
Exploiting Data Sensitivity
on Partitioned Data

Sharad Mehrotra(B), Kerim Yasin Oktay, and Shantanu Sharma(B)

Department of Computer Science, University of California, Irvine, USA
sharad@ics.uci.edu, shantanu.sharma@uci.edu

Abstract. Several researchers have proposed solutions for secure data
outsourcing on the public clouds based on encryption, secret-sharing,
and trusted hardware. Existing approaches, however, exhibit many limi-
tations including high computational complexity, imperfect security, and
information leakage. This chapter describes an emerging trend in secure
data processing that recognizes that an entire dataset may not be sen-
sitive, and hence, non-sensitivity of data can be exploited to overcome
some of the limitations of existing encryption-based approaches. In par-
ticular, data and computation can be partitioned into sensitive or non-
sensitive datasets – sensitive data can either be encrypted prior to out-
sourcing or stored/processed locally on trusted servers. The non-sensitive
dataset, on the other hand, can be outsourced and processed in the clear-
text. While partitioned computing can bring new efficiencies since it does
not incur (expensive) encrypted data processing costs on non-sensitive
data, it can lead to information leakage. We study partitioned comput-
ing in two contexts - first, in the context of the hybrid cloud where local
resources are integrated with public cloud resources to form a effective
and secure storage and computational platform for enterprise data. In
the hybrid cloud, sensitive data is stored on the private cloud to prevent
leakage and a computation is partitioned between private and public
clouds. Care must be taken that the public cloud cannot infer any infor-
mation about sensitive data from inter-cloud data access during query
processing. We then consider partitioned computing in a public cloud
only setting, where sensitive data is encrypted before outsourcing. We
formally define a partitioned security criterion that any approach to parti-
tioned computing on public clouds must ensure in order to not introduce
any new vulnerabilities to the existing secure solution. We sketch out
an approach to secure partitioned computing that we refer to as query
binning (QB) and show how QB can be used to support selection queries.
We evaluate conditions under which partitioned computing approaches

The full approaches proposed in this chapter may be found in [33,36]. This material
is based on research sponsored by DARPA under agreement number FA8750-16-2-
0021. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government. This work is partially supported by NSF
grants 1527536 and 1545071.

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 274–299, 2018.
https://doi.org/10.1007/978-3-030-04834-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_15

Exploiting Data Sensitivity on Partitioned Data 275

such as QB can improve the performance of cryptographic approaches
that are prone to size, frequency-count, and workload attacks.

1 Introduction

Organizations today collect and store a large volume of data, which is analyzed
for diverse purposes. However, in-house computational capabilities of organiza-
tions may become obstacles for storing and processing data. Many untrusted
cloud computing platforms (e.g., Amazon AWS, Google App Engine, and
Microsoft Azure) offer database-as-a-service using which data owners, instead
of purchasing, installing, and running data management systems locally, can
outsource their databases and query processing to the cloud. Such cloud-based
services available using the pay-as-you-go model offers significant advantages
to both small, medium and at times large organizations. The numerous ben-
efits of public clouds impose significant security and privacy concerns related
to sensitive data storage (e.g., sensitive client information, credit card, social
security numbers, and medical records) or the query execution. The untrusted
public cloud may be an honest-but-curious (or passive) adversary, which executes
an assigned job but tries to find some meaningful information too, or a mali-
cious (or active) adversary, that may tamper the data or query. Such concerns
are not a new revelation – indeed, they were identified as a key impediment
for organizations adopting the database-as-as-service model in early work on
data outsourcing [25,26]. Since then, security/confidentiality challenge has been
extensively studied in both the cryptography and database literature, which has
resulted in many techniques to achieve data privacy, query privacy, and infer-
ence prevention. Existing work can loosely be classified into the following three
categories:

1. Encryption based techniques. E.g., order-preserving encryption [3], deter-
ministic encryption (Chap. 5 of [24]), homomorphic encryption [21], bucketiza-
tion [25], searchable encryption [41], private informational retrieval (PIR) [8],
practical-PIR (P-PIR) [42], oblivious-RAM (ORAM) [23], oblivious transfers
(OT) [39], oblivious polynomial evaluation (OPE) [34], oblivious query pro-
cessing [5], searchable symmetric encryption [13], and distributed searchable
symmetric encryption (DSSE) [27].

2. Secret-sharing [40] based techniques. E.g., distributed point func-
tion [22], function secret-sharing [7], functional secret-sharing [30],
accumulating-automata [18,19], Obscure [46], and others [20,31,32].

3. Trusted hardware-based techniques. They are either based on a secure
coprocessor or Intel SGX, e.g., [4,6]. The secure coprocessor and Intel
SGX [12] allow decrypting data in a secure area and perform some com-
putations.

While approaches to compute over encrypted data and systems support-
ing such techniques are plentiful, secure data outsourcing and query process-
ing remain an open challenge. Existing solutions suffer from several limitations.

276 S. Mehrotra et al.

Se
cu

ri
ty

 le
ve

ls

DET
1.43x

Access-pattern
hiding
3291x

SGX
6724x

Entire DB
retrieval
11135x

x = time to search a keyword in cleartext

Time
NDET
1.43x

Fu
ll

se
cu

re

Si
ze

, f
re

qu
en

cy
-c

ou
nt

, a
nd

 w
or

kl
oa

d
at

ta
ck

s
bu

t n
o

ac
ce

ss
-p

at
te

rn
 a

tta
ck

Si
ze

, f
re

qu
en

cy
-c

ou
nt

, a
nd

 w
or

kl
oa

d
at

ta
ck

s
bu

t n
o

ac
ce

ss
-p

at
te

rn
 a

tta
ck

N
ot

 se
cu

re

N
ot

 se
cu

re

The x-axis shows the ratio between the selection query execution time on
encrypted data using a cryptographic technique and on cleartext data for a fixed
dataset on a specific database system (in both cases), and The y-axis shows
the security levels. Weak cryptographic techniques (e.g., deterministic encryption
(DET)) are very fast but provide no security (against output size, frequency-count,
access-patterns, and workload attacks), while access-pattern hiding techniques are
relatively secure but slow. The completely secure technique may retrieve the entire
dataset and process at the user-side but this technique is very slow. For join queries,
weak cryptographic techniques are efficient since they can exploit hash/merge
join. However, more secure techniques, since they need nested loop join, tends
to become worse. NDET denotes non-deterministic encryption.

Fig. 1. Comparing different cryptographic techniques.

First, cryptographic approaches that prevent leakage, e.g., fully homomorphic
encryption coupled with ORAM, simply do not scale to large data sets and com-
plex queries for them to be of practical value. Most of the above-mentioned tech-
niques are not developed to deal with a large amount of data and the correspond-
ing overheads of such techniques can be very high (see Fig. 1 comparing the time
taken for TPC-H selection queries under different cryptographic solutions). To
date, a scalable non-interactive mechanism for efficient evaluation of join queries
based on homomorphic encryption that does not leak information remains an
open challenge. Systems such as CryptDB [38] have tried to take a more practi-
cal approach by allowing users to explore the tradeoffs between the system func-
tionality and the security it offers. Unfortunately, precisely characterizing the
security offered by such systems given the underlying cryptographic approaches
have turned out to be extremely difficult. For instance, [28,35] show that when
order-preserving and deterministic encryption techniques are used together, on a
dataset in which the entropy of the values is not high enough, an attacker might
be able to construct the entire plaintext by doing a frequency analysis of the
encrypted data. While mechanisms based on secret-sharing [40] are potentially

Exploiting Data Sensitivity on Partitioned Data 277

more scalable, splitting data amongst multiple non-colluding cloud operators (an
assumption that is not valid in a general setting) incurs significant communica-
tion overheads and can only support a limited set of selection and aggregation
queries efficiently.

