, they are two files in view of file system,
but one file in logic which shares a same entry in logical file index. Remember
that astronomical file is usually several hundred MB, which means that a storage
system cannot hold too many files. Supposing that each astronomical file is about
500 MB, then a 2TB disk could only hold about four thousand files, making it
possible to index all files in this data center in the memory. That is to say,
updating and querying operations are of high efficiency.

Request handler translates requests to files and then to disks. It chooses
the least amount of disks to serve a request. It performs a great effect if related
files has duplications. File scheduler deals with file replications. It analyses the
historical log to find closely related files on different disks and then concentrates
them into the same disk at convenience. It is further discussed in Subsect. 4.2.
Hit index calculator calculates a hit index for each disk indicating its proba-
bility of being hit in the short future. It is elaborated in Subsect. 4.1. I/O tasks
handler sends I/O requests to disk array. Disk manager decides the power
state of each disk according to its I/O tasks and hit index.

4.1 Hit Index Calculator

Figure 6 gives an example of how hit index of each disk is calculated. Overall, it
contains four parts: I/O event log, sorted correlated files lists, logical file index

558 X. Lu et al.

<t10, f5>

I/O Event Log

<t11, f1>
<t12, f3>

f0 f3
p0,3

f4
p0,4

f3 f2
p3,2

f5
p3,5

f1
p3,1

f1 f3
p1,3

Sorted Correlated Files Lists

f2
f0 d1,d2

Logical File Index

f1 d2

f2 d0,d1,d2

f3 d2

f5 f3
p5,3

f1
p5,1

Disks

f4 f5

Disk 0
Hit Index

p3,2+p3,5

f4 d0

p5,3+p5,1+p1,3
+p3,2+p3,1

f5 d0,d1

f0 f2 f5

Disk 1

Disk 2

f0 f1 f3f2

p3,2+p3,5

Fig. 6. Hit index calculation

and the hit index part. Note that the logical file index is also displayed in Fig. 5.
The word “file” discussed here is also a logical concept.

I/O event log records which file is hit and the corresponding time. Entry
〈ti, fj〉 means logical file fj is requested at time ti. This log is a simple list
into which entries are inserted chronologically. It gives information to sorted
correlated files lists and helps the hit index calculator to figure out which files
have been recently requested.

Sorted correlated files lists are the main part of the whole correlation
analysis. Overall, it is a key-value map. The key part is just logical files while the
value part is a list of correlated files to the key file along with related probabilities
that these files would be requested after the key file is requested. For example
in Fig. 6, the probability of file f3 to be requested within a certain period after
file f0 is requested is p0,3 from a historical point of view. That of f4 is p0,4. In
order to accelerate search service, the key part is stored in a red-black tree. For
ease of use later, each list in the value part is sorted in descending order of pi,j .
Let Tcor itv be the max time interval between two correlated files and tnow to
be the current time. Every time a new entry, marked as 〈tnow, fnow〉, is inserted
into I/O event log, these lists are updated as follows:

1. Find the oldest entry within the time period [tnow − Tcor itv, tnow] from I/O
event log;

2. Mark the file of this entry as fi. If the sky zone of fi partially overlaps with
file fnow, update pi,now in the sorted correlated files list. If pi,now does not
exist, create it first.

3. Check the next entry in I/O event log as step 2 until it comes to entry
〈tnow, fnow〉.

In order to update pi,now, we also need to record how many times fi is requested
and how many times fnow is requested within a period of Tcor itv after fi is
requested, which is not displayed in Fig. 6.

Organized as a binary search tree, logical file index supplies quick search
and update for the metadata of all files. The metadata part stores not only
the information about which disks its instances are stored in, but also some
statistical data.

A Data-Aware Energy-Saving Storage Management Strategy 559

Each disk has a hit index. It is calculated at regular intervals as follows:

1. Set the hit index of every disk to 0;
2. Find the oldest entry within the time period [tnow − Tcor itv, tnow] from I/O

event log;
3. Mark the file of this entry as fi. Find the correlated files list of fi. For each

file fj in this list, find which disks its instances are stored in from logical file
index and then add pi,j respectively to the hit index of these disks;

4. Check the next entry in I/O event log as step 3 until the last entry in the log
is processed.

A classical power management strategy sets the disk into standby state when
the idle interval is larger than the break-even time Tbe which means the minimum
idle time required to compensate the cost of entering low power state [14]. This
makes sense, but it could be smarter. Idle state is a waste of energy no matter
how short it lasts. With the help of hit index, we could decide which power state
a disk should be at more accurately. If the hit index is too low, we switch the disk
state into low power mode in advance for that it is unlikely that the following
requests would hit this disk again, in which case, we shorten the useless spinning
of disks. On the other hand, if the hit index is still high, we may not switch
the disk state into low power mode because it is quite likely that the following
requests would hit this disk again, in which case we reduce useless state switches
and delay the aging of hard disks.

It is because the number of astronomical files is limited by their large size
that the hit index method does not require much calculation. Furthermore, the
item with an absolutely small probability in the correlated files list would be
removed at regular intervals to keep this system running in a light way.

4.2 File Scheduler

In order to achieve better energy saving effect and reduce the number of disks
a request involves, a file scheduler is built to improve data layout dynami-
cally by combining various means, including caching, prefetching and replication
strategies.

Due to the large size of a single astronomical file, it costs much to copy or
move a file, which undermines the effect of caching, prefetching and replication
strategies to some degree. Thus, it is a wisdom to take a prudent attitude towards
these strategies.

Caching is to copy requested files into cache disks or memory; prefetching
is to cache related files of requested files in advance; replication is to copy files
to another place, usually in other data disks of the same level. The first two
strategies could be treated as the third one to some degree. They all copy files
and only differ in the place to put them. We need to track these files. The logical
file index shown in Fig. 5 exists for this purpose. It records the places where a
file and its copies are stored. Actually, there is no such view that the original
file and its copies should be treated differently. They are the same for that they

560 X. Lu et al.

share the same entry. This setting gives us more freedom to replicate files and
optimize as much as possible without the limitation that original files cannot be
moved.

Furthermore, this system weakens the role of cache disks. Any hard drive
disk could be used as a cache disk if it is busy most of the time. If the workload
is skewed to other disks, the new disks could be treated as cache disks to store
some temporarily popular files.

Table 1 gives power management specifications of four WD BlueTM PC hard
drive models [1]. There is no significant difference in energy consumption whether
the disk has I/O tasks or not as long as it is spinning. It inspires us that we
should make full use of a disk while it is idle. A copy/move to/from a disk in
idle state could obtain benefit of this schedule with only a little cost. This is the
main spirit of replication strategy in this system.

Table 1. Power management specifications of WD BlueTM hard drives [1]

Model WD10EZEX WD10EZRZ WD20EZRZ WD40EZRZ

Capacity 1TB 1 TB 2 TB 4 TB

12VDC ±10% (A, peak) 2.5 1.2 1.73 1.75

Average power requirements (W)

Read/Write 6.8 3.3 4.1 5.3

Idle 6.1 2.5 3.0 3.4

Standby/Sleep 1.2 0.4 0.4 0.4

All the file scheduling tasks are put into a task pool, including caching,
prefetching and replication tasks. A task is an order to move/copy a file from
one place to another with a priority. The source disk could be several disks if
the file has several instances. A task in the pool is processed when its source
disk and destination disk are both idle. A task in process occupies the two disks
until the file transmission is completed. If a task conflicts with another, the one
with higher priority is processed first.

The scheduler tries to concentrate correlated files into the same disk like
PDC. It periodically search the sorted correlated files lists to check whether
there are some highly correlated files with a high probability close to 1. If found,
check whether there is an instance of the key file and an instance of the correlated
file stored in the same disk. If not found, add a task into the pool to copy or
move one file to a disk where another file is stored.

The scheduler also attempts to prefetch the most likely hit files. When a file
is requested, the scheduler searches its correlated files list to check whether it
has some highly correlated files. If so, the scheduler puts this task into the pool
with a high priority. This kind of tasks would be canceled if they are not handled
within a short period. In which case, it expires even this prediction is right.

A Data-Aware Energy-Saving Storage Management Strategy 561

Replication strategies is very effective to reduce I/O time and enhance data
security because we can choose the least busy disk to handle this task. How-
ever, astronomical files are large in size, which makes the cost of replication not
ignored. Therefore, it should focus more on those most visited files. The more
times a file is hit, the more replicas it should have. Replication tasks are also
handled by the pool with a low priority.

5 Experimental Evaluation

It is necessary to carry out effective simulation experiments of the storage system
before it is applied to a real one. This section introduces the simulation exper-
iment of DAES, including simulator architecture, data set and the comparison
between DAES and common strategy.

5.1 Simulator Architecture

The disk array in the Antarctic is customized, which means that each disk could
be powered on or off separately. Together with the unique workflow of the storage
server, it makes common disk system simulators unsuitable. We build a light and
effective simulator for it.

As shown in Fig. 7, the disk simulator consists of six parts. The storage
devices is used to simulate the behaviors of true disks, mainly including the
state switches and I/O operations. The data generator parses the data set and
stores them into storage devices. The request generator provides requests with
target sky zone and period following a pattern of astronomical research. The
resource scheduling controller transforms the requests to files and sends the
I/O commands to storage devices. Besides, it is also in charge of the power
management of disks. The hit index calculator updates the hit index for each
disk every a certain period. Finally, the trace and statistics module tracks the
entire life cycle of each request and records disk status and work duration for
further analysis.

This simulator is also highly-configurable due to its modular design. Most
functions of it can be configured via parameters, including but not lim-
ited to the way to generate requests, the number of disks and detailed

Trace and Statistics Module

Request Generator

Resource Scheduling ControllerHit Index
Calculator

Storage Devices

Data Generator

Fig. 7. Architecture of simulator

Table 2. Key parameters of the simulator

Parameter name Default value

Capacity of each disk (MB) 1000000

Idle time threshold (s) 10, 20, · · · , 120
Max files a request mapped to 10

Number of users 1000

Range of requests’ RA 0 ∼ 360

Range of requests’ DEC −90 ∼ −30

Tcor itv(s) 60

562 X. Lu et al.

behavior of power management. Key parameters are shown in Table 2.
Source code of the simulator and original experimental data are available at
github.com/mldssr/DiskArraySim.

5.2 Data Set

We choose the astronomical data of AST3 in 2016. From Mar.14 to Aug.14, 2016,
it contains 71536 FITS files in total. These files are of many observation modes,
including Survey, Focus, ImageTest, Nontracking, etc. The footprint is shown in
Fig. 2. The long regular band with the declination ranging from −60◦ to −40◦ is
related to files of Survey mode. Other points in that figure correspond to other
modes.

These files are stored into the disk array from the first disk chronologically in
the order of their observe time. As a layout currently in use, it is the most energy-
efficient way when the footprint and the popularity of each file are unknown. To
enlarge the scale of this experiment, we expand the data set according to its
scheme, making the final data set stored in 70 HDDs.

In the requests part, we simulate 1000 users and each user makes a request
of their own at a random time. For those requests with too many related files,
the controller returns the best 10 files. Since each file is several hundred MB, a
10-file transmission still costs a lot of time.

5.3 Experimental Results

In common practice, a disk is powered off when it reaches a fixed idle time
threshold (FixTh). It is clear that this threshold determines the basic level of
energy consumption and spin-up times. It is also one of determining factors
when DAES judges the power state of disks. Therefore, we made comparative
experiments in different idle time thresholds from 10 to 120 step by 10 in seconds.
In case of each threshold, we compare FixTh and DAES when all the requests
are handled over.

Energy and Power. As shown in Fig. 8, DAES consumes only a half of the
energy in FixTh under any threshold. It saves energy by 56.6% at threshold
being 10 and by 41.4% at threshold being 120. Figure 9 gives a comparison in
terms of average power of the disk array. Since the total time is very similar,
the result is almost the same as Fig. 8. We also record the average top 100 peak
power of the disk array, which is shown in Fig. 10. Note that the peak power
in FixTh is close to 700 watts when threshold is 10. Clearly, the frequent spin-
up and spin-down consumes much more power. If power supply is limited, the
storage system would face a difficult situation where it have to power off a disk in
order to power on another one, which may cause performance jitter. It does not
bother DAES for that its peak power is much lower than that of FixTh, making
it hard to reach the limitation. As the threshold grows, the impact of spin-
up and spin-down shrinks, causing the peak power slowly decreasing in FixTh.

A Data-Aware Energy-Saving Storage Management Strategy 563

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000
En

er
gy

 (k
J)

Threshold (s)

 FixTh
 DAES

Fig. 8. Total energy of the
disk array

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Po
w

er
 (W

)

Threshold (s)

 FixTh
 DAES

Fig. 9. Average power of
the disk array

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

Pe
ak

 p
ow

er
 (W

)

Threshold (s)

FixTh
DAES

Fig. 10. Average top 100
peak power of the disk
array

As to DAES, less spin-up and spin-down make this part of power negligible
compared with operating power of disks. As the threshold grows, more power are
used to support the operating disks, causing the peak power slowly increasing.

Spin-up Times. The average spin-up times of all disks as idle time threshold
changes is shown in Fig. 11. DAES reduces spin-up times by 66.8% at threshold
being 10 and by 46.3% at threshold being 120. As the threshold increases, the
spin-up times significantly decreases in case of FixTh while decreasing slowly in
case of DAES. Threshold has less effect on DAES, which means DAES has more
relative advantage when threshold is small. In short, DAES effectively decreases
the average spin up times of all disks. Therefore, the reliability of the disk array
of DAES is better than that of FixTh with a great probability.

Served Files Per Spin-up. Figure 12 explains why DAES significantly de-
creases spin-up times of each disk under the same request trace. As expected,
DAES makes the most of each spin-up for that a disk serves more files once spun
up. For one thing, DAES will not turn a disk into low power state if it still has
a high hit index even if it has reached the threshold, which reduces the times of
spinning it up again right after it is powered off. For another, the file scheduler

0 20 40 60 80 100 120
0

10

20

30

40

50

60

Sp
in

-u
p

tim
es

Threshold (s)

 FixTh
 DAES

Fig. 11. Average spin-up
times of each disk

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

N
um

be
r o

f f
ile

s

Threshold (s)

FixTh
DAES

Fig. 12. Average number
of served files per disk’s
spin-up

0 20 40 60 80 100 120

5

10

15

20

25

30

35

40

N
um

be
r o

f d
is

ks

Threshold (s)

 FixTh
 DAES

Fig. 13. Average number
of disks operating simulta-
neously

564 X. Lu et al.

concentrates correlated files into same disks, which makes the request handler
spins up less disks to fetch the same target files.

Operating Disks at the Same Time. As shown in Fig. 13, DAES significantly
decreases the number of disks operating simultaneously. On one hand, DAES
switches a disk into low power state before it reaches the fixed idle time threshold
if it has a low hit index. On the other hand, the file scheduler duplicates and
rearranges files at convenience, making some requests involve less disks to spin
up. The latter reason is detailed below.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

H
it

co
un

t

Disk Id

 FixTh

(a) FixTh

0 10 20 30 40 50 60
0

100

200

300

400

500

600

H
it

co
un

t

Disk Id

 DAES

(b) DAES

Fig. 14. Hit distribution of FixTh and DAES with threshold being 60

Hit Distribution. To demonstrate the effect of file scheduler, we record the
hit distribution of total 70 disks, which is shown in Fig. 14(a) and (b). The total
hit count of FixTh is the same as DAES for that they process the same trace of
requests. However, the workload skews to part of disks in case of DAES. This
is mainly because DAES duplicates and rearranges files dynamically so that the
storage system may spin up less disks to serve a request. In this way, both the
total energy and spin-up times are reduced.

6 Conclusion and Future Work

In this paper, a new data-aware energy-saving storage management strategy is
designed for on-site astronomical observation at Dome A, aiming at saving energy
while maintaining the reliability of disks. It analyzes logical file correlations from
I/O event log according to the characteristic of astronomical data. Then a hit
index is calculated for each disk indicating the probability for it to be hit in
the near future. Based on idle time threshold and hit index, their power states
are managed more smartly by reducing unreasonable switches and idle spinning.
In addition, considering that a disk in idle state still consumes much power as
in read/write state, we adopt customized caching, prefetching and replication
strategies to make full use of a disk while it is working. They submit tasks into
a task pool where tasks are processed at convenience. Therefore, data layout is

A Data-Aware Energy-Saving Storage Management Strategy 565

optimized dynamically at a little cost to get less disks involved while handling
requests. Comparative experiments in different idle time thresholds prove that
DAES saves 41.4% to 56.6% of energy consumption and reduces 46.3% to 66.8%
of power state switches compared with FixTh which is a commonly used energy-
saving strategy.

For future work, data storage with fault-tolerant might bring new interesting
challenges to DAES. Furthermore, cache of disk drive should be explored to offer
a low level optimization.

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China (11573019, 61602336), the Joint Research Fund in Astronomy (U1531111)
under cooperative agreement between the National Natural Science Foundation of
China (NSFC) and Chinese Academy of Sciences (CAS).

References

1. WD blue PC hard drives specifications data sheet (2015). https://www.wdc.
com/content/dam/wdc/website/downloadable assets/eng/spec data sheet/2879-
771436.pdf. Accessed 31 July 2018

2. Al Assaf, M.M., Jiang, X., Abid, M.R., Qin, X.: Eco-storage: a hybrid storage
system with energy-efficient informed prefetching. J. Signal Process. Syst. 72(3),
165–180 (2013)

3. Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., Zomaya, A.Y.: Energy-efficient
data replication in cloud computing datacenters. Clust. Comput. 18(1), 385–402
(2015)

4. Chai, Y., Du, Z., Bader, D.A., Qin, X.: Efficient data migration to conserve energy
in streaming media storage systems. IEEE Trans. Parallel Distrib. Syst. 23(11),
2081–2093 (2012)

5. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives, pp.
1–11. IEEE Computer Society Press (2002)

6. Graham, M.J., Djorgovski, S.G., Mahabal, A., Donalek, C., Drake, A., Longo, G.:
Data challenges of time domain astronomy. Distrib. Parallel Databases 30(5–6),
371–384 (2012)

7. Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification. In: Peters,
J.F., Skowron, A., Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Trans-
actions on Rough Sets XIII. LNCS, vol. 6499, pp. 56–72. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-18302-7 4

8. Lee, D.K., Koh, K.: PDC-NH: popular data concentration on NAND flash and hard
disk drive. In: 2009 10th IEEE/ACM International Conference on Grid Computing,
pp. 196–200. IEEE (2009)

9. Luo, X., Xin, G., Wang, Y., Zhang, Z., Wang, H.: Superset: a non-uniform replica
placement strategy towards perfect load balance and fine-grained power propor-
tionality. Clust. Comput. 18(3), 1127–1140 (2015)

10. Manzanares, A., Bellam, K., Qin, X.: A prefetching scheme for energy conserva-
tion in parallel disk systems. In: IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2008, pp. 1–5. IEEE (2008)

11. Manzanares, A., Qin, X., Ruan, X., Yin, S.: PRE-BUD: prefetching for energy-
efficient parallel I/O systems with buffer disks. ACM Trans. Storage (TOS) 7(1),
3 (2011)

https://www.wdc.com/content/dam/wdc/website/downloadable_assets/eng/spec_data_sheet/2879-771436.pdf
https://www.wdc.com/content/dam/wdc/website/downloadable_assets/eng/spec_data_sheet/2879-771436.pdf
https://www.wdc.com/content/dam/wdc/website/downloadable_assets/eng/spec_data_sheet/2879-771436.pdf
https://doi.org/10.1007/978-3-642-18302-7_4

566 X. Lu et al.

12. Manzanares, A., et al.: Energy efficient prefetching with buffer disks for cluster file
systems. In: 2010 39th International Conference on Parallel Processing (ICPP),
pp. 404–413. IEEE (2010)

13. Manzanres, A., Ruan, X., Yin, S., Nijim, M., Luo, W., Qin, X.: Energy-aware
prefetching for parallel disk systems: algorithms, models, and evaluation. In: Eighth
IEEE International Symposium on Network Computing and Applications, NCA
2009, pp. 90–97. IEEE (2009)

14. Nijim, M., Qin, X., Yin, S., Ruan, X., Manzanres, A., Luo, W.: Energy-aware
prefetching for parallel disk systems: algorithms, models, and evaluation. In: 2009
Eighth IEEE International Symposium on Network Computing and Applications,
pp. 90–97 (2009)

15. Ou, J., Shu, J., Lu, Y., Yi, L., Wang, W.: EDM: an endurance-aware data migration
scheme for load balancing in SSD storage clusters. In: 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pp. 787–796. IEEE (2014)

16. Pinheiro, E., Bianchini, R.: Energy conservation techniques for disk array-based
servers, pp. 369–379. ACM (2014)

17. Shehabi, A., et al.: United states data center energy usage report (2016)
18. Sun, C., et al.: MCS-B: an energy efficient storage system for astronomical observa-

tion data based on logical block replacement strategy. In: 2017 IEEE International
Symposium on Parallel and Distributed Processing with Applications and 2017
IEEE International Conference on Ubiquitous Computing and Communications
(ISPA/IUCC), pp. 198–205. IEEE (2017)

19. Yan, J., Yu, C., Sun, C., Shang, Z., Hu, Y., Feng, J., Sun, J., Xiao, J.: Optimized
data layout for spatio-temporal data in time domain astronomy. In: Ibrahim, S.,
Choo, K.-K.R., Yan, Z., Pedrycz, W. (eds.) ICA3PP 2017. LNCS, vol. 10393, pp.
431–440. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65482-9 30

20. Yuan, X., et al.: The AST3 project: Antarctic survey telescopes for Dome A. In:
Ground-based and Airborne Telescopes V, vol. 9145, p. 91450F. International Soci-
ety for Optics and Photonics (2014)

21. Zhang, G., Chiu, L., Dickey, C., Liu, L., Muench, P., Seshadri, S.: Automated
lookahead data migration in SSD-enabled multi-tiered storage systems. In: 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp.
1–6. IEEE (2010)

22. Zhao, X., Li, Z., Zeng, L.: FDTM: block level data migration policy in tiered storage
system. In: Ding, C., Shao, Z., Zheng, R. (eds.) NPC 2010. LNCS, vol. 6289, pp.
76–90. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15672-4 8

https://doi.org/10.1007/978-3-319-65482-9_30
https://doi.org/10.1007/978-3-642-15672-4_8

Distancer : A Host-Based Distributed
Adaptive Load Balancer for Datacenter

Traffic

Songyun Wang1, Xin Li1,2(B), Zhuzhong Qian2, and Jiabin Yuan1

1 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

lics@nuaa.edu.cn
2 State Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing 210023, China

Abstract. Contemporary datacenter networks are typically organized
with multi-rooted tree topologies. To fully utilize the multiple end-to-
end paths, effective mechanisms are required to balance traffic across
them. However, existing load balancers for datacenters either operate at
a coarse granularity, or support little for network failures, or necessitate
customized hardware. We propose Distancer, a host-based distributed
adaptive load balancer for datacenter traffic, which requires no coordina-
tion and modification of switches. Based on a deep investigation of TCP
feedback mechanism, we firstly design Congestion Detector (C-Detector),
which exploits ACKs to effectively handle network hot-spots and path
anomalies in real time; Then we develop Load-Balancer (L-Balancer) to
select best paths for both data packets and ACKs. According to our
extensive evaluations, Distancer can achieve up to 40% and 20% bet-
ter average flow completion times (AFCTs) than ECMP and CONGA
respectively. Under the presence of path failures, Distancer improves the
AFCT up to 400% and 30% over ECMP and CONGA.

Keywords: Data center networking · Flow scheduling · Load balance

1 Introduction

High demand for dynamic scaling and benefits from economies of scale have
spurred the deployment of large-scale datacenters. Recent proposed data centers
primarily use cheap commodity switches to construct multi-rooted tree topolo-
gies [3,13,15]. By creating redundant paths between host pairs, these archi-
tectures significantly increase the bisection bandwidth of datacenters. While
multi-paths provide flexibility and agility, the transmission performance may
decrease if flows are poorly routed and collide on the same path. To address this
issue, modern datacenters often run ECMP [16] to balance traffic load. However,
ECMP is a typically load-agnostic strategy, which uses flow identifiers as keys

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 567–581, 2018.
https://doi.org/10.1007/978-3-030-05054-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_43&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_43

568 S. Wang et al.

and randomly hashes flows to different paths. Consequently, it cannot avoid traf-
fic collision effectively and may lead to network hot spots frequently [5,24,26].

To overcome the weakness of ECMP, multiple adaptive load balancers have
been proposed for datacenters. While these solutions expose their attractive
properties, they have some limitations. Flow-based centralized approaches (e.g.,
Hedera [4], MicroTE [7], DFFR [10]) are simple to implement but a misfit for
volatile datacenter traffic. Switch-local protocols (e.g., Localflow [25], DRB [8])
operate in a distributed manner and scale better. Yet, they may cause severe
performance dip when network failures appear. Typical host-based methods
like MPTCP [24,28] require no specialized hardware support and facilitate the
deployment. However, they are always reactive and respond to congestion slowly.
Recently proposed in-network solutions (e.g., CONGA [5]) have more visibility
of active flows and work well in asymmetric networks. But they introduce extra
challenges to deploy due to their requirement of modifying switch fabrics to
support new protocols.

In this paper, we propose Distancer, a novel distributed load balancer for dat-
acenter traffic. We devise it as a purely host-based protocol to facilitate deploy-
ment, while simultaneously enable it to handle traffic congestion proactively.
With a deep investigation of TCP feedback mechanism, we skillfully leverage
ACKs to monitor network status and we also design reverse load balancing for
ACKs that can remarkably improve the performance. More specifically, Dis-
tancer is built below TCP layer at the host network stacks. It adaptively balances
traffic through the interaction of two components, which are called congestion
detector (C-Detector) and load-balancer (L-Balancer) respectively.

The key insight of C-Detector is that we leverage the flexibility of end-hosts to
measure the path states in real time. It innovatively exploits ACK arrival times
and the incremental acknowledged data to estimate the available capacities of
different paths. It also utilizes the feedback such as TCP retransmissions and
timeouts to detect non-local path failures. As the functionalities of C-Detector
are embedded into the normal process of packet reception/transmission, Dis-
tancer has the ability to perceive traffic congestion at fast timescales.

Based on the path-wise metrics from C-Detector, L-Balancer shifts traffic
from the overburdened paths to under-utilized paths proactively. With deep
investigation and bandwidth experiments, we argue that congested ACKs will
significantly reduce transmission throughput. Thus, we design reverse load bal-
ancing in L-Balancer to carefully select back paths for reverse ACKs as well as
data packets. L-Balancer also skillfully uses fliers as basic scheduling units and
adaptively allocates paths for them to further improve network performance. Dis-
tancer does not require switches to record flow statistics and path states which
are necessary for previous distributed solutions (e.g., DARD [29], CONGA [5],
LetFlow [27]). Thus, Distancer is purely host-based that requires no modification
of switches and highly facilitates the deployment in large-scale datacenters.

Distancer : Distributed Adaptive Load Balancer 569

In summary, the main highlights of Distancer can be concluded as follows:

1. Distancer is an end-host solution that is fully compatible with current com-
modity switches.

2. Distancer can react to network hot spots proactively and handles path failures
rapidly.

3. Distancer achieves load balance for ACKs as well as data packets, which
remarkably improve datacenter performance.

We conduct extensive evaluations to validate Distancer. Our results show that
in normal datacenter networks Distancer can achieve up to 40% and 20% better
average flow completion times (AFCTs) than ECMP and CONGA respectively.
Under the presence of multiple path failures, Distancer can improve the AFCT
up to 400% and 30% over ECMP and CONGA respectively.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
overview the existing work. We present the system framework of Distancer in
Sect. 3. Sections 4 and 5 are dedicated to the two important components of Dis-
tancer respectively. We evaluate Distancer and compare it with other approaches
in Sect. 6. Finally we conclude our work in Sect. 7.

2 Related Work

The latest large-scale datacenters are often built with multi-rooted topologies
such as Fat-tree [3] and Clos [13], which rely on multiple end-to-end paths to
meet high-bandwidth requirement. To fully use these paths, a great number
of load balancers have been proposed for datacenter traffic. These approaches
exhibit their attractive properties, but they cannot meet all the requirements
for practical load balancing in datacenters. The requirements include rapidly
responsive, fine-grained, highly robust and readily deployable.

