
Generating Win-Win Strategies for Software
Businesses Under Coopetition: A Strategic

Modeling Approach

Vik Pant1(&) and Eric Yu1,2

1 Faculty of Information, University of Toronto, Toronto, Canada
vik.pant@mail.utoronto.ca, eric.yu@utoronto.ca

2 Department of Computer Science, University of Toronto, Toronto, Canada

Abstract. Interorganizational coopetition describes a phenomenon in which
businesses cooperate and compete simultaneously. Such behavior is common-
place among software firms wherein vendors concomitantly deal with each other
both as partners and as rivals. Sustainable coopetitive relationships are predi-
cated on the logic of win-win strategies. Conversely, win-lose or lose-lose
strategies do not lead to durable coopetitive relationships. This aspect of
coopetition requires decision-makers in coopeting software businesses to gen-
erate and analyze win-win strategies. This paper proposes a strategic modeling
approach to systematically search for alternatives and generate win-win strate-
gies. This approach synergistically combines i* goal-modeling to analyze the
distributed intentional structures of actors and Game Tree decision-modeling to
reason about the moves and countermoves of actors. An illustrative example of a
published case study is presented to demonstrate the strengths and weaknesses
of this methodology.

Keywords: Strategic modeling � Coopetition � Win-win � Positive-sum

1 Introduction

Many software businesses join ecosystems (SECOs) to benefit from open innovation
[1] as well as to access: shared market, common technological platform, and oppor-
tunities for information/resource/artifact exchange [2]. Each SECO comprises an
intricate network of multifaceted relationships among software vendors. Coopetition,
which refers to simultaneous cooperation and competition among two or more actors
[3], is commonplace within SECOs [4].

The need for analyzing strategic relationships in and among SECOs has been by
emphasized by several researchers [2, 5, 6]. Many researchers have proposed SECO
modeling techniques to explain structures and processes of SECOs [7–11]. However, none
of these SECO modeling techniques focus directly on coopetition in and among SECOs.

Decision-makers require insight into the intentions of coopeting actors to discern
the motives behind their actions and responses. They also require foresight to predict
the moves and countermoves of actors under coopetition. Game Trees (i.e., multi-actor
Decision Trees) are commonly used to analyze multi-actor decisioning scenarios.

© Springer Nature Switzerland AG 2018
K. Wnuk and S. Brinkkemper (Eds.): ICSOB 2018, LNBIP 336, pp. 90–107, 2018.
https://doi.org/10.1007/978-3-030-04840-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04840-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04840-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04840-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-04840-2_7

However, Pant and Yu note, “Game trees elide the intentional structure of the
players” [12]. This is because while Game Trees encode the motivations of actors into
payoffs implicitly they do not express those motivations explicitly. Therefore, Game
Trees do not provide a systematic method for exploring the space of potential strategic
alternatives to generate new win-win strategies.

i* Strategic Rationale (SR) models can be used to show the internal intentional
structures of actors overtly and can be used to complement Game Trees. A novel
methodology for the synergistic use of actor goal modeling (with i*) and decision
modeling (with Game Trees) was introduced by Pant and Yu [12]. The present paper
extends that work by proposing a systematic method for generating win-win strategies.

The remainder of this paper is organized as follows. In the next section we discuss
strategic outcomes in coopetitive relationships including the notions of win-win, win-
lose, and lose-lose strategies. The third section presents a modeling-based methodology
for generating and evaluating win-win strategies among actors by building upon a
novel approach introduced in [12]. In the fourth section we instantiate this method-
ology by applying it to a published case study about SECOs under coopetition. In the
fifth section we review related work while in the sixth section we discuss our con-
clusions and future work.

2 Strategic Outcomes in Coopetitive Relationships

Simultaneous cooperation and competition is characterized by the partially congruent
interest structures of coopeting actors [13]. Actors in such relationships “cooperate to
grow the pie and compete to split it up” [14]. According to Game Theory (e.g., [3]), a
multi-actor relationship can be classified as: positive-sum, zero-sum, or negative-sum.

In positive-sum scenarios, each actor gains by participating in the relationship; in
zero-sum scenarios, some actors are better off while some actors are worse off by
participating in the relationship; and in negative-sum scenarios all actors are harmed by
participating in the relationship. In zero-sum scenarios, the magnitude of gain for some
of the actors equals the degree of pain for the other actors in that relationship.

It is definitional and logical that rational and self-interested actors are likely to
voluntarily take part only in those relationships that are beneficial for themselves (i.e.,
zero-sum but only where they are advantaged, or positive-sum) [15].

Coopetitive relationship are regarded as strategic because the actions of any actor
can impact the actions of any other actor(s) and, similarly, the decisions of any actor
can inhibit or impel the decisions of any other actor(s). Therefore, actors in such
relationships are codependent on each other for the achievement of their common goals
as well as individual objectives.

A win-win strategy is the sole practical choice for an actor under coopetition because
only it is likely to yield an equilibrium condition underwhich all actors arewilling to remain
in that relationship voluntarily [3]. Therefore, decision-makers in coopetitive organizations
must search forwin-win strategies by: (1) analyzing existingalternatives, and (2) generating
new alternatives. This can be done by using i* to search for new alternatives and Game
Trees to evaluate those alternatives. Complementary usage of i* and Game Trees is
demonstrated in Sects. 3 and 4 where these techniques are used to search for new alter-
natives. The process for modeling, evaluating, and exploring the space of alternatives is
depicted in Fig. 1.

Generating Win-Win Strategies for Software Businesses Under Coopetition 91

Legend

St
ar

t/
En

d
Pr

oc
es

s
D

ec
is

io
n

M
od

el
in

g
Te

ch
ni

qu
e

Ph
as

e

i* Strategic Ra�onale Game Tree

Re
pr

es
en

t
St

ak
eh

ol
de

rs

th
at

 a
re

Co

nc
re

te
 A

ct
or

s
as

 A
ge

nt
s

an
d

Ab
st

ra
ct

 A
ct

or
s

as
 R

ol
es

Re
pr

es
en

t
Fo

ca
l

Pl
ay

er
 a

s
Fi

rs
t

M
ov

er

Id
en

�f
y

ad
di

�o
na

l
ac

to
rs

Id
en

�f
y

go
al

s
fo

r
ea

ch
 a

ct
or

Id
en

�f
y

al
te

rn
a�

ve
 ta

sk
s

fo
r a

ch
ie

vi
ng

ea

ch
 g

oa
l

Re
pr

es
en

t
Se

qu
en

ce

of
 M

ov
es

as

D
ec

is
io

ns

Id
en

�f
y

so
�g

oa
ls

 fo
r

ea
ch

 a
ct

or
, w

ith

pr
io

ri
�e

s

Id
en

�f
y

co
nt

rib
u�

on
s

fr
om

 ta
sk

s
to

so

�g
oa

ls

Id
en

�f
y

D
ep

en
de

nc
ie

s
am

on
g

ac
to

rs
Ev

al
ua

te
 g

oa
l

sa
�s

fa
c�

on

by

pr
op

ag
a�

ng

la
be

ls

Co
m

pu
te

Pa

yo
ffs

fo
r D

ec
is

io
n

Pa
th

s

Is
 th

er
e

a
w

in
-w

in
st

ra
te

gy
?

