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Abstract. In the cyber security landscape, the asymmetric relationship
between defender and attacker tends to favor the attacker: while the
defender needs to protect a system against all possible ways of breaching
it, the attacker needs to identify and exploit only one vulnerable entry
point in order to succeed. In this chapter, we show how we can effectively
reverse such intrinsic asymmetry in favor of the defender by concur-
rently pursuing two complementary objectives: increasing the defender’s
understanding of multiple facets of the cyber landscape – referred to
as Cyber Situational Awareness (CSA) – and creating uncertainty for
the attacker through Moving Target Defense (MTD) or Adaptive Cyber
Defense (ACD) techniques. This chapter provides a brief overview of
contributions in these areas, and discusses future research directions.

1 Introduction

In the cyber security landscape, the relationship between defender and attacker
is typically asymmetric and tends to disproportionally favor the attacker, as the
defender needs to protect a system against all possible ways of breaching it,
whereas the attacker has to identify and exploit only a single vulnerable entry
point in order to succeed. The notional diagram of Fig. 1 shows the relationship
between the attacker’s effort and the defender’s effort over time. Although the
required effort may fluctuate over time for both the attacker and the defender,
the attacker consistently maintains an advantage over the defender.

In order to limit the attacker’s advantage, and potentially level the cyber
playing field, we argue that two objectives must be pursued concurrently. On one
side, to increase operational efficiency and reduce the defensive effort, we need to
improve the defender’s understanding of multiple facets of the cyber landscape
through Cyber Situational Awareness (CSA) techniques [16]. On the other side,
to increase the attacker’s effort, we need to create uncertainty about information
on the target system, which the attacker may have gathered over time, through
Moving Target Defense (MTD) or Adaptive Cyber Defense (ACD) techniques
[11]. The diagram of Fig. 2 shows how the deployment of CSA and ACD tech-
niques can significantly reduce the gap between attacker’s and defender’s effort.
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Fig. 1. Attacker’s effort vs. defender’s effort in a typical scenario, before deploying
CSA and ACD mechanisms
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Fig. 2. Impact of CSA and ACD on reducing the gap between attacker’s and defender’s
effort

Current research in these relatively new areas has shown promise to signif-
icantly enhance our defensive capabilities. However, much work remains to be
done as we aim to push our CSA and ACD capabilities beyond simply level-
ing the cyber playing field, so as to completely reverse the intrinsic asymmetry
of today’s cyber security landscape in favor of the defender, as shown in the
notional diagram of Fig. 3.

This chapter provides an introduction to the fields of Cyber Situational
Awareness and Adaptive Cyber Defense, and a brief overview of contributions
in these areas resulting from the author’s collaboration with Dr. Jajodia.

The remainder of this chapter is organized as follows. Section 2 introduces
the notion of Cyber Situational Awareness, along with a practical motivating
example, and describes several key contributions in this area. Similarly, Sect. 3
introduces Cyber Situational Awareness and describes several key contributions.
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Fig. 3. Long-term objective: reversing the asymmetric relationship between defender
and attacker

Finally, Sect. 4 provides some concluding remarks and indicates possible future
research directions.

2 Cyber Situational Awareness

Without loss of generality, the process of situational awareness can be viewed as
a three-phase process: situation perception, situation comprehension, and situa-
tion projection [2]. Perception provides information about the status, attributes,
and dynamics of relevant elements within the environment. Comprehension of
the situation encompasses how people combine, interpret, store, and retain infor-
mation. Finally, Projection of the elements of the environment (situation) into
the near future entails the ability to make predictions based on the knowledge
acquired through perception and comprehension.

In order to make informed decisions, security analysts need to acquire infor-
mation about the current situation, the impact and evolution of ongoing attacks,
the behavior of attackers, the quality of available information and models, and
the plausible futures of the current situation. Collectively, this information con-
tributes to the process of forming cyber situational awareness.

In this section, we describe several techniques, mechanisms, and tools that
can help form and leverage different types of cyber situational awareness. These
capabilities are presented as part of a comprehensive framework that aims at
enhancing traditional cyber defense by automating many of the processes that
have traditionally required a significant involvement of human analysts. Ideally,
we envision the evolution of the current human-in-the-loop approach to cyber
defense to a human-on-the-loop paradigm, where human analysts would only
be responsible for validating or sanitizing the results generated by automated
tools, rather than having to comb through daunting amounts of log entries and
security alerts.
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Currently, a security analyst plays a major role in all the operational aspects
of maintaining the security of an enterprise. Security analysts are also respon-
sible for studying the threat landscape with an eye towards emerging threats.
Unfortunately, given the current state of the art in the area of automation, the
operational aspects of IT security may still be too time-consuming to allow this
type of outward-looking focus in most realistic scenarios. Therefore, the sce-
nario we envision – where automated tools would gather and preprocess large
amounts of data on behalf of the analyst – is a highly desirable one. In the
following, we define the fundamental questions that, ideally, an effective Cyber
Situational Awareness framework should be able to automatically answer. For
each question, we identify the inputs as well the outputs of the Cyber Situational
Awareness process.

