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Preface

The DLES Workshop series, which started in 1994, focuses on modern techniques
to simulate turbulent flows based on the partial or full resolution of the instanta-
neous turbulent flow structures, as Direct Numerical Simulation (DNS),
Large-Eddy Simulation (LES), or hybrid models based on a combination of LES
and RANS approaches.

With the growing capacities of modern computers, these approaches have been
gaining more and more interest over the years. Significant progress has been made
in computational techniques as well as in subgrid scale (SGS) modeling. In parallel,
these approaches are applied to more and more complex flow problems and con-
figurations, both in academic and industrial contexts, and they will undoubtedly be
further enhanced and applied in the future. Nonetheless, open problems and chal-
lenges still remain. The increasing complexity of the simulated problems and the
use of turbulence resolving approaches in an engineering context require the
development of numerical methods being accurate but at the same time able to deal
with complex geometries and/or with physical phenomena interacting with turbu-
lence, e.g., particle/droplet dispersion, combustion, or heat transfer. At the same
time, physical models must be developed, improved, and validated for the
increasing complexity and variety of applications. Validation is indeed a crucial
issue for LES and hybrid simulations, since different sources of errors may be
present (numerics, boundary conditions, closure models) and these errors may
interact in a complicated way. Moreover, systematic sensitivity studies to compu-
tational or modeling parameters are difficult to be carried out because of the large
cost of each single simulation. On the other hand, the availability of more and more
DNS data sets provides a detailed and accurate reference to validate the other
approaches and to guide in the development of physical models.

The goal of the workshop series is to establish a state-of-the-art of DNS, LES,
and related techniques for the computation and modeling of turbulent and transi-
tional flows and to provide an opportunity for discussions about recent advances
and applications.

vii



viii Preface

The 11th edition of the bi-annual Workshop series on Direct and Large-Eddy
Simulation (DLES11) was held in Pisa, Italy on May 29-31, 2017. A record
number of 140 participants from 17 different countries attended this 3-day
workshop. The majority of participants was from academia and research institutes,
but several companies were also represented. Eight keynote lectures were given by
experts in different scientific fields: extreme scale direct numerical simulations of
turbulent combustion (Jacqueline Chen, Sandia National Laboratories, USA),
modulation and control of jets and flames (Arthur Tyliszczak, University of
Czestochowa, Poland), ocean modeling and idealized DNS applied to rotating and
stratified flows (Beth Wingate, University of Exeter, UK), direct numerical simu-
lations of fluid—structure interaction in biological flows (Marco De Tullio,
Politecnico di Bari, Italy), simulation and control of wind farms by means of
large-eddy simulation (Johan Meyers, Katholieke Universiteit Leuven, Belgium),
new insight on how roughness affects the dynamics of turbulence (Ugo Piomelli,
Queen’s University, Kingston, Canada), applications of DNS and LES to multi-
phase flows of industrial interest (Djamel Lakehal, ASCOMP, Switzerland), and
direct numerical simulations of particulate flows (Markus Uhlmann, Karlsruhe
Institute of Technology, Germany).

Next to the invited lectures, 114 oral and poster presentations were selected by a
Scientific Committee of 28 experts. This volume contains most of the contributed
papers, which were submitted and further reviewed for publication. They cover
advances in computational techniques, SGS modeling, boundary conditions,
post-processing and data analysis, and applications in several fields, namely,
multiphase and reactive flows, convection and heat transfer, compressible flows,
aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows
and wall turbulence, and other complex flows.

The organization of DLES11 and the preparation of these proceedings would
not have been possible without the help of many. Funding from ERCOFTAC
(SIG1) enabled the participation of Ph.D. students to DLES11 to be supported.
J. M. Burgerscentrum and University of Pisa are also gratefully acknowledged for
their support. Finally, thanks go to the members of the Scientific Committee
for their help in reviewing the submitted abstracts and the contributions to the
proceedings.

Pisa, Italy Maria Vittoria Salvetti
March 2018 Vincenzo Armenio
Jochen Frohlich

Bernard J. Geurts

Hans Kuerten
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Part I
Numerical Methods



Adaptive Direct Numerical Simulation )
with Spatially-Anisotropic L
Wavelet-Based Refinement

G. De Stefano, E. Brown-Dymkoski and O. V. Vasilyev

1 Methodology

In the wavelet-based adaptive multi-resolution approach to the numerical simulation
of turbulent flows, the separation between resolved energetic structures and unre-
solved flow motions is achieved through the application of a wavelet thresholding
filter. For very small threshold values, the effect of residual motions upon the resolved
flow dynamics can be completely neglected, which leads to the adaptive Wavelet-
based Direct Numerical Simulation (W-DNS) approach. The method allows for the
direct solution of the organized flow motions, which consist of both large-scale and
small-scale coherent structures with non-negligible energy, e.g. [6, 8].

Due to the ability to identify and efficiently represent energetic dynamically
important turbulent eddies, the method has been proven reliable and effective for
the simulation of unsteady external flows [7, 9]. However, when dealing with flow
around obstacles, one of the main challenges of the traditional W-DNS approach is
the requirement of high spatial grid resolution in both the near-wall and the wake
regions. Furthermore, when the presence of the obstacle is mimicked by means of
the volume-penalization technique, e.g. [5, 12], for the accurate estimation of the
wall stresses, and thus the aerodynamic loads, the thin boundary layer inside of
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Fig. 1 Example of spatially non-adaptive anisotropic two-dimensional mesh: (left) global and
(right) close-up views of the near wake zone

the porous region representing the obstacle also needs to be accurately resolved.
The isotropic mesh refinement, which is characteristic of classical wavelet-based
methods, results in the simultaneous grid refinement in all directions, irrespective
of the actual requirement, even in situations where just one particular direction is
involved. This represents a strong constraint of realizability and limits the application
of W-DNS to moderate Reynolds number flows. In this study, a novel approach that
overcomes this limitation is exploited.

The new W-DNS methodology is developed by making use of the adaptive wavelet
transform on curvilinear grids recently introduced in [3]. The traditional wavelet
methods suffer from the “curse of anisotropy,” due to the isotropic wavelet refine-
ment procedure and the inability to deal with mesh elements with spatially vary-
ing aspect ratio and orientation. The new approach utilizes a spatially anisotropic
wavelet-based refinement, which takes advantage of coordinate mapping between
the physical space, where the curvilinear numerical mesh is defined, and the com-
putational space, where the adaptive rectilinear wavelet collocation grid is used.
The new approach permits to construct dynamically adaptive body-fitted meshes,
thus avoiding the use of the volume penalization technique. The anisotropic wavelet-
based mesh refinement has been recently employed also to develop adaptive unsteady
Reynolds-averaged turbulence models of external flows [4].

2 Numerical Experiments

In this work, the flow around a circular cylinder is considered as a prototype for
wall-bounded external flows. The curvilinear approach makes it possible to con-
struct stretched body-fitted O-meshes, differently from [2], where the same flow was
simulated by exploiting uniform rectilinear meshes in conjunction with a volume
penalization approach. Moreover, the introduction of a suitable mapping between
computational and physical spaces allows for a particular arrangement of the grid
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lift force coefficients

points that permits a more efficient representation of both the wall and the wake
regions. In the current work, a more favorable mesh anisotropy is imposed using
the wake envelope mapping proposed in [1]. For example, a non-adaptive spatially
anisotropic two-dimensional mesh is illustrated in Fig. 1, along with the close-up
view of the grid in the near wake region.

The newly proposed W-DNS method is demonstrated for both the laminar steady
separated two-dimensional flow at a low Reynolds number, which is Rep, = 40, and
the three-dimensional turbulent flow at a sub-critical Reynolds number, which is
Rep = 1000, where the Reynolds number is based on the cylinder diameter D. For
the low Reynolds number simulation, five levels of resolution are used to simulate
the vortex shedding flow, which corresponds to employing five nested wavelet collo-
cation grids in the computational space (J = 5). Based on previous experience, the
wavelet thresholding level is prescribed at the value of ¢ = 5 x 107*.

Looking at the aerodynamic loads on the cylinder, the time histories of the drag
and the lift force coefficients are reported in Fig. 2. After the transient period, during
which the regular shedding flow develops starting from initial conditions, the drag
coefficient achieves the constant value of Cp = 1.52, which is very close to the
reference value of 1.51 provided in [11]. As to the lift coefficient, predictably, it tends
towards zero, with oscillations of decreasing amplitude. The present method allows
for the exact enforcement of the no-slip condition at the body surface, whereas, with
the volume penalization approach, the same condition could be only approximated.
In that case, the inexact nature of the wall boundary condition manifested itself in
higher resolution requirement to compensate for the velocity slip error at the body
surface [2]. Due to the adaptivity of the method, the number of retained wavelets,
and thus the computational cost, nearly follow the flow evolution. After the initial
increase caused by the evolution of the wake region, the number of grid points remains
practically constant for fully developed flow.

The key characteristic of the proposed W-DNS method stands in the possibility
to effectively control the accuracy of the numerical solution. On the one hand, the
spatial resolution can be increased by adding further levels of resolution. On the
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Fig.4 Three-dimensional cylinder flow at Rep = 1000: (left) instantaneous vorticity contours and
(right) adaptive mesh in the mid plane, colored by the level of resolution

other hand, for a given number of wavelet collocation grids, the thresholding level
can be properly reduced. In this work, two additional simulations are carried out,
starting form the previous baseline solution at the non-dimensional time tU/D =
60, where U stands for the freestream velocity, by either using a further level of
resolution (J = 6) or choosing a lower wavelet threshold thatis e = 5 x 107> The
time histories of the drag and the lift force coefficients for three different simulations
with different resolutions are reported in Fig.3. While the use of an extra level
of resolution, without changing ¢, results in a more noisy solution, the use of a
lower threshold undoubtedly results in a more accurate solution. This demonstrates
that the direct numerical solution is actually achieved for a sufficiently low level of
thresholding.

The present method has been developed for the accurate and efficient simulation
of wall-bounded turbulent flows. Some preliminary experiments for the unsteady
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Fig. 5 Three-dimensional
cylinder flow at

Rep = 1000: main vortical
structures in the near wake of
the cylinder identified by the
iso-surfaces of Q

three-dimensional W-DNS solution of the turbulent flow past a circular cylinder are
conducted for the sub-critical flow regime, where the boundary layer exhibits laminar
separation and the transition to turbulence occurs in the shear layers developing on
the cylinder side, e.g. [10]. The calculation is performed at Rep = 1000, by using
seven nested rectilinear wavelet collocation grids in the computational space. The
associated anisotropic O-meshes in the physical space are constructed following
the same approach of the previous two-dimensional solution in the cross-section
planes, while no mapping is used in the third spanwise homogeneous direction,
where uniform grid spacing is used. The adaptive method provides a non-uniform
spatial resolution, which is actually varying in time following the dynamic evolution
of the turbulent flow structures in the three spatial dimensions. This is illustrated in
Fig. 4, where the contours of the vorticity magnitude and the numerical mesh, colored
by the level of resolution, in the mid-plane, are reported at a given time instant. The
anisotropic refinement results in a more efficient representation of the flow field at
the wall region, which, in turn, translates into the decrease of the number of active
wavelet collocation points and, ultimately, into the reduction of the computational
cost. In fact, the use of anisotropically stretched mesh elements close to the surface
reduces the number of wavelet levels that are actually needed to resolve the local flow
structures. In particular, the maximum level of resolution (J = 7) is only involved in
very limited zones, compared to excessively high resolution requirement in the near-
wall region for the volume penalization approach [3]. Finally, in order to demonstrate
how the complex three-dimensional vortex structures in the wake behind the cylinder
are well represented by the W-DNS solution, the instantaneous iso-surfaces of the
second invariant of the velocity gradient tensor, Q = 0.4U?/D?, are shown in Fig. 5.
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Towards Adaptive Mesh Refinement for
the Spectral Element Solver Nek5000 oo

N. Offermans, A. Peplinski, O. Marin, P. F. Fischer and P. Schlatter

1 Introduction

When performing computational fluid dynamics (CFD) simulations of complex
flows, the a priori knowledge of the flow physics and the location of the domi-
nant flow features are usually unknown. For this reason, the development of adaptive
remeshing techniques is crucial for large-scale computational problems. Some work
has been made recently to provide Nek5000 with adaptive mesh refinement (AMR)
capabilities in order to facilitate the generation of the grid and push forward the limit
in terms of problem size and complexity [10]. Nek5000 is an open-source, highly
scalable and portable code based on the spectral element method (SEM) [4], which of-
fers minimal dissipation and dispersion, high accuracy and exponential convergence.
It is aimed at solving direct and large-eddy simulations of turbulent incompressible
or low Mach-number flows with heat transfer and species transport. The approach
chosen for adapting the mesh is the i-refinement method, where elements are split
locally, which requires the relaxation of the conforming grid constraint currently
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imposed by Nek5000. Other challenges include the implementation of an efficient
management of the grid as refinement is applied, the development of tools to lo-
calize the critical flow regions via error estimators and the extension of the current
preconditioning strategy to non-conforming grids. In this paper, we present a new
procedure to setup an algebraic multigrid solver used as part of the preconditioner
for the pressure equation.

2 Pressure Preconditioning in Nek5000

2.1 Coarse Grid Solver

The major source of stiffness when solving the Navier—Stokes equations comes
from the pressure equation, which requires an efficient preconditioning strategy. The
method chosen for Nek5000 is additive Schwarz [2] and the preconditioner can be
expressed as My' = RT Ay Ry + 30, RT A ' Ry, where K is the number of spec-
tral elements and R; and R, are restrictions operators. This preconditioner can be
seen as the sum of the global coarse grid operator (A¢) and local subdomain opera-
tors (Ay). The present work focuses on the solution of the coarse grid operator, Ay,
a finite element Laplacian matrix. The so-called “coarse grid” denotes the spectral-
element grid, where the inner collocation points are not taken into account. Two
choices are available in Nek5000 to solve this problem: using a sparse basis pro-
jection method, called XXT [11] or an algebraic multigrid (AMG) method, which
is more efficient for massively parallel large simulations (more than 10,000 cores
and 100,000 elements) [3]. As usual with AMG methods, a setup step is required
for the matrix A, which will define the necessary data for solving the problem:
a coarsening operation and the definition of the interpolation and smoother opera-
tors. In the particular case of Nek5000, the AMG solver performs a single V-cycle,
and a fixed number of Chebyshev iterations, computed during the setup, is applied
during the smoothing part. This method has the advantage to avoid inner products,
thus reducing communication. More information about the theoretical background
for the setup can be found in Ref. [7]. While the AMG solver is highly scalable
and efficient, the setup phase is currently performed by a serial Matlab code, which
can take up to a few hours for the largest current cases on a modern desktop com-
puter. This bottleneck is an obstacle to the use of AMR, where the grid, and thus
the operator Ay, is modified regularly, every time requiring a new setup compu-
tation. For that reason, an alternative method has been investigated to replace the
Matlab setup.
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Table 1 Summary of the cases used for testing the Hypre setup. The name of the case, number
of spectral elements, polynomial order and total number of degrees of freedom for each velocity
component are indicated

Case name Num. of el. Pol. order D.OF

Jet in crossflow [9] 47,960 7 16,461,424
Straight pipe [1] 853,632 7 293,870,304
NACA4412 [5] 1,847,664 11 1,847,664,000

2.2 Use of Hypre for the AMG Setup

As an alternative way of performing the setup, the Hypre library for linear algebra
is used [6]. Specifically, only the time consuming coarsening and interpolation op-
erations are performed with Hypre, while the computation of the smoother remains
unchanged in order to keep the good performance of the AMG solver. The use of
Hypre offers the possibility to choose among various algorithms for coarsening and
interpolation. For the current tests, we chose the Ruge—Stuben algorithm for the
coarsening and the so-called “classical” modified technique for the interpolation.
The setup is currently performed by a serial, external C code. The main goal with
this new setup is to demonstrate two points: the use of the Hypre library reduces
significantly the setup time but does not impact the solver time.

3 Validation of the Hypre Setup

In this section, we experiment with the new setup code on several real test cases. In
particular, we verify that the Hypre setup is faster than the Matlab one, while the
computational time is not affected. We also show the advantage of AMG over XXT
for large parallel simulations.

The test cases considered are the simulations of a jet in a crossflow [9], of a
turbulent straight pipe (Re, = 550) [1] and of the flow around a NACA4412 airfoil
(Re = 400,000) [5]. Some basic information about the cases is summarized in Table
1. All cases are physically relevant, three-dimensional, flagship simulations. The
cases of the straight pipe and the NACA4412 are both obtained by extrusion of a
2D grid and are chosen for their large number of elements. The wing case also has
elements with large aspect ratios, which makes it more challenging. The grid of the
jetin a crossflow is smaller but is chosen because it is not built by extrusion of a 2D
grid. Moreover, the complexity of the grid at the junction between the pipe and the
channel makes it an interesting case.



12

N. Offermans et al.

Table 2 Comparison between the timings of the Matlab and Hypre codes for the AMG setup

Time (s.) 1/0 Computation Total
Jet in crossflow | Matlab 1.17 97.47 98.64
Hypre 0.4 2.02 2.42
Straight pipe Matlab 26.49 2205 2231
Hypre 32.75 44.4 77.15
NACA4412 Matlab 93.98 3662 3756
Hypre 90.4 91.7 182.1

3.1 Timing of the AMG Setup

The timings for the setup are reported in Table 2 for the Matlab and the Hypre setups.
The total setup time is split between I/O time (reading and writing the setup data) and
computational time (coarsening and computation of the interpolation operator and
smoother at each level). All setups are performed a single time on the same desktop
machine (CPU: Intel Core 17 990 Extreme, RAM: 24gb), in serial.

In all cases, the computational and total times for the setup are reduced by more
than one order of magnitude. The timings for I/O remain similar on the other hand.
Overall, numerical experiments clearly show that Hypre can be used to drastically
reduce the setup time, up to levels that can be used for AMR simulations. In addition,
so far only the serial version of Hypre has been used; upon inclusion of the setup
phase into the main code, even the parallel capabilities will be employed, which
might lead to additional reduction of the setup time.

3.2 Timing of the Simulation

The mean total wall clock time per time step during the simulation is presented in
Figs. 1 and 2 for the jet in crossflow and the straight pipe, respectively. A straight
line showing linear strong scaling is also plot as an indication. Similarly, the time for
the coarse grid solver and the total computational time are shown, per time step, in
Fig.3a, b for the NACA4412 airfoil. For all cases, the reported times correspond to
averages over 20 time steps and exclude I/O. Each simulation has been run, once, on
Beskow, a Cray XC40 supercomputer (1676 nodes, 32 cores per node) based at The
Royal Institute of Technology in Stockholm. For the jet in crossflow and the pipe,
several number of cores have been considered and the plots show the strong scaling
of the code. The NACA4412 simulation has been run on 16,384 cores only.

The results for the jet in crossflow, illustrated in Fig. 1, show that the Hypre setup
does not affect the time to solution, as both setups lead to very similar results in
terms of computational time. Regarding the comparison between AMG and XXT,
the simulation of the jet in crossflow is too small to see a consistent difference between
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both coarse grid solvers, as can be seen by the fact that the best performing method
depends on the number of processes.

It is observed again in Fig.2 that both the Hypre and the Matlab setups perform
similarly well in the case of the simulation of a turbulent straight pipe. Given the
larger size of the case, it also appears that the use of XXT for preconditioning the
pressure equation is systematically slower compared to AMG. This difference is a
only a few percents but occurs at all numbers of cores considered.

Furthermore, Fig.3a, b show once more that either setup method can be used
without affecting significantly the solver time. The slightly higher time for the coarse
grid solver may be partly attributed to a higher number of Chebyshev iterations when
using Hypre compared to Matlab (33 vs. 26). Other factors that might explain the
difference are the algorithms used for coarsening and interpolation. Both figures also
illustrate that the use of AMG should be preferred over XXT for large simulations.
In the case of the wing, the gain in coarse grid solver time is about 70%, which
translates into a reduction of the total computational time by about 10%.

Finally, we show the effect of the setup method on the number of pressure
iterations, i.e. the number of iterations of the iterative solver (GMRES in this case)
required to drive the L,-norm of the residual of the divergence equation to some tol-
erance (1077 in this case), at the start of the simulation of the straight pipe in Fig. 4.
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turbulent straight pipe (Re; = 550) using Matlab (squares) and Hypre (triangles)

Both plots collapse most of the time, showing once more that both setup methods
are equivalent. Similar results have been observed for the two other cases.

4 Conclusion and Outlook

The present work shows numerical results for speeding up the pressure preconditioner
with the eventual goal of using adaptive mesh refinement (AMR) with Nek5000 [10].

First, with the help of Hypre, the setup time was reduced by more than one order
of magnitude compared to the Matlab code. This improvement will benefit the users
of Nek5000 and should facilitate the use of the AMG solver within the framework of
AMR. It has been shown that the use of AMG instead of XXT for solving the coarse
grid problem in Nek5000 significantly improves the time to solution for large cases
(typically more than 100,000 elements on more than 10,000 cores) [8].



Towards Adaptive Mesh Refinement for the Spectral ... 15

Finally, it was shown that replacing the coarsening and interpolation operations
of the original Matlab code for the setup by the Hypre routines, while keeping the
same strategy for the smoother, does not affect significantly the total solver.

In the future, the setup code using Hypre will be parallelized and included inside
Nek5000 such that no interruption in the workflow of a simulation is required. As the
result of the AMG setup in Hypre is dependent on the number of parallel processes
used, the effect of parallelization on the quality of the coarsening and interpolation
operations will also be studied.
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Discrete Conservation of Helicity in )
Numerical Simulations of Incompressible | @i
Turbulent Flows

D. Vallefuoco, F. Capuano and G. Coppola

1 Introduction

Helicity is the scalar product between velocity and vorticity and, just like energy, its
integral is an inviscid invariant of the 3D incompressible Navier—Stokes equations,

8ui 8 1 821/l,' 81,{,‘
— 4+ () = __p + — , —
Jt 0X; Re anan ax;

=0, (1)

where .4} (u) is the non-linear convective term and Re is the Reynolds number.

Since its relatively recent discovery [8], helicity has been found to play an im-
portant role in both laminar and turbulent flows [7]. A significant research effort has
been carried out over the last years to develop numerical algorithms that preserve
invariants also in a discrete sense, with the aim of obtaining stable computations and
physically relevant solutions. Particular attention has been paid to the development
of energy-preserving numerical methods, that have ultimately allowed stable long-
time integrations and realistic representations of the energy cascade [1]. On the other
side, invariance of helicity has been very seldom considered in the derivation of nu-
merical methods, despite recent developments showing the physical importance of
helicity cascade [3]. Notable exceptions include the works by Lui and Wang [6], for
axisymmetric flows, and by Rebholz and coworkers (see, e.g., [9]), in the framework
of finite-element methods.
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The aim of the present work is to investigate the discrete helicity conservation
properties in physical-space finite-difference or finite-volume methods. Particularly,
the conservation properties of the various discretized forms of the nonlinear term .4}
are discussed. Time advancement is also taken into consideration in the analysis.

2 Discrete Helicity Balance
A semi-discretized version of Eq. (1) can be expressed as
du 1
S—+Cwu=-SGp+ —Lu, Mu=0, 2)
dr Re

where u is the discrete velocity vector containing the three components on the three-
dimensional mesh, u = [ux u, uZ]T, S is a diagonal matrix containing the metrics of
the mesh, and the operators C, L, G, M are suitably defined discrete approximations
of the corresponding convective, laplacian, gradient and divergence terms respec-
tively (see [1] for further details). A general colocated mesh is considered here (i.e.,
variables are all arranged in the same points); periodic boundary conditions are also
assumed hereinafter.

We aim to derive a discrete evolution equation for helicity, defined as
h=u’Sw, 3)
where w = S™'Ru is the vorticity. The curl operator R is defined as

-D. D,
R=| D, =Dy |, “)
-D, D,

where the matrices D are the difference operators along the three directions and
are supposed to be skew-symmetric. This property is a discrete analogous of the
summation-by-parts rule and is satisfied by any central-differencing scheme, both
explicit and compact [1]. Note that R is a skew-symmetric block matrix constituted
by skew-symmetric blocks, and is thus symmetric, R” = R.

The fully discrete evolution equation for helicity can be derived by further as-
suming a time-integration method. Here, a generic s —stage Runge—Kutta method is
considered. After proper manipulation, one has

ah_ 2 ibiuTRS’lLu - 2ibiuTRS*‘c (u)w; — At ig--fTS*‘RS*lf- (5)

At~ Re &= ’ — ' oy Vi »
where a;; and b; are the Runge—Kutta coefficients, g;; = b;ja;; + b;ja;; — b;b;, and
fi = —C (w;) u; 4+ Lu; /Re. The three terms appearing in the right-hand side of Eq. (5)
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are respectively the contribution of the discretized (physical) viscous dissipation, the
spatial error term due to convection, and the temporal error. No pressure term arises
as long as RG = 0. For a simulation to be physically relevant, the last two terms
should vanish, so that helicity preservation is correctly recovered for Re — oo.

Concerning the spatial term, the conservation properties depend on the formu-
lation adopted for the convective term. In the continuous case, the nonlinear term
¥ can be written in several analytically equivalent forms (skew-symmetric, diver-
gence, rotational, among others) which instead behave differently when discretized
due to violation of the product rule. The property CT = —C, that is sufficient to
provide discrete conservation of energy [1], does not guarantee helicity preservation
alone. However, if the rotational form is employed, C™ = —V(u)R, with V(u) a
skew-symmetric matrix expressing vector product with u, both energy and helicity
are spatially preserved. All the other commonly used forms of convection contribute
spuriously to the energy and helicity balance.

The temporal error vanishes for symplectic (implicit) integrators, which provide
biajj +bja;; — b;b; = 0.Indeed, these methods are known to preserve all quadratic
invariants of a conservative system. Any explicit method gives an error term in both
the energy and helicity discrete evolution equations [2].

By collecting the outcome of this section with known literature results [1], the
conservation properties (also including global momentum and energy) of several
NS algorithms are reported in Table 1. Note that the rotational form, coupled to a
symplectic integrator, fully conserves momentum, energy and helicity.

3 Numerical Results

We are interested here in the effect of the different possible formulations of the
nonlinear term on the helical dynamics. Simulating an inviscid system allows to
eliminate the numerical error related to the viscous term in Eq. (5). Therefore, in
order to isolate the errors related to the formulation of the convective term (and
possibly to the time-advancing scheme) from the truncation error, we choose to use
a pseudo-spectral method with no de-aliasing. In particular, we solve the spherically
truncated Euler equations, i.e. the system obtained by truncating the periodic Euler
equations in Fourier space at a wavenumber |k| = ky,.x. In the absence of numerical
errors, this truncated system also preserves energy and helicity. We analyze the
statistically stationary state (absolute or statistical equilibrium), for which the exact
spectra of both energy and helicity are available [5],

4 k> 8w k*
B =" CoHl =
1= (5w

« T (B ©

where o and $ are constants that depend on the energy and helicity content. The
statistical equilibrium is governed by a single non-dimensional parameter, e.g. the
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Table 1 Conservation properties of 3D Navier—Stokes discretizations on a colocated grid. 4 con-
servative a priori, o conservative if and only if continuity is discretely satisfied, x non conservative

# Algorithms | Time Momentum | Time Energy | Time Helicity | Time
space space space space

1 Rot. Symp. | o + o + + +

2 Rot. Expl. o + o X + X

3 Skew Symp. | o + o + X +

4 Skew Expl. o + o X X X

5 Div. Expl. + + X X X X

relative helicity Hy) = Kj,/(2kmaxKe), where K, and K, are the mean energy and
helicity, respectively. In the non-helical case, i.e. H, = 8 = 0, the helicity spectrum
vanishes and the energy spectrum becomes simply

E(k) = %Tkz. (7)

In the performed simulations kp,x = 42 and the initial condition is the sum of two
Arnold-Beltrami—Childress (ABC) flows [4], yielding H,, = 0.687. The various
algorithms listed in Table 1 are tested; the explicit method is a third-order RK scheme
(RK3), while the symplectic one is the Gauss midpoint method.