While the race to develop cryptographic solutions that (i) are efficient, (ii)
support complex SQL queries, (iii) offer provable security from the application’s
perspective is ongoing, this chapter departs from the above well-trodden path by
exploring a different (but complementary) approach to secure data processing by
partitioning a computation over either the hybrid cloud or the public cloud based
on the data classification into sensitive and non-sensitive data. We focus on an
approach for situations when only part of the data is sensitive, while the remain-
der (that may consist of the majority) is non-sensitive. In particular, we consider
a partitioned computation model that exploits such a classification of data
into sensitive/non-sensitive subsets to develop efficient data processing solutions
with provable security guarantees. Partitioned computing potentially pro-
vides significant benefits by (i) avoiding (expensive) cryptographic operations
on non-sensitive data, and, (ii) allowing query processing on non-sensitive data
to exploit indices.

The data classification into sensitive or non-sensitive may seem artifi-
cial/limiting at first, we refer to the readers to the ongoing dialogue in the
popular media [1,2] about cloud security and hybrid cloud that clearly identify
data classification policies to classify data as sensitive/non-sensitive as a key
strategy to securing data in a cloud. Furthermore, similar to the model consid-
ered in this chapter, such articles emphasize either storing sensitive data on a
private cloud while outsourcing the rest in the context of hybrid cloud or encrypt-
ing only the sensitive part of the data prior to outsourcing. Also, note that data
classification based on column-level sensitivity is not a new concept. Papers [9–
11,15–17] have explored many ways to outsource column-level partitioned data
to the cloud. However, these papers does not dictate a joint query execution on
two relations. Some recent database systems such as Jana1 and Opaque [45] are
exploring architectures will allow for only some parts of the data (that is sensi-
tive) to be encrypted while the remainder of the (non-sensitive) data remains in
plaintext, thereby supporting partitioned computing. That organizational data
can actually be classified as sensitive/non-sensitive is not difficult to see if we con-
sider specific datasets. For instance, in a university dataset, data about courses,
catalogs, location of classes, faculty and student enrollment would likely be not
considered sensitive, but information about someone’s SSN, or grade of the stu-
dent would be considered sensitive.

Contribution. Our contributions in this chapter are twofold:

Partition computation on the hybrid cloud. Our work is motivated by
recent works on the hybrid cloud that has exploited the fact that for a large
class of application contexts, data can be partitioned into sensitive and non-
sensitive components. Such a classification was exploited to build hybrid cloud

1 https://galois.com/research-development/cryptography/.

https://galois.com/research-development/cryptography/

278 S. Mehrotra et al.

solutions [29,36,37,43,44] that outsource only non-sensitive data and enjoy
both the benefits of the public cloud as well as strong security guarantees
(without revealing sensitive data to an adversary).

Partition computation on the public cloud. In the setting of the public
cloud, sensitive data is outsourced in an appropriate encrypted form, while
non-sensitive data can be outsourced in cleartext form. While partitioned
computing offers new opportunities for efficient and secure data processing
due to avoiding cryptographic approach on the non-sensitive data, it raises
several challenges when used in the public cloud. Specifically, the partitioned
approach introduces a new security challenge – that of leakage due to simul-
taneous execution of queries on the encrypted (sensitive) dataset and on the
plaintext (non-sensitive) datasets. In this chapter, we will study such a leak-
age (Sect. 3), a partitioned computing security definition in the context of the
public cloud (Sect. 3), and a way to execute partitioned data processing tech-
niques for selection queries (Sect. 4) that support partitioned data security
while exploiting existing cryptographic mechanisms for secure processing of
sensitive data and cleartext processing of non-sensitive data. Note that the
proposed approach can also be extended to other operations such as join or
range queries, which are provided in [33].

2 Partitioned Computations at the Hybrid Cloud

In this section, our goal is to develop an approach to execute SQL style queries
efficiently in a hybrid cloud while guaranteeing that sensitive data is not leaked to
the (untrusted) public machines. At the abstract level, the technique partitions
data and computation between the public and private clouds in such a way that
the resulting computation (i) minimizes the execution time, and (ii) ensures
that there is no information leakage. Information leakage, in general, could occur
either directly by exposing sensitive data to the public machines, or indirectly
through inferences that can be made based on selective data transferred between
public and private machines during the execution.

The problem of securely executing queries in a hybrid cloud naturally leads
to two interrelated subproblems:

Data distribution: How is data distributed between private and public clouds?
Data distribution depends on factors such as the amount of storage available
on private machines, expected query workload, and whether data and query
workload is largely static or dynamic.

Query execution: Given a data distribution strategy, how do we execute a
query securely and efficiently across the hybrid cloud, while minimizing the
execution time and obtaining the correct final outputs?

Since data is stored on public cloud in the clear text, data distribution strat-
egy must guarantee that sensitive data resides only on private machines. Non-
sensitive data, on the other hand, could be stored on private machines, public

Exploiting Data Sensitivity on Partitioned Data 279

machines, or be replicated on both. Given a data distribution, the query process-
ing strategy will split a computation between public and private machines while
simultaneously meeting the goals of good performance and secure execution.

2.1 Split Strategy

In order to ensure a secure query execution, we develop a split strategy for exe-
cuting SQL queries in the hybrid cloud setting. In a split strategy, a query Q
is partitioned into two subqueries that can be executed independently over the
private and the public cloud respectively, and the final results of the query can
be computed by appropriately merging the results of the two sub-queries. In
particular, a query Q on dataset D is split as follows:

Q(D) = Qmerge

(
Qpriv(Dpriv), Qpub(Dpub)

)

where Qpriv and Qpub are private and public cloud sub-queries respectively. Qpriv

is executed on the private subset of D (i.e., Dpriv); whereas Qpub is performed
over the public subset of D (i.e., Dpub). Qmerge is a private cloud merge sub-
query that reads the outputs of former two sub-queries as input and creates the
outputs equivalent to that of original Q. We call such an execution strategy as
split-strategy.

Two aspects of split-strategy are noteworthy:

1. It offers full security, since the public machines only have access to Dpub that
do not contain any sensitive data. Moreover, no information is exchanged
between private and public clouds during the execution of Qpub, resulting
in the execution at the public cloud to be observationally equivalent to the
situation where Dpriv could be any random data.

2. Split-strategy gains efficiency by executing Qpriv and Qpub in parallel at the
private and public cloud respectively, and furthermore, by performing inter-
cloud data transfer at most once throughout the query execution. Note that
the networks between private and public clouds can be significantly slower
compared to the networks used within clouds. Thus, minimizing the amount
of data shuffling between the clouds will have a big performance impact.

Split strategy, and its efficiency, depends upon the data distribution strategy
used to partition the data between private and public clouds. Besides storing
sensitive data, the private cloud must also store part of non-sensitive data (called
pseudo sensitive data) that may be needed on the private side to support efficient
query processing. For instance, a join query may necessitate that non-sensitive
data be available at the private node in case-sensitive records from one relation
may join with non-sensitive records in another. Since in the split-execution strat-
egy, the two subqueries execute independently with no communication, if we do
not store non-sensitive data at the private side, we will need to transfer entire
relation to the private side for the join to be computed as part of the merge
query.

280 S. Mehrotra et al.

Split-Strategy for Selection or Projection. An efficient split-strategy for
selection or projection operation is straightforward. In this case, Qpriv is equiva-
lent to the original query Q, but is performed only over sensitive records in Dpriv.
Likewise, Qpub = Q, but only runs over Dpub. Finally, Qmerge = Qpriv ∪ Qpub.

S

Name Region

Ma 1

James 2

Chris 1

R

Fruit Region

apple 1

grape 2

orange 1

T

Country Region

U.S 1

France 3

Japan 2

Fig. 2. Example relations.