1. Current situation. Is there any ongoing attack? If so, what resources has
the attacker already compromised?
Answering this set of questions implies the capability of effectively detecting
ongoing intrusions, and identifying the assets that might have been already
compromised. With respect to these questions, the input to the CSA process
consists of IDS logs, firewall logs, and data from other security monitoring
tools. On the other hand, the product of the CSA process is a detailed map-
ping of current intrusions.

2. Impact. How is the attack impacting the organization or mission? Can we
assess the damage?
Answering this set of questions implies the capability of accurately assessing
the impact of ongoing attacks. In this case, the CSA process requires knowl-
edge of the organization’s assets along with some measure of each asset’s
value. Based on this information, the output of the CSA process is an esti-
mate of the damage caused so far by ongoing intrusions.

3. Evolution. How is the situation evolving? Can we track all the steps of an
attack?
Answering this set of questions implies the capability of monitoring ongoing
attacks, once such attacks have been detected. In this case, the input to the
CSA process is the situational awareness generated in response to the first
set of questions above, whereas the output is a detailed understanding of
how the attack is progressing. Developing this capability can help refresh the
situational awareness formed in response to the first two sets of questions and
maintain it current.

4. Behavior. How are the attackers expected to behave? What are their strate-
gies?
Answering this set of questions implies the capability of modeling the
attacker’s behavior in order to understand goals and strategies. Ideally, the
output of the CSA process with respect to this set of questions is a set of
formal models (e.g., game theoretic or stochastic models) of the attacker’s
behavior. The attacker’s behavior may change over time, therefore models
need to adapt to a changing adversarial landscape.



From CSA to ACD: Leveling the Cyber Playing Field 5

5. Forensics. How did the attacker reach the current state?
Answering this question implies the capability of analyzing logs after the fact
and correlating observations in order to understand how an attack originated
and evolved. Although this is not strictly necessary, the CSA process may
benefit, in addressing this question, from the situational awareness gained in
response to the fourth set of questions. In this case, the output of the CSA pro-
cess includes a detailed understanding of the weaknesses and vulnerabilities
that made the attack possible. This information can help security engineers
and administrators harden system configurations in order to prevent similar
incidents from occurring again in the future.

6. Prediction. Can we predict plausible futures of the current situation?
Answering this question implies the capability of predicting possible moves an
attacker may make in the future. With respect to this question, the input to
the CSA process consists of the situational awareness gained in response to the
first, third, and fourth sets of questions, namely, knowledge about the current
situation and its evolution, and knowledge about the attacker’s behavior. The
output is a set of possible alternative scenarios that may materialize in the
future.

7. Information. What information sources can we rely upon? Can we assess
their quality?
Answering this set of questions implies the capability of assessing the quality
of the information sources all other tasks depend upon. With respect to this
set of questions, the goal of the CSA process is to generate a detailed under-
standing of how to weight all different sources when processing information
to answer all other sets of questions. Being able to assess the reliability of
each information source would enable automated tools to attach a confidence
level to each finding.

It is clear from our discussion that some of these questions are strictly cor-
related, and the ability to answer some of them may depend on the ability to
answer other questions. For instance, as we have discussed above, the capability
of predicting possible moves an attacker may take depends on the capability
of modeling the attacker’s behavior. A cross-cutting issue that affects all other
aspects of the CSA process is scalability. Given the volumes of data involved in
answering all these questions, we need to define approaches that are not only
effective, but also computationally efficient. In most circumstances, determining
a good course of action in a reasonable amount of time may be preferable to
determining the best course of action, if this cannot be done in a timely manner.

In conclusion, the situational awareness process in the context of cyber
defense entails the generation and maintenance of a body of knowledge that
informs and is augmented by all the main functions of the cyber defense pro-
cess [2]. Situational awareness is generated or used by different mechanisms and
tools aimed at addressing the above seven classes of questions that security ana-
lysts may routinely ask while executing their work tasks.
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2.1 Motivating Example

Throughout this section, we will often refer to the network depicted in Fig. 4 as
a motivating example. This network offers two public-facing services, namely
Online Shopping and Mobile Order Tracking, and consists of three subnet-
works separated by firewalls. The first two subnetworks implement the two core
services, and each of them includes a host accessible from the Internet. The
third subnetwork implements the internal business logic, and includes a central
database server. An attacker who wants to steal sensitive data from the main
database server will need to breach multiple firewalls and gain privileges on
several hosts before reaching the target.

Internet

Web Server (A)

Mobile App Server (C)

Catalog Server (E)

Order Processing Server (F)

DB Server (G)

Local DB Server (D)

Local DB Server (B)

Fig. 4. Motivating example: enterprise network offering two public-facing services

As attackers can leverage the complex interdependencies of network con-
figurations and vulnerabilities to penetrate seemingly well-guarded networks,
in-depth analysis of network vulnerabilities must consider attacker exploits not
merely in isolation, but in combination. For this reason, we rely on attack graphs
to study the vulnerability landscape of any enterprise network. Attack graphs
can reveal potential threats by identifying paths that attackers can take to pen-
etrate a network [18].