Time evolutions of global energy and helicity are reported in Fig. 1. Algorithm 1
is fully conservative and indeed is found to preserve energy and helicity in time up
to machine precision. The rotational and skew-symmetric forms in conjunction with
explicit Runge—Kutta schemes (Algorithms 2 and 4) are found to slightly dissipate
energy in time, with Algorithm 2 being more dissipative than Algorithm 4. This
is attributed to the accumulation of energy at the smallest scales due to the larger
aliasing errors of the rotational form. On the other hand, the skew-symmetric form
is found to completely dissipate the initial helicity content in few turnover times. It
is interesting to note that Algorithm 2, which employs the rotational form and an
explicit RK3, is slightly helicity-productive.

Energy and helicity spectra are reported in Fig. 2. The fully conservative computa-
tion matches very closely the exact solution, while Algorithm 2 is slightly dissipative
due to the temporal dissipation of the RK3. Importantly, the computation employing
Algorithm 4 drives the system towards the non-helical equilibrium solution, i.e. the
relative helicity vanishes and E (k) is proportional to k2, see Eq. (7). Finally, the
solution computed through Algorithm 5 diverges due to violation of energy conser-
vation.

We also tested the classical second-order staggered scheme (not shown here) and
observed that it dissipates helicity similarly to the collocated skew-symmetric form.

The effects of discrete helicity conservation will be further characterized and
quantified via direct numerical simulations of high-Reynolds number turbulence.



Discrete Conservation of Helicity in Numerical Simulations ... 21

05 30
"xX 20
= 0495 =
x)(x g
x 10
4 o °
x  # "
0.49 . #4 x 0 .l........lll..l.l.....l.
0 10 20 30 40 0 10 20 30 40
t/t() t/t()

Fig.1 Time evolution of global energy and helicity for spherically truncated Euler dynamics using
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Fig.2 Energy and helicity spectra in spherically truncated Euler dynamics for the algorithms listed
in Table 1. The exact solution is reported in Eq. (6)
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A Massively Parallel, Direction-Splitting )
Solver for DNS in Complex Geometries ek

F. Auteri, M. D. de Tullio, J.-L. Guermond, D. Montagnani
and P. D. Konghar

1 Introduction

The Direct Numerical Simulation of turbulent flows (DNS) has proved itself, over
the years, an extremely valuable tool to investigate the fundamental properties of
turbulence, often rivalling experiments by virtue of its accuracy and of the insight it
offers to the investigator [15].

While DNS has been restricted to very simple geometries for quite a long time—
the plane channel is still the most investigated one, see [12] and the references
therein—the increasing availability of high performance computers allowed the ap-
plication of this valuable tool to more general geometries. Among the various numer-
ical approaches adopted to reach this goal, of particular interest are spectral elements
[7], well suited to deal with complex geometries by construction, and finite differ-
ences. The latter can be applied to complex geometries either using boundary fitted
grids, that usually require sophisticated, multi-block grid generators [3], or using
an immersed boundary approach [14]. This technique has two notable advantages:
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it requires very simple, inexpensive Cartesian grids; it allows the treatment of very
complicated geometries while maintaining a relatively simple algorithmic structure.

The simple algorithmic structure of immersed boundary codes is the key for their
success in the DNS of turbulence in complex geometries [5]. In fact, exploiting
the full power of recent supercomputers, which are necessary to support DNS of
flows at a relatively high Reynolds number, is by itself a challenge. Porting compli-
cated algorithms on massively parallel computers, or even on hybrid architectures,
fully exploiting GPUs and many-core CPUs, can be very expensive. In this respect,
Cartesian-grid finite differences can offer a distinct advantage.

Despite the fact that several techniques have been developed to increase the perfor-
mance of finite-difference solvers, for instance multigrid and fast Poisson solvers [13,
16], DNS is such a demanding application that the quest for faster algorithms never
ends. Quite recently, Guermond and Minev [9, 10] proposed a new class of direction-
splitting, fractional step algorithms whose computational complexity scales linearly
with the number of grid points. A guasi-optimal version of this method based on
Chebyshev polynomials has also been developed [1]. This class of solvers has also
two distinct advantages: it can be parallelised with ease to scale on thousands of
processors, since the communication overload grows as the cubic root of the number
of processors, and it has the potential to fully exploit hybrid architectures, since the
large part of the computing time is spent solving tridiagonal linear systems.

In this work, we show that the aforementioned fractional-step method can be
effectively coupled with the treatment of immersed boundaries to obtain a very fast,
scalable and flexible solver for the DNS of turbulent flows in complex geometries.

2 The Numerical Approach

The equations to be solved are the incompressible Navier—Stokes equations,

Ju

PPl (u-Vyu—vViu+Vp =f(r,71), V-u=0, (1)

supplemented by Dirichlet or Neumann boundary conditions. Here f(r, ) represents
a volume-force field, e.g. the gravity-force field, and p is the pressure rescaled by
the density. A second order Crank—Nicolson scheme with explicit treatment of the
nonlinear term is employed for time discretization,

k1 _yk k+1/2 k+1/2 k172
S S VR ) = £ - @l vt et )
V_uk—H — 0’
where pr/ 2= p*=1/2 4 $*=1/2 represents the pressure predictor and u =
Buf —uf 1 /2.

The discretised Navier—Stokes equations are then advanced in time according
to the fully split fractional step pressure-correction algorithm proposed in [9, 10].
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According to the algorithm, the velocity can be obtained by solving the following
sequence of 1D equations

wk+A1[_uk _ % ”(Wk+1 _ uk) — fk+1/2 + vV2uk — (u]fH/Z‘V)uIﬁH/Z _ foH/Z,
3)
k+1 _ wk+1
T = B0, (Vb =0, @)
k+1_ gk+1
% - %3zz(uk+1 —u") =0, &)

where w*t! and vf*! denote auxiliary variables representing the intermediate solu-

tion of the direction-splitting algorithm, while u**! is the intermediate velocity.
Once the velocity field has been updated, the pressure field is updated in two steps.
First, the following cascade of 1D Neumann elliptic problems is solved

(1= 0¥ == V-ubt 8, yfeesy =0,
(1 - 3»’)‘/’ =, 0y@ly=+1 =0, (6)
(1 =0.;)p" 2 =g, 3.2 =0

to compute the auxiliary variable ¢**!/2; then, the pressure is updated by applying
the explicit relation

_ v
PRHVZ = k=172 ghtl/2 5 V. (! 4 ub). 7

The algorithm is stable for 0 < x < 1 [9, 10]. This process preserves the ellipticity
of the pressure Poisson equation, since the split operator is also elliptic.

The elliptic problems are all discretised by standard, second-order finite differ-
ences in all the directions, this allows nonperiodic boundary conditions to be imposed
easily and it makes the parallelisation of the code easier.

A sponge region is employed in the outlet region together with homogeneous
Neumann conditions to avoid the reflection of pressure perturbations [4].

Solid boundaries that are present within the computational domain are treated by
means of a discrete-forcing immersed boundary technique, based on a moving least-
square approximation to reconstruct the solution in the vicinity of the immersed
surface [6]. The body surface is discretised into triangular elements (Lagrangian
mesh), whose centroids act as Lagrangian markers. The forcing required to impose the
interfacial boundary condition is first computed on the markers lying on the immersed
surface, and then transferred to the fixed Eulerian mesh. A moving—least—square
(MLS) approach is adopted to build a transfer function around each Lagrangian
marker, which is used to exchange information between the Eulerian and Lagrangian
meshes. To this purpose, a support domain is built, centred around each Lagrangian
marker, which includes N, Eulerian grid nodes closer than a threshold value in each
Cartesian direction. Here, N, = 7 Eulerian nodes are considered in three dimensions.
The reconstruction procedure consists in the following steps:
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1. Compute the intermediate ith velocity component in all the Eulerian grid points,
0;;

2. Using the MLS approach, compute the velocity components at each Lagrangian
grid point, approximated in the support domain as:

N,
U0 =) ¢ (xaf, ®)
k=1

where k indicates the Eulerian point in the support domain and ¢,ﬂ are the shape-
function values for marker point /, calculated as in [6];
3. Calculate the volume force component F; at all Lagrangian grid points:

v, - U,
Fi=—7p ®

where Vib is the velocity component on the marker to be imposed as a boundary
condition.

4. Transfer back F; to the k Eulerian grid points associated with each Lagrangian grid
point, using the same shape functions employed in the interpolation procedure,
properly scaled by imposing that the total force acting on the fluid is not changed
by the transfer;

5. Correct the intermediate velocity so as to impose the correct boundary conditions
on the immersed body.

3 Results

The scalability of the code has been tested on an IBM NeXtScale Linux Infiniband
cluster, with 512 nodes and two 8-core Intel Haswell 2.40 GHz processors per node.
The results of a weak scalability analysis are reported in Fig. 1. For ideal scalability,
the elapsed time would be constant. The timing results reported in the figure show that
the communication overhead grows as the cubic root of the number of processors.
The code has been first validated comparing the lift coefficients on the two cylin-
ders in a reference flow, obtaining a difference with the reference solution less than
2%, and then it has been used to investigate the properties of the flow past two side-
by-side cylinders for a Reynolds number and non-dimensional distance between the
cylinders (g) just beyond the neutral curve associated with the steady asymmet-
ric baseflow [2]. For values of the aforementioned parameters near the instability
threshold, reaching the steady final state requires very long transients that are hardly
affordable with a standard immersed boundary code [8]. In Fig.2 we report the evo-
lution towards the periodic limit cycle of the drag coefficients starting from a steady,
symmetric base flow. As can be appreciated from the figure, a very long transient is
necessary to attain the final limit cycle, which bifurcates from the steady asymmetric
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Fig. 1 Weak scalability test: elapsed time for 103 time steps and 10° points per node on an IBM
NeXtScale Linux Infiniband cluster. Solid line: least-square fitting with @ = 1645 and b = 49
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Fig.2 Long time simulation of the flow past two side-by-side cylinders for Re = 68 and g = 0.57.
Left: time history of the drag coefficients on the two cylinders. Right: Zoom corresponding to the
small rectangle in the left panel to highlight the asymptotic limit cycle

flow. In fact the flow first approaches the steady, asymmetric base flow, a saddle
fixed point according to dynamical system terminology, this first transient being
quite long. Then the flow evolves towards the final limit cycle, whose amplitude is
quite small owing to the proximity to the neutral curve. The simulation is very time
consuming since a very long domain is necessary to obtain results independent from
the domain size, as shown by the linear stability analysis. In this case the domain
is a rectangle 950 cylinder diameters long and 100 cylinder diameters wide with
1028608 grid points. The simulation has been run for 4.5 x 10° time steps with a
time step At = 0.005.

To test the 3D version of the code, the steady flow around a rotating sphere
has been simulated for two different rotation rates, v* = wR/U = 0.5 and o* =
wR/U = 0.6. The computational domain is a box of size 15D x 15D x 45D and
a nonuniform grid of 200 x 200 x 400 points has been used, as reported in Fig. 3.
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Fig. 3 Steady flow past a rotating sphere for two different rotation rates and Re = 300: o* = 0.5
(left, top) and w* = 0.6 (left, bottom). Employed mesh (right)

The results, reported in Fig. 3, agree very well with the reference results reported in
[11].

In all the presented test cases, a vanishing volume force f was assumed.
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An Analysis of Time-Integration Errors )
in Large-Eddy Simulation of L
Incompressible Turbulent Flows

F. Capuano, E. M. De Angelis, G. Coppola and L. de Luca

1 Introduction

There is widespread theoretical and numerical evidence that Large-Eddy Simulation
(LES) of turbulent flows has to be performed using high-order accurate numerical
schemes. Much of the research has so far focused on the spatial discretization, coming
to the conclusion that: (1) higher-order methods (> 2) are preferred, to ensure that
the magnitude of the truncation error does not overwhelm the subgrid-scale model
contribution, and (2) non-dissipative (centered) schemes should be employed, so that
the energy cascade mechanism is not artificially contaminated [2, 3].

This work is concerned with time-integration errors. Although the above reason-
ings can be similarly applied to the time-advancement method, errors in time are
usually considered to be negligible, provided that (at least) second-order methods
are employed and the time step is kept lower than the smallest time scale of the flow.
As a consequence, a systematic analysis of time-integration errors has been seldom
carried out in literature. Choi and Moin [5] investigated the effects of using large
time steps in a turbulent channel flow, and found that excessively large time incre-
ments led to relaminarization or inaccurate turbulence statistics. Verstappen et al. [8]
compared several explicit schemes for the numerical simulation of a driven-cavity
flow, and found no significant differences in the results. They also concluded that the
time step is generally determined by stability and not by accuracy.
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The aim of this work is to carry out systematic tests to investigate time-integration
errors in LES of a canonical turbulent flow at time steps close to the ones dictated
by the stability constraint of the temporal scheme. Building on the basis of a recent
paper by the authors [4], the discrete energy evolution equation is considered, and
the contribution of the temporal error is compared to the physical and subgrid-scale
model dissipation rates. The analysis is carried out for general Runge—Kutta schemes,
although it can be extended to other methods (e.g., multi-step).

2 Theoretical Framework

2.1 Discretization of Navier—Stokes Equations

The filtered incompressible Navier—Stokes (N—S) equations read:

37; o 1 0% 37;
e G~ D AT,
dt ox; Re anax]’

=0, 1
o, (D

where %;(u) is the non-linear convective term, Re is the Reynolds number and
F; = 6;(u) — 6;(u) is the subfilter-scale term. A discretization in space leads to
the semi-discrete version of the filtered N-S equations, which can be expressed as:

du =—-Cu—-Gp+ iLﬁ —r(u), Mu=0, 2)
dr Re
where u is the filtered discrete velocity vector containing the three components on the
three-dimensional mesh and the operators C, L, G, M, r are suitably defined discrete
approximations of the corresponding convective, Laplacian, gradient, divergence and
subfilter-scale terms respectively. For this last term a further model assumption has
been implicitly made in order to express r as a function of u only.

From Eq. (2) an evolution equation for the kinetic energy of the filtered field can
be derived. For uniform meshes it reads:
dE _ —u'Cmu—u' Gp + iﬁTLﬁ —u'r(@) , (3)
dr Re

where E = u’ u/2. A similar equation can be derived for the case of nonuniform mesh
by considering the relevant scalar product. In Eq. (3) the pressure term vanishes if the
divergence free constraint is satisfied (and assuming that M” = —G holds), while
the convective term vanishes only if a skew-symmetric operator C is adopted. Thus,
an energy-conserving spatial discretization leads to a semi-discrete energy balance
which is a close counterpart of the continuous energy budget.
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Due to the incompressibility constraint, the system in Eq. (2) is an index-2
Differential Algebraic system. By introducing a projector operator P it can be
formally recast as the system of ODE u = F(u) where F = PF and F() =
—C(u+ LLu—r (@), withP =1- G2 "M and ¢ = MG. Time integration
is now straightforward. Here, a s—stage Runge—Kutta method is considered [1]:

=4 Ay bF@) . 4)
i=1

U=, + Aty a;F@) . (5)
j=1

The pressure at each RK sub-step is evaluated by solving a Poisson equation [2].

2.2 Evaluation of Temporal Errors

In general, Egs. (4)—(5) introduce aliasing errors [6] (due to discrete evaluation of
products) as well as dispersive and diffusive errors (coming from both spatial and
temporal discretizations). This work is primarily concerned with diffusive errors,
which are believed to be the most critical in LES. Indeed, in recent years energy
conservation has been considered a priority over the formal order of accuracy of
the method. In this work, spatially energy-conserving methods are assumed and the
attention is focused on temporal errors.

The diffusive temporal error can be evaluated by deriving an expression for the
variation of the kinetic energy of the filtered field introduced by Eqs. (4)—(5). The
fully discrete evolution equation can be obtained in closed form by taking the inner
product between a"*! and itself. After some basic manipulation [4], one has

v Zb u/ Lu; — Zbu ru) — — Z ¢ FTF, (6)

i,j=1

where AE = EnJrl — En and 8ij = bia,-j + bjaﬁ — bibj.

The first two terms in the r.h.s. of Eq. (6) are, in order, the time-discrete coun-
terparts of the viscous (physical) dissipation rate €”, and of the subfilter-scale con-
tribution £5¢5. The last term is a purely temporal error, which will be denoted as
e®X In a LES simulation, it would be desirable to have the filtered energy balance to
be modified only by the viscous dissipation and the subfilter-scale terms. Currently
available methods to reduce the magnitude of the temporal error, on equal time step,
include using symplectic (implicit) or pseudo-symplectic (explicit) methods, which
are able to eliminate the error entirely, or to reduce it to & (A7) respectively [4].
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The aim of this work is to evaluate the magnitude of the temporal error term with
respect to the viscous and subfilter-scale contributions for a canonical turbulent flow,
for various RK methods and as a function of proper non-dimensional parameters.

3 Results

The three-dimensional Taylor—Green vortex is here investigated to assess the im-
pact of temporal errors. The problem is entirely governed by the Reynolds number,
which is chosen to assume the values Re = 1600 and Re = 3000. Estimates of the
Kolmogorov length- and time-scale can be obtained by well-known relations [7].
The flow is well resolved with 256 grid points. Here, a large-eddy simulation is
carried out using 64° points, and a dynamic Smagorinsky model is adopted. The
Navier—Stokes equations are solved using a second- or fourth-order centred method
with the convective term cast in skew-symmetric form, so that the spatial scheme is
energy conserving. The Runge—Kutta schemes here investigated belong both to clas-
sical methods and to more recently investigated pseudo-symplectic explicit schemes.
More specifically, five RK schemes are employed: the third- and fourth-order clas-
sical RK schemes (denoted as RK3 and RK4 respectively) and the four-, five- and
six-stage explicit pseudo-symplectic schemes studied in [4], denoted respectively as
3p5q, 3p6q and 4p7q (refer to [4] for details). In Figs. 1 and 2 the results of a pre-
liminary calculation without any model (i.e. by dropping the subfilter-scale term in
Eq. (2)) obtained by employing fourth-order spatial discretization and for CFL = 1
are reported. The normalized temporal numerical dissipation £®X /& is plotted as a
function of time for various RK schemes at Re = 1600 and Re = 3000. These plots
show that a significative numerical dissipation is produced by classical RK3 and RK4
schemes, as compared to the physical viscous contribution, while pseudo-symplectic
schemes are effective in reducing this production to negligible values. These conclu-
sions are also supported by the ratio of the effective to nominal Reynolds number,
reported on the right y-axis, where the effective Reynold number is defined to take
into account the sum of physical and numerical viscosity (see [4] for further de-
tails). In Fig. 3 the same calculation is performed in conjunction with the application
of the dynamic Smagorinsky model for the Re = 1600 case. In this simulation the
spatial discretization is obtained with second-order schemes and the CFL number is
set to 0.5. The numerical dissipation is in this case normalized with the sum of the
physical viscous dissipation and the subfilter-scale contribution. The results confirm
that classical RK schemes can provide a significative spurious contribution to energy
dissipation, while pseudo-symplectic schemes are able to reduce this contribution to
values below 0.1%.

A more systematic comparison among the various methods is reported in Fig. 4
and in Fig. 5, where the ratio X /(¥ 4 £565), evaluated at the point of transition
to turbulence, is shown as a function of the time step adopted, starting from the
maximum At allowed from stability criteria. An inspection of Figs. 4 and 5 suggests
that higher-order methods might be more efficient than lower-order ones. In Fig. 4 two
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thresholds have been fixed:

levels, and At/t, < 0.5 for proper temporal resolution, where 7, is the Kolmogorov
time scale. The pseudo-symplectic methods 3p6q and 4p7q fall within the operative
area at higher time steps. In Fig. 5 the same results are plotted by evaluating a cost
function, which is defined as the number of total r.h.s. evaluations required to reach
a given error level at the transition point. This second plot confirms that pseudo-

(Sf:%) < 0.1%, to keep low numerical dissipation
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symplectic schemes are more efficient than classical RK schemes, and suggest that
the 3p6q scheme should be more cost effective than the more accurate 4p7q scheme.

In Fig. 6 the variation of the maximum temporal dissipation produced by the
different schemes with the Reynolds number is reported. The plot shows that the
relative importance of the spurious dissipation increases as the Reynolds number
is increased. This is particularly true for the RK3 scheme, while RK4 and pseudo-
symplectic schemes are able to keep lower level of dissipation uniformly in the range
investigated.

In conclusion, temporal dissipation errors have been analyzed for standard and
pseudo-symplectic Runge—Kutta methods in large-eddy simulations of the Taylor—
Green vortex flow. At time steps close to the ones dictated by the linear stability
constraint (but lower than the Kolmogorov time scale), standard RK methods are
found to introduce significant numerical dissipation, as compared to the contributions
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of the physical and modeling terms. Pseudo-symplectic schemes, and particularly the
3p6q method, are found to be more efficient than standard RK methods in providing
the same error levels with a lower number of r.h.s. evaluations.
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Evaluation of the Spectral Element )
Dynamic Model for LES on i
Unstructured, Deformed Meshes

G. Lodato and J. B. Chapelier

Discontinuous finite element methods (DFEM) such as the discontinuous Galerkin
(DG) [1] or the spectral difference (SD) [7, 9, 21] methods show a strong poten-
tial for the direct numerical simulation (DNS) and large-eddy simulation (LES) of
turbulent flows on realistic geometries. These methods are characterized by a rather
peculiar mix of features, such as their high-orders of accuracy, the ability to handle
unstructured meshes, curved boundary elements and the compactness of the stencil,
which allows for optimal parallelism. The extremely low level of numerical dis-
sipation which can be achieved when high-orders are selected, and the consequent
significant increase in resolving power, make DFEM particularly well suited for LES.
Nonetheless, recent studies on the SD and DG methods have highlighted the need
of an explicit sub-grid scale (SGS) model in order to obtain physical results when
performing LES [2, 4]. Being the order of accuracy a user-selected—potentially
adaptable via p-refinement techniques—parameter, the question arises of designing
SGS models which can detect and adapt to the level of numerical dissipation. The
semi-local nature of DFEM, which provides a spectral representation of the solution
in each of the discretization cells, offers many possibilities in terms of turbulence
modeling. In particular, the modal decomposition of the signal in each cell allows to
evaluate local spectra which can then be used for various modeling approaches.
Based on the above considerations, the Spectral Element Dynamic Model (here-
after referred to as SEDM) was recently developed [3]. Thanks to the adoption of a
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modal turbulence sensor, which detects the level of local resolution of the flow, the
SEDM has the ability to dynamically adapt the SGS viscosity according to the numer-
ical dissipation of the scheme. The model blends ingredients from existing dynamic
turbulence models and modal detection techniques, in order to provide an accurate,
robust and easy-to-implement LES methodology for DFEM. The SEDM has been
extensively validated over canonical test cases on structured Cartesian meshes. In
view of applications to more realistic geometries, the performances of the SEDM are
here assessed on selected academic test cases which involve the use of unstructured
and deformed meshes and some level of additional physical complexity (e.g., curved
boundaries, detached flows).

1 Methodology

The compressible low-pass Favre filtered Navier—Stokes equations for the evolution
of the density p, momentum pu and total energy p E (internal + kinetic) of an ideal
gas are considered in the present study. According to the LES formalism [8, 17], these
equations are augmented by a flux fso; which characterizes the interaction between
sub-grid and resolved scales. Using the eddy-viscosity assumption, £ is:

0 ~ DVses C
fon = | 200 |, with Dy = —5F ()
Asgs VO ses

where A is the deviator of the strain rate tensor computed on the resolved velocity
gradient, ¥ is the filtered macro-temperature [8, 13], Prgs = 0.5 is the SGS Prandtl
number [5], C,, the heat capacity at constant pressure and vy, the SGS eddy-viscosity.
The relevant transport equations are discretized on hexahedral elements using the SD
methodology [7, 9, 19, 21].

The eddy-viscosity in Eq. (1) is approximated using the SEDM, for which, full
details can be found in [3]. One of the main features of the SEDM is its ability to
detect under-resolution at the cell level and adapt the intensity of the SGS dissipation
accordingly. The relevant expression of the eddy-viscosity within the jth element is

vy = Csppm f (0. 0m k) Aj/kj,  j=1,..., Na, )
where k; is the mean turbulent kinetic energy in the element and A; ~ </V ;/p the
relevant cutoff length, with V; the element volume. A continuous spatial variation
of vy is recovered by computing the mean values of the viscosity at the element
vertices. The eddy viscosity is then made piece-wise linear within each element.

The main ingredient of the SEDM is its turbulence sensor f(o;, ow, k), which
is able to discriminate between (well-resolved) laminar and (under-resolved) tur-
bulent regions. Starting from the fundamental assumption in LES that small scales
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are expected to have a rather universal character, and from the hypothesis that the
turbulence is spectrally self-similar in the inertial range—in which the energy spec-
trum verifies E (k)ock /3 in the Fourier space, for high Reynolds number isotropic
turbulence—the evaluation of the spectral energy decay (in each element) provides
a powerful indication of the presence of well- or under-resolved turbulence. The
one-dimensional energy spectrum in each element is obtained by computing the
modes of the velocity components corresponding to the hierarchical Legendre poly-
nomial basis. The modal energy decay rate is evaluated by assuming that the energy
spectrum follows a power decay law with exponent o;. High values of |o;| charac-
terize a fast decay of energy in the cell (well-resolved regions in which the small-
scale energy is low), whereas low values correspond to under-resolved regions with
highly-energetic small-scales and the possible presence of high-frequency numeri-
cal oscillations. Hence, using the measured modal decay exponent o, the turbulence
sensor guarantees a smooth transition of vy, between the well- and under-resolved
regions of the flow, and locally triggers the SGS viscosity such as to complement the
numerical dissipation where necessary. In a sense, phenomena of error cancellation
between the scheme and the LES model are not possible, as the SEDM is numerical-
dissipation-aware. The retroactive loop established by the sensor between the flow
and the eddy-viscosity provides the dynamic behavior of the SEDM. Thanks to this
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Fig. 1 Circular cylinder at Rep = 2 580: solid lines, present LES; dashed lines, reference LES at
Rep = 3900 [15]; circles, experiments [6]; squares, experiments at Rep = 3900 [15]
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dynamic behavior, the model parameters Csgpm = 0.23, o, = 1.6 and « = 0.3—
which were calibrated from a priori DNS of isotropic turbulence [3]—show a rather
weak problem-dependency. To further prove this particularly desirable property, the
same values of these parameters are retained in the present study.

2 Results

Large-eddy simulations are performed using the SD code with the SEDM. Results
are reported on three configurations for which the computational grids are fully
unstructured, the relevant hexahedral elements being characterized by some level
of distortion. The computations are a circular cylinder in cross-flow at Reynolds
2580 (6th-order, 4.0 x 10° degrees of freedom, or DoF), a square cylinder in cross-
flow at Reynolds 22400 (4th-order, 2.3 x 10° DoF), and a channel with periodic
constrictions at Reynolds 10595 (5th-order, 9.0 x 10° DoF). The Mach number has
been set at 0.3 for the three simulations. Details of the computational meshes can be
found in [10-12].

