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Preface

The OpenSHMEM Workshop is the premier venue for presenting new and innovative
PGAS research in the context of OpenSHMEM. OpenSHMEM 2018, held in
Baltimore, Maryland, was the fifth event in the OpenSHMEM and Related Tech-
nologies workshop series. The workshop was organized by Oak Ridge National
Laboratory (ORNL) and sponsored by ORNL and the Department of Defense. The
workshop was attended by participants from across academia, industry, and private and
federal research organizations.

This year, the workshop focused on OpenSHMEM in the Era of Extreme Hetero-
geneity. Extremely heterogeneous computing platforms are emerging in every domain
of computing. These platforms are the result of integrating multiple types of processing
units and memory components in a single computing platform. There is also emerging
heterogeneity in the application workloads and user community. As the international
scientific community races to achieve exascale computing, the level of heterogeneity in
computing hardware, software, and applications is expected to increase. OpenSHMEM
2018 was organized to prepare the SHMEM programming model for such extremely
heterogeneous environment. The workshop included two days of technical presenta-
tions followed by one day dedicated to the OpenSHMEM Specification discussions and
development. This year the workshop had two keynote addresses, one from Gil Bloch
from Mellanox and the second one from Will Deacon from ARM. Gil’s talk was
focused on InfiniBand In-Network Computing Technology and Roadmap and its
impact on current data-centric vision of HPC. Will’s keynote highlighted the memory
consistency models and his experiences in formalizing the same for Armv8
architecture.

This proceedings volume comprises a collection of papers presented at the work-
shop. All papers submitted to the workshop were peer-reviewed by the Program
Committee, which included members from universities, industry, and research labo-
ratories. Each paper was reviewed by at least three reviewers. In total, 14 full papers
were selected to be presented at the workshop. The technical papers provide a variety
of ideas for extending the OpenSHMEM specification and they discuss a variety of
concepts, including interesting use of OpenSHMEM in HOOVER – a distributed,
flexible, and scalable streaming graph processor and scaling OpenSHMEM to handle
massively parallel processor arrays, to name a few. The Oak Ridge Benchmark Suite
provides the much-needed micro and macro benchmarks that have been missing in the
OpenSHMEM eco-system. This year we are thrilled to publish the first simulation
research paper that provides a software for lightweight and scalable simulation of
large-scale OpenSHMEM applications. Other interesting topics included SHMEM for
GPU kernels, SHMEM profiling tools, and network conduits for SHMEM.

We are sure all these concepts will be of use to the wider PGAS community.
We would like to thank everyone who contributed to the organization of the

workshop. Particularly, we would like to thank the authors, Technical Committee



chairs and members, reviewers, session chairs, participants, and sponsors. We are
grateful for the excellent support we received from our ORNL administrative staff and
Daniel Pack, who helped maintain and update our workshop website.

October 2018 Swaroop Pophale
Neena Imam

VI Preface
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OpenSHMEM Sets and Groups:
An Approach to Worksharing
and Memory Management

Ferrol Aderholdt, Swaroop Pophale(B), Manjunath Gorentla Venkata,
and Neena Imam

Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, USA

pophaless@ornl.gov

Abstract. Collective operations in the OpenSHMEM programming
model are defined over an active set, which is a grouping of (PEs)
based on a triple of information including the starting PE, a log2 stride,
and the size of the active set. In addition to the active set, collectives
require Users to allocate and initialize synchronization (i.e., pSync) and
scratchpad (i.e., pWrk) buffers for use by the collective operations. While
active sets and the user-defined buffers were previously useful based on
hardware and algorithmic considerations, future systems and applica-
tions require us to re-evaluate these concepts. In this paper, we propose
Sets and Groups as abstractions to create persistent, flexible group-
ings of PEs (i.e., Sets) and couple these groups of PEs with memory
spaces (i.e., Groups), which remove the allocation and initialization bur-
den from the User . To evaluate Sets and Groups, we perform multiple
micro-benchmarks to determine the overhead of these abstractions and
demonstrate their utility by implementing a distributed APSP applica-
tion, which we evaluate using multiple synthetic and real-world graphs.

1 Introduction

Since the initial release of the OpenSHMEM Specification [5], many features
have been incorporated to address the changing hardware and applications.

F. Aderholdt—This work was sponsored by the U.S. Department of Energy’s Office of
Advanced Scientific Computing Research. This manuscript has been authored by UT-
Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results of feder-
ally sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan). This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.
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Specification 1.0 had support for point-to-point communication and synchroniza-
tion, Atomic Memory Operations (AMO), collective operations, memory update
ordering, and global locking for critical region execution. More recently, sig-
nificant additions to the API have been made including implicit non-blocking
point-to-point operations, all-to-all collective operations, resource contexts, and
a threading model.

The OpenSHMEM Specification provides support for many collective opera-
tions such as the barrier, barrier all, sync, sync all, broadcast, collect, reductions,
and all-to-all operations. Each collective other than the barrier all and sync all
is defined over an active set. The active set is defined by the User with a triple
of information including the starting PE index, a log2 stride, and the size of the
active set. In addition, synchronization (i.e., pSync) and scratchpad (i.e., pWrk)
buffers are expected to be defined and initialized by the User on a per collective
basis.

While the active set definition was useful due to previous hardware and
algorithmic considerations, future systems and applications may suffer due to a
lack of expressivity. More specifically, the requirement of a log2-based active set
limits work distribution flexibility for Users. For example, if the User needs an
active set to encompass a collection of PEs as depicted in Figs. 1(a)–(c), then
it is not possible with the current active set as defined by a log2 stride. This
problem is exacerbated by having to pass the active set definition triple for all
collectives, which is true for the partitioning of work in irregular applications
where the creation of an active set may require calculations at runtime based
on optimized work partitioning. In addition, having to maintain and manage
the multiple pSync and pWrk buffers can be burdensome for the User and limit
productivity.

(a) Odd stride between PEs (b) Disjoint PEs PEs (c) Combination of different
strides

Fig. 1. PE groupings not captured by the current active set definition

To overcome the limitations of active sets and simplify the interfaces of collec-
tive operations for Users, we are proposing two abstractions: Sets and Groups.
The Sets abstraction serves to create persistent groupings of PEs using ranges
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and strides, which are not limited to log2, through only local operations. This
allows the User to create Sets locally (i.e., no communication between PEs) that
may be used in multiple collectives. In addition, the Groups abstraction builds
on Sets by coupling a Set with the resources required to efficiently complete col-
lective operations such as a memory space, which removes the pSync and pWrk
creation and management burden from the User . The contributions of this paper
are as follows:

* We propose the Sets and Groups extensions to the OpenSHMEM program-
ming model to address the drawbacks of Active Sets and collective operations
semantics.

* We systematically evaluate and demonstrate the productivity advantages of
using Sets and Groups by porting micro-benchmarks and application kernels
to these abstractions.

* With the collective benchmark evaluation, we show the performance and scal-
ability advantages that can be achieved for collective operations while using
Sets and Groups.

* With APSP evaluation, we demonstrate the performance and productivity
advantages for application kernels. Also, we show how multi-grained paral-
lelism can be achieved, which further leads to performance advantages of
up to 94% when compared to a vanilla approach.

2 Background

As mentioned in Sect. 1, the OpenSHMEM Specification [1] provides support
for barrier, barrier all, sync, sync all, broadcast, collects, reductions, and all-
to-all collectives. With the exception of barrier all and sync all, the collective
operations need to be defined over an active set. A demonstration of collectives
in OpenSHMEM through a simple OpenSHMEM program can be seen in Listing
1.1. This program is simple and makes use of barrier, broadcast, and all-to-all
collective operations. Since the pSync array is different for both collectives it has
to be initialized separately. Because broadcast on line 29 and 36 can be called
simultaneously, we are required to provide separate pSync arrays to the library.
Similarly for barrier calls on lines 31 and 38. This example motivates the need
to move the synchronization and work buffer allocation and maintenance to the
OpenSHMEM library implementation.

1 #inc lude <s t d i o . h>
2 #inc lude <shmem . h> /∗ Required ∗/
3

4 long s r c [ 4 ] , des t [ 4 ] ; /∗ Globals are symmetric in C ∗/
5

6 i n t main ( void ) {
7 shmem init ( ) ; /∗ Required − I n i t i a l i z e s l i b r a r y ∗/
8 i n t npes = shmem n pes ( ) ;
9 /∗ Required − Al l o ca t i ng symmetric synchron i za t i on ar rays ∗/

10 long ∗ pSync1 = ( long ∗) shmem malloc ( s i z e o f ( long ) ∗
SHMEM BARRIER SYNC SIZE) ;

11 long ∗ pSync2 = ( long ∗) shmem malloc ( s i z e o f ( long ) ∗
SHMEM BARRIER SYNC SIZE) ;
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12 long ∗ pSync3 = ( long ∗) shmem malloc ( s i z e o f ( long ) ∗
SHMEM BCAST SYNC SIZE) ;

13 long ∗ pSync4 = ( long ∗) shmem malloc ( s i z e o f ( long ) ∗
SHMEM BCAST SYNC SIZE) ;

14 long ∗ pSync5 = ( long ∗) shmem malloc ( s i z e o f ( long ) ∗
SHMEM ALLTOALL SYNC SIZE) ;

15 . . .
16 /∗ Required − I n i t i a l i z i n g symmetric synchron i za t i on ar rays ∗/
17 f o r ( i n t i = 0 ; i < SHMEM BARRIER SYNC SIZE; i++) {
18 pSync1 [ i ] = SHMEM SYNC VALUE;
19 pSync2 [ i ] = SHMEM SYNC VALUE;
20 }
21 f o r ( i n t j = 0 ; j < SHMEM BCAST SYNC SIZE; j++) {
22 pSync3 [ j ] = SHMEM SYNC VALUE;
23 pSync4 [ j ] = SHMEM SYNC VALUE;
24 }
25 f o r ( i n t k = 0 ; k < SHMEM ALLTOALL SYNC SIZE; k++) {
26 pSync5 [ k ] = SHMEM SYNC VALUE;
27 }
28 . . .
29 /∗Only odd PEs∗/
30 i f (my pe % 2) {
31 /∗Some Work∗/
32 shmem broadcast64 ( dest , src , 4 , 0 , 1 , 1 , ( npes /2) , pSync3 ) ;
33 /∗Some Work∗/
34 shmem barrier ( 1 , 1 , ( npes /2) , pSync1 ) ;
35 }
36 /∗ Al l PEs except PE 0∗/
37 i f (my pe > 0) {
38 /∗Some Work∗/
39 shmem broadcast64 ( dest , src , 4 , 0 , 1 , 0 , npes −1,pSync4 ) ;
40 /∗Some Work∗/
41 shmem barrier (1 , 0 , npes −1,pSync2 ) ;
42 }
43 shmem al l toa l l 64 ( dest , source , 4 , 0 , 0 , npes , pSync5 ) ;
44 shmem bar r i e r a l l ( ) ; /∗ Synchronizes a l l PEs and completes

pending updates ∗/
45 /∗Free a l l o c a t e d r e s ou r c e s ∗/
46 shmem f ina l i z e ( ) ; /∗ Required − Cleans environment and f r e e s

r e s ou r c e s ∗/
47 re turn 0 ;
48 }

Code 1.1. OpenSHMEM Active Sets, pSync, and pWrk usage

3 API Description

In this section, we will discuss our proposed APIs for creating persistent and flex-
ible groupings of PEs. As the Groups abstraction builds upon the Sets abstrac-
tion, we will first discuss Sets and then Groups.

3.1 Sets

A Set is a group of PEs. The PEs composing the Set are indexed based on
positive integers where the indexes are monotonically increasing from zero. Any
PE not included in the Set will have a negative index.

Sets are created using the creation operations described in Listing 1.2. Each
Set creation operation is blocking and is a local operation, which does not require
communication between PEs. This is because each PE performing this operation



OpenSHMEM Sets and Groups 7

will generate the same Set. While Set creation is a local operation, each PE
should participate in Set creation to obtain knowledge of their existence within
the Set.

1 /∗ Set Creat ion API ∗/
2 i n t shmem crea t e s e t s t r i d ed ( shmem set t ∗ parent s e t ,
3 i n t i ndex s t a r t ,
4 i n t i nd ex s t r i d e ,
5 i n t s i z e ,
6 shmem set t ∗∗ new set ) ;
7 i n t shmem crea t e s e t s t r i d ed mu l t i ( shmem set t ∗ parent s e t ,
8 i n t n r s t r i d e s ,
9 i n t s t r i d e s a r r a y [ ] [ 3 ] ,

10 shmem set t ∗∗ new set ) ;
11 i n t shmem create set range ( shmem set t ∗ parent s e t ,
12 i n t low index ,
13 i n t h igh index ,
14 shmem set t ∗∗ new set ) ;
15 i n t shmem set union ( shmem set t ∗ set1 ,
16 shmem set t ∗ set2 ,
17 shmem set t ∗∗ new set ) ;
18 i n t shmem se t in t e r s e c t i on ( shmem set t ∗ set1 ,
19 shmem set t ∗ set2 ,
20 shmem set t ∗∗ new set ) ;
21 i n t shmem se t d i f f e r ence ( shmem set t ∗ set1 ,
22 shmem set t ∗ set2 ,
23 shmem set t ∗∗ new set ) ;
24 i n t shmem free set ( shmem set t ∗ f r e e s e t ) ;
25

26 /∗ Ut i l i t y API ∗/
27 i n t shmem set query s i ze ( shmem set t ∗ set , i n t ∗ s i z e ) ;
28 i n t shmem set get index ( shmem set t ∗ set , i n t ∗ index ) ;
29 i n t shmem set t rans l a t e index ( shmem set t ∗ f rom set ,
30 shmem set t ∗ t o s e t ,
31 i n t from index ,
32 i n t ∗ to index ) ;

Code 1.2. OpenSHMEM API for Sets

We propose the Set creation operation found in Listing 1.2. We will describe
their semantics below.

– shmem create set strided: Creates a new set with the first PE represented
by index index start of the parent Set. The created Set has a size corre-
sponding to the size parameter with a stride defined by the index stride
parameter.

– shmem create set strided multi: Creates a new Set
similar to shmem create set strided with multiple strided subsets of PEs.
An example of a Set created with this operation can be seen in Fig. 1(c).

– shmem create set range: Creates a new Set using an inclusive range. Thus,
contains the PEs with an index from low index to high index from the
parent set.

– shmem set union: Creates a new Set, which is a collection of all the unique
PEs in set1 and set2. The PEs are translated to world PEs as the same
world PE could exist at different indexes in different Sets.

– shmem set intersection: Creates a new Set, which is a collection of all the
PEs present in both set1 and set2.
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– shmem set difference: Creates a new Set, which is a collection of all the
PEs in set1 not present in set2. Unlike the union and intersection creation
operations, the difference operation is not commutative and the order of the
contributing Sets matters.

All Sets have to be created from a parent set. The library pro-
vides two sets at the start of the program: SHMEM SET WORLD and
SHMEM SET EMPTY. SHMEM SET WORLD consists of all the PEs exe-
cuting the OpenSHMEM program. SHMEM SET EMPTY is used to indicate
an empty set.

In addition to creation operations, the Sets API contains querying operations
to give User ’s the ability to determine the size of the Set and a PE’s index within
the Set. The User may also translate indices between Sets.

3.2 Groups

A Group is a coupling of a valid Set with the resources required for the efficient
execution of collective operations. For collectives built on the one-sided opera-
tions such as in OpenSHMEM, a memory buffer accessible by all PEs is required
for synchronization and for storing intermediate results. Besides that, resources
such as network injection queues, hardware collective resources, and application
usage hints can be useful. We will demonstrate the utility of the Group abstrac-
tion and API for achieving productivity and performance with memory spaces.
Though the Group abstraction can be useful for coupling other resources, we
will not demonstrate that in this paper.

The coupling between the memory space and the Set, gives the library a
memory space that can be accessed by the PEs composing the Set while remain-
ing opaque to the User . The purpose of creating this abstraction is to simplify
the interfaces for collective operations by combining the persistent Set abstrac-
tion with the memory necessary to fulfill the role of the synchronization (i.e.,
pSync) and scratchpad (i.e., pWrk) buffers.

Group creation is guided by a existing, valid Set or the Set of an existing
Group. This allows the PEs of the Set or Group to allocate a local memory space
and exchange this memory space with the other members of the forming Group.
Unlike the symmetric heap, this memory space does not need to be symmetric
with respect to addressing across the PEs, but it does need to have a symmetric
size. Because of this exchange, Group creation is a collective operation within
the Set.

1 /∗ Group Creat ion API ∗/
2 i n t shmemx create group from set ( shmemx set t ∗ set ,
3 shmemx group t ∗∗ new group ) ;
4 i n t shmemx group sp l i t co lo r ( shmemx group t ∗ parent group ,
5 i n t co lo r ,
6 shmemx group t ∗∗ new group ) ;
7 i n t shmemx group dup ( shmemx group t ∗ group ,
8 shmemx group t ∗∗ dup group ) ;
9 i n t shmemx group free ( shmemx group t ∗ f r e e g r oup ) ;

10

11 /∗ Group U t i l i t y API ∗/
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12 i n t shmemx group size ( shmemx group t ∗ group , i n t ∗ s i z e ) ;
13 i n t shmemx get set from group ( shmemx group t ∗ group ,
14 shmemx set t ∗∗ s e t ) ;

Code 1.3. OpenSHMEM API for Groups

The API to create, query, and free Groups is shown in Listing 1.3. For each
interface, a return code is returned to the User indicating whether or not the
operation was successful. The semantics of these operations are as follows:

– shmem create group from set: Creates a Group from an existing Set, which
may include predefined Sets including SHMEM SET WORLD. The implementation
will locally allocate memory and register this memory with the NIC. After-
wards, each PE of the Set will exchange the address information to enable
future communication between PEs.

– shmem group split color: Creates a new Group using a color-based split
operation from an existing Group. This is similar to existing programming
models [8,10]. However, unlike existing programming models, the User can-
not define the ordering of the newly defined Group by using a key. Instead,
ordering is based on the parent Group’s PE ordering.

– shmem group dup: Duplicates an existing Group.
– shmem group free: Frees an allocation of a Group. This includes both the

freeing of the resources associated with the Group and any internal structures
used to create the Group (i.e., the Set).

– shmem group size: Returns to the User the number of PEs composing this
Group.

– shmem get set from group: Returns to the User the Set associated with the
particular Group. This is useful if the User needs to query information from
the Set or modify the Set (i.e., add PEs) prior to creating a new Group.

3.3 Impact on Existing Collectives and Comparison with Active
Sets

Sets and Groups provide useful abstractions for the User to create and manip-
ulate persistent groups of PEs for collective operations. However, existing col-
lective operations expect active sets to be provided by the User , which requires
log2 strides. To support the APIs presented in this paper, we have extended the
collective interfaces to include Sets and Groups based equivalents.

An example of this extension can be seen with the barrier operation, which
requires the User to define an active set (i.e., a triple defining a starting index,
log2 stride, and size) as well as allocate and initialize a synchronization buffer
(i.e., pSync array). In total, this requires four parameters and its usage can be
seen in Listing 1.1. For the Sets-based interface, the active set parameters are
replaced by the Set, but the synchronization buffer parameter remains. For the
Groups-based interface, this is further reduced to one parameter, which is the
Group as it is coupling the Set and necessary resources for the collective.

To demonstrate the utility of this approach, we have adapted the earlier
example in Listing 1.1 to what is seen in Listing 1.4. In the adaptation, we
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ignored return values to save space. While we have shortened the lines of code
in the adaptation by using Sets and Groups, we have also decreased the memory
requirements and the time to completion for the application. This is because
OpenSHMEM requires remotely accessible data objects to be symmetric, where
every PE allocates a data object with the same address and size. Thus, in the
first example (i.e., Listing 1.1), every PE must perform a blocking, collective
(i.e., shmem malloc) to allocate space for the pSync buffer regardless of whether
the PE will use the buffer. However, in our adaptation, only the PEs belonging
to a Group will allocate a buffer.
1 #inc lude <s t d i o . h>
2 #inc lude <shmem . h> /∗ Required ∗/
3

4 long s r c [ 4 ] , des t [ 4 ] ; /∗ Globals are symmetric in C ∗/
5

6 i n t main ( void ) {
7 shmem init ( ) ; /∗ Required − I n i t i a l i z e s l i b r a r y ∗/
8 i n t npes = shmem n pes ( ) ;
9 shmem set t ∗ set odd , ∗ s e t g z ;

10 shmem group t ∗ group odd , ∗ group gz , ∗ group world ;
11

12 shmem crea t e s e t s t r i d ed (SHMEM SETWORLD, 1 , 2 , npes / 2 , &
set odd ) ;

13 shmem create set range (SHMEM SETWORLD, 1 , npes − 1 , &s e t g z ) ;
14

15 shmem create group from set ( set odd , &group odd ) ;
16 shmem create group from set ( s e t gz , &group gz ) ;
17 shmem create group from set (SHMEM SETWORLD, &group world ) ;
18 . . .
19 /∗Only odd PEs∗/
20 i f (my pe % 2){
21 /∗Some Work∗/
22 shmem group broadcast64 ( dest , src , 4 , 0 , group odd ) ;
23 /∗Some Work∗/
24 shmem group barr ier ( group odd ) ;
25 }
26 /∗ Al l PEs except PE 0∗/
27 i f (my pe > 0){
28 /∗Some Work∗/
29 shmem group broadcast64 ( dest , src , 4 , 0 , group gz ) ;
30 /∗Some Work∗/
31 shmem group barr ier ( group gz ) ;
32 }
33 shmem group a l l toa l l 64 ( dest , source , 4 , group world ) ;
34 shmem bar r i e r a l l ( ) ; /∗ Synchronizes a l l PEs and completes

pending updates ∗/
35 /∗Free a l l o c a t e d r e s ou r c e s ∗/
36 shmem f ina l i z e ( ) ; /∗ Required − Cleans environment and f r e e s

r e s ou r c e s ∗/
37 re turn 0 ;
38 }

Code 1.4. Example Using Sets and Groups

To understand the performance implications, we performed an evaluation of
the two approaches using the code in both examples (i.e., Listing 1.1 and 1.4.
Because each code is functionally identical, the comparison is valid. The testbed
we used for this evaluation is the Turing cluster at ORNL. The Turing cluster
is a 16 node cluster with each node having two Intel Xeon E5-2660v3 proces-
sors, which have twenty logical cores each, 128 GB of RAM, and a ConnectX-4
InfiniBand interconnect. The results of the evaluation can be seen in Fig. 2.
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Fig. 2. Performance evaluation of Sets and Groups adaptation

The performance of the Groups adaptation is as expected and superior to
the active set performance as the number of PEs increase. This is because, as
mentioned earlier, the number of PEs required to perform collective allocations
of the pSync arrays is limited to those belonging to the Group. Thus, as more
PEs are added the time to completion of the active set version will continue to
increase at a faster rate than the Groups adaptation.

4 Implementation

In this section, we will describe our implementation of both Sets and Groups.
As Groups builds on Sets, we will begin with Sets and move to Groups.

4.1 Sets

Set creation is a local operation, thus all PEs need to retain some information
regarding the Set membership to be able to identify other PEs that belong to
the same Set. This allows the User to issue RMA operations between PEs of the
same Set. The challenge is to collapse Set membership information in a man-
ner that does not require huge data structures. Hence Set’s memory usage is the
primary design motivator. To that end, we only maintain the mathematical rela-
tionship between the members of the Set. We do not maintain any predecessor
information; that is, once a Set is created, it does not retain any information
regarding its parent(s). The User will only see a new Set that is indexed form
0 to N-1, where N is the total number of PEs in the new Set. We maintain this
indexing seamlessly for the user by retaining the mapping between the PEs in
the Set and their WORLD IDs.

4.2 Groups

The implementation of the Groups abstraction required two disjoint areas of
adaptation to the OpenSHMEM-X implementation. Thus, we will first discuss
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the implementation of the semantics and functional requirements of Groups,
and, then, we will discuss the extensions to the collective operations.

In general, to implement the semantics and functional requirements of the
Groups abstraction shown here, which focuses primarily on memory resources
rather than other helpful resources, the OpenSHMEM implementation needs
to have the capability of allocating memory and registering it with the NIC,
which also requires address translations in order to perform Put , Get , and AMO
operations on the proper PEs. Most implementations can already perform these
types of operations, including the OpenSHMEM-X implementation. Thus, for the
prototype implementation of Groups, we merely abstracted that functionality
within ORNL’s OpenSHMEM-X implementation.

For the extension of the collective operations, we modified the collectives
such that the original algorithmic implementation is the same, but the synchro-
nization and intermediate results for the collectives are completed on the buffers
and PEs belonging to the Group.

5 Evaluation

In this section, we will present our experimental evaluation of the proposed Sets
and Groups extensions to OpenSHMEM. For these experiments, we made use
of our extended OpenSHMEM-X implementation. The experiments performed
were used to (i) evaluate Sets with respect to their memory usage requirements
and (ii) evaluate the overhead of collectives when using Groups. Finally, we will
demonstrate the effectiveness of the Sets and Groups abstractions with an irregu-
lar application kernel (i.e., APSP) using multiple synthetic and real-world graphs
and compare Sets and Groups to the Teams abstraction currently implemented
in Cray SHMEM.

For our evaluations, we made use of both the Eos and Titan machines located
at the OLCF. Eos is composed of two 8-core Intel Xeon processors, 64 GB of
memory, and the Aries interconnect. The processors form two NUMA nodes,
with 8 cores and 32 GB of memory per NUMA. Titan is composed of one 16-
core AMD Opteron processor, 32 GB of memory, and the Gemini interconnect.
The Opteron processor is split uniformly across two NUMA nodes (i.e., 8 cores
per NUMA), with each NUMA consisting of 16 GB of memory.

5.1 Resource Requirements

The Set creation operation can lead to one of the following three outcomes:

– Regular Set : All PEs in the new Set can be defined by a relationship (start,
stride, size). This is the best case scenario and the least space consuming.
Set creation operations like strided and range on such Sets result in similar
regular sets.

– Combination Set : Some PEs in the new Set can be defined by a Regular Set
while the rest form a disjoint List. For example, a Set with the WORLD PEs
{0,1,2,3,4,18}. The first five PEs can be represented by relationship {start,
stride, size} = {0,1,5} but the remaining PE does not fit.
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– List : None of the PEs have any mathematical relationship with each other.
This is a hypothetical worst case and cannot occur as it is always possible to
generate a relationship between 2 PEs. We use the worst case scenario where
there is a relationship between at most 2 PEs to model the theoretical worst
case memory utilization by such a List. Example of such a Set would be a
collection of WORLD PEs such as {2,5,6,17,23,29}. Here we can represent this
List as a combination of three Regular Sets, namely {2,5}, {6,17}, {23,29}
with {start, stride, size} = {2,3,2}, {6,11,2}, and {23,6,2} respectively.

Figure 3 shows the memory required in bytes for the Regular (best) and List
(worst) case described above with increasing number of PEs. The results are as
expected with the strided Sets consuming a static amount of memory regardless
of the number of PEs composing the Set. This suggests that simple groupings of
PEs resulting in a regular set will be able to provide efficient memory scaling as
we move to jobs with a significantly large amount of PEs. While more complex
groups of PEs will consume minimally more memory resources.
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Fig. 3. Memory usage for Set information

5.2 Collective Operations

To evaluate the overhead of the Groups abstraction with respect to its perfor-
mance, we will perform an experimental evaluation of the prototype implemen-
tation on the Eos testbed using micro-benchmarks to understand the overheads
when compared to OpenSHMEM’s active sets. Thus, we will explore the over-
heads of the following collective operations: (i) Group creation, (ii) Barrier, (iii)
Collect, and (iv) Summation Reduction.

For Group creation, we measured the time necessary to create a group, which
involves the allocation of a memory space at each PE, registration of the memory
space with the NIC, and the exchange of this information with other PEs in the
Set used to form the Group. The results of this experiment can be seen in Fig. 4.
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Fig. 4. The overhead of Group creation

The results of the Group creation operation were as expected. When the Set
used to perform the operation contained more PEs, the creation operation con-
sumed more time. While creating a Group is an expensive operation, performing
Group creation at the beginning of an application, near initialization time, will
lessen the impact of Group creation.

To measure the overhead of collective operations using Groups, we repeatedly
measured the time each operation took to complete and compared these results
to their vanilla active set counterpart. The evaluated operations include Barrier,
Collect, and Reduction operations. The results of this evaluation can be seen in
Fig. 5.

As expected, the results between the Groups and active sets versions of col-
lectives are nearly identical for both Barrier and the Reduction. However, the
Groups version slightly outperforms the active set version for Collect operations.
This performance difference is likely due to noise on the network as both versions
implement the same collective algorithm.

5.3 Use Case: All-Pairs Shortest Path

To evaluate the utility of Sets and Groups with an application, we chose to
use an irregular algorithm such as APSP and modified it to work appropriately
with OpenSHMEM and Sets and Groups. Rather than adapting an algorithm
such as Floyd-Warshall to OpenSHMEM, we made use of the Bellman-Ford
SSSP algorithm, which is a label-correcting algorithm and easily parallelizes in
distributed environments, and iterated the source parameter over all of the ver-
tices in the graph, which populates the distance matrix containing the distances
between vertices over time. To simplify the development process, we used the
synchronous Bellman-Ford algorithm described in [2].

Because the approach we used made use of all the PEs in the job, Sets,
Groups, or active sets could be used with equal efficiency. However, because
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Fig. 5. The overhead of collective operations with Groups and active sets. Lower is
better
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there are no dependencies between the completion of shortest paths for any
two sources, we can also parallelize the execution of shortest path based on
sources. More clearly, we can create Groups that work on partitions of the sources
allowing for the distance matrix to be populated in parallel.

While this can be accomplished by using active sets, it is more difficult for the
User if they are attempting to perform optimizations with their group creation
(i.e., PEs co-located on a node or NUMA) as the scheduler may perform process
placement differently between machines. In addition, keeping track of the active
set during runtime may prove to be difficult.

To evaluate the implementation using Sets and Groups of APSP, we made use
of multiple graphs including synthetic R-MAT graphs and real-world graphs. The
R-MAT graphs are scale-free graphs, where degree distribution follows a power
law, and the graphs were generated with the parameters a = 0.57, b = 0.19,
c = 0.19, and d = 0.05 and had an average vertex degree of 16. The graphs
generated follow a similar scale to the graphs from Graph500 (i.e., scale=10 is
equivalent to 210 vertices). Because the R-MAT graphs are scale-free graphs, we
used social network graphs such as Facebook and Twitter from Stanford’s SNAP
dataset [7] to compare.

Evaluation of APSP with R-MAT Graphs. To demonstrate the utility of
Sets and Groups, we performed weak scaling of our application kernel with a
scale of 10 up to 16. Thus, the dataset includes graphs starting with roughly
1 thousand vertices and 16 thousand edges and finished with over 65 thousand
vertices and over 1 million edges. To parallelize the APSP kernel, we performed
groupings of PEs at three levels: (i) global level, or one group consisting of
the WORLD set, (ii) node level, which is all PEs co-located on a node, and
(iii) NUMA level, which consists of the PEs co-located on a NUMA. Our weak
scaling experiment was completed using the Titan testbed and the results can
be seen in Fig. 6. Due to the overwhelming time to completion when using the
global group, we split the evaluation into two parts: (i) the execution of each
group to show the difference in optimizations shown in Fig. 6(a), and (ii) the
execution of the node and NUMA groups shown in Fig. 6(b).

The performance of the weak scaling experiment was reasonable and
expected. The communication cost for the global group was high at each iter-
ation of the Bellman-Ford algorithm. This caused the performance to nearly
double at each increase of PEs. However, the node and NUMA groups were able
to leverage shared memory for the majority of their communication, resulting
in much better performance with up to a 94% increase in performance. When
observing the performance of the grouped PEs, we are able to see the latency
of memory accesses that cross NUMA boundaries, which add significant latency
to algorithm completion at 1024 PEs (i.e., a 36% improvement when not cross-
ing NUMA boundaries). It should be noted that Sets and Groups performance
in this evaluation were equal. This is because the collective operations used in
this application kernel are used to determine convergence rather than perform
relaxation operations on edges, which are completed through Get and AMOs.
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Fig. 6. Weak scaling of the APSP application kernel with graphs of scale 10 through
16
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Fig. 7. Overhead associated with Group and Set creation

While the algorithmic timing showed that Groups and Sets perform equally
well for the APSP application kernel, the overheads associated with Group cre-
ation as compared to Set creation are shown in Fig. 7. These measurements were
gathered during the weak scaling experiment earlier. For each increase in PEs,
the overhead of Set creation is the same as each creation operation is local and
requires no communication. However, the Group creation operation performance
is dependent on the communication between PEs of the Set. Thus, the creation
of the Global Group is expensive in comparison to group creation with PEs
co-located on a node or NUMA by as much as 97%.

To ensure the accuracy of our results with synthetic graphs for real-world
datasets, we made use of the Facebook and Twitter graphs of Stanford’s SNAP
dataset [7]. As we have shown that partitioning the Group or Set creation pro-
duces efficient results with a NUMA partitioning, we made created Sets and
Groups based on these partitions.
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The characteristics of the graphs and experimental results are shown in
Table 1. Overall, the performance of both Sets and Groups matched the rela-
tive performance seen on the synthetic graphs, which was expected.

Table 1. Real-world graph details and results

Vertices Edges Sets Groups

Facebook 4,039 176,468 2.88 s 2.88 s

Twitter 81,306 2,420,766 1417 s 1423 s

5.4 Comparison of Groups and Teams

To further evaluate the merit of Sets and Groups, we evaluate our approach
with the Teams approach discussed in [9] and implemented in Cray SHMEM.
While the Teams approach is currently evolving, this evaluation will give an
impression of the performance differences between the approaches with actual
implementations. Specifically, we want to focus our evaluation on Group and
Team creation from a performance perspective (i.e., to understand the overhead
offered by each approach). This is because the remaining API offered by both
consists of collective operations, which would become an evaluation of Cray
SHMEM and OpenSHMEM-X collectives and is out of the scope of this paper.

Because we showed the utility of Sets and Groups above in Sect. 5.3 with
respect to irregular application kernels (i.e., APSP), we will evaluate the Team
and Group creation in that context, as the described APSP kernel could also
be implemented using Teams. More clearly, we will create Groups and Teams
based on node and NUMA co-locations, which have proven to be performant
for this type of application. This evaluation is completed by timing the creation
operations including the time necessary to allocate and initialize the pSync and
pWrk arrays used in the APSP kernel. The testbed used for this evaluation was
Eos and the results of this experiment can be seen in Fig. 8.

The results were as expected. The overhead in Group creation is signifi-
cantly lower than Team creation by as much as 90%. This is because Team
creation with Cray SHMEM performs a collective operation involving the global
set of PEs to create the Team followed by collective memory allocations through
shmem malloc. Meanwhile, Group creation is limited to only the PEs contained
within a Set, which is limited to PEs co-located on the same node or NUMA
node.

6 Related Work

The idea of asymmetric memory allocation for a persistent subset of PEs was
briefly explored in [9]. The authors propose a Team of PEs (similar to our
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Groups) as a way for expressing subsets of PEs. The main drawback of this
approach is that even if no collectives are involved, the program will incur the
additional cost of collective communication during team creation and of memory
management associated with (implicit pSync and pWrk) only to be able to use
persistent team objects. We avoid this in our approach by decoupling the Sets
and Groups: Sets need be converted to Groups if and only if the User deems it
necessary (e.g., multiple collectives over a small subset etc.). Our approach gives
the user the flexibility as well as defers expensive Group creation operation to
the point in the application where it is actually needed.

Message Passing Interface (MPI) has the concept of Groups and Com-
municators [8]. MPI Comm group is the equivalent of our OpenSHMEM Set.
There exist similar Set Theory operations that can be used to create groups in
MPI, but groups do not allow communication among the MPI ranks. A group
needs a communicator to accomplish this. New communicators can be created
from MPI COMM WORLD or by creating a communicator by passing in a
group to MPI Comm create. The former is done via a split operation on the
MPI COMM WORLD based on a color and key parameter. The Color decides
the membership and the key decides the ordering in the new communicator.
Another commonly used communicator creation operation is MPI Comm dup,
which creates an identical but distinct new communicator. A communicator
object is a combination of a context and the group of processes contained by
the communicator. Internally the MPI library maintains a unique context that
differentiates one communicator from another thus preventing an operation on
one communicator from matching with a similar operation on another commu-
nicator.

Unified Parallel C (UPC) [6], a PGAS language, is also moving towards hav-
ing better expressivity in their collectives. Version 1.3 of the specification includes
collectives such as broadcast, scatter, all-gather, all-gather-all, reduce, permute
etc. It currently suffers from the same shortcomings as OpenSHMEM 1.4 in
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its inability to express subsets of communicating THREADS (PE equivalent in
UPC). In [3], the authors propose UPC Teams with a similar intent; of enabling
subsets of UPC THREADS to perform collectives. Unfortunately, the work did
not present any implementation details. Their approach to TEAMS is similar
to the OpenSHMEM Groups presented here, but they do not have an abstrac-
tion similar to OpenSHMEM Sets. By providing a decoupling between the Sets
and Groups in OpenSHMEM, we delay expensive group creation operation to
the time that it is needed in the application and also prevent the unnecessary
cost of group creation in embarrassingly parallel compute intensive applications
where only Sets are sufficient for work distribution.

UPC++ [4], UPC for C++ applications, has included teams to allow col-
lective communication over a set of UPC++ threads. The default team is the
world team and each team has a unique team id that is equal across the team.
Team id has an opaque handle and is specified to supports similar functionality
as our Groups.

7 Conclusion and Future Work

While collective operations are commonly used in OpenSHMEM applications
for communication and synchronization, the semantics of collectives are limited.
This is due to the requirement of an active set, which defines a groups of PEs
based a log2 stride limiting the utility of active sets, and User provided memory
resources, which require collective allocation across all PEs and are often difficult
efficiently use.

In this paper, we presented the concept of OpenSHMEM Sets and Groups as
an extension to OpenSHMEM to address these limitations. We discussed both
Sets and Groups in detail in Sect. 3 and detailed the implementation of our pro-
totype extensions in Sect. 4. We showed that Set creation is a local operation to
each PE, and, as such, does not add time overheads to the critical path. In addi-
tion, we detailed that Groups are the coupling of Sets with various resources that
may be required to efficiently perform collective operations. We further demon-
strated this with respect to the efficient use of memory resources, application
performance, and the productivity advantages of Groups in comparison to active
sets in Sect. 3.3.

We have evaluated both Sets and Groups in Sect. 5 demonstrating the
resource requirements, performance advantages, and utility in designing appli-
cations. In this, we showed that Set usage in the best case remains static at 64
bytes regardless of the number of PEs in the Set. We also showed the utility
of Groups by implementing multi-grained parallelism in the APSP application
kernel, increasing performance over a distributed approach by up to 94%. In
addition, demonstrated that Group creation overheads can be minimized by
up to 97% when exploiting locality between PEs.

Currently, the OpenSHMEM programming model only allows collective mem-
ory allocations over the symmetric heap through the shmem malloc allocation
call demonstrated in Listing 1.1. This means that all PEs must perform a col-
lective operation with an implicit barrier to ensure completion of the allocation,
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which is wasteful in terms of both memory and time. Groups allows the Open-
SHMEM library to perform the memory allocations only within members of the
same Group removing the unnecessary constraints on memory allocation. In the
future, this concept can be extended to support asymmetric memory allocations
by Groups.
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Abstract. The OpenSHMEM 1.4 specification recently introduced sup-
port for multithreaded hybrid programming and a new communication
management API. Together, these features enable users to manage com-
munications performed by multiple threads within an OpenSHMEM pro-
cess and to overlap communication and computation to hide costly laten-
cies. In order to realize these benefits, OpenSHMEM implementations
must efficiently map this broad new space of usage models to the under-
lying fabric. This paper presents an implementation of OpenSHMEM 1.4
for the IntelR©Omni-Path Fabric 100 Series. The OpenFabrics Interfaces
(OFI) libfabric is used as the low-level fabric API; we identify strategies
for effectively managing shared transmission resources using libfabric,
as well as for managing the communication requirements of the Omni-
Path fabric. We study the performance of our implementation, identify
design tradeoffs that are influenced by application behavior, and explore
application-level optimizations that can be used to achieve the best per-
formance.

1 Introduction

For the past several years, the OpenSHMEM community has released an annual
update to the OpenSHMEM specification. Past versions of the OpenSHMEM
specification have focused on standardizing semantics, improving portability,
and enhancing existing OpenSHMEM interfaces. These past versions have set
the stage for the recent OpenSHMEM 1.4 release [19], which adds multiple new
features with a focus on extending OpenSHMEM to support hybrid parallel
programming. In particular, OpenSHMEM 1.4 adds support for multithreaded
communication as well as a new communication management interface, which
provides a unique and highly efficient interface for multithreaded communication.

Lower-level fabric interfaces are also evolving to keep pace with evolving par-
allel programming models and system architectures. The OpenFabrics Alliance
has been working to establish a new, open specification for low-level fabric soft-
ware, referred to as the OpenFabrics Interfaces (OFI). The libfabric library is the
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core component of OFI that defines the user-facing API. It has been designed to
support multithreaded communication models and to address new fabric resource
management challenges introduced by modern high performance fabrics.

In our prior work, we described the implementation of the legacy OpenSH-
MEM API [23] and explored the implementation of the then-proposed Open-
SHMEM communication contexts API [12] on OFI using the Aries1 network.
Recently, Intel introduced support for libfabric with the Intel R© Omni-Path
Architecture 100 Series (OPA100) high-speed fabric. This paper extends prior
work by exploring the implementation of recently added OpenSHMEM 1.4 fea-
tures and by analyzing optimizations that were made in support of the OPA100
fabric.

In particular, the recently added OpenSHMEM threading and contexts fea-
tures introduce several new fabric-level resource management challenges. In addi-
tion to providing thread safety, the OpenSHMEM library must now allocate and
manage communication resources commensurate with the number of simultane-
ously communicating threads within a process. We analyze these challenges and
introduce various strategies for addressing the resource requirements of multi-
threaded OpenSHMEM applications. We identify that differences in the usage
model can lead to differences in the performance achieved by various resource
management techniques. Using a cluster with the Intel R© Omni-Path Fabric, we
quantify these differences, measure the overall performance of our implementa-
tion, and identify opportunities for future work.

2 Background

This paper describes the implementation and optimization of the OpenSHMEM
1.4 specification [19] for the Intel R© Omni-Path Architecture 100 Series Fab-
ric [3] (OPA100). This work extends the Sandia OpenSHMEM (SOS) [8] open
source [22] implementation with support for new features introduced in OpenSH-
MEM 1.4, including threading support and support for OpenSHMEM commu-
nication management contexts. SOS supports the Portals 4 [2] and OpenFabrics
Interfaces (OFI) [14] networking APIs. We have updated SOS to fully support
OpenSHMEM 1.4 for both Portals and OFI networks; however, in this work, we
focus on the implementation and optimization of OFI support in SOS.

2.1 OpenSHMEM 1.4

The OpenSHMEM 1.4 specification introduces new API features, including
multithreading support; communication management “contexts”; a shmem sync

barrier operation; a shmem calloc symmetric memory allocation operation; a
shmem test operation for nonblocking point-to-point synchronization; bitwise
atomic operations; support for standard and fixed-width C integer types; and
C11 type-generic interfaces. Multithreaded communication and communication

1 Other names and brands may be claimed as the property of others.
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management contexts, which are the focus of this work, represent a signifi-
cant shift in the internal structures used to implement OpenSHMEM. Efficient
support for these operations involves generalizing communication management
structures to support multiple communication streams and broadening the set of
communication resources available to optimize the performance of multi-stream
processes.

The OpenSHMEM multithreading API is similar to the API provided by
MPI [16]; it introduces a new library initialization routine, shmem init thread,
that can be used to enable threading support when the library is initialized.
Four levels of threading support are defined; in increasing order of flexibility
they are SHMEM THREAD SINGLE, SHMEM THREAD FUNNELED, SHMEM THREAD SERIALIZED,
and SHMEM THREAD MULTIPLE. Our work focuses on the multiple threading model,
which allows multiple threads to perform OpenSHMEM communication opera-
tions simultaneously.

The communication management API added in OpenSHMEM 1.4 introduces
a context object that is associated with every remote memory access (RMA),
atomic memory operation (AMO), fence, and quiet operation. OpenSHMEM 1.4
introduces new versions of the relevant API functions, allowing the user to specify
the context on which an operation is performed. For operations where a context is
not specified (e.g. when the legacy API is used), the operation is performed on the
predefined SHMEM CTX DEFAULT context. When the user performs a fence or quiet
operation on a given context, the OpenSHMEM implementation is permitted
to order or complete only the operations performed on the specified context.
Operations performed on other contexts are not guaranteed by the OpenSHMEM
specification to have been ordered or completed. Thus, contexts enable the user
to express multiple independent streams of communication operations, enabling
communication overlapping and pipelining optimizations at the application level
and also allowing operations performed by individual threads to be isolated from
each other.

Context creation and destruction are local operations involving only the
OpenSHMEM process (PE) performing the operation. The context creation rou-
tine accepts an options argument that allows the user to provide hints about
the usage model of the context to guide internal optimizations. OpenSHMEM
1.4 defines three such options that allow the user to specify the threading usage
model of the given context. With no options set, contexts are shareable, meaning
that any thread may access such a context. The SHMEM CTX SERIALIZED option also
allows any thread to use the given context, but the application must guarantee
that no two threads will attempt to use it simultaneously. The SHMEM CTX PRIVATE

option indicates that only the thread that created the context will use it. Finally,
contexts that set the SHMEM CTX NOSTORE option ensure the completion and order-
ing of memory store operations without requiring explicit quiet and fence oper-
ations from the application.
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2.2 Intel R© Omni-Path Architecture

The Intel R© Omni-Path Host Fabric Interface (HFI) relies on host software
for higher-level processing, including processing of received messages. Targeted
offload capabilities are provided to accelerate typical per-packet transport layer
operations and reduce software overhead. Messages are transmitted using either
eager or rendezvous protocols for short and long messages, respectively. Eager
receive involves delivering packets to a FIFO ring buffer in memory, which is
consumed by host software. Rendezvous receive places data directly in the des-
tination buffer, providing improved bandwidth and reducing CPU utilization.
Packet arrival can be detected either by polling or using coalesced interrupts.
HPC communication models such as MPI provide opportunities for inline polling
during communication phases, thus reducing overheads from interrupts. For a
more description of the OPA fabric, please see [3].

2.3 OpenFabrics Interfaces

The OpenFabrics Interfaces (OFI) defines a framework to expose fabric com-
munication services to applications [14]. These services are accessed through
libfabric, which defines a rich set of portable, user-level software interfaces for
utilizing high-speed communication fabrics. Section 3 describes the specific set
of OFI capabilities and objects used to support OpenSHMEM.

The OFI framework utilizes a provider component to enable libfabric support
for different fabrics. In this work, we utilize the Intel R© Performance Scaled Mes-
saging 2 (PSM2) provider, which enables OFI support for OPA100. The Intel R©

PSM2 API [20] provides a low-level software interface to the OPA100 fabric.
PSM2 utilizes an endpoint communication model, in which messages are sent
and received between connected endpoints. The corresponding OPA100 trans-
mit buffers and receive FIFO are referred to as a PSM2 context. PSM2 supports
matched communication through matched queues that match on the three-tuple
of sender, receiver, and tag. In addition, PSM2 supports an active messages inter-
face in which user-defined message handlers are invoked when processing incom-
ing messages. One-sided communication models forego the posting of receive
operations; thus, the PSM2 active messages interface is used to implement the
RMA interfaces in libfabric utilized by OpenSHMEM.

In the OPA100 communication model, message processing is performed by
software on the host processor. This is a natural fit for models like MPI, where
users must invoke communication routines to make progress on pending opera-
tions. However, for asynchronous, one-sided communication models like Open-
SHMEM, the runtime system must invest additional effort to ensure that com-
munication operations continue to advance toward completion even when the
application is busy performing computation.

