
SHCOLL - A Standalone Implementation
of OpenSHMEM-Style Collectives API

Sr -dan Milaković1(B), Zoran Budimlić1, Howard Pritchard2, Anthony Curtis3,
Barbara Chapman3, and Vivek Sarkar4

1 Rice University, Houston, USA
srdjan@rice.edu

2 Los Alamos National Laboratory, Los Alamos, USA
3 Stony Brook University, Stony Brook, USA

4 Georgia Institute of Technology, Atlanta, Georgia

Abstract. The performance of collective operations has a large impact
on overall performance in many HPC applications. Implementing mul-
tiple algorithms and selecting optimal one depending on message size
and the number of processes involved in the operation is essential to
achieve good performance. In this paper, we will present SHCOLL, a
collective routines library that was developed on top of OpenSHMEM
API point to point operations: puts, gets, atomic memory update, and
memory synchronization routines. The library is designed to serve as a
plug-in to OpenSHMEM implementations and will be used by the OSSS
OpenSHMEM reference implementation to support OpenSHMEM collec-
tive operations. In this paper, we describe the algorithms that have been
incorporated in the implementation of each OpenSHMEM API collective
routine and evaluate them on a Cray XC30 system. For long messages,
SHCOLL shows an improvement by up to a factor of 12 compared to
the vendor’s implementation. We also discuss future development of the
library, as well as how it will be incorporated into the OSSS OpenSH-
MEM reference implementation.

1 Introduction

OpenSHMEM includes both point-to-point communication and collective oper-
ations in its specification. These collectives involve synchronization (barriers),
data movement (e.g. broadcast, alltoall) and computation (reductions).

A number of platforms provide hardware support for collective operations
and vendor solutions will take advantage of this. For portable solutions where
such hardware support is not available, it is desirable to provide software imple-
mentations of collectives. SHCOLL is such a library for community use, providing
a number of algorithms for OpenSHMEM collectives. OpenSHMEM developers,
or other developers working on similar problems, can then incorporate SHCOLL
into their implementations to avoid reinventing the wheel.

The rest of the paper is organized as follows: in Sect. 2 we compare SHCOLL
with related work; in Sect. 3 we introduce the OpenSHMEM specification; in
c© Springer Nature Switzerland AG 2019
S. Pophale et al. (Eds.): OpenSHMEM 2018, LNCS 11283, pp. 90–106, 2019.
https://doi.org/10.1007/978-3-030-04918-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04918-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-04918-8_6


SHCOLL 91

Sect. 4 we discuss the implementation of OpenSHMEM that this work is based
on; in Sect. 5 we elaborate the different algorithms provided by the SHCOLL
library; in Sect. 6 we include and discuss the experimental results; and in Sect. 7
we discuss future work and ideas.

2 Related Work

Most of the previous work focuses on collective communication for the Message
Passing Interface (MPI) such as work by Thakur et al. that investigates the
performance of different algorithms in MPICH [2,26]. Also, some researchers
designed algorithms for specific message sizes such as Rabenseifner’s algorithm
for large reductions [22] or Van de Gejin’s algorithm for large broadcast [6]. Awan
et al. investigated design and performance of non-blocking collectives in Open-
SHMEM using MVAPICH2-X [3,5]. Jose et al. optimized performance of Open-
SHMEM collective operations by developing a light-weight mapping between
collective operations in OpenSHMEM and MPI [17]. In this paper, we focus on
optimizing OpenSHMEM collective operations using only OpenSHMEM API
operations.

3 OpenSHMEM

OpenSHMEM is a specification [20] in the Partitioned Global Address Space
(PGAS) family for a distributed parallel programming library that focuses on
fast, low-latency, communication using Remote Direct Memory Access (RDMA)
to address remote variables directly.

‘SHMEM” is a family of PGAS libraries that was developed by various ven-
dors since the early 1990s, but unfortunately drifted from each other over time
with subtly different behaviors and APIs that caused portability problems. This
led, at least in the C language, to unwieldy preprocessor conditional macro def-
initions that attempted to iron out the differences [21].

OpenSHMEM is the process that unifies these “SHMEM” libraries under a
common, agreed upon and ratified, specification.

4 The OSSS-UCX OpenSHMEM Implementation

4.1 Initial Implementation with GASNet

After the OpenSHMEM specification was first drafted around 2010, the reference
implementation library was developed by the University of Houston [12]. This
library used GASNet [8] as its communications substrate. GASNet is a portable
communications library that was initially developed for use in UPC [23] but has
found use in other projects, for example Chapel [13], Legion [7], and in a runtime
for Fortran CoArrays [19].