The relevant results are reported in Figs. 1, 2 and 3, where selected (resolved)
statistical quantities are plotted against experimental measurements or reference LES
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Fig. 2 Square cylinder at Rep = 22400: lines, LES; symbols, experiments [14]
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Fig. 3 Channel with periodic constrictions at Re;, = 10595: solid line, SEDM with Roe flux [16];
dashed line, SEDM with AUFS flux [18]; dotted line, WALE Similarity Model [11, 13]; dash-dotted
line, DSM [20]

[6, 11, 14, 15, 20]. Mean profiles and Reynolds stresses are well captured in all the
configurations. For the circular and square cylinder tests, the right shedding frequency
is captured, with Strouhal numbers of 0.219 and 0.135, respectively. Regarding the
circular cylinder, in particular, the recirculation length is accurately reproduced (see
Fig. 1b), and the results are in better agreement with the PIV measurement and LES
results in [15] for a Rep = 3900 test case. Although no major impact is expected
due to the different Reynolds number, additional tests at Rep, = 3 900 are advisable.
Concerning the channel with periodic constrictions, the skin friction coefficient at the
lower boundary is in good agreement with the reference LES and the reattachment
length—a parameter which is extremely sensitive to overall dissipation—is slightly
underestimated. For this test case, different interface fluxes (with different levels of
numerical diffusion) have been tested [16, 18]. Here, despite the SEDM reacts to
the different amounts of numerical diffusion by producing different levels of SGS
viscosity (not shown), first- and second-order statistics collapse on each other and
good agreement with reference results is observed. This confirms the ability of the
model to properly compensate for different levels of numerical dissipation.
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3 Conclusions

In view of applications to complex geometries, the behavior and the performances of
the Spectral Element Dynamic Model for LES using DFEM have been assessed in
the case that unstructured hexahedral meshes are adopted. The original development
and validation of the model having been done on structured Cartesian meshes, and
the relevant modal resolution sensor being formalized assuming direction-splitting
in computational space, the present study aimed at highlighting potential issues in
the case that the physical elements’ axis are non-orthogonal. Different configura-
tions have been addressed, namely, circular and square cylinders in cross-flow and a
channel with periodic constrictions, with mesh topologies spanning from body-fitted
to fully unstructured element distributions.

The statistical results, in good agreement with the experimental measurements and
reference computations reported in the available literature, confirm the accuracy of
the proposed model without any need of a priori tuning, which also confirms the rather
weak problem-dependency of the relevant parameters. The use of different orders of
accuracy and different numerical fluxes in the present tests, these two aspects being
intimately connected to the amount of numerical dissipation of the scheme, confirms
the ability of the model to detect and compensate numerical diffusion in order to
provide the right amount of SGS dissipation overall.
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A Discontinuous Galerkin Variational )
Multiscale Approach to LES of Turbulent | <=
Flows

M. de la Llave Plata, E. Lamballais and V. Couaillier

1 Introduction and Numerical Method

In recent work [1] we have developed a variational multiscale simulation (VMS)
approach based on a modal discontinuous Galerkin (DG) method. The separation
of scales is achieved in each element via projection onto the discontinuous modal
space. In [1], the DG-VMS technique was applied to the Taylor—Green vortex (TGV)
flow at Re = 3 000 demonstrating the potential of this approach to perform LES.

In this paper, we investigate the behaviour of the DG-VMS technique for two
higher-Reynolds-number configurations, the TGV at Re = 20 000 and the flow past
a circular cylinder at Re = 3900 and 20000, which constitutes a more complex
configuration, involving real boundary conditions and flow separation. The no-model
as well as the standard LES approaches are also considered and confronted to DG-
VMS. For our model-based LES simulations two methods are employed: standard
LES based on either the Smagorinsky model, referred to as DG-Smag, or the WALE
model, denoted by DG-Wale, and the DG-VMS approach in combination with a
Smagorinsky eddy viscosity to model the effect of the unresolved scales on the
small-scale resolved field. The results from the DG simulations are assessed by
detailed comparisons against reference data from DNS and experiment. The effect
of the numerical flux function on the different terms involved in the kinetic energy
(k.e.) balance equation is also studied in the case of the TGV configuration.
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The simulation results presented here have been performed using the compressible
DG solver Aghora developed at ONERA [1, 2]. The DG discretization is based on
a modal approach, and over-integration is performed for de-aliasing purposes. As
regards the numerical flux used in the discretisation of the convective terms the
Roe and local Lax—Friedrichs (LLF) fluxes are employed in this work. We also use
a modified version of the LLF flux, hereafter called «LLF, in which a parameter
a = 0.1 scales its upwind component, thus allowing us to reduce the numerical
dissipation introduced by the scheme. The time integration is performed using an
explicit third-order accurate Runge—Kutta method.

2 Taylor-Green Vortex Problem at Re = 20 000

In this section, LES simulations of the TGV at Re = 20000 and M = 0.1 are carried
out and compared to filtered DNS data. The reference DNS data have been generated
using a 6th-order FD code on a grid composed of 34583 nodes [3]. These data are
filtered following a procedure similar to the one described in [1].

A very coarse grid composed of 28 hexahedral elements is used in the LES. The
degree of the polynomial basis is set to p = 8 which leads to 9th-order accuracy in
space. The number of degrees of freedom (DOFs) in the LES is thus 2523, which
corresponds to approximately 1/14> of the number of DOFs of the reference DNS.

We monitor the quantities involved in the balance of the volume-averaged k.e.
E ’ Iljor a DNS, this energy balance is simply given by _% = ¢ + &, in which

— ¢ is the k.e. dissipation, & = ZpOLV fv S :SdV is the viscous dissipation, and

& = _p%v v PV -udV is the dissipation due to compressibility effects. Here, S
denotes the rate-of-strain tensor, p the molecular viscosity, pg the volume-averaged
density, and p the static pressure.

In an LES, however, the energy balance involves an additional term, &4, which
is called the subgrid-scale (SGS) dissipation, leading to —% = &5 + &5gs + €. The
term g, is computed using the full resolved LES field in the expression for € provided
above, and is now called the large-scale (LS) dissipation. As regards &, there does
not exist, in the general case, an explicit expression for this term, and in a posteriori
computations it is simply obtained as &, = —‘Z—f — &5 — &c. If the Mach number is
low, ¢. is expected to be negligible. We will see however that, due to under-resolution
and other numerical errors, this term can actually take on very important values.

Figure 1 compares the evolution of g, &4, and &., respectively, for the three
different approaches considered. The LLF flux is employed in these simulations. It is
straightforward to see from Fig. 1 that the no-model DG exhibits an under-dissipative
behaviour, with a peak of LS dissipation which is largely above that of the reference,
and the lowest level of SGS dissipation, well below the reference. The opposite
behaviour is observed for the DG-Smag simulation which presents the lowest level
of LS dissipation. Overall, we see that the DG-VMS solution appears to provide the
closest results to the reference with an evolution of LS dissipation almost on top of
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Fig. 2 From left to right, evolution of gy, &545, and &, for DG-VMS of the TGV at Re = 20 000.
Filtered DNS: o, LLF flux: —, «LLF flux: —, Roe flux: —

the reference. The evolution of SGS dissipation, in between the no-model DG and
the DG-Smag solutions, is however far from the reference data. If we now examine
the evolution of ¢., we notice that, contrary to what we would expect, the dissipation
due to pressure dilatation is far from being negligible. The levels of ¢, tend to be
reduced with the introduction of SGS viscosity, the DG-Smag simulation presenting
the lowest values, while for the no-model DG &, is even larger than &, near the
peak. Further investigation into the behaviour of e, using different discretisations
(not shown here for brevity) results in the following observations: the levels of &,
are reduced when the number of DOFs is increased, when the polynomial order p
is increased (at equal number of DOFs), and when the SGS dissipation is increased.
These observations suggest that, in the context of this low-Mach-number flow, a
non-negligible value of ¢, is clearly linked to under-resolution, and thus somehow
to the jumps in the DG solution, which lead to excessive numerical dissipation via
the flux upwinding term.

In a quest to get rid of these spurious compressibility effects we have studied the
effect of the numerical flux on the solution. Recent research [4] has actually shown
the strong influence that the numerical flux employed can have on the accuracy of
no-model DG simulations of the Euler equations. In Fig. 2 we therefore compare
three simulations using different fluxes: the standard LLF, the ¢«LLLF (with @ = 0.1),
and the Roe flux. Only the DG-VMS approach is shown in this figure. The DG-Smag
approach yielded similar trends to the DG-VMS, while the no-model DG simulations
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crashed when the ¢ LLF or the Roe flux were considered. By looking at the evolution
of &, shown in Fig. 2 we readily see that this term is linked to a numerical dissipation
mainly introduced by the numerical flux at this low Mach number. Note that, for
clarity, the y-axis scale in the plot of ¢, has been stretched by a factor of about 10
with respect to the other graphs. The better performance displayed by the Roe flux
with respect to the LLF scheme was pointed out in [4]. In terms of agreement of
the three dissipation components g, &4, and &, with the filtered DNS, the use of
the «LLLF flux is found here to provide the best results over the whole course of the
simulation.

Finally, we would like to highlight the importance of examining each of the terms
involved in the balance equation, rather than focusing on the analysis of an isolated
quantity such as the k.e. dissipation, or even the enstrophy alone. Indeed, we have
seen from this study that a successful LES simulation is one that is able to yield
accurate results for g, €54, and &., separately.

3 Flow Past a Circular Cylinder at Re = 3900 and 20 000

In this section, we consider the flow past a circular cylinder at Reynolds numbers,
Re = 3900 and 20 000 based on the cylinder diameter D, and the freestream velocity
U.. Periodicity of the flow is assumed in the spanwise direction, and an isothermal
no-slip boundary condition is imposed on the cylinder wall. The freestream Mach
number is setto M = 0.2. A fourth-order hexahedral O-type grid composed of 20736
elements is considered in a computational domain with radial and spanwise extension
of 25D and & D, respectively. The mesh resolution at the wall is Ar = 0.05D. The
polynomial degree is set to p = 4, which leads to fifth-order accuracy in space, and
an effective resolution at the wall of Ar/p + 1 = 0.01D. The number of DOFs of
the problem is 2.59 million (Mdofs).

For the lowest Re, three different approaches are considered: no-model DG,
DG-Wale, and DG-VMS. For Re = 20000 only the DG-Smag and the DG-VMS
approaches yielded stable simulations and their outcome is reported here.

Following the conclusions drawn from the previous section, the «LLF flux is
used in the case of model-based LES, whereas the Roe flux is used in the no-model
simulation. For the sake of comparison, Table 1 compiles, together with the present
DG results, a number of simulation results from the literature for the two Reynolds
numbers considered, as well as the PIV experimental results of Parnaudeau et al.
[5] at Re = 3900. As regards the lower Re, we observe that overall the results from
the no-model and the DG-VMS simulations are the closest to the experimental data.
We know from previous studies [5] that the length of the recirculation bubble L, is
one of the most sensitive quantities, as can be seen from the significant scatter in the
values reported in Table 1. We see that the no-model DG approach leads to the lowest
value of L, /D = 1.42, while the use of DG-Wale leads to the largest L, /D = 1.69,
closer to the value of Lysenko et al. [6]. Finally, the value of L,/D = 1.47 from
DG-VMS appears close to that of the experimental data and the values reported in
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Table 1 Simulation results for the flow past a circular cylinder at Re = 3900 and 20 000
Re =3900

Simulation Mach Model Mdofs | Ty Cy Clyms | St L—Dr — UZ’;”
Parnaudeau et al. [5] | — (Exp. PIV) |- - - - 0.208 1.51 0.34
Wornom et al. [7] 0.1 VMS-Wale | 1.80 30 0.99 0.11 0.210 1.45 -
Lysenko et al. [6] 0.2 TKE 5.76 150 0.97 0.09 0.209 1.67 0.27
DG-P4 WALE 0.2 Wale 2.59 100 0.96 0.09 0.209 1.69 0.31
DG-P4 VMS4 0.2 VMS-Smag | 2.59 150 0.99 0.16 0.206 1.47 0.30
DG-P4 no-model 0.2 - 2.59 150 1.00 0.15 0.209 1.42 0.30
Re =20000
Wornom et al. [7] 0.1 VMS-Wale | 1.80 30 1.27 0.60 0.19 0.80 -
Lysenko et al. [8] 0.2 TKE 5.76 75 1.39 0.73 0.17 0.59 0.18
Lysenko et al. [8] 0.2 TKE 12.4 75 1.36 0.70 0.19 0.57 0.16
DG-P4 SMAG 0.2 Smag 2.59 40 1.09 0.30 0.21 1.05 0.29
DG-P4 VMS2 0.2 VMS-Smag. | 2.59 40 1.38 0.62 0.19 0.69 0.20
§ =L |
o n____,_..\_/.—.\-__x;'n_:gi ol ‘-—-r\_, w0 = 1.06
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Fig.3 Flow past a circular cylinder at Re = 3 900. Wake statistics at x/D = 1.06, 1.54, and 2.02.
e : PIV [5], —: no-model DG, —: DG-VMS, —: DG-Wale

[7]. Nevertheless, our values of root-mean-square of the lift coefficient C; ,,,s are
higher and those of the Strouhal number S; lower than those reported in [7], which
might be interpreted as the result of a lower amount of numerical dissipation in the
DG simulation. The values of the drag coefficient C; from the DG simulations are
in line with those reported in the literature.

To examine in more detail the performance of the different approaches considered
we have also compared the wake statistics with the reference PIV data reported in
[5]. The outcome from this comparison can be seen in Fig.3. A quick look at these
figures, and in particular at the plot of (u'v')/U?, shows that the DG-Wale exhibits
the most significant discrepancies with the experimental data. Despite the fact that
the no-model DG simulation clearly outperforms the standard LES approach, it is
the DG-VMS simulation that yields the best agreement with the experimental data.
These observations are corroborated by the results at the higher Re = 20 000. Indeed,
despite the large scatter found in the data compiled in Table 1, it is fair to state that
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overall, the DG-VMS results are in line with the reference data from the literature,
whereas the DG-Smag approach leads to an over-estimation of L, and St.

4 Conclusions

The performance of the DG-VMS approach to LES has been assessed in two high-
Reynolds-number configurations by detailed comparison with reference data from
DNS and experiment. The DG-VMS results have also been contrasted to those from
the no-model DG and the standard LES approaches. It appears from this research
that the use of the DG-VMS approach in combination with a low dissipative numer-
ical flux leads to the best match with the reference data for the two configurations
considered. We have also highlighted the lack of robustness of the no-model DG
approach for under-resolved simulations when the Reynolds number is high, as well
as the over dissipative character of the standard approach to LES. Finally, a method-
ology has been proposed for the detailed evaluation of LES simulations on the TGV
configuration in the context of very coarse discretisations.
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Implicit LES Approaches via )
Discontinuous Galerkin Methods oo
at Very Large Reynolds

R. C. Moura, J. Peiré and S. J. Sherwin

1 Introduction

We consider the suitability of implicit large-eddy simulation (iLES) approaches
via discontinuous Galerkin (DG) schemes. These are model-free eddy-resolving
approaches which solve the governing equations in unfiltered form and rely on
numerical stabilization techniques to account for the missing scales. In DG, upwind
dissipation from the Riemann solver provides the baseline mechanism for regulariza-
tion. DG-based iLES approaches are currently under rapid dissemination due to their
success in predicting complex transitional and turbulent flows at moderate Reynolds
numbers [1-4]. However, at higher Reynolds number, accuracy and stability issues
can arise due to the highly under-resolved character of the computations and the
suppression of stabilizing viscous effects.

AsiLES approaches rely on numerical stabilization techniques in lieu of subgrid-
scale models, the assessment of built-in dissipation is of key importance in under-
standing why and how to use these methods at high Reynolds numbers. In spite of
that, fundamental studies along those lines have only appeared recently [5—8] and
still need wider dissemination. These are discussed in the present work along with
new results, covering the effects of polynomial order, Riemann solver and dealias-
ing techniques on resolution power, solution quality and robustness in the limit of
vanishing viscosity.
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2 Rationale and Resolution Power

Dispersion-diffusion analysis has revealed that DG’s dissipation in wavenumber
space becomes sharper as the scheme’s polynomial order p is increased, as shown
in Fig. 1, which is based on 1D linear advection with standard upwinding [6]. In
the same work, Burgers turbulence simulations confirmed these dissipation charac-
teristics in a nonlinear setting and motivated a measure of spectral resolution power
based on the extent of the wavenumber region where dissipation is negligible (less
than 1% of wave damping per DOF crossed). This became a criterion named ‘the 1%
rule’ whereby one estimates the wavenumber k|4, beyond which dissipation becomes
significant, given the DOF length /2 /m, where A is the mesh spacingand m = p + 1
is the number of polynomial modes per element, cf. Fig. 1. This criterion indicated
the wavenumber where a numerically-induced dissipation range begins to take place
in the energy spectrum of (Burgers turbulence) simulations.

The 1% rule was subsequently adapted for 3D energy spectra in the context
of Euler turbulence [7], which mimics Navier-Stokes turbulence at high Reynolds
number. As the behaviour in Fig. 1 holds for inviscid turbulence, it seems legitimate
to compare DG-IiLES to a direct numerical approach where hyperviscosity is used
to truncate the energy spectrum. If this truncation is placed well within the inertial
range, one can expect the large scales to be faithfully represented. This is currently
perhaps the main rationale for DG-based iLES.

As can be anticipated from Fig. 1, higher order discretisations provide superior
resolution power (larger k;¢,) per DOF employed. This has been in fact confirmed in
simulations [2] and suggests one should use the largest order possible. However, as
p is increased, dissipation becomes increasingly sharp (in wavenumber space) and
induces a spurious accumulation of energy at the small scales [6, 7]. This is seen as
an ‘energy bump’ in the energy spectra of solutions obtained with very high orders
and will be discussed further in the next section. Therefore, use of moderately high
orders is advised (e.g. sixth order).
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3 Robustness and TGV Instabilities

Reference [7] considered a comprehensive set of test cases of the inviscid Taylor-
Green vortex (TGV) problem, spanning different polynomial orders (m = 4-8) and
Riemann solvers (Roe and Lax—Friedrichs in particular). Here we complement these
test cases with low-order ones (m = 2 and 3) and discuss aspects of solution quality
and robustness. The inviscid TGV can be extremely demanding in terms of numerical
stability due to the formation of very thin shear layers which, if not adequately
resolved, may feature spurious oscillations and cause numerical divergence. Not
surprisingly, high-order test cases can easily crash if polynomial dealiasing is not
employed to start with. Hence, all test cases relied on consistent/over-integration of
the nonlinear terms, so as to reduce polynomial aliasing errors to a minimum. Even
so, some of the test cases diverged during the transitional phase of the flow, prior to
the dissipation peak.

All computations have been conducted on equispaced grids of n,; cubic elements.
Higher-order cases, namely, m = 6 to 8 for Lax—Friedrichs and m = 7 and 8 for Roe,
were prone to numerical divergence. Moreover, Roe-based cases showed superior
robustness and diverged less often. As explained in detail in [7], it is believed that
discretisations with sharper dissipation (in Fourier space) induce the formation of
energy bumps and promote spurious oscillations at the small scales, thus favouring
TGV instabilities. This energy bump consists of a spurious pile-up of small-scale
energy which takes place prior to the dissipation range of turbulent spectra, cf. Fig. 2
(bottom plot). Pre-dissipative bumps are caused by the bottleneck phenomenon [9,
10] and are intensified by a sharper spectral dissipation [11, 12].

We stress that the Lax—Friedrichs flux yields a much sharper dissipation than
that shown in Fig. 1 due to its over-upwind bias for the momentum equations (the
convective eigenvalue being replaced by the acoustic one), see [8]. The other Riemann
solvers tested matched the behaviour of either Roe or Lax-Friedrichs, see Fig. 2. The
vertical dashed lines delimit the wavenumber region were numerical dissipation is
expected to begin, as estimated from dispersion-diffusion analysis [7]. The lack of
robustness observed at higher orders revealed that standard DG schemes, even with
consistent/over-integration, might require additional stabilisation for under-resolved
turbulence computations at very large Reynolds numbers.

A recently developed DG discretisation based on the skew-symmetric form of the
governing equations proved capable of stabilizing inviscid TGV cases even at much
higher orders [13]. This scheme is currently being analysed with regards to solution
quality, but preliminary results indicate that high-order solutions have accuracy very
similar to that provided by standard DG with consistent/over-integration. If this is
confirmed for the TGV and other types of flows, the proposed scheme will aggregate
significant advantages for DG-iLES.
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4 Analysis of Solution Quality

Figure 2 indicates that “complete” solvers, such as Roe’s, yield better solution qual-
ity, considering their compliance to Kolmogorov’s —5/3 slope, which is expected
near the peak dissipation (+ ~ 9). Visual inspection of flow structures via the Q-
criterion, see Fig. 3, also suggests that Roe-based solutions are “cleaner” than those
obtained with Lax-Friedrichs. This is not surprising, since the over-energetic scales
at the energy bump are poorly-resolved and thus strongly contaminated by dispersion
eITors.

Further insight into flow topology can be obtained through the so-called QR
diagrams [14], cf. Fig. 4. These are derived from the Q and R invariants of the velocity
gradient tensor A;; = du;/dx;, where Q = —A;;A;;/2 and R = —A;; Aj Ay /3,
Einstein’s notation being assumed. As shown in Fig. 4, O R diagrams consist of joint
PDFs of the normalised values Q/(S;;Si;) and R/(S;;S:;)*/*. Note that averaging (-)
is performed over the whole domain and S;; = (A;; + Aj;)/2.

The teardrop-like profile of Roe-based solutions at moderately high order shown
in Fig. 4 (upper-right corner) agrees very well with the canonical shape expected
from well-resolved turbulent flows [15]. When Lax—Friedrichs is used instead, this
same case yields a more symmetrical Q R profile (upper-left corner), suggesting the
presence of random (dispersive) turbulent features probably caused by the energy
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bump. Lower-order cases (m = 2 and 3) of the same DOFs (on finer grids) provided
results of inferior quality, i.e. with smaller inertial range and noisier QR diagrams.
The latter are exemplified in Fig. 4 (bottom). While these still retain the correct
profile shape (overall), their quality is clearly inferior to that obtained at moderately
high orders for the same number of DOFs.

5 Concluding Remarks

The results discussed support the suitability of high-order DG-based implicit LES
approaches for the simulation of free turbulence at high Reynolds numbers, although
conscientious usage is advised. Dealiasing techniques should be employed, use of
extremely high orders is not encouraged and ‘complete’ Riemann solvers are to be
preferred. Further analysis is needed to assess how well upwind dissipation alone is
able to yield the correct behaviour for the decay phase of the TGV flow. Preliminary
results (not discussed here) indicate that a certain percentage of viscous dissipation
might be required to that end.

Acknowledgements RCM would like to acknowledge funding under the Brazilian Science without
Borders scheme. JP and SJS acknowledge support from the Engineering and Physical Sciences
Research Council (EPSRC) under grant EP/LL000407/1. SJS additionally acknowledges support as
Royal Academy of Engineering Research Chair under grant 10145/86.

References

1. Uranga, A., Persson, P.O., Drela, M., Peraire, J.: Implicit large eddy simulation of transition
to turbulence at low Reynolds numbers using a Discontinuous Galerkin method. Int. J. Numer.
Meth. Eng. 87(1-5), 232-261 (2011)

2. Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved
turbulence simulations. Theor. Comp. Fluid Dyn. 27(3-4), 221-237 (2013)

3. Beck, A.D., Bolemann, T, Flad, D., Frank, H., Gassner, G.J., Hindenlang, F., Munz, C.D.:
High-order discontinuous Galerkin spectral element methods for transitional and turbulent
flow simulations. Int. J. Numer. Methods Fluids 76(8), 522-548 (2014)

4. Wiart, C.C., Hillewaert, K., Bricteux, L., Winckelmans, G.: Implicit LES of free and wall-
bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty
method. Int. J. Numer. Methods. Fluids 78, 335-354 (2015)

5. Moura, R.C., Sherwin, S.J., Peird, J.: Modified equation analysis for the discontinuous Galerkin
formulation. Spectral and High Order Methods for PDEs — ICOSAHOM 2014. Springer, Cham
(2015)

6. Moura, R.C., Sherwin, S.J., Peir6, J.: Linear dispersion-diffusion analysis and its application
to under-resolved turbulence simulations using discontinuous Galerkin spectral/Ap methods.
J. Comput. Phys. 298, 695-710 (2015)

7. Moura, R.C., Mengaldo, G., Peird, J., Sherwin, S.J.: On the eddy-resolving capability of high-
order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbu-
lence. J. Comput, Phys (2016)



Implicit LES Approaches via Discontinuous Galerkin ... 59

8.

11.

12.

14.

15.

Moura, R.C., Mengaldo, G., Peird, J., Sherwin, S.J.: An LES setting for DG-based implicit
LES with insights on dissipation and robustness. Spectral and High Order Methods for PDEs
— ICOSAHOM 2016. Springer, Cham (2017)

Falkovich, G.: Bottleneck phenomenon in developed turbulence. Phys. Fluids 6(4), 1411 (1994)
Coantic, M., Lasserre, J.: On pre-dissipative ‘bumps’ and a Reynolds-number-dependent spec-
tral parameterization of turbulence. Eur. J. Mech. B 18(6), 1027-1047 (1999)

Lamorgese, A.G., Caughey, D.A., Pope, S.B.: Direct numerical simulation of homogeneous
turbulence with hyperviscosity. Phys. Fluids 17(1), 015106 (2005)

Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S.S., Wirth, A., Zhu, J.Z.: Hyperviscosity,
Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101(14), 144501 (2008)

. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes

with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327,
39-66 (2016)

Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow
fields. Phys. Fluids A 2(5), 765-777 (1990)

Laizet, S., Nedié, J., Vassilicos, C.: Influence of the spatial resolution on fine-scale features in
DNS of turbulence generated by a single square grid. Int. J. Comput. Fluid D. 29(3-5), 286-302
(2015)



Implicit LES of a Turbulent Channel )
Flow with High-Order Discontinuous oo
Galerkin and Finite Volume

Discretization

M. Bergmann, C. Morsbach and M. Franke

1 Introduction

Owing to the permanently growing computational resources and the known predic-
tive deficiencies of unsteady Reynolds averaged Navier—Stokes (URANS) simula-
tions, scale-resolving methods, i.e. direct numerical simulations (DNS) and large
eddy simulations (LES), become affordable methods to further study the unsteady
phenomena of complex flows. To resolve all or most of the scales of turbulent flows,
high grid resolutions and highly accurate spatial discretization schemes are required.
In this regard, the discontinuous Galerkin (DG) finite element method has become
a widely used method as it combines the flexibility of state-of-the-art finite volume
methods (FVM) with an arbitrary order of accuracy and, nevertheless, local data and
algorithmic structures.

Several authors have highlighted the dispersion and dissipation properties of the
DG method, cf. [6, 10]. It has been shown that dissipation errors of the DG dis-
cretization only affect higher wave numbers, leaving low and medium wave num-
bers unaffected. In the context of scale-resolving simulations, this inherent property
of the method leads to a dissipation of the smallest scales and is comparable to a
sub-grid scale model. Therefore, the DG method may be well suited to the implicit
LES (ILES) approach [4].
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If the polynomial approximation order is increased, the range of affected wave
numbers decreases and the dissipation error of the highest wave number grows.
Therefore, it is desirable to choose a high polynomial order of the DG discretization.
In the context of high-order polynomial approximations, the collocation discontin-
uous Galerkin spectral element method (DGSEM) is an efficient alternative to the
standard nodal or modal DG approaches [3, 5].

In this paper, we investigate and compare the suitability of DGSEM and FVM for
an ILES of a turbulent channel flow. Both investigated spatial discretization schemes
are integrated into DLR’s in-house solver for turbomachinery flows TRACE, which
is developed at DLR’s Institute of Propulsion Technology, c.f. [2].

2 Numerical Methods

2.1 Discontinuous Galerkin Spectral Element Method

The DG discretization of the compressible Navier—Stokes equations is based on the
weak formulation. The solution is approximated as piecewise polynomial functions,
which are not continuous across the element interfaces. As a consequence of the non-
unique definition, an approximate Riemann solver is used in the surface integrals.
In this work, we apply Roe’s numerical flux function for the convective part and the
Bassi-Rebay 2 method for the diffusive terms, cf. [1]. The integrals are computed
using Gaussian quadrature formulae.