OFI provides an automatic progress mode that ensures passive progress in the
absence of OFI function calls. The PSM2 provider supports automatic progress
by creating a thread that wakes up periodically to process received messages.
The progress interval of this thread is one millisecond by default and can be
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adjusted to as low as 1µs by setting the FI PSM2 PROG INTERVAL environment
variable. Within the implementation, the PSM2 provider code calls nanosleep()

between progress intervals. The POSIX nanosleep() routine is implemented via
the Linux high-resolution timer API [24], which provides fine resolution timers
that are not necessarily bound to the kernel’s clock interrupt period (since Linux
kernel version 2.6.16). Ideally, the progress thread interval should remain rela-
tively large to maintain low overheads. Thus, ideal communication performance
involves a combination of manual progress generated by the middleware dur-
ing OpenSHMEM function execution and automatic progress generated by the
progress thread, which we explore further in Sect. 3.2.

3 Design and Implementation

We begin with the software architecture of Sandia OpenSHMEM (SOS) OFI
transport layer, shown in Fig. 1. This figure shows the combination of OFI objects
used by a single PE, and this infrastructure is replicated across all PEs. Our prior
work described several of these structures in detail [12,23]. Here, we focus on new
developments and details relevant to the optimizations described throughout this
paper. In particular, the methods for managing transmit and receive resources
have changed significantly to enable new optimizations not explored in prior
work.

Fig. 1. Sandia OpenSHMEM v1.4.1 OFI transport layer architecture.

The diagram shown in Fig. 1 is composed of several collections of software
objects: the address vector, the shared transmit context (STX) pool, the default
and user-created contexts, various endpoints (EPs), and the fabric domain. At
the top of the diagram, the address vector (AV) enables the libfabric layer to
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map integer PE indices to fabric addresses. Fabric addresses are exchanged out-
of-band using the process manager and are then inserted into the AV. Below
the address vector is a fixed-size collection of STX resources that is established
during library initialization. Each STX corresponds to an independent transmit
queue resource and is “shared” in the sense that it may be bound to multiple lib-
fabric endpoints. The efficient allocation and management of STXs is a primary
concern of this paper.

Below the STX pool in Fig. 1 are the SOS contexts. This figure shows the
default context, denoted SHMEM CTX DEFAULT, and one user context. Depending
on the application’s usage model, many such user contexts may be created. At
a minimum, contexts are comprised of a counter endpoint (CNTR EP), which
manages the communication associated with initiator-side puts, gets, and AMOs.
The counter endpoint uses event counters to capture completion events for oper-
ations issued on the endpoint. Event counters are lightweight but don’t cap-
ture enough information to distinguish the completion of individual operations
issued on the endpoint. Thus, a context optionally includes a completion queue
endpoint (CQ EP), which manages buffered put operations (involving commu-
nications that copy message data to a bounce buffer, providing immediate local
completion) and could be used to support proposed nonblocking operations that
return explicit request handles.

Depending upon the threading model supported by the OFI provider, each
context may also include a mutex that must be held prior to performing OFI
operations on the context. For providers that support FI THREAD SAFE, this lock
is unnecessary. The PSM2 provider supports the FI THREAD COMPLETION model as
a consequence of the OPA100 HFI requiring synchronized access to send and
receive hardware contexts. While this model has the disadvantage of requiring
a middleware-level lock, it has the advantage that synchronization can be elim-
inated on private contexts, whereas any lower-level synchronization cannot be
eliminated when libfabric is utilized in the thread safe mode.

The distinction between private and shared contexts (described in Sect. 2.1),
the presence of multiple threads potentially having both private and shared
contexts, and the finite size of the STX pool create a non-trivial resource man-
agement problem. Figure 2 illustrates a simple scenario in which multiple threads
within the same PE each create two contexts. In such a scenario, the OpenSH-
MEM middleware must apply an allocation heuristic to assign STXs to endpoints
during each of the six separate allocation calls used to create the contexts. In the
scenario shown, each thread is assigned an STX. In the resulting configuration,
if the user has also set the private option on the thread’s contexts, the OpenSH-
MEM middleware can operate on the STX without thread synchronization.

To the right of the contexts in Fig. 1 is the receive endpoint (RX EP), which is
the only endpoint with receive capabilities enabled. It is used to expose memory
registered on the domain for remote access and its address is inserted into the
address vector at the same location in each PE. SOS v1.4.1 currently exposes a
single RX EP; however, in multi-rail or heavily multithreaded scenarios, creating
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Fig. 2. OFI transport layer, showing a usage model in which multiple threads each
with multiple contexts compete for STX resources.

additional RX EPs may improve receive-side throughput by increasing the set
of RX resources available to communicate with an OpenSHMEM PE.

Finally, the fabric domain is a high-level object, from which all other objects
are derived. It roughly refers to a physical or virtual NIC, but also dictates
memory registration of the heap and data segments, defines a progress model,
network capabilities, and the thread safety model.

3.1 The STX Pool and Allocation Schemes

During transport initialization, SOS allocates a pool (implemented as an array)
of STX objects. This free pool consists of a collection of C structs, each containing
a pointer to a libfabric object of type fid stx, which refers to the actual STX
resource, and a reference counter, which tracks the number of contexts using
this resource. As of this writing, the size of the STX pool is set according to the
environment variable SHMEM OFI STX MAX. However, work is in progress to enable
SOS to automatically detect the number of available STX resources (via the
fi domain attr.tx ctx cnt attribute) and partition those STXs evenly across PEs
sharing the same compute node.

The shared STX allocation algorithm is shown in Algorithm1. In a thread-
safe implementation, the ALLOCATE SHARED STX routine must be protected
by a mutex before invocation, but this is omitted from Algorithm1 for simplicity.
The allocation routine accepts a max refs parameter that is set through the
SHMEM OFI STX THRESHOLD environment variable. This threshold can be used to
defer allocation of free STXs to the shared pool until the reference counts on all
shared STXs have reached the given threshold. When it is not possible to honor
this threshold (e.g. because the free pool is empty), the supplied threshold is
ignored. The existence of the default context ensures that the shared pool is
never empty; thus, any call to this routine eventually succeeds in allocating an
STX.
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A concern when allocating STXs is balancing the communication load across
available resources to avoid bottlenecks. The allocator also accepts a heuristic
argument that enables the user to select among several different STX alloca-
tion schemes. SOS currently supports two heuristics: round-robin and random,
which can be selected via the SHMEM OFI STX ALLOCATOR environment variable. The
round-robin algorithm sequentially selects the next available STX in the pool,
whereas the random algorithm selects at random from the set of available STXs.
In both cases, the allocator only considers STXs whose reference count is less
than the requested maximum. The maximum reference count is 1 by default;
increasing this value may be useful, for example, when an application initially
requires instantiating several shared contexts, but at a future point would benefit
from having a reservation of STXs for private contexts.

SOS makes a best effort to assign a private STX to the calling thread when
a context with the private option enabled is created. SOS tracks which threads
have private access to an STX via a hash table that maps thread ids (TIDs) to
an index into the STX pool. TIDs are queried using the Linux (see footnote 1)
gettid system call and SOS also allows the user to supply the TID query routine
for compatibility with user-level threading models. Once an STX is privatized, it

Algorithm 1. Shared STX allocation algorithm
Let: F ← {s0, s1, . . . , sN} � Pool of free STXs
Let: S ← ∅ � Pool of shared STXs
Let: last ← 0 � Index of last allocated STX
function allocate shared stx(max refs, heuristic)

stx ← ∅
if heuristic = “round-robin” then

for i ← 1, size(S) do
j ← (last + i) mod size(S)
if s[j].refcnt < max refs then

stx ← S[j]
S[j].refcnt += 1
last ← j
break

end if
end for

else if heuristic = “random” then
if ∃ s ∈ S : s.refcnt < max refs then

repeat
i ← rand() mod size(S)

until S[i].refcnt < max refs
stx ← S[i]
S[i].refcnt += 1

end if
end if
if stx = ∅ ∧ F �= ∅ then � Allocate a free STX to the shared pool and retry

S ← S ∪ pop(F )
return allocate shared stx (max refs, heuristic)

else if stx = ∅ then � Retry, ignoring max refs
return allocate shared stx (∞, heuristic)

end if
return stx

end function
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is removed from the free pool and inserted into the hash table. STX privatization
eliminates thread synchronization overheads and can improve cache locality in
high-throughput scenarios. However, the private or shared state of an STX is
especially difficult to change while it is bound to a context without introduc-
ing threading synchronization on performance-critical paths. Thus, selecting the
right resource configuration during context allocation is key to optimizing the
OpenSHMEM contexts interface. When STX privatization is not possible (e.g.
because the number of threads is greater than the number of available STXs),
the private hint is ignored and the context is allocated on a shared STX. SOS
also supports an SHMEM OFI STX DISABLE PRIVATE option, which ignores the private
option during context creation. This may be useful in scenarios where the num-
ber of application threads using private contexts exceeds the number of available
STXs. In such a scenario, disabling privatization may lead to better performance
because it results in better load balance across available STXs.

The optimal assignment of STXs to contexts is dependent on a number of
factors, including the availability of resources; the number of application threads;
the pattern with which contexts are created and destroyed; and the application’s
communication pattern relative to its contexts. We analyze this issue in more
depth and quantify the effect of different allocation strategies in Sect. 4.

3.2 Communication Progress

As discussed in Sect. 2.3, libfabric’s PSM2 provider spawns a progress thread
to provide automatic, passive progress; however, smaller progress intervals can
cause contention between the progress thread and the application. When issu-
ing communication operations, OFI ensures progress is made on the endpoint
involved in the given operation. Past versions of SOS that supported OpenSH-
MEM 1.3 utilized a single endpoint for both TX and RX. Thus, any operation
generated both transmit and receive progress. With the introduction of support
for multiple STXs and their corresponding endpoints, RX capabilities cannot be
enabled on all endpoints. Thus, a blocking call to, e.g. shmem quiet, is no longer
guaranteed to generate RX progress.

To ensure that RX progress occurs, we have added a manual progress
mode to SOS that can be enabled at compile time. Manual progress is gen-
erated by intermittently reading the event counter on the RX endpoint. In the
FI THREAD COMPLETION model supported by the PSM2 provider, performing these
probe operations requires acquiring a lock associated with the RX endpoint. To
avoid blocking in probe operations, a trylock operation is used to make progress
when the lock is available. Empirically, we have found that calling this probe rou-
tine in blocking OpenSHMEM routines, such as shmem wait and shmem quiet, can
significantly improve communication performance. Generating manual progress
at additional entry points into the library (e.g. when issuing nonblocking com-
munication operations) may also be beneficial, depending on the usage model;
however, we have not yet observed an instance where progress gains outweighed
the overheads created by probing progress on the critical path.
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4 Evaluation

We evaluate our implementation on an internal cluster at Intel, named Neptune2.
Neptune compute nodes contain 2 sockets, each with an Intel R©Xeon R©Processor
E5-2699 v3 (Haswell) CPU and 64 GB RAM. Each CPU has 2-way Intel R© Hyper-
Threading Technology with 18 cores, providing 36 physical cores and 72 hardware
thread contexts per compute node. Nodes are connected via the Intel R©Omni-
Path 100 series fabric. The Omni-Path 100 HFI driver was configured to support
80 hardware contexts (via the hfi1 loadable kernel module) [18], rather than the
default value of 36, which corresponds to the number of CPU cores per node.

The operating system on Neptune’s compute nodes is CentOS 7.3.1611
(Linux kernel 3.10.0-693.el7.x86 64), and all binaries are built using Sandia
OpenSHMEM version 1.4.1, libfabric version 1.6.0, and GNU GCC version 4.8.5.
We use the MPICH Hydra process launcher version 3.2 to execute all jobs.
Throughout the experiments below, bounce buffering was disabled in SOS, which
is the default behavior when enabling multiple threads in SOS v1.4.1. Through-
put data distinctly shows an injection threshold of 16 bytes, which is particularly
emphasized by disabling bounce buffering.

All bandwidth experiments in this section utilize the shmem perf suite, which
is a latency and bandwidth performance test suite included with SOS. Version
1.4.1 of SOS added multithreaded versions of the throughput benchmarks, which
make use of OpenSHMEM contexts and OpenMP. The following sections focus
on the multithreaded benchmark for blocking uni-directional put operations,
shmem bw put ctx perf, in which several threads perform communication opera-
tions at various buffer sizes on private contexts. This benchmark can execute
with any number of PEs, but we focus on node-to-node throughput between two
PEs, since this measurement is most indicative of the network’s remote commu-
nication capabilities. Unless otherwise indicated, all experiments measure the
throughput between 2 distributed nodes connected via a single switch hop, with
1 PE per node.

Some measurements of the throughput benchmark show high variability,
especially with relatively small buffer sizes below the injection threshold. For

2 Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other coun-
tries.

Benchmark results were obtained prior to implementation of recent software
patches and firmware updates intended to address exploits referred to as “Spectre”
and “Meltdown”. Implementation of these updates may make these results inappli-
cable to your device or system.

Software and workloads used in performance tests may have been optimized for
performance only on IntelR© microprocessors. Performance tests, such as SYSmark
and MobileMark (see footnote 1), are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and perfor-
mance tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products.

For more information go to http://www.intel.com/benchmarks.

http://www.intel.com/benchmarks
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this reason, all plots include the arithmetic mean of 10 separate measurements
as well as error bars showing the standard deviation. The displacement of the
standard deviation is the same in both positive and negative directions from the
mean; however, the negative displacement occupies a larger range in the plotted
space because of the logarithmic scale.

4.1 Runtime Progress

Figure 3 shows the results of an experiment comparing manual progress
(described in Sect. 3.2) with automatic progress at various polling intervals.
This experiment uses the shmem bw put ctx perf benchmark of shmem perf suite,
which measures uni-directional put bandwidth using multiple threads. However,
this experiment runs only a single thread, yet initializes OpenSHMEM with a
thread level of SHMEM THREAD MULTIPLE . We use this relatively simple setup to
intentionally incur the overhead in the transport runtime from supporting multi-
ple threads, while eliminating any overhead due to thread contention. In Figs. 3
(and 5), the “manual progress” line corresponds to an our proposed scheme of
opportunistically calling shmem transport probe(), the “x millisecond” lines each
correspond to a value of x for FI PSM2 PROG INTERVAL with FI PROGRESS AUTO set,
and “default progress” corresponds to setting no environment variables related
to progress whatsoever. Figure 3 is a single-pair throughput experiment with 1
PE per node, Fig. 4 shows several multi-pair experiments with values numbers
of PEs per node, and Fig. 5 is a multi-pair progress experiment with 72 PEs per
node. Note that despite the multi-pair setup being oversubscribed with 1 PE

Fig. 3. Uni-directional blocking put bandwidth on Neptune with a single PE pair:
comparing various automatic progress polling intervals with manual progress.
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Fig. 4. Uni-directional blocking put bandwidth on Neptune with multiple PE pairs
and manual progress.

Fig. 5. Uni-directional blocking put bandwidth on Neptune with 72 PE pairs: compar-
ing various automatic progress polling intervals with manual progress.
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per node, 1 application thread, and 1 progress thread, it achieves relatively high
throughput, especially with manual progress.

As described in Sect. 3.2, the default polling interval is 1 ms, which reveals
why the “1000µs” line in Fig. 3 is equivalent to the “default progress” line.
However, the figure clearly suggests that this interval is not frequent enough to
maximize throughput, because it results in the lowest overall bandwidth. In fact,
the experiment shows that this benchmark performs best with shorter polling
intervals. Figures 3 and 5 show that requesting polling intervals with as low as
1–10µs resolution is effective on this experiment/platform without any special
support. On the other hand, manual progress exhibits the best overall perfor-
mance. We believe this is because manual progress probes the transport layer
at the most opportune moments, i.e. during a shmem wait or shmem quiet, right
when communication may possibly stall while waiting for completion. Therefore,
the manual scheme potentially reduces the overall number of probing instances
compared to the relatively more frequent automatic probing, while performing
the probe at more effective moments during the application execution.

4.2 Thread Scaling

Figure 6 shows the results of an experiment that varies the number of threads in
the shmem bw put ctx perf uni-directional put bandwidth benchmark. Through-
out this experiment, the maximum number of STXs was set to a number greater
than the total number of threads, so that each thread has an exclusive pri-
vate context. The “1 thread-multi” line corresponds to a single-threaded execu-

Fig. 6. Uni-directional blocking put bandwidth on Neptune: increasing the number of
threads.
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tion where SOS was initialized with the SHMEM THREAD MULTIPLE thread level. The
“single-threaded” line was initialized with the SHMEM THREAD SINGLE thread level.
The “(socket)” versus “(core)” designation refers to the processor affinity setting
passed to the launcher via the --bind-to flag, which often had a significant effect
on performance. All data in Fig. 6 was gathered with the --bind-to setting that
achieved the best overall throughput, as determined empirically. Specifically,
executing 8 or more threads with --bind-to=socket performed best (this set-
ting binds all PEs to the same CPU socket throughout execution). On the other
hand, executing 4 threads or fewer performed best with --bind-to=core:N (which
binds PEs to a fixed group of N cores). It was empirically observed that the best
throughput is often achieved by setting N to the number of threads, for example,
by running 4 threads with --bind-to=core:4.

Figure 6 shows a notable difference in throughput between a single-threaded
application initialized with SHMEM THREAD SINGLE and a single-threaded applica-
tion initialized with SHMEM THREAD MULTIPLE. This difference is due to the fact
that shmem wait and shmem wait until poll on memory when multithreading is
enabled in SOS, because any thread within a PE may satisfy the wait opera-
tion. On the other hand, an application initialized with SHMEM THREAD SINGLE may
simply block while waiting on the RX CNTR value to make progress. However,
if configuring SOS with --enable-hard-polling, which always enforces polling
in shmem wait and shmem wait until, then these two scenarios exhibit the exact
same throughput.

While lower numbers of threads generally perform better for buffer sizes
at or below the injection threshold of 16 bytes, more threads perform better
with intermediate buffer sizes (32 bytes to 4 kilobytes). After 4KB, however,
the communication protocol advances to an RDMA-based transport, resulting
in the transitory drop in bandwidth at 8KB. This drop is more dramatic for
32 threads, likely because the overhead of multiple threads contending for local
locks dominates. With relatively larger buffer sizes it is generally advantageous to
execute more threads, preferably 16. After about 1 GB, running up to 16 threads
results in bandwidth saturation, with the peak capability of the Intel R©Omni-
Path Fabric 100 series being just under 100 Gbps or 12.4 GB/s.

4.3 STX Scaling

Figures 7 and 8 show the results of an experiment that varies the number of avail-
able STXs in the shmem bw put ctx perf benchmark, while keeping the number
of threads constant. All executions were run with 8 threads, and the number of
available STXs was set via an environment variable. Figure 7 shows the default
behavior in SOS, where user-requested private contexts receive exclusive access
to an STX if one or more is available. The experiment in Fig. 8 also varies the
number of STXs with 8 constant threads, but instead disables the use of private
contexts via the SHMEM OFI STX DISABLE PRIVATE setting described in Sect. 3.1.
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Fig. 7. Uni-directional blocking put bandwidth on Neptune: increasing the number of
available STXs while keeping the number of threads constant (8 threads).

Figure 7 shows good scaling with respect to the number of STXs. Therefore,
when using at least one private context per thread, as in this experiment, it is
generally advantageous to utilize at least as many STXs as threads. To see why,
consider a scenario where there are fewer available STXs in F than there are
threads in Algorithm 1. After F is depleted, any excess contexts are assigned to
a shared STX, which may result in a resource imbalance.

On the other hand, Fig. 8 suggests that the benefits of having at least 1
STX per thread are diminished when disabling private contexts. When private
contexts are disabled, contexts are assigned to an STX in the pool using the
round-robin allocation heuristic described in Sect. 3.1. In this scenario, when
there are fewer available STXs than threads, the contexts are balanced more
evenly across the available STXs. This results in less variation between lines in
Fig. 8, especially when using more than a single STX.

In summary, these measurements suggest that private contexts boost
throughput best when all threads have exclusive access to a private STX. How-
ever, if an OpenSHMEM application executes more threads with private contexts
than there are available STXs, or utilizes other shared contexts that compete
with private contexts for STX resources, then that application might achieve
better performance by disabling private contexts.
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Fig. 8. Uni-directional blocking put bandwidth on Neptune: increasing the number of
available STXs while keeping the number of threads constant (8 threads) and disabling
private contexts.

5 Related Work

A particular focus of this work is the implementation and optimization of the
OpenSHMEM 1.4 contexts API. Contexts were first proposed by Dinan et al. [11]
and prototyped in Portals SHMEM [1]. Namashivayam et al. analyzed contexts in
multithreaded communication scenarios and presented a comparison with Cray’s
thread registration extension [9,17]. This evaluation included a domain abstrac-
tion encapsulating DMAPP communication domains, which are similar to lib-
fabric STX resources. An implementation of contexts in OpenSHMEM-X for the
UCX (see footnote 1) networking layer was presented in [6]. Contexts were also
previously prototyped in Sandia OpenSHMEM and evaluated on the Aries (see
footnote 1) interconnect [12] using the libfabric GNI provider [10].

Thread safety in OpenSHMEM has been explored in a number of stud-
ies [15,21,25]. The proposed OpenSHMEM explicit requests interface provides
several benefits similar to the contexts API, as well as several new capabili-
ties [4,5]. A thread registration interface extension to OpenSHMEM has also
been proposed [9]. AsyncSHMEM [13] was proposed as a task-based extension
to OpenSHMEM that provides a task-based alternative to conventional multi-
threaded hybrid programming. Finally, thread safety and multithreaded commu-
nication have also been studied extensively in the context of the Message Passing
Interface (MPI) [16]. In particular, MPI implementations have explored using
multiple PSM2 endpoints per process to improve the performance of threaded
communication [7].
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6 Conclusion

This paper presented an implementation of the OpenSHMEM 1.4 specification
that is optimized for the Intel R© Omni-Path Fabric 100 Series using the Open-
Fabrics Interfaces (OFI) libfabric. We identified communication resource man-
agement challenges introduced by new threading support and communication
management features; we proposed solutions to these challenges; and measured
their effectiveness.

We further identified that the optimal solution to the multithreaded com-
munication resource mapping problem is dependent upon application behavior.
Several proposed solutions are global in nature and apply across the full duration
of an application. However, application behavior may change over the course of
its execution. Thus, the usefulness of a more direct API allowing applications to
guide resource assignment performed by the OpenSHMEM library remains an
open question.
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Abstract. SHMEM has a long history as a parallel programming model.
It is extensively used since 1993, starting from Cray T3D systems. For
the past two decades SHMEM library implementation in Cray systems
evolved through different generations. The current generation of the
SHMEM implementation for Cray XC and XK systems is called Cray
SHMEM. It is a proprietary SHMEM implementation from Cray Inc. In
this work, we provide an in-depth analysis of need for a new SHMEM
implementation and then introduce the next evolution of Cray SHMEM
implementation for current and future generation Cray systems. We call
this new implementation Cray OpenSHMEMX. We provide brief design
overview, along with a review of functional and performance differences
in Cray OpenSHMEMX comparing against the existing Cray SHMEM
implementation.

1 Introduction

OpenSHMEM [10] is a Partitioned Global Address Space (PGAS) [8] library
interface specification, which is the culmination of a standardization effort among
many implementers and users of SHMEM programming model. SHMEM as a
programming model has a long history on Cray systems with proprietary library
implementations evolving over decades. The current generation of such propri-
etary SHMEM implementation on Cray systems is called Cray SHMEM and it
is OpenSHMEM standard version-1.3 [2] compliant.

Cray OpenSHMEMX is a new proprietary SHMEM library implementation
for the current and future generation Cray systems by Cray Inc.

The major part of this work covers:

– basic background and design overview on Cray OpenSHMEMX;
– analyze a list of features supported by Cray OpenSHMEMX comparing

against Cray SHMEM;
– early performance regression analysis of the different Remote Memory Access

(RMA) and Atomic Memory Operations (AMO) using OSU OpenSHMEM
microbenchmarks [4]; and

– performance evaluation of selected features in Cray OpenSHMEMX.
c© Springer Nature Switzerland AG 2019
S. Pophale et al. (Eds.): OpenSHMEM 2018, LNCS 11283, pp. 41–55, 2019.
https://doi.org/10.1007/978-3-030-04918-8_3
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This work is organized as follows. Section 2 provides a brief overview for Cray
SHMEM and introduces the Cray OpenSHMEMX library. Section 3 provides a
brief design overview and the list of supported features in Cray OpenSHMEMX.
In Sect. 4 we report the results of performance regression analysis performed
using OSU microbenchmarks and in Sect. 5 we list the functional enhancements
in Cray OpenSHMEMX. We discuss related work in Sect. 6 and conclude in
Sect. 7.

2 Background

The current generation SHMEM library implementation for Cray Systems is
Cray SHMEM. Cray SHMEM is based on an underlying communication library
called DMAPP. DMAPP [21] supports logically shared, distributed memory pro-
gramming model targeting Cray-developed Gemini and Aries interconnect archi-
tectures. Cray SHMEM is supported on all Cray XC and XK systems and its
design is tightly coupled with DMAPP for extracting optimal performance from
the underlying interconnect and processor architecture.

In anticipation of the future system architectures for exascale capable systems
and beyond, they demand any OpenSHMEM implementation support for:

– multiple processor architectures and accelerators;
– different interconnects; and
– different application usage models

Hence, we extend the Cray SHMEM library implementation and the name of
this new evolved Cray SHMEM library is Cray OpenSHMEMX.

3 Supported Features and Design Overview

Fig. 1. Brief overview of different layers in
Cray OpenSHMEMX

In this section, Table 1 provides a
list of features supported by Cray
OpenSHMEMX comparing against
Cray SHMEM. It covers the list
of all the supported OpenSHMEM
standard features and Cray spe-
cific features. These Cray specific
features [15,16,22] are available
as SHMEMX prefixed routines as
required in the OpenSHMEM stan-
dards.

3.1 Design Overview

To extract maximum performance
from Cray XC and XK systems, Cray SHMEM is tightly coupled with DMAPP,
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its underlying communication layer. Cray OpenSHMEMX is designed modular to
use different communication layers and application usage models across different
Cray system architectures. Figure 1 provides a brief internal overview of the
multi-layered Cray OpenSHMEMX software stack. It supports four main layers
- SMA, SMAT, UTILS, and EXT.

– SMA is the first layer in the library. It is the entry point for all SHMEM spe-
cific routines and it performs the following three major actions: 1. argument
validation, 2. communication layer selection, and 3. multithreading selection.
This layer is composed of four major components - CORE, COLL, MULT, and
CTX.
• All core SHMEM programming model features like RMA, AMO, memory

ordering, and library initialization features are part of the CORE compo-
nent.

• COLL supports OpenSHMEM collectives along with Cray specific SHMEM
Teams, and Team-based collective features.

• MULT supports OpenSHMEM multithreading and Cray Thread-hot fea-
tures.

• CTX includes OpenSHMEM communication management features intro-
duced as part of OpenSHMEM standard version 1.4 [3].

CORE is the most independent and essential component in the library. Cray
OpenSHMEMX can be build with just the features from CORE component,
while other features can be added as extensions to the base CORE component.

– SMAT is the communication layer which includes support for different commu-
nication libraries. The SMP support allows us to build the library with two
different communication layers one for on-node data transfer between two
processes through shared memory and another for off-node data transfers
through the network. Other communication layers1 added in the SMAT layer
are DMAPP and XPMEM. The SMP based library is built with DMAPP
and XPMEM for off-node and on-node transfers respectively.

– UTILS layer support different utility functions like Cray optimized memcpy,
support tools for interaction with different threading libraries, and system
specific utilities for supporting the library on different processor architectures
like X86 64 and AArch64.

– EXT layer enables the use of other external libraries like Process Manage-
ment Interface [9] (PMI). Few communication libraries included in SMAT sup-
ports the symmetric heap (SHEAP) creation and maintenance internally like
DMAPP. While others like XPMEM does not support symmetric heap cre-
ation. Hence, we added support for internal SHEAP maintenance in EXT layer.

1 Though SMAT layer supports different communication layers, we use DMAPP and
XPMEM in this work as others are experimental and not available in the current
released Cray OpenSHMEMX version 8.0.1.
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Table 1. List of different supported OpenSHMEM and Cray-specific SHMEMX-
prefixed features in Cray SHMEM version 7.7.0 and Cray OpenSHMEMX version 8.0.1

Library features Cray SHMEM Cray OpenSHMEMX

OpenSHMEM (OSH) Compliance OpenSHMEM-1.3 OpenSHMEM-1.4

- OSH-1.4 Contexts and Sync No Yes

- OSH-1.4 Ext Typed RMA, AMO Yes Yes

- OSH-1.4 shmem test Yes Yes

- OSH-1.4 shmem calloc Yes Yes

- OSH-1.4 Bitwise AMOs Yes Yes

Cray specific Teams Yes Yes

Cray specific Team based Collectives Yes Yes

Cray specific Thread-hot Yes Yes

Cray specific Memory Partitions Yes Future

Cray specific Non-blocking AMOs Yes Future

Cray specific put-with-signal Yes Yes

Cray specific Local Node Queries Yes Yes

Cray specific AlltoAllv Yes Yes

Cray specific AlltoaAllv packed Yes Yes

Cray specific Fortran 2008 wrapper No Future

3.2 OpenSHMEM Specification Compliance

Though, recent Cray SHMEM version 7.7.0 supports few OpenSHMEM stan-
dard 1.4 specific features like extended typed RMA and AMOs, support for
shmem test and shmem calloc routines, and bitwise AMOs, it is not completely
OpenSHMEM standard 1.4 compliant. But, Cray OpenSHMEMX from version
8.0.0 is officially OpenSHMEM standard 1.4 compliant.

4 Performance Regression Analysis

In this section we report the performance regression analysis on two major Open-
SHMEM features - Remote Memory Access (RMA) and Atomic Memory Oper-
ations (AMOs) using OSU Microbenchmarks. We compare the performance of
the new Cray OpenSHMEMX library against the existing production ready Cray
SHMEM library. Details of the test environment are tabulated in Table 2.

We used OSU Microbenchmark suite for our analysis and tested the libraries
on two different processor architectures - Intel Broadwell (BDW [17]) and Intel
Xeon Phi processor code named Knights Landing (KNL [20]).
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Table 2. Test environment details for performance regression analysis

Component name Version details

GCC compiler 7.3.0

Cray SHMEM 7.7.0

Cray OpenSHMEMX 8.0.1a

DMAPP 7.1.1

XPMEM 2.2.14

Cray linux environment (CLE) CLE 6.0 UP06
aVersion 8.0.1 is the most recent release of Cray
OpenSHMEMX library

4.1 Analysis of OpenSHMEM Non-blocking Put

Figures 2 and 3 shows the message rate in number of messages per second for
inter-node non-blocking put operations on Intel BDW and Intel KNL processors
respectively. We use 2 Nodes for these tests.

(a) 1 PPN on 2 Nodes (b) 32 PPN on 2 Nodes

Fig. 2. Inter-node OpenSHMEM NBI put performance analysis on Intel BDW

On BDW for small message sizes less than 1024 bytes, Fig. 2 shows Cray
OpenSHMEMX to performs similar to Cray SHMEM on both 1 PPN2 and 32
PPN tests.

While on Intel KNL, Fig. 3a shows Cray OpenSHMEMX to performs similar
to Cray SHMEM for 1 PPN tests but Fig. 3b shows it to perform 16% better
than Cray SHMEM for 64 PPN tests. This performance improvement can be
attributed to the symbol visibility optimizations and reduction in software over-
heads in the critical path by reducing the number of instructions. These few
optimizations can have a huge effect on slow core processors like Intel KNL.

4.2 Analysis of Different OpenSHMEM Atomic Memory Operations

Similar to the tests in Sect. 4.1, we use OSU Microbenchmarks to evaluate the
operation rate (million operations per second) of OpenSHMEM Fetching and
2 Number of Processing Elements (PEs) Per Node.
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(a) 1 PPN on 2 Nodes (b) 64 PPN on 2 Nodes

Fig. 3. Inter-node OpenSHMEM NBI put performance analysis on Intel KNL

Non-fetching AMOs. Figure 4, shows the performance of Cray OpenSHMEMX
against Cray SHMEM on Intel BDW processors. We can see that the perfor-
mance of the OpenSHMEM AMOs are on-par with the production ready Cray
SHMEM implementation.

(a) 1 PPN on 2 Nodes (b) 32 PPN on 2 Nodes

Fig. 4. Inter-node OpenSHMEM AMO performance analysis on Intel BDW. Data-type
int is 32 bit and long long is 64 bit.

In brief, from Sects. 4.1 and 4.2, we can see that the performance of Cray
OpenSHMEMX is similar to Cray SHMEM. This analysis is also verified on
other OpenSHMEM RMA operations like blocking put and get, and non-blocking
get. Similar to Cray SHMEM, the SMP build of Cray OpenSHMEMX supports
XPMEM for intra-node operations and the intra-node performance analysis on
RMA and AMO operations are also similar to Cray SHMEM. To be concise,
these results are not shown in this work.

5 Available Features and Enhancements

In this section, we discuss the design of selected available features and enhance-
ments in Cray OpenSHMEMX. In particular we discuss about different sup-
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ported processor architectures, interoperability between OpenSHMEM commu-
nication contexts and Cray specific Thread-hot features, and Cray specific put-
with-signal RMA operation. Performance results reported in this section use the
same test environment as tabulated in Table 2.

5.1 Supported Processor Architectures

Table 3 provides a brief overview of different supported processor architec-
tures. Apart from providing support for Intel Xeon (HSW [14], BDW [17], and
SKL [11]) and Xeon Phi (KNL [20]) systems as Cray SHMEM, Cray OpenSH-
MEMX provides support for Cavium ARM based Thunder X2 [5] systems. Pro-
cessor specific optimizations like optimized memcpy are available for intra-node
data transfers.

Table 3. Overview of different supported processor architectures in Cray SHMEM and
Cray OpenSHMEMX

Processor type Cray SHMEM Cray OpenSHMEMX

Intel Xeon (X86 64) Yes Yes

Intel Xeon Phi (X86 64) Yes Yes

Cavium Thunder X2 (AArch64) No Yes

Figure 5, shows the performance improvement on using processor optimized
memcpy against the system memcpy on Intel KNL processor based systems. We
used OSU NBI Put microbenchmark in test environment as mentioned in Table 2.
On average for very small data sizes less than 1024 bytes, we can see the KNL
optimized memcpy to perform 20% better than the system memcpy for both 2PPN
and 68PPN tests.

(a) 2 PPN on 1 Node (b) 68 PPN on 1 Node

Fig. 5. Intra-node memcpy NBI put performance analysis on Intel KNL
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5.2 Interoperability Between OpenSHMEM Contexts and Cray
Thread-Hot

Communication contexts (CTX) and Thread-safety are the most important flag-
ship features added to OpenSHMEM standard version-1.4. CTX allows users to
create multiple independent streams of communication within the same applica-
tion and also provide opportunities for thread isolation by eliminating synchro-
nization overhead on multithreaded OpenSHMEM applications.

Cray OpenSHMEMX provides support for CTX routines and the synchro-
nization routines (shmem sync and shmem sync all) associated with it.

Thread-hot SHMEM (THS) [22] is another Cray specific feature available in
Cray SHMEM to provide opportunities for thread isolation by eliminating syn-
chronization overheads on multithreaded application. We evaluate the functional
and performance differences between CTX and THS features in [18].

On ideal configurations, when the number of available network resources is
less than or equal to the number of threads used per PE, through CTX and
THS we try to provide separate network resources for each thread and maximize
the network injection rate per PE. Along with this we provide isolated mem-
ory ordering per network resource and avoid synchronization overhead between
threads in a multithreaded application.

In this section, we provide detailed explanation on the resource management
between CTX and THS features. We use multiple hybrid OpenSHMEM and
OpenMP [19] code snippets for this purpose.

Fig. 6. Multithreading without CTX or THS in Cray OpenSHMEMX

As per OpenSHMEM specification version 1.4, all OpenSHMEM routines are
thread-safe. For example, if there are 8 network resources available per PE as
shown in Fig. 6, network resource with ID 0 will be used by the default con-
text. In a multithreaded OpenSHMEM application with thread-safety level as
SHMEM THREAD MULTIPLE, without explicit CTX or THS usage, network resource
with ID 0 will be used for all communication from all the threads. Hence, com-
munication is serialized with internal locks to provide thread safety.

Expanding the above multithreaded example with explicit CTX creation,
we can see that network resource 1 is assigned to shareable context ctx1 and
network resources from 2 to 5 are assigned to private context ctx created by four
threads. ctx is a thread private object and it is visible only to a single thread.
When the number of private contexts exceeds the available network resource
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Fig. 7. Multithreading with explicit CTX creation in Cray OpenSHMEMX

Fig. 8. Multithreading with CTX and Cray specific THS in Cray OpenSHMEMX

shmem ctx create returns a non-negative value. This is shown in Fig. 7. Any
OpenSHMEM communication through shareable context ctx1 is serialized.

In the above example, if we perform thread registration using Cray specific
THS feature instead of explicit CTX creation inside the OpenMP parallel region,
we will try to provide private network resource to as many threads as possible,
while the remaining threads will share the available shareable network resource.
In Fig. 8, if 7 threads are registered, 6 threads are provided with private resource
from 2 to 7 and the remaining thread will share the shareable network resource
1 with already created shareable context ctx. If there are no shareable network
resource available, the registered thread will continue to use the default context
(SHMEM CTX DEFAULT) for all the OpenSHMEM communications.

From the above explanation we can show that both OpenSHMEM CTX
and Cray specific THS features can coexist in the same application. Destroy-
ing a previously created context or unregistering a registered thread through
shmem ctx destroy and shmemx thread unregister routines respectively will
release the network resource for future usage.

At present, we have the following different routines in Cray OpenSHMEMX
to provide mechanisms to ensure delivery of blocking Put, AMO, memory store,
and NBI Put and Get routines to symmetric data objects:

• shmem ctx quiet;
• shmemx thread quiet; and
• shmem quiet

The shmem ctx quiet and shmemx thread quiet routines ensures delivery
issued by the calling PE on the given context and the registered thread respec-
tively.

As per OpenSHMEM specification version 1.4, shmem quiet ensures delivery
issued by the calling PE only on the default context (SHMEM CTX DEFAULT). In
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1 shmem_init_thread(SHMEM_THREAD_MULTIPLE , &available );

2 shmem_quiet ();

3 #pragma omp parallel

4 {

5 shmemx_thread_register ();

6 }

7 shmem_quiet ();

8 #pragma omp parallel

9 {

10 shmemx_thread_register ();

11 }

12 shmem_quiet ();

13 shmem_finalize ();

Fig. 9. Modified shmem quiet semantics while using Cray specific THS feature. Exam-
ple for usage model with registered thread left as such across multiple OpenMP code
blocks

Cray OpenSHMEMX, we have modified this semantic and ensure delivery issued
by the calling PE on both the default context and the registered thread if any.

For example as shown in Fig. 9, shmem quiet in line 2 and line 12 ensures
delivery only on the default context, while shmem quiet in line 7 ensures deliv-
ery both on the default context and the registered thread resource. This specific
usage is on applications where registered threads are left registered across mul-
tiple OpenMP code blocks until unregistering in some eventual OpenMP code
blocks.

The above explanation can also be interpreted for the ordering operations
ensured by shmem fence, shmem ctx fence, and shmemx thread fence routines.

OpenSHMEM Context Performance Analysis. In Fig. 10, we report the
performance of CTX in Cray OpenSHMEMX using modified OSU NBI Put
Microbenchmark on 2 Nodes with 1 PPN. We report the message rate by vary-
ing the number of threads used per PE with a SHMEM CTX PRIVATE context per
thread. We can see that the message rate increases linearly by increasing the
number of contexts.

Comparing OpenSHMEM Context and Cray THS Performance. In
Fig. 10b, we report the performance comparison on using CTX against THS
feature using modified OSU NBI Put Microbenchmark on 2 Nodes with 1 PPN.
We report the message rate by varying the number of registered threads against
the number of threads with a SHMEM CTX PRIVATE explicit context created per
thread. We can see that the message rate increases linearly for both scenarios
and there are no performance variations in using CTX against THS.
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(a) OpenSHMEM CTX Message Rate (b) Cray specific THS Message Rate

Fig. 10. Multithreaded inter-node OpenSHMEM message rate analysis on Intel BDW
with 1 PPN on 2 nodes using modified OSU NBI put microbenchmark

Cray Specific THS Performance Regression in Cray SHMEM And
Cray OpenSHMEMX. Cray specific THS is not a new feature, it is already
implemented in Cray SHMEM and is being used in different applications as
a SHMEMX prefixed routine. In this section, we report the performance regres-
sion study of the THS feature in Cray OpenSHMEMX comparing against Cray
SHMEM. We use a modified OSU NBI Put message rate microbenchmark on 2
Nodes with 1 PPN. While varying the number of registered threads from 2 to
16, we can see in Fig. 11a that Cray OpenSHMEMX performs similar to Cray
SHMEM for data sizes less than 1024 bytes. We can see similar performance for
other data sizes and other OpenSHMEM operations as well.

OpenSHMEM Context with Different SHMEM MAX CTX. Fig. 11b shows the
performance of NBI Put operation using OSU Microbenchmark on 2 Nodes with
1 PPN. Only the default context is used for performance evaluation. We can
see the latency for 2048 bytes on SHMEM CTX DEFAULT varying across different

(a) Cray specific THS Message Rate in Cray
SHMEM and Cray OpenSHMEMX

(b) OpenSHMEM CTX performance
variation on SHMEM MAX CTX

Fig. 11. Multithreaded inter-node OpenSHMEM message rate and latency analysis on
Intel BDW with 1 PPN on 2 nodes using modified OSU NBI put microbenchmark
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SHMEM MAX CTX. SHMEM MAX CTX is an environment variable used to set the max-
imum number of context needed per PE. If not used Cray OpenSHMEMX can
determine the maximum number of available context per PE during shmem init
initialization. Setting the exact number of contexts needed per PE improves
performance of all RMA and AMO operations.

5.3 Cray Put with Signal Remote Memory Operations

A put followed by another put operation to signal the delivery of the initial put
operation is an important usage model in OpenSHMEM. Figure 12 shows the
implementation of put-with-signal with and without using shmem fence. Cray-
developed Aries interconnect has support for packing put operation with a signal
value in the header to the same target PE as a single message. This optimization
is available only for small message size. We can use this optimization to avoid
explicit shmem fence operation to signal the delivery of the put operation.

1 /* with shmem_fence implementation */

2 shmem_put (*dst , *src , nelems , pe);

3 shmem_fence ();

4 shmem_put (*signal , value , pe);

5
6 /* cray -specific implementation without fence */

7 shmemx_put_signal (*dst , *src , nelems , *signal , value , pe);

Fig. 12. Implementing put-with-signal semantics with and without shmem fence in
Cray OpenSHMEMX

The above mentioned hardware optimization is available only when the buffer
in both the put operation (dst, src) and the signal operation (signal) are on
the same memory segment. As per OpenSHMEM, symmetric data objects can
be placed either on the data segment or the symmetric heap segment. Figure 13a
shows the performance improvements on small message sizes when the buffer in
both the put operation and signal operation are placed on the symmetric heap
segment.

We used a simple microbenchmark for this evaluation on 2 Nodes with 1
PPN. We can see around 3X performance improvements for very small data size
less than 1024 bytes in Fig. 13a. We can also see that there are no performance
improvements when the buffer in the put operation and the signal operation are
placed on different segments as shown in Fig. 13b.
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(a) Comparing put-with-signal with and
without shmem fence

(b) Comparing put-with-signal when target
and signal in different segments

Fig. 13. Multithreaded inter-node OpenSHMEM latency analysis on Intel BDW with
1 PPN on 2 nodes using simple put-with-signal microbenchmark

6 Related Work

Software evolution is the term used to refer to the process of developing a soft-
ware stack and continuously updating it for various reasons. The development of
Cray OpenSHMEMX from Cray SHMEM is an adaptive approach for support-
ing an optimized, and scalable OpenSHMEM implementation on future Cray
systems at exascale. At present many HPC software libraries and parallel pro-
gramming models are undergoing a major evolution to support and exploit future
exascale capable systems.

For example, the Exascale MPI project addresses in enabling applications to
effectively use the latest advances in MPI [12] to scale to the largest supercom-
puters in the world. And, OMPI-X project prepares the MPI standard and its
implementation in Open MPI for exascale through improvements in scalability,
capability, and resilience. As part of both these projects, the existing MPICH [13]
and Open MPI [7] software stacks are getting evolved.

Similarly, the PAGODA project helps in supporting HPC application devel-
opment using the PGAS programming model. As part of the pagoda project,
GASNet [1] is evolving as GASNet-EX. xGA is another similar project which
enables the performance scalability of Global Arrays (GA) [6] programming
model for exascale capable systems.

7 Conclusion

In this work we introduced Cray OpenSHMEMX, a new proprietary software
library product from Cray Inc. It is planned to supersede the current produc-
tion ready Cray SHMEM library on future Cray systems. Apart from import-
ing existing Cray specific features from Cray SHMEM, Cray OpenSHMEMX is
designed as a highly modular SHMEM implementation to support OpenSHMEM
standards. Cray OpenSHMEMX supports different processor architectures like
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X86 64 and AArch64 along with other new features like OpenSHMEM commu-
nication contexts. Though Cray OpenSHMEMX is planned to supersede Cray
SHMEM only on future Cray systems, in this work we show through different
comprehensive performance evaluations on selected features like put-with-signal,
interoperability between OpenSHMEM CTX and Cray-specific THS, and gen-
eral OpenSHMEM RMA and AMO operations that it performs on-par or even
better than Cray SHMEM on the current Cray systems.

Cray OpenSHMEMX over SMP(DMAPP and XPMEM) communication
layer is an evaluation library for existing applications to migrate to use the new
library. In future, we plan to work more on the SMP(DMAPP and XPMEM)
communication layer based library by adding new features, porting to other pro-
cessor architectures and exporting these evaluated features to other new com-
munication layers.

Acknowledgment and Disclaimer. The authors would like to thank all the mem-
bers of Cray Message Passing Toolkit for their involvement in the design and imple-
mentation of the Cray OpenSHMEMX software stack. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of associated organizations.