Although GASNet supports a wide range of underlying networks (e.g. Infini-
band, Cray Aries, Intel OmniPath, portable MPI), some functionality required



92 S. Milaković et al.

by OpenSHMEM is not exposed to the programmer. In particular, GASNet
does not, as yet, expose remote atomics, nor does it allow arbitrary memory
registration, which would be required to support multiple symmetric heaps with
different memory kinds in the future.

4.2 New Implementation with UCX

The current reference implementation, named “OSSS-UCX” after Open Source
Software Solutions, for OpenSHMEM specification 1.4 (and beyond) is based on
UCX [24]. UCX is a multi-party open-source project to produce a best-of-breed
communications substrate that can be used by different HPC paradigms, but
predominantly MPI and PGAS libraries and languages.

OSSS-UCX uses UCX for its communications. The OpenSHMEM API maps
quite naturally to UCX’s upper layer, called UCP (“P” for Protocol). UCP
then drops to UCT (“T” for Transport) to target individual network layers.
UCX also contains UCS for Operating System services, and UCM for memory
management. By targeting UCP, OSSS-UCX does not have to concern itself with
network details and thus will work on any network supported by UCX.

4.3 Process Management Interface

OSSS-UCX uses PMIx [11], the Process Management Interface for Exascale, as
its launch mechanism. Open-MPI and the PMIx Reference Runtime Environ-
ment (PRRTE) [4] provide a launcher with a PMIx server that coordinates the
initial bootstrap of information required by UCX for RDMA and atomics. The
OpenSHMEM Processing Elements (PEs) contain PMIx clients that exchange
information through the server. PMIx will also be used for fault-tolerance.

OSSS-UCX also incorporates some third-party software to, for example, man-
age symmetric memory allocations.

5 Collective Operations Algorithms

As mentioned earlier in Sect. 2, most of the previous work focuses on collective
operations for Message Passing Interface (MPI). For the purpose of this paper,
we have implemented all collective operations in OpenSHMEM. In MPI when
a process is supposed to receive data, it must call a receive method. However,
in OpenSHMEM that is not required because OpenSHMEM supports one-sided
remote memory access. When a receive method returns in MPI, there is a guaran-
tee that the data is delivered. Since OpenSHMEM does not have an analogous
method, it is necessary to notify the remote node that the data transfer has
completed. To ensure the transfer order between the data and the notification,
it is required to call shmem fence in between. Also, Cray SHMEM supports
extensions to OpenSHMEM API that combine data transfer with data delivery
notification (shmemx putmem signal) so in addition to an approach that uses



SHCOLL 93

shmem fence, we also used the Cray SHMEM extensions to improve the per-
formance. Additionally, for remote memory accesses in OpenSHMEM, there is
no need to calculate the addresses for remote writes in the user code because
remotely accessible memory locations have symmetric addresses.

5.1 Barrier

The barrier is a synchronization collective routine that registers the arrival of a
PE at the barrier and blocks the execution until all other PEs arrive at the bar-
rier [20]. The library we implemented supports three types of barrier algorithms:
linear, tree and dissemination barrier.

In linear barrier, when a PE reaches the barrier, it will increment a counter
at PE 0. When the counter reaches the number of PEs, PE 0 will notify all other
PEs that they can continue with execution.

For tree barrier, all PEs are organized in a tree. When a non-root PE reaches
the barrier, it will wait until the value of its local counter becomes equal to the
number of children. Then the PE will increment a counter at the parent. When
the counter at root PE becomes equal to the number of children, the root PE
will notify its children, and the children will start propagating the notification to
the leaf PEs. The library supports two types of trees, k-ary and k-nomial trees
(Fig. 1).

0

1 2

3 64 5

0

123

45

6

78

Fig. 1. Examples of k-ary and k-nomial trees

Dissemination barrier belongs to the category of butterly barrier algorithms,
and it has �log p� rounds [1]. In each round r (0 ≤ r < �log p�), PE i will signal
PE (i+2k) % p and wait for a signal from PE (i−2k) % p. After getting a signal
in �log p� round, the PE can continue with execution.

5.2 Collect, Fcollect

Collect and fcollect are collective routines that concatenate blocks of data from
multiple PEs to an array in every PE. Fcollect requires that the size of each
block must be the same whereas block size for collect may vary [20]. For collect,



94 S. Milaković et al.

we support linear, recursive doubling, ring and Bruck algorithm. In addition to
the algorithms we support for collect, we support neighbor exchange algorithm
for fcollect.

In the linear algorithm, each PE issues a put operation to all other PEs in a
loop. After the data from a single PE is transferred, the PE increments a counter
on all other PEs or calls a barrier depending on the number of PEs.

