®

Check for
updates

Blockchain Backed DNSSEC

Scarlett Gourley®™) and Hitesh Tewari

Trinity College Dublin, Dublin, Ireland

gourleys@tcd.ie, htewari@cs.tcd.ie

Abstract. The traditional Domain Name System (DNS) does not
include any security details, making it vulnerable to a variety of
attacks which were discovered in 1990. The Domain Name System Secu-
rity Extensions (DNSSEC) attempted to address these concerns and
extended the DNS protocol to add origin authentication and message
integrity whilst remaining backwards compatible. Yet despite the fact
that issues with DNS have been well known since the late 90s, there has
been very little adoption of DNSSEC. This paper proposes a new sys-
tem using blockchain technology. Our system aims to provide the same
security benefits as DNSSEC whilst addressing the concerns that led to
its slow adoption.

Keywords: Blockchain -+ DNS - DNSSEC - Fragmentation
Amplification attack + X509

1 Introduction

The DNS is a hierarchical and decentralised naming service, which translates
human readable, more readily memorable names into IP addresses. In its original
form is insecure and suffers from a number of protocol attacks. These include
DNS spoofing/cache poisoning [14], DNS hijacking [4], and DNS rebinding [10].

A solution to this was the introduction of DNSSEC. However, DNSSEC also
suffers from various problems, namely IP fragmentation [17], potential denial of
service attacks [12], and complicated key management. This has caused a slow
adoption of DNSSEC, with only 4% of second level domains signed [5].

In this paper we propose an alternative security extension set for DNS. This
system aims to provide a client all the security benefits that DNSSEC grants, i.e.
origin authentication and message integrity. We also wish to reduce responses
to fit into a 512-byte UDP packet as per the original DNS standard [11], and to
simplify the key management. This is in order to mitigate possible availability
issues associated with DNSSEC. Finally, we intend to produce a protocol which
minimises the number of requests necessary for signature validation.

This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094
and co-funded under the European Regional Development Fund through the Southern
& Eastern Regional Operational Programme to Lero - the Irish Software Research
Centre (www.lero.ie).

© Springer Nature Switzerland AG 2019

W. Abramowicz and A. Paschke (Eds.): BIS 2018 Workshops, LNBIP 339, pp. 173-184, 2019.
https://doi.org/10.1007/978-3-030-04849-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04849-5_15&domain=pdf
www.lero.ie
https://doi.org/10.1007/978-3-030-04849-5_15

174 S. Gourley and H. Tewari

2 Background

In this section, we present the current DNSSEC system and how it operates. We
also provide a brief introduction to the X.509 Public Key Infrastructure (PKI)
and blockchain technology.

2.1 DNSSEC

DNSSEC is a set of security extensions which provides origin authentication
and message integrity to DNS. It does this by using public key based digital
signatures. To facilitate this, some new resource records (RRs) were added [2]:

— RRSIG records contain a digital signature

DNSKEY records contain a signing key

— DS records contain the hash of a DNSKEY

— NSEC and NSECS3 records map a denial of existence to a domain range.

RRs are grouped together to form RRsets. The RRset is digitally signed to
form an RRSIG record [2].
Each zone has a Zone

Signing Key (ZSK) pair. pyeeey o Hashed

. . Ksk [l zsk BEEILE
The private key portion RRset KSK Root Level
is used to digitally sign = L.

the RRsets. The pub-

lic portion is stored as

. DNSKEY Signs Hashed
a DNSKEY record in mreer [l B KSK E’fm";le
the name server. This i .

DNSKEY also needs sign-

ing in order to prove o 5

Lo : _Signs _

its integrity. Each zone RRset ’n Hit Selgzr::ahesvel
also has a Key Sign- {m—

ing Key (KSK), which is g
used to sign the RRset

of DNSKEY records. The

public portion of the KSK is also stored as a DNSKEY record [2].