Split-Strategy for Equijoin. An efficient split-strategy for performing a join
query such as Q = R ��

C
S is more complex. To see this, consider the relations R

and S as shown above in Fig. 2, where sensitive portions of R and S are denoted
as Rs and Ss, respectively, and remaining fraction of them are non-sensitive,
denoted as Rns and Sns, and the join condition is C = (R.region = S.Region).
Let us further assume that Rns and Sns, besides being stored in the public cloud
are also replicated on the private cloud.

The naive split-strategy for R ��
C

S would be:

– Qpub = Rns ��
C

Sns

– Qpriv = (Rs ��
C

Ss) ∪ (Rs ��
C

Sns) ∪ (Rns ��
C

Ss).

Note that if Q is split as above, Qpriv consists of three subqueries which scan
2, 3, and 3 tuples in R and S respectively resulting in 8 tuples to be scanned
and joined. In contrast, if we simply executed the query Q on the private side
(notice that we can do so, since R and S are fully stored on the private side),
it would result in lower cost requiring scan of 6 tuples on the private side.
Indeed, the overhead of the above split strategy increases even further if we
consider multiway joins (e.g., R ��

C
S ��

C′
T) compared to simply implementing

the multiway join locally. Thus, if we use split-strategy for computing R ��
C

S ��
C′

T , where C ′ is S.Region = T.Region, then the number of tuples that are

scanned/joined in the private cloud will be much higher than that of the original
query.

A Modified Approach for Equijoin. The cost of executing Q in the private
cloud can be significantly reduced by pre-filtering relations R and S based on
sensitive records of the other relation. To perform such a pre-filtering operation,
the tuples in the relations Rns and Sns have to be co-partitioned based on
whether they join with a sensitive tuple from the other table under condition C
or not.

Exploiting Data Sensitivity on Partitioned Data 281

Let RS
ns be a set of non-sensitive tuples of R that join with any sensitive

tuple in S. In our case, RS
ns = 〈apple, 1〉. Similarly, let SR

ns be non-sensitive
tuples of S that join with any record from Rs, i.e., 〈Chris, 1〉. In that case, the
new private side computation can be rewritten as:

(Rs ∪ RS
ns) ��

C
(Ss ∪ SR

ns). (1)

Thus, the scan and join cost of this new plan at the private cloud is 4, which is
lower compared to computing the query entirely on the private side that had a
cost of 6.

Guarded Join. The above mentioned modified strategy, nonetheless, introduces
a new challenge. Since RS

ns ��
C

SR
ns is both repeated at public and private cloud,

the output of RS
ns ��

C
SR

ns, 〈apple, Chris, 1〉, is computed on both private and

public clouds. To prevent this, we do a guarded join (��′) on the private cloud,
which discards the output, if it is generated via joining two non-sensitive tuples.
This feature can easily be implemented by adding a column to R and S that
marks the sensitivity status of a tuple, whether it is sensitive or non-sensitive,
and then by adding an appropriate selection after the join operation. In other
words, the complete representation of private side computation for R ��

C
S would

be
σR.sens=true∨S.sens=true((Rs ∪ RS

ns) ��
C

(Ss ∪ SR
ns)) (2)

where sens is a boolean column (or partition id) appended to relations R and S
on the private cloud. Assume that it is set to true for sensitive records and false
for non-sensitive records.

Challenges. There exist multiple challenges in implementing this new approach.
First challenge is the cost of creating RS

ns and SR
ns beforehand. Extracting these

partitions for a query might take as much time as executing the original query.
However, the costs are amortized since these relations are computed once, and
used multiple times to improve join performance at the private cloud.

The second challenge is the creation of co-partitioning tables for complex
queries. For instance, in case of a query R ��

C
S ��

C′
T , the plan would be to first

compute results of R ��
C

S, and then to join them with T . However, if we do the

private side computation of R ��
C

S, based on Eq. 1 (no duplicate filtering) and

join the results with T , then we will not be able to obtain the complete set of
sensitive R ��

C
S ��

C′
T results.

To see this, consider the sensitive record (in Fig. 2) 〈Japan, 2〉 in T that
joins with non-sensitive 〈grape, 2〉 tuple in R − RS

ns or joins with non-sensitive
〈James, 2〉 tuple from S − SR

ns. Thus, the non-sensitive records of R and S has
to be co-partitioned based on the sensitive records of T via their join paths from
T . In R ��

C
S ��

C′
T , the join path from T to R is T ��

C′
S ��

C
R and from T to S is

T ��
C′

S. Similarly, the non-sensitive T records has to be co-partitioned based on

the sensitive R and S records via join paths specified in the query.

282 S. Mehrotra et al.

Final challenge is in maintaining these co-partitions and feeding the right
one when an arbitrary query arrives. Given a workload of queries and multiple
possible join paths between any two relations, each relation R in the dataset may
need to be co-partitioned multiple times. This implies that any non-sensitive
record r of R might appear in more than one co-partition of R. So, maintaining
each co-partition separately might be unfeasible in terms of storage. However,
the identifiers of each co-partition that record r belongs to can be embedded into
r as a new column. We call such a column as the co-partition (CPT) column.
Note that CPT column is only defined on the private cloud data, since revealing
it to public cloud would violate our security requirement.

CPT column initially will be set to null for sensitive tuples in the private side,
since the co-partitions are only for non-sensitive tuples. Thus, it can further be
used to serve another purpose, indicating the sensitivity status of a tuple r by
setting it to “sens” only for sensitive tuples.

Join Path. To formalize the concept of co-partitioning, we first need to define
the notion of join path. Let Ri be a relation in our dataset D, and let Q be a
query over the relation Ri. We say a join path exists from a relation Rj to Ri,
if either Ri is joined with Rj directly based on a condition C, i.e., Rj ��

C
Ri,

or Rj is joined with Ri indirectly using other relations in Q. A join path p can
be represented as a sequence of relations and conditions between Rj and Ri

relations. Let PathSet be the set of all join paths that are extracted either from
the expected workload or a given dataset schema.

PathSeti = {∀p ∈ PathSet : path p ends at relation Ri}. (3)

Let CP (Ri, p) be the set of non-sensitive Ri records that will be joined with
at least one sensitive record from any other relation Rj via the join path p. Note
that p starts from Rj and ends at Ri that can be used as an id to CP (Ri, p).
Any CP (Ri, p) is called as “co-partition” of Ri. Given these definitions, the CPT
column of a Ri record, say r, can be defined as:

r.CPT =

{
sens if r is sens.
{∀p ∈ PathSeti : r ∈ CP (Ri, p)} otherwise

(4)

Figure 3 shows our example R, S and T relations with their CPT column.
For instance, the join path R �� S will be appended to the CPT column of all
the tuples in SR

ns. Additionally, the CPT column of all tuples in Rs will be set
to sens.

2.2 Experimental Analysis

To study the impact of table partitioning discussed in the previous section, we
differentiate between two realizations of our strategy: in our first technique,
entitled (CPT-C), every record in a table at the private cloud contains a CPT
column and they are physically stored together; whereas in our second approach,

Exploiting Data Sensitivity on Partitioned Data 283

T

Country Region CPT

U.S 1

Japan 2 sens

France 3 null

S

Name Region CPT

Ma 1 sens

James 2

Chris 1

R

Fruit Region CPT

apple 1

grape 2 T

orange 1 sens

Fig. 3. Example relations with the CPT columns.

entitled CPT-P, the tables are partitioned based on their record’s CPT column
and each partition is stored separately. Each partition file then appended to
the corresponding Hive table as a separate partition, so at querying stage, Hive
filters out the unnecessary partitions for that particular query.