Inthe DGSEM, proposed by Kopriva [9], we apply tensor-product nodal Lagrange
polynomials as basis functions with Legendre-Gauss (LG) points as interpolation
nodes, which are also used as the quadrature nodes. Utilizing this collocation and
the property of Lagrange polynomials, i.e. [;(x;) = §;;, where x; are the LG nodes,
many numerical operations can be omitted and the scheme becomes highly efficient
(see [3] for further details). The downside of the efficiency is the fixed precision of
integration, which is only exact for polynomials of degree p < 2M + 1, where M
denotes the number of Gauss points.

2.2 Finite Volume Method

We used a FVM with a 2nd order accurate mid-point approximation of the flux
integrals. Roe’s flux difference splitting method is applied with a constant blending
factor ¢ for the upwind term. A blending factor of ¢ = 1 leads to the standard Roe’s
numerical flux, as it is used for all DG simulations, and ¢ = 0 results in a central
flux. The reconstruction of the states is performed with a 3rd order accurate MUSCL
scheme without limiter function, cf. [7]. The derivatives for the viscous fluxes are
approximated by central differences. The time integration is performed using a 3rd
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order accurate explicit Runge—Kutta method with a constant time step for both the DG
and FV simulations. The maximal, stable time step was estimated through numerical
experiments for each mesh resolution. The maximum CFL number, based on the
acoustic eigenvalues, is typically about 1.

3 Implicit LES of a Channel Flow at Re, = 395

Both spatial discretization schemes are investigated for the ILES of a fully developed
turbulent channel flow. The flow is considered to be periodic in both the stream- (x)
and spanwise (z) directions. A constant body force source term in the streamwise
momentum equation is used to enforce the Reynolds number based on the friction
velocity of Re; = du./v = 395, where § is half of the channel height. The ILES
results are compared with the incompressible reference DNS results of Iwamoto et
al. [8]. In order to minimize the compressibility effects in our simulations, the Mach
number is set to Ma = 0.1. Furthermore, a computational domain of 27§ x 2§ x
7é is chosen for all simulations and the same grid stretching in the normal wall
direction is applied for FVM and DGSEM. Note that the usage of geometrically
linear elements, i.e. no inner element stretching, in combination with the location of
the LG nodes does not lead to same spacing between the degrees of freedom (DOF),
see Fig. 1. Moreover, when comparing both methods, the number of DOF in the
wall-normal as well as in wall-parallel directions are equal for FVM and DGSEM.

The flow is initialized with a superposition of a RANS solution and synthetic
turbulence, proposed by Shur et al. [11], to create the turbulent velocity fluctuations.
Starting from this point, a transient phase of 20 eddy turnover times ETT = tu/$ is
simulated to reach a converged state, i.e. linear profile of the total shear stress, and,
following that, another 20 ETT to average the flow variables. In Table 1, the effictive
mesh spacings for all simulations are listed.

Figure 2 shows the average streamwise velocity profiles and the velocity fluctua-
tions for both discretization schemes with the same order of accuracy and number of
DOF. Comparing DGSEM and FVM using the Roe’s numerical flux (red and blue
line), both results show large differences to the DNS reference data and overestimate
the mean velocity and streamwise velocity fluctuations dramatically. It seems that
the naive low-order application is not sufficient for the ILES on the given mesh as

FVM :: [ [ [ [ [ [ ]

DGSEM I ] ]

Fig.1 One-dimensional distribution of DOF with grid stretching. The DOF are visualized as black
dots and the element vertices are shown as vertical black lines. The one-dimensional FV grid with
cell centered DOF is shown at the top and DGSEM with p = 3 and LG nodes at the bottom
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Table 1 Effecitve mesh spacing for all presented simulations. The effective mesh spacing is equal
to hu. /v(p + 1), where p is the polynomial approximation order, which is 0 for FV simulations.
h is the cell size in x and z direction for Ax™ and Az™, respectively. In case of the wall normal
direction Ay*, h is the distance from the first solution point to the wall

Figures Method | Order of | DOF Mesh spacing
accuracy
ny ny n; AxT AyT Azt
Figure 2 FVv 2nd 96 64 96 25.69 0.53 12.84
Figures 2, 3| DG 2nd 96 64 96 24.86 0.47 12.43
Figure 3 DG 3rd 90 72 90 27.59 0.38 13.80
Figure 3 DG 4th 96 64 96 25.66 0.37 12.83
Figure 3 DG Sth 100 80 100 25.09 0.26 12.54
Figure 4 FV 2nd 128 96 128 19.21 0.34 9.60
Figure 4 DG 4th 128 96 128 19.41 0.23 9.91
30 ‘ ‘ : 7
o o DNS Iwamoto etal. :

—— DG - 96x64x96DOF - 2nd order
251 - FV - 2nd order - Roe
FV - 2nd order - Blending

Fig.2 ILES of a turbulent channel flow at Re; = 395. Mean streamwise velocity profiles U™ (left)
and RMS turbulent velocities u'*, v'*, w' and shear stress u’v’ (right) of the 2nd order accurate
DGSEM (red solid), FVM using the standard Roe flux (blue dashed) and FVM using a fraction of
Roe’s flux, i.e. ¢ = 1073 ,(green dash dotted) on a mesh with 96 x 68 x 96 DOF compared with
the DNS results of Iwamoto et al. [8]

both schemes are too dissipative. However, it can be noted that both schemes lead to
similar results when the same numerical properties are applied. In order to reduce the
dissipation of the FV scheme, we decrease the impact of the Roe damping term by
setting the blending factor to ¢ = 1073 (green line). Thus, the mean velocity profiles
as well as the velocity fluctuations are in a significantly better accordance with the
reference profiles. In fact, the fluctuations in the y and z directions and the shear
stress of the blended FVM match the reference solution almost perfectly.

A way to improve the dissipation properties of the DG scheme is to increase the
polynomial approximation order, see Fig. 3. The number of DOF are nearly constant
for all approximation orders. Using the 3rd order accurate DGSEM improves the
results significantly in comparison to the 2nd order scheme. Still similar trends are
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30
o DNS Iwamoto et al.
—— DG - 96x64x96DOF - 2nd order
251 — DG - 90x72x90DOF - 3rd order
—— DG - 96x64x96DOF - 4th order
20 - 100x80x100DOF - 5th order
515 rrrrrrrrrrrrrrrrrrr s rrrrrrrrrrrr
T SRS T — 7/ SO —
L= S U Ut USSR SUSSSRRY
0 o

Fig.3 ILES of a turbulent channel flow at Re; = 395. Mean streamwise velocity profiles U™ (left)
and RMS turbulent velocities '+, v'*, w'T and shear stress u’v’ (right) with DGSEM and various
polynomial approximation orders compared to the DNS results of Iwamoto et al. [8]

present, including an over-prediction of the streamwise mean velocity and velocity
fluctuations. When we further increase the approximation order, the average velocity
profile matches the DNS results nearly perfectly. The largest deviations are noticeable
in the streamwise velocity fluctuations with an overestimation in the buffer layer and
no visible curvature in the log layer (y* &~ 105). When applying a 5th order accurate
scheme, the peak of streamwise RMS velocity is in a perfect agreement with the
DNS. On the other hand, the mean velocity profile of the 4th order accurate DGSEM
is closer to the DNS results than the 5th order. It seems that the slight overestimation
of the streamwise velocity fluctuations leads to a shift of the mean velocity and,
therefore, to a better match of the average velocity profiles.

In Fig. 4, the results of the 2nd order accurate FVM with a blending factor of
¢ = 1073 and the 4th order accurate DGSEM on a finer mesh with 128 x 96 x
128 DOF are shown. It can be observed that the higher-order DGSEM results are
overall closer to DNS reference profiles than the FVM results. Especially, the peak
of RMS streamwise turbulent velocity and the mean velocity around y* =~ 120 are
underestimated by the FV scheme, whereas the DGSEM profiles are in nearly perfect
agreement with the reference data. The only deviations are visible in the log layer
(y* & 105) of the streamwise velocity fluctuations profiles, which is on the other
hand well captured by the FV scheme. Although the cost per timestep of the 4th
order DG scheme was lower than the 2nd order FV scheme with the same number
of DOF, the overall runtime was about 1.3 times greater, which can be attributed to
a stricter time step limit.
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20 o o DNS Iwamoto et al.
—— DG - 4th order
— — FV-2nd order - Blending

15|

Fig.4 ILES of a turbulent channel flow at Re; = 395. Mean streamwise velocity profiles U™ (left)
and RMS turbulent velocities u’*, v'*, w'* and shear stress u’v’ (right) of the 2nd order accurate
FVM using a fraction of Roe’s numerical flux and the 4th order accurate DGSEM on a mesh with
128 x 96 x 128 DOF compared with DNS of Iwamoto et al. [8]

4 Conclusions

In this work, we have investigated the implicit LES of a fully developed turbu-
lent channel flow using low-order FVM and higher-order DGSEM, which are both
integrated into the CFD solver TRACE. We have demonstrated that the results of
both schemes are very similar when applying the same numerical properties, i.e.
same accuracy order, same numerical flux and same DOF. Increasing the polynomial
approximation order of DGSEM and using only a fraction of Roe’s numerical flux
in the context of the FVM can significantly improve the results on a coarse mesh
in comparison to a lower-order naive approach. Overall, a 4th order DGSEM shows
advantages over a 2nd order FVM on the same grid. In the future, we plan to extend
our studies to higher Reynolds number flows and further investigate the potential of
over-integration and entropy-stable formulations in the context of the DGSEM.
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Method with Reduced Memory Footprint | @i
for the Simulation of Turbulent Flows

A. Crivellini, M. Franciolini and A. Nigro

1 Introduction

In recent years the increasing availability of High Performance Computing (HPC)
resources strongly promoted Large Eddy Simulation (LES) as a viable approach to
the simulation of those moderate Reynolds flow conditions where Reynolds-averaged
Navier—Stokes (RANS) formulation fails, e.g. massively separated flows. In particu-
lar, the practice of an implicit LES (ILES) based on the Discontinuous Galerkin (DG)
method showed to be very promising due to the favourable dispersion and dissipation
properties [1]. The high potential of DG approximations for the under-resolved sim-
ulation of turbulent flows has already been demonstrated in literature and research on
this topic is growing fast [2, 6]. However, how to integrate in the most efficient way
the semidiscrete set of NS equations exploiting at best such large computational facil-
ities is an active research topic. A growing interest in using high-order implicit time
integration schemes has born mainly to overcome the strict stability limits of explicit
methods which significantly decrease for high order of polynomial approximation.
Nevertheless, implicit schemes require to solve large non-linear/linear systems of
equations, which may become prohibitive for massively computations due to the
high memory demand. The present paper attempts to overcome such limitations by
introducing a memory saving and computationally efficient strategy to solve the
system of equations in the context of high-order DG discretizations. The numerical
framework relies on Runge—Kutta schemes of the Rosenbrock type, which require
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the solution of linear systems within each stage. We propose here a matrix-free imple-
mentation of the generalized minimal residual method (GMRES) linear solver. Such
implementation enjoys more flexibility than standard matrix-based methods since
the Jacobian is employed only to build the preconditioner operator, which can also
be assembled using an approximation of the iteration matrix. While for non-stiff
problems the use of a cheap and memory saving element-wise block Jacobi (EWBJ)
can be an effective choice, the efficiency of such operator is typically insufficient
for stiff systems (e.g. stretched elements, low Mach flows or large time step). The
present work overcomes such limitation by combining EWBJ preconditioners with
multigrid operators. The effectiveness of the solution strategy is here assessed on
two test cases: the first one is the two-dimensional laminar incompressible flow over
a cylinder at Re = 200, while the second involves the solution of the transitional
incompressible turbulent flow on the T3L configuration at Re = 3450 using dif-
ferent levels of free-stream turbulence. Preliminary results show that the proposed
strategy reduces the memory footprint and the computational time.

2 Matrix-Free Implicit Time Integration

The Incompressible Navier—Stokes equations are discretized as in [3]. The artificial
compressibility flux approach is employed for the convective numerical fluxes, and
the BR2 scheme is used for the diffusive terms. The time integration of the semidis-
crete system of equations, performed by means of linearly implicit four-stage, order-
three ROSI2PW scheme [5] can be compactly written as

Ut =U"+ ) “m;AU;, (1)
j=1
~ i-1 ~ il
M . M
(m—i—J)AUi:—R U +;aijAUj —A—tiX:]:cUAUj, 2)
withi =1,...,s, where s is the number of stages and y, m}, a;;, ¢;; are the coef-

ficients of the scheme. Here, U = [p u;]7 is the vector of degrees 0£ freedom, R
is the residuals vector, J = 0R(U")/dU is the Jacobian matrix and M is a modi-
fied mass matrix equal to the identity matrix due to the choice of orthonormal basis
functions apart from the entries corresponding to the pressure DoFs, which are zero.
The matrix-vector product required by the GMRES algorithm is approximated, in a
matrix-free fashion, by a double evaluation of the residuals vector

M M
AAU; = <_ +J) AU; ~ — AU; + )
y At

(R(U” + hAU;) — R(U”))
y At

h

which avoids the storage of the Jacobian to compute the time step.
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3 GMRES Preconditioners

For practical applications the linear system should be always preconditioned. Stan-
dard approaches, such as the ILU(0) in serial computations or the block-Joacobi
(BJ) and the Additive Schwartz method (AS) in parallel, use the iteration matrix A
to compute the preconditioner. Those approaches still need the evaluation and the
storage of one matrix, even in the matrix-free framework, which is CPU and memory
consuming. In fact, A is a block structured matrix, whose computational effort for
its evaluation scales as N.(Ny + 1)(d + 1)2k3 | and the memory footprint scales as
N,(N; + 1)(d + 1)%k*, where N, is the number of mesh elements, N the number
of element faces, d is the space dimension and & is the polynomial approximation.

A valuable alternative, able to significantly reduce these computational requests,
employs an element-wise block-Jacobi (EWBJ) preconditioner obtained neglecting
the off-diagonal blocks of the Jacobian. Despite the EWBI is a less effective precon-
ditioner, which means that the number of GMRES iterations required to converge
increases, the overall computational efficiency can raise for non-stiff problems since,
in a matrix-free framework, only the diagonal portion of the full Jacobian matrix is
computed. Moreover, the off-diagonal blocks in each row of J, equal to the number of
faces of one element, are not stored, and therefore the EWBJ preconditioner requires
less memory. For example, using hexahedral elements, its memory footprint is only
1/7 of those employed by a standard ILU(0) approach. In other words coupling the
matrix-free and the EWBJ approaches it is possible to save about 93% of the memory
used by the ILU(0)-MB algorithm to store the iteration matrix and its preconditioner
operator [3].

For highly stretched space discretizations this approach becomes ineffective since
the number of linear iterations raises excessively. To solve this issue we propose a new
class of memory saving preconditioning operators. The idea is to couple a p-Multigrid
(pMG) preconditioner, which in the DG context is known to be quite efficient, to a
flexible GMRES (FGMRES) matrix-free solution algorithm. In our implementation
all the smoothers consist of preconditioned solutions on coarse levels, obtained using
the restriction of A, namely A;, to a lower order polynomial approximation, i. Note
that, in a modal DG framework, all the restriction and prolongation operators can
be performed easily by manipulating directly the DoFs. According to the above
mentioned scaling, the size of A; can be quite small fori < k. For instance, within a
three-dimensional case, when k = 6 and i = 1 A; is 440 times smaller with respect
to the original A matrix, while with i = 2 is about 70 times smaller. In addition, if
the EWBJ algorithm is adopted as fine level smoother, it is possible to obtain a still
effective and memory saving solution strategy using few multigrid levels with low
order smoothers, even with very high order polynomials.
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Table 1 Laminar flow over a two-dimensional circular cylinder at Re = 200. Results obtained in
serial computations on an AMD Opteron CPU

ILU(0)-MB ILU(0)-MF EWBJ-MF pMG-MF
CPU ratio 1 2.8 12 1.9
Memory ratio 1 0.65 0.97 0.24
GMRES 120 110 543 6.2
4 Results

The new solution strategies have been tested by solving two problems. In both the
cases we used a 6th order polynomial approximation of the solution and three multi-
grid levels, built on 1st and 2nd order coarse smoothers. The first test case is a two-
dimensional laminar flow over a cylinder at Re = 200. The computational domain,
characterized by 4710 curved and anisotropic mesh elements with a severe refine-
ment on the wake region, resulted in a very stiff space discretization. Moreover,
the time-step used is equal to 1/20 of the shedding period, which further increases
the ill-conditioning of the linear system. Table 1 reports the computational perfor-
mance, in terms of relative CPU-Time, allocated memory for the linear solver, and
average number of GMRES iterations per stage, for different solution strategies and
preconditioners in serial computations. Note that the CPU-Time and the memory
saving are related to the corresponding ILU(0)-MB approach. It can be seen that
in such two-dimensional test case the matrix-free solver penalizes the CPU-Time
by a factor of 2.8 with respect to the corresponding matrix-based case. This quite
large value is due to the fact that a single residual computation is more expensive
than performing a matrix-vector product, particularly for a grid consisting of curved
elements (second-order piecewise polynomial representation of the faces) as in the
current case. Nevertheless, it should be noted that the procedure saves the 35% of
memory. While the pure EWBJ preconditioner is not enough efficient for such stiff
problem (a huge increase in CPU-Time and GMRES iterations can be noted, as
well as a similar memory to the ILU(0)-MB due to the very high number of Krylov
subspaces allocated), the situation changes if it is employed within a pMG context.
Here the EWBJ-MF is employed only on the finest level smoother. The results show
that, while reducing the 76% of memory footprint, this procedure improves also the
efficiency from the CPU-Time point of view respect to the ILU(0)-MF strategy, and
reduces considerably the number of GMRES iterations.

The second test case is an ILES of the transitional flow on a flat plate with semi-
circular leading edge. This test case, named T3L, is part of the ERCOFTAC test
case suite and it is characterized by a diameter-based Reynolds number Re = 3450.
The solution exhibits a leading edge laminar separation bubble and, downstream the
transition, an attached turbulent boundary layer. The simulations were performed in
parallel using 540 cores and a grid consisting of 38320 elements clustered at the wall
and near the reattachment region. Table?2 reports the computational performances
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Table 2 Transitional flow over a rounded leading edge flat plate at Re = 3450. Results obtained
on 540 Intel Xeon CPUs

BJ-MB BJ-MF EWBIJ-MF pMG-MF pMG-MF L3
CPU ratio 1 0.95 1.01 0.47 0.31
Memory ratio | 1 0.6 0.28 0.15 0.15
GMRES 115 115 229 3 3

obtained similarly to that of the previous test case. Here the reference is the BJ-
MB, which employs the ILU(0) preconditioner within each domain partition. In
this case we used the integration formulas for straight faces, being the number of
curved elements small (second order representation) and located only close to the
leading edge, where the boundary layer is still laminar. Thus, switching from the
matrix-based to the matrix-free solver using the BJ preconditioner, we observed that
the computational efficiency is more or less the same. Also in this case, the EWBIJ
preconditioner is poorly performing from the CPU-Time point of view, although
reduces the memory requirements of about the 72%. Differently, when it is employed
as fine level smoother on a multigrid preconditioner, the code saves the 85% of
memory and requires the 0.47 of the baseline computational time. Note that, in
addition, a very small number of Krylov subspaces are required for the iterative
process. Note that the pMG is used only for preconditioning purposes, and therefore
it is possible to freeze it for some time steps (three in this case) to further reduce the
CPU time to the 0.31 of the reference, see Table 2.

From a physical point of view, we solved the T3L problem with different free-
stream turbulence (7 u) intensities. The T u was synthetically injected in the flow field
through a properly defined random forcing, in consistency to what has been done
in [4]. The bubble length, which has been evaluated on the time and spanwise aver-
aged flow fields, was found to be very sensitive to the turbulence levels. In particular,
increasing the Tu from 0 to 0.2 and 5.6% the bubble length reduces from x/d = 3.9
to 2.69 and 1.08, respectively (see Fig. 1). We point out that, in the Tu = 0.2% case,
the value x/d = 2.69 is in a better agreement to the experimental data, equal to
x/d = 2.75, if compared to other literature values. The Fig.2 reports a visualiza-
tion of the obtained instantaneous flow-fields. For the low turbulence intensity case
it is possible to identify the quasi two-dimensional Kelvin—Helmholtz instabilities
taking place in the shear-layer above the separation bubble and the appearance of
hairpin vortices after the flow reattachment. With the highest turbulence level, streaky
like structures stream-wise oriented are visible close to the leading edge, while the
Kelvin—Helmholtz instability stage is bypassed anticipating the reattachment and the
formation of the hairpin vortices.
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Fig. 1 Skin friction coefficient for the solution obtained using different free stream turbulence
intensities

Fig.2 X, = —1.5 iso-contour, for two different Turbulence Intensities (Tu) — 0.2% (left) and 5.0%
(right) — coloured by the streamwise velocity magnitude

5 Conclusions

An implicit in time DG solver with a low memory requirement has been here pro-
posed. The approach relies on the use of a matrix-free FGMRES solver coupled with
a pMG preconditioner. The computational efficiency, as well as the solution quality
for a quite complex test case demonstrate that the approach is very well suited for
the DNS/ILES using unstructured highly stretched meshes.
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1 Introduction

Recent years have seen an ever-increasing interest in turbulence models able to go
beyond the limited predictive capability of the Reynolds-averaged Navier—Stokes
(RANS) formulation. In the range of moderate Reynolds numbers, availability of
large HPC resources now allows to employ Large Eddy Simulation (LES) also in
complex flow applications. In this context, the practice of an implicit LES (ILES)
based on the Discontinuous Galerkin (DG) method showed to be very promising
due to the good dispersion and dissipation properties of DG methods. However, to
date, characteristic Reynolds numbers of many industrial applications are too large
for a fully resolved LES. For these applications the use of a hybrid RANS-LES
model or a wall modelled LES approach seems mandatory. In hybrid RANS-LES
models the RANS equations are active close to solid walls, where LES would be
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prohibitively costly, while LES is used in regions of separated flow where larger
eddies can be resolved. Among the hybrid approaches available in the literature, we
chose the eXtra-Large Eddy Simulation (X-LES) [1, 2] for three attractive features:
(7) independence from the wall distance; (ii) use in LES mode of a clearly defined
subgrid-scale (SGS) model [3]; (iii) use of the k- turbulence model integrated to
the wall.

2 Implementation and Discretization of the X-LES Model

In this section we review some details of the proposed X-LES model implementation
and DG discretization [2]. For the sake of compactness we only report the govern-
ing equations for the turbulent kinetic energy k and the logarithm of the specific
dissipation rate @

9 9 N
0+ 3 () = - (o) 3 |+ R= D)

Xj

3 3 > 3@ 0o
(pw) +o— (pu;@) = P [(M+aut) —} (o) o
Xj X; 0x; Xp 0Xg

where the production, destruction and cross diffusion terms are

P ou; P « P S 1 auk5 2 Y aul (3)
=T —> w =00 — ij — i i
ET gy, e \"7 T 3ax, ) T3P By
i} _ ok 0@
— B*pkd, D, = Bpe®, Cp=oy-—max 2 o), @
evr 8xk Z)xk
and _
=2k =max (0.k). (5)
w

In our implementation, being k limited to zero, X-LES actually switches between
three different flow models, i.e., ILES, LES with a well defined explicit SGS model [3]
and RANS closed by the k-@ model. The automatic switching among the models is
obtained through the definition of a “composite” specific dissipation rate

= (. 35)
& =max | e, — |, (6)
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where A is the SGS filter width and C; = 0.05. Although in the literature the filter
width parameter is often related to the local mesh spacing, here we set A to a constant
value over the whole computational grid.

The variable @, in the source terms of Egs. 3 and 4, and in the “composite” specific
dissipation rate definition in Eq. 6, indicates that @ must fulfill a suitably defined
“realizability” condition, which sets a lower bound on . This constraint ensures
that X-LES, regardless of being in RANS or LES mode, predicts positive normal
turbulent stresses and satisfies the Schwarz inequality for shear stresses

N2 -
pufz0, i=123 (o) spufpuf, i j=1.23 i#j O

where u indicates the fluctuating part of the ith component of the velocity and the
overline symbol the temporal average operator.

Being in X-LES both the Reynolds and the subgrid stress tensor modelled accord-
ing to the Boussinesq hypothesis, an overall “realizability” condition can be enforced
through the definition of a suitably modified specific dissipation rate. In fact, after
some algebra, Eqs. 7 can be written in terms of modelled stresses as

e 1 duy .
— —3(Si—=—)=0, i=1,2,3, ®)
o* 38xk
e\ 2 3(s. +s 10u\ e )
a* 144 JJ 38)Ck o*

lauk lauk 2 .. . .
91 (Si—=— ) (S;i—=—=)=S%2|>0, i,j=1,23, )
+ [( 38xk>(” 38)Ck) S - ok

Let us denote with a the maximum value of the unknown e®/a* that fulfills the
inequalities Egs. 8 and 9. The lower bound @, that guarantees realizable stresses is
then given by

—a. (10)

Since in this work the underlaying turbulence model is the high-Reynolds version of
k-w, a* is constant and the solution of Eq. 10 is trivial. The “realizability” constraint
can be finally enforced as

@, = max (@, ®y) . (11)

X-LES equations are here discretized in space according to the DG method, see [2]
for details. The complete governing system can be written in compact form as

P(w)%—‘:+V~Fc(w)+V-Fv(w,Vw)+s(w,VW)=0, (12)
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where w is the unknown solution vector of the m variables, the tensors F. and F,
are the convective and viscous flux functions, s is the vector of source terms. In this
work we rely on the set of variables w = [p, T, u;, k, ", where p' = log(p) and
T = log(T). In practice we substitute (p, T) with e”, e’ in the governing equations,
and use the polynomial approximation of the working variables p and T instead of
p and T directly. This trick ensured, by design, the positivity of the thermodynamic
unknowns at a discrete level, adding robustness to high-order simulations of transonic
flows. The matrix P(w) is the transformation matrix that takes into account of the
change of variables from the conservative set w, = [p, pE, pu;, pk, o®]" to the
set w.

The system of Eq. 12 is discretized in space firstly multiplying by an arbitrary
smooth test function and then integrating by parts, thus obtaining its weak form.
The solution and the test function are then replaced with a finite element approxima-
tion and a discrete test function both belonging to the set V;, := []P’]fi(%)]m, where
PE(Th) = (v € L2(2) | vk € PE(K), VK € F},}is the discrete polynomial space
in physical coordinates. IP’Z‘,(K ) denotes the restriction of the polynomial functions
of d = 3 variables and total degree k to the element K belonging to the triangulation
I, = {K}, consisting of a set of non-overlapping elements, built on an approxima-
tion £2;, of the computational domain £2. A set of hierarchical and orthonormal basis
functions for the space ]P’Z (K) is computed following the approach of Bassi et al. [4].

Being the functional approximation discontinuous, the flux functions are not
uniquely defined over the mesh faces, and thus a numerical flux vector is suitably
defined both for the convective and viscous part of the equations. The former relies
on the van Leer flux vector splitting method as modified by Hénel et al. [5]. The
latter employs the BR2 scheme, proposed in Bassi et al. [6].

By assembling together all the elemental contributions a system of ordinary differ-
ential equations governing the evolution in time of the discrete solution is obtained.
The accurate high-order time integration is performed by means of the multi-stage
linearly implicit (Rosenbrock-type) Runge—Kutta schemes. Such schemes require
the solution of a linear system at each stage, while the Jacobian matrix needs to
be assembled only once per time step. An extended review of several Rosenbrock
schemes as well as their coefficients is reported in [7].

3 Numerical Experiments

In this section we present preliminary results obtained with X-LES in the compu-
tation of the transonic turbulent flow through the NASA Rotor 37. These results
are compared with the RANS simulations to assess the predicting capabilities of
the two different approaches. This test case has been thoroughly investigated both
numerically and experimentally, e.g. [8—10].