The ring algorithm (Fig. 2) requires p−1 rounds. In round r (0 ≤ r < p−1),
PE i sends block (i− r) % p to PE (i+1) % p and receives block (i− r− 1) % p
from PE (i − 1) % p.

The neighbor exchange algorithm (Fig. 3) works only if p is even and it
requires p

2 rounds. In the first round, PE i sends its block to i XOR 1. In odd
rounds, even PEs send 2 blocks that were received in the previous round to PE
(i−1) % p and odd PEs send the blocks to PE (i+1) % p. In even rounds, even
PEs send 2 blocks that were received in the previous round to PE (i + 1) % p
and odd PEs send the blocks to PE (i − 1) % p.

The recursive doubling algorithm (Fig. 4) works if p is a power of two and it
requires log p rounds. In round r (0 ≤ r < log p), PE i sends the data that was
received in the previous rounds to PE i XOR 2r.

Like the recursive doubling algorithm, the Bruck algorithm [9] (Fig. 5) also
requires �log p� rounds but, unlike the recursive doubling algorithm, it works
even if p is not a power of two. First, each PEs copies its block to the beginning
of its buffer. Then, in round r (0 ≤ r < �log p�), PE i sends 2r blocks from the
beginning of the buffer to PE (i− 2r) % p. If the number of PEs is not a power
of two, in the last round each PE will send p−2r blocks to its peer PE. After the
data is exchanged between PEs, each PE is required to rotate the destination
array by i blocks to the left. Additionally, we have implemented a variation of
the Bruck algorithm that does not require rotation at the end but some of the
messages are split into two parts because the data that should be sent is not
contiguous.

For the collect algorithms, PEs do not have information about the offset for
their blocks, so calculating the exclusive prefix sum before exchanging the data
is necessary. Additionally, Bruck algorithm requires the total size of all elements
so that value is broadcasted before the data exchange.

0

PE 0

1

PE 1

2

PE 2

3

PE 3

4

PE 4

5

PE 5

0

5

PE 0

0

1

PE 1

1

2

PE 2

2

3

PE 3

3

4

PE 4

4

5

PE 5

0

1

2

3

4

5

PE 0

0

1

2

3

4

5

PE 1

0

1

2

3

4

5

PE 2

0

1

2

3

4

5

PE 3

0

1

2

3

4

5

PE 4

0

1

2

3

4

5

PE 5

Fig. 2. Ring collect



SHCOLL 95

0

PE 0

1

PE 1

2

PE 2

3

PE 3

4

PE 4

5

PE 5

0

1

PE 0

0

1

PE 1

2

3

PE 2

2

3

PE 3

4

5

PE 4

4

5

PE 5

0

1

4

5

0

1

2

3

0

1

2

3

2

3

4

5

2

3

4

5

0

1

4

5

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5

Fig. 3. Neighbor exchange collect

5.3 Broadcast

The broadcast is a collective routine that sends data from the root PE to all
other PEs in the active set. The library supports three types of the broadcast
algorithms: linear, tree, and Van de Geijn’s algorithm.

In the linear algorithm, all PEs (except root PE) will call the get method to
retrieve the data from the root. To ensure that the root has the data, a barrier
is called before and after calling the get method.

For tree broadcast, all PEs are organized in a tree with the PE that has the
data as a root. When the root PE invokes broadcast it will send the data to its
children, and the children will start propagating the data down the tree. The
library supports two types of trees: k-ary and binomial trees (Fig. 1).

Van de Geijn’s algorithm [6] is good for large messages. First, the data is
scattered across all PEs and then it is concatenated using a method analogous
to collect. For scattering, we use binomial scatter, and for collect, we use the
ring algorithm (Fig. 2).

5.4 Alltoall, Alltoalls

Alltoall and alltoalls are collective routines in which each PE exchanges a fixed
amount of data with all other PEs in the active set. The data that is exchanged
in alltoall has to be contiguous whereas the data in alltoalls can be strided [20].

For both collectives, we support three algorithms: shift exchange, XOR pair-
wise exchange, and generalized pairwise exchange [25]. All three algorithms have



96 S. Milaković et al.

0

PE 0

1

PE 1

2

PE 2

3

PE 3

4

PE 4

5

PE 5 PE 6

6

PE 7

7

0

1

PE 0

0

1

PE 1

2

3

PE 2

2

3

PE 3

4

5

PE 4

4

5

PE 5 PE 6

6

7

PE 7

6

7

0

1

2

3

PE 0

0

1

2

3

PE 1

0

1

2

3

PE 2

0

1

2

3

PE 3

4

5

PE 4

4

5

PE 5

6

7

6

7

4

5

PE 6

6

7

4

5

PE 7

6

7

0

1

2

3

PE 0

0

1

2

3

PE 1

0

1

2

3

PE 2

0

1

2

3

PE 3

4

5

PE 4

4

5

PE 5

6

7

6

7

4

5

PE 6

6

7

4

5

PE 7

6

7

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

4

5

4

5

6

7

6

7

4

5

6

7

4

5

6

7

Fig. 4. Recursive doubling collect

p rounds and in each round, a put is issued to a different PE (put to self is done
using memcpy). However, each algorithm issues put in a different order.

