
Pierangela Samarati
Indrajit Ray
Indrakshi Ray (Eds.)

From Database
to Cyber Security

Fe
st

sc
hr

ift
LN

CS
 1

11
70

Essays Dedicated to Sushil Jajodia
on the Occasion of His 70th Birthday

 123

Lecture Notes in Computer Science 11170

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Pierangela Samarati • Indrajit Ray
Indrakshi Ray (Eds.)

From Database
to Cyber Security
Essays Dedicated to Sushil Jajodia
on the Occasion of His 70th Birthday

123

Editors
Pierangela Samarati
Università degli Studi di Milano
Milano, Italy

Indrajit Ray
Colorado State University
Fort Collins, CO, USA

Indrakshi Ray
Colorado State University
Fort Collins, CO, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-04833-4 ISBN 978-3-030-04834-1 (eBook)
https://doi.org/10.1007/978-3-030-04834-1

Library of Congress Control Number: 2018962749

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: Word Cloud. Created by WordArt.com. Used with permission.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7395-4620
https://doi.org/10.1007/978-3-030-04834-1
http://wordart.com/

Sushil Jajodia

From Left to Right: Lingyu Wang, V. S. Subrahmanian, R. Chandramouli, Neil Johnson, X. Sean
Wang, Csilla Farkas, Luigi Mancini, Zhan Wang, Sara Foresti, Peng Ning, Sabrina De Capitani di
Vimercati, Claudio Bettini, Sankardas Roy, Sencun Zhu, Kun Sun, Meixing Le, Indrajit Ray, Rajni
Goel, LouAnna Notargiacomo, Vijay Atluri, Indrakshi Ray, John McDermott, Sushil Jajodia,
Massimiliano Albanese, Michael Martin, Lei Zhang, Shiping Chen, Chao Yao, Yingjiu Li, Peng Liu
(at Airlie Center, Warrenton, Virginia, August 9, 2017).

Preface

This book contains papers written in honor of Sushil Jajodia, of his vision and his
achievements.

Sushil has sustained a highly active research agenda spanning several important
areas in computer security and privacy, and established himself as a leader in the
security research community through unique scholarship and service. He has extraor-
dinarily impacted the scientific and academic community, opening and pioneering new
directions of research, and significantly influencing the research and development of
security solutions worldwide. Also, his excellent record of research funding shows his
commitment to sponsored research and the practical impact of his work.

In his academic career, Sushil has been driven by four main objectives: (a) focus on
multi disciplinary research to solve a wide range of real-world security problems,
(b) produce top-level PhD students, (c) collaborate with leading research institutions,
industry, and government partners, and (d) transfer solutions from academic research to
commercial sector. To this end, in 1990, he established the Center for Secure Infor-
mation Systems (CSIS). Under his outstanding leadership, CSIS became a hub of
research and teaching activity in cyber security at George Mason University, VA, USA.
Not only has CSIS the distinction of being the first academic center dedicated to
security at a US university; today, by any measure, it is a leading security research
center in the world.

With respect to research, Sushil has developed mathematical models, scalable
methods, and automated tools that attempt to efficiently answer the following ques-
tions: What measures can be taken to protect security and privacy of information? Is
there any ongoing cyber attack? If so, where is the attacker? Are available attack
models sufficient to understand what is observed? Can they predict an attacker’s goal?
If so, how can they prevent that goal from being reached? These are some of the most
difficult and “hottest” research questions of interest to the academic community as well
as government and industry sponsors. Sushil has always sought deep understanding
of the problem and to offer novel and well-articulated solutions. His efforts have
resulted in several seminal papers, 19 patents, and a commercial-grade system. Sushil’s
research record is excellent because of not only the significance of his accomplishments
that strongly impacted the academic and industrial community, but also for his vision
and the breadth of his research, which has spanned different and diverse problems in
the security field, in all of which he has opened new directions.

When it comes to measuring impact, there are several metrics one can use. Sushil
scores impressively highly in all of them: number of publications (44 books and 450
papers, showing that he is prolific); number of citations (more than 40,000 citations
with an h-index of 102, showing that his publications serve as sources of inspiration for
other researchers); external funding (more than US$ 50 million, showing that his
research has practical relevance and advances the frontiers of cyber security); honors
and awards (including IEEE Fellow, IEEE Computer Society Technical Achievement,

ACM SIGSAC Outstanding Contribution, and ESORICS Outstanding Research
Award, showing recognition of his scholarly contributions from fellow researchers);
community service (with several journal editorships, conferences chairing, and pro-
fessional activities); PhD student mentoring (27 graduates); and international collab-
orations (visiting and mentoring colleagues and scholars from various countries). And
he is not done yet! He continues to be productive as a leader in the field and an example
for the whole community and the new generations. Sushil has been a role model for all
those he has mentored and with whom he has collaborated, showing his passion for
science and respect for hard work and dedicated work ethic, and always striving for
excellence.

But there is more than scientific excellence and achievements that makes Sushil who
he is: a great person and a true gentleman with unique abilities to face difficulties with
strength and successfully build on them, to advise and encourage young people. He is
also generous toward others by donating personal funds to charities including estab-
lishing two scholarship endowments. He takes his responsibilities seriously while
enjoying and bringing enjoyment to everyone around him with enthusiasm and a
contagious laugh.

This Festschrift is in appreciation of Sushil on the occasion of his 70th birthday, for
which many of his students, collaborators, and friends reunited to celebrate and honor
him, with admiration, gratitude, and respect.

To Sushil:
a bright mind … an open heart … a great man, mentor, colleague, and friend!

Happy Birthday !!!

X Preface

Contents

From Cyber Situational Awareness to Adaptive Cyber Defense:
Leveling the Cyber Playing Field . 1

Massimiliano Albanese

Policy Engineering in RBAC and ABAC . 24
Saptarshi Das, Barsha Mitra, Vijayalakshmi Atluri, Jaideep Vaidya,
and Shamik Sural

Comprehensive Security Assurance Measures for Virtualized
Server Environments . 55

Ramaswamy Chandramouli

Stratification Based Model for Security Policy with Exceptions
and Contraries to Duty. 78

Frédéric Cuppens and Nora Cuppens-Boulahia

Asymptotic Behavior of Attack Graph Games. 104
George Cybenko and Gabriel F. Stocco

Some Ideas on Privacy-Aware Data Analytics
in the Internet-of-Everything. 113

Stelvio Cimato and Ernesto Damiani

Protecting Resources and Regulating Access
in Cloud-Based Object Storage . 125

Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti,
Stefano Paraboschi, Marco Rosa, and Pierangela Samarati

Function-Based Access Control (FBAC): Towards Preventing Insider
Threats in Organizations . 143

Yvo Desmedt and Arash Shaghaghi

Virtualization Technologies and Cloud Security: Advantages,
Issues, and Perspectives . 166

Roberto Di Pietro and Flavio Lombardi

Access Privacy in the Cloud. 186
Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi,
Gerardo Pelosi, and Pierangela Samarati

A Strategy for Effective Alert Analysis at a Cyber Security
Operations Center . 206

Rajesh Ganesan and Ankit Shah

Retrieval of Relevant Historical Data Triage Operations in Security
Operation Centers . 227

Tao Lin, Chen Zhong, John Yen, and Peng Liu

Supporting Users in Cloud Plan Selection . 244
Sabrina De Capitani di Vimercati, Sara Foresti, Giovanni Livraga,
Vincenzo Piuri, and Pierangela Samarati

Distributed Services Attestation in IoT. 261
Mauro Conti, Edlira Dushku, and Luigi V. Mancini

Exploiting Data Sensitivity on Partitioned Data. 274
Sharad Mehrotra, Kerim Yasin Oktay, and Shantanu Sharma

A Review of Graph Approaches to Network Security Analytics 300
Steven Noel

Advanced Biometric Technologies: Emerging Scenarios
and Research Trends . 324

Angelo Genovese, Enrique Muñoz, Vincenzo Piuri, and Fabio Scotti

Attribute-Based Encryption: Applications and Future Directions 353
Bruhadeshwar Bezawada and Indrakshi Ray

Static Analysis for Security Vetting of Android Apps 375
Sankardas Roy, Dewan Chaulagain, and Shiva Bhusal

Breaking Bad: Forecasting Adversarial Android Bad Behavior 405
Shang Li, Srijan Kumar, Tudor Dumitras, and V. S. Subrahmanian

Bot or Human? A Behavior-Based Online Bot Detection System 432
Zi Chu, Steven Gianvecchio, and Haining Wang

Network Security Metrics: From Known Vulnerabilities
to Zero Day Attacks . 450

Lingyu Wang, Mengyuan Zhang, and Anoop Singhal

Theoretical Foundations for Mobile Target Defense:
Proactive Secret Sharing and Secure Multiparty Computation 470

Karim Eldefrawy, Rafail Ostrovsky, and Moti Yung

Author Index . 487

XII Contents

From Cyber Situational Awareness
to Adaptive Cyber Defense: Leveling

the Cyber Playing Field

Massimiliano Albanese(B)

George Mason University, Fairfax, VA, USA
malbanes@gmu.edu

Abstract. In the cyber security landscape, the asymmetric relationship
between defender and attacker tends to favor the attacker: while the
defender needs to protect a system against all possible ways of breaching
it, the attacker needs to identify and exploit only one vulnerable entry
point in order to succeed. In this chapter, we show how we can effectively
reverse such intrinsic asymmetry in favor of the defender by concur-
rently pursuing two complementary objectives: increasing the defender’s
understanding of multiple facets of the cyber landscape – referred to
as Cyber Situational Awareness (CSA) – and creating uncertainty for
the attacker through Moving Target Defense (MTD) or Adaptive Cyber
Defense (ACD) techniques. This chapter provides a brief overview of
contributions in these areas, and discusses future research directions.

1 Introduction

In the cyber security landscape, the relationship between defender and attacker
is typically asymmetric and tends to disproportionally favor the attacker, as the
defender needs to protect a system against all possible ways of breaching it,
whereas the attacker has to identify and exploit only a single vulnerable entry
point in order to succeed. The notional diagram of Fig. 1 shows the relationship
between the attacker’s effort and the defender’s effort over time. Although the
required effort may fluctuate over time for both the attacker and the defender,
the attacker consistently maintains an advantage over the defender.

In order to limit the attacker’s advantage, and potentially level the cyber
playing field, we argue that two objectives must be pursued concurrently. On one
side, to increase operational efficiency and reduce the defensive effort, we need to
improve the defender’s understanding of multiple facets of the cyber landscape
through Cyber Situational Awareness (CSA) techniques [16]. On the other side,
to increase the attacker’s effort, we need to create uncertainty about information
on the target system, which the attacker may have gathered over time, through
Moving Target Defense (MTD) or Adaptive Cyber Defense (ACD) techniques
[11]. The diagram of Fig. 2 shows how the deployment of CSA and ACD tech-
niques can significantly reduce the gap between attacker’s and defender’s effort.

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 1–23, 2018.
https://doi.org/10.1007/978-3-030-04834-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_1

2 M. Albanese

0

10

20

30

40

50

60

70

0 5 10 15 20

Eff
or

t

Time

A acker Defender

Fig. 1. Attacker’s effort vs. defender’s effort in a typical scenario, before deploying
CSA and ACD mechanisms

0

10

20

30

40

50

60

70

0 5 10 15 20

Eff
or

t

Time

A acker Defender

Adaptive Cyber Defense

Cyber Situational Awareness

Fig. 2. Impact of CSA and ACD on reducing the gap between attacker’s and defender’s
effort

Current research in these relatively new areas has shown promise to signif-
icantly enhance our defensive capabilities. However, much work remains to be
done as we aim to push our CSA and ACD capabilities beyond simply level-
ing the cyber playing field, so as to completely reverse the intrinsic asymmetry
of today’s cyber security landscape in favor of the defender, as shown in the
notional diagram of Fig. 3.

This chapter provides an introduction to the fields of Cyber Situational
Awareness and Adaptive Cyber Defense, and a brief overview of contributions
in these areas resulting from the author’s collaboration with Dr. Jajodia.

The remainder of this chapter is organized as follows. Section 2 introduces
the notion of Cyber Situational Awareness, along with a practical motivating
example, and describes several key contributions in this area. Similarly, Sect. 3
introduces Cyber Situational Awareness and describes several key contributions.

From CSA to ACD: Leveling the Cyber Playing Field 3

0

10

20

30

40

50

60

70

0 5 10 15 20

Eff
or

t

Time

A acker Defender

Fig. 3. Long-term objective: reversing the asymmetric relationship between defender
and attacker

Finally, Sect. 4 provides some concluding remarks and indicates possible future
research directions.

2 Cyber Situational Awareness

Without loss of generality, the process of situational awareness can be viewed as
a three-phase process: situation perception, situation comprehension, and situa-
tion projection [2]. Perception provides information about the status, attributes,
and dynamics of relevant elements within the environment. Comprehension of
the situation encompasses how people combine, interpret, store, and retain infor-
mation. Finally, Projection of the elements of the environment (situation) into
the near future entails the ability to make predictions based on the knowledge
acquired through perception and comprehension.

In order to make informed decisions, security analysts need to acquire infor-
mation about the current situation, the impact and evolution of ongoing attacks,
the behavior of attackers, the quality of available information and models, and
the plausible futures of the current situation. Collectively, this information con-
tributes to the process of forming cyber situational awareness.

In this section, we describe several techniques, mechanisms, and tools that
can help form and leverage different types of cyber situational awareness. These
capabilities are presented as part of a comprehensive framework that aims at
enhancing traditional cyber defense by automating many of the processes that
have traditionally required a significant involvement of human analysts. Ideally,
we envision the evolution of the current human-in-the-loop approach to cyber
defense to a human-on-the-loop paradigm, where human analysts would only
be responsible for validating or sanitizing the results generated by automated
tools, rather than having to comb through daunting amounts of log entries and
security alerts.

4 M. Albanese

Currently, a security analyst plays a major role in all the operational aspects
of maintaining the security of an enterprise. Security analysts are also respon-
sible for studying the threat landscape with an eye towards emerging threats.
Unfortunately, given the current state of the art in the area of automation, the
operational aspects of IT security may still be too time-consuming to allow this
type of outward-looking focus in most realistic scenarios. Therefore, the sce-
nario we envision – where automated tools would gather and preprocess large
amounts of data on behalf of the analyst – is a highly desirable one. In the
following, we define the fundamental questions that, ideally, an effective Cyber
Situational Awareness framework should be able to automatically answer. For
each question, we identify the inputs as well the outputs of the Cyber Situational
Awareness process.

1. Current situation. Is there any ongoing attack? If so, what resources has
the attacker already compromised?
Answering this set of questions implies the capability of effectively detecting
ongoing intrusions, and identifying the assets that might have been already
compromised. With respect to these questions, the input to the CSA process
consists of IDS logs, firewall logs, and data from other security monitoring
tools. On the other hand, the product of the CSA process is a detailed map-
ping of current intrusions.

2. Impact. How is the attack impacting the organization or mission? Can we
assess the damage?
Answering this set of questions implies the capability of accurately assessing
the impact of ongoing attacks. In this case, the CSA process requires knowl-
edge of the organization’s assets along with some measure of each asset’s
value. Based on this information, the output of the CSA process is an esti-
mate of the damage caused so far by ongoing intrusions.

3. Evolution. How is the situation evolving? Can we track all the steps of an
attack?
Answering this set of questions implies the capability of monitoring ongoing
attacks, once such attacks have been detected. In this case, the input to the
CSA process is the situational awareness generated in response to the first
set of questions above, whereas the output is a detailed understanding of
how the attack is progressing. Developing this capability can help refresh the
situational awareness formed in response to the first two sets of questions and
maintain it current.

4. Behavior. How are the attackers expected to behave? What are their strate-
gies?
Answering this set of questions implies the capability of modeling the
attacker’s behavior in order to understand goals and strategies. Ideally, the
output of the CSA process with respect to this set of questions is a set of
formal models (e.g., game theoretic or stochastic models) of the attacker’s
behavior. The attacker’s behavior may change over time, therefore models
need to adapt to a changing adversarial landscape.

From CSA to ACD: Leveling the Cyber Playing Field 5

5. Forensics. How did the attacker reach the current state?
Answering this question implies the capability of analyzing logs after the fact
and correlating observations in order to understand how an attack originated
and evolved. Although this is not strictly necessary, the CSA process may
benefit, in addressing this question, from the situational awareness gained in
response to the fourth set of questions. In this case, the output of the CSA pro-
cess includes a detailed understanding of the weaknesses and vulnerabilities
that made the attack possible. This information can help security engineers
and administrators harden system configurations in order to prevent similar
incidents from occurring again in the future.

6. Prediction. Can we predict plausible futures of the current situation?
Answering this question implies the capability of predicting possible moves an
attacker may make in the future. With respect to this question, the input to
the CSA process consists of the situational awareness gained in response to the
first, third, and fourth sets of questions, namely, knowledge about the current
situation and its evolution, and knowledge about the attacker’s behavior. The
output is a set of possible alternative scenarios that may materialize in the
future.

7. Information. What information sources can we rely upon? Can we assess
their quality?
Answering this set of questions implies the capability of assessing the quality
of the information sources all other tasks depend upon. With respect to this
set of questions, the goal of the CSA process is to generate a detailed under-
standing of how to weight all different sources when processing information
to answer all other sets of questions. Being able to assess the reliability of
each information source would enable automated tools to attach a confidence
level to each finding.

It is clear from our discussion that some of these questions are strictly cor-
related, and the ability to answer some of them may depend on the ability to
answer other questions. For instance, as we have discussed above, the capability
of predicting possible moves an attacker may take depends on the capability
of modeling the attacker’s behavior. A cross-cutting issue that affects all other
aspects of the CSA process is scalability. Given the volumes of data involved in
answering all these questions, we need to define approaches that are not only
effective, but also computationally efficient. In most circumstances, determining
a good course of action in a reasonable amount of time may be preferable to
determining the best course of action, if this cannot be done in a timely manner.

In conclusion, the situational awareness process in the context of cyber
defense entails the generation and maintenance of a body of knowledge that
informs and is augmented by all the main functions of the cyber defense pro-
cess [2]. Situational awareness is generated or used by different mechanisms and
tools aimed at addressing the above seven classes of questions that security ana-
lysts may routinely ask while executing their work tasks.

6 M. Albanese

2.1 Motivating Example

Throughout this section, we will often refer to the network depicted in Fig. 4 as
a motivating example. This network offers two public-facing services, namely
Online Shopping and Mobile Order Tracking, and consists of three subnet-
works separated by firewalls. The first two subnetworks implement the two core
services, and each of them includes a host accessible from the Internet. The
third subnetwork implements the internal business logic, and includes a central
database server. An attacker who wants to steal sensitive data from the main
database server will need to breach multiple firewalls and gain privileges on
several hosts before reaching the target.

Internet

Web Server (A)

Mobile App Server (C)

Catalog Server (E)

Order Processing Server (F)

DB Server (G)

Local DB Server (D)

Local DB Server (B)

Fig. 4. Motivating example: enterprise network offering two public-facing services

As attackers can leverage the complex interdependencies of network con-
figurations and vulnerabilities to penetrate seemingly well-guarded networks,
in-depth analysis of network vulnerabilities must consider attacker exploits not
merely in isolation, but in combination. For this reason, we rely on attack graphs
to study the vulnerability landscape of any enterprise network. Attack graphs
can reveal potential threats by identifying paths that attackers can take to pen-
etrate a network [18].

A partial attack graph for the network of Fig. 4 is shown in Fig. 5. It shows
that, once a vulnerability VC on the Mobile Application Server (host hC) has
been exploited, we can expect the attacker to exploit either vulnerability VD

on host hD or vulnerability VF on host hF . However, the attack graph alone
does not answer the following important questions: Which vulnerability has the
highest probability of being exploited? Which attack path will have the largest
impact on the two services that the network provides? How can we mitigate the
risk? Our framework is designed to answer these questions efficiently.

From CSA to ACD: Leveling the Cyber Playing Field 7

host hF

host hC
host hG

host hD

Internet
1

1
1

2
1

1 exploit: VC

1 exploit: VF

1 exploit: VD

2 exploits:
V'G and V''G

Fig. 5. Partial attack graph for the network of Fig. 4

2.2 The Cyber Situational Awareness Framework

Our Cyber Situational Awareness framework is illustrated in Fig. 6. We start
from analyzing the topology of the network, its known vulnerabilities, and pos-
sible zero-day vulnerabilities – which must be hypothesized. Vulnerabilities are
often interdependent, making traditional point-wise vulnerability analysis inef-
fective. Our topological approach to vulnerability analysis allows to generate
accurate attack graphs showing all the possible attack paths within the net-
work.

Fig. 6. The Cyber Situational Awareness Framework

A node in an attack graph represents – depending on the level of abstraction –
an exploitable vulnerability (or family of vulnerabilities) in either a subnetwork,

8 M. Albanese

an individual host, or an individual software application. Edges represent causal
relationships between vulnerabilities. For instance, an edge from a node V1 to a
node V2 represents the fact that V2 can be exploited after V1 has been exploited.

We also perform dependency analysis to discover dependencies among ser-
vices and hosts and derive dependency graphs encoding how these different net-
work components depend on one another. Dependency analysis is critical to
assess current damage (i.e., the value or utility of services disrupted by ongoing
attacks) and future damage (i.e., the value or utility of additional services that
will be disrupted if no action is taken). In fact, in a complex enterprise, many
services may rely on the availability of other services or resources. Therefore,
they may be indirectly affected by the compromise of the services or resources
they rely upon. Several techniques and tools have been developed to automat-
ically discover dependencies between network services and system components,
including the Network Service Dependencies Miner (NSDMiner), which discover
dependencies by analyzing passively collected network traffic [22].

Fig. 7. Dependency graph for the network of Fig. 4

The dependency graph for the network of Fig. 4 is shown in Fig. 7. This graph
shows that the two services Online Shopping and Mobile Order Tracking rely
upon hosts hA and hC respectively. In turn, host hA relies upon local database
server hB and host hE , whereas host hC relies upon local database server hD

and host hF . Similarly, hB, hD, hE , and hF rely upon database server hG, which
appears to be the most critical resource.

By combining the information contained in the dependency and attack graphs
in what we call the attack scenario graph, we can estimate the future damage
that ongoing attacks might cause for each plausible future of the current situa-
tion. In practice, the proposed attack scenario graph bridges the semantic gap
between known vulnerabilities – at a lower abstraction level – and the missions
or services – at a higher abstraction level – that could be ultimately affected

From CSA to ACD: Leveling the Cyber Playing Field 9

by the exploitation of such vulnerabilities. The attack scenario graph for the
network of Fig. 4 is shown in Fig. 8. In this figure, the graph on the left is a
complete attack graph modeling all the vulnerabilities in the system and their
relationships, where the basic attack graph has been extended to capture prob-
abilistic knowledge of the attacker’s behavior as well as temporal constraints on
the unfolding of attacks [4,19]. We refer to this class of attack graphs as proba-
bilistic temporal attack graphs. Instead, the graph on the right is a dependency
graph capturing all the explicit and implicit dependencies between services and
hosts, where the two public-facing services have been denoted as hS (Online
Shopping) and hT (Mobile Order Tracking) respectively. The edges from nodes
in the attack graph to nodes in the dependency graph indicate which services or
hosts are directly impacted by a successful vulnerability exploit, and are labeled
with the corresponding exposure factor, that is the percentage loss the affected
asset would experience upon successful execution of the exploit.

Fig. 8. Attack scenario graph for the network of Fig. 4

In order to address the scalability issues mentioned earlier, we developed
novel graph-based data structures and algorithms to enable real-time mapping
of alerts to attack graphs and other data analysis tasks. Building upon these
graph models, we developed a suite of additional capabilities and tools, includ-
ing topological vulnerability analysis [13], network hardening [5], and zero-day
analysis [7], which we discuss in the following subsections.

In summary, this framework can provide security analysts with a high-level
view of the cyber situation. From the simple example of Fig. 8 – which mod-
els a system including only a few hosts and services – it is clear that manual
analysis could be extremely time-consuming even for relatively small systems.
Instead, the tools that make up this framework provide analysts with a better

10 M. Albanese

understanding of the situation, thus enabling them to focus on higher-level tasks
that require experience and intuition, and thus more difficult to automate. For
instance, the framework could automatically generate a ranked list of recommen-
dations on the best course of action analysts should take to minimize the impact
of ongoing and future attacks. Then, analysts may leverage their experience and
intuition to select the best course of action amongst those proposed.

Topological Vulnerability Analysis and Network Hardening. Situational
awareness, as defined earlier, implies knowledge and understanding of both the
defender (knowledge of us) and the attacker (knowledge of them). In turn, this
implies knowledge and understanding of all the weaknesses existing in the net-
work we aim to defend. Each host’s susceptibility to attack depends on the
vulnerabilities of other hosts in the network, as attackers can combine vulnera-
bilities in unexpected ways, allowing them to incrementally penetrate a network
and compromise critical systems. Therefore, to protect critical networks, we must
understand not only individual system vulnerabilities, but also their interdepen-
dencies. While we cannot predict the origin and timing of attacks, we can reduce
their impact by identifying all possible attack paths through our networks. To
this aim, we cannot rely on manual processes and mental models. Instead, we
need automated tools to analyze and visualize vulnerability dependencies and
attack paths, so as to understand the overall security posture of our systems,
and provide context over the full security life cycle.

A viable approach to such full-context security is topological vulnerability
analysis (TVA) [13]. TVA monitors the state of network assets, maintains mod-
els of network vulnerabilities and residual risk, and combines these to produce
models that convey the impact of individual and combined vulnerabilities on the
overall security posture. The core element of this tool is an attack graph show-
ing all possible ways an attacker can penetrate the network. Topological vul-
nerability analysis looks at vulnerabilities and their hardening measures within
the context of overall network security by modeling their interdependencies via
attack graphs. This approach provides a unique new capability, transforming
raw security data into a roadmap that lets one proactively prepare for attacks,
manage vulnerability risks, and have real-time situational awareness. It supports
both offensive (e.g., penetration testing) and defensive (e.g., network hardening)
applications. The mapping of attack paths through a network provides a con-
crete understanding of how individual and combined vulnerabilities impact over-
all network security. For example, we can (i) determine whether risk-mitigating
efforts have a significant impact on overall security; (ii) determine how much a
new vulnerability will impact overall security; and (iii) analyze how changes to
individual hosts may increase overall risk to the enterprise. This approach has
been implemented as a security tool – CAULDRON [17] – which transforms raw
security data into an attack graph.

Attack graph analysis can be extended to automatically generate recommen-
dations for hardening networks. Network hardening consists in changing network

From CSA to ACD: Leveling the Cyber Playing Field 11

Fig. 9. An example of attack graph (Color figure online)

configurations in such a way to make networks resilient to certain attacks and
prevent attackers from reaching certain goals, as shown in the following example.

Figure 9 shows the attack graph for a network of three hosts (referred to as
host 0, 1, and 2 respectively), where rectangles represent vulnerabilities and ovals
represent security conditions that are either required to exploit a vulnerability
(pre-conditions) or created as the result of an exploit (post-conditions). Purple
ovals represent initial conditions – which depend on the initial configuration of
the system – whereas blue ovals represent intermediate conditions created as

12 M. Albanese

the result of an exploit. Conceptually, the formalism used in the attack graph of
Fig. 9 is equivalent to the formalisms used in Fig. 5 and Fig. 8, but in this case we
are explicitly showing the pre- and post-conditions of each vulnerability. In this
example, the attacker’s objective is to gain administrative privileges on host 2,
a condition that is denoted as root(2). In practice, to prevent the attacker from
reaching a given security condition, the defender has to prevent the exploita-
tion of each vulnerability that has the target condition as a post-condition. For
instance, in the example of Fig. 9, one could prevent the attacker from gain-
ing user privileges on host 1, denoted as user(1), by preventing exploitation of
rsh(0,1), rsh(2,1), sshd bof(0,1), and sshd bof(2,1). Conversely, to prevent exploita-
tion of a vulnerability, at least one pre-condition must be disabled. For instance,
in the example of Fig. 9, one could prevent the attacker from exploiting rsh(1,2)

by disabling either trust(2,1) or user(1).
The analysis of attack graphs provides alternative sets of hardening measures

that guarantee security of critical systems. For instance, in the example of Fig. 9,
one could prevent the attacker from reaching the target security condition root(2)

by disabling one of the following two sets of initial conditions: {ftp(0,2), ftp(1,2)},
or {ftp(0,2), ftp(0,1), sshd(0,1)}. Through this unique new capability, administra-
tors are able to determine the best sets of hardening measures that should be
applied in their environment. Each set of hardening measures may have a dif-
ferent cost, and administrators can choose hardening solutions that are optimal
with respect to a predefined notion of cost. Such hardening solutions prevent
the attack from succeeding, while minimizing the associated costs, but, unfortu-
nately, the search space grows exponentially with the size of the attack graph.
In applying network hardening to realistic network environments, it is crucial
that the algorithms are able to scale. Progress has been made in reducing the
complexity of attack graph manipulation so that it scales quadratically – or
linearly within defined security zones [23]. However, many approaches for gen-
erating hardening recommendations search for exact solutions [26], which is an
intractable problem. Another limitation of most work in this area is the assump-
tion that network conditions are hardened independently. This assumption does
not hold true in real network environments. Realistically, network administrators
can take actions that affect vulnerabilities across the network, such as pushing
patches out to many systems at once. Furthermore, the same hardening results
may be obtained through more than one action.

Overall, to provide realistic recommendations, the hardening strategy we
proposed in [5] takes such factors into account, and removes the assumption of
independent hardening actions. We defined a network hardening strategy as a
set of allowable atomic actions that administrators can take (e.g., shutting down
an ftp server, blacklisting certain IP addresses), each resulting in the removal
of multiple initial conditions. A formal cost model was introduced to account
for the impact of these hardening actions, which have a cost both in terms
of implementation and in terms of loss of availability (e.g., when hardening
requires shutting down a vulnerable service). As computing the minimum-cost
hardening solution is intractable, we introduced an approximation algorithm that

From CSA to ACD: Leveling the Cyber Playing Field 13

finds near-optimal solutions while scaling almost linearly – for certain values
of the parameters – with the size of the attack graph. Formal analysis shows
that a theoretical upper bound exists for the worst-case approximation ratio,
whereas experimental results show that, in practice, the approximation ratio is
significantly lower than such bound.

Still, we must understand that not all attacks can be prevented, and there
might be residual vulnerabilities even after reasonable hardening measures have
been applied. We then rely on intrusion detection techniques to identify actual
attack instances. But the detection process needs to be tied to residual vulner-
abilities, especially the ones that lie on paths to critical network resources as
discovered by TVA. Tools such as Snort can analyze network traffic and identify
attempts to exploit unpatched vulnerabilities in real time, thus enabling timely
response and mitigation efforts. Once attacks are detected, comprehensive capa-
bilities are needed to react to them. TVA can reduce the impact of attacks by
providing knowledge of the possible vulnerability paths through the network.
Attack graphs can be used to correlate and aggregate network attack events,
across platforms as well as across the network. These attack graphs also provide
the necessary context for optimal response to ongoing attacks.

In conclusion, topological analysis of vulnerabilities plays an important role
in gaining situational awareness, and more specifically what we earlier defined
knowledge of us. Without automated tools such as CAULDRON, human analysts
would be required to manually perform vulnerability analysis, and this would be
an extremely tedious and error-prone task. From the example of Fig. 9, it is clear
that even a relatively small network may result in a large and complex attack
graph. With the introduction of automated tools such as CAULDRON, the role
of the analyst shifts towards higher-level tasks: instead of trying to analyze and
correlate individual vulnerabilities, analysts are presented with a clear picture of
existing vulnerability paths. Instead of trying to manually map alerts to possible
vulnerability exploits, analysts are required to validate the findings of the tool
and drill down as needed [6]. The revised role of human analysts – while not
changing their ultimate mandate and responsibilities – will require them to be
properly trained to use and benefit from the new automated tools. Most likely,
as their productivity is expected to increase as a result of automating the most
repetitive and time-consuming tasks, fewer analysts will be required to monitor
a given infrastructure.

2.3 Zero-Day Analysis

As stated earlier, attackers can leverage complex interdependencies among net-
work configurations and vulnerabilities to penetrate seemingly well-guarded net-
works. Besides well-known weaknesses, attackers may leverage unknown (zero-
day) vulnerabilities, which not even developers and administrators are aware
of. While attack graphs can reveal potential paths that attackers can take to
penetrate networks, they can only provide qualitative results, unless they are
augmented with quantitative information, as we did by defining the notion of
probabilistic temporal attack graph. However, traditional efforts on network

14 M. Albanese

security metrics typically assign numeric scores to vulnerabilities as their rel-
ative exploitability or likelihood, based on known facts about each vulnerability,
but this approach is clearly not applicable to zero-day vulnerabilities due to
the lack of prior knowledge or experience. In fact, a major criticism of existing
efforts on security metrics is that zero-day vulnerabilities are unmeasurable due
to the less predictable nature of both the process of introducing software flaws
and that of discovering and exploiting vulnerabilities [21]. Relatively recent work
addresses the above limitations by proposing a security metric for zero-day vul-
nerabilities, namely, the k-zero day safety metric [25]. Intuitively, this metric
estimates the number k of distinct zero-day vulnerabilities that are needed to
compromise a given network asset. A larger value of this metric indicates that
the system is relatively more secure against zero-day attacks, because it is less
likely that a larger number of different unknown vulnerabilities will all be avail-
able at the same time and exploitable by the same attacker. However, as shown
in [25], the problem of computing the exact value of k is intractable, and the
original approach to estimating the value of k relied on unrealistic assumptions
about the availability of a complete zero-day attack graph, which in practice is
infeasible for large networks [23].

Fig. 10. Flowchart of the zero-day analysis process

In order to address the limitations of previous approaches, we proposed a
suite of efficient solutions [7] to enable zero-day analysis of practical applicability
to networks of realistic sizes. This approach – which combines on-demand attack
graph generation with the evaluation of the k-zero-day safety metric – starts from
the problem of deciding whether a given network asset is at least k-zero-day safe
for a given value of k (i.e., k ≥ l), meaning that it satisfies some baseline security
requirements: in other words, in order to penetrate a system, an attacker must
be able to exploit at least a relatively high number of zero-day vulnerabilities.
Second, it identifies an upper bound on the value of k, intuitively corresponding
to the maximum security level that can be achieved with respect to this metric.

From CSA to ACD: Leveling the Cyber Playing Field 15

Finally, if k is large enough, we can assume that the system is sufficiently secure
with respect to zero-day attacks. Otherwise, we can compute the exact value
of k by efficiently reusing the partial attack graph computed in previous steps
(Fig. 10).

In conclusion, similarly to what we discussed at the end of the previous
section, the capability presented in this section is critical to gain situation aware-
ness, and can be achieved either manually or automatically. However, given the
uncertain nature of zero-day vulnerabilities, the results of manual analysis could
be more prone to subjective interpretation than any other capability we discuss
in this chapter. At the same time, since automated analysis relies on assumptions
about the existence of zero-day vulnerabilities, complete reliance on automated
tools may not be the best option for this capability, and a human-in-the-loop
solution may provide the most benefits. In fact, the solution presented in [7] can
be seen as a decision support system where human analysts can play a role in
the overall workflow.

3 Adaptive Cyber Defense

The computer systems, software applications, and network technologies that we
use today were developed in user and operator contexts that greatly valued stan-
dardization, predictability, and availability. Performance and cost-effectiveness
were the main market drivers. It is only relatively recently that security and
resilience – not to be confused with fault tolerance – have become equally desir-
able properties of cyber systems. As a result, the first generation of cyber security
technologies largely relied on system hardening through improved software secu-
rity engineering – to reduce vulnerabilities and attack surfaces – and layering
security through defense-in-depth. These security technologies sought to ensure
the homogeneity, standardization, and predictability that have been so valued
by the market. Consequently, most of our cyber defenses are static. They are
governed by slow and deliberative processes such as testing, episodic penetra-
tion exercises, security patch deployment, and human-in-the-loop monitoring of
security events.

Adversaries benefit greatly from this situation because they can continuously
and systematically probe targeted networks with the confidence that those net-
works will change slowly if at all. Adversaries can afford the time to engineer
reliable exploits and plan their attacks in advance. Moreover, once an attack
succeeds, adversaries persist for an extended period of time inside compromised
networks and hosts, because the hosts, networks, and services – largely designed
for availability and homogeneity – do not reconfigure, adapt or regenerate except
in deterministic ways to support maintenance and uptime requirements.

To address the limitations of today’s approach to cyber defense, researchers
have recently started to investigate various approaches – collectively referred
to as Adaptation Techniques (AT) – to make networked information systems
less homogeneous and less predictable. We provide an overview of adaptation
techniques in Sect. 3.1, whereas in Sect. 3.2 we briefly describe a framework we

16 M. Albanese

proposed to address the problem of quantifying the effectiveness and cost of
different adaptive techniques.

3.1 Adaptation Techniques

The basic idea of Adaptation Techniques (AT) is to engineer systems that have
homogeneous functionality but randomized manifestations. Homogeneous func-
tionality allows authorized use of networks and services in predictable, standard-
ized ways, whereas randomized manifestations make it difficult for attackers to
engineer exploits remotely, let alone parlay one exploit into successful attacks
against a multiplicity of hosts. Ideally, each compromise would require the same,
significant effort by the attacker.

In general, with the term adaptation techniques, we refer to concepts such
as Moving Target Defense (MTD) [14,15] as well as artificial diversity and bio-
inspired defenses to the extent that they involve system adaption for security and
resiliency purposes. In the following, we will use the terms adaptation technique
and ACD technique interchangeably.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

Adversary(sta c) Defender (sta c) Adversary(dynamic) Defender (dynamic)

Fig. 11. Adversary vs. defender uncertainty before and after deployment of ACD
techiniques

ACD techniques increase complexity and cost for the attackers by continu-
ously changing or shifting a system’s attack surface, which has been defined as
the “subset of the system’s resources (methods, channels, and data) that can be
potentially used by an attacker to launch an attack” [20]. Thus, the majority
of ACD techniques operate by periodically reconfiguring one or more system
parameters in order to offer randomized manifestations of the system and dis-
rupt any knowledge an attacker may have acquired. Different ACDs may be

From CSA to ACD: Leveling the Cyber Playing Field 17

designed to address different stages of the Cyber Kill Chain, a framework devel-
oped by Lockheed Martin as part of the Intelligence Driven Defense model for
identification and prevention of cyber intrusions activity [12]. The majority of
the techniques currently available are designed to address the reconnaissance
phase of the cyber kill chain, as they attempt to interfere with the attacker’s
effort to gather information about the target system.

One of the major drawbacks of many ACDs is that they force the defender
to periodically reconfigure the system, which may introduce a costly overhead to
legitimate users, as well as the potential for denial of service. Additionally, most
existing techniques are purely proactive in nature or do not adequately consider
the attacker’s behavior. To address this limitation, alternative approaches aim
at inducing a “perceived” attack surface by deceiving the attacker into making
incorrect inferences about the system’s configuration [3], rather than actually
reconfiguring the system. Honeypots have also been used to divert attackers away
from critical resources [1], but they have proven to be less effective than ACDs
because they provide a static solution: once a honeypot has been discovered, the
attacker will simply avoid it. One of the primary goals of dynamically changing
the attack surface of a system is to increase the uncertainty for the adversary,
while limiting the overhead for the defender. The notional diagram in Fig. 11
shows how the level of uncertainty about network topology and configuration
may vary over time for both the attacker and the defender, before and after
the deployment of adaptation techniques. In a static configuration (i.e., before
deploying any adaptation technique), adversaries can improve their knowledge
of the target system over time, thus reducing their uncertainty. At the same time
the defender’s uncertainty remains a constant low level.

When ACD mechanisms are deployed, each reconfiguration of the system
invalidates some of the information previously acquired by the attacker, thus
increasing the adversary’s uncertainty. Before the attack surface is changed
again, the adversary will be able to regain some knowledge and temporarily
reduce the uncertainty, but this effort will be again defeated with the next recon-
figuration. Figure 11 shows that the adversary’s uncertainty would in fact fluc-
tuate, but will always remain above a certain relatively high threshold. We also
need to consider that any of the proposed adaptation mechanisms introduces
uncertainty for the defender as well, albeit less than that introduced for the
adversary. As long as attack surface reconfiguration mechanisms include a secure
protocol for informing all legitimate entities about the changes, the defender’s
uncertainty can be contained within manageable levels, and the defender can
maintain an advantage over the adversary. Figure 11 shows that, before deploy-
ing any ACD mechanism, the uncertainty gap between defender and adversary
decreases over time, thus eroding the defender’s advantage. On the other hand,
when the attack surface is dynamically changed, the uncertainty gap remains
consistently high over time.

Examples of adaptation techniques include randomized network addressing
and layout, obfuscated OS types and services, randomized instruction set and
memory layout, randomized compiling, just-in-time compiling and decryption,

18 M. Albanese

dynamic virtualization, workload and service migration, and system regenera-
tion, to name a few. Each of these techniques has a performance and maintenance
cost associated with it. For example, randomized instruction set and memory
layout clearly limit the extent to which a single buffer overflow exploit can be
used to compromise a collection of hosts. However, it also makes it more diffi-
cult for system administrators and software vendors to debug and update hosts
because all the binaries are different. Furthermore, randomized instruction set
and memory layout techniques will not make it more difficult for an attacker to
determine a network’s layout and its available services. Similar analyses are pos-
sible for each of the techniques listed above. For example, randomizing network
addresses makes it more difficult for an adversary to perform reconnaissance on
a target network remotely, but does not make it more difficult for the attacker
to exploit a specific host once it is identified and reachable.

While a variety of different ACD techniques exist, the contexts in which they
are useful and their added cost to the defenders (in terms of performance and
maintainability) can vary significantly. In fact, the majority of ACD research has
been focused on developing specific new techniques as opposed to understanding
their overall operational costs, when they are most useful, and what their possi-
ble inter-relationships might be. In fact, while each ACD approach might have
some engineering rigor, the overall discipline is largely ad hoc when it comes to
understanding the totality of ACD methods and their optimized application.

3.2 Quantification Framework

In this section, we discuss the quantification framework we proposed in [10]
to address current limitations of ACD research with respect to quantification,
and to enable comparative analysis of different techniques. The framework was
specifically developed for quantification of moving target defense techniques, but
it can be easily generalized to address the broader scope of ACD techniques.

The model, as shown for the example in Fig. 12, consists of four layers: (i)
a service layer representing the set S of services to be protected; (ii) a weak-
ness layer representing the set W of general classes of weaknesses that may be
exploited; (iii) a knowledge layer representing the set K of all possible knowledge
blocks required to exploit those weaknesses; and (iv) an MTD layer representing
the set M of available MTD techniques. In the simple example of Fig. 12, (i)
the service to be protected is a database server; (ii) the two classes of weak-
nesses that could be exploited are represented by vulnerabilities enabling SQL
injection and buffer overflow respectively; (iii) the knowledge blocks needed to
exploit such vulnerabilities include knowledge of the service, its IP address, and
memory layout; and (iv) three MTD techniques are available to protect such
knowledge, namely, Service Rotation, IP Rotation, and Address Space Layout
Randomization (ASLR).

The proposed MTD quantification framework can be formally defined as a
7-tuple (S,RSW ,W,RWK ,K,RKM ,M), where: (i) S, W, K, M are the sets
of services, weaknesses, knowledge blocks, and MTD techniques, respectively;
(ii) RSW ⊆ S × W represents relationships between services and the common

From CSA to ACD: Leveling the Cyber Playing Field 19

S1
SQL DB

W1
SQL

Injec on

W2
Buffer

Overflow

M1
Service

Rota on

M2
IP Rota on

M3
ASLR

K2
Knows(IP)

K1
Knows(service)

K3
Knows(memory)

Layer 4
MTD

Layer 3
Knowledge

Layer 2
Weakness

Layer 1
Service

Fig. 12. Layers of the quantification model

weaknesses they are vulnerable to; (iii) RWK ⊆ W × K represents relationships
between weaknesses and the knowledge blocks required to exploit them; and
(iv) RKM ⊆ K × M represents relationships between knowledge blocks and the
MTD techniques that can protect them. The proposed model induces a k-partite
graph (with k = 4) G = (S ∪W ∪K∪M,RSW ∪RWK ∪RKM). The four layers
of the model are discussed in more details in the following subsections.

Layer 1: Service Layer. The first layer represents the set S of services we wish
to protect against attacks. We assume that the services are time-invariant, i.e.,
the functionality of the services does not change over time, and services cannot
be taken down to prevent attacks, as this action would result in a denial of service
to legitimate users. In the example of Fig. 12, for the sake of presentation, we
considered only one service, but the model can be easily extended to consider
multiple interdependent services that may be exploited and compromised in a
multi-step attack, similarly to how exploit chains within attack graphs might be
exploited by an attacker [18,24].

Layer 2: Weakness Layer. The second layer represents the set of weaknesses
W that services are vulnerable to. We choose general classes of weaknesses,
rather than specific vulnerabilities, because there are too many vulnerabilities
to enumerate, some vulnerabilities are unknown, and, depending on the MTD
used (e.g., OS rotation), specific vulnerabilities may change over time. Using
general classes of weaknesses when building the model makes it time-invariant.
The classes of weaknesses used in our model are draw primarily from MITRE’s
Common Weakness Enumeration (CWE) project [9], particularly from those
known as the “Top 25 Most Dangerous Software Errors.” Although many of the
top software errors are primarily the result of bad coding practices and better
solved at development time, the top software errors enabling exploits such as
SQL Injection, OS Injection, and Classic Buffer Overflow can be addressed at
runtime by MTDs (e.g., SQLrand [8]) and make for good general categories of
weaknesses.

20 M. Albanese

Layer 3: Knowledge Layer. The third layer represents the knowledge blocks
K required to exploit weaknesses in W. We assume that knowledge blocks are
independent and must be acquired using different methods. For example, IP
address and port number of a target service should not modeled as separate
knowledge blocks because a method to determine one would also reveal the
other.

The relationship between the knowledge and weakness layers is many-to-
many. A weakness may require several pieces of knowledge to be exploited, and
a knowledge block may be key to exploiting several weaknesses. This layer may
also be extended as new MTDs – disrupting new and different aspects of the
attacker’s knowledge – are developed.

In our example, we assume that, in order to execute a SQL injection attack,
an attacker must gather information about the service (e.g., name and version
of the specific DBMS) and network configuration (e.g., IP address). In order to
execute a buffer overflow attack, an attacker must know the IP address and some
information about the vulnerable memory locations. A higher-fidelity version of
this model may take a knowledge block and break it down into finer-grained
items that are specifically targeted by available MTDs.

Layer 4: MTD Layer. The fourth layer of the model represents the set M
of available MTDs. As MTD techniques provide probabilistic security, we model
the impact of an MTD Mi on the attacker’s effort to acquire knowledge Kj

by associating a probability Pi,j – representing the attacker’s success rate –
with the relation (Kj ,Mi). As mentioned earlier, when only static defenses are
deployed, an attacker will acquire the necessary knowledge without significant
effort, which we model by associating a probability of 1. For example, if technique
M1 in Fig. 12 (Service Rotation) reduces an attacker’s likelihood of acquiring
knowledge block K1 (i.e., correct version of the service) by 60%, we would label
that edge with P1,1 = 0.4. The exact methodology for determining the value of
Pi,j may depend on the specific nature of individual MTDs, however, expressing
MTD effectiveness in terms of the probability that an attacker will succeed in
acquiring required knowledge enables us to evaluate multiple different techniques
using a uniform approach.

4 Conclusions and Future Work

In this chapter, we started from the observation that today’s cyber security
landscape is asymmetric and tends to favor the attacker over the defender. We
then discussed the challenging problem of reducing the attacker’s advantage, and
potentially leveling the cyber playing field. We showed that, in order to achieve
this goal, one possible solution is to attack the problem on two fronts. On one
side, to reduce the defender’s effort, we can improve the defender’s understanding
of multiple aspects of the cyber landscape through Cyber Situational Awareness
techniques. On the other side, to increase the attacker’s effort, we can introduce
uncertainty about information on the target system through Adaptive Cyber

From CSA to ACD: Leveling the Cyber Playing Field 21

Defense techniques. We presented an overview of these two research areas, and
discussed some representative contributions within each of them.

Current research in these relatively new areas has clearly shown promise to
significantly enhance our defensive capabilities. However, much work remains to
be done if we want to push our CSA and ACD capabilities beyond simply leveling
the cyber playing field. Ideally, we would like to completely reverse the intrin-
sic asymmetry of today’s cyber security landscape in favor of the defender. To
achieve this goal, several research directions will need to be further investigated,
including adversarial modeling, game and control theoretic approaches to secu-
rity, artificial intelligence techniques, and human-computer interfaces. We envi-
sion a future where human analysts will work side-by-side with automated tools,
thus requiring more sophisticated human-computer interaction mechanisms and
protocols. Such a closer interaction will help form better situational awareness in
a timely and cost-effective manner, and will enable defenders to proactively pre-
pare to face anticipated threats and to quickly adapt to an ever-evolving cyber
landscape.

Acknowledgement. This work was partially supported by the Army Research Office
under grants W911NF-09-1-0525 and W911NF-13-1-0421.

References

1. Abbasi, F.H., Harris, R.J., Moretti, G., Haider, A., Anwar, N.: Classification of
malicious network streams using honeynets. In: Proceedings of the IEEE Global
Communications Conference (IEEE GLOBECOM 2012), pp. 891–897. IEEE, Ana-
heim, CA, USA, December 2012

2. Albanese, M., Jajodia, S.: Formation of awareness. In: Kott, A., Wang, C.,
Erbacher, R.F. (eds.) Cyber Defense and Situational Awareness. AIS, vol. 62, pp.
47–62. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11391-3 4

3. Albanese, M., Battista, E., Jajodia, S., Casola, V.: Manipulating the attacker’s
view of a system’s attack surface. In: IEEE Conference on Communications and
Network Security, CNS 2014, pp. 472–480, San Francisco, CA, USA, October 2014

4. Albanese, M., Jajodia, S.: A graphical model to assess the impact of multi-step
attacks. J. Def. Model. Simul. 15(1), 79–93 (2018)

5. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hard-
ening using attack graphs. In: Proceedings of the 42nd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN 2012), Boston,
MA, USA, June 2012

6. Albanese, M., Jajodia, S., Pugliese, A., Subrahmanian, V.S.: Scalable analysis
of attack scenarios. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol.
6879, pp. 416–433. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23822-2 23

7. Albanese, M., Jajodia, S., Singhal, A., Wang, L.: An efficient approach to assess-
ing the risk of zero-day. In: Samarati, P. (ed.) Proceedings of the 10th Interna-
tional Conference on Security and Cryptography (SECRYPT 2013), pp. 207–218.
SciTePress, Reykjav́ık, Iceland (July 2013)

https://doi.org/10.1007/978-3-319-11391-3_4
https://doi.org/10.1007/978-3-642-23822-2_23
https://doi.org/10.1007/978-3-642-23822-2_23

22 M. Albanese

8. Boyd, S.W., Keromytis, A.D.: SQLrand: preventing SQL injection attacks. In:
Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292–
302. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24852-1 21

9. Christey, S.: 2011 CWE/SANS top 25 most dangerous software errors (2011).
http://cwe.mitre.org/top25/

10. Connell, W., Albanese, M., Venkatesan, S.: A framework for moving target defense
quantification. In: De Capitani di Vimercati, S., Martinelli, F. (eds.) SEC 2017.
IAICT, vol. 502, pp. 124–138. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58469-0 9

11. Cybenko, G., Jajodia, S., Wellman, M.P., Liu, P.: Adversarial and uncertain rea-
soning for adaptive cyber defense: building the scientific foundation. In: Prakash,
A., Shyamasundar, R. (eds.) ICISS 2014. LNCS, vol. 8880, pp. 1–8. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13841-1 1

12. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-Driven Computer Net-
work Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill
Chains. Lockheed Martin Corporation, Bethesda (2010)

13. Jajodia, S., Noel, S.: Topological vulnerability analysis. In: Jajodia, S., Liu, P.,
Swarup, V., Wang, C. (eds.) Cyber Situational Awareness. Advances in Information
Security, vol. 46, pp. 139–154. Springer, Boston (2010). https://doi.org/10.1007/
978-1-4419-0140-8 7

14. Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., Swarup, V., Wang, C., Wang, X.S.
(eds.): Moving Target Defense II: Application of Game Theory and Adversarial
Modeling. Advances in Information Security, vol. 100. Springer, New York (2013).
https://doi.org/10.1007/978-1-4614-5416-8

15. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.): Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats. Advances in Infor-
mation Security, vol. 54. Springer, New York (2011). https://doi.org/10.1007/978-
1-4614-0977-9

16. Jajodia, S., Liu, P., Swarup, V., Wang, C. (eds.): Cyber Situational Awareness:
Issues and Research. Advances in Information Security. Springer, New York (2010).
https://doi.org/10.1007/978-1-4419-0140-8

17. Jajodia, S., Noel, S., Kalapa, P., Albanese, M., Williams, J.: Cauldron: mission-
centric cyber situational awareness with defense in depth. In: Proceedings of the
Military Communications Conference (MILCOM 2011), pp. 1339–1344. Baltimore,
MD, USA, November 2011

18. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnera-
bility. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats:
Issues, Approaches, and Challenges. MACO, vol. 5, pp. 247–266. Springer, Boston
(2005). https://doi.org/10.1007/0-387-24230-9 9

19. Leversage, D.J., Byres, E.J.: Estimating a system’s mean time-to-compromise.
IEEE Secur. Priv. 6(1), 52–60 (2008)

20. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Software
Eng. 37(3), 371–386 (2011)

21. McHugh, J.: Quality of protection: measuring the unmeasurable? In: Proceedings
of the 2nd ACM Workshop on Quality of Protection (QoP 2006), pp. 1–2. ACM,
Alexandria, VA, USA, October 2006

22. Natrajan, A., Ning, P., Liu, Y., Jajodia, S., Hutchinson, S.E.: NSDMiner: Auto-
mated discovery of network service dependencies. In: Proceedings of the 31st
Annual International Conference on Computer Communications (INFOCOM
2012), pp. 2507–2515, Orlando, FL, USA, March 2012

https://doi.org/10.1007/978-3-540-24852-1_21
http://cwe.mitre.org/top25/
https://doi.org/10.1007/978-3-319-58469-0_9
https://doi.org/10.1007/978-3-319-58469-0_9
https://doi.org/10.1007/978-3-319-13841-1_1
https://doi.org/10.1007/978-1-4419-0140-8_7
https://doi.org/10.1007/978-1-4419-0140-8_7
https://doi.org/10.1007/978-1-4614-5416-8
https://doi.org/10.1007/978-1-4614-0977-9
https://doi.org/10.1007/978-1-4614-0977-9
https://doi.org/10.1007/978-1-4419-0140-8
https://doi.org/10.1007/0-387-24230-9_9

From CSA to ACD: Leveling the Cyber Playing Field 23

23. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: Proceedings of the ACM CCS Workshop on Visualization and
Data Mining for Computer Security (VizSEC/DMSEC 2004), pp. 109–118. ACM,
Fairfax, VA, USA, October 2004

24. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based
probabilistic security metric. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp.
283–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70567-
3 22

25. Wang, L., Jajodia, S., Singhal, A., Noel, S.: k -zero day safety: measuring the secu-
rity risk of networks against unknown attacks. In: Gritzalis, D., Preneel, B., Theo-
haridou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 573–587. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15497-3 35

26. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack
graphs. Comput. Commun. 29(18), 3812–3824 (2006)

https://doi.org/10.1007/978-3-540-70567-3_22
https://doi.org/10.1007/978-3-540-70567-3_22
https://doi.org/10.1007/978-3-642-15497-3_35

Policy Engineering in RBAC and ABAC

Saptarshi Das1, Barsha Mitra2, Vijayalakshmi Atluri3(B), Jaideep Vaidya3,
and Shamik Sural1

1 Department of Computer Science and Engineering, IIT Kharagpur,
Kharagpur, India

saptarshidas13@iitkgp.ac.in, shamik@cse.iitkgp.ernet.in
2 Department of CSIS, BITS Pilani Hyderabad Campus, Hyderabad, India

barsha.mitra@hyderabad.bits-pilani.ac.in
3 MSIS Department, Rutgers University, Newark, USA
atluri@rutgers.edu, jsvaidya@business.rutgers.edu

Abstract. Role-based Access Control (RBAC) and Attribute-based
access control (ABAC) are the most widely used access control models
for mediating controlled access to resources in organizations. In RBAC,
permissions are associated with roles, and users are assigned to appropri-
ate roles. Therefore, it is imperative that a proper set of roles is necessary
for the efficient deployment of RBAC. Most organizations possess a set of
existing user-permission assignments which can be used to create appro-
priate roles. This process, known as role mining, is an important and
challenging task in the deployment of RBAC in any organization. On
the other hand, in ABAC, the access decisions depend on the attributes
of the various entities and a set of authorization rules (policies). The
efficiency of an ABAC model relies upon the strength and correctness of
the authorization rules. Similar to role mining in RBAC, the process of
constructing an appropriate set of ABAC authorization rules, known as
policy engineering, is crucial for the implementation of ABAC. Regard-
less of the differences in RBAC and ABAC, the problems of role mining
in RBAC and policy engineering in ABAC are quite similar and equally
important for the corresponding access control models. In this chapter,
we explore the role mining problem and the policy engineering problem
along with their existing solution strategies and identify future directions
of research in these two areas.

Keywords: Role-Based Access Control (RBAC) · Role mining
Attribute-Based Access Control (ABAC) · Policy engineering
Top-down · Bottom-up · Constraints

1 Introduction

The workflow of any organization depends on the continuous and consistent exe-
cution of the assigned tasks by all the employees belonging to that organization.
The execution of these tasks, in turn, requires that each and every employee

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 24–54, 2018.
https://doi.org/10.1007/978-3-030-04834-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_2

Policy Engineering in RBAC and ABAC 25

be given the necessary authorizations and privileges. Employees can acquire the
relevant permissions based on some predefined rules, policies and mechanisms.
These rules, policies and mechanisms need to ensure not only that each user
is given all the required permissions but also that no user is given any extra
privilege. Failure to ensure the first aspect may lead to discontent among users
or at most, may create some sort of hindrance in the smooth execution of tasks.
However, failure to take care of the second aspect will most definitely lead to
serious security breaches which can cause far more severe damages than displea-
sure or discontinuity in organizational workflow. Thus, the rules, policies and
mechanisms need to be enforced properly so that none of the above mentioned
adverse scenarios occur at any point of time.

Several access control models have been proposed over the past years. Of
these, the Role-Based Access Control (RBAC) model [24,74] has become a pop-
ular and prominent model since the last decade of the 20th century. Roles are
the central elements of the RBAC model. A role is a collection of permissions.
Each user is assigned one or more permissions. Hence, in RBAC, users acquire
the requisite permissions through their assigned roles. The advantage of RBAC
is that it creates an intermediate layer between the users and the permissions
thereby, adding a level of stability to the somewhat volatile relationships existing
among the users and the permissions. The assignment of permissions to users
can vary quite frequently with time, but the membership of a user to a role
or the composition of a role is likely to vary infrequently. As a result, RBAC
significantly reduces the administrative cost. To successfully implement RBAC,
it is necessary to create a set of roles. Role mining is one of the techniques to
create roles.

Like any other access control model, RBAC also is not without some
drawbacks. RBAC, though being a very appealing choice in case of intra-
organizational access control, becomes unsuitable for scenarios where inter-
organizational access control is to be considered. The primary reason behind
this is that the nature of the roles as well as the permissions present in them
may not be uniform across organizations. Thus, the same role will assign different
permissions to users in different organizations. In order to cater to the needs of
the diverse inter-organizational interactions, the Attribute-Based Access Control
(ABAC) model [34,36,41] was proposed.