References

1. GASNet: a portable high-performance communication layer for global address-
space languages. http://gasnet.lbl.gov/pubs/258-paper.pdf

2. OpenSHMEM standard version-1.3. http://openshmem.org/site/sites/default/
site files/OpenSHMEM-1.3.pdf, a

3. OpenSHMEM standard version-1.4. http://openshmem.org/site/sites/default/
site files/OpenSHMEM-1.4.pdf, b

4. OSU Micro-benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/
5. Cavium Thunder X2 ARM Processors. https://www.cavium.com/product-

thunderx2-arm-processors.html
6. Global arrays: a portable shared memory model for distributed memory computers

(1994)
7. Open MPI: a flexible high performance MPI (2005)
8. Almasi, G.: In: Padua, D.A. (ed.) Encyclopedia of Parallel Computing (2011)
9. Balaji, P., et al.: PMI: a scalable parallel process-management interface for

extreme-scale systems. In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.)
EuroMPI 2010. LNCS, vol. 6305, pp. 31–41. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15646-5 4

10. Chapman, B., et al.: Introducing OpenSHMEM: SHMEM for the PGAS Com-
munity. In: Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model, PGAS 2010 (2010)

11. Doweck, J., et al.: Inside 6th-generation Intel Core: new microarchitecture code-
named Skylake. IEEE Micro (2017)

12. Message Passing Forum. MPI: a message-passing interface standard. Technical
report (1994)

13. Gropp, W.: MPICH2: a new start for MPI implementations. In: Kranzlmüller, D.,
Volkert, J., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2002. LNCS, vol. 2474,
pp. 7–7. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45825-5 5

http://gasnet.lbl.gov/pubs/258-paper.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.3.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.3.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://mvapich.cse.ohio-state.edu/benchmarks/
https://www.cavium.com/product-thunderx2-arm-processors.html
https://www.cavium.com/product-thunderx2-arm-processors.html
https://doi.org/10.1007/978-3-642-15646-5_4
https://doi.org/10.1007/978-3-642-15646-5_4
https://doi.org/10.1007/3-540-45825-5_5


Introducing Cray OpenSHMEMX 55

14. Hammarlund, P., et al.: Haswell: the fourth-generation intel core processor. IEEE
Micro 34, 6–20 (2014)

15. Kandalla, K., et al.: Current state of the cray MPT software stacks on the cray
XC series supercomputers. In: Cray User Group (CUG) meeting 2017 (2017)

16. Knaak, D., Namashivayam, N.: Proposing OpenSHMEM extensions towards
a future for hybrid programming and heterogeneous computing. In: Gorentla
Venkata, M., Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS,
vol. 9397, pp. 53–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26428-8 4

17. Nalamalpu, A., et al.: Broadwell: a family of IA 14nm processors. In: Symposium
on VLSI Circuits (VLSI Circuits) (2015)

18. Namashivayam, N., Knaak, D., Cernohous, B., Radcliffe, N., Pagel, M.: An evalu-
ation of thread-safe and contexts-domains features in cray SHMEM. In: Gorentla
Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS,
vol. 10007, pp. 163–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-50995-2 11

19. OpenMP Architecture Review Board. OpenMP application program interface ver-
sion 4.5, November 2015. https://www.openmp.org/wp-content/uploads/openmp-
4.5.pdf

20. Sodani, S.A., et al.: Knights landing: second-generation Intel Xeon Phi product
(2016)

21. ten Bruggencate, M., Roweth, D.: DMAPP: an API for one-sided programming
model on baker systems. Technical report, Cray Users Group (CUG), August 2010

22. ten Bruggencate, M., Roweth, D., Oyanagi, S.: Thread-safe SHMEM extensions.
In: Poole, S., Hernandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol.
8356, pp. 178–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05215-1 13

https://doi.org/10.1007/978-3-319-26428-8_4
https://doi.org/10.1007/978-3-319-26428-8_4
https://doi.org/10.1007/978-3-319-50995-2_11
https://doi.org/10.1007/978-3-319-50995-2_11
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1007/978-3-319-05215-1_13
https://doi.org/10.1007/978-3-319-05215-1_13


An Initial Implementation of Libfabric
Conduit for OpenSHMEM-X

Subhadeep Bhattacharya1(B), Shaeke Salman1, Manjunath Gorentla Venkata2,
Harsh Kundnani1, Neena Imam2, and Weikuan Yu1

1 Department of Computer Science, Florida State University, Tallahassee, USA
{bhattach,salman,kundnani,yuw}@cs.fsu.edu

2 Oak Ridge National Laboratory, Oak Ridge, USA
{manjugv,imamn}@ornl.gov

Abstract. As a representative of Partitioned Global Address Space
models, OpenSHMEM provides a variety of functionalities including one-
sided communication, atomic operations, and collective routines. The
communication layer of OpenSHMEM-X plays a crucial role for its func-
tionalities. OFI Libfabric is an open-source network library that supports
portable low-latency interfaces from different fabric providers while min-
imizing the semantic gap across API endpoints. In this paper, we present
the design and implementation of OpenSHMEM-X communication con-
duit using Libfabric. This Libfabric conduit is designed to support a
broad range of network providers while achieving excellent network per-
formance and scalability. We have performed an extensive set of exper-
iments to validate the performance of our implementation, and com-
pared with the Sandia OpenSHMEM implementation. Our results show
that the Libfabric conduit improves the communication bandwidth on
the socket provider by up to 42% and 11%, compared to an alternative
OpenSHMEM implementation for put and get operations, respectively.
In addition, our implementation of atomic operations has achieved sim-
ilar latency to that of the Sandia implementation.
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1 Introduction

SHMEM is known as a collection of programming libraries that provide par-
allel processing capabilities. Cray systems developed the first implementation.
Other organizations later followed suit with their own implementations, includ-
ing SGI, IBM and many others. One-sided communication, shared view of mem-
ory, atomic and collective operations are some critical aspects of SHMEM library
implementation. It has been used in the context of parallel programming model
to implement partitioned global address space (PGAS) systems.

The presence of various implementations of SHMEM prompted the need of a
standard specification and API. In addition, performance and code portability is
also critical due to diverged behaviors and API syntax from different implemen-
tations of SHMEM. The OpenSHMEM community was formed to standardize
the specification, and they introduced OpenSHMEM [3], integrating different
implementation efforts of SHMEM.

PGAS (Partitioned Global Address Space) languages are popular due to
their capability of providing shared memory programming model over dis-
tributed memory machines. OpenSHMEM [9] realizes a PGAS model by allo-
cating remotely accessible objects and enabling easy data sharing among the
processing elements (PEs) in an application. It can be leveraged in develop-
ing parallel, scalable and portable programs, achieving low latency and high
bandwidth. OpenSHMEM data distribution is carried out by one-sided commu-
nication and synchronization routines. Such one-sided operations allow a local
PE to be independent of the communication at a remote PE when executing and
completing a data transfer operation. It also facilitates a simplified exhibition of
parallelism allowing overlap between communication and computation that hide
data transfer latencies.

Libfabric [6,8] is an open-source software library for various network fabrics.
It is implemented by the OpenFabrics Interface (OFI) working group. Libfabric
aims to reduce the technical complexities between applications and underlying
fabric services and support many application semantics directly. It has been
carefully designed by fabric hardware providers and application developers, so
that HPC users can get the utmost benefit. Libfabric is agnostic to the underlying
hardware implementation and networking protocols. Its goal is to utilize high-
bandwidth and low-latency network interface cards (NICs) to deliver a highly
scalable and portable network implementation.

In this work, we introduce an implementation of a new Libfabric conduit for
OpenSHMEM to achieve high-performance communication. We take on an exist-
ing OpenSHMEM implementation, OpenSHMEM-X [10] from ORNL. Currently,
OpenSHMEM-X includes a couple of existing network conduits: GASNet [5] and
UCX [15], which supporting mapping between OpenSHMEM calls and network
operations. UCX [13] consists of a collection of network libraries and interfaces
having the capability of rendering high scalability and throughput. UCX main-
tains the networking paradigms of high-performance computing, allowing RMA
operations, tag matching, remote atomic operations and active messages. From
the OpenSHMEM perspective, Libfabric and UCX provide functionality similar
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to GASNet. Like UCX, Libfabric also provides similar kind of APIs for initial-
ization, shutdown, data transfer, atomic operations.

Our objective is to design the Libfabric conduit in OpenSHMEM-X commu-
nication layer with the purpose of providing a broad range of network support
while enhancing the performance and scalability. We carefully devise the ini-
tialization and shutdown of the network layer with the most suitable options
provided by Libfabric. PMIx is utilized as the out-of-band channel for exchang-
ing the necessary information among the PEs. We focus more on designing the
point-to-point and atomic operations as these provide the foundation for most of
the other OpenSHMEM-X functionalities. Additionally, we utilize the different
data transfer operations of Libfabric depending on data size to achieve optimal
network performance.

We assess our work in the Eos system of Oak Ridge Leadership Computing
Facility and compare it with the Sandia OpenSHMEM implementation. There-
fore, we choose Libfabric as the communication layer while configuring both the
application. After accumulating the results for point-to-point and atomic data
transfer operations, we observe that our implementation outperforms Sandia
OpenSHMEM for blocking put, get and atomic operations.

The rest of this paper is organized as follows: In Sect. 2, we present some
backgrounds on OpenSHMEM-X and Libfabric. In Sect. 3, we describe some
works that are related to our implementation. We then elaborate our design
of Libfabric conduit in Sect. 4. Section 5 presents the performance evaluation
of our implementation and a comparison with Sandia OpenSHMEM Libfabric
implementation. Finally, we discuss possible tuning and feature enhancements
in Sect. 6 and conclude in Sect. 7.

2 Background

2.1 OpenSHMEM-X

SHMEM programs follow the Single Program Multiple Data (SPMD) parallel
programming model where all PEs run the same program. The actual number
of PEs is set during the start of the program. They are numbered from 0 to
N − 1, where N stands for the total number of PEs. SHMEM library routines
offer remote data transfer, synchronization, collective and atomic memory oper-
ations to attain high-performance communication. It creates a symmetric view
of memory for the participating PEs, where they can allocate symmetric vari-
ables maintaining their copies. This feature allows remote direct memory access
(RDMA) between the processing elements. One participating PE can directly
put or get data from the particular memory location of another PE. RDMA
capable interconnects are particularly attractive to the PGAS community as
they provide high-throughput, low-latency networking. Vendors such as Intel,
HPE, Cray have provided high-performance OpenSHMEM implementations. In
addition to that, there are implementations by ORNL known as OpenSHMEM-
X. The current OpenSHMEM-X implementation features GASNet and UCX
communication conduits.
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2.2 Libfabric

Libfabric is aimed to support low-latency communication on network hardware.
Libfabric library is designed to support many different programming models such
as MPI, and PGAS over various fabric hardware (such as sockets, InfiniBand,
Cray GNI, Intel TrueScale, Intel Omni-Path, and Cisco VIC). The design of
libfabric provides a set of standard interfaces to set up the communication envi-
ronment. Libfabric APIs are developed by different underlying providers, each
operating over specific fabric hardware or software abstraction. The standard
interface functions need to be implemented by each provider. Each provider can
also choose the interface functions they want to support. Moreover, the appli-
cation has the option to scrutinize the capabilities of providers and accordingly,
choose to use the most appropriate providers for communications support.

3 Related Work

For its popularity, there has been a large body of research and development stud-
ies on OpenSHMEM. Here we selectively provide a discussion on a few studies.
Hammond et al. [7] developed an OpenSHMEM implementation using many new
communication features proposed by the MPI-3 community. Particularly, this
study emphasized the integration of MPI-3 network capabilities such as remote
atomic functionalities and a memory model similar to the model required for an
OpenSHMEM implementation. Similar to MPI-3 communication routines, Lib-
fabric supports remote atomic functionalities and an optimized memory manage-
ment scheme, which makes it a viable choice as the network conduit for OpenSH-
MEM. To this end, our work represents a new attempt to develop the Libfabric
conduit for the OpenSHMEM-X implementation from Oak Ridge National Lab.

New network layers have also been introduced in recent times. It helps to
achieve portability and scalability across various networks while providing high-
performance for different HPC applications. Shamis et al. [14] introduces the
implementation of OpenShmem using Universal Common Communication Sub-
strate (UCCS) to optimize its performance by redesigning the network layer.
UCCS is a low-level communication library explicitly designed to implement par-
allel programming models. It supports atomic and remote memory operations
which are required by any PGAS programming model. UCCS implementation in
OpenSHMEM shows that it outperforms state of the art SGI’s SHMEM. Baker
et al. [1] has developed an implementation of OpenSHMEM on UCX, validated
its suitability for OpenSHMEM programming model, evaluated its performance
and scalability on Cray XK systems. UCX have a close semantic match with
OpenSHMEM APIs and provides portability and scalability to HPC applica-
tions. Built on top of these prior implementations for various SHMEM frame-
works, our implementation extends the OpenSHMEM-X implementation with
an additional conduit that supports the Libfabric library.

Seager et al. [12] have developed the Sandia OpenSHMEM implementations
using Libfabric, which is the closest to our work for OpenSHMEM-X. They have
demonstrated the outstanding improvement in bandwidth when OFI Libfabric
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is used as a transport layer. The Sandia implementation has been enabled on the
Aries interconnect that uses u-GNI as the low-level software interface. Compared
to the Cray SHMEM that uses DMAPP instead of u-GNI, they have achieved
a significant bandwidth improvement. Moreover, Sandia OpenSHMEM uses the
message injection feature of Libfabric to enable high bandwidth for small mes-
sages. Compared to Sandia OpenSHMEM, our work enables a Libfabric conduit
for the OpenSHMEM-X library. Similar to Sandia OpenSHMEM, we also uti-
lize the message injection to get higher performance characteristics for small
messages and atomic operations.

Overall, we have designed the OpenSHMEM-X implementation using salient
features available from Libfabric to enable efficient, scalable and portable com-
munication.

4 Design of Libfabric Conduit

In this section, we describe the design of Libfabric conduit as an additional
communication path for OpenSHMEM-X. We will focus on the description of
initialization, out-of-band configuration, memory management, address transla-
tion and communication routines.

4.1 Architectural Overview of Libfabric Conduit

OpenSHMEM-X provides a dedicated layer to integrate any network conduit
for communication. The communication layer is designed in a way that com-
mon functionalities can be shared across different network conduits. Thus, any
implementation of an additional conduit needs to take a close architectural exam-
ination and make careful choices to design a thin yet high-performance network
path.

As a communication library, Libfabric delivers its portability across many
popular network providers. It hides the complexity of network management and
data transfer inside its implementation, and offers a thin-layer of APIs for appli-
cation performance and scalability. Figure 1 depicts the software architecture
of OpenSHMEM-X with particular details on its communication functionalities.
Besides the existing UCX and GASNet, we extend OpenSHMEM-X with Libfab-
ric conduit. We plan to organize the communication architecture of the conduit
into four major components including connection management, control function-
alities, data transfer operations and completion events. PMIx [2,11] is used as
the RTE layer that enables out-of-band communication. To avoid redundancy,
we leverage useful data structures from the OpenSHMEM-X and Libfabric as
much as possible.

We elaborate the details of communication functionalities on remote memory
access routines, atomic operations and point-to-point synchronization operations
in the rest of this section.
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Fig. 1. Software architecture of OpenSHMEM-X with Libfabric conduit

4.2 Initialization and Out-of-Band Configuration

The primary responsibility while implementing any scalable network layer is to
configure resources and initialize their parameters before any communication,
and properly shut down the resources in the end. Figure 2 describes the initial-
ization and shutdown of Libfabric conduit in an OpenSHMEM-X program. We
leverage the control operations from Libfabric for handling these functionalities.
The capabilities for a Libfabric provider can be obtained via an initial query to
the underlying provider library shown in Step 1. The discovery API then fetches
a set of fabric interfaces with their capabilities based on the requirements spec-
ified in the query.

As shown in Step 2 of Fig. 2, our conduit proceeds to query the fabric domain,
determining access attributes and endpoint configurations. Libfabric can be uti-
lized in a system containing multiple hardware and software resources for net-
work operations. Hence, it is necessary to query the fabric domain after the
provider discovery has identified available resources for communication. After
the determination of a fabric domain, an access domain for communication also
needs to be determined for a single logical connection to the fabric. Then active
endpoints will be configured for data transfer operations. Detailed parameters
for the access domain are configured. Furthermore, we will initialize the mem-
ory regions and address vectors for each PE before enabling the communication
endpoints.

Note that the out-of-band communication layer plays a significant role in
OpenSHMEM-X because the addresses of connection endpoints and memory
regions for each PE need to be exchanged among all the PEs. Steps 4 and 5 in
Fig. 2 describe the steps of address translation and exchange of memory region
information. We leverage the PMIx (Process Management Interface Exascale)
component for out-of-band communication in our implementation. Step 6 repre-
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Fig. 2. Initialization and shutdown of Libfabric conduit in OpenSHMEM-X

sents the communication routines which is described in the following subsections
in details. Finally, in Steps 7, 8 and 9, we free the resources before shutting down
the conduit.

4.3 Memory Management and Address Translation

OpenSHMEM provides symmetric memory so that data movement can be per-
formed directly via a memory address to any location in the Heap, BSS, and Data
sections. Thus all these memory regions need to be registered via the communica-
tion conduit before the one-sided operations. The information on the Heap, Data
and BSS segments shall be made available via their start addresses and range.
In the current implementation of OpenSHMEM-X, basic memory registration is
first performed for these sections by the PE. Then the start address, length and
key of all registered memory regions are to be extracted. An array of IO vectors
(fi rma iov) from Libfabric is used to record the memory region information for
each PE. All the PEs then exchange this array through the PMIx out-of-band
communication channel. For the exchange of these vectors at the beginning of
an OpenSHMEM program, fabric specific addresses are used for data transfer
operations. These addresses are different from the high-level logical addresses.

Figure 3 shows the exchange of these vectors through PMIx and the steps
involved in address translation. Libfabric provides address vectors, which allows
the mapping of addresses without expensive address resolution. The source
address of each PE is fetched and exchanged among all the PEs using PMIx.
After getting endpoint addresses of all the PEs, the addresses are stored in a sin-
gle buffer linearly using the length of each endpoint address. The address buffer
is then used as the translation table for address vectors. Any logical address
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from a remote PE can be translated to the fabric specific address. For proper
indexing, the address vectors from different PEs are linearly ordered according
to the ranks of all PEs.

4.4 Completion Queues and Counters

Libfabric point-to-point operations are non-blocking. Thus there must be some
form of progress tracking and completion notification mechanism to ensure the
completion of an operation which can be properly detected and notified to the
pertinent components. Libfabric provides completion queues and counters for
this purpose. A completion queue is bound to the endpoint for getting the com-
pletion event of any read, write, or atomic operations. Lightweight counters are
also used to keep track of put and get operations. An extra counter is bound
with the local memory region to keep track of update operations to the local
memory region. This additional counter helps to achieve wait functionality of
OpenSHMEM-X.

4.5 Remote Memory Access Routines and Atomic Operations

OpenSHMEM requires the support of remote memory accesses and atomic oper-
ations from the underlying conduit in order to achieve the functionalities of
blocking and non-blocking operations (put, get and atomics). Figure 4 shows the
steps involved in any data transfer operation in OpenSHMEM-X using Libfabric.
For any data transfer operation, OpenSHMEM-X first determines the memory
segment in the local PE based on the memory address and offset for the remote
PE address segment. Once the address segment information including the key
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and address is available, the data can be written to the remote location using
Libfabric APIs.

However, data that need to be written in the remote PE can be of any length.
For very large messages, we need to send the data into chunks to avoid over-
flowing the transmit and receive buffers at the endpoints. The maximum data
size that can be sent in each iteration is determined by querying the under-
lying provider for the maximum supported size of the endpoint. The data is
broken into fragments. We iterate the data transfer operations in a loop until
the operation on entire data gets completed.

5 Performance Evaluation

In this section, we describe our experimental setup and the evaluation results.
We measure the performance of point-to-point data movement and atomic oper-
ations across multiple nodes.

5.1 Experimental Setup

We conduct all our experiments on the Eos system [4] located at Oak Ridge
National Laboratory. Eos is an XC30 computing cluster built by Cray. It is
equipped with Intel Xeon E5-2670 CPUs, 16 cores per node. The whole system
consists of 736 nodes with a total of 47.104 TB of memory where each node
comprises of 64 GB memory. Eos uses Cray’s Aries interconnect and Dragonfly
network topology.

For our measurements, we use the OpenSHMEM-X code base and configure
its communication path to use our implementation of Libfabric conduit. In our
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conduit, the Sockets provider of Libfabric is used for our initial implementation.
We also configure Sandia OpenSHMEM with Libfabric on the Eos system, for
which the sockets provider is also chosen for Sandia OpenSHMEM (SOS). The
Sandia OpenSHMEM is configured with hard and completion polling. For a fair
comparison of the Libfabric conduits in the two OpenSHMEM libraries, we also
disable the scalable memory registration and multi-threading in Sandia OpenSH-
MEM, because these functionalities are not implemented in the OpenSHMEM-X
Libfabric conduit. We use OpenSHMEM micro-benchmarking suite (SHOMS) to
measure the performance of point-to-point operations. OSU Micro-Benchmarks
tool is used to measure the latency of atomic operations. Fabtest is used for
measuring the Libfabric read and write performances.

5.2 Performance of Point-to-Point Data Movement Operation

We run our tests across multiple nodes in EOS. For point-to-point data move-
ment operations in SHOMS, node 0 sends a fixed sized message to all other
nodes and collects the bandwidth. We use the default configuration for SHOMS
which use 1000 iterations for data size 8 bytes to 16 KB, 500 iterations for data
size of 16 KB to 512 KB and 250 iterations for messages greater than 512 KB.
Minimum and maximum message sizes are 8 bytes and 1 MB, respectively. We
collected the aggregated bandwidth and average latency measurements for our
evaluation. We also compare the bandwidth and latency with Sandia OpenSH-
MEM implementation and Libfabric read/write operations.

Put Latency. Figure 5(a) shows the comparison of latency measurements
between OpenSHMEM-X Libfabric conduit, Sandia OpenSHMEM Libfabric
implementation and the unidirectional write operation of Libfabric. SOS per-
forms slightly better by about 2% for the message size upto 128 bytes. However,
our implementation shows a better latency measurement for message size greater
than 128 bytes with almost 30% improvement for 2 KB messages.

Fig. 5. Latency comparisons
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Get Latency. Figure 5(b) shows the latency measurements for OpenSHEMEM-
X, Sandia OpenSHMEM and Libfabric read operation. Our implementation per-
forms better than SOS in terms of latency. We get a latency improvement up to
10% for 16 KB message size.

Fig. 6. Bandwidth comparisons

Put Bandwidth. Figure 6(a) shows the bandwidth of PUT operation for
OpenSHMEM-X Libfabric conduit, Sandia OpenSHMEM Libfabric implemen-
tation and unidirectional write bandwidth of Libfabric. The shmem int put oper-
ation is used as the test case for measuring the PUT benchmark. Our evaluation
results show that the performance of PUT operations in Sandia OpenSHMEM is
2-5% better than our implementation for small data sizes up to 128 bytes. How-
ever, the performance of our implementation improves for messages greater than
256 bytes. The bandwidth improvement can be up to 42% for 2 KB messages.

Get Bandwidth. Figure 6(b) compares the bandwidth of GET operations
between OpenSHEMEM-X, Sandia OpenSHMEM and Libfabric read operation.
The shmem int get operation is used for measurements in this case. Our exper-
imental results demonstrate an improvement up to 11% over Sandia OpenSH-
MEM implementation.

5.3 Atomic Operations

Figures 7(a) and 7(b) show the atomic operation performances for Open
SHMEM-X and Sandia OpenSHMEM. We collect the latency of atomic opera-
tions for 32-bit and 64-bit messages using OSU microbenchmarks. We have col-
lected the performance measurements for six integer atomic operations: Fetch
and Add, Fetch and Increment, Add, Increment, Compare and Swap, and Swap.
We have run each atomic operation for 1000 iterations and collected the average
latency measurements. The performance of these atomic operations from our
implementation is comparable with, or slightly better than, the Sandia Open-
SHMEM implementation.
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Fig. 7. Atomic operation performance

6 Discussion

Libfabric offers support for many provider implementations such as verbs, mlx,
and gni. We have tried verbs and mlx providers using Libfabric. However,
fi verbs and fi mlx both do not support full atomic functionalities required by the
OpenSHMEM-X. One of the most common Libfabric providers for Cray systems
is uGNI, which is fully supported on ORNL systems. We are still working on
enabling the uGNI provider for the OpenSHMEM-X Libfabric conduit. Further-
more, we are going through additional tuning and optimization efforts. When
these steps are completed, we expect to see a further performance improvement
on the OpenSHMEM-X Libfabric conduit.

7 Conclusion

Libfabric offers a communication library that minimizes the semantic gap and
maintains application performance while delivering scalability. Its application-
centric design allows us to enable operations on different networking inter-
face without considering the internal hardware management. In this paper, we
have designed and prototyped an implementation of Libfabric conduit for the
OpenSHMEM-X library from ORNL. We have evaluated the performance of our
implementation and compared it with the Sandia OpenSHMEM implementa-
tion. Our assessment demonstrates that our Libfabric conduit can indeed enable
OpenSHMEM portably on different network providers while achieving excellent
performance and scalability. We are working on further tuning and optimizations
of our Libfabric conduit. We will also work on enabling more Libfabric providers
for OpenSHMEM-X.
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Abstract. Recent technology advances in high-density, byte-addressable non-
volatile memory (NVM) and low-latency interconnects have enabled building
large-scale systems with a large disaggregated fabric-attached memory
(FAM) pool shared across decentralized compute nodes. The OpenFAM API is
an API for programming with persistent FAM that is inspired by the Open-
SHMEM partitioned global address space (PGAS) model. Unlike OpenSHMEM,
where each node contributes local memory toward a logically shared global
address space, FAM isn’t associated with a particular node and can be addressed
directly from any node without the cooperation or involvement of another node.
The OpenFAM API enables programmers to manage FAM allocations, access
FAM-resident data structures, and order FAM operations. Because state in FAM
can survive program termination, the API also provides interfaces for naming and
managing data beyond the lifetime of a single program invocation.

Keywords: Disaggregated memory � Fabric-attached memory �
Persistent memory � Non-volatile memory � Gen-Z

1 Introduction

Recent technology advances in high-density, byte-addressable non-volatile memory
(NVM) and low-latency interconnects have enabled building large-scale systems with a
large disaggregated fabric-attached memory (FAM) pool shared across heterogeneous
and decentralized compute nodes [20]. NVDIMMs and new NVM technologies (e.g.,
[13, 30, 34, 36, 37]) provide byte-addressable persistent storage accessible through
loads and stores, rather than the block I/O path used today. In addition to persistence,
these new technologies provide the potential for increased memory density and
increased energy efficiency, relative to DRAM. NVM technologies are expected to
have 2X to 4X higher read latency and 4X to 8X lower write bandwidth than DRAM
[5]. High-performance system interconnects, such as Gen-Z [11], OmniPath [17], and
RDMA over InfiniBand [31], provide low-latency access from compute nodes to
fabric-attached memory, enabling rack-scale disaggregated memory. Several proposals
are based on forward-looking silicon photonics [32] and high-radix optical switches,
but disaggregated memory architectures are already being constructed with today’s
RDMA-based interconnects [2, 24]. These nascent architectures are already capable of
providing low-latency remote memory access (e.g., 1 ls to send 1 KB over RDMA
over InfiniBand FDR 4x [2]). Co-packaged or 3D-stacked local memory [19] continues
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to play an important role, providing a high-bandwidth memory tier to complement the
high-capacity disaggregated memory tier. Research proposals for rack-scale disaggre-
gation include FireBox [1], memory blades [22], scale-out NUMA [25] and network-
attached memory [2]. Commercial proposals include The Machine prototype from HPE
[6, 7], HPE’s Superdome Flex product with Software-Defined Scalable Memory [14],
Huawei’s DC3.0 [15], Intel’s Rack Scale Design [18], and Intel and Facebook’s
Disaggregated Rack [16]. For example, HPE’s Machine prototype system [7] contains
160 TB of shared fabric-attached memory accessible via loads and stores from 40
Cavium ThunderX2 ARM processors [3], in addition to node-local DRAM. More
recently, HPE’s Superdome Flex product with Software-Defined Scalable Memory [14]
allows the firmware to configure a subset of the system’s memory as disaggregated
memory.

These disaggregated memory architectures share several characteristics. First, they
provide a high-capacity pool of fabric-attached memory that can be shared by
heterogeneous computing resources at low latency. Because compute nodes are
decoupled from FAM, processing and memory can scale and evolve independently,
allowing the compute-to-fabric-memory ratio to be tailored to the specific needs of the
workload. Second, they provide a partially disaggregated architecture, in that they treat
node-local memory as private and disaggregated memory as shared. Third, most sys-
tems assume a heterogeneous memory system [5], containing both volatile DRAM and
NVM. The persistence of disaggregated memory offers the potential to eliminate tra-
ditional overheads from slow storage, such as data copies and (de)serialization between
memory and storage representations of data. Fourth, disaggregated memory has no
explicit owner among application compute nodes. Thus, access to disaggregated
memory by one compute node doesn’t need to be mediated by any other compute node.
This unmediated access is provided by one-sided loads/stores or gets/puts and facili-
tated through atomic operations (e.g., compare-and-swap as in RDMA [33] or Gen-Z
[9]), which bypass processor caches to make updates directly to FAM in an all-or-
nothing fashion. Fifth, disaggregation provides separate fault domains between pro-
cessing and memory, meaning that failure of a compute node doesn’t render disag-
gregated memory unavailable. Any updates propagated to FAM by the failed compute
node remain visible to other compute nodes. Persistence further enables data durability
and survival of power cycles and power failures. Finally, the hardware-enforced cache
coherence domain is usually limited to a single compute node, although recent industry
efforts such as Gen-Z [10], CCIX [8] and OpenCAPI [26], propose instruction set
architecture (ISA) agnostic methods to extend processor cache coherency beyond a
single node (e.g., to a small number of processors, accelerators and I/O (network and
storage) adapters).

Disaggregated FAM architectures provide new opportunities to applications, as
compared to traditional shared nothing system architectures. Shared nothing architec-
tures partition data between compute nodes, where each compute node “owns” its local
data and relies on heavyweight two-sided message passing and data copying to
coordinate with other nodes. Data owners mediate access to their data, performing
work on behalf of the requester. This model suffers mediation overheads and doesn’t
sufficiently leverage the data sharing potential of FAM systems.
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In contrast, the large capacity of the FAM pool means that large working sets can
be maintained as in-memory data structures. The fact that all compute nodes share a
common view of memory means that data sharing and communication may be done
efficiently through shared memory, without requiring explicit messages to be sent over
heavyweight network protocol stacks. Additionally, data sets no longer need to be
partitioned between compute nodes, and data access can avoid message-based coor-
dination overheads. Any compute node can operate on any data item, which enables
more dynamic and flexible load balancing. More generally, sharing permits new
approaches to cooperation.

In this paper, we describe an application programming interface (API) for use in
systems that contain FAM. Because the API is patterned after one-sided partitioned
global address space (PGAS) libraries such as OpenSHMEM [27], we refer to it as the
OpenFAM API. The primary distinctions between OpenFAM and OpenSHMEM are:

1. OpenFAM APIs provide access to fabric-attached disaggregated memory, rather
than remote node memory. Since FAM is no longer associated with a specific PE, it
can be addressed directly from any PE without the cooperation and/or involvement
of any other PE.

2. Because state in FAM can outlive a single program invocation, OpenFAM provides
interfaces that let programmers associate user-friendly names to data in FAM, to
simplify management for long-lived data.

3. Disaggregated memory can provide non-functional attributes (such as hardware-
level redundancy) that are not normally present in DRAM. OpenFAM introduces a
two-level allocation scheme to take advantage of such characteristics.

4. OpenFAM includes an API for mapping portions of fabric-attached disaggregated
memory into a PE’s virtual address space, thus permitting direct load/store access to
FAM over fabrics that support memory semantics.

In the following sections, we describe the system model assumed by the
OpenFAM API (Sect. 2), and then provide the details of the API organized in func-
tional categories patterned after the OpenSHMEM specification: initialization and
finalization (Sect. 3), querying state and names (Sect. 4), allocating and deallocating
FAM (Sect. 5), reading and writing FAM data (Sect. 6), atomics (Sect. 7), and memory
ordering (Sect. 8). Subsequent sections describe failure semantics, open issues and
related work. For each functional category, we provide give an overview of the
anticipated functionality behind the API. For the detailed API specification in C11, we
refer readers to [28]. Our goal is to keep the API minimal in this initial specification.
We expect that implementations will optimize this API for different hardware envi-
ronments. As we gain experience with implementing and using the library and gather
feedback from users, we expect the API will evolve.

2 System Model

Figure 1 shows the system model assumed in OpenFAM. The system consists of a
multi-OS environment where each compute node runs a separate operating system
instance, with locally attached memory that is “private” to the OS instance. In addition,
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the system provides fabric attached memory that is also directly addressable (as
memory) in a Global Address Space (GAS). Programmable data movers, e.g., direct
memory access (DMA) engines, support efficient high-speed movement of data
between local memory and fabric attached memory, and within different parts of fabric
attached memory at a hardware level. To distinguish references to the two types of
memory, we will use the term FAM to refer to fabric attached memory and local
memory to refer to the DRAM (or persistent memory) attached locally to a processing
node in the discussion below. We also assume in the API that parts of FAM may be
persistent to enable data to be shared not only within a running program, but also across
program instances in larger computational workflows.

The application spans compute nodes, and is composed of a group of processing
elements (PEs) that cooperate with one another. Each PE represents a (potentially
multi-threaded) process that uses both local memory and FAM to perform its tasks.
FAM acts as a shared (and potentially persistent) space where PEs may place and
access data. As in other PGAS programming models, the application is responsible for
coordination of accesses between PEs to any shared data and for managing data
consistency in FAM.

We assume that the system manages FAM in a two level hierarchy. At the coarser
level programs can create FAM regions, which are large blocks of memory. Regions
may have non-functional properties (e.g., persistence or resilience properties) associ-
ated with them. At the more granular level, memory managers can allocate data items
that correspond to program data structures within the regions. Data items inherit the
non-functional characteristics of the regions within which they are allocated.

FAM is addressed by descriptors, which are opaque read-only data structures
within applications that contain sufficient information to uniquely locate the corre-
sponding region or data item in FAM. Because regions and data items may persist

Fig. 1. System view in OpenFAM
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beyond the lifetime of the application that created them, OpenFAM provides APIs for
associating user-friendly names with regions and data items. These names can be used
by other processes (concurrent or time shifted) to find the corresponding region or data
item. A metadata service is used primarily to maintain mappings from names to
descriptors that locate data in FAM, and also to maintain limited metadata (e.g., region
and data item permissions and sizes, region redundancy levels). Currently, the API
leaves the structure of names open. Each region is required to have a unique name
associated with it. Data items may optionally have associated names. In line with the
two-level memory hierarchy represented by regions and data items, data items within a
given region must be named uniquely, relative to other data items in that region. If a
hierarchical name space is desirable, it can be accommodated within the metadata
service implementation with no modifications of the API.

Both regions and data items have access permissions associated with them. Cur-
rently, the API supports UNIX®-like permissions for access control to any data item
that is long-lived.

3 Initialization and Finalization

These routines initialize the OpenFAM environment for an application and enable
access to FAM. The routines are accompanied by routines that allow a PE to terminate
its participation in the application. Table 1 summarizes this API.

At the start of the program each PE calls fam initializeðÞ and provides options that
are application (or PE) specific. Options represent an extensible data structure deter-
mined by the implementation that contains library-specific variables, including state
that might otherwise be captured as environment variables. Specifying options through
environment variables can lead to non-deterministic execution, so we prefer to
explicitly set such parameters as library options using this mechanism. The library
creates FAM-resident data structures for internal use by the OpenFAM library. If the
library finds that the required data structures already exist, it simply adds information
about the current PE to the data structures. The library returns success or failure to
allow graceful termination in case of errors.

When the program finishes, each PE calls the fam finalizeðÞ method. This dis-
connects the PE from the overall FAM environment, although the PE may continue to
run without further involvement of the OpenFAM library.

Table 1. OpenFAM functions for initialization and finalization

Function Description
int fam_initialize(Fam_Options *options); Initialize the OpenFAM library
void fam_finalize(void); Finalize the OpenFAM library
void fam_abort(int status); Forcibly terminate the program
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Finally, a PE may invoke fam abortðÞ with a status flag. This causes a signal to be
propagated asynchronously to all PEs indicating that termination of the application is
desired. The OpenFAM library will forcibly terminate a PE as the signal is received at
that PE. Since data consistency in FAM cannot be assured under this scenario, the
programmer should not use this mechanism as a normal termination mechanism—each
PE should invoke fam finalizeðÞ to gracefully disconnect from the FAM environment
when it is finished, and terminate using normal process exit mechanisms.

4 Querying State and Names

These routines provide any PE the ability to query the pre-defined state variables
maintained by the OpenFAM library environment. The maintained state may include
library and system information (e.g., library version, number of nodes, size of memory)
or additional information specific to the executing program available via the OpenFAM
library (e.g., number of PEs, maximum region size possible). We assume that imple-
mentations may extend the base list of pre-defined variables as needed. Rather than
embedding specific information within function names, for flexibility and extensibility,
the API provides an interface for querying such state as {name, value} pairs. Note that
the interface accesses a set of pre-defined state variables, and does not represent a
generic key/value store for use by the application. Table 2 outlines this API.

fam list optionsðÞ allows the application to query the library for currently defined
state variables. Any PE can query for the value of the corresponding variable using
fam get optionðÞ:

In addition, the query group provides an interface to the metadata service, which
permits PEs to request the descriptor associated with a region or data item name via
fam lookupðÞ. Regions are automatically registered with the metadata service during
creation and unregistered when they are destroyed. Data items can optionally be
associated with a name for later retrieval (either within the executing program or within
a different program). Corresponding to the two-level memory hierarchy (regions and
data items), data item names are scoped within the region within which they are

Table 2. OpenFAM functions for querying state and names

Function Description
const char **fam_list_options(void); Get the list of pre-defined OpenFAM 

library option names
const void *fam_get_option(const char
*optionName);

Get the value for a pre-defined 
OpenFAM library option

Fam_Region_Descriptor
*fam_lookup_region(const char
*regionName);

Look up a descriptor to a FAM region 
in the metadata service 

Fam_Descriptor *fam_lookup(const char
*itemName, const char *regionName);

Look up a descriptor to a FAM data 
item in the metadata service
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created. Note that if a descriptor is not registered with the metadata service during
allocation, then the program itself is responsible for saving and tracking the descriptor
if required later, since the data in FAM will be unreachable without the descriptor.
Implementations may optionally choose to automatically register unnamed data items
during creation using special names, and/or allow background services to eventually
garbage collect data items if their descriptors are not named. Such services and
mechanisms for garbage collection are outside the scope of the OpenFAM API.

5 Allocating and Deallocating Fabric-Attached Memory

These routines provide mechanisms for allocating/deallocating FAM regions and data
items within those regions. The API provides a two-level hierarchy:

• Regions represent (large) containers within FAM that have associated properties,
such as desired resilience levels, which may be specified by the user when the
region is created. All data items within a region have the same resilience as the
region. Management services use regions as the allocation units to reserve large
address ranges in FAM, and may enforce quotas to limit the total size of FAM
allocated to a given user or application.

• Data items represent (smaller) areas of FAM that are allocated within the regions.
Each region provides a heap allocator abstraction, which can be used to allocate
individual data items. Management services may delegate per-region heap allocator
functionality to distributed brokers within operating systems or other middleware.

As mentioned earlier, FAM is referenced through a descriptor (much like a file
descriptor), not a standard pointer that can be de-referenced to access the content directly.
The allocation API returns opaque (to the application) read-only descriptors that are
portable in the sense that they can be used by any PE to access the data. Descriptors enable
applications to specify global/virtual references that will work for any PE regardless of
where the region may be mapped into the PE’s virtual address space.

Because FAM regions and data items can be long-lived, access permissions are
associated with both allocated data items and regions. Currently, the API assumes that
standard Unix® permissions can be used, although implementations may choose addi-
tional mechanisms for managing access. Permissions can be changed if desired (as-
suming that the requestor has the appropriate access rights). Assuming appropriate access
rights, any PE has the ability to allocate data items in FAM and/or use data items allocated
by other PEs, enabling much more efficient mechanisms for passing data between PEs
and even within larger computational workflows consisting of multiple stages.

Table 3 provides an overview of these APIs. fam create regionðÞ creates a new
region in FAM for use by the application, and returns a descriptor that can be used
portably across PEs (or programs in a larger workflow) to reference that region.
Regions are named and registered with the metadata service when they are created to
enable PEs to retrieve the descriptor associated with the region using user-friendly
names. Regions may be resized using fam resize regionðÞ. If the region size is
reduced, data items that reside within the truncated part of the region will be lost.
Region size can be safely increased without affecting existing data items within it.
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Finally regions can be destroyed using fam destroy regionðÞ; which deallocates the
region (and all data items within it) and frees the corresponding FAM. Deallocation
occurs asynchronously after the fam destroy regionðÞ call to allow other PEs using
the region to finish. The behavior of the library if a PE accesses a region (data item)
after it has been destroyed (deallocated) by a different PE is implementation dependent.

Space for data items within a region can be allocated using fam allocateðÞ; which
returns a descriptor to that data item, and de-allocated by calling fam deallocateðÞ.
Optionally, data items may be named to simplify access to them by other PEs or
programs after allocation. The application is responsible for de-allocating unnamed
data items or ensuring that the corresponding descriptors are persisted.

Finally, assuming that the caller has the correct access rights, permissions on either
a region or a data item can be changed using fam change permissionsðÞ. As
mentioned earlier, the actual semantics of permissions and how they are implemented
or enforced is system dependent.

6 Reading and Writing FAM Data

This group of APIs provide routines to read/write FAM data. Table 4 outlines the API,
which is broken into four groups:

Table 3. OpenFAM functions for allocating and deallocating fabric-attached memory

Function Description
Fam_Region_Descriptor
*fam_create_region(const char *name, 
uint64_t size, mode_t permissions, 
Fam_Redundancy_Level redundancyLevel, ...);

Create a new region in FAM

void
fam_destroy_region(Fam_Region_Descriptor
*descriptor);

Destroy an existing region in 
FAM

int fam_resize_region(Fam_Region_Descriptor
*descriptor, uint64_t nbytes);

Resize an existing region in 
FAM

Fam_Descriptor *fam_allocate(const char
*name, uint64_t nbytes, mode_t
accessPermissions, Fam_Region_Descriptor
*region);

Allocate a named data item in 
a region of FAM

Fam_Descriptor *fam_allocate(uint64_t
nbytes, mode_t accessPermissions, 
Fam_Region_Descriptor *region);

Allocate an unnamed data 
item in a region of FAM

void fam_deallocate(Fam_Descriptor
*descriptor);

Deallocate space being used 
by a data item in a region of 
FAM

int
fam_change_permissions(Fam_Region_Descriptor
*descriptor, mode_t accessPermissions);

Change permissions associat-
ed with a region in FAM

int fam_change_permissions(Fam_Descriptor
*descriptor, mode_t accessPermissions);

Change permissions associat-
ed with a data item in FAM
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1. A get/put API supports movement of data between FAM and local memory.
2. A map/unmap API provides the ability to directly map data items in FAM into the

local process virtual address space, enabling direct load-store access from the CPU
to data in FAM.

3. The third group provides the ability to gather (scatter) data from (to) disjoint parts
of FAM to (from) a contiguous array in local memory.

4. Finally, a copy API provides a hardware-assisted mechanism to replicate data from
one part of FAM to another part of FAM.

Table 4. OpenFAM functions for reading and writing FAM data

Function Description
int fam_get_blocking(const void *local, 
Fam_Descriptor *descriptor, uint64_t
offset, uint64_t nbytes);

Blocking call to copy data from 
FAM to local memory

void fam_get_nonblocking(const void
*local, Fam_Descriptor *descriptor, 
uint64_t offset, uint64_t nbytes);

Non-blocking call to copy data 
from FAM to local memory

int fam_put_blocking(const void *local, 
Fam_Descriptor *descriptor, uint64_t
offset, uint64_t nbytes);

Blocking call to copy data from 
local memory to FAM

void fam_put_nonblocking(const void
*local, Fam_Descriptor *descriptor, 
uint64_t offset, uint64_t nbytes);

Non-blocking call to copy data 
from local memory to FAM

void *fam_map(Fam_Descriptor
*descriptor);

Map a FAM data item into the 
process virtual address space

void fam_unmap(const void *local, 
Fam_Descriptor *descriptor, uint64_t
nbytes);

Unmap a FAM data item from the 
process virtual address space

void fam_invalidate(const void *local, 
uint64_t nbytes);

Invalidate mapped FAM data 
cached in processor cache

void fam_flush(const void *local, 
uint64_t nbytes);

Flush mapped FAM data cached in 
processor cache to FAM

int fam_gather_blocking(const void
*local, Fam_Descriptor *descriptor, 
uint64_t nElements, uint64_t
firstElement, uint64_t stride, uint64_t
elementSize);

Blocking call to copy disjoint 
elements of a data item from FAM 
to local memory, with constant 
stride

int fam_gather_blocking(const void
*local, Fam_Descriptor *descriptor, 
uint64_t nElements, uint64_t
*elementIndex, uint64_t elementSize);

Blocking call to copy disjoint 
elements of a data item from FAM 
to local memory, with non-
constant (indexed) stride

void fam_gather_nonblocking(const void
*local, Fam_Descriptor *descriptor, 
uint64_t nElements, uint64_t
firstElement, uint64_t stride, uint64_t
elementSize);

Non-blocking call to copy disjoint 
elements of a data item from FAM 
to local memory, with constant 
stride
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fam putðÞ creates a copy of an object from local memory in FAM. Similarly
fam getðÞ creates a copy of an object from FAM in local memory. Note that subsequent
modifications to the two copies are made independently, and no synchronization should
be assumed between the two copies. Both APIs specify data movement in bytes, enabling
movement of smaller chunks of data within larger data items (such as parts of a large
array resident in FAM). Both fam putðÞ and fam getðÞ have blocking and non-
blocking variants. The non-blocking calls return once the transfer has been initiated, and
don’t wait for completion. For example, fam put nonblockingðÞ returns once data has
been dispatched to FAM, and does not wait until the object has reached fabric-attached
memory. If multiple calls to fam get nonblockingðÞ or fam put nonblockingðÞ are
made in succession, the order of data delivery is not guaranteed. To ensure ordering and
completion, either blocking versions of the API or memory ordering operations (see
Sect. 8) should be used. Non-blocking calls permit overlap of the round-trip latencies to
FAM for multiple related operations, thereby improving efficiency over a set of blocking
operations. The blocking call variants wait until the data transfer has been completed. For
example, fam get blockingðÞ waits until data is delivered to local memory.

fam mapðÞ and fam unmapðÞ directly map and unmap FAM addresses into the
local process virtual address space—no copy exists in local memory in this case. These
APIs enable the processor to use load/store instructions to directly access FAM: the
application can treat FAM the same way it treats local memory. However, there may be
performance differences associated with the use of map/unmap versus get/put depending

*local, Fam_Descriptor *descriptor, 
uint64_t nElements, uint64_t
firstElement, uint64_t stride, uint64_t
elementSize);

ments of a data item from local 
memory to disjoint parts of FAM, 
with constant stride

void fam_scatter_nonblocking(const void
*local, Fam_Descriptor *descriptor, 
uint64_t nElements, uint64_t
*elementIndex, uint64_t elementSize);

Non-blocking call to copy ele-
ments of a data item from local 
memory to disjoint parts of FAM, 
with non-constant (indexed) stride

void fam_copy(Fam_Descriptor *src, 
uint64_t srcOffset, Fam_Descriptor
*dest, uint64_t destOffset, uint64_t
nbytes);

Create a second copy of a data 
item in FAM

void fam_gather_nonblocking(const void
*local, Fam_Descriptor *descriptor, 
uint64_t nElements, uint64_t
*elementIndex, uint64_t elementSize);

Non-blocking call to copy disjoint 
elements of a data item from FAM 
to local memory, with non-
constant (indexed) stride

int fam_scatter_blocking(const void
*local, Fam_Descriptor *descriptor, 
uint64_t nElements, uint64_t
firstElement, uint64_t stride, uint64_t
elementSize);

Blocking call to copy elements of 
a data item from local memory to 
disjoint parts of FAM, with con-
stant stride

int fam_scatter_blocking(const void
*local, Fam_Descriptor *descriptor, 
uint64_t nElements, uint64_t
*elementIndex, uint64_t elementSize);

Blocking call to copy elements of 
a data item from local memory to 
disjoint parts of FAM, with non-
constant (indexed) stride

void fam_scatter_nonblocking(const void Non-blocking call to copy ele-
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on the access patterns and characteristics of the underlying hardware, so the programmer
should use the API that makes sense for the application’s computation and memory
accesses. fam mapðÞ and fam unmapðÞ require support from the underlying memory
fabric components (e.g., Gen-Z’s Memory Management Unit (ZMMU) [12]) to main-
tain node physical address-to-fabric address mappings. Traditional address translation
mechanisms then perform virtual-to-physical address translations.