G
en

er
at

e
a

ch
an

ge

in
 re

la
�o

ns
hi

ps

am
on

g
tw

o
ac

to
rs

G
en

er
at

e
a

ch
an

ge

in
 s

o�
go

al
s

of

so
m

e
ac

to
r

G
en

er
at

e
a

ch
an

ge

in
 s

om
e

ac
to

r’s
 g

oa
l

Ad
d/

Re
m

ov
e

so
m

e
ac

to
r

i*
 S

R
m

od
el

sh
ow

in
g

Ac
to

rs
an

d
Ro

le
s

G
am

e
Tr

ee
sh

ow
in

g
pl

ay
er

 se
qu

en
ce

i*
 S

R
m

od
el

sh
ow

in
g

Go
al

s
an

d
Ta

sk
s

G
am

e
Tr

ee
sh

ow
in

g
m

ov
e

se
qu

en
ce

i*
 S

R
m

od
el

sh
ow

in
g

de
pe

nd
en

ci
es

i*
 S

R
m

od
el

sh
ow

in
g

co
m

pl
et

e
st

ru
ct

ur
e

En
d

St
ar

t

Ge
ne

ra
te

ad

di
�o

na
l

al
te

rn
a�

ve
s f

or

ac
hi

ev
in

g g
oa

ls
of

so

m
e

ac
to

r

Ye
s

esahP
noitaulavE

esahP
gniledo

M
Ex

pl
or

a�
on

 P
ha

se

N
o

F
ig
.1

.
Pr
oc
es
s
to

de
ve
lo
p
i*

SR
di
ag
ra
m

an
d
its

co
rr
es
po

nd
in
g
G
am

e
T
re
e
[e
m
ph

as
is

on
in
tr
od

uc
tio

n
of

ne
w

ta
sk
]
(a
da
pt
ed

fr
om

[1
2]
)

92 V. Pant and E. Yu

3 Methodology for Generating Win-Win Strategies
with i* and Game Trees

We explain a methodology for generating win-win Strategies with i* and Game Trees
by using a simple example from Game Theory. Let us assume that two siblings, namely
Cake Cutter (CC) and Slice Selector (SS), wish to divide a cake among themselves.
The only rule that governs their sharing of a cake is that one sibling cuts the cake
(CC) into two slices and the other sibling distributes each of those slices (SS).
Researchers from myriad disciplines have contemplated concepts such as fairness and
reciprocity using variations of this basic scenario [16–20].

Suppose that both CC and SS wish to obtain the larger share of cake for themselves
and that CC has only one alternative available to it which is of cutting the cake into two
unequal slices. Consequently, SS has two alternatives available to it which are that it
can either take the larger slice or the smaller slice for itself and give the remaining slice
to CC.

If SS takes the larger slice then its goal is satisfied but the goal of CC is denied.
Alternatively, if SS takes the smaller slice then its goal is denied but the goal of CC is
satisfied. Therefore, cutting the cake into unequal slices by CC does not lead to a
positive-sum outcome. Moreover, if a decision by CC to cut the cake into unequal
slices can lead to SS winning and CC losing then these alternatives represent a win-lose
strategy.

CC must generate one or more new alternatives for achieving its goal since the
existing alternative does not represent a win-win strategy. CC can generate a win-win
strategy by analyzing its own alternatives and goals as well as those of SS. A new
alternative that CC can generate is to cut the cake into equal slices. This new alternative
for CC necessitates SS to generate a new alternative as well. This is because there is no
such thing as a larger or a smaller slice when the cake is cut into equal slices. Therefore,
the new alternative for SS is to take either of the equal slices. This allows both CC and
SS to obtain equal slices. Considering the rules of their arrangement this allows both to
satisfy their goals.

Formal solutions to such fair-division problems (e.g., “I cut, you choose”) have
been proven via minimax and maximin theorems [21]. Game Trees are commonly used
to analyze such scenarios because they support the notion of payoffs. However, Game
Trees do not allow a systematic search for new alternatives—which is a necessary step
for generating win-win strategies.

Figure 1 presents a structured and systematic methodology for generating win-win
strategies among actors. This proposal complements the Game Tree method with a
strategic goal-modeling approach. It is explained in this section with reference to this
example of cake sharing. Figure 2a is an i* Strategic Rationale (SR) diagram that
depicts the application of the Modeling and Evaluation phases of Fig. 1. i* (denoting
“distributed intentionality”) is a goal- and actor-modeling language that supports
strategic reasoning [22].

In the Modeling phase, Fig. 2a portrays the relationship between two actors—CC
and SS. Figure 2a shows that the primary objective of the two parties is to get the larger
share of the cake for itself. Each actor uses this as a quality criterion to evaluate and

Generating Win-Win Strategies for Software Businesses Under Coopetition 93

compare alternatives. They assess each option by estimating the impact of an option on
their obtaining the larger share of the cake. This quality criterion is depicted as a
softgoal. The relative importance of each softgoal is depicted with one or more
exclamation mark(s) to indicate lower (!) and higher (!!) priorities.

A task is an activity that can be used to achieve a goal. In the As-Is scenario, CC
has one way of achieving the goal “Cake be cut”, by cutting into unequal slices. We
extend the i* notation slightly to depict multiple options as well as moves and coun-
termoves in the same i* model. Each option is designated a number which is enclosed
within angle brackets. For example, “Cut unequal slices” is identified as <1>. Coun-
termoves corresponding to this option are denoted as <1.x> where x denotes a possible
response to “Cut unequal slices”. Therefore, “Take larger slice” is denoted as <1.1>
and “Take smaller slice” is denoted as <1.2>. Countermoves in response to <1.1> and
<1.2> can be depicted as <1.1.x> or <1.2.x> (not shown). This allows a sequence of
moves and countermoves of any length to be represented in the i* model.