A DS RR is created by generating the hash of the public portion of the KSK.
This hash is added to the parent zone (e.g. google.com would place their DS
RR in the com zone). The parent would sign these DS RRs with their ZSK [2].
This carries up to the root server, where the root KSK is stored on the client’s
machine. Figure 1 contains a visualisation of this trust chain.

Fig. 1. Chain of trust

2.2 PKI

A PKI is a system for managing, distributing and revoking digital certificates
[18]. A digital certificate is a digitally signed electronic document that contains
information on the owner, intended to bind their identity and public key. These

https://www.google.com/

Blockchain Backed DNSSEC 175

are created and issued by trusted third parties, known as Certificate Authorities
(CAs) [18].

X.509 is a digital certificate standard that is used in many internet protocols,
such as HTTPS [7]. In order for an entity to receive an X.509 certificate, they
must create a Certificate Signing Request (CSR) which includes their identity
and their public key. This CSR gets sent to a Registration Authority [9]. A Reg-
istration Authority is approved by a CA to accept, reject and revoke certificates
[8,9]. If the CSR is accepted, an X.509 certificate signed by the CA is returned
to the entity [9].

Once a certificate is returned to the owner, it can be used to establish a
secure connection using their public key. In order to verify the certificate’s public
key, the CAs public key that signed the certificate must also be validated. This
verification process is continued up until a trusted certificate, which is stored on
the client’s machine. Once a trusted signature is identified, it can be believed
that the public key contained in the original certificate belongs to the certificate
owner [9,18].

3 Related Work

The issue with DNSSEC lies with the need to have a chain of trust up to the
root server. This leads to an excessive number of requests, and hence signed
responses. If a domain name was bound to a public key in a trusted manner, we
could remove this chain of trust.

Blockchain based PKIs have been proposed numerous times. Blockstack oper-
ates a complete naming system where namespaces can be registered [1]. However,
any user can buy any name as there is no dispute authority. This means organi-
sations will have difficulty registering their trademarked and copyrighted names.

X509Cloud is a framework which allows X.509 certificates to be added to a
public blockchain network [16]. When a CSR is accepted the certificate is not
only sent back to the individual, but it is also broadcasted on the X509Cloud
blockchain network [16]. Each CA participating in the system will verify the
certificate is valid. Once the transaction is validated it is grouped with other
transactions into a block which is also be broadcasted. If the block is accepted,
the next bundle of transactions is validated.

This framework offers a very simple solution which solves several issues. It
allows organisations to distribute certificates to those within it in a convenient
and secure way. It also solves the issues associated with CRLs, where it can take
time for the changes to propagate through the network. Lastly, it creates an
always up to date data store of the current X509 certificates that are in use by
those participating in the system.

4 Protocol Design

The aim of this section is to create a DNS security extension, which does not
suffer from common issues which arise in DNSSEC deployment. If the keys in

176 S. Gourley and H. Tewari

the DNS hierarchy are replaced with some other PKI, we can link an identity
with these keys [18]. We can therefore remove DNSKEY and DS RRs from the
DNS hierarchy and simply check the repository of whatever PKI we are using.

4.1 CSK

A Combined Signing Key (CSK) is what will be used to refer to a DNSSEC
configuration which uses a single key. This CSK is simply a KSK which also
operates as a ZSK, i.e. the DNSKEY RRset is signed by the same key which
signs all other RRsets in that zone. DNS software for authoritative servers can
enable this configuration. A flag is simply used to indicate the KSK signs all
RRsets [6].

4.2 PKI

The X509Cloud blockchain network will be used as the store for X.509 certifi-
cates. A single certificate which associated a domain name with a CSK is created.
An X.509 certificate is often created for a domain so that other internet protocols
can be used, and this same certificate could simply be used to sign DNS RRs.

4.3 Protocol

It is important to note that at any given stage in the resolution, the X509Cloud
blockchain network acts as a secure and trusted store. The root KSK is no longer
used as a trust anchor, so if the A RR for a name server was cached the resolution
could securely start from there.