For the first two properties, rapidly responsive and fine-grained are the basic
requirements for an effective load balancer. As previous literature suggests [6,19],
datacenter traffic are extremely volatile. To handle the highly dynamic traffic,
load balancers must respond to hot spots and make routing adjustment rapidly.
Among existing solutions, ECMP [16], Hedera [4] and FlowBender [17] schedule
traffic at flow-level. They either randomly hash flows onto different paths or
periodically reallocate paths based on network states. Thus, they cannot meet
the requirement of fine-grained. In contrast, PacketScatter [11] and MPTCP
[24,28] which operate at packet-level or subflow-level provide higher granularity
alternatives. Yet, PacketScatter is typically load-oblivious and MPTCP always
handles congestion reactively. So they neither are competent to cope with traffic
bursts at fast timescale.

The last two properties impose key requirements for practical deployment.
Highly robust requires the solutions amenable to network anormalies. In fact,
network failures are quite common in large-scale datacenters [12]. If the under-
lying load balancer is insensible to failures, they may misguide traffic onto the
abnormal paths and aggravate the performance dip. Another demand, readily

570 S. Wang et al.

deployable, requires the protocols to be readily implementable without modify-
ing any network hardware. This property ensures the convenient and costless
deployment. Switch-local solutions like Localflow [25], DRB [8] only can guar-
antee their efficiency in normal networks. They are unable to perceive remote
network failures so that they cannot satisfy the requirement of highly robust.
The recently proposed strategies like DARD [29], CONGA [5] can perform well
under the presence of failures. However, deployers must modify switch fabrics to
support their protocols, which violates the requirement of readily deployable.

We ensure Distancer to meet all the requirements when designing it. Dis-
tancer monitors path states in real-time so that it can react to congestion rapidly.
Unlike previous coarse-grained solutions, Distancer employs flier-switching and
reverse load balancing techniques to attain high-granularity scheduling. Com-
pared with switch-local methods, we enhance Distancer to detect network
anomalies and remedy performance degradation caused by network failures.
Finally, the protocol of Distancer is quite simple, which does not necessitate
any customized hardware.

3 Distancer in a Nutshell

As an end-host solution, Distancer is implemented as a lightweight layer at the
host network stacks. It logically resides below TCP layer and performs real-
time load balancing for TCP traffic. Before a TCP agent sends out load units,
Distancer is invoked to make routing decisions based on current network states.
Upon the arrivals of ACKs, Distancer derives the necessary information from the
packets, estimates current path states and caches the results into the memory.
To handle the non-local path failures, Distancer leverages the essential feedback
from TCP to perceive link anomalies. There are two significant features of Dis-
tancer : (1) All interactions for load balancing take place between the Distancer
layer and TCP layer. They are entirely transparent to the upper applications.
(2) The mechanism does not require any coordination with switches. It can be
easily deployed by directly update the network stacks.

From a functional standpoint, Distancer mainly comprises two components:
congestion detector (C-Detector) and load-balancer (L-Balancer). C-Detector is
responsible to evaluate path states and detect path failures while L-Balancer acts
as the routing logic to enforce fine-grained traffic scheduling. C-Detector and
L-Balancer interact through the congestion table, which records the real-time
path states and is maintained by the host. Once C-Detector obtains newer path
states, it will immediately update the congestion table. Before making balancing
decisions, L-Balancer will refer to the table and use the congestion information
to conduct adaptive routing. In next two sections, we will further explicate how
they incorporate to achieve fine-grained and effective load balancing.

4 Host-Based Congestion Detector

This section presents the details of C-Detector. We begin with the introduction
of our flier switching technique which provides a better granularity for load

Distancer : Distributed Adaptive Load Balancer 571

balancing. Then we elaborate on the details of utilizing feedback from TCP to
estimate network states rapidly. The estimated path metrics of C-Detector will
be utilized by L-Balancer to make scheduling decisions.

4.1 Flier-Based Switching

To make Distancer effective, we must choose a proper scheduling granularity for
it. Broadly speaking, prior approaches mostly balance traffic at the flow-level,
the packet-level or the subflow-level respectively. Flow-based solutions [4,16]
group packets into different flows and dynamically allocate paths for them. Thus
they fail to handle the sporadic congestion caused by packet bursts. Packet-
based methods [11] select path for every packet to balance link utilizations. They
are more fine-grained, yet introducing the risk of packet reordering. Subflow-
based protocols like MPTCP [24] open up multiple subflows to fully utilize the
redundant paths. However, they have the potential to exacerbate the network
competition and traffic Incast [5,24].

Recent mechanisms [5,18,25] also propose to employ flowlet switching for
load balancing. Flowlets are sequences of packets from one flow which are sep-
arated by predetermined time gaps. These methods use flowlets as the basic
scheduling units and adaptively allocate paths for them. However, flowlet-based
solutions have to face the difficulty of determining a proper time interval to split
flowlets. As indicated in [5], the actual time gaps between two adjacent flowlets
in datacenters are highly variable and unpredictable. We can hardly choose a
reasonable time gap to split flows in datacenter networks.

To step aside the problem associated with flowlet-switching, we skillfully
introduce flier-switching technique. A flier is defined as a congestion window of
a TCP agent. Distancer utilizes fliers as basic scheduling units and dynamically
distributes them to different paths. Since TCP sources always send out a whole
congestion window at once1, it is more natural and convenient to detect fliers at
host stacks than split flowlets at switches. In addition, authors in [18] have proved
that a flowlet is typically a congestion window or a portion of it. So we believe
that our flier switching technique is a reasonable alternative. By employing flier-
switching, we do not need to decide a rational time gap for fliers and modify
switches to add more functionalities, thus avoiding the extra overhead and costs
introduced by flowlet detection.

4.2 Estimating Congestion Levels of Different Paths

One of Distancer ’s innovations is to directly estimate path states at host stacks.
To achieve this goal, we introduce the key idea of TCP westwood (TCPW) [22].
In TCPW, senders rely on ACK packets to calculate available path capacities.
Distancer employs the similar idea to acquire the network-wide path status.

1 In the TCP implementation of Linux kernel, the function tcp output always sends
out a whole congestion window at once.

572 S. Wang et al.

Algorithm 1. Estimating Path States
1: while receive a new ACK do
2: acknocur ← ACK.ackno;
3: tcur ← now.time();
4: pidcur ← getP idFromTuples(acknocur);
5: if pidcur = pidlast then
6: CL(pid) ← tcur−tlast

(acknocur−acknolast)∗8 ;

7: Insert CL(pid) into the congestion table;
8: tlast ← tcur;
9: acknolast ← acknocur;

10: pidlast ← pidcur;

The algorithm for congestion estimation in C-Detector is presented in Algo-
rithm1. For a flier transmitted through path p, the sender will receive several
ACKs to acknowledge it. Distancer uses two kinds of information: (1) the arrival
times of these ACKs and (2) the incremental acknowledged data to calculate the
available bandwidth. We denote the acknowledge number of the ACK packet
arriving at time ti as acknoi. Then (acknoi+1 − acknoi) denotes the data bytes
which have been recently received by destination. (ti+1 − ti) records the elapsed
time to transmit these data. Then the current available bandwidth of path p can
be calculated as:

ABW (p) =
(acknoi+1 − acknoi) ∗ 8

ti+1 − ti

Naturally, current congestion level (CL) of path p can be defined as the reciprocal
of ABW (p), which is:

CL(p) =
1

ABW (p)

In this way, we attach a lower CL to the path which has higher available band-
width.

The next question is to determine which flier the received ACKs are acknowl-
edging so that we can use them to estimate path states. Before we send out a
flier, we record its first byte number, its last byte number and its path id as
a tuple (seqb, seqe, pid). Once an ACK arrives, its ackno can be used to deter-
mine which flier it is acknowledging. For example, a tuple (32, 5872, 2) means we
have sent a flier which contains data bytes from sequence 32 to sequence 5872
via path 2. Assuming that the sender later receives several acks with acknos
1492, 2952, 4412, 5872 respectively. It can quickly find that these acknos fall into
the sequence section of tuple (32, 5872, 2) and they are acknowledging data trav-
elling via path 2 (getPidFromTuples on line 4). Then the sender can immediately
calculate the CL of path 2. Note that we only store tuples for fliers which have
not be completely acknowledged. Once a flier has been totally acknowledged, its
tuple will be deleted. Therefore, the memory space used for storing tuples can
almost be ignored.

In addition, every host in Distancer manages a congestion table to stash
the real-time CLs of different paths. C-Detector continually updates the table

Distancer : Distributed Adaptive Load Balancer 573

Algorithm 2. Detecting Path Anomalies
1: while detect a RTO timeout or fast retransmission do
2: get the highest ack number acknoh;
3: pid ← getP idFromTuples(acknoh);
4: set CL(pid) to a large number;
5: insert CL(pid) into the congestion table;

by inserting newer CLs into it. Note that TCP agents on the same host are
allowed to invoke C-Detector to update the table entry simultaneously. In this
way, TCP agents on the same host can exchange their path information through
the shared congestion table. Once an agent refreshes the metrics, the others can
immediately get aware and make use of them to adjust traffic routing.

4.3 Detecting Path Anomalies

As introduced above, returned ACKs play a crucial role in the congestion estima-
tion. However, once link failures or severe congestion occurs, ACKs may get lost
halfway so that senders in Distancer cannot receive ACKs timely. To address the
problem caused by path anomalies, Distancer takes advantages of other feedback
such as RTO timeouts and retransmissions to update congestion tables.

Algorithm 2 describes what a TCP sender will do when RTO timeouts or fast
retransmissions appear in Distancer. Firstly, the sender will check current highest
ACK number acknoh it has received. To recognize the abnormal path, it invokes
function getP idFromTuples. Remember that we have cached a tuple for every
flier sent out. If acknoh falls into the sequence section of tuple (seqb, seqe, pid),
the function will return pid which means some packets transmitted through path
pid are dropped or delayed. In this way, the sender will realize that path pid is
aberrant and assigns a large number to CL(pid). By inserting CL(pid) into
the congestion table, other agents on this host will be informed to bypass the
abnormal path.

Since Distancer does not probe paths proactively, an aging mechanism for
the congestion table must be introduced. We adopt a simple aging strategy for
Distancer. If the table entry has not been updated for a while, it will gradu-
ally decay to zero (which represents the most healthy path). This mechanism
ensures that the severely congested path can become available again after a
proper period.

5 Two-Way Load Balancer

In this section, we explicate the core routing logic of Distancer called Two-way
Load Balancer (L-Balancer). We first explain how Distancer employs source
routing technique to schedule traffic distributedly. Then we present two main
functionalities: (1) adaptively selecting paths for fliers to avoid path oscillation;
(2) conducting reverse load balancing for ACK packets.

574 S. Wang et al.

5.1 Hierarchical Addressing Based Source Routing

According to our design principles, hosts in Distancer should be able to deter-
mine routing paths by themselves. To this end, Distancer introduces the source
routing technique which has been successfully applied in current datacenters
[14,29]. Unlike the Internet or enterprise network, datacenter networks often
have stable hierarchical topology. So it’s natural and convenient to deploy source
routing in datacenters.

Fig. 1. A fat tree topology with 16 hosts

To simplify switch functionalities, Distancer leverages hierarchical addressing
technique [29] to implement source routing. Hierarchical addressing allocates
IP addresses to servers based on their locations. For example, we respectively
numerate the core switches, the pods, the aggregation switches and edge switches
in Fig. 1 from left to right. We use aggrmn(egdemn) to denote the nth aggregate
switch (edge switch) in the mth pod. Then we can assign server Z an address
core4.aggr42.edge42.z, which means server Z can be reached from core4 downto
switch aggr42 and switch edge42.

With hierarchical addressing, every server in the network will receive mul-
tiple IP addresses, which can be configured via IP alias. Each address of a
host represents a unique path to that host. For instance, server Z in Fig. 1
can also have the address core3.aggr42.edge42.z, which determines another path
(core3 → aggr42 → edge42 → z) to reach it. In this way, source servers can
encode different addresses into the packet headers to control their routing. Note
that we need to correctly configure the routing table in switches to ensure right
forwarding. However, this can not be a problem in datacenter environment. As
datacenters are always under the centralized administration and have highly reg-
ular topologies, servers can easily know network topology in advance. Thus we
can directly initialize forwarding tables of switches at once and enables them to
support the routing for hierarchical addressing.

Distancer : Distributed Adaptive Load Balancer 575

5.2 Routing Logic for Fliers

One of L-Balancer’s responsibilities is to adaptively schedule fliers. By querying
the congestion table, it seems better for agents to always pick the least congested
path for their fliers. However, previous literature [20,29] suggests that load-
sensitive routing may result in path oscillations and instability, which in turn
harms the network performance. Distancer is no exception.

To overcome the instability brought by load-sensitive mechanism, we employ
the power of d-choice [21,23] which is widely applied into load balancing. At
the beginning of every routing decision, the sender first randomly sample half
of the paths into path set P and then select the best one as the final routing
path. Since Distancer updates the path states quite rapidly, such a technique can
avoid too many fliers to crowd into the same path by introducing randomness.
In addition, we also practically verify that this simple random-then-best strategy
can effectively prevent path oscillation in Distancer.

5.3 Reverse Load Balancing

TCP receivers in Distancer also carefully select back paths for reverse ACKs1,
which we call as reverse load balancing. The reverse load balancing guarantees
that ACKs won’t be congested and simultaneously ensures the ACK arrival times
obtained in C-Detector are accurate.

We present the core steps of L-Balancer in Algorithm 3. Different from the
way to handle data packets, receivers always send out ACKs through the best
path since ACK packets won’t bring about path oscillation. However, if the
receiver also acts as a sender, it’s still required to exploit random-then-best strat-
egy to avoid path oscillation.

Algorithm 3. Load Balancing Logic
1: while send packets do
2: if send a flier then
3: randomly select half of the paths into set P
4: select the path with the least CL from P as p;
5: send out the flier through path p;
6: cache the tuple (seqbeg, seqend, p) for the flier;
7: else if send an ACK then
8: select the path with the least CL as p;
9: route the ACK packet through path p

So far, we have presented all the details and characteristics of Distancer. In
next section, we extensively evaluate Distancer, compare it with several typical
solutions and validate its effectiveness.

1 Here we mean pure ACKs. The piggybacking ACKs are viewed as data packets by
Distancer.

576 S. Wang et al.

6 Evaluation

We evaluate the performance of Distancer with ns2 network simulator [2]. We
mainly compare Distancer with four typical load balancing techniques, which
respectively exploit four different granularities for datacenter load balancing:

– ECMP (flow-level): Randomly hashing flows onto different paths based on
their flow identifiers.

– PacketScatter (packet-level): Uniformly spraying packets through all the
output ports.

– MPTCP1 (subflow-level): Establishing subflows to fully utilize the multi-
ple paths.

– CONGA (flowlet-level): The newly proposed in-network load balancer
that is failure-robust.

It should be reminded that the first two methods are load-agnostic and the
latter two solutions are load-sensitive.

To elaborately validate the effectiveness of Distancer, we build a 250-host
fat-tree topology to evaluate the efficiency of above load balancers in normal
datacenter environment, and set up a 16-host network with multiple failed paths
to evaluate Distancer ’s ability in handling path failures.

In all experiments, we set the link capacities to 1 Gbps, the link propagation
delay to 100µs and the queue size to 100 packets which are similar to [25]. Flows
in our simulations arrive according to a Poisson process and their sizes are draw
from a Pareto distribution with a mean of 5M bytes. Unless specially specified,
we set the minRTO of TCP to 200 ms and the default packet size to 1500 bytes.

6.1 Load Balancing Efficiency

We generate three types of traffic patterns similar to [9,29] for this evaluation: (1)
Random pattern, where an end host communicates with any other host with 0.5
probability. This pattern helps to evaluate Distancer at relatively light workload.
(2) Stride Pattern, where a host initializes TCP flows to other hosts that reside
in different racks. This pattern can highly stress out the links in the core of the
network. (3) Permutation pattern, where a host establishes connections with all
other hosts. This traffic pattern is utilized to saturate the whole network. The
evaluation results are as follows:

Average Flow Completion Times. Figure 2 shows the average flow comple-
tion times (AFCTs) of different strategies under different traffic patterns. From
Fig. 2(a) and (b), we can see that under random and stride patterns Distancer
achieves 28%–40% and 18%–25% better AFCT than ECMP and PacketScat-
ter respectively. Actually, ECMP and PacketScatter are totally load-oblivious,

1 We moderately modify the MPTCP implementation on ns2 [1] to support our evalu-
ation. We establish four subflows for every MPTCP connection in our experiments.

Distancer : Distributed Adaptive Load Balancer 577

Fig. 2. AFCTs for different traffic patterns. The results are the average of 5 runs

they will either cause flow collisions or bring about packet reordering, so their
transmission performance is highly affected. In contrast, Distancer makes bal-
ancing adjustment based on network states. It monitors path qualities in real
time and avoids traffic congestion before-the-fact. This enables it to behave bet-
ter than ECMP and PacketScatter. Figure 2(c) shows their performance under
permutation pattern. Distancer only achieves 16% and 10% better AFCT than
ECMP and PacketScatter respectively. This happens because the network is
highly saturated by the permutation pattern and Distancer can only remedy
the performance degradation moderately.

In addition, Distancer achieves very similar performance with MPTCP under
the stride pattern and random pattern. Actually, these patterns generates inter-
pod flows which stretch across the core switches. It provides path diversity for
MPTCP to exploit so that it operates quite well. However, Fig. 2(c) shows that
Distancer can achieve up to 25% better AFCT than MPTCP under permutation
pattern at 90% workload. This happens due to the large number of rack-local
flows. Under permutation pattern, MPTCP cannot help much with the intra-pod
traffic and its subflows will exacerbate the competition at the access links. Com-
pared with CONGA, Distancer also improves AFCT up to 20% under different
patterns. This happens because CONGA is designed for spine-leaf2 networks on
purpose. It only controls the load balancing decisions on edge switches and spine
switches in CONGA employ ECMP. Thus CONGA can not operate optimally
in 3-tier networks so that its performance cannot catch up to Distancer.

Average Retransmission Times. Figure 3 shows that Distancer can reduce
up to 100% and 200% average retransmission times (ARTs) over PacketScatter
and ECMP respectively. This happens due to their improper utilizing of granu-
larities for load balancing. Flow-based ECMP may result in frequent path colli-
sions and continual packet drops. So its retransmission times are out of control.
Packet-based solutions like PacketScatter have the potential to be affected by
packet reordering. Its retransmission times reasonably go between ECMP and
Distancer. Unlike the former two solutions, Distancer employs flier-switching
technique to provide precise load balancing while simultaneously avoiding too
2 A multi-rooted tree topology that only comprises the edge switch layer and core

switch layer.

578 S. Wang et al.

Fig. 3. Retransmission times for different traffic patterns. The results are the average
of 5 runs

many retransmissions. We should also note that CONGA effectively avoids a
large number of retransmissions. Yet, since aggregate switches in CONGA have
to leverage ECMP to make routing decisions, its retransmissions are slightly
higher than Distancer. Moreover, Distancer is less likely to drop packets than
MPTCP at most times. This happens because that Distancer detects path fail-
ures more quickly and prevents network hot spots proactively while MPTCP
reacts to congestion until it happens. The proactive response helps Distancer
outperform MPTCP.

6.2 Handling Path Failures

To prove that Distancer can overcome the path failures well, we set up a 16-host
fat-tree network with one of the core links cut off (shown as the dotted line in
Fig. 1). The failed core link will cause several abnormal paths which can bring
severe side effects for traffic load balancers. We repeat the former three traffic
patterns on the asymmetric network and use the same metrics to evaluate these
mechanisms. According to our evaluations, ECMP performs very poorly under
stride and permutation traffic patterns. It even cannot terminate all flows after a
sufficient long period. We believe that the stride and permutation patterns may
exert high load pressure which is beyond the capability of ECMP. Thus we only
show the evaluation results under random pattern.

AFCTs and ARTs. Figure 4(a) shows the AFCT of different methods. It can
be observed that Distancer achieves almost 4× and 1× better AFCT than ECMP
and PacketScatter respectively. When compared with CONGA and MPTCP,
Distancer also improves the AFCT up to 30% and 40% respectively. Actu-
ally, ECMP and PacketScatter have no ability to address path failures so that
they fail to work well in asymmetric networks. While CONGA is designed as
a failure-robust mechanism for 2-tier networks, it cannot cope well with the 3-
tier link failure since it randomly selects the uphill paths at aggregate switches.
Distancer outperforms MPTCP due to its proactive reactions. Different from
MPTCP which handles packet drops reactively, Distancer perceives path fail-
ures quickly and shifts traffic to normal paths at RTT timescale. Thus it can

Distancer : Distributed Adaptive Load Balancer 579

Fig. 4. Evaluation results under path failures. The results are the average of 5 runs

improve the transmission performance more effectively. In fact, if we compare
the performance of Distancer from a horizontal view, we can see its AFCT is
only slightly lengthened when we increase traffic load from 10% to 50%. This
suggests that Distancer is rather robust to network failures. In addition, We
also depict their retransmission times in Fig. 4(b), it also helps to demonstrate
Distancer ’s advantages in addressing path anomalies.

The Rate of Dropping Packets. To further explain why Distancer addresses
path failures better, we track the number of dropped packets at the aberrant link
every 50 ms. Figure 4(c) illustrates our results in detail. Note that for simplicity
we only depict the results for the three load-sensitive approaches. From Fig. 4(c),
we see that MPTCP may drop a large number of packets at the failed link at
once (0.35–0.50 s). And then its drop rate will decrease to a normal level. This
happens because MPTCP adjusts the congestion windows of different subflows
a little slowly. It gradually shifts traffic from failed links to normal paths after
congestion happens. In contrast, CONGA behaves better than MPTCP. CONGA
tries to avoid routing via failed path through the load balancing logic at edge
switches. However, it still cannot prevent packet drops at the 3-tier failed link
since it cannot control the routing path at the third tier. Distancer exhibits
better overall performance than its two counterparts. Even its dropped packets
surpasses others occasionally, it effectively avoids packet losses at most time.

580 S. Wang et al.

This happens due to the failure-avoiding capability of Distancer. As we have
highlighted before, once an agent detects severe congestion or link failures, all
other TCP connections can quickly realize it and keep away from them. However,
after several aging periods, congestion metric of the failed path will gradually
decays. So the path will be probed again and packets may be discarded there
again (0.40 s, 0.65 s, 0.90 s).

7 Conclusion

We propose Distancer, a distributed adaptive load balancing strategy for dat-
acenters. Based on our investigation of TCP feedback mechanism, Distancer
employs C-Detector to estimate path states at host stacks and relies on L-
Balancer to perform fine-grained two-way load balancing, so that it can han-
dle traffic congestion and link failures proactively. As an end-host mechanism,
Distancer is compatible with commodity switches and introduces little overhead
to the network. We evaluate Distancer on the network simulator ns2. The final
results show that Distancer can achieve higher performance than current typical
load balancing strategies in both normal and asymmetric datacenter networks.

References

1. Multipath TCP on NS-2. https://code.google.com/p/multipath-tcp/
2. The NS-2 network simulator. http://www.isi.edu/nsnam/ns
3. Al-Fares, M., Loukissas, A., et al.: A scalable, commodity data center network

architecture. In: ACM SIGCOMM CCR, vol. 38, pp. 63–74 (2008)
4. Al-Fares, M., Radhakrishnan, S., et al.: Hedera: dynamic flow scheduling for data

center networks. In: Proceedings of NSDI, vol. 10, p. 19 (2010)
5. Alizadeh, M., Edsall, T., et al.: CONGA: distributed congestion-aware load bal-

ancing for datacenters. In: Proceedings of ACM SIGCOMM, pp. 503–514 (2014)
6. Benson, T., Akella, A., et al.: Network traffic characteristics of data centers in the

wild. In: Proceedings of ACM IMC, pp. 267–280 (2010)
7. Benson, T., Anand, A., et al.: MicroTE: fine grained traffic engineering for data

centers. In: Proceedings of ACM CoNEXT, p. 8 (2011)
8. Cao, J., Xia, R., et al.: Per-packet load-balanced, low-latency routing for clos-based

data center networks. In: Proceedings of ACM CoNEXT, pp. 49–60 (2013)
9. Cao, Y., Xu, M., et al.: Explicit multipath congestion control for data center net-

works. In: Proceedings of ACM CoNEXT, pp. 73–84 (2013)
10. Cheung, C.M., Leung, K.C.: DFFR: a flow-based approach for distributed load

balancing in data center networks. Comput. Commun. 116, 1–8 (2018)
11. Dixit, A., Prakash, P., et al.: On the impact of packet spraying in data center

networks. In: Proceedings of IEEE INFOCOM, pp. 2130–2138 (2013)
12. Gill, P., Jain, N., et al.: Understanding network failures in data centers: measure-

ment, analysis, and implications. In: ACM SIGCOMM CCR, vol. 41, pp. 350–361
(2011)

13. Greenberg, A., Hamilton, J.R., et al.: Vl2: a scalable and flexible data center net-
work. In: ACM SIGCOMM CCR, vol. 39, pp. 51–62 (2009)

https://code.google.com/p/multipath-tcp/
http://www.isi.edu/nsnam/ns

Distancer : Distributed Adaptive Load Balancer 581

14. Guo, C., Lu, G., et al.: SecondNet: a data center network virtualization architecture
with bandwidth guarantees. In: Proceedings of ACM CoNEXT, pp. 15–26 (2010)

15. Guo, C., Wu, H., et al.: DCell: a scalable and fault-tolerant network structure for
data centers. ACM SIGCOMM CCR 38(4), 75–86 (2008)

16. Hopps, C.E.: Analysis of an equal-cost multi-path algorithm (2000)
17. Kabbani, A., Vamanan, B., et al.: FlowBender: flow-level adaptive routing for

improved latency and throughput in datacenter networks. In: Proceedings of the
10th ACM International on Conference on emerging Networking Experiments and
Technologies, pp. 149–160. ACM (2014)

18. Kandula, S., Katabi, D., et al.: Dynamic load balancing without packet reordering.
ACM SIGCOMM CCR 37(2), 51–62 (2007)

19. Kandula, S., Sengupta, S., et al.: The nature of data center traffic: measurements
& analysis. In: Proceedings of ACM IMC, pp. 202–208 (2009)

20. Khanna, A., Zinky, J.: The revised arpanet routing metric. In: ACM SIGCOMM
CCR, vol. 19, pp. 45–56 (1989)

21. Luczak, M.J., McDiarmid, C., et al.: On the power of two choices: balls and bins
in continuous time. Ann. Appl. Probab. 15(3), 1733–1764 (2005)

22. Mascolo, S., Casetti, C., et al.: TCP westwood: bandwidth estimation for enhanced
transport over wireless links. In: Proceedings of ACM MobiCom, pp. 287–297
(2001)

23. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE
Trans. Parallel Distrib. Syst. 12(10), 1094–1104 (2001)

24. Raiciu, C., Barre, S., et al.: Improving datacenter performance and robustness with
multipath TCP. In: ACM SIGCOMM CCR, vol. 41, pp. 266–277 (2011)

25. Sen, S., Shue, D., et al.: Scalable, optimal flow routing in datacenters via local link
balancing. In: Proceedings of ACM CoNEXT, pp. 151–162 (2013)

26. Shafiee, M., Ghaderi, J.: A simple congestion-aware algorithm for load balancing
in datacenter networks. IEEE/ACM Trans. Netw. 25(6), 3670–3682 (2017)

27. Vanini, E., Pan, R., Alizadeh, M., Taheri, P., Edsall, T.: Let it flow: resilient asym-
metric load balancing with flowlet switching. In: Proceedings of NSDI. USENIX
(2017)

28. Wischik, D., Raiciu, C., et al.: Design, implementation and evaluation of congestion
control for multipath TCP. In: Proceedings of NSDI, vol. 11, p. 8 (2011)

29. Wu, X., Yang, X.: DARD: distributed adaptive routing for datacenter networks.
In: Proceedings of IEEE ICDCS, pp. 32–41 (2012)

MoSa: A Modeling and Sentiment
Analysis System for Mobile

Application Big Data

Yaocheng Zhang1,2,6, Wei Ren1,2,3,6(B), Tianqing Zhu4, and Wei Bi5

1 School of Computer Science, China University of Geoscience,
Wuhan 430074, People’s Republic of China

2 Guizhou Provincial Key Laboratory of Public Big Data, GuiZhou University,
Guiyang 550025, Guizhou, People’s Republic of China

3 Hubei Key Laboratory of Intelligent Geo-Information Processing,
China University of Geosciences (Wuhan), Wuhan 430074, People’s Republic of China

weirencs@cug.edu.cn
4 School of Software, University of Technology Sydney, Ultimo, NSW 2007, Australia

5 SeeleTech Corporation, San Francisco 94107, USA
6 School of Computer Science, China University of Geosciences,

Wuhan 430074, People’s Republic of China

Abstract. A large amount of data about ending users are generated in
the interaction over mobile applications, which becomes a valuable data
source for sensing human behaviors and public sentiment trends on some
topics. Existing works concentrate on traditional feedback data from web
sites, which usually come from desktops instead of from mobile termi-
nals. Few studies have been conducted on interactive data from mobile
applications such as news aggregation and recommendation applications.
In this paper, we propose a system that can model feedback behaviors of
mobile users, and can analyze sentiment trends in mobile feedbacks. The
testing data are authentic and are dumped from the most frequently
used mobile application in China called Toutiao. We propose several
analysis methods on sentiment of comments, and modeling algorithms
on feedback behaviors. We build a system called MoSa and by using the
system, we discover several implicit behavior models and hidden sen-
timent trends as follows: During news spreading stage, the number of
comments grow linearly per month with slope of 3 in 3 months; The
dynamics of replying comments are positively correlated with personal
daily routines in 24 h; Replying comment behaviors are much more rare
than clicking agreement behaviors in mobile applications; The standard
deviation of sentiment values in comments are highly influenced by tim-
ing stages. Our system and modeling methods provide empirical results
for guiding interaction design in mobile Internet, social networks, and
blockchain-based crowdsourcing.