Attribute-Based Access Control (ABAC) [35] is rapidly emerging as the
desired access control model for providing restricted access to organizational
resources and to cater to the needs of inter-organizational access control. This
model was proposed as a general model which offers all the benefits of the existing
access control models, like Discretionary Access Control (DAC) [54], Mandatory
Access Control (MAC) [73], and Role-Based Access Control (RBAC) [74]. ABAC
mediates access based on the attributes of the requesting user, the requested
objects and the environment in which the request is made. ABAC essentially
depends on defining a policy consisting of many rules, which are evaluated for
deciding access to resources. Thus, for effective working of ABAC, an appropri-
ate set of rules is required to be created. Since a majority of the organizations
already have a set of accesses which represent the resources accessible by each

26 S. Das et al.

user, this information can be capitalized to form a set of rules. Also, rules can
be constructed by careful evaluation of the different business processes of the
organization. This process, known as policy engineering, is a major challenging
task in the overall process of implementing ABAC in any organization. In recent
years, a number of policy engineering methods have been developed, which con-
sider basic components as well as the different features of the ABAC model.

In this chapter, we focus on the two above mentioned access control models.
We shall outline some preliminaries related to the models as well as discuss sev-
eral aspects regarding the policy engineering work in these two models. Specif-
ically, Sect. 2 discusses overview of RBAC, and the different role engineering
techniques. In Sect. 3, we first present certain preliminaries related to the ABAC
model followed by a detailed discussion of the different ABAC policy engineering
techniques. Finally, Sect. 4 concludes the chapter.

2 Policy Engineering in Role-Based Access Control
(RBAC)

In this section, we first present a brief overview of the RBAC model in Sub-
sect. 2.1. This is followed by a discussion on role engineering and role mining in
Sub-sects. 2.2 and 2.3 respectively. Sub-sects. 2.4 and 2.5 focus on the different
unconstrained and constrained variants of the role mining problem respectively.
Future directions of research in role engineering and role mining are highlighted
in Sub-sect. 2.6.

2.1 Overview of the Model

In this sub-section, we discuss the basic concepts related to the RBAC model.
The components that constitute the model are as follows [74]:

– a set of users U
– a set of roles R
– a set of sessions S
– a set of objects OBJS
– a set of operations OPS
– a permission set P such that each member of P is a tuple (op, obj) such that

op ∈ OPS and obj ∈ OBJS
– a user-role assignment relation UA representing the individual role assign-

ments of each user. UA ⊆ U×R
– a function assigned users : R → 2U, the mapping of the set R onto the

powerset of U. This function is used to derive the set of users to whom a
particular role has been assigned. Thus, assigned users(r) = {u | (u, r) ∈
UA}

– a role-permission assignment relation PA depicting the composition of each
of the roles in terms of their constituent permissions. PA ⊆ R×P

Policy Engineering in RBAC and ABAC 27

– a function assigned permissions : R → 2P, the mapping of the set R onto
the powerset of P. This function is used to determine the permissions included
in a specific role. Thus, assigned permissions(r) = {p | (r, p) ∈ PA}

– a partial order called role hierarchy RH which is a subset of R × R. RH
captures the relationships among the senior and the junior roles

– a collection of several semantic constraints like mutually exclusive roles, car-
dinality constraints, etc.

The operations that can be carried out on the objects are represented in the
form of the abstractions known as permissions. The set of roles assigned to each
user is captured in the user-role assignment relationship UA and the permission
set included in each role is depicted using the role-permission assignment rela-
tionship PA. RBAC is not a linear monolithic model. Therefore, relationships
exist not only among users and roles and roles and permissions, but also among
the roles themselves, thereby creating a hierarchy among the roles. A natural
extension of this hierarchy is the notion of senior and junior roles. The role hier-
archy seamlessly captures the hierarchical structure existing in any organization.
The membership of a user to a senior role implies his/her implicit assignment
to the related junior roles as well as the acquisition of the permissions included
in each of the junior roles. The constraints present in RBAC adds a semantic
flavor to it. Constraints reflect several organizational aspects which may or may
not relate directly to the security aspect of the model. Mutually exclusive roles
ensure that a single user is never allowed to perform all the tasks related to a
sensitive job. Cardinality constraints like the highest number of roles that can
be assigned to a user or the maximum number of users to whom a particular
role can be assigned balance the workload among the different users whereas
constraints like the maximum number of permissions permissible per role and
the number of roles in which a permission can be present help to make sure that
the permission distribution across the roles is uniform.

In order to successfully and effectively implement RBAC, any organization
requires to come up with a set of roles. These roles should capture all the per-
mission assignments of the users as well as specific organizational needs. Role
engineering is the process of creating the required set of roles [4,11,18,76]. The
major cost of deploying RBAC involves the process of role engineering according
to a NIST report [69]. We discuss role engineering in the next sub-section.

2.2 Role Engineering

Role engineering plays a pivotal role in the successful deployment of RBAC. In
order to implement the RBAC model, a set of roles is required which ensures
that all the users possess the relevant permissions to execute their designated
tasks. Also, it needs to be ensured that only these permissions are made avail-
able to the users. Any fault in the role creation process may either cause some
hindrances for some users when they try to access certain resources or may result
in unauthorized accesses. All kinds of errors in the role generation process that
lead to the second scenario should be removed completely in order to ensure the

28 S. Das et al.

proper functioning of the system. In addition to creating a set of roles, role engi-
neering can also take into account several constraints and determine a hierarchy
among the roles. Role engineering can be broadly categorized into two types - (i)
top-down [68,70] and (ii) bottom-up [21,52,82]. We next discuss each of these
two approaches to role engineering in detail.

Top-Down: Top-down role engineering approach begins by analyzing the struc-
ture of the organization to identify the business processes that constitute its
workflow. On deeper analysis, these business processes are found to be com-
posed of job functions each of which in turn binds together a specific number of
tasks. A certain set of permissions is required to carry out each task successfully.
Once the permissions necessary for carrying out the tasks are identified, these
permissions are put together to create the individual roles. Thus, in the top-down
approach, starting from the top-level organizational structure, the business pro-
cesses and job functions are repeatedly decomposed to find out the lowest level
of granularity of access control, i.e., the permissions for determining the role set.

This methodology of role creation was first introduced by Coyne [18]. Sub-
sequently, several others also put forth processes of role creation that corre-
lated organizational theory with RBAC concepts [19] or was based on UML
concepts [22,23,76]. Kern et al. [43] amalgamated the concept of role life cycle
with role engineering. Other top-down role engineering approaches that have
been proposed include process-oriented role engineering [70] and scenario-driven
role engineering [4,68,78].

The top-down role engineering approach fails to take into account the existing
permission assignments of the users of the organization and may end up creating
roles which require changes to be made in these assignments. The consequent
revocation and re-assignment of roles may create a sense of apprehension or
even aversion among the employees and may ultimately hamper the smooth
working of the organization. Moreover, the top-down approach requires a massive
amount of human effort and hence is prone to intentional or unintentional errors.
Also, since human effort is involved in top-down role engineering, it is not a
scalable approach when hundreds or thousands of business processes, users and
permissions are present. However, efforts have been made to automate top-down
role engineering [67] so as to eliminate the human factor from this method.

Bottom-Up: Bottom-up role engineering was proposed as an alternative to
top-down role engineering so that the former did not suffer from the drawbacks
of the latter approach. Role mining [21,25,52,79,82] is a bottom-up technique
of role engineering. Role mining starts at the permission level by considering the
existing permission assignments of the users of the organization. The permis-
sion assignment information of the users is represented using a user-permission
assignment or UPA relation. The UPA is a many-to-many relation since each
user can be assigned more than one permission and each permission can be
made available to more than one user. Role mining takes as input the UPA and
produces two many-to-many relations - one is the user-role assignment (UA)

Policy Engineering in RBAC and ABAC 29

relation and the other is the role-permission assignment (PA) relation. Being an
algorithmic approach, role mining can be easily automated, thereby completely
eliminating the issues related to scalability and any kind of human error. Due
to these reasons, role mining has become quite popular and has gained wider
spectrum of acceptability than the top-down role engineering techniques.

Inspite of having several advantages, role mining is not without drawbacks.
Since role mining takes into account only the permission assignment of the users
and leaves out analyzing the business processes of the organization, role mining
may create roles that may not directly correlate to the business processes and
consequently the job functions of the organization. To remove this drawback as
well as consolidate the benefits of the top-down and bottom-up techniques, hybrid
role engineering approaches [26,27,63] have also been proposed. The hybrid app-
roach not only ensures that the role generation process is scalable, automated
and free of human errors, but also helps to create semantically meaningful roles
by incorporating the information related to the business process into role cre-
ation.

2.3 Role Mining

Role mining, a bottom-up role engineering approach involves creation of a set
of roles and the appropriate assignment of these roles to users from the input
UPA. The UPA can be represented as a boolean matrix where users correspond
to rows and columns correspond to permissions. The assignment of a permission
to a user is depicted by putting a 1 in the corresponding cell of the UPA. The
output of role mining consists of the UA and the PA relations. The UA and the
PA can be represented as boolean matrices. Each row of the UA corresponds to
a user and each column corresponds to a role. If a role r is assigned to a user u,
then the entry (u, r) of the UA matrix is set to 1. The rows of the PA matrix
correspond to roles and the columns correspond to permissions. The inclusion of
a permission in a role is indicated by setting the corresponding entry of the PA
to 1. Thus, role mining is a boolean matrix decomposition approach in which
two boolean matrices, the UA and the PA are obtained by decomposing a single
boolean matrix, the UPA. The output UA and PA can be combined together
to get the input UPA. Thus, UA ⊗ PA = UPA, where ⊗ is the boolean matrix
multiplication operator. Role mining may also sometimes additionally create the
role hierarchy.

While any arbitrary but correct set of roles may be generated from the UPA,
often, the objective is to create a minimal set of roles. In this context, a minimal
set of roles is one that is optimal with respect to some role mining metric. The
problem of generating an optimal role set from the input UPA is termed as
the Role Mining Problem (RMP). The variant of the role mining problem that
considers optimality as the number of roles is Basic-RMP. The formal definition
of Basic-RMP as defined by Vaidya et al. [80] is given below.

30 S. Das et al.

Definition 1. Basic-RMP
Given a UPA, create a set of roles R, a UA and a PA such that |R| is

minimized and the output is consistent with the UPA (|R| = number of roles
in R).

The output of Basic-RMP is said to be consistent with the input UPA if the
user-permission assignment relation obtained by combining the UA and the PA
is same as the UPA.

Basic-RMP can be defined using matrix representation notations also. Let us
assume that |U| equals m, |P| equals n and |R| is equal to k. Here, |X| represents
the size of any relation X. If X can be represented as a Boolean matrix, then |X|
is given by the number of 1s present in it. Thus, UA is an m× k matrix, PA is a
k × n matrix and UPA is an m × n matrix. Basic-RMP can be stated as: Given
an m × n UPA, create a minimal sized role set R, an m × k UA and a k × n PA
such that

UA ⊗ PA = UPA (1)

The output of Basic-RMP is said to be consistent with the input UPA if it
satisfies Eq. 1. In addition to |R|, several other role mining metrics are also
present such as |UA| + |PA| [52], |R| + |UA| + |PA| [89] or a weighted structural
complexity (WSC) measure [62,63].

In certain cases, if a certain amount of mismatch is allowed between the input
UPA and the user-permission assignments obtained by combining the UA and
the PA, then the number of roles can be minimized further. However, the trade-
off is a more restrictive RBAC configuration which deprives some users of certain
permissions. Also, keeping the target number of roles constant, this amount of
mismatch can also be minimized. Apart from these, cardinality constraints and
separation of duty constraints [74] can also be considered during role mining.
Depending on the chosen minimization criterion, many variants of Basic-RMP
such as, δ-approx RMP [80], MinNoise RMP [80], Edge-RMP [52], Weighted
Structural Complexity Optimization Problem [63] have been proposed over the
past years.

In Sub-sect. 2.4, we focus on the role mining problem variants and approaches
that do not consider any constraints and in Sub-sect. 2.5, we present those which
take into account several constraints that are part of the RBAC model. Figure 1
shows an overall classification of the different RMP variants, their corresponding
optimization metrics and the solution strategies used denoted by the leaf nodes
at the bottom.

2.4 Unconstrained Role Mining

In this sub-section, we discuss the RMP variants that do not consider any con-
straints and only aim at minimizing a specific optimization metric. We refer to
these problem variants as unconstrained RMP variants. An optimization metric
for role mining is expressed in terms of the sizes of one or more RBAC compo-
nents. Depending on whether the size of a single RBAC component is considered

Policy Engineering in RBAC and ABAC 31

Fig. 1. Role mining classification

or the cumulative sizes of multiple RBAC components are considered, we classify
the optimization metrics into two sub-categories - (i) Simple (involving a single
RBAC component) and (ii) Composite (involving multiple RBAC components).
Simple optimization metrics that exist in the literature include the total number
of roles, the deviation of the role mining output from the input UPA calculated
as the number of mismatches between the two and the size of the role hierar-
chy. The Composite category includes metrics such as the cumulative sizes of a
combination of the RBAC components like the sizes of the set of roles, the UA
relation, the PA relation and the role hierarchy. Most of these unconstrained
problem variants have been shown to be NP-hard. We have already presented
the formal definition of Basic-RMP. Next, we discuss the other RMP variants.

Simple Optimization Metrics: While the target of Basic-RMP is to come
up with the minimum number of roles from an input UPA, several other vari-
ants of RMP have been proposed depending on the chosen optimization metric.
Each variant aims to minimize the chosen metric such that the solution either
exactly reconstructs the UPA or approximates it by allowing a limited degree of
mismatch. These problem variants are presented next.

δ-approx RMP: Proposed by Vaidya et al. [80], δ-approx RMP tolerates a
pre-specified degree of mismatch between the role mining output and the input
UPA. δ-approx RMP can be defined as follows:

Definition 2. δ-approx RMP
Given a UPA and a threshold δ, create a role set R, a UA and a PA, such

that ||UA ⊗ PA − UPA||1 ≤ δ and |R |is minimized.

In the above definition, ‖ . ‖1 represents the L1 norm and δ denotes the
allowed number of mismatches by which the user-permission assignments com-

32 S. Das et al.

puted by combining the UA and the PA differ from the UPA. The higher the
value of δ, the lower is the number of roles obtained from role mining. How-
ever, a high value of δ will make the output RBAC configuration too restrictive.
Basic-RMP is a special case of δ-approx RMP where δ = 0.

MinNoise RMP: Instead of pre-defining the number of mismatches and min-
imizing the number of roles, the complementary approach can also be adopted,
i.e., minimizing the number of mismatches keeping the number of roles constant.
The RMP variant which does this is referred to as the MinNoise RMP [80]. The
number of mismatches between the input user-permission assignments and the
ones obtained by combining the output UA and the PA is termed as noise. The
input to MinNoise RMP is the UPA and the target number of roles k. The gen-
erated output consists of k roles, a UA and a PA such that ||UA ⊗ PA - UPA||1
is minimized. In [80], the authors have mapped MinNoise RMP to the Discrete
Basis Problem [56].

Usage RMP: Usage RMP [53] takes as input a set of role-permission assign-
ments apart from the UPA and finds a UA and ||UA ⊗ PA - UPA||1 is minimized.
Usage RMP is applicable for organizations where a set of roles already exists.
For such organizations, a new role set is not required to be created. Instead, only
the roles are appropriately assigned to the users so that the degree of mismatch
is minimized. Usage RMP reduces the effort of role mining by limiting the task
to creating only the UA.

Role Hierarchy Building Problem: The visual representation of a role hier-
archy can be obtained by drawing a directed acyclic graph where roles are repre-
sented as nodes and the relationships among senior and junior roles are denoted
using edges. A role hierarchy containing the minimum number of edges is said
to an optimal role hierarchy.

The Role Hierarchy Building Problem (RHBP), proposed by Guo et al. [29]
is an RMP variant which aims to build an optimal role hierarchy given a role set.
A role hierarchy is said to be a Complete Role Hierarchy (CRH) if it contains
the inheritance relationships between all pairs of roles. The formal definition of
RHBP is as follows:

Definition 3. Role Hierarchy Building Problem
Given a UPA, a role set R, a UA and a PA, create a complete role hierarchy

RH = G(V, E) where G is the graphical representation of RH, V denotes the set
of vertices and E represents the set of edges such that |E| is minimal.

Composite Optimization Metrics: In contrast to the simple role mining met-
rics, composite role mining metrics consider either a non-weighted or a weighted
sum of the sizes of more than one RBAC component. Based on the particular
composite metric chosen, different RMP variants exist in the literature. Choosing
a composite metric may considerably increase the effort required for role mining.
However, composite metrics reduce, to a great extent, the administrators’ effort
for managing and maintaining the finally deployed RBAC system.

Policy Engineering in RBAC and ABAC 33

Edge-RMP: Edge-RMP [52,81], a variant of Basic-RMP attempts to reduce
redundant roles as well as redundancy in user-role assignments. It fulfills this
objective by considering the following minimization criterion - |UA| + |PA|.
Edge-RMP also considerably reduces the administrative effort for managing the
deployed RBAC configuration.

User-Oriented Exact RMP: The objective of User-Oriented Exact RMP
[50,51] is to take the perspective of the end-user into consideration while deriv-
ing an RBAC state. An RBAC configuration that does not over burden any user
with too many role assignments is more preferable to the users than a configura-
tion which contains a large number of role assignments for each user. Therefore,
User-Oriented Exact RMP aims to minimize |R| + |UA|. |UA| can be trivially
minimized by making the number of roles and the number of users equal and
assigning a single role to each user. However, this kind of a solution contradicts
the principal objective of role mining which is to create roles by grouping permis-
sions as well as users. Hence, |R| is also included in the optimization metric. The
metric used by User-Oriented Exact RMP is a weighted sum of |R| and |UA|,
i.e., wr.|R| + wu.|UA|. In this context, wr and wu denote the relative weightage
given to the size of the respective RBAC components.

Edge + Basic-RMP: Zhang et al. [89] proposed Edge + Basic-RMP. It aims
to minimize |UA| + |PA| + |R|. Edge + Basic-RMP thus reduces the overall
administration effort to manage the resulting RBAC state. Consequently, it takes
into account both end-user and administrator’s perspectives. This RMP variant
can minimize the chosen role mining metric even if partial role definitions are
available as input apart from the UPA.

Role Hierarchy Mining Problem: The Role Hierarchy Mining Problem
(RHMP) [29] was proposed by Guo et al. For this problem, no set of roles exists.
Therefore, solving this RMP variant requires creating the role hierarchy along
with deriving a role set. The objective here is to minimize the total number of
roles as well as the size of the role hierarchy. The formal definition of RHMP is
presented below:

Definition 4. Role Hierarchy Mining Problem
Given a UPA, the objective is to create a role set R, UA, PA and a complete

role hierarchy RH = G(V, E) such that RH is consistent with UPA and |R| +
|E| is minimal.

Since RHMP aims to find a minimal set of roles and then create an optimal
hierarchy from this role set, the sizes of both R and RH are included in the
minimization criterion.

Weighted Structural Complexity Optimization (WSCO) Problem: The
metric Weighted Structural Complexity (WSC) was introduced by Molloy et al.
[63]. WSC is expressed as a weighted sum of |R|, |UA|, |PA| and |RH|. Additon-
ally, WSC also considers a direct user-permission assignment (DUPA) relation,
in case it is available. DUPA consists of the isolated user-permission assignments
which cannot be included in a role. Let the weights associated with each of R,

34 S. Das et al.

UA, PA, RH and DUPA be w1, w2, w3, w4, and w5 respectively, each of which
is a non-negative rational number. WSC is calculated as: w1.|R| + w2.|UA| +
w3.|PA| + w4.|tran re(RH)| + w5.|DUPA|. Here, tran re(RH) gives the mini-
mum sized set containing the relationships which are equivalent to those present
in RH. The RMP variant that minimizes WSC is referred to as the Weighted
Structural Complexity Optimization (WSCO) problem [63]. WSCO can be con-
sidered as a generalized version of all the RMP variants since by appropriately
setting the values of the weights, WSCO can be reduced to different RMP vari-
ants.

Among all the optimization metrics discussed so far, WSC is the most com-
plex since it tries to minimize the sizes of a number of RBAC components simul-
taneously. Though apparently this might seem to be a very appealing choice,
at times, minimization of the different components might conflict with each
other, consequently, resulting in an RBAC state that is not meaningful. The
RMP variants presented here can be further categorized as exact and inexact
variants depending upon whether the output generated is consistent with the
input UPA. Basic-RMP, User-Oriented Exact RMP, Edge-RMP, RHBP, RHMP,
WSCO Problem and Edge+Basic RMP are exact variants whereas MinNoise
RMP, δ-approx RMP and Usage RMP can be considered as inexact variants.

Cost Based Metric: A cost based metric was proposed by Colantonio et al. [11].
This metric targets to minimize a cost function f = wU |UA|+wP |PA|+wR|R|+
wC

∑
r∈R c(r), where each of wU , wP , wR and wC is greater than or equal to 0.

The function f captures the cost of considering business information in the
function c separately from the cost incurred by the role set and the costs of the
UA and the PA. The problem of creating a minimal cost role set is equivalent
to Basic-RMP when wR = 1 and wU , wp, wC = 0.

Noise Consideration: In scenarios where there are erroneous assignments or
noise present in the input UPA, it is essential to identify and cleanse the noise
before creating the RBAC configuration. Otherwise, the mined RBAC config-
uration will be erroneous as well. Several techniques have been proposed for
identification of noise present in the input which include a rank reduced matrix
factorization approach proposed by Molloy et al. [64], an association rule mining
based algorithm presented by Huang et al. [37], etc.

Solution Strategies: Since the RMP variants are NP-hard problems, a num-
ber of heuristic approaches have been adopted to solve them. Permission group-
ing based strategies include the ones proposed in [7,80,82,83,91], while prob-
lem mapping based techniques include [21,38,39,79]. In addition to these,
matrix decomposition based approaches [52,53], graph theoretic algorithms
[13,15,29,89], formal concepts analysis based techniques [62,63] are also present.
Moreover, it has been shown that data mining techniques and genetic algo-
rithms can be used to perform role mining [1,11,71,72,90]. Approaches to
mine roles meaningful from a business perspective have been presented in
[12,14,16,17,45,55,65,85] and [86]. Recently, a role engineering method has been

Policy Engineering in RBAC and ABAC 35

proposed which can be used to create RBAC states in large organizations in a
scalable manner [20].

Temporal Mining of Roles: Temporal Role-Based Access Control (TRBAC)
model [5] is an extension of the RBAC model. In TRBAC, each role has an
associated temporal constraint specifying the time duration for which the role
is enabled. These roles have been referred to as temporal roles and the process
of mining these roles is termed as temporal role mining [59]. The temporal con-
straints for these roles are specified in a Role Enabling Base (REB). The prob-
lem of mining a minimal set of temporal roles has been termed as the Temporal
Role Mining Problem (TRMP) [57]. Generalized Temporal Role Mining Problem
(GTRMP) [58] is the inexact version of TRMP where a pre-determined number
of mismatches is allowed. Another variant of the TRMP is also present in the
literature which aims to minimize a metric known as the cumulative overhead
of temporal roles and permissions (CO-TRAP) [59], calculated as a weighted
sum of |PA| and the size of the REB. The corresponding problem variant is
known as the CO-TRAP Minimization Problem (CO-TRAPMP). The role min-
ing algorithms discussed so far are not suitable for mining of temporal roles.
Hence, several temporal role mining algorithms have been proposed based on
subset enumeration [58], matrix decomposition using many-valued concepts [59]
or algorithms which are extensions of the traditional role mining algorithms [60].

2.5 Constrained Role Mining

Several constraints have been incorporated in RBAC like mutually exclusive
roles, cardinality constraints and pre-requisite roles. Cardinality constraints cor-
respond to different organizational policies and rules in an RBAC state. The
cardinality constraints indicate at most how many roles can be assigned to a
user (C1) or at most how many users can be assigned to a specific role (C2) or
the highest number of permissions to be included in a role (C3) or the upper
bound on the number of roles in which a permission can be present (C4). In the
role mining literature, C1 has been named as the role-usage cardinality constraint
and C4 has been referred to as the permission-distribution cardinality constraint
[31]. Similarly, C2 and C3 respectively can be termed as role-distribution cardi-
nality constraint and permission-usage cardinality constraint. The output of role
mining should be such that the required constraints are satisfied.

The RMP variant proposed in [50,51] considers the role-usage cardinality
constraint (C1) and is an user-oriented role mining problem. It attempts to
prevent over burdening of users with too many role assignments. Two versions of
the constrained User-Oriented RMP have been presented - (i) Exact version and
(ii) Approximate version. As the names suggest, the first one is an exact version
while the second one is an inexact version. The respective problem definitions
are presented below.

36 S. Das et al.

Definition 5. User-Oriented Exact RMP
Given a UPA and t > 0, find R, a UA and a PA such that |R| is minimum,

the solution is consistent with the input UPA, and no user is assigned more than
t roles.

Definition 6. User-Oriented Approximate RMP
Given a UPA, t > 0 and a positive fractional number f, find R, a UA and a PA

such that |R| is minimum, the UA and the PA when combined reconstructs the
input UPA with an error rate less that is at most f, and no user is assigned more
than t roles. (Error rate denotes the fraction of the mismatched UPA entries.)

Two approaches have been presented for solving the above mentioned prob-
lem variants. User-Oriented Exact RMP can be solved using the following itera-
tive greedy strategy - Select the candidate role which when assigned to appropri-
ate users covers the maximum number of user-permission assignments till t − 1
(i.e., C1 = t) roles have been assigned to each user. After that, the remaining
permission assignments of each user are collectively put in a single role and is
assigned to the corresponding user. User-Oriented Approximate RMP can also
be solved by adopting a similar strategy. The only difference is that the iter-
ative role selection terminates when the upper bound for the allowable degree
of mismatches is reached. Other approaches to solve RMP in the presence of
the role-usage cardinality constraint include the Role Priority based Approach
(RPA) and the Coverage of Permissions based Approach (CPA) proposed by
John et al. [42]. RPA first creates a UA and a PA and then enforces the con-
straint by modifying them whereas CPA enforces the constraint while creating
the UA and the PA.

Algorithms to enforce the role-distribution cardinality constraint (C2) based
on the graph theoretic Minimum Biclique Cover [21] based role mining algorithm
has been proposed in [32]. The problem variant considering the permission-usage
cardinality constraint (C3) is formally defined in [8], which has been named as
the t-constrained RMP (i.e., C3 = t). The problem definition is as follows:

Definition 7. t-constrained RMP
Given an m × n UPA and a positive integer t > 1, find an m × k UA and a

k × n PA so that UA ⊗ PA = UPA and ∀ i, 1 ≤ i ≤ k, |PAij = 1| ≤ t, where
1 ≤ j ≤ n.

The authors have proposed an iterative approach named as t-SMA to solve
the t-constrained RMP. Two variants of this algorithm are presented depending
upon whether the row containing the least number of permissions is selected
(named as t-SMAR) or the column that contains the least number of permissions
is selected (named as t-SMAC) in every iteration. Kumar et al. [46] propose a
role mining algorithm called as the Constrained Role Miner (CRM) capable of
enforcing the permission-usage cardinality constraint. This approach first creates
a set of roles by clustering permission sets assigned to a single or multiple users
and then enforces the constraint to create the final role set.

Work on handling multiple cardinality constraints have been considered by
Harika et al. [31]. The authors propose the Multiple Cardinality Constraint Prob-
lem (MCP) which considers both the role-usage cardinality constraint (C1) and

Policy Engineering in RBAC and ABAC 37

the permission-distribution cardinality constraint (C4). The authors show that
MCP can be solved by using either the concurrent processing approach or the
post-processing approach. The former approach is similar to CPA and the latter
is similar to RPA.

In addition to cardinality constraints, the literature on role mining also con-
tains work on enforcing Separation of Duty (SoD) constraints such as the one
presented in [75]. The problem variant that has been proposed in this work
is referred to as RMP SoD. The approaches to solve RMP SoD enforce SoD
by determining the corresponding Statically Mutually Exclusive Roles (SMER)
constraints. Constraint supported role engineering technique has been proposed
in [33] which is capable of enforcing any desired constraint as a post-processing
step by modifying an initial RBAC state obtained as the output of a role min-
ing technique. Another constraint satisfaction approach based on satisfiability
modulo theories (SMT) solvers is proposed in [40].

Enforcing one or more constraints may lead to the creation of an RBAC con-
figuration of larger size (i.e., the size of one of more components of the constraint
satisfied RBAC configuration may be greater than the size of the corresponding
component/s in the unconstrained configuration). Nonetheless, these constraints
are necessary to reflect different organizational requirements and policies.

2.6 Future Research Directions

The hybrid approach to role engineering combines the advantages of both top-
down and bottom-up approaches. The hybrid techniques can be mostly auto-
mated but at the same time incorporates some amount of human intervention.
Therefore, in these role engineering techniques, the extent of human induced
errors is minimized as far as possible and at the same time the limited amount
of human intervention helps to create semantically meaningful roles. Though few
hybrid techniques have been proposed till date, this can be a promising direction
of future research which in turn may further encourage the real-life deployment
of these role mining techniques.

Another area of potential research can be attempting to design role mining
techniques which can generate semantically meaningful roles as well as make the
newly created roles similar to the existing ones as far as possible. Of course, these
two objectives need to be properly balanced with the requirement of minimizing
the appropriate role mining metric. Also, it is not just sufficient to deploy an
RBAC configuration in an organization. Periodic investigation is required to
identify obsolete roles and remove them from the system. It would be interesting
to look for approaches that can automate this process.

3 Policy Engineering in Attribute-Based Access Control
(ABAC)

While RBAC is competent in mediating efficient access control in environments
which involve a known set of users, it is relatively ineffective in scenarios involving

38 S. Das et al.

sharing of resources among organizations where the total number of users can-
not be known a priori. Attribute-Based Access Control (ABAC) [35] has recently
been proposed to enforce secure access to resources in a dynamic environment.
Basically, attributes are characteristics of the subject, the object, and environ-
ment conditions. Attributes consist of information in the form of a name-value
pair. In ABAC, subject requests to perform operations on objects are granted
or denied based on assigned attributes of the subject, assigned attributes of the
object, environment conditions, and a set of rules that are specified in terms
of those attributes and conditions. In this section, we explore the problem of
policy engineering in ABAC. ABAC along with its basic components and the
problem of policy engineering in ABAC, together with its different variants and
their corresponding solutions are discussed in the succeeding sub-sections.

3.1 Attribute-Based Access Control (ABAC)

In this sub-section and the subsequent sub-sections, first, we give a general
overview of the ABAC model and then, we elaborately discuss and classify the
basic problem of policy engineering together with its different variants and solu-
tion methodologies corresponding to them. Categorization is performed on the
basis of the characteristics of the strategies used to construct the rules, the goal
of policy engineering, and the mode of solution. Finally, we explore the limita-
tions of existing work and discover new areas of research that can potentially
enrich this area of research.

Overview of the Model: ABAC consists of a set of subjects, objects, environ-
mental conditions and a set of access control rules. A subject usually denotes a
human or a non-human entity, such as an application or an automated service.
An object or resource is an entity that needs to be protected from unauthorized
access. An environment defines the context in which an access request is made
like time of day, location of access, etc. In ABAC, attributes are characteris-
tics of the subject, the object, and environment conditions. Attributes consist of
information in the form of a name-value pair. Every subject is associated with
several attributes, such as designation, experience, etc., which either individually
or in combination, comprises an expression to identify a group of subjects having
similar access rights. Similarly, for each object, appropriate values are assigned
to a set of object attributes. Typical examples of object attributes include file
type, sensitivity level and date of creation. Similarly, examples of environment
attributes include location of access, time of access etc. Access decisions are
based on the values of the attributes assigned to the subject, object and envi-
ronment conditions. A subject requesting to perform operations on an object
is granted or denied access based on assigned attribute values of the subject,
the object, environment conditions, and a set of rules that are defined in terms
of those attribute values and conditions. Each access or access request is repre-
sented in the form of a 4-tuple consisting of a subject, an object, an environment
condition and an operation. Rules define the access control policy of the organi-

Policy Engineering in RBAC and ABAC 39

zation. A set of formal notations is given below. We will use the same notations
throughout the chapter.

– S : A set of authorized users. Each element of this set is represented as si, for
1 ≤ i ≤ |S|.

– O : A set of objects which is to be protected. Each element of this set is
represented as oi, for 1 ≤ i ≤ |O|.

– E : A set of environmental conditions. Each element of this set is represented
as ei, for 1 ≤ i ≤ |E|.

– Sa: A set of subject attributes that can affect access decisions. Each element
of this set is represented as sai, for 1 ≤ i ≤ |Sa|. Each sai has a possible
set of values it can acquire. Similarly, Oa and Ea represent the sets of object
attributes and environment attributes, respectively.

– Fs: S × Sa → {k|k is a subject attribute value}. The functions Fo and Fe are
similarly defined for object and environment, respectively. Essentially, these
functions assign values to attributes for all the entities.

– Sv: A set containing the assignment of attributes and their corresponding
values for all the subjects. The sets Ov and Ev are defined for object and
environment, respectively.

– OP : A set of operations. Each element of this set is represented as opi, for
1 ≤ i ≤ |OP |.

– R: A set of rules collectively called the ABAC policy. Each member of this
set is represented as ri, for 1 ≤ i ≤ |R|.
Each rule r ∈ R is a 4-tuple 〈RS,RO,RE, op〉, where RS, RO and RE

represent a conjunction of subject attribute-value pairs, a conjunction of object
attribute-value pairs and a conjunction of environment attribute-value pairs,
respectively and r[RS] represents the subject attribute-value pairs associated
with rule r. r[RO], r[RE] and r[op] are defined similarly. op is the name of an
operation. Each attribute-value pair av ∈ {RS ∪RO ∪RE} is an equality of the
form a = c, where a is the name of an attribute and c is the value associated
with a. c is either a constant or a don′t care represented as “−”.

Policy Engineering: One of the most challenging issues in implementing
ABAC is to define a complete and appropriate set of rules each of which is
known as a policy. This process, known as policy engineering [47], has been
identified as one of the most difficult and costliest components in implementing
ABAC [47]. Similar to that of role engineering, primarily, there are two strategies
employed for ABAC policy engineering: top-down and bottom-up. In the top-
down approach, rules are constructed by precisely evaluating and breaking down
business processes into smaller functionally independent units. These functional
units are then associated with accesses from which the rules are constructed.
Specifically, this approach defines a particular unit of a business process and
then creates rules for it by considering the associated accesses with the job func-
tion. However, this approach may ignore some of the existing accesses in the
organization. In contrast, the bottom-up approach, also called policy mining

40 S. Das et al.

takes into account the existing accesses to construct rules. ABAC policy mining
algorithms have been developed to lower the expense of developing an ABAC
policy, by partially automating the procedure. However, most organizations have
high-level requirement specifications that govern which user, in what conditions,
may access what resources. This approach ignores the high-level requirement
specifications in organizations that could be very effective for policy engineer-
ing. Interestingly, top-down and bottom-up approaches complement each other
in terms of their strengths and weaknesses.

Let us consider a scenario where, Bob and Alice are two entities of an uni-
versity. Both of them belong to the department of Computer Science and Engi-
neering (CSE). Bob is a faculty and Alice is a student having roll number 1001.
Consider two objects doc1 and doc2, both belonging to the CSE department.
The types of doc1 and doc2 are questionnaire and assignment, respectively, and
Alice has the roll number CS17S1001. The existing accesses in the university
are given in Table 1.

Table 1. Existing accesses in the university

doc1 doc2

Bob access access

Alice deny access

First, we consider the top-down approach where the various departmental
authorities and the security officer (SO) identify two independent functional
modules in the organization as prepare question and prepare assignment. The
SO allocates doc1 to Bob under the functional module prepare question, so
that he can prepare the questionnaire for CSE. The rule generated from this
assignment can be represented as:
〈subject.designation = faculty AND subject.department =
CSE AND object.type = questionnaire AND object.department = CSE〉
Similarly, the functional module prepare assignment will form the rule:
〈subject.designation = faculty AND subject.department =
CSE AND object.type = assignment AND object.department = CSE〉

It is to be observed that the formed rules reflect the functional modules of the
university but any of the two formed rules doesn’t allow Alice to access doc2.
Thus, although the rules are meaningful and help understand the functional
modules of the university, it ignores an existing access in the university which is
undesirable. This is the limitation of using the top-down approach.

In contrast, the bottom-up approach considers the existing accesses in the
organization to form the rules. From the given accesses in Table 1, let us form
the following rules from the accesses:

r1 = 〈subject.designation = faculty AND object.department = CSE〉 and
r2 = 〈subject.roll number = CS17S1001 AND object.type = assignment〉

Policy Engineering in RBAC and ABAC 41

We see that, rule r1 allows Bob to access both doc1 and doc2. Rule r1 can be
literally stated as, “allow all faculties to access all objects of department CSE”.
Similarly, rule r2 allows Alice to access doc2 and can be stated as, “subject
having roll number CS17S1001 is allowed to access objects of type assignment”.
Although the rules r1 and r2 satisfy the existing accesses in the university, the
rules do not reflect the functional modules of the university. Moreover, the rules
are not much meaningful. This is the limitation of using the bottom-up approach.

Therefore, an ABAC policy can be constructed either from the functionally
independent processes of an organization or a set of existing access data in
the organization. From this perspective, the policy engineering problem is a
process of constructing a set of authorization rules for an organization from
either the natural language policy documents or the set of existing accesses in
the organization given that the set of users, the set of resources, the attributes
associated with the subjects and objects and their associated values for each
subject and object is known.

A trivial solution to the policy engineering problem using the bottom-up
model can be formulated by converting each existing access into a separate rule.
While such a solution suffices for providing controlled access to the organiza-
tional resources, it results in the formation of a large number of rules. Moreover,
in case of a new access request, apart from the existing accesses, the rules con-
structed in this manner will not suffice. Often it is beneficial to fulfill additional
constraints such as minimization or maximization of one or more metrics. The
problem of specifying an optimal set of rules from the set of users, resources,
attributes and attribute-value assignments of all the entities is referred as the
Policy Engineering Problem (PEP). The fitness of a generated ABAC policy
can be represented in terms of the selected measure of optimality. Optimal-
ity here may refer to the number of rules constructed, the similarity between
the accesses permitted by the constructed ABAC system and the previous sys-
tem or a Weighted Structural Complexity (WSC). Based on the organizational
requirements and the chosen quality metric, different variants of PEP and their
corresponding solutions have been proposed in the recent years. Although there
are a number of existing policy engineering algorithms, there is no formal classi-
fication of the algorithms for policy engineering except broadly categorizing the
existing solutions into top-down and bottom-up approaches.

In this chapter, we explore the existing variants of PEP, categorize them, and
discuss the proposed solution methodologies. Figure 1 provides the classification
of various policy engineering approaches according to the approach and method
of solution used. First, we classify PEP on the basis of the approach for solving
it i.e., general, top-down and bottom-up approaches which are further classified
into different categories based on the metrices and techniques used for solving
them. The general approaches for policy mining are categorized into (1) Risk,
which associates each access to a potential risk i.e., it quantifies the possible risk
or benefit of granting an access. (2) Enumerated, where subjects and objects
are assigned a single label for a specific operation and a policy is constructed
by enumeration of the subject and object labels. The top-down approaches for

42 S. Das et al.

Fig. 2. Classification of policy engineering approaches

policy engineering construct the rules from the high-level descriptions of the
business processes available from the natural language policy (NLP) documents
available in the organization. The procedures using NLP documents are further
categorized into (1) Natural Language Processing, which capitalizes on various
natural language processing techniques including point-wise mutual information
to identify access control policy sentences within NLP documents. The third
category of policy engineering techniques is the bottom-up approach which is
further categorized into (1) Mining, which utilizes the existing accesses of an
organization to identify a set of rules and can also be performed under various
constraints. (2) Log-based, which utilizes the accesses from the logs, then iterates
over the accesses extracted from the log to construct rules based on the attributes
and their associated values obtained from the entities in the accesses. (3) Role
mining based, similar to the role mining problem in RBAC, it first represents the
various components of ABAC in a matrix form and mines the attribute-value
pairs in the ABAC rules.

Table 2. Different approaches for policy engineering in ABAC

Problem Input Output Minimize Solution-type

Risk-based [47] S, O, OP, Sa, Oa, Sv, Ov , RV P Risk Inexact

Enumerated [6] πRBAC P WSC(rules) Exact

From NLP documents [66] Sentences from NLP documents P F1-measure Inexact

Mining [88] S, O, OP, Sa, Oa, Sv, Ov P WSC(rules) Exact

Constrained mining [28] S, O, OP, Sa, Oa, Sv, Ov P TW (rules) Exact

Migration-based [84] Multiple access control policies P TotalCost Exact

Log [87] S, O, OP, Sa, Oa, Sv, Ov , L P WSC(rules) Inexact

Log + Deep learning [61] S, O, OP, Sa, Oa, Sv, Ov , L P Hamming distance Inexact

Matrix decomposition [44] S, O, OP, Sa, Oa, A P, Sv, Ov N.A. Exact

Policy Engineering in RBAC and ABAC 43

3.2 Approaches for Policy Engineering

As discussed in Sect. 3.1, the policy engineering problem involves the construc-
tion of a set of authorization rules either from the natural language policy doc-
uments or from existing accesses in the organization. In this section, we study
the various approaches for solving the policy engineering problem for ABAC.
Figure 2 shows the general classification of techniques for policy engineering in
ABAC. The first subsection describes the general approaches, the second sub-
section details the top-down approaches and the final subsection focuses on the
bottom-up approaches. Table 2 lists the different approaches for policy engineer-
ing in ABAC.

General Approaches: The general approaches consist of solutions to PEP
which are not based on the high-level functional requirements or the exist-
ing accesses of the organization. They are either constructed directly from
other traditional access control models or obtained by enumeration. The general
approaches are briefly discussed below:

Risk-Based: One of the major concerns while constructing an ABAC policy is
the potential risk of allowing an unauthorized access. Risk has been used to assess
the efficiency of different RBAC models [3,9]. From this perspective, minimizing
the total risk of an ABAC model can be a suitable optimization metric for policy
engineering. Krautsevich et al. [47] used risk to quantify the possible impairment
caused due to unfair use of a granted access. A potential risk value is computed
for each possible access. The risk-based policy engineering procedure assumes
that permitting an access to a user is associated with the risk that the user may
misuse or abuse the obtained access permission. Therefore, the attribute values
associated with the rules should be assigned in such a manner that the benefits
of granting or denying access minimize the possible risk for the system. The
risk-based policy engineering problem is defined below.

Definition 8. Risk-based PEP
Given a set of subjects S, a set of objects O, a set of subject attributes Sa,
a set of object attributes Oa, attribute value assignments for all subjects Sv,
attribute value assignments for all objects Ov, a set of accesses A and a set RV
of computed risk values associated with each possible access construct an ABAC
policy P in such a manner that the total risk calculated from the accesses allowed
by P is minimum.

The authors do not consider risk for making dynamic access decisions in case of
an access request. However, the dynamic access decisions help in constructing
balanced ABAC policies in which risk is minimized.

Enumerated: The conventional approach to define ABAC policies is to form
logical formulas using the attribute values of the different entities. For instance,
ABACα [41] and XACML [2] form logical formulas using attribute values. Alter-
natively, ABAC policies can be specified by enumeration. The Policy Machine

44 S. Das et al.

uses enumeration to construct policies. Biswas et al. [6] proposed a label-based
ABAC model which uses enumeration for constructing ABAC policies. The
authors refer to their model as LaBAC. There is one user attribute (uLabel)
and one object attribute (oLabel) in LaBAC. An authorization rule in LaBAC
corresponding to an access is an enumeration of these two attributes. This makes
LaBAC a very basic ABAC model consisting of only one subject attribute and
one object attribute.

Top-Down Approach: The top-down approach is like a clean slate procedure.
Here, a group of authorities in charge of the business processes, with the help
of a SO, identifies the functionally independent business processes in the orga-
nization and associates them with their corresponding accesses. The authorities
and the SO identify the users who perform a specific function and assign them
the accesses to the desired objects.

In other words, rules are specified by precisely evaluating and disintegrating
business processes into smaller functionally independent units. These function-
ally independent units are then associated with accesses from which the rules
are constructed. Specifically, this approach defines a particular unit of a business
process and then creates rules for it by considering the associated accesses with
the particular unit. One difficulty of this approach is that it is not always feasible
to assemble a team of authorities from multiple departments of the organization
within a specified duration to accomplish the objectives of policy engineering.
Also, it is human-effort intensive and thus, is prone to errors. Moreover, this
approach may ignore some of the existing accesses in the organization.

From Natural Language Policy (NLP) Documents: As it is very difficult
to assemble a team of authorities from various departments within a given time
period, the existing NLP documents in the organization are sometimes used to
identify the different business processes of the organization. Narouei et al. [66]
present a top-down policy engineering framework for ABAC that employs a deep
recurrent neural network to automate the construction of an ABAC policy from
unrestricted natural language documents. Majority of organizations have spec-
ifications regarding access to organizational resources that state the conditions
in which a user can access a particular resource [35]. These documents define
security specifications and provide a set of Access Control Policies (ACPs) which
contain the permitted accesses. The authors address these documents (high-level
requirement specifications) as natural language access control policies (NLACPs)
which are specified as statements that regulate and facilitate access to organi-
zational resources. These are expressions in human language that can be trans-
formed to digital policies which mediate machine enforceable access control. The
information extracted from NLACPs is used to develop ABAC policies. However,
a difficulty in constructing ABAC policies is that the required information to cre-
ate the authorization rules is usually concealed in the NLACPs, and are hard
to identify. This necessitates processing and extracting information from natural
language documents. The authors claim their work to be the first attempt to

Policy Engineering in RBAC and ABAC 45

construct ABAC policies from requirement specification documents and various
policy documents which are written in unrestricted natural language.

For evaluation of the obtained results, the authors use recall, precision, and
F1 measure. The portion of ACPs that is relevant is the precision and the fraction
of ACPs retrieved correctly is called the recall. For computational purposes, the
predictions from the deep neural network classifier are categorized into 4 groups:
(1) True positives (TP) corresponding to the correct predictions, (2) True nega-
tives (TN) corresponding to the sentences which are correctly identified as non-
ACP sentences, (3) False Positives (FP) representing the sentences incorrectly
identified as ACP sentences and (4) False negatives (FN) are the sentences that
are identified as non-ACP sentences but are actually not. Precision and recall
are calculated as:

P =
TP

TP + FP
and R =

TP

TP + FN

An efficient model will have high values of both precision and recall. The authors
express the F1 measure as the harmonic mean of precision and recall and can be
calculated as:

F1 =
2P × R

P + R

It may be noted that the value of F1 tends to shift towards the lower value of
precision and recall.

Bottom-Up Approach: The bottom-up approach seeks to capitalize on exist-
ing access definitions available in an organization. An organization invests time
and effort in defining a set or sets of access control rules and conventions. Rather
than using a clean slate method, this approach aims to construct authorization
rules from these existing accesses. Constructing authorization rules from the
existing accesses is called policy mining. ABAC policy mining algorithms have
been developed to cut the cost of constructing an ABAC policy by partially
automating the process. But, most organizations have specifications in context
of different business processes that determine the access decisions regarding orga-
nizational resources. This approach ignores the specifications related to the busi-
ness processes in organizations that have the potential to facilitate the policy
engineering process. In other words, the rules formed using the bottom-up app-
roach may fail to reflect the business processes of the organization.

Mining: Xu et al. [88] proposed the first known algorithm for mining ABAC
policies using a bottom-up approach. Their algorithm constructs an ABAC pol-
icy from Access Control Lists (ACLs) and attribute data. The policy mining
problem is defined as follows.

Definition 9. Policy mining problem
Given a set of subjects S, a set of objects O, a set of subject attributes Sa, a set of
object attributes Oa and a set of accesses A, two sets Sv and Ov, which contain all
the subjects and objects with their associated attributes and their corresponding

46 S. Das et al.

values, respectively and a set of existing accesses A, find an ABAC policy P such
that the WSC of P is minimum.

Mining can also be used to derive ABAC policy from an RBAC policy and
attribute data by converting the RBAC policy into ACLs and converting a role
into an attribute and then applying the mining algorithm. The policy mining
algorithm works as follows. It iterates over the accesses contained in the given
ACL, selects specific accesses and uses them to construct candidate rules, then
the candidate rules are generalized to cover additional accesses in the given ACL
by substituting conjuncts in attribute expressions with constraints. When the
complete ACL has been covered by the constructed candidate rules, the algo-
rithm merges and simplifies the candidate rules to improve the policy. Finally,
the algorithm selects the highest-quality candidate rules which are added to the
generated policy. The quality metric used in the policy mining algorithm is the
WSC metric which is a generalization of the policy size. The WSC of an ABAC
rule is a weighted sum of the number of elements of each ABAC component that
is present in the rule. Similarly, the sum of the WSCs of the rules of an ABAC
policy gives the total WSC of the policy.

Constrained Mining: Policy mining is an effective means for constructing
an ABAC policy. However, rules consisting of numerous attributes affect the
time required to evaluate each rule in case of an actual access request. There-
fore, imposing a constraint on the number of attributes in each rule, along with
minimizing the number of attributes in the total policy is beneficial. Gautam
et al. [28] gave a constrained policy mining algorithm which takes as input an
Access Control Matrix (ACM) and constructs a minimal set of ABAC autho-
rization rules in such a way that each rule can have at most a fixed number of
attributes. Minimality here refers to the total weight of all the rules. The authors
refer to the problem as Constrained ABAC Policy Mining Problem (CAPM) and
define the problem as follows.

Definition 10. Constrained policy mining
Given an access control matrix A, a set of subject attributes Sa, object attributes
Oa, attribute value assignments for all subjects Sv, attribute value assignments
for all objects Ov, and a constant c, construct an ABAC policy P in such a way
that the rules in P cover all the accesses in A, there are no extraneous accesses
permitted by P which is not present in A and the number of attributes in each
rule in P is at most c and the total weight of the policy i.e., TW (P) is minimum.

Here, TW (P) denotes the total number of attributes in the policy. For a policy
consisting of n rules, the total weight of P can be denoted as:

TW (P) =
n∑

i=1

TW (ri)

Migration-Based: The process of upgrading from a traditional access control to
a recent access control model is known as policy migration. Many organizations

Policy Engineering in RBAC and ABAC 47

want to migrate to ABAC for the increased flexibility it offers in regulating con-
trolled access to organizational resources. Any organization migrating to ABAC
requires an ABAC policy. Moreover, the need for resource sharing among differ-
ent organizations necessitates the development of a common policy among them.
Quantifying the similarity among different access control policies is the key to
constructing a common policy. Lin et al. [48,49] present a metric for measuring
the similarity between two policies. In this context, Vaidya et al. [84] present a
framework for migrating to ABAC. Their work is based on a change detection
approach that is used to evaluate similarities between security policies of similar
or distinct access control semantics. Given a set of policies, they find a common
organizational policy with the lowest cost of migration. The cost of migration is
calculated on the basis of the changes that occurred from given policies to formed
common policy. The change between the policies is identified using the XyDiff
tool [10]. The authors mine the policies from access control lists and attribute
data. They also provide an extension of the algorithm to detect over-assignment
and under-assignment of accesses to a user.

From Logs: We have seen that existing accesses can be used for mining an
effective ABAC policy. Alternatively, operation logs can be treated as effective
sources of information on existing organizational accesses. Xu et al. [87] present
the first known algorithm for mining ABAC policies from logs and attribute data.
The authors represent a log entry as a 4-tuple, e.g., a log entry is represented as
〈s, o, op, t〉 where s, o, op and t correspond to a subject, an object, an operation
and a time-stamp, respectively. A log record is a collection of such log entries.
The problem of mining policies from logs is defined as follows.

Definition 11. Policy mining from logs
Given a set of subjects S, a set of objects O, a set of operations OP a set of
subject attributes Sa, a set of object attributes Oa, a set Sv of subject attribute
data, a set Ov of object attribute data and a log record L, construct a set of
ABAC rules P such that the WSC of P is minimized.

The algorithm works as follows: First, it extracts the accesses from the logs, then
it iterates over the extracted accesses, uses selected accesses as bases for forming
candidate rules. Then the candidate rules are converted into more generalized
rules by replacing some of the attribute expressions with constraints. General-
ization of candidate rules results in the coverage of more accesses. Candidate
rules are constructed until all the accesses are covered. Finally, the candidate
rules are simplified and merged in order to make the policy more efficient. The
highest-quality candidate rules are included in the generated policy.

From Logs Using Deep Learning: Iterating over the extracted accesses from
the operation logs of an organization is one way of defining an ABAC policy.
Alternatively, machine learning techniques can be employed for mining autho-
rization rules from log records. Mocanu et al. [61] employ a deep learning tech-
nique to interpret rules from logs. Unlike the approach presented in [87], this app-
roach considers the denied accesses along with the permitted accesses. Moreover,

48 S. Das et al.

it also considers the issues of under-assignment i.e., the logs may contain some
false positive instances like an unauthorized access being permitted, and situa-
tions of over-assignment where certain accesses, although authorized, presently
do not exist in the log records. The problem definition is similar to the one given
in [87]. The authors use Restricted Boltzmann Machines (RBMs) [77] to infer
authorization rules from the log records. After training with the log records, the
RBM is used to construct the generalized candidate rules. Hamming distance
[30] is used to evaluate the quality of the generated policy which measures the
reconstruction error.

Matrix Decomposition: Matrix decomposition can also be used to formulate
and solve the PEP in ABAC. Krautsevich et al. [44], for the first time formal-
ized ABAC in a matrix form and formulated the problem of policy engineering
in ABAC. The authors propose the most general policy engineering problem and
leave any potential algorithmic solution or quality metric for future work. This
method takes as input a set of subjects S, a set of objects O, a set of subject
attributes Sa, a set of object attributes Oa and a set of accesses A and pro-
duces two matrices Sv and Ov, which contain all the subjects and objects with
their associated attributes and their corresponding values, respectively and also
represents the rules in an ABAC policy in a matrix form.

3.3 Future Directions

As discussed in the previous sections, both the top-down and bottom-up
approaches have their corresponding shortcomings. In order to address the issues
faced by the existing algorithms for policy engineering, it is essential to develop
methods which can benefit from the advantages of both the approaches. We refer
to such methods as the hybrid approaches.

The hybrid approach seeks to utilize both the top-down and bottom-up
approaches. Accesses can be gathered using bottom-up methods and evaluated
to prevent any unauthorized access. Organizational authorities with the help
of SO then can consider the obtained accesses while performing the top-down
approach, potentially saving time and effort.

Some organizations often involve multiple business processes with tens of
thousands of employees and even more number of resources. In such a scenario,
often it becomes very difficult for various authorities from different departments
within the organization to understand the business processes of one another
and construct an ABAC policy. Therefore, depending exclusively on a top-down
approach is not reasonable in the majority of scenarios. Besides, such an organi-
zation is likely to have millions of possible accesses, all of which are required to
mine a meaningful ABAC policy. It is imperative that obtaining all the accesses
is difficult in practice. Conversely, it is easier for the security officer (SO) of the
organization to answer in yes or no when asked whether a given subject can
perform a given operation on a given resource in an environment condition.

In such situations, a hybrid approach may prove to be beneficial. The SO
can be consulted whether a few accesses pertaining to a certain business pro-
cess in the organization are allowed or not. This is similar to the top-down

Policy Engineering in RBAC and ABAC 49

approach. Rules can be inferred from the decisions obtained from the SO in a
bottom-up fashion. Thus, this may eventually resolve the issue of leaving out
existing accesses in case of top-down approaches. Moreover, as the SO is con-
sulted for accesses related to similar business processes, the rules formed using
the bottom-up fashion will be relevant to the business processes of the orga-
nization. Therefore, the issue of forming irrelevant rules using the bottom-up
approach will also be resolved.

4 Conclusions

In this chapter, we have reviewed policy engineering in the two most widely used
access control models - the RBAC model and the ABAC model. Role engineering
is a crucial step in the deployment of RBAC. We have discussed the different
role engineering techniques present in the current literature. More specifically,
we have concentrated on role mining, a bottom-up role engineering approach. We
have also discussed the different role mining problem variants and have presented
a detailed overview of the different role mining algorithms.

The second half of the chapter discusses the different approaches for policy
engineering for ABAC which are essential for the efficient deployment of ABAC
in any organization. The existing variants of the policy engineering problem
in literature have also been discussed. For both role mining and ABAC policy
engineering, we have given a classification of the problem variants and solution
strategies based on different criteria. Future directions of research for both role
and ABAC policy engineering have also been highlighted in the chapter.