A look-up where we would like the IPv4 address of google.com and know the
IP address of the name server which contains this would operate as follows:

1. A client initiates a normal lookup for the domain google.com, which gets
forwarded to a recursive resolver
2. The recursive resolver will query the google.com name server for the
google.com A RR
. The google.com name server will respond with the A RR for google.com and
a signature
4. The recursive resolver will search for the most recent entry of the google.com
certificate in the X509Cloud blockchain network, check the validity of the
certificate, and validate the signature
5. The verified A RR will be forwarded back to the client.

w

Once again, this could simply begin at the com name server if the IP address
for the google.com name server was not known. The ability to begin a resolution
from anywhere speeds up the verification process considerably as each level does
not need to be validated (Fig. 2).

The following is an example verification on the example.scarlett domain
which has a single certificate containing its CSK:

https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/

Blockchain Backed DNSSEC 177

com name server
NS
record

5 signature for NS
M record

Root Name Server [Jliffll Com name server IPv4
"glue" record

ns.google.com name
google.com? google.com? google.com? server record
() PORM signature for NS
R v N e S : 9 record

Stub Resolver .
Client 68838 n A ns.google.com IPv4
om Name Server "glue" record

Recursive Resolver

Blockchain
Block 1914 Block 1915 Block 1916
«—— Header «—— Header <«—— Header

Transactions Transactions Transactions google.com IPv4
com cert <data> google cert record
root cert <data> <data> signature for A
record

<data> <data> <data> ns.google.com
Fig. 2. Proposed protocol
1 $§ ./bin/main @localhost —v 2 —t NS —val-RR —t A

example.scarlett.

3 Querying for: example.scarlett.

¢ Verifying Resource Record

7

s RRSIGs of type NS to validate: 1

o Failed to get certificate example.scarlett. ZSK from the
database: 11

10

11 DNSKEY string: example.scarlett. IN DNSKEY 257 3 13
tP2dIWHtAQXTDDSrUNMSEjBQDzLC3DJkKBqWAtd34+
WpegxtNTKKSFimHCYsdHaNPuLjWEGROpgWhG9yFL8unCQ=—

12

13

12 Trying to verify with zsk...no zsk

5 Trying to verify with ksk...success

16 Verification result of RRSIG 0 for example.scarlett.: All OK

17

-

18

178 S. Gourley and H. Tewari

o Verifying Resource Record

1

> RRSIGs of type A to validate: 1

3 Failed to get certificate example.scarlett. ZSK from the
database: 11

25 DNSKEY string: example.scarlett. IN DNSKEY 257 3 13
tP2dIWHtAQXTDDSrUNMSE;BQDzLC3DJKkKBqWAtd34+
WpgxtN7TKKSFimHCYsdHaNPuLjWEGROpgWhG9yFL8unCQ=—

285 Trying to verify with zsk...no zsk
20 Trying to verify with ksk...success
30 Verification result of RRSIG 0 for example.scarlett.: All OK

A NS (Line 8) and “glue” (Line 22) RR is returned in the response. To
demonstrate that only a single key is in use, the output for the resolver shows a
failure at line 9 in retrieving the ZSK for the example.scarlett zone. This is
expected. A single certificate is used and creates a KSK (or CSK) key at line 11.
The validation fails at line 14 for a ZSK as one does not exist, and subsequently
passes with the KSK (or CSK) at line 15.

The same process to validate the A RRSIG is repeated at lines 22-29. Once
again the ZSK does not exist (Line 25) and the validation process passes with a
single key (Line 28-30).

This protocol provides us with origin authentication and message integrity.
The number of requests are also reduced. We reduce key management to a single
certificate rather than multiple keys, making it simpler. However, the question
on if RRSIGs suffer from IP fragmentation still exists.

5 DNSSEC Response Sizes

Statistics on DNSSEC were gathered by studying the zonefile of the net zone,
which consists of approximately 35 million entries and 15 million different second
level domains. Responses from these second level domains that were DNSSEC
enabled were inspected.