Goal

Task Resource

Task
Decomposi on

Link
Dependency

Link

Hurt
Contribu on

Link

 Legend i* Game Tree

Actor Actor Boundary

Actor Goal

Softgoal Task Resource

Sa sficed

Denied

A

Alterna ve

(CC, SS)

Decision

Payoff for CC,
Payoff for SS

Actor

Means-Ends
Decomposi on

Link

CC

(-1, +1)

(+1, -1)

SS

<1.1>
Take larger slice

<1.2>
Take smaller slice

Slice
Selector

Cake be cut

Cake
Cu er

Slices be
compared

Cake be cut

Larger share
of cake for self

Cut
unequal

slices
Take

smaller
slice

Slices be
distributed

Take larger
slice

Plates

Knife

Receive
slice

Take
specific slice

Larger share
of cake for self

Slice be
received?

/

/

/

<1>

<1.1> <1.2>

Fig. 2. (a) i* SR model depicting As-Is relationship among CC and SS. (b) Game Tree depicting
As-Is decision alternatives with resulting payoffs

94 V. Pant and E. Yu

Tasks can be refined into lower-level goals, tasks, softgoals, and resources. These
subsidiary goals, tasks, softgoals, and resources are related to a higher-level task using
a task decomposition link such that each of the lower level elements must be satisfied in
order for their associated higher-level task to be fulfilled. A resource (e.g., knife, plate)
is a physical or informational entity required to perform a task.

A task is related to a goal using a means-ends link (with solid arrowhead) such that
the completion of any task leads to the fulfilment of its associated goal. A goal rep-
resents a state of affairs that an actor wishes to achieve in the world.

Contribution links (e.g., help, hurt, unknown) (curved arrows with open arrow-
heads) are used to show the impact of tasks and softgoals on one or more softgoals.
Labels (such as satisfied, denied) are propagated along contribution links to derive the
impact of model elements on other elements. In this example, it is unknown whether
cutting the cake into unequal slices will help or hurt CC’s softgoal of obtaining the
larger share of the cake. This is because, per the rules of their arrangement, it is SS that
decides the distribution of cake slices. Therefore, if SS keeps the larger piece for itself
(e.g., exhibiting opportunism) then CC’s softgoal will not be satisfied but if SS keeps
the smaller piece for itself (e.g., demonstrating altruism) then CC’s softgoal will be
satisfied.

Figure 2a shows that SS can choose either the larger or the smaller slice for itself
and give the other slice to CC. This choice is shown as two alternative tasks leading
towards the same goal via means-ends links. SS compares unequally sized slices to
decide whether to keep or give the larger or smaller sized slice. This is shown as a sub-
goal. SS judges an alternative by reckoning its ability to help SS obtain the larger share
of cake for itself. This is depicted as a softgoal.

CC and SS are inter-reliant on each other for the sharing of cake to take place
among themselves. In the As-Is scenario, SS needs CC to cut the cake and CC needs SS
to obtain a slice of the cake. This inter-dependency among CC and SS is shown via
dependency links. A depender is an actor that depends on a dependee (i.e., another
actor) for a dependum (i.e., something such as a task to be completed, a goal to be
satisfied, a resource to be provided, or a softgoal to be fulfilled). The curved side on the
D in the dependency link faces the dependee while the flat side faces the depender.

We complement i* means-ends modeling with Game Tree modeling to show the
gain or loss associated with various strategies for each actor/player. Figure 2b depicts a
Game Tree representing sequential actions/decisions by CC and SS as well as the
payoffs associated with each action/decision path. Dixit and Nalebuff present an
overview of Game Trees in [15].

In the Modeling phase, Fig. 2b shows the sequence of actions/decisions by the
actors. In the Evaluation phase, the payoffs for each configuration of move and
countermove for every actor are calculated by assessing softgoal satisfaction/denial in
Fig. 2a. Figure 2b shows that CC moves first since it is necessary for it to cut the cake
before SS can distribute the cake slices. CC has only one strategy available to it in the
As-Is configuration. Therefore, CC decides to adopt the strategy of cutting the cake into
unequal slices. SS makes the next move by deciding whether to give the larger or
smaller of the cake slices to CC. SS can act opportunistically (larger slice for SS) or
altruistically (larger slice for CC).

Generating Win-Win Strategies for Software Businesses Under Coopetition 95

Let us suppose that if SS decides to keep the larger slice of cake for itself then it
earns a payoff of +1 while CC earns a payoff of −1. This is because, in this situation,
SS is able to satisfy its softgoal while CC is unable to fulfil its softgoal. Conversely,
If SS decides to keep the smaller slice of cake for itself then it earns a payoff of −1
while CC earns a payoff of +1. This is because, in this situation, SS is unable to satisfy
its softgoal while CC is able to fulfil its softgoal.

This integrated analysis, of the i* SR model and Game Tree, indicates that the As-Is
relationship between CC and SS only comprises win-lose strategies and not any win-
win strategies. This is because in one outcome CC (“+1”) is advantaged but SS (“−1”)
is disadvantaged while in the other outcome SS (“+1”) is advantaged but CC (“−1”) is
disadvantaged. This aspect of the As-Is relationship between CC and SS motivates the
need for generating win-win strategies by applying the steps recommended in the
Exploration phase.

In the Exploration phase, one or more subject matter experts (SME) or domain
specialists contemplate ideas for generating win-win strategies. They follow an iterative
and incremental process for enlarging and pruning the i* models and their associated
Game Trees.

The Exploration phase consists of five steps that are arranged in a non-deterministic
manner. SMEs can choose to start with any of the steps in the Exploration phase. Each
step in the Exploration phase loops back to a corresponding step in the Modeling phase.
This allows SMEs to make one change at a time to the intentional (i*) model and assess
its impact on the decision-support (Game Tree) model in an incremental fashion. SMEs
iterate through the Exploration, Modeling, and Evaluation phases until they success-
fully generate one or more win-win strategies.

In the Exploration phase, SMEs apply their knowledge of the motivations of the
actors as well as of their shared context to select any of the steps in that phase. They
can change the relationship among two actors by changing the object of their depen-
dency on each other (i.e., dependum). Alternatively, they can change a quality criterion
(i.e., softgoal) by which some actor compares alternate means for achieving their
desired ends. Else, they can develop a new alternative (i.e., task) for achieving the
objectives (i.e., goal) of some actor. Or, they can change an actor’s objective (i.e.,
goal). Otherwise, they can Add/Remove an actor from the relationship. After making
one change at a time the SMEs can repeat the process (Modeling and Evaluation
phases) to check whether any win-win strategy is generated from that change.

In our example, we suppose that CC (i.e., a SME of cake sharing) performs the
steps in the Evaluation phase to extend and refine Fig. 2a and b. CC does this because
the As-Is scenario does not consist of any win-win strategies. To generate a new win-
win strategy (i.e., To-Be scenario), CC can begin by selecting any of the steps in the
Exploration phase.