Acknowledgements. Research reported in this publication was supported by the
National Institutes of Health under award R01GM118574. The work is also supported
in part by the National Science Foundation under grant CNS-1624503. The content is
solely the responsibility of the authors and does not necessarily represent the official
views of the agencies funding the research.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of 20th International Conference on Very Large Data
Bases (VLDB), pp. 487–499, September 1994

2. Moses, T., et al.: Extensible access control markup language (XACML) version
2.0. Oasis Standard (2005)

3. Aziz, B., Foley, S.N., Herbert, J., Swart, G.: Reconfiguring role based access control
policies using risk semantics. J. High Speed Netw. 15(3), 261–273 (2006)

4. Baumgrass, A., Strembeck, M., Rinderle-Ma, S.: Deriving role engineering artifacts
from business processes and scenario models. In: Proceedings of 16th ACM Sym-
posium on Access Control Models and Technologies (SACMAT), pp. 11–20, June
2011

5. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: a temporal role-based access con-
trol model. ACM Trans. Inf. Syst. Secur. (TISSEC) 4(3), 191–233 (2001)

50 S. Das et al.

6. Biswas, P., Sandhu, R., Krishnan, R.: Label-based access control: an ABAC model
with enumerated authorization policy. In: Conference on Data and Applications
Security and Privacy, pp. 1–12 (2016)

7. Blundo, C., Cimato, S.: A simple role mining algorithm. In: Proceedings of 25th
ACM Symposium on Applied Computing (SAC), pp. 1958–1962, March 2010

8. Blundo, C., Cimato, S.: Constrained role mining. In: Jøsang, A., Samarati, P.,
Petrocchi, M. (eds.) STM 2012. LNCS, vol. 7783, pp. 289–304. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38004-4 19

9. Chen, L., Crampton, J.: Risk-aware role-based access control. In: Meadows, C.,
Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 140–156. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29963-6 11

10. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in xml documents. In:
International Conference on Data Engineering (IDCE), pp. 41–52 (2002)

11. Colantonio, A., Pietro, R.D., Ocello, A.: A cost-driven approach to role engineering.
In: Proceedings of 23rd ACM Symposium on Applied Computing (SAC), pp. 2129–
2136, March 2008

12. Colantonio, A., Pietro, R.D., Ocello, A., Verde, N.V.: A formal framework to elicit
roles with business meaning in RBAC systems. In: Proceedings of 14th ACM Sym-
posium on Access Control Models and Technologies (SACMAT), pp. 85–94, June
2009

13. Colantonio, A., Di Pietro, R., Ocello, A., Verde, N.V.: Mining stable roles in RBAC.
In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IAICT, vol. 297, pp. 259–269. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01244-0 23

14. Colantonio, A., Di Pietro, R., Ocello, A., Verde, N.V.: Mining business-relevant
RBAC states through decomposition. In: Rannenberg, K., Varadharajan, V.,
Weber, C. (eds.) SEC 2010. IAICT, vol. 330, pp. 19–30. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15257-3 3

15. Colantonio, A., Pietro, R.D., Ocello, A., Verde, N.V.: Taming role mining complex-
ity in RBAC. Comput. Secur. 29(5), 548–564 (2010). Special Issue on Challenges
for Security and Privacy and Trust

16. Colantonio, A., Pietro, R.D., Ocello, A., Verde, N.V.: A new role mining framework
to elicit business roles and to mitigate enterprise risk. Decis. Support Syst. (DSS)
50(4), 715–731 (2011)

17. Colantonio, A., Pietro, R.D., Verde, N.V.: A business-driven decomposition
methodology for role mining. Comput. Secur. (COSE) 31(7), 844–855 (2012)

18. Coyne, E.J.: Role engineering. In: Proceedings of 1st ACM Workshop on Role-
Based Access Control (RBAC), pp. 15–16, November 1995

19. Crook, R., Ince, D., Nuseibeh, B.: Towards an analytical role modelling frame-
work for security requirements. In: Proceedings of 8th International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ), pp. 9–10,
September 2002

20. Elliott, A., Knight, S.: Start here: engineering scalable access control systems. In:
Proceedings of 21st ACM on Symposium on Access Control Models and Technolo-
gies (SACMAT), pp. 113–124, June 2016

21. Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast
exact and heuristic methods for role minimization problems. In: Proceedings of
13th ACM Symposium on Access Control Models and Technologies (SACMAT),
pp. 1–10, June 2008

22. Epstein, P., Sandhu, R.: Towards a UML based approach to role engineering. In:
Proceedings of 4th ACM Workshop on Role-Based Access Control, pp. 135–143,
October 1999

https://doi.org/10.1007/978-3-642-38004-4_19
https://doi.org/10.1007/978-3-642-29963-6_11
https://doi.org/10.1007/978-3-642-01244-0_23
https://doi.org/10.1007/978-3-642-15257-3_3

Policy Engineering in RBAC and ABAC 51

23. Fernandez, E.B., Hawkins, J.C.: Determining role rights from use cases. In: Pro-
ceedings of 2nd ACM Workshop on Role-based Access Control (RBAC), pp. 121–
125, November 1997

24. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur.
(TISSEC) 4(3), 224–274 (2001)

25. Frank, M., Buhmann, J.M., Basin, D.: Role mining with probabilistic models. ACM
Trans. Inf. Syst. Secur. (TISSEC) 15(4), 1–28 (2013)

26. Frank, M., Streich, A.P., Basin, D., Buhmann, J.M.: A probabilistic approach to
hybrid role mining. In: Proceedings of 16th ACM Conference on Computer and
Communications Security (CCS), pp. 101–111, November 2009

27. Fuchs, L., Pernul, G.: HyDRo – hybrid development of roles. In: Sekar, R., Pujari,
A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 287–302. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89862-7 24

28. Gautam, M., Jha, S., Sural, S., Vaidya, J., Atluri, V.: Constrained policy mining
in attribute based access control. In: ACM Symposium on Access Control Models
and Technologies (SACMAT), pp. 121–123 (2017)

29. Guo, Q., Vaidya, J., Atluri, V.: The role hierarchy mining problem: discovery
of optimal role hierarchies. In: Proceedings of 24th Annual Computer Security
Applications Conference (ACSAC), pp. 237–246, December 2008

30. Hamming, R.: Error detecting and error correcting codes. Bell Syst. Tech. J. 26(2),
14–160 (1950)

31. Harika, P., Nagajyothi, M., John, J.C., Sural, S., Vaidya, J., Atluri, V.: Meeting
cardinality constraints in role mining. IEEE Trans. Dependable Secur. Comput.
(TDSC) 12(1), 71–84 (2015)

32. Hingankar, M., Sural, S.: Towards role mining with restricted user-role assign-
ment. In: Proceedings of 2nd International Conference on Wireless Communica-
tion, Vehicular Technology, Information Theory and Aerospace Electronic Systems
Technology (Wireless VITAE), pp. 1–5, February 2011

33. Hu, J., Khan, K.M., Bai, Y., Zhang, Y.: Constraint-enhanced role engineering via
answer set programming. In: Proceedings of 7th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), pp. 73–74, May 2012

34. Hu, V.C., et al.: Guide to Attribute-Based Access Control (ABAC) definition and
considerations. Technical report, NIST Special Publication 800-162, January 2014.
http://nvlpubs.nist.gov/nistpubs/-specialpublications/NIST.sp.800-162.pdf

35. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations. National Institute of Standards and Technology Special Publication
(2014)

36. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. Computer
(IEEE) 48(2), 85–88 (2015)

37. Huang, C., Sun, J., Wang, X., Si, Y., Wu, D.: Preprocessing the noise in legacy user
permission assignment data for role mining - an industrial practice. In: Proceedings
of 25th IEEE International Conference on Software Maintenance (ICSM), pp. 403–
406, September 2009

38. Huang, H., Shang, F., Liu, J., Du, H.: Handling least privilege problem and role
mining in RBAC. J. Comb. Optim. 30(1), 63–86 (2015)

39. Huang, H., Shang, F., Zhang, J.: Approximation algorithms for minimizing the
number of roles and administrative assignments in RBAC. In: Proceedings of
36th Annual IEEE Computer Software and Applications Conference Workshops
(COMPSAC), pp. 427–432, July 2012

https://doi.org/10.1007/978-3-540-89862-7_24
http://nvlpubs.nist.gov/nistpubs/-specialpublications/NIST.sp.800-162.pdf

52 S. Das et al.

40. Jafarian, J.H., Takabi, H., Touati, H., Hesamifard, E., Shehab, M.: Towards a
general framework for optimal role mining: a constraint satisfaction approach. In:
Proceedings of 20th ACM Symposium on Access Control Models and Technologies
(SACMAT), pp. 211–220, June 2015

41. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31540-4 4

42. John, J.C., Sural, S., Atluri, V., Vaidya, J.S.: Role mining under role-usage cardi-
nality constraint. In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012.
IAICT, vol. 376, pp. 150–161. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30436-1 13

43. Kern, A., Kuhlmann, M., Schaad, A., Moffett, J.: Observations on the role life-
cycle in the context of enterprise security management. In: Proceedings of 7th
ACM Symposium on Access Control Models and Technologies (SACMAT), pp.
43–51, June 2002

44. Krautsevich, L., Lazouski, A., Martinelli, F., Yautsiukhin, A.: Towards policy engi-
neering for attribute-based access control. In: Bloem, R., Lipp, P. (eds.) INTRUST
2013. LNCS, vol. 8292, pp. 85–102. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-03491-1 6

45. Kuhlmann, M., Shohat, D., Schimpf, G.: Role mining - revealing business roles for
security administration using data mining technology. In: Proceedings of 8th ACM
Symposium on Access Control Models and Technologies (SACMAT), pp. 179–186,
June 2003

46. Kumar, R., Sural, S., Gupta, A.: Mining RBAC roles under cardinality constraint.
In: Proceedings of 6th International Conference on Information Systems Security
(ICISS), pp. 171–185, December 2010

47. Krautsevich, L., Lazouski, A., Martinelli, F., Yautsiukhin, A.: Towards attribute-
based access control policy engineering using risk. In: Bauer, T., Großmann, J.,
Seehusen, F., Stølen, K., Wendland, M.-F. (eds.) RISK 2013. LNCS, vol. 8418, pp.
80–90. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07076-6 6

48. Lin, D., Rao, P., Bertino, E., Lobo, J.: An approach to evaluate policy similarity.
In: ACM Symposium on Access Control Models and Technologies (SACMAT), pp.
1–10 (2007)

49. Lin, D., Rao, P., Ferrini, P., Bertino, E., Lobo, J.: A similarity measure for com-
paring XACML policies. IEEE Trans. Knowl. Data Eng. 25, 1946–1959 (2013)

50. Lu, H., Hong, Y., Yang, Y., Duan, L., Badar, N.: Towards user-oriented RBAC
model. In: Proceedings of 27th International Conference on Data and Applications
Security and Privacy (DBSec), pp. 81–96, July 2013

51. Lu, H., Hong, Y., Yang, Y., Duan, L., Badar, N.: Towards user-oriented RBAC
model. J. Comput. Secur. (JCS) 23(1), 107–129 (2015)

52. Lu, H., Vaidya, J., Atluri, V.: Optimal Boolean matrix decomposition: application
to role engineering. In: Proceedings of 24th IEEE International Conference on Data
Engineering (ICDE), pp. 297–306, April 2008

53. Lu, H., Vaidya, J., Atluri, V.: An optimization framework for role mining. J. Com-
put. Secur. (JCS) 22(1), 1–31 (2014)

54. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
mun. ACM 19, 461–471 (1976)

55. Ma, X., Li, R., Lu, Z.: Role mining based on weights. In: Proceedings of 15th ACM
Symposium on Access Control Models and Technologies (SACMAT), pp. 65–74,
June 2010

https://doi.org/10.1007/978-3-642-31540-4_4
https://doi.org/10.1007/978-3-642-30436-1_13
https://doi.org/10.1007/978-3-642-30436-1_13
https://doi.org/10.1007/978-3-319-03491-1_6
https://doi.org/10.1007/978-3-319-03491-1_6
https://doi.org/10.1007/978-3-319-07076-6_6

Policy Engineering in RBAC and ABAC 53

56. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 335–346. Springer, Heidelberg (2006). https://doi.org/10.
1007/11871637 33

57. Mitra, B., Sural, S., Atluri, V., Vaidya, J.: Toward mining of temporal roles. In:
Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 65–80. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39256-6 5

58. Mitra, B., Sural, S., Atluri, V., Vaidya, J.: The generalized temporal role mining
problem. J. Comput. Secur. 23(1), 31–58 (2015)

59. Mitra, B., Sural, S., Vaidya, J., Atluri, V.: Mining temporal roles using many-
valued concepts. Comput. Secur. 60, 79–94 (2016)

60. Mitra, B., Sural, S., Vaidya, J., Atluri, V.: Migrating from RBAC to temporal
RBAC. IET Inf. Secur. 11, 294–300 (2017)

61. Mocanu, D.C., Turkmen, F., Liotta, A.: Towards ABAC policy mining from logs
with deep learning. In: International Multiconference (2015)

62. Molloy, I., et al.: Mining roles with semantic meanings. In: Proceedings of 13th
ACM Symposium on Access Control Models and Technologies (SACMAT), pp.
21–30, June 2008

63. Molloy, I., et al.: Mining roles with multiple objectives. ACM Trans. Inf. Syst.
Secur. (TISSEC) 13(4), 36:1–36:35 (2010)

64. Molloy, I., Li, N., Qi, Y.A., Lobo, J., Dickens, L.: Mining roles with noisy data. In:
Proceedings of 15th ACM Symposium on Access Control Models and Technologies
(SACMAT), pp. 45–54, June 2010

65. Molloy, I., Park, Y., Chari, S.: Generative models for access control policies: appli-
cations to role mining over logs with attribution. In: Proceedings of 17th ACM
Symposium on Access Control Models and Technologies (SACMAT), pp. 45–56,
June 2012

66. Narouei, M., Khanpour, H., Takabi, H., Parde, N., Nielsen, R.: Towards a top-
down policy engineering framework for attribute-based access control. In: ACM
Symposium on Access Control Models and Technologies (SACMAT), pp. 103–114
(2017)

67. Narouei, M., Takabi, H.: Towards an automatic top-down role engineering app-
roach using natural language processing techniques. In: Proceedings of 20th ACM
Symposium on Access Control Models and Technologies (SACMAT), pp. 157–160,
June 2015

68. Neumann, G., Strembeck, M.: A scenario-driven role engineering process for func-
tional RBAC roles. In: Proceedings of 7th ACM Symposium on Access Control
Models and Technologies (SACMAT), pp. 33–42, June 2002

69. O’Connor, A.C., Loomis, R.J.: 2010 economic analysis of Role-Based Access Con-
trol. RTI International report for NIST (2010)

70. Roeckle, H., Schimpf, G., Weidinger, R.: Process-oriented approach for role-finding
to implement role-based security administration in a large industrial organization.
In: Proceedings of 5th ACM Workshop on Role-Based Access Control (RBAC),
pp. 103–110, July 2000

71. Saenko, I., Kotenko, I.: Genetic algorithms for role mining problem. In: Proceedings
of 19th International Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP), pp. 646–650, February 2011

72. Saenko, I., Kotenko, I.: Design and performance evaluation of improved genetic
algorithm for role mining problem. In: Proceedings of 20th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP), pp.
269–274, February 2012

https://doi.org/10.1007/11871637_33
https://doi.org/10.1007/11871637_33
https://doi.org/10.1007/978-3-642-39256-6_5

54 S. Das et al.

73. Sandhu, R.S.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
74. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-

trol models. IEEE Comput. 29(2), 38–47 (1996)
75. Sarana, P., Roy, A., Sural, S., Vaidya, J., Atluri, V.: Role mining in the presence

of separation of duty constraints. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2015.
LNCS, vol. 9478, pp. 98–117. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-26961-0 7

76. Shin, D., Ahn, G., Cho, S., Jin, S.: On modeling system-centric information for role
engineering. In: Proceedings of 8th ACM Symposium on Access Control Models
and Technologies (SACMAT), pp. 169–178, June 2003

77. Smolensky, P.: Information processing in dynamical systems: foundations of har-
mony theory. In: Parallel Distributed Processing, pp. 194–281 (1987)

78. Strembeck, M.: Scenario-driven role engineering. IEEE Secur. Priv. 8(1), 28–35
(2010)

79. Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: finding a minimal descrip-
tive set of roles. In: Proceedings of 12th ACM Symposium on Access Control Mod-
els and Technologies (SACMAT), pp. 175–184, June 2007

80. Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: a formal perspective.
ACM Trans. Inf. Syst. Secur. (TISSEC) 13(3), 27:1–27:31 (2010)

81. Vaidya, J., Atluri, V., Guo, Q., Lu, H.: Edge-RMP: minimizing administrative
assignments for role-based access control. J. Comput. Secur. (JCS) 17(2), 211–235
(2009)

82. Vaidya, J., Atluri, V., Warner, J.: Role miner: mining roles using subset enumera-
tion. In: Proceedings of 13th ACM Conference on Computer and Communications
Security (CCS), pp. 144–153, October 2006

83. Vaidya, J., Atluri, V., Warner, J., Guo, Q.: Role engineering via prioritized sub-
set enumeration. IEEE Trans. Dependable Secur. Comput. (TDSC) 7(3), 300–314
(2010)

84. Vaidya, J., Shafiq, B., Atluri, V., Lorenzi, D.: A framework for policy similarity
evaluation and migration based on change detection. Network and System Security.
LNCS, vol. 9408, pp. 191–205. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25645-0 13

85. Verde, N.V., Vaidya, J., Atluri, V., Colantonio, A.: Role engineering: from theory
to practice. In: Proceedings of 2nd ACM Conference on Data and Application
Security and Privacy (CODASPY), pp. 181–191, February 2012

86. Xu, Z., Stoller, S.D.: Algorithms for mining meaningful roles. In: Proceedings of
17th ACM Symposium on Access Control Models and Technologies (SACMAT),
pp. 57–66, June 2012

87. Xu, Z., Stoller, S.: Mining attribute-based access control policies from logs. Com-
puting Research Repository - arXiv (2014)

88. Xu, Z., Stoller, S.: Mining attribute-based access control policies. IEEE Trans.
Dependable Secur. Comput. (TDSC) 12, 533–545 (2015)

89. Zhang, D., Ramamohanarao, K., Ebringer, T.: Role engineering using graph opti-
misation. In: Proceedings of 14th ACM Symposium on Access Control Models and
Technologies (SACMAT), pp. 139–144, June 2007

90. Zhang, D., Ramamohanarao, K., Ebringer, T.: Permission set mining: discover-
ing practical and useful roles. In: Proceedings of 24th Annual Computer Security
Applications Conference (ACSAC), pp. 247–256, December 2008

91. Zhang, W., Chen, Y., Gunter, C., Liebovitz, D., Malin, B.: Evolving role definitions
through permission invocation patterns. In: Proceedings of 18th ACM Symposium
on Access Control Models and Technologies (SACMAT), pp. 37–48, June 2013

https://doi.org/10.1007/978-3-319-26961-0_7
https://doi.org/10.1007/978-3-319-26961-0_7
https://doi.org/10.1007/978-3-319-25645-0_13
https://doi.org/10.1007/978-3-319-25645-0_13

Comprehensive Security Assurance Measures
for Virtualized Server Environments

Ramaswamy Chandramouli(&)

National Institute of Standards and Technology, Gaithersburg, MD, USA
mouli@nist.gov

1 Introduction

Virtualization is the dominant technology employed in enterprise data centers and those
used for offering cloud computing services. This technology has resulted in what is
called a virtualized infrastructure. From a computing and communication point of view,
the two forms of virtualization that have made significant impacts are Server (or
Hardware) virtualization and Operating System (OS) virtualization. Server virtualiza-
tion is enabled by software called a Hypervisor—functionally, an operating system
kernel with some additional kernel modules that provides an abstraction of the hard-
ware, enabling multiple independent computing stacks called virtual machines (VMs),
each with its own OS and applications, to be run on a single physical host. While
access to CPU and memory (to ensure process isolation) are handled directly by the
hypervisor (through instruction set (CPU) virtualization and memory virtualization
respectively with or without assistance from hardware), it handles the mediation of
access to devices by calling on software modules running either in the kernel or in
dedicated VMs called Device-driver VMs. This physical host is called a virtualized
server or hypervisor host.

Operating system virtualization, on the other hand, is enabled purely by using OS
kernel-level features (e.g., namespaces, Cgroups, etc. in Linux OS distributions) that
allow for the definition of encapsulated entities called containers, each running as an
isolated process (i.e., hosting one or more applications) on the same OS kernel. The
creation, configuration, and running of containers is enabled by software called con-
tainer runtime, which makes direct Application Programming Interface (API) calls to
the OS kernel for performing these functions. Thus, we see that hypervisor software
provides abstraction of the hardware while container runtime software enables the
creation of an artifact (called a container) that provides abstraction of the OS.

The initial motivation for server virtualization—even before their deployment in
data centers used for cloud services—is better utilization of hardware resources with
the added benefit of reduced floor space and power consumption. After the advent of
cloud services, virtualized servers have become the de facto component of data centers’
infrastructure, especially for those offering Infrastructure as a Service (IaaS). This is
because a VM image, being a complete computing stack with its virtual hardware
resource definitions and OS (called Guest OS) can be offered as a basic computing unit
to the cloud service consumer (CSC) for this type of cloud service.

This is a U.S. government work and its text is not subject to copyright protection in the United States;
however, its text may be subject to foreign copyright protection 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 55–77, 2018.
https://doi.org/10.1007/978-3-030-04834-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_3

Out of the two forms of virtualization referred to above (i.e., hardware virtualiza-
tion and OS virtualization), the focus of this manuscript is on hardware virtualization
and its resulting artifact virtualized server. The data center ecosystem consists of
multiple virtualized servers with its hardware, the core virtualization software (the
hypervisor), and VMs. The ecosystem, together with the network inside each virtual-
ized server (called virtual network) and that linking with other virtualized servers,
constitutes the virtualized server environment. The goal of this manuscript is to develop
security assurance for all components of a virtualized server environment. The
approach adopted for realizing this goal is as follows:

• Analyze the functions of various components in a virtualized server environment
• Identify threats to the secure execution of those functions
• Develop the security assurance measures to counter those threats

For the hypervisor, which is the core component of the environment, there are multiple
commercial product offerings. Since the objective of this manuscript is to outline
product-agnostic security assurance measures, the approach adopted is to identify a set
of baseline or canonical functions of the hypervisor that will form the basis for threat
identification.

The overall organization of this manuscript is as follows. In Sect. 2, a brief tech-
nology overview of components in a virtualized server environment is provided. The
hardware functions in a virtualized server are briefly described in Sect. 3. Section 4
identifies and elaborates on the baseline functions of the hypervisor and the threats to
those functions. The threat to the secure execution of VM-resident programs, such as
Guest OS and applications, form the subject matter for Sect. 5. Section 6 describes
typical virtual network configurations in a virtualized server and the protections
required for those configurations. The security assurance measures for hypervisor, VM,
and virtual networks are developed in Sects. 7, 8, and 9, respectively. The security
assurance for booting a virtualized server platform is described in Sect. 10. Section 11
provides the summary and conclusions.

2 Virtualized Server Environment – a Technology Overview

From the perspective of this manuscript, a virtualized server environment consists of
the following components:

• A physical host, called a virtualized server or hypervisor host, with server virtu-
alization software (hypervisor and its associated modules), along with multiple
computing stacks (i.e., Virtual Machines or VMs) running on it. The hypervisor
host has hardware extensions to assist virtualization.

• A virtual network, or software-defined network, inside the virtualized server,
consisting of software-defined network devices. This network is configured with
network segmentation techniques such as Virtual Local Area Network (VLAN) and
overlay-based network (e.g., VXLAN) that span multiple virtualized servers and
enable logical segmentation of the VMs distributed throughout the data center.

56 R. Chandramouli

A Virtualized server can have two different types of hypervisors: one that can be
mounted directly on the hardware (called bare metal) and the other that requires an OS
(called host OS) for its installation. These two types of hypervisors are also called Type
1 and Type 2 hypervisor, respectively. The VMs, also called Guests, host and run the
application programs with the help of an OS (called the Guest OS). The virtualized
server platforms, consisting of Type 1 and Type 2 hypervisors, are shown in Fig. 1.

In addition to classification based on the platform on which it is mounted (bare
metal or host OS), hypervisors can be classified based on the type of virtualization they
provide for devices. In one approach, called Full Virtualization, the hypervisor will
expose the interface of a well-known hardware device that is available in the real world
to the VM, and it will completely emulate the behavior of that device. Emulation
allows the programs running in VMs to use the guest OS drivers that were designed to
interact with the emulated device without installing any special driver or tool specified
by the hypervisor vendor. In another approach called para-virtualization, the hypervisor
provides an interface of an artificial device to the guest that has no corresponding
hardware device. This artificial device is a software-only device that presents a light-
weight interface designed and optimized to work in virtual environments. However, the
performance improvement made possible with para-virtualization requires that the
guest OS and device drivers be modified to communicate directly with the hypervisor
through a special interface called hypercall interface.

The hardware extensions in a hypervisor host assist virtualization through functions
such as instruction handling and memory management. Hardware features, such as
CPU/Instruction Set virtualization and memory virtualization, respectively, enable
these functions and are described in detail in Sect. 3.

All Physical hosts or servers are connected to the data center network (or become
nodes of the data center network) using a physical device called a Network Interface
Card (NIC). An independent computing stack such as a VM requires a similar con-
nection to the networking infrastructure of the data center. This is enabled by an artifact

Fig. 1. Virtualized server platforms with type 1 and type 2 hypervisor

Comprehensive Security Assurance Measures 57

called a Virtual NIC (vNIC), which is the software defined analog of the physical NIC
(pNIC). In addition, since there are multiple VMs or containers inside a single physical
host, there is the need to provide interconnection among the multiple VMs within it.
This requirement necessitates the creation of a software-defined network within a
physical host (called virtual network) with switching/bridging functions performed by
software-defined entities (called virtual switches/virtual bridges), which are software
analogs of the corresponding physical network devices.

3 Virtualized Server Hardware Functions

As already stated, the hardware of a virtualized server provides two features to assist
the virtualization function of the hypervisor: Instruction Set Virtualization and Memory
Virtualization. These hardware-based functions provided by chip vendors are mature
technologies that have been utilized for more than a decade and whose known vul-
nerabilities have already been addressed. Therefore, no threats need to be considered
for these functions.

Instruction Set Virtualization: The processor architecture of the hardware is generally
designed to operate OS instructions at a higher privilege level than the application
instructions. However, in a virtualized server, the guest OS instructions cannot be
executed at the highest privilege level (e.g., Ring 0 in x86 architectures) since the
hypervisor that mediates the access of various VMs to hardware resources of the
virtualized server must operate at a higher privilege level than any guest OS. To
facilitate this, hardware architectures (e.g., Intel, AMD1) provide two modes of oper-
ation (host and guest) for the processor, each with four hierarchical privilege levels
(Ring 0 thru Ring 3). Additionally, among the two modes, the host or root mode has a
higher privilege for executing CPU instructions than the guest or non-root mode, and it
is in the former mode that hypervisor instructions are executed. The guest mode is used
for executing instructions from guest OSs and VM-based applications.

Contribution to Hypervisor Security Assurance Verification: By running the hypervisor
in root mode and guest OSs in non-root mode at privilege or ring level 0, the hypervisor
is guaranteed safety from at least any instruction set-type attacks by any Guest OS. This
safety is ensured by allowing the hardware to trap privileged instructions from a guest
OS to run in non-root mode. Additionally, when the hypervisor does not have to perform
additional functions (e.g., translating sensitive instructions using techniques such as
binary translation) for handling the instructions, the code executing with privileges is
reduced in the hypervisor, making the trusted computing base (TCB) smaller and
enabling better assurance verification.

1 Any mention of commercial products or organizations is for informational purposes only; it is not
intended to imply recommendation or endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the products identified are necessarily the best available
for the purpose.
.

58 R. Chandramouli

Memory Virtualization: Hardware-assisted memory virtualization is provided using
two levels of page tables (Guest page table and Host page table). The guest page table,
maintained by a guest OS, translates from guest virtual to guest physical addresses,
whereas the host page table translates from guest physical to host physical addresses.

Contribution to Hypervisor Security Assurance Verification: The availability of a
hardware-based host page table eliminates the need for the hypervisor to generate and
maintain shadow page tables, thus providing the same increased security assurance
(i.e., smaller TCB) as Instruction Set Virtualization.

4 Hypervisor Baseline Functions And Threats

The hypervisor is the core component in the virtualized server platform, and its baseline
functions are as follows [1]:

• HY-BF1: VM Process Isolation – The hypervisor, in addition to its software-based
tasks, leverages the hardware extension features in two ways to enforce process
isolation. First, it runs in higher privilege mode (i.e., host mode) and uses the
special instruction vmrun to switch the CPU to lower privilege mode (i.e., guest
mode) for VMs to begin execution. Second, before VMs start running, it creates a
data structure called Virtual Machine Control Block (VMCB) for recording the
execution state of VMs, and it leverages the memory management features (e.g.,
two layered page tables) of the hardware to enforce separation of memory address
spaces for VMs.

• HY-BF2: Devices Mediation & Access Control – Mediates access to all devices
(e.g., Storage, Network, etc.)

• HY-BF3: Execution of Guest Instructions through Hypercall Interface – This
functionality is only applicable to para-virtualized hypervisors, which handle certain
device access instructions from guests directly through its hypercall interface rather
than through the combination of vmexit and host mode transition events.

• HY-BF4: VM Lifecycle Management – Performs all functions including creation
and management of VM images, control of VM states (Start, Pause, Stop, etc.), VM
migration, creation of snapshots, VM monitoring, and policy enforcement.

• HY-BF5: Management of Hypervisor – Setting various configuration parameters,
such as virtual CPUs, virtual memory size etc., for VMs, as well as those pertaining
to the Virtual Network inside the hypervisor; also includes tasks such as updates
and application of patches to hypervisor modules.

To execute the above baseline functions, different software modules are needed,
which makes the hypervisor a non-monolithic software. The software module that
carries out each baseline function along with the location in the overall virtualized
server platform architecture where each resides is given in Table 1 below.

Comprehensive Security Assurance Measures 59

The tasks involved in implementing each of the above baseline functions are
described in more detail in the following subsections and accompanied by statements of
potential threats to secure execution of these tasks. However, the virtual network
configuration tasks (in HY-BF5), including the set-up for VM network traffic moni-
toring (in HY-BF4), are discussed under a separate section (Sect. 6) due to their critical
roles in the security of the entire virtualized server environment.

4.1 Potential Threats to VM Process Isolation (HY-BF1)

The threats to VM process isolation are the results of two primary causes [1]:
Breach of Process Isolation – VM Escape: Major threats to any hypervisor come from
malicious VM-resident programs. These programs can subvert the isolation function
provided by the Virtual Machine Monitor (VMM)/hypervisor to hardware resources
such as memory pages. In other words, these programs can, under some conditions,
access areas of memory belonging to the hypervisor or other VMs or devices (e.g.,
memory mapped devices) that they are not authorized to access. Examples of such
attacks include some crafted applications in VM executing arbitrary code on the host
OS [2] or VM programs accessing areas of memory that are not allocated to them,
thereby causing corruption or information leakage [3]. Extreme attack scenarios may
include VMs with malicious programs taking control of the hypervisor to install
rootkits or attack other VMs on the same virtualized server. These threats are mainly
due to code flaws in the hypervisor.

Denial-of-Service to some VMs: Hypervisor offerings come with sophisticated CPU
and memory allocation options. Improper use of these configuration options may result

Table 1. Hypervisor baseline functions & deployment locations

Baseline function Component (software
module)

Location

VM Process Isolation
(HY-BF1)

Hypervisor Kernel Either an OS kernel (along with a
kernel module) itself or a component
installed on a full-fledged OS (Host
OS)

Devices Mediation &
Access Control (HY-
BF2)

Device emulator or
Device driver

Either in a dedicated VM (called
Device-driver VM) or in the
hypervisor kernel itself

Execution of Guest
Instructions through
hypercall interface
(HY-BF3)

Hypervisor Kernel Pertain to only para-virtualized
hypervisors and handled by hypercall
interfaces in that type of hypervisor

VM Lifecycle
Management (HY-BF4)

A management daemon Installed on top of the hypervisor
kernel but runs in unprivileged mode

Management of
Hypervisor (HY-BF5)

A set of tools with CLI
(command line
interface) or a GUI

A console or shell running on top of
the hypervisor kernel

60 R. Chandramouli

in some VMs hogging resources, resulting in denial-of-service or the inability to meet
the critical availability requirement for some VMs.

4.2 Potential Threats to Devices Mediation (HY-BF2)

The applications executing in VMs need to access devices such as video output,
network (for communication), or block (storage) devices. There are three common
approaches to handling devices by virtualized servers: (a) Passthrough, (b) Emulation,
and (c) Para-virtualization [4]. Out of these, the passthrough approach provides
exclusive access to a device for a VM. Since this is not a scalable approach, it is
adopted for VMs running specialized applications. The para-virtualization approach
was generally designed for enhancing performance for accessing devices. In this
approach, the hypervisor provides to the guest an interface of an artificial device that
has no corresponding hardware counterpart. Therefore, it requires that the hypervisor
and guest agree on an interface that takes into consideration the features of the specific
hypervisor-guest combination. This naturally means that a generic guest OS device
driver cannot be used, and a specially modified device driver is needed to be run in the
guest. Calls from these special device drivers are directly handled by the hypervisor
through its hypercall interface instead of the usual route of a driver call causing a
vmexit. Because of the need to use customized device drivers for each environment, the
difficulty of providing security guarantees to them (e.g., certification), and the fact that
hardware extensions have substantially mitigated performance penalties in full virtu-
alization, para-virtualization has limited deployments. This leaves the emulation
approach to handling devices using full virtualization as the most commonly deployed
technique in many production environments.

The code for device emulation resides either in the hypervisor kernel or in a
dedicated VM. Any I/O call from a guest VM application is intercepted by the
hypervisor kernel and forwarded to this code since guest VMs cannot typically access
the physical devices directly unless they are assigned to it. This code emulates devices,
mediates access to them, and multiplexes the actual devices since each permitted VM
has full access to the underlying physical device.

The main threats with respect to devices mediation are: (a) Unauthorized access to
memory regions by Direct Memory Access (DMA) capable devices due to faulty
device driver code, (b) Unauthorized access to devices by VMs, and (c) denial-of-
service due to monopolization of I/O bandwidth.

4.3 Potential Threats to the Execution of Instructions by Hypercall
Interface (HY-BF3)

In hypervisors implementing para-virtualization, certain guest instructions (e.g.,
accessing devices by accessing memory areas assigned to memory-mapped devices)
cause a trap directly into the hypervisor instead of through channels enabled by vmexit
instruction. This mechanism is called a hypercall, and the portion of the hypervisor
dealing with such instructions is called a hypercall interface. Lack of proper validation
of those instructions (e.g., not checking the scope for an instruction that requests a full
dump of a VM’s Virtual Machine Control Block, or not checking input values) would

Comprehensive Security Assurance Measures 61

cause the entire virtualized server to crash. This is a hypervisor design vulnerability that
must be addressed through proper validation and testing of the relevant hypervisor code
rather than through any assurance measures in deployment.

4.4 Potential Threats Originating from VM Lifecycle Management
(HY-BF4)

In most instances, the lifecycle management operations on VMs are performed using
commands submitted through a GUI or a scripting environment, both of which are
supported by a management daemon at the back-end. This is a standard architectural
paradigm for any management software. Vulnerabilities and potential threats are not
virtualized server environment-specific and are therefore outside of the scope of this
manuscript. Instead, the threat analysis in this context is to identify some VM lifecycle
management operations that might be sources of potential threats for other baseline
functions. This analysis reveals the following:

• Retrieving and deploying VM images that do not conform to the enterprise security
profile in the image library, including those with outdated guest OS versions and
patches, could result in a potential breach of process isolation described in Sect. 4.1.
Similar potential threats exist if VMs are instantiated from snapshots taken at a
considerable time in the past.

• Migrating VMs from one virtualized server to another (a process called VM
Migration) involves transferring a running VM’s memory content and processor
state. The execution of this operation without necessary safeguards such as
encryption of migration traffic etc., could result in the operation of a compromised
VM in the destination platform, thereby affecting all three aspects of security—
confidentiality, integrity and availability.

4.5 Potential Threats to Management of Hypervisor (HY-BF5)

The tasks under this function relate to the overall administration of a hypervisor host
and software, and they are usually performed through user-friendly web interfaces or
network-facing virtual consoles. Threats to the secure execution of these tasks are
common in any remote administration and are therefore not addressed in this manu-
script. However, the core requirement in a data center with virtualized servers is to have
a uniform configuration for entire groups of hypervisors based on different criteria (e.g.,
the sensitivity of applications, line of business, clients in cloud service environments,
etc.). Another requirement is to provide a safe network path for management traffic
(packets containing administrative commands), considering that a portion of this net-
work is a software-defined virtual network.

62 R. Chandramouli

5 Threats To The Secure Execution Of VM-Resident
Programs

The Guest OS and applications are the VM-resident programs that must execute
securely in the presence of a higher privileged hypervisor software executing on the
same hardware platform. The hypervisor is responsible for process isolation between
VMs and the safe execution of each individual VM. However, a malicious or com-
promised hypervisor can be a source of threat to VMs for several reasons. First, the data
structure that carries the execution state of VMs, called the Virtual Machine Control
Block (VMCB), is created and handled by the hypervisor. Second, the hypervisor
controls the nested page tables, which are really a pair of tables—one mapping from
guest virtual addresses to guest physical addresses and the other mapping from guest
physical addresses to host physical addresses. Thus, we see that a hypervisor can read
and write the entire guest memory. By monitoring the execution state of a VM, it can
also subject it to memory replay attacks [4].

The predominant use case for virtualized server platform is in the Infrastructure as a
Service (IAAS) cloud service. In this service, the cloud service provider (CSP) pro-
vides the hypervisor while the guest VMs host and run the cloud service customers’
(CSC) programs. A malicious hypervisor thus has the potential to affect the integrity
and confidentiality of CSC’s resources such as data and applications. Since a single
cloud data center often hosts multiple guest VMs from different CSCs, data belonging
to several VM owners may be breached by a single hypervisor. Therefore, the
hypervisor should be treated as untrusted software, and VMs in a cloud data center
need to be protected from the hypervisor.

The threats to the secure functioning of guest OS and VM-resident applications are
by and large not unique to virtualized server platforms except for the fact that the VM
executes as a lower privileged software, and its execution flow is controlled by the
higher privileged hypervisor software.

6 Protection For Virtual Network Configurations

To link the VMs inside a hypervisor host to each other and to the outside (physical)
enterprise network, the hypervisor can define an entirely software-defined network
called a virtual network. The components of this virtual network are: (a) one or more
software-defined network interface cards, called virtual network interface cards
(vNICs), inside each VM and (b) multiple software-defined switches, called virtual
switches, operating inside the kernel of the hypervisor. The virtual switches have
multiple ports, just like physical switches. One set of ports is used for connecting to the
vNICs in VMs. The other set of ports, called uplink ports, are used for connecting the
virtual switches to the physical network interface cards (pNICs) of the hypervisor host.
Thus, a communication pathway is established for connecting VMs resident inside the
same hypervisor host as well as to those resident in other hypervisor hosts. This then
enables applications and guest OS instances running inside VMs to interact with

Comprehensive Security Assurance Measures 63

computing, network, and storage elements on the data center’s physical network. The
network traffic flowing inside a virtual network can broadly be classified as [5].

• Management traffic: commands for hypervisor administration and VM lifecycle
operations

• Infrastructure traffic: network packets generated during VM migration
• Inter-VM traffic: communication between applications or application tiers running

in VMs

Thus, the entire network infrastructure in a virtualized server environment consists
of a virtual network inside each hypervisor host and the physical datacenter network
linking the various hosts. The threats to this network infrastructure are no different than
those encountered in environments that consist of only physical (non-virtualized) hosts.
However, defining the virtual network inside each VM entirely by software requires a
different set of configurations (virtualized server-specific) and solutions (virtual fire-
walls) for ensuring secure communication.

There are four common virtual network configuration areas that have a bearing on
the security of the network infrastructure in a virtualized server environment [5].

• Network segmentation
• Network path redundancy
• Firewall deployment and configuration
• VM traffic monitoring

A brief overview of the components and techniques involved in the above four
configuration areas is necessary to arrive at security assurances associated with their
deployment.
Network segmentation: This is a fundamental network configuration in any medium to
large data center used for supporting enterprise IT resources or used for offering cloud
computing services. This is due to the need for logical separation of applications/VMs
with different sensitivity levels or belonging to different organizational entities (de-
partments) or clients (as in cloud service environments). The two techniques commonly
found in virtualized server environments are Virtual Local Area Network (VLAN) and
Overlay-based virtual networking [5].

VLAN is a network segmentation technique that creates broadcast domains within a
large data center network. In a data center with all physical (non-virtualized) hosts, a
VLAN is defined by assigning a unique ID called a VLAN tag to one or more ports of a
physical switch. All hosts connected to those ports then become members of that
VLAN ID, creating a logical grouping of servers (hosts), regardless of their physical
locations, in the large flat network of a data center. The concept of VLANs can be
extended and implemented in a data center with virtualized hosts using virtual switches
with ports or port groups that support VLAN tagging and processing. In other words,
VLAN IDs are assigned to ports of a virtual switch inside a hypervisor kernel, and
VMs are assigned to appropriate ports based on their VLAN membership. These
VLAN-capable virtual switches can perform VLAN tagging of all packets going out of
a VM (with the tag depending upon which port it has received the packet from) and can
route an incoming packet with a specific VLAN tag to the appropriate VM by sending

64 R. Chandramouli

it through a port with a VLAN ID assignment equal to the VLAN tag of the packet and
with a matching media access control (MAC) address. An example of a VLAN con-
figuration inside a virtualized server is shown in Fig. 2.

This logical segmentation of traffic inside the virtualized host is then extended to
the physical network of the data center by configuring link aggregation (to carry traffic
of multiple VLANs) on links between the pNICs of these virtualized hosts and the
physical switches in the data center and configuring the receiving ports on the physical
switch as trunking ports (capable of receiving and sending traffic belonging to multiple
VLANs). A given VLAN ID can be assigned to ports of virtual switches located in
multiple virtualized hosts. Thus, the combined VLAN configuration, consisting of the
configuration inside the virtualized host (assigning VLAN IDs to ports of virtual
switches or vNICs of VMs) and the configuration outside the virtualized host (link
aggregation and port trunking in physical switches), provides a pathway for VLANs
defined in the physical network to be carried into a virtualized host (and vice versa).
This provides the ability to isolate traffic among VMs distributed throughout the data
center using logical segments, and thus a means of providing confidentiality and
integrity protection to the applications running inside those VMs.

In Overlay-based networking, isolation is realized by encapsulating an Ethernet
frame received from a VM by a hypervisor kernel module called the Overlay module.
In an example of the encapsulation scheme (or overlay scheme) called VXLAN, the
Ethernet frame received from a VM, which contains the MAC address of the desti-
nation VM, is encapsulated in two stages: first, with the 24-bit VXLAN ID (virtual
Layer 2 (L2) segment) to which the sending/receiving VM belongs, and second, with
the source and destination IP addresses of the VXLAN tunnel endpoints (VTEP),
which are kernel modules residing in the hypervisors of the sending and receiving
VMs, respectively. VXLAN encapsulation thus enables the creation of a virtual Layer 2

Fig. 2. Virtual local area network (VLAN) configuration in a virtualized server

Comprehensive Security Assurance Measures 65

segment that can span not only different virtualized hosts but also IP subnets within the
data center. A Schematic diagram of VXLAN components is shown in Fig. 3.

A particular tenant can be assigned two or more VXLAN segments (or IDs).
VXLAN-based network segmentation can be configured to provide isolation among
resources of multiple tenants of a cloud data center. The tenant can make use of multiple
VXLAN segments by assigning VMs hosting each tier (web, application, or database) to
the same or different VXLAN segments. If VMs belonging to a client are in different
VXLAN segments, selective connectivity can be established among those VXLAN
segments belonging to the same tenant through suitable firewall configurations, while
communication between VXLAN segments belonging to different tenants can be
prohibited.

Network path redundancy: Hypervisors offer a configuration feature called network
interface card (NIC) teaming, which allows administrators to combine multiple pNICs
into a NIC team for NIC failover capabilities in a virtualized host. The members of the
NIC team are connected to the different uplink ports of the same virtual switch.
Failover capability requires at least two pNICs in the NIC team. One of them can be
configured as “active” and the other as “standby.” If an active pNIC fails or traffic fails
to flow through it, the traffic will start flowing (or be routed) through the standby pNIC,
thus maintaining continuity of network traffic flow from all VMs connected to that
virtual switch. This type of configuration is also called active-passive NIC bonding.

Firewall Deployment and Configuration: Software-defined firewalls, called virtual
firewalls, are generally the ones that are deployed on virtualized server platforms. There
are two kinds of virtual firewalls—subnet-level virtual firewalls and kernel-level virtual
firewalls. Subnet-level firewalls run in a dedicated VM, which is usually configured
with multiple vNICs. Sometimes they come packaged as a virtual security appliance.
Each vNIC in a subnet-level firewall is connected to a different subnet or security zone

Fig. 3. Virtual network segmentation using overlays (VXLAN)

66 R. Chandramouli

of the virtual network. Kernel-level firewalls, as the name denotes, are run as loadable
(hypervisor) kernel modules and use the hypervisor’s introspection application pro-
gramming interface (API) to intercept every packet coming into and out of an indi-
vidual VM.

VM Monitoring: Firewalls only ensure that inter-VM traffic conforms to organizational
information flow and security rules. However, to identify any malicious or harmful
traffic coming into or flowing out of VMs and to generate alerts or take preventive
action, it is necessary to set up traffic monitoring capabilities to monitor all
incoming/outgoing traffic of a VM. This requires functionality to send copies of those
packets to a network analyzer application. The purpose of a network analyzer appli-
cation is to perform security analysis, network diagnostics, and network performance
metrics generation. One of the techniques by which the above referred operation can be
implemented is called port mirroring where the packets (or copies of the packets)
flowing into and out of the port of a virtual switch (to which the monitored VM is
connected and is called the source port) is forwarded to another port (called the des-
tination port) which may be another virtual port or an uplink port. The entity holding
the network analyzer application is connected to the destination port.

7 Security Assurance For Hypervisor Baseline Functions

7.1 Security Assurance for VM Process Isolation (HY-BF1)

To ensure the isolation of processes running in VMs, the following requirements must
be met [1]:

(a) The privileged commands or instructions from a Guest OS to the host processor
must be mediated such that the core function of the VMM/hypervisor as the
controller of virtualized resources is maintained.

(b) The integrity of the memory management function of the hypervisor host must be
protected against attacks such as buffer overflows and illegal code execution,
especially in the presence of translation tables (e.g., host page table) that are
needed for managing memory access by multiple VMs.

(c) Memory allocation algorithms must ensure that payloads in all VMs are able to
perform their functions.

(d) CPU/GPU allocation algorithms must ensure that payloads in all VMs are able to
perform their functions.

The requirements (a) and (b) are to be met by the hypervisor code by proper
implementation of the data structures, such as Virtual Machine Control Block (VMCB)
and second level page tables, that translate guest physical address to host physical
address. In addition, hardware extension features, such as Instruction Set Virtual-
ization and Memory Virtualization (described in Sect. 3), provide isolated execution
environments for guests and hypervisor instructions as well as secure memory man-
agement through hardware page tables and should be leveraged by the hypervisor. The
requirements (c) and (d) are meant to ensure the availability of application services

Comprehensive Security Assurance Measures 67

running in VMs. The enablers are some features in memory allocation and CPU
allocation algorithms and the assurance requirements they should meet are given
below:

(1) The hypervisor should have configuration options to specify a guaranteed phys-
ical RAM for every VM that requires it as well as a limit to this value and a
priority value for obtaining the required RAM resource in situations of contention
among multiple VMs. Further, the over-commit feature that enables the total
configured memory for all VMs to exceed the host physical RAM should be
disabled by default.

(2) The hypervisor should provide features to specify a lower and upper bound for
CPU clock cycles needed for every deployed VM as well as a feature to specify a
priority score for each VM to facilitate scheduling in situations of contention for
CPU resources from multiple VMs.

7.2 Security Assurance for Devices Mediation (HY-BF2)

Among all three approaches for handling devices in virtualized servers (Passthrough,
Emulation, and Para-virtualization), emulation presents the greatest advantage in that it
enables running VMs using the drivers that are available for that guest OS, without
installing any special driver or tool provided by the hypervisor vendor. The advantage
of using native OS drivers is that their vulnerabilities have been well-analyzed, pub-
lished, and remediated.

The first three assurance requirements for secure device access in virtualized ser-
vers [1] pertain to emulation while the last requirement pertains to the passthrough
scenario:

(1) All device drivers installed as part of a hypervisor platform should be configured
to run as lower-privileged level process (guest mode) rather than the privilege
level of the hypervisor (host mode). If device drivers are run on the same privilege
level as the hypervisor, they should be designed, developed and tested using
formal verification to guarantee that the drivers cannot compromise the security
of hypervisor execution. This recommendation applies to any code running at the
same privilege level as the hypervisor in the kernel (e.g., VMM).

(2) It should be possible to set up an Access Control List (ACL) to restrict the access
of each VM process to only the devices assigned to that VM. To enable this, the
hypervisor configuration should support a feature to tag VMs and/or have a
feature to specify a whitelist, or list of allowable devices, for each VM.

(3) It should be possible to set resource limits for network bandwidth and I/O
bandwidth (e.g., disk read/write speeds) for each VM to prevent denial-of-service
(DOS) attacks. Additionally, the proper use of resource limits localizes the impact
of a DOS to the VM or the cluster for which the resource limit is defined.

(4) Passthrough scenarios generally involve DMA capable devices. A DMA capable
device is one that has the capability to read and write directly to and from main
memory, allowing the CPU to perform other tasks in parallel. The security assur-
ance required against unauthorized access from DMA capable devices, is that they
should only be installed on hardware platforms that have the Input-Output Memory

68 R. Chandramouli

Management Unit (IOMMU) feature that can be configured to confine access by
such devices to only the assigned memory regions.

7.3 Security Assurance for VM Lifecycle Management Functions
(HY-BF4)

In Sect. 4.4, two VM lifecycle management operations were identified as potential
sources for threats to other baseline functions: VM image management and VM
migration. In large virtualized infrastructures, the installed base, consisting of a large
number of operational VMs, may span different jurisdictions (departments, lines of
business, or clients in infrastructures used for cloud services). For performing lifecycle
management operations on these VMs, fine-grained administrative permissions are
required to provide security guarantees such as least privilege. The security assurances
required for these operations (VM image management, VM migration, and fine-grained
administrative permissions) are described below.

7.3.1 VM Image Management
Since VM-based software (e.g., Guest OS, Middleware, and Applications) shares
physical memory of the virtualized host with hypervisor software, it is no surprise that
a VM is the biggest source of all attacks directed at the hypervisor. In operational
virtualized environments, VMs are rarely created from scratch, but rather from VM
Images. VM Images are templates used for creating running versions of VMs. An
organization may have its own criteria for classifying the different VM Images it uses in
its VM Library. Some commonly used criteria include processor load (VM used for
compute-intensive applications); memory load (VM used for memory-intensive
applications such as Database processing); and application sensitivity (VM running
mission-critical applications utilizing mission-critical data). For each VM image type,
the following practices must be followed to provide the necessary security assurance.

(1) Security profiles must be defined for VMs of all types, and VM Images that do not
conform to the profile should not be stored in the VM Image server or library.
Images in the VM Image library should be periodically scanned for outdated
guest OS versions and patches, especially in situations where new OS version
releases and/or patches are frequent.

(2) Every VM Image stored in the image library should have a digital signature
attached to it as a mark of authenticity and integrity, signed using trustworthy,
robust cryptographic keys.

(3) Permissions for checking into and checking out images from the VM Image
library should be enforced through a robust access control mechanism and
limited to an authorized set of administrators. In the absence of an access control
mechanism, VM image files should be stored in encrypted devices that can only be
opened or closed by a limited set of authorized administrators with passphrases of
sufficient complexity.

(4) Access to the server storing VM images should always be through a secure
protocol such as Transport Layer Security (TLS).

Comprehensive Security Assurance Measures 69

7.3.2 VM Live Migration
Live migration is a functionality present in all hypervisors that enables a VM to be
migrated or moved from one virtualized host to another while the guest OS and
applications on it are still running. This functionality provides key benefits such as fault
tolerance, load balancing, host maintenance, upgrades, and patching. In live migration,
the state of the VM on the source host must be replicated on the destination host. This
requires migrating memory content, processor state, storage (unless the two hosts share
a common storage), and network state.

The most common memory migration technique adopted in most hypervisors is
called pre-copy. In this approach, in the first phase, memory pages belonging to the
VM are transferred to the destination host while the VM continues to run on the source
host [6]. In the second phase, memory pages modified during migration are sent again
to the destination to ensure memory consistency. During the latter phase, the exact state
of all the processor registers currently operating on the VM are also transferred, and the
migrating VM is suspended on the source host. Processor registers at the destination
host are modified to replicate the state at the source host, and the newly migrated VM
resumes its operation. Storage migration is provided by a feature that allows admins to
move a VM’s file system from one storage location to another without downtime. This
storage migration can take place even in situations where there is no VM migration. For
example, a VM may continue to run on the host server while the files that make up the
VM are moved among storage arrays or Logical Unit Numbers (LUNs).

In the process described above, the memory and processor-state migration functions
are inherent aspects of hypervisor design. The storage migration function is an integral
part of storage management and is applicable to both virtualized and non-virtualized
infrastructures. The network state is maintained after a VM migration because each VM
carries its own unique MAC address, and the migration process places some restric-
tions on the migration target (e.g., the source and target host should be on the same
VLAN). Hence, from a security protection point of view, the only aspects to consider
are proper authentication and a secure network path for the migration process [1].

During VM live migration, a secure authentication protocol must be employed; the
credentials of the administrator performing the migration are passed only to the
destination host; the migration of memory content and processor state takes place over
a secure network connection; and a dedicated virtual network segment is used in both
source and destination hosts for carrying this traffic.

7.3.3 Fine-Grained Administrative Privileges for VM Management
The ability to assign fine-grained administrative permissions for the virtualized
infrastructure enables the establishment of different administrative models and asso-
ciated delegations [1].

The access control solution for VM administration should have a granular capa-
bility, both at the permission assignment level and the object level (i.e., the specifi-
cation of the target of the permission can be a single VM or any logical grouping of
VMs based on function or location). In addition, the ability to deny permission to some
specific objects within a VM group (e.g., VMs running workloads of a designated
sensitivity level) despite having access permission to the VM group should exist.

70 R. Chandramouli

7.4 Security Assurance for Management of Hypervisor (HY-BF5)

Secure operation of administrative functions is critical for any server class software,
and hypervisor is no exception to this. The outcome is a secure configuration that can
provide the necessary protections against security violations. In the case of a hyper-
visor, impact of insecure configuration can be more severe than in many server soft-
ware instances since the compromise of a hypervisor can result in the compromise of
many VMs operating on top of it. While the composition of the configuration
parameters depends upon the design features of a hypervisor offering, the latitude in
choosing the values for each individual parameter results in different configuration
options. Many configuration options relate functional features and performance.
However, there are some options that have a direct impact on the secure execution of
the hypervisor, and it is those configuration options that are discussed in this
manuscript.

The following are some security practices that are generic for any server class
software. Although applicable to the hypervisor, these are not addressed in this
manuscript:

(a) Control of administrative accounts on the hypervisor host itself and least privilege
assignment for different administrators

(b) Patch management for hypervisor software and host OS
(c) Communicating with the hypervisor through a secure protocol such as TLS or

Secure Shell (SSH)

7.4.1 Centralized Administration
The administration of a hypervisor and hypervisor host can be performed in two ways:

• Having administrative accounts set up in each hypervisor host
• Centralized administration of all hypervisors and hypervisor hosts through enter-

prise virtualization management software (EVMS).

Centralized management of all hypervisor platforms in the enterprise through
enterprise virtualization management software (EVMS) is preferable since security
profiles for various hypervisor groups in the enterprise can be defined and easily
enforced through EVMS. For any IT data center to operate efficiently, it is necessary to
implement load balancing and fault tolerance measures, which can be realized by
defining hypervisor clusters. Creation, assignment of application workloads, and
management of clusters can be performed only with a centralized management soft-
ware, making the deployment and usage of an enterprise virtualization management a
critical necessity. Hence a security assurance framework for hypervisor administration
is as follows:

The administration of all hypervisor installations in the enterprise should be
performed centrally using an EVMS. Enterprise gold-standard hypervisor configura-
tions for different types of workloads and clusters must be managed and enforced
through EVMS. The gold-standard configurations should, at minimum, cover CPU,
Memory, Storage, Network bandwidth, and Host OS hardening, if required.

Comprehensive Security Assurance Measures 71

7.4.2 Securing the Management Network
Management of the hypervisor and its host is performed through administrative
commands sent through a management console or command line interface (CLI). This
capability can be provided by a dedicated management VM or by a hypervisor kernel
module. Part of the network communication path that carries this management traffic is
the software-defined virtual network inside the hypervisor host and it is necessary to
ensure that a dedicated path is allocated for this. A commonly adopted approach is to
allocate a dedicated physical network interface card (pNIC) for handling management
traffic, and, if that is not feasible, a virtual network segment (e.g., VLAN) must be
assigned exclusively for it.

Protection for hypervisor host and software administration functions should be
ensured by allocating a dedicated physical NIC or, if that is not feasible, placing the
management interface of the hypervisor in a dedicated virtual network segment (e.g.,
VLAN) and enforcing traffic controls using a firewall (e.g., designating the subnets in
the enterprise network from which incoming traffic into the management interface is
allowed).

8 Security Assurance For Execution Of VM-Resident
Programs

Providing protected execution for the lower-privileged software is an evolving hard-
ware function and there are not enough threat data available for these functions.
However, assurance requirements for this function can still be identified based on the
execution model for VMs and hypervisor instructions in the virtualized server platform.

There are two processor features available to reduce the impact of a malicious,
higher privileged software such as the hypervisor on the confidentiality and integrity of
lower privileged software. They are:

• A secure region of memory called enclave can be created where the resource-owner
can designate the security sensitive code in VMs to run. Code running in the
enclave cannot be tampered with by the hypervisor or the host OS (in type 2
hypervisor). This feature is implemented in Intel’s Software Guard Extension
(SGX) [7].

• Encrypt the entire VM’s memory so that the hypervisor cannot inspect its data. This
is the approach adopted in AMD’s Secure Encrypted Virtualization (SEV) [8].

It is not sufficient just to protect a portion or whole of VM’s memory while it is
executing. The data structures that provide the execution state of VM and the general-
purpose registers of the host CPU that contain the values that enable page table
walkthroughs to get at the VM’s host memory address must also be protected. Hence
the assurance requirements for secure VM execution can be stated as follows:

(1) There should be hardware features to protect designated memory areas where
VM application code runs. This will protect those applications from malicious or
compromised hypervisors.

72 R. Chandramouli

(2) The Virtual Machine Control Block (VMCB) that contains data about the exe-
cution state of VMs and the general-purpose registers used by VMs (that contain
entry memory addresses) must also be cryptographically protected to ensure
secure VM execution even in the presence of a malicious or compromised
hypervisor.

9 Security Assurance For Virtual Network Configurations

9.1 Assurance for Network Segmentation

Both techniques discussed for network segmentation – VLAN and Overlay-based
networking can span multiple IP subnets and hence can be deployed datacenter wide.
However, since a VLAN ID is 12 bits long, the maximum number of segments that can
be defined is 4096 (strictly 4094). On the other hand, VXLAN uses a 24-bit seg-
ment ID known as the VXLAN network identifier (VNID), which enables up to 16
million VXLAN segments and hence the security assurance recommendation is stated
as follows [5]:

Large data center networks with hundreds of virtualized hosts and thousands of
VMs and requiring many segments should deploy overlay-based virtual networking
because of scalability (Large Namespace) and virtual/physical network independence.
However, it is highly advisable that the overall traffic generated by overlay-based
network segmentation (i.e., VXLAN network traffic in our context) is isolated on the
physical network using a technique such as VLAN to maintain segmentation guaran-
tees. In addition, overlay-based virtual networking deployments should always include
either centralized or federated SDN controllers using standard protocols for config-
uration of overlay modules in various hypervisor platforms.

9.2 Assurance for Network Path Redundancy Configuration

The following operational parameters will provide the necessary assurance that the NIC
teaming configuration intended for enhancing the availability of VM-based applica-
tions by providing alternate communication pathways will achieve their intended
purpose.

Each pNIC member of a NIC team should be driven by different drivers and placed
on a separate PCI bus (if available). Further, the network path redundancy inside a
virtualized host can be extended to the physical network by connecting each pNIC
member of the NIC team to different physical switches.

9.3 Assurance for Firewall Configuration

In the firewall configuration for virtualized servers, the security assurance is dictated by
the choice of the appropriate type of virtual firewall (subnet-level or kernel-based),
expressiveness of the firewall rules and wherever applicable uniformity in rules for
similar traffic flows. The following are the security assurance requirements [5]:

Comprehensive Security Assurance Measures 73

(1) In virtualized environments with VMs running I/O intensive applications, kernel-
based virtual firewalls should be deployed instead of subnet-level virtual fire-
walls, since kernel-based virtual firewalls can potentially perform packet pro-
cessing in the kernel of the hypervisor at native hardware speeds.

(2) For both subnet-level and kernel-based virtual firewalls, it is preferable that the
firewall allows for integration with a virtualization management platform rather
than being accessible only through a standalone console. The former will enable
easier provisioning of uniform firewall rules to multiple firewall instances, thus
reducing the chances of configuration errors.

(3) For both subnet-level and kernel-based virtual firewalls, it is preferable that the
firewall supports rules using higher-level components or abstractions (e.g.,
security group) in addition to the basic 5-tuple (source/destination IP address,
source/destination ports, protocol).

9.4 Assurance for VM Traffic Monitoring

The port mirroring technique involves increase in network traffic in the virtualized
network inside the hypervisor traffic and must be implemented with care. Minimal
assurance for implementing this can be stated as follows:

A port mirroring feature should provide choices in specifying destination ports
(either the virtual port or uplink port) so that it creates the flexibility to locate the
network analyzer application in another VM on the same or different hypervisor or in
any non-virtualized server in the data center.