Similar to data in local memory, mapped FAM data is eligible for caching by the
processor caches. At large scale, the underlying architecture won’t provide hardware
support for cache coherence between nodes; thus accesses to FAM from PEs on
different nodes will not be cache-coherent. Thus, if multiple nodes map the same
descriptors into memory, the application will need to explicitly manage synchroniza-
tion, including cache invalidation and flushes. The API provides fam invalidateðÞ and
fam flushðÞ for this purpose.

Just as there is no coherence between multiple PEs on different nodes that have
mapped a FAM data item, there is also no coherence or coordination between PEs that
map a FAM data item and PEs that use fam getðÞ and fam putðÞ to access that data
item. The application must provide coordination between PEs using multiple modes of
interacting with FAM.

Both get/put and map/unmap APIs deal with contiguous bytes in FAM. To support
commonly used data access patterns, the API also provides the ability to gather elements
from an array data item in FAM into a contiguous part of local memory, and scatter them
back from a contiguous part of local memory to disjoint parts of the array in FAM.
A fam gatherðÞ operation allows the programmer to specify a starting element, a stride,
the number of elements, and the size of each element. The library then makes multiple
parallel copies from FAM to adjacent regions of local memory. Conversely, a
fam scatterðÞ operation copies array elements placed sequentially in local memory,
and scatters them in parallel to disjoint parts of the corresponding array in FAM. As with
fam getðÞ and fam putðÞ, the OpenFAM API provides both blocking and non-
blocking variants of fam gatherðÞ and fam scatterðÞ: The API also provides an
indexed gather/scatter variant, where the stride between consecutive array elements is
not assumed to be constant, but can be specified as an array of indexes into the data item.

Finally, fam copyðÞ supports direct movement of data between two parts of FAM,
possibly from one region of FAM to another region of FAM. fam copyðÞ is non-
blocking. No synchronization is assumed between the copies, and they can be modified
independently after the copy is complete.

7 Atomics

The atomics APIs provide mechanisms to ensure that operations in FAM are done in an
atomic (all-or-nothing) fashion, i.e., do not result in torn reads or writes when the same
location in FAM is accessed at the same time from different processing elements. Atomic
operations are broken into two categories: non-fetching (which update data in FAMwithout
returning a result) and fetching (which update data in FAM and return a result). Atomic
operations that return values block until the operation completes, while those that do not
return data values simply dispatch the operation to FAM, but do not wait for acknowl-
edgements before returning (i.e., are non-blocking). Table 5 shows these categories.
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Table 5. OpenFAM functions for atomically accessing FAM data. Unless otherwise specified,
arithmetic types <AT> include (u)int32_t, (u)int64_t, float and double. Logical types <LT>
include uint32_t and uint64_t.

Function Description
void fam_set(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically set a value of type 
<AT> in FAM. 

void fam_add(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically add a value of type 
<AT> to a data item in FAM.  

void fam_subtract(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically subtract a value of type 
<AT> from a data item in FAM.  

void fam_min(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically replace a value in FAM 
with the minimum of it and a given 
value of type <AT>.

void fam_max(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically replace a value in FAM 
with the maximum of it and a given 
value of type <AT>.

void fam_and(Fam_Descriptor
*descriptor, uint64_t offset, <LT> val-
ue);

Atomically replace a value in FAM 
with the logical AND of that value 
and a given value of type <LT>.

void fam_or(Fam_Descriptor *descriptor, 
uint64_t offset, <LT> value);

Atomically replace a value in FAM 
with the logical OR of that value 
and a given value of type <LT>.

void fam_xor(Fam_Descriptor
*descriptor, uint64_t offset, <LT> val-
ue);

Atomically replace a value in FAM 
with the logical XOR of that value 
and a given value of type <LT>.

<AT> fam_fetch_<AT>(Fam_Descriptor
*descriptor, uint64_t offset);

Atomically fetches a value of type 
<AT> from FAM.

<AT> fam_swap(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically replace a value of type 
<AT> in FAM with the given value 
and return the old value.

<AT> fam_compare_swap(Fam_Descriptor
*descriptor, uint64_t offset, <AT>
oldValue, <AT> newValue);

Atomically conditionally replace a 
value of type <AT> in FAM with 
the given value and return the old 
value. Type <AT> includes 
(u)int32_t, (u)int64_t, 
and int128_t.

<AT> fam_fetch_add(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically adds a value of type 
<AT> to a value in FAM, and re-
turns the old value.

<AT> fam_fetch_subtract(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically subtracts a value of type 
<AT> from a value in FAM, and 
returns the old value.

<AT> fam_fetch_min(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically replaces a value of type 
<AT> in FAM with the smaller of 
the value in FAM and a given val-
ue, and returns the old value.

<AT> fam_fetch_max(Fam_Descriptor
*descriptor, uint64_t offset, <AT> val-
ue);

Atomically replaces a value of type 
<AT> in FAM with the larger of the 
value in FAM and a given value, 
and returns the old value.
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In the initial version of the API, non-fetching operations include fam setðÞ,
fam addðÞ, fam subtractðÞ, fam minðÞ, fam maxðÞ, fam andðÞ, fam orðÞ, and
fam xorðÞ. Fetching operations include fam fetchðÞ, fam swapðÞ, fam compare
swapðÞ, fam fetch addðÞ, fam fetch subtractðÞ, fam fetch minðÞ, fam fetch
maxðÞ, fam fetch andðÞ, fam fetch orðÞ, and fam fetch xorðÞ.

fam setðÞ, fam fetchðÞ, fam swapðÞ, and arithmetic operators ((non-)fetching
add, subtract, min, and max) are specified for 32-bit and 64-bit signed and unsigned
integer and floating point operands. Logical operators ((non-)fetching and, or and xor)
are specified for 32-bit and 64-bit unsigned integer operands. Compare and swap
(CAS) operations (compare for equality and swap if equal) are specified for 32-bit and
64-bit signed and unsigned integer operands. In addition, the API defines a 128-bit
integer compare and swap.

We note that atomic operations bypass the processor cache on the node that issues
the request. Thus, if a PE that has mapped a FAM data item subsequently issues an
atomic operation for part of the mapped data item, any cached versions of the atom-
ically updated operand will no longer be valid.

8 Memory Ordering

These operations, outlined in Table 6, provide ordering to FAM operations.

fam fenceðÞ is a non-blocking call that enables ordering of FAM operations from
a PE: any FAM operations (put, scatter, atomics, copy) issued by the calling thread

<LT> fam_fetch_and(Fam_Descriptor
*descriptor, uint64_t offset, <LT> val-
ue);

Atomically replaces a value of type 
<LT> in FAM with the logical 
AND of that value and some given 
value, and returns the old value.

<LT> fam_fetch_or(Fam_Descriptor
*descriptor, uint64_t offset, <LT> val-
ue);

Atomically replaces a value of type 
<LT> in FAM with the logical OR 
of that value and some given value, 
and returns the old value.

<LT> fam_fetch_xor(Fam_Descriptor
*descriptor, uint64_t offset, <LT> val-
ue);

Atomically replaces a value of type 
<LT> in FAM with the logical 
XOR of that value and some given 
value, and returns the old value.

Table 6. OpenFAM functions for memory ordering

Function Description
void fam_fence(void); Ensures that FAM operations issued by the calling 

thread before the fence are completed before FAM 
operations issued after the fence are dispatched.

void fam_quiet(void); Ensures that all pending operations to FAM issued by 
the calling thread have completed before proceeding
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before the fence operation will be delivered before any FAM operations by the same
thread after the fence are dispatched. fam quietðÞ blocks the calling thread until
pending FAM operations from that thread are complete. To provide ordering operations
to a single memory location requires memory-side hardware support, and we are
currently not aware of systems that provide such support for FAM. Hence we do not
include those operations in the API at this time.

Note that unlike other PGAS implementations, since all PEs have equal access to
all data items in FAM, the need for collectives, reductions, and all-to-all messaging
when addressing FAM is unclear. For simplicity, we omit these operations from the
API at this time. PEs that wish to synchronize with one another can poll on a location in
FAM (e.g., using fam compare swapðÞ) or use external-to-OpenFAM collectives
(e.g., OpenSHMEM). If necessary, such operations can be added in a later version.

9 Failure Semantics

OpenFAM calls may be unsuccessful due to failures in fabric components, fabric-
attached memory controllers or the fabric-attached memory media itself. We expect
that lower-layer hardware and software will implement failure mitigation strategies
(e.g., request retry, memory bad block remapping, inter-controller replication or erasure
coding) that will mask (and in some cases, recover from) these failures. As a result, we
interpret any failures reported to the OpenFAM layer to be unrecoverable.

The OpenFAM API provides two alternative approaches for dealing with failures:
failure-reporting operation and fail-fast operation. With failure-reporting operation,
failures are detected and associated with the call that triggered or experienced them. As
a result, this mode can only be used with blocking OpenFAM calls. The type of error is
reported to the OpenFAM layer, which can pass the error code to the application,
allowing for application-specific error handling based on the severity of the error. For
example, an application that implements its own application-level replication may
choose to recover from a failed fam get blockingðÞ request to an inoperable replica
by retrying the operation with a different replica. A disadvantage of the failure-
reporting approach is that performance is lower, due to the need to use only blocking
calls for attributable error reporting.

FAM failures may affect the operation of a non-blocking call well after the call has
returned, so it isn’t always possible to attribute the failure to the call that first expe-
rienced it. Rather than support out-of-band error reporting (e.g., through exceptions),
OpenFAM provides a fail-fast mode of operation. In this approach, which mimics
commonly supported OpenSHMEM failure behavior, unrecoverable FAM errors cause
the application (including all its PEs) to be terminated. Because fail-fast operation
supports non-blocking calls, it provides the potential for higher performance.

Neither failure-reporting operation nor fail-fast operation guarantees all-or-nothing
execution of failed OpenFAM calls; partial completion is a possible outcome under
failure scenarios. For fail-fast operation, any partially completed update calls to data
persistently stored in FAM may result in corrupted application state that the application
does not get the opportunity to recover before the termination of the current program
invocation. (In failure-reporting operation, the application can choose whether and how
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to recover any potential corruptions at the time of the failed call.) As a result, appli-
cations using fail-fast operation (and potentially those using failure-reporting opera-
tion) should be structured to explicitly check at initialization whether persistent data
needs to be recovered, and to perform the appropriate application-specific recovery. As
an extreme approach, applications may even choose to treat FAM data as ephemeral,
deleting any residual regions or data items and starting with a clean slate.

10 Discussion

This section covers open issues for future consideration in OpenFAM.

Access Control. Accesses to FAM-resident data are permitted only if the requesting
user has sufficient permissions for the request. Verification of these rights must be
performed by a trusted entity (e.g., the operating system); however, due to the potential
cost of these operations, per-request verification is to be avoided. Future versions of the
API will consider adding fam openðÞ and fam closeðÞ calls, to perform a mandatory
name-to-descriptor translation including a permission check before data item or region
access. Under these assumptions, a Fam DescriptorðFam Region DescriptorÞ
would be considered a capability, which both identifies the corresponding data item
(region) and associates access rights granted to the requester. This approach could also
simplify delayed reclamation of data items (regions), because the system could check
whether there are any currently active descriptors before removing the associated item
(region).

Memory Ordering. The current API provides ordering of FAM operations from the
calling PE thread to all of fabric-attached memory. This approach will limit the
application’s ability to pipeline and overlap FAM requests with computation. Open-
SHMEM introduced contexts to address this issue. If hardware support is provided,
future OpenFAM API versions may also include methods to order outstanding FAM
operations using a context-like abstraction. Such an approach would give the appli-
cation the flexibility to order requests on a per-region basis (i.e., operations to a
particular region would be ordered independently of FAM operations to other regions).

Scratch Regions. Applications may wish to create regions that are automatically
garbage collected at the end of the application’s execution (either through successful
completion or through fail-fast termination in the event of a FAM error). This
abstraction could be provided by the application deallocating any scratch regions
during its finalization phase (for successful completion) or during its initialization
phase (to handle any residual scratch regions from fail-fast termination). If open/close
calls are introduced, it may be possible to include system-level support for scratch
regions (e.g., through region allocation-time scratch specification and automatic gar-
bage collection at the end of the program).

PE Synchronization. Because data in FAM can be accessed from PEs running on
multiple nodes at the same time, data conflicts are possible (either using
fam getðÞ=fam putðÞ or if the same descriptor is accessed using fam mapðÞ from
multiple PEs). Given the large scale envisioned (up to thousands of nodes and
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petabytes of FAM), it will be difficult to maintain cache coherence between the nodes
and to efficiently ensure that large regions of FAM are updated atomically. We cur-
rently leave such synchronization to the PEs accessing FAM as part of the application.
PEs may poll on locations in FAM using atomics (e.g., fam compare swapðÞ) or
rely on external-to-OpenFAM collective communication (e.g., OpenSHMEM).

Error Reporting and Handling. For simplicity, the current OpenFAM API proposes
a fail-fast approach for errors resulting from implicit non-blocking calls. Richer error
notification may be possible, for example, by delaying asynchronous error notification
until a subsequent fam quietðÞ call; this approach may require introducing a
requirement for such a blocking call after a group of non-blocking calls. If open/close
calls are introduced into the API, asynchronous error notifications could be raised
during the fam closeðÞ call. Alternately, all non-blocking API calls could be extended
to return a handle, which the application could use to check the call’s progress and
completion status (success vs. failure). Using this explicit non-blocking approach, the
API could also include calls for coalescing handles, to simplify status checking of
multiple outstanding requests. In the future, we will evaluate the merits of these
approaches.

Data Item Resizing. Currently the OpenFAM API does not support resizing (or
automated re-packing) of data items within a region. This constraint may be relaxed in
the future, as implementations become available.

Multi-item Gather/Scatter. The current fam gatherðÞ and fam scatterðÞ operate
on the elements of a single data item in FAM. In the future, we will consider whether it
is useful to gather (scatter) from (to) multiple FAM-resident data items.

Data Item Snapshots. The current fam copyðÞ performs an inconsistent copy, in that
the copied data may reflect updates that are performed concurrently with the copy
operation. To ensure a consistent copy without the need to quiesce application accesses
to the copied region, future versions of the API will consider including functions to
snapshot the source data item.

Metadata Service. The current version of the API primarily uses the metadata service
to map user-friendly names to FAM descriptors and to store minimal metadata. Based
on past experience from adjacent fields like file systems, providing a metadata service
that scales to a large number of items and a large number of users is challenging [23].
By re-envisioning persistent data management in the context of FAM regions and data
items accessed through the OpenFAM API, rather than files accessed via the POSIX
file API, we believe that an OpenFAM metadata service can overcome the scalability
challenges of traditional file metadata services. In a FAM environment the shared state
represented by region and data item metadata can be implemented as data structures
stored in FAM, and directly accessible by any node. As a result, trusted code running
on any node can use one-sided accesses and atomics to access and update metadata in a
scalable fashion.
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11 Related Work

The OpenFAM API is designed to enable HPC and distributed data analytics appli-
cations to manage and access disaggregated persistent memory. It borrows ideas from
PGAS programming models that use one-sided operations, such as OpenSHMEM [27]
and Cray DMAPP [4], with several important distinctions. PGAS programs use a
single-program multiple data (SPMD) model, where a group of processes (PEs) exe-
cutes the same executable in parallel. The model exposes the global address space as a
symmetric heap, with the assumption that all PEs in a job make the same calls to the
symmetric heap management functions in the same sequence. The SPMD and sym-
metric heap model is a natural match for many traditional HPC applications, but is
generally too restrictive for distributed data analytic applications, which typically use a
multiple program multiple data (MPMD) model and independent data management
operations across processes. Because the OpenFAM API is intended to support both
HPC application and distributed data analytic applications, it cannot adopt traditional
PGAS models wholesale.

PGAS models form their global address space from node-local DRAM contributed
by each PE, meaning that the global address space lives only as long as the application
lifetime; as a result, data structures are ephemeral. In contrast, OpenFAM’s global
address space comes from disaggregated memory, which isn’t associated with any
single PE. Since the disaggregated memory is likely to be non-volatile, OpenFAM is
designed to support persistent data structures that outlive a single program invocation.
The independence of state maintained in disaggregated FAM provides additional
opportunities for managing application availability in the presence of component
failure. OpenFAM also includes an API for mapping portions of fabric-attached dis-
aggregated memory into a PE’s virtual address space, thus permitting direct load/store
access to FAM over fabrics that support memory semantics.

OpenFAM enables applications to manage and access named persistent data, a role
traditionally filled by POSIX file systems. Although OpenFAM borrows several key
concepts from file systems, including namespace management and memory mapping
content into the process virtual address space, POSIX I/O semantics include some
unnecessary features [23] and are missing some desired features. POSIX semantics
dictate that writes must be strongly consistent (i.e., a write() is required to block
application execution until the system can guarantee that any other read() call will see
the data that was just written). Although this is tractable on a single node that is writing
to locally attached storage, ensuring such strong consistency across multiple nodes,
each with its own page cache, is very challenging. Approaches include eliminating the
page cache (which increases request latency), relaxing POSIX consistency semantics
(e.g., providing no consistency guarantees if two nodes try to modify the same part of
the same file), or implementing complex locking mechanisms to avoid concurrent
activity by multiple nodes. Additionally, POSIX requires that metadata such as mtime
and atime be updated in concert with fully consistent reads and writes. Such strong
consistency semantics are overkill for programs that coordinate their access to shared
data through application-specific means, and their implementation will severely limit
performance for a layer designed primarily for accessing disaggregated memory.
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POSIX shared memory APIs [21] provide a memory-oriented alternative to the
POSIX I/O APIs. Like the POSIX I/O APIs, they enable naming of objects and enforce
access permissions using an explicit (shm_)open() call. Unlike the POSIX I/O
semantics, the shared memory interface does not require strict consistency; synchro-
nization of accesses to shared memory objects is handled by the application outside the
scope of the shared memory API (e.g., using POSIX semaphores). POSIX mmap APIs,
which can be used with both files and shared memory, provide user-level memory
semantic accesses to file or shared memory data. However, they do not permit explicit
management of near (e.g., node local) vs. far (e.g., FAM) memories in non-uniform
memory access (NUMA) systems, nor do they permit explicit management of persis-
tent memory (e.g., flushing cache contents to persistent memory in an order controlled
by program rather than the cache replacement policy). Additionally, mmap APIs don’t
provide support for easy sharing of data in non-cache coherent environments; appli-
cation programmers still need to explicitly manage cache line invalidations and flushes
to make updates visible to processes on other nodes. Finally, POSIX I/O and shared
memory APIs don’t include support for scatter/gather functions or atomic memory
operations. Thus, to provide the desired functionality, the OpenFAM API must go
beyond existing POSIX APIs, borrowing useful concepts where appropriate.

HPC burst buffers provide persistent storage close to the compute nodes (i.e.,
separate from the campaign storage in the parallel file system) for storing intermediate
and final results from a computation for the lifetime of a job or potentially a small
number of related jobs in a workflow. During the job execution, the burst buffer is
treated as an ephemeral file system, which can be accessed through normal file API
calls. At the end of a job/workflow run, any data that is to be preserved longer than the
resource allocation needs to be copied back to the parallel file system. In contrast,
OpenFAM is intended to permit long-term storage of persistent data without the need to
explicitly move data to a separate system.

The emergence of persistent memory technologies has led to standardized efforts
such as the Storage Networking Industry Association (SNIA) NVM Programming
Model [35] and implementations such as Intel’s Persistent Memory Development Kit
(PMDK) [29]. PMDK, for example, is a collection of libraries that builds upon the
direct access (DAX) features of Linux and Windows file systems, to allow applications
direct load/store access to persistent memory by memory-mapping files on a persistent
memory aware file system. With the exception of librpmem, which replicates content of
local persistent memory regions to persistent memory on a remote node over RDMA,
these libraries focus on accessing local persistent memory. In contrast, the
OpenFAM API is intended to support applications in managing and accessing data
stored in disaggregated persistent memory in non-cache coherent multi-node
environments.

12 Summary

The OpenFAM API provides an API for programming with persistent fabric-attached
memory (FAM). FAM is disaggregated and hence independent of compute nodes, and
can be addressed directly from any node without the involvement of another node. The
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OpenFAM API includes functions for managing FAM allocations, accessing FAM-
resident data structures, and ordering FAM operations. We have released an initial
version of the detailed spec [28], and welcome feedback from the community. A ref-
erence implementation is under way. We hope to work with the OpenSHMEM com-
munity to introduce OpenFAM concepts into future OpenSHMEM versions.

References

1. Asanovic, K.: FireBox: a hardware building block for 2020 warehouse-scale computers.
Keynote at USENIX Conference on File and Storage Technologies (FAST) 2014

2. Binnig, C., Crotty, A., Galakatos, A., Kraska, T., Zamanian, E.: The end of slow networks:
it’s time for a redesign. Proc. VLDB Endow. 9(7), 528–539 (2016)

3. Cavium, ThunderX2 ARM Processors. https://www.cavium.com/product-thunderx2-arm-
processors.html. Accessed 22 July 2018

4. Cray: Cray XC Series GNI and DMAPP API User Guide (CLE 6.0.UP05) S-2446. https://
pubs.cray.com/pdf-attachments/attachment?pubId=00478935-DA&attachmentId=pub_
00478935-DA.pdf. Accessed 28 July 2018

5. Dulloor, S.R., et al.: Data tiering in heterogeneous memory systems. In: Proceedings of 11th
ACM European Conference on Computer Systems (EuroSys) (2016)

6. Faraboschi, P., Keeton, K., Marsland, T., Milojicic, D.: Beyond processor-centric operating
systems. In: Proceedings of Workshop on Hot Topics in Operating Systems (HotOS) (2015)

7. Funk, M.: Drilling down into the machine from HPE. The Next Platform, 4 January 2016.
https://www.nextplatform.com/2016/01/04/drilling-down-into-the-machine-from-hpe/.
Accessed 22 July 2018

8. Funk, M.: Drilling into the CCIX coherence standard. The Next Platform, 13 July 2016.
https://www.nextplatform.com/2016/01/04/drilling-down-into-the-machine-from-hpe/.
Accessed 22 July 2018

9. Gen-Z Consortium: Gen-Z Atomics, October 2017. https://genzconsortium.org/wp-content/
uploads/2018/05/1711_Gen-Z-Atomics.pdf. Accessed 25 July 2018

10. Gen-Z Consortium: Gen-Z Coherency, October 2017. http://genzconsortium.org/wp-content/
uploads/2017/08/Gen-Z-Coherency.pdf. Accessed 25 July 2018

11. Gen-Z Consortium: Gen-Z Core Specification. https://genzconsortium.org/specification/
core-specification-1-0/. Accessed 22 July 2018

12. Gen-Z Consortium: Gen-Z ZMMU and Memory Interleave, June 2018. https://
genzconsortium.org/wp-content/uploads/2018/06/Gen-Z-MMU-and-Memory-Interleave-1.
pdf. Accessed 25 July 2018

13. Hewlett Packard Enterprise: HPE Persistent Memory: The Performance of Memory with the
Persistence of Storage. https://www.hpe.com/us/en/servers/persistent-memory.html. Acces-
sed 25 July 2018

14. Hewlett Packard Enterprise: New HPE Pointnext Capabilities Accelerate Transition to
Memory-Driven Computing. https://news.hpe.com/new-hpe-pointnext-capabilities-
accelerate-transition-to-memory-driven-computing/. Accessed 22 July 2018

15. Huawei: High Throughput Computing Data Center Architecture: Thinking of Data Center
3.0. http://www.huawei.com/ilink/en/download/HW_349607. Accessed 25 July 2018

16. Intel: Facebook Collaborate on Future Data Center Rack Technologies, Intel Newsroom, 16
January 2013. http://goo.gl/6h2Ut. Accessed 25 July 2018

88 K. Keeton et al.

https://www.cavium.com/product-thunderx2-arm-processors.html
https://www.cavium.com/product-thunderx2-arm-processors.html
https://pubs.cray.com/pdf-attachments/attachment%3fpubId%3d00478935-DA%26attachmentId%3dpub_00478935-DA.pdf
https://pubs.cray.com/pdf-attachments/attachment%3fpubId%3d00478935-DA%26attachmentId%3dpub_00478935-DA.pdf
https://pubs.cray.com/pdf-attachments/attachment%3fpubId%3d00478935-DA%26attachmentId%3dpub_00478935-DA.pdf
https://www.nextplatform.com/2016/01/04/drilling-down-into-the-machine-from-hpe/
https://www.nextplatform.com/2016/01/04/drilling-down-into-the-machine-from-hpe/
https://genzconsortium.org/wp-content/uploads/2018/05/1711_Gen-Z-Atomics.pdf
https://genzconsortium.org/wp-content/uploads/2018/05/1711_Gen-Z-Atomics.pdf
http://genzconsortium.org/wp-content/uploads/2017/08/Gen-Z-Coherency.pdf
http://genzconsortium.org/wp-content/uploads/2017/08/Gen-Z-Coherency.pdf
https://genzconsortium.org/specification/core-specification-1-0/
https://genzconsortium.org/specification/core-specification-1-0/
https://genzconsortium.org/wp-content/uploads/2018/06/Gen-Z-MMU-and-Memory-Interleave-1.pdf
https://genzconsortium.org/wp-content/uploads/2018/06/Gen-Z-MMU-and-Memory-Interleave-1.pdf
https://genzconsortium.org/wp-content/uploads/2018/06/Gen-Z-MMU-and-Memory-Interleave-1.pdf
https://www.hpe.com/us/en/servers/persistent-memory.html
https://news.hpe.com/new-hpe-pointnext-capabilities-accelerate-transition-to-memory-driven-computing/
https://news.hpe.com/new-hpe-pointnext-capabilities-accelerate-transition-to-memory-driven-computing/
http://www.huawei.com/ilink/en/download/HW_349607
http://goo.gl/6h2Ut


17. Intel: Intel Omni-Path Architecture (Intel OPA) Driving Exascale Computing and HPC.
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-
architecture-fabric-overview.html. Accessed 25 July 2018

18. Intel Rack Scale Design: Data Center Agility at Scale. http://www.intel.com/content/www/
us/en/architecture-and-technology/rack-scale-design-overview.html. Accessed 25 July 2018

19. High Bandwidth Memory (HBM) DRAM, JEDEC Standard JESD235A, November 2015.
http://www.jedec.org/standards-documents/results/jesd235. Accessed 25 July 2018

20. Keeton, K.: Memory-driven computing. Keynote at 33rd International Conference on
Massive Storage Systems and Technology (MSST), May 2017. http://storageconference.us/
2017/Presentations/Keeton.pdf

21. Kerrisk, M.: Linux/UNIX System Programming: POSIX Shared Memory, February 2015.
http://man7.org/training/download/posix_shm_slides.pdf. Accessed 30 July 2018

22. Lim, K., et al.: System-level implications of disaggregated memory. In: Proceedings of
International Symposium on High Performance Computer Architecture (HPCA) (2012)

23. Lockwood, G.: What’s so bad about POSIX I/O?. The Next Platform, 11 September 2017.
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/. Accessed 29 July 2018

24. Loesing, S., Pilman, M., Etter, T., Kossmann, D.: On the design and scalability of distributed
shared-data databases. In: Proceedings of 15th ACM SIGMOD International Conference on
Management of Data (SIGMOD), pp. 663–676 (2015)

25. Novakovic, S., Daglis, A., Bugnion, E., Falsafi, B., Grot, B.: Scale-out NUMA. In:
Proceedings of Symposium on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2014)

26. OpenCAPI Overview, 14 October 2016. http://opencapi.org/wp-content/uploads/2016/09/
OpenCAPI-Overview.10.14.16.pdf. Accessed 25 July 2018

27. OpenSHMEM API Version 1.4. http://openshmem.org/site/sites/default/site_files/
OpenSHMEM-1.4.pdf. Accessed 25 July 2018

28. The OpenFAM API. https://github.com/OpenFAM/API. Accessed 27 June 2018
29. pmem.io: Persistent Memory Programming. http://pmem.io. Accessed 29 July 2018
30. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory system

using phase-change memory technology. In: Proceedings of 36th International Symposium
on Computer Architecture (ISCA), pp. 24–33 (2009)

31. RDMA Consortium: http://www.rdmaconsortium.org. Accessed 25 July 2018
32. Seyedi, M.A., Fiorentino, M.: Silicon photonics; ring modulator transmitters. In: Guenther,

R., Steel, D. (eds.) Encyclopedia of Modern Optics, 2nd edn, vol. 4, pp. 216–223 (2018)
33. Shah, H., Marti, F., Noureddine, W., Eiriksson, A., Sharp, R.: Remote Direct Memory

Access (RDMA) Protocol Extensions, IETF RFC 7306, June 2014. https://tools.ietf.org/
html/rfc7306. Accessed 25 July 2018

34. Spelman, L.: Reimagining the Data Center Memory and Storage Hierarchy, Intel Newsroom,
30 May 2018. https://newsroom.intel.com/editorials/re-architecting-data-center-memory-
storage-hierarchy/. Accessed 25 July 2018

35. Storage Networking Industry Association (SNIA): NVM Programming Model (NPM),
Version 1.2. https://www.snia.org/sites/default/files/technical_work/final/NVMProgramming
Model_v1.2.pdf. Accessed 29 July 2018

36. Strukov, D.B., Snider, G.S., Steward, D.R., Williams, R.S.: The missing memristor found.
Nature 453, 80–83 (2008)

37. Xie, Y.: Modeling, architecture and applications for emerging memory technologies. IEEE
Design and Test of Computers 28(1), 44–51 (2011)

The OpenFAM API: A Programming Model for Disaggregated Persistent Memory 89

http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
http://www.jedec.org/standards-documents/results/jesd235
http://storageconference.us/2017/Presentations/Keeton.pdf
http://storageconference.us/2017/Presentations/Keeton.pdf
http://man7.org/training/download/posix_shm_slides.pdf
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/
http://opencapi.org/wp-content/uploads/2016/09/OpenCAPI-Overview.10.14.16.pdf
http://opencapi.org/wp-content/uploads/2016/09/OpenCAPI-Overview.10.14.16.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
https://github.com/OpenFAM/API
http://pmem.io
http://www.rdmaconsortium.org
https://tools.ietf.org/html/rfc7306
https://tools.ietf.org/html/rfc7306
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf


SHCOLL - A Standalone Implementation
of OpenSHMEM-Style Collectives API
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Abstract. The performance of collective operations has a large impact
on overall performance in many HPC applications. Implementing mul-
tiple algorithms and selecting optimal one depending on message size
and the number of processes involved in the operation is essential to
achieve good performance. In this paper, we will present SHCOLL, a
collective routines library that was developed on top of OpenSHMEM
API point to point operations: puts, gets, atomic memory update, and
memory synchronization routines. The library is designed to serve as a
plug-in to OpenSHMEM implementations and will be used by the OSSS
OpenSHMEM reference implementation to support OpenSHMEM collec-
tive operations. In this paper, we describe the algorithms that have been
incorporated in the implementation of each OpenSHMEM API collective
routine and evaluate them on a Cray XC30 system. For long messages,
SHCOLL shows an improvement by up to a factor of 12 compared to
the vendor’s implementation. We also discuss future development of the
library, as well as how it will be incorporated into the OSSS OpenSH-
MEM reference implementation.

1 Introduction

OpenSHMEM includes both point-to-point communication and collective oper-
ations in its specification. These collectives involve synchronization (barriers),
data movement (e.g. broadcast, alltoall) and computation (reductions).

A number of platforms provide hardware support for collective operations
and vendor solutions will take advantage of this. For portable solutions where
such hardware support is not available, it is desirable to provide software imple-
mentations of collectives. SHCOLL is such a library for community use, providing
a number of algorithms for OpenSHMEM collectives. OpenSHMEM developers,
or other developers working on similar problems, can then incorporate SHCOLL
into their implementations to avoid reinventing the wheel.

The rest of the paper is organized as follows: in Sect. 2 we compare SHCOLL
with related work; in Sect. 3 we introduce the OpenSHMEM specification; in
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Sect. 4 we discuss the implementation of OpenSHMEM that this work is based
on; in Sect. 5 we elaborate the different algorithms provided by the SHCOLL
library; in Sect. 6 we include and discuss the experimental results; and in Sect. 7
we discuss future work and ideas.

2 Related Work

Most of the previous work focuses on collective communication for the Message
Passing Interface (MPI) such as work by Thakur et al. that investigates the
performance of different algorithms in MPICH [2,26]. Also, some researchers
designed algorithms for specific message sizes such as Rabenseifner’s algorithm
for large reductions [22] or Van de Gejin’s algorithm for large broadcast [6]. Awan
et al. investigated design and performance of non-blocking collectives in Open-
SHMEM using MVAPICH2-X [3,5]. Jose et al. optimized performance of Open-
SHMEM collective operations by developing a light-weight mapping between
collective operations in OpenSHMEM and MPI [17]. In this paper, we focus on
optimizing OpenSHMEM collective operations using only OpenSHMEM API
operations.

3 OpenSHMEM

OpenSHMEM is a specification [20] in the Partitioned Global Address Space
(PGAS) family for a distributed parallel programming library that focuses on
fast, low-latency, communication using Remote Direct Memory Access (RDMA)
to address remote variables directly.

‘SHMEM” is a family of PGAS libraries that was developed by various ven-
dors since the early 1990s, but unfortunately drifted from each other over time
with subtly different behaviors and APIs that caused portability problems. This
led, at least in the C language, to unwieldy preprocessor conditional macro def-
initions that attempted to iron out the differences [21].

OpenSHMEM is the process that unifies these “SHMEM” libraries under a
common, agreed upon and ratified, specification.

4 The OSSS-UCX OpenSHMEM Implementation

4.1 Initial Implementation with GASNet

After the OpenSHMEM specification was first drafted around 2010, the reference
implementation library was developed by the University of Houston [12]. This
library used GASNet [8] as its communications substrate. GASNet is a portable
communications library that was initially developed for use in UPC [23] but has
found use in other projects, for example Chapel [13], Legion [7], and in a runtime
for Fortran CoArrays [19].

Although GASNet supports a wide range of underlying networks (e.g. Infini-
band, Cray Aries, Intel OmniPath, portable MPI), some functionality required
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by OpenSHMEM is not exposed to the programmer. In particular, GASNet
does not, as yet, expose remote atomics, nor does it allow arbitrary memory
registration, which would be required to support multiple symmetric heaps with
different memory kinds in the future.

4.2 New Implementation with UCX

The current reference implementation, named “OSSS-UCX” after Open Source
Software Solutions, for OpenSHMEM specification 1.4 (and beyond) is based on
UCX [24]. UCX is a multi-party open-source project to produce a best-of-breed
communications substrate that can be used by different HPC paradigms, but
predominantly MPI and PGAS libraries and languages.

OSSS-UCX uses UCX for its communications. The OpenSHMEM API maps
quite naturally to UCX’s upper layer, called UCP (“P” for Protocol). UCP
then drops to UCT (“T” for Transport) to target individual network layers.
UCX also contains UCS for Operating System services, and UCM for memory
management. By targeting UCP, OSSS-UCX does not have to concern itself with
network details and thus will work on any network supported by UCX.

4.3 Process Management Interface

OSSS-UCX uses PMIx [11], the Process Management Interface for Exascale, as
its launch mechanism. Open-MPI and the PMIx Reference Runtime Environ-
ment (PRRTE) [4] provide a launcher with a PMIx server that coordinates the
initial bootstrap of information required by UCX for RDMA and atomics. The
OpenSHMEM Processing Elements (PEs) contain PMIx clients that exchange
information through the server. PMIx will also be used for fault-tolerance.

OSSS-UCX also incorporates some third-party software to, for example, man-
age symmetric memory allocations.

5 Collective Operations Algorithms

As mentioned earlier in Sect. 2, most of the previous work focuses on collective
operations for Message Passing Interface (MPI). For the purpose of this paper,
we have implemented all collective operations in OpenSHMEM. In MPI when
a process is supposed to receive data, it must call a receive method. However,
in OpenSHMEM that is not required because OpenSHMEM supports one-sided
remote memory access. When a receive method returns in MPI, there is a guaran-
tee that the data is delivered. Since OpenSHMEM does not have an analogous
method, it is necessary to notify the remote node that the data transfer has
completed. To ensure the transfer order between the data and the notification,
it is required to call shmem fence in between. Also, Cray SHMEM supports
extensions to OpenSHMEM API that combine data transfer with data delivery
notification (shmemx putmem signal) so in addition to an approach that uses
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shmem fence, we also used the Cray SHMEM extensions to improve the per-
formance. Additionally, for remote memory accesses in OpenSHMEM, there is
no need to calculate the addresses for remote writes in the user code because
remotely accessible memory locations have symmetric addresses.

5.1 Barrier

The barrier is a synchronization collective routine that registers the arrival of a
PE at the barrier and blocks the execution until all other PEs arrive at the bar-
rier [20]. The library we implemented supports three types of barrier algorithms:
linear, tree and dissemination barrier.

In linear barrier, when a PE reaches the barrier, it will increment a counter
at PE 0. When the counter reaches the number of PEs, PE 0 will notify all other
PEs that they can continue with execution.

For tree barrier, all PEs are organized in a tree. When a non-root PE reaches
the barrier, it will wait until the value of its local counter becomes equal to the
number of children. Then the PE will increment a counter at the parent. When
the counter at root PE becomes equal to the number of children, the root PE
will notify its children, and the children will start propagating the notification to
the leaf PEs. The library supports two types of trees, k-ary and k-nomial trees
(Fig. 1).
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Fig. 1. Examples of k-ary and k-nomial trees

Dissemination barrier belongs to the category of butterly barrier algorithms,
and it has �log p� rounds [1]. In each round r (0 ≤ r < �log p�), PE i will signal
PE (i+2k) % p and wait for a signal from PE (i−2k) % p. After getting a signal
in �log p� round, the PE can continue with execution.

5.2 Collect, Fcollect

Collect and fcollect are collective routines that concatenate blocks of data from
multiple PEs to an array in every PE. Fcollect requires that the size of each
block must be the same whereas block size for collect may vary [20]. For collect,
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we support linear, recursive doubling, ring and Bruck algorithm. In addition to
the algorithms we support for collect, we support neighbor exchange algorithm
for fcollect.

In the linear algorithm, each PE issues a put operation to all other PEs in a
loop. After the data from a single PE is transferred, the PE increments a counter
on all other PEs or calls a barrier depending on the number of PEs.

The ring algorithm (Fig. 2) requires p−1 rounds. In round r (0 ≤ r < p−1),
PE i sends block (i− r) % p to PE (i+1) % p and receives block (i− r− 1) % p
from PE (i − 1) % p.

The neighbor exchange algorithm (Fig. 3) works only if p is even and it
requires p

2 rounds. In the first round, PE i sends its block to i XOR 1. In odd
rounds, even PEs send 2 blocks that were received in the previous round to PE
(i−1) % p and odd PEs send the blocks to PE (i+1) % p. In even rounds, even
PEs send 2 blocks that were received in the previous round to PE (i + 1) % p
and odd PEs send the blocks to PE (i − 1) % p.

The recursive doubling algorithm (Fig. 4) works if p is a power of two and it
requires log p rounds. In round r (0 ≤ r < log p), PE i sends the data that was
received in the previous rounds to PE i XOR 2r.

Like the recursive doubling algorithm, the Bruck algorithm [9] (Fig. 5) also
requires �log p� rounds but, unlike the recursive doubling algorithm, it works
even if p is not a power of two. First, each PEs copies its block to the beginning
of its buffer. Then, in round r (0 ≤ r < �log p�), PE i sends 2r blocks from the
beginning of the buffer to PE (i− 2r) % p. If the number of PEs is not a power
of two, in the last round each PE will send p−2r blocks to its peer PE. After the
data is exchanged between PEs, each PE is required to rotate the destination
array by i blocks to the left. Additionally, we have implemented a variation of
the Bruck algorithm that does not require rotation at the end but some of the
messages are split into two parts because the data that should be sent is not
contiguous.

For the collect algorithms, PEs do not have information about the offset for
their blocks, so calculating the exclusive prefix sum before exchanging the data
is necessary. Additionally, Bruck algorithm requires the total size of all elements
so that value is broadcasted before the data exchange.
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Fig. 2. Ring collect
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Fig. 3. Neighbor exchange collect

5.3 Broadcast

The broadcast is a collective routine that sends data from the root PE to all
other PEs in the active set. The library supports three types of the broadcast
algorithms: linear, tree, and Van de Geijn’s algorithm.

In the linear algorithm, all PEs (except root PE) will call the get method to
retrieve the data from the root. To ensure that the root has the data, a barrier
is called before and after calling the get method.

For tree broadcast, all PEs are organized in a tree with the PE that has the
data as a root. When the root PE invokes broadcast it will send the data to its
children, and the children will start propagating the data down the tree. The
library supports two types of trees: k-ary and binomial trees (Fig. 1).

Van de Geijn’s algorithm [6] is good for large messages. First, the data is
scattered across all PEs and then it is concatenated using a method analogous
to collect. For scattering, we use binomial scatter, and for collect, we use the
ring algorithm (Fig. 2).

5.4 Alltoall, Alltoalls

Alltoall and alltoalls are collective routines in which each PE exchanges a fixed
amount of data with all other PEs in the active set. The data that is exchanged
in alltoall has to be contiguous whereas the data in alltoalls can be strided [20].

For both collectives, we support three algorithms: shift exchange, XOR pair-
wise exchange, and generalized pairwise exchange [25]. All three algorithms have
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Fig. 4. Recursive doubling collect

p rounds and in each round, a put is issued to a different PE (put to self is done
using memcpy). However, each algorithm issues put in a different order.

Shift exchange is the simplest algorithm among the algorithms we imple-
mented. In round r (1 ≤ r ≤ p), PE i will send its data to PE (i + r) % p.
This algorithm tries to avoid the bottleneck that would happen if all PEs were
writing to PE r in round r.

XOR pairwise exchange works only when the number of PEs is a power of 2.
In each round of this algorithm, each PE has a partner PE and communicates
exclusively with its partner PE. (it sends the data to the partner and it receives
the data from the partner). In round r (1 ≤ r ≤ p), the id of the partner PE for
PE i is calculated as i XOR r.

Like XOR pairwise exchange, each PE has a partner in each round of general-
ized pairwise exchange. However, generalized pairwise exchange does not require
the number of processes to be a power of 2. The problem of finding a partner
can be solved by solving the edge-coloring problem in a complete graph. The
complete algorithm can be found in [25].

After the data from a single PE is transferred, the PE increments a counter
on all other PEs, or call a barrier depending on the number of PEs.
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Fig. 5. Bruck collect

In alltoall implementations, we used non-blocking put. However, the Open-
SHMEM API [20] does not support non-blocking strided put so we implemented
a naive version of non-blocking strided put which we use it in the alltoalls imple-
mentations.

5.5 Reductions

Reductions are a set of collective routines that perform associative arithmetic
and logical operations across arrays on PEs from the active set [20]. The library
we implemented supports a recursive doubling algorithm and Rabenseifner’s
algorithm.

For both algorithms, we have to first choose the greatest subset of PEs P ′

such that the number of nodes p′ in the subset is a power of two. After choosing
the subset, we assign a unique node from the subset a partner node, which is
not in the subset, and then we perform reduction between the partner nodes.

Rabenseifner suggests that the new subset should be a union of even PEs
less than 2 ∗ (p− p′) and PEs greater or equal to 2 ∗ (p− p′). If we have multiple
PEs per node and use Rabenseifner’s approach for choosing the subset P ′, the
PEs from the subset will not be balanced across nodes. Consequently, the nodes
that have more PEs than others will have to perform more reduce operations
and they will have to exchange more data. To solve this problem, we use a
different approach. First we assign a new id to each PE, which is calculated as
idnew =

⌊
idold × p′

p

⌋
. Since p

2 < p′ ≤ p, at most two PEs can have the same new
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id. The nodes that have the same new id are partners and the node that has a
has lower idold belongs to the P ′ subset.

After the data between partners is reduced, the recursive doubling algorithm
uses the new ids. The communication pattern for recursive doubling reduce is
the same as the communication pattern for recursive doubling collect. How-
ever, instead of concatenating the arrays, we perform reduction operations across
arrays. In round r (0 ≤ r < log p′), PE i sends the array that was reduced in the
previous rounds to PE i XOR 2r and after receiving data from PE i XOR 2r, PE
i performs local reduction. After log p′ rounds, PEs in the subset P ′ will have
the reduced array, and the nodes from the subset will send the reduced data to
their partners.

Like recursive doubling, Rabenseifner’s algorithm also uses the new ids after
the reduction between partners. The idea behind Rabenseifner’s algorithm is
similar to the idea behind Van de Geijn’s algorithm from Sect. 5.3. First, a reduce
scatter operation is performed so that each PE has a part of the final array, and
then the array is concatenated using collect. Similar to recursive doubling, after
the data is concatenated, only PEs from the subset P have the reduced array,
so the nodes from the subset will send the reduced data to their partners.

6 Results

In this section, we present a performance evaluation of SHCOLL’s collective
functions and compare their performance against the equivalent OpenSHMEM
functions provided by Cray SHMEM. Note, SHCOLL uses Cray’s OpenSHMEM
put and memory sychronization methods for data transfers Sect. 5.

6.1 Evaluation Platform and Software

All experimental results presented were collected on the NERSC Edison machine.
Edison is a Cray� XC30 with 2 × 12-core Intel R© Xeon R© Processors E5-2695 v2
and 64 GB DDR3 in each node. The system was running Cray’s CLE 6.0.UP05
operating system. Cray’s Intel Programming Environment 6.0.4 was used to
compile SHCOLL and its performance tests. Cray’s OpenSHMEM 7.6.2 was
used for linking against SHCOLL and to obtain Cray OpenSHMEM performance
results. Jobs were submitted to Edison using SLURM’s contiguous option to try
and get closely packed sets of nodes. The SLURM nodelists for the jobs indicated
that the allocations obtained were generally closely packed, taking into account
locations of service and I/O nodes within cabinets.

The OSU OpenSHMEM benchmark tests [3] were initially used for compar-
ing the performance of SHCOLL against the vendor’s OpenSHMEM implemen-
tation. However, there were limitations in the OSU tests which reduced their
usefulness for this evaluation: they don’t include all OpenSHMEM collectives,
iteration count and transfers are not easily configurable, and they don’t check
for correctness, even during the warm-up phase. For thes reason, we decided to
write tests specifically for this evaluation.
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6.2 Barrier

In Fig. 6, timings for SHCOLL’s shcoll barrier are compared to Cray’s
shmem barrier for 1 to 512 nodes using 1 and 24 PEs/node. The plot reports
time per iteration in milliseconds. The vendor’s shmem barrier performs sig-
nificantly better at all node counts both for the 1 PE and 24 PEs per node
runs. This is expected as Cray OpenSHMEM makes use DMAPP API collective
calls [10,14] to access the Aries collective engine (CE) [16] for the inter-node
stage of the barrier operation. The significant jump from 256 to 512 nodes can
be attributed to the fact that at 512 nodes, the job spans more than a single
electrical group of the Cray XC30.
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0.06

Fig. 6. Barrier

6.3 Broadcast

Figure 7 compares time for broadcast operations for 4, 1KB, 1MB, and
256MB byte transfer sizes for SHCOLL’s shcoll bcast32 and the ven-
dor’s shmem broadcast32 functions for 1 to 512 nodes, and 1 and 24 PEs
per node. The plot gives times for a broadcast operation plus a subsequent
shmem barrier all, to ensure we are timing the full transfer to all partici-
pating PEs, and not just the time spent in the broadcast operation by the root
PE. For the 4-byte broadcast, SHCOLL uses the k-nomial algorithm. The Cray
OpenSHMEM broadcast significantly outperforms the SHCOLL implementa-
tion, particularly for the 1 PE per node case. This indicates the Cray imple-
mentation may be employing the Aries CE to do the broadcast by using its
reduction engine with only the root PE supplying a non-zero value. For the 1
KB broadcast, the k-nomial algorithm gives optimal performance as well. Using
Cray’s put-with-signal operation gives best performance for the k-nomial algo-
rithm. This helps particularly for 256 and 512 nodes, where SHCOLL performs
significantly better than the Cray implementation. The 24 PEs per node timings
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Fig. 7. Broadcast

show a similar performance difference between the Cray and SHCOLL broad-
cast implementations. For the 1 MB transfer size, the binomial tree algorithm
gave the best results for SHCOLL, although the Cray implementation shows bet-
ter performance. For the 256 MB broadcast, SHCOLL uses the Van de Geijn’st
algorithm. The results for the Cray implementation are similar to those obtained
using the binomial tree method. The Van de Geijn’s gives better performance
for both the 1 and 24 PE cases compared to the vendor’s implementation.

