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�Introduction

GC is one of the most frequent malignant tumors; 
every year in the world, there are 723,000 cancer-
related deaths caused by GC according to the 
World Health Organization (WHO). It is the fifth 
most common cancer in the world and the third 
cause of death among cancer pathologies [1]. 
Due to the lack of specific diagnostic markers, 
most patients with GC do not receive an appro-
priate diagnosis and treatment; this leads to a pro-
gression of the pathological state with 
development of metastases [2]. Previous studies 

have hypothesized that GC is a genetic disease 
involving multi-step changes in the genome [3]. 
However, the human genome contains nearly 
20,000 protein-coding genes, but they represent 
less than 2% of the whole genome [4]. In con-
trast, according to the Encyclopedia of DNA 
Elements (ENCODE) project, more than 80% of 
functional DNA elements in the human genome 
do not code for proteins [5]. A large part of these 
functional DNA elements is represented by 
ncRNAs [6].

In the last years, several studies have shown 
that ncRNAs play a significant role in different 
cellular and physiological processes including 
gene regulation, genomic imprinting, chromatin 
packaging, dosage compensation, cell differenti-
ation, and embryonic development [6, 7]. 
Accordingly, the dysregulation of ncRNAs, as 
pivotal modulators of gene expression, has been 
documented in different human complex diseases 
including cancer [8]. In fact, they are able to 
influence different mechanisms in cancer cells, 
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such as proliferation, apoptosis, invasion, and 
metastasis as well as neoangiogenesis [9]. 
Expression profiling studies on ncRNAs in a 
variety of cancer types have revealed a broad 
range of lncRNAs with aberrant expression [10]. 
Moreover, it has been shown that ncRNAs are 
promising candidate prognostic biomarkers for 
GC detection and potential therapeutic targets. 
Several ncRNAs could be secreted into body flu-
ids, suggesting that tumor cells may change their 
extracellular environments through RNA-based, 
hormone-like mechanisms [11].

In this chapter, we discussed the different 
roles of ncRNAs in GC and the possible diagnos-
tic, prognostic, and therapeutic applications.

�ncRNAs

ncRNAs refer to a class of RNAs with no protein-
coding function that are widely expressed in organ-
isms [12]. ncRNAs can be divided into two groups: 
housekeeping ncRNAs and regulatory ncRNAs. 
The latter can further be divided into three types, 
according to their length: (1) short ncRNAs, includ-
ing miRNAs, small interfering RNAs (siRNAs), 
and Piwi-interacting RNAs (piRNAs), (2) mid-size 
ncRNAs, and (3) lncRNAs [13–15].

Short ncRNAs are shorter than 50 nucleo-
tides (nt), mid-size ncRNAs have a length 
between 50 and 200 nt, and lncRNAs are longer 
than 200 nt [16].

Currently, numerous studies have found that 
miRNAs and lncRNAs play important roles in 
GC progression.

Table 11.1 summarizes the characteristics of 
different groups of ncRNAs.

�miRNAs in GC

miRNAs are a class of small ncRNAs of approxi-
mately 18–24 nt. Genes encoding miRNAs could 
be single copy, multiple copies, or clusters; other 
forms exist in the region of protein-coding genes, 
including introns. They are highly conserved 
sequences and have temporal and tissue 
specificity [17].

Although miRNAs do not code for proteins, 
they have an important role in the regulation of 
gene expression at the posttranscriptional level. 
Through complete or incomplete complementary 
binding to the 3′-untranslated regions (3′-UTRs) 
of target mRNAs, miRNAs promote the degrada-
tion of targeted-mRNA or their translational sup-
pression. As a consequence of this process, which 
involves the recruitment of a number of other 
proteins, miRNAs are able to regulate negatively 
the expression of target genes [18, 19].

One miRNA interacts with several different 
mRNAs in different regions. A mRNA could 
also combine with several miRNAs on the basis 
of complete or incomplete sequence 
complementarity.