A partial attack graph for the network of Fig. 4 is shown in Fig. 5. It shows
that, once a vulnerability VC on the Mobile Application Server (host hC) has
been exploited, we can expect the attacker to exploit either vulnerability VD

on host hD or vulnerability VF on host hF . However, the attack graph alone
does not answer the following important questions: Which vulnerability has the
highest probability of being exploited? Which attack path will have the largest
impact on the two services that the network provides? How can we mitigate the
risk? Our framework is designed to answer these questions efficiently.
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host hF

host hC
host hG

host hD

Internet
1

1
1

2
1

1 exploit: VC

1 exploit: VF

1 exploit: VD

2 exploits: 
V'G and V''G

Fig. 5. Partial attack graph for the network of Fig. 4

2.2 The Cyber Situational Awareness Framework

Our Cyber Situational Awareness framework is illustrated in Fig. 6. We start
from analyzing the topology of the network, its known vulnerabilities, and pos-
sible zero-day vulnerabilities – which must be hypothesized. Vulnerabilities are
often interdependent, making traditional point-wise vulnerability analysis inef-
fective. Our topological approach to vulnerability analysis allows to generate
accurate attack graphs showing all the possible attack paths within the net-
work.

Fig. 6. The Cyber Situational Awareness Framework

A node in an attack graph represents – depending on the level of abstraction –
an exploitable vulnerability (or family of vulnerabilities) in either a subnetwork,
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an individual host, or an individual software application. Edges represent causal
relationships between vulnerabilities. For instance, an edge from a node V1 to a
node V2 represents the fact that V2 can be exploited after V1 has been exploited.

We also perform dependency analysis to discover dependencies among ser-
vices and hosts and derive dependency graphs encoding how these different net-
work components depend on one another. Dependency analysis is critical to
assess current damage (i.e., the value or utility of services disrupted by ongoing
attacks) and future damage (i.e., the value or utility of additional services that
will be disrupted if no action is taken). In fact, in a complex enterprise, many
services may rely on the availability of other services or resources. Therefore,
they may be indirectly affected by the compromise of the services or resources
they rely upon. Several techniques and tools have been developed to automat-
ically discover dependencies between network services and system components,
including the Network Service Dependencies Miner (NSDMiner), which discover
dependencies by analyzing passively collected network traffic [22].

Fig. 7. Dependency graph for the network of Fig. 4

The dependency graph for the network of Fig. 4 is shown in Fig. 7. This graph
shows that the two services Online Shopping and Mobile Order Tracking rely
upon hosts hA and hC respectively. In turn, host hA relies upon local database
server hB and host hE , whereas host hC relies upon local database server hD

and host hF . Similarly, hB, hD, hE , and hF rely upon database server hG, which
appears to be the most critical resource.

By combining the information contained in the dependency and attack graphs
in what we call the attack scenario graph, we can estimate the future damage
that ongoing attacks might cause for each plausible future of the current situa-
tion. In practice, the proposed attack scenario graph bridges the semantic gap
between known vulnerabilities – at a lower abstraction level – and the missions
or services – at a higher abstraction level – that could be ultimately affected
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by the exploitation of such vulnerabilities. The attack scenario graph for the
network of Fig. 4 is shown in Fig. 8. In this figure, the graph on the left is a
complete attack graph modeling all the vulnerabilities in the system and their
relationships, where the basic attack graph has been extended to capture prob-
abilistic knowledge of the attacker’s behavior as well as temporal constraints on
the unfolding of attacks [4,19]. We refer to this class of attack graphs as proba-
bilistic temporal attack graphs. Instead, the graph on the right is a dependency
graph capturing all the explicit and implicit dependencies between services and
hosts, where the two public-facing services have been denoted as hS (Online
Shopping) and hT (Mobile Order Tracking) respectively. The edges from nodes
in the attack graph to nodes in the dependency graph indicate which services or
hosts are directly impacted by a successful vulnerability exploit, and are labeled
with the corresponding exposure factor, that is the percentage loss the affected
asset would experience upon successful execution of the exploit.

Fig. 8. Attack scenario graph for the network of Fig. 4

In order to address the scalability issues mentioned earlier, we developed
novel graph-based data structures and algorithms to enable real-time mapping
of alerts to attack graphs and other data analysis tasks. Building upon these
graph models, we developed a suite of additional capabilities and tools, includ-
ing topological vulnerability analysis [13], network hardening [5], and zero-day
analysis [7], which we discuss in the following subsections.

In summary, this framework can provide security analysts with a high-level
view of the cyber situation. From the simple example of Fig. 8 – which mod-
els a system including only a few hosts and services – it is clear that manual
analysis could be extremely time-consuming even for relatively small systems.
Instead, the tools that make up this framework provide analysts with a better
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understanding of the situation, thus enabling them to focus on higher-level tasks
that require experience and intuition, and thus more difficult to automate. For
instance, the framework could automatically generate a ranked list of recommen-
dations on the best course of action analysts should take to minimize the impact
of ongoing and future attacks. Then, analysts may leverage their experience and
intuition to select the best course of action amongst those proposed.