Figure 3a (To-Be) is an i* Strategic Rationale (SR) diagram that extends Fig. 2a
(As-Is) by applying steps from the Exploration phase. Figure 3b depicts a Game Tree
that extends Fig. 2b to show new payoffs associated with an additional strategy that is
depicted in Fig. 3a. Model elements with black color represent existing model elements
from Fig. 2a and b while model elements with blue color represent new model ele-
ments in Fig. 3a and b.

96 V. Pant and E. Yu

CC evaluates Fig. 2a and b to understand the reasons for the absence of any win-
win strategy in the As-Is scenario. CC recognizes that its As-Is strategy of cutting the
cake into unequal slices can be disadvantageous for itself. This is because SS has a
softgoal of maximizing its (SS’s) own share of the cake which can only be satisfied if
SS selects the larger slice for itself and gives the smaller slice to CC. CC realizes that it
is improbable for SS to act altruistically by selecting the smaller slice for itself and
giving the larger slice to CC since the i* model does not contain any softgoal to justify
such behavior from SS.

CC starts the Exploration phase by contemplating a new alternative that can help it
to achieve its sole softgoal. However, this alternative must also help SS to satisfy its
only softgoal. This new strategy (To-Be) can only exist if CC cuts the cake into equal
slices. This new alternative for CC will also change the space of alternatives available
to SS. This is because by cutting the cake into equal slices CC will require SS to
generate a new alternative of taking either slice. This new strategy (To-Be) will bring
the interest structures of CC and SS into congruence because it will allow both of them
to satisfy their respective softgoals.

Slice
Selector

<2.1> Take
either
slice

Cake be cut

Cake
Cu er

Slices be
compared

Cake be cut

Maximize share
of cake for self

Cut
unequal

slices

Cut
equal slices

Take
smaller

slice

Slices be
distributed

Take larger
slice

Plates

KnifeRulerKnife

Receive
slice

Take
specific slice

Maximize share
of cake for self

Plates

Slice be
received

<1>

<1.1> <1.2>

<2>

<2.1>

Goal

Task Resource

Task
Decomposi on

Link
Dependency

Link

Hurt
Contribu on

Link

 Legend i* Game Tree

Actor Actor Boundary

Actor Goal

Softgoal Task Resource

Sa sficed

Denied

A

Alterna ve

(CC, SS)

Decision

Payoff for CC,
Payoff for SS

Actor

Means-Ends
Decomposi on

Link

CC

(-1, +1)

(+1, -1)

(+1, +1)

SS

SS

<1.1>
Take larger slice

<1.2>
Take smaller slice

<2>
Cut

equal slices

<1>
Cut

unequal slices

Fig. 3. (a) i* SR model depicting To-Be relationship among CC and SS. (b) i* Game Tree
depicting To-Be decision alternatives with resulting payoffs

Generating Win-Win Strategies for Software Businesses Under Coopetition 97

Figure 3b represents the updated payoffs for CC and SS considering this new
strategy (To-Be). If CC cuts the cake into equal slices then both CC and SS earn a
payoff of +1. This is because the To-Be strategy allows SS to maximize its own share
of the cake while also permitting CC to obtain the largest possible share of the cake
considering the terms of their arrangement. By generating this new strategy, CC
eliminates the possibility for SS to act either opportunistically or altruistically. This
new alternative represents a win-win strategy for both CC and SS.

The next section demonstrates the application of this methodology to a real-life
historic case. It clarifies the systematic structure of the reasoning steps via instantiations
of goal-models (i* SR diagrams) and complementary decision-models (Game Trees).
The following example draws upon multiple published sources [see 23–27]. It is
presented as an interpretive reconstruction that interleaves ground truth (i.e., historical
fact) and creative conjecture (e.g., new alternatives). It is presented in this way to
accommodate and reflect factual and counterfactual aspects of this case.

4 A Case Example of Coopetition: Apple and Adobe SECOs

A widely studied case of industrial coopetition among SECOs pertains to the rela-
tionship between Apple and Adobe [see 23–27]. Apple and Adobe operated as partners
because Adobe’s Flash-based web-applications added value to Apple’s web browser
(Safari) on its desktop operating system (macOS). Similarly, Adobe generated accep-
tance and adoption of its Flash technology from Apple’s customer base that accessed
Flash-based web-applications on their Apple computers. However, Apple and Adobe
also behaved as rivals since they operated competing SECOs for mobile apps (i.e.,
Apple iOS app store and Adobe Flash Gallery).

Figure 4a depicts an i* SR model of Apple’s “walled garden” strategy and Adobe
participation. In the Modeling phase, we use i* to show the internal intentional
structures of Adobe and Apple. This model is based on details from [23–27] and is
adapted from [12]. The left side of Fig. 4a shows a condensed model of Apple’s
strategy. Apple’s objective was to drive the adoption of its proprietary OS (i.e., iOS) in
the mobile device market (“iOS be adopted in smart mobile device market”). The
success of iOS was tied to higher sales of iPhone, iPod, and iPad devices because
Apple’s iOS and its mobile devices were only compatible with each other (not shown).

We extend the notation of i* slightly to depict the impact of multiple options on
softgoals in the same i* model. A softgoal satisfaction/denial label is preceded by a
number which represents the option that leads to the satisfaction/denial of that softgoal.
For example, “Reference Objective-C API” is shown as option <2>, which satisfies the
softgoal titled “Apps be optimized for iOS”.

Apple’s SECO was a core component of its iOS proliferation strategy. A mobile OS
requires a complementary catalog of third-party apps to boost its acceptance and
adoption by users (“External innovation be encouraged”). Third-party apps bring new
capabilities to a mobile OS and make that mobile OS more useful for its users. Hence, a
relatively large catalog of apps ostensibly affords greater choice to the users of a SECO
compared to a relatively small catalog.

98 V. Pant and E. Yu

Moreover, positive cross-side network effects synergistically correlate the user base
and developer community on a SECO [34] such that growth in the numbers of apps
(and their developers) on a SECO attracts more users to that SECO while growth in the
number of users on a SECO incents more developers to develop apps for that SECO
(“App developers be attracted”).

Apple coupled its mobile hardware and software tightly so that it could exert
maximal control on the security of apps that were used on iPhone, iPod, and iPad
devices (“Security of apps be controlled”). App developers could generate revenues by
charging users for downloading their apps in addition to building in-app purchases and
value-added offers into their mobile apps (not shown). Apple protected its commissions
from these income streams by forcing users to purchase apps from its iOS app store
(i.e., prevent revenue flight) as well as requiring developers to use its IDE and pro-
gramming language (i.e., prevent revenue obfuscation). This “walled garden” strategy
helped Apple to safeguard its commissions (“Revenue from apps be centralized”).