Sensitive Data Ratio. For these experiments, we varied the amount of sensi-
tive records (1, 5, 10, 25, 50%) in customer and supplier tables. Also, we set the
number of public machines to 36. As expected, Fig. 4 shows that a larger percent-
age of sensitive data within the input leads to a longer workload execution time
for both, CPT-C and CPT-P in Hadoop and Spark. The reason behind this is
that a higher sensitive data ratio results in more computations being performed
on the private side and implies a longer query execution time in split-strategy.
When the sensitivity ratio increases, CPT-P’s scan cost increases dramatically.
Since the scan cost of queries is the dominant factor compared to other opera-
tors (join, filtering etc.) in Spark, CPT-C provides a very low-performance gain
compared to All-Private in Spark. Because the scan cost of these two approaches
is same. Overall, when sensitivity ratio is as low as 1%, CPT-P provides 8.7×
speed-up in Hadoop and 5× speed-up in Spark compared to All-Private.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

1 5 10 25 50W
or

kl
oa

d
R

un
ni

ng
 T

im
e

(s
ec

)

Sensitive Data Ratio (%)

Hadoop 200GB

CPT-P
All-Private
All-Public

 0

 2000

 4000

 6000

 8000

 10000

1 5 10 25 50W
or

kl
oa

d
R

un
ni

ng
 T

im
e

(s
ec

)

Sensitive Data Ratio (%)

Spark 200GB

Fig. 4. Running times for different sensitivity ratios.

Recall that we created the CPT column using a Spark job for CPT-C solution.
We then physically partitioned tables for CPT-P solution. Figure 5 shows how
much time we spent in preparing private cloud data for both CPT-C and CPT-
P. It also indicates the gains of these approaches compared to All-Private in
terms of the overall workload execution time. As indicated in Fig. 5, until 25%

284 S. Mehrotra et al.

 0
 4000
 8000

 12000
 16000
 20000
 24000
 28000
 32000

1 5 10 25 50

T
im

e
(s

ec
)

Sensitive Data Ratio (%)

Hadoop 200GB

CPT-P Create
CPT-P Gain

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

1 5 10 25 50

T
im

e
(s

ec
)

Sensitive Data Ratio (%)

Spark 200GB

Fig. 5. The CPT column’s creation for different sensitivity ratios.

 0
 10
 20
 30
 40
 50
 60

 80

 100

1 5 10 25 50

R
at

io
 to

 A
ll

D
at

a
(%

)

Sensitive Data Ratio (%)

Data Ratio 20GB

Pseudosensitive

Fig. 6. Comparison of pseudo-sensitive data and sensitivity ratio.

sensitivity, CPT-P’s data preparation time is less than that of performance gain
in Hadoop; whereas in Spark, data preparation time is always higher than the
performance gain for both CPT-P and CPT-C. Note that, we prepare the CPT
column only once on a static data for an expected workload that will more likely
be executed more than once with different selection and projection conditions.
In Spark, if the sensitivity ratio is as high as 10%, executing the workload more
than once will be enough for the performance gain of CPT-P solution to be
higher than the overhead of data preparation time.

Size of Private Storage. Besides storing sensitive data, in our technique,
we also store pseudo-sensitive data on the private cloud. This enables us to
execute queries in a partitioned manner while minimizing expensive inter-cloud
communication during query execution. In Fig. 6, we plot the size of pseudo-
sensitive data as a percentage of total database size at different sensitivity levels.
We note that even when sensitivity levels are as high as 5–10%, the pseudo-
sensitive data remains only a fraction (15–25% of the total data). At smaller
sensitivity levels, the ratio is much smaller.

2.3 Other Approaches to Partitioned Computing

The discussion above focused on partitioned computing in hybrid clouds in the
context of SQL queries and is based primarily on the work that appeared in [36].

Exploiting Data Sensitivity on Partitioned Data 285

Several other approaches to partitioned computing in the hybrid cloud have also
been developed in the literature that, similar to the above-mentioned method,
offer security by controlling data distribution between private and public clouds.
Many of these approaches [29,37,43,44] have been developed in the context of
MapReduce job execution, and they address security at a lower level compared
to the approach defined above, which is at SQL level. Note that one could,
potentially, transform SQL/Hive queries into lower level MapReduce jobs and
run such MapReduce jobs using privacy preserving extensions. There are several
limitations of such an approach, however, and we refer the reader to [36] for
a detailed discussion of the limitations of such an approach and to [14] for a
detailed survey on the hybrid cloud based MapReduce security.

3 Partitioned Computations at the Public Cloud
and Security Definition

In this section, we define the partitioned computation, illustrate how such a
computation can leak information due to the joint processing of sensitive and
non-sensitive data, discuss the corresponding security definition, and finally dis-
cuss system and adversarial models under which we will develop our solutions.

Partitioned Computations

Let R be a relation that is partitioned into two sub-relations, Re ⊇ Rs and
Rp ⊆ Rns , such that R = Re ∪ Rp. The relation Re contains all the sensitive
tuples (denoted by Rs) of the relation R and will be stored in encrypted form
in the cloud. Note that Re may contain additional (non-sensitive) tuples of R,
if that helps with secure data processing). The relation Rp refer to the sub-
relation of R that will be stored in plaintext on the cloud. Naturally, Rp does
not contain any sensitive tuples. For the remainder of the chapter, we will assume
that Re = Rs and Rp = Rns, though our approach will be generalized to allow for
a potentially replicated representation of non-sensitive data in encrypted form,
if it helps to evaluate queries more efficiently. Let us consider a query Q over
relation R. A partition computation strategy splits the execution of Q into two
independent sub-queries: Qs: a query to be executed on E(Re) and Qns : a query
to be executed on Rp. The final results are computed (using a query Qmerge) by
appropriately merging the results of the two sub-queries at the trusted database
(DB) owner side (or in the cloud, if a trusted component, e.g., Intel SGX, is
available for such a merge operation). In particular, the query Q on a relation
R is partitioned, as follows:

Q(R) = Qmerge

(
Qs(Re), Qns(Rp)

)

Let us illustrate partitioned computations through an example.

286 S. Mehrotra et al.

EId FirstName LastName SSN Office# Department
t1 E101 Adam Smith 111 1 Defense
t2 E259 John Williams 222 2 Design
t3 E199 Eve Smith 333 2 Design
t4 E259 John Williams 222 6 Defense
t5 E152 Clark Cook 444 1 Defense
t6 E254 David Watts 555 4 Design
t7 E159 Lisa Ross 666 2 Defense
t8 E152 Clark Cook 444 3 Design

Fig. 7. A relation: Employee.

Example 1. Consider an Employee relation, see Fig. 7. In this relation, the
attribute SSN is sensitive, and furthermore, all tuples of employees for the
Department = “Defense” are sensitive. In such a case, the Employee relation
may be stored as the following three relations: (i) Employee1 with attributes
EId and SSN (see Fig. 8); (ii) Employee2 with attributes EId, FirstName, Last-
Name, Office#, and Department, where Department =“Defense” (see Fig. 9);
and (iii) Employee3 with attributes EId, FirstName, LastName, Office#, and
Department, where Department <> “Defense” (see Fig. 10). Since the relations
Employee1 and Employee2 (Figs. 8 and 9) contain only sensitive data, these two
relations are encrypted before outsourcing, while Employee3 (Fig. 10), which
contains only non-sensitive data, is outsourced in clear-text. We assume that
the sensitive data is strongly encrypted such that the property of ciphertext
indistinguishability (i.e., an adversary cannot distinguish pairs of ciphertexts) is
achieved. Thus, the two occurrences of E152 have two different ciphertexts.

EId SSN
t1 E101 111
t2 E259 222
t3 E199 333
t5 E152 444
t6 E254 555
t7 E159 666

Fig. 8. A sensitive relation: Employee1.

Consider a query Q: SELECT FirstName, LastName, Office#,
Department from Employee where FirstName = ’’John’’. In partitioned
computation, the query Q is partitioned into two sub-queries: Qs that executes
on Employee2, and Qns that executes on Employee3. Qs will retrieve the tuple
t4 while Qns will retrieve the tuple t2. Qmerge in this example is simply a union

Exploiting Data Sensitivity on Partitioned Data 287

EId FirstName LastName Office# Department
t1 E101 Adam Smith 1 Defense
t4 E259 John Williams 6 Defense
t5 E152 Clark Cook 1 Defense
t7 E159 Lisa Ross 2 Defense

Fig. 9. A sensitive relation: Employee2.