We performed all the computations up to P? solution on a grid of 160512 20-node
hexahedral elements (quadratic edges), created by agglomerating a structured linear
mesh. The height of elements adjacent to the solid wall corresponds to y™ ~ 7. The
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governing equations were formulated in the non-inertial reference frame, see [10],
setting the rotational speed equal to @ = [1800rad /s, 0, 0]7. We prescribed adiabatic
wall boundary conditions on the blade, the hub and the tip surfaces. The total pressure
and temperature, the flow angle oy = 0° and the turbulence intensity 7Tu; = 3%
were set at the inlet, while the static pressure was imposed at the outlet. For the
RANS computations we relied on the DG implementation proposed in [10, 11],
performing the implicit time integration to the steady state by means of the linearized
backward Euler scheme coupled with a pseudo-transient continuation strategy to
evolve the CFL number. X-LES computations were initialized with the RANS fields,
advancing the solution in time with the linearly-implicit third-order three-stages
ROS3P Rosenbrock scheme [7, 12]. The X-LES filter width was set equal to A =
5% 1073,

Figures 1 and 2 compare the RANS and instantaneous X-LES solutions in terms
of pressure contours and skin friction lines on the blade. The unsteady nature of
X-LES can be clearly appreciated together with the remarkably different distribution
of separation lines with respect to the RANS result. In Figs.3 and 4 the pitch-wise
mass averaged po./po.1 and Ty o/ Tp,; radial distributions for the RANS and X-
LES computations are compared with the experimental data at 98% of the choked
mass flow. X-LES results are averaged over 46800 time-steps, corresponding to 13
convective time units, defined as t. = ¢/(a M,.;;,,), where c is the chord at midspan,
M., ;i, the relative tip Mach number at the inlet, and a the speed of sound at the

X-LES DG-P?
instantaneous solution

RANS DG-P?

Fig. 1 Pressure contours, P? solutions
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X-LES DG-P?
instantaneous solution

Fig. 2 Skin friction lines, P2 solutions

Fig. 3 Pitch-wise total 100y —T—
pressure ratio po,2/ po,1 [ |
P'=2 solutions - g
80 -
Q\O/ - [ Exp. E
P -——— DG P'-RANS+k-0 ]
I [---=--- DG P?- RANS+k-00 1
& sol——— DGP*-XLES-ave. ]
20 -
0 R = T =T b '

1.4 1.6 1.8 2 2.2

Total Pressure Ratio
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Fig. 4 Pitch-wise total 10—+ 1T — T
. L ° |
temperature ratio 79 2/ 70,1, i ]
P!=2 solutions + g
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L o |
i Te 1
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o 60 u 4
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& aol——— DGP*-X-LES-ave. ]
20 -
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inlet. The pressure ratio distribution is better predicted by X-LES starting from 40%
of the span, while up to 40% both models, i.e. RANS and X-LES, are not able
to capture the total pressure deficiency. The total temperature distribution is better
predicted by X-LES everywhere with the exception of the zone near 60% of the span,
where it is slightly underestimated. At hub and tip regions some discrepancies with
respect to experimental measurements occur, even if less pronounced for the X-LES;
however similar behaviours are also observed for other numerical results reported in
the literature.

4 Conclusion

A high-order DG method coupled with an implicit time integration strategy for
the high-fidelity simulation of turbulent flows was presented. The X-LES hybrid
approach was chosen, being considered appealing for many industrial applications
characterized by high Reynolds numbers. X-LES proved to be robust and able to
correctly deal with separated flows, also improving the predicting capabilities over
RANS model.

Future work will be addressed to further investigate the filter width influence
on results accuracy, to move towards very-large scale parallel computations (ten-
of-thousands cores), and to include in our X-LES implementation some recently
proposed improvements to the model [13].
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Assessment of High-Order Discontinuous | M)
Galerkin Methods for LES of Transonic Creck o
Flows

J. S. Cagnone, Z. Zeren, A. Chatel, M. Rasquin, K. Hillewaert
and L. Bricteux

1 Introduction

This paper concerns implicit large eddy simulation (ILES) of turbulent flows of
industrial interest using high order discontinuous Galerkin method (DGM). DGM
has a high potential for industrial applications using ILES. As dissipation is only
active on very small scale features, the method mimics a subgrid scale model, while
its high accuracy ensures that large scale dynamics are not contaminated by dis-
persive/dissipative errors. Previously DGM/ILES has been assessed on many low
Mach number canonical test cases (e.g. Carton et al. [3]). This paper recapitulates
recent validation on transonic benchmarks (Hillewaert et al. [6]) and proceeds to the
application on the LS89 cascade, a well-known turbomachinery benchmark.
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2 Computational Framework

The discontinuous Galerkin method [4] is a Galerkin finite element method. Its
interpolants are polynomials of arbitrary order p on each of the elements in the
mesh, but are not required to be continuous across the interfaces between elements.
Due to the solution discontinuities, DG method faces the appearance of the con-
vective and diffusive flux contributions for the element interfaces that couple the
solutions between the elements. The Roe approximate Riemann solver is used for
the convective and the symmetric interior penalty (Arnold et al. [1]) for the diffusive
part. The method provides O(h"*!) accuracy and good dispersion/dissipation prop-
erties on unstructured, low quality meshes. Combining this with good scalability
performances provides the necessary properties for fast and reliable LES of complex
industrial geometries. The shock capturing method (SCM) of Persson and Peraire [9]
is used for this study due to the transonic flow regime. An artificial viscosity decreas-
ing with polynomial degree is activated by a resolution indicator that measures the
energy contained in the pth mode of the polynomial expansion in each element.

3 Compressible Homogeneous Isotropic Turbulence

Following Johnsen [7], the first validation test case concerns a compressible homo-
geneous isotropic decaying turbulent flow in a periodic box. The Reynolds number
based on the Taylor length scale is Re, = 100. The grid includes (64°) DOF and
different interpolation orders (p = 3, 4, 5) were investigated.

To complete the reference work, a fine resolution DNS, was also performed with
a (384%) resolution using fifth order elements. The simulations were run with and
without a shock capturing method in order to investigate its impact on the stability.

The flow is initialized with an incompressible synthetic turbulent flow field fol-
lowing Rogallo [10]. This induces a violent transient phase due to acoustic imbalance
in the initial incompressible turbulent flow field and the large turbulent Mach number
(M; = 0.6), resulting in the formation of high intensity shocks. We propose to use
the energy dissipation (W) budget

_4 <l/pu.udv>=/ (ZMS:S—A(V~u)2)dV—fpV.udV. (1)
dl 2 \% 1 Vv

w Wa We

as an error indicator. For a periodic control volume V, there is no net flux of energy
in or out of the volume, and the balance of W only consists of viscous dissipation W,
and compression work W,.. Here p, p, u and S represent respectively pressure, density,
velocity and strain rate tensor, while  and A represent dynamic viscosity coefficients.
Eq. 1 will not be exactly satisfied due to discretization errors and shock capturing.
The imbalance between the right and the left hand sides of Eq. 1 will be a quality
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Fig. 1 Dissipation balances 70
for the compressible HIT,

top: p = 4 3843 DN, 60
middle: p = 5 64° LES, 50

bottom: p = 5 64° LES
using SCM
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indicator of the simulation. The results are presented in Fig. 1. For both computations
without SCM, the difference between the left hand side W and the right hand side
W, — W, of Eq. 1 is very small, both at so-called DNS (384) and LES (64) resolution.
It is worth mentioning that the DG solver was not consistently stable during these
simulations and often crashed around #/t = 0.6 — 0.7 for p = 3, 4 without SCM.
The inclusion of SCM stabilized the simulations, however resulted in loss of precision
(see the bottom plot of Fig. 1). The so-called LES resolution (64) is in fact still close
to DNS. As the difference is attributable to the SCM, it is clear that improvements are
required for transonic turbulence levels. These conditions are not, however, readily
encountered in free stream flows: for transonic flows, the turbulence intensity would
correspond to about 50%.

4 Homogeneous Isotropic Turbulence Passing
Through a Shock

The second test case consists in a high Mach number freestream with superposed
turbulent flow passing through a stabilized shock. The inflow Mach number is M;, =
1.5 as in the reference DNS of Larsson and Lele [8]. The size of the computational
domain is [47m x27 x27], where periodic boundary conditions are applied in the y
and z directions and x is the streamwise direction. Three simulations were performed
using a coarse (192 x 64?) and a fine mesh (384 x 128?) clustered around the shock.

The inlet turbulence is extracted from a precursor simulation of incompressible
homogeneous isotropic turbulence, initialized with Re, = 140. It was then evolved
in time to a Reynolds value of 40 and was blended following the procedure of Xiong
et al. [12] in order to obtain a larger flow realization. The fluctuations were then
continuously superposed on the main inflow condition. The outlet static pressure
was adjusted in order to fix the position of the shock following Larsson [8].

The turbulence intensities are shown in Fig.2 for two different grid resolutions
and compared to the reference data. The intensities initially decrease approaching
the shock and sharply increase through it. They then continue to decay downstream.
The relatively large fluctuations for the streamwise component is most likely due to
the unsteady shock position which intensifies the fluctuations. The monotonically
decaying behavior persist but the anisotropy of the turbulent structures, acquired
through the shock, keeps its strength until the domain outlet. The present simulations
correctly reproduce the reference results, even if resolution-dependent differences
were observed. By varying the baseline artificial viscosity for the fine mesh, it is
shown that the effect of the SCM is minor. As the SCM is only active around the
shock location it does not affect fundamentally the physics of the turbulence for this
much more prevalent flow regime.
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Fig. 2 Evolution of velocity
correlations for the
shock/turbulence interaction
case. Mj, = 1.5
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Fig. 3 LS89 transonic stator shock turbu- acoustic vortex
blade geometry and flow shocks lence interaction Waves shedding
features %

T transition

flow direction

5 Flow Around a Transonic Turbine Stator Blade

The transonic flow around a high pressure turbine blade cascade LS89 (Arts. [2])
is simulated. A 2D quadrilateral mesh is extruded in the spanwise direction leading
to 1.56 x 10° elements and 100 x 10° degrees of freedom using p = 3. The mesh
is refined close to the walls resulting in equivalent normal Ay™ &~ 1 and tangential
resolutions At &~ 11. A subsonic turbulent inflow superposed on a uniform inlet
velocity of 60m/s is imposed at the inlet. Two inlet turbulence generation methods
were considered. The first one uses a precursor simulation similar to the previous test
cases and the second one relies on the analytical method proposed by Davidson [5].
The subsonic flow at the inlet becomes transonic at blade suction side where the
Mach number increases up to around 1.2. Resulting complex unsteady shock system
can be seen in Fig. 3.

The isentropic Mach number and heat transfer coefficient are presented in Fig. 4
compared to the experimental measurements for the inlet turbulence intensity of 7/ =
6%. The agreement is satisfactory for the isentropic Mach number for both inflow
generation methods. The heat transfer coefficient curve requires more comments.
Experimental results for both 77 = 4% and TI = 6% are included in the figure for
the discussion. Focusing on these experimental measurements, there is a significant
effect of the inlet flow turbulence on the heat transfer coefficient, especially on the
suction side from S /¢ = 0.5 onwards. None of the inflow methods are able to capture
correctly the leading edge behavior, although there is an important improvement with
the precursor method. Both methods seem to reproduce the results with 71 = 4%,
although 6% was imposed at the inlet. Only the method of Davidson is able to
correctly predict the maximum heat transfer for S /¢ > 1. We foresee a grid refinement
study to capture the bypass transition on suction side, which is known to provide the
enhance the heat transfer, instead of increasing the turbulence at the inlet to better
match with experiments [11].
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Fig. 4 Left: Isentropic Mach number; Right: Heat transfer coefficient on the blade surface. S:
Curvilinear coordinate on the blade; c: the chord

6 Conclusion and Perspectives

We conclude based on the test cases that the DGM has good prediction capabilities for
transonic flows. For applications with a limited turbulent Mach number where shocks
are not caused by high level of turbulent fluctuations, the SCM seems to perform well.
Larger Reynolds numbers are required in order to be more conclusive on the subject.
No discernible solver instability were observed during the LS89 turbine blade case,
which confirms the applicability of the current SCM for transonic applications in
turbomachinery. Current results seem to indicate that a good match with experiments
can be obtained without tuning the inlet turbulence level, leading to truly predictive
simulations.
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Efficient Pressure-Correction Method m
for Interfacial Tracking Appropriate i
for the Immersed Boundary Method

C. Frantzis and D. G. E. Grigoriadis

1 Introduction

Solving the Navier—Stokes equations to simulate incompressible two-fluid flows
with interfaces, is still a developing scientific field. One of the main challenges,
is the reduction of the computational cost which is still significantly higher when
compared to single-fluid problems. This is mainly due to the variable coefficients
Poisson equation arising from the projection method to impose mass conservation.
Recently, [1, 2] proposed a new pressure correction method to transform the variable
coefficients Poisson equation into a constant coefficients one. Among other advan-
tages, such a transformation allows the use of efficient and robust Fast Direct Solvers
(FDS) to solve the Poisson equation. As a result, the pressure solution could be
achieved 20-60 times faster when compared to classical iterative multigrid solvers,
such as those implemented in HYPRE library.

In the present study, a pressure correction formulation that is based on FDS and
is appropriate for the Immersed Boundary (IB) method of two-fluid flow problems
is proposed. The resulting constant coefficients Poisson equation was solved using
FISHPAK. The proposed formulation has been compared with the original one [2]
for density ratios up to 1000, showing very good agreement. In addition, it does not
add any extra complexity or cost; on the contrary, it extends the capabilities of the
constant coefficients approach and the IB method even further.
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The results presented in this study are generated using the conservative Level-
Set method [3] to track the position of the interface. The proposed methodology
could also be used along with different interface tracking approaches such as VoF or
phase-field methods.

2 Mathematical Formulation and Numerical Methods

Governing Equations

In the absence of surface tension effects, the two-phase incompressible viscous flow
for immiscible fluids is described by the Navier—Stokes equations, which in their
non-dimensional form read,

V.u=0 (D)
ou vP

1 1
— = 4 V[u(Vu+(V —a—uV. 2
a7 ) +pRe [u (Vu + ( u))]+Fra uV-u 2

where Re and F'r are the Reynolds and Froude number, respectively. P represents
the total pressure, u is the velocity vector field and a is the acceleration vector. The
non-dimensional density and viscosity are denoted as p and u respectively.

Fractional Step Technique for Interfacial Problems

The fractional step method is one of the most popular techniques to numerically
solve the Navier—Stokes (NS) equations. In this method, a provisional velocity field
u* is first computed from Eq. (2) which is not solenoidal, i.e. it does not satisfy
mass-continuity since V - u* # 0. Mass conservation is then imposed by solving a
Poisson equation for the pressure at each time step. For single fluid-flow problems the
derived Poisson equation can easily be solved because it involves constant coefficients
in time. Following this approach for the case of two-fluid flow problems with density
gradients, the derived Poisson equation becomes,

VPn-H
v.( ): v.ou 3)
p

In this case the discretised form of (3) leads to a mathematical problem with variable
coefficients in time, due to density variations. To overcome this complexity, [1]
proposed to split the variable coefficients operator into two parts according to,

vprt! v pril +< 1 1 )vﬁ @
—_ —_——
pt! Po P po

where p, is the density of the lighter fluid and Pisan approximation of P"*!. Using
this formulation, Eq. (3) leads to a constant coefficients Poisson equation of the form,
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2 pntl _ _ Po p & ok
V2P _v-[<1 pn+]>vp}+mv u (5)

Proper Pressure Correction for the IB Method

The formulation of Eq. (5) has been proposed in [1, 2] for problems without internal
obstructions. In the present study, we propose an approach to extend the formulation
in order to be consistent with the IB method. In doing so, flows with interfaces can be
simulated efficiently in the presence of obstacles, which may even deform or move.

FDS is a very efficient and popular choice for the solution of the Poisson equation
with constant coefficients. When combined with the IB method, FDS solvers generate
a solution for all the nodes within a rectangular domain, meaning that the pressure is
also solved inside the solid phase of immersed obstacles. Looking at Eq. (5), or (3),
an appropriate RHS or density field should be set for the solid nodes respectively, in
order to satisfy the proper BC on the IB solid interface. More sophisticated IB forms
[4, 5] have been proposed, that modify the LHS of the Poisson for the fluid nodes
close to the IB solid interface, in order to solve the pressure only in the fluid phase.
However, such a modification automatically excludes the use of FDS for the solution
of the pressure Poisson equation.

To overcome this restriction, we propose a new pressure correction formula-
tion. Instead of solving an equation for the overall pressure P"*!, we formulate
a pressure correction scheme based on a pressure difference 8§ P"*!, defined as
prtl = pn 4 § P+l Combined with Eq. (5), one can derive a constant coefficients
Poisson equation for the pressure difference,

visprtl =v. [(1 — pfjl)vﬁ} +%V~u*—V2P” (6)

which is now appropriate for FDS and the IB method. Using the above formulation,
we can set the RHS of Eq. (6) equal to zero for all the solid nodes, which is valid
regardless of the unknown density field p"*! inside the solid body.

Contrary to the VBF method [5] and the ghost cell approach [4], the LHS of the
pressure Poisson equation that we solve in Eq. (6) is not modified at all. However,
when the RHS of Eq. (6) is calculated, we explicitly set it equal to zero if it refers to
a solid node. As a result, the Poisson equation for the pressure difference in Eq. (6)
reduces to a Laplace equation inside the solid. Moreover, the pressure gradient terms,
that appear in the RHS of Eq. (6) and the correction step of the fractional step
method, are modified at the locations where a solid pressure node is required for the
calculation. In that sense, we indirectly satisfy the proper boundary condition for the
pressure on the IB solid interface.

Discretisation Schemes

The equations are discretised with central differences on Cartesian staggered grids.
The momentum field of Eq. (2) is advanced in time using a fully explicit 2nd order
Adams-Bashforth scheme. The spatial discretisation of the convective terms is per-
formed either with a 2nd order central or a 5th order WENO scheme. The LS
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advection equation is discretised in space using the WENO scheme, while for the
re-initialisation equation a 2nd order upwind scheme is used. Time advancement
for both the LS advection and re-initialisation is performed with a 3rd order TVD
Runge—Kutta scheme.

3 Validations and Results

The proposed formulation was first validated without the use of the IB for low
and high density ratios. The results given by the three different formulations of
Egs. (3), (5), (6) have been compared using the same LU-based solver. Afterwards,
the coupling of the FDS, the IB method and the proposed formulation is examined
by comparing the results given by Eq. (3) on a boundary conforming grid. Very small
time steps At were used (CFL < 0.01) in order to eliminate temporal errors.

Rayleigh-Taylor Instability

The vertical position of the front of the rising and falling fluids as a function of time
are shown in Fig. 1 and they are compared against previous studies by [6, 7] in Fig. 2.
Our results are in absolute agreement with each other, while they are in very good
agreement with other numerical studies as well.

Run-up of a Solitary Wave

Figure4 shows the wave run-up A,,,_,, as a function of the solitary wave height
A, defined in Fig. 3. The results given by each formulation are exactly the same and
also in very good agreement with other studies [8—10].

Fig. 1 Interface profile at
different time instants
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Fig. 2 Comparison for the
temporal evolution of the
highest (top line) and lowest
(lower line) location of the
interface

Fig. 3 Run-up of a solitary
wave schematic diagram

Fig. 4 Run-up of the
solitary wave as a function of
the wave height
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Fig.5 Profile of the free-surface at different time instants and different baffle widths. Wy, = 0.4
(left) and 0.05 (right)

Sloshing in a 2D-Baffled Tank (FDS/IB Coupling Validation)

Figure 5 presents the profile of the interface in two different time instants for the case
of a thick and a thin baffle. The computed results are exactly the same using either
the variable coefficients approach on a boundary conforming grid or the constant
coefficients approach of Eq. (6) with the IB method and a FDS.

Computational Efficiency

The efficiency of the proposed methodology can be demonstrated by comparing the
required CPU time of LU-based and the proposed FDS-based solvers. An OpenM P
implementation was tested on a computational node with 48 cores for a 3D sloshing
case. Table 1 shows the time required by each approach and the speed-up of the
proposed formulation. The first line refers to the LU-solution of Eq. (3) and the
second line to the LU-solution of Eq. (5). The third line refers to the proposed FDS
(with FFT along y direction), to solve either Eq. (5) or (6).

An enormous speed-up occurs for the proposed approach when comparing with
the first one, due to the inversion of the matrix that is required at every time step by
the first approach. Keeping the formulation the same, the speed-up of the FDS over
the LU-direct solver is still considerably large.

Moreover, the memory requirements of each solver were examined. The RAM
required by the LU direct solver increases exponentially with the grid nodes, while
it increases almost linearly for the FDS. For considerably large problems the RAM
required by the proposed FDS formulation is more than 100 times less than the
memory required by an LU-based direct solver.
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Table 1 Execution time for a 3D-sloshing test case using (320 x 48 x 264) computing cells
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Poisson (sec/itr) | NS (sec/itr) Poisson/NS (%)
VC-LU 5.259 + 2 5.261 +2 99.96
CC-LU 1.130e + 1 1.170e + 1 96.58
CC-1DFFT 1.492¢ — 1 5.507e — 1 27.10

4 Conclusions

We have developed a robust and efficient pressure-correction scheme which solves
a constant coefficients Poisson equation for two-fluid problems. This formulation
allows the use of FDS while it is also appropriate for the use of the IB method,
satisfying the pressure BC indirectly on the IB solid interface.

We verified that the proposed methodology has the same accuracy as the con-
ventional variable coefficients approach. The proposed formulation maintains all the
advantages of a FDS pressure solution concerning the computational efficiency, as
they were presented in [2]. Moreover, it offers the additional capability of using the
IB method, allowing the simulation of two-fluid flows around obstacles with complex
geometries which can also deform or move.

The proposed methodology allows the simulation of interfacial tracking problems
with immersed obstacles for considerably larger problems (several million nodes)
on smaller computers, even on laptops.

Acknowledgements The research leading to these results has received funding from the Peo-
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FP7/2007-2013/ under REA grant agreement n° 607394-SEDITRANS.
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Part 11
LES Modeling



On the Eddy Viscosity Associated )
with the Subgrid Stresses L

A. Cimarelli, A. Abba and M. Germano

1 Introduction

Thanks to its simplicity and robustness, the models based on the eddy viscosity con-
cept represent the most common procedure to introduce the effect of the unresolved
scales in the equations of motion for the Large Eddy Simulation (LES) approach.
Indeed, the subgrid scale (sgs) viscosity approach allows from an energetic point of
view to respect the dissipative nature of turbulence.

Starting from the pioneering proposal of Smagorinsky [18], a large number of
modifications have been proposed in literature in order to account for relevant physi-
cal phenomena that can not be adequately reproduced by the original model. Between
them, a significant improvement has been done by the contribution of Germano et
al. [13] in which the dynamic procedure allows the subgrid model to better adapt to
the local structure of the flow and to transitional conditions.

Besides, all the models based on a scalar subgrid viscosity are developed in the
Kolmogorov hypothesis of isotropicity of the small turbulent scales. Instead it is
well known that not only the large turbulent structures are not isotropic, but also the
unresolved turbulent ones [6]. To overcome this limit several proposals can be found
in literature. On the one hand anisotropic grid and filters can be used to reproduce the
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anisotropy of the flow structures. The definition of the characteristic length A of the
filter is still an open question when anisotropic filters are used or when the Navier—
Stokes equations are implicitly filtered using strongly anisotropic unstructured grids,
although several attempts have been done to solve this ambiguity [3, 4, 8, 16, 17].

Moreover, the eddy viscosity models are based on the proportionality between
the subgrid stress tensor components and the strain rate tensor of the filtered velocity
field, but it has been demonstrated that the sgs stress tensor is not usually aligned with
the resolved strain rate one [1]. Some tensorial eddy viscosity models are proposed in
literature with the aim to solve this contradiction [2, 5, 9, 14]. In this work we further
exploit the subgrid viscosity approach by analysing an alternative formulation which
leads to a tensorial eddy viscosity and takes into account the shape and the size of
the applied filter.

2 Theoretical Framework

The flow equations in a LES approach are obtained by applying a filter to the Navier—
Stokes equations. In the present work we will focus on the filter in space operator,
applied to the incompressible flow equations, assuming that the scale of the filter in
time is directly related to the characteristic length of the filter in space and the filtered
velocity. A filter in space extracts the large scales velocity vector components u; as
follow [15]:

m<x)=/G(x,£)ui@>ds, (=13 (1)

where G denotes the filter kernel with characteristic length A and

/ G(x, &)dE = 1.
2

By assuming commutativity with spatial derivatives, the filtering of the convective
terms of the Navier—Stokes equations leads to the unknown subgrid stress tensor
T(u;, uj), defined as [12]

(U, uj) =uu; — il 2

which needs to be modeled. This subgrid stresses can be usefully expressed by the
equivalent relation

1
) = 5 / f Gx, £)G (x. )i ) — w M, &) — u; ()Idedn.  (3)

Let us now introduce the following velocity decomposition
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uip = Ui + v, “)

where v; represents the subgrid scale fluctuations. Applying this decomposition to
the subgrid flux (2) [11] it is easy to verify that

(Ui, uj) = (r(ﬁi,u_/)+r(v,~,u_,-)—l—r(ui,ﬁ_,‘)—i-f(u,',vj)) 5

N =

where

'L'(IZ,‘, I/tj) = ﬁ;uj — I/_t,'ﬁj
‘L'(Ui,uj)ZUiuj—l_)il/_lj. (6)
We remark that this decomposition is Galilean invariant since it is composed by

Galilean invariant terms [10]. Similarly to (3) we can apply the filter operator (1) to
the previous mentioned subgrid contributions [12]

1
i, up) =3 //G(X, E)G(x, m)[ui(§) — i (m1[u; (&) —u;(mldédy
1
T(vi,uj) =3 //G(X, )G, Mvi(§) —vim]lu; (&) —u;(mldédn . (7)

By assuming that the filtered value u; is sufficiently smooth at the LES scale, we can
make use of the Taylor expansion approximations

u;(§) = ui(x) + (& — xp)hit; (X) (®)
neglecting higher orders terms. We remark that the Taylor expansion is formally
justified only for filtered quantities. The same expansion cannot be applied to sub-

grid quantities that are rapidly varying at the LES scale of resolution. Introducing,
expansion (8) in Eq. (7), we get

1
i) = 5 [ [ GG DE — 1m0 1y ©) — ;g
= —l)hjahﬁi (9)
where the eddy viscosity tensor vy;
vpj = —T(Xp, U;j) (10)

defined as

1
Thmuj) =3 [[G(X, E)Gx, m) (& — n)lu;(§) —u;(n)ldédn  (11)
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has been introduced. The eddy viscosity tensor v,; only depends on the turbulent
velocity field u; and on the filter G. As such it is peculiar of the given turbulent
velocity field, and the study of this quantity should be of some interest by itself. In
particular its variations with the filter shape and length A, and near the boundaries
could be interesting for modeling.

We would like to observe that a similar procedure can be applied to the subgrid
fluxes ©(f,u;) = fu; — fi; of a transported scalar f. It easy to verify that the
proposed approach leads to the relation

t(foui) = viidp f (12)

where the eddy viscosity vy,; depends on the convective velocity field and has no
relation with the transported scalar f.

The expression (11) highlights the relevance of taking into account how the veloc-
ity field is distributed within the filter scales. If an implicit filter is used and the oper-
ator coincides with a projection onto the discrete solution space, the eddy viscosity
(11) depends on the structure function of the velocity of grid element size. More-
over a tensorial viscosity should be an important contribution to subgrid models in
order to take into account the anisotropy of the flow. Actually if we now make the

approximation
1 _ -
T(ui,u;) = E(t(uisuj)‘i‘f(uizuj)) (13)

where we introduce the eddy viscosity tensor, we get
1 - -
T(uj,uj) = —5 (vnj Onit; + vii it ) - (14)

In the relation (14) a coefficient to be determined using the dynamic procedure, or an
additional Smagorinsky like term, can be added to take in account the terms discarded
by the approximation (13).