Shift exchange is the simplest algorithm among the algorithms we imple-
mented. In round r (1 ≤ r ≤ p), PE i will send its data to PE (i + r) % p.
This algorithm tries to avoid the bottleneck that would happen if all PEs were
writing to PE r in round r.

XOR pairwise exchange works only when the number of PEs is a power of 2.
In each round of this algorithm, each PE has a partner PE and communicates
exclusively with its partner PE. (it sends the data to the partner and it receives
the data from the partner). In round r (1 ≤ r ≤ p), the id of the partner PE for
PE i is calculated as i XOR r.

Like XOR pairwise exchange, each PE has a partner in each round of general-
ized pairwise exchange. However, generalized pairwise exchange does not require
the number of processes to be a power of 2. The problem of finding a partner
can be solved by solving the edge-coloring problem in a complete graph. The
complete algorithm can be found in [25].

After the data from a single PE is transferred, the PE increments a counter
on all other PEs, or call a barrier depending on the number of PEs.



SHCOLL 97

0

PE 0

1

PE 1

2

PE 2

3

PE 3

4

PE 4

5

PE 5

0

1

PE 0

1

2

PE 1

2

3

PE 2

3

4

PE 3

4

5

PE 4

5

0

PE 5

0

1

2

3

PE 0

1

2

3

4

PE 1

2

3

4

5

PE 2

3

4

5

0

PE 3

4

5

0

1

PE 4

5

0

1

2

PE 5

0

1

2

3

4

5

PE 0

1

2

3

4

5

0

PE 1

2

3

4

5

0

1

PE 2

3

4

5

0

1

2

PE 3

4

5

0

1

2

3

PE 4

5

0

1

2

3

4

PE 5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5

Fig. 5. Bruck collect

In alltoall implementations, we used non-blocking put. However, the Open-
SHMEM API [20] does not support non-blocking strided put so we implemented
a naive version of non-blocking strided put which we use it in the alltoalls imple-
mentations.

5.5 Reductions

Reductions are a set of collective routines that perform associative arithmetic
and logical operations across arrays on PEs from the active set [20]. The library
we implemented supports a recursive doubling algorithm and Rabenseifner’s
algorithm.

For both algorithms, we have to first choose the greatest subset of PEs P ′

such that the number of nodes p′ in the subset is a power of two. After choosing
the subset, we assign a unique node from the subset a partner node, which is
not in the subset, and then we perform reduction between the partner nodes.

Rabenseifner suggests that the new subset should be a union of even PEs
less than 2 ∗ (p− p′) and PEs greater or equal to 2 ∗ (p− p′). If we have multiple
PEs per node and use Rabenseifner’s approach for choosing the subset P ′, the
PEs from the subset will not be balanced across nodes. Consequently, the nodes
that have more PEs than others will have to perform more reduce operations
and they will have to exchange more data. To solve this problem, we use a
different approach. First we assign a new id to each PE, which is calculated as
idnew =

⌊
idold × p′

p

⌋
. Since p

2 < p′ ≤ p, at most two PEs can have the same new



98 S. Milaković et al.

id. The nodes that have the same new id are partners and the node that has a
has lower idold belongs to the P ′ subset.

After the data between partners is reduced, the recursive doubling algorithm
uses the new ids. The communication pattern for recursive doubling reduce is
the same as the communication pattern for recursive doubling collect. How-
ever, instead of concatenating the arrays, we perform reduction operations across
arrays. In round r (0 ≤ r < log p′), PE i sends the array that was reduced in the
previous rounds to PE i XOR 2r and after receiving data from PE i XOR 2r, PE
i performs local reduction. After log p′ rounds, PEs in the subset P ′ will have
the reduced array, and the nodes from the subset will send the reduced data to
their partners.

Like recursive doubling, Rabenseifner’s algorithm also uses the new ids after
the reduction between partners. The idea behind Rabenseifner’s algorithm is
similar to the idea behind Van de Geijn’s algorithm from Sect. 5.3. First, a reduce
scatter operation is performed so that each PE has a part of the final array, and
then the array is concatenated using collect. Similar to recursive doubling, after
the data is concatenated, only PEs from the subset P have the reduced array,
so the nodes from the subset will send the reduced data to their partners.