Keywords: Mobile big data · Sentiment analysis
Behavior modeling · Mobile applications

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 582–595, 2018.
https://doi.org/10.1007/978-3-030-05054-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_44&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_44

MoSa: A Modeling and Sentiment Analysis System 583

1 Introduction

With the development of mobile Internet, Android has become the world’s largest
operating system since 2017 according to the data proposed by the Internet
counting web site - Statcounter. According to the data proposed by Ministry of
Industry and Information Technology in China, the number of 4G users have
reached to 1.03 billion since February 2018. By analyzing those data we find
that the number of personal mobile computing devices are increasing rapidly.
Meanwhile, the average time that is spent by persons in ages of 18 to 45 is about
4 h per day.

Because much time are spent in using mobile Apps, there will be more data
such as feedback are being generated by users who use those Apps (called endoge-
nous data). By analyzing those data, we can optimize the recommendation sys-
tems, monitor suspicious entities in the network, and collect online large-scale
public opinion events early. Therefore, feedback data from mobile Apps will
become a valuable data source for sensing public opinion trends after sufficient
data are accumulated and captured.

To analyze opinion implications and public trends from those mobile appli-
cation big data, we always need to use sentiment analysis. Traditional sentiment
analysis may perform well for long texts. However, comments, especially com-
ments from mobile applications, which is always shorter, are more difficult to
analyze. Because the comment from mobile applications are always be changeful
in format, and in most time it is too short to get some meaningful informa-
tion about with sentiment by using traditional methods. It imposes much more
difficulties to reveal the implications in short comments comparing with other
text sources from network such as forums and blogs. In this paper, we explore a
new kind of big data from mobile Internet - feedback data, which mainly come
from mobile applications such as news application, in which consists of replying
comments and the number of clicking agreement. Moreover, we also explore the
feedback model of users in mobile applications on mobile devices. The contribu-
tion of the paper is as follows:

1. We propose a new method to analysis comment’s sentiment trend from mobile
applications.

2. We propose a new model to quantifying user’s feedback behaviors in mobile
news applications, which can facilitate to understand feedback utilities.

The rest of the paper is organized as follows: Previous works are reviewed in
Sect. 2. We present basic setting on sentiment analysis methods in Sect. 3. We
propose a method to compute sentiment scores of special texts such as short
comments in Sect. 4. The evaluation of our proposed system is conducted in
Sect. 5. The paper is concluded in Sect. 6.

2 Related Work

In general, the research works for text sentiment analysis including machine
learning based method and semantic dictionary based method. In the machine-

584 Y. Zhang et al.

based sentiment analysis method, Yang et al. [4] use SVM-based classification
methods to conduct sentiment classification of four kinds of granularity. Accord-
ing to the results analysis, it performs well in COAE2009’s evaluation task. In
addition, Fan et al. [5] proposed K-neighborhood scheme. They firstly determine
the local sentiment tendencies of texts, then use KNN algorithm to calculate
the sentiment tendencies of full texts. This algorithm still needs to mark some
text sentiment values artificially. It has certain advantages compare with tradi-
tional machine learning methods in judgment accuracy, but the result is mainly
influenced by subjective. In the study of Liu et al. [14], they use three different
machine learning programs including SVM scheme, Naive Bayes scheme, and N-
meta-language model. Their scheme selects three different features include IG [3],
CHI statistics, and TF (document frequency) as well as three different calculation
schemes about feature’s weight: Boolean feature weight, word frequency char-
acteristic weight, and TF-IDF [8], to classify the data from micro-blog through
sentiment analysis. Their result shows that SVM, IG and TF-IDF are the best
combination to get good results in classification. But, their program can only
resolve specific area data. For different area’s analysis, a different model need to
be established. Popescu et al. [6] firstly calculate the PMI value and then using
Bayes classifier to process the data.

For semantic dictionary-based research programs, most works are based on
existing sentiment dictionaries. For example, Zhou et al. [11] use HowNet and
SentiWordNet to decompose a number of words into sense words, and then cal-
culate the sentiment value of words, lastly use SVM method to calculate a text’s
sentiment values. Delan et al. [1] use the algorithm on word similarity degree,
the algorithm on semantic similarity degree, and the algorithm on grammatical
similarity degree to calculate sentence complacency degree. The result shows
that their scheme is similar to manual judgment. Dong et al. [2] introduce the
related knowledge about HowNet, and the description of ever sense words in the
HowNet by details. Wang et al. [13] use HowNet and PMI to calculate the senti-
ment polarity of a word. Their schemes improve the accuracy up 5% compared
with general scheme.

As the number of texts in the network are huge, Yang et al. [9] adapt the con-
cept of comment cluster to replace of a class of comments, and use the comment
cluster’s sentiment tendencies to instead of all comments sentiment tendency
in the cluster. Their method can improve the efficiency of sentiment mining
algorithm with adding 58% accuracy of checking network public opinion.

To analyzing comments from mobile applications, we use the method based
on sentiment dictionary. However different with old methods only with sentiment
dictionary, we also propose some new dictionaries to strengthen the effect of our
work, such as negative word dictionary and similarity sentiment dictionary. Also,
we propose a new method in below to get the comment’s sentiment score. By
using those new methods and tools we complete our work in this paper.

MoSa: A Modeling and Sentiment Analysis System 585

3 Sentiment Analysis Method

Sentiment analysis is a subjective text mining and analysis technology to get
useful knowledge and information [7,10,12] from texts. Its main objective is to
determine the sentiment tendencies of the subjective text. In this paper, we
use the method based on sentiment dictionary from HowNet and degree adverb
dictionary with some new dictionaries as negative word dictionary and similarity
sentiment dictionary constructed by us.

Our sentiment analysis method consists of three steps: (1) text preprocessing,
(2) sentiment information extraction, and (3) sentiment classification. Specific
descriptions of each step are shown as follows:

(1) Text preprocessing.
To analyzing a text’s sentiment tendency, pretreatment is required. Here,
the text is unstructured. First of all, a text is composed by different para-
graphs, thus we need to cut the text according to paragraphs, and store each
paragraphs in our database solely. Secondly, each paragraph is composed by
different sentences, so we then divide sentences by cutting the paragraphs
base on some English symbols such as “.”, “!”, “?”, “;” or same symbols in
Chinese. Next, we store those sentences in our database solely. Because each
sentence is also composed by different short opinions sentences, so we cut the
sentence according to “,” or separate them by space to obtain several short
opinion sentences. In this way, an unstructured text can be decomposed into
multiple structured texts.
After above work we need to eliminate some useless (chaos) words. The term
“stop word” refers to a word (some words) that is (are) automatically ignored
in the information retrieval. In order to save storage space and improve the
retrieval efficiency, we need to eliminate those stop words before or after pro-
cessing the natural language data (or text). Because these stop words have
little influence in sentiment analysis, we need to remove these deceptive words
from the results of word segmentation. In this paper, we contribute a stop
word dictionary to eliminate stop words in opinion sentences.

(2) Sentiment information extraction.
Sentiment information extraction extracts the sentiment information that is
valuable in texts. In this paper, we propose to use the sentiment dictionary
from HowNet, degree adverb dictionary from Internet, and negative word dic-
tionary by us to obtain sentiment elements in opinion sentences.
In the sentiment dictionary from HowNet, there are many sentiment words
with their sentiment score. In the degree adverb dictionary from Internet,
there are many adverb words with their degree score. In the negative word
dictionary by us, there are many negative words. By using those three dic-
tionaries, we compare words in opinion sentences to confirm the kind of each
word and give the word score. Specially, if the word is negative word, the
word score is “−1”.

(3) Sentiment classification.
The sentiment classification determines sentiment tendencies of the text.

586 Y. Zhang et al.

In this paper, we propose an algorithm to calculate text sentiment score. To
calculate text sentiment score, firstly we divide a text into paragraphs, then
cut a paragraph into sentences, and lastly separate sentences into opinion
words. After this, we firstly calculate sentiment scores of opinion words, then
compute sentiment scores of sentences, next sum scores of paragraphs, and
finally we can obtain the sentiment score of the text. Base on the sentiment
score of the text, we can analysis the sentiment tendency of the text. The spe-
cific method to calculate the text sentiment score will be proposed in Sect. 4.
In general, if the score is greater than 0, the sentiment tendency of the text
will be positive. Otherwise, the sentiment tendency of the text is negative.
By using above methods, we can obtain a comment’s sentiment score. Gen-
erally speaking, the greater of the comment’s absolute sentiment score, the
stronger of the sentiment tendency of the comment.

4 Proposed Scheme

Base on the way described in the last section, we hereby propose a specific
method to calculate a text’s sentiment score. Particularly, we concentrate on
comments from mobile applications, which is remarkable sources for implying
public opinions. We propose several new algorithms that are tailed design for
comment data, which present distinct difficulties due to its short and chaos
properties.

4.1 Computing Sentiment Values of Opinion Sentences

For a sentiment word, it will be assigned a sentiment value, denoted as S. In
general, if a degree adverb appears in front of this sentiment word, that degree
adverb is used to strengthen the sentiment value of this word. We assume that
the degree is D. If there is a negative word before the sentiment word, then the
sentiment polarity of the sentiment word will be reversed. We set the value of
the negative word to −1. As the odd number of negative words in Chinese is
still negative, but even negative words for the positive state. Thus, we give the
following Algorithm 1 to calculate the sentiment value of an opinion sentence.

After above operations, the sentiment value of an opinion sentence is avail-
able. If the value is greater than 0, the sentiment tendency is positive. If it is
less than 0, the sentiment tendency of the opinion sentence is negative. If it is
around 0, it means that the opinion sentence is neutral. The higher is the senti-
ment value of the opinion sentence, the stronger is the tendency of the opinion
sentence.

4.2 Computing Sentiment Values of Sentences

After getting the sentiment value of an opinion sentence, the sentiment value of
a sentence is obtained based on the following method:

scoresenten =
L∑

i=1

i

L
∗ scoreopinsenten (1)

MoSa: A Modeling and Sentiment Analysis System 587

Algorithm 1. Calculate Opinion Sentence Score
set W = 1, Score = 0;
for word ∈ OpinionSentence do

if word ∈ degreeDict then
set W = W ∗ D(word);

else
if Word ∈ notDict then

set W = W ∗ −1;
else

if word ∈ senDcit then
set Score = Score + W ∗ S(word);
set W = 1;

end if
end if

end if
end for
return Score;

where i represents the position of the opinion sentence throughout the sentence;
L represents the number of opinion sentences contained in the sentence.

By using method 1, we can calculate the sentiment value of a sentence. The
reason is that in Chinese, it is common to state important information at the
end of the sentence [10]. We stress that the importance of an opinion sentence
is related to its location.

4.3 Computing Sentiment Values of Comments

Different from calculating the sentiment value of a sentence, we analyze the
influence of different sentences in the paragraph to it’s sentiment value, and
propose a method to calculate the value of a paragraph’s sentiment:

weight =
{

L−i
L i < L

4
i
L i >= L

4

(2)

scoreParagraph =
L∑

i=1

weight ∗ scoresentence (3)

where i represents the position of the sentence in a paragraph, starting at 1; L
represents the number of sentences in the paragraph.

4.4 Judging Unlisted Words

The most critical step in calculating the sentiment value of an opinion sentence is
to compare the word in the opinion sentence to the word in sentiment dictionary,
negative word dictionary, and degree word dictionary, so as to classify the word’s
kind and get the word’s score.

588 Y. Zhang et al.

The sentiment dictionary we use to analyze sentiment words is based on
HowNet. However, this system has not been updated for a long time, and many
words have new implications in recent years, especially in mobile applications
environment. Thus, we need to update our sentiment dictionary to detect as
much sentiment words as possible to make our system be more useful.

Word2Vec is a software tool developed by Google for training word vector.
It expresses a word as a vector form efficiently according to a given corpus. In
our proposed system, we use Word2Vec to find out the most similar word to
an unlisted word in the corpus. The unlisted word is the word or words which
is(are) not collected in the sentiment dictionary, negative word dictionary, and
degree word dictionary, but is(are) essential to judge the sentiment tendency of
a sentence.

It is very simple to implement the code in Python to use Word2Vec to training
the word vector. Firstly we need to obtain the corpus for training. The corpus
contains all article’s content we have collected, with all the comments of articles,
negative word dictionary, degree adverb dictionary, and sentiment dictionary’s
content.

We use some methods in Word2Vec model to increase the accuracy of the
model. We can treat our existing dictionary as a training corpus for the original
Word2Vec model, and upgrade to a new model for further training. After the
model is updated, we can test its efficiency. By entering “China” for testing, the
results are shown in Fig. 1:

Fig. 1. Use Word2Vec model to verify effects of similarity

The function to detect similarity in the model is model.most similar(). The
function returns the most similar words in the model to “China” and returns
the values of the corresponding similarity. The figures from left to right are the
result by using the model of word2vec, word2vec2, word2vec3.

We use the word2vec3 model to search similar word for unlisted words. By
using the model.most similar function, we can find the first 10 words that are
most similar to unlisted words. In the training model we have dumped all news,
comments, sentiment dictionary, negative word dictionary, and degree word dic-
tionary’s content into the model file. Thus it is inevitable to find the most similar

MoSa: A Modeling and Sentiment Analysis System 589

word in the model file with unlisted words. If an unlisted word is in one of those
3 dictionaries, we enclose the word into the dictionary, and calculate the score
of the word. The score of the word is calculating as

scoreunlisted = scoremostsimilarword ∗ degreesimilarity (4)

where scoremostsimiliarword is the score of the most similar word in the dictio-
nary; degreesimilarity is the similarity degree of the word, which can be computed
by using model.most similar().

5 Experiment Results and Analysis

5.1 Analysis About Comment’s Sentiment Score

In the experiment, we select 100 comments randomly, and get the scores of those
comments. Here we assume that the comment tendency is neutral if the comment
sentiment score is less than 1 but greater than −0.3. The comment sentiment
tendency is positive, if the sentiment score is greater than 1. The comment
sentiment tendency is negative, if the sentiment score is less than −0.3. Then
we judge the comment sentiment tendency manually, and give the comment
sentiment tendency. The result is shown in Table 1.

Table 1. Machine and manual judgment about 100 comment’s sentiment tendency

Positive Negative Neutral

Machine 34 48 18

Artificial 33 50 17

In the Table 1, we state that it is rational to use Algorithm 1 and other two
methods to calculate the comment sentiment score. We verify the correctness
about those three algorithms by calculate the recall rate R, correct rate P , and
F value by using above data. More specifically, correctly rate P = A

B , recall rate
R = A

C , and F = 2∗P ∗R∗(P +R) [10]. Here A represents the comment number
with the comment is tagged as positive (negative and neutral) comments both
by using machine and artificial method. B represents the comment number with
the comment is tagged as positive (negative and neutral) comment, only using
machine method, and C represents the comment number with the comment is
tagged as positive (negative and neutral) comment, only using artificial method.

After analyzing the data in the Table 1, we list the result of P, R, F in the
Table 2.

In the Table 2, it shows that it is useful by using Algorithm1 and other
two methods to calculate the comment sentiment score. We also find that it is
more useful to detect negative comments by using those algorithms than detect
positive and neutral comments.

590 Y. Zhang et al.

Table 2. The correct rate P , recall rate R, and F value

Sentence polarity P R F

Positive 28/34 = 82.35% 82/33 = 84.85% 83.58%

Negative 45/48 = 93.75% 45/50 = 90% 91.84%

Neutral 14/18 = 77.78% 14/17 = 82.35% 80%

5.2 Analysis

There are some experiments blow, during the experiment, we have some expla-
nation to the experiment results. The reason why we do those experiments is to
get the data statistic’s rule from the endogenous data from mobile applications,
and to find some user behaviors model in mobile applications.

Comment Number Distribution vs Time

(1) The distribution of comment number in three months.
Figure 2 depicts the distribution of comments number in 3 months. According
to statistics, the number of comments on a topic (e.g., “THAAD”) event in
Toutiao has a rapid growth pattern in three months from January to March
2017. The number of comments in January was 12520, with 26569 in February
and 74568 in March, in which presenting a linear growth per month with the
slope of 3. It can be found that, with the fermentation of hot news events,
the attention to the relevant events growth explosively.

(2) The distribution of comment number in one month.
Figure 3 shows the changes about the comment number from February to
March in 2017. Both of these pictures show very strongly fluctuations, espe-
cially in February. By analysis the news in the peak of comment number in
both two months. The peak of the comment number coincides with some hot
news happening. From above images, it can be seen that since March, the
general public attention to relevant events has been gradually decreasing.

(3) The distribution of comment number in one day.
Figure 4 reflects the changes of comment number with hour times in a day. It
can be clearly seen that the number of comments in one day is perfectly coinci-
dent with normal personal spare time in daily life. For example, the number of
comments rises gradually between 4 a.m. and 9 a.m. But between 9 and 11, the
number of comments goes down or drops slightly. Between 11 and 12, there is
another uplift, because it is a time for taking a break (reading news). Between
12 and 14, there is a drop due to lunch time or noon sleep.

Comment Sentiment Score vs the Number of Reply or Clicking Agree-
ment

(1) The relationship between comment scores with the number of clicking agree-
ments.

MoSa: A Modeling and Sentiment Analysis System 591

Fig. 2. The relationship between the number of comments with month

Fig. 3. The relationship between the number of comments with month in February
and March

Fig. 4. The relationship between the number of comments with time in a day

592 Y. Zhang et al.

Figure 5 reflects the relationship between the score of comments with the num-
ber of clicking agreement for the comment. Because the comment score is too
small to show in the figure, we expand the score of all comments by a factor
as 1000. It shows that the more clicking agreement number of the comment,
the comment sentiment tendency is more likely tendency to neutral, whose
score is around 0. If a comment score is larger, then the number of clicking
agreement is smaller. But in general, the number of clicking agreement for
positive comments is more than that for negative comments.

(2) The relationship between comment scores with the number of replies.
Figure 6 is similar to Fig. 5. However, it is obvious that the number of reply
is much smaller than the number of clicking agreement.

Fig. 5. The relationship between the number of clicking agreement with the comment
score

The Relationship Between Comment Sentiment Score’s Standard
Deviation with Time

(1) The relationship between the standard deviation of comment scores with time
lasting in a month.
Figure 7 shows the relationship between the standard deviation of comment’s
sentiment score with time lasting in February 2017. By analysis the data we
can find that the standard deviation of sentiment value tends to be flat or
even smaller (As public opinions tend to be same on the same event, for exam-
ple, from February 16 to February 19, the sentiment value of the comments
on the “THAAD” event gradually returned to a neutral position). However,
the standard deviation of sentiment score for comments will rise above nor-
mal proportion when the same event are renewed after news subsides. It is
because new updates are published and they may present different or even
opposite sentimental tendencies with the original one (For example, the stan-
dard deviation of sentiment scores is very large in February 22. After checking

MoSa: A Modeling and Sentiment Analysis System 593

Fig. 6. The relationship between the number of reply with the comment score

Fig. 7. The standard deviation of comment score with time in February

Fig. 8. The standard deviation of comment score with time in March

594 Y. Zhang et al.

the news in February 22, we find it is “Rok and US military exercises are in
the process, whether THAAD will be able to deploy” and some other relevant
news). The reason why we use standard deviation in this part is that standard
deviation can reflect the average dispersion of data, which is good at reflect
people’s sentiment tendency’s divergence.

(2) The relationship between the standard deviation of comment scores with time
lasting in another month.
Figure 8 shows the standard deviation distribution of comment scores vs time
lasting in March 2017, which has the similar characteristics in Fig. 7.

6 Conclusion

In this paper, we propose a novel system for sensing and analyzing mobile appli-
cation big data such as news comments. We propose a sentiment analysis method
based on sentiment dictionary to calculate comment sentiment score and judg-
ing the comment sentiment tendency. The extensive experiments and analysis
verify the correctness of the proposed algorithms. We also points out some mod-
els base on statistics to user behaviors such as replying comments and clicking
agreements, and its relation between behaviors and duration time.

From our experiments and analysis, it is possible to predict a large scale
opinion trend. Those observations and capabilities can help us to strengthen
news recommendation system, create opinion intervention system, sense public
opinion implications, and design interactive manners in mobile applications.

Acknowledgement. The research was financially supported by Major Scientific and
Technological Special Project of Guizhou Province under Grant No. 20183001, the
Open Funding of Guizhou Provincial Key Laboratory of Public Big Data under Grant
No. 2017BDKFJJ006, Open Funding of Hubei Provincial Key Laboratory of Intelligent
Geo-Information Processing with under Grant No. KLIGIP2016A05, and National Nat-
ural Science Foundation of China under Grant No. 61502362. We also thanks for the
comments from W. Jiang, S. Lin, Y. Liao, and M. Lei.

References

1. Delan, X., Juming, C., Shengli, T.: Orientation research based on HowNet. Com-
put. Eng. Appl. 44(22), 143–145 (2008)

2. Dong, Z., Dong, Q.: HowNet and the Computation of Meaning. World Scientific
Publishing Co., Inc., Hackensack (2006)

3. Shi, H., Jia, D., Miao, P.: Improved information gain text feature selection algo-
rithm based on word frequency information. Comput. Appl. 34(11), 3279–3282
(2014)

4. Yang, J., Lin, S.: Emotion analysis on text words and sentences based on SVM.
Comput. Appl. Softw. 28(9), 225–228 (2011)

5. Fan, N., An, Y., Li, H.: Research on analyzing sentiment of texts based on k-nearest
neighbor algorithm. Comput. Eng. Des. 33(3), 1160–1164 (2012)

6. Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews.
In: HLT/EMNLP on Interactive Demonstrations, pp. 32–33 (2005)

MoSa: A Modeling and Sentiment Analysis System 595

7. Wei, W., Xiang, Y., Chen, Q.: Survey on Chinese text sentiment analysis. J. Com-
put. Appl. 31(12), 3321–3323 (2011)

8. Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting TF-IDF term
weights as making relevance decisions. ACM Trans. Inf. Syst. 26(3), 55–59 (2008)

9. Yang, X., Ma, Q., Yu, L., Mo, Y., Wu, J., Zhang, Y.: Gauging public opinion with
comment-clusters. New Technol. Libr. Inf. Serv. 32(7), 51–59 (2016)

10. Yijin, C., Shujin, C., Guihong, C.: Online public opinion mining: user’s sentiment
analysis. Doc. Inf. Knowl. 6, 90–96 (2013)

11. Zhou, Y., Yang, J., Yang, A.: A method on building chinese sentiment lexicon for
text sentiment analysis. J. Shandong Univ. (Eng. Sci.) 6, 27–33 (2013)

12. Zhao, Y.Y., Qin, B., Liu, T.: Sentiment analysis. J. Softw. 21(8), 1834–1848 (2010)
13. Wang, Z., Wu, Z., Hu, F.: Words sentiment polarity calculation based on HowNet

and PMI. Comput. Eng. 38(15), 187–189 (2012)
14. Liu, Z., Liu, L.: Empirical study of sentiment classification for Chinese microblog

based on machine learning. Comput. Eng. Appl. 48(1), 1–4 (2012)

SDVRP-Based Reposition Routing
in Bike-Sharing System

Zengyi Han1 , Yongjian Yang2, Yunpeng Jiang1, Wenbin Liu2,
and En Wang2(B)

1 Department of Software, Jilin University, Changchun 130012, China
{hanzy15,jiangyp15}@mails.jlu.edu.cn

2 Department of Computer Science and Technology, Jilin University,
Changchun 130012, China

{yyj,liuwb16,wangen}@jlu.edu.cn

Abstract. Bike-sharing systems have recently been widely imple-
mented. Despite providing green transportation method and a healthy
lifestyle, bike-sharing systems also poses problems for system operators:
In order to meet the public’s demand as much as possible, operators
must use multiple trucks to relocate new bikes and repaired bikes from
the depot to different stations. Then, the route to minimize the cost for
the delivery trucks becomes a serious problem. To address this issue, we
first formulate the problem into a split delivery vehicle routing problem
(SDVRP) since every station’s demand can satisfied by multiple trucks,
and use the K-means algorithm to cluster stations. In general, K-means is
used to cluster the nearest points without constraint. In this real-world
constraint problem, the sum of zones’ demands must be smaller than
total truck capacity. Therefore, we transform the SDVRP into a travel-
ing salesman problem (TSP) by using a constrainted K-means algorithm
to cluster stations with the demand constraint. Finally, according to the
context, we use a genetic algorithm to solve the TSP. The Evaluation
considers four real-world open datasets from bike-sharing systems and
shows that our method can solve this problem effectively.

Keywords: Bike-sharing system · SDVRP
Traveling salesman problem

1 Introduction

Bike-sharing systems, which provide short-term bike rental services with parking
stations scattered throughout an urban city, are booming in many cities all over
the world. More than 700 large cities [1] including Beijing, San Francisco and
Tokyo, have deployed bike-sharing systems. These systems provide a convenient,
low-cost, environmentally friendly transportation alternative [2]. In recent years,

Supported by National Natural Science Foundation of China under Grant No. 61772230
and the Natural Science Foundation of China for Young Scholars No. 61702215.

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 596–610, 2018.
https://doi.org/10.1007/978-3-030-05054-2_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_45&domain=pdf
http://orcid.org/0000-0003-1250-3142
https://doi.org/10.1007/978-3-030-05054-2_45

SDVRP-Based Reposition Routing in Bike-Sharing System 597

a relatively new bike-sharing model, called free-floating bike-sharing (FFBS)
[3], has been implemented, especially in China. The FFBS system in China,
called Mobike, is shown in Fig. 1. These bikes are equipped with various types
of sensors, e.g., GPS, bluetooth, and vibration sensors [4].

Fig. 1. Mobike bike-sharing system

With this new model of bike sharing, customers use their smartphones to
locate bikes, and bikes can be locked to an ordinary bicycle frame (or any solid
standalone) after use, thus customers do not need to worry about a lack of
vacant frames at bike stations when they need to return a bike, and eliminate
the need for large number of specific stations [3]. Compared with traditional
station-based bike sharing, by reducing infrastructure construction, FFBS saves
substantial initial cost [3]. FFBS also protects bicycles from being stolen by real-
time tracking of bikes with built-in sensors, and provides excellent conditions for
bike relocation. With FFBS, customer satisfaction is improved because obtaining
and returning the bikes is more convenient than ever. Additionally, the average
walking distance with FFBS is short.

However, despite the significant benefits of FFBS, it remains challenging to
relocate bikes in a valid way. After a period of time, many bikes are left broken
in locations where they are can not be used again. To increase bike service
availability, bike-sharing system operators have to relocate these broken bikes
from remote locations to depot in order to repair them, and operators also need
to deliver these repaired bikes and new bikes from depot to certain stations to
cover more customers’ demand, a process that is typically performed by trucks
or trailers driving around the city. Then bikes are assigned to station according
demand, as shown in Fig. 2. However, system operators have limited resources,
which constrains the extent to which relocation can occur.