10 Security Assurance for Booting a Virtualized Server
Platform

Configuration changes, module version changes, and patches affect the content of the
hypervisor platform components such as BIOS, hypervisor kernel, and back-end device
drivers running in the kernel. To ensure that each of these components that are part of
the hypervisor stack can be trusted, it is necessary to check their integrity through a
hardware-rooted attestation scheme that provides assurance of boot integrity. Checking
integrity is done by cryptographically authenticating the hypervisor components that
are launched. This authentication verifies that only authorized code runs on the system.
Specifically, in the context of the hypervisor, the assurance of integrity protects against
tampering and low-level targeted attacks such as root kits. If the assertion of integrity is
deferred to a trusted third party that fulfills the role of trusted authority, the verification
process is known as trusted attestation. Trusted attestation provides assurance that the
code of the hypervisor components has not been tampered with. In this approach, trust
in the hypervisor’s components is established based on trusted hardware. In other
words, a chain of trust from hardware to hypervisor is established with the initial
component (i.e., hardware) called the root of trust. This service can be provided by a
hardware/firmware infrastructure of the hypervisor host that supports boot integrity

74 R. Chandramouli

measurement and the attestation process. Collectively, this is called a measured launch
environment (MLE) in the hypervisor host.

Some hardware platforms provide support for MLE with firmware routines for
measuring the identity (usually the hash of the binary code) of the components in a boot
sequence. An example of a hardware-based cryptographic storage module that
implements the measured boot process is the standards-based Trusted Platform Module
(TPM), which has been standardized by the Trusted Computing Group (TCG) [9]. The
three main components of a TPM are: (a) Root of Trust for Measurement (RTM) –
makes integrity measurements (generally a cryptographic hash) and converts them into
assertions, (b) Root of Trust for Integrity (RTI) - provides protected storage, integrity
protection, and a protected interface to store and manage assertions, and (c) Root of
Trust for Reporting (RTR) - provides a protected environment and interface to manage
identities and sign assertions. The RTM measures the next piece of code following the
boot sequence. The measurements are stored in special registers called Platform
Configuration Registers (PCRs).

The measured boot process is briefly explained here using TPM as an example. The
measured boot process starts with the execution of a trusted immutable piece of code in
the BIOS, which also measures the next piece of code to be executed. The result of this
measurement is extended into the PCR of the TPM before the control is transferred to
the next program in the sequence. Since each component in the sequence in turn
measures the next before handing off control, a chain of trust is established. If the
measurement chain continues through the entire boot sequence, the resultant PCR
values reflect the measurement of all components.

The attestation process starts with the requester invoking, via an agent on the host,
the TPM Quote command. It specifies an Attestation Identity Key (AIK) to perform the
digital signature on the contents of the set of PCRs that contain the measurements of all
components in the boot sequence to quote and a cryptographic nonce to ensure
freshness of the digital signature. After receiving the signed quotes, the requester
validates the signature and determines the trust of the launched components by com-
paring the measurements in the TPM quote with known good measurements.

The MLE can be incorporated in the hypervisor host as follows:

• The hardware hosting the hypervisor is established as a root-of-trust, and a trust
chain is established from the hardware through the BIOS and to all hypervisor
components.

• For the hardware consisting of the processor and chipset to be established as the
root-of-trust and to build a chain of trust, it should have a hardware-based module
that supports an MLE. The outcome of launching a hypervisor in MLE-supporting
hardware is a measured launch of the firmware, BIOS, and either all or a key subset
of hypervisor (kernel) modules, thus forming a trusted chain from the hardware to
the hypervisor.

• The hypervisor offering must be able to utilize the MLE feature. In other words, the
hypervisor should be able to invoke the secure launch process, which is usually
done by integrating a pre-kernel module into the hypervisor’s code base since the
kernel is the first module installed in a hypervisor boot up. The purpose of this pre-
kernel module is to ensure the selection of the right authenticated module in the

Comprehensive Security Assurance Measures 75

hardware that performs an orderly evaluation or measurement of the launch com-
ponents of the hypervisor or any software launched on that hardware. The Tboot is
an example of a mechanism that enables the hypervisor to take advantage of the
MLE feature of the hardware.

• All hypervisor components that are intended to be part of the Trusted Computing
Base (TCB) must be included within the scope of the MLE-enabling mechanism so
that they are measured as part of their launch process.

The MLE feature with storage and reporting mechanisms on the hardware of the
virtualized host can be leveraged to provide boot integrity assurance for hypervisor
components by measuring the identity of all entities in the boot sequence, starting with
firmware, BIOS, hypervisor and hypervisor modules; comparing them to “known good
values;” and reporting any discrepancies. If the measured boot process is to be
extended to cover VMs and its contents (guest OS and applications), a software-based
extension to the hardware-based MLE implementation within the hypervisor kernel is
required. The security assurance for ensuring a secure boot process for all components
of a hypervisor platform can now be stated as follows [1]:

The hypervisor that is launched should be part of a platform and an overall
infrastructure that contains: (a) hardware that supports an MLE with standards-based
cryptographic measurement capabilities and storage devices and (b) an attestation
process with the capability to provide a chain of trust starting from the hardware to all
hypervisor components. Moreover, the measured elements should include, at minimum,
the core kernel, kernel support modules, device drivers, and the hypervisor’s native
management applications for VM Lifecycle Management and Management of Hyper-
visor. The chain of trust should provide assurance that all measured components have
not been tampered with and that their versions are correct (i.e., overall boot integrity).
If the chain of trust is to be extended to guest VMs, the hypervisor should provide a
virtual interface to the hardware-based MLE.

11 Summary and Conclusions

Server or Hardware virtualization is an established technology in data centers used for
supporting enterprise IT resources as well as cloud services. The core entity in this
technology is a set of software modules called the hypervisor. The hypervisor provides
abstraction of the hardware resources, such as CPU, memory, and devices (the first two
with some assistance with hardware extensions) and enables multiple computing stacks
called VMs, each with its own OS and applications, to be run on a single physical host.
Such a physical host is called a hypervisor host or virtualized server. The network
linking the multiple VMs within a hypervisor and with VMs located in other hypervisor
hosts is a combination of a software-defined network (called virtual network) and the
physical network infrastructure and constitute the virtualized server environment.

Since hypervisors come in several architectural flavors (Type 1 vs Type 2, Full vs
Para-virtualized), this manuscript identified five baseline functions for the hypervisor.
Analyzing these baseline functions, together with functions of other components of the

76 R. Chandramouli

virtualized server environment (i.e., the hardware, the VMs, the Virtual Network),
enabled identification of threats to these functions as well as threats originating from
these functions. The threats were then used as the basis for developing appropriate
security assurance measures for countering each threat.

References

1. Chandramouli, R.: Security Recommendations for Hypervisor Deployment on Servers. NIST
Special Publication SP 800-125A. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-125A.pdf

2. Heap-based buffer overflow in the IDE subsystem in QEMU, January 2018. https://www.
cvedetails.com/cve/CVE-2015-5154

3. Allowing guest OS users to execute arbitrary code on the host OS, January 2018. https://
www.cvedetails.com/cve/CVE-2015-3214

4. Hetzelt, F., Buhren, R.: Security analysis of encrypted virtual machines. In: Proceedings of
the13th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE 2017), Xi’an, China, April 2017 (2017)

5. Chandramouli, R.: Secure Virtual Network Configuration for Virtual Machine (VM) Protec-
tion. NIST Special Publication SP 800-125B. http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-125B.pdf

6. Shirinbab, S., Lundberg, I., Illie, D.: Performance comparison of KVM, VMware and
XenServer using a Large Telecommunication Application. In: Proceedings of the Fifth
International Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD
COMPUTING) (2014)

7. Intel Software Guard Extensions (Intel SGX), January 2018. https://software.intel.com/en-us/
sgx

8. Kaplan, D., Powell, J., Woller, T.: White Paper AMD Memory Encryption, January 2018.
http://amd-dev.wpengine.netdna-cdn.dom/wordpress/media/2013/12/AMD_Memory_
Encryption_Whitepaper_v7-Public.pdf

9. Trusted Platform Module (TPM) Main Specification. http://www.trustedcomputinggroup.org/
resources/tpm_main_specification

Comprehensive Security Assurance Measures 77

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125A.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125A.pdf
https://www.cvedetails.com/cve/CVE-2015-5154
https://www.cvedetails.com/cve/CVE-2015-5154
https://www.cvedetails.com/cve/CVE-2015-3214
https://www.cvedetails.com/cve/CVE-2015-3214
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://amd-dev.wpengine.netdna-cdn.dom/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.dom/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

Stratification Based Model for Security
Policy with Exceptions and Contraries

to Duty

Frédéric Cuppens and Nora Cuppens-Boulahia(B)

IMT Atlantique, 2 rue de la Châtaigneraie, 35576 Cesson Sévigné, France
nora.cuppens@imt-atlantique.fr

Abstract. This paper presents a formal approach based on deontic logic
to model security policies that contain exceptions and contraries to duty
(CTD). A CTD is a deontic rule which specifies what should happen in
case of violation of other security rules like obligations or prohibitions.
For example, CTD are useful to specify response policies that apply when
an intrusion that attempts to violate the security policy is detected. CTD
are well known puzzles in deontic logic because it is difficult to handle
them without raising paradoxes. In this paper, we define a new approach
to handle both exceptions and CTD and possible interactions between
exceptions and CTD. This model is based on stratifying the security
policy. We actually show how to use stratification differently to manage
exceptions and CTD. This model solves paradoxes and precisely defines
which security rules are violated and which security rules actually apply.

Keywords: Obligation · Contrary to duty · Stratification
Security policy · Exception management

1 Introduction

Many papers have already provided models to formally specify security policies.
In this paper, security policies are modeled as sets of logical rules corresponding
to permission, prohibition, obligation and exemption.1 It is very common that
security policy rules may include exceptions. The following set of two rules is an
example of such exception:

– R1: Nurses are prohibited to read patient medical records.
– R2: In situation of urgency, nurses are permitted to read patient medical

records.

1 In the literature, different names are given to this last concept corresponding to a
non obligation like omission or dispensation. In a security policy, the concept of non
obligation fits well with an exemption.

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 78–103, 2018.
https://doi.org/10.1007/978-3-030-04834-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_4

Stratification Based Model for Security Policy with Exceptions and CTD 79

The intuitive interpretation of these two rules would be the following: Rule
R1 specifies the “default” situation, i.e. generally, nurses are prohibited to read
patient medical records. Rule R2 corresponds to an exception to rule R1 that
applies in case of urgency.

Security policy rules may also include so-called contrary to duties. Contrary-
to-duties (CTD) corresponds to rules that apply in case of violation of other
(primary) security policy rules. The following rule provides an example of CTD:

– R3: If nurses violate prohibition to read patient medical records, then they
should be suspended.

The interpretation of rule R3 would be the following: This rule specifies what
happens in case of violation of rule R1. In other words, rule R3 may be viewed
as a sanction that applies when nurses illegally read patient medical record.

Specification of CTD is very useful for security policies. First, regarding
access control, it is generally considered that prohibition like rule R1 should
be controlled in a priori mode so that access control requirements provide
guarantees that such prohibitions are not violated. However, several works on
access control have also considered the a posteriori mode [EW07,ACBCC11,
ACBC+15]. In this case, users can behave in the system without being a priori
blocked when an access is not permitted by the policy. By contrast, accesses
should be logged so that violation could be detected a posteriori through the
analysis of these logged data. When a posteriori access control is used, CTD are
useful to specify what happens when access violation is detected.

Moreover, security policies are no longer limited to access control but also
include usage control [IYW06,ECCB12,CCBE13]. Usage control includes spec-
ification of obligation like the following rule:

– R4: If nurses read patient medical records, then they should warn the physi-
cian.

In this case, CTD are also useful to specify what happens when rule R4 is
violated. For example, a CTD to rule R4 may correspond to the following rule:

– R5: If nurses do not warn the physician (whereas they are obliged to do so),
then they should be suspended.

More generally, specification of security rules that include CTD is useful in
the context of Intrusion Detection. Since alerts provided by intrusion detection
systems may be viewed as detection of violation of the security policy, rules
corresponding to CTD should be considered to specify what happens when an
intrusion is detected. In this case, the set of CTD rules specifies response policies
[DTCCB07,CBC08].

However, management of Contrary-to-Duties (CTD) is one of the main puz-
zles of Deontic Logic. Many logics have been defined including the ones by
Prakken and Sergot [PS97] and Carmo and Jones [CJ02]. Some approaches have
argued that CTD could be managed similarly to exception [McC94,Hor93]. Sev-
eral papers have shown why this approach is actually flawed [PS96,vdTT97].

80 F. Cuppens and N. Cuppens-Boulahia

More precisely, strategy used to solve conflicts in case of exception is based on
cancelation. For example, let us consider again rules R1 and R2, and let us
assume that a nurse is actually in a situation of urgency. In this case, rule R2
applies and we can derive that this nurse is permitted to read the patient medi-
cal record. Since rule R1 specifies that nurses are prohibited to read the patient
medical record, there is potentially a conflict. However, since R2 is an exception
to rule R1, this conflict is simply solved by canceling prohibition derived from
rule R1.

However, cancelation strategy is not appropriate to handle CTD. Instead,
Leon van der Torre and Tan in [vdTT97] suggest that conflicts due to CTD
should be managed using another strategy called overshadowing. To explain the
difference with cancelation, let us consider the rules R1 and R3. If rule R1 is
violated, then rule R3 applies and the nurse should be suspended. However, in
this situation, prohibition derived from rule R1 is not canceled but overshad-
owed. This means that rule R1 specifies the ideal situation. By contrast, rule
R3 specifies a sub-ideal situation, i.e. what happens when some violation occurs.
In this case, rule R1 is not canceled but violated. Considering that rule R1 is
canceled would actually not allow us to derive that this rule has been violated.

Notice that reasoning with CTD may interact with reasoning with exception.
For example, let us now consider both rules R1, R2 and R3, and let us assume
that a nurse is in a situation of urgency. Then in this situation, rule R1 is actually
not violated but canceled due to the exception R2. Thus, CTD R3 does not apply
and the nurse should not be suspended. The consequence is that “explicit” CTD
should only apply when some violation of a primary rule occurs. To illustrate
this issue, let us now consider the above rule R4. One may want to consider that
rule R4 applies every time a nurse reads a patient medical record. Thus rule R4
may apply to a situation where there is no violation and is not an explicit CTD.
When modeling rules R3 and R4, we should be able to make such a distinction
between an explicit CTD (i.e. a rule that only applies if there is violation of
another primary rule) and an “implicit” CTD (i.e. a rule that may apply even
if there is no violation).

In this paper, we define a logical model that formally handles reasoning with
security policies that include both exception and CTD. This new model is based
on stratification. By contrast to previous approaches like [PS97,CJ02], we do not
attempt to define a model based on possible world semantics. Instead, we use
stratification to define an “operational” semantics for reasoning with security
policies. We actually use stratification in three different ways, first to handle
exceptions, then to handle CTD and finally to derive actual rules which apply to
a given situation. These different ways of using stratification will make clear the
distinction between the cancelation and overshadowing strategies. This model
provides a complete framework to handle both exceptions and CTDs, including
explicit and implicit CTDs and CTDs with exception.

The remainder of this paper is organized as follows. Section 2 further inves-
tigates issues related to formal management of CTD. Section 3 presents a first
formal model based on stratification to handle security policies with exceptions.

Stratification Based Model for Security Policy with Exceptions and CTD 81

Section 4 refines this model to include management of CTD, define explicit and
implicit CTD and derive actual obligations and permissions. Section 5 presents
related work and discusses the advantages of our approach. Finally, Sect. 6 con-
cludes the paper and presents several perspectives to this work.

2 Issues Related to CTD Management

An example of CTD, which corresponds to the so called Chisholm’s CTD paradox
[Chi63], is given by the set of rules R1 and R3 plus the following rule called
According to Duty (ATD) [LvdT98]:

– R6: If nurses do not read patient medical records, then they should not be
suspended.

And we consider the following fact:

– F1: a given nurse actually reads a patient medical record.

In [CJ02], Carmo and Jones provide a model that consistently interprets the
Chisholm’s paradox and satisfies the following postulates:

1. Consistency. This is the first major requirement. For example, Chisholm used
this paradox to discuss the following inconsistent set of formulas:

– R1a: nurse → O(¬read)
– R3a: read → O(suspended)
– R6a: O(¬read → ¬suspended)
– F1a: nurse ∧ read

where propositions nurse and read respectively should be read “There is a
nurse” and “This nurse read a patient medical record” and modality Op is
read “It is obligatory that p” where p is a proposition. This set of formulas is
actually inconsistent in most classical deontic logics like SDL:2 From F1a and
R3a, we can derive O(suspended) using Modus Ponens. And from F1a, R1a
and R6a, we can derive O(¬suspended) using Modus Ponens and the axiom
K. Thus, we have O(suspended) ∧ O(¬suspended) which violates the axiom
D of SDL.

2. Logical independence between the members of the Chisholm’s paradox. This
means that it would not be possible to derive one of the above sentences of the
Chisholm’s paradox from the others. This requirement would not be satisfied
if we represent the R6 requirement as follows:

– R6b: ¬read → O(¬suspended)

2 SDL stands for “Standard Deontic Logic” and suggests modeling the obligation
modality using a KD logic, i.e. a logic having the following axiomatics (1) Necessi-
tation: If p is a theorem then Op is a theorem, (2) Axiom K: (Op∧O(p → q)) → Oq
and (3) Axiom D: ¬(Op ∧ O¬p).

82 F. Cuppens and N. Cuppens-Boulahia

This is because we have: read → (¬read → O(¬suspended)) and thus R6b
can be derived from F1a. One consequence is that conditional obligation
O(p | q) to be read “In situation where proposition q is true, it is obligatory
that p” should not be represented by sentence q → Op where “→” stands for
the material implication.

3. Applicability to (at least apparently), timeless and actionless CTD-examples.
It has been suggested (see for instance [Åqv04,LvdT98]), that the Chisholm’s
paradox could be solved combining deontic logic and temporal logic: Initially
(i.e. before the nurse reads a patient medical record), we can derive O¬read∧
O¬suspended i.e. the nurse should not read a patient medical record and
should not be suspended. Once she has read a patient medical record, then
we can derive Osuspended but rule R6 does no longer applies. So the paradox
is solved because Osuspended and O¬suspended do not happen at the same
time. However, a different way of thinking is necessary to handle the following
variant of the Chisholm’s paradox (called the cottage regulation):

– R8: O(¬dog) (it is obligatory not to have a dog)
– R9: O(warning sign | dog) (if you have a dog, it is obligatory to have a

warning sign)
– R10: O(¬warning sign | ¬dog) (if you have no dog, it is obligatory not

to have a warning sign)
– F2: dog (there is a dog)

Examples like the cottage regulation suggest that a treatment of CTDs which
is tied to temporal aspects will not provide a sufficiently general solution.
In this paper and following the vein of several proposals before, the solution we
propose to analyze CTDs is actually not based on temporal logic. We aim to
analyze a given situation at a given time and decide which rules apply to this
situation. However, we acknowledge that refining our proposal with temporal
aspect represents a relevant extension which is discussed in the conclusion as
future work.

4. Analogous logical structures for CTD and ATD rules, corresponding to the
two conditional sentences R3 and R6 in the above example. For instance,
representation R3a and R6a does not satisfy this requirement since the obli-
gation modality is not used similarly in this case. By contrast, representation
R3a and R6b satisfies this requirement (but, as said before, it does not satisfy
requirement 2 of logical independence).

5. Capacity to derive actual obligations. This means that the formalization
should provide means to derive what is actually obligatory in a given sit-
uation.

6. Capacity to derive ideal obligations. This means that the formalization should
provide means to derive what is ideally obligatory, i.e. what would be oblig-
atory if there was no violation.

7. Capacity to represent the fact a violation of an obligation has occurred. In
particular, this means that we should be able to specify that something is
ideally obligatory but is actually violated.

The Carmo and Jones’ model and its associated postulates represent a great
achievement towards an appropriate formalization of the Chisholm’s paradox.

Stratification Based Model for Security Policy with Exceptions and CTD 83

Most of these postulates seem very reasonable. Our main concern is about the
fourth postulate. Carmo and Jones consider that logical representation of rules
R3 and R6 should have similar structure. However, this postulate does not pro-
vide means to specify difference of interpretation between rules R3 and R4. As
suggested in the introduction, we should be able to make a distinction between
rule R3 that only applies if there is a violation of another primary rule and rule
R4 that may apply even if there is no violation (corresponding to an implicit
CTD). This point was already observed by Prakken and Sergot [PS97] but their
solution is different from ours (see Sect. 5 for a discussion). In particular, they
do not suggest a different treatment for rules R3 and R4.

One may also observe that existing models for CTD generally do not consider
management of exceptions and their possible interaction with CTD. This prob-
lem is mentioned in [vdTT97] and the set of rules R1–R4 provides an example
when a nurse reads a medical record in a situation of urgency. In that case, we
would like to derive that this nurse should warn the physician (from the implicit
CTD R4) but should not be suspended (since there is no violation). The distinc-
tion between the cancelation principle (that applies in case of exceptions) and
overshadowing (that applies in case of CTDs) is essential to correctly handle this
situation.

Notice that CTD may have exception. For example, let us consider the fol-
lowing rule:

– R7: If nurses read patient medical records (whereas they are prohibited to do
so) but provide acceptable explanation, then they should not be suspended.

Notice also that postulate 4 may lead to possible ambiguity of interpretation
between exception and CTD. The following example of confidentiality policy
(called the “Reykjavic” puzzle) [Bel86] illustrates this issue:

– R11: O(¬say reagan | true) (the secret should not be said to Reagan)
– R12: O(¬say gorbachev | true) (the secret should not be said to Gorbachev)
– R13: O(say gorbachev | say reagan) (if the secret is said to Reagan, then it

should be said to Gorbachev)
– R14: O(say reagan | say gorbachev) (if the secret is said to Gorbachev, then

it should be said to Reagan)

This specification is ambiguous since it is unclear to decide if rule R13 is a
CTD to rule R11 or an exception to rule R12. Rule R14 raises a similar problem
of interpretation. Now let us consider a situation where the secret is said to
both Reagan and Gorbachev. Then if we consider that rules R13 and R14 are
exceptions, then we shall conclude that there is no violation. But if we consider
that R13 and R14 are CTDs, then we shall conclude that both rules R11 and
R12 are violated. Of course, this difference of interpretation may have critical
consequences if someone must be sanctioned! In our approach, if rules R13 and
R14 are considered CTDs, we shall make explicit that these two rules only apply
in case of violation.

Another great puzzle of CTD modeling is the so-called pragmatic oddity
[PS96]. To explain the problem, let us come back to the cottage regulation and

84 F. Cuppens and N. Cuppens-Boulahia

let us consider a situation where there is a dog. In this situation, several models
like [JP85] would conclude that it is obligatory to have a warning sign saying that
there is dog and at the same time, it is forbidden to have a dog. This conclusion
is considered highly counter-intuitive by many authors [PS96,CJ02,Pv17]. If
this example is not sufficient to be convinced by pragmatic oddity, one may
also come back to the Reykjavic puzzle which would be considered inconsistent
by several CTDs models including [JP85]. This is because these models do not
make a difference between the ideal prohibitions corresponding to rules R11 and
R12 and sub-ideal obligations derived from CTDs R13 and R14 when there are
violations (see Sect. 4.3).

3 Management of Policies with Exceptions

In this section, we present a stratification based approach to handle exceptions
in a security policy modeled as a set of deontic rules. This model formalizes the
cancelation strategy to manage conflicts raised by exceptions but also deontic
conflicts like dilemmas. This model will then be refined in Sect. 4 to manage CTD
using the overshadowing strategy. In this section, we first present the different
conflicts to be considered. We then define a deontic language and its semantics
in terms of stratification. Finally, we illustrate this model through examples of
conflict resolution.

3.1 Conflict Analysis and Classification

A security policy is defined using four deontic concepts: Permission, Prohibi-
tion, Obligation and Exemption. As usual, we shall consider that a prohibition
actually corresponds to an obligation not to do, a permission corresponds to a
non prohibition and an exemption to a permission not to do. Thus, three differ-
ent conflicts may happen between deontic modalities: Permission/Prohibition,
Prohibition/Obligation and Obligation/Exemption.

In the following, we shall consider the following classification of conflicts:

– Exceptional rules: Rules R1 and R2 provides an example of such conflict. If
we consider a nurse in a situation of urgency then it is possible that this nurse
is both prohibited (from R1) and permitted (from R2) to read patient medical
record. Such kind of conflict can be solved by considering that rules associ-
ated with exceptional situations (Rule R2) have higher priority than rules
corresponding to normal situations (Rule R1). In this case and as shown in
Sect. 3.3, priorities between rules can be implicitly derived using the “Mini-
mum Specificity Principle” [BDP97]: Since rule R2 applies to more specific
situations than rule R1, then rule R2 has higher priority than rule R1.

– Exceptional facts: This kind of conflict may occur when a new fact, corre-
sponding to a specific permission, prohibition, obligation or exemption, is
inserted. For example, for some particular reasons, administrative manage-
ment can temporally grant the privilege to read some patient medical record

Stratification Based Model for Security Policy with Exceptions and CTD 85

to the nurse Mary (even if there is no situation of urgency i.e. rule R2 does
not apply). In this case, the fact that “Mary is permitted to read this patient
medical record” is inserted in the security policy. This fact is conflicting with
the existing rule R1. To solve this conflict, we shall consider that the new
inserted fact is more specific than the rule R1 and thus has implicitly higher
priority than rule R1 [BBC03].

– Unrelated rules: This last kind of conflict can occur when two security rules
associated with independent situations3 lead to a conflict. In this case, the
conflict is only potential and will happen when these independent situations
are satisfied. An example of such conflict is provided by the following rule:
“Patients are permitted to read their medical records”. Due to rule R1, we
have conflicts for users that are both nurse and patient. This kind of conflict
can also be solved by assigning priorities between these two rules. However,
in this case, there is no implicit way to solve the conflict and we need to
explicitly specify the priorities when conflicting security rules are associated
with unrelated situations.

Notice that a conflict can occur between more than two rules as shown in
the following example:

– R15: O(pay | register) (it is obligatory to pay fee if you are registered)
– R16: O(¬pay by card | ¬secure) (it is obligatory not to pay by credit card if

the connection is not secure)
– R17: O(¬pay on site | early) (it is obligatory not to pay on site if you are

early registered)
– R18: pay ←→ pay by card∨pay on site (there is only to ways to pay, by card

or on site)

Then, a conflict occurs when a user is early registered and the connection is
not secure: It is obligatory for this user to pay but he can neither pay by card
nor on site and there is only two ways to pay. But there is no longer a conflict if
we remove one of the rules R15, R16 or R17. The conflict can also be solved by
assigning priorities between the rules, for example by considering that rule R17
has lower priority than rules R15 and R16.

3.2 Language Definition

In this section, we define a propositional deontic logic based on dyadic deontic
modalities of obligation, prohibition, permission and exemption.

Syntax. We consider two different sets of atomic propositions: state proposi-
tions and action propositions. Example of state proposition is nurse to be read
“there is a nurse”. Example of action proposition is read which is true in a state
where the action read was executed. Thus, the syntax of the language is defined
as follows.
3 Means that these situations correspond to consistent conditions so both of them can

be simultaneously satisfied.

86 F. Cuppens and N. Cuppens-Boulahia

– A finite set of atomic state propositions
– A finite set of atomic action propositions
– Logical connective: ¬, ∧, ∨, →, ↔
– Parentheses: (,)
– Dyadic deontic modalities obligatory, permitted, forbidden and exempted: O,

P , F and E.

Language

– If p is an atomic state proposition or an atomic action proposition, then p is
an atomic proposition.

– If p is an atomic proposition (resp. atomic state proposition) (resp. atomic
action formula), then p and ¬p are literals (resp. state literals) (resp. action
literals).

– If p is an atomic proposition (resp. atomic state proposition) (resp. atomic
action proposition), then p is a non deontic formula (resp. state formula)
(resp. action formula).

– If p and q are non deontic formulas (resp. state formulas) (resp. action for-
mulas), then ¬p, p ∧ q, p ∨ q, p → q, p ↔ q are non deontic formulas (resp.
state formulas) (resp. action formulas).

– If p is a literal then p is a condition formula.
– If p and q are condition formulas, then p ∧ q is a condition formula.
– If p is a condition formula and q is an action literal, O(q | p), P (q | p), F (q | p)

and E(q | p) are deontic formulas.

O(q | p) is to be read “if p is true then it is conditionally obligatory that q or
more precisely it is conditionally obligatory to achieve a state in which action q
was executed”.

We consider that modalities F (q | p) and E(q | p) are respectively abbrevi-
ations for O(¬q | p) and P (¬q | p). So in the following we shall only consider
deontic formulas having the form O(q | p) or P (q | p). In both cases, we say that
p and q are respectively the condition and conclusion of the deontic formula.

The main restriction in the language is that q must be an action literal in
deontic expressions. For instance, we cannot write deontic expressions having
for example the following form: O(q1 ∨ q2 | p). However, as shown in the set of
rules R15–R18, this is not a limitation since we can use an action proposition
q and specify that q is equivalent to q1 ∨ q2 and rewrite the disjunctive deontic
expression as O(q | p).

Policy Specification. Using this language, a security policy corresponds to a
finite set P of security rules. Each security rule is a deontic formula.

We also consider a set W of literals. W represents the current situation
handled by the security policy P .

Finally, we consider a set D of non deontic formulas. D represents general
state and action rules that constrain W . For example, D may contain the action

Stratification Based Model for Security Policy with Exceptions and CTD 87

rule R18 or the following state rule: nurse → medical staff (a nurse is part of
the medical staff).

We assume that D ∪ W is consistent. We also assume that for every security
rule R of P , we have:

– If p is the condition of R then D ∪ {p} is consistent.

3.3 Security Policy Encoding

In this section, we define a formal interpretation of a security policy P especially
when this policy includes exceptions. Our objective is to decide which security
rules actually apply to the current situation W , which rules are violated and
which rules are fulfilled.

For this purpose, we first present a logic-based encoding of sets of formulas
P , W and D. We then define a stratification-based interpretation of the set of
formulas that result from this encoding.

So, let P be a security policy. Every security rule like O(q | p) is viewed as a
rule possibly with exception having the form “generally, from p we can deduce q”.
For this purpose, we use a new symbol ↪→ distinct from the material implication
→. Using this symbol, formula O(q | p) is encoded by the following formula:
p ↪→ Ob q where Ob represents a monadic deontic modality corresponding to
SDL (Standard Deontic Logic). Similarly, P (q | p) is encoded by the following
formula: p ↪→ ¬Ob ¬q. In the following, we shall use stratification to define an
operational semantics for the ↪→ implication.

Notice that the ↪→ symbol does not satisfy the strengthening of the
antecedent principle: From p ↪→ q we cannot derive that (p ∧ p′) ↪→ q. Thus we
cannot always derive from the conditional obligation O(q | p) that O(q | p ∧ p′)
due to possible exceptions.

We assume that the set D of non deontic constraints corresponds to rules
without exception and thus are expressed using material implication.

We then consider the following set A of formulas defined as follows:

– For every atomic action formula pi, formula ¬Ob pi ∨ ¬Ob ¬pi belongs to A
(encoding of axiom D of SDL for atomic action formula).

– For every action formula d ∈ D, let d = l1 ∨ . . . ∨ lk be the representation
of d in clausal form where each li (i ≤ k) is an action literal. Then the two
following formulas are included in A (encoding of axiom K of SDL for every
action formula of D):

• f1 = l′1 ∨ . . .∨ l′k where l′i = Ob li if li is a positive literal and l′i = ¬Ob ¬li
if li is a negative literal.

• f2 = l′′1 ∨. . .∨l′′k where l′′i = Ob li if li is a negative literal and l′′i = ¬Ob ¬li
if li is a positive literal.

For example, if we consider the constraint R18, then the two following for-
mulas are included in A:

– R18a: ¬Ob(pay) ∨ Ob(pay by card) ∨ Ob(pay on site)
– R18b: ¬Ob(¬pay by card) ∨ ¬Ob(¬pay on site) ∨ Ob(¬pay)

In the following we denote D∗ = D ∪ A.

88 F. Cuppens and N. Cuppens-Boulahia

3.4 Prioritizing Security Rules

We now define a partial order relation on security rules to solve potential conflicts
between these rules. This partial order relation is denoted “
”: If Ri and Rj are
two security rules, then Ri
 Rj means that Ri has higher priority than Rj .

We also define the functions Cond and Concl as follows. If R is a set of
security rules, then Cond(R) and Concl(R) respectively represent the set of
conditions and conclusions of security rules in R.

We now show how to assign priorities to security rules in case of exceptional
rules and unrelated rules.

Case of Exceptional Rules. Let Ri and Rj be two security rules of the security
policy P . We say that Ri is an exception to Rj if the following condition holds:

– D∗ ∪ Cond({Ri}) ∪ {Ri, Rj} is inconsistent.

Computation of pairs of exceptional rules can be achieved with m(m − 1)
satisfiability tests (SAT) where m is the number of formulas in the policy P .

Principle 1: If Ri is an exception to Rj then Ri
 Rj .

Case of Unrelated Rules. To manage conflicts between unrelated rules, we
first define a conflicting set of rules as follows. Let R be a subset of P . R is
conflicting if the two following conditions hold:

– D∗ ∪ Cond(R) is consistent,
– D∗ ∪ Cond(R) ∪ R is inconsistent.

R is a minimal conflicting set if R is a conflicting set and there is no strict
subset R′ of R such that R′ is a conflicting set.

Like the SAT problem, computation of minimal conflicting sets is a well
known NP-complete problem which has been investigated in many papers. This
is not our purpose here to address this issue but see [LMD06] for a discussion
and definition of an algorithm based on structured description which terminates
in polynomial time for some specific systems.

If R is a conflicting set, then we can prove that:

– D∗ ∪ Cond(R) ∪ R is inconsistent if and only if A ∪ Concl(R) is inconsistent

This theorem is interesting because the set A∪Concl(R) is smaller, so it is easier
to compute minimal consistent sets using this result.

Proof: From right to left, let us assume that A∪Concl(R) is inconsistent. Since
A ⊆ (D∗ ∪ Cond(R)), then D∗ ∪ Cond(R) ∪ Concl(R) is also inconsistent. But
Cond(R)∪Concl(R) is logically equivalent to Cond(R)∪R. So D∗∪Cond(R)∪R
is inconsistent.

From left to right, let us assume that D∗ ∪ Cond(R) ∪ R is inconsistent
and A ∪ Concl(R) is consistent. By assumption, if R is a conflicting set, then

Stratification Based Model for Security Policy with Exceptions and CTD 89

D ∪ Cond(R) is consistent. Since there is no formula which is common to D ∪
Cond(R) and A ∪ Concl(R), then we can conclude that D ∪ Cond(R) ∪ A ∪
Concl(R) is consistent. Since D∗ = D ∪ A and Cond(R) ∪ Concl(R) is logically
equivalent to Cond(R) ∪ R, thus D∗ ∪ Cond(R) ∪ R is consistent. This is a
contradiction. �
Principle 2: If R is a minimal conflicting set, then there must exist a rule
Rj ∈ R such that for all other rules Ri ∈ R we have Ri
 Rj .

3.5 Stratifying Security Rules

In this section, we use the priority relation to build a stratified security policy
P = S1 ∪ . . . ∪ Sm such that formulas in Si have lower priority than the ones in
Sj when j < i. Sn contains the rules with the lowest priority and S1 contains
the ones with the highest priority.

Let P be a prioritized security policy, D∗ a set of constraints and W a
current situation. We are interested in knowing if a conclusion follows from
Σ = P ∪D∗ ∪W . For this purpose, we select a maximally consistent subset from
Σ as explained below.

Stratification Algorithm. Let P be a set of security rules associated with a
partial order relation
. The Algorithm 1 transforms P into a stratified security
policy.

Algorithm 1. Stratification algorithm
begin

m = 1;
while P �= ∅ do

begin
Sm = ∅;
foreach R ∈ P do

if R is maximal in P with respect to � then
Sm = Sm ∪ {R}

end

end
if Sm = ∅ then

Stop: � is not a partial order relation
end
P = P − Sm; m = m + 1;

end

end
return {S1, S2, ..., Sm}

end

90 F. Cuppens and N. Cuppens-Boulahia

Inference in Stratified Policy. Let P be a security policy and
{S1, S2, . . . , Sm} the result of its stratification. We consider that constraints
in D∗ and the current situation W correspond to a consistent set of rules and
facts without exceptions. We assign to D∗ ∪ W the highest priority and insert
these formulas in the highest stratum S0. Now the objective is to know which
conclusion can be derived from Σ = {S0, S1, S2, . . . , Sm}. For this purpose, the
Algorithm 2 extracts a maximally consistent subset δ(Σ) of Σ.

Algorithm 2. Inference in stratified policy
begin

δ(Σ) = S0;
for k = 1 to m do

if δ(Σ) ∪ Sk is consistent then
δ(Σ) = δ(Σ) ∪ Sk

else
let S′

k a maximal subset of Sk such that δ(Σ) ∪ S′
k is consistent;

δ(Σ) = δ(Σ) ∪ S′
k

end

end
return δ(Σ)

end

Starting with the set S0 of formulas having the highest priority, the Algo-
rithm2 progressively inserts maximal subset S′

k of the different strata from level
1 to level m. We can show that the complexity of this algorithm can be achieved
in m satisfiability tests (m.SAT) where m is the number of formulas in the base
[Lan01].

Notice that, in the general case, it may exist several maximal consistent sub-
sets S′

k. However, due to the principle 2 defined in Sect. 3.4 to manage unrelated
rules, the maximal subset S′

k is actually unique.

Proof: Let us assume that there are two different maximal subsets such that
δ(Σ)∪S1

k and δ(Σ)∪S2
k are consistent. Thus, δ(Σ)∪S1

k ∪S2
k is inconsistent else

S1
k and S2

k would not be maximally consistent. So let R be a minimal inconsistent
subset of rules of δ(Σ) ∪ S1

k ∪ S2
k. We have:

– R is not a subset of Sk because, due to the principle 2, there is a rule in
R which has lower priority than all other rules in R. So the set of rules R
cannot be included in the same stratum. So there is a rule Ra in R which
belongs to δ(Σ).

– R is not a subset of δ(Σ) ∪ S1
k because δ(Σ) ∪ S1

k is consistent. So there is a
rule Rb in R which belongs to S2

k.
– Similarly, R is not a subset of δ(Σ) ∪ S2

k, thus there is a rule Rc in R which
belongs to S1

k.

Stratification Based Model for Security Policy with Exceptions and CTD 91

So there are at least three rules Ra, Rb and Rc in R which respectively belong
to δ(Σ), S1

k and S2
k. But this is in contradiction with the principle 2 because Rb

and Rc belongs to the same stratum Sk. �

3.6 Examples

Example 1. Pay Registration Fee. Let us consider the set of formulas R15–
R18 and assume that rules R15 and R16 have higher priority than rule R17.

Let us assume a situation W such that early ∧ ¬secure is true and let us
assume that D contains rule R19: early → registered.

This set Σ1 of formulas is stratified as follows:

– Stratum S0 contains W , rules R18, R18a, R18b and R19 and formula ¬Ob(p)∨
¬Ob(¬p) for p = pay, p = pay on site and p = pay by card.

– Stratum S1 contains rules R15 and R16.
– Stratum S2 contains rule R17.

We can then compute δ(Σ1). Starting with S0, rules R15 and R16 are inserted
in δ(Σ1) so that it is possible to derive Ob(pay) and Ob(¬pay by card). Thus we
can derive ¬Ob(pay by card) and Ob(pay on site) using rule R18a. Rule R17 is
not inserted in δ(Σ1) since it would create inconsistency. This corresponds to
the cancelation strategy.

Example 2. Reykjavic Scenario with Exceptions. Let us now consider the
rules R11–R14 presented in Sect. 2. Since rules R13 and R14 do not explicitly
mention violation in their condition, they are interpreted as exceptions to rules
R11 and R12. Thus stratum S1 will contain rules R13 and R14. Rules R11 and
R12 are inserted in stratum S2.

Now let us assume a situation W such that say reagan ∧ ¬say gorbachev
and let us compute δ(Σ2). In that case, rules R13 and R14 are inserted in δ(Σ2)
and we can derive from R13 that Ob(say gorbachev). Then, rule R12 leads to
an inconsistency and is canceled. By contrast, rule R11 can be inserted in δ(Σ2)
and we can derive that Ob(¬say reagan).

Example 3. the Nurse Scenario. Let us consider the three following rules:

– R1: O(¬read | nurse)
– R2: P (read | nurse ∧ urgency)
– R4: O(warn physician | read)

Since the rule R4 does not mention a condition of violation, we do not con-
sider that it is a CTD. Actually, it corresponds to what we have called an
“implicit” CTD in the introduction. In that case, stratum S1 contains rules
R2 and R4. Rule R1 is inserted in the lower stratum S2 due to the exception
R2.

92 F. Cuppens and N. Cuppens-Boulahia

Now let us assume a situation W such that nurse ∧ urgency ∧ read. We can
derive from rules R2 and R4 that ¬Ob(¬read) and Ob(warn physician). Rule
R1 is canceled. This conclusion is satisfactory.

By contrast, if we assume another situation such that nurse ∧ ¬urgency ∧
read, then rule R2 will not apply. We shall conclude that Ob(¬read) from R1
and Ob(warn physician) from R4. So this nurse is prohibited to read the patient
medical but obliged to warn the physician that she reads a medical record. This
is a case of pragmatic oddity. Thus, this representation does not solve pragmatic
oddity in the case of implicit CTD. We shall come back on this problem and
solve it in Sect. 4.5.

4 Management of Security Policies with Exceptions and
CTD

In this section, we refine the language suggested in Sect. 3 to specify CTD and
then define a semantics for this extended language. The central idea is that we
shall define a second partial order relation
ctd to manage CTD that we shall
then combine with the partial order relation
 previously defined to manage
exceptions.

4.1 Language Extension

We extend the syntax with the monadic modality v to represent situation of
violation. Using this new modality, the language is modified by inserting the
new following rules:

– If p is an action literal, then v(p) is a violation formula.
– If p is a violation formula, then p is a condition formula.

The main difference with the language defined in Sect. 3 is that it is now
possible to consider deontic formulas having violation formulas in the condition.
This is the way we shall specify CTD. Intuitively, if p is an action formula, then
v(p) is read p is true and violates an obligation not to do p.

4.2 Prioritizing CTD Rules

Let P be a security policy. We say that a rule R of P is a CTD if a violation
formula appears in the condition of R.

We then define a relation
ctd between security rules. If Ri and Rj are
security rules of P , then Ri
ctd Rj means that Rj is a CTD of Ri. Ri
ctd Rj

is true if and only if the following conditions are satisfied:

– Ri has the form O(q | p).4

4 We assume that conditional prohibition F (q | p) are rewritten in O(¬q | p). Notice
that we cannot associate a CTD with a conditional permission or exemption.

Stratification Based Model for Security Policy with Exceptions and CTD 93

– Rj is a CTD and condition v(q′) appears in the condition of Rj .
– D ∪ {q} ∪ {q′} is inconsistent.

For example, let us consider the following rules:

– R16a: O(pay by card | early) (it is obligatory to pay by card if you are early
registered)

– R17a: O(¬attend | v(¬pay)) (it is obligatory not to attend if the obligation
to pay registration is violated)

– R18: pay ←→ pay by card∨pay on site (there is only to ways to pay, by card
or on site)

Then we have R16a
ctd R17a.
If Rj is a CTD but there is no rule Ri in P such that Ri
ctd Rj , then Rj

is an irrelevant CTD since rule Rj will never apply. If Rj is a CTD and not an
irrelevant CTD, then we say that Rj is an explicit CTD.

If rule Rj is a CTD to rule Ri, i.e. Ri
ctd Rj , we can say that Rj specifies
the lower ideal norm that applies when the higher ideal norm Ri is violated.
Our approach is first to derive the higher ideal norms, identify which of these
norms are violated and then derive the lower ideal norms. This means that if
Ri
ctd Rj , then rule Ri will be inserted in a higher stratum than rule Rj . Thus,
we use relation
ctd to stratify the security policy P in a similar way as relation

in Algorithm 1. We thus obtain a stratified security policy P = {S1, S2, . . . , Sm}.
We shall then combine both relations
ctd and
 as explained in Sect. 4.4.

We say that rules in stratum S1 correspond to ideal rules, i.e. rules that apply
when there is no violation. Rules in S2 correspond to sub-ideal rules, i.e. rules
that apply when an ideal rule is violated. Rules in S3 correspond to sub-sub-ideal
rules and so on.

4.3 Encoding Policies with CTD

Let P = {S1, S2, . . . , Sm} be a security policy with CTD stratified as suggested in
Sect. 4.2. To encode P , we consider a set of monadic modalities Ob1, . . . , Obm. If
p is an action literal, then Ob1(p) is read “Ideally, it is obligatory that p”, Ob2(p)
is read “Sub-ideally, it is obligatory that p”, and so on. Each Obk (k ∈ [1,m])
corresponds to a monadic SDL deontic modality.

We also consider a set v1, . . . , vm−1 of monadic modalities. Intuitively, if p is
an action literal, then v1(p) is read “p is true and violates an ideal obligation not
to do p”. Similarly, v2(p) is read “p is true and violates a sub-ideal obligation
not to do p”. And so on.

Using these modalities, security rules of P are encoded as follows. If a security
rule O(p | q) belongs to stratum k, then this rule is rewritten in the rule q′ ↪→
Obk(p) where q′ is identical to q except that formula having the form v(a) that
appears in condition q are replaced by formula vk−1(a). Similarly, a security rule
P (p | q) will be rewritten in the rule q′ ↪→ ¬Obk(¬p).

For example, let us consider the three following rules:

94 F. Cuppens and N. Cuppens-Boulahia

– R1: O(¬read | nurse)
– R2: P (read | nurse ∧ urgency)
– R3: O(suspended | v(read))

These three rules will be encoded as follows:

– R1: nurse ↪→ Ob1(¬read) (ideally, nurses are prohibited to read patient med-
ical records)

– R2: nurse∧urgency ↪→ ¬Ob1(¬read) (ideally, in situation of urgency, nurses
are permitted to read patient medical records)

– R3: v1(read) ↪→ Ob2(suspended) (sub-ideally, if a nurse read a patient medical
record whereas it is ideally prohibited, then this nurse should be suspended)

We then refine the set A of formulas defined in Sect. 3.3 by indexing every
modality Ob appearing in the formulas with a level of stratum k (k ∈ [1,m]).

Finally, we insert in A the following formulas defining modalities vk ((k ∈
[1,m − 1]):

– For every action literal p:
vk(p) ↔ p ∧ (Ob1(¬p) ∨ . . . ∨ Obk(¬p))

4.4 Combining Stratification of CTD and Exception

Let us now consider a stratified set of formulas Σ = {S0, S1, S2, . . . , Sm} where
S0 = D∗ ∪ W and Sk (k ∈ [1,m]) are the different strata of the security policies
encoded as suggested in the previous Sect. 4.3.

Since each set of formulas Sk can contain exceptions, Sk is further stratified
using the Algorithm1 defined in Sect. 3.5 to build a stratified set of formulas
{Sk,1, Sk,2, . . . , Sk,nk

}.
We thus obtain a global set of formulas Σ = {S0, S1,1, . . . , S1,n1 , S2,1,

. . . , S2,n2 , . . . , Sm,1, . . . , Sm,nm
}. This set of formulas is ordered by the following

priority relation:

– For every i ≥ 1 and j ≥ 1, S0 > Si,j

– For every i, i′, j and j′, Si,j > Si′,j′ ↔ i < i′ ∨ (i = i′ ∧ j < j′)

We then apply the Algorithm2 defined in Sect. 3.5 on Σ to obtain a maximal
consistent set of formulas δ(Σ).

4.5 Case of Implicit CTD

As explained in the introduction, an implicit CTD is a conditional deontic rule
that applies in case of violation of primary rule (like an explicit CTD) but also
when there is actually no violation (because we are in an exceptional situation).
The rule R4 provides an example of implicit CTD. As shown in Sect. 3.6, we
are in trouble if we manage implicit CTD as ideal rules: In that case, pragmatic
oddity occurs when a nurse violates her prohibition to read a medical record. In
this section we solve this problem.

Stratification Based Model for Security Policy with Exceptions and CTD 95

Since an implicit CTD like R4 may apply in situation of violation, an implicit
CTD implies an explicit CTD. However, an implicit CTD cannot be reduced to
an explicit CTD, because it may also apply when there is no violation, namely
in the case of R4, when a nurse reads a patient medical record in a situation of
urgency.

Thus an implicit CTD can be decomposed in two different rules: An explicit
CTD and another rule which applies when there is no violation. This idea is
formalized as follows.

First let us define an implicit CTD rule. Let Ri be a deontic formula having
the form O(p | q) or P (p | q). Condition q has the form q1∧q2 . . .∧qr where each
qk (k ∈ [1, r]) is a literal or a violation formula. Then Ri is an implicit CTD if
we obtain an explicit CTD when we replace one of the literal qk by v(qk). We
say that literal qk is a potentially violating condition (PVC).

Notice that an implicit CTD may be also an explicit CTD since another
condition qk′ may correspond to a violation formula.

Let us now consider an implicit CTD Ri that includes a PVC qk. Then Ri is
decomposed in two different rules:

– Rai is obtained by substituting qk by v(qk) in Ri

– Rbi is obtained by substituting qk by qk ∧ ¬v(qk) in Ri

If Rai and Rbi are still implicit CTDs due to other PVC included in their con-
dition, then the decomposition process is recursively applied on the decomposed
rules till there is no longer implicit CTDs in the policy.

Then prioritizing and stratification processes respectively defined in Sects. 4.2
and 4.4 are applied to the set of rules resulting from this decomposition process.

In Sect. 4.7, we illustrate how this decomposition process solves pragmatic
oddity when the policy includes implicit CTD.

4.6 Deriving Actual Obligations and Permissions

In previous sections, we showed how to derive ideal obligations (which apply
when there is no violation) and sub-ideal obligations (which apply when there
is a violation). We still have to define which actual obligations apply to a given
situation. Our approach to solve this problem is the following.

We first extend our language to consider the following monadic modalities:

– Oba: If p is an action formula, then Oba(p) is read “p is an actual obligation”.
Oba corresponds to a monadic SDL deontic modality.

– svk for every stratum k (k ∈ [1,m−1]): If p is an action formula, then svk(p)
means that p is a settled violation, i.e. p is violated in stratum k and there
is an explicit CTD in stratum k + 1 which specifies what happens when p is
violated. We assume that svk is a classical modality which only satisfies the
following inference rule: If p ↔ q is a theorem then svk(p) ↔ svk(q) is also a
theorem.

96 F. Cuppens and N. Cuppens-Boulahia

Now, let R be an explicit CTD of policy P . Let us consider the result of
encoding R and let us assume that formula vk(p) appears in the condition of
this encoded rule. Finally let us assume that R is inserted in stratum Si,j . Then
the following formula is also inserted in Si,j : q ↪→ svk(p) where q is the same
formula as the condition of R. Thus if the explicit CTD R applies to a given
situation where vk(p) is true, then we shall be able to derive svk(p) meaning
that violation p is settled by the CTD R.

We also insert in the set A of formulas defined in Sect. 4.3, a new set of
formulas obtained by substituting every modality Ob by modality Oba.

Let Σ be the set of stratified formulas obtained after these different trans-
formations.

We finally extend Σ with a set of strata Tk (k ∈ [1,m]) used to derive actual
obligations. Each stratum contains formulas defined as follows:

– If k = m: Obm(p) ↪→ Oba(p) and ¬Obm(p) ↪→ ¬Oba(p) for every action
literal p

– If k < m: (Obk(p)∧¬svk(¬p)) ↪→ Oba(p) and (¬Obk(p)∧¬svk(p)) ↪→ ¬Oba(p)
for every action literal p

– If k = m: We insert in stratum Tm, formulas ¬svi(p) for every i ∈ [1,m]
and action literal p. This is used to perform the close world assumption on
modalities svi.

The priority relation between the strata is defined as follows:

– For every i, j, k, Si,j > Tk

– For every k, k′, if k > k′ then Tk > Tk′

Notice that we assumed in Sect. 4.4 that ideal rules were inserted in higher
strata than their corresponding sub-ideal CTD, i.e. if i < i′, then Si,j > Si′,j′ .
We prioritize strata Tk in the reverse order. This means that in the case of
conflicts when we derive actual obligations, the most sub-ideal cases will have
priority. For example, let us assume that Oba(p) can be derived in stratum Tk.
Since formula ¬Oba(p) ∨ ¬Oba(¬p) has been inserted in the set of formulas A,
then it will not be possible to derive Oba(¬p) from another stratum k′ < k.
We also consider that we cannot derive an actual obligation Oba(p) if we have
Obk(p) but this obligation has been violated and settled at level k, i.e. svk(¬p).
This means that obligation which persists after its violation settlement should
be explicitly specified. The following example illustrates this point:

– R20: O(pay loan | true) (it is obligatory to pay back loan)
– R21: O(pay penalty | v(¬pay loan)) (if the obligation to pay back loan is

violated, then it is obligatory to pay penalties for late payment)
– R22: O(pay loan | v(¬pay loan)) (if the obligation to pay back loan is vio-

lated, then it is still obligatory to pay back loan)

In this case, rule R22 specifies that the obligation to pay back loan persists
after its violation.

Stratification Based Model for Security Policy with Exceptions and CTD 97

4.7 Examples

Example 4. Nurse Scenario Revisited. Let us consider again the nurse
scenario of Sect. 3.6. We refine this example into the set of six following rules:

– R1: O(¬read | nurse)
– R2: P (read | nurse ∧ urgency)
– R3: O(suspended | v(read))
– R4: O(warn physician | read)
– R5: O(suspended | v(¬warn physician)) (If nurses do not to warn the physi-

cian, whereas they are obliged to do so, then they should be suspended)
– R7: O(¬suspended | v(read) ∧ explanation) (If nurses read patient medical

records, whereas they are prohibited to do so, but provide acceptable expla-
nation, then they should not be suspended)

Since rule R4 is an implicit CTD, first step consists in rewriting rule R4 in
the two following rules:

– R4a: O(warn physician | v(read))
– R4b: O(warn physician | read ∧ ¬v(read))

This set of rules will be stratified as follows:

– Stratum S1,1: Rule R2
– Stratum S1,2: Rules R1 and R4b
– Stratum S2,1: Rule R7
– Stratum S2,2: Rules R3 and R4a
– Stratum S3,1: Rule R5

Now let us consider a situation where nurse ∧ urgency ∧ read ∧
¬warn physician. Then in this situation we can derive that ¬Ob1(¬read) from
R2 (i.e. ideally it is permitted to read) and thus ¬v1(read). Thus we can derive
that Ob1(warn physician) from rule R4b and rule R1 is canceled. So we have
v1(¬warn physician). None of the rules R7, R3 and R4a apply to this sit-
uation. Finally, we can derive Ob3(suspended) from R5, i.e. sub-sub ideally
the nurse should be suspended. Regarding actual obligations, we can derive
Oba(suspended) i.e. there is an actual obligation to suspend the nurse. We can-
not derive Oba(warn physician) because this obligation was violated but set-
tled by the CTD R5. Finally, from ¬Ob1(¬read) and ¬sv1(¬read) (close world
assumption on modality sv1), we can derive ¬Oba(¬read), i.e. there is an actual
permission that the nurse reads the medical record.

If we consider another situation where nurse∧¬urgency∧read∧explanation.
We can derive that Ob1(¬read) and that v1(read). We then move to stratum
S2,1 and derive that Ob2(¬suspended) from rule R7. From rule R4a, we can then
derive that Ob2(warn physician). Regarding actual obligations, we can derive
that Oba(¬suspended) from Ob2(¬suspended) and Oba(warn physician) from
Ob2(warn physician). So the nurse should not be suspended and should warn
the physician. Notice that we cannot derive Oba(¬read) since this prohibition is
settled by rule R7. So pragmatic oddity is solved.

98 F. Cuppens and N. Cuppens-Boulahia

Let us now consider the same situation but also assume that
¬warn physician. We can derive v2(¬warn physician). Then we move to stra-
tum S3,1 and obtain Ob3(suspended) from rule R5. So, regarding actual obliga-
tions, we can only derive that Oba(suspended) from Ob3(suspended).

Example 5. Reykjavic Scenario Revisited. We now come back to the Reyk-
javic scenario presented in Sect. 3.6:

– R11: O(¬say reagan | true)
– R12: O(¬say gorbachev | true)
– R13: O(say gorbachev | say reagan)
– R14: O(say reagan | say gorbachev)

Now rules R13 and R14 are no longer interpreted as exceptions to rules R11
and R12 but as implicit CTDs. Thus, they are rewritten into the following rules:

– R13a: O(say gorbachev | v(say reagan))
– R13b: O(say gorbachev | say reagan ∧ ¬v(say reagan))
– R14a: O(say reagan | v(say gorbachev))
– R14b: O(say reagan | say gorbachev ∧ ¬v(say gorbachev))

Rules R13a and R14a are interpreted as explicit CTD and rules R13b and
R14b as exceptions to rules R11 and R12.

To fully illustrate this scenario, we insert the following additional rule:

– R23: O(say reagan | critical) (it is obligatory to say to Reagan critical secret
information)

This rule will be interpreted as an exception to rule R11.
This set or rules will be stratified as follows:

– Stratum S1,1: Rules R13b, R14b and R23
– Stratum S1,2: Rules R11 and R12
– Stratum S2,1: Rules R13a and R14a

Now let us consider a situation where say reagan ∧ ¬critical ∧
¬say gorbachev. None of the rules in stratum S1,1 apply to this situ-
ation. So we move to stratum S1,2 and derive Ob1(¬say reagan) and
Ob1(¬say gorbachev) and thus v1(say reagan). We then move to stratum S2,1

and obtain Ob2(say gorbachev) from rule R13a and thus v2(¬say gorbachev).
Regarding actual obligations, we can only derive Oba(say gorbachev) since
Ob1(¬say reagan) is settled by explicit CTD R13a and Ob1(¬say gorbachev) is
conflicting with the actual obligation.

If we change the situation into say reagan ∧ critical ∧ ¬say gorbachev,
then we can derive Ob1(say reagan) from rule R23 and thus ¬v1(say reagan).
So we can also derive Ob1(say gorbachev) from rule R13b and we have
v1(¬say gorbachev). None of the other rules apply so we can also derive that
Oba(say reagan) and Oba(say gorbachev) which is a non settled violation.

Stratification Based Model for Security Policy with Exceptions and CTD 99

5 Related Work and Discussion

There are several papers that have investigated how to manage conflicts in secu-
rity policies [LS99,BJS96,BBC03,CC97,CCBG07]. Most of these papers suggest
assigning priorities to security rules and are restricted to conflicts between per-
missions and prohibitions. In some of these works, priority assignment is based on
implicit priorities like prohibitions override permissions [BJS96]. Others combine
the “Minimum Specificity Principle” with explicit priority assignment to manage
unrelated conflicting rules [CCBG07]. None of these works consider violations of
security rules and thus they do not deal with CTD. Regarding the approach used
to solve conflicts, the work which is the closest to the one presented in this paper
is [BBC03] which is also based on stratification of security rules. However, the
approach presented in [BBC03] is only based on the “Minimum Specificity Prin-
ciple”. In the case of unrelated security rules, the solution would create several
maximal consistent subsets. For example, in the case of example 1 of Sect. 3.6,
[BBC03] would generate three different maximal subsets:

– First subset contains rules R15 and R16 and in this case it would be possible
to derive that Ob(Pay on site)

– Second subset contains rules R15 and R17 and we would derive
Ob(Pay by card)

– Third subset contains rules R16 and R17 and we would derive Ob(¬Pay)

Thus it would be possible to finally conclude that Ob(Pay on site) ∨
Ob(Pay by card) ∨ Ob(¬Pay). So the conflict is not really solved which is not
satisfactory to decide what to do in this situation. Finally [BBC03] does not deal
with violation and CTDs.

How to deal with violation of obligations is addressed in [ECCB12]. The
model is expressive enough to represent obligations with deadlines, i.e. obliga-
tions whose violation occurs after a given event happens. However, this model
does not discuss how to manage conflicts and does not solve issues related to
CTD management like pragmatic oddity.