The SHMEM USE OPT MASSIVE BCAST environment variable was used to
check for the best timings using Cray OpenSHMEM. At some PE counts and
transfer sizes setting the environment variable helped, in which case timings were
taken with it set.

6.4 Reduce

Figure 8 shows times for OpenSHMEM shmem double sum to all and the
SHCOLL equivalent for 8 and 2 KB reductions. Timings include a preceding
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shmem barrier all to ensure the pSync array is properly armed. The results
for the 8 byte reduction show that Cray’s implementation is making use of the
Aries CE, consequently performing significantly better than SHCOLL’s recursive
doubling approach. For 2 KB reductions SHCOLL uses recursive doubling for 1
PE per node (power of two), and the Rabenseifner algorithm for 24 PEs per
node. This algorithm gives better results for all node counts, leading to superior
performance for SHCOLL in this case. Note the Aries CE can’t be efficiently used
for these size reductions. Performance is similar to Cray when using recursive
doubling.

The Cray OpenSHMEM SHMEM USE LARGE OPT REDUCE variable was set
when it gave better performance.

6.5 Fcollect

Figure 9 presents timing results for shmem fcollect32 and its SHCOLL equiv-
alent for 4 and 16 KB per PE operations. As with the reduction tests, a
shmem barrier all is included in the fcollect timing loop. For the 4 bytes per
PE operation, SHCOLL employees the Bruck algorithm and makes use of Cray’s
put-with-signal extension to OpenSHMEM [18]. The SHCOLL implementation
at this transfer size gives comparable performance to the Cray implementation
for 1 PE per node up to 128 nodes, and better performance beyond. For 24 PEs
per node, the SHCOLL approach yields much better performance. The signif-
icant difference at 24 PEs per node verses 1 PE per node hints that the Cray
algorithm may be doing something suboptimal - perhaps leading to network
congestion - particularly as the performance deteriorates significantly at higher
node counts.
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Fig. 9. Fcollect

For 16 KB size transfers and 24 PEs per node, the ring algorithm gives
the best results for SHCOLL, likely due to the pipelining effect offered by this
algorithm. Using this algorithm, SHCOLL performs much better than the vendor
implementation, especially at 16 and higher node counts. For 16 KB per PE
operations and 1 PE per node, we use the linear method up to 256 nodes and
the Bruck algorithm for 512 nodes.

6.6 Collect

Results for timing of shmem collect32 and shcoll collect32 are pre-
sented in Fig. 10. The collect method involves more inter-PE data exchange as
each PE supplies its contribution to the transfer, and the implementation must
assemble this information in order to do the actual data exchange correctly. For
4 byte per PE (in these tests each PE contributes the same amount of data),
SHCOLL uses the recursive doubling algorithm and Cray’s put-with-signal fea-
ture for 1 PE per node, and linear for low node counts and Bruck for higher node
counts. The Bruck algorithm yields significantly better results than the method
used by the vendor, as shown by the 24 PE/node results at nodes counts of 16
and higher.

For the 16 KB, the linear method was optimal up to 32 nodes, with the
Bruck algorithm performing better for higher node counts. Both algorithms give
superior performance to the approach used in the vendor implementation.
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Fig. 10. Collect

6.7 Alltoall

Figure 11 compares performance of Cray OpenSHMEM shmem alltoall32
against that of SHCOLL’s equivalent shcoll alltoall32 function. The color-
pairwise exchange method generally performed best for all transfer sizes. At low
node or PE counts, the Cray put-with-signal approach works well, but a barrier
based synchronization is employed for higher numbers of processes. The algo-
rithm could be more efficient if the underlying network (and the OpenSHMEM
API), supported a put-with-counter mechanism [15]. The vendor implementa-
tion [18] modestly outperforms the SHCOLL implementation suggesting that
the Cray implementation is similar to that used by SHCOLL.
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6.8 Alltoalls

Figure 12 shows timing results for Cray’s OpenSHMEM implementation’s
shmem alltoalls32 against SHCOLL’s shcoll alltoalls32. As with the
other experiments, the timed loop includes a shmem barrier all to keep the
pSync array properly armed. Results for 4 byte and 128 byte per PE contribu-
tions are shown. For the single PE per node tests, it was found that the xor-
pairwise exchange method gave good results for both transfer sizes. For the 24
PEs/node case, the shift exchange method with barrier synchronization works
best for the 4 byte exchange, while for the 128 byte transfer size, the color-
pairwise exchange was superior. SHCOLL gives significantly better performance
for the 4 byte per PE operation at all node counts for both 1 and 24 PEs per
node, while showing modestly better results for the 128 byte per PE case.
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The performance of the SHCOLL algorithms was also helped by the use of
what is effectively a non-blocking implicit shmem iputX nbi function:
void shmem_iput32_nbi(void* dest, const void* source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems, int pe) {
uint32_t* dest_ptr = (uint32_t*)dest;
const uint32_t* source_ptr = (const uint32_t*)source;
for (int i = 0; i < nelems; i++) {

shmem_put32_nbi(dest_ptr, source_ptr, 1, pe);
dest_ptr += dst; source_ptr += sst;

}
}

This approach was used for the data movement part of the shcoll
alltoalls32 implementation.

7 Conclusion and Future Work

In this paper we have shown that implementing multiple algorithms and select-
ing the optimal one depending on message size and the number of processes
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involved in the operation is essential to achieving good performance. Currently,
the optimal algorithm for both transfer size and the number of PEs involved
in the collective is chosen manually. In future we plan to develop methods to
better automate the selection of the optimal algorithm for a particular message
size and number of processes. Also, to improve the performance for flat Open-
SHMEM applications that use collective operations, we plan add topology aware
collectives using PMIx [11]. We further plan to integrate SHCOLL into a future
OSSS OpenSHMEM collective plugin framework.
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Abstract. Many problems can benefit from being phrased as a graph
processing or graph analytics problem: infectious disease modeling,
insider threat detection, fraud prevention, social network analyis, and
more. These problems all share a common property: the relationships
between entitites in these systems are crucial to understanding the overall
behavior of the systems themselves. However, relations are rarely if ever
static. As our ability to collect information on those relations improve
(e.g. on financial transactions in fraud prevention), the value added by
large-scale, high-performance, dynamic/streaming (rather than static)
graph analysis becomes significant.

This paper introduces HOOVER, a distributed software framework
for large-scale, dynamic graph modeling and analyis. HOOVER sits on
top of OpenSHMEM, a PGAS programming system, and enables users
to plug in application-specific logic while handling all runtime coordina-
tion of computation and communication. HOOVER has demonstrated
scaling out to 24,576 cores, and is flexible enough to support a wide
range of graph-based applications, including infectious disease modeling
and anomaly detection.

1 Motivation

The value of graph analytics has grown over the past decade, as new applica-
tions arise in the areas of intrusion detection, infectious disease modeling, social
networks, fraud prevention, and more. The value of graph analytics lies in the
emphasis on analyzing relationships between elements of a system, rather than
simply attributes of the elements themselves.

In many high-value applications of graph analytics, timeliness is key; while
detecting a network intrusion one month after it occurs is still useful, detecting
it as it occurs is much more so. As a result, focus is shifting from static graphs
towards dynamic or streaming graph analyses.

However, with the growth in the use of streaming graph analysis has come
a growth in the size and diversity of the graph datasets that graph analytics
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frameworks are applied to. Graphs have grown in scale, with increased numbers
of vertices and edges. Graphs have also grown in complexity and imbalance, with
widely varying densities and connectivity within a single graph. To support the
continuation of these trends into the future, graph analysis frameworks will need
to:

1. Support bringing to bear larger amounts of memory and compute.
2. Use sufficiently high level abstractions such that the framework’s runtime can

make automatic performance tuning decisions transparently, and so that user
workloads can be mapped to new and exotic hardware.

3. Use sufficiently low level and flexible abstractions such that the framework
does not overly restrict the problems that a user can express on top of it.

4. Demonstrate good scalability, such that adding memory and compute leads
to an increase in the problem sizes that can be solved.

Without these properties, future graph datasets will be un-analyzable
because of their size, or because of how long processing them requires.

In this paper, we introduce the HOOVER graph analysis and simulation
framework. HOOVER is a general purpose, distributed, scalable, and flexible
framework for (1) modeling systems that are naturally expressed as a graph,
and (2) running analyses on the graph representation of that system. HOOVER
is a framework for modeling dynamic graphs and supports addition and removal
of vertices and edges in the graph, as well as updates to attributes on graph
elements. This paper offers an overview of the problem scope of HOOVER,
HOOVER’s runtime, HOOVER’s API, and uses two mini-apps to evaluate its
scalability. HOOVER is available open source at https://github.com/agrippa/
hoover.

2 Design

HOOVER is a C/C++ distributed framework for modeling and analyzing sys-
tems represented as streaming/dynamic graph problems. HOOVER emphasizes
flexibility without sacrificing scalability, allowing users to plug in application-
specific logic while:

1. Using OpenSHMEM [2] as a scalable backend for inter-PE communication.
2. Using communication-avoiding techniques to reduce inter-PE communication.
3. Being PGAS-by-design from the beginning, leveraging one-sided communica-

tion and de-coupled execution to reduce blocking and increase asynchrony.

HOOVER is, to some extent, specialized for a particular class of dynamic
graph problems. The archetypical HOOVER problem follows this high level exe-
cution flow:

1. The application defines a large number of vertices partitioned across PEs, as
well as callbacks to update the state of the graph. This information is passed
to HOOVER.

https://github.com/agrippa/hoover
https://github.com/agrippa/hoover
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2. The HOOVER framework begins iterative modeling of vertex behavior
through repeated callbacks to user-level functions, evolving vertex and graph
state over time. All PEs execute entirely de-coupled from each other. While
each PE is asynchronously made aware of summaries of the state change in
other PEs, no PE ever blocks on or performs two-sided communication with
any other PE.

3. After some time, two or more PEs discover their state is related. This “rela-
tionship” is entirely user-directed and in the control of user callbacks. After
this connectivity is discovered, those PEs enter lockstep execution with each
other and share data on each iterative update to their local graph state. Mul-
tiple clusters of “coupled” PEs may evolve over time, with separate groups
of PEs becoming interconnected or all PEs evolving into a single, massive
cluster depending on application behavior.

4. Individual PEs may decide to leave the simulation at any time. A PE exiting
a simulation does not imply a barrier; hence, all other PEs may continue
in the simulation. PEs may also be configured with a maximum number of
iterations to perform. Of course, this says nothing about process termination:
all PEs would be expected to call shmem finalize eventually.

An illustrative example may be useful: malware spread over Bluetooth.
Malware propagation can be expressed as a graph problem, where vertices in
the graph represent Bluetooth devices and edges represent direct connectivity
between two devices. Malware propagation and analysis could be modeled on
the HOOVER framework:

1. The application developer would define the actors in the simulation as ver-
tices. Each actor would represent a device, and may include attributes such as
the range of its Bluetooth hardware, the model of its Bluetooth hardware/-
software, the speed at which it can move, or its initial infected/uninfected
status.

2. HOOVER would then begin execution, updating device infection status, posi-
tion, and connectivity with other devices based on user callbacks and other
information passed in by the application developer. As iterations progress,
more and more devices might become infected from a small initial seed of
infected devices.

3. Eventually, two or more PEs may become coupled at the application devel-
oper’s direction. For example, the developer might instruct two PEs to become
coupled if a device resident on one PE infects a device resident on another.
By entering coupled, lockstep execution those two PEs can now compute sev-
eral joint metrics about the infectious cluster they collectively store, such as
number of infected devices or rate of infection progression. Note that even
when PEs create a tightly coupled cluster, they still interact as usual with
any other PEs in the simulation which they are not coupled with.
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2.1 OpenSHMEM

HOOVER is built on top of the PGAS OpenSHMEM programming model, and
derives much of its scalability from being designed for the PGAS/OpenSHMEM
execution model.

The SHMEM programming model was first created by Cray Research for
the Cray� T3D machine and has subsequently been supported by a number of
vendors across many platforms. The OpenSHMEM specification was created in
an effort to improve the consistency of the library across implementations and,
more importantly, to provide a forum for the user and vendor communities to
discuss and adopt extensions to the SHMEM API.

The OpenSHMEM library provides a single program, multiple data (SPMD)
execution model in which N instances of the program are executed in parallel.
Each instance is referred to as a processing element (PE) and is identified by
its integer ID in the range from 0 to N − 1. PEs exchange information through
one-sided get (read) and put (write) operations that access remotely accessi-
ble symmetric objects. Symmetric objects are objects that are present at all
PEs and they are referenced using the local address to the given object. By
default, all objects within the data segment of the application are exposed as
symmetric; additional symmetric objects are allocated through OpenSHMEM
API routines. OpenSHMEM’s communication model is unordered by default.
Point-to-point ordering is established through fence operations, remote comple-
tion is established through quiet operations, and global ordering is established
through barrier operations.

3 HOOVER’s API

This section describes the user-facing HOOVER data structures, concepts, and
APIs to illustrate how an application developer interacts with HOOVER.

3.1 Vertex APIs

The core data structure of HOOVER is the graph vertex, represented by objects
of type hvr vertex t. A graph vertex is represented as a sparse vector-like
data structure.

Creating new vertices is accomplished with hvr vertex create n (before
or during the simulation). This will return initialized but empty vertices
to the user, to be populated with initial state. Vertices are deleted using
hvr vertex delete n.

Given a vertex in the graph, a new attribute can be set or an old attribute
updated to a new value using hvr vertex set. Similarly, hvr vertex get
can be used to fetch the current value of an attribute.

hvr_vertex_t *hvr_vertex_create_n(size_t nvecs,
hvr_graph_id_t graph, hvr_ctx_t ctx);

void hvr_vertex_set(unsigned feature, double val,
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hvr_vertex_t *vec, hvr_ctx_t in_ctx);
double hvr_vertex_get(unsigned feature, hvr_vertex_t *vec,

hvr_ctx_t in_ctx);
void hvr_vertex_delete_n(hvr_vertex_t *vecs, size_t nvecs,

hvr_ctx_t ctx);

3.2 Core APIS

The core of HOOVER is encapsulated in four APIS.
hvr ctx create initializes the state of a user-allocated HOOVER context

object. The HOOVER context is used to store global state for a given HOOVER
simulation. HOOVER assumes that the user has already called shmem init to
initialize the OpenSHMEM runtime before calling hvr ctx create.

extern void hvr_ctx_create(hvr_ctx_t *out_ctx);

hvr init completes initialization of the HOOVER context object by pop-
ulating it with several pieces of user-provided information (e.g. application call-
backs) and allocating internal data structures. hvr init does not launch the
simulation itself, but is the last step before doing so.

void hvr_init(const uint16_t n_partitions,
hvr_start_iteration start_iteration,
hvr_update_metadata_func update_metadata,
hvr_check_abort_func check_abort,
hvr_might_interact_func might_interact,
hvr_actor_to_partition actor_to_partition,
const double connectivity_threshold,
const unsigned min_spatial_feature_inclusive,
const unsigned max_spatial_feature_inclusive,
const hvr_iter_t max_iteration, hvr_ctx_t ctx);

The arguments passed are described below:

1. n partitions - During execution, HOOVER divides the simulation space
up into partitions. These partitions are used to detect possible interactions
between vertices in different PEs by first checking for vertex-to-partition inter-
action. This argument specifies the number of partitions the application devel-
oper would like used.

2. start iteration - A user callback that is called at the beginning of each
iteration and passed an iterator over the vertices in the local PE.

3. update metadata - On each iteration, update metadata is called on each
local vertex one-by-one along with the vertices that vertex has edges with
(including remote vertices). update metadata is responsible for making any
changes to the state of the vertex, and deciding if based on those updates any
remote PEs should become coupled with the current PE’s execution.



114 M. Grossman et al.

4. check abort - A callback used by the application developer to determine
if the current PE should exit the simulation based on the state of all local
vertices following a full iteration. check abort also computes local metrics,
which are then shared with coupled PEs.

5. might interact - A callback used by the runtime to determine if a vertex
in the provided partition may interact with any vertex in another partition.

6. actor to partition - A callback that computes the partition for a given
vertex.

7. connectivity threshold, min spatial feature inclusive,
max spatial feature inclusive - These arguments are all used
to update graph edges. HOOVER automatically updates edges based
on their “nearness” to other vertices in the simulation, by some
distance measure. Today, that is simply a Euclidean distance mea-
sure on the features in the range [min spatial feature inclusive,
max spatial feature inclusive]. If the computed distance is less than
connectivity threshold those vertices have an edge created between
them.

8. max iteration - A limit on the number of iterations for HOOVER to run.
9. ctx - The HOOVER context to initialize.

hvr body is then used to launch the simulation problem, as specified by
the provided ctx, and hvr finalize is used to clean up HOOVER’s state.
hvr body only returns when the local PE has completed execution, either by
exceeding the maximum number of iterations or through a non-zero return code
from the check abort callback. HOOVER assumes that shmem finalize is
called after hvr finalize.

extern void hvr_body(hvr_ctx_t ctx);
extern void hvr_finalize(hvr_ctx_t ctx);

3.3 HOOVER Application Skeleton

Given the above APIs, a standard HOOVER application has the following skele-
ton:

hvr_ctx_t ctx;
hvr_ctx_create(&ctx);
hvr_graph_id_t graph = hvr_graph_create(hvr_ctx);

// Create and initialize the vertices in the simulation
hvr_sparse_vec_t *vertices = hvr_sparse_vec_create_n(...);
...

hvr_init(...);

// Launch the simulation
hvr_body(ctx);
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// Analyze and display final results of the simulation
...

hvr_finalize(ctx);

Internally, the kernel of hvr body follows the following workflow:

while not abort and iter < max_iter:
start_time_step(local_vertices)

foreach vert in local_vertices:
neighbors = gather_neighbors_along_edges(vert)
update_metadata(vert, neighbors)

iter += 1

update_my_partitions()

foreach vert in local_vertices:
update_edges(vert)

abort = check_abort()

block_on_coupled_pes()

4 HOOVER’s Runtime

The core of HOOVER’s coordination logic is included under the hvr body API.
hvr body is responsible for coordinating the execution of the simulation from
start to end.

The core of hvr body is a loop. On each iteration, the following high level
actions are taken:

1. Start Iteration: The user-provided start iteration is called, which is
passed an iterator over the vertices in the local part of the graph. This gives
the user the opportunity to (optionally) perform any application-specific, per-
iteration logic.

2. Update Local Vertices: All local vertices have their attributes updated
using the update metadata user callback.

3. Update Local Partitions: Information on the problem space partitions
that contain local vertices is updated on the local PE and made visible to
remote PEs.

4. Find Nearby PEs: Based on the partition information of other PEs, con-
struct a list of all PEs which have vertices that local vertices may have edges
with.
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5. Update Graph Edges: Communicating only with the PEs that may have
nearby vertices, update all inter-vertex edges.

6. Check Abort: Check if any updates to local vertices lead to this PE aborting
using the check abort user callback, and compute the local PE’s contribu-
tion to any coupled metric.

7. Compute Coupled Metric: If coupled with other PEs, jointly compute a
coupled metric with them.

8. Continue to the next iteration if no abort was indicated and we have not
reached the maximum number of iterations.

The following sections provide additional details on subtleties in HOOVER’s
execution and data structures.

4.1 Versioned Vertices

While HOOVER vertices expose simple get and set APIs to the user, they are
subtly complex.

The root of this complexity is the decoupled nature of HOOVER’s execution.
For scalability reasons, HOOVER was designed to avoid all two-sided, blocking,
or collective operations between any two de-coupled PEs. As such, any PE may
fetch vertex data from any other PE at any time during the simulation without
any involvement from the remote PE. As such, the sparse vector data structure
used to represent vertices must be designed to be remotely consistent.

Additionally, because HOOVER is iterative it has some measure of ordering
of operations. De-coupled PEs may have reached very different iterations in
the simulation before their first interaction. It may be undesirable (in some
applications) for the slower PE to be able to read data from future iterations on
the faster PE - we would like any information accessed to be mostly consistent for
a given iteration. As a result, it is necessary to have some history or versioning
built in to HOOVER’s sparse vector data structure such that de-coupled PEs
on different iterations can still fetch consistent data from each other.

Hence, internally the vertex data structure stores its state going back many
iterations. Additionally, when updating a vertex with new values, those values
are tagged with the current iteration. A simplified version of the actual sparse
vector data structure used to represent graph vertices is shown below:

typedef struct _hvr_vertex_t {
// Features, all entries in each bucket guaranteed unique
unsigned features[HVR_BUCKETS][HVR_BUCKET_SIZE];

// Values for each feature in each bucket
double values[HVR_BUCKETS][HVR_BUCKET_SIZE];

// Number of features present in each bucket
unsigned bucket_size[HVR_BUCKETS];

// Creation iteration for each bucket
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hvr_iter_t iterations[HVR_BUCKETS];
} hvr_vertex_t;

The sparse vector above has the ability to store history for this sparse vec-
tor’s state going back HVR BUCKETS iterations, with up to HVR BUCKET SIZE
features in the sparse vector.

Each time the first attribute is set on a new iteration, a bucket is allocated
to it by finding the oldest bucket (i.e. least recently used eviction policy). The
most recent state of the sparse vector from the most recent iteration is copied
to the new bucket. Then, additional changes for the current iteration are made
on top of those copied values.

Anytime a feature needs to be read from a sparse vector, an iteration to
read the value for is also passed in (either explicitly from the HOOVER runtime
or implicitly using the calling PE’s context). The bucket that is closest to that
iteration but not past it is then used to return the requested feature. Finding the
correct bucket is O(HVR BUCKETS) in the worst case, but HOOVER maintains
two indices into each vertex’s buckets to accelerate lookups: (1) the index of the
last bucket requested and the iteration that was requested, and (2) the index of
the most recently created bucket.

While this design is flexible and solves the problem of de-coupled data
accesses in a massively distributed system, it naturally comes with drawbacks.
It is memory inefficient, consuming many times the number of bytes than what
would be needed to simply store the current state of the sparse vector. Of course,
this also has implications for bytes transferred over the network.

Edge Updates. Updating the edges on a given vertex is an expensive operation.
Each check to see if an edge should exist between two vertices may include both
a remote vector fetch as well as a distance measure. Hence, edge updating is
a multi-step process during which we try to eliminate as many remote vertices
from consideration as possible without fetching the vertex itself. Key to this is
the concept of partitions.

Partitions were introduced earlier, but will be described in more detail here. A
partition is simply some subset of the current simulation’s problem space, where
the problem space is defined as all possible values that may be taken on by the
positional attributes of any vertex. One of the simplest forms of partition would
be a regular two-dimensional partitioning/gridding of a flat, two-dimensional
problem space. However, the concept of a partition in HOOVER is more flexible
than that as the user is never asked to explicitly specify the shape or bounds of
any partition. They simply must define:

1. A total number of partitions (passed to hvr init).
2. A callback for returning the partition for a given vertice’s state.
3. A callback that tests for the possibility of partition-to-partition interaction

(i.e. the possibility of any vertex in partition A interacting with any vertex in
partition B)..
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Partitions are key to reducing the number of pairwise distance checks needed
during edge updating.

During an update to the edges of local actors, we iterate over all other PEs.
For each PE we fetch the current actor-to-partition map of that PE. The actor-
to-partition map is simply an array storing the partition of each actor on a PE,
which is updated on each iteration. Then, for each actor on the remote PE in a
partition which one of our locally active partitions may interact with we take a
Euclidean distance with each of our local actors to determine which should have
edges added.

To further reduce the number of remote memory accesses required we also
use a fixed-size, LRU cache for remotely fetched vertices.

OpenSHMEM Read-Write Locks. One common pattern repeated through-
out HOOVER was the desire to atomically fetch a large, contiguous region of
memory from a remote PE (similar to shmem atomic fetch but on larger
numbers of bytes). In general, these regions of memory are remotely read and
only locally written.

Currently, HOOVER supports this requirement by implementing read-write
locks on top of OpenSHMEM APIs. Like the standard OpenSHMEM lock APIs,
a read-write lock is a symmetrically allocated long, though in our case we add
a custom allocator to allow for custom initialization:

long *hvr_rwlock_create_n(const int n);

These read-write locks have some semantic differences with standard Open-
SHMEM locks (beyond the differences between read-write locks and standard
locks). When locking an OpenSHMEM lock, mutual exclusion is guaranteed
globally across all PEs for that lock. If a user has a distributed data structure
and would like to lock only the chunk of it sitting in a particular PE, this leads
to an (undesirable) pattern of allocating npes locks, each for mutual exclusion
on a different PE’s chunk.

Instead, allocating a single read-write lock in HOOVER is semantically allo-
cating a lock per PE. When acquiring or releasing a read-write lock, a target PE
must be specified along with the symmetrically allocated lock object. Mutual
exclusion is only guaranteed for a given lock targeting a given PE. The APIs for
read-write locks are listed below:

void hvr_rwlock_rlock(long *lock, const int target_pe);
void hvr_rwlock_runlock(long *lock, const int target_pe);
void hvr_rwlock_wlock(long *lock, const int target_pe);
void hvr_rwlock_wunlock(long *lock, const int target_pe);

Under the covers, the highest order bit in the symmetrically allocated long
on each PE is set to acquire a write lock for that PE, while the remaining bits
are used to count readers. If a reader attempts to lock and finds the highest
order bit set, it will spin until the write lock clears. If a writer attempts to lock
and finds one or more readers in the critical section, it will spin until they have
all unlocked their read locks.
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Dynamic Vertex Allocation and Deallocation. To support adding and
removing vertices, we must support dynamic allocation and de-allocation of
HOOVER vertices from OpenSHMEM’s symmetric heap. Today, that is accom-
plished with a memory pool that tracks free and used vertices in a pre-allocated
chunk of the symmetric heap.

One subtlety of vertex deletion in the presence of de-coupled execution is that
remote PEs may still request information on a deleted vertex after it is locally
deleted, depending on how the problem is configured and which iteration they
are on. As a result, deleted vertices are retained until all PEs have progressed
past the point where any would request information on the deleted vertices. PEs
share information on their current iteration with neighboring PEs, which in term
share this information with their neighbors, leading to all PEs asynchronously
receiving slightly out-of-date information on the current iteration of all other
PEs. Once all PEs have passed the iteration on which a given vertex was deleted,
it is safe to delete that vertex.

5 Performance Results

5.1 Mini-apps

We focus our evaluation on two mini-apps developed as part of this work: a
simplified infectious disease model and an intrusion detection model.

Infectious Disease Model. In our infectious disease model each node in the
graph represents an actor, i.e. a person or device that could be infected by
a bacterial or electronic bug. Actors are assigned a home location, and then
repeatedly given random destinations to travel to that are within some radius
of their home. Edges between actors indicate some physical proximity to each
other, allowing infection to spread between nearby actors. One or more actors
in the simulation are initialized to be infected, with the remainder initialized to
uninfected. On each HOOVER iteration, an actor’s location is updated based
on the current destination it is traveling towards, and it becomes infected if any
of the vertices it shares edges with are also infected. PEs couple when an actor
from one PE infects an actor on another PE.

Intrusion Detection Model. Our intrusion detection model is based on the
GBAD graph-based anomaly detection algorithm [4]. In GBAD, the goal is to
find anomalies (i.e. rarities) in the structure of a graph which look similar to com-
mon patterns, but which are not the same. Nodes in this graph might represent
system events, network packets, or other user activities. In our implementation,
each PE computes a local set of normative/common subgraph patterns. These
patterns are then shared globally and asynchronously among PEs, and used to
compute a global set of normative patterns. Each PE then locally looks for pat-
terns which are similar to the normative patterns, but not the same. Note that
these patterns may contain edges that cross PEs and include remote vertices.
PEs couple when an anomalous pattern is discovered with cross-PE edges.
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5.2 Evaluation Platform

HOOVER has been tested on the OSSS, SoS, Cray, HPE, and OpenMPI Open-
SHMEM implementations. It has also been tested on ARM- and Intel-based
platforms.

The experiments presented here were run on the NERSC Edison machine.
Edison is a Cray� XC30 with 2 × 12-core Intel R© Xeon R© Processors E5-2695
v2 and 64 GB DDR3 in each node. Edison nodes are connected by the Aries
interconnect. All experiments are run on Cray SHMEM 7.7.0. All tests are run
with one PE per core (24 PEs per node).

5.3 Scaling Results

For strong scaling experiments of the infectious disease model, we use a problem
consisting of a 16,000 × 24,000 two-dimensional grid with 9,830,400 actors mov-
ing on it. Strong scaling results out to 256 nodes are shown in Table 1. Thanks
to its decoupled-by-default design, HOOVER is able to continue to show strong
scaling performance improvements out to over 6,000 PEs.

Table 1. Strong scaling tests with 9,830,400 actors in the infectious disease model on
the Edison supercomputer.

# PEs Execution time (ms) Speedup relative to
previous

384 56,296

1,536 13,229 4.26×
6,144 6,642 1.99×

24,576 4,472 1.49×

Table 2 shows the results of weak scaling experiments of our intrusion detec-
tion model out to 3,072 PEs. In these tests, each PE inserts a random number of
random nodes in the graph on each iteration as part of the start iteration
callback. This emulates the ingestion of new events in a real world auditing sys-
tem. Tests are run for a fixed walltime. Table 2 reports the number of nodes
that were handled by the end of the simulation, demonstrating that with more
hardware the system is able to process events at a consistently higher rate.

Decoupled execution is a foundational component of HOOVER’s perfor-
mance, but also leads to overheads that other systems lack. In particular, decou-
pled execution eliminates synchronization but requires that the history of a ver-
tex’s attributes be kept and communicated between PEs. It is important to
test that the overheads removed by decoupled execution are greater than the
overheads introduced. To that end, experiments were run using the intrusion
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Table 2. Weak scaling tests of the intrusion detection model on the Edison supercom-
puter.

# PEs Nodes processed Improvement relative
to previous

384 2,228,526

768 3,788,324 1.70×
1,536 6,143,523 1.62×
3,072 9,087,829 1.48×
6,144 12,787,045 1.41×

detection model at 3,072 PEs with vertex history tracking disabled and a global
barrier per iteration to ensure PEs remain in-sync. While decoupled execution
was able to process 9,087,829 nodes, the synchronized version only processed
3,672,764 (∼40%).

6 Related Work

6.1 Distributed Graph Analytics

While most of today’s graph analytics frameworks are single node and shared
memory, we summarize the distributed frameworks here.

GraphX [5] is a popular graph processing framework built on top of the
Apache Spark framework. As a result, it supports scaling out to large distributed
systems (though the original paper only measures scalability out to 16 nodes) and
composability with other frameworks built on Spark. GraphX represents graphs
as distributed arrays of vertex and edge attributes stored in Spark RDDs, which
are often presented as arrays of “triplets” where each triplet contains an edge
and references to the vertices it connects. GraphX adds graph-specific operators
on top of Spark to make processing GraphX graphs easier (e.g. a mapE operation
that maps a function across edges).

LFGraph [6] is a distributed graph processing framework that focuses on
value propagation problems (rather than computing on the graph itself) on static
graphs. The dataflow API focuses on fetching the updated values of neighboring
vertices, and updating the current value of the current vertex. Hence, LFGraph is
focused on computing classical graph statistics (e.g. PageRank, Undirected Tri-
angle Count, etc) rather than modeling more complex systems. While LFGraph
is fault tolerant and is designed to run on commodity hardware, its experimental
evaluation only measures its scalability out to 64 nodes.

Distributed GraphLab [8] is a distributed graph processing framework for
static graphs. GraphLab’s programming abstractions consist of a “data graph”
which allows user’s to attach metadata to each vertex and edge in the static
graph, “update functions” which updates the state of a vertex and may schedule
processing of other vertices, and “sync operations” which update global data
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structures based on read-only access to the data graph. GraphLab uses a pre-
processing step to initially over-partition the target graph into many files on
the storage system, and then loads these partitions (similar to HOOVER’s par-
titions) in a distributed fashion across nodes. GraphLab uses its own custom
execution engine to manage computation and communication across nodes (i.e.,
does not sit on top of Spark or some other framework).

Pregel [9] offers a message-based programming model for dynamic, dis-
tributed graph processing: “Programs are expressed as a sequence of iterations,
in each of which a vertex can receive messages sent in the previous iteration,
send messages to other vertices, and modify its own state and that of its outgo-
ing edges or mutate graph topology”. Pregel has its own execution engine that
coordinates the communication of messages and their processing at each vertex.

Apache Flink [1] is an open source system for distributed stream and batch
processing, which exposes a graph API called Gelly [7]. Gelly offers common
graph operations, supports dynamic graph mutation, and supports both vertex-
centric and edge-centric APIs.

Many of the frameworks above and in other literature have several properties
in common that contrast them with HOOVER:

1. Bulk synchronous execution: Most frameworks make frequent use of global
barriers to coordinate execution, limiting scalability.

2. Focus on static rather than dynamic graphs: Most frameworks focus on static
rather than dynamic graphs (with some exceptions, such as Pregel and Gelly).

3. Custom execution/coordination engines: Many frameworks implement their
own custom execution, coordination, and communication engines for schedul-
ing work. HOOVER, on the other hand, leverages years of work tuning Open-
SHMEM runtimes for performance and stability.

4. Support for fault tolerance: HOOVER does not currently support fault tol-
erance, though active work is exploring this avenue of research.

6.2 Graph-Based Intrusion Detection

While not the primary contribution of this work, the intrusion detection mini-
app described in Sect. 5.1 is inspired by earlier work.

GBAD [4] is the seminal graph-based anomaly detection algorithm on which
our intrusion detection mini-app is based. The GBAD paper introduced the
idea of thinking about anomalies as patterns in a graph which look similar to a
common, normative pattern but which is not exactly identical.

Eberle et al. [3] introduced a distributed version of the GBAD algorithm.
While this distributed extension is bulk synchronous, it shares similarities to
our intrusion detection mini-app by computing local normative patterns, using
them to find global normative patterns, and then reporting local anomalies based
on those global normative patterns.
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7 Future Work

While HOOVER’s decoupled approach to graph processing offers promise for
scaling to larger graph problems than are solveable with existing frameworks,
HOOVER is still an active and evolving project with several avenues of future
and ongoing investigation:

1. Explicit edge creation: HOOVER’s current approach to edge creation is
implicit – edges are created when two vertices become close by some dis-
tance measure. We plan to explore alternative, explicit ways to prescribing
edge creation and study their impact on performance.

2. Automatic load balancing of vertices between PEs.
3. Experiment with hybrid and heterogeneous parallelism.
4. Improved infectious disease model: Work is actively exploring making the

simple infectious disease model into a more realistic application.
5. Improved vertex memory efficiency: Versioned vertices consume large

amounts of space to store their state over many iterations. This costs mem-
ory and bytes over the wire. Exploring ways to compress these large data
structures without a loss of information would be beneficial for performance.

6. Cross OpenSHMEM implementation performance comparison: While
HOOVER has been tested across several OpenSHMEM implementations for
correctness, we are interested in using it as a point-of-comparison for perfor-
mance.

8 Conclusion

When it comes to distributed streaming graph processing, the choice of frame-
works is extremely limited today. Most graph processing frameworks do one or
the other (distributed or streaming), but not both. The underlying reason for
this is the challenge of efficiently scaling graph applications on rapidly mutating
graphs with highly irregular computation and memory access, all using a bulk
synchronous model.

HOOVER avoids this problem by using OpenSHMEM to enable fully de-
coupled parallel execution, minimizing communication and synchronization by
keeping it local to only those PEs that must interact. HOOVER offers a suffi-
ciently flexible API to support a wide range of graph processing applications,
while enabling scaling out to thousands of PEs and terabytes of memory.
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Abstract. In this paper we present shgraph, a SHMEM implementation
of the GraphBLAS standard, which enables the user to redefine complex
graph algorithms in terms of simple linear algebra primitives. Graph-
BLAS offers many nice features such as type abstractions, the ability to
perform generalized matrix/vector operations over a semiring, and exe-
cuting graph operations out-of-order (non-blocking mode).

shgraph seeks to efficiently manage and process billion-edge or greater
sparse graphs on an HPC system. We walk through sample GraphBLAS
code and discuss the shgraph development process. In particular, we
explain how SHMEM was used and where it was necessary to tweak the
GraphBLAS specification to be compatible with a distributed system.
Additionally, we analyze some preliminary performance results, map out
next steps, and suggest potential applications.

Keywords: shgraph · GraphBLAS · OpenSHMEM · Sparse matrix

1 Definitions and Notation

We define a graph to be the ordered pair G = (V,E), where V is a set of ver-
tices and E a set of edges, each of which connects two vertices in V together.
Throughout this paper we assume that the graphs we use are undirected, mean-
ing that for any u, v ∈ V , u is connected to v if and only if v is connected to u.
Directed graphs need only satisfy one side of the previous statement, but that
is also easily handled in GraphBLAS and our implementation.

Graphs are represented broadly in one of two ways: adjacency lists and matri-
ces. An adjacency list is a collection of vertex and list pairs, where for each vertex
v in the adjacency list, and its corresponding list W , W is the collection of ver-
tices that v is connected to. An adjacency matrix A for a given graph G = (V,E)
with n = |V | is an n-by-n matrix of 0’s and 1’s. Given a mapping between V and
the integers 0..n−1, if vertex i is connected to vertex j, then Aij = 1, otherwise,
Aij = 0. For undirected graphs, this matrix will be symmetric. Weighted graphs
are also trivial to represent by expanding the domain of the values in the matrix.
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2 GraphBLAS

GraphBLAS [1–3] is a collection of linear algebra primitives used to express a rich
variety of graph algorithms, where graphs are represented as adjacency matrices.
Generally, the graphs modeled in GraphBLAS are assumed to be sparse, which
by convention means that for a graph G = (V,E), we have |E| = O(|V |). This
means that if the graph were represented in memory as an adjacency matrix, the
vast majority of entries would be 0. This suggests compression schemes where
entries not explicitly listed are implied to be 0. The simplest technique is storing
the matrix as an array of triples of rows, columns, and values, although there are
many more exotic schemes, such as Compressed Sparse Rows (CSR), Compressed
Sparse Columns (CSC), etc. [4].

BLAS (Basic Linear Algebra Subroutines) [6] is a collection of low-level linear
algebra functions codified in the late 1970’s. To handle sparse matrices, Sparse
BLAS [7] was defined in the early 2000’s. The GraphBLAS model was first
proposed in 2011 as a method for solving graph computations using matrix
operations. Version 1.0 of the specification was formalized in 2017 [1–3]. See
Fig. 1 below for a complete listing of the GraphBLAS primitives; while there are
additional support functions for e.g. matrix/vector building, these consistute the
core GraphBLAS operations.

Operation Description
mxm Matrix-matrix multiply
mxv Matrix-vector multiply
vxm Vector-matrix multiply
eWiseAdd Matrix/vector addition
eWiseMult Matrix/vector Hadamard product
reduce (row) Row-wise matrix reduction
reduce (scalar) Scalar matrix/vector reduction
apply Matrix/vector function application
transpose Matrix transpose
extract Matrix/vector tuple extraction
assign Matrix/vector assignment

Fig. 1. GraphBLAS primitives

The primary distinguishing feature between GraphBLAS and Sparse BLAS
is that GraphBLAS offers a wide range of semiring operators rather than just
normal addition and multiplication. Semirings provide a generalization of the
underlying mathematical operations on vectors and matrices. It is composed of
an identity element, a commutative and associative addition operator, and a
multiplication operator. See Fig. 2 for an example of a Boolean semiring. Addi-
tionally, typical adjacency matrices for graphs may have exploitable patterns
that cannot be assumed for generic sparse matrices. Finally, GraphBLAS offers
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a much wider range of flexibility to control how results are written to output vec-
tors/matrices through the use of masks, descriptors, user-defined types (UDTs),
and index ordering.

Figure 2 on the following page is an implementation of a simple top-down
breadth-first search algorithm (BFS) using GraphBLAS, taken from the Graph-
BLAS specification [1].

3 shgraph Overview

shgraph is our mostly completed implementation of the GraphBLAS specifi-
cation [1], using a proprietary light wrapper of OpenSHMEM [8]. The main
functionality for building, assignment, matrix-matrix and matrix-vector multi-
plication and addition, etc., have been fully implemented. Development time
took less than 6 months in total and a month was spent on optimizing code. The
majority of GraphBLAS functions do not need any calls to OpenSHMEM, but
the performance results we go over rely heavily on it.

While GraphBLAS certainly anticipates implementations with parallel code,
it is not completely compatible with an SPMD application. Probably the sim-
plest distinguishing feature is that for many of the GraphBLAS calls such as
GrB Matrix build, GrB Vector build, etc., each PE is responsible for passing
in only a subset of the row-column-value triples. One area of the specification
that we chose not to implement was GraphBLAS indexing, which essentially
amounts to computing a distributed permutation. This turns out to be compu-
tationally somewhat intensive, and it seems to not provide much functionality
benefit.

Another feature that proves difficult to implement on a distributed system
is the GraphBLAS error model. Without imposing severe synchronization con-
straints, it is hard to cleanly manage errors that only occur on a subset of PEs.
Strictly speaking, although the GraphBLAS specification does not deal with
SPMD applications, the “right” way would be to have all PEs return with an
error message, rather than just the ones that encountered the error. Probably
the greatest issue in managing this, however, is where one PE encounters an
error and has to alert the other PEs so they can collectively report back to the
user, but some of the PEs have already entered a barrier. Without an inter-
rupt mechanism built into SHMEM, this is awkward to handle. On the other
hand, only requiring that the PEs that encounter problems report error codes
increases the burden on the end user to manage an SPMD program. Therefore,
for full compatibility for an SPMD application, the GraphBLAS error system
requirements would have to be relaxed.

Nevertheless, on the whole GraphBLAS provides a clean, expressive inter-
face to perform many interesting graph algorithms. Since shgraph will entirely
manage the distributed aspect, the end user can easily write SPMD code with
minimal knowledge of OpenSHMEM or other underlying technologies.
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1
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <stdint.h>
5 #include <stdbool.h>
6 #include "GraphBLAS.h"
7
8 /*
9 * Given a boolean n x n adjacency matrix A and a source vertex s,

10 * performs a BFS traversal of the graph and sets v[i] to the level
11 * in which vertex i is visited (v[s] == 1). If i is not reachable
12 * from s, then v[i] = 0. (Vector v should be empty on input).
13 */
14
15 GrB_Info BFS(GrB_Vector *v, GrB_Matrix A, GrB_Index s)
16 {
17 GrB_Index n;
18 GrB_Matrix_nrows (&n,A); // n = # of rows of A
19
20 GrB_Vector_new (v,GrB_INT32 ,n); // Vector <int32_t > v(n)
21
22 GrB_Vector q; // vertices visited in
23 // each level
24 GrB_Vector_new (&q,GrB_BOOL ,n); // Vector <bool > q(n)
25 GrB_Vector_setElement (q,(bool)true ,s); // q[s] = true , false
26 // everywhere else
27
28 GrB_Monoid Lor; // Logical -or monoid
29 GrB_Monoid_new (&Lor ,GrB_LOR ,(bool)false);
30
31 GrB_Semiring Boolean; // Boolean semiring
32 GrB_Semiring_new (&Boolean ,Lor ,GrB_LAND);
33
34 GrB_Descriptor desc; // Descriptor for vxm
35 GrB_Descriptor_new (&desc);
36 GrB_Descriptor_set (desc ,GrB_MASK ,GrB_SCMP); // invert the mask
37 GrB_Descriptor_set (desc ,GrB_OUTP ,GrB_REPLACE); // clear output before
38 // assignment
39
40 // BFS traversal and label the vertices.
41 int32_t d = 0; // d = level in BFS traversal
42 bool succ = false; // succ == true when some
43 // child found
44 do {
45 ++d; // next level (start with 1)
46 GrB_assign (*v,q,GrB_NULL ,d,GrB_ALL ,n,GrB_NULL); // v[q] = d
47 GrB_vxm(q,*v,GrB_NULL ,Boolean ,q,A,desc); // q[!v] = q||.&& A; finds all
48 // unvisited successors from
49 // the current q
50 GrB_reduce (&succ ,GrB_NULL ,Lor ,q,GrB_NULL);// succ = ||(q)
51 } while (succ); // if there is no successor
52 // in q, we are done
53
54 GrB_free (&q); // q vector no longer needed
55 GrB_free (&Lor); // Logical -or monoid no longer
56 // needed
57 GrB_free (& Boolean); // Boolean semiring no longer
58 // needed
59 GrB_free (&desc); // descriptor no longer needed
60
61 return GrB_SUCCESS;
62 }

Fig. 2. Simple GraphBLAS BFS traversal
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4 Managing Large, Sparse Graphs with shgraph

Sparse graphs are prevalent in many computational areas, such as machine learn-
ing, physical systems, etc., although for this paper we focus on social networks.
Famously, Dunbar’s Number [5] provides a constant upper bound for the num-
ber of relationships a person can have, satisfying our requirements for a sparse
matrix. Such graphs can easily exceed the billion-edge range, meaning that dis-
tributed implementations are needed to handle networks on this scale. Repre-
senting these graphs as matrices provides a host of options for partioning the
data. While the simplest implementations partition the matrix by row or column
(see for example Star-P [9]), they suffer if there are highly connected vertices. It
also complicates matrix-matrix multiplication. Therefore, we chose a 2D decom-
position, where our PEs are arranged in a logical grid and each PE contains a
certain range of matrix values by both dimensions. For example, given 4 PEs, the
first PE will represent the upper left-hand quadrant of the matrix, the second
will represent the upper right-hand quadrant, etc. For a more thorough treat-
ment dealing with the scalability of 1D matrix decompositions, refer to Buluç
and Gilbert’s paper [10].

When a matrix is created in GraphBLAS, GrB Matrix new must first be
called, and each PE will calculate the range of row and column indices that
it will be locally responsible for. This information is stored in the GrB Matrix
struct. Note that this is independent of the matrix’s non-zero distribution; it
is just based off of a close-as-possible even division of the dimensions. Then
GrB Matrix build is called, and each PE will be passed in a collection of triples,
representing edges (row, column, value) in the graph. These must be distributed
to the correct PEs as detailed below:

1. Given N PEs, each PE will locally allocate N buckets
2. Each PE calculates which remote PE each of these triples belong to, and puts

them into the corresponding local bucket
3. Using OpenSHMEM value reductions, the PEs calculate the highest quantity

of triples that a PE will be receiving from all other PEs
4. Using the value calculated in the previous step, all PEs make a call to

shmem malloc, creating a symmetric buffer
5. A static variable index is defined for each PE, used to record how many

triples have been put into the PE’s symmetric buffer
6. PEs begin independently (i.e. with no synchronization) iterating through their

local buckets
7. For each bucket, given n triples, the PE uses shmem atomic fetch add to

atomically add n to the remote PE’s index. It then performs a shmem put
on the remote PE’s symmetric buffer at the offset corresponding to the value
fetched in the atomic add operation

8. Once each PE has received all of its triples, it converts it into a sparse local
storage format called DCSR (see below for details)

Note that in step 7, shmem atomic fetch add fetches the old value of index.
This method allows for potentially many PEs to simultaneously write to the
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same remote PE’s symmetric buffer, since the atomic operation guarantees that
they will be writing to unique areas of the buffer. This is far superior than e.g.
allowing only one PE to write to a given remote PE at a time with locking
routines (in fact, shgraph never locks). Efficient one-sided communication is
crucial in making this build process as fast as possible. For example, each PE
in step 7 has a lot of data to remotely put, but it only needs to process this
data once all the buckets are processed on all the PEs. Since the data does not
need to be processed right away, a two-sided communication pattern would be
wasteful.