3 Comparison with the Gradient Model

In more traditional approaches, the Leonard decomposition for the subgrid stresses
T(ui,uj) =t(u;, uj) + v, v;) + (v, uj) + t(v;, vj) (15)

is used. Here

1
T, i) = 5/[G<x,s>G<x, Wi &) — & ()l &) — i, (ldedy  (16)
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are the so called Leonard stresses 7 (ii;, it j) = if;it; — i;it ;. Introducing the Taylor
expansion for the filtered velocity in Eq. (16) we get

T(uj, uj) = %//G(X, )G, m)(En — nr) (Ex — i) Optt; (X) gt ; (X)dédy.  (17)
If we now make the following similarity approximation
T(ui,uj) ~t(u;, uj) (18)
we recover the so called gradient model for the subgrid stresses [7],
T(ui, uj) X T(Xp, X ) O Ol (19)

where

1
T 0ons %) = 5 //G(X, E)Gx, m)(En — nn)(x — m)dEdn (20)

is a tensor a priori known and depending on the geometrical properties of the filter.
We would highlight that similar procedure has been applied by Clark et al. [7] and
Vreman et al. [19, 20] to obtain different versions of the original gradient model.

We remark that introducing the Taylor expansion for the velocity in Eq.(11) we
get

1
e ) = 5 f / Gx, £)G(x W& — m) & — ndeii,dedn (1)

from which the gradient model can be again recovered. It is finally interesting to
remark that the tensor 7 (x;, x;) can be actually understood as generalized defini-
tion of filter length that can be computed in every type of computational grids thus
solving the ambiguity of the determination of the filter length A in non-Cartesian
computational grids.

4 Concluding Remarks

In the present work a particular subgrid stress decomposition is considered, which
leads to a tensorial subgrid viscosity tensor. This approach highlights that the subgrid
viscosity is a peculiar property of the filtered velocity field. Moreover this tensorial
formulation of the subgrid viscosity overcomes the limit of the isotropicity assump-
tion related to the eddy viscosity models and it should constitute a useful element
for subgrid models suitable for numerical simulations using unstructured grids.
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Implicit/Explicit Spectral Viscosity and m
Large-Scale SGS Effects oo

E. Lamballais, T. Dairay, S. Laizet and J. C. Vassilicos

1 Introduction

Subgrid-scale (SGS) modelling based on regularization has become a popular ap-
proach for Large Eddy Simulation (LES). When the regularization is driven by the
numerical error or by an extra discrete operator like a filter, it is usual to refer to
implicit LES in the sense that the discretization provides an artificial dissipation in-
terpreted as a substitute of SGS modelling. Typically, it is expected that this artificial
dissipation is inactive at very large scales thanks to the numerical convergence of
the associated discretization. This assumption of large-scale dynamics virtually free
from any artificial dissipation can even be intentionally extended on a wide range of
scales through an optimal design of the associated discrete schemes. This idea can
also be recovered in explicit SGS models with for instance the concept of Spectral
Vanishing Viscosity (SVV) [1] and the Variational Multiscale (VMS) methods [2].
The goal of this study is to assess this inviscid assumption at very large scales for
a flow at high Reynolds number while using DNS results to estimate the exact en-
ergy transfers from large to SGS. These transfers are investigated in the challenging
situation of a flow subjected to a complete transition up to a fully developed tur-
bulent state. The corresponding benchmark is the Taylor—Green vortex problem at
Re = 20,000. In a previous work [3], using an implicit SVV associated to the dif-
ferentiation errors of the viscous term, we have shown that very accurate results can
be obtained by LES at Re = 10,000 with a reduction of the number of degrees of
freedom (DOF) of 8° by reference to DNS. In this study, we want to investigate
the ability of this type of SGS modelling (without any direct influence on large
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scales) at higher Reynolds number and with a stronger reduction of DOF. Note that
both Reynolds numbers Re = (10,000; 20,000) correspond to fully turbulent condi-
tions as suggested by the value of their counterparts based on the Taylor microscale
Re; =~ (200; 300) obtained after the complete turbulence breakdown at r ~ 13.

2 A Priori Analysis from DNS Results

The DNS of reference as well as the LES are performed using the sixth-order flow
solver “Incompact3d” which is kinetic energy conserving in the discrete and inviscid
sense (up to the time advancement error). For the present high Reynolds number
case Re = 20,000, 3456 mesh nodes are required for a computational domain of
(27)? but using some symmetries of the problem, the number of DOF is actually
divided by 8. Here, the goal is to carry out counterpart LES where the number of
DOF and computational cost are reduced by 16> and 16* respectively leading to a
cutoff wavenumber of k. = 108 for the LES mesh against 1728 for the DNS one.

Following our conclusions in a previous work, the targeted LES solution is defined
using a progressive spatial filter as illustrated in Fig. 1-left where raw and filtered
DNS energy spectra are compared. The filter is obtained by solving the Lin equation
using a simplified spectral Pao-like closure while taking the implicit SGS dissipation
into account [3]. An important remark is that this filter is applied once in each spatial
direction and not in all directions as it would be for an isotropic filter. This 1D
definition of the filter is believed to be more significant by reference to the actual
anisotropy of the LES mesh. Using this specific filter applied on the DNS data, the
time evolution of the supergrid scale kinetic energy E; can be computed a priori
with its associated total dissipation ¢ = —d Ey /dt. Then, it is easy to estimate the
viscous large-scale dissipation ;5 and its complementary SGS part €555 such as
& = ers + €sgs- These dissipations as well as the full DNS dissipation are presented
in Fig. 1-right where it can be seen that this benchmark is very challenging with SGS
dissipation 55 up to 90% of the total dissipation &, this unequal distribution giving
a major role to the SGS model.

To have a more detailed view of the kinetic energy transfer, a scale by scale
analysis of the SGS dissipation can be done starting from the large-scale Lin equation
decomposed as

(% + 2vk2> E(k, 1) =T (k, 1) + Tsgs(k, 1) (D

where E(k, t) is the kinetic energy of the filtered solution, T (k, t) the transfer term
involving only the filtered solution (i.e. explicitly computed in LES) and Tsgs(k, 1)
the remaining term that describes transfers between the supergrid and subgrid scales.
In this formalism expressed in the Fourier space, Tsgs(k, t) is simply the spectral
density of g5 that leads to the introduction of the spectral eddy viscosity
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Using the DNS data and following the procedure of [4] adapted in the present context,
v, (k, t) is estimated from 200 snapshots distributed throughout the calculation.

Figure 2-left presents 5 samples of v,(k, ) with a normalization based on the
molecular viscosity v. This figure clearly exhibits the dominant transfers close to &,
meaning that the “hyperviscous feature” is observed for this benchmark, especially
in the early transition. Figure 2-left also reveals that more distant triad interactions
result in high values of v, (k, ¢) at small k, not only during the transition (for instance
at + = 10) but also until the end of the simulation where a fully developed non-
equilibrium turbulence is observed. Then, at least qualitatively, the “plateau-cusp”
profile of the spectral eddy viscosity, as predicted by two-point closure theories at
high Reynolds numbers [5-7], is well recovered in the present a priori analysis.

In Fig. 2-right, the average value v,_,_,, of v, (k, t) for2 < k < k. /4 (as an estima-
tion of the “plateau” value) and its cutoff value v,_, at k = k. are plotted throughout
the simulation. The values of v,_,_are found to be very high in the early transition
but exhibit a global decrease as the turbulence develops. More importantly, the sig-
nificance of direct effect of SGS on the large scale dynamics is confirmed during the
turbulence breakdown (with v, , , that can be more than 4 times larger than v) but
also when the turbulence is fully developed where v;__, is still of the same order as
v. This observation is against the lack of any direct dissipative effect at large scales
in the SGS modelling as it is assumed in implicit LES, SVV or VMS.

It could be thought that despite the high values of v, (k, t) for k < k./4, the cor-
responding fraction of SGS dissipation

ke /4 _
ESGS 0 = 2 / v (k, OK?E(k, 1) dk (3)
0
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Fig. 2 Left: spectral eddy viscosity v, (k, t) at t = 5, 10, 15 and 20. Right: time evolution of the
average v;_; and cutoff Vi, values of v, (k, t)

isnegligible. In Fig. 1-right, it can be seen that this quantity can actually be about 20%
of the full SGS dissipation g5 during the turbulence breakdown while remaining
about 10% until the end of the calculation. In the next section, it will be examined
whether this significant contribution can be ignored in practical LES.

3 A posteriori Analysis of LES Results

The same flow configuration is investigated by LES (i) without any SGS modelling;
(i1) with the standard/dynamic Smagorinsky model and (iii) with our implicit SVV
[3]. Figure 3 presents the time evolution of the total dissipation & obtained for the
different LES. The very unrealistic behaviour observed for the no-model case con-
firms the major role of the SGS modelling for the present high Reynolds number
case where the LES are based on a coarse mesh by comparison to DNS. The strong
overestimation of & without SGS model corresponds to an almost complete thermal-
ization of the flow due to the development of small-scale spurious oscillations during
the transition, as it can be clearly observed by visualization and spectral analysis (not
shown for conciseness). The standard and dynamic Smagorinsky models are found
to lead to a partial thermalization resulting in an overdissipative behaviour in the
early transition. The resulting damping of small-scale spurious oscillations has, in a
second stage, a feedback effect with an underestimation of ¢.

The use of implicit SVV prevents any thermalization with a good prediction of € in
the early transition. However, the excellent agreement obtained in [3] at Re = 10,000
with a less coarse mesh is not recovered for the present more demanding benchmark.
In particular, the peak of dissipation cannot be captured (underestimation of £) and
as a subsequent feedback effect, a spurious secondary peak (overestimation of &)
can be clearly observed. A similar spurious secondary peak can be observed for the
enstrophy ¢ (see Fig.4-right).
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Fig. 3 Time evolution of the total dissipation & predicted by LES

For the implicit SVV, the main discrepancy can be attributed to the poor reproduc-
tion of the main peak of ¢ that has the potential to spoil the flow any time thereafter.
Even a very strong increase of the implicit SVV near k. is unable to capture this
peak (not shown for conciseness). A spectral analysis shows that the kinetic energy
is overestimated at large scales during this particular moment, especially in the range
10 < k < k./2, as illustrated in Fig.4-left. This overestimation is interpreted as the
consequence of the quasi-inviscid cascade at large scales. For this type of LES, free
from distant triad interaction modelling, the overestimation of E (k, t) in the range
10 < k < k./2 can be interpreted as a bottleneck effect. This interpretation is con-
sistent with the a priori analysis presented in previous section. This view can even be
supported quantitatively by observing that the main peak of dissipation is underesti-
mated by about 22%. Because the implicit SV'V is essentially inactive for k < k./4,
this behaviour may be related to the a priori ratio e5¢s.,,,,/€s6s &~ 20% reported in
the previous section.

To restore the peak, an idea could be to combine an explicit model with our
implicit SVV with the hope that the former can boost the total dissipation during
the transition while the latter can avoid the unrealistic partial thermalization. This
kind of mixed model approach has been tried with the standard Smagorinsky (see
Fig. 3-right) but without any improvement for the prediction of the main peak of &.
However, it is worth noting that this mixed model can remove the spurious secondary
peak.

Another attempt was to modify our implicit model to allow non-vanishing spectral
viscosity while adjusting its “plateau” value in order to follow precisely the time
evolution of €. Such LES can be considered as “optimal” in terms of ability to predict
the filtered kinetic energy E;. The time evolution of the resulting plateau value is
presented in Fig.2-right. Even if significantly higher levels of eddy viscosity are
required by comparison with the a priori estimation of v,_,_,, it confirms the ability
of adirectinfluence of the SGS model on very large scales to ensure the correct energy
dissipation. However, this “optimal” approach (that is only a test case in the sense
that it requires to know the expected time evolution of Ey) is found to underestimate



112 E. Lamballais et al.

102 DNS E(kt — ] .
~ LESE(kY ‘ " filtered DNS ——
“optimal’ LES E(k.t) LESoR Dl
. 30 - "optimal' LES —— |

107

107 -

10°

10°®

Fig. 4 Left: energy spectra E (k, t) at r = 10. Right: time evolution of the enstrophy ¢

E(k, t) at small scales (see Fig.4-left) with a resulting strong underestimation of
enstrophy (see Fig.4-right).

4 Conclusion

In order to investigate the scale-selective influence of SGS on the large scale dy-
namics, DNS and LES are performed for the Taylor—Green vortex problem. An a
priori analysis confirms the interest of the hyperviscous feature at small scale as used
in implicit LES, SVV and VMS. However, the assumption of zero SGS dissipation
at very large scales is found unrealistic for the high Reynolds number and coarse
LES mesh considered. A posteriori analysis shows that SGS modelling based on the
assumption of an inviscid cascade leads to a bottleneck effect on the kinetic energy
spectrum with a significant underprediction of the total SGS dissipation. The simple
addition of a constant eddy viscosity, even targeted to be optimal in terms of SGS
dissipation, is unable to give realistic results. To allow accurate predictions by LES,
a specific closure that incorporates both the hyperviscous feature (i.e. regularisation)
and the expected SGS dissipation at large scales has to be developed.
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1 Introduction

A very attractive feature of large eddy simulation (LES) is the possibility to apply
the dynamic subgrid scale model calculation developed by Germano et al. [1]. This
is a method for the calculation of model parameters as functions of time and space as
the simulation progresses. It avoids empirical treatment of model parameters such as
damping or wall modeling near the wall boundaries. On the other hand, dynamic LES
models usually suffer from instabilities. The mechanism of instability of dynamic
sub-grid scale (SGS) models has not yet been fully clarified. Several methods are
in use for the stabilization of dynamic SGS models. The most popular methods are
clipping of model parameters and their space averaging in homogeneous directions.
These stabilization techniques are often difficult or even impossible to apply. In
real flows, there are no homogeneous directions in space. It is also difficult to find
appropriate clipping values for dynamic LES parameters, which can depend on the
type of flow, Reynolds number and grid resolution.

The first step to avoid instability would be developing a physically consistent
SGS model. The application of the realizability principle is extremely useful for the
design of consistent dynamic LES models [2]. A dynamic SGS model based on a
realizable stochastic model for turbulent velocities [2, 3] was proposed. By applying
this realizable model for different flows we found that the model was always stable
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for turbulent channel flow [4] and the turbulent Ekman layer [5]. But with respect
to periodic hill flow simulations it was almost always but not always stable. We also
found that a dynamic LES model based on a realizable stochastic model does not
necessarily ensure the realizability of SGS stress tensor. In this paper we introduce a
method for the stabilization of any SGS model that applies the Boussinesq hypothesis
for the eddy viscosity. By examining the structure of the SGS stress tensor we derive
a condition for the realizability of the SGS stress tensor.

The paper is organized as following. In Sect. 2, we will consider the realizability of
an LES model based on two approaches: realizability with respect to the underlying
probability density function (PDF), which is also called filter density function (FDF),
and realizability of the SGS stress tensor. We show the derivation of the condition for
the realizability of the SGS stress tensor. In Sect. 3, we describe the flow considered
for testing our method. The results are presented in Sect. 4.

2 A Realizable LES Model

The concept of realizability expresses the need that an acceptable turbulence model
must describe a velocity field that is physically possible or realizable [6]. There are
several ways to actually apply this constraint. One way is to derive LES equations
from an appropriate realizable stochastic velocity model. This will be referred to
as PDF-realizability. Heinz proposed a dynamic LES model based on a realizable
stochastic model for turbulent velocities [2—4, 7-10]. This model implies the exact
but unclosed filtered Navier—Stokes equations.

The second way is to relate realizability constraints to the structure of the SGS
stress tensor. This will be referred to as stress-realizability. It is known that the
realizability constraints can be related to the property of the SGS stress tensor to be a
positive semi-definite matrix [11]. The SGS stress tensor 7;; is a positive semi-definite
matrix if it satisfies

Tij = 0 for i =], (D
T,%- <mwity; for i#], )
det(rij) > 0. 3)

By using the Boussinesq eddy viscosity assumption 7;; = 2/3k8;; — 2v; S'[j, the re-
sulting three realizability conditions can be written

k>0, “)

vl <1, (&)
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Here, the nondimensional variables v; and s are defined by
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A relevant property of s follows from linear algebra. Using Hadamard’s inequality
we conclude that |s| < 1. The use of a v;" realizability criterion that is independent
of s simplifies the use of this approach significantly. This can be accomplished by
the constraint that v} varies between the allowed values at s = —1 and s = 1, this
means |v;| < 23/48. To summarize, given that k > 0 the condition to ensure that the
sub-grid scale (SGS) stress tensor 7;; is a positive semi-definite matrix is to ensure
that |v"| < 23/48, which satisfies both Egs. (5) and (6).

Now, we apply the stress realizability condition to the PDF-realizable LES model
proposed by Heinz, which will be referred to as linear dynamic model with k-equation
(LDMK) [2]. This model uses the expression v, = Csk!/2 A for the eddy viscosity,
where Cy is obtained via

LM
Cs=——1——. @®)
My My

Here, L?j refers to the deviatoric Leonard stress L;; = U.U = U U ; (the overbar
refers to the test filter operation), and M;; is given by

M;; =2A"VkT 5y, )

which involves the test-filter SGS kinetic energy k” = L,,,/2 and filter width A7 =
2 A on the test-filter level.

According to the realizability condition |v;| < 23/48 derived, we find the Cg
realizability condition for the LDMK to be given by

23 k2

Cql < ————=. 10
|S|_24\/§A|S| (10)

3 The Flow Considered

For testing our stabilization method we apply the new realizable LDMK model to
a separated flow over two-dimensional hills. This flow configuration encompasses a
variety of relevant flow features such as separation, recirculation, and natural reattach-
ment. Figure 1 shows the computational domain applied in our simulations. The size
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Fig.1 Computational domain of two-dimensional hill flow simulations

of the computational domain is L, = 9k, L, = 3.035h, and L, = 4.5h in stream-
wise (x), wall normal (y), and spanwise (z) directions, respectively, where / is the
height of the hill. The Reynolds number Re = Uph/v is Re = 37,000 based on the
hill height and bulk velocity above the hill crest. At the bottom and top, the channel
is constrained by solid walls. No-slip and impermeability boundary conditions are
used at these walls. Periodic boundary conditions are employed in streamwise and
spanwise directions. In a recently published paper [12] we investigated the same flow
using pure LES and also unified RANS-LES models. We also studied grid effects for
both models for grids ranging from 60K to 20 M cells. In the present study, our aim
is to analyze the stability of dynamic models by investigating the effect of different
parameters. Therefore, we will use the same grid for all of our studies. From our pre-
vious studies we found that the grid of N, x Ny, x N, = 128 x 80 x 48 with 500K
cells is a well appropriate mesh for the present study. Computations are initialized
by a uniform bulk velocity U, except in cases in which we wanted to calculate cor-
relation functions (we used stationary solutions to calculate correlation functions).

4 Stability and Realizability

Although our original SGS model LDMK [2] was based on a realizable stochastic
model for turbulent velocities, it does not necessarily ensure the realizability of the
stress tensor. We found that our PDF-realizable LES model was computationally
stable for turbulent channel flow [3] and turbulent Ekman layer [5] simulations.
However, in periodic hill flow simulations [12] it turned out that PDF-realizable
model simulations were almost always but not always stable. This fact is shown in
Fig.2 which shows the time histories of C; and realizability bounds for two probe
points for 30 flow-through times (FTT). The location of the probe point P1 is in the
shear layer at the top of the first hill, and P2 is downstream of P1 in the middle of
the two hills. The red and blue circles in Fig. 2 indicate the times at which C; values
hit the upper and lower realizabilty bounds, respectively. At P1, we found that over
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Table 1 Stability of the LDMK and its extended bound versions depending on At

Simulation At =0.001 | Ar=0.002 |Ar=0.004 |Ar=0.008 |Ar=0.01
LDMK Stable Stable Stable Stable Stable
LDMK — 1.2B | Stable Stable Unstable Unstable Unstable
LDMK — 1.5B | Unstable Unstable Unstable Unstable Unstable
LDMK —2B | Unstable Unstable Unstable Unstable Unstable

30 FTT (corresponding to 150,000 iterations) on average 2% of C, values hit the
upper (positive) realizability bound and about the same number of C, values hit the
lower (negative) realizability bound. With respect to the probe point P2, we observed
corresponding hittings in about 0.4% of cases (again, the lower and upper bounds
had about the same hitting rates).

First, this shows that the PDF-realizable LDMK model, which is not combined
with the realizability bounds Eq. (10), is almost always realizable, but it is not strictly
always realizable, which may promote instability. Second, these results do also in-
dicate that the stress-realizable LDMK (the LDMK combined with the use of the
realizability bounds Eq.(10)) is stable. It should be noted that the realizability of
the LDMK model was also studied in the entire flow field (not shown here), and we
came to the same conclusions. We also considered the effect of the simulation time
step At on the realizability of the model. We found that an increasing simulation
time step increases the fluctuations of C; values such that the probability of hitting
the bounds increase as well.

To study the effectiveness of the realizability bounds on the stability of the dynamic
model we applied bounds that are 1.2, 1.5, and 2 times bigger than the regular bounds
Eq. (10). We refer to these models as LDMK-1.2B, LDMK-1.5B and LDMK-2B,

lower bound
upper bound 1.5
Cs

lower bound |
upper bound
Cs
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Fig. 2 Time histories of Cy and its realizability bounds in LDMK simulations for the last 30 flow-

through times at two different probe points P1 (left) and P2 (right). The red and blue circles indicate

the times at which Cy values hit the upper and lower realizabilty bounds, respectively. The time

step is Ar = 0.002
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respectively. Table I summarizes the stability analysis results for the LDMK and
its extended bound versions. We called a model stable when it does not become
unstable for 100 FTT. We see that the LDMK is strongly stable for a wide range of
time steps At = 1073~1072, which corresponds to CFL numbers ranging between
0.1-0.8. But the LDMK-1.2B is only stable for A = (0.001, 0.002), and the LDMK-
1.5B and LDMK-2B are unstable even for small CFL numbers (small A¢). First, it
can be concluded that the use of realizability bounds makes the LDMK model fully
realizable, and second, a model that is not stress-realizable can become unstable. It
seems that realizability is a required and sufficient condition for stability.

5 Conclusions

A PDF-realizable LES model has significant advantages compared to non-realizable
LES models. In particular, it has been shown for several flows that a PDF-realizable
models enabled stable simulations without any model parameter clipping or averag-
ing. But for complex flows, a PDF-realizable model can suffer from instability. On
the other hand, we found that consistency with underlying stochastic model equa-
tions does not necessarily ensure the realizability of the SGS stress tensor. Therefore,
we derived a condition for the realizability of the SGS stress tensor which makes
the LES model fully realizable. Stability analysis performed for a high Reynolds
number separated flow shows that the new fully realizable LES model (the LDMK)
is always stable for a wide range of CFL numbers. It is found that strict realizabil-
ity (PDF-realizability and stress-realizability) ensures the stability of the model. A
model that is not stress-realizable can become unstable.
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The Dynamic Smagorinsky Model in )
5123 Pseudo-Spectral LES of Decaying L
Homogeneous Isotropic Turbulence at

Very High Re;

O. Thiry, G. Winckelmans and M. Duponcheel

1 Introduction

We consider the large-eddy simulation (LES) of turbulent flows, in the classical view
where no regular explicit filtering is added to the truncation/projection due to the LES
grid. The truncation of the complete field u; (experimental or from direct numerical
simulation, DNS) to the much coarser LES grid corresponds to the incomplete LES
field and is noted ;. Assuming perfect numerics, the “effective subgrid-scales (SGS)
stress” is then obtained as 77" = u;u; — u;u;: i.e., the product of LES quantities
minus the product of complete quantities, and further truncated to the LES grid. The
divergence of that stress (i.e., the “effective SGS force”) represents the effect of the
removed scales on the LES scales. As there is no information beyond the LES grid
cutoff, the SGS stress (or the SGS force) can only be modeled.

The Smagorinsky model [8] is one of the oldest ones used to parameterize, in a
simple way, the effect of the deviatoric part of the SGS stress tensor on the scales

captured by the LES grid. It reads:

??;35 mo=de1 2 USGSEU ,
where E,-_,- is the strain rate tensor of the LES field and v°% = Cg A2 |S] is the “effec-

tive SGS viscosity” (with |§|d§\/ 28,5, the characteristic inverse time scale and A
the characteristic size of the local grid). The value Cg >~ (0.3)3 = 0.027 is obtained
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from an a priori analysis when assuming decaying homogeneous isotropic turbu-
lence (DHIT) at high Re;, LES on a uniform grid (hence A = h) with cutoff well
within the inertial range, and a Kolmogorov constant Cx =~ 1.6, see [5] (and [6] for
a complete analysis).

Based on the assumed similarity of the SGS stress at two levels (the LES grid level,
and a coarser “test level” obtained by additional projection of the LES field onto a
coarser grid), a dynamic procedure was then further proposed that allows to obtain
the optimal value of the Cy coefficient of the model [4]. Good success was obtained
with that “dynamic version of the Smagorinsky model” (DSM) by comparing LES
results to DNS results (hence necessarily at moderately high Re): first in DHIT, next
in turbulent channel flow, and then on more complex flows.

In DHIT, the least-square error minimization used in the dynamic procedure can
be volume averaged, and the obtained Cg is then solely a function of time. The
Smagorinsky model is also only “weakly non linear” in DHIT, because the LES field
|S|] is quite uniform: the expected spectral behavior is thus that of an quasi-linear
SGS viscosity model.

When using classical numerical methods (finite differences, finite volumes, etc.),
there are dispersion errors; even for methods without numerical dissipation (i.e., with
energy conserving discretization of the convective term). When using a de-aliased
pseudo-spectral method, as here, there are neither dispersion errors nor diffusion
errors (except the small numerical diffusion caused by the time integrator). Such a
method can, of course, only be used for flows with homogeneous directions such as
DHIT; yet, such study is instructive as it allows to investigate how the SGS model
really performs when using an “essentially perfect” numerical method.

The spectral behavior of various SGS models (Smagorinsky model, filtered
Smagorinsky model, filtered structure function model, multiscale models that solely
act on the high wavenumbers part of the LES field, linear high order hyper-viscosity
model) in DHIT was already studied in [2]: at moderate Re; (and then compared to
a reference DNS); and then at very high Re;, (not even defined, as LES run with-
out molecular viscosity) and using large LES grids (1283 and 256°). A de-aliased
pseudo-spectral method (energy conserving in the absence of molecular or SGS
viscosity [3]) was used as the reference. Then a hybrid (i.e., Eulerian—lagrangian)
“vortex particle-mesh” (also called “vortex-in-cell”’) method was also used: it solves
the Navier—Stokes equations in the vorticity-velocity formulation, also has good
properties (negligible numerical dispersion and dissipation) and also can be used for
LES (using SGS models expressed in vorticity form). Those simulations were all
done using the static approach: the coefficient of each model was calibrated so as to
provide the desired global dissipation: that of the truncated DNS for the former case;
that obtained using the Smagorinsky model with Cg = 0.027 for the latter case.
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2 Present Investigation: Set Up and Results

In the present investigation, we revisit the Smagorinsky model with the de-aliased
pseudo-spectral code, but using instead the dynamic procedure to determine Cg: thus
the “dynamic Smagorinsky model” (DSM). We consider DHIT at very high Re,, and
we use an even larger LES grid (512%) than in [2]. The fundamental question is then:
how does the DSM perform in such DHIT, relatively to the state of knowledge and
theory?

The computational box is L* with L = 27. The 1-D grid cutoff wavenumber is
thus k. = 7 = 256. When integrating in time the LES equations, we do not apply a
spherical truncation after each time step to the modes with k* = k? + kg + k2 > k2.
The test filter used in the dynamic procedure corresponds to a sharp Fourier cutoff of
the modes with % < |kgl, lkyl, |k;| < k.. We also do not apply a spherical truncation
when applying the test filter: the dynamic procedure is thus fully self-consistent as
the cutoff test filter is similar to the cutoff filter corresponding to the LES grid.