Topological Vulnerability Analysis and Network Hardening. Situational
awareness, as defined earlier, implies knowledge and understanding of both the
defender (knowledge of us) and the attacker (knowledge of them). In turn, this
implies knowledge and understanding of all the weaknesses existing in the net-
work we aim to defend. Each host’s susceptibility to attack depends on the
vulnerabilities of other hosts in the network, as attackers can combine vulnera-
bilities in unexpected ways, allowing them to incrementally penetrate a network
and compromise critical systems. Therefore, to protect critical networks, we must
understand not only individual system vulnerabilities, but also their interdepen-
dencies. While we cannot predict the origin and timing of attacks, we can reduce
their impact by identifying all possible attack paths through our networks. To
this aim, we cannot rely on manual processes and mental models. Instead, we
need automated tools to analyze and visualize vulnerability dependencies and
attack paths, so as to understand the overall security posture of our systems,
and provide context over the full security life cycle.

A viable approach to such full-context security is topological vulnerability
analysis (TVA) [13]. TVA monitors the state of network assets, maintains mod-
els of network vulnerabilities and residual risk, and combines these to produce
models that convey the impact of individual and combined vulnerabilities on the
overall security posture. The core element of this tool is an attack graph show-
ing all possible ways an attacker can penetrate the network. Topological vul-
nerability analysis looks at vulnerabilities and their hardening measures within
the context of overall network security by modeling their interdependencies via
attack graphs. This approach provides a unique new capability, transforming
raw security data into a roadmap that lets one proactively prepare for attacks,
manage vulnerability risks, and have real-time situational awareness. It supports
both offensive (e.g., penetration testing) and defensive (e.g., network hardening)
applications. The mapping of attack paths through a network provides a con-
crete understanding of how individual and combined vulnerabilities impact over-
all network security. For example, we can (i) determine whether risk-mitigating
efforts have a significant impact on overall security; (ii) determine how much a
new vulnerability will impact overall security; and (iii) analyze how changes to
individual hosts may increase overall risk to the enterprise. This approach has
been implemented as a security tool – CAULDRON [17] – which transforms raw
security data into an attack graph.

Attack graph analysis can be extended to automatically generate recommen-
dations for hardening networks. Network hardening consists in changing network
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Fig. 9. An example of attack graph (Color figure online)

configurations in such a way to make networks resilient to certain attacks and
prevent attackers from reaching certain goals, as shown in the following example.

Figure 9 shows the attack graph for a network of three hosts (referred to as
host 0, 1, and 2 respectively), where rectangles represent vulnerabilities and ovals
represent security conditions that are either required to exploit a vulnerability
(pre-conditions) or created as the result of an exploit (post-conditions). Purple
ovals represent initial conditions – which depend on the initial configuration of
the system – whereas blue ovals represent intermediate conditions created as
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the result of an exploit. Conceptually, the formalism used in the attack graph of
Fig. 9 is equivalent to the formalisms used in Fig. 5 and Fig. 8, but in this case we
are explicitly showing the pre- and post-conditions of each vulnerability. In this
example, the attacker’s objective is to gain administrative privileges on host 2,
a condition that is denoted as root(2). In practice, to prevent the attacker from
reaching a given security condition, the defender has to prevent the exploita-
tion of each vulnerability that has the target condition as a post-condition. For
instance, in the example of Fig. 9, one could prevent the attacker from gain-
ing user privileges on host 1, denoted as user(1), by preventing exploitation of
rsh(0,1), rsh(2,1), sshd bof(0,1), and sshd bof(2,1). Conversely, to prevent exploita-
tion of a vulnerability, at least one pre-condition must be disabled. For instance,
in the example of Fig. 9, one could prevent the attacker from exploiting rsh(1,2)

by disabling either trust(2,1) or user(1).
The analysis of attack graphs provides alternative sets of hardening measures

that guarantee security of critical systems. For instance, in the example of Fig. 9,
one could prevent the attacker from reaching the target security condition root(2)

by disabling one of the following two sets of initial conditions: {ftp(0,2), ftp(1,2)},
or {ftp(0,2), ftp(0,1), sshd(0,1)}. Through this unique new capability, administra-
tors are able to determine the best sets of hardening measures that should be
applied in their environment. Each set of hardening measures may have a dif-
ferent cost, and administrators can choose hardening solutions that are optimal
with respect to a predefined notion of cost. Such hardening solutions prevent
the attack from succeeding, while minimizing the associated costs, but, unfortu-
nately, the search space grows exponentially with the size of the attack graph.
In applying network hardening to realistic network environments, it is crucial
that the algorithms are able to scale. Progress has been made in reducing the
complexity of attack graph manipulation so that it scales quadratically – or
linearly within defined security zones [23]. However, many approaches for gen-
erating hardening recommendations search for exact solutions [26], which is an
intractable problem. Another limitation of most work in this area is the assump-
tion that network conditions are hardened independently. This assumption does
not hold true in real network environments. Realistically, network administrators
can take actions that affect vulnerabilities across the network, such as pushing
patches out to many systems at once. Furthermore, the same hardening results
may be obtained through more than one action.