The regular method used to deliver bikes first determines the demand at
each area, which is typically achieved via history data analysis and prediction.
Second, truck routes are designed to perform the necessary deliveries to reach the
target area. To increase bike service availability and minimize the redistribution

598 Z. Han et al.

Fig. 2. SDVRP in bike-sharing system

cost, we must determine the optimal route for trucks to deliver bikes from the
depot to the certain stations. This problem is an exciting application in the
field of computational sustainability. With prediction technology, it is easy to
determine the demand of each area. Thus, the assumption of this problem is
that the requirements of each area are known in advance and do not change
during operation. Therefore, our situation corresponds to a split delivery vehicle
routing problem (SDVRP) [5]. Since SDVRP is a complex NP-hard problem, it
is very difficult to solve.

Since bike-sharing system always contain many stations, and it will take a lot
of time to calculate. In this paper, we use the K-means algorithm to transform
the SDVRP into a TSP(traveling salesman problem), which can be solved by
various heuristics algorithms and make every problem easy and quick to solve.
In this context, we use the genetic algorithm to solve the TSP.

This paper makes the following three main contributions:

– We model the bike-sharing deliver problem as a split delivery vehicle routing
problem, and then use a K-means algorithm to cluster the stations that are
near to each other. We then transform the SDVRP into a TSP problem and
use a genetic algorithm for every cluster to solve the TSP problem.

– To the best of our knowledge, this is the first work that models a bike-sharing
deliver system as a split delivery vehicle routing problem.

– We evaluate our model with a real world dataset collected from the Bay Area
Bike-Sharing system and consider three additional bike-sharing systems. The
experimental results clearly show the effectiveness of the proposed methods.

The remainder of this paper is organized as follows. Related work is discussed
in Sect. 2. We then present the problem formulation and properties in Sect. 3,
followed by the methodology used to solve the problem in Sect. 4, including the
K-means algorithm and genetic algorithm. Section 5 describes our datasets and
provides an in-depth evaluation. We conclude the paper in Sect. 6.

SDVRP-Based Reposition Routing in Bike-Sharing System 599

2 Related Work

In parallel with the spread of bike-sharing programs around the world, and due
to the increasing importance of bike-sharing programs, there has been grow-
ing interest in the related scientific research, including the history, worldwide
deployment, and infrastructure. In [6], Paul provide a history of bicycle sharing.
In [7], Shaheen et al. surveys China’s Hangzhou Public Bicycle. Pucher et al. [8],
conduct an international review of bike-sharing’s facilities and programs. Owing
to the operational difficulties of managing bike-sharing systems, previous work
mainly focuses on four research substreams: rebalancing operations between sta-
tions, system planning, demand prediction, and system modeling.

In terms of rebalancing operations, there are two main challenges in the bike
rebalancing problem: determining the target station inventory and the large-scale
multiple-capacity vehicle routing optimization with outlier stations [9]. In [9], Liu
et al. report that rebalancance is not only a necessary mechanism to make full use
of the availability of the station, but also a more convenient mechanism to save
time and make customers comfortable. To this end, Aeschbach et al. establish
mechanisms to incentivize customers to transport bikes among stations [10].
Schuijbroek et al. [11] propose a new cluster-first route-second heuristic method
to rebalance the inventory.

System planning includes determining the number and capacity of stations
[12]. For instance, Chen et al. [12] solve the station placement problem by esti-
mating the potential trip demand using a semi-supervised learning algorithm
and a GIS-based method. Research has also been conducted to optimize the
placement of stations in bike-sharing systems. For instance, in [2], O’Mahony
et al. analyze bike-sharing system data to determine the optimal placement of
bikes to facilitate usage.

Demand prediction involves predicting station status and bike usage with
different models. This type of research is mainly focused on predicting the num-
ber of available bikes and docks at the station level. For example, in [13] Yang
et al. propose a spatio-temporal bicycle mobility model, using mainly historical
bike-sharing data, and devise a traffic prediction mechanism on a per-station
basis with sub-hour granularity. Chen et al. [14] construct a weighted correla-
tion network to model the relationships among bike stations, and dynamically
group neighboring stations with similar bike usage patterns into clusters. Then,
they perform Monte Carlo simulations to predict the over-demand probability of
each cluster. However, these station-level prediction methods do not consistently
yield accurate results due to the impact of adjacent stations [15] and complex
environmental factors that affect bike usage (such as weather, temperature, and
social events).

With respect to system models, in [16], Chen et al. formulate the trip infer-
ence problem as an ill-posed inverse problem, and propose a regularization tech-
nique to infer bike trip patterns. In [17], Lin et al. develop a public bicycle
redistribution system based on normal VRP. Additionally, they propose an opti-
mization method that considers road conditions, traffic rules, and geographical

600 Z. Han et al.

factors, rather than simply using Euclidean distance. Naturally, the use of actual
distance would lead to lower costs in reality [11].

The vehicle routing problem (VRP) [18] and traveling salesman problem
(TSP) [19], they are two popular problems in the field of combinatorial opti-
mization. The SDVRP (split delivery vehicle routing problem) is a form of the
VRP [20] that allows the same customer to be served by different vehicles if it
reduces the total costs [5]. The SDVRP is an NP-hard problem as proved by
Archetti et al. [21], that was introduced by Dror et al. in 1989 [22]. The Tabu
search algorithm can solve the SDVRP [23,24], but Tabu search effectively han-
dle small situations [25]. The TSP (Traveling Salesman Problem) is an NP-hard
problem [26], but several heuristics algorithm for TSP are already known. In this
work, we use the SDVRP to model the bike sharing assignment process, and we
use K-means algorithm to transform the SDVRP to a TSP.

3 Mathematical Formulation and Properties

The SDVRP can be defined over a graph G = (V,E) with vertex set V =
{0, 1, . . . , n}, where 0 denotes the depot, the other vertices are stations, and E
is the edge set. cij is the travel cost of an edge (i, j) ∈ E, which is supposed to
be nonnegative. Each station i ∈ V − {0} is associated with an integer demand
di. m is the upper bound on the number of trucks to serve, each with a capacity
k ∈ Z+. Each truck must start and end its route at the depot. The demands of
the stations must be satisfied, and the quantity delivered in each tour cannot
exceed k. Our objective is to minimize the total distance traveled by the trucks.

Therefore, the SDVRP can be formulated as follows:

Min

n∑

i=0

n∑

j=0

m∑

v=1

cijx
v
ij . (1)

We use the following notations: xv
ij is a Boolean variable equal to 1 if truck

v travels directly from i to j and equal to 0 otherwise, and yiv is the quantity
of demand of i delivered by truck v.

Subject to:
n∑

i=0

m∑

v=0

xv
ij ≥ 1 j = 0, . . . , n (2)

n∑

i=0

xv
ip −

n∑

j=0

xv
pj = 0 p = 0, . . . , n; v = 1, . . . ,m (3)

∑

i∈S

∑

i∈S

xv
ij ≤ |S| − 1 v = 1, . . . ,m; S ⊆ V − {0} (4)

yiv ≤ di

n∑

j=0

xv
ij i = 1, . . . , n; v = 1, . . . ,m (5)

SDVRP-Based Reposition Routing in Bike-Sharing System 601

m∑

v=1

yiv = di i = 1, . . . , n (6)

n∑

i=1

yiv ≤ k v = 1, . . . ,m (7)

xv
ij ∈ {0, 1} i = 0, . . . , n; j = 0, . . . , n;

v = 1, . . . ,m (8)

yiv ≥ 0 i = 1, . . . , n; v = 1, . . . ,m (9)

Constraint (2) requires that each station is visited at least once. Constraint
(3) is the flow conservation, which means that a truck cannot stay at a station.
Constraint (4) is the subtour elimination constraint. Constraint (5) states that
customer i can be served by truck v only if v passes through i. Constraint (6)
ensure that the entire demand of each station is satisfied. Constraint (7) ensures
that the quantity delivered by each truck does not exceed its capacity.

We now illustrate the two properties of the optimal solutions of the SDVRP.
Dror and Trudeau and Liu already proved these properties in 1989 and 2012 [27].

Theorem 1. If the travel route cij satisfies the triangle inequality, and there
exists an optimal solution to the SDVRP, when the station’s demand equals the
truck’s capacity (di = k), then this zone should be satisfied by a single truck.

Proof 1. Assume station B’s demand is equal to a truck’s capacity, and split
route into rk and rk+1. The depot is O.

Fig. 3. Situation 1, B is on the right side of AC’s attachment

Note that the total lengths of these three split routes are Zsplit = dOC+dCB+
2dOB + dBA + dAO, Zunsplit = dOC + dCA + dAO + 2dOB , Zsplit − Zunsplit =
dCB + dBA + dCA (Fig. 3).

In situation 1 and 2, because of the triangle inequality, we know that dCB +
dBA − dCA > 0. In situation 3, dCB + dBA − dCA = 0. Therefore, when station’s

602 Z. Han et al.

Fig. 4. Situation 2, B is on the left side of AC’s attachment

Fig. 5. Situation 3, B is between AC’s attachment

demand is equal to a truck’s capacity (di = k), then this zone should be serviced
by a single truck (Figs. 4 and 5).

Theorem 2. If the travel route cij satisfies the triangle inequality, then there
exists an optimal solution to the SDVRP in which no two vehicles have more
than one split customer in common.

This paper mainly uses property 1. The proof for the property 2, can be
found it in the literature [18].

4 Methodology

4.1 K-means Algorithm

The K-means algorithm is a popular machine learning technique for classifica-
tion, and has been proven to be effective in solving many problems.

We use the K-means algorithm, to cluster stations that are near to each other
to be served by one truck. However, owing to the truck’s limited capacity, this
problem is a constrained clustering problem. Therefore we cannot directly apply
the K-means algorithm. During clustering, we consider that sum of each station
set demand cannot exceed the maximum capacity.

SDVRP-Based Reposition Routing in Bike-Sharing System 603

Algorithm 1. Data Preprocessing
Require: The station’s original demand di, Truck’s capacity k.
Ensure: The station’s remaining demand rdi.
1: while i < n do
2: if di ≥ k then
3: rdi = di − k ∗ �di/k�
4: end if
5: end while
6: return rdi

When the zone’s demand exceeds the truck’s capacity, we have proved that we
need to meet the demand by truck alone. As in Algorithm 1 does, the remaining
demand rdi is less than the truck’s capacity k, so the zone can be a member of
the cluster.

Algorithm 2. Constrained K-means Cluster
Require: The zone’s remaining demand rdi, Truck’s capacity k.
Ensure: The cluster of zones c1, ...cj , ...cm ∈ C.
1: Select m cluster centroids randomly as µ1, ...µj , ..., µm ∈ R.
2: while iteration < N do
3: for µj ∈ R do
4: for s ∈ V do
5: cj = argminj ||s − µj ||2
6: end for
7: µj = Avg(si ∈ cj)
8: end for
9: end while

10: while iteration < m do
11: for s ∈ cj do
12: distancesµj

= ||s − µj ||2
13: Sort(distance)
14: end for
15: for s ∈ cj do
16: rci = rci − di
17: if rci < di then
18: Split(station)
19: end if
20: end for
21: end while
22: return C

Because of the constraint on the limit truck’s capacity, the sum of clusters’
demand cannot exceed the total capacity. To solve this real-world constraint
problem, we use Algorithm 2 Constrained K-means Cluster. We use K-means to
initialize the clusters of points. First, randomly select m cluster centroids. Then,

604 Z. Han et al.

for each station s, determine the cluster to which it belongs. After this initiation,
we begin to check the limit capacity of each cluster. We need to select one cluster
and sort the points according to the distance to the cluster center distancesµj

.
Then, we add the nearest point to the cluster and calculate the remaining capac-
ity. Next, we check the remaining capacity rci: if it is smaller than the current
point’s demand, we use Algorithm 3 to split the station’s demand so that the
demand can be satisfied. Because K-means is not certain to converge, we repeat
these two calculations to obtain improved clusters until the number of iterations
reaches the maximum number N .

When the zone’s demand exceeds the truck’s remaining capacity rci, we split
the demand to solve this problem. To use fewer trucks and increase utilization,
we use Algorithm 3 to split demand. According to the Theorem1, we split the
station c’s demand into two parts, d1s and d2s, where d1s is the remaining capacity
that can be met for the former zone by one truck at a time, and d2s is the
remaining demand that cannot be satisfied. Therefore, the station’s demand
belongs to two clusters: one is the origin and the other is a newly added center.

Algorithm 3. Split Demand
Require: The zone’s remaining demand rdi, Truck’s remaining capacity rci.
Ensure: The assignment of demand zone c.
1: set c1s = j
2: set d1s = rcs
3: set c2s = j + m
4: set d2s = ds − rcs

4.2 Genetic Algorithm

After clustering, we determine the zones that can be satisfied by one truck,
which means we have already transformed the SDVRP to a TSP. Then, we need
to solve the TSP.

In the TSP, we have a set of cities (in this problem: stations) and know the
distance from each of the different cities. Our goal is to find the ordered route
of the stations that minimizes total length.

The genetic algorithm (GA) [28] is a metaheuristic algorithm inspired by the
process of natural selection. An optimization problem’s candidate solutions will
evolve toward better solutions during the calculation.

Fitness function evaluation: The shorter the route, the better, so the fitness
function can be the reciprocal of the distance, which in our case is 1/distance.

A detailed description of the genetic algorithm for our problem is given below:

Step 1. Initialization: Randomly generate M routes as a initial population.

Step 2. Selection: In each subsequent generation, select a portion of the existing
population to pass to the new generation. Individual solutions are selected by a

SDVRP-Based Reposition Routing in Bike-Sharing System 605

631 2 4 5 9

79 8 46 5 13 2

Parent 1

Parent 2

7 8

649 5 3 2 17 8Descendant

Crossover

Fig. 6. Crossover

fitness-based process, where it is often more likely to choose an adaptive solution
(measured by a fitness function) (Fig. 6).

Step 3. Crossover: A genetic operator used to change the component of a
route from generation to generation. Crossover similar to breeding and biologi-
cal crossover. We use three-point crossover: Three-point crossover selects three
stations on the parent routes. All station other than the three selected stations
are exchanged between the parent routes to generate a child route (Fig. 7).

1 2 64 5 97Parent

61 2 4 5 97 3Descendant

Mutation

83

8

Fig. 7. Mutation

Step 4. Mutation: Since in TSP, each station will be visited only once in a
route, during mutation, the order of two stations is swapped.

5 Performance Evaluation

In this section, we conduct computational experiments to evaluate the perfor-
mance of our method. We have tested our implementations on real large-scale
datasets from the Bay Area and three other bike-sharing systems. The compared
algorithms, datasets, simulation configurations and performance are presented
in the following.

606 Z. Han et al.

A. Compared Algorithms
In this paper, we compare the two most related algorithms: the first-fit decreasing
algorithm and Tabu search algorithm, with our method.

– First-Fit Decreasing: This is a simple greedy approximation algorithm. First,
sort the zone’s demands in descending order; then, attempt to assign the
demand to the first truck that can satisfy the demand. If the present truck
cannot satisfy the demand, then a new truck is used.

– Tabu Search: First, randomly generate one initial route. Create new solutions
by swapping the order that two zones are visited in a potential solution, just
like in the genetic algorithm. The total travel distance between all the zones is
used to judge how ideal one solution is compared to another. To prevent cycles
(i.e., repeatedly visiting a particular set of solutions) and to avoid becoming
stuck in local optima, a solution is added to the Tabu list if it is accepted
into the solution neighborhood. The Tabu search stops when the maximum
number of iterations, which we set to 3000, is reached. When the Tabu search
stops, it returns the best solution found.

In SDVRP, some zones’ demands may exceed the capacity of the truck, so
we perform preprocessing step before the calculation. In practice, if the demand
for any zone is greater than or equal to the capacity of a truck, then we split
the demand into two pieces. As before, we use K-means: first assign a truck that
can itself satisfy the zone’s demand and leave the remaining demand for the
subsequent regular calculation process.

B. Datasets and Simulation Configurations

Table 1. Summary of datasets

Bay area Indego Divvy CiTiBike

Num of stations 67 119 585 812

Average demand 82 3.2 1 2

Max demand 14 15 17 21

We conduct extensive simulations on four real-world datasets: the Bay Area
Bike-Sharing system [29], Indego Bike-Sharing system [30], Divvy Bike-Sharing
system [31] and CitiBike Bike-Sharing system [32].

These Bike-Sharing data are collected by bike sensors during several years.
To prove the effectiveness, we use only a single snapshot of all the stations’ data,
as presented in Table 1.

SDVRP-Based Reposition Routing in Bike-Sharing System 607

(a) Bayarea’s stations and de-
pot

(b) Indego’s stations and de-
pot

(c) Divvy’s stations and depot (d) CitiBike’s stations and de-
pot

Fig. 8. Depot in four traces (Color figure online)

The bike-sharing systems do not provide their depot locations, so we select
the center of the stations as the depot. The green points in Fig. 8 represent the
bike-sharing systems’ depots.

(a) Bayarea’s cluster stations (b) Indego’s cluster stations

(c) Divvy’s cluster stations (d) CitiBike’s cluster stations

Fig. 9. Clusters in four traces

608 Z. Han et al.

C. Performance
In the experiment, the number of clusters depends on total zone demand divided
by the truck’s capacity. The K-means clustering algorithm is applied to deter-
mined the clusters for the four datasets, as shown in Fig. 9. The stations in a
cluster are served by a single truck (Fig. 10).

20 30 40 50 60 70 80 90 100
Vehicle's capacity

0

200

400

600

800

1000

1200

1400

T
ra

ve
l D

is
ta

nc
e

Tabu Search
First Fit Decreasing
K-means+Genetic Algorithm

(a) Bayarea trace

20 30 40 50 60 70 80 90 100
Vehicle's capacity

0

50

100

150

200

T
ra

ve
l D

is
ta

nc
e

Tabu Search
First Fit Decreasing
K-means+Genetic Algorithm

(b) Indego trace

20 30 40 50 60 70 80 90 100
Vehicle's capacity

0

500

1000

1500

2000

2500

T
ra

ve
l D

is
ta

nc
e

Tabu Search
First Fit Decreasing
K-means+Genetic Algorithm

(c) Divvy trace

20 30 40 50 60 70 80 90 100
Vehicle's capacity

0

500

1000

1500

2000

2500

T
ra

ve
l D

is
ta

nc
e

Tabu Search
First Fit Decreasing
K-means+Genetic Algorithm

(d) CitiBike trace

Fig. 10. Results of four traces

We evaluate the performances of three algorithms for the above four datasets.
We assess these algorithms for different truck capabilities of 20, 40, 60, 80, and
100. The larger the truck capacity is, the lower the total distance traveled.

The experiment results in four traces that have the same change tendency.
As seen in Fig. 1, proposed method provides better performance than that of the
other two algorithms in most situations.

6 Conclusion

In this paper we formulate the bike-sharing deliver problem as a split delivery
vehicle routing problem, and propose a method to solve this problem. First,
we use the K-means algorithm to cluster customers that are close together to
receive bikes from a single truck. We then transform this problem into a TSP
and use the genetic algorithm to solve the TSP. Finally, we evaluate our method
with data from four real-world bike-sharing systems. The results show that our
method can provide bike-sharing operators with routes to deliver bikes to every
area efficiently.

As future work, we intend to improve this study in the following ways. First,
in reality, there are lots of good condition bikes also need to reposition to certain

SDVRP-Based Reposition Routing in Bike-Sharing System 609

parking areas, and this repositioning process can be done at the same time with
collecting broken bikes. Overall, this process will improve efficiency, and we can
model these process into a new problem. Second, in this study, we use Euclidean
distance, but the between areas can not be completely straight lines in reality.
Therefore, we need to use Google Maps API to obtain the real distance between
areas. Third, owing to the limited data, we have tested our method with only four
real datasets. To make our model more robust and accurate, we plan to evaluate
our work with more bike-sharing system data from different cities, particularly
in China. Finally, we also need to explore the influence of the number of cluster
on the truck’s travel distance.

References

1. Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., Krause, A.: Incen-
tivizing users for balancing bike sharing systems. In: AAAI, pp. 723–729 (2015)

2. O’Mahony, E., Shmoys, D.B.: Data analysis and optimization for (Citi) bike shar-
ing. In: AAAI, pp. 687–694 (2015)

3. Pal, A., Zhang, Y.: Free-floating bike sharing: solving real-life large-scale static
rebalancing problems. Transp. Res. Part C: Emerg. Technol. 80, 92–116 (2017)

4. Zhu, C., Zhou, H., Leung, V.C.M., Wang, K., Zhang, Y., Yang, L.T.: Toward big
data in green city. IEEE Commun. Mag. 55(11), 14–18 (2017)

5. http://neo.lcc.uma.es/vrp/vrp-flavors/split-delivery-vrp/
6. DeMaio, P.: Bike-sharing: history, impacts, models of provision, and future. J.

Publ. Transp. 12(4), 3 (2009)
7. Shaheen, S., Zhang, H., Martin, E., Guzman, S.: China’s Hangzhou public bicycle:

understanding early adoption and behavioral response to bikesharing. Transp. Res.
Rec.: J. Transp. Res. Board 2247, 33–41 (2011)

8. Pucher, J., Dill, J., Handy, S.: Infrastructure, programs, and policies to increase
bicycling: an international review. Preventive medicine 50, S106–S125 (2010)

9. Liu, J., Sun, L., Chen, W., Xiong, H.: Rebalancing bike sharing systems: a multi-
source data smart optimization. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1005–1014.
ACM (2016)

10. Aeschbach, P., Zhang, X., Georghiou, A., Lygeros, J.: Balancing bike sharing sys-
tems through customer cooperation - a case study on London’s Barclays Cycle
Hire. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pp.
4722–4727. IEEE (2015)

11. Schuijbroek, J., Hampshire, R.C., Van Hoeve, W.J.: Inventory rebalancing and
vehicle routing in bike sharing systems. Eur. J. Oper. Res. 257(3), 992–1004 (2017)

12. Chen, L., et al.: Bike sharing station placement leveraging heterogeneous urban
open data. In: Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pp. 571–575. ACM (2015)

13. Yang, Z., Hu, J., Shu, Y., Cheng, P., Chen, J., Moscibroda, T.: Mobility modeling
and prediction in bike-sharing systems. In: Proceedings of the 14th Annual Inter-
national Conference on Mobile Systems, Applications, and Services, pp. 165–178.
ACM, 2016

14. Chen, L., et al.: Dynamic cluster-based over-demand prediction in bike sharing
systems. In: Proceedings of the 2016 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing, pp. 841–852. ACM (2016)

http://neo.lcc.uma.es/vrp/vrp-flavors/split-delivery-vrp/

610 Z. Han et al.

15. Li, Y., Zheng, Y., Zhang, H., Chen, L.: Traffic prediction in a bike-sharing system.
In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pp. 33. ACM (2015)

16. Chen, L., Jakubowicz, J.: Inferring bike trip patterns from bike sharing system
open data. In: IEEE International Conference on Big Data, pp. 2898–2900 (2015)

17. Lin, J.-H., Chou, T.-C.: A geo-aware and VRP-based public bicycle redistribution
system. Int. J. Veh. Technol. 2012, 1–14 (2012)

18. https://en.wikipedia.org/wiki/Vehicle routing problem
19. https://en.wikipedia.org/wiki/Travelling salesman problem
20. Yun-zhang, L.I.U., Hui-yu, X.U.A.N.: Summarizing research on models and algo-

rithms for vehicle routing problem [j]. J. Industr. Eng. Eng. Manag. 1, 027 (2005)
21. Archetti, C., Mansini, R., Speranza, M.G.: Complexity and reducibility of the skip

delivery problem. Transp. Sci. 39(2), 182–187 (2005)
22. Dror, M., Trudeau, P.: Savings by split delivery routing. Transp. Sci. 23(2), 141–

145 (1989)
23. Amuthan, A., Thilak, K.D.: Survey on Tabu search meta-heuristic optimization.

In: 2016 International Conference on Signal Processing, Communication, Power
and Embedded System (SCOPES), pp. 1539–1543. IEEE (2016)

24. Ho, S.C., Haugland, D.: A tabu search heuristic for the vehicle routing problem
with time windows and split deliveries. Comput. Oper. Res. 31(12), 1947–1964
(2004)

25. Archetti, C., Speranza, M.G., Hertz, A.: A Tabu search algorithm for the split
delivery vehicle routing problem. Transp. Sci. 40(1), 64–73 (2006)

26. Gendreau, M., Hertz, A., Laporte, G.: New insertion and postoptimization proce-
dures for the traveling salesman problem. Oper. Res. 40(6), 1086–1094 (1992)

27. Liu, W.-S., Yang, F., Li, M.-Q., Chen, P.-Z.: Clustering algorithm for split delivery
vehicle routing problem. Control Decis. 27(4), 535–541 (2012)

28. https://en.wikipedia.org/wiki/Genetic algorithm
29. http://www.bayareabikeshare.com/open-data
30. https://www.rideindego.com/about/data/
31. https://www.divvybikes.com/system-data
32. https://www.citibikenyc.com/system-data

https://en.wikipedia.org/wiki/Vehicle_routing_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Genetic_algorithm
http://www.bayareabikeshare.com/open-data
https://www.rideindego.com/about/data/
https://www.divvybikes.com/system-data
https://www.citibikenyc.com/system-data

GAI: A Centralized Tree-Based Scheduler
for Machine Learning Workload in Large

Shared Clusters

Ce Gao, Rui Ren(B), and Hongming Cai

School of Software, Shanghai Jiao Tong University, Shanghai, China
{gaoce270863799,renrui,hmcai}@sjtu.edu.cn

Abstract. With widespread applications in image recognition, language
translation, computer vision and other areas, deep learning (DL) have
been proliferating over the past decade. Practitioners from different busi-
ness groups in industries train DL models on a shared cloud computing
infrastructure for these applications with different priorities. During the
model training process, one of the key challenges is to minimize the life-
cycle of high priority model training jobs. This paper analyzes the dis-
tributed training of machine learning (ML) models and identifies short
board effect in the training process: GPU training requires higher net-
work bandwidth compared to CPU training. The key insight motivates
the design of GAI, a centralized scheduler for ML workload. It relies
on two techniques: (1) tree-based structure. The structure stores the
cluster information hierarchically to apply multi-layer scheduling. (2)
well-extended priority algorithm. We consider priorities from multiple
dimensions for model training jobs comprehensively to support resource
degradation and preemption. The prototype of GAI is implemented on
top of Kubernetes, Kubeflow, and TensorFlow. It is evaluated using a
simulator and a real cloud-based cluster. Evaluations show 28% increase
in scheduling throughput and 21% training convergence speedup on DL
models.

Keywords: Resource management · Distributed machine learning
Centralized scheduling · Resource utilization

1 Introduction

Over the past decade, we have witnessed the era of rapid advances in artificial
intelligence, powered by the resurgence of ML, especially DL. DL has become a
hot topic for both academia and industries like Alibaba, Facebook, and Google.
These DL models exhibit a high degree of model complexity that raises new
challenges and opportunities to cluster management.

ML frameworks like TensorFlow [1], MXNet [3], and Caffe [11] allow engi-
neers to set up a one-off cluster to run distributed ML jobs with the support
of parameter server architecture [17]. The architecture splits the job into two
c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 611–629, 2018.
https://doi.org/10.1007/978-3-030-05054-2_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_46&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_46

612 C. Gao et al.

parts: parameter server and worker. A parameter server maintains a partition of
the globally shared parameters. It collects the gradient and updates the param-
eters over training iterations. A worker server stores a portion of the training
data locally to compute statistics such as gradients. The architecture has widely
applied in DL model training.

Cluster management systems like Google Borg [2], Apache Mesos [10], Apache
Yarn [23] and Daphne [25] now support multiple distributed computing systems
which include TensorFlow and other ML frameworks in the same cluster. They
greatly simplify the operation and maintenance work for the jobs submitted from
different teams or users.

