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1 Introduction

A nonuniform distribution of temperature field on a fluid-fluid interface leads to
surface tension gradients, which induce shear stresses that produce the motion of
a drop in the direction of the temperature gradient. This phenomenon is known as
thermocapillary flow or Marangoni migration. In addition to its importance from a
fundamental point of view, thermocapillary flows play an important role in micro
gravity environments [1] and micro-devices [2].

Experimental research of these flows has inherent difficulties. However, the devel-
opment of high-performance computing in combination with Direct Numerical Sim-
ulation (DNS) of the Navier–Stokes equations open the possibility to perform con-
trolled numerical experiments, providing a good way to non-invasive measure of
droplet flows, although computationally expensive. Multiple methods have been
developed for DNS of bubbly (or droplet) flows [3–8], all of them based on the
so-called one fluid formulation. In the present work a novel multiple marker level-
set method introduced in [9] and extended in [3] to non-isothermal two-phase flows
with variable surface tension, is employed for DNS of thermocapillary migration of
deformable droplets. Thus, using the conservative level-set approach [4, 6], accumu-

N. Balcázar (B) · O. Antepara
Termo Fluids S.L., Terrassa, Spain
e-mail: nestor@termofluids.com; nestor@cttc.upc.edu; nestorbalcazar@yahoo.es

O. Antepara
e-mail: oscar@termofluids.com; oscar@cttc.upc.edu

N. Balcázar · O. Antepara · J. Rigola · A. Oliva
Heat and Mass Transfer Technological Center (CTTC),
Technical University of Catalonia (UPC), Barcelona, Spain
e-mail: quim@cttc.upc.edu

A. Oliva
e-mail: cttc@cttc.upc.edu

© Springer Nature Switzerland AG 2019
M. V. Salvetti et al. (eds.), Direct and Large-Eddy Simulation XI,
ERCOFTAC Series 25, https://doi.org/10.1007/978-3-030-04915-7_28

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04915-7_28&domain=pdf
mailto:nestor@termofluids.com{;{ }}nestor@cttc.upc.edu{;{ }}nestorbalcazar@yahoo.es
mailto:oscar@termofluids.com{;{ }}oscar@cttc.upc.edu
mailto:quim@cttc.upc.edu
mailto:cttc@cttc.upc.edu
https://doi.org/10.1007/978-3-030-04915-7_28


208 N. Balcázar et al.

lation of mass conservation error inherent to standard level-set methods is avoided.
Furthermore, the multiple marker methodology [3, 9] prevents the numerical and
potentially unphysical coalescence of the fluid interfaces, taking into account the
collision of the droplets, while their volumes are kept constant throughout the sim-
ulation [10].

2 Mathematical Model and Numerical Methods

The mathematical formulation has been introduced in our previous work [3], and
here is presented for the sake of completeness. The Navier–Stokes equations for
the dispersed fluid in Ωd and continuous fluid in Ωc are written using the so-called
one-fluid formulation, in a global domain Ω = Ωd ∪ Ωc [3]:

∂(ρv)
∂t

+ ∇ · (ρvv) = −∇ p + ∇ · μ
(∇v + (∇v)T

) + ρg + fσ (T )δΓ , ∇ · v = 0

(1)
where v is the fluid velocity, p is the pressure field, ρ is the fluid density, μ is the
dynamic viscosity, defined as ρ = ρd Hd + ρc(1 − Hd) and μ = μd Hd + μc(1 −
Hd), Hd is the Heaviside step function that is one in Ωd and zero elsewhere, sub-
scripts d and c are used for the dispersed and continuous fluids respectively, g is the
gravitational acceleration, fσ is the surface tension force, and δΓ is the Dirac delta
function concentrated at the interface. Furthermore, an energy equation is introduced
in order to compute the temperature field (T ):

∂T

∂t
+ ∇ · (vT ) = 1

ρcp
∇ · (λ∇T ) (2)

where cp is the heat capacity and λ is the thermal conductivity, defined as λ =
λd Hd + λc(1 − Hd), and cp = cp,d Hd + cp,c(1 − Hd). A multiple marker level-set
method introduced in [4, 9] is used for interface capturing. The ith droplet interface
is the 0.5 iso-surface of a level-set function φi [4], where i = 1, ..., nd and nd is
the total number of droplets. Since the velocity field is solenoidal, the ith interface
transport equation is written in conservative form [3]. Furthermore, a re-initialization
equation is solved for steady state, in order to keep a sharp and constant level-set
profile [4]:

∂φi

∂t
+ ∇ · φiv = 0,

∂φi

∂τ
+ ∇ · φi (1 − φi )ni = ∇ · ε∇φi (3)

Normal vectors ni and curvature κi at the interface, are computed as ni (φi ) =
∇φi/‖∇φi‖ and κi (φi ) = −∇ · ni . The capillary andMarangoni forces [3] are intro-
duced in the context of the continuous surface force model [11], extended to the
multiple markers methodology with variable surface tension in [3]:
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fσ δΓ =
nd∑

i=1

(σ (T )κi (φi )ni − ∇σ(T ) + ni (ni · ∇)σ (T )) ||∇φi || (4)

The fluid properties are regularized by employing a global level-set function for the
dispersed phase [9], Hd = φd , with φd = max{φ1, ..., φnd−1, φnd }, computing the
fluid properties as described in [3]. The mathematical model is discretized using the
finite-volume method on a collocated unstructured grid as reported in [3, 4].