Overall, to provide realistic recommendations, the hardening strategy we
proposed in [5] takes such factors into account, and removes the assumption of
independent hardening actions. We defined a network hardening strategy as a
set of allowable atomic actions that administrators can take (e.g., shutting down
an ftp server, blacklisting certain IP addresses), each resulting in the removal
of multiple initial conditions. A formal cost model was introduced to account
for the impact of these hardening actions, which have a cost both in terms
of implementation and in terms of loss of availability (e.g., when hardening
requires shutting down a vulnerable service). As computing the minimum-cost
hardening solution is intractable, we introduced an approximation algorithm that
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finds near-optimal solutions while scaling almost linearly – for certain values
of the parameters – with the size of the attack graph. Formal analysis shows
that a theoretical upper bound exists for the worst-case approximation ratio,
whereas experimental results show that, in practice, the approximation ratio is
significantly lower than such bound.

Still, we must understand that not all attacks can be prevented, and there
might be residual vulnerabilities even after reasonable hardening measures have
been applied. We then rely on intrusion detection techniques to identify actual
attack instances. But the detection process needs to be tied to residual vulner-
abilities, especially the ones that lie on paths to critical network resources as
discovered by TVA. Tools such as Snort can analyze network traffic and identify
attempts to exploit unpatched vulnerabilities in real time, thus enabling timely
response and mitigation efforts. Once attacks are detected, comprehensive capa-
bilities are needed to react to them. TVA can reduce the impact of attacks by
providing knowledge of the possible vulnerability paths through the network.
Attack graphs can be used to correlate and aggregate network attack events,
across platforms as well as across the network. These attack graphs also provide
the necessary context for optimal response to ongoing attacks.

In conclusion, topological analysis of vulnerabilities plays an important role
in gaining situational awareness, and more specifically what we earlier defined
knowledge of us. Without automated tools such as CAULDRON, human analysts
would be required to manually perform vulnerability analysis, and this would be
an extremely tedious and error-prone task. From the example of Fig. 9, it is clear
that even a relatively small network may result in a large and complex attack
graph. With the introduction of automated tools such as CAULDRON, the role
of the analyst shifts towards higher-level tasks: instead of trying to analyze and
correlate individual vulnerabilities, analysts are presented with a clear picture of
existing vulnerability paths. Instead of trying to manually map alerts to possible
vulnerability exploits, analysts are required to validate the findings of the tool
and drill down as needed [6]. The revised role of human analysts – while not
changing their ultimate mandate and responsibilities – will require them to be
properly trained to use and benefit from the new automated tools. Most likely,
as their productivity is expected to increase as a result of automating the most
repetitive and time-consuming tasks, fewer analysts will be required to monitor
a given infrastructure.

2.3 Zero-Day Analysis

As stated earlier, attackers can leverage complex interdependencies among net-
work configurations and vulnerabilities to penetrate seemingly well-guarded net-
works. Besides well-known weaknesses, attackers may leverage unknown (zero-
day) vulnerabilities, which not even developers and administrators are aware
of. While attack graphs can reveal potential paths that attackers can take to
penetrate networks, they can only provide qualitative results, unless they are
augmented with quantitative information, as we did by defining the notion of
probabilistic temporal attack graph. However, traditional efforts on network
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security metrics typically assign numeric scores to vulnerabilities as their rel-
ative exploitability or likelihood, based on known facts about each vulnerability,
but this approach is clearly not applicable to zero-day vulnerabilities due to
the lack of prior knowledge or experience. In fact, a major criticism of existing
efforts on security metrics is that zero-day vulnerabilities are unmeasurable due
to the less predictable nature of both the process of introducing software flaws
and that of discovering and exploiting vulnerabilities [21]. Relatively recent work
addresses the above limitations by proposing a security metric for zero-day vul-
nerabilities, namely, the k-zero day safety metric [25]. Intuitively, this metric
estimates the number k of distinct zero-day vulnerabilities that are needed to
compromise a given network asset. A larger value of this metric indicates that
the system is relatively more secure against zero-day attacks, because it is less
likely that a larger number of different unknown vulnerabilities will all be avail-
able at the same time and exploitable by the same attacker. However, as shown
in [25], the problem of computing the exact value of k is intractable, and the
original approach to estimating the value of k relied on unrealistic assumptions
about the availability of a complete zero-day attack graph, which in practice is
infeasible for large networks [23].