However, there is a problem in most cluster management systems which is
limited rack-aware and priority support [26] that causes the difficulties to inte-
grate real ML workload on the systems. None of the existing cluster management
systems can efficiently handle ML workload in a large shared cluster. They are
usually not able to offer the best hardware accelerators to the highest prior-
ity model training jobs. The main cause is lack of design and optimizations for
ML workload from the scheduler side. Compared to traditional workloads, ML
workload has some unique characteristics: First, distributed ML jobs are getting
increasingly diverse both in terms of the size of input/output data and the scale
of the models. Second, distributed ML jobs are usually network and computing
intensive. Therefore hardware accelerators speed up the training progress signif-
icantly [16], and low latency network makes parameter updates efficiently. Last,
the priority of ML jobs is more complex than traditional jobs. The distributed
model training job usually contains a number of parameter servers and workers,
and there are many dimensions, like distribution and the runtime of the job that
will affect the priority.

To address these challenges, we propose Gatekeeper for AI (GAI), a cen-
tralized scheduler for ML workload on large shared clusters. Some contributions
have been made in this paper:

– The system model for scheduling ML model training jobs on a given cluster
is formalized in this paper. The formalization shows that the problem of
scheduling ML jobs based on parameter server architecture is NP-complete.

– We present the ML workload characterization. Network and computing bot-
tlenecks of ML jobs are verified experimentally. Different hardware devices
(e.g. GPU, CPU) and communication modes (e.g. RPC, IPC) are used to
train the model like Inception V3 [22], ResNet-50, ResNet-152 [9] and VGG-
16 [21]. The experiments show clearly that when the ML training job uses
CPUs, computing is the bottleneck; when using GPUs, the network is the
bottleneck.

– Based on the key insight, GAI is presented to minimize the lifecycle of model
training jobs and support priority for these jobs. GAI schedules distributed
model training jobs based on parameter server architecture, on the data cen-
ter. We offer best effort service and supports resource degradation and pre-
emption due to two features: rack-aware tree scheduling; resource degradation
and preemption.

GAI: A Centralized Scheduler for Machine Learning Workload 613

– We implement the prototype of GAI on top of Kubernetes, Kubeflow, and
TensorFlow. The evaluation shows that GAI improves the throughput by
nearly 28% on a medium-sized cluster with the support of priority and
achieves 21% training convergence speedup on DL models. We also demon-
strate that the lifecycle of higher priority is shorter by average compared to
those lower priority jobs. Then we can see that the overhead imported by
GAI and light container-based virtualization is acceptable.

The rest of this paper is organized as follows: Sect. 2 describes the back-
ground, Sect. 3 motivates GAI with workload characterization, Sect. 4 presents
the main methodologies adopted by this paper. We evaluate GAI in Sect. 5 and
conclude this paper in Sect. 6.

2 Background

The design of GAI is related to distributed ML and cluster management sys-
tems. Therefore in this section, the parallel architectures of distributed ML jobs
and cluster management systems are introduced as preliminaries. There is a
discussion on the existing researches after the related work.

2.1 Parallel Architecture of Distributed ML

Distributed ML is an iterative-convergent program which is similar to single-
process ML. Based on the property, the researchers proposed a parameter server
framework for distributed ML [17]. Parameter server framework separates the
system into parameter servers and workers. Parameter servers serve the globally
shared parameters while workers maintain the training progress. The framework
adopts either data parallelism or model parallelism [12].

Figure 1(a) is the architecture of model parallelism. In the model parallel
architecture, the model is partitioned and assigned to different workers. Each
worker maintains a part of the ML model and is responsible for updating it.
Model parallelism is usually used to train models that require more memory

Fig. 1. Parallelism architecture

614 C. Gao et al.

(e.g. image classification). Model parallel architecture introduces a certain
amount of overhead, it relies on the good network connection.

Figure 1(b) is the data parallel architecture. Each worker in the architecture
of data parallelism has a replica of the model and accepts a portion of training
data. After one iteration, the workers push the gradients to the parameter servers
and fetch parameters from the servers.

2.2 Cluster Scheduling System

Cluster scheduler plays an important role since hardware resources are allocated
to specific jobs through the scheduler. Monolithic scheduler, such as Paragon
[5], Quasar [6], Borg [24], Kubernetes [2] and Firmanent [7], uses a centralized
single-process scheduler to schedule all kinds of jobs on the cluster. Monolithic
scheduler is hard to expand with multiple workloads. Two-layer scheduler, such
as Mesos [10] and Yarn [23], introduces application-specific scheduler into the
monolithic architecture. The new layer guides the centralized scheduler to make
suitable resource allocations for applications. To better concurrency, Shared-
state scheduler, such as Omega [20], imports multiple schedulers based on the
optimistic concurrency control strategy. It is assumed that the scheduling con-
flicts are rare, so shared-state scheduler performs high throughput. But there is
a significant drop when the conflicts are frequent.

Distributed scheduler, such as Sparrow [19], is the architecture designed for
batch jobs. In this architecture, there is no centralized scheduler to maintain the
state of the cluster. The scheduler picks up some nodes and schedules the jobs in
the subset of the cluster. Scheduling delay in distributed approach is relatively
low but it is hard to support online business.

Hybrid scheduler, such as Hawk [4], Mercury [14], and Daphne [25], divides
the jobs into long-running jobs and short jobs. It schedules long-running jobs
using a centralized scheduler and assigns short jobs to a distributed scheduler.
Hybrid scheduler adapts well for multiple workloads, but the complexity is high.

In the conclusion, now the existing researches on distributed ML mainly
focus on the optimization from the ML framework side. It works well when the
distributed training jobs are running on bare metal servers, while there is an
increasing demand to run the workload in the cloud.

The existing cluster management systems usually treat batch jobs or long-
running jobs as first-class objects. They are not designed for ML workload.
Therefore, in this paper we analyze the workload and design GAI, to minimize
the lifecycle of distributed ML jobs and import priority to model training.

3 Workload Characterization

In this section, we formalize the system model to introduce the problem that
we hope to solve. Then short board effect of model training jobs on network
and computing is presented, which shows the opportunities and challenges of
scheduling ML jobs on clusters.

GAI: A Centralized Scheduler for Machine Learning Workload 615

3.1 Problem Formalization

We consider that GAI schedules a set of jobs that contains a set of tasks on a
homogeneous data center. To illustrate the process concretely, we take a model
training job as an example. As shown in Fig. 2, a model training job has a
number of parameter servers and workers. All the tasks (parameter servers and
workers) of the job will be scheduled by the scheduler. And they will be placed on
some servers. During the training progress, each worker communicates with all
parameter servers via remote process call or inter process call in each iteration,
and we call this the network cost. Workers execute real training logic using
CPUs, GPUs or other hardware accelerators according to the model parameters
from parameter servers, and this causes training cost.

Job

Parameter
Server

1...n

Worker

1...m

Scheduler

Cluster Status

Fig. 2. Scheduling a model training job on a cluster

We assume that the resources in the data center are always strained, which
is demonstrated in previous works [18]. Consider a set of model training jobs
J = {j1, j2, . . . , jm} running on a set of servers S = {s1, s2, . . . , sn}. We define
a model training job ji with jips parameter servers and jiworker workers, the time
associated with the lifecycle of job T i

j includes waiting time T i
waiting, placement

latency T i
scheduling and completion time T i

completion. T i
waiting is spent when the

job is queued to be scheduled. T i
scheduling is caused by the scheduler, which is

dedicated to scheduling the job on the data center. T i
completion is the model

training time and it can be defined by

T i
completion =

jiworker∑

z=1

(Ctraining(wz, sz) +
jips∑

k=1

Cnetwork(wz, sz, psk, sk)) · N (1)

N is the number of iterations. sz is the server that the worker wz is per-
formed. Ctraining(wz, sz) is defined as the training cost of the worker wz which
is performed on server sz in one iteration. It can be expressed as

Ctraining(wz, sz) =

{
CGPU (wz, sz) If use GPU
CCPU (wz, sz) otherwise.

(2)

We call CGPU and CCPU the cost using GPU and CPU. If the server has idle
GPUs and the scheduler assign the GPU to the worker, the cost is the running
time of training on the GPU. While CCPU is the running time on CPU.

616 C. Gao et al.

Cnetwork(wz, sz, psk, sk) in Eq. 1 denotes the network cost for worker wz on
server sz and parameter server psk on server sk in one iteration. And it is defined
by

Cnetwork(wz, sz, psk, sk) =

{
CIPC sz = sk

CRPC sz �= sk
(3)

CIPC is the cost using inter-process call (IPC). When the parameter server
and the worker are performed on the same server, the method of communica-
tion between them is inter-process call. While when the parameter server in the
server sz while the worker in the server sk, remote process call (RPC) is used to
communicate. The cost is defined by CRPC .

The scheduling algorithm for ML workload seeks mappings from tasks of the
jobs to the servers with idle resources. The goal of the algorithm is to minimize∑m

i=1 T
i
j , which has been demonstrated to be NP-complete [13].

3.2 Short Board Effect

As described in Sect. 3.1, computing and network communication are the major
cost of a model training job, thus we present a study of the short board effect
of data parallel ML training jobs on computing and network. The study demon-
strates two main points through well-designed experiments:

– Short board effect is significant at cluster scale.
– ML jobs with GPUs suffer from low throughput network, while jobs using

CPUs does not require high bandwidth connection.

Our hardware and software environment for the experiments are shown in
the Tables 1 and 2. In 10GB Ethernet networks, we use CPUs and GPUs to
train different models (Inception V3 [22], ResNet-50, ResNet-152 [9] and VGG-
16 [21]). In the first experiment, we use 1 CPU, 1 GPU, 2 GPUs to train the ML
models respectively. As shown in Fig. 3(a), the experiment of GPU based ML
jobs yields speedups of 20 times than CPU based jobs. ML jobs using 2 GPUs
are 90%–95% faster than the jobs using 1 GPU. And data parallel ML jobs using
a mix of GPUs and CPUs does not fully exploit the GPU’s performance because
of short board effect.

Figure 3(b) shows the result of the training speed of 32 batch-size Inception
V3 model in different distributed architectures and different hardware resources.

Table 1. Hardware configurations

Hardware Configuration

CPU Intel Xeon CPU E5-2697 v4 @ 2.30GHz

GPU Nvidia GeForce GTX 1080Ti

Network card Intel Corporation 82599 10 Gigabit

Switch H3C S5820V2-52QF

Table 2. Software configurations

Software Configuration

OS CentOS Linux release 7.3.1611

ML framework TensorFlow 1.4

GAI: A Centralized Scheduler for Machine Learning Workload 617

To demonstrate the universality, We conduct in four architectures: (i) 1 parame-
ter server, 1 worker, (i) 1 parameter server, 2 workers, (iii) 2 parameter servers, 1
worker, (iiii) 2 parameter servers, 2 workers. The result shows that the bottleneck
of CPU based training jobs is computing, and the network does not affect the
scalability. We place parameter servers and workers in different machines and
get 35%–64% speed degradation compared with placing all parameter servers
and workers in one machine.

Therefore we summarize the key insights: Network is not always the bottle-
neck for distributed ML jobs. It affects the training speed of GPU based ML
jobs but CPU based jobs do not require high network throughput.

Fig. 3. Training speed using different configurations

4 GAI: A Scheduler for ML Workload

In the previous section, we show the short board effect of model training jobs. In
this section, based on the effect, we propose a tree-based scheduling model, then
present a resource preemption and degradation algorithm for better utilization.

Based on the observations and the characteristics of ML workload in the
previous section, we propose the goals of GAI:

– Minimize the lifecycle of model training jobs.
– Guarantee the priority of ML jobs. High priority jobs are allowed to preempt

hardware accelerator resources to accelerate the training progress.

Figure 4 presents the overview of GAI. The input is a series of distributed
model training jobs, and the output is the mappings from the tasks (parameter
servers and workers) of the jobs to the servers. GAI relies on two main techniques:

Rack-Aware Tree Scheduling: GAI uses a centralized rack-aware tree
scheduling method and maintains a resource tree in memory to place all tasks
of the ML training jobs in one machine or in the machines belong to the same
rack as far as possible.

618 C. Gao et al.

Rack 1

Rack 2

Scheduler
Type Replicas GPU CPU Mem
PS 2 0 4 8

 Worker 4 1 1 8

Type Replicas GPU CPU Mem
PS 2 0 4 8

 Worker 4 1 1 8

Type Replicas GPU CPU Mem
PS 2 0 4 8

 Worker 4 1 1 8

Rack GPU CPU Mem

1 8/8 4/16 8/32

Fig. 4. Overview of GAI

Resource Degradation and Preemption: We present a resource degradation
and preemption algorithm for data parallel ML jobs. There are different ML
jobs in different priorities similar to traditional workloads. We use a vector to
represent the priority and support degrading low priority jobs to release the
hardware accelerators for high priority jobs.

4.1 Rack-Aware Tree Scheduling

The previous section shows that GPU based training jobs are network-sensitive
applications. Thus, GAI presents rack-aware tree-based scheduling and main-
tains two different scheduling paths. GAI chooses different paths according to
the status of the cluster to keep high utilization.

In a commercial data center, the servers on the same rack share the same
Ethernet switch, thus the servers are communicated with each other through
a high bandwidth, low latency network. The feature is indifferent to network
insensitive applications, such as web services, while it has a significant impact
on the distributed training jobs which introduce heavy communication traffic
between parameter servers and workers. GAI keeps a multi-level tree structure
to organize all the servers in the cluster according to the network conditions
between the servers.

ML training jobs usually require multiple hardware accelerators to accelerate
the training. Thus, we gather the servers in the same rack into a small cluster,
and the resources in the cluster can run at least one distributed ML job at the
same time. Figure 5 represents the architecture of GAI scheduler. The resources
in the cluster are abstracted into resource tree, where the leaf nodes in the tree
represent servers and the second-level nodes represent the racks. The parent
nodes in the tree collect and gather the runtime information (e.g. CPU, GPU
and memory usage) of all its child nodes.

To preserve the extensibility, GAI supports logical partition in the resource
tree. In some application scenarios, there are some servers without GPUs. These
servers can be added to the same logical node to indicate that we can not schedule
distributed training jobs to the servers. Most extensibility requirements can be
supported indirectly through logical nodes.

GAI: A Centralized Scheduler for Machine Learning Workload 619

Fig. 5. Resource Tree in GAI

GAI performs multiple validations during scheduling on the resource tree to
determine the sub-optimal placement:

– First, GAI checks if the machines in the rack satisfy the resource requirements
of the ML jobs. It is executed in rack-level nodes to determine if the sum of
the free resources of all the machines on the rack can run the new job.

– After the first step, GAI validates the resource slots of each server to avoid
resource stranded problem.

The placement algorithm is executed twice. The first pass is to schedule GPU
resources. When there is no idle GPU, we run the resource degradation and
preemption algorithm based on priority described in Sect. 4.2. If the cluster still
does not have GPUs for the job, the requirement is relaxed and the algorithm
is run for CPU again.

GAI implements a short scheduling path when the utilization of the cluster
is low. Most of the servers has sufficient resources, then the default scheduling
algorithm in GAI takes relatively long time to schedule a training job, so GAI
imports randomized method to speed up the scheduling process. GAI randomly
selects some secondary nodes and decides which rack to assign the new ML jobs
based on the resource usage. GAI uses a random approach as Sparrow [19] does
in a centralized manner. The randomized scheduling method reduces the size of
potential candidate set and the scheduling delay as well when the cluster is idle.

4.2 Resource Degradation and Preemption

In a commercial cluster, ML jobs have different types and belong to different
business groups, thus have different priorities. We design GAI’s priority strategy

620 C. Gao et al.

based on priority vector. It is used to perform resource degradation or preemp-
tion. We summarize some factors that affect the priority of ML jobs:

Fig. 6. Distribution of ML jobs

The Distribution of ML Jobs. The distribution of ML jobs on the cluster is
very complicated. For example, we create a ML job with two parameter servers
and four workers. In the best case, all replicas are scheduled to one server which
has free resources, as shown in Fig. 6(a), to avoid the short board effect.

Figure 6(b) shows a worse case: two workers are placed on another server,
thus the communication between the parameter servers and these two workers
is not as good as the other two workers. Such job is in relatively low priority
since the training speed is lower than the situation in Fig. 6(a).

Therefore, we design a priority algorithm based on the distribution of ML
jobs. The algorithm can be expressed as Algorithm 1. If all parameter servers
and workers are placed in the same machine, the job is in highest priority on
this dimension. We prefer to preempt or degrade the jobs whose internal com-
munication is cross rack or cross server.

ML Job Runtime. The runtime of ML jobs affects the priority, since the cost
of restarting or interrupting an ML job that has been running for a relatively
long time.

To determine the distribution of the duration of ML jobs, we analyze the data
trace of ML workload in Facebook [8], extract the description and summarize
the workload characteristics as described in Table 3.

The training jobs of neural network models such as CNN and RNN are the
longest-running jobs and take approximately tens of hours, while GBDT and
SVM jobs take less time. We use a power-law-like heavy-tailed distribution to
sample the duration of the jobs. In the long-tailed distribution, the vast majority
of jobs are completed in a short time. Therefore, we use the logarithm to cal-
culate the priority and ensure that the priority of the job is distributed within
a reasonable range. And we truncate the priority if we encounter the situation
that it exceeds the threshold (The highest priority for a single dimension is set
to 5).

GAI: A Centralized Scheduler for Machine Learning Workload 621

Algorithm 1. Priority algorithm for distribution dimension
Priority ← 0
MaxPriority ← 0
for ps ∈ PSes do

for worker ∈ workers do
MaxPriority ← MaxPriority + HighPriority

end for
if isInOneMachine(ps, worker) then

Priority ← Priority + HighPriority
else if isInOneRack(ps, worker) then

Priority ← Priority + MediumPriority
else

Priority ← Priority + LowPriority
end if

end for
return Priority/MaxPriority

Table 3. Characteristic of ML workload in Facebook

Model Resource Frequency Duration Inference relative capacity

SVM CPU Every hours Few seconds 10x

GBDT CPU Daily Few hours 1x

CNN GPU Weekly Many hours 10x

RNN GPU Weekly Many hours 1x

The Type of ML Jobs. We define the type according to multiple dimensions
as described in Table 4.

The online model training jobs have the highest priority, so we set the priority
of these jobs to 5. And there are two types of research model training jobs:
normal training jobs and hyperparameter tuning jobs. Hyperparameter tuning
jobs consume more resources and usually are not urgent jobs. The priority of
this type is set to a lower value.

Table 4. Priority for types of model training jobs

Type Training Hyperparameter training

Production 5 N/A

Research 3 1

The Type of Dominant Resource. In general, hardware accelerators are
more expensive, then the utilization of this kind of resource is more critical
than other hardware resources. The primary goal of this dimension is to increase
the utilization of hardware accelerator resources. It is not an ideal solution to

622 C. Gao et al.

degrade the jobs whose replicas are all running on CPUs since CPU is not the
first-class resource for ML jobs. We calculate the priority based on the numbers of
GPUs that used by workers. Equation 4 shows the calculation. In this equation,
n represents the number of GPUs that workers of the job are using. Sigmoid
function is used to determine the upper and lower bounds of the convergence of
the function.

Priority(n) =
5

1 + e−n
(4)

Number of Preemptions. Starvation occurs when a higher priority job dom-
inate a resource and a lower priority job is blocked from gaining access to the
resource. As a result, the lower priority job cannot make progress. To avoid the
problem, GAI adds a bias. GAI offers the jobs that have been preempted one
or more times the highest priority in this dimension. And the jobs without any
degradation are in the lowest priority.

We aggregate the priorities of different dimensions into a priority vector. GAI
refers to the predicate-priority model in Kubernetes.

– Firstly, the predicate process is performed. In this process, we find out all the
jobs that can be preempted according to the hardware resource requirement
of the new job. GAI supports single-job preemption in this process because
of the complexity.

– Secondly, GAI determines if the dimension of job type in the priority vector
is strictly greater than the preempted job, to ensure that ML jobs in the
production environment are not preempted by the ML jobs for research.

– Finally, GAI removes the jobs in the candidate set that are in higher priority
than the newly submitted jobs. The distribution of the jobs is a property at
runtime, thus GAI sets the dimension of the new job to the highest score
by default. While the job gains the lowest score in the dimension of ML job
runtime. GAI performs weight-based calculations on the four dimensions of
priority, as shown in Eq. 5.

Prioritytotal =
∑4

i=1 Wi · Priorityi

5
∑4

i=1 Wi

(5)

5 Evaluation

In this section, we compare GAI with default scheduler in Kubernetes. Evalu-
ations show that GAI improves the scheduling throughput and speeds up the
training of ML jobs.

5.1 Methodology

Implementation. We implement the prototype of GAI as a stand-alone sched-
uler for Kubernetes 1.8.5. GAI can work together with the default scheduler with
the help of Kubernetes by design. In that case, GAI schedules ML jobs while

GAI: A Centralized Scheduler for Machine Learning Workload 623

Fig. 7. Architecture of GAI

default scheduler deals with other jobs. We choose TensorFlow 1.4.0 as the frame-
work for running ML jobs. Kubeflow 0.1 is applied to combine TensorFlow and
Kubernetes.

Figure 7 shows the architecture of GAI. We build GAI on top of Kubernetes
instead of revising the original code of Kubernetes. In the prototype, we register
a custom resource definition TFJob for distributed TensorFlow model training
jobs in the cluster and run an operator to manage the lifecycle of TensorFlow
training jobs on Kubernetes. TensorFlow operator from Kubeflow creates inform-
ers for TFJob, which is TensorFlow custom resource, pod and service which are
Kubernetes internal resources. It watches the shared state of the cluster through
Kubernetes API server and makes changes the attempting to move the current
state towards the desired state. GAI is placed in the master node and it is
responsible for scheduling TensorFlow jobs.

Workload. There is no public trace now for ML workload, hence we construct
the workload trace mainly based on the description of the internal ML workload
in Facebook [8]. In the real cluster, there are some jobs for research purpose which
duration and number of tasks per job are shorter than the jobs for production
purpose. Thus we also create a trace of ML jobs submitted by researchers. We
use a power-law distribution similar to the production environment to generate
the trace.

Simulator. We implement a simulator to simulate how GAI behaves in a large
shared cluster. Different hardware leads to different training speeds, thus we
assume that training jobs using GPUs are 20 times faster than jobs using CPUs
according to historical records. The simulator reads trace data as input, run the
real scheduling algorithm and assign jobs to virtual nodes. Scheduling and com-
munication delays are set to random numbers which change within a relatively
small range. We run the simulator on one 8-core Intel(R) Core(TM) i7-6700
CPU bare metal server. It can simulate the scheduling process in the cluster
with 20000 virtual servers.

624 C. Gao et al.

Real Cloud-Based Cluster. We establish a real cluster based on the cloud.
The cluster has 5 8-core CPU servers with hyper-threading enabled and 5 8-core
servers with 1 GPU (10 × 8 × 2 = 160 virtual CPU cores and 5 GPUs in total).
Most of the experiments are run based on the simulator approach while we use
the real cloud-based cluster to get the real load information of GAI.

5.2 Scheduler Throughput

We run Kubernetes default scheduler as the baseline implementation and GAI,
to demonstrate the performance. We submit the workload described above and
run the experiments in the cluster with 200, 500, 1000, 5000, and 10000 nodes
iteratively. Virtual servers with different hardware configurations are created.
50% servers in the cluster have 1 GPU and 30% servers have 2 GPUs, while the
other 20% only have CPUs. To avoid the potential problem that the cluster is
full of use, the duration per job is set to 5 s. We disable the preemption and
degradation functionality, because the feature is not expected in the benchmark.
The corresponding logic about preemption in Kubernetes is also skipped.

Fig. 8. Scheduler throughput

We implement the benchmark based on the scheduler performance test in
Kubernetes and run it for 5 min. Then we calculate the average throughput for
the scheduler. As shown in Fig. 8, the throughput of GAI is 27.6% higher than
the baseline implementation at medium scale (500 servers), and behaves better
at large scale.

GAI maintains a tree-based architecture. When the requests are sent from
the control panel, GAI queues the requests in different queues for nodes. Thus
the tree-based architecture has good scalability. Kubernetes native scheduler
uses a single queue to manage all the resource requests, and it needs to run the
predicate and priority processes for each server. The design allows Kubernetes to
schedule the traditional workloads well but it also imports some overhead when
the cluster size is growing.

GAI: A Centralized Scheduler for Machine Learning Workload 625

5.3 Job Waiting Time

Job waiting time is the time from the job is queued to be scheduled to the job is
actually scheduled by the scheduler. In this section, we submit jobs with different
priorities. We use the workload above while the training is not actually executed.
In order to control the duration of the ML jobs precisely, the jobs only create
the parameter servers and workers but it does not train the models. We set the
active duration for jobs and kill the training jobs when it is time.

We group the jobs whose priority is larger than 0.7 as high-priority jobs. And
jobs whose priority is lower than 0.3 are grouped as low-priority jobs. Because
the priority is dynamic, we count all jobs which have come to the threshold at
least once valid. We also run the workload in Kubernetes for comparison.

Fig. 9. End-to-end latency

We run the experiment in the real cloud-based cluster. Figure 9(a) shows the
result of the experiment. Jobs whose priority are greater than 0.7 achieves lower
waiting time because of the support of resource degradation and preemption.
And we can see that the waiting time of the jobs scheduled by Kubernetes
default scheduler is slightly longer than GAI. The distribution of Kubernetes is
a long-tailed distribution since the jobs are overstocked.

5.4 Job Completion Time

Job completion time is the training time spending on the model. We design an
experiment using the real cluster to demonstrate that the high priority jobs are
more likely to use GPUs to train. We run simple MNIST model training jobs
using CNN and collect the completion time of jobs. The training job usually
takes 30–50 s when training based on CPUs and takes nearly 2–4 s on GPUs.

We run this experiment in the real cluster and limit the number of iterations
to make the model training process predictable. Figure 9(b) demonstrates that
jobs whose priority are greater than 0.7 usually have GPUs to run, therefore
the completion time is shorter and 80% jobs finish their training in 8.7 s. Low
priority jobs spend more time to do the same mode training task. 80% of low

626 C. Gao et al.

priority jobs finish in 48 s. As shown in Fig. 5, the average training time of GAI
is 14.6 s which achieves 21% speedup compared to Kubernetes default scheduler.

Table 5. Training convergence speedup in top k% ML jobs

Top k% Speedup Convergence (s)

25 26.1% 2.03

50 22.7% 2.56

100 21.4% 14.59

5.5 Comparison with Native Distributed TensorFlow

GAI runs the ML workload on container-based platforms, and it takes some
overheads for the training. We evaluate the convergence speed of GAI on MNIST
[15] training job, and GAI with native distributed TensorFlow when training a
DNN for the MNIST dataset. We run the DNN with 1 parameter server, 5
workers and 2 parameter servers, 4 workers.

Fig. 10. Model convergence (MNIST)

Figure 10 shows the result. The convergence speed of the jobs scheduled by
GAI and run on Kubernetes does not have significant differences compared to
native distributed TensorFlow. The jobs running with 5 workers and 1 param-
eter server converge slower than native distributed TensorFlow since the job is
network and computing intensive and the virtualization of containerization (e.g.
Docker) uses cgroup and apparmor for isolation and security. These features
import overhead for computing.

GAI: A Centralized Scheduler for Machine Learning Workload 627

5.6 Discussion

In this section, we reconsider the design decisions of GAI and discuss the limi-
tations.

We provide more insights on the performance and effect of GAI. GAI’s high
throughput capability benefits from the tree-based architecture. Experiments
demonstrate that GAI provides best effort service for jobs. GAI improves the
throughput by nearly 28% on a medium-sized cluster, and achieves 21% training
convergence speedup on DL models compared to Kubernetes default scheduler.
We also compare container-based solution with native distributed TensorFlow to
illustrate the overhead imported by the prototype of GAI is low. Table 6 shows
an overview of a selection of orchestration frameworks, their architecture, and
features.

Table 6. Comparison with existing scheduler frameworks for ML workload

GAI relies on many parameters and thresholds in the scheduling process.
Currently, we assign the values to these parameters and thresholds manually,
and statically. We can use some ML algorithms about hyperparameter tuning, to
choose the optimal values for these parameters. This requires a reasonable model
and data set. In addition, GAI should support dynamic parameter adjustment.
Under different loads, the weight of each dimension of the priority vector should
be adjusted.