EId FirstName LastName Office# Department
t2 E259 John Williams 2 Design
t3 E199 Eve Smith 2 Design
t6 E254 David Watts 4 Design
t8 E152 Clark Cook 3 Design

Fig. 10. A non-sensitive relation: Employee3.

operator. Note that the execution of the query Q will also retrieve the same
tuples.

Inference Attack in Partitioned Computations

Partitioned computations, if performed naively, could lead to inferences about
sensitive data from non-sensitive data. To see this, consider following three
queries on the Employee2 and Employee3 relations: (i) retrieve tuples of the
employee Eid = E259, (ii) retrieve tuples of the employee Eid = E101, and
(iii) retrieve tuples of the employee Eid = E199. We consider an honest-but-
curious adversarial cloud that returns the correct answers to the queries but
wishes to know information about the encrypted sensitive tables, Employee1
and Employee2.

Table 1 shows the adversary’s view based on executing the corresponding Qs

and Qns components of the above three queries assuming that the tuple retriev-
ing cryptographic approaches are not hiding access-patterns. During the execu-
tion, the adversary gains complete knowledge of non-sensitive tuples returned,
and furthermore, knowledge about which encrypted tuples are returned as a
result of Qs (E (ti) in the table refers to the encrypted tuple ti).

Given the above adversarial view, the adversary learns that employee E259
has tuples in both Ds (= De) and Dp (= Dns). Coupled with the knowledge
about data partitioning, the adversary can learn that E259 works in both sensi-
tive and non-sensitive departments. Moreover, the adversary learns which sensi-
tive tuple has an Eid equals to E259. From the 2nd query, the adversary learns
that E101 works only in a sensitive department, (since the query did not return
any answer from the Employee3 relation). Likewise, from the 3rd query, the
adversary learns that E199 works only in a non-sensitive department.

In order to prevent such an attack, we need a new security definition. Before
we discuss the formal definition of partitioned data security, we first provide

288 S. Mehrotra et al.

Table 1. Queries and returned tuples/adversarial view.

Query value Returned tuples/adversarial view

Employee2 Employee3

E259 E(t4) t2

E101 E(t1) Null

E199 Null t3

intuition for the definition. Observe that before retrieving any tuple, under the
assumption that no one except the DB owner can decrypt an encrypted sensitive
value, say E(si), the adversary cannot learn which non-sensitive value is identical
to cleartext value of E(si); let us denote si as cleartext of E(si). Thus, the
adversary will consider that the value si is identical to one of the non-sensitive
values. Based on this fact, the adversary can create a complete bipartite graph
having |S| nodes on one side and |NS | nodes on the other side, where |S| and
|NS | are a number of sensitive and non-sensitive values, respectively. The edges
in the graph are called surviving matches of the values. For example, before
executing any query, the adversary can create a bipartite graph for 4 sensitive
and 4 non-sensitive values of EID attribute of Example 1; as shown in Fig. 11.

Sensitive
values

Non-sensitive
values

E101
E259
E152
E159

E259
E199

E254
E152

Fig. 11. A bipartite graph showing an initial condition sensitive and non-sensitive
values before query execution.

The query execution on the datasets creates an adversarial view that guides
the adversary to create a (new) bipartite graph of the same number of nodes on
both sides. The requirement is to preserve all the edges of the initial bipartite
graph in the graph obtained after the query execution, leading to the initial
condition that the cleartext of the value E(si) is identical to one of the non-
sensitive values. Note that if the query execution removes any surviving matches
of the values, it will leak that the value si is not identical to those non-sensitive
values.

We also need to hide occurrences of a sensitive value. Before a query execu-
tion, due to ciphertext indistinguishability, all occurrences of a single sensitive
value are different, but a simple search or join query may reveal how many
tuples have the same value. Based on the above two requirements, we can define
a notion of partitioned data security.

Exploiting Data Sensitivity on Partitioned Data 289

Partitioned Data Security at the Public Cloud

Let R be a relation containing sensitive and non-sensitive tuples. Let Rs and
Rns be the sensitive and non-sensitive relations, respectively. Let q(Rs, Rns)[A]
be a query, q, over an attribute A of the Rs and Rns relations. Let X be the
auxiliary information about the sensitive data, and PrAdv be the probability of
the adversary knowing any information. A query execution mechanism ensures
the partitioned data security if the following two properties hold:

– PrAdv [ei
a= nsj |X] = PrAdv [ei

a= nsj |X, q(Rs, Rns)[A]], where ei = E(ti)[A]
is the encrypted representation for the attribute value A for any tuple ti of the
relation Rs and nsj is a value for the attribute A for any tuple of the relation
Rns . The notation a= shows a sensitive value is identical to a non-sensitive
value. This equation captures the fact that an initial probability of linking
a sensitive tuple with a non-sensitive tuple will be identical after executing
several queries on the relations.

– PrAdv [vi
r∼ vj |X] = PrAdv [vi

r∼ vj |X, q(Rs, Rns)[A]], for all vi, vi ∈
Domain(A). The notation r∼ shows a relationship between counts of the num-
ber of tuples with sensitive values. This equation states that the probability of
adversary gaining information about the relative frequency of sensitive values
does not increase by the query execution.

The definition above formalizes the security requirement of any partitioned
computation approach. Of course, a partitioned approach, besides being secure,
must also be correct in that it returns the same answer as that returned by the
original query Q if it were to execute without regard to security.

4 Query Binning: A Technique for Partitioned
Computations Using a Cryptographic Technique at the
Public Cloud

In this section, we will study query binning (QB) as a partitioned computing
approach. QB is related to bucketization, which is studied in past [25]. While
bucketization was carried over the data in [25], QB performs bucketization on
queries. In general, one may ask more queries than original query while adding
overhead but it prevents the above-mentioned inference attack. We study QB
under some assumption and setting, given below.2.

Problem Setup. We assume the following two entities in our model: (i)
A database (DB) owner : who splits each relation R in the database having
attributes Rs and Rns containing all sensitive and non-sensitive tuples, respec-
tively. (ii) A public cloud : The DB owner outsources the relation Rns to a pub-
lic cloud. The tuples in Rs are encrypted using any existing mechanism before

2 Some of these assumptions are made primarily for ease of the exposition and will be
relaxed in [33].

290 S. Mehrotra et al.

outsourcing to the same public cloud. However, in the approach, we use non-
deterministic encryption, i.e., the cipher representation of two occurrences of an
identical value has different representations.

DB Owner Assumptions. In our setting, the DB owner has to store some
(limited) metadata such as searchable values and their frequency counts, which
will be used for appropriate query formulation. The DB owner is assumed to
have sufficient storage for such metadata, and also computational capabilities
to perform encryption and decryption. The size of metadata is exponentially
smaller than the size of the original data.

Adversarial Model. The adversary (i.e., the untrusted cloud) is assumed to be
honest-but-curious, which is a standard setting for security in the public cloud
that is not trustworthy. An honest-but-curious adversarial public cloud, thus,
stores an outsourced dataset without tampering, correctly computes assigned
tasks, and returns answers; however, it may exploit side knowledge (e.g., query
execution, background knowledge, and the output size) to gain as much infor-
mation as possible about the sensitive data. Furthermore, the adversary can
eavesdrop on the communication channels between the cloud and the DB owner,
and that may help in gaining knowledge about sensitive data, queries, or results.
The adversary has full access to the following information: (i) all non-sensitive
data outsourced in plaintext, and (ii) some auxiliary information of the sensitive
data. The auxiliary information may contain the metadata of the relation and
the number of tuples in the relation. Furthermore, the adversary can observe
frequent query types and frequent query terms on the non-sensitive data in case
of selection queries. The honest-but-curious adversary, however, cannot launch
any attack against the DB owner.