6 Results

In this section, we present a performance evaluation of SHCOLL’s collective
functions and compare their performance against the equivalent OpenSHMEM
functions provided by Cray SHMEM. Note, SHCOLL uses Cray’s OpenSHMEM
put and memory sychronization methods for data transfers Sect. 5.

6.1 Evaluation Platform and Software

All experimental results presented were collected on the NERSC Edison machine.
Edison is a Cray� XC30 with 2 × 12-core Intel R© Xeon R© Processors E5-2695 v2
and 64 GB DDR3 in each node. The system was running Cray’s CLE 6.0.UP05
operating system. Cray’s Intel Programming Environment 6.0.4 was used to
compile SHCOLL and its performance tests. Cray’s OpenSHMEM 7.6.2 was
used for linking against SHCOLL and to obtain Cray OpenSHMEM performance
results. Jobs were submitted to Edison using SLURM’s contiguous option to try
and get closely packed sets of nodes. The SLURM nodelists for the jobs indicated
that the allocations obtained were generally closely packed, taking into account
locations of service and I/O nodes within cabinets.

The OSU OpenSHMEM benchmark tests [3] were initially used for compar-
ing the performance of SHCOLL against the vendor’s OpenSHMEM implemen-
tation. However, there were limitations in the OSU tests which reduced their
usefulness for this evaluation: they don’t include all OpenSHMEM collectives,
iteration count and transfers are not easily configurable, and they don’t check
for correctness, even during the warm-up phase. For thes reason, we decided to
write tests specifically for this evaluation.



SHCOLL 99

6.2 Barrier

In Fig. 6, timings for SHCOLL’s shcoll barrier are compared to Cray’s
shmem barrier for 1 to 512 nodes using 1 and 24 PEs/node. The plot reports
time per iteration in milliseconds. The vendor’s shmem barrier performs sig-
nificantly better at all node counts both for the 1 PE and 24 PEs per node
runs. This is expected as Cray OpenSHMEM makes use DMAPP API collective
calls [10,14] to access the Aries collective engine (CE) [16] for the inter-node
stage of the barrier operation. The significant jump from 256 to 512 nodes can
be attributed to the fact that at 512 nodes, the job spans more than a single
electrical group of the Cray XC30.

1 2 4 8 16 32 64 128 256 512
0

0.02

0.04

0.06

Fig. 6. Barrier

6.3 Broadcast

Figure 7 compares time for broadcast operations for 4, 1KB, 1MB, and
256MB byte transfer sizes for SHCOLL’s shcoll bcast32 and the ven-
dor’s shmem broadcast32 functions for 1 to 512 nodes, and 1 and 24 PEs
per node. The plot gives times for a broadcast operation plus a subsequent
shmem barrier all, to ensure we are timing the full transfer to all partici-
pating PEs, and not just the time spent in the broadcast operation by the root
PE. For the 4-byte broadcast, SHCOLL uses the k-nomial algorithm. The Cray
OpenSHMEM broadcast significantly outperforms the SHCOLL implementa-
tion, particularly for the 1 PE per node case. This indicates the Cray imple-
mentation may be employing the Aries CE to do the broadcast by using its
reduction engine with only the root PE supplying a non-zero value. For the 1
KB broadcast, the k-nomial algorithm gives optimal performance as well. Using
Cray’s put-with-signal operation gives best performance for the k-nomial algo-
rithm. This helps particularly for 256 and 512 nodes, where SHCOLL performs
significantly better than the Cray implementation. The 24 PEs per node timings



100 S. Milaković et al.

1 2 4 8 16 32 64 128 256 512

0

2

4

6

8

·10−2

1 2 4 8 16 32 64 128 256 512

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16 32 64 128 256 512

0

1

2

3

1 2 4 8 16 32 64 128 256 512

0

200

400

600

800

Fig. 7. Broadcast

show a similar performance difference between the Cray and SHCOLL broad-
cast implementations. For the 1 MB transfer size, the binomial tree algorithm
gave the best results for SHCOLL, although the Cray implementation shows bet-
ter performance. For the 256 MB broadcast, SHCOLL uses the Van de Geijn’st
algorithm. The results for the Cray implementation are similar to those obtained
using the binomial tree method. The Van de Geijn’s gives better performance
for both the 1 and 24 PE cases compared to the vendor’s implementation.

The SHMEM USE OPT MASSIVE BCAST environment variable was used to
check for the best timings using Cray OpenSHMEM. At some PE counts and
transfer sizes setting the environment variable helped, in which case timings were
taken with it set.