The prototype is a scheduler plugin in Kubernetes, and it can work with
Kubernetes default scheduler to schedule multiple workloads via different sched-
ulers. The feature is implemented from Kubernetes side, while Kubernetes has
no mechanism to handle scheduling conflicts between different schedulers. There-
fore we do not evaluate it. It should be supported after Kubernetes has a good
support for the feature. Moreover, GAI currently uses container-based virtual-
ization to isolate resources, which is the default option in Kubernetes. We are
investigating using hypervisor-based containers for better isolation during model
training.

6 Conclusion

The work presented in this paper consists in a centralized scheduler for ML
workload named GAI to effectively share a single cluster among different DL
applications. To this aim, we propose tree-based scheduling to establish the
hierarchical structure of the cluster and the multi-dimensional priority algorithm
which considers different aspects of model training jobs to degrade or preempt

628 C. Gao et al.

the resource for higher priority jobs. By hiding the short board effect, we have
demonstrated the capability of our approach to support large shared clusters
containing hundreds of thousands of servers. We implement the prototype of
GAI on top of Kubeflow, Kubernetes, and TensorFlow. Moreover, we create
a trace based on the real ML workload in Facebook and evaluate GAI using
the trace. The result shows that the throughput of GAI is 27.6% higher than
default scheduler in Kubernetes at medium scale when scheduling ML jobs and
it achieves 21% training convergence speedup on DL models. Then there is an
experiment to demonstrate that GAI imports fairly low overhead to improve
isolation compared to native distributed TensorFlow.

The main directions for future work are twofold. The first one we are cur-
rently investigating is fine-grain control of hardware accelerator management.
GAI currently requires the exclusive use of GPUs. As future work, GAI should
import fine-grained scheduling and affinity control to make the most advantage
of GPUs.

As long-term future work, We are investigating approaches and methods of
improving scheduling and isolation of distributed model training jobs to make
GAI production ready. We hope that GAI will inspire more ideas on scheduling
for ML workload and ship off practical implementation.

Acknowledgements. This research is supported by the National Natural Science
Foundation of China under Grant No. 61373030.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation, vol. 16,
pp. 265–283 (2016)

2. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and
kubernetes. Commun. ACM 59(5), 50–57 (2016)

3. Chen, T., et al.: MXNet: a flexible and efficient machine learning library for het-
erogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

4. Delgado, P., Dinu, F., Kermarrec, A.M., Zwaenepoel, W.: Hawk: hybrid datacenter
scheduling. In: Proceedings of the 2015 USENIX Annual Technical Conference, No.
EPFL-CONF-208856, pp. 499–510. USENIX Association (2015)

5. Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heterogeneous
datacenters. ACM SIGPLAN Not. 48, 77–88 (2013)

6. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster
management. ACM SIGPLAN Not. 49, 127–144 (2014)

7. Gog, I., Schwarzkopf, M., Gleave, A., Watson, R.N., Hand, S.: Firmament: fast,
centralized cluster scheduling at scale. In: 12th USENIX Symposium on Operating
Systems Design and Implementation. USENIX (2016)

8. Hazelwood, K., et al.: Applied machine learning at Facebook: a datacenter infras-
tructure perspective. In: 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 620–629. IEEE (2018)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

http://arxiv.org/abs/1512.01274

GAI: A Centralized Scheduler for Machine Learning Workload 629

10. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data
center. In: 8th USENIX Symposium on Networked Systems Design and Implemen-
tation, vol. 11, p. 22 (2011)

11. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678. ACM (2014)

12. Jiang, J., Yu, L., Jiang, J., Liu, Y., Cui, B.: Angel: a new large-scale machine
learning system. Natl. Sci. Rev. 5, 216–236 (2017). https://doi.org/10.1093/nsr/
nwx018

13. Jin, J., Luo, J., Song, A., Dong, F., Xiong, R.: Bar: an efficient data locality driven
task scheduling algorithm for cloud computing. In: Proceedings of the 2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp.
295–304. IEEE Computer Society (2011)

14. Karanasos, K., et al.: Mercury: hybrid centralized and distributed scheduling in
large shared clusters. In: USENIX Annual Technical Conference, pp. 485–497
(2015)

15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

16. Lee, D., Mehta, N., Shearer, A., Kastner, R.: A hardware accelerated system for
high throughput cellular image analysis. J. Parallel Distrib. Comput. 113, 167–178
(2018)

17. Li, M., et al.: Scaling distributed machine learning with the parameter server. In:
11th USENIX Symposium on Operating Systems Design and Implementation, vol.
1, p. 3 (2014)

18. Lu, C., Ye, K., Xu, G., Xu, C.Z., Bai, T.: Imbalance in the cloud: an analysis on
Alibaba cluster trace. In: 2017 IEEE International Conference on Big Data (Big
Data), pp. 2884–2892. IEEE (2017)

19. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low
latency scheduling. In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pp. 69–84. ACM (2013)

20. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible,
scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM
European Conference on Computer Systems, pp. 351–364. ACM (2013)

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

23. Vavilapalli, V.K., et al.: Apache Hadoop YARN: yet another resource negotiator.
In: Proceedings of the 4th Annual Symposium on Cloud Computing, p. 5. ACM
(2013)

24. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with borg. In: Proceedings of the Tenth
European Conference on Computer Systems, p. 18. ACM (2015)

25. Xia, Y., Ren, R., Cai, H., Vasilakos, A.V., Lv, Z.: Daphne: a flexible and hybrid
scheduling framework in multi-tenant clusters. IEEE Trans. Netw. Serv. Manag.
15, 330–343 (2017)

26. Zhang, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.: Dynamic heterogeneity-
aware resource provisioning in the cloud. IEEE Trans. Cloud Comput. 2(1), 14–28
(2014)

https://doi.org/10.1093/nsr/nwx018
https://doi.org/10.1093/nsr/nwx018
http://arxiv.org/abs/1409.1556

Data-Centric Task Scheduling Algorithm
for Hybrid Tasks in Cloud Data Centers

Xin Li1,2,3(B), Liangyuan Wang1, Jemal Abawajy4, and Xiaolin Qin1

1 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, China

{lics,qinxcs}@nuaa.edu.cn, lywangcs@163.com
2 State Key Laboratory of Computer Architecture,

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
3 Collaborative Innovation Center of Novel Software Technology

and Industrialization, Nanjing, China
4 School of Information Technology, Deakin University, Melbourne, Australia

jemal.abawajy@deakin.edu.au

Abstract. With the development of big data, a demand for data anal-
ysis keeps increasing. This requirement has prompted a need for data-
aware task scheduling approach that can simultaneously schedule various
tasks such as batched tasks and real-time tasks in a data center efficiently.
To this end, we propose a hybrid task scheduling strategy coupled with
data migration in data center. Firstly, we translate the task schedul-
ing problem into task selection problem, and give methods of select-
ing batched tasks and real-time tasks respectively. Then the method for
scheduling both batched tasks and real-time tasks is introduced in detail.
Finally, we integrate data migration into the hybrid scheduling strategy.
Experimental results show that, compared to the traditional FIFO algo-
rithm, the proposed task scheduling strategy greatly improves the data
locality and data migration performs very well on reducing the job exe-
cution time. Our algorithm also guarantees an acceptable fairness for
tasks.

Keywords: Data analysis · Data migration · Batched task
Real-time task · Hybrid scheduling

1 Introduction

With the development of Internet technology, the demand for big data analysis is
increasing. Many tasks in cloud computing environment are data-intensive thus
making data as the necessary condition for task execution [14]. Many enterprises
and organizations need to periodically analyze the latest data, such as the social
networking sites like Facebook [2]. Task scheduling is one of the most important
problems for data analysis in large systems. For these periodic tasks, or batched
tasks, the execution time is an important indicator of decision-making. Less

c© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, pp. 630–644, 2018.
https://doi.org/10.1007/978-3-030-05054-2_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_47&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_47

Data-Centric Hybrid Tasks Scheduling Algorithm in Cloud DC 631

time means more benefits. To reduce system’s expected response time, people
have proposed different server deployment strategies [6]. The reduction of job
execution time is also important to minimize energy consumption of system [16].
In addition to reducing the execution time, some applications for edge computing
[10] and smart city [17] demand fast data analysis, and the tasks can be online
tasks. Batched tasks are mostly periodic or cyclic and tend to have a longer time
for waiting system to respond. In contrast, online tasks (i.e., real-time tasks)
require system to respond quickly, usually within a few minutes [7]. Therefore,
in order to meet the deadline for real-time tasks, the system needs to respond
as soon as possible.

Traditional scheduling methods consider only batched tasks or only real-time
tasks. With the popularity of big data, the scale of batched tasks and real-time
tasks keeps increasing. In data centers with big data, an approach that is capable
of simultaneously scheduling batched tasks and real-time tasks while taking into
account data requirements are necessary. There are two cases for task execution:
locality mode and remote mode. A task will be called data-locality task when
the task and its input data are assigned to the same server. Otherwise, the job
will be named as remote-access task. Obviously, the remote mode will consume
more time than the locality mode, since the remote-access task needs to read
and load data from another server in the network. Since data transfer is time
consuming and energy consuming, the core of the problem is to select a proper
task to execute when some servers are available. We illustrate the problem of
hybrid scheduling with the Fig. 1 as follow.

Fig. 1. Hybrid scheduling tasks which required specific data blocks

In this paper, a task scheduling approach that is capable of simultaneously
scheduling batched tasks and real-time tasks while taking into account data
requirements is presented. We consider the job scheduling under given data
placement and introduce a time model for computing the job execution time
in two modes based on our previous work [8]. According to the different con-
straints of response time, we can distinguish batched tasks from real-time tasks
and schedule them respectively. The experimental results show that our hybrid
scheduling strategy can not only improve the data locality, but also guarantee
the fairness of the tasks.

632 X. Li et al.

Generally, our contribution can be summarized as follows.

– We propose a hybrid task scheduling strategy for scheduling batched tasks
and real-time tasks. It also takes delay scheduling into consideration.

– The strategy combines data migration to improve the data locality of tasks.
We propose algorithms to measure the cost and benefits for two job execution
modes, and models to evaluate the merit and demerit for data migration.

– We conduct extensive simulations, and the results demonstrate that the
hybrid scheduling strategy combined with data migration has significant per-
formance improvements on global job execution time reduction.

The rest of this article consists of the following sections. We review the related
work in Sect. 2 and give some preliminaries in Sect. 3. Then, we introduce meth-
ods for scheduling batched tasks and real-time tasks in Sect. 4. In Sect. 5, a
hybrid task scheduling strategy that combined with data migration is proposed.
We evaluate our algorithms in Sect. 6. Finally, we conclude our paper in Sect. 7.

2 Related Work

In recent years, scholars researched on scheduling algorithms mainly on four fac-
tors: data locality, fault-tolerance, resource sharing and resource-aware schedul-
ing. The hybrid task scheduling strategy combined with data migration in this
paper is proposed to improve the performance of task execution by improving
data locality. Data locality is one of the most important concerns that determine
the task execution time [13]. To guarantee better data locality, delay scheduling
policy [15] is proposed to make a tradeoff between locality and fairness, another
important factor [12]. The basic idea is that, when the job should be scheduled,
according to fairness, it cannot achieve data locality: it waits for a small amount
of time and let other jobs be scheduled first.

In a heterogeneous environment, the exceptions of operating system, kernel,
network and so on can lead to the failure of task execution. The default fault-
tolerant mechanism in Hadoop is that if an exception occurs, the failed task
will be re-performed on another idle node [1]. Some algorithms are proposed for
estimating task exceptions such as LATE (Longest Approximate Time to End)
algorithm [5] and SAMR (Self-Adaptive MapReduce) algorithm [3].

People have developed many scheduling algorithms to improve the utilization
of resources. The Fair scheduling algorithm [11] is a default scheduling strategy
of Hadoop. It can ensure that each user in the cluster has approximately equal
resources and can satisfy the principle of fairness among various users. The
Capacity Scheduler uses a resource-aware algorithm [11], which is also a default
scheduling strategy in Hadoop.

The scheduling methods mentioned above are generally designed to schedule
batched tasks and methods for scheduling real-time task in MapReduce [4] is
not very popular. At present, most algorithms do not consider scheduling both
batched tasks and real-time tasks. The majority of existing research has focused
on the management of computing tasks and resources because they are widely

Data-Centric Hybrid Tasks Scheduling Algorithm in Cloud DC 633

considered to be expensive. However, the management of storage resources and
data movement between the storage and computing resources are becoming more
and more important, as the scientific applications are becoming more and more
data-intensive [14]. The hybrid task scheduling strategy proposed in this paper
is closely related to where the input data is deployed and will greatly improve
the data locality.

3 Preliminaries

For a given data center with heterogeneous servers, all tasks share the data and
resources. We split the resources and data into multiple uniform resource slots
and data blocks respectively. According to the locations of the resource slot and
the data block of the task execution, we classify the task execution in two modes:
the locality mode and the remote mode. Since the memory capacity is limited for
each server, it is hard to guarantee full data locality for all tasks. To minimize
the global execution time, we need to schedule tasks in locality mode as many as
possible. In this paper, batched tasks and real-time tasks have different execution
time when the tasks are executed in the locality mode. The execution time of
different batched tasks or real-time tasks is also different.

We assume that there are N servers in the data center and K different data
blocks. Bi represents the ith batched task and Ri represents the ith real-time
tasks. The time is split into multiple time-slots. For each task, its start time
is restricted by response time, which means the system must schedule a task
within its response time. For batched tasks, the response time is very long,
usually can be hours, while the response time for real-time tasks is only minutes
even seconds. We use response time to indicate the response time of tasks, and
the response time of each task is different. We use fi to identify the wanted data
block for task Bi or Ri. Sj(1 ≤ j ≤ N) is the jth server and Dk(1 ≤ k ≤ K) refers
to the kth data block. It should be noticed that the wanted data block fi should
be some specified data blocks, for example Dk, which means fi = Dk. There are
two assignment decisions, one is data-assignment, the other is task-assignment,
and the task-assignment includes batched task-assignment and real-time task-
assignment. For any assignment decision, it could be represented by the following
indicators.

π(Dk, Sj) =

{
0, there is no replica ofDk on Sj ;
1, otherwise.

(1)

π(Bi, Sj) =

{
1, Batched task Bi is assigned to server Sj ;
0, otherwise.

(2)

π(Ri, Sj) =

{
1, Real-time task Ri is assigned to server Sj ;
0, otherwise.

(3)

To describe the task execution mode clearly, we introduce the following
indicators.

634 X. Li et al.

φ(Bi, fi) =

{
0, Batched task Bi is executed in locality mode;
1, Batched task Bi is executed in remote mode.

(4)

φ(Ri, fi) =

{
0, Real-time task Ri is executed in locality mode;
1, Real-time task Ri is executed in remote mode.

(5)

We use the notation T0 to represent the task execution time under the locality
mode. For the remote mode, we use Tr to represent the task execution time. Here,
we have Tr = T0 × (1 + α), where α is a constant factor determined by the data
center architecture and the networking situation. The networking situation will
be worse if the number of tasks executed under remote mode is larger, hence, α
will be larger and increase the time cost. For the case with data migration, the
migration time ΔT = β ×T0 is another critical factor for hybrid scheduling, and
β is a constant factor.

As mentioned above, we take batched task Bi for example, φ(Bi, fi) equals
to 0 and indicates that the task and its associated data block is placed on the
same server. Hence, the task execution time can be represented by the following
equation.

T (Bi) = T0 × (1 + φ(Bi, fi) × α (6)

For each server, the makespan is determined by the workload, including the
initial workload and assigned tasks. We use the notation Li(Sj) to represent the
workload of server Sj before task Bi is assigned to Sj . And at the beginning,
none of tasks is assigned to Sj , Li(Sj) refers to the initial workload. Hence, we
can use the following equation to represent the total task execution time which
is represented as L(Sj) (or normalized workload) for server Sj .

L(Sj) = Li(Sj) + π(Bi, Sj) × T (Bi) (7)

4 Hybrid Scheduling

Given a data center that consists of N servers with one resource slot and M
storage slots. There are K different data (blocks) with 3 data replicas allocated
in the servers with some default settings. We use start time to represent the
start time of executing tasks, B ∪ R represents the collection of batched and
real-time tasks. The problem is to place m batched tasks and n real-time tasks
on the servers, such that the global job execution time is minimized and for
each task, the start time does not exceed the response time. The number of data
replicas placed on each server should not exceed the storage capacity M at any
time-slot. The problem can be formalized as follow.

min.maxL(Sj), 1 ≤ j ≤ N

s.t.∀t,
K∑
1

π(Dk, Sj) ≤ M, 1 ≤ j ≤ N

∀J ∈ B ∪ R, J.start time ≤ J.response time

Data-Centric Hybrid Tasks Scheduling Algorithm in Cloud DC 635

It is easy to understand that the problem is NP-hard. In fact, even if scheduling
only batched tasks has been proved to be NP-hard [9]. We can regard the prob-
lem like this: we need to select some tasks from the queue when some servers are
available. If none of tasks can be executed in locality manner, we need to make a
tradeoff between remote execution and waiting, and select the one that provides
best benefit. Based on this problem transformation and the tradeoff, we propose
our algorithms for scheduling batched tasks and real-time tasks as follows.

4.1 Batched Task Scheduling

Assume that there are m batched tasks in the system and they have a longer
response time. When scheduling batched tasks, we should minimize the job exe-
cution time. Given all batched tasks have arrived in the system. The tasks are
sorted in ascending order by execution time. The first step before scheduling is
to select a proper task from the queue and is shown from line 1 to line 7 in
Algorithm 1.

In Algorithm 1, Si is idle and request a task. We find all tasks which can
be executed in locality mode on Si and select the one with least T0 by function
min worktime(∪b). If none of tasks can be executed in locality mode on Si, then
select the task which has least T0 from all batched tasks. Finally, we return the
selected task J and schedule it in next step.

Algorithm 1. Batched task scheduling: BatchedTaskSchedule(Bi)
Require: m:the number of batched tasks; ∪B:all batched tasks in the queue; Si:the

ith server with available resource slots; Sv:the server which has the minimum load
in th cluster.

1: for j = 1 → m do
2: if π(fj , Si) = 1 then
3: ∪b ← Bj ;
4: if ∪b �= ∅ then
5: J ← min worktime(∪b);
6: else
7: J ← min worktime(∪B);
8: if π(fJ , Si) = 1 then
9: assign(J, Si);

10: else
11: Sv ← minload(∪S);
12: T ← Li(Sv) − t + T0(J);
13: if π(fJ , Sv) = 1 and T < Tr(J) then
14: assign(J, Sv);
15: else
16: assign(J, Si);

The process of scheduling batched tasks is shown from line 8 to line 16 in
Algorithm 1. J represents the selected task which will be scheduled. If the data
has been placed on Si, we assign the batched task J to server Si. If J cannot be
executed on Si in locality mode, we find out the server with least workload by

636 X. Li et al.

function min load(∪S) and indicate it with Sv. If the data required by task J
is placed on Sv, we should make a tradeoff between two factors. One is the time
for J to be executed on Si in remote mode, i.e. Tr(J). The other is the time for
J to wait for Sv to release resources, then executed on Sv in locality mode. The
waiting time is Li(Sv)−t, the execution time is T0(J). We use T to represent the
sum. Only when T is less than Tr(J), we assign task J to server Sv, otherwise,
J will be executed on server Si. This method is called delay scheduling.

In addition, we should be aware that there is only one resource slot for each
server as discussed in this paper. Actually, it is easy to extend our algorithms
to the case that the server contains multiple resource slots. What we need to do
is taking the real slot as one server in our work, and the slots in the same host
server share the same data. To simplify the description, we still assume there is
one slot for each server in this paper.

4.2 Real-Time Task Scheduling

Assume that there are n real-time tasks arrived one by one and sorted by the
response time in the queue. It’s urgent to schedule real-time tasks as soon as
possible due to the small response time. Therefore, the more important factor
to consider is that, the start time of each real-time task to be scheduled cannot
be over the response time. Also, before scheduling, we should select a proper
task from the queue. The algorithm for real-time task scheduling is shown in
Algorithm 2.

Algorithm 2. Real-time task scheduling: Real-timeTaskSchedule(Ri)
Require: n:the number of real-time tasks which have arrived in the queue; ∪R:all

real-time tasks in the queue; Si:the ith server with available resource slots; Sv:the
server which has the minimum load in the cluster.

1: for j = 1 → n do
2: if π(fj , Si) = 1 then
3: ∪r ← Rj ;
4: if ∪r �= ∅ then
5: j ← min responsetime(∪r);
6: J ← min worktime(∪j);
7: else
8: j ← min responsetime(∪R);
9: J ← min worktime(∪j);

10: if π(fJ , Si) = 1 then
11: assign(J, Si);
12: else
13: Sv ← min load(∪S);
14: T ← Li(Sv) − t + T0(J);
15: if π(fJ , Sv) = 1 and Li(Sv) < J.arrive time+J.response time and T < Tr(J)

then
16: assign(J, Sv);
17: else
18: assign(J, Si);

Data-Centric Hybrid Tasks Scheduling Algorithm in Cloud DC 637

In Algorithm 2, if Si requests a real-time task, we find out all tasks which
can be executed on Si in locality mode and assign the one with least response
time by function min responsetime(∪r). If there are more than one task, we
select the one with least work time, i.e. T0 by function min worktime(∪j). If
none of tasks can be executed in locality mode on Si, we find tasks with least
response time from all real-time tasks by function min responsetime(∪R) and
select the one with least work time by function min worktime(∪j). Hence, we
get a proper real-time task J to schedule.

The scheduling method for real-time tasks is different from batched tasks. We
introduce it from line 10 to line 18 in Algorithm2. If the data required by task J
is deployed on Si, we assign task J to server Si so that the task can be executed
in locality mode. Otherwise, find the server Sv which has the least workload in
the cluster. If the data required by J is on Sv, we need to judge whether the
task J can be executed on Sv and at the same time, meet the constraint that
the start time mustn’t be over the response time. If task J can be executed on
Sv in time, we need to make a tradeoff between two factors. This is as same
as what we have discussed on batched tasks before. In general, we choose the
method which can provides better benefits.

4.3 Hybrid Scheduling

The hybrid scheduling strategy is to integrate the two scheduling method above
together and achieve our purpose to reduce the execution time of all tasks. Also,
the strategy must meet the response time constraint. We have discussed the
problems on task selection and scheduling for batched tasks and real-time tasks
respectively. In this section, the core content we will introduce is to how to deal
with the situation that both batched tasks and real-time tasks are in the system
at the same time. The scheduling method is shown in Algorithm 3.

Algorithm 3. Hybrid scheduling
Require: t:the global time-slots to complete all tasks; ∪B:all batched tasks; ∪R:all

real-time tasks which have arrived.
1: t ← 0;
2: for i ← 1 → N do
3: if Si.slot > 0 then
4: if ∪R �= ∅ then
5: J ← Real − timeTaskSelect(∪R);
6: Real − timeTaskSchedule(J);
7: else
8: if ∪B �= ∅ then
9: J ← BtachedTaskSelece(∪B);

10: BatchedTaskSchedule(J);
11: t ← t + 1;
12: return t;

638 X. Li et al.

We split the time into many time-slots and at each time-slot t, check the
state of servers. If there is a server Si is idle, we first check if there are real-time
tasks in the system. Because of the small response time, the real-time tasks are
always prior to batched tasks. Therefore, only when the queue of real-time tasks
is empty or all real-time tasks have already been scheduled, we can schedule the
batched tasks.

5 Hybrid Scheduling with Data Migration

In this section, we will add the data migration to the hybrid scheduling strat-
egy to make a further improvement in data locality. Data migration means the
process of migrating a data block to a specified server. After data migration,
the server which originally can execute some tasks in remote mode, will be able
to execute them in locality mode. Although data migration can make a time
reduction by improving data locality, it also results in an extra time cost cause
migrating data is time consuming. We use ΔT to represent the time of data
migration. The process of data migration is shown in Algorithm4 in detail as
follow.

Algorithm 4. Data migration: migrate(fJ , Sv)
Require: J :the selected task; num:the number of replicas of each data; degree:the

number of tasks which require data fJ as input;Sv:the target server for data migra-
tion.

1: if Sv.storage space > 0 then
2: assign fJ to Sv;
3: fJ .degree ← fJ .degree + 1;
4: else
5: for i ← 1 → M do
6: d ← min degree(Sv.data);
7: if Dd.num > 1 then
8: replace fd with fJ ;

For the implementation of migrate(fJ , Sv), we should be aware that if there
is no enough storage space on Sv, some data may be replaced by fJ . The reason
to select Dd in Algorithm 4 but not other data is that the degree of data Dd is
minimum among the data on server Sv, where the degree indicates the number
of tasks taking the data as their input data so far. However, we have another
important principle that there should be at least one replica in the data center
for each data. This principle works when the replica of Dd on server Sv is the
only replica, and we will select another data within minimized degree except Dd.

Data migration is only added in some specific steps of scheduling batched
tasks and real-time tasks and the architecture of the hybrid scheduling strat-
egy doesn’t change. We will only introduce the processes of data migration in
scheduling batched tasks and real-time tasks in detail, other relevant methods

Data-Centric Hybrid Tasks Scheduling Algorithm in Cloud DC 639

can refer to the previous algorithms we have presented before. It is easy to under-
stand we discuss data migration only in the case that, task J cannot be executed
in locality mode on idle server Si and the server Sv, which has least workload, has
no data required by J . The following algorithms we will discuss are all based on
this case. Except this, any other situations can find a scheduling method. Task
J can be executed either on Si remotely, or on Sv in a delay scheduling man-
ner. The algorithm for scheduling batched tasks with data migration is shown
in Algorithm 5.

Algorithm 5. Batched task scheduling with data migration:
BatchedTaskSchedule(Bi)
Require: ∪B:all batched tasks; Si:the ith server with available resource slots;Sv:the

server which has the minimum load in the cluster.
1: J ← BatchedTaskSelect(∪B);
2: if π(fJ , Si) �= 1 then
3: t1 ← Li(Sv) − t;
4: if t1 < ΔT then
5: T2 ← ΔT + T0(J);
6: else
7: t2 ← t1 + T0(J);
8: if Tr(J) > t2 then
9: migrate(fJ , Sv);

10: assign(j, Sv);
11: else
12: assign(J, Si);

In Algorithm 5, to decide whether to perform data migration, first we should
calculate the time of task J to be executed on Sv in data migration manner. Task
J has to wait for Sv to be idle, and the waiting time is Li(Sv) − t, represented
as t1. If t1 is less than T , it means the server Sv will release resources before
the process of migrating the required data to Sv is completed. Therefore, the
whole execution time is the sum of T and T0(J). Otherwise, the migration time
is shorter than the waiting time t1, the whole execution is the sum of t1 and
T0(J). We use t2 to indicate the whole execution time with data migration on
server Sv. Here, we need to make a tradeoff between two factors. One is the
execution time on Si in remote mode, i.e. Tr(J), the other is t2. If t2 is shorter
than Tr(J), we migrate the data required by J to server Sv, then assign J to Sv

so that J can be executed in locality mode on Sv. Otherwise, J will be executed
remotely on server Si.

The algorithm for scheduling real-time tasks with data migration is similar
and shown in Algorithm6. In Algorithm 6, we first calculate the time of waiting
Sv to be idle and represent it as t1. Then we can get the whole execution time
with data migration time like procedure in Algorithm5 and represent it as t2.
There is another time t3, which means the start time of J if J is executed on Sv

after data migration. Before making the tradeoff between Tr and t2, we need to

640 X. Li et al.

Algorithm 6. Real-time task scheduling with data migration:
Real-timeTaskSchedule(Ri)
Require: ∪R:all real-time tasks in the queue; Si:the ith server with available resource

slots;Sv:the server which has the minimum load in the cluster;t:the global time-slots
to complete all tasks.

1: J ← Real − timeTaskSelect(∪R);
2: if π(fJ , Si) �= 1 then
3: t1 ← Li(Sv) − t;
4: if t1 < ΔT then
5: t2 ← ΔT + T0(j);
6: t3 ← t + ΔT ;
7: else
8: t2 ← t1 + T0(J);
9: t3 ← Li(Sv);

10: if Tr(J) > t2 and t3 < J.arrive time + j.response time then
11: migrate(fJ , Sv);
12: assign(J, Sv);
13: else
14: assign(J, Si);

judge whether the task J can be executed in time within the response time. Only
in the case that t2 is less than Tr and the start time of J can meet the response
time constraint can we assign J to Sv. It means task J will be executed on Sv

in locality mode after data migration and consume less time than on server Si,
J can also be scheduled within the response time.