The synthesis of miRNA involves the produc-
tion of a primary transcript (pri-miRNA) from 
genomic DNA by polymerase II within the 
nucleus. Then, the pri-miRNA is cut by the 
Drosha enzyme of RNase 3 endonuclease enzyme 
family into hairpin precursors of miRNA (pre-
miRNA), which are approximately 70  nt [20]. 
Finally, the synergistic effect of Ran-GTP and 
transporter protein Exportin 5 transports pre-
miRNA out of the nucleus, and the enzyme Dicer 
cuts it to produce the approximately 22 nt mature 
miRNA [21]. At this point, the synthesized 
miRNA is ready to exert its function.

Through the latest approaches of microarray 
technology, bioinformatics, and other genetics 
methods, the ectopic expression of miRNAs in 
GC has been found to be closely related to differ-
ent steps of cancer initiation and progression 
including metastasis. By upregulation of the 
expression of oncogenes or downregulation of the 
expression of tumor suppressor genes, miRNAs 
play an important role in the regulation of cancer-
related genes. A first example can be given by 
miRNA-106b-25. Petrocca et al. reported that an 
abnormal regulation of the transcription factor 
E2F1 and transforming growth factor-β (TGF-β) 
plays a critical role in gastric carcinogenesis. 
E2F1 activates its own promoter and miR-106b-25 
cluster expression simultaneously with its host 
gene, Mcm7. Furthermore, the TGF-β tumor sup-
pressor pathway was impaired by overexpression 
of the miR-106b-25 cluster, but also the expres-
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sion of the factors CDKN1A (p21Waf1/Cip1) and 
BCL2L11 (Bim) is altered. Finally, CDKN1A 
and BCL2L11 disrupted the G1/S checkpoint and 
conferred resistance to TGF-β-dependent apopto-
sis, respectively (Fig. 11.1) [22].

A different example can be given by miRNA-
9, which is downregulated in GC. A direct target 
of the miRNA-9 molecule is the nuclear factor of 
kappa light polypeptide gene enhancer in B-cells 
1 (NF-κB1). A study conducted by Wan et al. has 

Table 11.1  Classification of human genomic ncRNAs

RNA type Symbol
Length 
(nt) Function References

Housekeeping ncRNAs
Transfer 
RNAs

tRNA 70–
80

Connect amino acids 
with mRNA 1

(1) Lodish H, Berk A, Zipursky SL, et al. Molecular 
cell biology. 4th ed. New York: W. H. Freeman; 2000

Ribosomal 
RNAs

rRNA 121–
5070

Component of 
ribosomes 1

Small nuclear 
RNAs

snRNA ≈ 
150

Assemble with 
proteins into 
spliceosomes to 
remove introns 
during mRNA 
processing 2

(2) Valadkhan S, Gunawardane LS. Role of small 
nuclear RNAs in eukaryotic gene expression. Essays in 
Biochemistry. May 03, 2013, 5479–90. https://doi.
org/10.1042/bse0540079

Small 
nucleolar 
RNAs

snoRNA 70–
200

Guide modifications 
of other ncRNAs, 
alternative splicing; 
or function as 
miRNA 3

(3) Scott MS, Ono M. From snoRNA to miRNA: dual 
function regulatory non-coding RNAs. Biochimie. 
2011;93(11):1987–92. https://doi.org/10.1016/j.
biochi.2011.05.026

Telomerase 
RNAs

TERC 451 Provide template for 
de novo synthesis of 
telomeric DNA 4

(4) Theimer CA, Feigon J. Structure and function of 
telomerase RNA. Curr Opin Struct Biol. 
2006;16(3):307–18. https://doi.org/10.1016/j.
sbi.2006.05.005

Ribonuclease 
P

RPPH1 341 RNA component of 
ribonuclease P 5

(5) Altman S, Ribonuclease P. Philos Trans R Soc 
Lond B Biol Sci. 2011;366(1580):2936–41. https://doi.
org/10.1098/rstb.2011.0142