Apple had two strategic options (“Allow Objective-C code only” and “Allow
comingled Objective-C and other code”). Objective-C is Apple’s proprietary pro-
gramming language that is supported by iOS. Each of these options impacted Apple’s

Apple

Allow comingled
Objec ve-C and

other code
Allow Objec ve-C

code only

Security of apps
be controlled

External
innova on be
encouraged

Revenue from
apps be

centralized
App developers

be a racted

Adobe

Flash be
compa ble with

iOS devices

Translate Flash
code to Objec ve-C

code on own IDE
Reference

Objec ve-C API

Apps be
op mized for

iOS

Exis ng Flash
apps be

supported

Apps be
published on

Apple app store

Flash developer
community be

united

iOS be adopted
in smart mobile
device market

API be
accessible!!!

!! !

!!

! !!

!

Transla on be
permi ed

IDE be
required

Mandate
XCode only

Support
Thirdparty IDEs

Pla orm be
legi mated

Mobile apps be
supplied

<1>
<2>

1: 2:

1: 2:

1: 2:

1: 2:

1

1: 2:

2

1: 2:

1: 2:

1: 2: 1: 2:

1: 2:

<1.1> <1.2>

<2.2>
<2.1>

Figure 4b. Game Tree depict-
ing As-Is decisions and payoffs

(Adapted from [12])

Adobe

(-2, +1)

(+2, -2)

(-1, +1)

(+1, -2)

Apple

Apple

<1>

Build transla on layer

<2>

Use na ve API

<1.1>

Prohibit transla on

<1.2>

Allow transla on

<2.1>

Prohibit Flash code

<2.2>

Support Flash code

Goal

Task Resource

Task
Decomposi on

Link
Dependency

Link

Hurt
Contribu on

Link

 Legend i* Game Tree

Actor Actor Boundary

Actor Goal

Softgoal Task Resource

Sa sficed

Denied

A

Alterna ve

(Ad, Ap)

Decision

Payoff for Ad,
Payoff for Ap

Actor

Means-Ends
Decomposi on

Link

Fig. 4. (a) i* SR model depicting As-Is actor relationships. (b) Game Tree depicting As-Is
decisions and payoffs (Adapted from [12])

Generating Win-Win Strategies for Software Businesses Under Coopetition 99

softgoals differently. The option to “Allow comingled Objective-C and other code”
(e.g., Adobe Flash code) afforded app developers the opportunity to hide forbidden or
malicious functionality outside the purview of Apple security reviews (Hurts softgoal
“Security of apps be controlled”).

The option to “Allow Objective-C code only” had two sub-options. Objective-C
code could be developed using Apple XCode (“Mandate XCode only”) or generated
using a third-party IDE (“Support Third-party IDEs”). XCode is Apple’s native inte-
grated development environment (IDE) for iOS. Third-party IDEs afforded app
developers the opportunity to bypass security policies implemented by Apple in its
XCode IDE (Hurts softgoal “security of apps be controlled”).

The “Mandate XCode only” option could have positive or negative impact
(“Unknown”) on the softgoal “External innovation be encouraged”. The outcome of
this option depended upon the perceived difficulty of using Apple’s XCode IDE by an
app developer that was unfamiliar with Objective-C. If usage of XCode was perceived
as being simple then it would Help that softgoal but if it was perceived as being
complex then it would Hurt that softgoal (not shown).

Now consider Adobe’s strategic options. Adobe intended for its Flash technology
to be supported on Apple iOS devices (“Flash be compatible with iOS devices”).
A plethora of Flash-based web-apps could be accessed on the Internet and Adobe’s
goal was to make these apps available on popular mobile devices such as iPhones,
iPods, and iPads. To achieve this objective Adobe had two alternatives which were:
“Reference Objective-C API” and “Translate Flash code to Objective-C code on own
IDE”. Each of these strategies had different pros and cons for Adobe.

The first alternative involved translating Flash code into Objective-C code directly
within Adobe’s IDE for developing Flash applications (Adobe Flash Builder). Under
this option, developers of Adobe Flash apps did not need to use any Apple tools or
technologies. This translation option is depicted as scenario <1> in Fig. 4a. This option
allowed reuse of Flash code (Helps softgoal “Existing Flash apps be supported”). It
also allowed cohesion to be maintained in the Flash developer community (Helps
softgoal “Flash developer community be united”).

The second alternative involved referencing Objective-C API from Flash code
directly within Adobe’s IDE for developing Flash applications (Adobe Flash Builder).
This commingling option is depicted as scenario <2> in Fig. 4a. This option allowed
developers to optimize apps for iOS (Helps softgoal “Apps be optimized for iOS”) and
for those apps to be publishable on Apple iOS app store (Helps softgoal “Apps be
published on Apple app store”).

Adobe depended on Apple for the operationalization of both options under its
consideration (i.e., “Translate Flash code to Objective-C code on own IDE” and
“Reference Objective-C API”). This reliance is shown via outbound dependency links
from Adobe to Apple (“Translation be permitted” and “API be accessible” respectively
for the two options).

Figure 4b depicts the payoffs for Adobe and Apple for each of these scenarios. In
the Evaluation phase, we use a Game Tree to compare various alternatives. Adobe was
the first-mover since it had the choice of selecting either the translation (<1>) or the
commingling (<2>) option. Apple was the second mover since it controlled the iOS
platform and could permit or prohibit actions by third-parties that depended on it for

100 V. Pant and E. Yu

some decision or action. Therefore, Apple could respond to Adobe either by supporting
its first-move or blocking it.

If Adobe selected the translation option (<1>) and Apple supported it then Adobe
obtained a payoff of +2 while Apple obtained a payoff of −2. This is because the high
priority softgoals of Adobe were achieved but the high priority softgoals of Apple were
denied (comparing softgoals priorities and achievements associated with <1> in
Fig. 4a). However, if Adobe selected the translation option (<1>) and Apple blocked it
then Adobe obtained a payoff of −2 while Apple obtained a payoff of +1. This is
because Apple was able to avoid the countermanding of its high priority softgoals but
the high priority softgoals of Adobe were not fulfilled (<1> in Fig. 4a). For the purpose
of illustration, we use simple representative values for the payoffs.

Alternatively, if Adobe selected the commingling option (<2>) and Apple sup-
ported it then Adobe obtained a payoff of +1 while Apple obtained a payoff of −2. This
is because some softgoals of Adobe, albeit of lower priority, were satisfied but the high
priority softgoals of Apple were denied (<2> in Fig. 4a). However, if Adobe selected
the commingling option (<2>) and Apple blocked it then Adobe obtained a payoff of
−1 while Apple obtained a payoff of +2. This is because high priority softgoals of
Adobe were unfulfilled but Apple was able to avoid the denial of its high priority
softgoals (<2> in Fig. 4a).