Fig. 10. Flowchart of the zero-day analysis process

In order to address the limitations of previous approaches, we proposed a
suite of efficient solutions [7] to enable zero-day analysis of practical applicability
to networks of realistic sizes. This approach – which combines on-demand attack
graph generation with the evaluation of the k-zero-day safety metric – starts from
the problem of deciding whether a given network asset is at least k-zero-day safe
for a given value of k (i.e., k ≥ l), meaning that it satisfies some baseline security
requirements: in other words, in order to penetrate a system, an attacker must
be able to exploit at least a relatively high number of zero-day vulnerabilities.
Second, it identifies an upper bound on the value of k, intuitively corresponding
to the maximum security level that can be achieved with respect to this metric.



From CSA to ACD: Leveling the Cyber Playing Field 15

Finally, if k is large enough, we can assume that the system is sufficiently secure
with respect to zero-day attacks. Otherwise, we can compute the exact value
of k by efficiently reusing the partial attack graph computed in previous steps
(Fig. 10).

In conclusion, similarly to what we discussed at the end of the previous
section, the capability presented in this section is critical to gain situation aware-
ness, and can be achieved either manually or automatically. However, given the
uncertain nature of zero-day vulnerabilities, the results of manual analysis could
be more prone to subjective interpretation than any other capability we discuss
in this chapter. At the same time, since automated analysis relies on assumptions
about the existence of zero-day vulnerabilities, complete reliance on automated
tools may not be the best option for this capability, and a human-in-the-loop
solution may provide the most benefits. In fact, the solution presented in [7] can
be seen as a decision support system where human analysts can play a role in
the overall workflow.

3 Adaptive Cyber Defense

The computer systems, software applications, and network technologies that we
use today were developed in user and operator contexts that greatly valued stan-
dardization, predictability, and availability. Performance and cost-effectiveness
were the main market drivers. It is only relatively recently that security and
resilience – not to be confused with fault tolerance – have become equally desir-
able properties of cyber systems. As a result, the first generation of cyber security
technologies largely relied on system hardening through improved software secu-
rity engineering – to reduce vulnerabilities and attack surfaces – and layering
security through defense-in-depth. These security technologies sought to ensure
the homogeneity, standardization, and predictability that have been so valued
by the market. Consequently, most of our cyber defenses are static. They are
governed by slow and deliberative processes such as testing, episodic penetra-
tion exercises, security patch deployment, and human-in-the-loop monitoring of
security events.

Adversaries benefit greatly from this situation because they can continuously
and systematically probe targeted networks with the confidence that those net-
works will change slowly if at all. Adversaries can afford the time to engineer
reliable exploits and plan their attacks in advance. Moreover, once an attack
succeeds, adversaries persist for an extended period of time inside compromised
networks and hosts, because the hosts, networks, and services – largely designed
for availability and homogeneity – do not reconfigure, adapt or regenerate except
in deterministic ways to support maintenance and uptime requirements.

To address the limitations of today’s approach to cyber defense, researchers
have recently started to investigate various approaches – collectively referred
to as Adaptation Techniques (AT) – to make networked information systems
less homogeneous and less predictable. We provide an overview of adaptation
techniques in Sect. 3.1, whereas in Sect. 3.2 we briefly describe a framework we
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proposed to address the problem of quantifying the effectiveness and cost of
different adaptive techniques.

3.1 Adaptation Techniques

The basic idea of Adaptation Techniques (AT) is to engineer systems that have
homogeneous functionality but randomized manifestations. Homogeneous func-
tionality allows authorized use of networks and services in predictable, standard-
ized ways, whereas randomized manifestations make it difficult for attackers to
engineer exploits remotely, let alone parlay one exploit into successful attacks
against a multiplicity of hosts. Ideally, each compromise would require the same,
significant effort by the attacker.

In general, with the term adaptation techniques, we refer to concepts such
as Moving Target Defense (MTD) [14,15] as well as artificial diversity and bio-
inspired defenses to the extent that they involve system adaption for security and
resiliency purposes. In the following, we will use the terms adaptation technique
and ACD technique interchangeably.
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Fig. 11. Adversary vs. defender uncertainty before and after deployment of ACD
techiniques

ACD techniques increase complexity and cost for the attackers by continu-
ously changing or shifting a system’s attack surface, which has been defined as
the “subset of the system’s resources (methods, channels, and data) that can be
potentially used by an attacker to launch an attack” [20]. Thus, the majority
of ACD techniques operate by periodically reconfiguring one or more system
parameters in order to offer randomized manifestations of the system and dis-
rupt any knowledge an attacker may have acquired. Different ACDs may be
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designed to address different stages of the Cyber Kill Chain, a framework devel-
oped by Lockheed Martin as part of the Intelligence Driven Defense model for
identification and prevention of cyber intrusions activity [12]. The majority of
the techniques currently available are designed to address the reconnaissance
phase of the cyber kill chain, as they attempt to interfere with the attacker’s
effort to gather information about the target system.