Regulatory ncRNA
Small 
interfering 
RNAs

siRNA 21–
22

Silencing genes in a 
sequence-specific 
manner 6

(6) Dana H, Chalbatani GM, Gharagouzlo 
E. Molecular mechanisms and biological functions of 
siRNA. Int J Biomed Sci. 2017;13(2):48–57. Available 
on: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5542916/#__ffn_sectitle

MicroRNAs miRNA 20–
23

Regulating gene 
expression 7

(7) MacFarlane L-A, Murphy PR. MicroRNA: 
Biogenesis, function and role in cancer. Curr 
Genomics. 2010;11(7):537–61. https://doi.
org/10.2174/138920210793175895

Piwi-
interacting 
RNAs

piRNA 25–
33

Repress transposons 
and maintain 
germline genome 
integrity 8

(8) Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting 
RNA: its biogenesis and functions. Ann Rev Biochem. 
2015;84:405–33. d https://doi.org/10.1146/
annurev-biochem-060614-034258

Promoter-
associated 
RNAs

paRNA <200 Regulating gene 
expression 9

(9) Yan BX, Ma JX. Promoter-associated RNAs and 
promoter-targeted RNAs. Cell Mol Life Sci. 
2012;69(17):2833–42. https://doi.org/10.1007/
s00018-012-0953-1

Long 
noncoding 
RNAs

lncRNA >200 Various 10 (10) Ahmad Bhat S, Mudasir Ahmad S, et al. Long 
non-coding RNAs: mechanism of action and functional 
utility, Non-coding RNA Res. 2016;1(1):43–50. 
https://doi.org/10.1016/j.ncrna.2016.11.002
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shown that cell growth and proliferation were 
significantly inhibited by overexpression of 
miR-9 that not only inversely regulates endoge-
nous NF-κB1 protein expression but also reduces 
endogenous NF-κB1 mRNA levels [23].

In a more recent study by Tae-Su Han and his 
colleagues, several GC-specific miRNAs have 
been identified through comprehensive miRNA 
profiling using a next-generation sequencing 
(NGS) platform. It was discovered that miR-29c 
expression was downregulated in GC tissues. 
Moreover, a tumor suppressor role was identified 
for miR-29c, which regulates its downstream tar-
get gene, ITGB1, in GC. The suppression of miR-
29c is an early event in gastric carcinogenesis [24].

Chemotherapeutic resistance is a big problem 
that has not yet been solved in GC treatment. 
Multiple reports have suggested that miRNAs are 
associated with the sensitivity of GC cell lines to 
chemotherapy. For example, miR-375 was con-
spicuously downregulated in cisplatin (DDP)-
resistant cells compared with the DDP-sensitive 
human GC cell line. Western blot analyses 
showed that upregulation of miR-375 increased 
GC cell sensitivity to DDP treatment by targeting 
ERBB2 and phosphorylated Akt. The antiprolif-
erative and apoptosis-inducing effects of DDP 
could be reversed by reducing the level of miR-
375 [25].

Many other miRNAs, like miR-448, miR-15a, 
and miR-485-5p, were found to suppress prolif-
eration, invasion, or migration in GC cell lines 
via their target genes such as IGF1R, Bmi1, and 
Flot1, respectively [26–28].

Other miRNAs, such as miR-1290 and miR-
543, could promote gastric tumor cell prolifera-
tion or metastasis by targeting their downstream 
genes FOXA1 and SIRT1 [29, 30].

