
On the Development of an Implicit
High-Order Discontinuous Galerkin
Solver for a Hybrid RANS-LES Model

F. Bassi, L. Botti, A. Colombo, A. Ghidoni, F. Massa and G. Noventa

1 Introduction

Recent years have seen an ever-increasing interest in turbulence models able to go
beyond the limited predictive capability of the Reynolds-averaged Navier–Stokes
(RANS) formulation. In the range of moderate Reynolds numbers, availability of
large HPC resources now allows to employ Large Eddy Simulation (LES) also in
complex flow applications. In this context, the practice of an implicit LES (ILES)
based on the Discontinuous Galerkin (DG) method showed to be very promising
due to the good dispersion and dissipation properties of DG methods. However, to
date, characteristic Reynolds numbers of many industrial applications are too large
for a fully resolved LES. For these applications the use of a hybrid RANS-LES
model or a wall modelled LES approach seems mandatory. In hybrid RANS-LES
models the RANS equations are active close to solid walls, where LES would be
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prohibitively costly, while LES is used in regions of separated flow where larger
eddies can be resolved. Among the hybrid approaches available in the literature, we
chose the eXtra-Large Eddy Simulation (X-LES) [1, 2] for three attractive features:
(i) independence from the wall distance; (i i) use in LES mode of a clearly defined
subgrid-scale (SGS) model [3]; (i i i) use of the k-ω turbulence model integrated to
the wall.

2 Implementation and Discretization of the X-LES Model

In this section we review some details of the proposed X-LESmodel implementation
and DG discretization [2]. For the sake of compactness we only report the govern-
ing equations for the turbulent kinetic energy k and the logarithm of the specific
dissipation rate ω̃
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and

μ̄t = α∗ ρk̄

ω̂
, k̄ = max (0, k) . (5)

In our implementation, being k limited to zero, X-LES actually switches between
three different flowmodels, i.e., ILES,LESwith awell defined explicit SGSmodel [3]
and RANS closed by the k-ω model. The automatic switching among the models is
obtained through the definition of a “composite” specific dissipation rate
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)

, (6)
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where Δ is the SGS filter width and C1 = 0.05. Although in the literature the filter
width parameter is often related to the local mesh spacing, here we setΔ to a constant
value over the whole computational grid.

The variable ω̃r in the source terms of Eqs. 3 and 4, and in the “composite” specific
dissipation rate definition in Eq. 6, indicates that ω̃ must fulfill a suitably defined
“realizability” condition, which sets a lower bound on ω̃. This constraint ensures
that X-LES, regardless of being in RANS or LES mode, predicts positive normal
turbulent stresses and satisfies the Schwarz inequality for shear stresses

ρu′2
i ≥ 0, i = 1, 2, 3;

(

ρu′
i u

′
j

)2 ≤ ρu′2
i ρu′2

j , i, j = 1, 2, 3, i �= j, (7)

where u′
i indicates the fluctuating part of the i th component of the velocity and the

overline symbol the temporal average operator.
Being in X-LES both the Reynolds and the subgrid stress tensor modelled accord-

ing to the Boussinesq hypothesis, an overall “realizability” condition can be enforced
through the definition of a suitably modified specific dissipation rate. In fact, after
some algebra, Eqs. 7 can be written in terms of modelled stresses as
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Let us denote with a the maximum value of the unknown eω̃/α∗ that fulfills the
inequalities Eqs. 8 and 9. The lower bound ω̃r0 that guarantees realizable stresses is
then given by

eω̃r0

α∗ = a. (10)

Since in this work the underlaying turbulence model is the high-Reynolds version of
k-ω, α∗ is constant and the solution of Eq. 10 is trivial. The “realizability” constraint
can be finally enforced as

ω̃r = max (ω̃, ω̃r0) . (11)

X-LES equations are here discretized in space according to theDGmethod, see [2]
for details. The complete governing system can be written in compact form as

P (w)
∂w
∂t

+ ∇ · Fc (w) + ∇ · Fv (w,∇w) + s (w,∇w) = 0, (12)
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where w is the unknown solution vector of the m variables, the tensors Fc and Fv

are the convective and viscous flux functions, s is the vector of source terms. In this
work we rely on the set of variables w = [ p̃, ˜T , ui , k, ω̃]T , where p̃ = log(p) and
˜T = log(T ). In practice we substitute (p, T )with e p̃, e˜T in the governing equations,
and use the polynomial approximation of the working variables p̃ and ˜T instead of
p and T directly. This trick ensured, by design, the positivity of the thermodynamic
unknowns at a discrete level, adding robustness to high-order simulations of transonic
flows. The matrix P(w) is the transformation matrix that takes into account of the
change of variables from the conservative set wc = [ρ, ρE, ρui , ρk, ρω̃]T to the
set w.