One of the major drawbacks of many ACDs is that they force the defender
to periodically reconfigure the system, which may introduce a costly overhead to
legitimate users, as well as the potential for denial of service. Additionally, most
existing techniques are purely proactive in nature or do not adequately consider
the attacker’s behavior. To address this limitation, alternative approaches aim
at inducing a “perceived” attack surface by deceiving the attacker into making
incorrect inferences about the system’s configuration [3], rather than actually
reconfiguring the system. Honeypots have also been used to divert attackers away
from critical resources [1], but they have proven to be less effective than ACDs
because they provide a static solution: once a honeypot has been discovered, the
attacker will simply avoid it. One of the primary goals of dynamically changing
the attack surface of a system is to increase the uncertainty for the adversary,
while limiting the overhead for the defender. The notional diagram in Fig. 11
shows how the level of uncertainty about network topology and configuration
may vary over time for both the attacker and the defender, before and after
the deployment of adaptation techniques. In a static configuration (i.e., before
deploying any adaptation technique), adversaries can improve their knowledge
of the target system over time, thus reducing their uncertainty. At the same time
the defender’s uncertainty remains a constant low level.

When ACD mechanisms are deployed, each reconfiguration of the system
invalidates some of the information previously acquired by the attacker, thus
increasing the adversary’s uncertainty. Before the attack surface is changed
again, the adversary will be able to regain some knowledge and temporarily
reduce the uncertainty, but this effort will be again defeated with the next recon-
figuration. Figure 11 shows that the adversary’s uncertainty would in fact fluc-
tuate, but will always remain above a certain relatively high threshold. We also
need to consider that any of the proposed adaptation mechanisms introduces
uncertainty for the defender as well, albeit less than that introduced for the
adversary. As long as attack surface reconfiguration mechanisms include a secure
protocol for informing all legitimate entities about the changes, the defender’s
uncertainty can be contained within manageable levels, and the defender can
maintain an advantage over the adversary. Figure 11 shows that, before deploy-
ing any ACD mechanism, the uncertainty gap between defender and adversary
decreases over time, thus eroding the defender’s advantage. On the other hand,
when the attack surface is dynamically changed, the uncertainty gap remains
consistently high over time.

Examples of adaptation techniques include randomized network addressing
and layout, obfuscated OS types and services, randomized instruction set and
memory layout, randomized compiling, just-in-time compiling and decryption,
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dynamic virtualization, workload and service migration, and system regenera-
tion, to name a few. Each of these techniques has a performance and maintenance
cost associated with it. For example, randomized instruction set and memory
layout clearly limit the extent to which a single buffer overflow exploit can be
used to compromise a collection of hosts. However, it also makes it more diffi-
cult for system administrators and software vendors to debug and update hosts
because all the binaries are different. Furthermore, randomized instruction set
and memory layout techniques will not make it more difficult for an attacker to
determine a network’s layout and its available services. Similar analyses are pos-
sible for each of the techniques listed above. For example, randomizing network
addresses makes it more difficult for an adversary to perform reconnaissance on
a target network remotely, but does not make it more difficult for the attacker
to exploit a specific host once it is identified and reachable.

While a variety of different ACD techniques exist, the contexts in which they
are useful and their added cost to the defenders (in terms of performance and
maintainability) can vary significantly. In fact, the majority of ACD research has
been focused on developing specific new techniques as opposed to understanding
their overall operational costs, when they are most useful, and what their possi-
ble inter-relationships might be. In fact, while each ACD approach might have
some engineering rigor, the overall discipline is largely ad hoc when it comes to
understanding the totality of ACD methods and their optimized application.

3.2 Quantification Framework

In this section, we discuss the quantification framework we proposed in [10]
to address current limitations of ACD research with respect to quantification,
and to enable comparative analysis of different techniques. The framework was
specifically developed for quantification of moving target defense techniques, but
it can be easily generalized to address the broader scope of ACD techniques.

The model, as shown for the example in Fig. 12, consists of four layers: (i)
a service layer representing the set S of services to be protected; (ii) a weak-
ness layer representing the set W of general classes of weaknesses that may be
exploited; (iii) a knowledge layer representing the set K of all possible knowledge
blocks required to exploit those weaknesses; and (iv) an MTD layer representing
the set M of available MTD techniques. In the simple example of Fig. 12, (i)
the service to be protected is a database server; (ii) the two classes of weak-
nesses that could be exploited are represented by vulnerabilities enabling SQL
injection and buffer overflow respectively; (iii) the knowledge blocks needed to
exploit such vulnerabilities include knowledge of the service, its IP address, and
memory layout; and (iv) three MTD techniques are available to protect such
knowledge, namely, Service Rotation, IP Rotation, and Address Space Layout
Randomization (ASLR).

The proposed MTD quantification framework can be formally defined as a
7-tuple (S,RSW ,W,RWK ,K,RKM ,M), where: (i) S, W, K, M are the sets
of services, weaknesses, knowledge blocks, and MTD techniques, respectively;
(ii) RSW ⊆ S × W represents relationships between services and the common
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Fig. 12. Layers of the quantification model

weaknesses they are vulnerable to; (iii) RWK ⊆ W × K represents relationships
between weaknesses and the knowledge blocks required to exploit them; and
(iv) RKM ⊆ K × M represents relationships between knowledge blocks and the
MTD techniques that can protect them. The proposed model induces a k-partite
graph (with k = 4) G = (S ∪W ∪K∪M,RSW ∪RWK ∪RKM ). The four layers
of the model are discussed in more details in the following subsections.