This analysis of Fig. 4b, following the Evaluation phase of Fig. 1, shows that the
relationship between Adobe and Apple did not comprise of any win-win strategies.
Rather their relationship characterized only win-lose strategies wherein if one party
wins then the other party loses. We now illustrate the methodology depicted in Fig. 1
by applying the Exploration phase to generate a win-win strategy for Adobe and Apple.
In the Evaluation phase, we use i* to contemplate and create new strategic options.

Figure 5a presents an extended actor model showing the goals of Adobe and
Apple. Existing model elements are denoted by black color while new model elements
are denoted by blue color. It is possible that SMEs at Adobe predicted that Apple was
unlikely to greenlight either of Adobe’s As-Is strategies (of translation or commingling)
because each of these strategies would result in the denial of Apple’s softgoals.
Moreover, Adobe SME’s probably recognized the asymmetry in the bargaining power
between Apple and Adobe because Apple governed and controlled the iOS platform at
its own sole discretion. Therefore, Adobe needed to generate new strategies that could
help it to satisfy its own goals while enabling Apple to meet its objectives as well.

The Exploration phase offers five possible activities for generating new win-win
strategies. These pertain to adding, removing, or changing goals, dependencies, soft-
goals, actors, and tasks. In terms of goals, Adobe wanted to bring support for Flash to
popular mobile devices. It could have changed its goal to making Flash apps com-
patible with Android devices (not shown). With respect to dependencies, Adobe could
have tried to change its relationship with Apple purely at the interface level. It could
have paid fees to Apple to induce Apple to support its chosen option (not shown). In
terms of softgoals, Adobe could influence Apple to modify its softgoals. Adobe could
mount a public relations campaign to encourage Apple to support Flash (not shown).

Generating Win-Win Strategies for Software Businesses Under Coopetition 101

With respect to actors, Apple or Adobe were in a dyadic relationship. Adobe could
have incented Apple to add support for Flash into iOS by bringing a new actor (e.g., its
community of Flash app developers) into this relationship. Access to a large developer
community that was willing to embrace iOS app development could be persuasive and
compelling for Apple (not shown).

In terms of tasks, Adobe SMEs might have reasoned that Adobe needed to generate
new alternatives in its search for a win-win strategy. Adobe SMEs likely recognized
that Flash support on iOS could help Apple to satisfy its softgoals of “encouraging
external innovation” and “attracting App developers”. However, Adobe might also
have understood that Apple would not support Flash on iOS if it meant that its more
important softgoals (i.e., “Security of apps be controlled” and “Revenue from apps be
centralized”) were denied. Therefore, Adobe would have needed to create a new
alternative that would be helpful for Apple to achieve its higher priority softgoals.

Apple Adobe

!!

Learning curve
of plugin be flat

Genera on of
iOS apps be

simple

Flash be
compa ble with

iOS devices

Apps be
op mized for

iOS

Exis ng Flash
apps be

supported

Apps be
published on

Apple app store

Flash developer
community be

united

!!

! !!

!

Allow comingled
Objec ve-C and

other code
Allow Objec ve-C

code only

Security of apps
be controlled

External
innova on be
encouraged

Revenue from
apps be

centralized
App developers

be a racted

iOS be adopted
in smart mobile
device market

!!!

!! !

IDE be
required

Mandate
XCode only

API be
accessible

Translate Flash
code to Objec ve-C

code on own IDE

Pla orm be
legi mated

Mobile apps be
supplied

Transla on be
permi ed

Support
Thirdparty IDEs Reference

Objec ve-C API

XCode compa ble
translator be supplied

Develop Adobe Flash
translator plugin for

Apple XCode

XCode integra on
points be available

!

!

<1><2> <3>
<1.1>
<3.1> <1.2>

<3.2>

<2.1>
<2.2>

3:

3:

3:

3:

3:

3:

3: 3:

3: 3:

Adobe

(-2, +1)

(+2, -2)

(-2, -2)

(+3, +3)

Apple

Apple

(-1, +1)

(+1, -2)

Apple

<1>

Build transla on layer

<2>
Use na ve

API

<1.1>

Prohibit transla on

<1.2>

Allow transla on

<2.1>

Prohibit Flash code

<2.2>

Support Flash code

<3>
Develop plugin for

XCode
<3.1>

Prohibit plugin

<3.2>

Support plugin

Goal

Task Resource

Task
Decomposi on

Link
Dependency

Link

Hurt
Contribu on

Link

 Legend i* Game Tree

Actor Actor Boundary

Actor Goal

Softgoal Task Resource

Sa sficed

Denied

A

Alterna ve

(Ad, Ap)

Decision

Payoff for Ad,
Payoff for Ap

Actor

Means-Ends
Decomposi on

Link

Fig. 5. (a) i* SR model depicting To-Be actor relationships. (b) Game Tree depicting To-Be
decisions and payoffs (Adapted from [12])

102 V. Pant and E. Yu

Starting with existing options to create new options is useful because the impact of
existing options on extant intentional elements of actors is likely to be well understood
in the Evaluation phase. As shown in Fig. 4a, translation option (<1>) was preferable
to Adobe over commingling option (<2>) since the former satisfied its higher priority
softgoals while the latter satisfied its lower priority softgoals (comparing <1> and <2>
in Fig. 4a). However, Adobe’s operationalization of the translation option (<1>) via its
own IDE (Adobe Flash Builder) made it unacceptable for Apple. This is because it
countermanded Apple’s higher priority softgoal of “security of apps be controlled” and
its related higher priority softgoal of “Revenue from apps be centralized”.

However, a different implementation of the translation option might have helped
Adobe and Apple to achieve their higher priority softgoals. For example, Adobe could
have developed “Adobe Flash translator plugin for Apple XCode”. Such a plugin could
be embedded within XCode and could automatically inherit and apply the security
policies implemented by Apple in its IDE. In such an implementation, app developers
would have been able to convert Flash code into Objective-C code using XCode rather
than Flash Builder. Developers of Flash apps would have had a minimal learning curve
(“Learning curve of plugin be flat”) which would have been limited to learning the
usage of the Adobe supplied translator plugin inside XCode (“Generation of iOS apps
be simple”). Apple would have been satisfied knowing that the output of this translator
plugin would be Objective-C code generated inside XCode. Likewise, Adobe would
have been contented knowing that its Flash apps would be supported on Apple iOS
devices. Eaton et al. [25] have noted that various blogs and online news articles about
Apple’s service system discussed an Adobe Flash Plug-in option that was not realized.
The systematic method proposed in this paper can be used to generate such a novel
solution. However, it cannot replace creative thinking and deep domain knowledge but
rather support and supplement it.