The system of Eq. 12 is discretized in space firstly multiplying by an arbitrary
smooth test function and then integrating by parts, thus obtaining its weak form.
The solution and the test function are then replaced with a finite element approxima-
tion and a discrete test function both belonging to the set Vh := [Pk

d(Th)]m , where
P
k
d(Th) := {vh ∈ L2(Ω) | vh|K ∈ P

k
d(K ), ∀K ∈ Th} is the discrete polynomial space

in physical coordinates. Pk
d(K ) denotes the restriction of the polynomial functions

of d = 3 variables and total degree k to the element K belonging to the triangulation
Th = {K }, consisting of a set of non-overlapping elements, built on an approxima-
tion Ωh of the computational domain Ω . A set of hierarchical and orthonormal basis
functions for the space Pk

d(K ) is computed following the approach of Bassi et al. [4].
Being the functional approximation discontinuous, the flux functions are not

uniquely defined over the mesh faces, and thus a numerical flux vector is suitably
defined both for the convective and viscous part of the equations. The former relies
on the van Leer flux vector splitting method as modified by Hänel et al. [5]. The
latter employs the BR2 scheme, proposed in Bassi et al. [6].

By assembling together all the elemental contributions a system of ordinary differ-
ential equations governing the evolution in time of the discrete solution is obtained.
The accurate high-order time integration is performed by means of the multi-stage
linearly implicit (Rosenbrock-type) Runge–Kutta schemes. Such schemes require
the solution of a linear system at each stage, while the Jacobian matrix needs to
be assembled only once per time step. An extended review of several Rosenbrock
schemes as well as their coefficients is reported in [7].

3 Numerical Experiments

In this section we present preliminary results obtained with X-LES in the compu-
tation of the transonic turbulent flow through the NASA Rotor 37. These results
are compared with the RANS simulations to assess the predicting capabilities of
the two different approaches. This test case has been thoroughly investigated both
numerically and experimentally, e.g. [8–10].

We performed all the computations up to P2 solution on a grid of 160512 20-node
hexahedral elements (quadratic edges), created by agglomerating a structured linear
mesh. The height of elements adjacent to the solid wall corresponds to y+ ≈ 7. The
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governing equations were formulated in the non-inertial reference frame, see [10],
setting the rotational speed equal toω = [1800rad/s, 0, 0]T .We prescribed adiabatic
wall boundary conditions on the blade, the hub and the tip surfaces. The total pressure
and temperature, the flow angle α1 = 0◦ and the turbulence intensity Tu1 = 3%
were set at the inlet, while the static pressure was imposed at the outlet. For the
RANS computations we relied on the DG implementation proposed in [10, 11],
performing the implicit time integration to the steady state bymeans of the linearized
backward Euler scheme coupled with a pseudo-transient continuation strategy to
evolve the CFL number. X-LES computations were initialized with the RANS fields,
advancing the solution in time with the linearly-implicit third-order three-stages
ROS3P Rosenbrock scheme [7, 12]. The X-LES filter width was set equal to Δ =
5 × 10−5.

Figures 1 and 2 compare the RANS and instantaneous X-LES solutions in terms
of pressure contours and skin friction lines on the blade. The unsteady nature of
X-LES can be clearly appreciated together with the remarkably different distribution
of separation lines with respect to the RANS result. In Figs. 3 and 4 the pitch-wise
mass averaged p0,2/p0,1 and T0,2/T0,1 radial distributions for the RANS and X-
LES computations are compared with the experimental data at 98% of the choked
mass flow. X-LES results are averaged over 46800 time-steps, corresponding to 13
convective time units, defined as tc = c/(a Mr,ti p), where c is the chord at midspan,
Mr,t i p the relative tip Mach number at the inlet, and a the speed of sound at the

Fig. 1 Pressure contours, P2 solutions



80 F. Bassi et al.

Fig. 2 Skin friction lines, P2 solutions

Fig. 3 Pitch-wise total
pressure ratio p0,2/p0,1,
P
1→2 solutions
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Fig. 4 Pitch-wise total
temperature ratio T0,2/T0,1,
P
1→2 solutions

inlet. The pressure ratio distribution is better predicted by X-LES starting from 40%
of the span, while up to 40% both models, i.e. RANS and X-LES, are not able
to capture the total pressure deficiency. The total temperature distribution is better
predicted by X-LES everywhere with the exception of the zone near 60% of the span,
where it is slightly underestimated. At hub and tip regions some discrepancies with
respect to experimental measurements occur, even if less pronounced for the X-LES;
however similar behaviours are also observed for other numerical results reported in
the literature.

4 Conclusion

A high-order DG method coupled with an implicit time integration strategy for
the high-fidelity simulation of turbulent flows was presented. The X-LES hybrid
approach was chosen, being considered appealing for many industrial applications
characterized by high Reynolds numbers. X-LES proved to be robust and able to
correctly deal with separated flows, also improving the predicting capabilities over
RANS model.

Future work will be addressed to further investigate the filter width influence
on results accuracy, to move towards very-large scale parallel computations (ten-
of-thousands cores), and to include in our X-LES implementation some recently
proposed improvements to the model [13].
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