�lncRNA in GC

lncRNAs are the largest class of ncRNAs ranging 
from 200  nt to several kilobases in length. It is 
possible to classify them into different groups 
based on their genomic localization, mode of 
action, and function. On the base of their genomic 
location, five main types can be distinguished: 
antisense, intronic, intergenic, bidirectional, and 
sense-overlapping lncRNAs. Based on their mode 
of action on DNA sequences, there are two classes 
of lncRNAs: cis-acting lncRNAs and trans-acting 
lncRNAs. Functionally, lncRNAs may be grouped 
into four types: signaling, decoy, guide, and scaf-
fold (Fig. 11.2) [6, 31]. lncRNAs take part in vari-
ous cellular and physiological processes such as 
gene regulation, genomic imprinting, chromatin 
packaging, dosage compensation, cell differentia-

E2F1

MCM7

Over-expression

miR-106b-25

miR-106a miR-25

CDKN1A BCL2L11

Deregulation

ApoptosisG1/S arrest

TGF-β

Fig. 11.1  Functions of 
microRNA-106b-25. 
miRNA-106b-25 
interferes with the 
expression of CDKN1 
and BCL2L11. The 
interaction of miRNA-
106b-25 with E2F1 and 
transforming growth 
factor-β (TGF-β) affects 
the cell cycle and 
apoptosis

F. Rao et al.



179

tion, and embryonic development [6]. Being piv-
otal regulators of gene expression, alterations of 
lncRNA can be found in different diseases includ-
ing cancer. In fact, they influence the main mecha-
nisms related to cancer including proliferation, 
apoptosis, invasion, and metastasis as well as neo-
angiogenesis [9].

lncRNAs expression profiling in a variety of 
cancer types has revealed a broad range of 
lncRNAs with aberrant expression.

�lncRNA Upregulated in GC

Ak058003 is transcribed from its locus at chro-
mosome 10q22, and it has a length of 1197 base 
pairs (bp). Wang et al. have discovered that the 

expression of Ak058003 increased during 
hypoxia. Moreover, this lncRNA is upregulated 
in GC, and its elevated level is accompanied by 
an increase in cell migration in vivo and in vitro. 
Furthermore, this lncRNA targets the γ-synuclein 
(SNCG), a prometastatic oncogene. Increased 
AK058003 expression decreases SNCG pro-
moter methylation and consequently upregulates 
the expression of this oncogene, which promotes 
hypoxia-induced GC cell metastasis [32].

ANRIL is transcribed in an antisense direction 
by a locus located on 9p21.3 [33]. It has been 
shown that ANRIL can act as a scaffold or guide 
to chromatin [34]. According to recent studies, 
ANRIL binds to PRC2 and epigenetically 
represses the expression of miR-99a and miR-
449a. In GC, the levels of ANRIL and miR-99a/
miR-449a are inversely related so that the expres-
sion of these two miRNAs is decreased and the 
level of ANRIL expression is high in GC sam-
ples. This leads to a high tumor-node-metastasis 
(TNM) stage and tumor size [35].

BANCR The BRAF-activated noncoding RNA 
(BANCR) gene is located on 9q21.1 and contains 
four exons. It encodes a lncRNA with a length of 
693 bp. BANCR expression is elevated in many 
GC tissues and cell lines. It has been assessed 
that this lncRNA influences GC cell growth and 
apoptosis through regulating NF-κB1 expression 
via miR-9. Upregulation of BANCR contributes 
to a decline in NF-κB1 expression that leads to an 
increase in cell numbers and a decrease in apop-
tosis in GC cells [36]. Several studies have shown 
that overexpression of BANCR in GC tissues is 
correlated with clinical stage, lymph node, and 
distant metastases [37].

CCAT1 Colon cancer-associated transcript 1 
(CCAT1) is 2628 nt long, and its gene is located 
at 8q24 [38]. CCAT1 is overexpressed in some 
GC tissues with a significant correlation with pri-
mary tumor growth, lymph node, and distant 
metastases. c-Myc oncogene physically interacts 
with E-box element in the CCAT1 promoter and 
increases its expression. In vitro, CCAT1 regu-
lates cell proliferation and migration [39]. Other 
studies have demonstrated that CCAT1 activates 
the ERK/MAPK pathway and suppresses cell 
cycle arrest and apoptosis.