Around 1.63% of second level domains in the net zone are signed. Figure 3
shows the distribution of DNSSEC algorithms that are used by these.

5.1 DNSKEY

DNSKEY requests were expected to yield the largest response. Figure 4 shows a
histogram of a variety of RSA algorithms.

Algorithm 7 yielded the smallest response size. This explains its prevalent
use shown in Fig.3, as many zones will attempt to reduce the size of their
DNSSEC responses in order to avoid accessibility issues. Algorithm 7 returns the
smallest response as the signature uses a SHA-1 hash function which produces

Blockchain Backed DNSSEC 179

|
H 13
H s
|
W 10
H 14
H 3
W 6
15
0.0729%
0.00185%
0.000923%
0.000923%
Fig. 3. Distribution of DNSSEC algorithms
T H s
B n 7
2 10 H s
o
2 . W 10
=
0 | L 0TI | 1 [N
COFRFENWWAUUOINNODOOHRERHREFHERERERERERERHEREREN
ANOUNOALAFRFNPBPOOWOOIOOOHRNNWARUIODONNOOWOO
ONODOPLONOOTOPL,ONIOONOUVIFHFOPLPONWOIOINOUNO®OD
PONOOOPLRONIIOPLRONIIO A~ ®
size (bytes)

Fig. 4. DNSKEY RR response sizes from RSA algorithms

the smallest message digest. However, SHA-1 has been proven to cause colliding
message digests, which can limit the security of a signature using this hash
function [15].

Algorithm 8 produces the next smallest response size. This algorithm uses
a SHA-256 hash, which is a trade-off between the resulting size of the message
digest (and hence signature), and the security of the hash function.

Algorithm 10 uses a SHA-512 hash function which produces the largest sig-
nature. This would explain why many of the responses using this algorithm are
very large.

It can be observed that a significant majority of these responses from all
algorithms are above 512 bytes, which would not fit inside of a traditional DNS
packet [11].

Figure 5 compares the most common RSA algorithm against the most com-
mon ECDSA algorithm, as determined from Fig.3. Each of these peaks show
the various forms of DNSKEY configurations.

The majority of responses using Algorithm 13 fit in a 512 byte packet. The
only exception to this is key rollovers or excessively complicated DNSSEC set
ups. On the contrary, a minimal amount of Algorithm 7 responses fit inside a
packet of this size.

Our proposed protocol would not suffer from these large DNSKEY responses
as these RRs are extracted from the DNS and instead placed in the blockchain.

180 S. Gourley and H. Tewari

10 H 13

frequency

rr-

0 J
HoHE N W W s Ul N N 0 ® YW R
N O U N 0 A N A O O w v o o o - N N
© N O O H O N O O H O N O O N ®©® U = @

5 ®© N o O

size (bytes)

Fig.5. DNSKEY RR response sizes from Algorithms7 and 13

5.2 A and AAAA

If IPv4 and IPv6 address responses do not fit within the packet restriction of
512 bytes in order to prevent IP fragmentation then neither will NS responses

which contain a “glue”.
Response sizes were observed between the most popular RSA and ECDSA

algorithms. Figure6 shows 99.9% of DNSSEC A RR responses for both algo-
rithms comes within the 512 byte packet limit.

frequency

size (bytes)

Fig. 6. A RR response sizes from Algorithms7 and 13

Figure7 also demonstrates that 99.9% of DNSSEC AAAA RR responses
using either algorithm fits in a 512 byte UDP packet.

frequency

size (bytes)

Fig. 7. AAAA RR response sizes from Algorithms7 and 13

Blockchain Backed DNSSEC 181

5.3 NS

It is important that a NS and “glue” RR is not subject to IP fragmentation, as
this accounts for a significant portion of DNS traffic.

First, the response sizes for the most popular RSA and ECDSA algorithms
were analysed. Figure 8 shows that 99.9% of responses using both algorithms fit
inside a 512 byte UDP packet. This is an exceptionally important observation,
as this could mean that key algorithms do not need to be restricted to ECDSA

algorithms.