Figure 5b presents an extended game tree showing the payoffs for Adobe and
Apple. Two decision paths at the top of this game tree are the same as those in Fig. 4b.
The decision path on the bottom of this game tree reflects the new alternative that is
present in Fig. 5a. This decision path is shown in blue color to differentiate it from the
others. If Adobe were to select the plugin option and Apple supported it then both
Adobe and Apple would have obtained payoffs of +3 each. This is because both actors
could have satisfied each of their softgoals. Additionally, this new task would have
unlocked additional softgoals for Adobe. However, if Adobe were to select the plugin
option and Apple blocked it then both Adobe and Apple would have obtained payoffs
of −2. This is because neither of the actors would have been able to fulfil any of their
softgoals and would have missed out on a promising business opportunity. Therefore,
this plugin option represents a win-win strategy for Adobe and Apple wherein both
actors would be better off if they operationalize it as partners.

In this example, a win-win strategy was arrived at in one iteration. In the general
case, one may need to go through various paths in the exploratory phase multiple times
to arrive at a win-win strategy. For instance, in this example, Adobe was able to
generate a new alternative (“Develop Adobe Flash translator plugin for Apple XCode”)
that was compatible with an element of Apple’s internal intentional structure (“Man-
date XCode only”). However, generation of win-win strategies in other cases may

Generating Win-Win Strategies for Software Businesses Under Coopetition 103

require changes to be made to the internal intentional structures of multiple actors. Such
cases will necessitate multiple iterations over different paths of this process.

Similarly, additional iterations of this process would yield other win-win strategies.
For instance, in this example, Adobe could have performed additional exploration to
generate other alternatives that resulted in win-win. It could have developed a translator
that converted Flash code to HTML5 code since iOS supported HTML5 (not shown).
Alternatively, it could have developed a translator that converted Flash code to Java-
Script since iOS supported JavaScript (not shown). It is conceivable that each of these
options might have led to better payoffs for Adobe and Apple.

5 Related Work

A number of researchers have contributed to research in these areas: (1) game-theoretic
analysis of coopetition, and (2) model-based analysis of SECOs. Brandenburger and
Nalebuff [3] introduced the idea of coopetition based on game theory. They also
explicated facets of coopetition such as players, added value, roles, tactics, and scope
[14]. Nalebuff and Brandenburger [28] defined the roles of complementors and sub-
stitutors in coopetition. Brandenburger and Stuart [29] applied cooperative game theory
for strategy development. They also introduced a model of biform games to explain
noncooperative-cooperative games [30]. These works do not provide a systematic
method for exploring the space of strategic moves to generate new win-win strategies.

Fricker [31] developed a framework for analyzing SECO requirements using ideas
from negotiation and network theories. Handoyo et al. [8] developed value chains to
identify key actors and roles in SECOs. Jansen et al. [32] proposed a set of universal
requirements and understandings about SECO modeling. Santos [33] developed Power
Models for assessing power in SECOs.

Yu and Deng [11] were the first to use i* strategic modeling to analyze SECOs.
Pant and Yu [12] introduced a methodology for modeling strategic moves and
reciprocity among actors. This methodology introduced synergistic links between
Game Trees and i* models. It was accompanied with a set of guidelines for, “instan-
tiating an i* SR model and its complementary game tree in a consistent manner” [12].
Key assumptions of this methodology included: (i) focal-actor orientation; (ii) distinc-
tive preference profiles and idiosyncratic interest structures of actors; and (iii) infor-
mation imperfection, incompleteness, and asymmetry [12]. The present paper extends
that work by offering a systematic method for generating win-win strategies.

6 Conclusions and Future Work

This paper contributed to a line of research that links strategic modeling (i*) with
decision analysis (Game Tree). The primary contribution in this paper was in the
Exploration phase of this methodology. This phase is crucial for incremental and
iterative generation of win-win strategies. This phase of the methodology was expli-
cated using a simple example predicated on minimax and maximin theorems from

104 V. Pant and E. Yu

Game Theory. This paper illustrated this methodology by applying it to instantiate
models of SECOs under coopetition based on a published case study.

The next step in this research area is to accommodate additional facets of com-
plexity in two-person zero-sum games within Game Trees [35]. A following step to this
concerns empirical validation of this methodology in a real-life case study. Progression
from validation using a published case study to validation using an empirical case study
will surface the strengths and weaknesses of applying this methodology in the field.
Another advancement in this research area will come from further elaboration and
explication of the Exploration phase. More structured and systematic guidelines for
selecting among the five steps in that phase will support practitioner efforts to use this
methodology in industrial settings.

Additional areas for exploration include adding support in i* for: (i) temporal
reasoning, (ii) expressing negative dependencies, and (iii) conditional logic. The
notions of time and sequence are relevant for analyzing coopetition since path
dependent phenomena such as reciprocity and trust impact the moves and counter-
moves of actors. The depiction of negative dependencies is necessary for analyzing
coopetition because the coincidental absence of dependencies and the intentional
independence between actors can impel or impede coopetitive strategies. Support for
conditional logic is relevant for representing cause and effect relationships such as
those between the actions and responses of coopeting actors. These additions to the
expressiveness of i* can support a practitioner to more fully portray and understand the
motivations behind the decisions and actions of actors in coopetitive relationships.

References

1. Chesbrough, H.: Open innovation: a new paradigm for understanding industrial innovation.
In: Open Innovation: Researching a New Paradigm, pp. 0–19, 400 p. (2006)

2. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research agenda for
software ecosystems. In: 31st International Conference on Software Engineering Companion
Volume, pp. 187–190. IEEE, May 2009

3. Brandenburger, A.M., Nalebuff, B.J.: Co-opetition. Doubleday, New York (1996)
4. Duc, A.N., Cruzes, D.S., Hanssen, G.K., Snarby, T., Abrahamsson, P.: Coopetition of

software firms in open source software ecosystems. In: Ojala, A., Holmström Olsson, H.,
Werder, K. (eds.) ICSOB 2017. LNBIP, vol. 304, pp. 146–160. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69191-6_10

5. Coutinho, E.F., Viana, D., dos Santos, R.P.: An exploratory study on the need for modeling
software ecosystems: the case of SOLAR SECO. In: Proceedings of the 9th International
Workshop on Modelling in Software Engineering, pp. 47–53. IEEE Press, May 2017