We start from a theoretical energy spectrum, using random phases for the spectral
modes. It then takes an initial transient (not shown) to reach LES of DHIT at statistical
equilibrium. The time # = 0 is here a time when such a statistical equilibrium has
been reached. We then measure global quantities at that time: the turbulent kinetic
energy Ey (~0.689), the characteristic global velocity Uy = +/Ey (~20.830), the
energy dissipation rate gy = —% |0 (=~0.752), the characteristic global length scale

L = g—f (=~0.760), and the characteristic global time scale ty = % (=~0.915); those
are used to make plots dimensionless. The Taylor micro-scale Reynolds number

is defined as usual: Re, = ? g As can be seen in Fig. 1, it is very high. The

obtained statistical equilibrium is thus here also maintained for very long times
(times much longer than the present LES), so long as the molecular viscosity remains
negligible relatively to the SGS viscosity. As expected, the dynamically obtained Cy
is very stable, and it slowly decreases in time. The obtained value is of the order of
Cy; >~ 0.0115: less than half the value predicted by the simplified, a priori, theoretical
analysis (that value is not an error: the predicted Cs at one time was cross-checked
using two implementations, and codes, of the dynamic procedure run on the same
LES field).

We also recall that, in DHIT, the energy E decays like ~"; and hence the dissipa-
tion rate & decays like ="+, Values of n between 1.15 and 1.45 are reported in the
literature; the study by [7] suggesting that the good quality data are consistent with
n =~ 1.3. One then also obtains that % = % (%) which is here also used to measure
the “effective n exponent” (noted n.) of the present DSM LES. We here obtain that
n. >~ 1.5, see Fig. 2 (the variations are due to computing the instantaneous derivative
of %, where ¢ = —‘Z—f is also computed instantaneously; they should not be taken
as an “experimental range” of our LES). For comparison, the studies in [2], using
static SGS models, gave n, ~~ 1.49 for the Smagorinsky model (thus very close to
the value obtained here using the DSM), n, =~ 1.45 for the structure function model,

and n, =~ 1.38 for the regularized variational multiscale (RVM) model. As the exper-
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Fig. 1 Evolution of the dynamic coefficient Cg, of the Taylor micro-scale Reynolds number Re;,
of the energy E (relatively to Eg) and of the energy dissipation rate ¢ (relatively to &)

imental data used to measure n were at moderately high Re;, an interesting question
arises as to a possibly higher value of n for DHIT at very high Re;.

The next investigation concerns the spectra. The energy spectra, made dimen-
sionless using E(k., t), collapse very well over the range k >~ 20 to k. = 256. So
do the compensated energy spectra. We, of course, do not expect to recover a fully
inertial k=>/3 range all the way to the highest wavenumbers, as such behavior can
only correspond to zero dissipation. The obtained spectra are however quite remark-
able, see Fig.2: we obtain an inertial behavior over a wide range of wavenumbers:
from k; ; >~ 30to k; » =~ 180 (= 0.70 k.). Even the rest of the spectrum, from k; , all
the way to k., is still quite good, as it does not depart much from the inertial range.
To anyone experienced in LES, this additional “pseudo-inertial” behavior is quite
remarkable (and, to our knowledge, not seen before in such LES of DHIT); it is also
quite encouraging for the use of the DSM in LES of more complex flows.

The SGS model dissipation spectra are then also provided in Fig. 2, and with linear
scale axes (the molecular viscosity dissipation spectrum, &”(k, t) = 2vk* E(k, t), is
here relatively very small as the SGS dissipation overwhelms the molecular one).
When made dimensionless using L &(z), those spectra are seen to collapse very well,
over all wavenumbers. We have thus obtained the effective dissipation spectrum of
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Fig. 2 Evolution of the effective n exponent. Dimensionless energy spectra, compensated energy
spectra, SGS dissipation spectra, and effective spectral SGS viscosity (using two normalizations)
at1/t0 = 0, 4/3, 8/3 and 4 (for the SGS viscosity normalized using L v/E, /g = 0 corresponds
to the top curve and ¢ /¢y = 4 to the bottom one)

such “DSM fluid in DHIT at very high Re; and run on a large LES grid”. From

that result, we can further compute the “effective spectral SGS viscosity” defined as
def

5% (k, )=2v5(k, t) k* E (k, t): see Fig. 2, also with linear scale axes. When made

dimensionless using w, as also done in [1], the collapse is very good; whereas
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it is clearly not that good when using L /E(t). We also clearly observe the quasi-
uniform value of the spectral SGS viscosity over all wavenumbers; confirming the
quasi-linear behavior of the Smagorinsky model in such DHIT (i.e., re-running the
LES using a uniform SGS viscosity would lead to very similar results). Finally,
we stress that such DSM LES is basically “under-resolved with respect to its own
dynamic SGS viscosity”. Indeed, if we compute the “velocity gradient mesh Reynolds
number” based on that SGS viscosity, we obtain Re;™ = 'fs'gg = c_ ~ 87: thisis too
high for properly resolving such SGS viscosity effects on such grid. This also explains
why the end of the spectrum does not plunge down more at the highest wavenumbers;
here, it instead sort of prolongates the inertial range into a pseudo-inertial range all

the way to k..

3 Conclusion

The DSM has been investigated in pseudo-spectral LES of decaying HIT (DHIT)
at very high Re, and using a large 5123 LES grid. The asymptotic behavior has
been reached, and the effective SGS dissipation spectrum has been obtained. The
derived spectral SGS viscosity was confirmed to be essentially uniform over all
wavenumbers; confirming the quasi-linear behavior of the DSM in LES of DHIT.
Moreover, the obtained SGS viscosity value is such that the mesh Reynolds number
based on it is too high to properly resolve the SGS viscosity effects on the LES
grid; this leads to an energy spectrum where the true inertial range (here ending at
~0.70 k.) is prolongated by a sort of “pseudo-inertial” range all the way to k..
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Large-Eddy Simulation of Rotating oo
Turbulent Flows

M. H. Silvis and R. Verstappen

1 Introduction

We consider large-eddy simulation of incompressible rotating turbulent flows. In
large-eddy simulation one seeks to predict the large-scale behavior of turbulent flows
without resolving all the relevant flow details. This is commonly done by supple-
menting the Navier—Stokes equations with an additional forcing term, a subgrid-scale
model, aimed at representing the unresolved flow physics.

Rotating turbulent flows form a challenging test case for large-eddy simulation
due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic
energy, while also redistributing it. More specifically, the Coriolis force transports
kinetic energy from small to large scales of motion, leading to the formation of large-
scale anisotropic structures [7]. Many subgrid-scale models for large-eddy simulation
are, however, (primarily) designed to parametrize the dissipative nature of turbulent
flows, ignoring transport processes.

We therefore consider a subgrid-scale model consisting of two terms. The first
term is of eddy viscosity type. It is linear in the rate-of-strain tensor and it is used to
represent the dissipative behavior of turbulent flows. The second term is nonlinear in
the local velocity gradient and is aimed at parametrizing nondissipative processes,
such as those due to rotation. We study the behavior of this nonlinear subgrid-scale
model in large-eddy simulations of a spanwise-rotating plane-channel flow.

The structure of this paper is as follows. The nonlinear subgrid-scale model for
large-eddy simulation is introduced in Sect. 2. Then, Sect.3 describes the details of
spanwise-rotating plane-channel flows, of which we perform large-eddy simulations
in Sect. 4. Finally, conclusions are drawn in Sect. 5.
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2 Nonlinear Subgrid-Scale Models

Large-eddy simulations of incompressible rotating turbulent flows can be described
by
aui .
8x,» B

8u,~
ot

a 1 ap ol 0 od
+ o, (wiu;) = P +2v o, Sij — 2612 jug o, T
()
Here, u; indicates the x;-component of the large-scale velocity field, while p repre-
sents the modified large-scale pressure, including the centrifugal force. The density
and kinematic viscosity are labeled p and v, respectively. The rate-of-strain and

rate-of-rotation tensors of the large-scale velocity field are defined according to

-ty g, () o
Y2 \dx; o o ) Y2 \dx; o)

while €2; represents the rotation rate of the frame of reference about the x;-axis.
Without loss of generality we will assume that the axis of rotation is the x3-axis, i.e.,
Q; = §;323. The Einstein summation convention is assumed for repeated indices.
Note that we consider large-eddy simulation without explicit filtering. Hence, no
bars or tildes indicating a filtering operation appear in the above equations.

We model the deviatoric part of the subgrid-scale stress tensor with the following
nonlinear model,

s

7:mod,dev = =208 + (e (SQ — Q25). 3)

The first term on the right-hand side of (3), the usual eddy viscosity term, is used
to parametrize dissipative processes in turbulent flows. The second term, that is
nonlinear in the velocity gradient, is added because it is perpendicular to the rate-
of-strain tensor. Therefore, it does not directly contribute to the subgrid dissipation
and it represents energy transport. As this term contains the rate-of-rotation tensor,
it has “a particular potential for [the simulation of] rotating flows” [4].

We propose to define the eddy viscosity, v., and the transport coefficient, (., by

1

Ve = (Cv8)2§|S|f33, 4)
1

[he = Cuszzf;‘s. 5)

Here, C, and C, are the model constants, § represents the subgrid characteristic

length scale and the magnitude of the rate of strain is defined as |S| = /tr(S2). The
nondimensionalized vortex stretching magnitude,

|Sw]

fvs = STl (6)
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is used to enforce the proper near-wall scaling behavior of the modeled stresses and to
make sure that the model vanishes in two-component flows [6]. The vorticity vector
is given by w; = —&;jx Q2 jk.

3 Spanwise-Rotating Plane-Channel Flow

To study the vortex-stretching-based nonlinear subgrid-scale model of (3) we con-
sider large-eddy simulations of a spanwise-rotating plane-channel flow. Such a flow
can be characterized using the friction Reynolds and rotation numbers,

d 2Qd
Re, =% Rot =225 7
% Ur

where u, is the friction velocity and d represents the channel half-width.

The rotation number, Ro™, determines the behavior of a spanwise-rotating plane-
channel flow. For small rotation numbers the flow is mostly turbulent, although a
(small) laminar region may appear close to one of the walls. As the rotation number
increases, the laminar flow portion grows, until, for significant rotation numbers,
the flow fully laminarizes. The mean velocity profile of a spanwise-rotating plane-
channel flow exhibits a characteristic linear slope (proportional to Ro™) correspond-
ing to the unstable (turbulent) part of the flow, while a parabolic profile emerges on
the stable (laminar) side. Laminarization is further characterized by the decay of the
Reynolds stresses. Refer to the work by Grundestam et al. [3] for more information
about spanwise-rotating plane-channel flows.

4 Numerical Results

We studied the vortex-stretching-based nonlinear subgrid-scale model of (3) by per-
forming direct and large-eddy simulations of a spanwise-rotating plane-channel flow
with Re; &~ 395 and a moderate rotation number, Ro* = 100. These simulations
were performed using an incompressible Navier—Stokes solver employing a kinetic-
energy-conserving spatial discretization of finite-volume type [9]. As such, the ki-
netic energy in the simulations was by construction conserved by convection, by the
Coriolis force and by the nonlinear term of the subgrid-scale model.

The flow domain in the simulations had dimensions 2wd x 2d x wd and was
taken periodic in the streamwise (x;) and spanwise (x3) directions. The large-eddy
and direct numerical simulations were, respectively, performed on 32° and 128 x
256 x 128 grids that were stretched in the wall-normal direction.

The large-eddy simulations made use of the vortex-stretching-based eddy viscos-
ity model ((3) with C,, = 0) and the vortex-stretching-based nonlinear subgrid-scale
model of ((3) with C,, # 0). The value of the eddy viscosity constant was estimated
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to be C, & 0.59 by requiring that the average dissipation due to the model matches
the average dissipation of the Smagorinsky model [6]. The value of the transport
coefficient of the nonlinear model, C,,, was subsequently tuned to obtain the best
prediction of the Reynolds stresses. As is commonly done, the subgrid characteristic
length scale was defined using the local grid size, § = (Ax; Ax,Ax3)!'/? [2]. Refer
to the literature for an overview of alternative (flow-dependent) definitions of this
length scale [5, 8]. Results from direct numerical simulations and from large-eddy
simulations without a subgrid-scale model serve as reference data.

Figure 1 shows the mean velocity profile, and the behavior of the Reynolds shear
stress and spanwise Reynolds stress as obtained from the simulations. Since we
consider traceless subgrid-scale models, only the deviatoric (anisotropic) part of the
Reynolds stresses is considered. These results are further compensated by the average
contribution from the subgrid-scale model [10].

The typical features of the flow in a spanwise-rotating plane-channel are clearly
visible: the mean velocity profile exhibits a linear slope on the unstable side of the
channel, while the Reynolds shear stress attains small values on the stable side.
Contrary to what could be expected, the stresses do not exactly vanish on the stable
side of the channel, which is most likely due to the occurrence of turbulent bursts [1].

The large-eddy simulations with the vortex-stretching-based subgrid-scale models
slightly improve the prediction of the peak height and slope of the mean velocity pro-
file when compared to the no-model result. Corresponding behavior can be observed
in the Reynolds shear stress. These results indicate that the vortex-stretching-based
eddy viscosity and nonlinear subgrid-scale models behave well.

The added value of these subgrid-scale models becomes clear when consider-
ing the deviatoric part of the streamwise Reynolds stress. Large-eddy simulations
without a subgrid-scale model fail to predict that quantity, supporting the conclu-
sion that subgrid-scale modeling is indeed justified, even at low friction Reynolds
numbers [5]. Large-eddy simulations with the vortex-stretching-based eddy viscos-
ity model provide a reasonable prediction of the streamwise Reynolds stress. This
prediction is improved when including the nonlinear model term, as can most clearly
be seen on the unstable side of the channel (0 < x,/d < 1). Similar conclusions can
be drawn for the deviatoric part of the wall-normal and spanwise Reynolds stresses
(not shown). Thus, the addition of the nonlinear term to an eddy viscosity model
leads to an improved prediction of the Reynolds stress anisotropy, while maintaining
a reasonable prediction of the mean velocity profile and the Reynolds shear stress.

5 Conclusions

We focused on the construction of subgrid-scale models for large-eddy simulation of
rotating turbulent flows. Rotating turbulent flows are characterized by the presence
of the conservative Coriolis force. These flows form a challenging test case for large-
eddy simulations using eddy viscosity models, as these subgrid-scale models are
mainly aimed at capturing the dissipative behavior of turbulent flows. We therefore
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Fig. 1 a Mean velocity
profile, b Reynolds shear
stress compensated by the
model contribution and ¢
deviatoric part of the
streamwise Reynolds stress
compensated by the model
contribution, as obtained
from large-eddy simulations
(LES) of a spanwise-rotating
plane-channel flow at
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(a)

100 -

— DNS
--@ - No model
--8-LES VS EV

Re; ~ 395 and Ro™ = 100 i
on a 323 grid. Simulations 0¥
were performed without a (b) 1
subgrid-scale model (dotted
line, circles), with the
vortex-stretching-based eddy
viscosity (VS EV) model
((3) with C), ~ 0.59 and

C,, = 0) (dashed line,
squares), and with the
vortex-stretching-based
nonlinear (VS EV + NL)
subgrid-scale model ((3)
with C, ~ 0.59 and C,, =5)
(solid line, triangles).
Results from direct
numerical simulations (DNS)
ona 128 x 256 x 128 grid
are shown as reference (thick
solid line). The quantities on
the vertical axis are
nondimensionalized using
the friction velocity

—— LES VS EV + NL §
! ! !

x2/d

proposed a new subgrid-scale model that, in addition to a dissipative eddy viscos-
ity term, contains a nondissipative nonlinear term. This subgrid-scale model was
successfully tested in large-eddy simulations of a spanwise-rotating plane-channel
flow. In particular, we showed how the addition of the nonlinear model term leads
to an improved prediction of the Reynolds stress anisotropy. These findings confirm
the potential of a nondissipative nonlinear model term for large-eddy simulation of
rotating turbulent flows.
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A New Subgrid Characteristic Length )
for LES i

F. X. Trias, A. Gorobets and A. Oliva

1 Introduction

Large-eddy simulation (LES) equations result from applying a spatial commutative
filter, with filter length A, to the Navier—Stokes equations

du+ @ VY u=vVu—-Vp—V-t@), V-u=0, (1)

where u is the filtered velocity and 7 () is the subgrid stress (SGS) tensor and aims
to approximate the effect of the under-resolved scales, i.e. T(@) U@ u — u Q u.
Most of the difficulties in LES are associated with the presence of walls where
SGS activity tends to vanish. Therefore, apart from many other relevant properties,
LES models should properly capture this feature [1]. Numerically, this implies an
accurate resolution of the near-wall region which results on a high computational
cost at high Reynolds numbers. Accurate estimations of these costs, including the
temporal scales, are given in the next section. They lead to the conclusion that, in
the near future, the feasibility of wall-resolved LES (WRLES) at high-Reynolds
numbers should rely on substantial cost reductions in the viscous wall region. This
may be achieved by decreasing the number of grid points using high-order schemes
or/and using larger time-steps (implicit-explicit time-integration?). Furthermore, it is
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also concluded that the mesh anisotropy increases with the Reynolds numbers. This
represents an additional challenge for WRLES. In this context, a novel definition of
subgrid characteristic length, A, is proposed with the aim to answer the following
research question: can we find a simple and robust definition of A that minimizes the
effect of mesh anisotropies on the performance of SGS models?

2 Wall-Resolved LES: Computational Costs and Mesh
Anisotropies

In his 1979 pioneering paper, Chapman [2] estimated the number of grid points for
an LES of turbulent boundary layers with and without wall modeling as

Num ~ Re;” and N, ~ Re;”, 2)

respectively, where Re; = UL, /v is the Reynolds number based on the free-stream
velocity, U, and the flat plate length in the streamwise direction, L,. To reach these
scalings, Chapman used the following skin friction correlation

¢y =0.045Re; '/*, 3)

where Res = U4§/v is the Reynolds number based on the boundary layer thickness,
8(x), and assumed a seventh-power velocity distribution law, i.e. u ~ y'/7. The latter
leads to an exact relation between the momentum thickness, 6, and § given by 6 =
76/72. Then, using Eq.(3) and ¢y = 2d0/dx leads to

8
— =0.37Re;' and ¢y =0.0577Re; />, (4)
X

where Re, = Ux/v is the Reynolds number based on the streamwise distance from
the leading edge, x. From these equations itis relatively easy to show the scaling given
by Chapman in Eq. (2). Recently, Choi and Moin [3] gave new estimations based on
a more accurate skin friction correlation for high Reynolds numbers (10° < Re, <
10°) given by

¢y = 0.020Re; /°. (5)

In this case, the analysis leads to

Nym ~ Rey, and N, ~ Re;’'’. (6)
These findings are extensively used to emphasize the prohibitive costs of LES with-
out wall-modeling and the necessity, in the foreseeable future, of wall-modeling

techniques for applications at high Reynolds numbers. However, under some as-
sumptions, these scalings are only valid for a range of Re,; moreover, they do not
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include the costs associated with temporal scales which eventually can be even more
restrictive due to the inherent difficulty (impossibility?) to parallelize LES equations
in time. These two issues are addressed in the next paragraphs. Let us consider a
general power-law for the skin friction coefficient

cr = aRef. (7

Then, following the above explained reasonings it leads to

8

— =bRe} and ¢y =7b/36(x + 1)Re, ()
X ‘

where b = (36a(1 — B)/7)/9=P and @ = B/(1 — B). Notice that with a = 0.045
and f = —1/4 it leads to the Chapman’s scalings given in Egs. (4). Following the
same reasonings as in Ref. [3] the number of grid points in the outer layer and the
viscous wall region can be estimated as follows

1 L R 142«
N =nnyn, | —— —ZRezza oL -1], )
’ b2(1 +2a)/) L, ¥ Rey,,
w 1+a
pvis = M ThLepaa () (Rew )™ (10)
Axj Az T2 L, B Re;, ’

where n,nyn, is the number of grid points to resolve the cubic volume §°(x) in
the outer layer (typically in the range 10° — 10* [3]), L. is the spanwise length and
X is the initial streamwise location where the skin friction correlation (8) holds.
Then, ij; s Azj; and n;V are respectively the grid resolutions (in wall units) and the
number of grid points in the wall-normal direction in the viscous wall region, i.e. 0 <
y* S 1 ~ 100. Typical values for WRLES lead to n) /(Ax;} Az) ~ 0.01 [3]. This
analysis can be extended giving estimations of the number of time-steps for the outer
layer and the viscous wall region

our _ Nrunx

= U Ry Re T N = eV N (D
where
. N7y 7b 1 : N 7b 1
N[st = —TU _—Ol ++ ReLxReff; ZVIW“v = v —_ d ++ ReLVRefC‘/Z,
@ Cdiff 72 (Ayw)z 0 o Cconv 72 (A)CW )2 ' 0
(12)

where Nry is the number of time-units, L, /U, to be computed; Ce,,, and Cy; ¢y are
the convective and diffusive constants in the CFL condition. In summary, combining
Eqgs. (9)—(11) leads to the following costs for LES with and without wall-modeling:
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N} Ny ~ Rej and NN, ~ Re;*. (13)

Nowadays, this represents the main limitation of (wall-resolved) LES. On the other
hand, it is also possible to give estimations of the mesh anisotropy, i.e. Ax/Ay, in
the boundary layer. Namely, in the viscous sublayer, max(Ax/Ay) = Ax;\ /Ay ~
50 — 100 is not expected to change with the Reynolds number. However, in the
overlap region (y™ 2> 50, y/8 < 0.1) where control volumes of the viscous wall
region and the outer layer (y ™ 2> 50) must be smoothly connected, the grid anisotropy

can be estimated as .
Ay overlap (Ay)vis Ny ly

where [, is the size of the viscous wall region, i.e. l; = u.l,/v &~ 50 — 100. Recalling
the definition of the skin friction coefficient, ¢ ; = 7,,/(pU?/2), and using the relation
given in Eq. (8), an expression in terms of Re, can be obtained

(ﬂ) ~ L 1 ni b /7b(a+1)Re1+3a/2 (15)
Ay overlap \/E Ny l;r 36

Therefore, for any value of « > —2/3 the mesh anisotropy, Ax /Ay, tends to grow
with Re,. Taking typical values for n, = 10, n) = 20 and l+ = 100, and using,
respectively, the skin friction coefficient correlatlons used by Chapman [2],ie. =
—1/5and b = 0.37, and Choi and Moin [3],i.e.oc = —1/7and b = 0.17, it simplifies

Ay \ Chapman Ay \ Choi&Moin
(—) ~ 0.00125Re]/""; (—) ~ 4.047 x 107*Re! /1™,
y

Ay
(16)
Just as examples, this leads to mesh anisotropies of 19.9 and 20.96 at Re, = 10°, and
99.7 and 127.97 at Re, = 10”. Therefore, numerical techniques that behave robustly
in such meshes are of great interest. In this context, a new definition of the subgrid
characteristic length in presented and tested in the next section.

overlap overlap

3 A New Definition of the Subgrid Characteristic Length

Because of its inherent simplicity and robustness, the eddy-viscosity assumption,
t(u) ~ —2v,S(u), is by far the most used closure model for LES equations (1).
Then, the eddy-viscosity, v,, is usually modeled as follows

= (Cn2)* Dy, (W). (17)

In the last decades most of the research has focused on either the calculation of the
model constant, C,, (e.g. the dynamic modeling approach), or the development of
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Fig.1 Energy spectra for decaying isotropic turbulence corresponding to the experiment of Comte-
Bellot and Corrsin [10]. Results obtained with the new definition Ay, proposed in Eq.(18) are
compared with the classical definition proposed by Deardorff given in Eq.(20). For clarity, latter
results are shifted one decade down

more appropriate model operators D,, (z) (e.g. WALE [4], Vreman’s [5], Verstap-
pen’s [6], o-model [7], S3PQR [1],...). Surprisingly, little attention has been paid on
the computation of the subgrid characteristic length, A, which is also a key element
of any eddy-viscosity model. Despite the fact that in some situations it may provide
very inaccurate results, three and a half decades later, the approach proposed by
Deardorff [8], i.e., the cube root of the cell volume (see Eq.20), is by far the most
widely used to computed the subgrid characteristic length, A. Its inherent simplicity
and applicability to unstructured meshes is probably a very good explanation for that.
With the aim to overcome the limitations of the Deardorff definition, the following
definition is proposed [9]

GAGT, : GG”

A =1\ GGT . GGT

(18)

where G = Vu, G, = GA and A = diag(Ax, Ay, Az) (for a Cartesian grid). This
definition of A fulfills a set of desirable properties. Namely, it is locally defined
and well bounded, Ax < Ajq < Az (assuming that Ax < Ay < Az). Moreover, it
is sensitive to flow orientation and applicable to unstructured meshes (by simply
replacing the tensor by the Jacobian of the mapping from the physical to the compu-
tational space). This definition (18) is obtained minimizing (in a least-squares sense)
the difference between the leading terms of the Taylor series of the SGS tensor, 7 (%),
for an isotropic and an anisotropic filters lengths; namely,

2
T(w) = %GGT +0(AY; t@) = éGAGQ + 0(A%). (19)

Results displayed in Fig. 1 correspond to the classical experimental results ob-
tained by Comte-Bellot and Corrsin [10]. LES results have been obtained using
the Smagorinsky model, for a set of (artificially) stretched meshes. Regarding the
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spatial discretization of the eddy-viscosity models, the approach proposed in
Ref. [11] has been used. Results for pancake-like meshes with 32 x 32 x N, and
N, = {32, 64, 128, 256, 512, 1024, 2048} are displayed in Fig. 1 (top): for increas-
ing values of N, the results obtained using the Deardorff definition, given in

Ay = (AxAyAR)'P, (20)

diverge. This is because the value of A tends to vanish and, therefore, the subgrid-
scale models switch off. This is not the case for the definition of A proposed in
this work. Instead, results rapidly converge for increasing values of N,. A similar
behavior is observed in Fig. 1 (bottom) for pencil-like meshes with32 x N, x N_and
N, = {32, 64, 128, 256, 512, 768}. Therefore, the proposed definition of the subgrid
characteristic length, A;y,, seems to minimize the effect of mesh anisotropies on the
performance of subgrid-scale models.

4 Concluding Remarks

Estimations of the computational costs for LES with and without wall modeling
were originally given by Chapman [2], and more recently, by Choi and Moin [3].
Here, these estimations have been extended by the general power-law of the skin
friction coefficient given in Eq.(7), including the temporal scales. Furthermore, it
has been found that the mesh anisotropy in the overlap region increases with the
Reynolds number (see Eq. 15). This represents an additional challenge for LES. In
this context, a novel definition of subgrid characteristic length, A, is proposed with
the aim to answer the following research question: can we find a simple and robust
definition of A that minimizes the effect of mesh anisotropies on the performance
of SGS models? In this regard, we consider the novel definition of Ay proposed in
Eq.(18) as a very good candidate. Results for decaying isotropic turbulence show
that the proposed definition of A seems to minimize the effect of mesh anisotropies
on the performance of subgrid scale models.
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On the Richardson Extrapolation of the )
Reynolds Stress with the Systematic Grid | @&
and Model Variation Method

M. Klein, G. Scovazzi and M. Germano

1 Introduction

The error assessment, and more generally the Uncertainty Quantification, of a Large
Eddy Simulation is a difficult topic that presently is extensively explored. Apart the
error-landscape approach [1], that requires a large number of simulations as well as
a reference DNS, two are mainly the practical approaches to this problem, the first
based on stochastic projections, and the second based on the Richardson extrapola-
tion. The first approach addresses the sensitivity of LES to grid resolution and subgrid
scale modeling by using a small number of LES simulations. They are considered
as input random variables with a given probability distribution, and the propagation
of the uncertainty through the computational model is quantified by using the gen-
eralized Polynomial Chaos (gPC) approach. This technique can be applied in two
different ways: the intrusive approach is based on inserting the gPC decomposition
of all stochastic quantities directly into the Navier-Stokes equations [2], while in the
non intrusive approach the errors are directly projected over the orthogonal basis
spanning the random space, without any modification of the deterministic solver [3].