100

9 13
c
[
> 50
o
Y

0

size (bytes)
Fig. 8. NS RR response sizes from Algorithms 7 and 13

. m 13
9 m 7
] | s
[on
L

320 384

size (bytes)

Fig. 9. NS RR response sizes from Algorithms7, 8 and 13

However, Algorithm 7 produces the smallest responses, as shown in Fig. 4.
Algorithm 8 is the next most commonly used algorithm, which also results in
larger responses due to the use of a SHA-256 hash function. Figure 9 shows that
99.5% of these responses also fit inside a 512 byte packet.

This means that there is a significant amount of freedom in what choice
of algorithm can be used when DNSKEY RRs have been extracted from the
hierarchy, as most responses will not suffer from IP fragmentation.

5.4 NSEC

DNS traffic can potentially consist of a lot of NSEC responses, and so it is impor-
tant to consider the implication it would have on IP fragmentation. Figure 10

182 S. Gourley and H. Tewari

100

H 13

frequency
w
o

320

size (bytes)

Fig. 10. NSEC RR response sizes from Algorithms8 and 13

compares Algorithm 13 with Algorithm 8. Algorithm 7 has been omitted as it
uses NSEC3 responses instead.

99.9% of responses using these two algorithms fit inside a 512 byte UDP
packet. Once again, this is an important observation and allows for a flexible
algorithm choice when using the proposed protocol.

6 Goals Revisited

The goals that were listed in Sect. 1 were:

— Provide the client with origin authentication

Provide the client with message integrity

— Reduce the size of DNSSEC responses to the traditional DNS packet size
Reduce the number of requests necessary for signature validation

— Simplify the key management

We concluded in Sect.4 that both client origin authentication and message
integrity requirements were met. This is evident as signatures were validated
using keys which were linked to a zone’s identity using certificates which are
available on the X509Cloud network.

The evaluation results in Sect.5 showed that only DNSKEY responses suf-
fered from IP fragmentation. Since DNSKEY RRs would not exist anymore, and
public keys are instead stored in the blockchain, this does not impact the system
described in Sect. 4. It appears the system would be capable of returning over
99% of responses in a single UDP packet, regardless of the choice of algorithm.

We describe in Sect. 4 that a convoluted validation process is no longer nec-
essary, as the blockchain allows us to trust the certificate at any level in the DNS
lookup process. This produces far less requests than traditional DNSSEC. We
can conclude the number of requests necessary are reduced.

As for key management, all that needs to be done is to sign each RRset which
is already performed in traditional DNSSEC. Only a single key is necessary for
the proposed protocol. The need to place DS RRs in the zone above is also
eliminated. It can be concluded that our proposed system’s key management is
simpler.

Not only is the key management simpler, but it is also extraordinarily flexible.
If a more fitting PKI were discovered tomorrow, this could easily be integrated
with the system with no impact on the DNSSEC response sizes from Sect. 5.

Blockchain Backed DNSSEC 183

7 Future Work

Due to the fact that not all zones are DNSSEC enabled, a resolver is unsure
if it should expect a signature in the response. In traditional DNSSEC, the DS
record in the parent zone tells a resolver that the child is DNSSEC enabled.
However, the protocol described in Sect.4 does not use DS records.

This leaves a resolver open to a man in the middle attack, where an attacker
can pretend a zone is not DNSSEC enabled by omitting signatures. The following
are several potential solutions that could be implemented to mitigate this:

— If a certificate for a particular zone exists on the blockchain, then the resolver
will expect a signature to be returned.

— A flag is passed to a name server in the OPT pseudo RR could be returned
from the name server to the resolver specifying if the child domain is DNSSEC
enabled.

— A flag could be added to the NS RR that that indicates if that name server
is DNSSEC enabled.