By contrast, many papers based on deontic logic have addressed how to man-
age CTDs. The pioneering work by Jones and Pörn [JP85] models CTD using the

modality Ought as follows: Ought(p)
def
= Obi(p) ∧ ¬Obs(p) where Obi(p) means

“Ideally, it is obligatory that p” and Obs(p) means “Sub-ideally, it is obligatory
that p”. These two modalities are defined as KD logics (SDL) using possible
world semantics. The set of possible worlds is partitioned into ideal worlds, used
to defined modality Oi, and sub-ideal worlds, used to define modality Os. There
are several reasons why this model is not completely satisfactory. First, it is
not clear why the model only consider a single level of sub-ideality. Second, this
model does not solve pragmatic oddity. Third, it does discuss how to combine
CTD and exceptions.

Another approach was suggested by Prakken and Sergot [PS97,PS96]. To
specify CTDs, they consider modalities having the form OB(A) to be read “there
is a secondary obligation that A in the context of B which is a violation of

100 F. Cuppens and N. Cuppens-Boulahia

some primary obligation A”. This approach solves the pragmatic oddity but the
semantics is rather complex to axiomatize. In [vdTT97,TvdT97,vdTT98], van
der Torre and Tan analyze the difference between exception and CTD. They
suggest that exceptions should be managed using cancelation principle whereas
CTD should be modeled using another different strategy called overshadowing.
However, both [PS97] and [vdTT97] do not formally model differences between
what we call explicit and implicit CTDs. They also do not define a formal process
to derive actual obligations. Our approach based on stratification provides such
a formal and decidable derivation process.

More recently, Carmo and Jones [CJ02] define dyadic deontic modality O(B |
A) and show how to derive Oi(p) and Oa(p) to be respectively read “It is ideally
obligatory that p” and “It is actually obligatory that p”. The model satisfies
the seven postulates presented in Sect. 2 as well as pragmatic oddity. Cholvy
and Garion in [CG01] have showed that the Carmo and Jones model could be
interpreted using a logic of preference.

We can make the following comments about [CJ02]. First, this model is only
interested in CTDs but does not investigate their interaction with exceptions.
It is also not possible to differentiate explicit CTD from implicit CTD. We
can also observe that to derive ideal and actual obligations, the model uses
two additional modalities �(p) and �(p) to be respectively read “It is actually
necessary that p” and “It is potentially necessary that p”. For example, if we
come back to Sect. 4.7 and consider the rule R5 “If nurses do not warn the
physician, then they should be suspended”, then according to [CJ02], it is not
sufficient to observe that the nurse does not warn the physician to derive that she
should be actually suspended. We have to additionally decide if it is definitely
settled that the nurse will not warn the physician. We argue that it would be very
uneasy to make such a decision. As a consequence, the model defined in [CJ02]
would be very complex to automatize. Instead, it would be more realistic in this
example to consider obligation with deadlines. More precisely, we could consider
that nurses have to warn the physician before a given deadline (for instance
one day after reading the patient medical record). If this is not the case, then
the violation to warn the physician is settled. In this case rule R5 applies and
the nurse should be suspended (of course, if there is no exception to rule R5).
Refining the model presented in this paper with obligation with deadline is an
interesting and relevant issue.

6 Conclusion

In this paper, we have defined a complete model to specify and manage security
policies that include both exceptions and CTDs. This interpretation is seman-
tically based on stratification. We show how to use stratification in several dif-
ferent ways to respectively handle exceptions through the cancelation strategy,
CTD through the overshadowing strategy and finally to derive actual obligations.
These different stratifications provide decidable means to define derivation pro-
cesses of ideal, sub-ideal and actual obligations. The model is based on a propo-

Stratification Based Model for Security Policy with Exceptions and CTD 101

sitional language but the extension to a first order language is straightforward
when the language contain finite domains.

There are several perspectives to this work. In this paper, we only con-
sider obligations that apply to atomic action propositions. A possible extension
would be to consider non atomic action propositions, for example to represent
actions in sequence or in parallel [Mey88,CCBS05]. This would provide means
to specify security policies for workflow. Another perspective mentioned in the
previous section would be to consider obligations with deadlines. Obligations
with deadlines are based on the observation that users have generally some
time to fulfill their obligations before a violation occurs. In this paper, we con-
sider obligations without deadline so that we can only observe their fulfilment
or their violation in a given state. This has consequence on the definition of
actual obligation: In the model presented in this paper, if there is an actual
obligation, this necessarily implies that this obligation is fulfilled or violated.
Considering obligations with deadlines would provide means to consider a third
situation in which the obligation is not fulfilled but not violated yet. There
are already several models to define formal semantics for obligation with dead-
lines [DBDM04,CCBS05,DBL06,PD08] however none of them consider conflicts,
exceptions and CTD. This represents a very relevant extension to this work.

References

[ACBC+15] Azkia, H., Cuppens-Boulahia, N., Cuppens, F., Coatrieux, G., Oul-
makhzoune, S.: Deployment of a posteriori access control using IHE
ATNA. Int. J. Inf. Secur. 14(5), 471–483 (2015)

[ACBCC11] Azkia, H., Cuppens-Boulahia, N., Cuppens, F., Coatrieux, G.: A poste-
riori access and usage control policy in healthcare environment. J. Inf.
Assur. Secur. 6(5), 389–397 (2011)

[Åqv04] Åqvist, L.: Combinations of tense and deontic modality. In: Lomuscio, A.,
Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 3–28. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-25927-5 3

[BBC03] Benferhat, S., El Baida, R., Cuppens, F.: A stratification-based approach
for handling conflicts in access control. In: 8th ACM Symposium on Access
Control Models and Technologies (SACMAT 2003), Lake Come, Italy,
June 2003

[BDP97] Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, condi-
tional objects and possibility theory. Artif. Intell. J. 92(1–2), 259–276
(1997)

[Bel86] Belzer, M.: A logic of deliberation. In: Fifth National Conference on Arti-
ficial Intelligence, pp. 38–43 (1986)

[BJS96] Bertino, E., Jajodia, S., Samarati, P.: Supporting multiple access con-
trol policies in database systems. In: IEEE Symposium on Security and
Privacy, Oakland, USA (1996)

[CBC08] Cuppens-Boulahia, N., Cuppens, F.: Specifying intrusion detection and
reaction policies: an application of deontic logic. In: van der Meyden,
R., van der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp.
65–80. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
70525-3 7

https://doi.org/10.1007/978-3-540-25927-5_3
https://doi.org/10.1007/978-3-540-70525-3_7
https://doi.org/10.1007/978-3-540-70525-3_7

102 F. Cuppens and N. Cuppens-Boulahia

[CC97] Cholvy, L., Cuppens, F.: Analyzing consistency of security policies. In:
IEEE Symposium on Security and Privacy, Oakland, CA, May 1997

[CCBE13] Cuppens, F., Cuppens-Boulahia, N., Elrakaiby, Y.: Formal specification
and management of security policies with collective group obligations. J.
Comput. Secur. 21(1), 149–190 (2013)

[CCBG07] Cuppens, F., Cuppens-Boulahia, N., Ben Ghorbel, M.: High level conflict
management strategies in advanced access control models. Electr. Notes
Theor. Comput. 186, 3–26 (2007)

[CCBS05] Cuppens, F., Cuppens-Boulahia, N., Sans, T.: Nomad: a security model
with non atomic actions and deadlines. In: CSFW, pp. 186–196 (2005)

[CG01] Cholvy, L., Garion, C.: An attempt to adapt a logic of conditional pref-
erences for reasoning with contrary-to-duties. Fundamenta Informaticae
48(2, 3), 183–204 (2001)

[Chi63] Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis
24, 33–36 (1963)

[CJ02] Carmo, J., Jones, A.: Deontic logic and contrary-to-duties. In: Handbook
of Philosophical Logic: Extensions to Classical Systems, 2nd edn, vol. 8,
pp. 265–343. Kluwer Publishing Company (2002)

[DBDM04] Dignum, F., Broersen, J., Dignum, V., Meyer, J.-J.: Meeting the dead-
line: why, when and how. In: Hinchey, M.G., Rash, J.L., Truszkowski,
W.F., Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp.
30–40. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
30960-4 3

[DBL06] Demolombe, R., Bretier, P., Louis, V.: Norms with deadlines in dynamic
deontic logic. In: ECAI, Riva del Garda, Italy, pp. 751–752 (2006)

[DTCCB07] Debar, H., Thomas, Y., Cuppens, F., Cuppens-Boulahia, N.: Enabling
automated threat response through the use of a dynamic security policy.
J. Comput. Virol. 3(3), 195–210 (2007)

[ECCB12] Elrakaiby, Y., Cuppens, F., Cuppens-Boulahia, N.: Formal enforcement
and management of obligation policies. Data Knowl. Eng. 71(1), 127–147
(2012)

[EW07] Etalle, S., Winsborough, W.H.: A posteriori compliance control. In: 12th
ACM Symposium on Access Control Models and Technologies, New York,
USA, pp. 11–20 (2007)

[Hor93] Horty, J.F.: Deontic logic as founded in nonmonotonic logic. Ann. Math.
Artif. Intell. 9, 69–91 (1993)

[IYW06] Irwin, K., Yu, T., Winsborough, W.H.: On the modeling and analysis
of obligations. In: ACM Conference on Computer and Communications
Security, Alexandria, VA, pp. 127–147 (2006)

[JP85] Jones, A.J.I., Pörn, I.: Ideality: sub-ideality and deontic logic. Synthese
65, 275–290 (1985)

[Lan01] Lang, J.: Possibilistic logic: complexity and algorithms. In: Kohlas, J.,
Moral, S. (eds.) Handbook of Defeasible Reasoning and Uncertainty Man-
agement Systems. HAND, vol. 5, pp. 179–220. Springer, Dordrecht (2000).
https://doi.org/10.1007/978-94-017-1737-3 5

[LMD06] Luan, S., Magnani, L., Dai, G.: Algorithms for computing minimal con-
flicts. Logic J. IGPL 14(2), 391–406 (2006)

[LS99] Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems man-
agement. IEEE Trans. Softw. Eng. 25(6), 852–869 (1999)

[LvdT98] Tan, Y.-H., van der Torre, L.: The temporal analysis of Chisholm’s Para-
dox. In: AAAI/IAAI, pp. 650–655 (1998)

https://doi.org/10.1007/978-3-540-30960-4_3
https://doi.org/10.1007/978-3-540-30960-4_3
https://doi.org/10.1007/978-94-017-1737-3_5

Stratification Based Model for Security Policy with Exceptions and CTD 103

[McC94] McCarthy, L.T.: Defeasible deontic reasoning. Fundamenta Informaticae
21, 125–148 (1994)

[Mey88] Meyer, J.-J.Ch.: A different approach to deontic logic: deontic logic viewed
as a variant of dynamic logic. Notre Dame J. Formal Logic 21(1), 109–136
(1988)

[PD08] Piolle, G., Demazeau, Y.: Obligations with deadlines and maintained
interdictions in privacy regulation frameworks. In: 8th IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT 2008),
Sidney, Australia, pp. 162–168. IEEE Computer Society, December 2008

[PS96] Prakken, H., Sergot, M.: Contrary-to-duty obligations. Studia Logica
57(1), 91–115 (1996)

[PS97] Prakken, H., Sergot, M.: Dyadic deontic logic and contrary-to-duty obliga-
tions. In: Nute, D.N. (ed.) Defeasible Deontic Logic, pp. 223–262. Synthese
Library (1997)

[Pv17] Parent, X., van der Torre, L.: The pragmatic oddity in norm-based deontic
logics. In: ICAIL, pp. 169–178 (2017)

[TvdT97] Tan, Y.-H., van der Torre, L.W.N.: Contextual deontic logic: violation
contexts and factual defeasability. In: Meyer, J.-J.C., Schobbens, P.-Y.
(eds.) Formal Models of Agents. LNCS (LNAI), vol. 1760, pp. 240–251.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46581-2 16

[vdTT97] van der Torre, L., Tan, Y.: The many faces of defeasibility in defeasi-
ble deontic logic. In: Nute, D. (ed.) Defeasible Deontic Logic. Synthese
Library, vol. 263, pp. 79–121. Kluwer (1997)

[vdTT98] van der Torre, L., Tan, Y.: An update semantics for prima facie obliga-
tions. In: Prade, H. (ed.) Proceedings of the Thirteenth European Con-
ference on Artificial Intelligence (ECAI 1998), pp. 38–42 (1998)

https://doi.org/10.1007/3-540-46581-2_16

Asymptotic Behavior of
Attack Graph Games

George Cybenko1(B) and Gabriel F. Stocco2

1 Dartmouth College, Hanover, NH 03755, USA
gvc@dartmouth.edu

2 Microsoft Corporation, Redmond, WA, USA
gabe@gstocco.com

Abstract. This paper presents and analyzes an attack graph optimiza-
tion problem that arises in modeling certain adversarial cyber attack
and defend scenarios. The problem formulation is based on representing
attacks againt a system as a finite, weighted, directed graph in which
the directed edges represent transitions between states in an attack and
edge weights represent the estimated cost to an attacker for traversing
the edge. An attacker strives to traverse the graph from a specified start
node to a specified end node using the least weight cost directed path
between those nodes. On the other hand, the defender seeks to allocate
defensive measures in such a way as to maximize the attacker’s mini-
mal cost attack path. We study the role that minimal cut sets play in
hardening the attack graph and prove that under this simple model min-
imal cut sets are optimal defensive investments in the limit even though
minimal cut sets may not play a role in hardening a system initially.
Viewing attackers and defenders as players in a two person, non-zero
sum game, the results in this paper describe the asyptotic behavior of
optimal solutions to the game under certain conditions.

Keywords: Attach graphs · Network interdiction · Optimal defenses

1 Introduction

Attack graphs have been developed to model the ways in which an adversary
can gain access to resources by means of a sequence of possible exploits [8].1

By modeling adversaries in this manner, attack graphs have been successfully
generated and used by defenders to analyze the security of their systems and
networks [11].

Automatic attack graph generation tools have been proposed and can be used
by both attackers and defenders, with a variety of techniques for performing

Supported by the US Army Research Office (ARO) MURI grant W911NF-13-1-0421.
1 Although Bruce Schneier originally introduced the concept of “attack trees” [8], by

adding a start node connected to the leaves of all the nodes in the tree, the tree
trivially becomes an acyclic directed graph and therefore an attack graph in our
sense of the term.

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 104–112, 2018.
https://doi.org/10.1007/978-3-030-04834-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_5

Asymptotic Behavior of Attack Graph Games 105

analysis of the graphs [10]. Of particular merit and note are the seminal works
by Jajodia and others on quantifying and optimizing mitigation options for a
defender [6,7]. The present work illustrates how such attack and defend actions
by the attacker and defender behave in the limit, as the resources of both actors
goes to infinity.

In our formalization of this adversarial situation, we assume that both the
attacker and defender have access to and knowledge of the same weighted attack
graph. In addition to the actual structure of the graph, the costs to traverse edges
are assumed to be accurately estimated and known by both sides. The challenge
of quantifying attack steps has been investigated in the QuERIES Methodology
[1] which was specifically designed for the quantitation of security investment
decisions on computer systems.

Fig. 1. All edge weights in this example attack graph are equal to 1. The minimum cut
in this graph consists of the two edges entering the Goal node. There are two minimal
cost attack paths and each of them has a total cost of 3, both passing through the
circled edge on the right side version. A defender with one unit to invest in hardening
this graph will invest that unit in the circled middle edge leaving the start node to
maximize the minimal cost path. It is not optimal to invest that unit in the minimal
cost cut.

Given a weighted attack graph, G = (V,E), with edge weights uj and∑
j uj = T , an attacker starting at the source node, s, wishes to traverse the

network from s to the target node, t, using the minimal cost path. The cost of
a path is the sum of the edge weights along the path. We are assuming that
the defender knows the structure and weights of the attack graph describing a
system and the attacker choses the minimal cost path from s to t.

The defender has a total investment budget R which is invested to increase
the weights of edges. If the defender invests xj in defending edge j, then the net
increase in edge j’s cost is γjxj so that the defender’s cost of traversing edge j
becomes uj + γjxj . The defender’s goal is to maximize the minimum cost path
subject to an overall investment budget,

∑
j xj ≤ R.

Figures 1 and 2 illustrate a simple example of the problem with all edge costs
starting with value 1 and all multipliers, γi = 1. In this simple example, an
initial optimal investment is not made into the minimal cut set but eventually
the optimal investments are made into the cut set edges.

The main result of this paper is that optimal investments are eventually
made into appropriately defined cut sets and allocated in a manner inversely

106 G. Cybenko and G. F. Stocco

proportional to the multipliers γi. As a special case, we prove that as R becomes
large, the maximal minimal path cost grows as R

|C| where C is the minimum cut
and |C| is the cardinality of the minimum cut. Moreover, each edge in the cut
set is allocated about R

|C| investment.

Fig. 2. This attack graph is the same attack graph as depicted in Fig. 1 but with the
optimal investment of one unit made in the middle edge going out of the start node
increasing its cost to 2. The minimum cut still consists of the two edges entering the
Goal node. There are now four minimal cost attack paths and each of them has a total
cost of 4. A defender will now invest in hardening the minimal cut edges equally so
that, for example, if one unit of investment is to be allocated, 0.5 units are invested
into each of the minimum cut edges making all minimal cost paths cost 4.5 units.

More generally, when the multipliers, γi, are not all equal to one, the min-
imal cut set is defined with respect to the edge weights 1/γi and the optimal
investments become

Ri = R ·
1
γi∑
i

1
γi

(1)

for edge i in that cut set. The summation in the above expression is over the
edges in the minimal cut set so that

∑
i Ri = R.

Edges with γi = 0 are not candidates for a minimal cut set because 1/γi is
effectively treated as infinity. (Note that if a cut set excluding edges with γi = 0
does not exist, that means that there is at least one attack path that cannot be
hardened regardless of the resources a defender applies. This might be the case,
for example, when the defender does not control or have authority to modify the
security aspects of any of the resources along a path along for which γi = 0.)

The problem addressed in this work deals with optimally increasing the cyber
attackers’ work factor [9]. Attacker work factor modeling and analysis assumes
that attackers can compromise systems if they have sufficient resources. The
challenge is to make the resources required by an attacker to succeed as large as
possible.

Asymptotic Behavior of Attack Graph Games 107

Hardening a system by first modeling its security properties using an attack
graph and then analyzing that attack graph to identify good defensive invest-
ments was pioneered in the cyber security domain by Jajodia and his coauthors
[6,11]. They formulated the steps in an attack using logical predicates and then
identified methods for finding the minimal cost logical preconditions required to
make an attack most costly for an attacker.

Such attack graph hardening is an instance of a larger problem set called
“network interdiction” that has been applied to supply chains, escape routes
and other non-cyber domains [2,3].

With respect to the general problem of network interdiction, Israeli and Wood
have shown that when the decisions are binary (that is, investments are either
made in an edge or not with fixed known asymmetric costs for the attacker and
defender when the investment is made) the resulting problem is NP-Hard [4].
Fulkerson and Harding have shown that the problem of maximizing the minimal
cost path can be reduced to a maxflow network optimization problem when
defender investments and attacker costs are linear and real-valued [2]. This is a
useful result because the number of attack paths as a function of the number
of attack edges and nodes can be exponentially related. Golden uses a similar
approach to Fulkerson and Harding to model a scenario where a certain path’s
cost must be increased by a set amount by modeling the problem as a minimum
cost flow problem [3].

However, these previous works have not performed an asymptotic analysis
of the relationship between cut sets and the defensve allocation solution as the
defender’s budget grows. This is precisely the subject of this present work.

After this introductory section, Sect. 2 contains the main analytic results and
Sect. 3 is a summary with a discussion of the meaning of these results together
with ideas for future work in this direction.

2 Results

To formulate the problem quantitatively, let M be the path-edge incidence
matrix so that mj,i = 1 if edge i is on path j and mj,i = 0 otherwise. The
matrix M has a row for every directed path between the start node, s, and the
goal node, g. Let u be the vector of original weights on the edges in G and γi be
multipliers for defender investments in those edges. That is, for a unit investment
of defense in edge i, the resulting increase in cost for the attacker to traverse
edge i is γi.

Let Γ be the diagonal matrix with the γi on the diagonal and 1 be the row
vector of 1’s and so 1T be the column vector of 1’s. The problem of maximizing
the minimal cost path in this model is expressed by the linear programming
optimization problem:

Max Min Path Problem (M2P2): Maximize z subject to

M(u + Γx) ≥ z · 1T ≥ 0 (2)

108 G. Cybenko and G. F. Stocco

1x =
∑

j

xj ≤ R, xj ≥ 0. (3)

In this matrix formulation, Γx is the vector of defensive investments made
in the various edges of the attach graph G so that M(u + Γx) is the vector
of attack costs indexed by attack paths (which might be exponentially large as
noted before).

The inequalities M(u+Γx) ≥ z ·1T basically state that the costs of all attack
paths are at least z. In particular, the minimal cost attack path has cost larger
than z and our objective is the maximize the minimal cost attack path.

The inequalities 1x =
∑

j xj ≤ R and xj ≥ 0 capture the fact that defensive
investments are all nonnegative and the total investment is bounded by R.

Various properties can be inferred from the linear programming formulation
of M2P2 above. Indeed, several previous works have used properties of primal
and dual versions of network interdiction problems. However, in this present
work we use a general graph theory result that predates linear programming.

Theorem 1 (Menger’s Theorem). Let G = (V,E) be a directed graph and let
s, g ∈ V (G) be two vertices. The maximum number of edge-disjoint directed
paths from s to g equals the minimum number of edges whose removal destroys
all s, g-directed paths [5].

Proof. Using the max-flow min-cut theorem, the proof follows for network flows
in which all edges have capacity one although the original result of Menger’s
predates linear programming [5,12]. The theorem is valid for multigraphs as
well, namely graphs that have multiple edges between two nodes.

2.1 Asymptotic Behavior of M2P2 Solutions

We first consider the case where all γi = 1 and then generalize to arbitrary
nonnegative, rational values of γi. Let T = 1u be the existing cost total for all
edges before any investment and let |C| be the cardinality of the minimum cut
set.

Theorem 2. Let ẑ be the optimal value for the M2P2 problem above where
γi = 1. As the defender’s investment R → ∞, the maximal minimal cost attack
path, ẑ, for the attacker satisfies

R

|C| ≤ ẑ ≤ α +
R

|C| , (4)

where α is a constant.

(This means that, within a constant, the attacker’s minimal cost path eventually
grows like the defender’s investment budget divided by the cardinality of the
minimal cut set, |C|.)

Asymptotic Behavior of Attack Graph Games 109

Proof. By Menger’s Theorem [5,12], restated above for the reader’s convenience,
there exist |C| independent paths from s to g.

If we invest R
|C| in each minimum cut edge then, because every path from s

to g must include one of the mininimum cut edges, every attack path will have
cost at least R

|C| . As a result, ẑ ≥ R
|C| .

On the other hand, assume that

R + T

|C| < ẑ. (5)

This means that every attack path has a cost that is at least R+T
|C| because ẑ is

the cost of the minimal cost attack. By Menger’s Theorem there are |C| edge
independent attack paths and those |C| paths will have a collective cost that is
strictly greater than

|C| · R + T

|C| = R + T (6)

but this contradicts that T is the total sum of original edge weights and R is the
total added investment made. So it must be that

R + T

|C| ≥ ẑ. (7)

Together, we have established that

R

|C| ≤ ẑ ≤ R + T

|C| =
R

|C| + α (8)

where α is a constant independent of R.

We now consider the case where the incremental costs to attack edges are not
equal to the incremental cost to defend an edge but are linearly related. That is,
the cost of attacking edge i is ui +γixi where ui is the current (zero investment)
cost of attacking edge i and xi is the new investment made into defending edge
i but the γi are not necessarily all 1.

Theorem 3. Let ẑ be the optimal value for the M2P2 problem above where
γi ≥ 0 are rational. Consider the edge weights 1gammai and select a minimum
cost cut set of edges, C, with respect to those edge weights. As the defender’s
investment R → ∞, the maximal minimal cost attack path, ẑ, for the attacker
satisfies

R
∑

i∈C
1
γi

≤ ẑ ≤ α +
R

∑
i∈C

1
γi

(9)

where α is a constant.

(Note that if γi = 1 for all i, then
∑

i∈C
1
γi

= |C| and the results reduces to
the case of γi = 1).

110 G. Cybenko and G. F. Stocco

Fig. 3. This demonstrates the construction of the graph G′ from G. In the figure, we
have edges with weights 2 and 4/3 so that A = 4 results in A/2 = 2 and A · 3/4 = 3
edges in G′ replacing the original ones in G.

Proof. Choose A such that for all i, A
γi

is an integer which is possible because
the γi are all rational. Edges with γi = 0 are not included and 1/γi is treated
as infinity. It is clear that the effect of this rescalling is to change the initial
edge costs to ui/A and incremental costs to xiγi/A. Because path costs are
the sum of the consistuent edge costs, the cost of paths is merely scalled by
A−1 and this does not change the minimal cost path and so on. Construct an
auxiliary multigraph G′ in which every edge ei ∈ G is replaced by A

γi
edges

ei,j in G′ with γ′
i,j = 1 for 1 ≤ j ≤ A

μi
. Any investment made on edges in G

has an equivalent investment for the corresponding edges in G′ and vice versa.
Specifically, a defensive investment of xi made on edge ei in G is equivalent to
an investment of xi

γi

A made on each of the A
γi

edges corresponding to ei in G′.
Edges with γi = 0 are considered to have an infinite number of edges replacing
them so are not candidates to be considered in a minimal cost cut as described
below. This construct is illustrated in Fig. 3.

Note that since we are interested in maximizing the minimal cost attack path,
the investment in each of the A

γi
edges must be uniform, namely xi

γi

A , to achieve
a maximum. If the allocation is not uniformly xi

γi

A , then one of the edges must
have an investment smaller than xi

γi

A which results in a smaller path cost.
Consider now the minimal edge cutset in G′ which is a multigraph with each

edge having weight either 1 or ∞. An edge ei,j is in the minimal cut set if and
only if all other edges of the form ei,j with 1 ≤ j ≤ A

γi
because if not all those

ei,j edges are in the cutset, there is no cut at ei.
Let C be the minimal edge cut set in G′and comprised of the edges ei′ in G.

We allocate

xi′ = R
γi′
A∑
i′

γi′
A

(10)

to edge ei′ so that
∑

i′ xi′ = R. Edges not in the minimal cutset are assigned no
defensive investment.

Because

xi′ = R
γi′
A∑
i′

γi′
A

(11)

Asymptotic Behavior of Attack Graph Games 111

is allocated to each edge of the A
γi′

edges in G′ corresponding to i′, every attack
path in G passes through at least one ei′ and therefore has a cost of at least

A

γi′
xi′ =

A

γi′
R

γi′
A∑
i′

γi′
A

=
R

∑
i′

γi′
A

. (12)

That is,
R

∑
i′

γi′
A

≤ ẑ. (13)

Suppose that the cost, ẑ, of the minimal cost attack path in G′ further
satisfies

R + T
∑

i′
γi′
A

< ẑ (14)

where T is the total cost of all edges in G.
By Menger’s Theorem applied to G′, there are C =

∑
i′

A
γi′

edge independent
attack paths, each of which must have cost strictly larger than

R + T
∑

i′
γi′
A

(15)

because ẑ is the minimum. The total cost of these attack paths is strictly larger
than (

∑

i′

γi′

A

)
R + T
∑

i′
γi′
A

= R + T (16)

which is a contradiction because R + T is the total of all original costs, T , and
new investments, R.

Therefore, it must be that

ẑ ≤ R + T
∑

i′
γi′
A

. (17)

Together, these results establish that

R
∑

i′
γi′
A

≤ ẑ ≤ R + T
∑

i′
γi′
A

=
R

∑
i′

γi′
A

+ α (18)

where α is indepedent of R.

3 Summary and Discussion

In this short note, we have shown that under the assumption of linear rela-
tionships between defender’s investments and attacker’s costs, in the limit as
defender investments become large and are olptimally allocated, the minimum
cut sets in an attack graph are the places to make optimal investments and

112 G. Cybenko and G. F. Stocco

those investments bound the maximum minimal attack paths. This makes rigor-
ous the intition that minimum cost cut sets are somehow important in defending
a system whose security is described by an attack graph.

The assumption of a linear relationship between investments and attacker
costs is a great simplification. However, if the relationship is made more general
and nonlinear, the problem of even computing optimal investments can become
computationally difficult and we are not sure what sorts of relationships or prop-
erties can exist in the limit [4].

It would be reasonable to assume that some defender investments simulta-
neously harden multiple edges with one investment so that the investments in
various edges are not completely independent. This would be in interesting case
to consider in future work.

References

1. Carin, L., Cybenko, G., Hughes, J.: Cybersecurity strategies: the QuERIES
methodology. Computer 41(8), 20–26 (2008)

2. Fulkerson, D.R., Harding, G.C.: Maximizing the minimum source-sink path subject
to a budget constraint. Math. Program. 13, 116–118 (1977). https://doi.org/10.
1007/BF01584329

3. Golden, B.: A problem in network interdiction. Naval Res. Logist. Quarter. 25(4),
711–713 (1978)

4. Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97–
111 (2002). https://doi.org/10.1002/net.10039

5. Menger, K.: Zur allgemeinen kurventheorie. Fundam. Math. 10(1), 96–115 (1927)
6. Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network

hardening via exploit dependency graphs. In: Proceedings of 19th Annual Com-
puter Security Applications Conference, pp. 86–95. IEEE (2003)

7. Noel, S.E., Jajodia, S., O’Berry, B.C., Jacobs, M.A.: Minimum-cost network hard-
ening. US Patent 7,555,778, 30 June 2009

8. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
9. Schudel, G., Wood, B.: Adversary work factor as a metric for information assur-

ance. In: Proceedings of the 2000 Workshop on New Security Paradigms, pp. 23–30.
ACM (2001)

10. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on
Security and Privacy, pp. 273–284. IEEE (2002)

11. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack
graphs. Comput. Commun. 29(18), 3812–3824 (2006)

12. West, D.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (1996)

https://doi.org/10.1007/BF01584329
https://doi.org/10.1007/BF01584329
https://doi.org/10.1002/net.10039

Some Ideas on Privacy-Aware Data
Analytics in the Internet-of-Everything

Stelvio Cimato1 and Ernesto Damiani2(B)

1 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
2 EBTIC - Khalifa University of Science and Technology, Abu Dhabi, UAE

ernesto.damiani@ku.ac.ae

Abstract. In this chapter, we discuss some issues concerning the com-
putation of machine learning models for data analytics on the Internet-
of-Everything. We model such computations as compositions of services
that form a process whose main stages are acquisition, preparation,
model training, and model-based inference. Then, we discuss randomiza-
tion-as-a-service as a key technique for limiting undesired information
disclosure during this process. We recall some fundamental results show-
ing that randomization decreases the severity of disclosure, but at the
same time has an adverse effect on data utility, in our case the data
business value within the specific IoE application. We argue that non-
interactive randomization at data acquisition time, while decreasing util-
ity, can provide maximum flexibility and best accommodate provisions
for compliance with regulations, ethics and cultural factors.

Keywords: Internet-of-everything · Machine learning models
Privacy · Ethics

1 Introduction

The concept of the Internet-of-Everything (IoE) was not born in academia. It
originated at Cisco, whose white papers defined the IoE as “the intelligent con-
nection of people, process, data and things”. The high expectation raised by
the convergence of Artificial Intelligence (AI) and IoE are due to the impressive
performance of Machine Learning (ML) models whose inputs consists of highly
dimensional data flows coming from virtual objects in the IoE. In these flows,
each data item can have hundreds, thousands or even millions of dimensions. For
example, each person in a virtual “crowd” can be identified by face, finger-print,
EEG brain-waves, and irises, each coming from a different set of sensors; so the
crowd is a highly dimensional virtual entity of the IoE. Data dimensions are
sometimes all generated at a single location and (nearly) at the same time (e.g.
when the crowd is monitored via a single multi-spectral camera on a satellite).

E. Damiani—This chapter was written while Ernesto Damiani was on leave from Dipar-
timento di Informatica, Università degli Studi di Milano, Italia.

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 113–124, 2018.
https://doi.org/10.1007/978-3-030-04834-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_6

114 S. Cimato and E. Damiani

More often, they are prepared by distributed computations like semantic-driven
joins, which may cause non-uniform latency across data dimensions (e.g. when
the crowd is monitored by a “sand-dust” of heterogeneously distributed sensors
not all of which are operational at any given time).

Entities of interest in the IoE (including humans) are continuously located,
identified and monitored. The data they generate is processed using distributed
ML models whose training and inference stages are hosted on the cloud. As
the IoE is a socio-technical system, IoE entities include in principle all humans
interacting with networked devices, and its data flows carry all human-to-device
and human-to-human communications. The ongoing trend toward designing and
training AI models based on human behavioral data collected on the IoE has
raised many concerns related to privacy, and more recently on other ethical impli-
cations. When ML models practice on training sets composed of “wild data”, i.e.
data taken without filters from the real world, they can only learn their behav-
ior from human actions, and for this reason behave in a way that the society
considers racist, sexist, or unethical in other ways.

In the last decade, much research has addressed security and privacy of ML
models per se, but less attention has been devoted to the impact of these tech-
niques on the distributed architectures where ML models for IoE are computed.
Many contributions assume as the best trade-off between utility and disclosure
risk can be found at model inference time, when both the data utility and the
impact of its disclosure can be assessed on the real inputs rather than estimated
a priori. However, the IoE is an ecosystem whose modules are owned and man-
aged by multiple operators, each with its own interests and agenda; therefore,
we cannot always postpone all disclosure control to analytics computation time.
Also, modeling risk as Risk = Likelihood × Impact, we have argued elsewhere
[5] that outsourcing data analytics computations increases both likelihood and
impact of disclosure and other security risks.

1.1 The Data Analytics Pipeline

In this chapter, we model the computation of data analytics/machine learning
on the IoE as a composition of services [6] that form a pipeline1 (acquisition,
preparation, model training, and model-based inference). These services are pro-
vided by distinct agents with non-aligned interests and agendas. We will focus on
randomization-as-a-service as a key technique for controlling disclosure during
distributed data acquisition, preparation and analytics in the IoE. Randomiza-
tion decreases the severity of disclosure, but at the same time has an adverse
effect on data utility, i.e. the data business value within the specific application
context. In principle, the goal of any disclosure control technique should be min-
imizing the impact of disclosure events while preserving as much data utility
for the application owner as possible. In practice, ethical and cultural factors
may play an important role in deciding what should be randomized, when, and

1 Here, the term “pipeline” is used loosely to designate any computation involving all
or some of these stages, regardless of their order.

Some Ideas on Data Analytics in the Internet-of-Everything 115

how it should be done. When dealing with complex ML models like deep Artifi-
cial Neural Networks (ANNs), many network parameters besides the input data
values lend themselves to randomization, and could afford quantification of the
differential privacy achieved with respect to the accuracy.

2 Background

We shall start by informally discussing two related disclosure risks that arise
when outsourcing the execution of ML models. Both concern service providers
in the IoE pipeline, who could gain information on the input data or guess
the information originally used for training the ML model they use. As we are
chiefly interested in honest-but-curious behavior, here we will not discuss other
well-known risks like the one arising from insiders or outsiders tampering with
the ML model training data, modifying the ML model output and deceiving its
users.

To better understand the notion of training set disclosure, let us consider a
typical data analytics problem: classifying the items of a data space DS into
classes of interest belonging to a set C = (C1, .., Cn). We do not have access to
the entire data space, so we use a representative sample S � DS and tabulate
a partial classification function f : S → C, obtaining a training set, which by
abuse of notation we shall also call f . Then, we use the training set f to train
a model that will be able to compute another function F : DS → C. Finally,
we deploy F into production, using it to classify individuals from DS as needed
(the so-called inference step).

This standard procedure involves a disclosure risk with respect to the entries
in f whenever f can be inferred from F .

For instance, if F is computed as a service using the Nearest-Neighbor tech-
nique (i.e. ∀x ∈ DS,F (x) = f(tx) where tx is the point in S closest to x accord-
ing to some domain distance), f is integral part of the definition of F and is
therefore fully disclosed to the external service whenever F is deployed. In this
context, one could be tempted to require that computing F in production (i.e.,
performing the inference) should reveal absolutely nothing about the training
set f . This is unfortunately just a re-phrasing of the classic Dalenius require-
ment for statistical databases, and three decades of research in the privacy field
have shown that it cannot be fully achieved if enough side information about S
is available. However, Dwork [8] proposed more than a decade ago the notion
of differential privacy, which, intuitively, captures the disclosure risk incurred
by adding data to the training set f . Disclosure will happen if by running or
observing F in production, an attacker can reconstruct one or more entries of f .

Dwork’s seminal work has turned the “impossible” Dalenius requirement into
an achievable goal: observing the execution of F , one should be able to infer the
same information about an entry e ∈ f as by observing F ′, obtained using the
training set f − {e} + {r}, where r is a random entry. This will provide the
owner of e - assuming she has something to gain by knowing the result of F -
with some rational motivation for contributing e to the training set, as she will

116 S. Cimato and E. Damiani

be able to deny any specific claim on the value of e that anyone could put forward
based on F (a notion called plausible deniability). A sequence of seminal papers
(including [4,9,12]) have shown that it is possible to achieve the desired level
of differential privacy, limiting the risk of disclosure of any individual data item
while preserving high level of accuracy, i.e. some measure of distance between
the output of F and a separately known or verifiable ground truth.

More formally, we can write that an analytics model F guarantees ε-
differential privacy if, for all possible training sets f and f ′ differing in a single
value, for all outputs Ci ∈ C and for all x ∈ DS:

(1 − ε) ≤ Pr(F (x) ∈ Ci)
(Pr(F ′(x) ∈ Ci))

≤ (1 + ε) (1)

where F and F ′ are respectively trained over f and f ′. The most investigated
approach to achieving differential privacy consists in introducing a degree of
randomization in the computation of F , making [F (x)] a random variable over
DS. Proposals vary on how and where to inject such randomization, depending
on the nature of F .

3 An Introductory Example

We will now use a simple example to introduce the problem of providing the
randomization needed to achieve differential privacy within the distributed com-
putation for training and execution of ML models. Let us consider a loan agency
offering loans in the range from 10k to 1M Euros. The agency wishes to com-
pute F , an estimate2 of the average amount of its loan requests, and display it
in a overhead screen at all their branches. There is however a privacy problem:
anyone who knows or can guess the total number n of borrowers, observing the
average amount before and after a customer has applied for a loan, will be able
to make an educated guess of the amount that the customer wishes to borrow.

The loan agency may protect its customers’ privacy by adding to the loan
requests some random noise with zero average and a standard deviation σ = 1

εn .
A convenient probability density for such noise is the Laplace distribution

p(z) = e
−|z|

σ = e−|z|ε (2)

The distribution of this random variable is “concentrated around the truth”: the
probability that [F] is z units from the true value drops off exponentially with
εz. This randomization introduces uncertainty, as the screens no longer show F
but the value of a random variable [F] with Laplace distribution whose average
coincides with F . However, it guarantees that the overhead screen content will
be ε-differentially private. In fact, it is easy to see that by replacing the last loan

2 In this case, S could be obtained by sampling DS. For the sake of simplicity, we
shall assume S = DS in the remainder of this Section. So, the “estimate” is in fact
the real value.

Some Ideas on Data Analytics in the Internet-of-Everything 117

request by an arbitrary value in the range [10k, 1M] one can shift the amount
of the average loan by less than 1M/n; so, the density value will change by an
amount smaller than eε ≈ 1 + ε, complying with Eq. 1.

In other words, what an observer can infer from seeing the screen change due
to a borrower’s loan request is nothing more than what the observer could infer
from a seeing the change of a random value in the same range. Borrowers enjoy
plausible deniability for any claim someone can make about the amount of their
loans after watching the overhead screens3.

Table 1. The loan agency training set

Name Surname Age Income bracket Gender Degree Loan performance

Paul White 23 Medium M High School NP

Laura Green 21 High F High School P

Hector LaRouge 37 Medium M No degree P

William Gray 35 Low M PhD NP

Carolyne Black 43 Medium F BSc P

4 Randomizing Decision Trees

How to apply randomization in distributed computations of ML models is how-
ever not straightforward. Let us consider the case where the loan agency wishes
to estimate the likelihood of potential borrowers to pay back their loans. The loan
agency may have access to the features of its past borrowers (for instance age,
gender, income bracket and degree) including the outcome of their loans (e.g.
Performing (P) or Non-performing (NP)). This labeled data set f (Table 1) can
be used for training a classification model F that will later be used to predict
whether a new customer is likely to pay back her loan or not. For instance, we
can use f to build F as a decision tree, using top-down recursive partitioning of
training data [17].

Starting from the root node and the entire training set f , we choose a feature
at each step, which builds a node of the decision tree. If the feature’s domain
is continuous, we split the data into two chunks (to be sent to children nodes)
according to the chosen feature being higher or lower than a threshold value (for
instance, age ≥ 21). For discrete attributes, like degree, either a child node is
created for each possible value (PhD, BSc, High School, No-degree), or a value
is chosen to split the chunk between data showing that value and data having
a different one. The tree construction process needs the training set f to drive
the feature choice, as it is based on the feature’s ability to split the node’s data
chunk into subsets fi (fj) whose elements all belong to the same class Ci (Cj)
or at least belong to a “small” number of class labels. Many criteria have been

3 If S � DS, i.e. a sample of customers is considered for computing the average, we
expect a sampling error of the order O(1/

√
n). The Laplace random noise we have

introduced has standard deviation O(1/n), which is lower than the sampling error.

118 S. Cimato and E. Damiani

proposed for choosing the chunk-splitting feature, including entropy reduction:
at each node, the tree construction process selects the feature that maximizes
the difference in entropy between the node’s local data chunk and the chunk
subsets to be propagated to the children nodes.

The tree construction process ends once the data chunks at the leaves are all
“pure”, i.e. belong to a single category. This process delivers the model F as a
complete decision tree that handles without errors the domain S of f ; however,
complete trees may show disappointing performance over the entire data space
DS (a phenomenon called over-fitting). This defect can be alleviated by stopping
the tree building procedure earlier, accepting some chunks’ impurity. A decision
tree F built in this way is not differentially private: if the loan agency outsources
the computation of F to an external service, the latter will be able to learn which
features were used for data splitting at each node (for instance, degree = PhD)
and the corresponding thresholds. If the tree is complete, the tree’s leaf nodes will
also reveal information about the two loan classes’ cardinalities, which will allow
an observer to infer the P vs NP ratios within f . Together with some background
information (e.g., the list of PhDs who live in the region) this disclosure may
well support the inference that a specific person has not repaid a loan. From
the borrower’s point of view, contributing a data item e to the training set f
involves a disclosure risk. The process described above builds a single decision
tree. It is interesting for our purposes to discuss the classic extension to the
process introduced by Breiman et al. [3] to build Random Forests (RFs).

At each step, Breiman’s RF construction procedure selects a random subset
of the current data chunk and a random subset of features to be considered for
splitting the data, then repeats the process multiple times. In the intention of
the author, these random selections and projections aim to preserve diversity
in the tree structures, preventing the decision tree’s discrimination from getting
stuck in local minima. More specifically, random projections on f will make the
decision trees in the RF de-correlated, so that their average will be less prone
to over-fitting. Strongly discriminating features, however, will be selected by the
RF construction process in all the projections where they are available, making
the trees in the RF correlated again. Randomization provides an alternative to
greedy selecting at each step the best discriminating feature in term of entropy
reduction. However, the idea of using projections to make F training (proba-
bilistically) blind with respect to ethically charged features (e.g., age and gender
in Table 1) never surfaced, although some RF construction algorithms do per-
form cost-based feature selection [20] without affecting the overall quality of the
training.

4.1 Interactive Vs. Non-interactive Randomization

In 2005, Blum, Dwork et al. [1] noticed that random selection of a data subset can
be likened to a noisy SELECT query. They put forward the idea of randomizing
the decision tree construction by substituting off-line selection on f of features
to be used in the tree internal nodes’ conditions with run-time differentially
private queries to f . Query results are randomized adding Laplace noise to the

Some Ideas on Data Analytics in the Internet-of-Everything 119

counts of the records they return; this way, anyone who contributes an entry e
to the training set f will again enjoy statistical deniability of any external guess
about its value. Building on this intuition, many techniques have been devised
since then to convert traditional non-private algorithms to achieve differential
privacy, expressing the splitting conditions in terms of queries that could be made
differentially-private. However, this randomization is interactive, as Laplace noise
injection is done each time the tree is built, and the original non-noisy data must
be available somewhere.

We now regard this interactivity as a source of concerns, as it is hardly likely
that f will stay in the (supposedly safe) hands of the data owner. Outsourcing
training data storage before randomization leaves the door open to misuse, e.g.
“dark” models escaping randomization in the hope of higher accuracy. One may
wonder if the same effect can be obtained in a non-interactive setting where -
instead of computing noisy queries - the noise is added once and for all, i.e. releas-
ing a new training set f ′ composed of data who follow the same distribution of
the original training set, but are randomly modified to satisfy differential privacy
criteria. Typical non-interactive noisy data are histograms, disjoint partitions of
f with the number of data points which fall into each partition. To compute a
partition of f , one may select an attribute (or a combination of attributes) and
group data according to its values. With respect to the training set f in Table 1,
the single attribute gender generates the histogram {(M,3), (F,2)}. Introduc-
ing noise can be done by modifying the histogram’s cardinalities. Using single-
attribute histograms of f instead of f itself looks appealing for building RF
models without disclosing the training set. However, there are drawbacks: build-
ing histograms for all attribute combinations is space-consuming and the total
noise adds up if training requires aggregating multiple histogram points.

5 Methods Based on the Partition Lattice

Partitioning is a key technique for publishing non-interactive noisy training sets.
An interesting idea is navigating the partition lattice selectively “smushing”
block boundaries by applying lattice operation to obtain new partitions [2]. To
outline our “smushing” idea, let us briefly recall some background notions.

A partition π of f is a way of writing f as a disjoint union of nonempty
subsets called blocks. There is a natural one-to-one correspondence between the
partitions of f and equivalence relations on it. A partition π is finer than a
partition π′ iff every block of π is contained in a block of π′. This puts a partial
ordering on the set Π(f) of all partitions of f : we say π ≤ π′ if π is finer than π′.
Equivalently, we say that an equivalence relation ∼ is finer than the equivalence
relation ∼′ if x ∼ y ⇒ x ∼′ y. This ordering makes Π(f) into a complete lattice
(unlike the Boolean lattice of subsets of f , Π(f) is not distributive).

Here, we elaborate on the classic result that equivalence relations on a set
of multidimensional data points can be induced to obtain approximation spaces
over it [15]. Specifically, if f contains data n-tuples {e1, . . . , en}, any relation
∼k: S ⇒ S such that ei,∼k ej iff ti,k = tj,k is an equivalence relation on f .

120 S. Cimato and E. Damiani

In the classic Pawlak setting, each subset φ ∈ f can be expressed using a pair
composed of a lower approximation (the largest class of ∼k contained in φ)
and of an upper approximation (the smallest class of ∼k containing φ). Index k
(which selects a single feature) is usually substituted by a feature subset K of
{1, . . . , t} computed by minimizing an entropy function or the difference between
the upper and lower approximations of benchmark subsets.

Let us consider once more the training set f in Table 1. If K = {degree},
we get the equivalence relation {{e1, e2}, {e3}, {e4}, {e5}}. Under this relation,
the lower approximation of the concept “people without University degrees”
is {e1, e2}, and the upper approximation is {{e1, e2}, {e3}}. The approxima-
tion accuracy (estimated by computing the ratio between the lower and upper
approximation cardinalities) is 2

3 . Our idea is to select K dynamically, based on
the approximation accuracy on benchmark concepts (as opposed to statically,
based of semantic distance between features) to generate a starting partition of
S in two blocks (K,S − K) to be exploited for feature randomization. Then,
we explore the partition lattice using refinements of block S − K of the starting
partition (exploring the lattice lower cone). Intuitively, we are looking for a max-
imal partition, in the sense that adding an additional block will not improve the
performance of the model F . If the exploration is exhaustive, its complexity is
given by the sum of the level numbers, known as Stirling numbers of the second
kind of the partition lattice cone rooted in (K,S − K) [7]. We are looking at
exploration strategy based on chain decompositions [14], which would be linear
in the cardinality of S − K.

6 Randomizing Neural Networks

In Sect. 3, we have presented an example where F is a simple decision tree. We
used it to discuss how randomization techniques on the training set f , originally
introduced to avoid local minima (i.e., prevent over-fitting), could be exploited
for achieving differential privacy, possibly at the price of deploying them as
a separate non-interactive stage of the pipeline. One may wonder if it is also
possible to turn methods used for avoiding local minima in Neural Networks
DNNs) training into interactive or non-interactive randomization services. Let
us start by quickly recalling the gist of Gradient Descent (GD) techniques used
to train multi-stage NNs. In our notation (introduced in Sect. 2), a generic ML
model is defined by a function F : DS → C from a data space to a finite set of
classes. In this Section, let us denote NN models as Fw to highlight their weights
vectors w. For the sake of conciseness, here we do not even try to recall how NNs
internally compute Fw, other than saying that the output of each stage of a NN
is obtained as a weighted combination of activations coming from the previous
stage4. Activations to the first stage coincide with the NN model’s inputs.

Training adjusts w so that Fw coincides with f over S. GD training works
as follows: at each step of GD it perturbates vector w, applies Fw to one or
4 The interested reader is referred to Michael Nielsen’s excellent online book (http://

neuralnetworksanddeeplearning.com/).

http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

Some Ideas on Data Analytics in the Internet-of-Everything 121

more entities in the training set f , computes the classification error Ew, uses
the error’s variations to numerically estimate ∇Ew, and updates w based on
it. The classification error Ew can be computed as the linear (L1) or quadratic
(L2) sum of the differences between Fw outputs and the ground truths available
in f . This procedure tries to drive Fw along the error gradient, progressively
reducing Ew. The final goal of GD is to find the vector w that minimizes Ew on
the training set f . For our purposes, it is useful to consider for a moment the
actual computation performed by implementations to estimate ∇Ew. Given the
current weights vector w, they generate three nearby vectors w1,w2,w3. Then,
Ew(w)−Ew(wi)

w−wi
gives approximately the directional derivative of the error Ew at

w in the direction w − wi. That derivative is indeed the projection of ∇Ew(w)
in the direction of w − wi, or ∇Ew(w−wi)

w−wi
. Now, let us assume the following

approximation holds:

Ew(w) − Ew(wi) = ∇Ew(w) · (w − wi). (3)

As Ew is a scalar, this is a system of three linear scalar equations in three
unknowns (the components of ∇Ew). Provided the three vectors w − wi are
orthogonal, it has a unique solution, so it can be solved numerically to obtain
the gradient’s components.

This computation requires computing Ew, a computation that can in princi-
ple be done using a single element of f . However, available GD implementations
differ in terms of the number of elements of f that are used at each step to
compute Ew(w). As intuition suggests, the higher this number, the higher are
both the fidelity of GD in following the error gradient and - unfortunately - the
computation time:

– Stochastic Gradient Descent(SGD), is a variation of the GD algorithm that
computes Ew, estimates ∇Ew and updates Fw using a single random entry e
of f . Frequent updates of Fw introduce a noise-like “jerky” effect on Ew, but
allow for continuously monitoring the NN performance.

– Batch Gradient Descent (BGD) computes error Ew (and estimates ∇Ew) for
each e ∈ f , but only updates Fw after having scanned all of f (i.e. once for
each epoch). Intuition suggests that BGD’s lower frequency of updates results
in less sign variations in Ew. For our purposes, it is worth remarking that -due
to the granularity of ∇Ew estimates - BGD is usually implemented in such a
way that all f needs to be in memory at the same time.

– Mini-Batch Gradient Descent (MBGD) splits randomly f into subsets (the
“small batches”), which are used to compute Ew, estimate ∇Ew and update
Fw accordingly. In this case what is used to estimate ∇Ew is actually an
aggregation hMB(Ew), where MB is the mini-batch. Instead of computing
the aggregation h as a sum of errors over the mini-batch, it is common practice
of implementations to take the average, to keep Ew variance under control.

MBGD is widely used for training deep NN models. Its update frequency is
higher than the one of plain BGD; also, batch size acts as a control over the
learning process. Small batch size values may give faster convergence at the cost

122 S. Cimato and E. Damiani

of introducing noise in the training process. Large values give a learning process
that converges slowly but provides accurate estimates of Ew gradient.

As we have seen, several randomizations are routinely applied during NN
training, including the choice of the subset of f to be considered. Much research
has been devoted to investigating these randomizations, and several interesting
results are now available. For instance, unless there is a specific reason due to
data latency, mini-batches for neural net training are always drawn without
replacement (under suitable assumptions, drawing without replacement even
provides better performance [16]).

For our purposes, these results suggest that drawing batches could be done
non-interactively before the training is performed collaboratively within the IoE
pipeline. Another randomization technique widely used in deep NN training and
promising from our point of view is the dropout technique [18], an heuristic that
consists in randomly ignoring some neurons during each step of the training
phase. At each training step, individual neurons are either dropped out of the
NN with probability 1 − p or kept with probability p, so that a reduced NN is
left; incoming and outgoing edges to each of the dropped-out neurons, and the
corresponding weights, are not considered in the GD computation. Dropout crops
Fw to obtain each time a different F ′

w′ over which gradient ∇Ew′ is computed
instead of ∇Ew. This variation is a way to use randomization to prevent over-
fitting, conceptually similar to random projections used by Breimann et al. to
build Random Forests rather than single Decision Trees (Sect. 3). Selecting only
a part of the model to train preserves it from getting stuck in local minima of the
error, a time-honored notion in regression analysis [19]. Intuition suggests that
randomly discarding neurons increases diversity and prevents learning too sparse
w vectors where only weights corresponding to a few groups of connections are
non-zero. However, there is an important difference with respect to RF build-up
of Sect. 3: the iterative nature of NN training neural networks make it difficult
to add the “right” amount of noise needed for privacy preservation, since each
iteration increases the amount of added noise. As we have discussed above, the
number of training iterations cannot be decided for privacy reasons alone.

By the way, we remark that noise addition is more explicit in other tech-
niques, that target L1 and L2 forms of Ew by adding regularization terms to the
weight vector w rather than cropping the NN model.5 Recent studies [11] argue
that “the intrinsic noise added by dropout techniques, with the primary goal of
regularization, can be exploited to obtain a degree of differential privacy”.

7 Relaxations

As we have seen, noise introduced by privacy-driven randomization on f can
produce results very far from the ground truth, thus leading to low utility of F .
This problem has been mostly tackled by lowering the privacy bar, i.e. intro-
ducing relaxations of the differential privacy notion. The most widespread is
5 Again, adding regularization terms implicitly transforms training Fw into training a

different F ′
w′ , hopefully less prone to local minima.

Some Ideas on Data Analytics in the Internet-of-Everything 123

(ε, δ)-differential privacy. More formally, we can write (following [10]) that an
analytics model F guarantees ε, δ-differential privacy if, for all possible training
sets fand f ′ differing in a single value, for all outputs Ci ∈ C and for all x ∈ DS

Pr(F (x) ∈ Ci) ≤ ε(Pr(F ′(x) ∈ Ci)) + δ) (4)

For δ = 0, this is again Eq. 1
The addition of δ gives us a tunable parameter that can be used online to

quantify the amount of noise to be injected, as it is linked to the probability
density of the noisy output [F]. Still there are no easy rules for setting δ based
on privacy preferences. It is often taken to be a very small constant or a negligible
function of the size f , where negligible means that it grows more slowly than
the inverse of any polynomial, and therefore of the sampling error O(1/

√
n) due

to choosing S within the data space DS.

8 Discussion

The (admittedly half-baked) recipe for IoE analytics emerging from our dis-
cussions so far is rather simple: (i) use (relaxations of) differential privacy and
ethical concerns to quantify randomization, (ii) use an injector to add non-
interactively the right amount of noise to the training set f , preferably at the
IoE periphery (i.e., under the control of the data owner) or in a trusted envi-
ronment (iii) outsource the trained model F in production. However, a word of
caution is needed. First of all, it is unclear whether this recipe would transfer
liabilities if privacy breaches or unethical decisions occur. This would require
successfully arguing in a litigation that a given δ value was appropriate to the
specific application. Secondly, certifiable noise injection does not eliminate dis-
closure risk. Already in 2012, Kifer and Machanavajjhala [13] pointed out that
randomizing a model F to achieve differential privacy will not per se prevent
inferences based on F output and on independently known correlations within
DS. Finally, in the IoE humans are exposed to ML models operation. Random-
ization may introduce classification errors that would undermine human trust
in the model. For these reason we may be still forced to explicitly model adver-
saries.

Acknowledgements. This work was supported by H2020 EU-funded project EVO-
TION (grant agreement n. H2020-727521).

References

1. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ frame-
work. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. PODS 2005, pp. 128–138 (2005).
https://doi.org/10.1145/1065167.1065184

2. Bosc, P., Damiani, E., Fugini, M.: Fuzzy service selection in a distributed object-
oriented environment. IEEE Trans. Fuzzy Syst. 9(5), 682–698 (2001). https://doi.
org/10.1109/91.963755

https://doi.org/10.1145/1065167.1065184
https://doi.org/10.1109/91.963755
https://doi.org/10.1109/91.963755

124 S. Cimato and E. Damiani

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Chen, R., Mohammed, N., Fung, B.C.M., Desai, B.C., Xiong, L.: Publishing set-

valued data via differential privacy. PVLDB 4, 1087–1098 (2011)
5. Damiani, E.: Toward big data risk analysis. In: 2015 IEEE International Conference

on Big Data, Big Data 2015, Santa Clara, CA, USA, 29 October–1 November 2015,
pp. 1905–1909. IEEE (2015) https://doi.org/10.1109/BigData.2015.7363966

6. Damiani, E., Ardagna, C., Ceravolo, P., Scarabottolo, N.: Toward model-based
big data-as-a-service: the TOREADOR approach. In: Kirikova, M., Nørv̊ag, K.,
Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 3–9. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66917-5 1

7. Damiani, E., D’Antona, O.M., Regonati, F.: Whitney numbers of some geometric
lattices. J. Comb. Theory, Ser. A 65(1), 11–25 (1994)

8. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

9. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

10. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

11. Ermis, B., Cemgil, A.T.: Differentially private dropout. CoRR abs/1712.01665
(2017). http://arxiv.org/abs/1712.01665

12. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing
privacy mechanisms. In: Proceedings of the Forty-First Annual ACM Symposium
on Theory of Computing. STOC 2009, pp. 351–360 (2009). https://doi.org/10.
1145/1536414.1536464

13. Kifer, D., Machanavajjhala, A.: A rigorous and customizable framework for pri-
vacy. In: Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems. PODS 2012, pp. 77–88 (2012). https://doi.org/
10.1145/2213556.2213571

14. Loeb, D., Damiani, E., D’Antona, O.M.: Decompositions of bextn and piextn using
symmetric chains. J. Comb. Theory, Ser. A 65(1), 151–157 (1994)

15. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishers, Norwell (1992)

16. Recht, B., Re, C.: Beneath the valley of the noncommutative arithmetic-geometric
mean inequality: conjectures, case studies, and consequences. In: Proceedings of
the Twenty-Fifth Annual Conference Learning Theory (2012)

17. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers - a survey.
IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.) 35(4), 476–487 (2005).
https://doi.org/10.1109/TSMCC.2004.843247

18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhut-
dinov, R.: Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014).
http://dl.acm.org/citation.cfm?id=2627435.2670313

19. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc.,
Ser. B 58, 267–288 (1994)

20. Zhou, Q., Zhou, H., Li, T.: Cost-sensitive feature selection using random forest.
Know.-Based Syst. 95(C), 1–11 (2016). https://doi.org/10.1016/j.knosys.2015.11.
010

https://doi.org/10.1109/BigData.2015.7363966
https://doi.org/10.1007/978-3-319-66917-5_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/11681878_14
http://arxiv.org/abs/1712.01665
https://doi.org/10.1145/1536414.1536464
https://doi.org/10.1145/1536414.1536464
https://doi.org/10.1145/2213556.2213571
https://doi.org/10.1145/2213556.2213571
https://doi.org/10.1109/TSMCC.2004.843247
http://dl.acm.org/citation.cfm?id=2627435.2670313
https://doi.org/10.1016/j.knosys.2015.11.010
https://doi.org/10.1016/j.knosys.2015.11.010

Protecting Resources and Regulating
Access in Cloud-Based Object Storage

Enrico Bacis1, Sabrina De Capitani di Vimercati2(B), Sara Foresti2,
Stefano Paraboschi1, Marco Rosa1, and Pierangela Samarati2

1 Università degli Studi di Bergamo, Bergamo, Italy
{enrico.bacis,stefano.paraboschi,marco.rosa}@unibg.it

2 Università degli Studi di Milano, Milan, Italy
{sabrina.decapitani,sara.foresti,pierangela.samarati}@unimi.it

Abstract. Cloud storage services offer a variety of benefits that make
them extremely attractive for the management of large amounts of data.
These services, however, raise some concerns related to the proper protec-
tion of data that, being stored on servers of third party cloud providers,
are no more under the data owner control. The research and development
community has addressed these concerns by proposing solutions where
encryption is adopted not only for protecting data but also for regulat-
ing accesses. Depending on the trust assumption on the cloud provider
offering the storage service, encryption can be applied at the server side,
client side, or through an hybrid approach. The goal of this chapter is to
survey these encryption-based solutions and to provide a description of
some representative systems that adopt such solutions.