6.4 Reduce

Figure 8 shows times for OpenSHMEM shmem double sum to all and the
SHCOLL equivalent for 8 and 2 KB reductions. Timings include a preceding



SHCOLL 101

1 2 4 8 16 32 64 128 256 512

0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 128 256 512

0

0.2

0.4

0.6

0.8

1

Fig. 8. Reduction

shmem barrier all to ensure the pSync array is properly armed. The results
for the 8 byte reduction show that Cray’s implementation is making use of the
Aries CE, consequently performing significantly better than SHCOLL’s recursive
doubling approach. For 2 KB reductions SHCOLL uses recursive doubling for 1
PE per node (power of two), and the Rabenseifner algorithm for 24 PEs per
node. This algorithm gives better results for all node counts, leading to superior
performance for SHCOLL in this case. Note the Aries CE can’t be efficiently used
for these size reductions. Performance is similar to Cray when using recursive
doubling.

The Cray OpenSHMEM SHMEM USE LARGE OPT REDUCE variable was set
when it gave better performance.

6.5 Fcollect

Figure 9 presents timing results for shmem fcollect32 and its SHCOLL equiv-
alent for 4 and 16 KB per PE operations. As with the reduction tests, a
shmem barrier all is included in the fcollect timing loop. For the 4 bytes per
PE operation, SHCOLL employees the Bruck algorithm and makes use of Cray’s
put-with-signal extension to OpenSHMEM [18]. The SHCOLL implementation
at this transfer size gives comparable performance to the Cray implementation
for 1 PE per node up to 128 nodes, and better performance beyond. For 24 PEs
per node, the SHCOLL approach yields much better performance. The signif-
icant difference at 24 PEs per node verses 1 PE per node hints that the Cray
algorithm may be doing something suboptimal - perhaps leading to network
congestion - particularly as the performance deteriorates significantly at higher
node counts.



102 S. Milaković et al.

1 2 4 8 16 32 64 128 256 512

0.01

0.1

1

1 2 4 8 16 32 64 128 256 512

0.01

0.1

1

10

100

1,000

Fig. 9. Fcollect

For 16 KB size transfers and 24 PEs per node, the ring algorithm gives
the best results for SHCOLL, likely due to the pipelining effect offered by this
algorithm. Using this algorithm, SHCOLL performs much better than the vendor
implementation, especially at 16 and higher node counts. For 16 KB per PE
operations and 1 PE per node, we use the linear method up to 256 nodes and
the Bruck algorithm for 512 nodes.

6.6 Collect

Results for timing of shmem collect32 and shcoll collect32 are pre-
sented in Fig. 10. The collect method involves more inter-PE data exchange as
each PE supplies its contribution to the transfer, and the implementation must
assemble this information in order to do the actual data exchange correctly. For
4 byte per PE (in these tests each PE contributes the same amount of data),
SHCOLL uses the recursive doubling algorithm and Cray’s put-with-signal fea-
ture for 1 PE per node, and linear for low node counts and Bruck for higher node
counts. The Bruck algorithm yields significantly better results than the method
used by the vendor, as shown by the 24 PE/node results at nodes counts of 16
and higher.

For the 16 KB, the linear method was optimal up to 32 nodes, with the
Bruck algorithm performing better for higher node counts. Both algorithms give
superior performance to the approach used in the vendor implementation.



SHCOLL 103

1 2 4 8 16 32 64 128 256 512

0.01

0.1

1

10

1 2 4 8 16 32 64 128 256 512

0.01

0.1

1

10

100

1,000

Fig. 10. Collect

6.7 Alltoall

Figure 11 compares performance of Cray OpenSHMEM shmem alltoall32
against that of SHCOLL’s equivalent shcoll alltoall32 function. The color-
pairwise exchange method generally performed best for all transfer sizes. At low
node or PE counts, the Cray put-with-signal approach works well, but a barrier
based synchronization is employed for higher numbers of processes. The algo-
rithm could be more efficient if the underlying network (and the OpenSHMEM
API), supported a put-with-counter mechanism [15]. The vendor implementa-
tion [18] modestly outperforms the SHCOLL implementation suggesting that
the Cray implementation is similar to that used by SHCOLL.