This implementation of GrB Matrix build runs fastest when the matrix rep-
resented by the triples is uniformly distributed. The less uniform it is, the larger
the symmetric allocation will be in step 4. Additionally, PEs receiving more
triples will have more work to do in the last step. However, generating a random
isomorphism of the matrix (see below), effectively mitigates this.

Given that the triples are distributed to their correct PEs, they still must
be stored in a compressed format to take advantage of its sparsity. We can con-
sider a PE’s collection of edges as a submatrix, so the traditional sparse storage
formats are still applicable. One very popular format, as mentioned above, is
Compressed Sparse Row (CSR); however, as Buluç and Gilbert showed [11], as
the graph’s dimension increases these submatrices increasingly become hyper-
sparse, meaning that entire rows or columns of the submatrix will be 0. As
proposed in the referenced paper above, we use the Doubly Compressed Sparse
Row format (DCSR), the row analogue to DCSC, to address this. While this
leads to excellent compression of the sparse data, it makes operating on them
much more complex. The most obvious drawback is that for the typical 2D array
implementation of a matrix, data can be accessed in constant time, whereas for
DCSR to access a single point in the matrix we must first traverse the non-zero
rows and then along the correct row. Fortunately, many graph algorithms require
the data to be accessed in order, and not randomly. As long as the algorithm
allows us to access the data by row and then column we remain largely unaf-
fected, but DCSR makes it difficult to access data by column and then by row.
This makes operations like matrix-matrix multiplication very difficult.

Inside the GrB Matrix struct, there are four buffers used to represent this
sparse format:

1. nonZeroRows: Ordered array of the rows in the matrix with non-zero elements
2. rowPointers: Represents where in the nonZeroCols the subarray of the

columns corresponding to a non-zero row
3. nonZeroCols: An array of all column indices for the non-zero elements, first

sorted by row, then by column
4. values: The values corresponding to the columns indices
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As an example, take this 5-by-7 matrix:
⎛
⎜⎜⎜⎜⎝

1
5 3
4 7

1 0 5

⎞
⎟⎟⎟⎟⎠

Any value not explicitly listed in this matrix is an implied zero. Note it is
entirely possible that when performing operations over a GraphBLAS monoid,
the implied zero matches values in the matrix. The DCSR representation of this
matrix will be:

1. nonZeroRows = [0,1,2,4]
2. rowPointers = [0,1,3,5,8]
3. nonZeroCols = [4,0,3,0,1,0,2,6]
4. values = [1,5,3,4,7,1,0,5]

The first array gives in order the rows with non-zero elements. Since there are
no elements on the third row (note we’re zero-indexing), 3 is not present in that
array. The second array shows how to access the corresponding column indices
and values for a given non-zero row. For example, the columns for row 1 will be
stored between rowPointers[1] inclusive and rowPointers[2] exclusive, i.e. in
the interval [1,3). The corresponding values will also be stored sequentially in
the same range in the values array. Note that the last element of rowPointers
gives the total number of non-zero values in the matrix. shgraph must also store
the number of non-zero rows in GrB Matrix, as well as the dimensions of the
matrix it’s storing.

Many real-life and synthetic graphs will not have their non-zero elements
uniformly distributed. Typical graphs will have clustered subcommunities which
are relatively much more dense than the rest of the matrix. Therefore, we use a
permutation polynomial to generate a random isomorphism of the input matrix.
See Lidl and Mullen’s paper [12] for an overview on these types of polynomials.
Even a simple affine transform will generally equalize the runtimes of our Graph-
BLAS algorithms over matrices whether the non-zero elements are uniformly or
non-uniformly distributed. Note that this method still fails for rows or columns
that are relatively dense, but the 2D decomposition partially addresses that.

Vectors are also very useful for graph operations. Since even a sparse matrix
will typically represent more elements than a vector of the same dimension, we
typically treat them as dense without much memory impact. This enables us to
access elements of the vector in constant time, which is especially useful since
vectors will often get updated in random places for graph algorithms. Vectors
are first distributed by PE row and then by column, in such a way that the
total length of a vector along a row of PEs matches the column-dimension of the
corresponding submatrices represented along that row.
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5 Vector-Matrix Products

We focused our optimization efforts on vector-matrix products (GrB vxm) for
the below performance benchmark. Given a vector and matrix with compatible
dimension, distributed as described above, our overall strategy is:

1. For each row of PEs, cycle their vector chunks among themselves
2. Apply a local vector-matrix multiplication with the newly received vector

chunk and the relevant portion of the PEs submatrix
3. Calculate the target PE(s) where the data yielded in the previous step belong,

and send
4. Merge all the data received from the previous step, and locally store
5. Repeat until the vector chunks have been fully cycled among their row

OpenSHMEM is critical in performing steps 1 and 3. For Step 1, on every
cycle iteration each PE along a row calculates the target PE for its vector
chunk, and then uses shmem put to put that data into a symmetric buffer. Step
3 is much the same, although multiple calls to shmem put may be necessary.
Both of these steps heavily take advantage of one-sided communication, because
all PEs can simultaneously remotely send data with relatively low latency and
overhead. Refer to Buluç and Gilbert’s paper arguing for one-sided communi-
cation for graph algorithms [13] for more details. Between all of these steps,
shmem barrier all is needed to ensure synchronization. As long as the vec-
tor and matrix are roughly distributed evenly across the PEs, each PE will do
approximately the same amount of work, so the wait time in these barriers should
be low.

We implemented Step 2 to specifically optimize for BFS. Although there
are three GraphBLAS instructions executed on each iteration of the BFS algo-
rithm described, GrB vxm takes up well over 99% of the time in the algorithm.
Additionally, for a typical BFS run, the majority of time is spent in one itera-
tion. This means that on that iteration the frontier of newly-visited vertices is
high, whereas on other iterations, like the beginning and end of the run, it is
low. Converting the vector to a sparse format in these cases allows us to effi-
ciently traverse it during this step. Further performance gains were achieved by
optimizing matrix operations with a sparse accumulator (SPA), as described by
Gilbert et al. [14], with a switch vector, first defined by Gustavson [15]. Much
of our vector-matrix and matrix-matrix product implementations were based off
of Buluç and Gilbert’s overview on sparse matrix methods [4].

6 Performance

We compare some preliminary benchmark results against CombBLAS v1.4 [16], a
C++ MPI-based sparse graph library that influenced the GraphBLAS standard.
A similar test to what was described by Satish et al. [17] was used. We performed
Kernels 1 and 2 of the Graph500 benchmark [18,19]. Kernel 1 builds R-MAT
matrices, first introduced by Chakrabarti et al. [20]. These provide a synthetic
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approximation for large-scale social relationship graphs. As in the Graph500
standard, we used graph parameters [0.57, 0.19, 0.19, 0.05] and an edge
factor of 16. Kernel 2 runs breadth-first search, which is a popular graph bench-
mark, over these graphs, using a randomly-selected source vertex. We used a
Cray XC30 system with 128 GB per node, 2 Intel Haswell CPUs (2.3 GHz sock-
ets) per node, and 16 cores per socket. We ran a weak-scaling benchmark on
these two kernels, meaning that as we scale up the number of cores available for
computation, we proportionally scale up the problem size. Each core on average
contained approximately 224 graph edges, working out to 229 edges per node.
BFS is roughly a linear problem for these R-MAT graphs, so ideally we would
expect the total time to stay constant. In practice over a distributed system this
is not the case, but keeping the line as flat as possible is a good goal.

CombBLAS can only work over a square number of cores, which is why its
results are more sparse. shgraph has no such restriction. We allow only 1 core
per PE because shgraph is not yet multithreaded, whereas in practice we would
assign more. Finally, we used the tdbfs (top-down BFS) CombBLAS program,
which approximates the BFS algorithm we implemented for shgraph, and is the
simplest BFS algorithm offered by CombBLAS.

Fig. 3. Kernel 1. lower is better.
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Fig. 4. Kernel 2. lower is better.

Refer to Figs. 3 and 4 above for performance results. Note the large increase
for CombBLAS from 16 to 64, due to going from a single node program to
multi-node. Interestingly, shgraph appears much less affected.

We see that shgraph takes advantage of the lower overhead offered by Open-
SHMEM in the matrix build step. During the generation, each PE will randomly
generate a collection of edges according to the R-MAT parameters above. Then,
all the PEs collectively call GrB Matrix build, and the edges are sent to the cor-
rect PEs. Fortunately, this is essentially an embarrassingly parallel task where
the destination PE does not need to immediately acknowledge or process the
the edges it receives. Evidently, shgraph hugely benefits from efficient one-sided
communication for this kernel. Another reason for the discrepancy is that it
appears CombBLAS does more pre-preprocessing of the input matrix, possibly
to make Kernel 2 run faster.

For BFS, after the jump from single to multi-node, both shgraph and Comb-
BLAS exhibit similar performance behavior, although shgraph’s slope is almost
3 times larger than CombBLAS. This is most likely due to CombBLAS’ host of
algorithmic optimizations that we have not taken advantage of yet.

Combining the runtimes for Kernels 1 and 2, shgraph runs significantly
faster. While CombBLAS gets increasingly dominated by the matrix build time,
shgraph is much less affected.
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7 Future Work

As noted in Sect. 3, some work needs to be done to fully address error-handling
for this type of SPMD application. There are numerous additional optimizations
we can also exploit. We experimentally saw that 20–30% of our benchmarking
runtime is spent in barrier functions, and ensuring that work is divided up evenly
among the PEs can mitigate this. Providing additional overlapping for the com-
putation and communication steps e.g. described in Sect. 5 could yield efficiency
gains, although we have not explored this yet. Better permutation polynomials to
distribute non-uniformly distributed matrices more evenly could also minimize
the time spent in barriers.

As in Sect. 5, for most GraphBLAS operations shgraph will locally allocate N
buckets on an N PE system. It is likely that there are some hierarchical decom-
positions of certain problems that would require fewer buckets. For example, if a
vector-matrix product is relatively dense, this likely means that a lot of merging
took place in Step 4 of Sect. 5. We could do repeated applications of Steps 3 and
4 where data is sent to subsets of PEs, and results are merged together (e.g. as
a binary tree). This could potentially reduce the communication complexity, at
the cost of some increased overhead.

8 Conclusion

shgraph demonstrates the viability of using OpenSHMEM for large-scale graph
analytics. While shgraph has not been heavily engineered with space/time effi-
ciency concerns in mind, and our focus was only for BFS, our results against
CombBLAS suggest that it would be worth the effort to fully optimize the full
package. By carefully structuring our algorithms, we are able to take advantage
of the low overhead of OpenSHMEM’s one-sided communication patterns.

To address the discrepancies between the GraphBLAS standard and SPMD
implementations, an alternate standard would have to be created. Fortunately,
since GraphBLAS was designed with parallelism in mind, this would be relatively
reasonable to do so.

It should also be noted that while shgraph was engineered with graphs in
mind, it can certainly be used for other general sparse matrix problems, such as
machine learning applications.

Acknowledgments. We thank the three anonymous reviewers from the OpenSH-
MEM Workshop, whose helpful and incisive advice produced a much better paper.
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Abstract. The use of OpenSHMEM has traditionally focused on supporting a
one-sided communication mechanism between networked processors. The US
Army Research Laboratory (ARL) OpenSHMEM implementation for the Epi-
phany architecture has highlighted the utility of OpenSHMEM for the precise
control of on-die data movement within arrays of RISC cores connected by a 2D
mesh Network on Chip (NoC), and was demonstrated using a 16-core
Epiphany-III coprocessor. More recently, DARPA has fabricated a much lar-
ger 64-bit 1,024-core Epiphany-V device, which ARL is presently evaluating. In
support of this effort, we have developed an Epiphany-based RISC SoC device
emulator that can be installed as a virtual device on an ordinary x86 platform
and utilized with the existing software stack used to support physical devices,
thus creating a seamless software development environment capable of targeting
new processor designs just as they would be interfaced on a real platform. As
massively parallel processor arrays (MPPAs) emerge as a strong contender for
future exascale architectures, we investigate the application of OpenSHMEM as
a programming model for processors with hundreds to thousands of cores. In
this work we report on the initial results from scaling up the ARL OpenSHMEM
implementation using virtual RISC processors with much larger core counts
than previous physical devices.

Keywords: RISC � Network-on-Chip � Emulation � Simulation �
Epiphany

1 Introduction

Recent developments in high-performance computing (HPC) provide evidence and
motivation for increasing research and development efforts in low-power scalable
massively parallel RISC array processor architectures. Massively parallel processors
based on two-dimensional (2D) RISC arrays placed in first and fourth positions on the
November 2017 list of Top500 supercomputers in the world [1] and the top three
energy-efficient machines in the corresponding Green500 list [2]. Further, this was
accomplished without the use of commodity processors and with instruction set
architectures (ISAs) evolved from a limited ecosystem, driven primarily by research
laboratories. Increasing research into new and innovative architectures has emerged as
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a significant recommendation as we transition into a post-Moore era [3] where old
trends and conventional wisdom may no longer hold.

More rapid and open advances in hardware architectures will require unique
capabilities in software development to resolve the traditional time lag between
hardware availability and the software necessary to support it. This problem is long
standing and one that is more pragmatic than theoretical. Significant software devel-
opment for new hardware architectures will typically only begin once the hardware
itself is available. Although some speculative work can be done, the effectiveness is
limited. Very often the hardware initially available will be in the form of a development
kit that brings unique challenges, and will not entirely replicate the target production
systems. Based on our experience with Epiphany and other novel architectures, the
pattern generally follows this scenario.

The focus of this research has been on the Epiphany architecture, which shares
many characteristics with other RISC array processors but with emphasis on energy-
efficient general purpose computation for floating point intensive applications. To the
best of our knowledge, Epiphany is the only general purpose processor architecture
capable of achieving the energy-efficiency projected to be necessary for exascale (50+
GFLOPS/Watt). The Adapteva Epiphany RISC array architecture [4] is a scalable 2D
array of low-power RISC cores with minimal un-core functionality supported by an on-
chip 2D mesh network for fast inter-core communication. The Epiphany-III architec-
ture is scalable to 4,096 cores and represents an example of an architecture designed for
power-efficiency at extreme on-chip core counts. Processors based on this architecture
exhibit good performance/power metrics [5] and scalability via a 2D mesh network [6,
7], but require a suitable programming model to fully exploit the architecture. The
1024-core, 64-bit Epiphany-V was fabricated by DARPA and designed to have much
higher performance and energy efficiency and scalability [8].

The overall motivation for this work stems from ongoing efforts to investigate
future massively parallel processors based on the Epiphany architecture. At present we
are investigating the design of a hybrid processor based on a 2D array of Epiphany-V
compute cores with several RISC-V supervisor cores acting as an on-die CPU host. In
support of such efforts, we developed a large-scale emulation and simulation capability
to enable rapid design and specialization by allowing testing and software development
using simulated virtual architectures. This work placed special emphasis on achieving a
seamless transition between emulated architectures and physical systems. The overall
design and implementation of the proposed emulation and simulation environment will
be generally applicable to supporting more general research and development of other
massively parallel RISC array processors.

As part of the exploration of massively parallel RISC array processors, an efficient
on-chip programming model was required. The OpenSHMEM interface was uniquely
positioned for this as it focuses on lightweight communication primitives for parti-
tioned global address space (PGAS) platforms and was not encumbered by the com-
plexity found in the Message Passing Interface (MPI). Here we present our approach
and initial results from testing the ARL OpenSHMEM implementation on an emulated
Epiphany device with up to 1,024 cores.

138 J. A. Ross and D. A. Richie



2 Background

The Adapteva Epiphany architecture is a scalable 2D array of RISC cores with minimal
uncore functionality connected with a fast 2D mesh Network-on-Chip (NoC). Although
it is capable of multiple program, multiple data (MPMD) execution, it is most easily
programmed using single program, multiple data (SPMD) programming methods. The
Epiphany-III (16-core) and Epiphany-IV (64-core) processors have a RISC CPU core
that support a 32-bit RISC ISA with 32 KB of shared local memory per core (used for
both program instructions and data), a mesh network interface, and a dual-channel
DMA engine. Each RISC CPU core contains a 64-word register file, sequencer,
interrupt handler, arithmetic logic unit, and a floating point unit. The fully memory-
mapped architecture allows shared memory access to global off-chip memory and
shared non-uniform memory access to the local memory of each core, enabling PGAS
programming models. The Epiphany-V processor, shown in Fig. 1, was extended to
support 64-bit addressing and floating-point operations. The 1,024-core Epiphany-V
processor was fabricated by DARPA at 16 nm. The architecture is supported by the
open source GNU compiler collection.

Combining the preference for SPMD execution, PGAS programming models, and
full support for the C programming language, the ARL OpenSHMEM for Epiphany
implementation was developed to provide a standardized interface and device-level
programming model for the Epiphany processor [9]. With the exception of some of the
more recent multi-threading support added in the OpenSHMEM 1.4 specification, the
OpenSHMEM interface suits the Epiphany architecture well. The 2D mesh network-
on-chip is analogous to the network connecting nodes within an HPC cluster. However,
the Epiphany network is trivially used so remote reads and writes correspond to load

Fig. 1. The Epiphany-V RISC array architecture. A tiled array of 64-bit RISC cores are
connected through a 2D mesh NoC for signaling and data transfer. Communication latency
between cores is low, and the amount of addressable data contained on a mesh node is low
(64 KB). Three on-chip 136-bit mesh networks enable on-chip read transactions, on-chip write
transactions, and off-chip memory transactions.
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and store instructions to memory-mapped scratchpad memory. This compares very
favorably against the complexity required in the Linux operating system, network
interface driver software stacks, and networking hardware found in modern clusters.
The full ARL OpenSHMEM implementation presently compiles to a library with less
than 90 KB of binary code and no required external libraries. Typically, a small subset
of the library is used within a device kernel code (approximately 2–5 KB).

3 Approach

Our approach for the development and testing of the OpenSHMEM software stack for
future processors based on the Epiphany architecture employs an emulator used to
create virtual Epiphany devices that may be integrated directly into the software stack
used for physical coprocessor devices. This approach allows for development and
testing in advance of the fabrication of physical devices and can be used for the co-
design of future devices by evaluating the impact of architecture modifications within a
real software stack that does not differ from that which would be employed for a real
platform. In this section we provide an overview of this approach as it applies to our
efforts to evaluate the scaling of OpenSHMEM on Epiphany devices with up to 1,024
cores.

3.1 Epiphany ISA Emulator

We have developed an Epiphany ISA emulator that enables fast emulation of real
compiled binaries for testing application code. This is used to provide virtual devices
operating at a level of performance that, albeit slower than real hardware, is amenable
to integration into software development workflows identical to those employed for
development using physical Epiphany devices. The objective of the emulator is to
provide functional correctness and timing accuracy sufficient to predict performance
with reasonable accuracy for relevant performance metrics. Thus, performance mod-
eling is done by way of directly executing compiled binary code rather than employing
theoretical models of the architecture. The advantage of this approach is that it will
simultaneously provide a natural software development environment for proposed
architectures and architecture changes without the need for physical devices. The
software development and execution environment does not differ between emulation
and execution on physical devices.

The design and implementation of an emulator for the Epiphany architecture is
initially focused on the 32-bit architecture since physical devices are readily available
for testing. The more recent extension of the ISA to support 64-bit instructions will be
addressed in future work. The design uses an instruction decoder based on an indirect
threaded dispatch model. The emulator for the 32-bit Epiphany architecture is imple-
mented as a modular C++ class, in order to support the rapid composition and variation
of specific devices for testing and software development. Implementing the emulator
directly in C++, and without the use of additional tools or languages, avoids unnec-
essary complexity and facilitates modifications and experimentation. In addition, the
direct implementation of the emulator in C++ will allow for the highest levels of

140 J. A. Ross and D. A. Richie



performance to be achieved through low-level optimization. The emulator class is
primarily comprised of an instruction dispatch method and implementations of the
instructions forming the ISA. The emulator supports the Epiphany architecture special
registers, dual DMA engines, and interrupt handler. The DMA engines and interrupt
support are based on a direct implementation of the behaviors defined in the Epiphany
architecture reference, and are controlled by the relevant special registers. Additional
details can be found in Ref. [10].

The instruction dispatch design will allow for any instruction to stall in order to
support more realistic behaviors. Memory and network interfaces are implemented as
separate abstractions to allow for different memory and network models. The Open-
SHMEM testing relies upon inter-core SRAM memory access mediated by the 2D
Network on Chip. A simple memory model is used to incorporate the delay in reads
and write instructions based on the distance between cores. In general, the delay for a
transaction is modeled as,

s ¼ 1:5� r � r0j j þ c� c0j jð Þ

where r (c) and r0 (c0) are the row (column) of the remote and local cores, respectively.
For read and test-set operations, instruction execution must stall until the transaction is
complete and the result is received by the executing core. Data is sampled or written,
after a delay of s clock cycles corresponding to the forward transaction, and then
delayed an additional s clock cycles for the returning transaction. In the case of a write
operation, the only delay is in the write transaction itself, whereas the instruction
execution is not stalled.

The emulator does not operate as an isolated tool. Instead, it is used to create virtual
Epiphany devices using a Linux shared memory segment that appears identical to the
memory mapped interface of physical Epiphany co-processors found on Parallella
platforms. The result is that the emulated virtual device appears indistinguishable from
a physical device to applications targeting an Epiphany coprocessor using the
COPRTHR-2 software stack [11]. Moreover, the emulator for the virtual devices is
completely decoupled, operating independently from an application. All interaction
between application and emulator occurs through the memory mapped signaling just
like a physical device. The emulator is used to compose a device of the correct number
of cores and topology, and then run “on top” of this shared memory region. By this, it
is meant that the emulator core will have mapped its interfacing of registers, local
SRAM, and external DRAM to specific segments of the shared memory region. By
simply redirecting the COPRTHR API to map/dev/shm/e32 rather than /dev/epiphany/
mesh0, user applications executing on the host see no difference in functionality
between a physical and virtual Epiphany device. When the user executes a host
application that utilizes the Epiphany coprocessor, it will find the virtual device to be
active and running, just as it would find a physical device. The decoupling of the
emulator and user application replicates realistic conditions and provides visibility into
state initialization that was previously only indirectly known or guessed at during early
software development.

It is worth emphasizing the transparency and utility of these virtual Epiphany
devices. The Epiphany GCC and COPRTHR tool chains are easily installed on an x86
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platform, and with which Epiphany application code can be cross-compiled. By simply
installing and running the emudevd daemon on the same x86 platform, it is possible to
then execute the cross-compiled code directly on the x86 platform. The result is a
software development and testing environment equivalent to that of a Parallella
development board. Furthermore, the virtual device is configurable in terms of the
number of cores and other architectural parameters. It is also possible to install multiple
virtual devices appearing as separate shared memory device special files
under/dev/shm. Finally, through modifications to the (open-source) Epiphany emulator,
researchers can explore “what-if” architecture design modifications. At the same time,
the user application code is compiled and executed just as it would be on a Parallella
development board with a physical device.

This transparency allows the ARL OpenSHMEM implementation to be tested on
virtual Epiphany devices with differing core counts and architecture changes in a
manner that does not differ from its use with real physical devices. The design creates a
platform for experimenting with OpenSHMEM on virtual MPPA devices using a real
software stack, where experiments can be investigated more rapidly than would
otherwise be possible without this virtualization.

3.2 OpenSHMEM Scaling Tests

For testing we use the OpenSHMEM test programs originally used to evaluate the ARL
OpenSHMEM implementation on a 16-core Epiphany-III coprocessor. Each test is
compiled once using the standard workflow provided by the COPRTHR-2 SDK, and
then executed on a virtual Epiphany device with up to 1,024 cores. The entire
OpenSHMEM test suite was executed, but only interesting results appear below. The
shmem_putmem routine is an example of an uninteresting result, where performance
scales with the number of cores because all remote stores complete within a single
clock regardless of the location on the network.

4 Results

The performance measurements represent an emulated device like Epiphany-III, with
32 KB of local scratchpad and a nominal clock rate. The results are used to identify any
scaling issues and to correlate performance of the emulator on the ARL OpenSHMEM
code base and new physical devices, independent of final clock rates. The results are
executed on virtual Epiphany devices with 16, 64, 256, and 1,024 cores. A line plotted
within a figure represents the predicted performance, across various workload sizes, for
a device with one of those core counts. As an example of the architecture limitations,
the shmem_alltoall64 routine is predicted to achieve high scaling performance for high
core counts, but is fundamentally limited by the message size in the available
scratchpad. The results in Fig. 2 represent scaling performance for the allocation of two
8 KB source and destination arrays across emulated devices with four different core
counts.
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The shmem_barrier routine showed logarithmic scaling with the number of cores
(Fig. 3). There is a small amount of increasing overhead as the size of the emulated
device increases.

The shmem_broadcast64 total bandwidth is expected to scale linearly with the
number of cores (Fig. 4).

Fig. 2. OpenSHMEM shmem_alltoall64 predicted bandwidth scaling

Fig. 3. OpenSHMEM shmem_barrier predicted performance scaling
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The shmem_fcollect64 routine has linear performance scaling, but cannot support
larger message sizes at high core counts due to scratchpad limitations (Fig. 5).

The shmem_getmem benchmark fetches data from the neighboring core (Fig. 6).
With the exception of an increased latency for cores at the end of the row, which have
increased latency, the performance scaling is nearly linear with core count. It is

Fig. 4. OpenSHMEM shmem_broadcast64 predicted performance scaling

Fig. 5. ARL OpenSHMEM shmem_fcollet64 predicted performance scaling
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expected that some network congestion will appear for unfavorable communication
patterns, but it has not been modelled in this work.

The predicted performance scaling of global reduction operations appears to have
minimal loss in throughput as the number of cores increases (Fig. 7).

Fig. 6. ARL OpenSHMEM shmem_getmem predicted performance scaling

Fig. 7. ARL OpenSHMEM shmem_int_sum_to_all predicted performance scaling
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5 Conclusion and Future Work

The performance scaling results of the ARL OpenSHMEM for Epiphany have indi-
cated that there should be few problems scaling applications to physical devices with
larger core counts. There are exceptions with the OpenSHMEM collective routines,
such as shmem_alltoall64 and shmem_fcollect64, which are limited by the available
scratchpad to smaller message sizes or fewer collective cores. The emulator may be
configured as a virtual massively parallel device for testing and software development
on available workstations and clusters before software developers have access to new
physical hardware. Future work will extend the emulator and OpenSHMEM interface
to support the more recent 64-bit ISA, which is backward compatible with the 32-bit
ISA, but has improved support for message passing, atomics, and collective operations.

Longer-term, a cluster of Epiphany processors will need an effective programming
model to address multiple devices. Many HPC applications developers must consider
two tiers of parallelism such as OpenSHMEM + X, where X is OpenMP, Pthreads,
CUDA, or some other intra-node parallel programming model. We propose that a
future system with many Epiphany processors can be developed with an Open-
SHMEM + OpenSHMEM programming model. Using a common API for off-node
and on-node application development reduces the complexity. Code and algorithm
design decisions at one level of parallelism directly benefit the next level of parallelism.
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Abstract. Graphics Processing Units (GPUs) are popular for their mas-
sive parallelism and high bandwidth memory and are being increas-
ingly used in data-intensive applications. In this context, GPU-based
In-Memory Key-Value (G-IMKV) Stores have been proposed to take
advantage of GPUs’ capability to achieve high-throughput indexing oper-
ations. The state-of-the-art implementations batch requests on the CPU
at the server before launching a compute kernel to process operations on
the GPU. They also require explicit data movement operations between
the CPU and GPU. However, the startup overhead of compute kernel
launches and memory copies limit the throughput of these frameworks
unless operations are batched into large groups.

In this paper, we propose the use of persistent GPU compute kernels
and of OpenSHMEM to maximize GPU and network utilization with
smaller batch sizes. This also helps improve the response time observed
by clients while still achieving high throughput at the server. Specif-
ically, clients and servers use OpenSHMEM primitives to move data
between CPU and GPU by avoiding copies, and the server interacts with
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a persistently running compute kernel on the GPU to delegate various
key-value store operations efficiently to streaming multi-processors. The
experimental results show up to 4.8x speedup compared to the existing
G-IMKV framework for a small batch of 1000 keys.

Keywords: OpenSHMEM · GPU · GPUDirect RDMA ·
In-Memory Key-Value Store

1 Introduction

In-Memory Key-Value (IMKV) stores like Memcached [13] and Redis [8] have
become a critical part of many Internet service systems such as Facebook,
YouTube and Twitter. IMKV stores act as caches in these systems to enable
low latency and high throughput in the presence of an ever-increasing number
of active users and exploding amount of online data. IMKV stores are highly
data-intensive workloads and processing cores are usually blocked on pending
data loads. Hence, high-throughput IMKV servers with a quick response time
are highly desirable for these systems to serve more clients promptly.

Streaming Multi-processors (SM) on Graphics Processing Units (GPUs) are
designed for highly data-parallel computation, and the memory subsystems on
the GPU are designed for high-bandwidth data access. Compute Unified Device
Architecture (CUDA) [4] is the de facto programming model for NVIDIA GPUs.
Compute work is submitted to the GPU as CUDA kernels. Data movement
between the CPU and GPU memories is accomplished using CUDA memory
copy APIs, e.g., cudaMemcpyAsync, which typically trigger the Direct Memory
Access (DMA) engines on the GPU.

Earlier research efforts have shown significantly higher throughput using
GPUs in IMKV when compared to using CPUs [18,33]. Increasingly-powerful
GPUs and advanced dense-server configurations with larger GPU counts per
node enable IMKV stores to be supported with much less cluster infrastructure.
This results in savings of both infrastructure cost and energy.

2 Motivation

In a KV store system, clients send queries and updates to key-value servers. First,
the request is passed to the server with the input keys. Each server contains key-
value pairs stored in memory. Upon receiving a request, a server executes KV
operations that can be any typical database operations such as insert, search or
delete, and the server responds to the client, as required. With a large number of
clients each issuing many requests, key-value operations are highly data-parallel.
This can be realized by multiple CPU threads or by offloading the operations
onto accelerators such as GPUs.

In this section, we provide a detailed performance analysis of the state-of-the-
art GPU-based IMKV stores, in particular, Mega-KV [33]. We identify the major
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performance issues that motivate the designs proposed in this paper. The state-
of-the-art GPU-based IMKV design batches requests on the CPU, i.e., system
memory, at the server before launching a CUDA kernel to process the batch
of operations on the GPU [33]. Explicit copy operations are used to move data
between CPU and GPU memories. Multiple CUDA streams are used to pipeline
compute kernels and copies so that the execution of copies and compute kernels
are overlapped.

There are two limiters to performance in existing designs for GPU-based
IMKV (G-IMKV): the startup overhead of compute kernel launches and mem-
ory copies. These factors limit the throughput of G-IMKV frameworks unless
operations are batched into large groups. However, as GPUs get wider with
more SMs, the batch size has to be larger to saturate the GPU with a single ker-
nel launch. Unfortunately, this batching results in longer response times to the
clients. In such scenarios, there is a trade-off between amortizing kernel launch
overheads and higher response times.

Figure 1 shows visual profiles of runs using small and large batches of search
operations in Mega-KV [33] on an NVIDIA Tesla P100 GPU. Note that a large
batch means that all GPU threads are active to process the batch of keys in
parallel. With the small batches of Fig. 1(a), we see that kernel and copy launch
overheads dominate the runtime and show up as idle time on the GPU. Using
several CUDA streams does not help overlap for the same reason. On the other
hand, the profile with larger batches in Fig. 1(b) shows the overlap between
launch overheads, memory copies, and compute kernels. However, this results in
longer response times.

(a) One small batch of 1,000 keys

(b) One large batch of 50,000 keys

Fig. 1. A visual profile of the existing GPU-based search process for small and large
batches. One batch is equally distributed into 4 CUDA streams to execute. Timelines
are horizontal. Each row represents a CUDA stream executing search kernels and two
data movement calls, i.e., cudaMemcpyAsync.

In this paper, we propose the use of a persistent GPU compute kernel to
amortize the overheads of repeated kernel launches and to improve GPU uti-
lization. This also enables the use of smaller batch sizes, which improves the
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response time observed by clients. This work enables OpenSHMEM primitives
for data movement in the GPU-based IMKV to significantly reduce synchro-
nization overheads and to avoid additional copies. We leverage technologies like
GPUDirect RDMA to achieve this. In the proposed designs, clients and servers
use OpenSHMEM primitives to move data by preventing copies, and the server
interacts with a persistently running compute kernel on its GPU to delegate
various key-value store operations efficiently to streaming multi-processors. In
this paper, we make the following key contributions:

– We demonstrate the use of persistent CUDA kernels to improve utilization of
GPUs in IMKV and, in general, streaming applications.

– We demonstrate the use of an OpenSHMEM implementation equipped with
GPUDirect RDMA to optimize data movement in IMKV stores.

– We present a detailed performance evaluation of the proposed designs.

3 Background

This section describes the necessary background knowledge related to this work.

3.1 NVIDIA GPU, CUDA and GPUDirect Technology

Graphics Processing Units (GPUs) have recently become the most popular
accelerator for general-purpose computing due to their massive parallelism and
high bandwidth memory (HBM). The NVIDIA Volta GPU architecture offers
900 GB/s HBM2, can achieve 14 TFLOPs of single precision, and is connected
over Peripheral Component Interconnect Express (PCIe). As can be witnessed
in [9], High-Performance Computing (HPC) systems are rapidly adopting GPU
to accelerate not only traditional scientific applications but also machine learning
and artificial intelligence applications.

CUDA [4] is the standard programming model for NVIDIA GPUs. It pro-
vides various APIs and libraries for developers to leverage the computing power
of NVIDIA GPU hardware efficiently. In particular, GPUDirect technology [5]
is a crucial component for developing high-performance applications. It has
offered features such as peer-to-peer transfers and Remote Direct Memory Access
(RDMA) since CUDA 5. Specifically, GPUDirect RDMA (GDR) enables third-
party PCIe devices such as Network Interface Controllers (NICs) to directly
access GPU memory without involving the CPU to reduce latency and to
improve bandwidth significantly. As a result, designing high-performance GPU-
Aware communication schemes with CUDA and GPUDirect technology has been
widely discussed in the literature [11,29,31] and adopted by many communica-
tion libraries such like OpenMPI [6] and MVAPICH2-GDR [3].

3.2 GPU-Centric OpenSHMEM

OpenSHMEM is a partitioned global address space (PGAS) library specifica-
tion, and many implementations such as Cray SHMEM and Sandia OpenSH-
MEM are available [7]. It also has been integrated into Message Passing Inter-
face (MPI) libraries such as OpenMPI [6] and MVAPICH2-X [3]. Furthermore,
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many advanced designs have been proposed to support GPU memory usage
on heterogeneous clusters [16,27]. NVSHMEM takes a step further to enable
GPU-initiated communication to leverage high-throughput NVIDIA GPUs and
RDMA-enabled NICs [28,30]. Currently, OpenSHMEM only supports symmet-
ric or homogeneous memory placement, which means that memory allocations
and operations through OpenSHMEM (or NVSHMEM for GPU) must be all on
either system or GPU memory, and not span both memory kinds.

3.3 In-Memory Key-Value Stores

As commodity memory has become cheaper in recent years, deployment of huge-
memory servers has become common to improve the performance of data- and
I/O-intensive workloads. Key-Value Stores (KVS) take advantage of low-cost
memory to achieve in-memory caching, so-called In-Memory KV (IMKV) stores,
which have become popular due to their low latency access to data. Although
GPUs are ideal for data-intensive IMKV workloads, it is practically impossible
to store an entire database in GPU memory, since the memory of single GPU is
relatively much smaller than system memory (e.g., 32 GB vs. 256 GB). In [33],
the authors propose to only offload indexing data structure and corresponding
operations such as search, deletion, and insertion to GPUs. Specifically, small
hash tables (typically a few GigaBytes), which contain keys and corresponding
location IDs, are stored in GPU memory. Upon receiving requests from clients,
the CPU is responsible for batching requests and issuing GPU kernels, which are
in turn responsible for searching and returning location IDs based on the keys
provided. CPUs can then use location IDs to retrieve or update values stored in
system memory, and they respond back to clients as required.

4 Proposed Designs

In this section, we first present the use of OpenSHMEM primitives to support
CPU-to-GPU one-sided communication. Next, we investigate the optimization
opportunities for the existing G-IMKV design. Last, we describe the different
design considerations to realize a high-performance key-value server that utilizes
persistent GPU kernels.

4.1 Extending OpenSHMEM Primitives

As mentioned in Sect. 3.2, the current OpenSHMEM standard only supports a
single symmetric heap. Therefore, one performance blocker for G-IMKV with
OpenSHMEM is that an additional data copy is inevitable from CPU to GPU,
at the server. Note that the clients of a KVS are usually light-weight machines
without GPUs. In [26], Namashivayam et al. proposed multiple symmetric par-
titions in OpenSHMEM. We take a similar approach but with the flexibility to
specify the location of each partition at each PE. Communication operations are
allowed from/to/between memory allocations from any of the partitions. These
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extensions allow the use of OpenSHMEM primitives for direct CPU-GPU data
movement between client and server on the proposed G-IMKV framework. We
leverage NVIDIA GPUDirect RDMA feature with Mellanox InfiniBand to imple-
ment data movement primitives in OpenSHMEM as single-copy operations.

Figure 2 depicts the change in control and data flow from using standard
OpenSHMEM primitives to using the extensions mentioned above. The four
steps involved are as follows: (1) Client sends a request to the server. We depict
this as two parts: data and signal, (2) Server copies the request into the GPU and
signals the GPU, by launching a CUDA kernel, (3) GPU processes the request
and a response is copied back onto the CPU, and (4) Server sends the response
back to the client (this will also be a data and signal, but the detail is not shown).
Figure 2(b) depicts the proposed approach using OpenSHMEM, the data path
of Step 1 is directly written to GPU, and the data copy in Step 2 is avoided. The
copy to system memory (SysMem) in Step 3 cannot be prevented as the CPU
has to prepare the response by assembling the values as described in Sect. 3.3.

(a) Standard OpenSHMEM (b) OpenSHMEM with CPU and GPU Sym-
metric Heaps

Fig. 2. Design space of GPU-based IMKV with OpenSHMEM. Bold and dashed lines
represent data and control paths, respectively.

4.2 Data Placement Strategies

In a CUDA program, kernels are most performant when accessing data placed
in GPU device memory due to the high memory bandwidth as mentioned in
Sect. 3.1. In contrast, the PCIe bandwidth lags behind significantly. For PCIe
generations 1, 2 and 3, the bandwidth has scaled from 3 to 6 to 12 GB/s over
the same period.

Given the above considerations, it is common that data accessed by CUDA
kernels are placed in GPU memory [33]. However, in existing G-IMKV sys-
tem, requests and responses between clients and servers are typically exchanged
over the network on SysMem. In this context, memory copies (e.g., cudaMem-
cpyAsync) are required before and after the CUDA kernels to move the data
between SysMem and GPU memory (DevMem). In this work, we explore two
other design choices for data placement.
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NIC-to-Pinned-SysMem: First, we consider data placement on CUDA zero-
copy memory. In a KVS operation, when the number of keys in a batch is small
the required memory bandwidth is low. As a result, the PCIe bandwidth limit
is not reached and there is no significant benefit from higher bandwidth to GPU
memory. In such cases, the execution time of the CUDA kernel is similar between
accessing data on pinned SysMem or GPU memory. More importantly, there is
a fixed overhead to perform memory copies. Hence, for small batch sizes, the
memory copy overhead is a limiting factor, and there is a threshold on batch size
for efficient acceleration on the GPU. Zero-copy support, introduced in CUDA
2.0, allocates page-locked memory in SysMem that can be directly accessed by
CUDA kernels. CUDA kernels can directly access pointers to such allocations
over PCIe. This can potentially help to process small batch size, where the slower
bandwidth to SysMem over PCIe does not matter since the peak bandwidth is
not reached.

NIC-to-DevMem: Second, the batch of keys received over the network as input
to the KVS can be directly placed in the GPU memory using GPUDirect RDMA
(GDR) as described in Sects. 3.1 and 4.1 when the GPU and NIC support it.
This further reduces the data access time compared to zero-copy for larger batch
sizes where the PCIe bandwidth becomes the bottleneck.

4.3 Persistent Kernel Designs

As discussed in Sect. 2, CUDA kernels are launched by the server to process a
batch of incoming requests from clients as Step 2 depicted in Fig. 2. Multiple
CUDA streams are used to overlap data movement in and out of the GPU
memory with the CUDA kernel execution on the GPU. For large batches, this is
efficient because the overhead of CUDA API calls is negligible compared to the
speedup due to GPU acceleration. However, when the batch size is small, the
cost of CUDA API calls limits the throughput of KV operations processed on
GPU. To deal with this problem, we adopt the persistent kernel approach similar
to CPU KVS where persistent CPU threads wait to service client requests.

Persistent kernels present challenges as they stretch beyond the normal usage
of the CUDA programming model. CUDA restricts GPU-NIC consistency at
kernel launch boundaries. This restriction is bypassed for persistent kernels
to receive requests from the client directly into GPU memory and then sig-
nal threads of an already-running CUDA kernel as shown in Fig. 2(b). In the
context of x86 servers where the NIC and GPU are connected over PCIe, this
consistency can be enforced by issuing a PCIe read to GPU memory (through
GPU BAR) that is ordered after the NIC writes data to GPU. The read flushes
the previous data writes to consistency on the GPU. In our implementation, the
server thread on the CPU issues this consistency-enforcing read once it receives
a signal from the client. The signal is ordered with respect to the data over
the network (for example, issued on the same RC QP over InfiniBand). In this
work, we propose two ways to mitigate the overhead of signaling CTAs (cooper-
ative thread arrays, also known as a thread block): (1) Utilizing GDRcopy [1] to
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achieve low-latency data movement of signal flags. (2) Use data structures with
padding for memory alignment, to enable multiple read operations performed
in parallel over PCIe. These schemes can achieve smaller overhead compared to
the regular kernel launch as will be evaluated in Sect. 5.4.

Moving data in and out of the GPU is accomplished using CUDA APIs in
the non-persistent approach as in [33]. In a persistent kernel, this translates to
a reverse offload where GPU threads signal CPU threads to invoke the CUDA
API calls for data movement. It is possible that the data movement operation
is queued behind the persistent kernel creating a circular dependency, which in
turn leads to a deadlock. Due to this deadlock possibility, there are two alterna-
tives to bypass the call to CUDA APIs for data copy. Either the persistent kernel
has to read and write data using allocations on pinned SysMem or the persistent
kernel needs to include the copies in a prolog and epilog to the kernel. Explicit
copy regions at the beginning and end of the kernel can give better performance
compared to random in-line accesses because of better coalescing of contiguous
memory accesses on the GPU. We also experiment with copies using CPU-side
CUDA APIs to show the potential benefit of using GPU’s DMA engines. How-
ever, this may have the risk of deadlock in the current architectures, as explained
above.

5 Evaluation

In this section, we present the evaluation results with IMKV workloads to demon-
strate the performance improvement of the proposed designs. Specifically, we
focus on the throughput of Search operation because it is one of the most criti-
cal indexing operations in IMKV [33].

5.1 Experimental Environment

The experiments were carried out on a cluster at NVIDIA. Each node is equipped
with an Intel dual-socket 16-core E5-2698 v3 (Haswell) at 2.30 GHz, 256 GB host
memory, NVIDIA Tesla P100 GPUs connected with PCIe Gen 3, and a Mellanox
FDR InfiniBand host control adapter. Specifically, one NVIDIA Tesla P100 GPU
has 16 GB DDR5 memory, 56 SMs and 3584 cores running at 1.33 GHz. The
operating system is CentOS 7.5 with Linux kernel 3.10.0-862.2.3. We used CUDA
toolkit 9.0.176 and NVIDIA driver 396.26.

The advanced data placement discussed in Sect. 4.2 and persistent kernel
designs presented in Sect. 4.3 were implemented on top of Mega-KV [2,33]. We
used MVAPICH2-X 2.3b [3] for CPU-CPU data movement. To achieve the CPU-
to-GPU OpenSHMEM primitives, we extended NVSHMEM [28] over Infini-
Band. In the data flows shown in Fig. 2(b), we used NVSHMEM for Step 1
and MVAPICH2-X for the others. We modified benchmarks from [2] to mimic
real Client-Server behavior of IMKV system, where a 100% hit ratio of search is
used, and report throughput as Million search Operations Per Second (MOPS).
Here, we used one machine continuously issuing requests to emulate multiple
clients. There are two major steps evaluated in this paper.
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– Request: The client sends a request which contains a batch of keys with
hash values to the server using OpenSHMEM’s shmem put API, followed by
shmem fence and shmem int p to indicate the completion of the put opera-
tion. In Sect. 5.3, we examined two variants of data placement on the remote
server: (1) put a request into the SysMem, or (2) put request directly to
DevMem using proposed primitives that bypass the CPU.

– Search: Once the server detects a new request coming it can either (1) repeat-
edly launch the search kernels as Mega-KV does, or (2) signal a pre-configured
persistent kernel to perform search operations as proposed in Sect. 4.3. More-
over, depending on the data placement strategy, a search kernel can either
access pinned SysMem directly without explicitly copy or move data from
SysMem to DevMem. When a search kernel completes, an array of location
IDs will be generated and copied from DevMem back to SysMem.

5.2 Baseline

To build a proper baseline, we evaluated Mega-KV with varying number of
CUDA streams and batch sizes on our experimental environment. Figure 3(a)
shows that a single CUDA stream yields the highest throughput until the batch
size is larger than 9,000. Figure 3(b) indicates that 2 and 4 CUDA streams offer
best performance as batch size is increased. This is because more overlap is
possible when kernel execution and copy times of kernels are longer, at large
batch sizes.

(a) Small Batch Sizes (b) Large Batch Sizes

Fig. 3. Impact of number of CUDA streams on throughput of search operations in
Mega-KV [33]. Number of CUDA streams is varying from 1, 2, 4, 7, and 8.

5.3 Data Placement

As discussed in Sect. 4.2, data in pinned buffers can be placed in DevMem or
SysMem. We first present the evaluation of different data placement strate-
gies and their impact on performance. There are three approaches. (1) Sys-
Mem with explicit data movements and 4 CUDA streams (Mega-KV-4): The
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request is received and stored in SysMem, and there is one copy (i.e., cud-
aMemcpyAsyn) from SysMem to DevMem. This is the state-of-the-art proposed
in [33]. (2) SysMem with implicitly data movement (G-IMKV-SysMem): This
is equivalent to Mega-KV except that the search kernel accesses pinned Sys-
Mem. Thus the GPU kernel can directly access it and perform the search oper-
ation in a load/store fashion to avoid issuing explicit copy calls from CPU.
(3) DevMem without copies (G-IMKV-GDR-CE): The request is received
and stored directly to DevMem using GDR-enabled OpenSHMEM primitives as
shown in Fig. 2(b). Note that the results are still copied back to SysMem for
CPU to prepare a response. Here, we used 4 CUDA streams for Mega-KV,
i.e., Mega-KV-4, as it yields highest peak throughput as shown in Fig. 3. For G-
IMKV-SysMem and G-IMKV-GDR-CE, we only used one CUDA stream
for higher peak throughput since a higher number of CUDA streams shows no
improvement as zero and low overlap between data transfer and kernel.