Layer 1: Service Layer. The first layer represents the set S of services we wish
to protect against attacks. We assume that the services are time-invariant, i.e.,
the functionality of the services does not change over time, and services cannot
be taken down to prevent attacks, as this action would result in a denial of service
to legitimate users. In the example of Fig. 12, for the sake of presentation, we
considered only one service, but the model can be easily extended to consider
multiple interdependent services that may be exploited and compromised in a
multi-step attack, similarly to how exploit chains within attack graphs might be
exploited by an attacker [18,24].

Layer 2: Weakness Layer. The second layer represents the set of weaknesses
W that services are vulnerable to. We choose general classes of weaknesses,
rather than specific vulnerabilities, because there are too many vulnerabilities
to enumerate, some vulnerabilities are unknown, and, depending on the MTD
used (e.g., OS rotation), specific vulnerabilities may change over time. Using
general classes of weaknesses when building the model makes it time-invariant.
The classes of weaknesses used in our model are draw primarily from MITRE’s
Common Weakness Enumeration (CWE) project [9], particularly from those
known as the “Top 25 Most Dangerous Software Errors.” Although many of the
top software errors are primarily the result of bad coding practices and better
solved at development time, the top software errors enabling exploits such as
SQL Injection, OS Injection, and Classic Buffer Overflow can be addressed at
runtime by MTDs (e.g., SQLrand [8]) and make for good general categories of
weaknesses.
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Layer 3: Knowledge Layer. The third layer represents the knowledge blocks
K required to exploit weaknesses in W. We assume that knowledge blocks are
independent and must be acquired using different methods. For example, IP
address and port number of a target service should not modeled as separate
knowledge blocks because a method to determine one would also reveal the
other.

The relationship between the knowledge and weakness layers is many-to-
many. A weakness may require several pieces of knowledge to be exploited, and
a knowledge block may be key to exploiting several weaknesses. This layer may
also be extended as new MTDs – disrupting new and different aspects of the
attacker’s knowledge – are developed.

In our example, we assume that, in order to execute a SQL injection attack,
an attacker must gather information about the service (e.g., name and version
of the specific DBMS) and network configuration (e.g., IP address). In order to
execute a buffer overflow attack, an attacker must know the IP address and some
information about the vulnerable memory locations. A higher-fidelity version of
this model may take a knowledge block and break it down into finer-grained
items that are specifically targeted by available MTDs.

Layer 4: MTD Layer. The fourth layer of the model represents the set M
of available MTDs. As MTD techniques provide probabilistic security, we model
the impact of an MTD Mi on the attacker’s effort to acquire knowledge Kj

by associating a probability Pi,j – representing the attacker’s success rate –
with the relation (Kj ,Mi). As mentioned earlier, when only static defenses are
deployed, an attacker will acquire the necessary knowledge without significant
effort, which we model by associating a probability of 1. For example, if technique
M1 in Fig. 12 (Service Rotation) reduces an attacker’s likelihood of acquiring
knowledge block K1 (i.e., correct version of the service) by 60%, we would label
that edge with P1,1 = 0.4. The exact methodology for determining the value of
Pi,j may depend on the specific nature of individual MTDs, however, expressing
MTD effectiveness in terms of the probability that an attacker will succeed in
acquiring required knowledge enables us to evaluate multiple different techniques
using a uniform approach.

4 Conclusions and Future Work

In this chapter, we started from the observation that today’s cyber security
landscape is asymmetric and tends to favor the attacker over the defender. We
then discussed the challenging problem of reducing the attacker’s advantage, and
potentially leveling the cyber playing field. We showed that, in order to achieve
this goal, one possible solution is to attack the problem on two fronts. On one
side, to reduce the defender’s effort, we can improve the defender’s understanding
of multiple aspects of the cyber landscape through Cyber Situational Awareness
techniques. On the other side, to increase the attacker’s effort, we can introduce
uncertainty about information on the target system through Adaptive Cyber
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Defense techniques. We presented an overview of these two research areas, and
discussed some representative contributions within each of them.

Current research in these relatively new areas has clearly shown promise to
significantly enhance our defensive capabilities. However, much work remains to
be done if we want to push our CSA and ACD capabilities beyond simply leveling
the cyber playing field. Ideally, we would like to completely reverse the intrin-
sic asymmetry of today’s cyber security landscape in favor of the defender. To
achieve this goal, several research directions will need to be further investigated,
including adversarial modeling, game and control theoretic approaches to secu-
rity, artificial intelligence techniques, and human-computer interfaces. We envi-
sion a future where human analysts will work side-by-side with automated tools,
thus requiring more sophisticated human-computer interaction mechanisms and
protocols. Such a closer interaction will help form better situational awareness in
a timely and cost-effective manner, and will enable defenders to proactively pre-
pare to face anticipated threats and to quickly adapt to an ever-evolving cyber
landscape.
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