1 2 4 8 16 32 64 128 256 512

0.01

0.1

1

10

1 2 4 8 16 32 64 128 256 512
0.001

0.01

0.1

1

10

100

Fig. 11. Alltoall



104 S. Milaković et al.

6.8 Alltoalls

Figure 12 shows timing results for Cray’s OpenSHMEM implementation’s
shmem alltoalls32 against SHCOLL’s shcoll alltoalls32. As with the
other experiments, the timed loop includes a shmem barrier all to keep the
pSync array properly armed. Results for 4 byte and 128 byte per PE contribu-
tions are shown. For the single PE per node tests, it was found that the xor-
pairwise exchange method gave good results for both transfer sizes. For the 24
PEs/node case, the shift exchange method with barrier synchronization works
best for the 4 byte exchange, while for the 128 byte transfer size, the color-
pairwise exchange was superior. SHCOLL gives significantly better performance
for the 4 byte per PE operation at all node counts for both 1 and 24 PEs per
node, while showing modestly better results for the 128 byte per PE case.

1 2 4 8 16 32 64 128 256 512

0.01

0.1

1

10

100

1 2 4 8 16 32 64 128 256 512

0.01

0.1

1

10

100

Fig. 12. Alltoalls

The performance of the SHCOLL algorithms was also helped by the use of
what is effectively a non-blocking implicit shmem iputX nbi function:
void shmem_iput32_nbi(void* dest, const void* source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems, int pe) {
uint32_t* dest_ptr = (uint32_t*)dest;
const uint32_t* source_ptr = (const uint32_t*)source;
for (int i = 0; i < nelems; i++) {

shmem_put32_nbi(dest_ptr, source_ptr, 1, pe);
dest_ptr += dst; source_ptr += sst;

}
}

This approach was used for the data movement part of the shcoll
alltoalls32 implementation.

7 Conclusion and Future Work

In this paper we have shown that implementing multiple algorithms and select-
ing the optimal one depending on message size and the number of processes



SHCOLL 105

involved in the operation is essential to achieving good performance. Currently,
the optimal algorithm for both transfer size and the number of PEs involved
in the collective is chosen manually. In future we plan to develop methods to
better automate the selection of the optimal algorithm for a particular message
size and number of processes. Also, to improve the performance for flat Open-
SHMEM applications that use collective operations, we plan add topology aware
collectives using PMIx [11]. We further plan to integrate SHCOLL into a future
OSSS OpenSHMEM collective plugin framework.

Acknowledgments. This research was funded in part by the United States Depart-
ment of Defense, and was supported by resources at Los Alamos National Laboratory.
This publication has been approved for public, unlimited distribution by Los Alamos
National Laboratory, with document number LA-UR-18-27273.

This research used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231.

References

1. Introduction to barrier algorithms. https://6xq.net/barrier-intro/
2. MPICH. https://www.mpich.org
3. MVAPICH2-X. http://mvapich.cse.ohio-state.edu/
4. PMIx Reference RunTime Environment. https://github.com/pmix/prrte
5. Awan, A.A., Hamidouche, K., Chu, C.H., Panda, D.: A case for non-blocking collec-

tives in OpenSHMEM: design, implementation, and performance evaluation using
MVAPICH2-X. In: Gorentla Venkata, M., Shamis, P., Imam, N., Lopez, M.G. (eds.)
OpenSHMEM 2014. LNCS, vol. 9397, pp. 69–86. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-26428-8 5

6. Barnett, M., Shuler, L., van De Geijn, R., Gupta, S., Payne, D.G., Watts, J.:
Interprocessor collective communication library (intercom). In: Proceedings of the
Scalable High-Performance Computing Conference, pp. 357–364. IEEE (1994)

7. Bauer, M.E.: Legion: programming distributed heterogeneous architectures with
logical regions (2014)

8. Bonachea, D.: GASNet specification, v1.1. Technical report, Computer Science
Department, University of California, Berkeley (2002)

9. Bruck, J., Ho, C.T., Kipnis, S., Upfal, E., Weathersby, D.: Efficient algorithms
for all-to-all communications in multiport message-passing systems. IEEE Trans.
Parallel Distrib. Syst. 8(11), 1143–1156 (1997)

10. ten Buggencate, M., Roweth, D.: DMAPP: an API for one-sided programming
models on baker systems. In: Proceedings of Cray User Group (2010)

11. Castain, R.H., Solt, D., Hursey, J., Bouteiller, A.: Pmix: process management for
exascale environments. In: Proceedings of the 24th European MPI Users’ Group
Meeting, EuroMPI 2017, pp. 14:1–14:10. ACM, New York (2017). http://doi.acm.
org/10.1145/3127024.3127027