Decoy Scaffold

Guide Enhancer

a b

dc

Fig. 11.2  Four types of lncRNA mechanisms: (a) The 
lncRNAs can act as decoys, titrating away DNA-binding 
proteins (e.g., transcription factors); (b) lncRNAs may act 
as scaffolds to bring two or more proteins to spatial proxim-
ity or into a complex; (c) lncRNAs may act as guides to 
recruit proteins to DNA (e.g., chromatin modification 
enzymes); and (d) lncRNA guidance can also be exerted 
through chromosome looping in an enhancer-like model in 
cis. lncRNA (red), DNA (black), section of DNA loop (yel-
low), DNA-binding proteins (blue). (Source: Luka Bolha 
et al. [31], Article ID 7243968, 14 pages, Fig. 1, https://doi.
org/10.1155/2017/7243968, an open access article distrib-
uted under the Creative Commons Attribution License)
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GACAT3 Located at 2p24, GACAT3 encodes 
a lncRNA of 1096 nt in length. It was observed 
that it is upregulated in GC tissues and this upreg-
ulation is positively correlated with TNM stages, 
tumor size, and distant metastasis [40].

H19 As a maternally imprinted gene, H19 is 
located on 11p15.5. H19 plays an important role 
during embryogenesis, and its expression is low 
in most adult tissues except for cardiac and skel-
etal muscles [41, 42]. It is associated with p53 
protein, and reciprocally, p53 protein has repress-
ing effects on H19 levels [43, 44]. H19 gene con-
tains a 23  nt RNA, miR-675 [45]. It has been 
shown that H19 works via its miR-675 product to 
silence the transcription factor RUNX1, a tumor 
suppressor in GC, in turn inducing cell prolifera-
tion [41]. The amount of H19 and miR-675 is 
increased in GC tissues with a significant correla-
tion with lymph node metastases and clinical 
stage [46]. H19 and miR-675 have different tar-
gets, but they both function as oncogenes to 
increase proliferation, migration, invasion, and 
metastases in human GC [47].

HOTAIR HOX transcript antisense RNA 
(HOTAIR) is transcribed from 12q13.13 and plays 
an important role in GC progression [48]; for this 
reason it is one of the most studied lncRNAs. 
HOTAIR is expressed from the HOXC locus, and 
its length is of 2158 nt [49]. Functioning as a scaf-
fold, HOTAIR is involved in epigenetic silencing. 
It directs polycomb repression complex 2 (PRC2) 
to trimethylate histone H3 lysine-27 of specific 
HOXD genes and thus repressing their expression.

It is believed that HOTAIR can promote 
metastasis through this pathway by inhibiting 
certain metastasis suppressor genes [50]. It has 
been demonstrated that HOTAIR expression is 
markedly raised in GC tissues, which is associ-
ated with poor prognosis, higher TNM stage, 
perineural invasion, larger tumor size, and lymph 
node and distant metastases [49, 51].

MALAT1 Encoded at chromosome 11q13 with 
8000 nt in length, metastasis-associated lung ade-
nocarcinoma transcript 1 (MALAT1) is a lncRNA 
[52, 53]. It was observed that MALAT1 is overex-
pressed in GC tissues, which correlates with peri-
toneal metastasis in patients [54]. Furthermore, 
MALAT1 increases cellular proliferation by regu-

lating alternative splicing factor 1 (ASF1) and 
pre-mRNA-splicing factor (SF2) (SF2/ASF1) 
[55]. These proteins are pivotal players in inflam-
matory disorders and also in cancer [56].

PVT1 Plasmacytoma variant translocation 1 
gene (PVT1) is located on human 8q24, 57  kb 
downstream of c-Myc [57]. The 8q24 region with 
both genes is involved in a variety of cancer 
types.