1 Introduction

The ever increasing availability of off-the-shelf cloud storage platforms has con-
tributed to the growing of the Storage-as-a-Service (SaaS) market, with an
increasing trend for users and companies to offload their (possibly sensitive or
confidential) data and resources. There are several reasons for using cloud stor-
age services such as the benefits in terms of availability, scalability, performance,
and costs as well as the ability to easily share data with other users. However,
this trend also introduces several security and privacy risks that can slow down
the widespread adoption of storage services (e.g., [13,18,20]). In fact, by relying
on third parties for the storage of their data and resources, users and companies
lose the control over them: how can users and companies trust that their data
are properly protected when stored on a third-party server? The research and
development communities have dedicated many efforts in designing solutions
for addressing this concern (e.g., [13]). Encryption is at the basis of many of
these techniques: when data are encrypted they are visible only to the users who
know the encryption key. Encryption has then been adopted not only as a valid
solution for protecting data confidentiality (even against adversaries with access
to the physical representation of the data, including the cloud providers them-
selves), but also for supporting selective sharing of such data [12]. In this case,
c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 125–142, 2018.
https://doi.org/10.1007/978-3-030-04834-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_7

126 E. Bacis et al.

CSP

data owner

CSP

CSP

users

Fig. 1. Reference scenario

the idea consists in encrypting different portions of the data with different keys
and then sharing the encryption keys with only the users that have the autho-
rization for accessing the corresponding encrypted data. Figure 1 illustrates the
typical reference scenario when considering cloud storage infrastructures. As it
is visible from the figure, there are three main entities involved in this scenario:
the data owner who wishes to outsource the management of her data to a third
party, the cloud providers (CSPs) offering storage services, and other users who
may need to access the data stored on cloud providers.

A fundamental aspect that needs to be considered when applying encryption
to protect data is the trust assumption on the cloud providers in charge of storing
and managing the data. Cloud providers can be trusted , honest-but-curious, or
lazy/malicious. A trusted provider is fully trusted to access and manage the data
that it stores. A honest-but-curious provider is trustworthy for providing services
but should not be allowed to know the actual data content. A lazy or malicious
provider is neither trusted nor trustworthy and therefore its behavior should
be controlled. Depending on the trust assumption, encryption can be applied
following three different strategies: server-side, client-side, hybrid . Server-side
encryption means that the encryption of the data is managed directly by the
cloud provider, which stores and manages also the encryption keys. In this case,
the cloud provider guarantees that the data are stored in an encrypted format.
However, whenever the cloud provider’s services require direct visibility of the
plaintext data for access execution, the provider can decrypt the data. Since the
cloud provider has full visibility on the data, it can also enforce access restric-
tions. Server-side encryption can be applied only when the cloud provider is
fully trusted. Client-side encryption means that users encrypt their data before
storing them on external cloud providers. In this case, the encryption keys are
stored and managed by the owner of the data and cloud providers cannot access
the data in plaintext form, which limits the functionality that they can offer.
Also, access control restrictions need to be enforced by the data owner who has
to mediate all access requests to the data. This clearly reduces the advantages

Protecting Resources and Regulating Access in Cloud-based Object Storage 127

Trust Assumption
Encryption type

server-side client-side hybrid

trusted � � �
honest-but-curious × � �
lazy/malicious × � ×

Fig. 2. Encryption scenario depending on the trust assumption on cloud providers

of outsourcing the management of data to a third party. Client-side encryp-
tion can be applied under any trust assumption on the cloud provider. How-
ever, it is usually adopted when the cloud providers are honest-but-curious or
lazy/malicious. In the hybrid approach, the encryption of the data is performed
both at the client-side and at the server-side with the consequence that there are
two sets of encryption keys: one managed by the data owner and another one
managed by the cloud provider. The rationale behind the hybrid scenario is that
client-side encryption protects the data from cloud providers while server-side
encryption efficiently enforces changes in the access control policy without the
involvement of the data owner. Clearly, this approach can be applied only when
cloud providers are honest-but-curious (or trusted) but cannot be applied when
the cloud provider is lazy/malicious since there is no guarantee that the provider
applies the required encryption operations. Figure 2 summarizes the applicabil-
ity of the three encryption strategies according to the trust assumptions that
characterize the cloud providers.

The goal of this chapter is to provide an overview of the current encryption-
based solutions for protecting and enforcing selective access over data stored in
the cloud. In particular, for each of the three encryption strategies discussed
above, we first describe its salient aspects along with the main advantages and
disadvantages. We then describe a representative system that applies the con-
sidered strategy. The remainder of this chapter is organized as follows. Section 2
focuses on server-side encryption and presents OpenStack as a representative
system. Section 3 illustrates client-side encryption and describes the MEGA
service. Section 4 shows the hybrid approach and describes a prototype sys-
tem (ESCUDO-CLOUD EncSwift) protecting data confidentiality in OpenStack
Swift. Finally, Sect. 5 presents future research directions and provides our con-
clusions.

2 Server-Side Encryption

With server-side encryption, the cloud provider protects data in storage with an
encryption layer that it can remove when needed to perform access and query
execution (i.e., the cloud provider manages both the data and the encryption
keys). In this case, users placing data in the cloud have complete trust that the
cloud provider will correctly manage the outsourced information.

128 E. Bacis et al.

2.1 Discussion

Being fully trusted, the management of data is completely delegated to the
cloud provider itself. From the point of view of the users, the main advantage
of this solution is that they can use all the functionality offered by the server
for querying the outsourced data. Furthermore, the data owner can delegate the
cloud provider to enforce access control policies for regulating access to data.
From the point of view of the cloud provider, server-side encryption allows it to
use deduplication techniques to avoid the storage of multiple copies of the same
data, thus saving storage space. Basically, a cloud provider keeps the hash of
every resource it is storing. When a user uploads a resource, the cloud provider
computes the hash of the resources and checks whether the computed hash
corresponds to the hash of a resource it already stores. If this is the case, the
cloud provider discards the storage request and provides a link to the resource
already stored.

Although many of the most well-know public cloud storage providers use
server-side encryption (e.g., Dropbox, Amazon, and Google), this solution is not
always feasible and introduces security risks. In fact, since the encryption keys
are stored with the data, an adversary can exploit possible vulnerabilities of the
cloud provider to obtain both the encrypted data and the encryption keys, thus
obtaining the access to the plaintext version of the data themselves. Further-
more, the cloud provider might be forced by authorities to provide the stored
data in their plaintext form. With respect to the data deduplication techniques
commonly adopted by cloud providers, they can be exploited for violating data
confidentiality. As an example, suppose that an adversary knows that a certain
resource is stored on the cloud provider but does not know the value of some spe-
cific bytes (e.g., one value of a csv file). The adversary might try to generate as
many resources as the possible combinations for the missing bytes and to upload
each of them, one at a time. When the upload operation is not performed, the
adversary knows that the uploaded file corresponds to the one already stored
and therefore knows the value of the missing bytes. We note that these consider-
ations apply to both public clouds and private clouds (i.e., cloud solutions built
internally by a company).

Examples of public storage services based on server-side encryption are Drop-
box [14], Amazon Simple Storage Service (S3), and Google Cloud Storage (GCS).
All these services typically store the encryption keys in their proprietary key
management system and mainly differ in the pricing schema. Although the com-
panies ensures that no access is performed on users’ data, they could potentially
access all the data they store. In the following, we present OpenStack Swift as
an example of cloud solution offering server-side encryption.

2.2 Case Study: OpenStack Swift IBM Key Rotation

A well-known open source cloud computing platform that adopts server-side
encryption is OpenStack (http://www.openstack.org). OpenStack manages large

http://www.openstack.org

Protecting Resources and Regulating Access in Cloud-based Object Storage 129

Object
Server

Object
Server

Proxy Server

Pipeline

Ring

user

Fig. 3. OpenStack Swift architecture

pools of computing, storage, and networking resources, all controlled by admin-
istrators through a dashboard. OpenStack consists of several components includ-
ing an object storage system, called Swift . The architecture of Swift is composed
of a Proxy Server, a Ring, and an Object Server (Fig. 3). The Proxy Server is
the key component of Swift and is responsible for processing requests coming
from users and interacts with all other components. The Ring determines the
physical device where a file should be located. In other words, it is responsi-
ble for mapping names and physical location of data. The Object Server is a
blob storage (i.e., a storage that can manipulate unstructured data) in charge
of storing, retrieving, and deleting objects on disks. Each object is stored as a
binary file, and its metadata are stored as extended attributes of the file. Objects
stored in Swift are organized in containers, which loosely corresponds to directo-
ries of common file systems. Containers are organized in tenants (or accounts).
For interacting with Swift, a user sends a valid request to the Proxy Server.
The request is then processed by a pipeline of middlewares, and each of them
can enrich, filter, or drop metadata. In case the request reaches the end of the
pipeline, it is dispatched to the relevant Object Server based on the information
contained in the Ring. Once the request is processed by the Object Server, a
response is sent to the user, processed again by the middlewares of the Proxy
Server but in reverse order.

One of the latest release of OpenStack Swift (Ocata1) supports server-side
encryption to protect data at-rest (both objects content and metadata). To
this purpose, three new middlewares have been added: encrypter, decrypter,
and keymaster . Encrypter and decrypter are middlewares in charge of perform-

1 https://github.com/openstack/swift/blob/master/CHANGELOG.

https://github.com/openstack/swift/blob/master/CHANGELOG

130 E. Bacis et al.

BA
R

BI
C

AN

SW
IF

T O
PE

N
ST

AC
K

KE
YM

AS
TE

R

DEKKEK

account

DEKKEK

container

DEKKEK

object

EN
C

R
YP

TE
R

D
EC

R
YP

TE
R

Master Key

DATA

DATA

Fig. 4. Swift-KeyRotate: key organization

ing encryption and decryption operations on data and metadata. Keymaster is
responsible for deciding whether a resource should (or should not) be encrypted
and which encryption key should be used2. Swift supports a variety of keymas-
ter implementations, including Swift-KeyRotate3 proposed by IBM. The Swift-
KeyRotate is a hierarchical key management system that manages three types
of keys: a top-level Master Key ; Data Encryption Keys (DEKs), used to decrypt
and encrypt user/system metadata and user data; and Key Encryption Keys
(KEKs), used internally in the keymaster middleware to protect other KEKs
and DEKs. As data are hierarchically organized in accounts, containers, and
objects, also KEKs and DEKs are hierarchically organized according to the
account/container/object hierarchy (Fig. 4). More precisely, a KEK and a DEK
are generated for each account, container, and object. DEKs associated with
accounts and containers are used to encrypt the metadata of the accounts and
containers, respectively. DEKs associated with objects are used to encrypt both
objects and their metadata. The Master Key (which is stored in the Barbican
system, the secret storage of OpenStack) is used to encrypt the KEK associated
with an account. Then, the KEK associated with an entity (i.e., an account, a
container, or an object) is used to encrypt the DEK associated with the same
entity and the KEKs associated with the entities of the level below (if any).

2 http://specs.openstack.org/openstack/swift-specs/specs/in progress/at rest
encryption.html.

3 https://github.com/ibm-research/swift-keyrotate.

http://specs.openstack.org/openstack/swift-specs/specs/in_progress/at_rest_encryption.html
http://specs.openstack.org/openstack/swift-specs/specs/in_progress/at_rest_encryption.html
https://github.com/ibm-research/swift-keyrotate

Protecting Resources and Regulating Access in Cloud-based Object Storage 131

MK 1

AK 1

C K1 1

O K11 1

C K2 1

O K12 1 O K21 1 O K22 1

Master

Account

Container

Object

Fig. 5. Swift-KeyRotate: an example of KEK hierarchy with two containers and four
objects

Figure 4 illustrates the hierarchical organization of KEKs and DEKs. When a
user authenticates to OpenStack via Keystone (the identity server of Open-
Stack), the user is associated with an account and therefore she can access a
Master Key that is retrieved from Barbican through the user’s authentication
token.

Good key management practice requires a periodic key rotation, meaning
that encryption keys must be periodically changed. The rotation of the Mas-
ter Key stored in Barbican is similar to the approach adopted by systems for
industrial key-lifecycle management [7,15]. However, in Swift-KeyRotate, it is
not sufficient to rotate the Master Key since an adversary could have stored
the key of a lower level and then could be still able to obtain access to all the
underlying data. Key rotation is then performed on all levels and is also needed
to securely delete objects. We note that key rotation involves only the KEKs
while the DEKs are generated when the corresponding entity is created and are
never changed. As an example, consider two containers, C1 and C2, each of which
includes two objects, {o11, o12} and {o21, o22}, respectively. Figure 5 illustrates
the corresponding KEK hierarchy: nodes of the hierarchy represent keys and
an arc from a key k to key k′ means that k′ is encrypted using k (e.g., in the
figure an arc from MK1 to AK1 means that the account KEK is encrypted via
the Master Key). Suppose that a user wishes to delete object o11. In this case,
new KEKs have to be generated for all entities in the key hierarchy that are

132 E. Bacis et al.

on the path to object o11 (i.e., container C1, account A, and the master). Fur-
thermore, the KEKs of all entities whose parent KEKs have been changed are
re-encrypted with the new parent key. In our example, the KEK O12K1 of object
o12 is encrypted with the new KEK associated with container C1, say C1K2, the
KEK C2K1 of container C2 is encrypted with the new KEK of account key A,
say AK2, and the account key AK2 is encrypted with the new Master Key, say
MK2.

3 Client-Side Encryption

With client-side encryption, the data owner encrypts her data before outsourcing
them to a cloud provider. The encryption keys are therefore stored at the client-
side and are never exposed to the cloud provider, which cannot decrypt the
outsourced data. This solution is typically applied when the cloud provider is
honest-but-curious or lazy/malicious.

3.1 Discussion

Like for the server-side encryption, this solution has some advantages and disad-
vantages for users and the cloud provider. From the point of view of the users,
the main advantage is an increase of the spectrum of cloud providers to which
a data owner can outsource her data. In fact, since the data are encrypted at
the client-side, the data owner can also leverage the services of less reputable
cloud providers, which are typically cheaper than well-known cloud providers.
The main disadvantages are that the data owner has to directly manage the
encryption keys and has to enforce access control restrictions as well as changes
in the access control policy. In this scenario, access control can be enforced using
an approach based on selective encryption [12]. Intuitively, selective encryption
means that the data owner encrypts different portions of her data using dif-
ferent keys and discloses to each user only the encryption keys used to protect
the data they can access. Whenever the access control policy changes, the data
owner must download the involved data, decrypt and re-encrypt them with a new
encryption key, re-upload the new encrypted data, and share the new encryption
key with authorized users. Clearly, such an approach puts much of the work at
the data owner side, introducing a bottleneck for computation and communica-
tion. Another disadvantage is that both the client and the server storing the data
may be the subject to attacks from an adversary. Common client-side attacks
include, for example, the man-in-the-browser attack, in which an adversary takes
control over a part of the browser (e.g., browser extension hijacking) to replace
the cryptography algorithms used by the cloud provider with algorithms con-
trolled by the adversary. This attack can also compromise the key-generation
and the client-side integrity checks without the client being aware of it. The
adversary might also try to compromise the server to use it as a vehicle to send
malicious code to the client. For services that provide access via browser, in
fact, the server still plays a central role by providing the JavaScript code that

Protecting Resources and Regulating Access in Cloud-based Object Storage 133

encrypts the data before upload. If an adversary is able to replace this code
with a malicious one, the adversary can compromise the confidentiality of the
outsourced data collection.

From the point of view of the cloud provider, the main advantage is that
the cloud provider should not be worried about the protection of data, which
is guaranteed by client-side encryption. The main disadvantage is that dedupli-
cation techniques cannot be used since the same plaintext data are encrypted
by different data owners using different keys, thus generating different cipher-
texts. A possible approach for addressing this issue consists in using convergent
encryption, a cryptosystem that can generate identical ciphertexts from identical
plaintext data. While interesting, this techniques is still vulnerable to the brute
force attack described in Sect. 2.1.

Examples of cloud storage services supporting client-side encryption are Spi-
derOak and MEGA [9]. In the following, we describe the MEGA system.

3.2 Case Study: Mega

MEGA system supports browser-based User Controlled Encryption (UCE),
meaning that resources are automatically encrypted on the user’s device before
they are stored on MEGA cloud service [17]. Client-side encryption uses different
encryption keys managed by the data owner: a Master Key is a user’s key used
to protect the symmetric file key adopted for encrypting a file that is stored
on MEGA; a user password is then used to encrypt the Master Key. File keys
encrypted with the Master Key as well as the Master Key encrypted with the
user password are stored on MEGA. Different files are encrypted with different
file keys and therefore the knowledge of a file key allows a user to decrypt only the
file encrypted with such a key. This mechanism enforces selective encryption, as
illustrated in the previous section. Note that an adversary compromising a store
server of MEGA cannot decrypt the encrypted files stored on the node since the
encryption key is managed at the client-side. Furthermore, MEGA uses HMAC
to provide integrity guarantee to the file stored in MEGA store node. In this way,
an adversary with access to a MEGA store node and the file key of a file cannot
replace the file without the original user who has uploaded the file noticing that
it has been changed.

Figure 6 illustrates the MEGA encryption and decryption processes. When a
user wishes to store in the MEGA system a resource, a new file key is generated
with the support of a cryptographically strong random number with entropy
coming from both HTML5 APIs and mouse/keyboard entropy pool. The file
is then encrypted with the file key and AES-12 and the resulting ciphertext is
uploaded on MEGA. The encryption operation is performed either by the MEGA
client or directly in the browser, using JavaScript. The file key is encrypted with
the Master Key that in turn is protected with the user password. The resulting
encrypted keys are then uploaded on MEGA (Fig. 6(a)). When a user wishes
to access a given file, she first provides her password, which is used to decrypt
the Master Key. The file key of the file of interest is then decrypted, using the
Master Key, and it is used to decrypt the file. Post-download integrity checks

134 E. Bacis et al.

tru
st

bo
un

da
ry

Master Key

file key

SERVER SIDECLIENT SIDE

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxx

file key

PRNG

(a)

tru
st

bo
un

da
ry

Master Key

file key

SERVER SIDECLIENT SIDE

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxx

file key

(b)

Fig. 6. MEGA upload (a) and download (b) process

are performed via a chunked variant of the Counter with CBC-MAC (CCM)
mode, which is an encryption mode only defined for block ciphers with a block
length of 128 bits. Note that MEGA supports end-to-end encryption, meaning
that encryption and decryption operations are performed at the client side.

With respect to the ability of supporting deduplication, MEGA can apply
a deduplication process only when a user copies/pastes a file within her cloud
drive or when the file is shared with another user who imports it. In fact, even if
two (or more) users upload the same encrypted file, it will appear different since
the file is encrypted using different keys.

Resource sharing is supported using two different strategies. The first strategy
consists in sharing a public link that will allow a user receiving it to decrypt the

Protecting Resources and Regulating Access in Cloud-based Object Storage 135

corresponding resource, as the file key used to encrypt the file is included in the
link (it is important to note that the link is generated at the client side and
not at the server side). With this strategy, the public link can be shared with
anyone who may not necessarily have a MEGA account. The second strategy is
only applicable between MEGA users and is based on asymmetric encryption
(RSA-2048). Each user is associated with a public key and a private key both
stored on MEGA: the public key is stored in plaintext and the private key is
stored in encrypted form, using the Master Key of the user as encryption key.
When a user, say A, wishes to share a resource with another user, say B, A
encrypts the corresponding file key with the public key of B and the resulting
ciphertext is stored on MEGA. When B wishes to access the resource, she first
retrieves from MEGA her encrypted private key, decrypts it using her Master
Key and the resulting plaintext private key is used to decrypt the file key that B
can use for decrypting the file of interest. To provide access revocation to users
who were previously given access to the file key, MEGA applies a classical access
control policy defined by the data owner. A revoked user is therefore prevented
access to the encrypted files. Note that MEGA is trusted to correctly enforce
the access control policy defined by the data owner.

4 Hybrid Encryption

The hybrid approach combines client-side encryption with server-side encryption
to improve efficiency in data management. Hybrid approaches are usually based
on different layers of encryption with some encryption keys managed at the client
side and other encryption keys managed at the server side. The latter keys are
needed by the cloud provider to correctly enforce changes in the access control
policy.

4.1 Discussion

The main advantage of the hybrid approach is the efficient enforcement of
changes in the access control policy without impacting the confidentiality of the
resources. In fact, while with client-side encryption changes in the access control
policy must be enforced by the data owner (Sect. 3), with a hybrid approach
such changes can be enforced directly by the cloud provider. This approach
can therefore be applied only when the cloud provider is honest-but-curious,
since the provider has to correctly enforce the changes as dictated by the data
owner. An example of commercial solution adopting this approach is BeSafe
SkyCryptor4, a commercial platform providing end-to-end encryption. BeSafe is
based on a honest-but-curious proxy (BeSafe Key Server) performing a proxy
re-encryption [2,8] on encryption keys, and on a public cloud storage provider
storing the encrypted data. Proxy re-encryption is a cryptographic technique
that transforms a ciphertext generated with a key k into a ciphertext that can

4 https://besafe.io/.

https://besafe.io/

136 E. Bacis et al.

 file key

cloud storage provider

user A user B
pub key

priv key

pub key

priv key

BeSafe Key Server

 proxy key

file key

 file key file key
(1)

(2)(3)

(4)

(5)

Fig. 7. BeSafe proxy re-encryption architecture

be decrypted using a different key k′, without the need for decryption the orig-
inal ciphertext. Hence, it can be performed also by a party not trusted for the
plaintext content of the data. Each user of the BeSafe SkyCryptor has a pair
of public and private keys. Whenever a user wants to store a resource at the
public cloud provider, the resource is first encrypted at the client side using a
symmetric encryption key, called file key . The encrypted resource and the file
key, encrypted with the public key of the user, are then stored on the cloud
provider. Resources can be shared only among users with a BeSafe account.
Figure 7 shows an example of sharing between user A and user B. User A first
generates a new proxy key , encrypts such a key with her public key, and sends the
resulting ciphertext to the BeSafe Key Server (1). B downloads the encrypted
resource (2) from the public cloud storage provider, along with the correspond-
ing encrypted file key (3). The encrypted file key is then sent to the BeSafe Key
Server (4) that proxy-re-encrypts it using the proxy key generated by A. The
result of the proxy re-encryption is sent to B (5) who can decrypt it through her
private key for retrieving the file key and then can use the retrieved file key to
decrypt the resource [19].

Protecting Resources and Regulating Access in Cloud-based Object Storage 137

4.2 Case Study: EncSwift

EncSwift is a tool for providing data-at-rest encryption and enforcing access
control when relying on a honest-but-curious cloud provider [3,4]. This tool is
based on OpenStack Swift where, as already discussed in Sect. 2.2, data are
hierarchically organized in accounts, containers, and objects. The access con-
trol enforcement mechanism implemented by EncSwift is based on selective
encryption (Sect. 3.1) and over-encryption approaches [10,11]. According to the
over-encryption approach, each user has a symmetric encryption key and each
resource is encrypted with a symmetric key that depends on the access control
policy regulating access to the resource. This first client-side encryption, called
Base Encryption Layer (BEL), is needed to protect the confidentiality of the
resources from the cloud provider. Resource encryption keys are organized in a
key derivation hierarchy so that each user can use her symmetric key for deriving
the encryption keys of all and only the resources she is entitled to access. Pol-
icy updates are enforced by applying a second layer of encryption at the server
side, called Surface Encryption Layer (SEL). SEL encryption is applied when-
ever there are users who are not authorized to access an object, but they know
the underlying BEL key. This happens, for example, when access to a resource
is revoked to a user: the revoked user could have maintained a copy of the BEL
key and therefore she could still be able to pass the BEL layer and access the
object for which she does not have the access authorization anymore. A user will
then be able to access an object only if she knows both the SEL key and the
BEL key with which the object is encrypted. We now describe the keys needed
to implement the over-encryption approach in Swift, how the access control pol-
icy defined by the data owner can be enforced through selective encryption, and
how to enforce policy updates.

Keys. The core component of EncSwift is the Encryption Layer (Fig. 8), which
is in charge of encrypting objects before outsourcing them to the cloud provider,
and of decrypting them when they are retrieved from the cloud provider. The
implementation of over-encryption in OpenStack Swift is then based on the
definition and management of different keys: Master Keys (MKs), RSA key pairs,
RSA signature key pairs, Data Encryption Keys (DEKs), and Key Encryption
Keys (KEKs). Each user is associated with a symmetric Master Key and two
pairs of public and private keys: one pair is used for encryption (RSA key pair)
and one pair is used for signing messages (RSA signature pair). A DEK is a
symmetric key that the Encryption Layer uses to encrypt (decrypt) an object
stored on the cloud provider. All objects in the same container are initially
encrypted with the same DEK, then a new DEK is generated whenever a policy
update occurs. The Master Key is kept on the client side while all the other
keys are stored in Barbican, the OpenStack Secret Storage, or can be stored
and managed through other key management services [6]. The user’s public keys
are stored in plaintext while the corresponding private keys are encrypted with
the Master Key. DEKs are encrypted and stored in the form of Key Encryption
Keys (KEKs), which should not be confused with the KEK used in the Swift-

138 E. Bacis et al.

En
cr

yp
tio

n
La

ye
r (

BE
L)

Master Key

Data

BA
R

BI
C

AN

 BEL DEK

SW
IF

T

En
cr

yp
tio

n
La

ye
r (

SE
L)

 SEL DEK

 priv key

O
PE

N
ST

AC
K

 pub key

Fig. 8. EncSwift architecture

KeyRotate approach (Sect. 2.2). The encryption of the DEK can be performed
in two different ways. A first way consists in encrypting a DEK with the user’s
Master Key (symmetric KEK). In this case, only the user who knows the Master
Key can decrypt the KEK. A second way consists in encrypting the DEK with
the RSA public key of a user and signing it with the RSA signature private key
of the user who owns the resource protected with the DEK (asymmetric KEK).
This second strategy allows the user who own the resource to share a DEK (and
therefore the access to the corresponding resource) with other users.

Selective Encryption. All users in the system can define an access control policy
for the objects they own, which can then be translated into an equivalent policy-
based encryption as follows. First, a data owner creates as many containers as
needed, and, for each of them, defines a DEK. The data owner then encrypts all
the objects in the same container with the DEK of the container. This means
that all objects in a container are characterized by the same access control list
(i.e., they can be accessed by the same set of users). The DEK is then encrypted
with the Master Key of the data owner and, for each user in the access control list

Protecting Resources and Regulating Access in Cloud-based Object Storage 139

of the objects in the container, the DEK is encrypted with her RSA public key
and signed by the data owner with her signature private key. When a user wishes
to access a specific object, the object descriptor is first accessed to retrieve the
identifier of the DEK used to encrypt the object. This identifier is then used to
retrieve the corresponding KEK and derive the DEK. Derivation will require the
user to use either her own Master Key (for symmetric KEK), or her RSA private
encryption key (for asymmetric KEK). Note that, to improve the efficiency of the
subsequent accesses to the key and simplify the procedure, once a DEK provided
by another user is extracted from an asymmetric KEK, the KEK is replaced by
a symmetric KEK built using the Master Key of the user.

Policy Updates. Policy changes refer to the insertion and deletion of users,
objects, and authorizations. The insertion of a user requires the generation of
her Master Key, RSA key pair, and RSA signature key pair and the storage of
the public keys in Barbican. The removal of a user requires only the removal of
her public keys from Barbican. The removal of an object requires its deletion
from the container including it. The insertion (grant) and removal (revoke) of
authorizations as well as the insertion of new objects require the involvement
of the cloud provider for the application of a second layer of encryption (SEL
layer). The SEL layer is developed as a new middleware and inserted into the
pipeline, using the same approach adopted by IBM and explained in Sect. 2.2.
We now describe how grant/revoke operations and the insertion of a new object
in a container are implemented.

In case of a grant operation, it is sufficient to generate a new (asymmetric)
KEK for the granted user and store it in Barbican. This new KEK is generated
by the owner of the container. In case of a revoke operation, it is not sufficient to
remove the KEK that allows the revoked user to derive the DEK of the container
since the user could have locally stored the KEK and therefore could still have
access to the objects stored in the container. To avoid this problem, the owner
of the container asks the cloud provider to over-encrypt all the objects in the
container with a SEL key that only non-revoked users can derive. Therefore,
each container is associated with two keys: a key at the BEL level that can be
derived by all users originally authorized for the container, and a key at the SEL
level that can be derived only by non-revoked users. In case of insertion of a
new object into a container, the new object inherits the access control list of
the container. To correctly enforce such an authorization policy, the new object
is encrypted with the BEL DEK key associated with the container and, if the
contained was involved in a revoke operation, with the SEL DEK key associated
with the container. Since, however, the authorization policy of the new object
has never been updated, the adoption of SEL encryption over it might be an
overdo. A new BEL DEK key is the adopted to protect objects that are inserted
into a container on which revoke operations had been applied. As a consequence
of the revoke operation, a new DEK BEL key (and the corresponding KEKs for
the users in the new access control list) is generated for the container, and used
for objects that will be inserted into the container after the revoke operation.
While for existing objects over-encryption is needed to guarantee protection from

140 E. Bacis et al.

the revoked user, new objects can be encrypted with the new DEK known only
to the users actually authorized for them.

The implementation of over-encryption for the enforcement of revoke opera-
tions can operate in different ways, depending on the time at which SEL encryp-
tion is applied [4]: materialized at policy update time (immediate), performed at
access time (on-the-fly), or performed at the first access and then materialized
for subsequent accesses (opportunistic).

– Immediate. The cloud provider applies over-encryption when the owner
revokes the authorization over a container to a user. Immediate over-
encryption requires the owner to generate, at policy update time: the SEL
DEK necessary to protect the objects in the revoked container, and the KEKs
necessary to authorized users (and to the server) to derive such a SEL DEK.
Also, the objects in the container will be over-encrypted. The cloud provider
will then immediately read from the storage the objects in the container,
re-encrypt their content with the new SEL DEK (possibly removing SEL
encryption), and write the over-encrypted objects back to the storage. Hence,
immediately after the policy update, the objects in the container are stored
encrypted with two encryption layers. Every time a user needs to access an
object in the container, the server will simply return the stored version of the
requested object. This approach can be applied when policy updates are rare
and the container size is moderated, because no overhead is applied when
objects are downloaded, except for the supplementary decryption step with
the SEL DEK at the client side. The main drawback is that encryption cost
must be paid for the whole container, even for objects that are not accessed
before next policy update.

– On-the-fly. The cloud provider applies over-encryption every time a user
accesses an object. Then, even if the owner of the container asks the cloud
provider to over-encrypt the objects in the container, the provider only keeps
track of this request, but it does not re-encrypt the objects. When a user
needs to access an object in the container, the cloud provider possibly over-
encrypts the object before returning it to the user. The advantage of this
approach is that over-encryption is applied only if needed. However, if an
object is accessed multiple times, the object is encrypted all the times.

– Opportunistic. This approach aims to combine the advantages of both imme-
diate over-encryption and on-the-fly over-encryption. Opportunistic over-
encryption requires the owner, when a user is revoked access to a container,
to define both the SEL DEK necessary to protect the objects in the revoked
container, and the KEKs necessary to authorized users (and to the server)
to derive the SEL DEK. Similarly to the on-the-fly approach, the provider
over-encrypts an object in the revoked container only when it is first accessed.
However, instead of discarding it, the result of over-encryption is written back
to storage for future accesses. The main disadvantage of this approach is that
the SEL protection must be removed when the object is downloaded after a
policy update that generated a new SEL DEK because the object should be
protected with the new SEL key.

Protecting Resources and Regulating Access in Cloud-based Object Storage 141

5 Discussion and Conclusions

The design of efficient techniques for protecting the confidentiality and regu-
lating access to data stored at external cloud providers has been the subject of
several efforts in the research as well as industrial community. In this chapter, we
have presented an overview of recent approaches that protect the confidential-
ity of the data through encryption as well as enforce access control restrictions.
These techniques mainly differ in how encryption is enforced, which depends
on the trust assumption on the cloud provider. Interesting evolution of these
encryption-based data protection techniques are related to the use of All-or-
Nothing Transform (AONT) for enforcing changes in the access control policy
without requiring the support of the cloud provider [5], and the consideration
of novel distributed cloud storage systems (e.g., Storj [1,22], Sia [21] and File-
Coin [16]) characterized by the availability of multiple (untrusted) nodes that
can be used to store resources in a distributed manner.

Acknowledgments. This work was supported in part by the EC within the H2020
under grant agreement 644579 (ESCUDO-CLOUD) and within the FP7 under grant
agreement 312797 (ABC4EU).

References

1. A peer-to-peer cloud storage network, Storj Labs Inc. (2016). https://storj.io/storj.
pdf

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

3. Bacis, E., et al.: Managing data sharing in OpenStack swift with over-encryption.
In: Proceedings of the 3rd ACM Workshop on Information Sharing and Collabo-
rative Security, Vienna, Austria, October 2016

4. Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa, M., Sama-
rati, P.: Access control management for secure cloud storage. In: Deng, R., Weng,
J., Ren, K., Yegneswaran, V. (eds.) SecureComm 2016. LNICST, vol. 198, pp.
353–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59608-2 21

5. Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa, M.,
Samarati, P.: Mix&slice: efficient access revocation in the cloud. In: Proceedings
of the 23rd ACM Conference on Computer and Communication Security, Vienna,
Austria, October 2016

6. Bacis, E., Rosa, M., Sajjad, A.: EncSwift and key management: an integrated
approach in an industrial setting. In: Proceedings of the 3rd IEEE Workshop on
Security and Privacy in the Cloud, Las Vegas, Nevada, October 2017

7. Björkqvist, M., et al.: Design and implementation of a key-lifecycle management
system. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 160–174. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14577-3 14

8. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

https://storj.io/storj.pdf
https://storj.io/storj.pdf
https://doi.org/10.1007/978-3-319-59608-2_21
https://doi.org/10.1007/978-3-642-14577-3_14
https://doi.org/10.1007/BFb0054122

142 E. Bacis et al.

9. Daryabar, F., Dehghantanha, A., Choo, K.K.R.: Cloud storage forensics: MEGA
as a case study. Aust. J. Forensic Sci. 49(3), 344–357 (2017)

10. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Over-encryption: management of access control evolution on outsourced data.
In: Proceedings of the 33rd International Conference on Very Large Data Bases,
Vienna, Austria, September 2007

11. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM Trans. Database
Syst. 35(2), 12:1–12:46 (2010)

12. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Selective and
private access to outsourced data centers. In: Khan, S.U., Zomaya, A.Y. (eds.)
Handbook on Data Centers, pp. 997–1027. Springer, New York (2015). https://
doi.org/10.1007/978-1-4939-2092-1 33

13. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Practical tech-
niques building on encryption for protecting and managing data in the cloud.
In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers.
LNCS, vol. 9100, pp. 205–239. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49301-4 15

14. Dropbox business security: A Dropbox whitepaper. https://cfl.dropboxstatic.com/
static/business/resources/dfb security whitepaper-vfllunodj.pdf

15. Ducatel, G., Daniel, J., Dimitrakos, T., El-Moussa, F.A., Rowlingson, R., Sajjad,
A.: Managed security service distribution model. In: Proceedings of the 4th Inter-
national Conference on Cloud Computing and Intelligence Systems, Beijing, China,
August 2016

16. Filecoin: A decentralized storage network. protocol labs (2017). https://filecoin.io/
filecoin.pdf

17. Information regarding security and privacy by design at MEGA. https://mega.nz/
help/client/webclient/security-and-privacy

18. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: Proceedings of the 15th IEEE International
Conference on Computational Science and Engineering, Paphos, Cyprus, December
2012

19. Jivanyan, A., Yeghiazaryan, R., Darbinyan, A., Manukyan, A.: Secure collaboration
in public cloud storages. In: Baloian, N., Zorian, Y., Taslakian, P., Shoukouryan,
S. (eds.) CRIWG 2015. LNCS, vol. 9334, pp. 190–197. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22747-4 15

20. Samarati, P., De Capitani di Vimercati, S.: Cloud security: issues and concerns.
In: Murugesan, S., Bojanova, I. (eds.) Encyclopedia on Cloud Computing. Wiley,
Hoboken (2016)

21. Sia: Simple decentralized storage (2014). https://www.sia.tech/whitepaper.pdf
22. Wilkinson, S., et al.: Storj - a peer-to-peer cloud storage network (2014). https://

storj.io/storj.pdf

https://doi.org/10.1007/978-1-4939-2092-1_33
https://doi.org/10.1007/978-1-4939-2092-1_33
https://doi.org/10.1007/978-3-662-49301-4_15
https://doi.org/10.1007/978-3-662-49301-4_15
https://cfl.dropboxstatic.com/static/business/resources/dfb_security_whitepaper-vfllunodj.pdf
https://cfl.dropboxstatic.com/static/business/resources/dfb_security_whitepaper-vfllunodj.pdf
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://mega.nz/help/client/webclient/security-and-privacy
https://mega.nz/help/client/webclient/security-and-privacy
https://doi.org/10.1007/978-3-319-22747-4_15
https://www.sia.tech/whitepaper.pdf
https://storj.io/storj.pdf
https://storj.io/storj.pdf

Function-Based Access Control (FBAC):
Towards Preventing Insider Threats

in Organizations

Yvo Desmedt1,2 and Arash Shaghaghi3,4(B)

1 University of Texas at Dallas, Richardson, USA
Yvo.Desmedt@utdallas.edu

2 University College London (UCL), London, UK
3 The University of New South Wales (UNSW Sydney), Kensington, Australia

A.Shaghaghi@unsw.edu.au
4 Data61, CSIRO, Eveleigh, Australia

Abstract. Insiders misuse their access to data and are known to pose
serious risks to organizations. From a security engineering viewpoint,
each insider threat incident is associated to full, or partial, failure of an
access control system. Here, we introduce Function-Based Access Con-
trol (FBAC). FBAC is inspired by Functional Encryption but takes a
system approach towards the problem. Abstractly, access authorizations
are n longer stored as a two-dimensional Access Control Matrix (ACM).
Instead, FBAC stores access authorizations as a three-dimensional tensor
(called Access Control Tensor). Hence, applications no longer give blind
folded execution right and users can only invoke commands that have
been authorized at different levels such as data segments. Simply put,
one might be authorized to use a certain command on one object while
being forbidden to use the same command on another object. Evidently,
this level of granularity and customization can not be efficently modeled
using the classical access control matrix. The theoretical foundations of
FBAC are presented along with Policy, Enforcement, and Implemen-
tation (PEI) requirements of it. A critical analysis of the advantages
of deploying FBAC, how it will result in developing a new generation
of applications, and compatibility with existing models and systems is
also included. Finally, a proof of concept implementation of FBAC is
presented.

Keywords: Access control · Function-Based Access Control (FBAC)
Access Control Tensor (ACT) · Insider threat

A preliminary version of this work has been published as “Function-Based Access
Control (FBAC): From Access Control Matrix to Access Control Tensor.” Proceedings
of the 8th ACM CCS International Workshop on Managing Insider Security Threats.
ACM, 2016.

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 143–165, 2018.
https://doi.org/10.1007/978-3-030-04834-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_8

144 Y. Desmedt and A. Shaghaghi

1 Introduction

We believe there are several reasons as to why we need to fundamentally revise
the foundations of access control, and develop models from ground up to over-
come existing limitations. The misuse of legitimate access to data is a serious
information security concern for both organizations and individuals. From a
security engineering viewpoint, this is partially due to the failure of access con-
trol. To help the reader reflect on the limitations of existing access control, and
better understand our motivation for this work, we briefly revise two of the most
prevailing cases.

The Wikileaks case was the largest leak of military and diplomatic cables in
US history [39]. After the September 11 terrorist attacks on US soil, government
agencies in the United States began allowing a greater sharing of information
as a defence procedure against future terrorist strikes [2]. This included, sharing
of confidential information between the US Department of State and the US
Department of Defence. However, in 2010 after a massive leak of diplomatic
cables by Manning, a low-ranked personnel of the army, the US Department
of State revoked this access, to prevent further leaks. As thoroughly explained
in [39], Manning did not break any system and used his own credentials to
access the most sensitive information. Unbelievably, all he had to do was to copy
information to a CD drive and take it home.

As our second example we refer to the case when twenty five Million records
of United Kingdom (UK) nationals were lost by an employee of Her Majesty’s
Revenue & Customs (HMRC) [54]. The employee copied the entire available
confidential data onto disks and sent it through post [60].

As implied, the main reason behind these incidents is that once user is granted
authorization to access data, s/he has the full authority on how to use it. This is
associated to one of today’s most prominent security threats, known as Insider
Threat [48]. A malicious insider threat is defined as “when an authorized entity
of a system intentionally exceeds or misuses granted access in a manner that
negatively affects the confidentiality, integrity, or availability of the organiza-
tion’s information, or information systems” [21]. Recently, insider threats have
increased both in number and as a percentage of all cyberattacks; and, various
estimates indicate that at least 80 million cases occur in United States per year
[24]. Evidently, as with the case of access revokation to the US Department of
Defence, removing access is not a remedy for this type of security threat. Nei-
ther is requiring high security clearance for every officer/employee or enforcing
strict limitation, as all of these prevent an organization performing its usual
tasks. In this dilemma, an organization to continue its operations has to put
trust on its users and this eventually leads to ‘over-privileged’ users phenomena
[22,48]. We argue that rather than an ‘open sesame’ approach in access control
[27], we need models and mechanisms that allow an authorized entity to perform
required operations on confidential information but not have full access to it. As
a simple example, a Department of Homeland Security (DHS) agent should be
able to search in confidential information but s/he should only see the relevant
information and not be able to run any other operation on it, such as copy and

Function-Based Access Control (FBAC) 145

print. At the same time, to ensure information flow control, access restrictions
should be applied at the lowest possible level, i.e. data block. Indeed, our ideas
are not restricted to text and also applies to images and videos. For example,
even when viewing an image - we consider this as being a write operation on the
device “screen” - only relevant parts of an image must be shown with the non-
authorized parts blurred. With existing multi-level security and access control
models such as Role-Based Access Control, achieving this type of restrictions is
very hard, if not impossible.

At this point, we discuss some motivational examples from a commercial
environment to motivate our argument regarding fundamental gaps in access
control even further. Increased infringement of copyright is a serious concern
for right holders, including businesses and individuals. For text files, there are a
number of tools that can detect copyrighted material. As an example, software
such as TurnitIn (Turnitin.com) is now commonly used by universities to detect
plagiarism [4]. Similar tools exist for images and videos, e.g. see Tineye.com.
However, according to [49], copyright infringement is still a growing problem
and current mechanisms are not deemed to be effective in reducing it. It is
obvious that along with detection, prevention mechanisms are also required. For
example, whenever a researcher is preparing a manuscript and quotes a part of
the text, both text and citation should be copied.

Due to the pervasive use of portable computers, including laptops and smart-
phones, many organizations allow, and even encourage, Bring Your Own Device
(BYOD) for employees [56]. With this type of organizational policy, ensuring
confidentiality and integrity is challenging. According to studies such as [41,64],
this has resulted in security implications for data leakage, data theft and regula-
tory compliance. We argue that the fact that existing access control mechanisms
are too primitive is one of the reasons for these problems. Today, Apple’s App
Store, is a bigger business than Hollywood and the number of available applica-
tions is increasing day per day [3]. To run an application, one needs full execution
right and once the application has read and write access to a file, then the appli-
cation can perform any operation and execute any function on it. Hence, once
authorization is granted to a confidential document, there is no control on how
this access is used. For example, the user can print, email or share it through
other applications.

The root causes of many security problems due to outdated access control
have probably been best described by researchers such as Desmedt [70], Erlings-
son [65] and Park and Sandhu [47]. In brief, Access Control Matrix (ACM) the
core concept behind current implementable systems predates the Internet, com-
puter viruses and massive hackings. At that time of conception, computers had
limited resources and there were very limited number of applications. Today,
however, there are huge number of applications on each platform with a mas-
sive number of functionalities. Moreover, the Internet is only one of the means
through which information can leave the user’s device. This implies that informa-
tion flow control mechanisms that rely on entropy to quantify information flow
are not reliable by themselves as entropy does not measure the value and the

https://www.turnitin.com/
https://www.tineye.com/

146 Y. Desmedt and A. Shaghaghi

importance of data. At the same time, leakage of a single bit of information could
result in loss, or a gain, of “millions of dollars”—we refer the interested reader
to the deception plan, Operation Quicksilver, of World War II for understanding
the implications of the leakage of one single bit [38,40].

Therefore, we believe it is time for revisiting the foundations of access con-
trol, one of the oldest information control mechanisms. It is important to design
models that are compatible with existing access control models and at the same
time can ensure confidentiality and integrity of information in a flexible man-
ner. Inspired by Operator Oriented Encryption [27] and Functional Encryption
[16], we introduce Function-Based Access Control. From a foundation viewpoint
we replace the access control matrix with an Access Control Tensor (ACT),
which in effect is a generalization of an access control matrix. In FBAC, objects
are data blocks and functions are the commands available in applications, such
as Copy/Paste and Search. In the policy specifications of FBAC, the commands
may be defined as standard—as we know them today, or restricted. For example,
the Copy/Paste commands could be custom defined such that when a researcher
quotes a part of the text that has citation, both the text and citation are copied
together to the destination. Or, email function could be customized such that
when a sensitive part of a document is emailed, the supervisor is always copied.
Moreover, in FBAC, protected objects do not have to be predefined, and the func-
tion can be customized to protect objects that are created on the fly. In Section
VI, a number of examples are shown to describe what this means and why this is
a major advantage compared to existing solutions. In our proposed access control
model, applications do not have blind folded execution right and can only invoke
commands that have been authorized for data segments in respect to subjects. To
the best of our knowledge, FBAC is the only access control model capable of
supporting this level of precision. FBAC provides a systematic solution to some
of the known failures of access control and replaces adhoc solutions deployed by
organizations. The rest of this paper is structured as following. We start with a
Background section and then present Function-Based Access Control in Sect. 3.
Thereafter, we discuss Policy, Enforcement and Implementation of FBAC, and
in Sect. 5 we walk through our prototype implementation. The paper concludes
with a critical discussion, where we highlight the advantages, challenges and a
number of directions for future work.

2 Background

2.1 Traditional Access Control Models

Access control matrix, introduced in 1971 by Lampson [37], remains the core
concept for a large fraction of the literature on access control [47]. The access
control matrix specifies individual relationships between entities wishing access,
Subject(S), and the system resources they wish to access, Object(O). For each S
and O pair an explicit authorized access, (P) appears in the corresponding entry
in a two-dimensional matrix. The authroization values may include reading, cre-
ating, editing, deleting, and executing and the objects are files and other system

Function-Based Access Control (FBAC) 147

resources. Harrison, Ruzzo, and Ullman [31] identified six primitive operations
that transit a system state and established Turing completeness of the access
matrix, which shows the expressive power of ACM. As discussed in [51], the
direct implementation of access control matrix is not efficient. However, most
access control mechanisms in use are based on models, such as Access Control
Lists (ACL) and Capabilities [3, 4], which are derived from the ACM [52]. Inter-
estingly, researchers have even formally proved that access control models such
as Role-Based Access Control (RBAC) are, in fact, built on top of ACM [52].

2.2 Modern Access Control Models

There has been an increasing concern on the limitations of RBAC in current
dynamic and distributed computing environment. Mainly, role explosion - where
each role requires different sets of permissions and large number of roles have to
be defined - and delays caused due to the role engineering, are limiting factors in
the further practice of RBAC [36]. As a result, a number of extensions have been
proposed for this model, e.g. [28,34,35]. On the other hand, to overcome limi-
tations of traditional access control, alternative application specific models were
also proposed such as relationship based access control [29] and task based access
control [46]. However, all of these extensions and models are purpose built solu-
tions and cannot be generalized into a single framework. Attribute-Based Access
Control (ABAC) is a general model that associates attributes to subjects and
objects. In ABAC, with proper usage of attributes it is possible to have ACL
for Discretionary Access Control (DAC), security classifications for Mandatory
Access Control (MAC) and roles for RBAC. Moreover, it supports integrating
a range of new attributes for access control and having a uniform framework,
solves many of the shortcomings of core RBAC [33]. An important advantage
of ABAC is that access permissions do not have to be pre-assigned to users
and can be computed at the time of request. UCONABC [47] is a conceptual
model proposed by Park and Sandhu for ABAC [33]. In this model, Authoriza-
tions evaluate subject and object attributes for the requested right, Obligations
are mandatory requirements for a subject and Conditions are system-oriented
factors. For instance, security clearance is an attribute for authorization, agree-
ment with the terms and conditions is an obligation and the current location is
a condition.

2.3 Access Control with Data-Block Granularity

As mentioned in Sect. 1, information access control may require applying restric-
tions based on the content and context related to access requests. Hence, there
are an increasing number of publications in the literature that aim to apply access
control at the level of document content in different scenarios. A vast majority
of these proposals are based on the foundational papers published by Bertino et
al., which apply content level protection for XML documents [7–10,23]. Specif-
ically, in [8], authors proposed content level access control mechanism for XML
documents to enable selective access to data available over the Web. The access

148 Y. Desmedt and A. Shaghaghi

control model is described using Document Type Definition (DTD) and con-
siders specific operations, mainly browsing and authoring. However, this work
does not provide a general methodology and lacks a role-based model. Moreover,
in [10], Bertino et al. proposed a mechanism to define access policies for XML
documents based on user profile and structure and content of a document. They
also proposed a mechanism to encrypt different portions of a document with
different encryption keys and to selectively distribute the keys among the users
based on the access policies. They proposed an architecture to distribute the
documents and proved that their scheme generates minimum number of keys.

Recently, Biswas et al. [14] proposed a content level access control mechanism
for Swift storage service for the OpenStack cloud computing platform. Swift
stores outsourced data in a container that is associated with an Access Control
List (ACL). This ACL controls the access of the object inside the container.
The authors proposed a content level access control on swift object that can be
combined with the ACL associated with the container to control the user that can
access different parts of an object based on the credential of data requester. The
authors utilized JavaScript Object Notation (JSON) to represent data stored
in the swift object. They proposed a label based access control to label each
JSON item and the data user and then define an access policy to determine
the user who can perform certain action on a particular JSON item. In [14], the
authors utilized the concepts of XML data dissemination in handling JSON data.
Moreover, they do not discuss how the view of the data is generated based on
access control or whether data encryption is used or not. Memory requirement
is huge due to the fact that a large number of JSON items are labeled.

2.4 Digital Right Management

Digital Right Management, DRM, is one way of protecting content that is dis-
seminated. It was recognized as one of the top ten emerging technologies that
will change the world [1]. A fundamental advantage of DRM is separating con-
tent from the rights. This enables free distribution of content and then enforcing
license procurement for usage [59]. A robust DRM system requires a trusted
client side reference monitor and uses cryptographic schemes to enforce and
monitor access restrictions [72]. There was a surge in the number of papers on
DRM until early 2000, but mainly due to usability problems, easy bypass meth-
ods [72], difficulty in achieving mass scale persistent control, consumer privacy
issues, lack of standards, and interoperability of formats, the trend reversed [12].
DRM is mainly regarded as a collection of enabling technologies, such as water-
marking, and lacks proper models and security policies [12,47,72]. Due to this,
access control and DRM rarely go under the same umbrella. UCONABC is one
of the few models that has tried to integrate DRM into access control.

2.5 Functional Encryption

Operator Oriented Encryption [27] and Functional Encryption [16] argue that
the traditional binary approach in decryption needs to change. In such systems,

Function-Based Access Control (FBAC) 149

decryption keys may reveal only partial information about the plaintext. For
example, when decrypting an image with a cropping key, a cropped version of
image is revealed and nothing more [17]. Boneh defines functional encryption
as “where a decryption key enables a user to learn a specific function of the
encrypted data and nothing else. In a functional-encryption system, a trusted
authority holds a master secret key known only to the authority. When the
authority is given the description of some function f as input, it uses its master
secret key to generate a derived secret key sk[f] associated with f . Now anyone
holding sk[f] can compute f(x) from an encryption of any x” [16]. The main
challenge for functional encryption is to “construct a system that supports cre-
ation of keys for any function in both public and non-public index settings” [17].
Also, efficiency of functional encryption is dependent on specific cryptographic
constructions. Overall, although promising, functional encryption is still in its
infancy and much further practical and theoretical advancement is required to
solve associated open problems.

3 Function-Based Access Control

We start by contrasting how data is considered by the cryptographic community
versus how it is considered by these working on access control. We will then use
this to explain the lessons we want to learn and how we can apply these to access
control.

We first explain the cryptographic idea of secure multiparty computation
(see e.g. [6,30,69]). In this concept, a function is computed by different parties.
Only the output of this function is leaked and nothing more. We illustrate this
concept with the following example. Alice, an authorized third party, searches
for a string of data in files stored inside the Department of Defense or inside
the Department of State. Suppose there is such a file that contains this string.
Then secure multiparty computation will only reveal its existence without leaking
whether this string is on the computers of the Department of Defense, or on the
Department of State, or on both.

The second concept we survey is the one of “operator oriented encryp-
tion” [26, p. 164], now more known as “functional encryption” [16]. In functional
encryption, given an encrypted text of a certain plaintext, one can compute from
the ciphertext f(Plaintext), where f is an authorized function, without revealing
anything additionally about the rest of the plaintext. As an example, using this
tool one could “search” whether a certain string is (or not) in encrypted data
without decrypting it. Please refer to Sect. 2.5 for a more detailed definition.

This last example is in sharp contrast with how access to data is being
controlled today. Indeed, a person searching for the word “terrorist” in a file,
must have received read permission for the file and execute permission for the
program that does the search. Having the read permission to the file is an “Open
Sesame” approach, giving the person unlimited read access to the whole file! In
our approach the only thing the user will learn is whether the file contains the
word “terrorist” or not. We note that a Unix command as grep (which perform

150 Y. Desmedt and A. Shaghaghi

a search in files) facilitates output control, a topic which we will include in our
model.

3.1 A First Definition

As also mentioned in Sect. 2.1, the current approach finds its foundations in
the 1974 paper by Lampson [37] and formalized in 1976 by Harrison-Ruzzo-
Ullman [31]. Its main limitation, from our perspective, is that it has only two
dimensions, being, one dimension corresponding with objects and one with sub-
jects. In our definition we will use a three dimensional approach and use “func-
tion” as the third dimension. Note that we regard “function” as a synonym for
“operation”.

In our definition, an object could correspond, with a file, an XML record, as
data in a register, etc. Moreover, functions could be at the level of the operating
system (such as grep), but also an operation inside an application (such as search
used inside a browser, an editor, an e-mail reader (or Mail User Agents), a global
position applications).

Before giving our actual definition we note that the number of inputs to a
function depends on the function. Our definition has to take this into account.
Moreover, not all inputs to a function are “predefined,” as we now explain.
Consider grep. Usually grep operates on a file and a pattern is given, e.g., from
the terminal. Moreover, grep has several options, such as “quiet,” which makes
grep output a Boolean. We do not regard the “pattern” and the options as
objects. We will explain later how to deal with these non-object inputs.

To deal with the fact that a function can have more than one object as input
(such as copy/paste) we introduce the following definition.

Definition 1. When O denotes the set of object, we let O1 = O and recursively
we define Oj = Oj−1 × O (j ≥ 2). Moreover, we let O0 = ∅. We also define

O∗ =
⋃

j≥0

Oj .

We now define a first version of Access Control Tensor (ACT).

Definition 2. Let S be the set of subjects, F a set of functions, O∗ as defined
earlier. The three-dimensional table A is a mapping from S × F × O∗ →
{False, True, N/A}. When f ∈ F has n objects as input, o ∈ O∗ is an m-tuple,
s is a subject, then A(s, f, o) = N/A when m �= n. If m = n, and A(s, f, o) =
True then subject s can execute the function (command) f on object o, else the
subject can not. We call A the access tensor. We call (S, F,O,A) an elementary
function-based access control, or E-FBAC.

Evidently, the set {N/A, False, True} could be replaced by
{N/A, Forbidden, Authorized}.

One could observe that the typical entries to the Access Control Matrix
(ACM), such as read and write, do not appear in our ACT. The reason for

Function-Based Access Control (FBAC) 151

this is that our functions that can read cannot write. Moreover, every read only
function can be regarded as writing to standard output. So, the function, or
the input parameters of the function, will define that aspect. Note that each
command inside an app, such as an editor, is regarded as a function and falls
under above access control.

3.2 The Main Definition

The elementary function-based access control is too primitive for many differ-
ent reasons. Let us reconsider grep and assume we allow a user in Homeland
Security to search files in the CIA for the word terrorist. Using the grep option
“context = NUM” and using a very large value for NUM, the user will be able
to access the complete file, which might not be the purpose. Moreover, the user
could use grep to search for other keywords (or in general patterns) than the
word terrorist. We first discuss how we could fit such restrictions in E-FBAC.

Consider we define a new command grep terrorist count = 5, which only
allows the aforementioned user to search in files for the word terrorist and which
prints 5 lines of context. In other words this command has no other options.
Then controlling access when using grep terrorist count = 5 can be described
using the E-FBAC approach. Obviously, in practice we want the user to have
the flexibility to use options, which we now address.

Definition 3. Let S be the set of subjects, F a set of functions, O∗ as defined
in Definition 1. The entries to the three-dimensional table A with dimensions
identified by S, F , and O∗ are of the type “False”, “True[P(s,f,o)],” and N/A.
When f ∈ F has n objects as input, o ∈ O∗ an m-tuple, s a subject, then
A(s, f, o) = N/A when m �= n. When m = n, and A(s, f, o) = False, the subject
can not execute the function (command) f on object o. In the other case [P(s,f,o)]
is an option. If the option is specified, then the predefined program P(s,f,o) com-
prises the joint list of options (with their parameter) together with the standard
input. If P returns True, then the function f with the aforementioned list of
options and standard input can be executed by s on o. We call A the access ten-
sor. We call (S, F,O,A) a generalized function-based access control, or G-FBAC.