In Fig. 4, we compare the three approaches mentioned above. G-IMKV-
GDR-CE yields the highest throughput for all batch sizes due to the elimina-
tion of extra data movement from SysMem to DevMem. The peak throughput
of G-IMKV-GDR-CE (888 MOPS) is 1.2x and 4.6x higher than Mega-KV
(729 MOPS) and G-IMKV-SysMem (191 MOPS), respectively. For process-
ing smaller batches as shown in Fig. 4(a), the G-IMKV-SysMem is up to
3.6x faster than Mega-KV-4 for batches smaller than 9,000 keys. However,
G-IMKV-SysMem soon saturates PCIe bandwidth due to the many random
accesses to pinned SysMem across the PCIe bus, which has limited bandwidth
compared to GPU memory. For larger batch sizes, shown in Fig. 4(b), Mega-
KV-4 reaches peak through (729 MOPS) for the batch size of 90,000 keys. Note
that this is higher than the peak throughput, i.e., 303 MOPS, reported in [33]
because the newer hardware architectures are used in our experiments (e.g.,
NVIDIA Kepler vs. Pascal GPU architectures).

(a) Small Batch (b) Large Batch

Fig. 4. Performance comparison of search operations among different data placement
strategies
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5.4 Persistent Kernel

In this section, we present the performance of the proposed persistent kernel
designs as described in Sect. 4.3. We first examine the overhead of signaling
persistent kernel. Next, we show the performance of search operations using
different variants.

Signaling Overhead: We evaluated the signaling overhead for up to 112 CTAs,
which is the maximum occupancy of the kernel on NVIDIA Pascal GPUs used in
this paper. Figure 5 shows the latency of different approaches. Using the padding
approach for SysMem yields latency as low as 4–5µs, which stays nearly flat as
the number of CTAs is increased. Similarly, using one-shot GDRCopy provides
2.6–5.7µS across 1 to 112 CTAs, but latency grows faster than the padding app-
roach. Kernel launch has a constant overhead, which is around 5µs as of CUDA
toolkit 9.0.176. Hence, the proposed persistent kernel designs have similar or
lower synchronization cost compared to non-persistent kernel designs. However,
unlike kernel launches which have a serialization effect at the GPU level, as
shown in Sect. 2, the synchronization in the persistent kernel is done at a CTA
granularity and hence can be pipelined more efficiently for small batch sizes. In
the experiments presented in the rest of the paper, we used a padding approach
to perform signaling between the CPU and the GPU.

Fig. 5. Latency of synchronization schemes for persistent kernels

Overall Performance: There are four design variants for persistent kernels
evaluated in this paper: (1) G-IMKV-PK-SysMem: similar to G-IMKV-
SysMem presented earlier, where the search kernel access data from pinned
SysMem directly without explicit copies, (2) G-IMKV-PK-SM: once a CTA
gets signaled, it first LOADs data to DevMem and performs the search oper-
ation on DevMem, followed by STORE operations back to SysMem, we called
it SM-based copy in the paper. (3) G-IMKV-PK-GDR-SM: with the pro-
posed GDR-enabled OpenSHMEM primitives, the kernel can perform search
operations immediately since data is ready on DevMem, followed by a SM-based
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copy of results back to SysMem, (4) G-IMKV-PK-GDR-CE: similar to G-
IMKV-PK-GDR-SM, however, the use of Copy Engine performs copies to
further utilize GPU hardware resources.

Figure 6 shows the performance comparisons among the four persistent ker-
nel variants. Similar to G-IMKV-SysMem shown in Fig. 4, G-IMKV-PK-
SysMem suffers from limited PCIe bandwidth (peak throughput is 198 MOPS).
Although G-IMKV-PK-SM does not access SysMem directly during search
operations, it suffers from PCIe bandwidth limitations as well when perform-
ing SM-based copies between SysMem and DevMem. However, better mem-
ory coalescing access makes G-IMKV-PK-SM significantly outperform (up to
2x faster) G-IMKV-PK-SysMem. On the other hand, GDR-enabled designs
achieve much higher throughput. For the batch size of 1,000 as depicted in
Fig. 6(a), with a memory-coalesced SM-based copy, G-IMKV-PK-GDR-SM
achieves 2.7x higher throughput than G-IMKV-PK-GDR-CE, which has
additional driver overhead to issue copies via the copy engines. However, for
the batch size larger than 4,000, the driver overhead of G-IMKV-PK-GDR-
CE becomes insignificant and lets G-IMKV-PK-GDR-CE achieve up to 848
MOPS, which is 1.5x higher than G-IMKV-PK-GDR-SM. These results
demonstrate the benefit of the proposed GDR-enabled OpenSHMEM primitives
for IMKV.

(a) Small Batch (b) Large Batch

Fig. 6. Performance comparison among different persistent kernel-based designs

5.5 Persistent Versus Non-persistent Kernel Designs

One last question to answer is how persistent kernel designs compare with non-
persistent kernel ones. Figure 7 presents the comparison between the state-of-the-
art GPU-based IMKV (Mega-KV-TUNED. Which is tuned based on results in
Fig. 3), and proposed G-IMKV-GDR-CE, and G-IMKV-PK-GDR-OPT,
which is a tuned version between G-IMKV-PK-GDR and G-IMKV-PK-
GDR-CE to obtain the highest throughput across all batch sizes. The pro-
posed GDR-enabled designs significantly outperform Mega-KV-TUNED for
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all batch sizes by a factor of 1.2x to 4.8x. More importantly, the persistent kernel
variant G-IMKV-PK-GDR-OPT can quickly achieve high throughput due to
the low driver and synchronization overhead. For a sample batch size of 1,000,
as shown in Fig. 7(a), G-IMKV-PK-GDR-OPT can easily get 373 MOPS,
which is 3.6x and 4.8x higher throughput than G-IMKV-GDR-CE and Mega-
KV-TUNED, respectively. For large batch sizes, shown in Fig. 7(b), the peak
throughput of G-IMKV-GDR-CE is 888 MOPS, which is 1.04x and 1.23x
higher than G-IMKV-PK-GDR-CE and Mega-KV-TUNED, respectively.
It is worth noting that the proposed persistent kernel designs achieve compa-
rable peak throughput to non-persistent kernel designs yet significant higher
throughput for small batch sizes.

Fig. 7. Performance comparison between proposed designs and state-of-the-art

6 Related Work

In this section, we discuss the various approaches proposed in the literature to
accelerate KVS and IMKVS. These approaches can be roughly categorized into
three aspects: (1) Communication acceleration, e.g., RDMA-based, [12,14,15,
23–25,32], (2) Memory access acceleration, e.g., GPU-based, [17,18,20,22,33],
and (3) Specialized programmable hardware, e.g., FPGA-based, [10,19,21].

Lu et al. propose the RDMA-Memcached library to leverage RDMA-enabled
InfiniBand and high-performance SSD to achieve low latency and high through-
put for distributed KVS [24]. Mitchell et al. propose Pilaf to allow clients to read
server memory via RDMA primitives for fast KVS get and put operations [25].
DrTM-KV exploits advanced hardware features such as RDMA and Hardware
Transactional Memory (HTM) to improve the performance of KVS [32]. MICA is
optimized for multi-core architectures by data partitioning and new data struc-
tures for KVS, and achieve high throughput and low latency operations through
bypassing the kernel with a light-weight networking stack [23]. SHMEMCache
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is the first attempt to leverage OpenSHMEM primitives to accelerate request
and response times for distributed KVS on HPC systems [14,15]. In [17,18],
Hetherington et al. characterize and design a scalable GPU-based KVS called
MemchachedGPU [18]. Mega-KV strongly demonstrates the capability of GPU
for high-performance and energy-efficient IMKV, showing 623 key-value oper-
ations per second with eight CPUs and eight Nvidia K40 GPUs [33]. Li et al.
conduct a cross-layer system characterization to provide insights into leverag-
ing essential software and hardware features for high-performance KVS sys-
tems [22]. It shows 120 million requests per second on a commodity dual-socket
KVS system. NetCache leverages high-speed programmable switches for high-
performance distributed KVS [19]. Blott et al. propose a Field Programmable
Gate Array (FPGA)-based dataflow architecture to outperform traditional x86
servers for KVS operations [10]. KV-Direct leverages the FPGA programmable
NICs to provide extended RDMA primitives for remote direct key-value access
to accelerate IMKV operations [21].

Table 1. Summary of the proposed solutions compared to the state-of-the-art

Baseline Bottleneck Proposed solution Result name Speedup Batch

size

Mega-KV [33] Copy engine overhead Pinned SysMem G-IMKV-

SysMem

3.6x 1,000

G-IMKV-

SysMem

SysMem to DevMem

copies

GPUDirect

RDMA

G-IMKV-GDR-

CE

4.6x 100,000

G-IMKV-

GDR-CE

Kernel launch

overhead

Persistent Kernels G-IMKV-PK-

GDR-SM

3.7x 1,000

G-IMKV-

PK-GDR-

SM

SM-based Copy

Inefficiency

Copy Engine for

large batch

G-IMKV-PK-

GDR-CE

1.5x 90,000

7 Concluding Remarks and Future Work

In this paper, we propose advanced designs of persistent CUDA kernel and
GPUDirect RDMA-enabled OpenSHMEM primitives to provide low-latency and
high-bandwidth memory and network access. As a result, high-throughput GPU-
based In-Memory Key-Value (G-IMKV) Stores for all batch sizes become possi-
ble compared to the state-of-the-art as summarized in Table 1. The fundamental
contributions of this paper are highlighted as follows.

– We identify that GPU kernel launches, explicit data copies, and PCIe band-
width limitations are bottlenecks in the state-of-the-art G-IKMV.

– We demonstrate the use of persistent CUDA kernels to hide driver overhead
and improve utilization of GPUs.

– We demonstrate the use of an OpenSHMEM implementation equipped with
GPUDirect RDMA to optimize data movement: G-IMKV-GDR obtained
3.83x the peak throughput of Mega-KV.
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– The proposed G-IMKV-GDR design achieves 888 MOPS, which is 1.23x
the peak of Mega-KV, and the proposed G-IMKV-GDR-OPT has 4.8x the
throughput of Mega-KV-4 at a batch size of 1,000.

Future work includes implementing all indexing operations, further explor-
ing optimization techniques with persistent CUDA kernels and evaluating the
proposed designs using benchmarks and applications in various aspects.
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Abstract. As the exascale era approaches, it is becoming increasingly
important that runtimes be able to scale to very large numbers of pro-
cessing elements. However, by keeping arrays of sizes proportional to the
number of PEs, an OpenSHMEM implementation may be limited in its
scalability to millions of PEs. In this paper, we describe techniques for
tracking memory usage by OpenSHMEM runtimes, including attributing
memory usage to runtime objects according to type, maintaining data
about hierarchical relationships between objects and identification of the
source lines on which allocations occur. We implement these techniques
in the TAU Performance System using atomic and context events and
demonstrate their use in OpenSHMEM applications running within the
Open MPI runtime, collecting both profile and trace data. We describe
how we will use these tools to identify memory scalability bottlenecks in
OpenSHMEM runtimes.

Keywords: Open MPI · TAU · Memory · Scalability

1 Introduction

With the approach of the exascale era, the ability for applications to scale to large
numbers of cores becomes increasingly important. While applications themselves
must be designed with scalability in mind, even a well-designed application may
be limited in its scalability by design decisions made in the underlying runtime
used by the application for distributed communications. The scaling behavior
of runtime memory usage is of particular concern, since exascale systems are
expected to have fewer bytes of memory per core than current HPC systems.
Runtimes which keep per-processing-element arrays of sizes proportional to the
number of processing elements will be limiting themselves as the number of
processing elements scales into the millions. In order to design OpenSHMEM
runtimes for exascale systems, it will be necessary to characterize the memory
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Fig. 1. The architecture of the TAU Performance System. TAU offers multiple mecha-
nisms for application instrumentation, multiple types of measurements, and a suite of
tools for analyzing performance data.

scaling behavior of those runtimes. In this paper, we describe our implementation
of memory tracking within the TAU Performance System [10].

The TAU Performance System, the architecture of which is shown in Fig. 1
is a powerful and highly versatile profiling and tracing tool ecosystem for perfor-
mance analysis of parallel programs. Developed over the last twenty years, TAU
has evolved with each new generation of HPC systems and presently scales effi-
ciently to hundreds of thousands of cores on the largest machines in the world.
TAU can be applied in a portable way to codes written in Fortran, C, C++, Java,
and Python, which utilize MPI and/or OpenSHMEM message communication
and/or multi-threading (e.g., pthread, OpenMP) for execution across different
parallel machines. It can be used through automatic or manual source instrumen-
tation, runtime sampling, binary rewriting, and through library wrapping and
interposition. TAU offers native support for performance monitoring of Open-
SHMEM applications across several different OpenSHMEM runtimes through
automatic generation of library wrappers created by parsing runtime-provided
header files [8].

2 Memory Tracking Techniques

2.1 Tracking Allocations with Library Interposition

Our initial approach to monitoring the runtime overhead of OpenSHMEM run-
times was to use TAU’s heap tracking support in conjunction with context events
to identify the sizes of allocations and to attribute allocations to the applica-
tion or the underlying runtime. In library interposition, TAU provides alter-
nate implementations for existing library functions which record data about the
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library call and then call the original implementation of the function. To track
heap allocations using library interposition, TAU substitutes its own implemen-
tations of malloc and free and related functions. These record context events
into the profile or trace being generated. Within TAU, atomic events record
that an event with a name occurred with a given value; context events record
the name and value separately for each callpath along which events of that name
occur. Using this approach, we can distinguish between memory allocations that
occur inside the runtime (for which an OpenSHMEM API call is on the callpath)
and those which occur at the application level (for which no OpenSHMEM API
calls are on the callpath).

Fig. 2. ParaProf’s Context Event window showing the top-level memory usage statis-
tics collected for GUPS on 128 PEs, showing overall heap allocations for GUPS on 128
PEs.

Fig. 3. ParaProf’s Context Event window showing the heap allocation statistics which
occurred within the shmem init runtime function. Comparing the Heap Allocate value
here with the top-level timer shows that nearly all of the heap bytes allocated were
allocated within shmem init.

Fig. 4. ParaProf’s Context Event window showing the heap allocation statistics which
occurred within the .TAU Application timer. Since only OpenSHMEM runtime func-
tions were instrumented in this run, this represents application-level allocations.
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We demonstrate this approach, as we will with the others described in this
paper, using the Giga Updates Per Second (GUPS) benchmark code [5]1 and
the Open MPI runtime [4]. We collect heap allocation data, and distinguish
between runtime and application events, by using library interposition to wrap
memory allocation and OpenSHMEM API calls using an unmodified application
and runtime. Figure 2 shows the Context Event window of TAU’s ParaProf tool
displaying the overall memory usage statistics for GUPS run on 128 PEs on the
University of Oregon Talapas system. Context-specific allocation data for the
shmem init function and for uninstrumented (application) functions are shown
in Figs. 3 and 4, respectively. The results show that nearly all the heap memory
allocated during the run is allocated in the shmem init function, which allocates
both various internal runtime data structures as well as the symmetric heap itself.

Tracking allocations in this way provides a view of the total bytes allocated
and deallocated for the application as a whole and per function, but this does
not tell us the amount of memory actually consumed by the application (as it
may repeatedly allocate and free memory). To provide this data, TAU provides
memory footprint tracking, in which the resident set size (VmRSS) and peak
memory usage/high-water mark (VmHWM) are periodically sampled.

2.2 Instrumentation of the OpenSHMEM Object System

The allocation tracking approach of recording the sizes passed to calls to malloc
and free within different functions allowed us to identify that most allocations
were occurring within the call to shmem init, but does not tell us what runtime
objects account for the allocations. General approaches to identifying the object
types associated with allocations are difficult to implement for C code, as the
necessary information is not available at runtime. We therefore use an approach
of manually instrumenting the Open MPI runtime. The Open MPI runtime’s
lowest-level layer, OPAL, defines an object system which is used by the higher
level ORTE, OMPI, and OSHMEM components, which allows for centralized
instrumentation of the allocations of instances of OPAL classes.

Our initial implementation added a public API calls to TAU:

void Tau_track_class_allocation(const char * name , size_t size);

This call registers an allocation of a particular type (indicated by the name)
and size by triggering an atomic or context event within TAU. Adding a single
line to the Open MPI runtime code responsible for allocating memory for object
instances (opal obj new in opal/class/opal object.h) allows us to record
those allocations:

1 https://github.com/openshmem-org/gups-shmem.

https://github.com/openshmem-org/gups-shmem
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static inline opal_object_t *opal_obj_new(opal_class_t * cls)
{

opal_object_t *object;
assert(cls ->cls_sizeof >= sizeof(opal_object_t ));

Tau track class allocation(cls->cls name, cls->cls sizeof);

[...]
}

The initial implementation successfully allowed us to collect data on the
memory usage by data type, but did not allow for collection of hierarchical data.
Open MPI runtime objects often contain pointers to other objects which are allo-
cated during the initial construction of the first object or shortly thereafter and
are properly considered to be owned by the first object. We wished to (1) where
possible, automatically capture this hierarchical relationship and (2) where not
possible, provide a mechanism for manual instrumentation to define the rela-
tionship. For our second implementation, we added two new API calls to TAU:

void Tau_start_class_allocation(const char * name , size_t size ,
int include_in_parent );

void Tau_stop_class_allocation (const char * name , int record );

The Tau start class allocation and Tau stop class allocation calls
are used for recording the sizes of objects, including their child objects. When
an allocation region is started, new allocation regions opened within the parent
region are recorded as both a standard atomic event and as a context event indi-
cating, rather than the enclosing functions, the the enclosing allocation regions.
For example,

Tau_start_class_allocation("a", 10, 0);
Tau_start_class_allocation("b", 25, 0);
Tau_stop_class_allocation ("b", 1);
Tau_stop_class_allocation ("a", 1);
Tau_start_class_allocation("b", 10, 0);
Tau_stop_class_allocation ("b", 1);

will record the atomic events

alloc a 10
alloc b 35
alloc b <= a 25

which indicates that 10 bytes of a objects were allocated, 35 bytes of b objects
were allocated, and 25 bytes of the b objects were child allocations of a objects.

Allocations of most objects in the Open MPI runtime are captured by
instrumenting, as before, the opal obj new function in opal/class/opal
object.h, which is called to construct most objects in the OPAL class hier-
archy. In this implementation, we wrap the call to the class constructors for the
object being instantiated, which automatically captures any child allocations
which occur inside the constructor:
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static inline opal_object_t *opal_obj_new(opal_class_t * cls)
{

opal_object_t *object;
assert(cls ->cls_sizeof >= sizeof(opal_object_t ));

Tau start class allocation(cls->cls name, cls->cls sizeof, 0);

#if OPAL_WANT_MEMCHECKER
object = (opal_object_t *) calloc(1, cls ->cls_sizeof );

#else
object = (opal_object_t *) malloc(cls ->cls_sizeof );

#endif
if (opal_class_init_epoch != cls ->cls_initialized ) {

opal_class_initialize (cls);
}
if (NULL != object) {

object ->obj_class = cls;
object ->obj_reference_count = 1;

opal obj run constructors(object);

}

Tau stop class allocation(cls->cls name, 1);

return object;
}

By using allocation regions, this automatically captures any child
allocations that occur within the constructor of the class. For exam-
ple, the constructor for orte rml posted recv t allocates an object of
type orte rml recv request t, and this allocation is recorded as alloc
orte rml posted recv t <= orte rml recv request t in the profile.

This technique does not capture any child objects which are allocated outside
of the constructor for a class. There is no central location where such tracking
could be implemented, so any such child allocations are instrumented manually.
To do this, dummy allocation regions are used to indicate the parent of an alloca-
tion without actually recording an atomic event for the parent, which was already
record through opal obj new. To do this, Tau start class allocation is called
normally, child allocations are recorded, and Tau stop class allocation is
then called with the record parameter set to 0.

A final modification to the Open MPI runtime was to add dummy imple-
mentations of the three new TAU API calls which do nothing. These functions
are declared with weak linkage, so that another implementation can override the
dummy versions. By using this technique, the instrumented Open MPI runtime
can be run without TAU with little overhead, and TAU instrumentation can be
accomplished by simply linking the application against, or preloading, the TAU
library.

We ran GUPS with the TAU memory allocation tracking approach described
in this section for 16, 32, 64, 128, 256, 512, and 1,024 processing elements
(PEs) on the University of Oregon Talapas system. The results for the sub-
set of objects whose child allocations were manually instrumented is shown in
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Fig. 5. Total memory allocations in bytes of a subset of OPAL object types during
execution of the GUPS benchmark on between 16 and 1,024 processing elements.

Fig. 5. The results show that among the object types inspected, the fastest-
growing are ompi proc t, which grows to consume 117 MB at 1,024 PEs, and
orte namelist t as a child of oshmem group t, which grows to consume 100 MB
at 1,024 PEs. Allocations of these object types will be bottlenecks as the number
of PEs increases.

2.3 Memory Allocation Tracing

As with instrumenting malloc and free, profiling memory allocations using
instrumentation regions gives us a total count for bytes allocated and bytes freed
by type, but does not tell us the actual peak memory usage by type. Recording
the memory high-water-mark does not help in this case, as the high-water-mark
is recorded per-process and not per-type. Figure 6 shows allocations for all OPAL
data type allocated during runs of GUPS on 16 to 1,024 PEs. While the objects
types shown in Fig. 5 are allocated all at once during startup and not deallocated
until shmem finalize, this is not true of OPAL objects in general. Among all
OPAL object types, opal value t objects have by far the most bytes allocated.
But we cannot tell from this profile data whether these objects are all allocated
at once, or are repeatedly allocated and deallocated, with the actual steady-state
memory usage much lower. In order to determine this, we use trace data.
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Fig. 6. Total memory allocations in bytes of all OPAL object types during execution
of the GUPS benchmark on between 16 and 1,024 processing elements. opal value t

objects account for by far more bytes allocated than any other object type.

In order to generate trace data including OpenSHMEM-specific events such
as one-sided communication as well as atomic and context events such as those
tracking allocation, we implemented support for native generation of OTF2 for-
mat traces [3] of OpenSHMEM applications in TAU. This allows a user to observe
detailed information on the execution of an application, including the times and
durations of each OpenSHMEM call invoked, as well as the time, source, des-
tination, and size of each communication. These traces are generated by TAU
using the libotf2 2.1 library. Native OTF2 trace generation provides several
advantages over the generation of traditional TAU traces. The OTF2 format
provides event types specifically suited for representing OpenSHMEM one-sided
communication, which are output by TAU when they are encountered in place
of the traditional representation of one-sided communication as if it were two-
sided MPI communication. Generating OTF2 files requires communication at
runtime in order to create a global mapping of function names to local identi-
fiers; this is implemented in TAU by intercepting the call to shmem finalize
and carrying out this communication prior to the actual shutdown of the Open-
SHMEM runtime. OTF2 is also highly space-optimized, producing smaller files
than equivalent traditional TAU traces. Figure 7 shows a trace visualization of
an execution of GUPS on 128 PEs using the Vampir trace visualizer [7].
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Fig. 7. Example of an OTF2 trace collected for GUPS on 128 PEs as visualized with
Vampir. On top, zoomed out to show entire execution. On bottom, zoomed in to display
communication events, shown as lines and arrows.

We then implemented API calls in TAU to handle deallocation regions anal-
ogous to allocation regions but which record when objects are deallocated:

void Tau_track_class_deallocation (const char * name , size_t size);
void Tau_start_class_deallocation (const char * name , size_t size ,

int include_in_parent );
void Tau_stop_class_deallocation (const char * name , int record );

The OPAL object system in Open MPI uses a reference counting system in
which a class destructor is invoked when an object’s reference count reaches zero.
We instrument the code in the runtime which invokes the destructors, ensuring
that we also capture the hierarchical relationship with any child objects that are
freed by the destructor of a parent:
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Fig. 8. Example of an OTF2 cumulative memory trace collected for GUPS on 128
PEs as visualized with Vampir for objects of type opal value t. On top, zoomed out
to show the peak cumulative allocation. On bottom, zoomed in to display fluctuation
during early parts of shmem init.

static inline void opal_obj_run_destructors(opal_object_t * object)
{

opal_destruct_t* cls_destruct;

assert(NULL != object ->obj_class );

Tau start class deallocation(object->obj class->cls name,object->obj class->cls sizeof, 0);

cls_destruct = object ->obj_class ->cls_destruct_array;
while( NULL != *cls_destruct ) {

(* cls_destruct )( object);
cls_destruct ++;

}

Tau stop class deallocation(object->obj class->cls name, 1;

}
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Every instance of an allocation or deallocation of an OPAL object is sepa-
rately recorded in the OTF2 trace. This allows us to determine, for each PE,
the cumulative bytes currently allocated for each OPAL object type. Figure 8
shows the current memory usage of opal value t objects over time for a run of
GUPS on 128 PEs. Early during shmem init, there are a large number of small
allocations and deallocations, and the total memory usage of these objects fluc-
tuates. As shmem init completes, large allocations occur which push the current
allocation count to 274 kB per PE. The profiling approach described above gives
a value of 407 kB of opal value t objects per PE – the peak usage is 67% of
the total allocated bytes.

3 Related Work

Many general-purpose memory tracking tools have been developed, such as Val-
grind’s Massiff tool [9], KDE Heaptrack [2], and GNOME MemProf [1]. These
tools track heap usage as a function of time and can identify which source lines
are responsible for what proportion of the outstanding allocations. However,
general-purpose tools like this, when applied to C, lack the ability to attribute
memory usage to object types, as the TAU features described in this paper
can do. Sumimoto et al. have developed a tool for tracking memory usage in
Open MPI, DMATP-MPI [11], which distinguishes between runtime and appli-
cation allocations and identifies the runtime function causing allocations, but
which does distinguish allocations based on object type. Janjusic and Kartsak-
lis have developed a memory tracing tool, Gleipnir [6], which uses Valgrind to
instrument memory allocations and attributes allocations to source files, but not
object types, within the Open MPI runtime.

4 Conclusions and Future Work

In this paper, we have described an approach to tracking memory usage in
the Open MPI runtime while executing OpenSHMEM applications, whereby
a small amount of manual instrumentation of the Open MPI runtime allows
us to distinguish application and runtime allocations, to distinguish allocations
by originating function, and, most importantly, to distinguish allocations by
object type. We implemented these techniques in the TAU Performance System
using atomic and context events and demonstrated their use through a test case
with the GUPS benchmark. We showed that both profile and trace data can
be collected, and that trace data can be used to determine peak memory usage
(high-water-mark) for different object types.

We expect to apply the techniques described in this paper to larger-scale
analysis of the Open MPI and other runtimes in order to guide the process
of optimizing these runtimes for larger numbers of PEs, particularly focused on
future exascale systems on which the available bytes per PE will be lower than on
currently-existing systems. One potential optimization is to share objects which
do not change after initialization between PEs running on the same physical
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node. To do this, it would be useful to develop an extension of this tool which
can identify those objects which are written to after shmem init returns (and
which cannot be safely shared) and those which are not written to (and can be
safely shared).
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trace format 2: the next generation of scalable trace formats and support libraries.
In: PARCO, vol. 22, pp. 481–490 (2011)

4. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion mpi implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30218-6 19

5. Grossman, M., Doyle, J., Dinan, J., Pritchard, H., Seager, K., Sarkar, V.: Imple-
mentation and evaluation of OpenSHMEM contexts using OFI libfabric. In:
Gorentla Venkata, M., Imam, N., Pophale, S. (eds.) OpenSHMEM 2017. LNCS,
vol. 10679, pp. 19–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73814-7 2

6. Janjusic, T., Kartsaklis, C.: Memory scalability and efficiency analysis of parallel
codes. Technical report, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN
(United States). Oak Ridge Leadership Computing Facility (OLCF) (2015)
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Abstract. Partitioned Global Address Space (PGAS) programming
models, such as OpenSHMEM, are popular methods of parallel program-
ming; however, performance monitoring and analysis tools for these mod-
els have remained elusive. In this work, we propose a performance counter
extension to the OpenSHMEM interfaces to expose internal communica-
tion state as lightweight performance data to tools. We implement our
interface in the open source Sandia OpenSHMEM library and demon-
strate its mapping to libfabric primitives. Next, we design a simple col-
lector tool to record the behavior of OpenSHMEM processes at execution
time. We analyze the Integer Sort (ISx) benchmark and use the result-
ing data to investigate several common performance issues—including
communication schedule, poor overlap, and load imbalance—and visu-
alize the impact of optimizations to correct these issues. Through this
study, our tool uncovered a performance bug in this popular benchmark.
Finally, by using our tool to guide the application of several pipelining
optimizations, we were able to improve the ISx key exchange performance
by more than 30%.

1 Introduction

One-sided communication models, such as those provided by OpenSHMEM [19],
Unified Parallel C (UPC) [28], the MPI Remote Memory Access (RMA) inter-
face [16], and other Partitioned Global Address Space (PGAS) parallel program-
ming models provide portable, high performance interfaces to high-speed fab-
rics. These models are especially effective for applications whose performance is
dependent upon high-throughput communication patterns [9]; however, because
of the scale and high rate at which communication operations are generated,
effective performance analysis tools for such models has remained challenging.

Tracing is a common approach to performance profiling of high performance
computing (HPC) applications. Tracing typically involves capturing a log of
each communication operation for offline analysis and visualization. While this
approach has been shown to be effective for a wide variety of applications, it can
be challenging for high-throughput usage models that generate large volumes
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of communication. In such scenarios, traces can become extremely large and
instrumentation used to record performance information can introduce overheads
that impact dynamic behavior and can interfere with performance characteristics
of the application under study.

In this work, we propose a performance counter extension to OpenSHMEM
that exposes internal one-sided communication state, including the number of
posted and completed operations issued by the local process, as well as the num-
ber of completed remote access operations that have targeted the given process.
In contrast with traditional library interposition profiling approaches, which cap-
ture performance data around function invocations, the proposed performance
counter interface can be sampled continuously, providing insight into nonblock-
ing communication operations and remote accesses performed asynchronously in
the memory of a given process. In addition, the proposed interface can expose
completion information that is more detailed than can be gathered using library
interposition approaches to profiling. Thus, OpenSHMEM performance counters
provide a new and rich source of data for performance analysis that can provide
new performance insights.

In this work, we extend the open source Sandia OpenSHMEM (SOS) [23]
implementation to support the proposed performance counters API. We observe
that the libfabric networking layer used by SOS utilizes event counters, which can
enable fine-grain performance tracking at the level of individual OpenSHMEM
contexts or operation classes. Next, we create a simple collector tool that runs
alongside application processes and samples the performance counters with low
overhead. Finally, we evaluate this system using the ISx [9] integer sorting bench-
mark, which is representative of high-throughput OpenSHMEM applications. By
analyzing the performance counter data, we are able to identify and correct sev-
eral sources of inefficiency in ISx, including such common PGAS performance
pitfalls as communication scheduling, load imbalance, and poor overlap. Using
the resulting optimized version of ISx, we observed a performance improvement
of more than 30% to the ISx key exchange phase in a weak scaling study.

2 Related Work

The topics of communication tracing and analysis have been studied extensively
in the context of OpenSHMEM and PGAS models. A number of tools have been
developed, including the Cray1 Performance Analysis Toolkit [6], HPCToolKit
(see footnote 1) [1], GASP [26], KOJAK [15], Parallel Performance Wizard [25],
Scalasca [11], SCORE-P [12], TAU (see footnote 1) [13,14], VAMPIR (see foot-
note 1) [17], and others [5]. Tracing and event collection approaches collect highly
detailed information; however, these approaches can generate per-operation over-
heads that may interfere with the application under study. In this work, we use
performance counters that can be sampled at varying frequencies, allowing the
user to tradeoff accuracy and overhead.

1 Other names and brands may be claimed as the property of others.
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Listing 1. Proposed OpenSHMEM performance counter API.

/* Retrieve number of issued/completed write operations */
int shmemx_pcntr_get_issued_write(shmem_ctx_t ctx, uint64_t *cntr_value);
int shmemx_pcntr_get_completed_write(shmem_ctx_t ctx, uint64_t *cntr_value);

/* Retrieve number of issued/completed read operations */
int shmemx_pcntr_get_issued_read(shmem_ctx_t ctx, uint64_t *cntr_value);
int shmemx_pcntr_get_completed_read(shmem_ctx_t ctx, uint64_t *cntr_value);

/* Retrieve number of completed target operations */
int shmemx_pcntr_get_completed_target(uint64_t *cntr_value);

/* Retrieve all (issued and completed) operation counters */
int shmemx_pcntr_get_all(shmem_ctx_t ctx, shmemx_pcntr_t *pcntr);

Our approach is similar to using hardware performance counters, e.g. with
the PAPI Toolkit [4]. Network performance counters have also been used to ana-
lyze application-level and system-level performance [3,20,27]; however, they can
be challenging to use for application performance analysis since they often do
not distinguish between individual processes or jobs. In contrast, our approach
allows tools to associate performance information not only to individual pro-
cesses, but also to individual contexts (e.g. threads) within a process, which is
not possible through hardware counter interfaces, such as PAPI. Recently, the
Message Passing Interface (MPI) introduced a performance variables interface
in MPI 3.1 [16]. MPI supports performance variables that count events; thus,
the MPI performance variables interface could also be used to support the per-
formance analysis proposed in this work for the MPI Remote Memory Access
(RMA) one-sided communication model.

3 OpenSHMEM Performance Counters

The proposed OpenSHMEM performance counter API is shown in Listing 1. We
define counters to be unsigned 64-bit integers that are monotonically increasing
over the duration of the program’s execution. Counters follow the C language
rules for unsigned integer arithmetic; namely, on overflow, they contain the cor-
rect result, modulo 264. The proposed routines can be used to retrieve the number
of operations issued and completed for each operation class on a given Open-
SHMEM context. In addition, a single query routine is provided to query all
counters at once. Querying all counters in a single call can reduce the overheads
and skews across counter measurements. In the proposed query-all routine, the
caller provides a structure to hold all counters values, which is populated before
the routine returns. We further discuss these API usages in Sect. 4.

The design space for a performance counter API is large. In particular, the
granularity of operation classes for which counters are provided can range from
one for each operation type (e.g. put, get, etc.) to one for all operations. In
this work, we propose a simple two-class API where per-context counters are
provided for operations that read data from a symmetric object (e.g. get and
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fetching atomic operations) and operations that write data to a symmetric object
(e.g. put and non-fetching atomic operations). Atomic operations (AMOs) are
counted either on the read counter pair or the write counter pair, but not both.
This two-class partitioning corresponds to the event counting semantics pro-
vided by Portals and OFI and used by Sandia OpenSHMEM to track pending
operations [24]. Each operation produces zero or more events on the given opera-
tion counter. For example, if an implementation fragments a large put operation
into multiple smaller puts, the given operation may generate several individual
write operations. In addition, if the operation is performed using shared mem-
ory, rather than fabric, communication may not be tracked. This last semantic
is intended to give implementations the flexibility to expose existing operation
tracking counters directly using the proposed API.

3.1 Implementation in Sandia OpenSHMEM

We implement the proposed OpenSHMEM performance counters API in the
open source Sandia OpenSHMEM [23,24] (SOS) library. We have implemented
the performance counters extension support in both the Portals 4 [21] and Open-
Fabrics Interfaces [8] (OFI) transport layers in SOS. Both implementations are
similar and take advantage of event counters provided by the low-level network-
ing API. The experiments presented in Sect. 5 utilize OFI; thus, our implemen-
tation discussion provides greater detail on the OFI implementation.

Portals 4 and OFI libfabric are two user-level networking APIs that pro-
vide user-level access to high-speed fabrics. Both libraries generate events upon
completion of a posted operation, allowing the programmer to choose whether
the completion generates an event object into a queue and whether it causes an
event counter to be incremented. The type of events captured (e.g. local/remote
completion) and how they are captured is defined by the object on which the
operation is performed, namely a memory descriptor in Portals or an endpoint
in OFI.

OpenSHMEM implementations using Portals and OFI typically utilize count-
ing events to track issued operations. Event objects provide a greater amount
of information per operation; however, generation of event objects into an event
queue incurs additional overhead that can impact small message throughput [2].
Thus, each OpenSHMEM context in SOS utilizes middleware-level counters to
track the number of operations issued and fabric-level counters to track the
number completed. The difference between the issued and completed counters
provides the number of outstanding operations at any given time. SOS divides
operations into read and write classes depending upon whether a symmetric
object is read from or strictly written to. Performing a shmem quiet operation
generally involves waiting for each counter pair to be equal. Performing a block-
ing operation involves waiting only for the respective counter pair to be equal.
Thus, a blocking fetch-atomic does not involve the completion of nonblocking
put operations. Because SOS uses the unordered, reliable datagrams commu-
nication model provided by Portals and OFI, only write operations must be
completed in a shmem fence operation, as fetching AMOs issued on the read
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counter are blocking in the OpenSHMEM 1.4 API and need not be ordered by
a fence operation.

In addition to tracking operations that are issued, SOS also tracks the number
of fabric operations that have completed in the memory of the local process. In
the OFI transport, this is accomplished by enabling the FI REMOTE READ and
FI REMOTE WRITE event types on a libfabric counter, fid cntr, that is bound to
the endpoint exposed for remote access. While all other counters are associated
with a particular context, the target counter keeps track of all operations that
have targeted the local process.

A particular difference between the Portals 4 and OFI implementations of
the counter APIs arises in how each supports threading. Portals 4 and OFI
both support a thread safe mode of operation in which middleware-level lock-
ing is not needed. In these configurations, fabric-level event counters can be
read without synchronization at the OpenSHMEM level. Some OFI providers,
namely the Performance Scaled Messaging 2 [22] (PSM2) provider, use the
FI THREAD COMPLETION model, which requires locking in the OpenSHMEM layer
at the level of individual contexts before accessing any of the event counters on
the context. For such scenarios, the proposed query-all routine is advantageous
since it can reduce the amount of locking required to query the performance
counters.

4 Design and Implementation of a Performance Counter
Collector

The performance counter APIs presented in Sect. 3.1 can be utilized in a vari-
ety of ways. For example, an application may invoke them directly to measure
communication progress, or a tool may invoke them to gather additional perfor-
mance data during profiling. In this work, we present a simple collector tool that
creates a thread to run alongside the application and sample the performance
counters throughout the execution of the application. In contrast to conventional
profiling approaches that capture profiling information during OpenSHMEM
function invocations, asynchronous performance counter sampling can provide
greater insight into the dynamic behavior of OpenSHMEM communication. For
example, sampling can capture information regarding the asynchronous com-
pletion of remotely issued operations that targeted a given PE, and it can also
capture information regarding completion of nonblocking operations that were
issued by the local PE. Relative to detailed profiling at each OpenSHMEM func-
tion invocation, sampling-based approaches can also reduce overhead by tuning
the sampling frequency. We next present the design of the performance counter
collector and we demonstrate its usage for application-level performance analysis
in Sect. 5.

Figure 1 illustrates the design of the collector and its usage within an
application. It is possible to implement the collector using the profiling inter-
faces extension that is supported by a number of OpenSHMEM implemen-
tations. For simplicity, our implementation relies on manual instrumenta-
tion, which involves adding start and stop collection calls to the application,
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as well as function calls to register OpenSHMEM contexts of interest. The
sampling rate of the collector can be controlled via the runtime parameter
PCNTR COLLECTOR SAMPLING INTERVAL. This parameter defines the length of the
time the collector thread sleeps after each performance counter sample is col-
lected. In this way, the sampling interval can be used to increase the resolution
of sampling or reduce the overhead to the application. Samples are timestamped
and stored in memory at the collector thread, and dumped out when the collec-
tor is stopped. To reduce the number of samples stored, samples are discarded
when there has been no change in the counter values since the last collected
sample. We use a simple comma-separated format for storing the sample data.
However, a more sophisticated tool could report data using Open Trace Format
(OTF) [7], allowing it to be imported by existing tools that support this format.

SHMEM Application

shmem 
init

Collector

shmem 
finalizeApplication Core

start 
collect

stop 
collect

init closedumpCollect counter data in sampling interval

add 
context

remove 
context

Fig. 1. Design and example usage of the performance counter collector

By default, the collector samples the performance counter data associated
with the default context, SHMEM CTX DEFAULT, and the target counter. The user
may also want to profile additional contexts that are created throughout the
application execution. In such cases, the user can add the context to the col-
lector through calls to an add context routine, which adds the context to the
pool of contexts being collected. When the context is destroyed by the applica-
tion, the user must first remove the context from the collector pool by invoking
remove context. The maximum number of contexts that the collector can sam-
ple is controlled via PCNTR COLLECTOR MAX CTX LIMIT.

Because the collector utilizes a separate thread, it requires the OpenSHMEM
library to be initialized in the SHMEM THREAD MULTIPLE mode. In addition, con-
texts to be sampled must also be shareable in order to be sampled asynchronously
by the collector thread. Thus, contexts added into the pool of collected contexts
must not be created with the SHMEM CTX PRIVATE option enabled, as this vio-
lates the OpenSHMEM requirement that private contexts be used only by the
thread that created them. In addition, contexts added into the pool must not
be created with the SHMEM CTX SERIALIZED option enabled, since the collector
may access the given context in parallel with the application.
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5 Experimental Analysis Using Performance Counters

In this section, we present an experimental analysis using the OpenSHMEM per-
formance counters described in Sect. 3.1. We highlight our analyses and obser-
vations on four different categories: (1) Functional profiling, (2) Communication
schedule, (3) Load balance, and (4) Overlap. At the end, we present a compara-
tive analysis summary among the performance optimization alternatives studied
throughout this section. We also analyze the performance overhead associated
with our collector implementation.

5.1 Experimental Setup

For our evaluation, we have used a cluster with 14 compute nodes. Each compute
nodes has two Intel R© Xeon R©2 E5-2699 V3 (Haswell) processors at 2.3 GHz with
18 cores per socket and is equipped with 64 GB RAM. Nodes are connected with
Intel R© Omni-Path (see footnote 2) Fabric. All the compute nodes run CentOS
Linux (see footnote 1) release 7.3.1611.

We have released a prototype version of the proposed performance counter
API extensions in open source through Sandia OpenSHMEM [23]; git hash
908682ee was used for this work.

5.2 Benchmarks

Throughout our analysis, we have used Integer Sort (ISx) [10] benchmark version
1.1 and applied several performance optimizations based on our analyses and
observations. ISx represents a class of the bucket sort algorithms that perform
an all-to-all key exchange communication pattern across all peer processes.

As shown in Listing 2, key exchange involves each PE sending a chunk of data
to every other PE. On Line 6, the location where data is written is determined
using an atomic fetch-add operation to reserve a segment of the message buffer
at the recipient. The subsequent put operation writes data to the destination
PE using the fetched offset. The message size used in the put operation depends

2 Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other coun-
tries.

Benchmark results were obtained prior to implementation of recent software
patches and firmware updates intended to address exploits referred to as “Spectre”
and “Meltdown”. Implementation of these updates may make these results inappli-
cable to your device or system.

Software and workloads used in performance tests may have been optimized for
performance only on Intel R© microprocessors. Performance tests, such as SYSmark�

and MobileMark�, are measured using specific computer systems, components, soft-
ware, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist
you in fully evaluating your contemplated purchases, including the performance of
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Listing 2. Key exchange communication loop in ISx.

static long long bucket_offset = 0;
static int bucket_keys[BUCKET_SIZE];
...
for (int i = 0; i < shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);
long long dest_offset = shmem_longlong_atomic_fetch_add(

&bucket_offset, bucket_sizes[dest_pe], dest_pe);
shmem_int_put(&bucket_keys[dest_offset], ..., dest_pe);

}

on the user number of keys per PE benchmark parameter, scaling model, and
the total number of PEs.

In addition to ISx, we also use the Stencil kernel from the Parallel Research
Kernel (PRK) [29] suite version 2.17 to demonstrate the load balance capabil-
ities, presented in Sect. 5.5. Stencil performs a 9-point stencil operation on a
2-dimensional grid.

5.3 Functional Profiling

We utilize the collector described in Sect. 4 to sample the read, write, and tar-
get performance counters with continuous sampling. We first analyze the target
counters of all PEs over different execution regions of the application. In this
experiment, we run ISx on 8 nodes with 16 processes per node. We run the
weak scaling test with the total number of keys per PE set to 64 Mkeys. Figure 2
presents the progression of target counter for all PEs over time. We highlight the
progression of the root process (PE 0) as it follows a separate trend compared
to the other processes.
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Fig. 2. Target counter collection for all PEs over different execution regions for ISx

Figure 2(a) presents a scatter plot of the target counter values for all PEs
over the entire duration of the execution of ISx. The two disjoint sets of pro-
gression lines indicate the difference of the target counter value observed in the
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root process compared to the other processes from the beginning of the applica-
tion execution. The high target counter value observed at the root process from
the very beginning of the execution is the result of collective operations, such
as barrier and symmetric memory allocation, performing their communication
operations on the default context. Also, apart from the all-to-all key exchanges
across processes, ISx utilizes a number of collective routines for synchronization
and collection of timer values that cause the target counters to progress towards
the end of the application execution.

Figure 2(b) highlights the regions in Fig. 2(a) where the actual key exchanges
take place in ISx across the processes. To isolate the core execution region, we
create a separate communication context and use it in the bucket sort routine
rather than using the implicit default context, SHMEM CTX DEFAULT. We modify
our collector to collect the counter values associated with this context and ana-
lyze the target counter increments throughout the execution of the bucket sort.
The two iterations (one warm-up, one trial) executed in our experiment can be
clearly identified (dense regions) based on the target counter values presented in
Fig. 2(b).

5.4 Communication Schedule

We next analyze the performance impact of different communication scheduling
patterns used during runtime. We use ISx for this analysis and use three different
communication schedules it provides: (1) default round-robin, (2) incast, and (3)
permute. We run ISx on 8 nodes with 16 processes per node keeping the number
of keys per PE to 64 Mkeys. Figure 3 presents this data. To highlight the impact
of communication scheduling on the counter value, we focus on the first iteration
of the key exchange only. We also divide the total number of PEs into four groups
to show the difference in counter progression trends across different PEs.

PE 0 - 31 PE 32 - 63 PE 64 - 95 PE 96 - 127

 0

 200

 400

 600

 800

 3  3.5  4  4.5  5  5.5

Ta
rg

et
 C

ou
nt

er

Execution Time (sec)

(a) Default (Round-Robin)

 0

 200

 400

 600

 800

 3  3.5  4  4.5  5  5.5

Ta
rg

et
 C

ou
nt

er

Execution Time (sec)

(b) Incast

 0

 200

 400

 600

 800

 3  3.5  4  4.5  5  5.5

Ta
rg

et
 C

ou
nt

er

Execution Time (sec)

(c) Permute

 0

 200

 400

 600

 800

 3  3.5  4  4.5  5  5.5

Ta
rg

et
 C

ou
nt

er

Execution Time (sec)

(d) Random

Fig. 3. Target counters for all PEs over time using different communication schedules
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The default round-robin communication scheduling is presented in Fig. 3(a).
This represents the same data as shown in the first iteration of the ISx execution
presented in Fig. 2(b) (starting from 3 sec to 5.5 sec during execution). For key
exchange in this communication schedule, the destination PE is selected start-
ing from the next PE based on the current PE’s rank and then iterates over
the circular array of PEs. The progression of the target counter in this case is
quite linear and the flat line at the end indicates different PEs reaching to the
maximum of the target value at different times.

Figure 3(b) shows the incast communication pattern where all PEs iterate
over a loop of 0 to nth PE. Because of the uniform communication schedule
across PEs, the higher ranked PEs receive data later than the lower ranked ones
(evident in Fig. 3(b)) and because of this reason, the target counter progression
for different PEs starts and ends at different times.