Assumptions for QB. We develop QB initially under the assumption that
queries are only on a single attribute, say A. The QB approach takes as inputs:
(i) the set of data values (of the attribute A) that are sensitive along with their
counts, and (ii) the set of data values (of the attribute A) that are non-sensitive,
along with their counts. The QB returns a partition of attribute values that form
the query bins for both the sensitive as well as for the non-sensitive parts of the
query.

In this chapter, we also restrict to a case when a value has at most two tuples,
where one of them must be sensitive and the other one must be non-sensitive,
but both the tuples cannot be sensitive or non-sensitive. The scenario depicted
in Example 1 satisfies this assumption. The EId attribute values corresponding
to sensitive tuples include 〈E101, E259, E152, E159〉 and from the non-sensitive
relation values are 〈E199, E259, E152, E254〉. Note that all the values occur only
one time in one set.

Full Version. In this chapter, we restrict the algorithm for selection query only
on one attribute. The full details of the algorithm, extensions of the algorithm
for values having a different number of tuples, conjunctive, range, join, insert
queries, and dealing with the workload-skew attack is addressed in [33]. Further,

Exploiting Data Sensitivity on Partitioned Data 291

the computing cost analysis and efficiency analysis of QB at different or identical-
levels of security against a pure cryptographic technique is given in [33].

The Approach. We develop an efficient approach to execute selection queries
securely (preventing the information leakage as shown in Example 1) by appro-
priately partitioning the query at a public cloud, where sensitive data is cryp-
tographically secure while non-sensitive data stays in cleartext. For answering a
selection query, naturally, we use any existing cryptographic technique on sensi-
tive data and a simple search on the cleartext non-sensitive data. Naturally, we
can use a secure hardware, e.g., Intel SGX, for all such operations; however, as
mentioned in Sect. 1 Fig. 1, SGX-based processing takes a significant amount of
time, due to limited space of the enclave.

Informally, QB distributes attribute values in a matrix, where rows are sensi-
tive bins, and columns are non-sensitive bins. For example, suppose there are 16
values, say 0, 1, . . . , 15, and assume all the values have sensitive and associated
non-sensitive tuples. Now, the DB owner arranges 16 values in a 4 × 4 matrix,
as follows:

NSB0 NSB1 NSB2 NSB3

SB0 11 2 5 14

SB1 10 3 8 7

SB2 0 15 6 4

SB3 13 1 12 9

In this example, we have four sensitive bins: SB0 {11, 2, 5, 14},SB1 {10, 3, 8,
7},SB2 {0, 15, 6, 4},SB3 {13, 1, 12, 9}, and four non-sensitive bins: NSB0

{11, 10, 0, 13},NSB1 {2, 3, 15, 1},NSB2 {5, 8, 6, 12},NSB3 {14, 7, 4, 9}. When a
query arrives for a value, say 1, the DB owner searches for the tuples containing
values 2,3,15,1 (viz. NSB1) on the non-sensitive data and values in SB3 (viz.,
13, 1, 12, 9) on the sensitive data using the cryptographic mechanism integrated
into QB. While the adversary learns that the query corresponds to one of the
four values in NSB1, since query values in SB3 are encrypted, the adversary
does not learn any sensitive value or a non-sensitive value that is identical to a
clear-text sensitive value.

Formally, QB appropriately maps a selection query for a keyword w, say q(w),
to corresponding queries over the non-sensitive relation, say q(Wns)(Rns), and
encrypted relation, say q(Ws)(Rs). The queries q(Wns)(Rns) and q(Ws)(Rs),
each of which represents a set of query values that are executed over the rela-
tion Rns in plaintext and, respectively, over the sensitive relation Rs, using the
underlying cryptographic method. The sets Wns from Rns and Ws from Rs are
selected such that: (i) w ∈ q(Wns)(Rns)∩q(Ws)(Rs) to ensure that all the tuples
containing w are retrieved, and, (ii) the execution of the queries q(Wns)(Rns)
and q(Ws)(Rs) does not reveal any information (and w) to the adversary. The set
of q(Wns)(Rns) is entitled non-sensitive bins, and the set of q(Ws)(Rs) is entitled

292 S. Mehrotra et al.

Algorithm 1. Bin-creation algorithm, the base case.
Inputs: |NS |: the number of values in the non-sensitive data, |S|: the number
of values in the sensitive data.
Outputs: SB : sensitive bins; NSB : non-sensitive bins

1 Function create bins(S ,NS) begin
2 Permute all sensitive values
3 x, y ← approx sq factors(|NS |): x ≥ y
4 |NSB | ← x, NSB ← �|NS |/x�, SB ← x, |SB | ← y
5 for i ∈ (1, |S|) do SB [i modulo x][∗] ← S[i]
6 for (i, j) ∈ (0,SB − 1), (0, |SB | − 1) do

NSB [j][i] ← allocateNS(SB [i][j])
7 for i ∈ (0,NSB − 1) do NSB [i][∗] ← fill the bin if empty with the size limit

to x
8 return SB and NSB

end
9 Function allocateNS(SB [i][j]) begin

find a non-sensitive value associated with the jth sensitive value of the ith

sensitive bin
end

sensitive bins. Algorithm 1 provides pseudocode of bin-creation method.3 Results
from the execution of the queries q(Wns)(Rns) and q(Ws)(Rs) are decrypted,
possibly filtered, and merged to generate the final answer.

Based on QB Algorithm 1, for answering the above-mentioned three queries
in Example 1, given in Sect. 2, Algorithm 1 creates two sets or bins on sensitive
parts: sensitive bin 1, denoted by SB1, contains {E101, E259}, sensitive bin 2,
denoted by SB2, contains {E152, E159}, and two sets/bins on non-sensitive parts:
non-sensitive bin 1, denoted by NSB1, contains {E259, E254}, non-sensitive bin
2, denoted by NSB2, contains {E199, E152}.

Table 2. Queries and returned tuples/adversarial view when following QB.

Query value Returned tuples/adversarial view

Employee1 Employee2

E259 E(t4), E(t1) t2, t6

E101 E(t4), E(t1) t3, t8

E199 E(t4), E(t1) t3, t8

Algorithm 2 provides a way to retrieve the bins. Thus, by following Algo-
rithm2, Table 2 shows that the adversary cannot know the query value w or
3 The function approx sq factors in Algorithm 1 two factors x and y of a number n,

such that either they are equal or close to each other so that the difference between
x and y is less than the difference between any two factors of n (and x × y = n).

Exploiting Data Sensitivity on Partitioned Data 293

Algorithm 2. Bin-retrieval algorithm.
Inputs: w: the query value.
Outputs: SBa and NSBb: one sensitive bin and one non-sensitive bin to be
retrieved for answering w.
Variables: found ← false

1 Function retrieve bins(q(w)) begin
2 for (i, j) ∈ (0,SB − 1), (0, |SB | − 1) do

if w = SB i[j] then
3 return SB i and NSBj ; found ← true; break

end

end
4 if found �= true then
5 for (i, j) ∈ (0,NSB − 1), (0, |NSB | − 1) do
6 if w = NSB i[j] then

return NSB i and SBj ; break
end

end

end
7 Retrieve the desired tuples from the cloud by sending encrypted values of

the bin SB i (or SBj) and clear-text values of the bin NSBj (or NSB i) to
the cloud

end

find a value that is shared between the two sets, when answering to the above-
mentioned three queries. The reason is that the desired query value, w, is
encrypted with other encrypted values of the set Ws, and, furthermore, the
query value, w, is obscured in many requested non-sensitive values of the set
Wns , which are in cleartext. Consequently, the adversary is unable to find an
intersection of the two sets, which is the exact value. Thus, while answering a
query, the adversary cannot learn which employee works only in defense, design,
or in both.