Obviously, using G-FBAC in practice might make access control very slow.
We suggest instead to replace P(s,f,o) by a regular expression. If the list of options
and the standard input satisfies the regular expression, f with the restrictions
indicated in Definition 3, can be executed. We call this approach a regular-
expression function-based access control, or in short RE-FBAC.

Obviously our approach is very different from the one giving subject execu-
tion right to functions (or operations) and read/write to objects. Indeed, whether
an operation can be executed or not should be object dependent. To emphasize
this aspect of our approach, we call this the Function-Data Granularity, or the
F-D granularity. It allows to specify that a user can only use “grep” with very
restricted options and patterns on outside data, but allowing grep in an unre-
stricted way on his/her own data.

152 Y. Desmedt and A. Shaghaghi

Before we proceed further in this section, let us make some preliminary obser-
vations. As is well known, any three dimensional table can be mapped into several
two dimensional tables. Indeed, for each (subject,object) we could specify which
functions could be executed, and provide above restrictions specified by P(s,f,o).
However, anyone familiar with Lampson’s approach immediately observes that
this does not match the Lampson’s description and one also looses the deeper
insight the third dimension brings.

It is obvious that our discussion on “grep” is just an example and that sim-
ilar OS commands or app commands can be restricted using FBAC. We note
that the classical Attribute-Based Access Control for XML does not allow us to
achieve our goal. Indeed, XML organizes the document into “records.” When
granting read access to this record, the maximal output a user can see is the
whole record. When applying FBAC to an XML document or any other type
of file, the maximal output a user can see, can contain significantly less data
than the full record. Finally, the power of FBAC in non-textual contexts will be
illustrated in the proof of implementation (See Sect. 5).

Further Output Controls: We first note that in certain contexts it still makes
sense to define customized versions of classical commands, such as grep. Indeed,
a customized command could further restrict the output by blanking out words
or sentences containing predefined words such as “submarine.” Unix allows the
use of “pipe” (i.e., |), which from a mathematical viewpoint correspond to a
composition of functions, e.g., f after g. To regulate access to the use of pipe,
we could regard f ◦ g as a new function and then control this as above. We now
discuss an alternative approach.

If we want to allow the use of pipe and want to avoid having to deal with spec-
ifying all possible combinations of compositions1, the following approach, which
we illustrate with grep, could be used. Grep can be executed on files, but also
on standard input, the latter enabling to use grep on an output of a prior com-
mand when using pipe. In our approach the latter use of grep corresponds with
a case in which grep has no predefined object as input. That implies that we can
regard grep as being two commands, one being grep in file and grep in standard.
The first has one predefined object as input, the second has zero. In the latter,
the restriction on the standard input will then be specified by the option P , as
defined in Definition 3.

3.3 Access Control Tensor (ACT) in Practice

Storing rights in an access control matrix is often too impractical or would slow
down enforcement. Several approaches have been used. Some of these are policy
dependent, such as the Unix concept of having the user (owner), group(s), and
world , when dealing with access control to files. From a conceptional viewpoint,
this policy corresponds with a compressed authorization list per object. We now
wonder what the equivalent ones are when using an access control tensor.
1 Note that the number of different functions one can define with a given finite domain

is finite, but too large to have practical value.

Function-Based Access Control (FBAC) 153

In the classical approach, an authorization list corresponds to a column in
the access control matrix. In other words, given an object, we obtain this list.
Since our approach is 3-dimensional, given solely an object, the rights described
related to that object are 2-dimensional, and so it can no longer be called a list.
We therefore call this an authorization matrix, i.e., for a given object(s) o the
authorization matrix gives A(si, fj , o), i.e., all values A(si, fj , o) for all i and
all j. Obviously, we can compress this matrix by only considering functions for
which A(si, fj , o) will be different from N/A.

In operating systems, capabilities play an important role. In our setting this
will be 2-dimensional and we talk about capability matrix, or just capability.
For each fixed subject s we can have a capability corresponding to the matrix
A(s, fi, oj), which contains these values for all i and all j. Obviously, we can
compress this matrix by only considering pairs of (functions, objects) for which
A(s, fi, oj) will be different from N/A.

Obviously, we will have a new 2-dimensional control mechanism, which when
given a particular function will reveal which subject have rights to which objects.
Since this matrix has the same dimensions than in the classical case, we call this
matrix an access control matrix. In other words, for each fixed function f we can
have an access control matrix corresponding to the matrix A(si, f, oj), which
contains these values for all i and all j. Obviously, we can compress this matrix
by only considering object(s) for which A(si, f, oj) will be different from N/A.

When systems are large, storing above matrices may be impractical. More-
over, when we are using a particular application, only the commands (functions)
that are available for this application are relevant. In such circumstances, we
will have two inputs, such as (subject, object) = (s, 0), and want to know the
rights to all (or a subset) of functions. We call A(s, fi, o) given the values for all
i, a function list. Obviously, we can perform the aforementioned N/A compres-
sion. If we have an application P and we want to restrict the function list to
the application, we write A|P (s, fi, o) to indicate that fi is a function available
in the application P and speak of application restricted function list. Note that
we can regard the commands available in a terminal application, as P = OS or
P = terminal.

For security audits it might be useful to find to know who has access to a
certain object o when using a function or command f . We call such a list a
subject list and when given (f, o) it gives A(si, f, o) for all i. When we have a
distributed system, we could restrict the subjects to T ⊆ S. We denote this
restriction as A|T (si, f, o). (We silently assume that (f, o) is a meaningful pair.)

Finally, when given (s, f) we want to know on what objects the subject s can
execute f and with what restrictions. We call the corresponding list an object
list it gives A(s, f, oi) for all i. When we want to restrict the list of objects to
B∗ ⊆ O∗, we have A|B∗ (s, f, oi). B∗ may correspond to object(s) inside a certain
directory, or objects owned by a certain organization, etc.

The above concepts can be used for all our variants of FBAC, i.e., E-FBAC,
G-FBAC, RE-FBAC.

154 Y. Desmedt and A. Shaghaghi

Extensions: Our definitions trivially allow to extend the Harrison-Ruzzo-
Ullman [31] approach, see e.g., [25, pp. 194–199]. Since this is rather straight-
forward, we leave the details as an exercise. Note that the primitive operations
have to take into account that we are dealing with a tensor instead of a matrix.

Moreover, in our definition we used S for subject instead of S∗. Indeed,
cryptographers use the concept of Access Structure, in which trust is put in sets
of parties. Replacing S by S∗ and using Access Structures is beyond the scope
of this paper, but deserves a proper study when extending FBAC (see Sect. 7).

4 Policy, Enforcement and Implementation

Up until now, we have formally and theoretically presented FBAC. At this point,
we have a discussion on Policy, Enforcement and Implementation of FBAC.
Sandhu et al. [50] have proposed the notion of PEI in an attempt to bridge the
gap between abstract policies and real implementations. It should be noted that
our discussion in this section, and the next, is one way of implementing FBAC
and uses Authorization Matrix to implement the ACT. There are alternative
ways of implementing FBAC, which may be more efficient and/or secure and/or
suitable. We leave this as future work and present some suggestion in the Future
Work section.

4.1 Policy

Bell-LaPadula [5] is a famous approach to model a confidentiality policy. Using
lattices, its limitations are well known (see e.g. [13] for a survey on the topic).
Similarly, the Biba [11] model is considered the dual for integrity. We now explain
how, for example, lattice based models, such as Bell-LaPadula and Biba can be
generalized to FBAC. Note that we do not advocate the use of these lattice
based models, but that we only show how they could be used.

In a lattice based information flow policy we have a set SC of security classes
and a relation 	 on SC such that (SC,) is a lattice. In the case of confiden-
tiality, given objects x and y and their corresponding security classes x and y,
information can flow from x to y if x 	 y. In Biba’s model, when s is a subject
and o is an object, s can write when o 	 s, where the s is the integrity level of
s and similarly for o.

We describe our generalization of the above approaches. We have function
dependent security classes. In practice we will specify these for subsets of func-
tions. We now explain the advantages of our function dependent policy focusing
on confidentiality.

In a military environment we could use strict Bell-LaPadula, but
now introduce new classes for very special customized functions such as
grep terrorist count = 5 (or variants further restricting the output) and make
certain that the appropriate employees at homeland security are in a high enough
security class for the function grep terrorist count = 5. Note that by having these
security classes function dependent, we are able to give grep terrorist (without

Function-Based Access Control (FBAC) 155

count restriction) access to files at the CIA to a restricted number of employees
at Homeland Security. So, we can regard that to the pair (f, o), where f is a
function and o is an object, corresponds a security class (f, o). Information can
only flow to subject s if (f, o) 	 s.

Obviously, we can adapt in a similar manner non-lattice based access control
policies. We note that we do not see a reason to change the Chinese Wall policy.
It seems to us that complete separation needs to be maintained in circumstances
where the Chinese Wall policy is used.

4.2 Enforcement and Implementation

Atoms and Atomic Documents: One of the main requirements of imple-
menting FBAC is proper storage of data and authorizations. It is possible to
enforce FBAC on any file type as long as the content sections (text and media)
are uniquely identifiable. For example, we have used XML in our proof of concept
implementation (see Sect. 5).

Once the aforementioned requirement is satisfied, it is possible to have, what
we call, an Atomic-Document. An Atomic Document, represented with .ADoc
extension, is composed of one or more Atoms. Atoms are the smallest segments of
a document and are undividable. These could be paragraphs in an unstructured
document, a sub-tree in a tree structured data, etc. Atoms have an accompanying
policy, which once executed for a subject returns a Function List (F)—the policy
is an Authorization Matrix but when we regard the matrix for one specific subject
then it becomes a Function List.

In an Atomic-Document, an Atom can be categorized as being:

Single or Linked: An atom is Linked if a function executed on it affects one
or more other atoms. In other words, having f(i) and f(j) as a function for
Atom(i) and Atom(j) respectively, where i �= j, E(f(x)) defined as the execu-
tion/invocation of f(x) on Atom(x), and “→” means results in, a Linked atom
can be defined as when:

E(f(i)) → E(f(j)).

An example of Linked Atom and how it could be used is explained in Sect. 5.
We define F (i) as the set of allowed functions for Atom(i) and F (D) as the

set of not allowed functions for a document D. An Atom(i) is an Atom for
document D if and only if the following consistency boolean condition holds:

F (i) ∩ F (D) = {}. (1)

Document D is .ADoc when the above condition holds for all Atom(i) in docu-
ment D. This condition serves to prevent contradictions.

Atomic Document with Classification Level: To implement access control
models such as MAC and security models such as Bell-Lapadula, we require
assigning a classification level to each object. Atomic documents supports defin-
ing classification labels for Atoms and .ADoc files. In this case, having C(i) as

156 Y. Desmedt and A. Shaghaghi

classification level of Atom(i) and C(D) as classification level of document D,
we update the consistency boolean Condition 1 as:

F (i) ∩ F (D) = {} ∧ C(i) ⊂ C(D). (2)

Fig. 1. One possible Smacs deployment scenario. Fig. 2. Image blurred when
relevant atom is not included
or the user does not have the
right to view it.

5 Proof of Concept Implementation: The Smacs Editor

As discussed earlier, copyright is a serious concern for right holders. Plagiarism
is one of the trending cases related to copyright [61,62], which is considered a
case of misconduct in academia and the publishing industry. As suggested by
the relevant investigations [53,58], limitations of methods for detection calls for
innovative preventative mechanisms. We have therefore developed an editor that
enforces Function-Based Access Control, Smacs, which if used properly could be
an effective prevention mechanism against plagiarism. Note that we assume ALL
documents are stored in the required format by the editor, see Atomic-Document
defined in Sect. 4.2. We also presume that authors ONLY use the developed editor
for creating documents—an issue we further discuss in Sect. 7.

Smacs, or Secure Emacs, is built on top of the GNU Emacs editor. We have
created a major mode for Emacs. This mode applies FBAC to both text and
images. In Smacs, the access control tensor is implemented as an Authorization
Matrix. Once the Atoms, i.e. objects, are defined then the authorization policy
is stored as an array in a separate file. Whenever an access request is sent to the
reference monitor, in this case Smacs, then the array is processed and retrieves
a value, which is a regular expression characterizing the function, as defined in
Sect. 3.2.

Function-Based Access Control (FBAC) 157

All of the typical commands of Word processing software are available in
Smacs. In order to facilitate the user experience when preparing documents,
the documents are prepared in LaTEX format with a custom defined “\smacs”
command. In Smacs, the representation is different from how data is stored and
files are saved with .ADoc format. The relevant conversion is triggered when
accessing and closing the files using an integrated conversion tool. To ensure that
only supported functions and commands can be triggered, we had to change the
source code of Emacs and recompile it. In this way, we could ensure that no other
Emacs mode or commands that could have violated our enforcement mechanism
can be executed. In the following, will briefly review sample workflows for three
types of users of Smacs, namely the Author, a Co-Author and a Viewer. While
doing so, we assume Smacs is deployed in a scenario as depicted in Fig. 1.

Workflow for an Author: An Author generates a new Atomic-Document, or
ADocx file, from scratch using Smacs Application. This is then stored at Data
Provider servers (see Fig. 1).

Currently, for simplicity, the default is set such that each paragraph is
regarded as an Atom. However, the author can amend this for any part of the
text according to his/her own requirement. An Author is asked a set of questions
by Smacs so the default Function List for Atoms of the Atomic-Document are
created. For example, the author is asked whether this document is printable or
not. Thereafter, the default Function List is assigned a list of \Smacs commands
throughout the document. The original set of functions that an author can define
for atoms may also be specified by an administrator using access control models
such as RBAC – i.e. for each role a set of allowed functions are defined. Indeed,
the author at his own discretion, or according to the authority granted by an
administrator, may change these. For example, an author may wish to prevent
copy on part of the text or require that if this part is printed then his/her name
is placed in bold format on top of the page.

To showcase how Smacs works, a number of custom defined functions such
as Watermark-Enforced Print(), Byte-Restricted Copy(), Character-Limited
Copy(), Sensitive-Word-Exclusion Copy(), Force-Carbon-Copy Email() are cur-
rently available to an author using Smacs. The author can also specify custom
Search functions for a document using regular expressions, e.g. Hide-Sensitive-
Word Search() takes as input a set of words, or Atom unique ID, and hides
them from a set of subjects. Or, Line-Restricted Search() retrieves a specific
number above and below for a query. For a motivational example on the usage
of this type of function, see Sect. 3.2. Evidently, not all of these functions may
be required for the plagiarism usecase.

Workflow for a Co-author: A Co-Author is any other user allowed to make
changes to the Atomic-Document created by an Author. By default, the set of
functions and capabilities available to this user is a subset of those available
to the original author. The author, or an administrator, can restrict changing
certain parts of the document and could restrict a Co-Author’s ability on amend-
ing authorized functions. Currently, Smacs supports defining authorization for
a global Co-Author and specific policy for each of the possible Co-Authors.

158 Y. Desmedt and A. Shaghaghi

Workflow for a Viewer: A Viewer uses Smacs to browse the Atomic-document
and retrieves an ADoc file stored at Data Provider – i.e. s/he cannot edit the
document. A trusted client-side reference monitor, in this case Smacs, enforces
access restrictions for the Viewer as per the policies defined by an administrator.
Smacs takes as input an ADoc file, which contains both the policy and anADocX.
First, it computes requirements for the Read function for all Atoms. Thereafter,
whenever another command available to a viewer such as Print is invoked it refers
to the policy file for deciding about authorization. Therefore, if, for example, the
Viewer is not authorized to view an image, the image can be hidden, blurred or
shown with a watermark – such features may be useful to prevent unauthorized
use of copyrighted images. Figure 2, is an example for this case.

Supporting authorization of customized functions and using the Atomic
data structure as described earlier, which supports having Linked Atoms (see
Sect. 4.2) in a document, it is possible to have plagiarism preventive mecha-
nisms. For example, while a Viewer is not allowed to read the document itself,
s/he may be allowed to Copy part of the text into another a document that
she/he is authoring. With a customized Copy/Paste function, it is possible to
enforce that whenever a text is copied from the document then information is
automatically imported as a quote and the source becomes a citation in the des-
tination Atomic document and if the citation is ever removed the quote becomes
unavailable.

5.1 Usability and Performance Analysis of Smacs

The number of features available to each category of users in Smacs, requires
careful consideration about the usability aspect. We have customized a number
of graphical packages available in Emacs to improve the user experience. When
defining authorizations defaults play a major role and, in Smacs, authors can
define these by answering a set of questions. When customizing each part of the
document a tab is available on the editor window that makes it convenient to
change the attributes. Moreover, for any parts that the Viewer is not authorized
to read the document information is blacked out and custom error messages are
shown when invoking any non-permitted command – custom messages provide
meaningful information and instructions about the error message and minimize
disruption of the user experience when using the editor.

In general, the granularity of control provided by FBAC should not be a
factor against usability and it should be handled with taste by software devel-
opers. Publishing a set of recommendations for applications developed based on
FBAC will be done in our following future work. It is also important to note that
our performance analysis of current implementation of Smacs compared to the
standard Emacs editor, in terms of memory, CPU and responsiveness indicate a
negligible performance impact.

Function-Based Access Control (FBAC) 159

6 Discussion and Related Work

There is a growing body of literature that takes an incremental approach in
detection and prevention of insider threats. These include using monitoring tech-
niques [18], combining structural anomaly detection with modelling of psycho-
logical factors to identify potential insiders [19], examining behavioural char-
acteristics of potential insiders to distinguish between malicious and benign
behaviours [20] and multi-disciplinary approaches to assist an organisation’s ana-
lyst in understanding attacks [43,45]. Other approaches include using Honeypots
to uncover insiders [57], distributed analysis of data sources, both computer and
human factor based [68], and using Hidden Markov Models to identify divergence
between normal and insider threat patterns [63]. A common argument in this
literature is that detection of insider threats is “not an exact science”. There-
fore, we believe these approaches could be regarded as complimentary to our
work and that access control is the most critical security mechanism to prevent
insider threats [22]. Moreover, with FBAC, due to the level of granularity and
practical features of ACT such as Subject List, it is possible to narrow down the
number of suspects who could have had access to a leaked information much
more efficiently.

On the other hand and as mentioned in Sect. 2.2, a number of relevant papers
exists in the field of access control. Indeed, models such as UCONABC have the
potential of solving some of the limitations in existing access control. However, to
the best of our knowledge, there exist no work until this date that has provided
a coherent model for authorizing function executions at the level of data blocks.
Leave alone, granting custom defined and restricted functions. Cryptographic
solutions such as Digital Right Management (DRM) and Functional Encryp-
tion that aim to protect content lack proper policy specifications models and
standards or are too slow. In addition, we regard DRM and similar software-
engineering solutions deployed at organizations to be of an ad-hoc approach
towards addressing data protection requirements. [72] includes some of the main
challenges limiting the wider adoption of DRMs.

As mentioned in Sect. 1, entropy does not measure the value of information
and we find this literature different in scope with our work. There is also a body
of computer security literature such as [44,66,71] that provide information flow
control solutions at the level of the operating system. This type of work mainly
relies on labelling operating system objects and controlling the operating system
processes when accessing these objects. These do not consider objects at the
level of data blocks and do not target monitoring execution of commands inside
applications. Simply put, both the granularity and scope of research is different.
However, as we will discuss in the next section when one wants to enforce FBAC
at the operating system level, then this literature may become relevant.

7 Future Work

Our prototype implementation was focused on operations inside one applica-
tion, being an editor. Emacs was chosen to demonstrate, for example, how the

160 Y. Desmedt and A. Shaghaghi

Copy/Paste command could dramatically be changed, in particular when writ-
ing LaTEX documents. Several other functions/commands, such as Search, send
E-mail, Print, etc., can be used at an OS level, or inside different applications.
Hence, if we wish to enforce FBAC properly, there should be no method available
on a computer to bypass this. One way to achieve this is to develop an OS where
file access controlled by classical access control matrix, is replaced by FBAC.
A question worth addressing is to wonder how FBAC can help in practice with
controlling information flow inside an OS, i.e., when considering the registers
and memory as objects. Having a proper security kernel that facilitates such OS
would have several advantages. Given such a security kernel, applications can
use the security kernel as a reference monitor to enforce the policy.

Investigating the capabilities of FBAC in addressing selective information
sharing requirements in cloud computing and mobile platforms are further direc-
tions worth investigating [67]. As a matter of fact, we are currently developing
a set of libraries that will allow applications running on Android smartphones
to use FBAC and will release this in our future work.

We now discuss what impact our paper may have on the development of new
policies. Different policies fit different organizations. However, all current policies
are in fact based on a classical access control matrix approach. We have extended
some well know policies to adapt them to an FBAC setting. These extensions are
rather trivial. Further research may lead to a better understanding how the 3-rd
new dimension, i.e., the function, could be exploited to come up with policies to
fight insider threats much better, while at the same time allowing flexibility that
are currently impossible. Moreover, developing policy specification languages—
such as XACML [42] for attribute-based access models—properly suited to the
requirements of FBAC is an important requirement that has to be addressed in
future work.

As stated in Sect. 3.3, cryptographers interested in secret sharing [15,32,55]
often regard individuals as untrustworthy, but trust is associated to appropriate
subsets of “parties.” Due to the Snowden leak, secret sharing is being used for
backup purposes. This is a rather limited application. If one wants to work
out this type of approach, a typical subject needs to be replaced by an access
structure [32], which is a list of subsets. Each subset in this list is trusted. One of
the challenges is on how to implement this. Indeed, let say {Alice, Bob} are in
the access structure. Does it mean that Alice can only open a file if at exactly the
same time Bob tries to do the same. Or should, at the moment, Alice tries to open
a file, Bob be notified, and then approve. Such systems have been implemented
to enforce very strong audit. However, they have never been formally studied by
regarding this as an access controlled by two parties. More questions arise, such
as the fact that access structures contain subsets of parties, and not ordered
tuples. If we were to use ordered pairs as (Alice, Bob) could indicate that Alice
is allowed to open a file, provide Bob agree. However, if (Bob, Alice) is not in
the ordered access structure, then Bob might not be able to open the file (i.e.,
when {Bob} is not in the access structure).

Function-Based Access Control (FBAC) 161

Although there has been a lot of progress on functional encryption, that does
not mean that there is a cryptographic mechanism to enforce an FBAC policy
cryptographically. Such a cryptographic enforcement would correspond with (at
least) the use of digital signatures to guarantee that the person granting the
rights is authorized. One of the challenges is to guarantee that when new objects
are created from old ones, i.e., combining plaintexts decrypted using functional
encryption, access to the new objects will have the correct functional encryption
to guarantee the enforcement of the information flow policy, i.e., a re-encryption
can not bypass the policy.

8 Conclusion

Mainly motivated by the ongoing insider threats, we changed Access Control
Matrix, the core concept behind current implementations of access control, to
Access Control Tensor (ACT). We discussed why a 2-Dimensional representa-
tion of authorizations is a limitation and argued how our proposed ACT enables
achieving a breakthrough level of granularity in access control. We proposed
Function-Based Access Control, a new access control model built on top of
ACT, which enables designing solutions that could potentially minimize secu-
rity threats relevant to modern access control failures. In FBAC applications
no-longer give blind folded execution rights and access is defined at the level of
available commands, such as Copy/Paste, Search, and Email. Commands can
be custom defined in FBAC and are applied at the granularity of data segments
rather than files. Finally, we discussed the Policy, Enforcement and Implemen-
tation (PEI) aspects of FBAC, provided directions on how to implement, adopt
and extend it.

Acknowledgments. Arash Shaghaghi acknowledges the support provided by his
Ph.D. supervisor Prof. Sanjay Jha at UNSW Sydney. A/Prof. Salil Kanhere also pro-
vided useful insights and suggestions in designing deployment scenarios for FBAC.

References

1. Emerging technologies that will change the world. MIT Technology Review, Jan-
uary 2001

2. US State Dept limits military access to its database, November 2010. www.
defencetalk.com/us-state-dept-limits-military-access-to-its-database-30387/

3. Apple’s Apps economy as big as Hollywood. The Telegraph, January 2015. http://
www.telegraph.co.uk/technology/apple/11362562/Apples-apps-economy-as-big-
as-Hollywood.html

4. Batane, T.: Turning to Turnitin to fight plagiarism among university students. J.
Educ. Technol. Soc. 13(2), 1–12 (2010)

5. Bell, D.E., LaPadula, L.J.: Secure computer systems: mathematical foundations
and model. Technical report M74–244, The MITRE Corporation, Bedford, Mas-
sachusetts, May 1973

www.defencetalk.com/us-state-dept-limits-military-access-to-its-database-30387/
www.defencetalk.com/us-state-dept-limits-military-access-to-its-database-30387/
http://www.telegraph.co.uk/technology/apple/11362562/Apples-apps-economy-as-big-as-Hollywood.html
http://www.telegraph.co.uk/technology/apple/11362562/Apples-apps-economy-as-big-as-Hollywood.html
http://www.telegraph.co.uk/technology/apple/11362562/Apples-apps-economy-as-big-as-Hollywood.html

162 Y. Desmedt and A. Shaghaghi

6. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: how to remove intractability assumptions. In: Proceedings of the Twentieth
Annual ACM Symposium Theory of Computing, STOC, 2–4 May 1988, pp. 113–
131 (1988)

7. Bertino, E., Castano, S., Ferrari, E.: Securing XML documents: the author-X
project demonstration. SIGMOD Rec. 30(2), 605 (2001)

8. Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying and enforcing access
control policies for XML document sources. World Wide Web 3(3), 139–151 (2000)

9. Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Protection and administration of
XML data sources. Data Knowl. Eng. 43(3), 237–260 (2002)

10. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents.
ACM Trans. Inf. Syst. Secur. (TISSEC) 5(3), 290–331 (2002)

11. Biba, K.J.: Integrity considerations for secure computer systems. Technical report
ESD-TR-76-372, USAF Electronic Systems Division, April 1977

12. Bird, R., Bird, R., Jain, S.: The Global Challenge of Intellectual Property Rights.
Edward Elgar Publishing, Incorporated, Cheltenham (2009)

13. Bishop, M.: Computer Security. Addison-Wesley, Reading (2003)
14. Biswas, P., Patwa, F., Sandhu, R.: Content level access control for openstack swift

storage. In: Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, pp. 123–126. ACM (2015)

15. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National
Computer Conference. AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)

16. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

17. Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key
cryptography. Commun. ACM 55(11), 56–64 (2012)

18. Bowen, B.M., Salem, M.B., Hershkop, S., Keromytis, A.D., Stolfo, S.: Designing
host and network sensors to mitigate the insider threat. IEEE Secur. Priv. 7(6),
22–29 (2009)

19. Brdiczka, O., et al.: Proactive insider threat detection through graph learning
and psychological context. In: 2012 IEEE Symposium on Security and Privacy
Workshops (SPW), pp. 142–149. IEEE (2012)

20. Caputo, D., Maloof, M., Stephens, G.: Detecting insider theft of trade secrets.
IEEE Secur. Priv. 6, 14–21 (2009)

21. Cole, E., Ring, S.: Insider Threat: Protecting the Enterprise from Sabotage, Spying,
and Theft: Protecting the Enterprise from Sabotage, Spying, and Theft. Syngress,
Rockland (2005)

22. Crampton, J., Huth, M.: Towards an access-control framework for countering
insider threats. In: Probst, C., Hunker, J., Gollmann, D., Bishop, M. (eds.) Insider
Threats in Cyber Security. ADIS, vol. 49, pp. 173–195. Springer, Boston (2010).
https://doi.org/10.1007/978-1-4419-7133-3 8

23. Damiani, E., Capitani, D., di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-
grained access control system for XML documents. ACM Trans. Inf. Syst. Secur.
(TISSEC) 5(2), 169–202 (2002)

24. Upton, D.M., Creese, S.: The danger from within. Harv. Bus. Rev. 92, 94–101
(2014)

25. Denning, D.E.R.: Cryptography and Data Security. Addison-Wesley, Reading
(1982)

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-1-4419-7133-3_8

Function-Based Access Control (FBAC) 163

26. Desmedt, Y.: Computer security by redefining what a computer is. In: Michael,
J.B., Ashby, V., Meadows, C. (eds.) Proceedings on the (1992–1993) New Security
Paradigms II Workshop, ACM-SIGSAC, Little Compton, Rhode Island, U.S.A, pp.
160–166. IEEE Computer Society Press (1992, 1993)

27. Desmedt, Y.: Computer security by redefining what a computer is. In: Proceedings
on the 1992–1993 Workshop on New Security Paradigms, pp. 160–166. ACM (1993)

28. Fadhel, A.B., Bianculli, D., Briand, L.: A comprehensive modeling framework for
role-based access control policies. J. Syst. Softw. 107, 110–126 (2015)

29. Fong, P.W.: Relationship-based access control: protection model and policy lan-
guage. In: Proceedings of the First ACM Conference on Data and Application
Security and Privacy, pp. 191–202. ACM (2011)

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium Theory of Computing, STOC,
25–27 May 1987, pp. 218–229 (1987)

31. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
mun. ACM 19(8), 461–471 (1976)

32. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structures. In: Proceedings of IEEE Global Telecommunications Conference,
Globecom 1987, pp. 99–102. IEEE Communications Society Press (1987)

33. Jin, X.: Attribute-based access control models and implementation in cloud infras-
tructure as a service. The University of Texas at San Antonio (2014)

34. Jin, X., Sandhu, R., Krishnan, R.: RABAC: role-centric attribute-based access
control. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531,
pp. 84–96. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33704-
8 8

35. Joshi, J.B., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE Trans. Knowl. Data Eng. 17(1), 4–23 (2005)

36. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access con-
trol. Computer 43(6), 79–81 (2010)

37. Lampson, B.W.: Protection. ACM Oper. Syst. Rev. 8(1), 18–24 (1974). Also. In:
Proceedings of the 5th Princeton Symposium of Information Science and Systems
(1971)

38. Latimer, J.: Deception in War. Overlook Press, New York (2001)
39. Leigh, D., Harding, L.: Wikileaks: Inside Julian Assange’s War on Secrecy. Public

Affairs, New York (2011)
40. Levine, J.: Operation Fortitude: The True Story of the Key Spy Operation of

WWII that Saved D-Day. HarperCollins, London (2011)
41. Morrow, B.: BYOD security challenges: control and protect your most sensitive

data. Netw. Secur. 2012(12), 5–8 (2012)
42. Moses, T., et al.: eXtensible Access Control Markup Language (XACML) version

2.0. Oasis Standard 200502 (2005)
43. Murphy, J.P., Berk, V.H., Gregorio-de Souza, I.: Decision support procedure in

the insider threat domain. In: 2012 IEEE Symposium on Security and Privacy
Workshops (SPW), pp. 159–163. IEEE (2012)

44. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java infor-
mation flow. Software release, vol. 2005 (2001). Located at http://www.cs.cornell.
edu/jif

45. Nurse, J.R.C., et al.: A critical reflection on the threat from human insiders – its
nature, industry perceptions, and detection approaches. In: Tryfonas, T., Askoxy-
lakis, I. (eds.) HAS 2014. LNCS, vol. 8533, pp. 270–281. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07620-1 24

https://doi.org/10.1007/978-3-642-33704-8_8
https://doi.org/10.1007/978-3-642-33704-8_8
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif
https://doi.org/10.1007/978-3-319-07620-1_24

164 Y. Desmedt and A. Shaghaghi

46. Oh, S., Park, S.: Task-role-based access control model. Inf. Syst. 28(6), 533–562
(2003)

47. Park, J., Sandhu, R.: The UCON ABC usage control model. ACM Trans. Inf. Syst.
Secur. (TISSEC) 7(1), 128–174 (2004)

48. Park, J.S., Giordano, J.: Access control requirements for preventing insider threats.
In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI
2006. LNCS, vol. 3975, pp. 529–534. Springer, Heidelberg (2006). https://doi.org/
10.1007/11760146 52

49. Price, D.: Sizing the piracy universe. NetNames (2013). http://copyrightalliance.
org/sites/default/files/2013-netnames-piracy.pdf

50. Sandhu, R., Ranganathan, K., Zhang, X.: Secure information sharing enabled by
trusted computing and PEI models. In: Proceedings of the 2006 ACM Symposium
on Information, Computer and Communications Security, pp. 2–12. ACM(2006)

51. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun.
Mag. 32(9), 40–48 (1994)

52. Saunders, G., Hitchens, M., Varadharajan, V.: Role-based access control and the
access control matrix. ACM SIGOPS Oper. Syst. Rev. 35(4), 6–20 (2001)

53. Savage, S.: Staff and student responses to a trial of Turnitin plagiarism detection
software. In: Proceedings of the Australian Universities Quality Forum, pp. 2–7.
Citeseer (2004)

54. Schneier, B.: Bruce Schneier on Trust Set. Wiley, New York (2014)
55. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
56. Smith, T.: 5 Ways to Encourage BYOD and Keep Your Company Data Secure.

Entrepreneur, January 2015. http://www.entrepreneur.com/article/241645
57. Spitzner, L.: Honeypots: catching the insider threat. In: 2003 Proceedings of

the 19th Annual Computer Security Applications Conference, pp. 170–179. IEEE
(2003)

58. Stapleton, P.: Gauging the effectiveness of anti-plagiarism software: an empirical
study of second language graduate writers. J. Engl. Acad. Purp. 11(2), 125–133
(2012)

59. Subramanya, S., Yi, B.K.: Digital rights management. IEEE Potentials 25(2), 31–
34 (2006)

60. The British Broadcasting Corporation (BBC): UK’s families put on fraud alert.
http://news.bbc.co.uk/2/hi/uk news/politics/7103566.stm

61. The Guardain: Cheating found to be rife in British schools and univer-
sities. http://www.theguardian.com/education/2015/jun/15/cheating-rife-in-uk-
education-system-dispatches-investigation-shows

62. The Telegraph: The cheating epidemic at Britain’s universities. http://www.
telegraph.co.uk/education/educationnews/8363345/The-cheating-epidemic-at-
Britains-universities.html

63. Thompson, P.: Weak models for insider threat detection. In: Defense and Security,
pp. 40–48. International Society for Optics and Photonics (2004)

64. Thomson, G.: BYOD: enabling the chaos. Netw. Secur. 2012(2), 5–8 (2012)
65. Erlingsson, U.: Keynote: Advances in Cryptology - ASIACRYPT 2011: Proceedings

of the 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, 4–8 December 2011 (2011)

66. Vandebogart, S., et al.: Labels and event processes in the asbestos operating sys-
tem. ACM Trans. Comput. Syst. (TOCS) 25(4), 11 (2007)

67. di Vimercati, S.D.C., Foresti, S., Samarati, P.: Data security issues in cloud scenar-
ios. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2015. LNCS, vol. 9478, pp. 3–10.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26961-0 1

https://doi.org/10.1007/11760146_52
https://doi.org/10.1007/11760146_52
http://copyrightalliance.org/sites/default/files/2013-netnames-piracy.pdf
http://copyrightalliance.org/sites/default/files/2013-netnames-piracy.pdf
http://www.entrepreneur.com/article/241645
http://news.bbc.co.uk/2/hi/uk_news/politics/7103566.stm
http://www.theguardian.com/education/2015/jun/15/cheating-rife-in-uk-education-system-dispatches-investigation-shows
http://www.theguardian.com/education/2015/jun/15/cheating-rife-in-uk-education-system-dispatches-investigation-shows
http://www.telegraph.co.uk/education/educationnews/8363345/The-cheating-epidemic-at-Britains-universities.html
http://www.telegraph.co.uk/education/educationnews/8363345/The-cheating-epidemic-at-Britains-universities.html
http://www.telegraph.co.uk/education/educationnews/8363345/The-cheating-epidemic-at-Britains-universities.html
https://doi.org/10.1007/978-3-319-26961-0_1

Function-Based Access Control (FBAC) 165

68. Wall, D.S.: Enemies within: redefining the insider threat in organizational security
policy. Secur. J. 26(2), 107–124 (2013)

69. Yao, A.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (FOCS), Toronto, Ontario, Canada, 27–29
October 1986, pp. 162–167. IEEE Computer Society Press (1986)

70. Desmedt, Y.: Keynote: Security and Privacy in Communication Networks: 7th
International ICST Conference, SecureComm 2011, London, 7–9 September 2011
(2011)

71. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in HiStar. In: Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, pp. 263–278. USENIX Association (2006)

72. Zhang, Z., Pei, Q., Ma, J., Yang, L.: Security and trust in digital rights manage-
ment: a survey. IJ Netw. Secur. 9(3), 247–263 (2009)

Virtualization Technologies and Cloud
Security: Advantages, Issues,

and Perspectives

Roberto Di Pietro1(B) and Flavio Lombardi2

1 Information and Computing Technology Division, College of Science
and Engineering, Hamad Bin Khalifa University, Doha, Qatar

rdipietro@hbku.edu.qa
2 Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche,

Rome, Italy
flavio.lombardi@cnr.it

Abstract. Virtualization technologies allow multiple tenants to share
physical resources with a degree of security and isolation that cannot be
guaranteed by mere containerization. Further, virtualization allows pro-
tected transparent introspection of Virtual Machine activity and content,
thus supporting additional control and monitoring. These features pro-
vide an explanation, although partial, of why virtualization has been an
enabler for the flourishing of cloud services. Nevertheless, security and
privacy issues are still present in virtualization technology and hence
in Cloud platforms. As an example, even hardware virtualization protec-
tion/isolation is far from being perfect and uncircumventable, as recently
discovered vulnerabilities show. The objective of this paper is to shed
light on current virtualization technology and its evolution from the point
of view of security, having as an objective its applications to the Cloud
setting.

Keywords: Virtualization · Security · Cloud

1 Introduction

The advances in virtualization technology of the past decade have rendered the
Cloud approach feasible and convenient. Nevertheless, the main limitation of vir-
tual machines is that they were born as a means to easily migrate from physically
deployed services to more compact and manageable images. In fact, each and
every VM runs its own full operating system together with the various libraries
required by the application (see Fig. 1) [35]. Such an approach multiplicates the
usage of RAM, CPU, and storage with respect to simply hosting multiple services
as separate processes on a single piece of bare metal.

Containerization technology is intended to replace hypervisor and VMs, and
deploys each application in its own process-like environment running on the
physical machine on a single operating system [42]. Containers can be provi-
sioned (and deprovisioned) in a few seconds and make a more efficient usage
c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 166–185, 2018.
https://doi.org/10.1007/978-3-030-04834-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_9

Virtualization Technologies and Cloud Security 167

of resources, achieving a much higher application density (orders of magnitude
[37]) than virtualization. This renders containers much more convenient than
virtual machines.

Nevertheless, as we will show along this paper, virtualization is not on a
dead path. In fact, virtual machines provide additional security mechanisms
and isolation benefits in many application scenarios that are often worth the
additional resource usage [28,39].

A virtualization environment generally consists of three core components: an
hypervisor or Virtual Machine Manager (also VMM in the following), manage-
ment tools, and Virtual Machines (VMs). In particular, the infrastructure-as-
a-service (IaaS) Cloud layer directly leverages and exposes powerful virtualiza-
tion technologies and resources to a remote user [3]. Nevertheless, virtualization
technologies also introduce additional security concerns. The size of the attack
surface for the virtualization approach is directly proportional to the amount of
emulated physical resource or functionality that must be provided in software.
As regards containers, they can leverage all services offered by the host OS,
so the issue here is to enforce effective security and isolation among processes.
This is actually more difficult to do, since OSes have not been designed with
this in mind. Further, the partitioning/virtualization modes and ISAs1 of recent
CPU and GPU cannot be used by containers, as they are inherently part of vir-
tualization and introduce the actual performance penalties of traditional VMs.
Unikernels can be considered an alternative to both containerization and virtu-
alization. They maintain some of the benefits of other approaches (lightweight
and isolated) but introduce further issues such as manageability, monitoring and
reliability.

In this paper, we survey various aspects of virtualization, analyze their impact
on security, and discuss future perspectives. In particular, we provide technol-
ogy background for most widespread virtualization tools in order to highlight
features, advantages and potential security flaws, with a focus on their applica-
tion to Cloud. Further, discussions and comparisons with containerization and
unikernel approaches are introduced throughout the paper.

The sequel of this paper is organized as follows: a technology background is
provided in Sect. 2; most relevant virtualization security issues are introduced in
Sect. 3; virtualization-based security approaches are presented in Sect. 4; novel
enclave technology is discussed in Sect. 5; virtualization-based use cases, together
with some future research trends, are presented in Sect. 6; and, finally, conclu-
sions and hints for future work are given in Sect. 7.

2 Technology Background

Various different virtualization technologies are currently deployed in the Cloud,
mostly for x86 64 architectures (e.g., Xen, KVM, VMware, VirtualBox, and
HyperV). Most relevant details on virtualization frameworks and on supporting
hardware (CPU/GPU) features are given and discussed in the following sections.
1 Instruction Set Architecture(s).

168 R. Di Pietro and F. Lombardi

Fig. 1. Cloud layers and virtualization

2.1 Virtualization Frameworks

The essential characteristics of the most widespread virtualization environments
are summarized in Table 1. It is worth noting that all present hypervisors sup-
port full virtualization (also hardware-assisted virtualization in the following),
as it offers relevant performance and isolation benefits. In fact, hardware virtu-
alization allows the CPU to detect and possibly block unauthorized or malicious
access to virtual resources. Nevertheless, no virtualization framework is immune
to bugs. The virtualization platform can be an additional attack surface.

2.2 CPU Virtualization

The introduction of virtualization-enabling extensions in Intel and AMD CPUs
dates back to 2005 [1,25]. VT-x and AMD-V were developed to add an additional
more privileged execution ring where an hypervisor or virtual machine manager
(VMM) could supervise actual access to physical resources from less privileged
execution rings, as depicted in Fig. 2.

CPUs are required to support some advanced extensions in order to allow
the hypervisor to leverage them, as can be seen in Table 1. More in detail:

– Intel VT-x AMD-V: These two CPU capability sets are the basic ingredi-
ent of hardware-supported virtualization. They introduce Ring –1 allowing a
guest virtual machine to run its kernel at standard privilege level (i.e., Ring
0);

Virtualization Technologies and Cloud Security 169

Table 1. CPU-related virtualization features

X86 64 hypervisor Open source Hypervisor type Supported extension(s)

Xen Y Native VT-x, AMD-V, EPT, RVI, VT-d, AMD-Vi

KVM Y Hosted VT-x, AMD-V, EPT, RVI, VT-d, AMD-Vi

VMWare ESX N Native VT-x, AMD-V, EPT, RVI, VT-d, AMD-Vi

Hyper-V N Native VT-x, AMD-V, EPT, RVI, VT-d, AMD-Vi

VirtualBox Y Hosted VT-x, AMD-V

– Intel EPT, AMD RVI: Rapid Virtualization Indexing and Extended Page
Tables, i.e. the Support for Second Level Address Translation (SLAT) that
can significantly improve performance;

– Intel VT-d, AMD-Vi: These CPU capabilities (directed I/O) allow faster
I/O resource virtualization.

Fig. 2. Execution rings for the x86 64 architecture. See also [19]

2.3 GPU Virtualization

The virtualization paradigm also applies to Graphics Processing Units (GPUs).
Virtual machines can be given mediated or full access to GPU computing and
memory resources. This allows offering a GPU-based Cloud similar to what is
in place already for CPU-based computing resource sharing. Hypervisor support
for GPU virtualization features (see Table 2) is still somehow limited as relevant
GPU technology is still reserved for high-end GPUs. In fact, GPU virtualization
is usually implemented following one of these main approaches [24]:

– time-sharing: a single VM at a time is given direct access to the GPU.
Time-slots are handled by the hypervisor;

170 R. Di Pietro and F. Lombardi

– passthrough: the GPU is directly and permanently connected to a single
VM that has direct access to it;

– partitioned: the GPU resources are split into smaller virtual GPUs, assigned
to single VMs.

Once VMs have access to the GPU, the interaction between the guest and
the real resource can be achieved in two different ways: backend virtualization
or frontend virtualization [17]. Backend virtualization gives a direct connection
between the VM and the GPU hardware. Frontend virtualization poses an inter-
mediate layer between the guest and the hardware that has to leverage some kind
of intermediate APIs to access the GPU. Some frontend virtualization examples
are gVirt [56], vCUDA [53], GViM [22] and VOCL [59].

Table 2. GPU-related virtualization features

X86 64 hypervisor Open source Supported GPU virtualization technologies

Xen Y Intel GVT-g, AMD MxGPU

KVM Y Intel GVT-g, AMD MxGPU

VMWare ESX N Intel GVT-g, AMD MxGPU

Hyper-V N -

Virtualbox Y -

Particularly relevant here is AMD MxGPU technology [58], a partitioning
strategy allowing users to have an equal share of the GPU. This hardware-
based virtualization solution helps guaranteeing some isolation among different
workloads and users.

Intel GVT-g [56] is a full GPU virtualization solution with mediated
passthrough (VFIO2 mediated device framework based). A virtual GPU instance
is maintained for each VM, with part of performance critical resources directly
assigned. The capability of running native graphics driver inside a VM, without
hypervisor intervention in performance critical paths, achieves a good balance
among performance, feature, and sharing capability.

As GPUs are mainly used for computation tasks, security concerns about
GPU virtualization are mainly focused on data leakage [16]. This can occur
either by directly access data owned by the victim and stored within the GPU
memory or by exploiting side channels. In [41], Christin et al. have depicted two
adversary models:

– serial adversary: this attacker has access to the same GPU or to the same
GPU memory of the victim, before or after the victim. Hence, it can seek for
traces previously left by the victim in different GPU memories;

– parallel adversary: this attacker has access to the same GPU or GPU
memory of the victim but in the same moment.

2 Virtual Function I/O.

Virtualization Technologies and Cloud Security 171

3 Virtualization Security Issues

Virtualization technologies underlying Cloud computing infrastructure them-
selves constitute vulnerable surface. In a Cloud scenario, we can observe the
following major security challenges [35]:

– privileged user access: access to sensitive data in the Cloud has to be
restricted to a subset of trusted users (to mitigate the risk of abuse of high
privilege roles);

– lack of data/computation isolation: one instance of customer data has
to be fully isolated from data belonging to other customers;

– reliability/availability: the Cloud provider has to setup an effective repli-
cation and recovery mechanism to restore services, should a security issue
occur;

Virtualization potentially widens Cloud computing attack vectors such as:

– hypervisor: the hypervisor is the software element sitting in between the host
and guests to allow mediated access to physical resources. This layer should be
transparent to a non-privileged user running into the guest. Unfortunately,
its presence cannot be fully hidden [46]. As such, an attacker can exploit
hypervisor vulnerabilities to gain access to both the host system and other
guests. Hypervisors also provide emulation capabilities for missing hardware
elements. However, this is a potential attack surface, as demonstrated by Ray
[47] and Geffner [26];

– pivoting: users can often login into specific services hosted by a VM. Once
inside, the attacker could also exit the virtual machine she accessed, to dam-
age the underlying physical system and/or sibling VMs.

– migration: virtual machines can be moved over different hosts for load bal-
ancing or disaster recovery. This “migration” is performed by copying the
VM image over the network. An attacker can potentially eavesdrop data and
perform a man in the middle attack if the channel is not encrypted.

– resource allocation: virtual machines are usually executed on-demand at
run-time, thus making the resource allocation and management process as
dynamic as possible. Resource sharing can thwart the security of the host sys-
tem as well as of its virtual machines. In fact, negligence in cleaning resources
before releasing them to others can lead to severe data leakage. As an exam-
ple, data written by a VM into volatile or persistent storage can be accessed
by others who have access to the same elements [50];

The above attacks show how virtual machines and the physical machines
hosting them can be thwart by attackers targeting the host or just the virtual
machine. Some mitigating approaches can be as follows:

– host side: vulnerabilities in the implementation of the hypervisor can some-
what be mitigated by frequently updating the hypervisor to reduce 0-days
vulnerability window;

172 R. Di Pietro and F. Lombardi

– network monitoring: monitoring and analyzing internal communications
between sibling guests can help; nevertheless, malicious network behavior is
difficult to detect by means of traditional intrusion detection systems and
intrusion prevention systems;

– encryption: to mitigate such migration attacks encryption of the data in
transit can be used; nevertheless, this proves quite demanding on perfor-
mance, and consequently on costs.

– on allocation: this attack can be dealt with by carefully deleting/cleaning
resources either persistent or volatile that have been previously assigned to
other VMs;

3.1 Co-location Issues

Co-location of virtual machines by different tenants on the same physical host is
particularly frequent in Cloud computing. Virtual resources assigned to a tenant
might get hacked by other virtual resources assigned to different tenants that are
co-located within the same physical machine. Co-location can lead to different
issues as follows:

– information leakage: by reusing the same physical hardware to allocate
virtual resources, tenants might be able to exploit forensic tools to recover
sensitive data from previous tenants;

– performance degradation: malicious tenants co-located in the same physi-
cal host might be able to make an uneven/widely varying use of computational
power with high cpu-intensive co-located virtual machines with the final goal
of degrading victim’s performances;

– service disruption: malicious tenants sharing physical resources with their
victim might be able to lead the hardware to unexpected behaviors thus
causing a service disruption against the victim.

A large number of research results have highlighted the actual existence of
co-location vulnerabilities [48,61]. Such papers show that completely preventing
tenants from sharing the same physical resources is practically unfeasible (due to
rising costs). A viable solution [3] might be an attribute-based approach where
tenants can express constraints over both virtual and physical resource alloca-
tion. Tenants would be able to indicate an high data sensitivity, thus requesting
to avoid co-location. In this way, co-location will not be allowed for virtual
resources working on high sensitive information thus lowering the chance of data
leakage. As a consequence, virtual resource cost would be increased. This could
be an acceptable trade-off in most sensitive scenarios.

3.2 Randomness and Virtualization

Cloud providers usually deploy identical VM clones when needed to satisfy
request load. As such, it often happen that the very same images are used for
different tenants. As a consequence, the internal random pool for clone VMs is

Virtualization Technologies and Cloud Security 173

most probably the same/very similar for different VMs [20]. An adversary might
exploit this weakness and try to guess the value of VM cryptographic keys [49].
In order to address such issue, the Cloud or Service providers should try to
increase the number of events fed to the entropy pool of VM operating systems
as soon as they are deployed, so as to provide an adequate level of security.

3.3 Container Security

The need for cost savings and shorter development cycles induced the succes of
containers in the Cloud. Containers are lighter than virtual machines and provide
near-native performance. Docker [18] is the current market leader, providing a
fully-featured packaging tool. Nevertheless, as introduced above, Containers pro-
vide much less isolation to applications, as such mechanisms are not based on
hardware features but on process isolation approaches. Among other interesting
works, Martin et al. [10] discuss Docker security real-world implications define
an adversary model and describe several vulnerabilities affecting current Docker
usage. The very same authors [40] detail Docker vulnerabilities and identify sev-
eral vulnerabilities present by design or introduced by some original use-cases.
Albeit some practical countermeasures are proposed, it is clear the containeriza-
tion approach cannot guarantee an adequate level of security and protection in
many multi-tenant scenarios.

3.4 Unikernel Security

The container limitation in providing actual isolation can be addressed by
Unikernels, leveraging hardware virtualization to provide a potentially better
alternative to containers (at least from the security point of view). Unikernels
are specialized lightweight virtual machines (VMs) that squeeze the guest oper-
ating system and userspace layers together into one single VM layer [38]. This
provides a smaller footprint, and a minimal attack surface. However, managing
the privileges of thousands of unikernels is often difficult and error prone. An
interesting approach is proposed in VirtusCap [52], a multi-layer access control
architecture and mechanism leveraging unikernels. VirtusCap limits privileges of
unikernels using the Principle of Least Privilege to create unikernels that have
only the privileges they need to accomplish their task.

3.5 Virtualization and Spectre/Meltdown

Spectre [30] and Meltdown [34] are recently discovered CPU vulnerabilities stem-
ming from hardware-implemented performance optimizations aimed at reducing
CPU-memory access latencies. Spectre leverages the fact that the speculative
execution resulting from a branch misprediction may leave observable side effects
that may reveal private data to attackers. In fact, when the memory access pat-
tern depends on private data, the resulting state of the data cache constitutes a
side channel an attacker can leverage to extract information about the private
data.

174 R. Di Pietro and F. Lombardi

Meltdown allows a userspace process to read all memory, even beyond its
access scope. Like Spectre, the problem lies with speculative machine code exe-
cution that allows cache-timing attacks to leak data from any existing memory
address.

Both Spectre and Meltdown are serious security vulnerabilities, in particular
since they have been proven to even bypass CPU isolation features guaranteed
by hardware-assisted virtualization. The reason why is that they are tied to
hard-coded CPU optimizations that involve reusing (i.e. not deleting) cached
values even though they belong to different (even security) contexts. Neverthe-
less, Containers and Unikernels are also vulnerable. As such, mitigating such
hardware/firmware bugs is mandatory for any kind of co-location and multi-
tenancy of the same physical CPU.

4 Virtualization Benefits for Security

Virtualization technologies also constitute a privileged point of view for observ-
ing and tracing VM activity. This can be used to collect useful data, analyze
them, and act accordingly.

4.1 Virtual Machine Monitoring

A core set of requirements that a security monitoring system for the Cloud
should meet can be summarized as follows [35]:

– effectiveness: the system should be able to detect attacks and integrity
violations.

– accuracy: the system should be able to avoid false-positives, i.e, mistakenly
detecting malware attacks where authorized activities are taking place.

– transparency: the system should minimize detectability from inside guests,
i.e., potential intruders should not be able to detect the presence of the mon-
itoring system.

– robustness: the host system, Cloud infrastructure and the sibling VMs
should be protected from attacks proceeding from a compromised guest and
it should not be possible to disable or alter the monitoring system itself.

– reactivity: the system should either be able to take action against both the
attempt and the compromised guest, or notify other security-management
components.

– accountability: the system should not interfere with Cloud and Cloud appli-
cation actions, but collect data and snapshots to enforce accountability poli-
cies.

Nevertheless, satisfying these requirements is quite difficult, as there is a clear
trade-off between transparency and reactivity. Possible mitigation approaches
include:

Virtualization Technologies and Cloud Security 175

– hiding reaction: i.e. leveraging regular guest maintenance actions as a reac-
tion. E.g., halting the guest, restarting a fresh image, migrating the VM
instance.

– delaying reaction: snapshotting the current status and delaying performing
reactive activity. Nevertheless, the adversary might be able to perform further
activity before being stopped.

In fact, a viable approach to achieve integrity protection is to continuously
monitor key components that would most probably be targeted by attacks. We
have shown (see also [35]) that by either actively or passively monitoring kernel
or middleware components, it is actually possible to detect modifications to
kernel data and code, thus guaranteeing that kernel and middleware integrity
have not been compromised. A fully asynchronous monitoring system can be a
viable solution [15] to provide protection and advanced transparent introspection
capabilities to an hypervisor, as detailed in the following.

4.2 Semantic Introspection and Modeling VM Behavior

Monitoring key Cloud components that would be targeted or affected by attacks
is vital in order to protect the VMs and the Cloud infrastructure [2]. By either
actively or passively monitoring key VM components any possible modification
to VM data and code can be traced and recorded.

In fact, virtual machine introspection is a process that allows observing the
state of a VM from outside of it. Syringe [7] is one example of a monitoring
system making use of virtualization to observe and monitor guest kernel code
integrity from a privileged VM or from the VMM. However, it is quite simple
for guest code to realize it is running inside a VM that can potentially be a
honeypot VM [33].

Fig. 3. Virtualization: introspection components

176 R. Di Pietro and F. Lombardi

The approach depicted in Fig. 3 is an example of advanced transparent pas-
sive tracing and recording of VM events from the hypervisor [35]. Any relevant
event or status change is recorded by an event interceptor and it is then stored
in a pool of recorder warnings where the collected information is asynchronously
evaluated (evaluator) and, if needed, a reaction is triggered (act) according to a
chosen policy.

An interesting VM-introspection-based approach is CloRExPa [15], provid-
ing various kinds of customizable resilience service solutions for Cloud guests,
using execution path analysis. CloRExPa can trace, analyze and control live
VM activity, and intervened code and data modifications, possibly due to either
malicious attacks or software faults. Execution path analysis allows the VMM
to trace the VM state and to prevent such a guest from reaching faulty states,
leveraging scenario graphs.

This trend towards semantic introspection of VM activity is a very active field
also as regards mobile devices in the Cloud [27]. This is the way to go for enabling
control over possibly untrusted mobile Cloud nodes/applications. In fact, as
discussed above also for BYOD untrusted devices, either they have to be banned
altogether from the enterprise or enhanced semantics-aware introspection has to
be put in place to prevent them from leaking sensitive information. Outside of
the enterprise, semantic introspection allows legitimate users to regain control
over their device internals. This approach will help detect and react to malware
and to backdoors that are put in place even by trusted software or apps.

The main problem with introspection is that it requires knowing the internals
and semantics of guest operating systems and running applications. This is espe-
cially difficult in case of closed-source OS and application such as in Windows
and Mac environments. In fact, Windows OSes have always been the main target
of malware that have exploited numerous bugs and vulnerabilities exposed by its
implementations [36]. Recent trusted boot technology plus additional integrity
checks have rendered the Windows OS less vulnerable to kernel-level rootkits.
Nevertheless, guest Windows Virtual Machines are becoming an increasingly
interesting attack target. HyBIS [14] is the only example of introspection system
protecting present Windows OS Guests from malware and rootkits.

4.3 Finer-Grained Security

Some other approaches are available that can enhance a general advanced pro-
tection system or be considered as a standalone solution.

As an example, Cloudvisor [60] is a transparent, backward-compatible app-
roach protecting the privacy and integrity of cloud VMs. Cloudvisor separates
the resource management from security protection in the virtualization layer. A
small security monitor hidden under the VMM and using nested virtualization
[55] is leveraged to protect the VMM and VMs. This approach is claimed of not
affecting the security of users’ data inside the VMs.

In NestCloud [44] nested virtualization can be used in several usage models
such as debugging and live migration. NestCloud is a three-level nested virtu-
alization architecture minimizing the overhead caused by the additional level.

Virtualization Technologies and Cloud Security 177

NestCloud is a very effective approach for detailed introspection of VMs at the
cost of increased latency and reduced performance.

Albeit not directly applied to cloud computing, Payer and Gross [45] pre-
sented an interesting work on virtualization for safe execution of applications
based on software-based fault isolation and policy-based system call authoriza-
tion. A running application is encapsulated in an additional layer of protection
using dynamic binary translation in user-space. This virtualization layer dynam-
ically recompiles the machine code and adds multiple dynamic security guards
that verify the running code to protect and contain the application. The binary
translation system implemented in [45] redirects all system calls to a policy-
based system call authorization framework. This interposition framework vali-
dates every system call based on the given arguments and the location of the
system call. Depending on the user-loadable policy and an extensible handler
mechanism the framework decides whether a system call is allowed, rejected, or
redirect to a specific user-space handler in the virtualization layer.

Also Lee et al. [31] discuss how new hardware architectural features for cloud
servers can help protect the confidentiality and integrity of a cloud customer’s
code and data in leased Virtual Machines, even when the powerful underlying
hypervisor may be compromised. They use a non-bypassable form of hardware
access control leveraging the hardware trend towards manycore chips and hard-
ware virtualization features to enhance Cloud Security. They aim at exploring
software-hardware co-design for security to design future trustworthy systems
that provide security protections, at the levels needed, when needed, even when
malware is in the system.

Another interesting work is by Cazalas et al. [8]. They study whether integrity
of execution can be preserved for process-level virtualization protection schemes
in the face of adversarial analysis. Their approach considers exploits that target
the virtual execution environment itself and how it interacts with the underly-
ing host operating system and hardware. Results indicate that such protection
mechanisms may be vulnerable at the level where the virtualized code inter-
acts with the underlying operating system, undermining security and calling
for additional mitigation techniques using hardware-based integration or hybrid
virtualization techniques that can better defend legitimate uses of virtualized
software protection.