We use the permute communication schedule in ISx and present the result in
Fig. 3(c). Although this communication schedule is supposed to randomize the
communication pattern, the target counter progression follows a similar trend
to the incast pattern (Fig. 3(b)). After analyzing the corresponding code, we
have found that the pseudo-random number generator rand() is used without
randomizing the seed. Thus, the permute scheduling was generating the same
random set of destination PEs at every PE resulting in similar behavior to
the incast schedule. However, as shown in Fig. 3(b), it iterates over PEs in a
different order rather than sequentially from 0 to n. We updated ISx to seed the
random number generator with a different value at each PE, randomizing the
order in which each PE sends its messages. The target counter progression for
this case is presented in Fig. 3(d). As shown in this figure, the target counters
for all PEs start to progress around similar times and reach to the maximum
of the target value faster compared to the other communication schedules. This
presents an example scenario where performance counters were utilized to detect
and correct an existing bug in the application implementation. For the rest of
the experiments presented in this section, we use this random communication
scheduling for ISx.

5.5 Load Balance

We next analyze how performance counters can be utilized to detect load imbal-
ance across all PEs for ISx and the Stencil kernel. To isolate the application’s
point-to-point communication operations, we use separate contexts as described
in Sect. 5.3. For this experiment, we use 8 nodes with 16 processes per node for
both these applications. For ISx, we use 64 Mkeys per PE in the weak scaling
test and for stencil, we use a grid size of 1000 and run for 100 iterations.

We present the load distribution for all PEs with ISx in Fig. 4(a). To observe
the load characteristics of ISx, we present the final values for completed read,
write, and target counters. The write counter represents the put operations from
each PE to every other PE, whereas the read counter represents the read oper-
ations generated by the atomic fetch add. The target counter, on the other
hand, represents the operations targeted to this PE. As shown in the figure, ISx
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Fig. 4. Load balance through final operation counters across all PEs
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Fig. 5. Load balance using 2D heatmap for Stencil kernel (each tile represents a PE;
PE 0 is in bottom left, PE 7 is in top left, PE 120 is in bottom right, and PE 127 is
in top right)

maintains a uniform distribution of the data that is evident from the final target
counter values across all PEs. Apart from the root process, the target counter
values across all PEs are almost identical, representing a perfect load balance.

We also examine the load distribution for the Stencil kernel from the PRK
suite and this data is presented in Fig. 4(b). For this benchmark, we present
the final counter values for pending and completed write operations with the
final target counter. In contrast with ISx, Stencil presents an unbalanced load
distribution across all the PEs. Since this experiment was run with a grid of
processes of 8 rows and 16 columns, processes on the perimeter of the 2D grid
receive less data compared to the inner processes. We validate this by presenting
the same data in a 2D heatmap, as shown in Fig. 5. As shown in this figure,
the PEs 0, 7, 120, and 127 are at the corners of the grid and have neighbors in
two directions. PEs 1–6 and 121–126 form the top and bottom rows and have
neighbors in three directions. The remaining PEs form rows, e.g. PE 8 is on
the bottom edge with neighbors in three directions, PEs 9–14 are interior PEs
with neighbors in all directions, and PE 15 is on the top edge of the grid. As
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shown in the Fig. 5(a), the inner PEs with higher neighbor count have higher
counter values compared to those on the edge. PE 0 also has significantly higher
target counter values compared to the rest of the PEs as a result of the setup
communication, which is evident in Fig. 5(b).

5.6 Overlap

In this subsection, we analyze the dynamic differences between the posted and
the completed operation counters and analyze opportunities introduce communi-
cation overlap. For this experiment, we use ISx and apply different optimization
strategies based on the counter value differences observed from the issued and
completed operations. We use the same experimental environment as used in
Sect. 5.4 for ISx.

 0

 0.5

 1

 1.5

2

 0  5  10  15  20

P
en

di
ng

 R
ea

d 
O

pe
ra

tio
ns

Execution Time (sec)

(a) Pending read operations

 0

 0.5

 1

 1.5

2

 0  5  10  15  20

P
en

di
ng

 W
rit

e 
O

pe
ra

tio
ns

Execution Time (sec)

(b) Pending write operations

Fig. 6. Difference between the completed and posted operations over time across all
PEs for ISx

Figure 6 presents the first sets of data analyzing the differences between
the posted/issued and completed counters for both read and write operations.
We present the data across the entire bucket sort execution corresponding to
Fig. 2(b). For each operation, we present the difference between the issued and
the completed counter values over time. Figure 6(a) and (b) show the read and
write counters, respectively. We observe that the number of pending opera-
tions (difference between issued and completed operations) for all PEs are at
most 1 throughout the execution. This corresponds to the implementation of
ISx where only blocking APIs are used for both write (shmem put) and read
(shmem fetch add). Because of the blocking API usage, only one operation is
pending at any given time. This clearly illustrates an opportunity to leverage
nonblocking communication operations in ISx.

OpenSHMEM 1.3 [18] introduced nonblocking put and get operations that
can improve performance by pipelining the iterations of the all-to-all communi-
cation loop in ISx. To measure the impact of the nonblocking API, we replace
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Fig. 7. Difference between the completed and posted operations over time across all
PEs for ISx with nonblocking put

the blocking put operation in ISx with a nonblocking put and collect the perfor-
mance counter data. Figure 7 presents this data.

With the introduction of the nonblocking write operations, we immediately
observe differences in the number of pending write operations as illustrated
in Fig. 7(b). However, we observe a maximum of 14 pending write operations
because the latency of blocking atomic fetch add operations effectively limits
the pipelining depth that can be achieved. The number of pending read opera-
tions remains similar as shown in Fig. 7(a).

Further pipelining can be achieved using the nonblocking atomic fetch add

that are proposed for inclusion in OpenSHMEM. To achieve this, we imple-
ment a prototype for nonblocking atomic fetch add and analyze the behavior
of pending reads and writes for ISx. The output value from the fetch-add oper-
ation is stored in a location passed as an extra argument to this routine, which
can be read after performing a quiet operation. To maintain the correctness of
ISx and increase pipelining between successive reads, we perform a loop fission
optimization by breaking the key exchange communication loop into two loops:
a first loop to issue nonblocking atomic fetch-add operations and a second loop
to issue nonblocking put operations. Put operations have a data dependence on
the result of the fetch-add; thus, we introduce a shmem quiet operation between
the two loops. Listing 3 presents the corresponding changes in the key exchange
loop of ISx presented in Listing 2.

Figure 8 presents the difference between the completed and the posted
operations over time across all PEs with the introduction of the nonblocking
atomic fetch add and loop distribution. As demonstrated in Fig. 8(a), the num-
ber of pending read operations can be as high as to the number of processes (128
in this experiment) with the addition of nonblocking atomic fetch add. Because
of loop fission, the number of pending write operations can also get increased
to the number of processes, which is also the ending value for the loop counter.
This clearly represents the maximum number of pending operations obtainable
throughout the execution of key exchange routine.
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Listing 3. Key exchange loop in ISx with loop fission optimization.

static long long bucket_offset = 0;
static int bucket_keys[BUCKET_SIZE];
...
long long dest_offsets = malloc(sizeof(long long) * shmem_n_pes());
for (int i = 0; i < shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);
shmem_longlong_atomic_fetch_add_nbi(&bucket_offset, bucket_sizes[dest_pe],

&dest_offsets[dest_pe], dest_pe);
}
shmem_quiet();
for (int i = 0; i < shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);
shmem_int_put(&bucket_keys[dest_offsets[dest_pe]], \ldots, dest_pe);

}
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Fig. 8. Difference between the completed and posted operations over time across all
PEs for ISx with nonblocking put and atomic fetch-add

With the introduction of shmem quiet between the two distributed loops,
all outstanding read operations complete before any write operation takes place.
This is evident from Fig. 9(a) where we plot posted write operations over com-
pleted reads. The two sets of horizontal lines indicate no overlap between reads
and writes in both iterations. However, better overlap across these two loops
can be achieved by waiting for the result of individual atomic fetch-add opera-
tions through shmem wait until before invoking the corresponding write. This
eliminates the need for a quiet operation between the fetch-add and put calls.
Listing 4 presents the corresponding changes in the ISx key exchange loop. We
implement this modification and plot the posted write operations over completed
reads for this implementation in Fig. 9(b). In contrast with Fig. 9(a), we can see
overlapping between the two operations towards the end of each iteration for the
version that uses the wait-until optimization.

An alternative approach to pipelining the all-to-all exchange in ISx is to
distribute loop iterations to multiple threads and launch the threads in parallel.
To do this, we use OpenMP parallel threads on the default key-exchange loop
(without loop fission) presented in Listing 2 using the nonblocking API for put
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Fig. 9. Pipelining between read and write operations for different ISx implementations

Listing 4. Key exchange loop in ISx with loop fission and wait-until optimizations.

static long long bucket_offset = 0;
static int bucket_keys[BUCKET_SIZE];
...
long long dest_offsets = malloc(sizeof(long long) * shmem_n_pes());
for (int i = 0; i < shmem_n_pes(); i++) dest_offsets[i] = -1;
for (int i = 0; i < shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);
shmem_longlong_atomic_fetch_add_nbi(&bucket_offset, bucket_sizes[dest_pe],

&dest_offsets[dest_pe], dest_pe);
}
for (int i = 0; i < shmem_n_pes(); i++) {

int dest_pe = peers_iter(i);
shmem_longlong_wait_until(&dest_offsets[dest_pe], SHMEM_CMP_NE, -1);
shmem_int_put(&bucket_keys[dest_offsets[dest_pe]], ..., dest_pe);

}
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Fig. 10. Difference between the completed and posted operations over time across all
PEs for threaded ISx (two threads) with nonblocking put

operations and the blocking API for atomic fetch-add operations. We create a
separate context for each thread and use that context for invoking SHMEM
APIs. This ensures each thread can run independently from one another and
thus makes progress of both fetch-add and put operations in parallel. Figure 10
presents the pending operation counts for both read and write operations with
this implementation.
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For pending read operations presented in Fig. 10(a), we see a similar trend
as observed in Fig. 7(a) with the non-threaded ISx implementation. Because
the atomic fetch-add operations are blocking, the maximum number of pend-
ing read operations does not increase more than one per thread. However, for
the pending write operations presented in Fig. 10(b), the threaded ISx imple-
mentation achieves a higher number of pending writes compared to that of the
non-threaded implementation, presented in Fig. 7(b). This trend shows that with
multiple threads, overlapping among different write operations can be increased.

The threaded ISx implementation can also be combined with the nonblock-
ing put and atomic fetch-add APIs using two distributed loops. We implement
this design without invoking a quiet operation between the two loops. Both
of the loops presented in Listing 4 are made parallel with OpenMP threading
annotations. We create an array of contexts based on the number of threads
and use the thread id to select the context belonging to each thread. With this
implementation, we plot the issued write over completed read to determine the
effective level of pipelining. This data is presented in Fig. 11 for two iterations of
ISx. Unlike Fig. 9 where the same contexts have been used for both iterations,
we create a new set of contexts for each iteration in this implementation. As
shown in Fig. 11(a) and (b), in both the warmup and trial iterations, we observe
increased pipelining between the fetch-add and put operations compared to the
same in Fig. 9.
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Fig. 11. Pipelining between read and write operations for threaded ISx (two threads)
with nonblocking operations and without memory ordering

Each of the optimizations presented so far improves overlap between the
fetch-add and put operations in ISx compared to the default implementation.
We next analyze the target counter progression for each implementation of ISx
in Fig. 12. To compare these with the target counter progression for the default
ISx implementation presented in Fig. 3(d), we keep our focus on one iteration of
the key exchange routine as before.

Figure 12(a) presents the target counter increments for ISx with the nonblock-
ing put API. Compared to Fig. 3(d), the trend for the target counter increment is
similar for most PEs; however, it reaches the end of the iteration execution faster
compared to the default one because of the overlapping introduced by nonblock-
ing put. Figure 12(b) presents the ISx implementation with nonblocking APIs
for both put and atomic fetch-add without shmem quiet. We skip presenting
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Fig. 12. Target counters for all PEs over time for different optimizations in ISx

here the similar implementation with shmem quiet as both of these follow simi-
lar trends. However, without the quiet operation (Fig. 12(b)), the target counter
progression indicates that more PEs reach the maximum of the target counter
values faster compared to the case where quiet is used.

The target counter progressions for the threaded implementations of ISx
are presented in Fig. 12(c) and (d). Because of the pipelining through threads,
these implementations start having target counter increments earlier than the
non-threaded implementations and thus reach an effective pipelined state more
quickly.

5.7 Weak Scaling Analysis

In this subsection, we present a weak scaling comparison across each performance
optimization strategy that we have studied throughout this section. We conduct
this experiment from 2 nodes to 14 nodes and run ISx with 16 processes per node
in each case. We keep the number of keys per PE to 64 Mkeys and report the
average all-to-all time per PE. For each data point, we repeat our experiments at
least 10 times and report the best case results. Figure 13 divides the data into two
sets of comparison: the optimizations applied to non-threaded implementation
of ISx are presented in Fig. 13(a), whereas, the same optimizations applied to
threaded implementation of ISx are presented in Fig. 13(b). Table 1 summarizes
the optimizations applied for each experiment shown in Fig. 13.

As shown in Fig. 13(a), compared to the Default implementation, NB-Put
performs consistently better across different number of processes. With 224
processes on 14 nodes, NB-Put achieves 16.5% improvement compared to the
Default. NB-Put-AMO performs significantly better compared to NB-Put for
smaller number of processes; however, it performs only as good as NB-Put when
the number of processes are increased to 224. With more number of processes, the



Lightweight OpenSHMEM Performance Counters 197

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 32  64  96  128  160  192  224

A
ve

ra
ge

 a
ll2

al
l T

im
e 

pe
r P

E
 (s

ec
)

Total Number of PEs

Default
NB-Put

NB-Put-AMO
NB-Put-AMO-W

(a) Non-threaded implementation

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 32  64  96  128  160  192  224

A
ve

ra
ge

 a
ll2

al
l T

im
e 

pe
r P

E
 (s

ec
)

Total Number of PEs

Default
NB-Put

NB-Put-OMP2
NB-Put-OMP4

NB-Put-AMO-W-OMP2
NB-Put-AMO-W-OMP4

(b) Threaded implementation

Fig. 13. Weak scaling performance for various optimizations applied to ISx key
exchange

overhead of shmem quiet increases and thus degrades the performance for NB-
Put-AMO. NB-Put-AMO-W performs better than NB-Put-AMO as it increases
the degree of overlap between the atomic fetch-add and put operations by syn-
chronizing through shmem wait until. For 224 processes, NB-Put-AMO-W out-
performs NB-Put-AMO by 8.3%.

We present the threaded ISx implementations in Fig. 13(b). For ease of com-
parison, we keep the performance numbers for Default and NB-Put (single
threaded) in this plot as well. We achieve the best performance through NB-Put-
OMP2 on 224 processes, obtaining a performance improvement of 32% and 10%
compared to the Default and NB-Put-AMO-W (single threaded), respectively.
With more OpenMP threads, NB-Put-OMP4 performs worse compared to NB-
Put-OMP2 by 9% due to the over-subscription of the number of threads to the
system resources available. The NB-Put-AMO-W-OMP2 performs slightly worse
compared to NB-Put-OMP2 for small number of processes; however, it presents a
good performance trend for larger number of processes achieving the second best
performance for 224 processes with a 7.4% performance difference compared to
NB-Put-OMP2. NB-Put-AMO-W-OMP4 performs worse compared to NB-Put-
AMO-W-OMP2 due to the over-subscription of the number of threads. We plan
to investigate performance trend observed between NB-Put-AMO-W-OMP2 and
NB-Put-OMP2, as the former provides better overlap than the latter.

5.8 Collector Overhead Analysis

In this subsection, we analyze the overhead imposed by our collector implemen-
tation. We use three ISx implementations for this study: the default blocking
API implementation (Default), the non-blocking implementation with put and
atomic APIs and wait-until (NB-Put-AMO-W), and the threaded implementa-
tion with non-blocking put API (NB-Put-OMP2). We choose these three imple-
mentations to highlight the overheads associated with different implementation
choices studied in Sect. 5.7. We perform this analysis on 8 nodes with 16 PEs
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Table 1. Description of optimizations applied to ISx key exchange for each experiment
presented in Fig. 13

Legend Description

Default The default ISx implementation with blocking put and fetch-add

NB-Put Nonblocking put and blocking fetch-add

NB-Put-AMO Nonblocking put and nonblocking fetch-add in separate loops;

shmem quiet is invoked between the two loops

NB-Put-AMO-W Nonblocking put and nonblocking fetch-add in separate loops;

shmem wait until is invoked before each put

NB-Put-OMP2 Nonblocking put and blocking fetch-add, parallelized by using two

OpenMP threads

NB-Put-OMP4 Nonblocking put and blocking fetch-add; parallelized by using four

OpenMP threads

NB-Put-AMO-W-OMP2 Nonblocking put and nonblocking fetch-add in separate loops;

shmem wait until is invoked before each put;

parallellized by using two OpenMP threads per loop

NB-Put-AMO-W-OMP4 Nonblocking put and nonblocking fetch-add in separate loops;

shmem wait until is invoked before each put;

parallellized by using four OpenMP threads per loop

per node and 64 Mkeys per PE. Figure 14 presents these results where the over-
head in terms of additional execution times for all-to-all time per PE is shown
in Fig. 14(a). The total number of samples collected throughout the analysis is
presented in Fig. 14(b). In the x-axis for both of these graphs, we vary the sleep
duration for the collector thread using PCNTR COLLECTOR SAMPLING INTERVAL,
thereby varying the sampling frequency.

As shown in Fig. 14(a), the overhead associated with the collection of perfor-
mance counter data is more evident for NB-Put-OMP2 compared to the other
implementations. As NB-Put-OMP2 launches additional OpenMP threads dur-
ing the critical loop execution, the overhead of the collector thread becomes
more prominent with the increase in sampling frequency (decrease in sleep dura-
tion). The collector overhead almost diminishes as the sampling frequency is
decreased. For the Default and NB-Put-AMO-W implementation, the collector
overhead ranges from 2 ms to 90 ms and 20 ms to 100 ms with different sampling
frequencies, respectively.

We also evaluate the total number of samples collected with different sam-
pling frequency throughout the execution of ISx. As mentioned in Sect. 4, the
collector implementation does not record the counter values if there is no
change since the previous sample. The total number of samples are presented in
Fig. 14(b). As expected, with reduced sampling frequency, all implementations
collect almost similar number of samples. However, as we increase the sampling
frequency, the number of samples collected is much less for NB-Put-OMP2 com-
pared to the Default and NB-Put-AMO-W because of the thread overheads as
well as shorter execution duration.
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Fig. 14. Additional overhead imposed by the collector on different ISx implementations

6 Conclusion

In this paper, we have proposed a performance counter API extension to the
OpenSHMEM specification and implemented the open source Sandia OpenSH-
MEM library. We have designed and implemented a simple collector tool that
can be used to sample the values of these performance counters during the exe-
cution of OpenSHMEM applications. Using this tool, we studied the popular
ISx sorting benchmark and identified a performance bug in the random commu-
nication schedule provided by the benchmark. Next, we used the performance
counter data collected by our tool to analyze several optimizations to the ISx
key exchange algorithm using recently introduced and currently proposed Open-
SHMEM features. Using this data we were able to visualize the effectiveness of
each approach at pipelining the key exchange communication. Finally, we con-
ducted a weak scaling study of the optimized ISx benchmark and demonstrated
an improvement of over 30% to the all-to-all key exchange phase of ISx. The
overhead of the implemented collector tool is also analyzed and can be kept low
with a reasonable sampling frequency.

While this work has demonstrated the usefulness of OpenSHMEM perfor-
mance counters, more investigation is needed to uncover new, automated meth-
ods for analyzing performance counter data, which in turn may identify new
opportunities for optimization. Of particular interest are analyses that can
aid developers of existing OpenSHMEM applications with taking advantage of
recently added and proposed extensions to OpenSHMEM. The proposed perfor-
mance counter APIs may also have applications beyond application-level per-
formance tuning and could be applied at a system level to monitor systems
for performance anomalies and identify system-level performance optimization
opportunities.
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Abstract. The assessment of application performance is a fundamen-
tal task in high-performance computing (HPC). The OpenSHMEM
Benchmark (OSB) suite is a collection of micro-benchmarks and mini-
applications/compute kernels that have been ported to use OpenSH-
MEM. Some, like the NPB OpenSHMEM benchmarks, have been pub-
lished before while most others have been used for evaluations but never
formally introduced or discussed. This suite puts them together and is
useful for assessing the performance of different use cases of OpenSH-
MEM. This offers system implementers a useful means of measuring
performance and assessing the effects of new features as well as imple-
mentation strategies. The suite is also useful for application developers
to assess the performance of the growing number of OpenSHMEM imple-
mentations that are emerging. In this paper, we describe the current set
of codes available within the OSB suite, how they are intended to be
used, and, where possible, a snapshot of their behavior on one of the
OpenSHMEM implementations available to us. We also include detailed
descriptions of every benchmark and kernel, focusing on how OpenSH-
MEM was used. This includes details on the enhancements we made to
the benchmarks to support multithreaded variants. We encourage the
OpenSHMEM community to use, review, and provide feedback on the
benchmarks.
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1 Introduction

The efficient execution of scientific simulations requires careful development of
system software that enables the effective use of high-performance comput-
ing (HPC) hardware. A crucial component of this development process is the
assessment phase, whereby the application and system software are exercised in
a standard and comparable manner (a “benchmark” [9]). In the absence of real
world OpenSHMEM code, benchmarks and computation kernels are the only
assessments available for the scientific community to compare and analyze the
different features and implementations. The OpenSHMEM Benchmark (OSB)
suite is one such collection of micro-benchmarks and mini-applications/compute
kernels that have been ported to use the OpenSHMEM interface. A compila-
tion of previously published and new benchmarks, this suite is useful for assess-
ing the performance of different use cases of OpenSHMEM and offers system
implementers a useful means of measuring performance and assessing the effects
of different implementation strategies. The suite is also useful for application
developers to assess the performance of the growing number of OpenSHMEM
implementations that are emerging. In this paper, we describe the current set of
codes available within the OSB suite. We also include information about tests
performed with OSB and several OpenSHMEM implementations. This is helpful
for users that wish to leverage OSB for performance testing of different Open-
SHMEM implementation, and when planning changes to dependent layers of the
implementations.

The key contributions of this paper can be summarized as follows:

– A detailed description of every benchmark and kernel with special focus on
how OpenSHMEM is used in them.

– Additionally, details are given regarding the enhancements made to extend
the OpenSHMEM enabled benchmarks to provide multithreaded variants.

– Usage information for the benchmarks.
– A description of the output from the benchmarks and how to interpret it.
– Sample results using different OpenSHMEM implementations.

The rest of the paper is organized as follows: In Sect. 2, we summarize the
current codes included in OSB and, where applicable, the enhancements made
to support multithreading. General usage and example output are also included
in this section. Section 3 provides concluding remarks.

2 OSB Suite

The OpenSHMEM Benchmark (OSB) suite currently includes five codes, with
most including both a single and multithreaded variant. All of the items in the
suite have been used in conjunction with prior publications to evaluate enhance-
ments to the OpenSHMEM specification [2,3,6,7,11,13,14]. The suite currently
includes the following OpenSHMEM enabled benchmarks.
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2.1 Graph 500

The Graph 500 benchmark was designed to represent data intensive workloads,
particularly graphs. It implements the Breadth-First Search (BFS) on large undi-
rected graphs. It is characterized by fine-grained communication with sparse
spatial and temporal locality. In this benchmark suite, we support both single-
thread and multithreaded versions of Graph 500.

The benchmark’s functionality can be categorized into three phases. In the
first phase, the graph edges are generated using a Kronecker graph genera-
tor. The size of the graph is controlled by two parameters scale factor and
edge factor. For a given scale factor and edge factor, the number of graph ver-
tices is 2scale factor and 2 ∗ edge factor. The memory required to store the graph
is proportional to the number of vertices, e.g., 2scale factor ∗ edge factor ∗ 2 ∗ 8
bytes. In the second phase, the benchmark randomly designates 64 vertices are
root vertices and builds a tree from the root vertex. In the last phase, the BFS
is validated for correctness. The time measured by the benchmark includes all
three phases, and a figure of merit is the number of edges traversed per sec-
ond (TEPS).

The OpenSHMEM implementation [6] of the benchmark is adapted from
the MPI version [5,16]. The graph is stored in the symmetric heap and parti-
tioned among the PEs. The vertices and edges are accessible to all PEs through
the OpenSHMEM interfaces. The implementation uses shmem putmem and
shmem getmem for accessing the data, and shmem barrier all for synchroniza-
tion. To perform the BFS operations, the implementation uses one predecessor
map and two queues. The predecessor map stores the information about the visited
and completed, discovered, and undiscovered vertices. The queues are used for the
discovered vertices, which are implemented as bitmaps. The queues are updated
using shmem put and atomic memory operations (AMOs), which replaces the
MPI Accumulate operation in the MPI version. A detailed discussion of the Open-
SHMEM implementation and an optimized version are given in these papers [6,8].

Multithreading. In this benchmark suite, we extend the Graph 500 benchmark
to take advantage of multithreaded semantics introduced in OpenSHMEM 1.4.
The benchmark leverages multiple threads to parallelize the workload, particu-
larly during the BFS phase. As vertices are discovered, the vertices are parti-
tioned among the available threads, and each thread continues the execution of
the BFS algorithm on the vertices in its partition. Each thread computing BFS
on vertices has a separate OpenSHMEM context attached to it, and the threads
post the OpenSHMEM operations on that particular context. This straightfor-
ward strategy can take advantage of parallelism in compute as well the network.

Usage and Results. The source code for the OpenSHMEM implementation is
in the mpi/ directory, along with the MPI based implementations. A make.inc file
should be created in the top-level of the Graph500 software tree, and defines the
configuration for the build. This must include BUILD_OPENSHMEM=Yes and in the
multithreaded case should also enable the OpenMP feature. Also, set the OSHCC
variable to the correct compiler instance. There are examples in the make-incs/
directory. Note, there are guards around the OpenSHMEM code paths that allow
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for an entirely OpenSHMEM build. There is no need to define MPICC nor enable
BUILD_MPI if working strictly with the OpenSHMEM variant of Graph500.

1 To compile :
2 # Create make . inc in top−l e v e l d i r
3 cd mpi/
4 make
5

6 To Execute :
7 cd mpi/
8 oshrun −np 32 . / graph500 shmem one sided 24 16

Listing 1. Compiling and Executing OpenSHMEM Graph500 Benchmark

1 graph generat i on : 16.875364 s
2 con s t ruc t i on t ime : 3 .005170 s
3 Running BFS 0
4 Time f o r BFS 0 i s 21.030321
5 Val idat ing BFS 0
6 Val idate time f o r BFS 0 i s 49.637025
7 TEPS f o r BFS 0 i s 1 .27641 e+07
8

9 . . . < snip > . . .
10

11 Running BFS 63
12 Time f o r BFS 63 i s 20.095156
13 Val idat ing BFS 63
14 Val idate time f o r BFS 63 i s 48.762720
15 TEPS f o r BFS 63 i s 1 .33581 e+07
16 SCALE: 24
17 edge f a c to r : 16
18 NBFS: 64
19 graph generat i on : 16 .8754
20 num mpi processes : 256
21 con s t ruc t i on t ime : 3 .00517
22 min time : 19 .8975
23 f i r s t q u a r t i l e t i m e : 20 .6892
24 median time : 21 .0218
25 t h i r d qu a r t i l e t im e : 21 .8296
26 max time : 23 .0912
27 mean time : 21 .2106
28 s tddev t ime : 0 .750554
29 min nedge : 268432547
30 f i r s t q u a r t i l e n e d g e : 268432547
31 median nedge : 268432547
32 t h i r dqua r t i l e n edg e : 268432547
33 max nedge : 268432547
34 mean nedge : 268432547
35 stddev nedge : 0
36 min TEPS : 1 .16249 e+07
37 f i r s t qua r t i l e TEPS : 1 .22967 e+07
38 median TEPS : 1 .27692 e+07
39 th i rdquart i l e TEPS : 1 .29745 e+07
40 max TEPS : 1 .34908 e+07
41 harmonic mean TEPS : 1 .26556 e+07
42 harmonic stddev TEPS : 56421.2
43 min va l ida te : 48 .3824
44 f i r s t q u a r t i l e v a l i d a t e : 49 .7668
45 median va l idate : 50 .2669
46 t h i r d q u a r t i l e v a l i d a t e : 50 .9583
47 max val idate : 51 .9046
48 mean val idate : 50 .2551
49 s t ddev va l i d a t e : 0 .863311

Listing 2. Sample Output for OpenSHMEM Graph500 Benchmark
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The benchmark runs a validation step after each of the 64 BFS rounds,
which is timed and used to calculate the TEPS metric. In the OpenSHMEM
version, the valiation step can be disabled by setting the environment variable
SKIP_VALIDATION=1. Additionally, fewer (8) BFS rounds can be run by setting
the environment variable SHORT_VALIDATION=1. These options can be helpful
when testing to reduce the overall execution time.

A sample of the output from Graph500 is shown in Listing 2. The
final portion of the benchmark shows a summary of parameters and statis-
tics (e.g., min,max,mean,std) for the benchmark (Lines 16–49). This partic-
ular invocation was run using 256 ranks (Line 20) with scale factor = 24
(Line 16) and edge factor = 16 (Line 17)1. When processing the results, a
few notable values are the graph generation (graph generation) and construc-
tion (graph construction) times and the average time for all BFS rounds
(mean time). If the validation phases have not been disabled, the average vali-
dation time (mean validate) and harmonic mean TEPS (harmonic mean TEPS)
will also be reported. Figure 1 show the mean time for the BFS using 16 PEs per
node, scaling up to 32 nodes. The graph size (scale factor) was also incremented
(weak scaling) for each PE increase, respectively (pe:scale): 16:20, 32:21, 64:22,
128:23, 256:24, 512:25.

Fig. 1. Graph500 BFS mean-time on Cray XC30 with 16 PEs per node, using up to
32 nodes, with increasing graph scale factor for each step increase.

For additional information on the implementation of Graph500 included in
the OSB suite, see the paper by D’Azevedo and Imam [6].

2.2 SSCA1

The Scalable Synthetic Compact Applications 1 (SSCA1) benchmark imple-
ments a Smith-Waterman local sequence alignment algorithm with Godah’s
1 The test with results shown in Listing 2 was run on a Cray XC30 using command:
aprun -n 256 -S 8 -j 1 ./graph500 shmem one sided 24 16.
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improvements for gap scoring [3]. Its value in benchmarking OpenSHMEM
libraries is that it can be used to test strategies in managing many small mes-
sages with puts and gets issued in the same inner loop. SSCA1 is implemented as
a dynamic programming algorithm where individual characters in a text string
are compared and scored. The algorithm uses a similarity matrix meant to sim-
ulate DNA codon to protein encoding and scoring the sequence is based on the
presence of a gap. The way the benchmark is designed there is an inner loop
where the program is doing 5 small gets and 3 small puts. The puts need to be
completed before starting an outer loop while the gets need to be completed on
each inner loop.

The benchmark comes in two versions. One is multithreaded and OpenSH-
MEM specific. The other one is single threaded and may be built using either
MPI-3 one sided routines or OpenSHMEM routines.

Multithreading. The threaded SSCA1 is in a separate directory from the
non-threaded version. The options are the same as the single threaded version,
except there is no MPI option. The code was modified to remove the MPI-
3 one sided operations and add threaded OpenSHMEM 1.4 extensions. This
implementation of SSCA1 is structured such that there is an outer loop that can
not be parallelized, and an inner loop that is parallel using OpenMP threads.
This can be visualized as the dynamic programming matrix is solved where the
outer loop represents solving each anti-diagonal, then the inner parallel loop
solves each entry in the anti-diagonal in a loop independent way.

Usage and Results. There is a single runtime option for the benchmark to
adjust the size of the input, which is set via an environment variable SCALE
(default = 22). An input of SCALE = 22 should run in half the time as
SCALE = 23. It should be noted, increasing the number of remote nodes while
keeping SCALE the same may result in a slow down. This is because SCALE
creates a problem size N , and each node gets M elements for M = N/nranks.
Adding more ranks reduces the size of M , resulting in more remote operations
to complete the benchmark. Increasing SCALE by 1 when doubling the number
of ranks will result in a similar run time in this case. Typically launching SSCA1
with 1 PE per NUMA domain will see performance scaling with each added
rank, while launching the threaded SSCA1 to saturate the socket with threads
will result in a slow down when adding ranks.

1 To compile :
2 make
3

4 To Execute :
5 export SCALE=23
6 oshrun −np 32 . / s sca1

Listing 3. Compiling and Executing OpenSHMEM SSCA1 Benchmark

To build the benchmark, edit the Makefile for the respective SSCA1 sub-
directory, and set the COMPILER variable to the correct compiler instance,
the default is oshcc. There are predefined options for compiling with mpicc, gcc,
and Cray cc. The executable produced is ssca1. The C defines -DUSE_SHMEM
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and -DUSE_MPI3 are used to select between OpenSHMEM or MPI-3 one sided
operations, respectively. This benchmark has been tested with Cray compilers
using the PGI programming environment for both MPI-3 and SHMEM. GCC
has been tested with OpenSHMEM-X and OpenMPI.

An excerpt of output from SSCA1-threaded is shown in Listing 4. This partic-
ular invocation was run using 4 ranks with SCALE = 312. When interpreting
the results (Listing 4), Kernel 1 is the relevant benchmark number (Line 9).
The Scalable Data Generator and the Kernel 2 times are informational only.
Kernel 2 verifies the results of Kernel 1. The first three results should be, in
order, *IDENTICAL*, *MISQRMATCHES*, *STARTGAPMIDST---END*, with scores of
55, 54, and 53 respectively (blue highlight). If the end result is not these val-
ues then the underlying implementation of OpenSHMEM is faulty. Verifications
below these sequences are based on random chance, however they should still be
in order by score. The sort used to arrange these scores is not stable.

1 Running with OpenMP, thread count : 8
2 Running with OpenMP, thread count : 8
3 Running with OpenMP, thread count : 8
4 Running with OpenMP, thread count : 8
5 Running with OpenSHMEM, npes = 4
6 . . . < snip > . . .
7 Begining Kernel 1 execut ion .
8

9 Elapsed time : 0 hour ( s ) , 4 minute ( s ) , 56 second ( s ) , 526 m i l l i s e c ond s
, 761 micro second ( s ) .

10

11 Begining Kernel 2 execut ion .
12

13 Elapsed time : 0 hour ( s ) , 0 minute ( s ) , 0 second ( s ) , 39 m i l l i s e c ond s ,
320 micro second ( s ) .

14

15 Found 100 acceptab l e a l ignments with s c o r e s from 55 to 25 .
16

17 Sta r t i ng Amino Codon Ending
18 po s i t i o n ac id s bases p o s i t i o n
19

20 ver i fyAl ignment 0 , succeeded ; s co r e 55 :
21 26590 *IDENTICAL* tgaatagacgagaacacgatatgcgcgctgtga 26600
22 29129 *IDENTICAL* tgaatagacgagaacacgatatgcgcgctgtga 29139
23

24 ver i fyAl ignment 1 , succeeded ; s co r e 54 :
25 1039 *MISQRMATCHES* tgaatgataagccagaggatggcgacgtgccacgagagctga

1052
26 23093 *MISQRMATCHES* tgaatgataagcaggcagatggcgacgtgccacgagagctga

23106
27

28 ver i fyAl ignment 2 , succeeded ; s co r e 53 :
29 13839 *STARTGAPMIDST—END*

tgaagcacggcgaggacgggggcgccgatgatagacagcacg−−−−−−−−−gagaacgactga
13856

30 37081 *STARTGAPMIDST—END* tgaagcacggcgaggacg−−−−−−−−−
atgatagacagcacgggggcgccggagaacgactga 37098

31

32 . . . < snip > . . .

Listing 4. Sample Output for OpenSHMEM SSCA1-threaded Benchmark

2 The test with results shown in Listing 4 was run on a Linux Cluster (Turing) using
command: orterun -np 4 --map-by ppr:2:node --bind-to socket --hostfile

hosts -x OMP NUM THREADS=8 -x SCALE=32 ./ssca1.
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Sample results for a SCALE = 31 with 256 PEs on a Cray XC30 (EOS)
system using Cray-SHMEM v7.7.0 are given in Fig. 2a. Figure 2b shows results
from a smaller run on a Linux cluster (Turing) using OpenSHEM-X, also with
SCALE = 31 with 48 PEs. In Fig. 2, the number of PEs is increased, while
keeping the scale fixed (SCALE = 31). More detailed results for evaluating
implementation of contexts can be found in [3].

(a) SSCA1 with CraySHMEM (b) SSCA1-threaded with OSHMEM-X

Fig. 2. SSCA1 run showing elapsed time as number of PEs increases

2.3 NPB

A collection of minimal application kernels that perform simplified instances of
commonly occurring algorithms in scientific applications. The NPB [10] tests are
implemented in either Fortran or C, with OpenSHMEM variants available for the
following (implementation language given in parenthesis) [11] that are adapted
from their MPI variants. The OpenSHMEM descriptions for benchmarks taken
from [11], where process of arriving at the OpenSHMEM version of these bench-
marks is discussed and more detailed comparison across different OpenSHMEM
implementations is provided.

– IS: Integer Sort, random memory access (C)
IS is the bucket sort based integer sorting kernel where each process has a
range associated with it and sorts the keys based on the key range they fall
under. Initially each process has a set of randomly generated keys which are
processed and after finding the correct process depending on the range, the
keys need to be sent to that process. The OpenSHMEM Specification does not
have support for AlltoAll and AlltoAllv used in the original MPI codes, hence,
a combination of OpenSHMEM put/get calls is used to simulate AlltoAll and
AlltoAllv to communicate the keys.

– MG: Multi-Grid, long/short distance communication, memory intensive (For-
tran)
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The MG benchmark uses a V-cycle Multi Grid method to compute the solu-
tion of a 3D scalar Poisson equation [1]. In the OpenSHMEM MG version the
original three sub-routines from the MPI version (ready, take, and give) used
to post MPI irecv requests, wait and then send data respectively, are col-
lapsed into a single sub-routine. This is possible since OpenSHMEM has one
sided communication and only requires to synchronize to ensure updates are
visible to all PEs. The explicit synchronization through the shmem barrier all
ensures all the process are at the same stage in their execution.

– BT: Block Tri-diagonal solver, mini-application (Fortran)
The BT benchmark is a simulated CFD application that solves 3-dimensional
compressible Navier-Stokes equations. The BT benchmark uses Alternating
Direction Implicit (ADI), which involves solving three sets of uncoupled sys-
tems of equations in x, y and z directions [12]. The OpenSHMEM version
uses gets for communication when solving the block tridiagonal with a 5× 5
block size equations.

– SP: Scalar Penta-diagonal solver, mini-application (Fortran)
SP is a variation of the BT benchmark with the difference being that SP
solves 3-dimensional compressible Navier-Stokes equations using the Beam-
Warming approximate factorization. BT has a higher communication to com-
putation ratio [1] but the SP benchmark facilitates better overlapping of
computation with communication in the OpenSHMEM version by issuing
communication when the data is ready but only performing synchronization
when the communicated data is going to be used.

Usage and Results. To compile the benchmarks, first create a make.def file in
the config directory. Several examples are provided as a template. A suite.def
file is also provided to compile all the available NAS benchmarks. The default
compiler is set to oshcc.

1 To Compile :
2 make <benchmark−name> NPROCS=<number> CLASS=<c l a s s> [SUBTYPE=<type>]
3

4 where <benchmark−name> i s ”bt ” , ” cg ” , ”ep ” , ” f t ” , ” i s ” , ” lu ” ,
5 ”mg” , or ” sp”
6 <number> i s the number o f p r o c e s s e s
7 <c l a s s> i s ”S” , ”W” , ”A” , ”B” , ”C” , or ”D”
8 To Execute :
9 oshrun −n 256 . / bin /benchmark . c l a s s . number

Listing 5. Compiling and Executing OpenSHMEM NAS Benchmarks

Sample results for 32 PEs on a Cray XC30 (EOS), which has 8 physical cores
per socket and 2 sockets per node with all nodes connected via a Cray Aries
interconnect are shown in Listing 6.
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1 NAS Pa r a l l e l Benchmarks 3 .2 −− IS Benchmark
2

3 S i z e : 134217728 ( c l a s s C)
4 I t e r a t i o n s : 10
5 Number o f p r o c e s s e s : 32
6

7 . . . < snip > . . .
8

9 IS Benchmark Completed
10 Class = C
11 S i z e = 134217728
12 I t e r a t i o n s = 10
13 Time in seconds = 1.00
14 Total p r o c e s s e s = 32
15 Compiled procs = 32
16 Mop/ s t o t a l = 1342.18
17 Mop/ s / proce s s = 41.94
18 Operation type = keys ranked
19 Ve r i f i c a t i o n = SUCCESSFUL
20 Vers ion = 3 .2
21 Compile date = 02 Jul 2018
22

23 Compile opt ions :
24 SHMEMCC = cc
25 CLINK = $ (SHMEMCC)
26 CSHMEM LIB = ( none )
27 CSHMEM INC = ( none )
28 CMPI LIB = ( none )
29 CMPI INC = ( none )
30 CFLAGS = −O3 −g
31 CLINKFLAGS = −O3 −g
32 . . . < snip > . . .

Listing 6. Sample Output for OpenSHMEM IS NPB

The IS NAS benchmark obtained on the Cray XC30 (EOS) using Cray-
SHMEM is shown in Fig. 3. The tests used 4 nodes, placing increasing numbers
of PEs per node until all (64) physical cores were full.

Fig. 3. IS results using OSHMEM-X on EOS
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2.4 Random Access Benchmark (GUPs)

The OpenSHMEM versions (single PE and multithreaded) have been adapted
from the Random Access Benchmark initially developed by David Koester and
Bob Lucas. The Giga UPdates per Second (GUPS) [13,14] is calculated by iden-
tifying the number of memory locations that can be randomly updated in one
second, divided by 1 billion (1e9). The term “randomly” in this context means
that there is little to no relationship between one address to be updated and the
next, except that they occur in the space of one half the total system mem-
ory. An update is a read-modify-write operation on a table of 64-bit words
(HPCC Table). In the OpenSHMEM version both the address and PE on which
the update is to be performed is generated randomly. In absence of atomic xor
in the OpenSHMEM Specification (1.3) at the time of implementing the bench-
mark, the benchmark uses get to fetch a remote value and then updates it using
a put followed by a quiet to make the update visible on remote PE. We are
aware that the current implementation of the benchmark limits the achievable
concurrency and we hope to update it in the near future to match up better
with the original benchmark description where the value at an address that is
read from memory is modified by an integer operation (add, and, or, xor) with
a literal value, and the new value is written back to memory.

Multithreading. The multithreaded version uses the OpenSHMEM context
API to map one thread to a single resource context to provide an added level
of concurrency. In the multithreaded version using OpenSHMEM contexts the
iterations that modify the random locations within the HPCC Table are split
between the threads. More detailed results for evaluating implementation of
contexts can be found in [4].

Usage and Results. The benchmark sub-directory has a Makefile. Set CC to
the correct compiler within this file to test specific implementations. Default is
set to oshcc. The executable produced is ‘gups’.

1 To compile :
2 make
3

4 To Execute :
5 oshrun −np 32 . / gups

Listing 7. Compiling and Executing OpenSHMEM Random Access Benchmark

Sample results for 32 PEs on Turing, an IntelR© XeonR© E5 Cluster 2660 processors
with 10 physical cores and hyper threading, a Mellanox ConnectX-4 VPI adapter
card, EDR IB (100 Gb/s) and 12 GB RAM are shown below:
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1 Running on 32 p ro c e s s o r s
2 Total Main tab l e s i z e = 2ˆ26 = 67108864 words
3 PE Main tab l e s i z e = (2ˆ26) /32 = 2097152 words/PE MAX
4 Defau l t number o f updates (RECOMMENDED) = 268435456 and a c tua l l y

done = 268435456
5 Real time used = 58.660473 seconds
6 0.004576087 B i l l i o n (10ˆ9) Updates per second [GUP/ s ]
7 0.000143003 B i l l i o n (10ˆ9) Updates/PE per second [GUP/ s ]

Listing 8. Sample Output for OpenSHMEM Random Access Benchmark

The GUPs obtained on our test system, Turing, using OSHMEM-X is shown
in Fig. 4. There are two ranks per node (one per socket) with 10 OpenMP threads
per PE (10 cores per socket).

Fig. 4. GUPs results using OSHMEM-X on Turing

2.5 SHOMS

SHOMS is a micro-benchmark suite for testing the OpenSHMEM API [2]. It is
based on the UOMS benchmark for UPC micro operations [15]. It is designed
to do a minimal test of each function call in the library and report performance
numbers. All of the tests will report latencies (min/max/average) and bandwidth
when a function does data transfer. All tests are done in a simple manner, each
function is setup with preallocated memory and transfers initialized data with
the receiving end doing no checks on the data. The intention is to strictly test the
performance of the OpenSHMEM, rather than a correctness test. SHOMS also
features an affinity mode, where a subset of tests are run on two nodes, SHOMS
repeats the tests between all combinations of single cores on each node. This
allows SHOMS to identify if a core is favored by OpenSHMEM on a particular
node.

Usage and Results. A Makefile has been provided in the benchmark direc-
tory. Changes to CFLAGS is a low value exercise since SHOMS is a network
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benchmark rather than a code benchmark. If working with a different build sys-
tem (e.g. Cray) then change the OSHCC variable to the compiler that is used to
build OpenSHMEM code (e.g. OSHCC=cc on Cray). The default compiler is set
to oshcc.

1 To Compile :
2 make
3

4 To Execute :
5 oshrun −np 2 . / shoms −−input test FEATURE . txt

Listing 9. Compiling and Executing SHOMS Benchmarks

The SHOMS output is formatted in a consistent manner for all the bench-
marks. The columns are labeled and instances where the value does not apply are
marked with N/A. An excerpt of SHOMS output is shown in Listing 10, which
highlights the single test for shmem_barrier_all. The other tests are omitted
but they follow a similar pattern. For non-zero length messages, the actual num-
ber of bytes is shown in the first column and is scaled up to a user controllable
maximum size (--maxsize).

1 Using OpenSHMEM ver s i on 1 .3
2 Created a l l t e s t l i s t .
3 Will be running with 128 d i f f e r e n t t e s t s
4 Will be running with 22 d i f f e r e n t s i z e c on f i g u r a t i o n s
5 Using OpenSHMEM ver s i on 1 .3
6 Running t e s t s
7

8 . . . < snip > . . .
9

10 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 # Benchmarking shmem bar r i e r a l l
12 # #proc e s s e s = 8
13 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 #bytes #r e p e t i t i o n s t min [ nsec ] t max [ nsec ]

t avg [ nsec ] Bw aggregated [MB/ sec ]
15 N/A 1000 12345 43411

12937.99 N/A
16 . . . < snip > . . .

Listing 10. Sample output for OpenSHMEM SHOMS

Sample output for the SHOMS shmem_barrier_all test is shown in Listing 10.
Figure 5 shows the results from a scale-up test of the shmem_barrier_all test
using Cray-SHMEM on a Cray XC30 (EOS). The barrier synchronization was
run over an increasing number of PEs (8-256)3.

3 Conclusion

The collection of micro-benchmarks and mini-applications/kernels that comprise
the OpenSHMEM Benchmark (OSB) suite has been described in detail. This
included details on how to use the benchmarks and interpret their output. We
have also provided demonstrative results from our use of OSB on machines at
3 The test was run using command: aprun -d 16 -S 1 -n $NPES ./shoms --input

barrier.txt --maxsize 8.
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Fig. 5. SHOMS results for shmem barrier all with CraySHMEM on Cray XC30 (EOS)

ORNL with different implementations of OpenSHMEM. We also highlighted the
enhancements required for creating the mulithreaded variants of three bench-
marks included in the suite: Graph500, GUPS and SSCA1.

These codes have been developed over a number of years and have been
used to evaluate a variety of capabilities using OpenSHMEM [2,3,6,7,11,13,14].
The suite is publicly available at https://github.com/ornl-languages/osb. We
encourage the community to use the available codes and provide suggestions for
improvement.
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