Correctness. The correctness of QB indicates that the approach maintains an
initial probability of associating a sensitive tuple with a non-sensitive tuple will
be identical after executing several queries on the relations.

We can illustrate the correctness of QB with the help of an example. The
objective of the adversary is to deduce a clear-text value corresponding to an
encrypted value of either {E101, E259} or {E152, E159}, since we retrieve the
set of these two values. Note that before executing a query, the probability of an
encrypted value, say Ei, (where Ei may be E101, E259, E152, or E159) to have
the clear-text value is 1/4, which QB maintains at the end of a query. Assume
that E1 and E2 are encrypted representations of E101 and E259, respectively.
Also, assume that v1, v2, v3, v4 are showing the cleartext value of E259, E254,
E199, and E152, respectively.

When the query arrives for 〈E1, E2, v1, v2〉, the adversary gets the fact that
the clear-text representation of E1 and E2 cannot be v1 and v2 or v3 and v4.

294 S. Mehrotra et al.

If this will happen, then there is no way to associate each sensitive bin of the
new bipartite graph with each non-sensitive bin. Now, if the adversary considers
the clear-text representation of E1 is v1, then the adversary have four possible
allocations of the values v1, v2, v3, v4 to E1, E2, E3, E4, such as: 〈v1, v2, v3, v4〉,
〈v1, v2, v4, v3〉, 〈v1, v3, v4, v2〉, 〈v1, v4, v3, v2〉.

Since the adversary is not aware of the exact clear-text value of E1, the
adversary also considers the clear-text representation of E1 is v2, v3, or v4. This
results in 12 more possible allocations of the values v1, v2, v3, v4 to E1, E2,
E3, E4. Thus, the retrieval of the four tuples containing one of the following:
〈E1, E2, v1, v2〉, results in 16 possible allocations of the values v1, v2, v3, and v4
to E1, E2, E3, and E4, of which only four possible allocations have v1 as the
clear-text representation of E1. This results in the probability of finding E1 = v1
is 1/4.

Note that following this technique, executing queries under for each keyword
will not eliminate any surviving matches of the bipartite graph, and hence, the
adversary can find the new bipartite graph identical to a bipartite graph before
the query execution. Figure 11 shows an initial bipartite graph before the query
execution and Fig. 12 shows a bipartite graph after the query execution when
creating bins on the values. Note that in Fig. 12 each sensitive bin is linked to
each non-sensitive bin, that in turns, shows that each sensitive value is linked to
each non-sensitive value.

Sensitive
values

Non-sensitive
values

E101
E259
E152
E159

E152
E199

E254
E259

SB1

SB2

NSB1

NSB2

Fig. 12. A bipartite graph showing sensitive and non-sensitive bins after query execu-
tion, where each sensitive value gets associated with each non-sensitive value.

5 Effectiveness of QB

From the performance perspective, QB results in saving of encrypted data pro-
cessing over non-sensitive data – the more the non-sensitive data, the more
potential savings. Nonetheless, QB incurs overhead – it converts a single pred-
icate selection query into a set of predicates selection queries over cleartext
non-sensitive data, and, a set of encrypted predicates selection queries albeit
over a smaller database consisting only of sensitive data. In this section, we
compare QB against a pure cryptographic technique and show when using QB
is beneficial.

For our model, we will need the following notations: (i) Ccom : Communi-
cation cost of moving one tuple over the network. (ii) Cp (or Ce): Processing

Exploiting Data Sensitivity on Partitioned Data 295

cost of a single selection query on plaintext (or encrypted data). In addition, we
define three parameters:

α: is the ratio between the sizes of the sensitive data (denoted by S) and the
entire dataset (denoted by S + NS , where NS is non-sensitive data).

β: is the ratio between the predicate search time on encrypted data using a
cryptographic technique and on clear-text data. The parameter β captures
the overhead of a cryptographic technique. Note that β = Ce/Cp.

γ: is the ratio between the processing time of a single selection query on
encrypted data and the time to transmit the single tuple over the network
from the cloud to the DB owner. Note that γ = Ce/Ccom .

Based on the above parameters, we can compute the cost of cryptographic
and non-cryptographic selection operations as follows:

Costplain(x,D) is the sum the processing cost of x selection queries on plaintext
data and the communication cost of moving all the tuples having x predicates
from the cloud to the DB owner, i.e., x(log(D)Pp + ρDCcom).

Costcrypt(x,D) is the sum the processing cost of x selection queries on encrypted
data and the communication cost of moving all the tuples having x predicates
from the cloud to the DB owner, i.e., PeD + ρxDCcom , where ρ is the selec-
tivity of the query. Note that cost of evaluating x queries over encrypted data
using techniques such as [20,22,41], is amortized and can be performed using
a single scan of data. Hence, x is not the factor in the cost corresponding to
encrypted data processing.

Given the above, we define a parameter η that is the ratio between the com-
putation and communication cost of searching using QB and the computation
and communication cost of searching when the entire data (viz. sensitive and
non-sensitive data) is fully encrypted using the cryptographic mechanism.

η =
Costcrypt(|SB |, S)
Costcrypt(1,D)

+
Costplain(|NSB |,NS)

Costcrypt(1,D)

Filling out the values from above, the ratio is:

η =
CeS + |SB |ρDCcom

CeD + ρDCcom
+

|NSB | log(D)Cp + |NSB |ρDCcom

CeD + ρDCcom

Separating out the communication and processing costs, η becomes:

η =
S

D

Ce

Ce + ρCcom
+

|NSB | log(D)Cp

CeD + ρDCcom
+

ρDCcom(|NSB | + |SB |)
CeD + ρDCcom

Substituting for various terms and cancelling common terms provides:

η = α
1

(1 + ρ
γ)

+
log(D)

D

|NSB|
β(1 + ρ

γ)
+

ρ

γ

|NSB | + |SB |
(1 + ρ

γ)

296 S. Mehrotra et al.

Note that ρ/γ is very small, thus the term (1 + ρ/γ) can be substituted by 1.
Given the above, the equation becomes:

η = α + log(D)|NSB/Dβ + ρ(|NSB | + |SB |)/γ

Note that the term log(D)|NSB |/Dβ is very small since |NSB | is the number of
distinct values (approx. equal to

√|NS |) in a non-sensitive bin, while D, which
is the size of a database, is a large number, and β value is also very large. Thus,
the equation becomes:

η = α + ρ(|SB | + |NSB |)/γ

QB is better than a cryptographic approach when η < 1, i.e., α + ρ(|SB | +
|NSB |)/γ < 1. Thus,

α < 1 − ρ(|SB | + |NSB |)
γ

Note that the values of |SB | and |NSB | are approximately
√|NS |, we can sim-

plify the above equation to: α < 1 − 2ρ
√|NS |/γ. If we estimate ρ to be roughly

1/|NS | (i.e., we assume uniform distribution), the above equation becomes:
α < 1 − 2/γ

√|NS |.
The equation above demonstrates that QB trades increased communication

costs to reduce the amount of data that needs to be searched in encrypted form.
Note that the reduction in encryption cost is proportional to α times the size
of the database, while the increase in communication costs is proportional to√|D|, where |D| is the number of distinct attribute values. This, coupled with
the fact that γ is much higher than 1 for encryption mechanisms that offer
strong security guarantees, ensures that QB almost always outperforms the full
encryption approaches. For instance, the cryptographic cost for search using
secret-sharing is ≈10ms [20], while the cost of transmitting a single row (≈200
bytes for TPCH Customer table) is ≈4µs making the value of γ ≈ 25000. Thus,
QB, based on the model, should outperform the fully encrypted solution for
almost any value of α, under ideal situations where our assumption of uniformity
holds. Figure 13 plots a graph of η as a function of γ, for varying sensitivity and
ρ = 10%.