6 Performance Evaluation

We conduct simulations with varies settings. Based on our previous work in [8]
we can set the value of constant as α = 1.2 and β = 0.8. We set N = 50 servers
and M = 20 storage slots for each server. All tasks shared K = 300 data blocks
with default 3 replicas in the data center. The replicas are placed randomly by
the rule that the replicas of the same data block will not be placed on the same
server. The task execution time T0 in locality mode and the input data for each
task are given randomly. There are 3 cases of tasks in the system. Case 1: all
batched tasks; case 2: all real-time tasks; case 3: batched tasks and real-time
tasks. We will analyze the 3 cases by conducting our scheduling methods.

For the first case, we considered 1000 batched tasks that have arrived to
the system and are sorted in the order of their ascending execution time. The
simulation results are shown in Fig. 2, where the x-coordinate represents the
time-slots and the y-coordinate is the CDF value. The CDF value indicates the
percentage of the completed jobs for given time-slots. From the results we know
that our algorithms perform better than the typical FIFO method. The schedul-
ing method with data migration is also better than without data migration. We
should be aware that the improvement produced by data migration is limited

Data-Centric Hybrid Tasks Scheduling Algorithm in Cloud DC 641

Fig. 2. Scheduling only batched tasks

Fig. 3. Scheduling only real-time tasks

because the storage slots are limited and we only migrate data in some specific
conditions as discussed before.

For the second case, we let n = 1000 real-time tasks arrive in 100 time-
slots and sort them by response time in ascending order. The simulation results
are shown in Fig. 3 with same coordinates settings. we can see that, for real-
time tasks, our algorithms are also better than FIFO. The performance of data
migration is similar with scheduling batched tasks. This is because all real-time
tasks will arrive after 100 time-slots and the condition will be similar with case 1.

For case 3, we let m = 500 batched tasks in the queue and n = 500 real-time
tasks arrived in 100 time-slots. The simulation results are shown in Fig. 4 with
same coordinates settings. From the results we can know that our algorithms

642 X. Li et al.

Fig. 4. Hybrid scheduling both batched and real-time tasks

can also schedule batched tasks and real-time tasks at the same time and reduce
the execution time more than FIFO. The contribution of data migration is same
as the results of the two cases above.

Table 1. Fairness analysis-average waiting time (time-slots)

Algorithm Case 1 Case 2 Case 3

FIFO 213 169 197

Hybrid scheduling 75 56 68

Migration-based hybrid scheduling 75 56 64

Table 2. The amount of overtime real-time tasks

Algorithm Case 2 Case 3

FIFO 7 5

Hybrid scheduling 3 2

Migration-based hybrid scheduling 2 2

Fairness is another key factors for task scheduling. We use average waiting
time characterize the fairness. We analyze the average waiting time under the
above 3 cases. The results are shown in Table 1. From this table, we know that our
algorithms not only reduce task execution time, but also provide better fairness
than FIFO. We also evaluate whether data migration can meet the constraint of
response time for real-time tasks. For case 2 and case 3, we count the number

Data-Centric Hybrid Tasks Scheduling Algorithm in Cloud DC 643

of real-time tasks which can not be executed before response time. From the
results shown in Table 2 we know that our algorithms have less overtime tasks
than FIFO.

7 Conclusion

In this paper, we proposed a hybrid scheduling strategy for scheduling both
batched tasks and real-time tasks, and data migration is taken into considera-
tion to improve the data locality. The delay scheduling is also considered. We
formalize the problem and the basic idea is to compare the benefits between
instantaneity and data locality for tasks. Simulations show this method can pro-
vide better time reduction than FIFO and acceptable fairness. In addition, data
migration can also improve the data locality and shorten global time.

Acknowledgment. This work is supported in part by the National Natural Sci-
ence Foundation of China under Grant 61373015, in part by the Jiangsu Natural Sci-
ence Foundation under Grant BK20160813 and BK20140832, in part by the National
Key R&D Program of China under Grant 2018YFB1003902, in part by the Open
Project Funded by State Key Laboratory of Computer Architecture under Grant
CARCH201710, and in part by the Project Funded by China Postdoctoral Science
Foundation.

References

1. Apache hadoop. http://hadoop.apache.org/
2. Apache pig. http://pig.apache.org/
3. Chen, Q., Zhang, D., Guo, M., Deng, Q., Guo, S.: SAMR: a self-adaptive mapre-

duce scheduling algorithm in heterogeneous environment. In: IEEE International
Conference on Computer and Information Technology, pp. 2736–2743, June 2010

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: Proceedings of USENIX OSDI, pp. 1–45 (2013)

5. Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed computing
systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst.
22(8), 1374–1381 (2011)

6. Li, D., Wu, J., Chang, W.: Efficient cloudlet deployment: local cooperation and
regional proxy. In: International Conference on Computing, Networking and Com-
munications, pp. 757–761, March 2018

7. Li, X., Tatebe, O.: Data-aware task dispatching for batch queuing system. IEEE
Syst. J. 11(2), 889–897 (2017)

8. Li, X., Wang, L., Lian, Z., Qin, X.: Migration-based online CPSCN big data anal-
ysis in data centers. IEEE Access 6, 19270–19277 (2018)

9. Li, X., Wu, J., Qian, Z., Tang, S., Lu, S.: Towards location-aware joint job and data
assignment in cloud data centers with NVM. In: Proceedings of IEEE IPCCC, pp.
1–8, December 2017

10. Shi, W., Gao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

11. Thomas, L., R, S.: Survey on mapreduce scheduling algorithms. Int. J. Comput.
Appl. 95(23), 9–13 (2014)

http://hadoop.apache.org/
http://pig.apache.org/

644 X. Li et al.

12. Vavilapalli, V.K., et al.: Apache hadoop yarn: yet another resource negotiator. In:
Proceedings of the 4th Annual Symposium on Cloud Computing, no. 5, October
2013

13. Wang, W., Zhu, K., Ying, L., Tan, J., Zhang, L.: Map task scheduling in mapreduce
with data locality: throughput and heavy-traffic optimality. IEEE/ACM Trans.
Netw. 24(1), 190–203 (2016)

14. Yu, B., Pan, J.: Location-aware associated data placement for geo-distributed data-
intensive applications. In: IEEE Conference on Computing Communications, pp.
603–611, April 2015

15. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: Proceedings of the 5th European Conference on Computer Systems,
pp. 265–278. ACM (2010)

16. Zhou, Z., et al.: Minimizing SLA violation and power consumption in cloud data
centers using adaptive energy-aware algorithms. Future Gen. Comput. Syst. 86,
836–850 (2018)

17. Zhu, C., Zhou, H., Leung, V.C.M., Wang, K., Zhang, Y., Yang, L.T.: Toward big
data in green city. IEEE Commun. Mag. 55(11), 14–18 (2017)

Correction to: Improve Heteroscedastic
Discriminant Analysis by Using CBP

Algorithm

Jafar A. Alzubi, Ali Yaghoubi, Mehdi Gheisari, and Yongrui Qin

Correction to:
Chapter “Improve Heteroscedastic Discriminant Analysis
by Using CBP Algorithm” in: J. Vaidya and J. Li (Eds.):
Algorithms and Architectures for Parallel Processing,
LNCS 11335, https://doi.org/10.1007/978-3-030-05054-2_10

The original version of the chapter “Improve Heteroscedastic Discriminant Analysis by
Using CBP Algorithm”, starting on p. 130 has been revised. The affiliations were
incorrect and mismatched.

The original chapter was corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-05054-2_10

© Springer Nature Switzerland AG 2018
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, p. C1, 2018.
https://doi.org/10.1007/978-3-030-05054-2_48

https://doi.org/10.1007/978-3-030-05054-2_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_48&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_10
https://doi.org/10.1007/978-3-030-05054-2_48

Correction to: Algorithms and Architectures
for Parallel Processing

Jaideep Vaidya and Jin Li

Correction to:
J. Vaidya and J. Li (Eds.):
Algorithms and Architectures for Parallel Processing,
LNCS 11335, https://doi.org/10.1007/978-3-030-05054-2

The original version of chapter 18 starting on p. 238 was revised. The name of the
second author has been deleted. Instead of Wenwen Liu, Rebecca J. Stones, Gang
Wang, and Xiaoguang Liu it should be read as Wenwen Liu, Gang Wang, and
Xiaoguang Liu.

The original chapter was corrected.

The original version of chapter 40 starting on p. 524 was revised. The grant numbers of
the Joint Research Fund in Astronomy were incorrect in the acknowledgement on
p. 536.

The original chapter was corrected.

The updated version of these chapters can be found at
https://doi.org/10.1007/978-3-030-05054-2_18
https://doi.org/10.1007/978-3-030-05054-2_40

© Springer Nature Switzerland AG 2019
J. Vaidya and J. Li (Eds.): ICA3PP 2018, LNCS 11335, p. C2, 2019.
https://doi.org/10.1007/978-3-030-05054-2_49

https://doi.org/10.1007/978-3-030-05054-2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05054-2_49&domain=pdf
https://doi.org/10.1007/978-3-030-05054-2_18
https://doi.org/10.1007/978-3-030-05054-2_40
https://doi.org/10.1007/978-3-030-05054-2_49

Author Index

Abawajy, Jemal II-630
Adhikari, Binod Kumar IV-628
Ai, Haojun III-44, III-218, III-229, IV-326
Ali, Saqib III-118, IV-399
Alienin, Oleg I-483
Alkasem, Ameen III-432
Allombert, Victor III-159
Alzubi, Jafar A. II-130
Amar, Mohamed Abdellahi I-437

Bai, Guangwei III-142, IV-431
Bai, Lanhua III-385
Bao, Weidong III-293
Bao, Xianyue IV-204
Bellalouna, Monia I-437
Bellatreche, Ladjel III-560
Ben Maaouia, Omar II-388
Benoit, Anne III-175
Berkani, Nabila III-560
Bhoiwala, Jaina IV-62
Bi, Chongke I-621
Bi, Wei II-582
Bouazizi, Emna I-75

Cai, Bo III-218, III-229
Cai, Hongming II-611
Cai, Miao I-267
Cai, Xiaojun III-370
Cai, Yiqiao II-76, II-308
Cai, Yuan II-187
Cai, Yujie IV-3
Cai, Zhicheng III-519
Cao, Ning I-524
Cérin, Christophe II-388, III-103
Chai, Xin III-132
Chang, Xiaolin III-661
Che, Ming II-551
Chen, Chao II-272
Chen, Deng III-257
Chen, Fei I-3, IV-461
Chen, Gan II-538
Chen, Haiyan III-618
Chen, Hanwen III-257
Chen, Jiankang IV-121

Chen, Jianxi I-562
Chen, Jixiao I-323
Chen, Lidong I-89
Chen, Long I-393, I-636, II-90, III-3,

III-355, III-460
Chen, Mengqi IV-178
Chen, Mengqiang I-122, II-401
Chen, Nanxi IV-591
Chen, Shuhong IV-303
Chen, Xinhai I-242
Chen, Yifeng I-337, I-532
Chen, Yingyang II-248
Chen, Yuting II-354
Chen, Zehong IV-389
Chen, Zhe IV-98
Chen, Zhenxiang I-46, I-257, IV-109,

IV-166
Chen, Zhiguang I-358
Chen, Zhili IV-204
Chen, Zhiyan I-19, II-272
Cheng, Baolei III-342
Cheng, Feng II-538
Cheng, Shuai I-184
Cheng, Yuxia II-477
Cheng, Zhiguang II-114
Chi, Lihua I-242
Chu, Qian III-209
Ci, LinLin III-593
Cui, Jie IV-461
Cui, Lizhen II-18, III-280, IV-166
Cui, Xin I-578
Cui, Zhihua II-329

Dai, Fei II-367, III-640
De Giusti, Armando I-310
Deng, Hanbo I-46
Deng, Kaixin III-453, IV-581
Deng, Mingzhu I-358
Deng, Pan II-354
Deng, Yuhui I-200, I-378
Di, Nan III-640
Ding, Wei I-153
Dong, Jiaqing II-32, IV-527
Dong, Lanlan IV-47

Dong, Yong-Qiang I-34
Dong, Zhibin II-60
Du, Haiwen I-524
Du, Jiayi I-138
Du, Qingfeng III-59, IV-560
Du, Xin I-122
Du, Yu I-229
Du, Yunfei I-122, II-114
Dulin, IV-511
Dutta, Pramit IV-62

Elhabob, Rashad IV-220
Eltayieb, Nabeil IV-220

Faiz, Sami I-75
Fan, Jianhua IV-549
Fan, Jianxi II-3, III-342
Fan, Sijiang IV-341
Fan, Weibei II-3
Fan, Yibo IV-3
Fang, Junbin IV-447
Feng, Dan I-562, I-608, II-445
Feng, Hao I-200
Feng, Yilin I-421
Fkaier, Hazem II-388
Fu, Haohuan III-504
Fu, Min II-445

Gan, Lin III-504
Gan, Yong IV-600
Gang, Peng I-483
Gao, Ce II-611
Gao, Chongzhi IV-249
Gao, Cuiying I-59
Gao, Hepeng II-199
Gao, Xingkun I-593
Gava, Frédéric III-72, III-159
Geng, Yangyang I-636
Gheisari, Mehdi II-130, IV-303
Ghorbani, Hamidreza IV-303
Gong, Liangyi IV-234
Gordienko, Nikita I-483
Gordienko, Yuri I-483
Gotewal, Krishan Kumar IV-62
Goupille-Lescar, Baptiste III-575
Gu, Jingyun I-59
Gu, JingZi I-184
Gu, Liang I-34
Gu, Yingjie IV-538

Gu, Yiren III-142
Gu, Zhuoer II-272
Guan, Lele II-263
Gui, Ruowei IV-538
Gui, Xiaolin IV-538
Guo, Bing II-507
Guo, Dongchao II-32
Guo, Lin IV-628
Guo, Mengying III-17
Guo, Ning IV-447
Guo, Peiming IV-21
Guo, Yang I-138, III-196
Gupta, Sarthak IV-62

Hamdi, Sana I-75
Han, Jizhong II-226
Han, Kun III-249
Han, Liangliang III-44
Han, Wencong IV-249
Han, Yuejuan III-342
Han, Zengyi II-596
Han, Zhijie II-3
Hassan, Alzubair IV-220
He, Bin IV-72
He, Keqing II-46
He, Lei III-311
He, Ligang I-19, II-272
He, QiLin IV-399
He, Wei III-280
He, Weichao III-89
He, Ximing IV-341
He, Yu III-59, IV-560
Hong, Huang III-651
Hong, Xiaoyu III-186
Hu, Bin II-105, III-239
Hu, Cheng I-378
Hu, Jingjing IV-249
Hu, Shengjie I-215
Hu, Songlin IV-12
Hu, Xiaoteng I-284
Hu, Xiaoyan I-153
Hu, Yi II-551
Hu, Yujia III-142, IV-431
Huang, Baoqi II-175, III-476, III-489
Huang, Hao I-267
Huang, Haojun II-32
Huang, Libo IV-341
Huang, Linpeng I-578, II-354
Huang, Liping I-323, II-199
Huang, Liusheng I-636, III-311

646 Author Index

Huang, Shuqiang III-608
Huang, Weimin I-498
Huang, Weiyi IV-326
Huang, Xiaomeng III-504
Huang, Xuan I-593
Huang, Yanyu IV-85
Huang, Yujie IV-3

Jain, Swati IV-62
Jemni, Mohamed II-388
Ji, Xiang II-187
Ji, Xuan III-28
Ji, Yiming I-621
Jia, Bing II-175, II-199, II-378, III-476,

III-489
Jia, Chunfu II-462, IV-98, IV-178
Jia, Haipeng II-338
Jia, Huiwen IV-600
Jia, Menghan I-106
Jia, Zhiping III-370, IV-617
Jiajia, Sun IV-260
Jiang, Huiwen II-287
Jiang, Peng I-19
Jiang, Yuli III-209
Jiang, Yunpeng II-596
Jiang, Zoe L. II-248, IV-358, IV-374,

IV-389, IV-415, IV-447
Jiao, Libo II-32, IV-527
Jin, Hai I-3
Jin, Yabin IV-447
Jin, Yufei II-491
Jinbao, Gao IV-260
Jing, Minge IV-3

Khaznaji, Walid I-437
Kuang, Di I-122
Kuang, Yuyu III-257

Leclercq, Étienne III-103
Lee, Dong Hoon IV-85
Lefèvre, Laurent III-175
Lei, Jing IV-193
Lei, Lixia I-498
Lenormand, Eric III-575
Li, Bingyao I-284
Li, Bo I-184, IV-85
Li, Chenyang II-263
Li, Dongsheng I-106

Li, Fagen IV-220
Li, Guohui II-507
Li, Hang IV-178
Li, Hongwei III-89
Li, Hui III-280, IV-34
Li, Jian III-402
Li, Jianjun II-507
Li, Jiaxing I-393
Li, Jin IV-374
Li, Jing II-76, II-308
Li, Jingyi I-393
Li, Jinyang III-402
Li, Jun III-218
Li, Junyu II-272
Li, Lianmeng I-284
Li, Lingzhi IV-72
Li, Min IV-234
Li, Peng II-3
Li, Pengze II-18
Li, Qinan II-378
Li, Qingzhong II-18
Li, Qiushi I-545
Li, Qun IV-166
Li, Shengguo I-242
Li, Shuang II-417
Li, Tiantian II-105
Li, Tianyou II-354
Li, Tingting III-28
Li, Tong IV-98
Li, Tongfang III-270
Li, Wanpeng IV-288
Li, Wei I-215
Li, Wenfa II-297
Li, Wenjuan IV-481
Li, Wenwu III-196
Li, Wuyungerile II-378, III-476
Li, Xiaofang II-60
Li, Xiaoguo IV-138
Li, Xiaolin III-534
Li, Xiaoyan III-342
Li, Xin II-567, II-630
Li, Xinxin I-122
Li, Xu IV-399
Li, Xuan IV-374
Li, Xun III-547
Li, Yalin III-239
Li, Yinan II-90
Li, Yunchun I-215
Li, Zhang III-651
Li, Zhaoyang IV-234

Author Index 647

Li, Zhen II-524
Li, Zhihao II-338
Lianfang, Wang III-651
Liang, Jiahao IV-643
Liang, Yanhua III-28
Liao, Liang III-44, IV-326
Lin, Cheng-Kuan II-3, II-145
Lin, Xiaotong II-160
Lin, Yong II-319
Lin, Yongzheng I-257
Liu, Anran IV-109
Liu, Chunbo IV-178
Liu, Duan III-519
Liu, Fang I-358
Liu, Fangxin II-367, III-640
Liu, Gang I-138
Liu, Guanjun IV-47
Liu, Hengchang III-402
Liu, Hong I-257
Liu, Hongwei III-432, IV-389
Liu, Jianwei IV-549
Liu, Jie I-242
Liu, Jing III-249, IV-611
Liu, Jingning I-562
Liu, Jingyu III-132
Liu, Jiqiang III-661
Liu, Joseph K. IV-85
Liu, Ke IV-617
Liu, Lei II-18, III-280
Liu, LiPing III-593
Liu, Lu III-132
Liu, Mengdi IV-495
Liu, Minmin II-175
Liu, Qi III-402
Liu, Sheng III-618
Liu, Shenming I-267
Liu, Wantao IV-12
Liu, Wei III-593
Liu, Weijie I-406
Liu, Wenbin II-596
Liu, Wenguo I-608
Liu, Wenjie IV-341, IV-538
Liu, Wenwen II-238
Liu, Xiaoguang II-238
Liu, Ximeng IV-204
Liu, Xuefeng IV-193
Liu, Yan III-270
Liu, Yanyan I-524
Liu, Yin IV-12
Liu, Yunan I-449

Liu, Zechao IV-374
Liu, Zheli IV-85, IV-234
Liu, Zhiwei I-498
Long, Xin III-460
Lu, Kejie IV-72
Lu, Liu I-299
Lu, Tao II-432, III-257, III-534
Lu, Xiaoxiao II-551
Lu, Yutong II-114
Luo, Gang IV-495
Luo, Jun I-229
Luo, Qi I-621
Luo, Wei II-76, II-308
Lv, Haitao III-270
Lv, Jiazhuo IV-447
Lv, Peipei I-34
Lv, Siyi IV-85
Lv, Tongtong II-462, IV-98
Lv, Weiqiang II-538
Lyu, Yongqiang II-32, IV-527

Ma, Bin I-284
Ma, Jingyi III-311
Ma, Kun I-257, IV-166
Ma, Sheng III-196, IV-341
Ma, Xinwei III-453
Ma, Yong I-449, II-462
Madsen, David IV-481
Maharjan, Ramesh IV-628
Mai, Xiaoming I-508
Mao, Rui I-19
Marquer, Yoann III-72
Mei, Linjun I-562
Mei, Songzhu I-106
Meng, Dan I-184
Meng, Guozhu III-417
Meng, Weizhi IV-481
Meng, Xiangfei II-524
Menouer, Tarek III-103
Miao, Qing II-175
Miao, Xuzhi IV-591
Mo, Xiuliang IV-234
Morin, Christine III-575

Naiouf, Marcelo I-310
Ngoko, Yanik II-388
Nie, Ming I-508
Ning, Yang III-402

648 Author Index

Orgerie, Anne-Cécile III-175

Parlavantzas, Nikos III-575
Pavliuchenko, Ivan I-483
Pei, Qingqi IV-193
Peng, Junjie II-538
Peng, Li III-534
Peng, Lizhi I-46, IV-109
Peng, Su IV-270
Peng, Ziwei II-114
Peters, Dennis K. I-498
Pousa, Adrián I-310

Qian, Zhuzhong II-567
Qiang, Chenyi I-406
Qiao, Xueming I-524
Qiao, Yu II-46
Qikun, Zhang I-299
Qin, Xiaolin II-630
Qin, Yongrui II-130
Qin, Zhen II-248
Qiu, Juan III-59
Qiu, Yunzhou III-630
Qu, Chao III-186, III-608
Qu, Shenming III-534
Qu, Xiaoping III-270

Raïs, Issam III-175
Raju, Daniel IV-62
Rastogi, Naveen IV-62
Ren, Fangyuan IV-581
Ren, Rui II-611
Ren, Shenyuan I-19, II-272
Ren, Shiqiang III-257
Ren, Wei II-582
Rojbi, Anis I-483
Rokovyi, Oleksandr I-483
Rudoff, Andy II-354

Sanz, Victoria I-310
Shang, Zhaohui II-551
Shankaran, Rajan IV-495
Shao, Chi II-76
Shao, Wei IV-178
Shao, Xuexiao III-239
Sharma, Priyanka IV-62
Shen, Hang III-142, IV-431
Shi, Yuliang IV-109, IV-166

Si, Lei I-378
Song, Lan I-498
Song, Rui III-618
Stirenko, Sergii I-483
Su, Wei II-60
Sun, Chao II-524, II-551
Sun, Guanchao I-215
Sun, Jizhou I-621, II-551
Sun, Qiao I-465
Sun, Rujun II-212
Sun, Wenhai IV-193
Sun, Wenli IV-415
Sun, Xiaoshan III-402
Sun, Yongxiong III-28

Tan, Jiayu IV-153
Tan, Shichong IV-511
Tan, Wen-tao IV-573
Tang, Jie I-421, I-593
Tang, Shanjiang I-284, II-524
Tang, Wenjuan II-417
Tang, Xuehai II-226
Tang, Yi II-160
Tao, Ming III-186, III-608
Tao, Xiaoling IV-511
Tesson, Julien III-159
Tian, Miaomiao IV-461
Tian, Yu III-489
Tong, Hai III-142
Tseng, Yu-Chee II-145

Wan, Jianyi I-449
Wang, Bei I-532
Wang, Chongjun I-421
Wang, Chundong IV-234
Wang, Dianxin II-263
Wang, En II-596
Wang, Gang II-238
Wang, Gongming II-297
Wang, Guijuan III-342
Wang, Guojun III-118, IV-303, IV-399
Wang, Haibo III-311
Wang, Hao I-621
Wang, Haobo I-89
Wang, Hong III-209, IV-573
Wang, Hui II-329
Wang, Ji III-293
Wang, Jiaming II-432

Author Index 649

Wang, Jian IV-153
Wang, Jianfeng IV-511
Wang, Jin IV-72
Wang, Jinlong IV-611
Wang, Junjie III-402
Wang, Junxiu II-378
Wang, Kai IV-527
Wang, Liangyuan II-630
Wang, Lidan II-145
Wang, Lina I-406
Wang, Lingyan IV-461
Wang, Lu-tong IV-573
Wang, Mingwen I-449
Wang, Na II-367, III-640
Wang, Peng II-226
Wang, Qiang IV-270
Wang, Qinglin I-242
Wang, Ruchuan II-3
Wang, Rui III-370
Wang, Shanshan IV-109, IV-166
Wang, Shu III-249
Wang, Songyun II-567
Wang, Tianjing III-142, IV-431
Wang, Tianyu IV-617
Wang, Weiping I-184
Wang, Wenjun II-329
Wang, Xiao II-338
Wang, Xiaodong I-168
Wang, Xiaofen IV-288
Wang, Xin III-504
Wang, Xiyang II-212
Wang, Xuan IV-358, IV-374, IV-415,

IV-447
Wang, Yifeng III-44
Wang, Yingtao II-538
Wang, Yiqi II-199
Wang, Yu IV-481
Wang, Zhi IV-178
Wang, Zhiying IV-341
Wang, Zhongyue II-462
Wei, Wenhong III-608
Wei, Yu IV-85
Wen, Shiqi III-229
Wen, Tangliu I-498
Wu, Changmao I-168, I-465
Wu, Chao I-545
Wu, Chuxin IV-389
Wu, Duanwei II-308
Wu, Gangshan I-593
Wu, Hao I-508

Wu, Huan II-491
Wu, Hui I-508
Wu, Jianhua I-89
Wu, Jianping IV-21
Wu, Jiaxi II-160
Wu, Jie III-630
Wu, Jigang I-393, II-90, III-3, III-355,

III-460
Wu, Qing II-477
Wu, Song I-3
Wu, Weigang I-122, II-287, II-401
Wu, Wenhua III-249
Wu, Yang IV-617
Wu, Yulin IV-358, IV-374, IV-415, IV-447
Wu, Zhendong IV-313
Wu, Zhiwei II-477

Xia, Maocai III-504
Xia, Wen II-445
Xia, Yihang IV-313
Xia, Zijun II-551
Xiang, Dongming IV-47
Xiang, Tao IV-138
Xiao, Bo III-630
Xiao, Jian I-284, I-621
Xiao, Ning I-636
Xiao, Nong I-358, II-401
Xiao, Wenhua III-293
Xiao, Yu II-445, IV-260
Xiao, Zheng I-138
Xie, Junyuan I-421
Xie, Peizhen I-242
Xie, Tiandi III-59, IV-560
Xie, Yuxi I-46
Xing, Xiaofei III-118
Xu, Chunxiang III-385
Xu, Guangquan III-417, IV-495
Xu, Hongli III-311
Xu, Jianliang II-319
Xu, Jie I-153
Xu, Jingdong III-327
Xu, Jingheng III-504
Xu, Lei III-519
Xu, Pan IV-538
Xu, Rui III-196, IV-34
Xu, Weizhi II-297
Xu, Xiaobo IV-591
Xu, Xin II-145
Xu, Yuwei III-327
Xu, Zhengwei I-168

650 Author Index

Xu, Zichen I-59
Xu, Zifeng IV-270
Xue, Jingting III-385
Xue, Ruini II-60

Yaghoubi, Ali II-130
Yan, Fang IV-249
Yan, Jie II-524
Yan, Longchuan IV-12
Yan, Qiben IV-166
Yan, Zijie II-401
Yang, Cheng III-293
Yang, Funing I-323, II-199
Yang, Guangwen III-504
Yang, Guowu IV-288
Yang, Haomiao III-89
Yang, Jianping IV-617
Yang, Jinzhe III-504
Yang, Peng I-34
Yang, Ru I-378
Yang, Weiyong I-267
Yang, Wenjun IV-234
Yang, Xudong III-17
Yang, Yang III-661
Yang, Yingyi I-508
Yang, Yongjian I-323, II-199, II-596
Yang, Yuhong IV-326
Ye, Shibei IV-461
Ye, Yan I-122, II-401
Yin, Ao II-248, IV-358
Yin, Chao III-270
Yin, Hao II-32, IV-527
Yin, Kanglin III-59
Yin, Yifeng IV-600
Ying, Zuobin IV-204
Yiu, S. M. IV-374, IV-415, IV-447
You, Lin III-547, IV-643
You, Lujin II-538
Yu, Ce I-284, I-621, II-524, II-551
Yu, Liang I-200
Yu, Qiankun III-355
Yu, Rongwei I-406
Yu, Wenping III-327
Yu, Xiao III-249
Yu, Xiaomei III-209
Yu, Xiao-mei IV-573
Yu, Yating IV-447
Yu, Zhang I-299, IV-260
Yuan, Jiabin II-567
Yuan, Ruifen III-186