12. Chapman, B., et al.: Introducing OpenSHMEM: SHMEM for the PGAS commu-
nity. In: Proceedings of the Fourth Conference on Partitioned Global Address Space
Programming Model, PGAS 2010, pp. 2:1–2:3. ACM, New York (2010). http://
doi.acm.org/10.1145/2020373.2020375

https://6xq.net/barrier-intro/
https://www.mpich.org
http://mvapich.cse.ohio-state.edu/
https://github.com/pmix/prrte
https://doi.org/10.1007/978-3-319-26428-8_5
https://doi.org/10.1007/978-3-319-26428-8_5
http://doi.acm.org/10.1145/3127024.3127027
http://doi.acm.org/10.1145/3127024.3127027
http://doi.acm.org/10.1145/2020373.2020375
http://doi.acm.org/10.1145/2020373.2020375


106 S. Milaković et al.

13. Cray, Inc.: Chapel Language Specification. Technical report, Cray, Inc. (2010)
14. Cray Inc.: Using the GNI and DMAPP APIs (2011)
15. Dinan, J., Cole, C., Jost, G., Smith, S., Underwood, K., Wisniewski, R.W.: Reduc-

ing synchronization overhead through bundled communication. In: Poole, S., Her-
nandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol. 8356, pp. 163–177.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05215-1 12

16. Faanes, G., et al.: Cray cascade: a scalable HPC system based on a dragonfly
network. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC 2012), November 2012

17. Jose, J., Kandalla, K., Zhang, J., Potluri, S., Panda, D.: Optimizing collective
communication in openshmem. In: 7th International Conference on PGAS Pro-
gramming Models, p. 185 (2013)

18. Knaak, D., Namashivayam, N.: Proposing OpenSHMEM extensions towards
a future for hybrid programming and heterogeneous computing. In: Gorentla
Venkata, M., Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS,
vol. 9397, pp. 53–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26428-8 4

19. Namashivayam, N., Eachempati, D., Khaldi, D., Chapman, B.M.: OpenSHMEM
as a portable communication layer for PGAS models: a case study with coarray
fortran. In: 2015 IEEE International Conference on Cluster Computing, CLUSTER
2015, Chicago, IL, USA, 8–11 September 2015, pp. 438–447 (2015). http://dx.doi.
org/10.1109/CLUSTER.2015.66

20. OpenSHMEM Specification Committee: OpenSHMEM Specification. http://www.
openshmem.org/site/Specification

21. Poole, S.W., Hernandez, O., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.:
OpenSHMEM - toward a unified RMA model. In: Padua, D. (ed.) Encyclopedia of
Parallel Computing. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-
09766-4 490

22. Rolf Rabenseifner: A new optimized MPI reduce algorithm. https://fs.hlrs.de/
projects/par/mpi//myreduce.html

23. Chauvin, S., Saha, P., Cantonnet, F., Annareddy, S., El-Ghazawi, T.: UPC Manual
(2003)

24. Shamis, P., et al.: UCX: an open source framework for HPC network APIS and
beyond. In: 2015 IEEE 23rd Annual Symposium on High-Performance Intercon-
nects, pp. 40–43, August 2015

25. Tam, A., Wang, C.L.: Efficient scheduling of complete exchange on clusters. In:
13th International Conference on Parallel and Distributed Computing Systems
(PDCS 2000), Las Vegas, vol. 4 (2000)

26. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communi-
cation operations in MPICH. Int. J. High Perform. Comput. Appl. 19(1), 49–66
(2005)

https://doi.org/10.1007/978-3-319-05215-1_12
https://doi.org/10.1007/978-3-319-26428-8_4
https://doi.org/10.1007/978-3-319-26428-8_4
http://dx.doi.org/10.1109/CLUSTER.2015.66
http://dx.doi.org/10.1109/CLUSTER.2015.66
http://www.openshmem.org/site/Specification
http://www.openshmem.org/site/Specification
https://doi.org/10.1007/978-0-387-09766-4_490
https://doi.org/10.1007/978-0-387-09766-4_490
https://fs.hlrs.de/projects/par/mpi//myreduce.html
https://fs.hlrs.de/projects/par/mpi//myreduce.html

	SHCOLL - A Standalone Implementation of OpenSHMEM-Style Collectives API
	1 Introduction
	2 Related Work
	3 OpenSHMEM
	4 The OSSS-UCX OpenSHMEM Implementation
	4.1 Initial Implementation with GASNet
	4.2 New Implementation with UCX
	4.3 Process Management Interface

	5 Collective Operations Algorithms
	5.1 Barrier
	5.2 Collect, Fcollect
	5.3 Broadcast
	5.4 Alltoall, Alltoalls
	5.5 Reductions

	6 Results
	6.1 Evaluation Platform and Software
	6.2 Barrier
	6.3 Broadcast
	6.4 Reduce
	6.5 Fcollect
	6.6 Collect
	6.7 Alltoall
	6.8 Alltoalls

	7 Conclusion and Future Work
	References