Fig. 13. Efficiency graph using equation η = α + ρ(|SB | + |NSB |)/γ.

Exploiting Data Sensitivity on Partitioned Data 297

Fig. 14. Dataset size.

To explore the effectiveness of QB under different DB sizes, we tested QB
for 3 DB sizes: 150K, 1.5M, and 4.5M tuples. Fig. 14 plots η values for the three
sizes while varying α. The figure shows that η < 1, irrespective of the DB sizes,
confirming that QB scales to larger DB sizes.

References

1. http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-
building-a-successful-hybrid-cloud.html

2. https://digitalguardian.com/blog/expert-guide-securing-sensitive-data-34-
experts-reveal-biggest-mistakes-companies-make-data

3. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for
numeric data. In: SIGMOD Conference, pp. 563-574. ACM (2004)

4. Arasu, A., et al.: Orthogonal security with cipherbase. In: CIDR. www.cidrdb.org
(2013)

5. Arasu, A., Kaushik, R.: Oblivious query processing. In: ICDT, pp. 26–37. Open-
Proceedings.org (2014)

6. Bajaj, S., Sion, R.: Correctdb: SQL engine with practical query authentication.
PVLDB 6(7), 529–540 (2013)

7. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

8. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

9. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation and encryption to enforce privacy in data storage.
In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 171–186.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74835-9 12

10. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Keep a few: outsourcing data while maintaining confidentiality. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 440–455. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 27

11. Ciriani, V., De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, S.P., Samarati,
P.: Combining fragmentation and encryption to protect privacy in data storage.
ACM Trans. Inf. Syst. Secur. 13(3), 22:1–22:33 (2010)

http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-building-a-successful-hybrid-cloud.html
http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-building-a-successful-hybrid-cloud.html
https://digitalguardian.com/blog/expert-guide-securing-sensitive-data-34-experts-reveal-biggest-mistakes-companies-make-data
https://digitalguardian.com/blog/expert-guide-securing-sensitive-data-34-experts-reveal-biggest-mistakes-companies-make-data
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-540-74835-9_12
https://doi.org/10.1007/978-3-642-04444-1_27

298 S. Mehrotra et al.

12. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive
2016:86 (2016)

13. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

14. Derbeko, P., Dolev, S., Gudes, E., Sharma, S.: Security and privacy aspects in
mapreduce on clouds: a survey. Comput. Sci. Rev. 20, 1–28 (2016)

15. De Capitani di Vimercati, S., Erbacher, R.F., Foresti, S., Jajodia, S., Livraga, G.,
Samarati, P.: Encryption and fragmentation for data confidentiality in the cloud.
In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-2013. LNCS, vol. 8604,
pp. 212–243. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10082-1 8

16. De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, G., Livraga, S.P., Samarati,
P.: Fragmentation in presence of data dependencies. IEEE Trans. Dependable Sec.
Comput. 11(6), 510–523 (2014)

17. De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, S.P., Samarati, P.: Fragments
and loose associations: respecting privacy in data publishing. PVLDB 3(1), 1370–
1381 (2010)

18. Dolev, S., Gilboa, N., Li, X.: Accumulating automata and cascaded equations
automata for communicationless information theoretically secure multi-party com-
putation: extended abstract. In: SCC@ASIACCS, pp. 21–29. ACM (2015)

19. Dolev, S., Li, Y., Sharma, S.: Private and secure secret shared MapReduce -
(extended abstract). In: DBSec, pp. 151–160 (2016)

20. Emekçi, F., Metwally, A., Agrawal, D., El Abbadi, A.: Dividing secrets to secure
data outsourcing. Inf. Sci. 263, 198–210 (2014)

21. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

22. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

23. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC, pp. 182–194. ACM (1987)

24. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

25. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted
data in the database-service-provider model. In: SIGMOD Conference, pp. 216–
227. ACM (2002)

26. Hacigümüs, H., Mehrotra, S., Iyer, B.R.: Providing database as a service. In: ICDE,
pp. 29–38. IEEE Computer Society (2002)

27. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with
distributed searchable symmetric encryption. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 90–107. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8 6

28. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure out-
sourced databases. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, 24–28 October 2016, pp.
1329–1340 (2016)

29. Ko, S.Y., Jeon, K., Morales, R.: The HybrEx model for confidentiality and privacy
in cloud computing. In: 3rd USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud 2011, Portland, OR, USA, 14–15 June 2011 (2011)

30. Komargodski, I., Zhandry, M.: Cutting-edge cryptography through the lens of
secret sharing. In: TCC, pp. 449–479 (2016)

https://doi.org/10.1007/978-3-319-10082-1_8
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-319-29485-8_6

Exploiting Data Sensitivity on Partitioned Data 299

31. Li, L., Militzer, M., Datta, A.: rPIR: ramp secret sharing based communication
efficient private information retrieval. IACR Cryptology ePrint Archive 2014:44
(2014)

32. Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private information
retrieval. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 168–
186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 10

33. Mehrotra, S., Sharma, S., Ullman, J.D., Mishra, A.: Partitioned data security on
outsourced sensitive and non-sensitive data. In: 34th IEEE International Confer-
ence on Data Engineering, ICDE 2019, Macau, China, April 08-12, 2019. Technical
report, Department of Computer Science, University of California, Irvine (2018).
http://isg.ics.uci.edu/pubs/tr/partitioned.pdf

34. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

35. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, 12-16 October 2015,
pp. 644–655 (2015)

36. Oktay, K.Y., Kantarcioglu, M., Mehrotra, S.: Secure and efficient query processing
over hybrid clouds. In: ICDE, pp. 733–744. IEEE Computer Society (2017)

37. Oktay, K.Y., Mehrotra, S., Khadilkar, V., Kantarcioglu, M.: SEMROD: secure
and efficient MapReduce over hybrid clouds. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, 31 May–4 June 2015, pp. 153–166 (2015)

38. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: SOSP, pp. 85–100. ACM (2011)

39. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187 (2005)

40. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
41. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on

encrypted data. In: IEEE Symposium on Security and Privacy, pp. 44–55. IEEE
Computer Society (2000)

42. Wang, S., Ding, X., Deng, R.H., Bao, F.: Private information retrieval using trusted
hardware. IACR Cryptology ePrint Archive, 2006:208 (2006)

43. Zhang, C., Chang, E., Yap, R.H.C.: Tagged-MapReduce: a general framework
for secure computing with mixed-sensitivity data on hybrid clouds. In: 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2014, Chicago, IL, USA, 26–29 May 2014, pp. 31–40 (2014)

44. Zhang, K., Zhou, X., Chen, Y., Wang, X., Ruan, Y.: Sedic: privacy-aware data
intensive computing on hybrid clouds. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, 17–
21 October 2011, pp. 515–526 (2011)

45. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: NSDI, pp.
283–298. USENIX Association (2017)

46. Li, Y., Mehrotra, S., Panwar, N., Sharma, S., Almanee, S.: Obscure: information-
theoretic oblivious and verifiable aggregation queries. Technical report. Depart-
ment of Computer Science, University of California, Irvine (2018). http://isg.ics.
uci.edu/pubs/tr/Obscure.pdf

https://doi.org/10.1007/978-3-662-47854-7_10
http://isg.ics.uci.edu/pubs/tr/partitioned.pdf
http://isg.ics.uci.edu/pubs/tr/Obscure.pdf
http://isg.ics.uci.edu/pubs/tr/Obscure.pdf

	Exploiting Data Sensitivity on Partitioned Data
	1 Introduction
	2 Partitioned Computations at the Hybrid Cloud
	2.1 Split Strategy
	2.2 Experimental Analysis
	2.3 Other Approaches to Partitioned Computing

	3 Partitioned Computations at the Public Cloud and Security Definition
	4 Query Binning: A Technique for Partitioned Computations Using a Cryptographic Technique at the Public Cloud
	5 Effectiveness of QB
	References