Yuan, Sihao III-270
Yu-an, Tan IV-260
Yuanzhang, Li I-299, III-651
Yue, Yinliang I-89

Zeng, Guozhao III-618
Zeng, Kangli III-534
Zeng, Lingfang I-562, I-608
Zeng, Wei I-483
Zeng, Xiaoyang IV-3
Zhai, Yujia III-28
Zhai, Yutong I-636
Zhang, Bo I-621
Zhang, Changyou I-465
Zhang, Chunkai II-248, IV-358, IV-374
Zhang, Congpin I-168
Zhang, Guomin II-367
Zhang, Guozhi III-661
Zhang, Huayu IV-34
Zhang, Jianzhong II-491, III-327
Zhang, Jie III-186
Zhang, Jinchao I-184
Zhang, Jun IV-415, IV-495
Zhang, Keli II-248, IV-358
Zhang, Kun I-257
Zhang, Lei I-337
Zhang, Lufei II-212
Zhang, Ning III-417
Zhang, Peng IV-389, IV-415
Zhang, Qipeng II-354
Zhang, Quan IV-3
Zhang, Quanxin IV-249
Zhang, Ran III-280
Zhang, Shuang I-532
Zhang, Shukui IV-72
Zhang, Song II-105
Zhang, Wei III-118, III-257
Zhang, Weidong I-337
Zhang, Xiaofei II-145
Zhang, Xiaosong IV-288
Zhang, Xing II-248, IV-358
Zhang, Xinxiang III-3
Zhang, Yanduo II-432, III-257, III-534
Zhang, Yanhua IV-600
Zhang, Yaocheng II-582
Zhang, Yaoxue I-545, II-417
Zhang, Yiming I-106
Zhang, Yinghui III-453, IV-581
Zhang, Yu II-491, IV-121
Zhang, Yuan III-385

Author Index 651

Zhang, Yunquan II-338
Zhang, Zhiwei IV-511
Zhang, Zhiyong III-370, IV-617
Zhang, Zhiyuan II-226
Zhang, Ziyao III-132
Zhang, Zonghua IV-495
Zhao, Chuan IV-109
Zhao, Fangyuan II-319
Zhao, Hainan IV-374, IV-415
Zhao, Jiangfan III-453, IV-581
Zhao, Jianhui III-218, III-229
Zhao, Kaichuan II-417
Zhao, Long III-489
Zhao, Mengying IV-617
Zhao, Ming I-358
Zhao, Yang II-524
Zhao, Yi II-46
Zhao, Yingliang IV-538
Zheng, Dong III-453, IV-581
Zheng, Jun II-263
Zheng, Lijuan IV-611
Zheng, Shengan I-578
Zheng, Wantong II-462
Zheng, Wei III-402
Zheng, Xi III-417, IV-495
Zheng, Xiangwei II-105, III-239
Zheng, Xiaokun III-453, IV-581
Zheng, Yongqing II-18
Zheng, Yuehui III-519

Zhong, Hong IV-204, IV-461
Zhou, Bin III-608
Zhou, Chunyang II-507
Zhou, Fucai IV-270
Zhou, Guangpeng II-18
Zhou, Huabing III-257
Zhou, Jingya III-342, IV-72
Zhou, Qixian III-89
Zhou, Rang IV-288
Zhou, Tao III-476
Zhou, Wenan I-229
Zhou, Xinyu I-449
Zhou, Yong III-257
Zhou, Yueyue IV-138
Zhou, Yuezhi I-545, II-417
Zhou, Yukun II-445
Zhou, Zhanyong IV-341
Zhu, Dongjie I-524
Zhu, Likun IV-234
Zhu, Minghua III-630
Zhu, Tianqing II-582
Zhu, Xiaomin III-293
Zhu, Xingyu III-519
Zhu, Zhuo I-323, II-199
Zhuang, Yuehui II-477
Zou, Xueqiang II-491
Zucheng, Huang I-299
Zuo, Decheng III-432
Zuo, Wan Li IV-628

652 Author Index

	Preface
	Organization
	Contents – Part II
	High Performance Computing
	Embedding Exchanged Hypercubes into Rings and Ladders
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 The Exchanged Hypercube

	3 Maximum Induced Subgraph for EHs,t
	4 Embedding the Exchanged Hypercubes into Rings
	5 Embedding the Exchanged Hypercubes into Ladders
	6 Conclusions
	References

	Rim Chain: Bridge the Provision and Demand Among the Crowd
	1 Introduction
	2 Related Work
	3 Construction and Matching of the Ring Chain Framework
	3.1 Construction of the Rim Chain
	3.2 Trasaction Matching Algorithm

	4 Experimental Evaluations
	4.1 Analysis of the Evaluation Function
	4.2 Result Analysis

	5 Conclusions
	References

	Optimal Schedule of Mobile Edge Computing Under Imperfect CSI
	1 Introduction
	2 System Model
	2.1 Traffic Model and Admission Control
	2.2 Resource Allocation and Communication Model
	2.3 Queueing Model and System Dynamics

	3 Problem Formulation
	4 Online Algorithm
	4.1 Lyapunov Optimization Theory
	4.2 Algorithm Structure Design and Performance Analysis
	4.3 Algorithm Performance Analysis

	5 Simulation Results
	6 Conclusion
	References

	ST-LDA: High Quality Similar Words Augmented LDA for Service Clustering
	Abstract
	1 Introduction
	2 Related Work
	3 Overall Architecture of Our Framework
	3.1 Our Improved ST-LDA Model
	3.2 Filter Similar Words List Generation

	4 Experiments
	4.1 Dataset and Preparation
	4.2 Baseline Approaches
	4.3 Metrics
	4.4 Results

	5 Conclusions and Future Work
	Acknowledgement
	References

	LMCC: Lazy Message and Centralized Cache for Asynchronous Graph Computing
	1 Introduction
	2 Motivation
	2.1 Combine and Push Messages
	2.2 Vertex Cache

	3 System Design
	3.1 Lazy Message Pulling
	3.2 Vertex-Oriented Centralized Cache

	4 Implementation
	5 Evaluation
	5.1 Performance
	5.2 Scalability

	6 Related Work
	7 Conclusion and Future Work
	References

	Differential Evolution with Proximity-Based Replacement Strategy and Elite Archive Mechanism for Global Optimization
	Abstract
	1 Introduction
	2 Differential Evolution
	2.1 Mutation
	2.2 Crossover
	2.3 Selection

	3 DE with PRS and EAM (PREA-DE)
	3.1 Proximity-Based Replacement Strategy (PRS)
	3.2 Elite Archive Mechanism (EAM)
	3.3 The Framework of PREA-DE

	4 Empirical Studies
	4.1 Experimental Settings
	4.2 Effect on Original DE Algorithms
	4.3 Effect on Advanced DE Variants
	4.4 Comparison with DE with a Crowding Scheme (CrowdingDE)

	5 Conclusion
	Acknowledgement
	References

	NESTLE: Incentive Mechanism Specialized for Computation Offloading in Local Edge Community
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 System Model
	3.2 Problem Formulation
	3.3 Economic Properties

	4 Incentive Mechanism
	4.1 Resource Allocation and Pricing Algorithm
	4.2 Theoretical Analysis

	5 Simulation Results
	5.1 Methodology
	5.2 Simulation Setting
	5.3 Simulation Results

	6 Conclusion
	References

	A Study on Emotion Recognition Based on Hierarchical Adaboost Multi-class Algorithm
	Abstract
	1 Introduction
	2 Related Work
	3 Emotion Recognition Process
	4 Emotion Recognition Based on Hierarchical Adaboost Multi-class Algorithm
	4.1 Original Adaboost Algorithm
	4.2 Description of Algorithm
	4.3 Training and Testing

	5 Experimental Results and Analysis
	5.1 Datasets
	5.2 Result Analysis

	6 Conclusion
	Acknowledgements
	References

	A Low Communication Overhead Breadth-First Search Based on Global Bitmap
	Abstract
	1 Introduction
	2 Problem Description
	2.1 Graph500
	2.2 Top-Down BFS
	2.3 Hybrid BFS

	3 Global Bitmap Approach
	3.1 Global Visited Bitmap
	3.2 Global Frontier Bitmap
	3.3 Hybrid Implementation Design
	3.4 Reduce Computing Overhead
	3.5 Storage Optimization for KNL

	4 Experimental Results
	4.1 Overview of Experimental Platform
	4.2 Time Breakdown Analysis
	4.3 Level Breakdown Analysis
	4.4 Scalability in Tianhe-2
	4.5 Scalability in KNL

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgment
	References

	Improve Heteroscedastic Discriminant Analysis by Using CBP Algorithm
	Abstract
	1 Introduction
	2 Defining the Problem
	2.1 Chernoff’s Criteria

	3 Making Scattering Matrices Based on Boundary and Non-Boundary Patterns
	3.1 Smoothing the Class Boundaries
	3.2 Distinguishing Between Boundary and Non-Boundary Instances
	3.3 Making New Scattering Matrices
	3.4 Discussing About the Effectiveness of the Proposing Measure
	3.5 Implementation Algorithm of CBPHDA

	4 The Experiments
	4.1 The Steps of Doing the Experiment
	4.2 Discussion on Experimental Method’s Outputs

	5 Conclusion
	References

	Fault Diagnosis Algorithm for WSN Based on Clustering and Credibility
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Cluster with Local Search
	5 Establish the Reliability Model
	6 Experiment
	7 Conclusions
	References

	Generating Misleading Labels in Machine Learning Models
	1 Introduction
	2 Related Works
	2.1 Convolutional Neural Network (CNN)
	2.2 R-CNNs
	2.3 Mask R-CNN
	2.4 Attacks on Deep Learning Models

	3 Obstacle Recognition System Attack
	3.1 Attack Goal
	3.2 Attack Strategy Model

	4 Experiments
	4.1 Baseline Network
	4.2 Attack Method
	4.3 Results

	5 Analysis
	6 Conclusion
	References

	An Energy-Efficient DV-Hop Localization Algorithm
	1 Introduction
	2 Background and Related Works
	2.1 Reviewing the DV-Hop Algorithm
	2.2 Energy Consumptions Analyses

	3 The Proposed Algorithm
	3.1 Overview
	3.2 Controlling Packet Transmission

	4 Simulation Analyses
	4.1 Impact of the Anchor Density
	4.2 Impact of the Node Density
	4.3 Impact of the Parameter t

	5 Conclusions
	References

	ASA-routing: A-Star Adaptive Routing Algorithm for Network-on-Chips
	1 Introduction
	2 Related Works
	3 The A-Star Adaptive Routing
	3.1 Basic Idea of the A-Star Algorithm
	3.2 Description of the Routing Algorithm

	4 Simulation Results
	5 Conclusion
	References

	Trajectory Data-Driven Pattern Recognition of Congestion Propagation in Road Networks
	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Congestion Level Estimation Based on FCM
	3.2 Congestion Pattern Recognition Based on Snake Clustering
	3.3 Frequent Patterning Based Congestion Prediction

	4 Experiment and Analysis
	4.1 Road Network and Dataset
	4.2 Results

	5 Conclusion
	Acknowledgment
	References

	Cooperative Preprocessing at Petabytes on High Performance Computing System
	1 Introduction
	2 Background
	2.1 HPC Applications
	2.2 Procedure of Data Processing
	2.3 Architecture of HPC

	3 Cooperative Preprocessing in HPC Storage Systems
	3.1 Theoretical Analysis of Preprocessing
	3.2 Procedure Design
	3.3 Theoretical Modeling

	4 Case Study
	4.1 Application Scale
	4.2 Experiment Environment
	4.3 Experiment Analysis

	5 Related Works
	6 Conclusion
	References

	Sibyl: Host Load Prediction with an Efficient Deep Learning Model in Cloud Computing
	1 Introduction
	2 Related Work
	3 Design and Implementation
	3.1 System Overview
	3.2 Metrics Selection Module
	3.3 Sibyl Network Architecture
	3.4 Implementation

	4 Performance Evaluation
	4.1 Performance of Reducing Metrics
	4.2 Accuracy of Load Prediction Model

	5 Conclusion
	References

	An Energy-Efficient Objective Optimization Model for Dynamic Management of Reliability and Delay in WSNs
	1 Introduction
	2 Related Work
	3 Computation Models
	3.1 A Packet Transmitting Success Rate Model
	3.2 Data Transmission Delay
	3.3 Energy Consumption Model

	4 Optimization Model and Solving Approach
	5 Evaluation
	5.1 Distribution of Energy Consumption
	5.2 Comparison of the Results of Experiments and Calculation Models
	5.3 The Efficiency of Proposed Strategy

	6 Conclusions
	References

	An Improvement of PAA on Trend-Based Approximation for Time Series
	1 Introduction
	2 Background
	3 Our Proposed Methods
	3.1 Numerical Trend Based on PAA
	3.2 Binary Trend Based On PAA

	4 Experiments
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Comparison in Lower Bound
	4.4 Comparison on Classification
	4.5 Comparison on Anomaly Detection

	5 Conclusion
	References

	Research on Data Recovery Technology Based on Flash Memory Device
	Abstract
	1 Introduction
	2 Data Interleaving Type Analysis
	2.1 No Interleaving Within One Group or Between Groups
	2.2 Page Interleaving in One Group, no Interleaving Among Groups
	2.3 No Interleaving in One Group but Interleaving Among Groups
	2.4 Page Interleaving in One Group, Interleaving Among Groups

	3 Data Recovery Technology Process
	3.1 Analysis of Structural Parameters
	3.2 Determination of the Validity of Physical Blocks
	3.3 Logical Image Generation
	3.4 Unknown Algorithm Recovery Strategy

	4 Conclusion
	Acknowledgement
	References

	Scheduling DAG Applications for Time Sharing Systems
	1 Introduction
	2 A Motivating Example
	3 Related Work
	4 Workload and Resource Model
	5 The Makespan Model
	5.1 The Makespan with the Sequential Execution Model
	5.2 The Makespan with the Time-Sharing Execution Model

	6 DAG Scheduling for Time-Sharing Execution
	6.1 Task Migration Algorithm
	6.2 Task Allocation Algorithm

	7 Evaluation
	7.1 Performance with Different Number of Tasks
	7.2 Performance with the Different Number of PMs

	8 Conclusions and Future Work
	References

	Job Scheduling with Adaptable Computing Levels for Edge Computing
	1 Introduction
	2 Related Work
	3 Design
	3.1 Model
	3.2 Algorithm

	4 Simulation and Analysis
	4.1 Experiment Setup
	4.2 Result Analysis

	5 Conclusion
	References

	A Clustering Algorithm of High-Dimensional Data Based on Sequential Psim Matrix and Differential Truncation
	Abstract
	1 Introduction
	2 Related Work
	2.1 Psim Matrix
	2.2 Differential Truncation

	3 Clustering Algorithm
	3.1 Framework of Clustering Algorithm
	3.2 Procedure of Clustering Algorithm
	3.2.1 Construction of Sequential Psim Matrix
	3.2.2 Generating Initial Cluster
	3.2.3 Clustering Based on Iterative Partitioning

	3.3 Convergence Analysis

	4 Experiment
	4.1 Overview
	4.2 Experimental Data
	4.3 Stability Analysis
	4.4 Whole Performance Analysis

	5 Conclusion
	Acknowledgments
	References

	Enhanced Differential Evolution with Self-organizing Map for Numerical Optimization
	Abstract
	1 Introduction
	2 Background
	2.1 Differential Evolution (DE)
	2.2 Self-organizing Map (SOM)

	3 DE-SOM
	3.1 Motivations
	3.2 SOM in DE-SOM
	3.3 Self-adaptive Neighborhood Mechanism (SNM)
	3.4 The Framework of DE-SOM

	4 Empirical Studies
	4.1 Effect on the Original DE Algorithms
	4.2 Effectiveness of the Self-adaptive Neighborhood Mechanism (SNM)

	5 Conclusion
	Acknowledgement
	References

	Similarity Measure for Patients via A Siamese CNN Network
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Patient Representation
	3.2 Patient Pair Label Similarity Representation
	3.3 Patient Similarity Measure Method
	3.4 Optimization

	4 Evaluation
	4.1 Data Set
	4.2 Experimental Settings
	4.3 Result and Discussion

	5 Conclusion
	References

	A New Artificial Bee Colony Algorithm for Solving Large-Scale Optimization Problems
	Abstract
	1 Introduction
	2 Artificial Bee Colony
	3 Proposed Approach
	3.1 Multi-population Technique
	3.2 Information Exchange

	4 Experimental Study
	4.1 Large-Scale Global Optimization Problems
	4.2 Parameter Settings
	4.3 Computational Results

	5 Conclusions
	Acknowledgement
	References

	Implementation and Optimization of Multi-dimensional Real FFT on ARMv8 Platform
	1 Introduction
	2 Related Work
	3 Optimization of Algorithm for 1D Real DFT
	3.1 Introduction to DFT
	3.2 Reduction from Real DFT to Halved Complex DFT
	3.3 Reduction from Real DFT to Halved Real DFT

	4 Implementation and Optimization of 1D Complex DFT
	4.1 Butterfly Network Optimization
	4.2 Bufferfly Computation Optimization
	4.3 Butterfly SIMD Optimization

	5 Implement and Optimization of 2D Real DFT
	5.1 Consideration of 2D Real DFT Optimization
	5.2 Procedure of 2D Real DFT Optimization

	6 Experimental Results and Analysis
	6.1 Test Platform and Comparison Baseline
	6.2 Experimental Results and Evaluations
	6.3 Performance Analysis

	7 Conclusion and Future Work
	References

	SPMP: A JavaScript Support for Shared Persistent Memory on Node.js
	1 Introduction
	2 Design and Implementation
	2.1 Background
	2.2 Shared Persistent Memory
	2.3 Process Spawning
	2.4 Load Balance
	2.5 Consistency Control

	3 Evaluation
	3.1 Preparation
	3.2 Evaluation on Parallelism
	3.3 Evaluation on Strategies
	3.4 SPMP vs. EMS

	4 Related Work
	5 Conclusion
	References

	Dynamic Obstacle Avoidance Planning Algorithm for UAV Based on Dubins Path
	Abstract
	1 Introduction
	2 Related Works
	3 Overview of Dubins Path Planning
	4 Problem Description and Algorithm Design
	4.1 Problem Description and Conditional Assumptions
	4.2 Dynamic Estimation of Obstacle Circle
	4.3 Dynamic Obstacle Avoidance Planning Algorithm

	5 Simulation Results and Analysis
	6 Conclusion
	References

	An Energy Efficient and Lifetime Aware Routing Protocol in Ad Hoc Networks
	Abstract
	1 Introduction
	2 Design of Energy Efficient and Network Lifetime Aware Routing Protocol
	2.1 The Main Idea of Proposed Routing Protocol
	2.2 Network Model
	2.3 Dynamic Route Selection Algorithm of EAODV Routing Protocol
	2.4 Passive Interrupt Update Strategy

	3 Simulation
	3.1 Simulation Setting
	3.2 Simulation Results

	4 Conclusion
	Acknowledgement
	References

	On Optimization of Energy Consumption in a Volunteer Cloud
	Abstract
	1 Introduction
	2 Backgrounds
	2.1 Energy Consumption
	2.2 Volunteer Cloud

	3 Related Work
	4 Proposed Approach
	4.1 Abbreviations and Acronyms
	4.2 Assignment Based on the Shortest Path Strategy (SPS)

	5 Experimental Results and Discussion
	5.1 Simulation Setup
	5.2 Instances
	5.3 Results Analysis

	6 Conclusion and Perspectives
	References

	Big Data and Information Processing
	More Effective Distributed Deep Learning Using Staleness Based Parameter Updating
	Abstract
	1 Introduction
	2 Related Work
	2.1 Parameter Server Architecture
	2.2 Distributed Training Protocol

	3 Weighted Asynchronous Parallel Protocol
	3.1 Basic Idea of WASP
	3.2 Operations of WASP
	3.3 Correctness Analysis
	3.4 Implementation of WASP

	4 Performance Evaluation
	4.1 Experiments Setup
	4.2 Performance Metrics
	4.3 Experiments Results

	5 Conclusions
	References

	A Game Theoretic D2D Local Caching System under Heterogeneous Video Preferences and Social Reciprocity
	1 Introduction
	2 Related Works
	3 System Model
	4 Problem Formulation
	4.1 Utility Modeling
	4.2 Stackelberg Game Formulation

	5 Stackelberg Game Analysis
	6 Simulation Results
	7 Conclusions
	References

	SMIM: Superpixel Mutual Information Measurement for Image Quality Assessment
	1 Introduction
	2 Related Work
	2.1 Image Quality Assessment
	2.2 Information Entropy

	3 Superpixel Mutual Information Measurement(SMIM)
	4 Experiments
	4.1 Databases
	4.2 Parameter Settings
	4.3 Performance Comparisions to State-of-the-Arts
	4.4 The Application of the Algorithmic Scenario
	4.5 The Application of the Real World

	5 Conclusion
	References

	DARM: A Deduplication-Aware Redundancy Management Approach for Reliable-Enhanced Storage Systems
	1 Introduction
	2 Background and Related Work
	2.1 Basics
	2.2 Related Work

	3 Observation and Motivation
	4 Design and Implementation
	4.1 Architecture Overview
	4.2 The Design of DARM
	4.3 Deduplication-Aware Redundancy Management
	4.4 Prototype Implementation

	5 Performance Evaluation
	5.1 Experiment Setup
	5.2 A Sensitivity Study of DARM
	5.3 Overall Performance of DRAM

	6 Conclusion and Future Work
	References

	K-Anonymity Algorithm Based on Improved Clustering
	1 Introduction
	2 Related Work
	2.1 Basic Conceptions of K-Anonymity
	2.2 Distance and Information Loss Metric

	3 Our Scheme
	3.1 Clustering and Anonymity
	3.2 Algorithm Description

	4 Experiments and Analysis
	4.1 The Data Set
	4.2 Experimental Environment
	4.3 Data Quality
	4.4 Analysis and Discussion

	5 Conclusion
	References

	Adaptive DAG Tasks Scheduling with Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Adaptive DAG Tasks Scheduling Algorithm Design
	3.1 Problem Definition
	3.2 Reinforcement Learning Formulation
	3.3 Training Algorithm

	4 Experiments
	4.1 Methodology
	4.2 Performance Comparison
	4.3 Discussion

	5 Conclusion
	References

	RFGRU: A Novel Approach for Mobile Application Traffic Identification
	1 Introduction
	2 Releated Work
	3 Architecture
	3.1 System Framework
	3.2 Preprocess Phase
	3.3 Random Forest Classification Modeling Phase
	3.4 GRU Classification Modeling Stage
	3.5 Identification

	4 Experimental Evaluation
	4.1 Data Set
	4.2 Parameter Tuning
	4.3 Experiment Results
	4.4 Compared with Other Approach

	5 Conclusion
	References

	Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems
	1 Introduction
	2 Background, Assumptions and Problem Definition
	2.1 Temporal Validity for Data Freshness
	2.2 Power Model
	2.3 Notations
	2.4 Problem Statement

	3 Solutions for EEUCS
	4 Solutions for EEMCS
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experiment Results on Unicore
	5.3 Experiment Results on Multicore

	6 Related Work
	7 Conclusions and Future Work
	References

	GpDL: A Spatially Aggregated Data Layout for Long-Term Astronomical Observation Archive
	1 Introduction
	2 Related Work
	3 GpDL Design
	3.1 AmrDL Introduction
	3.2 GpDL Optimizing Model
	3.3 GpDL Solution Based on Graph Partition

	4 Implementation and Experimental Results
	4.1 Implementation
	4.2 Experimental Results

	5 Conclusion and Future Work
	References

	A Virtual Machine Dynamic Adjustment Strategy Based on Load Forecasting
	1 Introduction
	2 Related work
	3 Dynamic adjustment strategy of virtual machine
	3.1 Status and load analysis of virtual machine
	3.2 Dynamic adjustment of resources

	4 Experiment and results
	4.1 Experimental environment
	4.2 Results and analysis

	5 Conclusions
	References

	A Data-Aware Energy-Saving Storage Management Strategy for On-Site Astronomical Observation at Dome A
	1 Introduction
	2 Related Work
	2.1 Caching, Prefetching and Replication Strategy
	2.2 Data Migration Strategy
	2.3 Summary of Related Work

	3 Challenges
	4 Design of DAES
	4.1 Hit Index Calculator
	4.2 File Scheduler

	5 Experimental Evaluation
	5.1 Simulator Architecture
	5.2 Data Set
	5.3 Experimental Results

	6 Conclusion and Future Work
	References

	Distancer: A Host-Based Distributed Adaptive Load Balancer for Datacenter Traffic
	1 Introduction
	2 Related Work
	3 Distancer in a Nutshell
	4 Host-Based Congestion Detector
	4.1 Flier-Based Switching
	4.2 Estimating Congestion Levels of Different Paths
	4.3 Detecting Path Anomalies

	5 Two-Way Load Balancer
	5.1 Hierarchical Addressing Based Source Routing
	5.2 Routing Logic for Fliers
	5.3 Reverse Load Balancing

	6 Evaluation
	6.1 Load Balancing Efficiency
	6.2 Handling Path Failures

	7 Conclusion
	References

	MoSa: A Modeling and Sentiment Analysis System for Mobile Application Big Data
	1 Introduction
	2 Related Work
	3 Sentiment Analysis Method
	4 Proposed Scheme
	4.1 Computing Sentiment Values of Opinion Sentences
	4.2 Computing Sentiment Values of Sentences
	4.3 Computing Sentiment Values of Comments
	4.4 Judging Unlisted Words

	5 Experiment Results and Analysis
	5.1 Analysis About Comment's Sentiment Score
	5.2 Analysis

	6 Conclusion
	References

	SDVRP-Based Reposition Routing in Bike-Sharing System
	1 Introduction
	2 Related Work
	3 Mathematical Formulation and Properties
	4 Methodology
	4.1 K-means Algorithm
	4.2 Genetic Algorithm

	5 Performance Evaluation
	6 Conclusion
	References

	GAI: A Centralized Tree-Based Scheduler for Machine Learning Workload in Large Shared Clusters
	1 Introduction
	2 Background
	2.1 Parallel Architecture of Distributed ML
	2.2 Cluster Scheduling System

	3 Workload Characterization
	3.1 Problem Formalization
	3.2 Short Board Effect

	4 GAI: A Scheduler for ML Workload
	4.1 Rack-Aware Tree Scheduling
	4.2 Resource Degradation and Preemption

	5 Evaluation
	5.1 Methodology
	5.2 Scheduler Throughput
	5.3 Job Waiting Time
	5.4 Job Completion Time
	5.5 Comparison with Native Distributed TensorFlow
	5.6 Discussion

	6 Conclusion
	References

	Data-Centric Task Scheduling Algorithm for Hybrid Tasks in Cloud Data Centers
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Hybrid Scheduling
	4.1 Batched Task Scheduling
	4.2 Real-Time Task Scheduling
	4.3 Hybrid Scheduling

	5 Hybrid Scheduling with Data Migration
	6 Performance Evaluation
	7 Conclusion
	References

	Correction to: Improve Heteroscedastic Discriminant Analysis by Using CBP Algorithm
	Correction to: Chapter “Improve Heteroscedastic Discriminant Analysis by Using CBP Algorithm” in: J. Vaidya and J. Li (Eds.): Algorithms and Architectures for Parallel Processing, LNCS 11335, https://doi.org/10.1007/978-3-030-05054-2_10

	Correction to: Algorithms and Architectures for Parallel Processing
	Correction to: J. Vaidya and J. Li (Eds.): Algorithms and Architectures for Parallel Processing, LNCS 11335, https://doi.org/10.1007/978-3-030-05054-2

	Author Index