It has been reported that this lncRNA has a 
role in the suppression of apoptotic genes in dif-
ferent types of cancer. Upregulation of PVT1 is 
essential for the increased level of c-Myc in can-
cer cells [58]. PVT1 expression is elevated in GC 
tissues as well. Furthermore, PVT1 may be 
involved in the silencing process of CDKN2B/
p15 and CDKN2A/p16 genes through its associa-
tion with EZH2 during the progression of GC 
[59]. Its overexpression is linked to lymph node 
metastases [57].

UCA1 Urothelial carcinoma associated 1 
(UCA1) is located on 19p13.12, and it contains 
three exons [60]. UCA1 presents higher expres-
sion in GC tissues and cell lines. The expression 
was associated with tumor size, worse differenti-
ation, invasion depth, and TNM stages. Analyses 
conducted in GC have reported that excessive 
amount of UCA1 correlates with poor overall 
survival and disease-free survival in patients [61].

�lncRNA Downregulated in GC

AA174084 is a lncRNA downregulated in GC tis-
sues compared with adjacent normal tissues. 
Studies conducted on samples of gastric juice in 
patients with gastric ulcer, chronic atrophic gas-
tritis, or GC have shown that levels of this 
lncRNA were highest in GC patients, suggesting 
its potential value as a GC biomarker. AA174084 
expression levels in GC tissues were associated 
with age, Borrmann type, and perineural inva-
sion. Expression in gastric juice was associated 
with tumor size, tumor stage, Lauren type, and 
CEA levels. Overall, the current data show that 
the AA174084 level in gastric juice may be used 
as a screening biomarker for detecting GC at 
early stages [62].

F. Rao et al.
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FENDRR FOXF1 adjacent noncoding devel-
opmental regulatory RNA (FENDRR) is located 
on 16q24.1 and contains seven exons. Through 
binding to PRC2 and/or TrxG/MLL complexes, 
FENDRR lncRNA regulates histone methylation 
and chromatin structure [63]. Furthermore, 
FENDRR is diminished in GC tissues and cell 
lines, which correlate with depth of invasion, 
advanced tumor stage, and lymphatic metastasis.

FER1L4 Fer-1-like protein 4 (FER1L4) is 
located at 20q11. Its expression is reduced in GC 
tissues, and it is correlated with histological 
grade, tumor size, severity of invasion, vessel or 
nerve invasion, and lymph node and distant 
metastases [64]. FER1L4 is one of the targets of 
miR-106a-5p. Low quantity of this lncRNA 
increases the amount of free miR-106a-5p, mak-
ing it more available for its targets such as the 
retinoblastoma gene, RB1 [65].

GACAT2 Gastric cancer-associated transcript 
2 (GACAT2) is encoded at 18p11, and it has a 
length of 818 nt. GACAT2 is markedly decreased 
in GC tissues and cell lines, which is associated 
with distal metastasis and neural and blood vessel 
invasion in GC tissues [66].

MEG3 Maternally expressed gene 3 (MEG3) 
is a tumor suppressor lncRNA transcribed from 
an imprinted gene cluster at 14q32, with a length 
of 1700 nt [67]. It has been demonstrated a sig-
nificant decrease of MEG3 levels in GC tissues, 
and this was linked with TNM stage, tumor size, 
depth of invasion, and shorter overall survival 
time in GC patients [68].

MT1JP Metallothionein 1 J gene is located on 
16q13. It has considerably lower expression in 
GC tissue samples than in matched normal tis-
sues. Zhongchuan et al. have demonstrated that 
MT1JP is necessary for maintaining the normal 
life activities of cells and played a critical func-
tion as a tumor suppressor. lncRNA MT1JP is 
involved in many steps of tumor progression, 
including cell proliferation, migration, and inva-
sion. For this reason, it may be a potential diag-
nostic marker and could have a potential 
therapeutic value in the prevention of GC [2].

ncRuPAR Noncoding RNA upstream of the 
PAR-1 (ncRuPAR) [69] increases the expression 
of protease activator-1 (PAR1) during embry-

onic growth. The study conducted by Liu et al. 
reports that it works as a tumor suppressor in 
cancer.