One of our aims was to try and keep the protocol flexible, allowing the PKI
to be agnostic to the overall protocol, and keeping the choice of algorithm for
signatures open. An ECDSA key is much smaller than an equivalently secure
RSA key [3], but validation is slower than RSA validation [13]. The affects of
this on a resolver is undetermined. More research could be performed into this,
especially relating NSEC3 records.

References

1. Ali, M., Nelson, J.C., Shea, R., Freedman, M.J.: Blockstack: a global naming and
storage system secured by blockchains. In: USENIX Annual Technical Conference,
pp. 181-194 (2016)

2. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: Resource records for the
DNS security extensions. Technical report (2005)

3. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management part 1: general (revision 3). NIST Spec. Publ. 800(57), 1-147 (2012)

4. CactusVPN: All you need to know about DNS hijacking (2017). https://www.
cactusvpn.com/beginners-guide-online-security /dns-hijacking/

5. Communications, D.: DNSSEC deployment report (2018). http://rick.eng.br/
dnssecstat/

6. Internet System Consortium: Linux man page (2018). https://linux.die.net/man/
8 /dnssec-signzone

7. Cooper, M., Dzambasow, Y., Hesse, P., Joseph, S., Nicholas, R.: Internet x. 509
public key infrastructure: certification path building. Technical report (2005)

8. Ford, W., Baum, M.S.: Secure Electronic Commerce: Building the Infrastructure
for Digital Signatures and Encryption. Prentice Hall PTR, (2000)

9. Housley, R., Ford, W., Polk, W.; Solo, D.: Internet x. 509 public key infrastructure
certificate and CRL profile. Technical report (1998)

10. Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting browsers from
DNS rebinding attacks. ACM Trans. Web (TWEB) 3(1), 2 (2009)

https://www.cactusvpn.com/beginners-guide-online-security/dns-hijacking/
https://www.cactusvpn.com/beginners-guide-online-security/dns-hijacking/
http://rick.eng.br/dnssecstat/
http://rick.eng.br/dnssecstat/
https://linux.die.net/man/8/dnssec-signzone
https://linux.die.net/man/8/dnssec-signzone

184

11.

12.

13.

14.

15.

16.

17.

18.

S. Gourley and H. Tewari

Mockapetris, P.: RFC 1035-domain names-implementation and specification,
November 1987 (2004). http://www.ietf.org/rfc/rfc1035.txt

van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSEC and its potential for DDoS
attacks: a comprehensive measurement study. In: Proceedings of the 2014 Confer-
ence on Internet Measurement Conference, pp. 449-460. ACM (2014)

van Rijswijk-Deij, R., Sperotto, A., Pras, A.: Making the case for elliptic curves in
DNSSEC. ACM SIGCOMM Comput. Commun. Rev. 45(5), 13-19 (2015)

Son, S., Shmatikov, V.: The Hitchhiker’s guide to DNS cache poisoning. In: Jajodia,
S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp. 466—483. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16161-2_27

Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570-596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7_19

Tewari, H., Hughes, A., Weber, S., Barry, T.: X509cloud-framework for a ubiqui-
tous PKI. In: Military Communications Conference (MILCOM), MILCOM 2017.
IEEE, pp. 225-230. IEEE (2017)

Van Den Broek, G., van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSEC meets
real world: dealing with unreachability caused by fragmentation. IEEE Commun.
Mag. 52(4), 154-160 (2014)

Younglove, R.W.: Public key infrastructure. How it works. Comput. Control Eng.
J.12(2), 99-102 (2001)

http://www.ietf.org/rfc/rfc1035.txt
https://doi.org/10.1007/978-3-642-16161-2_27
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19

	Blockchain Backed DNSSEC
	1 Introduction
	2 Background
	2.1 DNSSEC
	2.2 PKI

	3 Related Work
	4 Protocol Design
	4.1 CSK
	4.2 PKI
	4.3 Protocol

	5 DNSSEC Response Sizes
	5.1 DNSKEY
	5.2 A and AAAA
	5.3 NS
	5.4 NSEC

	6 Goals Revisited
	7 Future Work
	References