3 Numerical Experiments

Validations and verifications of the unstructured multiphase solver used in this
work are reported in [4, 9, 10, 12, 13]. Additional validations and verifications
are reported in [3] for thermocapillary flows, including the Marangoni migra-
tion of 3D single and multiple droplets. Thus, this work can be considered as
a further step in the understanding of the thermocapillary motion of multiple
deformable droplets. Thermocapillary flows (g = 0), are characterized by the ther-
mal conductivity ratio ηλ = λd/λc, heat capacity ratio ηcp = cp,d/cp,c, viscosity ratio
ημ = μc/μd , density ratio ηρ = ρc/ρd , Marangoni number Ma = Ur Lrρccp,c/λc,
Capillary number Ca = Urμc/σ0, and Reynolds number Re = Ur Lrρc/μc, with
Ur = (∂σ/∂T )||∇T∞||(d/2)/μc, Lr = d, dimensionless time t∗ = 2tUr/d, dimen-
sionless migration velocity V ∗

i = (ey · vi )/Ur , and vi = ∫
Ω
vφ/

∫
Ω

φdV . Material
property ratios are 2, unless otherwise stated.

First, a set of two-dimensional experiments is performed. The size of the domain
Ω is (Lx , Ly) = (6d, 12d), where d is the initial droplet diameter. No-slip boundary
conditions are used at the top and bottom boundaries, whereas Ω is periodic in the
x-direction, with g = 0. A linear temperature profile is imposed at the initial time,
with a higher temperature at the top boundary, and lower temperature at the bottom
boundary.Auniformcartesianmeshwith 480 × 720 cells is employed (h = d/40). In
the beginning, 18 droplets are distributed randomly in 3 layers of 6 droplets. Figure 1
shows the time evolution of the migration velocity for each droplet, including the
effect of Ma, Ca, Re, and bi-dispersion of droplet size. Figures 2 and 3 depict
instantaneous snapshots of the droplet distributions, the vorticity, and the Isotherms.
Finally, Fig. 4 illustrates the effect of the convective numerical scheme [3, 4] used
to discretize the momentum equation and energy equation.

Second, the thermocapillary interaction of 18 droplets is investigated in a 3D
domain.Ω is a rectangular channel of section 6d × 6d on the plane x − z, and length
12d on the y-axis. A uniform cartesian mesh of 240 × 240 × 480 cells (h = d/40)
is employed, distributed in 1536 CPU-cores. No-slip boundary condition is used at
the adiabatic lateral walls (x and z directions), a constant temperature is fixed at the
top (Tt ) and bottom boundaries (Tb), with Tt > Tb. At the initial time, 18 droplets
are distributed randomly in two layers of 9 droplets, similarly to the arrangement
used in [3], for Re = 40, Ma = 60, Ca = 0.04166̄ with physical property ratios 2.
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(a)

(b)

(c)

(d)

Fig. 1 18 droplets. a Effect of Ma. b Effect of Ca. c Effect of Re. d Effect of Re for a bi-dispersed
system, with bi-dispersed ratio 0.625. Continuous line for the average velocity. Discontinuous line
for each droplet velocity

(a) (b)

Fig. 2 18 droplets with diameter d, Re = 40, Ma = 10, Ca = 0.03, material property ratios are
2. a Vorticity ez · (∇ × v). b Isotherms



DNS of Thermocapillary Migration of Deformable Droplets 211

(a) (b)

Fig. 3 9 droplets with diameter d, and 9 droplets with diameter 0.625d, Re = 40, Ma = 10,
Ca = 0.04166̄, material property ratios are 2. a Vorticity ez · (∇ × v). b Isotherms

Fig. 4 Effect of convective scheme, flux limiters [3, 4]. Average velocity of 18 droplets, Re = 80,
Ma = 40,Ca = 0.04166̄, material property ratios are 2. a Energy equation. bMomentum equation

Fig. 5 18 droplets with diameter d, Re = 40, Ma = 60, Ca = 0.04166̄, material property ratios
are 2, t∗ = 111. a Velocity ey · v. b Isotherms. c Vorticity ez · (∇ × v)



212 N. Balcázar et al.

Fig. 6 18 droplets with diameter d, Re = 40, Ma = 60, Ca = 0.04166̄, material property ratios
are 2. First layer of 9 droplets (blue lines), second layer of 9 droplets (black lines), average (red
line). Average migration velocity of a second initial condition (green line).U∗ = ex · vi/Ur , V ∗ =
ey · vi/Ur , W ∗ = ez · vi/Ur , vi is the droplet velocity

Figure 5 shows the migration velocity ey · v, temperature and vorticity ez · (∇ ×
v) on the plane x − y of the channel. Furthermore, the time evolution of the i th
droplet migration velocity (V ∗) is depicted in Fig. 6. This figure also indicates slight
sensitivity of the averagemigration velocity for a different initial droplet distribution.
A separation of the two droplet layers is observed, consistently with our previous
results [3]. Figure 6 also shows that lateral velocities (U ∗,W ∗) of the droplets present
oscillations, although the average velocity tends to zero.

4 Conclusions

DNS of thermocapillary-driven motion of droplet clouds has been performed using a
multiple marker level-set method introduced in our previous works [3, 9], including
the effect of Ma, Re and Ca and bi-dispersion of the droplet size, in both 2D and
3D domains. A repulsion effect arises from the interaction of two-droplets in vertical
alignment which induces the formation of horizontal layers. These interactions lead
to the random motion of the droplets, however the average velocity of the droplet
cloud tend to a quasi-steady state.
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