Its gene is located on human 5q13. Decreased 
expression of this lncRNA in GC samples was 
inversely correlated with the amount of PAR-1. 
Its level was negatively associated with tumor 
size, tumor invasion depth, lymph node, and dis-
tant metastases [70].

TUSC7 Tumor suppressor candidate 7 
(TUSC7) is located on 3q13.31 and contains four 
exons. Some studies have reported that TUSC7 is 
downregulated in GC tissues contributing to an 
augmentation in cell growth. In addition, p53 is a 
regulator of TUSC7 in GC, and TP53 mutations 
or deletions are the likely cause of TUSC7 down-
regulation. Furthermore, TUSC7 negatively reg-
ulates the level of miR-23b, which promotes cell 
growth in GC samples [71].

�miRNA as Biomarker in GC

Numerous miRNAs are aberrantly expressed in 
the plasma and serum of GC patients [72–74]. 
For example, miR223, miR-233, miR-378, miR-
421, miR-451, miR-4865p, and miR-199-3p are 
overexpressed in sera of GC patients [75–78]. 
Wang et  al. found that miR-233 was overex-
pressed in GC patient sera, and its level was posi-
tively associated with tumor differentiation 
grade, TNM stage, tumor size, and metastasis 
status [75].

Wu et  al. found that miR-421 was overex-
pressed in 90 cases of GC patient sera compared 
to 90 controls. The high expression of miR-421 in 
cancer cells acts as a biomarker for GC circulat-
ing tumor cells, which may be used for early 
diagnosis for gastric metastasis [76]. Furthermore, 
in  vivo and in  vitro experiments demonstrated 
that the onco-miR-421 promotes tumor prolifera-
tion, invasion, and metastasis but had no signifi-
cant association with the clinic-pathological 
features [79, 80].

In contrast, the expression of miRNAs such as 
let-7a, miR-375, miR-20a-5p, and miR-320 was 
relatively reduced in GC patient sera [81, 82]. A 
study demonstrated that let-7a exhibited rela-
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tively low expression in plasma of GC patients 
compared with healthy controls, whereas the 
expression of miR-17-5p, miR-106a, miR-106b, 
and miR-21 was significantly elevated in GC 
plasma [83]. Other studies demonstrated that 
miR375 was suppressed in GC. Overexpression 
of miR-375 suppresses GC progression by target-
ing p53, JAK2, ERBB2, and STAT3 [84, 85]. 
These studies indicate that miRNA could be use-
ful diagnostic biomarkers. However, large-scale 
clinical research is needed to demonstrate that 
miRNA can serve as a diagnostic biomarker for 
GC.

Several studies have demonstrated that miR-
NAs could be used not only as biomarkers but 
also as potential therapeutic targets for cancer. 
miRNA-based drugs that act by suppressing 
miRNAs or inhibit the onco-miRNAs can inhibit 
tumor progression by suppressing the relative 
signal pathway [86, 87]. For example, miR-34 is 
one of the most characterized tumor suppressor 
miRNAs in a variety of tumors including GC. In 
literature, it is reported that it is lost or expressed 
at minimum levels in numerous tumor tissues, 
and the reintroduction of miR-34 mimics was 
found to inhibit cancer cell growth both in vitro 
and in vivo. Therefore, miR-34a has proved to be 
a tumor suppressor in cancer cells and an ideal 
therapeutic tool to reduce metastasis, chemore-
sistance, and tumor recurrence [88–90].

However, some problems should be consid-
ered; as one miRNA can target multiple genes 
and signaling, the off-target effect is not easily 
predictable. Thus, miRNA therapy needs more 
detailed studies [91].