6. Rausch, A., Bartelt, C., Herold, S., Klus, H., Niebuhr, D.: From software systems to complex
software ecosystems: model- and constraint-based engineering of ecosystems. In: Münch, J.,
Schmid, K. (eds.) Perspectives on the Future of Software Engineering, pp. 61–80. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37395-4_5

7. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem modeling. In:
Proceedings of the 1st International Workshop on Open Component Ecosystems, pp. 41–50.
ACM, August 2009

Generating Win-Win Strategies for Software Businesses Under Coopetition 105

http://dx.doi.org/10.1007/978-3-319-69191-6_10
http://dx.doi.org/10.1007/978-3-642-37395-4_5

8. Handoyo, E., Jansen, S., Brinkkemper, S.: Software ecosystem modeling: the value chains.
In: Proceedings of the Fifth International Conference on Management of Emergent Digital
Ecosystems, pp. 17–24. ACM, October 2013

9. Handoyo, E.: Software ecosystem modeling. In: Herzwurm, G., Margaria, T. (eds.) ICSOB
2013. LNBIP, vol. 150, pp. 227–228. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39336-5_25

10. Alves, A.M., Pessoa, M., Salviano, C.F.: Towards a systemic maturity model for public
software ecosystems. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.) SPICE
2011. CCIS, vol. 155, pp. 145–156. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21233-8_13

11. Yu, E., Deng, S.: Understanding software ecosystems: a strategic modeling approach. In:
Proceedings of the Third International Workshop on Software Ecosystems, Brussels,
Belgium, pp. 65–76, June 2011

12. Pant, V., Yu, E.: Understanding strategic moves and reciprocity on software ecosystems: a
strategic modeling approach. In: 9th International Workshop on Software Ecosystems
(IWSECO 2017) (2017)

13. Padula, G., Dagnino, G.B.: Untangling the rise of coopetition: the intrusion of competition in
a cooperative game structure. Int. Stud. Manag. Organ. 37(2), 32–52 (2007)

14. Brandenburger, A.M., Nalebuff, B.J.: The Right Game: Use Game Theory to Shape Strategy.
Harvard Business Review, pp. 57–71 (1995)

15. Dixit, A.K., Nalebuff, B.: The Art of Strategy: A Game Theorist’s Guide to Success in
Business & Life. WW Norton & Company, New York (2008)

16. Magdon-Ismail, M., Busch, C., Krishnamoorthy, M.S.: Cake-cutting is not a piece of cake.
In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 596–607. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3_52

17. Barbanel, J.B., Brams, S.J., Stromquist, W.: Cutting a pie is not a piece of cake. Am. Math.
Mon. 116(6), 496–514 (2009)

18. Chen, Y., Lai, J.K., Parkes, D.C., Procaccia, A.D.: Truth, justice, and cake cutting. Games
Econ. Behav. 77(1), 284–297 (2013)

19. Deng, X., Qi, Q., Saberi, A.: Algorithmic solutions for envy-free cake cutting. Oper. Res. 60
(6), 1461–1476 (2012)

20. Aziz, H., Mackenzie, S.: A discrete and bounded envy-free cake cutting protocol for any
number of agents. In: 57th Annual Symposium on Foundations of Computer Science,
pp. 416–427. IEEE, October 2016

21. Dall’Aglio, M., Hill, T.P.: Maximin share and minimax envy in fair-division problems.
J. Math. Anal. Appl. 281(1), 346–361 (2003)

22. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements
Engineering. MIT Press, Cambridge (2011)

23. Ghazawneh, A., Henfridsson, O.: Governing third-party development through platform
boundary resources. In: Proceedings of the 31st International Conference of Information
Systems (ICIS), St. Louis (2010)

24. Ghazawneh, A., Henfridsson, O.: Micro-strategizing in platform ecosystems: a multiple case
study. In: Proceedings of the 32nd International Conference on Information Systems (ICIS)
2011, Shanghai, China (2011)

25. Eaton, B., Elaluf-Calderwood, S., Sorensen, C., Yoo, Y.: Distributed tuning of boundary
resources: the case of Apple’s iOS service system. MIS Q.: Manag. Inf. Syst. 39(1), 217–243
(2015)

26. Prince, J.D.: HTML5: not just a substitute for flash. J. Electron. Resour. Med. Libr. 10(2),
108–112 (2013)

106 V. Pant and E. Yu

http://dx.doi.org/10.1007/978-3-642-39336-5_25
http://dx.doi.org/10.1007/978-3-642-39336-5_25
http://dx.doi.org/10.1007/978-3-642-21233-8_13
http://dx.doi.org/10.1007/978-3-642-21233-8_13
http://dx.doi.org/10.1007/3-540-36494-3_52

27. Elaluf-Calderwood, S.M., Eaton, B.D., Sørensen, C., Yoo, Y.: Control as a strategy for the
development of generativity in business models for mobile platforms. In: 15th International
Conference on Intelligence in Next Generation Networks (ICIN), pp. 271–276. IEEE,
October 2011

28. Nalebuff, B.J., Brandenburger, A.M.: Co-opetition: competitive and cooperative business
strategies for the digital economy. Strategy Leadersh. 25(6), 28–33 (1997)

29. Brandenburger, A.M., Stuart, H.W.: Value-based business strategy. J. Econ. Manag.
Strategy 5(1), 5–24 (1996)

30. Brandenburger, A., Stuart, H.: Biform games. Manage. Sci. 53(4), 537–549 (2007)
31. Fricker, S.: Specification and analysis of requirements negotiation strategy in software

ecosystems. In: Proceedings of International Workshop on Software Ecosystems (2009)
32. Jansen, S., Handoyo, E., Alves, C.: Scientists’ needs in software ecosystem modeling. In:

Proceedings of the International Workshop on Software Ecosystems (2015)
33. Santos, G.A.V.: A theory of power in software ecosystems formed by small-to-medium

enterprises. Ph.D. thesis (2016)
34. Boudreau, K.J.: Let a thousand flowers bloom? An early look at large numbers of software

app developers and patterns of innovation. Organ. Sci. 23(5), 1409–1427 (2012)
35. Koller, D., Megiddo, N.: The complexity of two-person zero-sum games in extensive form.

Games Econ. Behav. 4(4), 528–552 (1992)

Generating Win-Win Strategies for Software Businesses Under Coopetition 107

	Generating Win-Win Strategies for Software Businesses Under Coopetition: A Strategic Modeling Approach
	Abstract
	1 Introduction
	2 Strategic Outcomes in Coopetitive Relationships
	3 Methodology for Generating Win-Win Strategies with i* and Game Trees
	4 A Case Example of Coopetition: Apple and Adobe SECOs
	5 Related Work
	6 Conclusions and Future Work
	References