The Richardson extrapolation [4], or the deferred approach to the limit [5], is
based on the intuitive and appealing idea that if we combine two or more different
simulations at different grid resolution, we could eliminate leading order error terms
in an assumed error expansion. Its application to computational fluid dynamics has
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been pioneered by Roache [6] and can be applied both as a postprocessing technique
and an error estimator. Its extension to LES presents some specific problems [7], due
to the interaction of the discretization error with the subgrid scale model contribution.
Another important peculiarity of the application of the Richardson extrapolation to
LES is due to the chaotic nature of the numerical results. They are averaged in
time, and the extrapolation is usually applied to the statistical mean extracted by
postprocessing procedures.

The quantities that are usually extrapolated, both in order to improve the com-
putational results and to estimate the related errors, are the long time averages of
the velocity components and the Reynolds stresses. The application of the Richard-
son extrapolation to the mean velocities is straightforward, but its extension to the
Reynolds stresses is not so simple. First of all we have to distinguish in the reconstruc-
tion of the statistical Reynolds stresses starting from a LES database, two distinct
contributions: the resolved part, directly given by the filtered velocity components,
and the subgrid scale contribution, in some cases explicitly provided by the subgrid
model. The trace of the Reynolds stresses is two times the turbulent kinetic energy,
a very important quantity both from the practical point of view and as an indicator
of the quality of LES [7].

In order to estimate the discretization error and the subgrid scale model uncertainty
in a large eddy simulation, a Systematic Grid and Model Variation has been recently
proposed by Klein [7]. As in the case of the error-landscape approach, and the non
intrusive stochastic method, it requires some different simulations at different grid
length and modeling constants but their number is limited to three. As such this
method seems more practical when the complexity of the case requires too much
time for an extended multisimulation as required by different UQ methods. In this
paper we will explore in more detail the fundamentals of this approach, in particular
as regards the extrapolation of the Reynolds stresses.

2 The Operational Systematic Grid and Model
Variation Method

The key idea of the Richardson extrapolation [4] is to consider a numerical calcula-
tion, provided by a numerical code, as an analytic function, possibly very complex,
of some parameters introduced by the discretization, typically the grid length. We
remark an interesting analogy with the key idea that sixty years later is applied by
Leonard [8] to the formalization of the Large Eddy Simulation. In this last case we
assume that an under-resolved numerical computation can be formally represented as
a convolution in the physical space operated by an analytic, possibly very complex,
explicit filter. In both cases, at the very beginning of two capital advancements of the
applied research, we have a similar attitude. In this paper we would like to connect
these two approaches. Ideally we will interpret the Richardson extrapolation opera-
tionally, as a defiltering procedure that should provide the best that can be extracted
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by a multigrid large eddy estimation. In a sense we try to couple the Leonard filtering
and the Richardson extrapolation in a joint filtering-defiltering approach.

In order to be more precise as regards the operational procedure proposed, we will
apply here the new method to a particular Richardson extrapolation recently proposed
by Klein [7] in order to estimate the discretization error and the subgrid scale model
uncertainty in a Large Eddy Simulation, the Systematic Grid and Model Variation
method. Let us indicate with .7, .%, and .%; three filtering operators associated to
three large eddy simulations at different grid resolution and modeling factor, and let
us indicate with .# the identity operator. The operational interpretation of the SGMV
method can be written as

I =c1F + 2 Fp + 3F3 (D

where
crt+o+a=1 ()

and in a sense should represent the approximate deconvolution operated by the
Richardson extrapolation to the three LES simulations. We will further assume that
this relation can also be applied to Reynolds stresses. Following this idea and using
;i = (-); we can write

uj = ci{ui)1 + ca{ui)2 + c3u;)s3

uiu; = cy(uiuj) + cafuiuj)s + ca{uu;)z 3)
and we finally obtain

Rij = ciRyij + 2Rz j + c3R3 5
+ aTij + ottt
+ crea ((ui)y — (ui)2) () — (uj)2)
+ cacs ((ui)2 — (ui)3) ((uj)2 — (u))3)
+ caer ((ui)s — (uidr) ((uj)3 — (uj)1) “4)

where R;; is the extrapolated Reynolds stress
Rij = uju; —uiu; &)

Rgij, To,ij are the resolved Reynolds stresses and the subgrid stresses associated to
the three LES simulations

Ryij = (Ui)a(Uj)e — (Ui)a (Uj)a
Taij = (Uiltj)g — (Wi)a{Uj)e ., a=1,2,3 (6)
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and where the overline stands for the statistical average. We see that three different
contributions concur to the reconstruction of the Reynolds stresses. The first 7, is
due to the resolved stresses at the three different simulations, the second Ty, is due
to the averaged subgrid stresses, null in the case of a no-model LES, and finally we
have some new terms 7y;¢; that depend explicitly on the differences between the
statistical mean values of the velocity components in the three different simulations.
The first term is the usual one, while the second and the third terms are relatively
new, and their importance should be verified in specific tests.

It seems to be worth remarking that the above formalism covers the LES error
assessment of the full Reynolds stress tensor in a systematic manner. The formula
for turbulent kinetic energy can be derived straightforward from Eq. 4. Furthermore
the method is not limited to a three grid study as discussed here. It could as well be
applied to a two (or more) grid study like the concept proposed in [10]. For clarity,
it is briefly mentioned that the Systematic Grid and Model Variation approach has
been suggested in the context of LES using implicit filtering. For an implicit LES (i.e.
without an explicit sgs model) the classical Richardson extrapolation, i.e. a two-grid
study would be more suitable.

3 Extrapolation of the Reynolds Stress in the LES of a
Plane Jet. Preliminary Results

The method outlined above has been tested for a plane turbulent jet. The config-
uration is identical to the setup described in [9] except that here Re = 10000 and
consequently a higher resolution is required. Three simulations form the basis of the
extrapolation approach in this work: a standard LES solution, a LES solution with a
grid coarsened by a factor of two in each direction and a LES solution with a doubled
Smagorinsky parameter. It is assumed that numerical and modelling error scale as
n = 2 respectively m = 4/3. The coefficients ¢y, c», c3 have been calculated based
on the suggestion in [7].

Earlier studies on LES error assessment have mostly been focused on turbulent
kinetic energy [10] or mean velocities [7]. Hence, it will be interesting to analyse
the possibility of estimating the shear stress error in the LES of a plane jet i.e. the
component Rz in the present setup. The shear stress vanishes at the centerline of
the jet. Figures 1, 2 and 3 therefore shows lateral plots of the quantities under con-
sideration at two different axial positions. The quantity Rpys, ;3 — Rj.13 refers to the
difference between DNS and standard LES solution, whereas 7,..; — R; 13 refers to
the estimated error in shear stress prediction based on resolved quantities. Transition
and breakup of plane jets are very sensitive to resolution and model viscosity. As a
result of this, the breakup point in the three simulations is shifted to some extent,
resulting in different jet widths at the same axial location (see Fig. 1). Nevertheless
the magnitude of the shear stress error is captured qualitatively well. The extrapolated
subgrid contribution Tz, and the term based on differences of resolved quantities
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Fig. 1 Absolute error in shear stress prediction for a plane turbulent jet at two different axial loca-
tions x/D =5, x/D = 10. Rpys,13 — Ri1,13 refers to the difference between DNS and standard
LES solution. 7;..s — Rj,13 refers to the estimated error in shear stress prediction based on extrap-
olated resolved quantities using the SGMV three grid study. Tygs, Tyifs are the extrapolated new
terms shown in Eq. (4)
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Fig.2 Absolute error when predicting the trace of the Reynolds stresses for a plane turbulent jet at
two different axial locations x/D = 5,x/D = 10. Rpns,i; — R1,;; refers to the difference between
DNS and standard LES solution. 7. — R j; refers to the estimated error in shear stress prediction
based on extrapolated resolved quantities using the SGMV three grid study. Ty; s is the extrapolated
new term shown in Eq. (4). Note that the trace of the modelled sgs contribution Ty is zero

Tyisyr are relatively small for this configuration. For completeness the trace of the
Reynolds stresses is shown in Figs.2 and 3. Results from Fig. 2 are based on a three
grid study whereas results from Fig.3 are based on a two grid study assuming the
scaling exponents n = m = 2. The behavior observed in Figs.2, 3 is qualitatively
similar to Fig. 1. However, it is worth noting that under the assumption that the con-
tribution 7y, can be represented by the model actually used in the simulations the
trace of this term vanishes in the context of the Smagorinsky model and is therefore
not shown in Figs. 2, 3. Future research has to show if these new terms will help to
improve the error assessment for other configurations.
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Fig.3 Absolute error when predicting the trace of the Reynolds stresses for a plane turbulent jet at
two different axial locations x/D = 5,x/D = 10. Rpns,ii — R1,;; refers to the difference between
DNS and standard LES solution. 7;.; — Ry ;; refers to the estimated error in shear stress prediction
based on extrapolated resolved quantities using a two grid study. Ty;y is the extrapolated new term
shown in Eq. (4). Note that the trace of the modelled sgs contribution Ty is zero

4 Conclusions

A new operational Richardson extrapolation applied to the SGMV method in order
to reconstruct the Reynolds stress associated to three LES simulations is proposed.
The main difference with the standard reconstruction consists in two new terms, and
their importance is tested in the case of a plane turbulent jet. Preliminary results
show that in this case their contribution is small but reasonable. The extrapolation of
the resolved shear stress works qualitatively well. Different Reynolds numbers and
different turbulent flows will be examined in the future.
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Spatial Filtering for Reduced Order m
Modeling i

L. C. Berselli, D. Wells, X. Xie and T. Iliescu

1 Introduction

Spatial filtering has been central in the development of large eddy simulation reduced
order models (LES-ROMs) [9, 11, 12] and regularized reduced order models (Reg-
ROMs) [4, 7, 10] for efficient and relatively accurate numerical simulation of
convection-dominated fluid flows. In this paper, we perform a numerical investi-
gation of spatial filtering. To this end, we consider one of the simplest Reg-ROMs,
the Leray ROM (L-ROM) [4, 7, 10], which uses ROM spatial filtering to smooth the
flow variables and decrease the amount of energy aliased to the lower index ROM
basis functions. We also propose a new form of ROM differential filter [7, 10] and
use it as a spatial filter for the L-ROM. We investigate the performance of this new
form of ROM differential filter in the numerical simulation of a flow past a circular
cylinder at a Reynolds number Re = 760.
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2 Reduced Order Modeling

For the Navier—Stokes equations (NSE), the standard reduced order model (ROM) is
constructed as follows: (i) choose modes {@1, .. ., @4}, which represent the recurrent
spatial structures of the given flow; (ii) choose the dominant modes {¢1, ..., ¢, },r <
d, as basis functions for the ROM; (iii) use a Galerkin truncation u, = Z;.:l ajQj;
(iv) replace u with u, in the NSE; (iii) use a Galerkin projection of NSE(u, ) onto the
ROM space X" := span{¢y, ..., ¢,} to obtain a low-dimensional dynamical system,
which represents the ROM:

a=Aa+a' Ba, (D

where a is the vector of unknown ROM coefficients and A, B are ROM operators; (iv)
in an offline stage, compute the ROM operators; and (v) in an online stage, repeatedly
use the ROM (for various parameter settings and/or longer time intervals).

3 ROM Differential Filter

The ROM differential filter is based on the classic Helmholtz filter that has been used
to great success in LES for turbulent flows [3]. For a given velocity field u, € X",
the filtered flow field .% (u,) € X/, where X/ is a yet to be specified space of filtered
ROM functions, is defined as the solution to the Helmholtz problem

Find .7 (u,) € X/ such that ((I —84).Z(u,),v) = (u,,v), forallve X/, (2)

where § is the radius of the ROM differential filter and A is the Laplacian. We
consider two different versions for the choice of the range of the ROM differential
filter X/

The FE Version. This version corresponds to X/ = X", where X" is the finite
element (FE) space: we seek the FE representation of .% (u) and work in the full
discrete space when calculating the filtered ROM vectors. The FE representation of
Z (u) suffices in applications because we use it to assemble the components of the
ROM before time evolution: put another way, since filtering is a linear procedure,
it only has to be done once and not in every ROM time step, e.g., for FE mass and
stiffness matrices M and S we have that, modulo boundary condition terms,

aj(M +8°S).7 (9;) = ajMe; = (M +88) Y _a;F(9;) =M a;e;. (3)
j=1 j=1

Hence, applying the differential filter to each proper orthogonal decomposition
(POD) basis vector ¢, results in % (¢;) ¢ X”. Due to the properties of the differ-
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Fig.1 Contour plots of y velocity of the first and fifth POD vectors from a 3D flow past a cylinder
computation. We use the FE version of the ROM differential filter with § = 0.5. The unfiltered POD
vectors are on top and the filtered are on the bottom. The choice § = 0.5 is too large for practical
purposes, but demonstrates that filtering both removes kinetic energy (the isosurface s are smaller)
and enlarges the scales of motion (e.g., the first POD vector goes from twelve structures to just nine)

ential filter (see Fig. 1), these new ROM functions will correspond to longer length
scales and contain less energy.

The ROM Version. Alternatively, we can pick X/ = X", i.e., the ROM differential
filter simply corresponds to an r x r Helmholtz problem.

(M, + 8°S,).7 (a) = M,a, “)

where M, and S, and the ROM mass and stiffness matrices, respectively, and a and
Z (a) are the POD coefficient vectors of ¢; and .% (¢ ;), respectively. Here, unlike
in the FE version, the range of the Helmholtz filter is X", so filtered solutions retain
the weakly divergence free property.

Properties. Both versions of the ROM differential filter (2) share several appealing
properties [2]. They act as spatial filters, since they eliminate the small scales (i.e.,
high frequencies) from the input. Indeed, the ROM differential filter (2) uses an
elliptic operator to smooth the input variable. They also have a low computational
overhead. For efficiency, the algorithmic complexity of any additional filters should
be dominated by the &'(r?) cost in evaluating the nonlinearity. The ROM version is
equivalent to solving an » x r linear system; since the matrix only depends on the
POD basis, it may be factorized and repeatedly solved for a cost of &'(r2), which is
also dominated by the cost of the nonlinearity. The FE version requires solving large
FE linear systems, but these linear systems are solved in the offline stage; thus, the
online computational cost of the FE version is negligible. Finally, we emphasize that
the ROM differential filter uses an explicit length scale § to filter the ROM solution
vector. This is contrast to other types of spatial filtering, e.g., the ROM projection,
which do not employ an explicit length scale.
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4 Leray ROM

Jean Leray attempted to solve the NSEs in his landmark 1934 paper [6]. He was able
to prove the existence of solutions for the modified problem

1
W, = —AwW—.F(W)-Vw — Vp, 5)
Re
where V - w = 0, and .% (w) is a convolution with a compact support mollifier with

filter radius §, or
F(W) = gs*W. (6)

For additional discussion on the properties of different filters see [2, 5, 8]. We approx-
imate the convolution with the differential filter

F(w)=*A+ 1) 'w. (7)

In turbulence modeling, Leray’s model is the basis for a class of stabilization methods
called the Leray-o regularization models [5]. Leray’s key observation was that the
nonlinear term is the most problematic as it serves to transfer energy from resolved
to unresolved scales.

The Leray model has been recently extended to the ROM setting [7, 10]. The
resulting Leray-ROM (L-ROM) can be written as

1
(W), = R_Awr - FWw,)-Vw, = Vp, (3)
e

which is the same as the Galerkin ROM up to the filtering of the advective term in
the nonlinearity.

5 Numerical Results

We consider the flow past a cylinder problem with parabolic Dirichlet inflow con-
ditions, no-slip boundary conditions on the walls of the domain, and zero tangential
flow at the outflow. We compute snapshots by running the deal.IT [1] step-35
tutorial program for ¢ € [0, 500]. We use a kinematic viscosity value of 1/100, a cir-
cular cylinder with diameter of 1, and parabolic inflow boundary conditions with a
maximum velocity of 7.6; this results in a Reynolds number Re = 760. We calibrate
the filter radius § by choosing a value for § that gives the L-ROM the same mean
kinetic energy as the original numerical simulation. Calibrating the ROM to this filter
radius also improves accuracy in some structural properties: this amount of filtering
removes enough kinetic energy that the phase portrait connecting the coefficients in
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Fig. 2 3D flow past a cylinder, L-ROM (green) and DNS (blue). Mean (left column) and time
evolution (right column) of the L? norm of the solution; r = 6 (top row) and r = 20 (bottom row).
The time evolution of the L? norm of the solution (right column) is plotted for the optimal mean L2
norm of the solution (left column): § = 0.33 for » = 6 (top row) and § = 0.18 for r = 20 (bottom
row)

the ROM on the first and second POD basis functions are close to the values obtained
by projecting the snapshots onto the POD basis over the same time interval.

Figure2 displays the time evolution of the L? norm of the solutions of the L-
ROM and DNS for r = 6 and r = 20. Figure2 shows that, for the optimal § value,
the L-ROM-DF accurately reproduces the average, but not the amplitude of the time
evolution of the L? norm of the DNS results for both » = 6 and r = 20. Figure 3
displays the phase portraits for the first and second POD coefficients of the L-ROM-
DF and POD projection of DNS data for r = 6 and r = 20. Figure 3 shows that, for
the optimal § value, the L-ROM-DF yields moderately accurate results for r = 6 and
accurate results for r = 20.
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Fig. 3 3D flow past a cylinder, L-ROM-DF with optimal § value (green) and POD projection of
DNS data (blue). Phase portraits for a; and ap; r = 6 (left) and r = 20 (right)

6 Conclusions

In this paper, we proposed a new type of ROM differential filter. We used this new
filter with the L-ROM, which is one of the simplest Reg-ROMs. We tested this fil-
ter/ROM combination in the numerical simulation of a flow past a circular cylinder
at Reynolds number Re = 760 for r = 6 and r = 20. The new type of ROM differ-
ential filter yielded encouraging numerical results, which were comparable to those
for the standard type of ROM differential filter and better than those for the ROM
projection [10]. We emphasize that a major advantage of the new type of ROM
differential filter over the standard ROM differential filter is its low computational
overhead. Indeed, since the filtering operation in the new type of ROM differential
filter is performed at a FE level (as opposed to the ROM level, as it is generally
done), the new filter is applied to each ROM basis function in the offline stage. In the
online stage, the computational overhead of the new type of ROM differential filter
is practically zero, since it simply amounts to using the filtered ROM basis functions
computed and stored in the offline stage.

The first results for the new type of ROM differential filter are encouraging. We
plan to perform a thorough investigation of the new filter, including a comparison
with the standard form of the ROM differential filter and the ROM projection, in the
numerical simulation of realistic flows [10, 12].
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1 Introduction

In the particular approach herein proposed, RANS and LES are combined in order
to achieve a detailed description of turbulent flows without incurring in infeasible
computational effort. This model is based on the hybrid filter approach proposed by
Germano [5]. One of the most interesting point of this approach, is that the equations
obtained by filtering Navier—Stokes equations, already include terms which are able
to represent the interactions between RANS and LES regions. Therefore no further
artificial terms are needed to allow the appropriate energy and momentum transfer
between RANS and LES. This approach has already been tested [3, 8, 10] showing
promising results.

The present proposal is quite different from a traditional hybrid RANS/LES
approach. The main novelty preliminary presented in [7] and herein completely
developed is represented by the reconstruction of Reynolds stress tensor, which
avoid dependencies from the choice of RANS model and, potentially, could give
significant benefits in terms of computational cost. Numerical simulations have been
performed using a variational approach with a Discontinuous Galerkin (DG) space
discretization, which allows high accuracy and parallelization efficiency [1, 9].
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2 Model Description

We apply Germano’s hybrid filter [5] defined as:
H =kF+(1-k& (1)

to the Navier—Stokes equations. In Eq. (1) .% and & represent respectively the LES
filter and the statistical operator (i.e. RANS operator) while k is a blending factor
which can vary between 1, resulting in a pure LES, to 0 yielding a pure RANS.
We observe that the hybrid filter does not commute with space and time deriva-
tive. Although in the following this hybrid filter will be applied to the compressible
Navier-Stokes equations, the model will be used at low Mach number such that the
effect of the density variations can be neglected. The extension of the model to full
compressible flow will be object of future works.

Applying the filter to the convective term of the momentum equation and using
the definition for the generalized central moment of second order [4], we arrive at

w7 =kt i up) + A= 0t wiup) + G (i, uy), )
where 77 (u;, u ;) is the LES stress, ¢ (u;, u ;) is the RANS stress and
G(uiuj) =kl —k)(ui)z — (ui)e)uj)z — (uj)e) (3)

represents the Germano term, an additional stress peculiar of the hybrid filter
approach [8]. The filtered velocity (1) can be obtained from

Do — (1= )
(u,')f:(u)ﬁ& (k )(u)o@’ @

and introducing Eq. (4) in Eq. (2) we get

W = ke i) + (=R )+ G~ ) ) — )
3)
It is worth noting that Eq. (5) can be closed by means of two arbitrary RANS and
LES models for 7 (u;, u ;) and ¢, u ;) respectively. In this work we have used
the anisotropic model for LES presented in [2] where the equivalent filter length is
determined dynamically. Concerning the RANS stress, it is here reconstructed from
the hybrid and LES stress tensor, as we discuss in the next paragraph.
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2.1 RANS Reconstruction

Applying the properties of the hybrid filter to the tensor T (u;, u ;) we get
o (i up) = (07 i up)) s + 70 (i) uj)or) (©)
where the latter term represents the resolved turbulent stresses

(i) e s i) = (i) e — U e)(u)r — (Uj)e))e. (7N

Substituting the hybrid stress tensor definition (5) in Eq. (6) and using relation (7),
the Reynolds stress tensor becomes:

a7 1 .
4 (i uy) = (v7 (i uj))e + pr"“((u»%, () ). (8)

A drawback of this procedure is represented by the presence of term k% in Eq.(8),
which leads to an ill conditioned problem for low values of k. In fact, although a
lower limit for k£ must be set also in the traditional approach (i.e. using an explicit

RANS model), the square terms k> at the denominator leads to a greater value for
this limit.

3 Constant Blending Factor

First of all three different values of blending factor &, constant in all the domain,
have been tested, kK = 0.5, 0.75 and k = 1.0, to simulate the turbulent channel flow
at Ma = 0.2 at two different skin friction Reynolds numbers: Re, = 180 and 395.
The results are compared to data obtained by the incompressible DNS [6]. The com-
putational domain size, in dimensionless units, is 27 x 2 x 4/3x. The structured
mesh used is composed by 6 x 12 x 10 hexahedra, each ones divided into 6 tetra-
hedral elements and 4th order polynomial degree is used. The resolution parameters
are reported in Table 1. The mean velocity profiles are shown in Fig. 1. Although the
results obtained are quite similar, the hybrid method with k = 0.75 gives better results
for Re; = 180, whereas for Re, = 395 the better results are the ones obtained with
k = 0.5. This trend is confirmed also by the shear stress profiles in Fig. 2. The blend-
ing factor strongly impacts on the amount of the resolved and modelled quantities.
As shown by Fig. 2 for the shear stress and by Fig. 3 for the turbulent kinetic energy,
the resolved part is the most important in pure LES, for k = 0.75 the resolved part
decreases while the modelled one increases and finally, for k = 0.5, the magnitude
of two contributions is inverted. Therefore, at least theoretically, the blending factor
permits a direct control of the resolved kinetic energy.
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Table 1 Grid and simulations parameters for constant blending factor

REb A;— AZ+ ymm/ Ymax
Re; =180 2800 31.68 12.8 0.65/11.52
Re; =395 6880 69.5 28.1 1.4/25.28

L i e aaaal L e aaal L e
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Fig. 1 Mean velocity profiles in wall units. Left: Re; = 180; right: Re; = 395
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Fig. 2 Turbulent shear stress. Dotted: modelled; dashed: resolved; continuous: total. Left: Re; =
180; right: Re; = 395
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Fig. 3 Turbulent kinetic energy. Dotted line: modelled; dashed line: resolved; continuous: total.
Left: Re; = 180; right: Re; = 395
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Table 2 Grid and simulations parameters for the channel flow at Re; = 590

grid A grid B
p=4 p=2 p=4
Elements 3840 3840 12960
Degrees of freedom 134400 38400 453600
Af 78 118 52
A+ 39 59 26
Al 1.78 271 1.19
Fig. 4 Mean velocity v T v T v | ——

profiles in the channel flow
at Re; = 590 using 1+
variable blending factor

#—% DNS
-l LES grid A p=4
7= LES grid A p=2 1
& LES grid B p=4 i
@-® RANS/LES grid A p=4
OO RANS/LES grid A p=2 1

y/h

4 Variable Blending Factor

Simulations of the channel flow at the higher Reynolds number Re, = 590 have
been made to the aim of investigate the behaviour of a variable blending factor
using different space resolutions. The parameters of the grids, the polynomial order
p and the corresponding space resolutions used in the simulations are reported in
Table 2. The blending factor is determined as the ratio between the turbulent kinetic
energy tke(j),0 < j < p/2, corresponding to the lower polynomial degrees and
larger resolved scales, and the total one

< Y the() >

k= .
< Z?:o tke(j) >

Here < - > represents average over the element and in time, so a piecewise constant
blending factor results and commutation terms are avoided. The blending factor
results varying in the ranges 0.45—0.66 and 0.47—0.75 for the grid A respectively
with second- and fourth-order polynomial. The mean velocity profiles, the shear
stress and the turbulent kinetic energy profiles reported in Figs.4 and 5 demonstrate



164 A. Abba et al.
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Fig. 5 Mean shear stress (left) and turbulent kinetic energy (right) profiles in the channel flow at
Re; = 590 using variable blending factor

the improvement when the RANS/LES approach is applied. Actually we can see that
when a very low resolution is used with the RANS assisted model, the correct mean
profiles are restored while a pure LES gives a completely non-physical solution.

5 Conclusions

We have studied and tested a RANS reconstruction technique for Germano’s hybrid
filter approach. Different tests for the simulation of channel flow using constant or
variable blending factor, have demonstrated the advantages in using this approach
with low resolution in space, allowing saving of computational resource. Moreover
the results highlighted the importance of the blending factor to control the ratio
between resolved and modelled turbulent kinetic energy.
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mance computing projects ISCRA-C LES-DiG and DECI-11 HyDiG.
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1 Introduction

With increasingly available computational resources, scale-resolving simulations
begin to become affordable for industrially relevant flows. While full Large Eddy
Simulations (LES) may still be out of reach, the combination of Reynolds-Averaged
Navier—Stokes (RANS) and LES methods is a promising approach. Both LES and
zonal RANS-LES methods require the prescription of resolved velocity fluctuations
at the inflow or the RANS-LES interfaces. Especially in turbomachinery applica-
tions, due to upstream blade rows or the combustor, the inflow is highly turbulent
and the prediction of phenomena such as transition depends crucially on the correct
representation of turbulent scales. To save computational resources, the solution is
usually assumed to be periodic in one or two directions. One assumption is span-
wise periodicity when blade profiles are computed. Specifically in a turbomachinery
application, it is often reasonable to compute only the flow around a fraction of the
blades and apply rotational periodicity to model the full wheel.

A method to obtain realistic velocity fluctuations is a precursor simulation, from
which the turbulent flow field is extracted and prescribed at the inflow of the actual
simulation. Since this is not feasible for general industrial applications, various meth-
ods have been devised to generate resolved velocity fluctuations from statistical quan-
tities, such as the Reynolds stress tensor and the turbulent length scale [6]. Keating
et al. [2] review the performance of different approaches of prescribing a proper
turbul