�lncRNA as Biomarkers in GC

In recent years, detection of cancer-associated 
lncRNAs in body fluids of cancer patients has 
proven itself as a valuable method to effectively 
diagnose cancer. Cancer diagnosis and prognosis 
through the use of circulating lncRNAs are pre-
ferred when compared to classical biopsies of 
tumor tissues, because of their noninvasiveness 
and great potential for routine applications in 
clinical practice.

Among main advantages of lncRNAs, which 
make them suitable as cancer diagnostic and 
prognostic biomarkers, is their high stability 
while circulating in body fluids, especially when 
included in exosomes or apoptotic bodies [92]. It 
has been shown that lncRNAs are able to resist 
the multiple ribonucleases in body fluids [93]. In 
addition, lncRNA deregulation in primary tumor 
tissues is clearly mirrored in various bodily flu-
ids, including whole blood, plasma, urine, saliva, 
and gastric juice [94, 95]. These characteristics 
make the lncRNAs of potential prognostic and 
predictive biomarkers for GC, easy to take and 
evaluate, bringing great benefits to patients com-
pared to a classic tissue biopsy [96].

The detection of circulating lncRNAs could 
represent an excellent method in the evaluation of 
cancer to distinguish tumor patients from healthy 
people at early stages with both high sensitivity 
and specificity. In addition, the prognosis of 
tumor patients and the risk of tumor metastasis 
and recurrence after surgery could be assessed 
[93]. Good results have been obtained from the 
diagnostic performances of lncRNAs BANCR, 
H19, CCAT, and AA174084 evaluated in body 
fluid samples (e.g., plasma and gastric juice) of 
GC patients. These lncRNAs had the ability to 
differentiate GC patients from healthy individu-
als and to effectively detect different stages of 
GC (from early to metastatic cancer forms). 
However, despite their overall positive diagnostic 
performances, similar to those obtained by sev-
eral conventional cancer biomarkers, false-
positive and false-negative detections were 
observed [95, 97, 98].

Stability of lncRNAs in body fluids of tumor 
patients has not been thoroughly explored. Studies 
revealed that some lncRNAs remained stable in 
plasma under extreme conditions, such as several 
freeze-thawed cycles and prolonged incubation at 
elevated temperatures [99]. So far, three mecha-
nisms have been identified by which lncRNAs are 
released into body fluids. First, extracellular 
RNAs may package themselves into specific 
membrane vesicles, such as exosomes and 
microvesicles, in order to be secreted and resist to 
RNase activity. Different studies revealed that 
exosomes most frequently protect plasma 
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lncRNAs [100–103]. Second, extracellular RNAs 
can be actively released by tumor tissues and cells 
[104]. Third, extracellular RNAs may encapsulate 
themselves into high-density lipoprotein (HDL) 
or apoptotic bodies or be associated with protein 
complexes, for example, Argonaute (Ago)-
miRNA complex and nucleophosmin 1 (NPM1)-
miRNA complex [105, 106]. However, despite 
many performed studies, secretion and transport 
mechanisms of lncRNAs to the circulation system 
remain yet poorly understood.

In order to introduce circulating lncRNAs into 
clinical practice, further studies and improve-
ments should be performed regarding the stan-
dardization of sample preparation protocols and 
the extraction methods [93].

�Conclusion

In recent years, the role of ncRNAs in GC has 
been clarified. Multiple studies have already 
demonstrated the potential clinical applications 
of several ncRNAs in GC diagnosis and progno-
sis. Circulating ncRNAs are regarded as an 
emerging biomarker for GC, but the applications 
of circulating ncRNAs need to be further investi-
gated because of the interactions between 
ncRNAs and GC that are very complex.

Among these, several ncRNAs are promising 
neoplastic biomarkers to be detected in the 
patient’s body fluids, including miR-34, H19, 
HOTAIR, MALAT1, UCA1, and AA174084. For 
many of these ncRNAs, it has been proven that 
they could be used in clinical practice as diagnos-
tic and prognostic GC biomarkers. ncRNA 
research will likely take a big step forward with 
the identification of more molecules in the next 
years.
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