5 Secure Enclaves and Virtualization

In Cloud computing environments, hardware resources are shared, and paral-
lel computation widespread that can produce privacy and security issues when
isolation is not enforced. In fact, the hypervisor is an important cornerstone of
Cloud computing that is not necessarily trustworthy or bug-free. To mitigate
this threat Intel and AMD introduced respectively SGX3 [9] and SEV4 [29],
which transparently encrypt a virtual machines memory. Intel introduced the
3 Software Guard Extensions.
4 Secure Encrypted Virtualization.

178 R. Di Pietro and F. Lombardi

SGX [11] hardware extensions to create a trusted execution environment (secure
enclave or isolation container) within its CPUs. SGX claims runtime protec-
tion of a running process/VM even if the host OS and software components
are malicious. Isolation containers are a primitive to minimize trusted software,
leveraging trusted hardware and having a small performance overhead [11]. This
is a smart idea though present implementations (AMD SEV and Intel SGX) do
still have some limitations, as we detail in the following.

5.1 Intel SGX

Intel SGX [54] is an hardware technology aimed at protecting guest code and
data from the hypervisor. It is an architecture extension designed to increase the
security of software through an “inverse sandbox” mechanism. Legitimate soft-
ware can be sealed inside an “enclave” and protected from unauthorized access,
even when malware has hypervisor privileges. SGX was designed to comply with
some clear requirements/objectives [9]:

– protecting sensitive data from unauthorized access or modification by
rogue software running at higher privilege levels;

– supporting legitimate software allowing them to continue using platform
resources;

– maintaining consumer freedom allowing them to retain control of their
platforms and the freedom to install and uninstall applications and services
as they choose;

– allow certifying an application’s trusted code and produce a signed attes-
tation, rooted in the processor, that includes this measurement and other
certification that the code has been correctly initialized in a trustable envi-
ronment;

– supporting legacy (development) tools, processes, and software distribution
channels;

– allowing scalability of the performance of trusted applications in order to
scale with the capabilities of the underlying hardware;

– protecting applications allowing them to define secure regions of code and
data that maintain confidentiality even when an attacker has physical control
of the platform and can conduct direct attacks on memory.

SGX minimizes the amount of code that provides support for the protected-
module architecture, whereas module state persistence is delegated to the
untrusted operating system. Nevertheless, state continuity must be guaranteed
since an attacker should not be able to cause a module to use stale states (i.e.
a rollback attack), and while the system is not under attack, a module should
always be able to make progress, even when the system could crash or lose power
at unexpected random points in time [54]. Providing state-continuity support is
non-trivial as many algorithms are vulnerable to attack, require on-chip non-
volatile memory, wear-out existing off-chip secure non-volatile memory and/or

Virtualization Technologies and Cloud Security 179

are too slow for many applications. ICE [54] is an interesting architecture pro-
viding state-continuity guarantees to protected modules by means of a machine-
checked proof. ICE does not rely on secure non-volatile storage for every state
update (e.g., the slow TPM chip) and is resilient to power losses.

5.2 SGX Security Issues

Albeit beneficial and promising in theory, the SGX approach has proven vul-
nerable to (mostly side-channel) attacks from its early days. As an example,
CacheZoom [43] can track all memory accesses of SGX enclaves with high spa-
tial and temporal precision. AES key recovery attacks have been proven possible.

Hertzelt et al. [23] analyse to what extent the proposed features can resist
a malicious hypervisor and discuss the tradeoffs imposed by additional protec-
tion mechanisms. They developed a model of SEV’s security capabilities and
found three design shortcomings. First the virtual machine control block is not
encrypted and handled directly by the hypervisor, allowing it to bypass VM
memory encryption by executing conveniently chosen gadgets. Secondly, the
general purpose registers are not encrypted upon vmexit, leaking potentially
sensitive data. Finally, the control over the nested pagetables allows a malicious
hypervisor to closely monitor the execution state of a VM and attack it with
memory replay attacks.

Schwarz et al. [51] have found SGX can be used to Conceal Cache Attacks.
They demonstrate software-based side-channel attacks from a malicious SGX
enclave targeting co-located enclaves, and abusing SGX protection features to
conceal itself. The attack is fully functional even across multiple Docker contain-
ers. In fact the real issue with cache attacks lies with stealing information (such
as private keys) rather that controlling a system.

Cloak [21] is another technique leveraging hardware transactional memory to
prevent adversarial observation of cache misses on sensitive code and data. Cloak
provides protection against cache-based side-channel attacks for SGX enclaves.

Constan’s Sanctum [12] achieves stronger security guarantees under software
attacks than SGX with an -h equivalent programming model. In fact, Sanctum
offers the same promise as Intel’s Software Guard Extensions (SGX), namely
strong provable isolation of software modules running concurrently and shar-
ing resources, but protects against an important class of additional software
attacks that infer private information from a program’s memory access pat-
terns. Sanctum reduces attack surface through isolation, rather than plugging
attack-specific privacy leaks. Most of Sanctum’s logic is implemented in trusted
software, which does not perform cryptographic operations using keys, and is
easier to analyze than SGX’s opaque microcode. Sanctum prototype leverages a
RISC-V [57] core but is quite flexible in that it adds hardware at the interfaces
between generic building blocks, replacing SGX’s microcode with a software
security monitor that runs at a higher privilege level than the hypervisor and
the OS. On RISC-V, the security monitor runs at machine level, leveraging one
privileged enclave, similarly to SGX’s Quoting Enclave. The really interesting

180 R. Di Pietro and F. Lombardi

idea behind Sanctum is that it leverages a principled, transparent, and well-
scrutinized approach to secure system design.

Various recent research efforts are actively seeking countermeasures to SGX
side-channel attacks. It is widely assumed that SGX may be vulnerable to other
side channels, such as cache access pattern monitoring, as well. However, prior
to our work, the practicality and the extent of such information leakage was
not studied. [5] show that cache-based attacks are indeed a serious threat to
the confidentiality of SGX-protected programs. They mount our attack without
interrupting enclave execution. This approach has major technical challenges,
since the existing cache monitoring techniques experience significant noise if the
victim process is not interrupted.

The SGX-based branch shadowing attack is described in [32] which can reveal
fine-grained control flows (i.e., each branch) of an enclave program running on
real SGX hardware. In fact, SGX does not clear the branch history when switch-
ing from enclave mode to non-enclave mode, leaving the fine-grained traces to
the outside world through a branch-prediction side channel. They developed two
exploitation techniques: Intel PT- and LBR-based history-inferring techniques
and APIC-based technique to control the execution of enclave programs in a
fine-grained manner. As a result, their attack could brake ORAM, Sanctum,
SGX-Shield, and T-SGX. A software-based countermeasure, called Zigzagger,
was introduced by [32] to mitigate the branch shadowing attack in practice.

Brasser et al. [4] propose a data location randomization as a novel defensive
approach against side-channel attacks. Their compiler-based tool called DR.SGX
instruments enclave code to permute data locations at the granularity of cache
lines. Brasser’s solution protects most, but not all enclaves from typical SGX
cache attacks.

6 Use Cases for Virtualization

This section introduces increasingly common Use Cases and Technological sce-
narios. One relevant topic is mobile virtualization for small devices such as
smartphones, smart watches, and tablets, that are carried everywhere. They are
referred to as Bring Your Own Device (BYOD) since their owner usually carries
them even inside the secure perimeter of companies, and in general at work.
This section also highlights the usage of virtualization honeypots for malware
collection and computer forensics purposes. In fact, malware can be analyzed
and dissected based on the interaction with the emulated virtual environment.

6.1 BYOD and Virtualization

Personal mobile devices often enter enterprise boundaries. They can potentially
hide malware or eavesdrop sensitive data to the outside world. At present, there
is little or no control over an enterprise personnel mobile device data and appli-
cation content and integrity. Banning such devices altogether from within enter-
prise boundaries does not seem a viable approach. A better one would imply

Virtualization Technologies and Cloud Security 181

remote attestation of the integrity and compliance of the employee’s mobile
device to the desired security policies. Secure virtualization mechanisms based
on a trusted transparent monitoring hypervisor would help. In fact, software
integrity attestation future perspectives are good, given that ARM CPUs increas-
ingly support virtualization extensions that allow implementing hypervisors that
can run and monitor trusted VMs even on mobile/handheld devices [13]. The
hypervisor would be able to enforce the exclusive execution of an enterprise VM
when the device is inside well defined boundaries. The same VM can be disabled
outside such boundaries in order to limit/prevent data breaches.

6.2 Virtualization and Smartphones

Increasingly often, smart mobile phones are relevant sources of information for
investigations. Most currently available tools able to acquire forensic evidence
from smartphones require destructive physical access to the device. This is one
use case where secure virtualization can be used to access live data without
interfering with regular phone activity and thus allowing live mobile forensics.
LiveSD Forensics [6] is an example of on-device live data acquisition of the
RAM and the EEPROM of Windows mobile devices. LiveSD Forensics uses a
standard SD-card equipped with tailored code to perform the data acquisition.
Unfortunately, LiveSD generates a memory alteration, albeit small.

In addition, virtualization allows creating mobile honeypots able to study
and classify malware in a controlled way. In fact, similarly to mobile forensics,
mobile virtualization can be used to collect malware and study its behavior, in a
mostly transparent way. As mobile hardware is increasingly capable of running
multiple VMs in parallel, different levels of security can be associated to different
VMs to limit malware activity.

6.3 Future Research Directions

Future virtualization trends are mostly related to novel technological develop-
ments that aim at better isolation and performance. One such example is repre-
sented by ARM CPUs that, apart from being dominant in the mobile market,
are increasingly present in the server arena. A second example is represented by
Cloud-provided GPU access that is increasingly common. Finally, novel x86 64
processors integrate both CPU and GPU cores. Nevertheless, they have to pro-
vide additional security guarantees. Efficiently virtualizing distributed heteroge-
neous computing in the Cloud is an opportunity to improve Cloud security and
reliability. Further, in order to allow efficient secure usage of multicores, such
resources have to be constantly monitored for anomalous usage patterns, since
sharing resources also introduces additional security and privacy issues. Finally,
the availability of an increasingly large amount of computing cores allows using
them for a number of novel applications, such as computation replication for
reliability and availability or proactive computing for most different possible
scenarios.

182 R. Di Pietro and F. Lombardi

7 Conclusion

Virtualization is at the heart of Cloud computing. Albeit more lightweight
approaches such as Containerization and Unikernels exist, hardware-supported
isolation mechanisms provide beneficial in many different scenarios where secu-
rity requirements are relevant. Nevertheless, security vulnerabilities are still a
major issue, as highlighted by recently discovered exploits. Enhanced virtualiza-
tion approaches and more effective isolation and monitoring technologies, that
can also leverage additional computing resources of recent CPUs and GPUs, are
still in their infancy. Such advances, coupled with appropriate software coun-
terparts, will possibly improve the integrity and security of resources in Cloud,
server farms, and in mobile scenarios.

Acknowledgements. Roberto Di Pietro would like to thank Sushil Jajodia for the
guidance and support received when he was a young PhD student visiting his Center for
Secure Information Systems at GMU—a pivotal experience in Roberto’s professional
life—and, above all, for Sushil’s life-long example of dedication and commitment to
pursue research excellence.

References

1. AMD: Secure virtual machine architecture reference manual. http://www.0x04.
net/doc/amd/33047.pdf. Accessed 02 Feb 2018 (2005)

2. Baiardi, F., Maggiari, D., Sgandurra, D., Tamberi, F.: Transparent process mon-
itoring in a virtual environment. Electr. Notes Theor. Comput. Sci. 236, 85–100
(2009). https://doi.org/10.1016/j.entcs.2009.03.016

3. Bijon, K., Krishnan, R., Sandhu, R.: Mitigating multi-tenancy risks in IaaS cloud
through constraints-driven virtual resource scheduling. In: Proceedings of the 20th
ACM Symposium on Access Control Models and Technologies, SACMAT 2015,
pp. 63–74. ACM, New York (2015)

4. Brasser, F., et al.: DR.SGX: hardening SGX enclaves against cache attacks with
data location randomization. CoRR abs/1709.09917 (2017)

5. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.:
Software grand exposure: SGX cache attacks are practical. CoRR abs/1702.07521
(2017)

6. Canlar, E.S., Conti, M., Crispo, B., Di Pietro, R.: Windows mobile livesd forensics.
J. Netw. Comput. Appl. 36(2), 677–684 (2013)

7. Carbone, M., Conover, M., Montague, B., Lee, W.: Secure and robust monitoring
of virtual machines through guest-assisted introspection. In: Balzarotti, D., Stolfo,
S.J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp. 22–41. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33338-5 2

8. Cazalas, J., McDonald, J.T., Andel, T.R., Stakhanova, N.: Probing the limits of
virtualized software protection. In: Proceedings of the 4th Program Protection and
Reverse Engineering Workshop. PPREW-4, pp. 5:1–5:11. ACM, New York (2014)

9. Chakrabarti, S., et al.: Intel software guard extensions (Intel; SGX) architecture for
oversubscription of secure memory in a virtualized environment. In: Proceedings
Hardware and Architectural Support for Security and Privacy. HASP 2017, pp.
7:1–7:8. ACM, New York (2017)

http://www.0x04.net/doc/amd/33047.pdf
http://www.0x04.net/doc/amd/33047.pdf
https://doi.org/10.1016/j.entcs.2009.03.016
https://doi.org/10.1007/978-3-642-33338-5_2

Virtualization Technologies and Cloud Security 183

10. Combe, T., Martin, A., Di Pietro, R.: To docker or not to docker: a security
perspective. IEEE Cloud Comput. 3(5), 54–62 (2016)

11. Costan, V., Lebedev, I., Devadas, S.: Secure processors part I: background, tax-
onomy for secure enclaves and intel SGX architecture. Found. Trends R© Electron.
Des. Autom. 11(1–2), 1–248 (2017)

12. Costan, V., Lebedev, I.A., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: USENIX Security Symposium, pp. 857–874 (2016)

13. Dall, C., Nieh, J.: KVM/ARM: the design and implementation of the Linux arm
hypervisor. SIGARCH Comput. Archit. News 42(1), 333–348 (2014)

14. Di Pietro, R., Franzoni, F., Lombardi, F.: HyBIS: advanced introspection for effec-
tive windows guest protection. In: De Capitani di Vimercati, S., Martinelli, F.
(eds.) SEC 2017. IAICT, vol. 502, pp. 189–204. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58469-0 13

15. Di Pietro, R., Lombardi, F., Signorini, M.: CloRExPa: cloud resilience via execution
path analysis. Future Gener. Comput. Syst. 32, 168–179 (2014)

16. Di Pietro, R., Lombardi, F., Villani, A.: CUDA leaks: a detailed hack for CUDA
and a (partial) fix. ACM Trans. Embed. Comput. Syst. 15(1), 15:1–15:25 (2016)

17. Dowty, M., Sugerman, J.: GPU virtualization on VMware’s hosted I/O architec-
ture. SIGOPS Oper. Syst. Rev. 43(3), 73–82 (2009)

18. Dua, R., Raja, A.R., Kakadia, D.: Virtualization vs containerization to support
PaaS. In: 2014 IEEE International Conference on Cloud Engineering, pp. 610–614,
March 2014

19. By Hertzsprung at English Wikipedia, C.B.S.: Execution rings. https://commons.
wikimedia.org/w/index.php?curid=8950144

20. Fernandes, D.A.B., Soares, L.F.B., Freire, M.M., Inácio, P.R.M.: Randomness in
virtual machines. In: 2013 IEEE/ACM 6th International Conference on Utility and
Cloud Computing, pp. 282–286, December 2013

21. Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., Costa, M.: Strong
and efficient cache side-channel protection using hardware transactional mem-
ory. In: 26th USENIX Security Symposium (USENIX Security 17), pp. 217–233.
USENIX Association, Vancouver, BC (2017)

22. Gupta, V., et al.: GViM: GPU-accelerated virtual machines. In: Proceedings of the
3rd ACM Workshop on System-level Virtualization for High Performance Comput-
ing. HPCVirt 2009, pp. 17–24. ACM, New York (2009)

23. Hetzelt, F., Buhren, R.: Security analysis of encrypted virtual machines. SIGPLAN
Not. 52(7), 129–142 (2017)

24. Hong, C.H., Spence, I., Nikolopoulos, D.S.: GPU virtualization and scheduling
methods: a comprehensive survey. ACM Comput. Surv. 50(3), 35:1–35:37 (2017)

25. Intel: Intel virtualization technology specification for the ia-32 intel architec-
ture (2005). http://dforeman.cs.binghamton.edu/∼foreman/550pages/Readings/
intel05virtualization.pdf. Accessed 02 Feb 2018

26. Geffner, J.: VENOM: Virtualized Environment Neglected Operations Manipula-
tion. Available from MITRE, CVE-ID CVE-2015-3456, May 2015

27. Jia, L., Zhu, M., Tu, B.: T-VMI: trusted virtual machine introspection in cloud
environments. In: Proceedings of the 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. CCGrid 2017, pp. 478–487. IEEE Press,
Piscataway, NJ, USA (2017)

28. Jian, Z., Chen, L.: A defense method against Docker escape attack. In: Proceed-
ings of the 2017 International Conference on Cryptography, Security and Privacy.
ICCSP 2017, pp. 142–146. ACM, New York (2017)

https://doi.org/10.1007/978-3-319-58469-0_13
https://doi.org/10.1007/978-3-319-58469-0_13
https://commons.wikimedia.org/w/index.php?curid=8950144
https://commons.wikimedia.org/w/index.php?curid=8950144
http://dforeman.cs.binghamton.edu/~foreman/550pages/Readings/intel05virtualization.pdf
http://dforeman.cs.binghamton.edu/~foreman/550pages/Readings/intel05virtualization.pdf

184 R. Di Pietro and F. Lombardi

29. Kaplan, D., Powell, J., Woller, T.: AMD memory encryption. White paper
(2016). https://developer.amd.com/wordpress/media/2013/12/AMD Memory
Encryption Whitepaper v7-Public.pdf

30. Kocher, P., et al.: Spectre attacks: Exploiting speculative execution. ArXiv e-prints
1801.01203, January 2018

31. Lee, R.B.: Hardware-enhanced access control for cloud computing. In: Proceed-
ings of the 17th ACM Symposium on Access Control Models and Technologies.
SACMAT 2012, pp. 1–2. ACM, New York (2012)

32. Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained
control flow inside SGX enclaves with branch shadowing. CoRR abs/1611.06952
(2016)

33. Lengyel, T.K.: Malware collection and analysis via hardware virtualization. Doc-
toral dissertations, 964 (2015). https://opencommons.uconn.edu/dissertations/964

34. Lipp, M., et al.: Meltdown. ArXiv e-prints 1801.01207 (2018)
35. Lombardi, F., Di Pietro, R.: Secure virtualization for cloud computing. J. Netw.

Comput. Appl. 34(4), 1113–1122 (2011)
36. Lombardi, F., Pietro, R.D., Soriente, C.: Crew: cloud resilience for windows guests

through monitored virtualization. In: Proceedings of the 2010 29th IEEE Sympo-
sium on Reliable Distributed Systems. SRDS 2010, pp. 338–342. IEEE Computer
Society, Washington, DC, USA (2010)

37. Joy, A.M.: Performance comparison between Linux containers and virtual
machines. In: International Conference on Advances in Computer Engineering and
Applications, pp. 342–346, March 2015

38. Madhavapeddy, A., et al.: Unikernels: library operating systems for the cloud.
SIGPLAN Not. 48(4), 461–472 (2013)

39. Manu, A.R., Patel, J.K., Akhtar, S., Agrawal, V.K., Murthy, K.N.B.S.: A study,
analysis and deep dive on cloud PAAS security in terms of Docker container secu-
rity. In: 2016 International Conference on Circuit, Power and Computing Tech-
nologies (ICCPCT), pp. 1–13, March 2016

40. Martin, A., Raponi, S., Combe, T., Di Pietro, R.: Docker ecosystem - vulnerability
analysis. Comput. Commun. 122, 30–43 (2018)

41. Maurice, C., Neumann, C., Heen, O., Francillon, A.: Confidentiality issues on a
GPU in a virtualized environment. In: Christin, N., Safavi-Naini, R. (eds.) FC
2014. LNCS, vol. 8437, pp. 119–135. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45472-5 9

42. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239) (2014). Article no. 2. http://dl.acm.org/citation.
cfm?id=2600239.2600241

43. Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: how SGX amplifies the
power of cache attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 69–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66787-4 4

44. Pan, Z., He, Q., Jiang, W., Chen, Y., Dong, Y.: Nestcloud: towards practical nested
virtualization. In: Proceedings of the 2011 International Conference on Cloud and
Service Computing. CSC 2011, pp. 321–329. IEEE Computer Society, Washington,
DC, USA (2011)

45. Payer, M., Gross, T.R.: Fine-grained user-space security through virtualization.
SIGPLAN Not. 46(7), 157–168 (2011)

46. Perez-Botero, D., Szefer, J., Lee, R.B.: Characterizing hypervisor vulnerabilities in
cloud computing servers. In: Proceedings of the 2013 International Workshop on

https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://arxiv.org/abs/1801.01203
https://opencommons.uconn.edu/dissertations/964
http://arxiv.org/abs/1801.01207
https://doi.org/10.1007/978-3-662-45472-5_9
https://doi.org/10.1007/978-3-662-45472-5_9
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4

Virtualization Technologies and Cloud Security 185

Security in Cloud Computing. Cloud Computing 2013, pp. 3–10. ACM, New York
(2013)

47. Ray, E., Schultz, E.: Virtualization security. In: Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence Research: Cyber Secu-
rity and Information Intelligence Challenges and Strategies. CSIIRW 2009, pp.
42:1–42:5. ACM (2009)

48. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security. CCS 2009,
pp. 199–212. ACM, New York (2009)

49. Ristenpart, T., Yilek, S.: When good randomness goes bad: virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS, pp. 212–224 (2010)

50. Sabahi, F.: Cloud computing security threats and responses. In: 2011 IEEE 3rd
International Conference on Communication Software and Networks, pp. 245–249,
May 2011

51. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. CoRR abs/1702.08719 (2017)

52. Sfyrakis, I., Grosß, T.: Virtuscap: capability-based access control for unikernels. In:
2017 IEEE International Conference on Cloud Engineering (IC2E), pp. 226–237.
IEEE (2017)

53. Shi, L., Chen, H., Sun, J.: vCUDA: GPU accelerated high performance computing
in virtual machines. In: IEEE International Symposium on Parallel Distributed
Processing, pp. 1–11, May 2009

54. Strackx, R., Jacobs, B., Piessens, F.: ICE: a passive, high-speed, state-continuity
scheme. In: Proceedings of the 30th Annual Computer Security Applications Con-
ference. ACSAC 2014, pp. 106–115. ACM, New York (2014)

55. Suzaki, K., Yagi, T., Tanaka, A., Oiwa, Y., Shibayama, E.: Rollback mechanism
of nested virtual machines for protocol fuzz testing. In: Proceedings of the 29th
Annual ACM Symposium on Applied Computing. SAC 2014, pp. 1484–1491. ACM,
New York (2014)

56. Tian, K., Dong, Y., Cowperthwaite, D.: A full GPU virtualization solution with
mediated pass-through. In: 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pp. 121–132. USENIX Association, Philadelphia, PA (2014)

57. Waterman, A., Asanovic, K.: The RISC-V instruction set manual. https://riscv.
org/specifications. Accessed 02 Feb 2018

58. Wong, T.: AMD multiuser GPU (2016). https://www.amd.com/Documents/
Multiuser-GPU-White-Paper.pdf

59. Xiao, S., et al.: VOCL: an optimized environment for transparent virtualization of
graphics processing units. In: Innovative Parallel Computing, pp. 1–12, May 2012

60. Zhang, F., Chen, J., Chen, H., Zang, B.: Cloudvisor: retrofitting protection of
virtual machines in multi-tenant cloud with nested virtualization. In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles. SOSP
2011, pp. 203–216. ACM, New York (2011)

61. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in paas clouds. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. CCS 2014, pp. 990–1003. ACM, New
York (2014)

https://riscv.org/specifications
https://riscv.org/specifications
https://www.amd.com/Documents/Multiuser-GPU-White-Paper.pdf
https://www.amd.com/Documents/Multiuser-GPU-White-Paper.pdf

Access Privacy in the Cloud

Sabrina De Capitani di Vimercati1, Sara Foresti1(B), Stefano Paraboschi2,
Gerardo Pelosi3, and Pierangela Samarati1

1 Università degli Studi di Milano, 20133 Milan, Italy
{sabrina.decapitani,sara.foresti,pierangela.samarati}@unimi.it

2 Università degli Studi di Bergamo, 24044 Dalmine, Italy
parabosc@unibg.it

3 Politecnico di Milano, 20133 Milan, Italy
gerardo.pelosi@polimi.it

Abstract. Moving data to the cloud represents today a growing trend
as it provides considerable advantages, both in terms of economy of scale
and flexibility/elasticity for data owners. In such a scenario, there is how-
ever a clear need for solutions aimed at protecting the confidentiality of
(sensitive) data and accesses. In this chapter, we illustrate some solu-
tions proposed in the literature for protecting access confidentiality and
classify them, depending on the underlying data structure used for data
storage and support for access operations, in two classes: (i) ORAM-
based approaches, and (ii) dynamically allocated data structures.

1 Introduction

The increasingly growing adoption of cloud technologies demands for solutions
able to guarantee an efficient and secure use of outsourced storage services. The
benefits brought by such services range from improved scalability and accessi-
bility of data to decreased management costs, providing a flexible alternative
to expensive, locally-implemented solutions. However, moving possibly sensitive
data to the cloud exposes them to new privacy threats, arising specifically from
the fact that they are kept out of the data owner’s premises [5,23]. Indeed, the
cloud provider storing the data is trusted to properly provide its service (e.g.,
to store data and protect them against outside attacks). However, it is not fully
trusted to access the plaintext content of the (possibly sensitive) data it stores.

Encryption techniques are a necessary component to ensure the confiden-
tiality of data managed by a cloud provider. The adoption of encryption at the
client side guarantees that only (authorized) users, who legitimately know (or
can compute) the encryption keys used to protect confidential data, are able
to access the plaintext data content. Although encryption provides protection
guarantee of confidentiality of data at rest, it falls short in scenarios where data
stored at an external cloud provider are accessed (read and/or written). Indeed,
observing accesses to an outsourced data collection may reveal sensitive infor-
mation about the user performing the search operation as well as about the
data collection itself [15,16,18]. Consider, as an example, a publicly available
c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 186–205, 2018.
https://doi.org/10.1007/978-3-030-04834-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_10

Access Privacy in the Cloud 187

medical database. Disclosing the fact that Alice is looking for the treatments
for a rare disease reveals to an observer the fact that she (or a person close to
her) suffers from such a disease, with a clear privacy violation. Similarly, dis-
closing the fact that two accesses aim at the same target encrypted data item
permits an observer to keep track of the frequency of accesses to data items and,
exploiting external knowledge on the frequency of accesses to the corresponding
plaintext data, reveals her the sensitive content of the outsourced dataset. Dif-
ferent techniques have then been proposed to protect both access confidentiality
(i.e., confidentiality of the target of each access request) and pattern confiden-
tiality (i.e., confidentiality of the fact that two accesses aim at the same target).
The first line of works that addressed this problem is based on Private Infor-
mation Retrieval (PIR, e.g., [20]). However, PIR-based approaches implicitly
assume that the accessed data collection is not sensitive, and that only access
operations need to be protected. Also, these solutions suffer from high computa-
tional costs that limit their applicability in real world scenarios. In this chapter,
we will specifically focus on two recent classes of approaches aimed at protect-
ing data, access, and pattern confidentiality while reducing computational cost
with respect to PIR-based solutions. The first class is based on the adoption of
ORAM (Oblivious Random Access Memory) data structure, which is a layered
structure that supports equality search operations while hiding the target of the
access to the eyes of the storage server. ORAM-based solutions are based on the
idea that data are re-allocated to the top level of the layered structure after each
access. These solutions, although effective, suffer from the fact that ORAM data
structure does not preserve the natural ordering among data items. Hence, as
an example, it does not support range searches. The second class of solutions
overcomes this drawback by adopting dynamically allocated data structures for
protecting access confidentiality. These solutions organize data in well known
data structures traditionally used to support efficient access to the data (e.g.,
B+-trees) and change the allocation of accessed data to memory slots at each
access, to prevent an observer from identifying repeated accesses by observing
read and write operations at the memory level.

In the remainder of this chapter, we first illustrate some approaches based
on the adoption of Oblivious RAM structure (Sect. 2), and then describe two
dynamically allocated data structures (Sect. 3). Finally, we present our conclu-
sions (Sect. 4).

2 Oblivious RAM Data Structures

One of the most widely known class of approaches adopted to protect access
and pattern confidentiality is based on the adoption of ORAM (Oblivious RAM)
data structures.

ORAM has first been proposed by Goldreich and Ostrovsky in [13,14,19] to
the aim of concealing the memory access patterns of a software program running
on a microprocessor, to safeguard the software from illegitimate duplication and
consequent redistribution. To this purpose, ORAM acts as an interface between

188 S. De Capitani di Vimercati et al.

the microprocessor and the memory subsystem, in such a way to make mem-
ory access patterns indistinguishable. During a program execution, the ORAM
interface makes the probability distribution of a sequence of memory addresses
independent from the input values of the program and dependent only from the
length of the program. Any ORAM requires Ω(log N) bandwidth overhead to
conceal an access pattern from a storage space including N items [13,14,19].
Also, the best ORAM implementation [14] requires O(N log N) server storage
and implies an amortized communication overhead of O(log3 N) (O(N log2 N),
resp.) in the average case (worst case, resp.).

ORAM structure has recently been adopted for the definition of approaches
aimed at protecting the confidentiality of accesses to data stored at a remote
server. In fact, the problem of protecting memory access patterns generated by
a software program is very similar to the problem of privately retrieving data
from a remote storage server. Indeed, even if from a practical perspective the two
problems present some differences (e.g., different costs of read and write oper-
ations, storage capacity on the client side, latency of network communications
compared with the one between a microprocessor and its memory subsystem),
from a theoretical point of view the two problems can be modeled in the same
way as both aim at protecting the confidentiality of access operations to the
eyes of the party in charge of its execution (i.e., the processor and the stor-
age server, respectively). Considering a simplified scenario characterized by one
client and one storage server, client’s data are individually encrypted using an
encryption key known only to the client, and the resulting blocks are stored in a
ORAM-based structure at the server side. Intuitively, ORAM-based structures
conceal from the storage server the exact memory location where the block con-
taining the target data item is stored by retrieving more than one block at a
time (i.e., the target block and some additional blocks). The client then changes
the allocation of data items to memory locations and writes re-encrypted blocks
back at the server, according to the new allocation strategy. The strategy used
for the traversal of the data structure makes the accesses to different data items
indistinguishable. In particular, repeated accesses become indistinguishable from
accesses to different target data items.

In the remainder of this section, we will first describe the original hierarchical
ORAM structure [14], and then illustrate more recent variations over the original
architecture, Path ORAM [22] and Ring ORAM [21], aimed at reducing its
computational overhead.

2.1 Hierarchical ORAM

Consider a set of N data items, uniquely identified through an identifier id∈ID,
that should be stored in a hierarchical ORAM [13,14,19] structure. Each data
item is individually encrypted, using a semantically-secure cipher and a key
known only to the client, before being stored in the ORAM structure. This
guarantees that no information about the plaintext content of the data item can
be leaked from its encrypted representation. In the following, we illustrate the
structure of hierarchical ORAM, and the working of access operations.

Access Privacy in the Cloud 189

Structure. Hierarchical ORAM is a pyramid-shaped data structure composed
of �log N� levels, which can be used to store client’s data items. Each level l in
the ORAM structure includes 2l buckets, with a storage capacity of k�log N�
slots each, k ≥ 1. Each slot in a bucket can store either an encrypted data item
(real block) or an encrypted dummy/empty item (dummy block). Thanks to
the adoption of a semantically secure cipher, real blocks and dummy blocks are
indistinguishable to the eyes of the storing server.

Each level l except the first one (2 ≤ l ≤ �log N�) in the ORAM structure
has a hash function hl : ID → {1, . . . , 2l} that associates the identifier of a
data item, id∈ID, with the unique position of the bucket on level l where the
data item might be stored. Figure 1(a) illustrates a 3-level hierarchical ORAM
structure, where each bucket stores up to 4 blocks. In the figure, we report on
the top of each bucket its position in the level; real blocks are gray and dummy
blocks are white.

At initialization time, the N real blocks obtained encrypting client’s data
items are stored in the last and largest level (i.e., l = �log N�) of the ORAM
structure. Hence, each real block is stored in the slot identified by the hash
function associated with the last level in the structure. All the other blocks in
the last level, as well as any block in all the other levels of the ORAM structure,
are filled with dummy blocks.

Read Access. Access operations to data stored in a hierarchical ORAM struc-
ture require to maintain two invariants to protect access and pattern confiden-
tiality: (i) access operations do not reveal to the server the level where the target
block is stored (guaranteed by always accessing one bucket at each level of the
ORAM structure); and (ii) access operations never retrieve a block in the same
bucket more than once (even when repeating access to the same data item).

Let us consider an access request for the data item identified by id. The
client starts visiting the ORAM structure from its top level and retrieves, for
each level l, the bucket where the target data item could be stored at level l.
To this purpose, the client computes hl(id), l = 2, . . . , �log N�. Note that the
client always retrieves both the buckets on the top level (i.e., l = 1) of the
ORAM structure, which does not have any hash function. To prevent leaking
to the storage server the level where the target data item is stored, the client
always ends her visit of the ORAM structure at the bottom level l = �log N�
of the structure. In fact, stopping the access process at a different level would
inevitably reveal to the storage server that the target data item was stored at
the last accessed level. Consider, as an example, the search for value C over the
hierarchical ORAM in Fig. 1(a). The clients iteratively downloads the buckets
denoted with a bold blue fence in the figure. The client first downloads the two
buckets at level l = 1. Then, it computes h2(C) = 4 and downloads the 4th
bucket at level 2. Even if C belongs to the downloaded bucket at level 2, the
client computes h3(C) = 7 and downloads the 7th bucket at level 3.

The client decrypts each bucket downloaded from the server and locally stores
its plaintext representation. Once the client has completed her visit of the ORAM
structure (i.e., she has downloaded the bucket at level l = �log N�), she moves

190 S. De Capitani di Vimercati et al.

(a) Read access

(b) Write access

(c) Level reconstruction

Fig. 1. An example of an access searching for C in a hierarchical ORAM structure
(a, b) and of reconstruction of the first level of the ORAM structure (c) (Color figure
online)

the target data item in one of the two buckets at level l = 1. The client then
removes the target block from the bucket where it was stored before the access,
substitutes it with a fresh dummy block, re-encrypts the target data item, and
inserts the resulting encrypted block in one of the two buckets at level l = 1.
Since the top level is not associated with any hash function, the choice of the
bucket where to insert the target block depends on the sequence number of the
current access request (odd or even). The client then re-encrypts all the accessed
blocks and writes the downloaded buckets back at the server, following the same
order as read accesses (i.e., starting from the top of the structure). Considering

Access Privacy in the Cloud 191

the search for C in the ORAM structure in Fig. 1(a), the client moves the block
storing C to one of the two buckets at level 1 (the second one in the example)
and re-encrypts all the accessed blocks. The client then rewrites, in the order, the
accessed buckets at the server starting from the top of the structure. Figure 1(b)
illustrates the status of the ORAM structure after the access searching for C.

Even if each bucket in the ORAM structure stores up to k�log N�, after
2k�log N� access operations the two buckets at level 1 will be full. Hence, to
guarantee that the second invariant is satisfied (i.e., no block is retrieved more
than once in the same bucket), it is necessary to reconstruct the first level of
the ORAM structure. To this aim, the blocks in the first level are obliviously
transferred to the second level. To obliviously transfer blocks, the client changes
the hash function h2 of the second level of the ORAM structure and reorganizes
all the (real) blocks that were stored in the buckets on level 1 and on level 2,
accordingly. Clearly, this implies downloading, decrypting, re-encrypting, and
rewriting back at the server all the buckets at level 1 and at level 2. In general,
after 2l access operations, some buckets at level l (1 ≤ l ≤ �log N�) will be full
and it will be necessary to obliviously transfer all the data blocks at level l to
level l + 1, changing the hash function at level l + 1 and applying a O(N log N)
oblivious sorting algorithm. Note that after 2�logN�k�log N� accesses it is neces-
sary to change the hash function of the bottom level of the ORAM structure,
which implies downloading, decrypting, re-encrypting, and rewriting back at the
server the whole data collection. For instance, assuming that the first level in the
ORAM structure in Fig. 1(b) needs to be reconstructed, the client moves data
items N , C, and F to the second level and re-defines h2. As visible in Fig. 1(c),
this implies re-writing both the buckets at level 1 and the buckets at level 2,
since all the data items in these two levels can be allocated at any of the buckets
in level 2. Indeed, in the considered example, Y moves from the 1st to the 3rd
bucket.

Write Access. Since every read access operation by the client implies re-writing
all the accessed buckets, client operations consisting of access requests to read,
write, insert, or delete a block are indistinguishable from the point of view of the
storing server. Indeed, they all present the same access pattern, thanks to the
adoption of an encryption function that obfuscates whether the item inserted in
the top level before rewriting buckets back at the server contains an actual data
item already stored in the ORAM structure, a new data item, or a dummy item.

2.2 Path ORAM

Building on the original hierarchical ORAM structure, a considerable research
effort has been spent to make ORAM schemes more practical and efficient. Path
ORAM [22] is a recent ORAM-based approach that does not require expensive
periodic level reconstruction.

Structure. Path ORAM is a binary tree with height h = �log N� and N
leaves, where N is the number of data items in the data collection. Each node
in the Path ORAM structure is a bucket that can store up to Z ≥ 1 (real

192 S. De Capitani di Vimercati et al.

or dummy) blocks each. Each data item is associated with a leaf in the Path
ORAM structure, uniquely identifying a set of buckets (those along the path
to the leaf node) where the data item can be stored. The client keeps track of
data-leaf association by locally storing a position map, which is a set of pairs of
the form 〈id, pos〉, where id is the identifier of a data item and pos is the position
identifying the corresponding leaf in the tree. The size of the position map is
O(N log N/B), where B is the node size.

Besides the position map, the client also locally stores a portion of the data
collection in a local stash having size O(log N). The local stash is necessary to
properly manage access operations, as illustrated in the following, by guarantee-
ing that each data item is always stored either in a bucket along the path as per
the position map or in the local stash. Figure 2(a) illustrates, on the right an
example of a Path ORAM structure with 8 leaves and height equal to 3, where
each bucket stores up to Z = 4 blocks. In the figure, node identifiers are reported
on top of nodes, real blocks are gray, while dummy blocks are white. The figure
also illustrates, on the left, the local stash and the position map stored at the
client.

Read Access. To retrieve the data item with identifier equal to id, the client
first retrieves from the local map the position pos of the corresponding leaf node.
The client then sends a request to the storing server, and downloads the h + 1
buckets along the path from the root of the tree to the leaf node in position
pos. Indeed, if not in the local stash, the data item of interest is stored in one of
these buckets. The client decrypts the downloaded Z(h+1) blocks and inserts the
corresponding data items in the local stash. To guarantee that future searches
for the same target data item do not visit the same path, the client assigns a
new randomly chosen position (i.e., a new leaf) to the target data item and
updates the local position map accordingly. Consider, as an example, a search
for value C in the Path ORAM structure in Fig. 2(a). The client first downloads
the buckets along the path to node 7, that is, 15, 14, 12, and 7 (see Fig. 2(b),
where accessed nodes are denoted with a bold blue fence). It decrypts the five
downloaded real blocks and inserts them into the local stash, which included
values Z and B before the access. It then randomly assigns a new position to C,
6 in the example.

The client then rewrites the downloaded blocks back at the server, after
having possibly changed their content. In particular, the client inserts into the
buckets to be rewritten back all the data items in the local stash that are asso-
ciated with a leaf whose path intersects the visited/downloaded path. In such
a bucket reorganization, the client moves data items as close as possible to leaf
nodes. To prevent the server from tracking eviction operations, all the accessed
data items are re-encrypted and, once the buckets along the visited path have
been updated, written back at the storing server. Considering the search for
value C illustrated in Fig. 2, the client inserts C into node 14, which is the deep-
est node along the common sub-paths to 7 and 6. Also, the client can evict Z
and B from the stash, inserting them into buckets 15 and 12, respectively. The
client will also push T to node 7 and R to node 14, while N and F remain in the

Access Privacy in the Cloud 193

Fig. 2. An example of Path ORAM structure (a) and of the path read (a) and written
(b) by an access operation searching for C (Color figure online)

194 S. De Capitani di Vimercati et al.

root node. The client then re-encrypts real and dummy blocks and rewrites the
updated content of buckets 15, 14, 12, and 7 at the server (see Fig. 2(c), where
written nodes are denoted with a bold blue fence). Clearly, even if any data item
in the stash could be inserted into the root node, due to capacity constraints, the
remaining data items are stored in the local stash. On the contrary, if after the
eviction from the stash a bucket along the visited path is not full, it is completed
with dummy blocks.

The size of the local stash as well as the size of buckets need to be carefully
chosen to avoid overflows. Indeed, as demonstrated in [22], if the size of buckets
is lower than 4 (i.e., Z < 4), buckets close to the root tend to become congested
and cause the stash to grow indefinitely, with the non-negligible probability of
having a number of data items associated with a leaf node greater than the
capacity of the corresponding path. On the contrary, if the number of blocks per
bucket is greater than or equal to 4 (i.e., Z ≥ 4), a stash with size O(Z(h + 1))
guarantees a negligible probability of stash overflow.

Path ORAM causes 2Z�log N� access overhead, O(N) server storage over-
head, and O(log N)ω(1) + O(N log N/B) client storage overhead. The storage
overhead at the client side is due to the need of locally accommodating the stash,
O(log N)ω(1), and the position map, O(N log N/B). To reduce the client storage
overhead, an alternate version of the Path ORAM design proposes to recursively
outsource the position map in a sequence of smaller Path ORAM structures [22].
This permits to reduce the client storage overhead to O(log N)ω(1), at the cost of
increasing the access overhead to O(log2 N/ log B) and the number of communi-
cation rounds per operation between the client and the server to O(log N/ log B).

2.3 Ring ORAM

A further improvement of the hierarchical ORAM structure is represented by
Ring ORAM [21], which is a recent ORAM-based approach aimed at reducing the
bandwidth overhead of Path ORAM. Indeed, Ring ORAM reduces access over-
head to O(1) and the overall bandwidth to −2.5 log(N), assuming that the stor-
age server can perform computations. We note, however, that ORAM schemes
requiring server-side computations are not compatible with basic cloud-storage
services (e.g., Amazon S3) [2].

Structure. Ring ORAM adopts the same server-side structure as Path ORAM,
with the only difference that each node in the tree is complemented with addi-
tional metadata. The metadata associated with a node include a set of S addi-
tional dummy blocks, a randomly chosen permutation map that associates the
positions of blocks in a bucket with their identifiers, and a counter of accesses to
the bucket. Figure 3 represents an example of a Ring ORAM structure, together
with the local stash and position map stored at the client.

Read Access. Ring ORAM adopts an approach similar to Path ORAM to
retrieve the data item with identifier equal to id. The client first retrieves from
the local map the position pos of the corresponding leaf node and downloads
from the server the metadata of the nodes along the path to pos. Note that

Access Privacy in the Cloud 195

Fig. 3. An example of Ring ORAM structure and the blocks downloaded by an access
operation searching for C (Color figure online)

the metadata size is much less than the node size. Based on the information in
the downloaded metadata, the client selects one block for each node along the
path to the target leaf. In particular, for each node along the path, the client
selects: the target block, if it is stored in the node; an unread dummy block,
otherwise. Indeed, by reading only metadata, the client can determine whether
the requested block is present in the bucket, identify its position using the offsets
map, or choose an unread dummy block using the counter of accesses.

Since only one of the O(log N) blocks downloaded from the server is a real
block (i.e., the block of interest), Ring ORAM can guarantee O(1) online band-
width in access execution, by requiring some server-side computation. Indeed, if
dummy blocks have a fixed content (e.g., di = 0), and the server computes the
xor of all encrypted blocks selected along the target path, the client can easily
retrieve the content of the only real block downloaded (i.e., the target block).
The server then computes E(x, r)⊕E(d1, r1)⊕ . . .⊕E(dn, rn) where x is the tar-
get block, di is a dummy block, and ri is a random nonce employed by the client
when encrypting the block and picked from a pseudo-random number generator
seeded with a value obtained from the position of the block in the node and the
level in the tree of the considered node. By computing E(d1, r1)⊕ . . .⊕E(dn, rn)
the client can then retrieve the target block and, by decrypting it, the target
data item. Consider, as an example, the structure in Fig. 3 and a search for value
C, which is associated with leaf 7 in the position map. The client will download
from the server the metadata along the path 15 → 14 → 12 → 7 (denoted
with a bold blue line in the figure) from the server. Assuming that, based on
the metadata, the client discovers that C is stored in bucket 12, she identifies
an unread dummy block in buckets 7 (d7), 14 (d14), and 15 (d15) and asks the
server to compute E(C, r12) ⊕ E(d7, r7) ⊕ E(d14, r14) ⊕ E(d15, r15). The client
will then compute E(d7, r7) ⊕ E(d14, r14) ⊕ E(d15, r15) to retrieve the encrypted
block E(C, r12), and then extract the plaintext target data item.

196 S. De Capitani di Vimercati et al.

To guarantee access and pattern confidentiality, Path ORAM requires that
each block in a bucket, be it dummy or real, is read at most once. If a bucket is
accessed many times, there is the possibility for dummy blocks to be exhausted.
To overcome this problem, Ring ORAM adopts an early reshuffle approach to
reshuffle a bucket after it has been accessed by S read operations.

To optimize the cost of access operations, differently from Path ORAM, Ring
ORAM does not rewrite back accessed buckets at each read operation. On the
contrary, it performs write operations periodically (once every A read accesses),
evicting as many data items from the stash as possible. Write operations are
performed in a specific (inverse lexicographic) order to minimize overlap between
consecutive write paths and hence maximize the effectiveness of the eviction
strategy. Consider, as an example, a Ring ORAM structure with four leaves. As
visible from Fig. 4, writing the paths to the leaves in inverse lexicographic order
minimizes intersection between subsequent accesses. Note that in the figure, for
simplicity, we report only the identifier of leaf nodes and do not represent buckets
content.

00 (inverse 00) 10 (inverse 01) 01 (inverse 10) 11 (inverse 11)

Fig. 4. Order in which paths are written in a Ring ORAM structure

3 Dynamically Allocated Data Structures

An alternative class of approaches aimed at protecting and access and pattern
confidentiality is represented by dynamically allocated data structures (e.g., [1,3,
4,6–12,17]). Intuitively, these techniques are based on the idea that traditional
data structures used to efficiently store and retrieve data (e.g., binary search
trees, B+-trees, hash tables) can be profitably used to enforce access and pattern
confidentiality, by dynamically reallocating accessed data at each read operation.
This class of solutions has the advantage over ORAM-based solutions that data
are organized in the data structure according to the value of an index attribute
(or identifier). Hence, they naturally offer support for range queries and easily
accommodate changes in the number of data items stored in the structure. On the
contrary, the structures illustrated in Sect. 2 do not reflect, in their organization,
the logical order among identifiers. Indeed, the parent-child relationship among

Access Privacy in the Cloud 197

nodes does not depend on the value of the identifiers of the data items they
store. Hence, they do not offer support for range queries.

In the remainder of this section, we first describe the shuffle index [11], which
is a dynamically allocated data structure based on the organization of data in a
B+-tree, and a self-balancing binary tree data structure [7].

3.1 Shuffle Index

The shuffle index [8] is a dynamically allocated data structure that logically
organizes data in a B+-tree, to enable efficient data retrieval while protecting
access and pattern confidentiality. In the following, we illustrate the structure of
the shuffle index, and the working of access operations.

Structure. The shuffle index, at the abstract level, is an unchained B+-tree
(i.e., a B+-tree with no connection between contiguous leaves, not to reveal
to the storing server their relative order) defined over a candidate key for the
set of outsourced data items. Given the fan-out F of the index structure, each
internal node of the shuffle index stores an ordered sequence of q − 1 values
v1 ≤ . . . ≤ vq−1, with q ≥ �F/2� (but for the root, for which 1 ≤ q ≤ F). Each
of the q children of the node is the root of a subtree storing all the values in
the range [vi,vi+1], i = 1, . . . , q − 2. The first child of the node stores all the
values lower than v1, while the last child of the node stores all the values greater
than vq−1. Leaf nodes store, together with key values, the corresponding data
items. Figure 5(a) illustrates an example of an abstract shuffle index with fan-out
F = 3.

At the logical level, the shuffle index is a collection of nodes, each associated
with a unique randomly assigned logical identifier. Hence, logical identifiers do
not reflect the natural order relationship among the values in nodes content. Log-
ical identifiers are used to represent pointers to children in the internal nodes of
the B+-tree structure. Consider the abstract structure in Fig. 5(a). Figure 5(b)
illustrates an example of its logical representation where, for the sake of read-

Abstract index Logical index Physical index

(a) (b) (c)

Fig. 5. An example of abstract (a), logical (b), and physical (c) shuffle index
Legend: � target, • node in cache, � cover; blocks read and written: dark gray fill-
ing, blocks written: light gray filling

198 S. De Capitani di Vimercati et al.

ability, logical node identifiers are reported on top of each node. The first digit
of logical identifiers correspond to the level of the node in the tree.

At the physical level, the logical identifier of each node translates into the
physical address where the corresponding block is stored. The block representing
a logical node is obtained by encrypting the logical node content, concatenated
with a random nonce, to destroy plaintext distinguishability. Consider the log-
ical shuffle index in Fig. 5(b). Figure 5(c) illustrates an example of its physical
representation, which corresponds to the view of the provider over the shuffle
index.

Read Access. For each access operation aimed at searching a value v of the
candidate key over which the index has been defined, the shuffle index com-
bines the following three protection techniques for providing access and pattern
confidentiality.

– Cover searches. The search for the target value is complemented with
num cover additional fake searches, not recognizable as such by the storage
server. Cover searches are chosen in such a way to visit num cover disjoint
paths, that is, paths including a disjoint set of nodes, apart from the root.
Intuitively, for each level of the shuffle index, the client downloads the node
along the path to the target, and num cover additional nodes along the paths
to the covers. Therefore, from the point of view of the storing server, any of
the num cover+1 downloaded nodes at each level could be the one along the
path to the target.

– Cached searches. To prevent the storing server from identifying repeated
accesses by observing that subsequent searches download the same (or a
common subset of) physical blocks, the shuffle index uses a client-side cache
structure. The cache is a layered structure, with a layer for each level in the
shuffle index, storing the nodes along the (target) paths to the num cache
most recent accesses to the shuffle index. If the target of an access is in cache,
an additional cover is used to guarantee that each access operation downloads
exactly the same number of nodes (i.e., num cover+1) at each level of the
shuffle index, apart from the root.

– Shuffling. Shuffling consists in changing the allocation of nodes to blocks
at each access. Every block downloaded from the storage server is then
decrypted, associated with a different physical address among the accessed
ones, re-encrypted using a different random nonce, and written back at the
server. Clearly, the parents of shuffled nodes are updated accordingly, to main-
tain the correctness of the underlying abstract B+-tree structure. Shuffling
breaks the (otherwise static) node-block association. Hence, different searches
for the same key value will imply accesses to different blocks and, vice versa,
accesses reading/writing for a same physical block are not necessarily due to
searches for the same key value (i.e., repeated searches).

To retrieve the data item with candidate key equal to v, the client interacts
with the server to visit the shuffle index. Starting from the root level, for each
level in the shuffle index, the client: downloads the nodes along the paths to the

Access Privacy in the Cloud 199

target and cover searches; decrypts their content; updates the cache structure for
the visited level; shuffles accessed nodes; updates the parents of shuffled nodes;
re-encrypts and re-writes back at the server the nodes read during the previous
iteration. Consider a search for value u3 in the shuffle index in Fig. 5, and assume
that the cache stores the path to t1 and that value s2 is chosen as cover. The
client first accesses the root node, which is stored in the first level of the local
cache, and identifies the blocks at level 1 along the path to the target (block 103),
to the cover (block 102), and in cache (block 101). It then downloads blocks 102
and 103, decrypts them, and inserts node s in the second level of the cache. The
client then shuffles nodes 101, 102, and 103 (e.g., it assigns s to 101, t to 103, and
u to 102), updates the root node accordingly, re-encrypts its content and stores
it at the server side. The client operates in a similar manner at the second level
of the tree: it downloads the blocks along the path to the target (208) and to
the cover (205), decrypts their content and updates the cache inserting node u3.
The client then shuffles blocks 205, 207, and 208 (e.g., it assigns s2 to 208, t1 to
205, and u3 to 207), updates and re-encrypts nodes s, t, and u accordingly, and
re-writes them back at the server. Finally, the client re-encrypts the accessed leaf
nodes and sends the corresponding blocks to the server for storage. Figure 5(c)
illustrates the cloud provider’s view over the access in terms of blocks read and
written (dark gray) and only written (light gray). Note that the server cannot
determine which, among the accessed leaves, is the target of the search operation,
nor reconstruct shuffling operations.

The shuffle index exhibits an O(�log N�) non-amortized access overhead and
a number of communication rounds equal to the height of the B+-tree, with
O(1) and O(N) storage overhead at the client and at the server, respectively.

Write Access. Similarly to ORAM-based structures, also the shuffle index
implies a re-write, for each read access, of any accessed blocks. Hence, an update
to the data content that does not modify the value of the key attribute can
be easily accommodated during any read access operation. On the contrary, an
update of the key value (as well as the insertion or removal of data items) deserve
a special treatment if the client wants to keep the nature of the access confiden-
tial. While the deletion of a data item can be easily managed by marking it as
invalid, the insertion of a new data item and of the corresponding key value, or
its update may imply a change in the underlying data structure. Indeed, if the
leaf node where the data item should be inserted is full, the accommodation of
the insert operation requires a split of the node itself. To prevent the storing
server from distinguishing read from write accesses, the solution in [11] proposes
to probabilistically split nodes at every access, be it associated with a read or
a write operation. Hence, during (read and write) access operations the client
chooses whether to split each visited node, with a probability that grows with
the number of key values in the node. This approach guarantees that split oper-
ations can happen during both read and write accesses, thus limiting the ability
of the storing server to distinguish between read and write accesses.

200 S. De Capitani di Vimercati et al.

3.2 A Dynamic Tree-Based Data Structure

The technique for protecting access and pattern confidentiality presented in [7]
aims at enhancing the shuffle index approach along two directions: (i) it does
not require the client to commit storage resources for accessing data; and (ii) it
supports accesses by multiple clients.

Structure. To the aim of supporting efficient accesses, outsourced data are
organized in a binary search tree with maximum height h = �2 log(N)�, with
N the number of nodes in the tree. The nodes in the tree are buckets, each
storing a set of Z data items. The mapping function, associating each data item
with the bucket storing it, is a non-invertible and non-order preserving function,
defined in such a way to guarantee a balanced distribution of the data items
among the buckets. Since the mapping function is not invertible, exposure of the
bucket index does not expose sensitive values. Also, since the mapping function
is not order preserving, the binary search tree efficiently supports searches over
the outsourced data collection without revealing the relative order among data.
The buckets composing the binary search tree are encrypted at the client side
before storage at the server.

Read Access. Access operations combine a traditional visit of the BST with
the following four protection techniques aimed to protect access confidentiality.

– Uniform accesses. All the accesses download from the provider the same num-
ber of blocks, independently from the level where the target of the search
operation is located. The number of accessed blocks is fixed to h + 2. If the
path to the target node is shorter than h + 2, the client downloads a set of
filler nodes, that is, of nodes that are not along the path to the target. To
guarantee that filler nodes are not recognizable as such, they are randomly
chosen among the children of already accessed nodes, and nodes (be them
along the path to the target or fillers) are downloaded level by level. This
guarantees that any of the h + 2 accessed nodes could be the target of the
access. Consider, as an example, a search for value F in the binary search
tree in Fig. 6 with N = 26 and h + 2 = 10. Since the path to the target node
includes only 5 nodes (light blue background in Fig. 6(a), light gray in b/w
printout), the search is complemented with 5 filler nodes (white with solid
fence in Fig. 6(b)). Note that any of the 10 downloaded nodes could be the
target of the access since nodes along the path to the target are indistinguish-
able from filler nodes.

– Target bubbling. After each access, the target node is moved up (close to the
root) in the tree by properly rotating the nodes along its path. This technique
protects against repeated accesses. Indeed, if two subsequent searches look for
the same target, the second access will find the target high in the tree and
will therefore choose a high number of filler nodes. Hence, the two searches
will visit two different sets of nodes, reducing the effectiveness of intersec-
tion attacks (i.e., of attacks that exploit the common downloaded blocks in
subsequent accesses to infer the target of the searches). Target bubbling has
also the advantage of changing the topology of the binary tree structure,

Access Privacy in the Cloud 201

(a) target path (b) accessed nodes

(c) target bubbling (d) resulting tree

(e) speculative rotations (f) resulting tree

Fig. 6. An example of search for value F in a dynamic tree-based data structure
The visit of the path to F (a) is complemented with five filler nodes (b) The nodes
along the path to F are rotated (c), moving the target to the root (d) Two additional
speculative rotations (e) are performed to reduce the height of the tree (f) (Color figure
online)

202 S. De Capitani di Vimercati et al.

further enhancing protection. With reference to the example in Fig. 6, the
nodes along the path to F are rotated as illustrated in Fig. 6(c), obtaining
the binary tree in Fig. 6(d), where F is the root. A search for F over this
tree could visit any subtree including 10 nodes rooted at F, thus considerably
enhancing protection guarantees.

– Speculative rotations. Each access operation, because of target bubbling, can
increase or decrease the height of the tree by one. To guarantee that the height
of the tree remains within the limit of h = �2 log(N)�, speculative rotations
possibly rotate accessed nodes, when it could be useful for reducing the height
of the tree. Clearly, speculative rotations do not operate on the target node (or
its ancestors) because this would possibly nullify (or mitigate the advantages
of) target bubbling. Even if speculative rotations do not represent a protection
technique per se, they provide benefits as they change the tree topology (and
hence paths reaching nodes). With reference to the example in Fig. 6, the
rotations in Fig. 6(e) could reduce the height of the tree. The tree resulting
after the application of speculative rotations is illustrated in Fig. 6(f) and has
a completely different topology than the tree in Fig. 6(a) on which the access
operated.

– Physical re-allocation. At each access, the allocation of all the accessed nodes
to physical blocks is changed. Re-allocation implies the need to decrypt and
re-encrypt all the accessed nodes, concatenated with a different random salt
to make the re-allocation untraceable by a possible observer. Also, it requires
to update the pointers to children in the parents of re-allocated nodes. Note
that, since all the accessed nodes are in a parent-child relationship, this does
not require to download additional nodes. By changing the node-block corre-
spondence at every access, physical re-allocation prevents the provider from
determining whether two accesses visited the same node (sub-path) by observ-
ing accesses to physical blocks, and hence it prevents accumulating informa-
tion on the topology of the tree. Indeed, accesses aimed at the same node
will visit different blocks (and vice versa). Figure 7(a) illustrates an example
of physical re-allocation of the nodes/blocks accessed by the search in Fig. 6,
illustrating the nodes content before and after re-allocation. Figure 7(b) illus-
trates the view of the provider over the blocks composing the binary search
tree, and its observations of accessed blocks (in gray).

The combined adoption of the protection techniques illustrated above, which
imply both physical re-allocation and logical restructuring of the binary search
tree, guarantees access confidentiality. Indeed, it makes skewed profiles of access
to the plaintext data statistically indistinguishable from uniform access pro-
files [7]. The approach illustrated in this section provides access and pattern
confidentiality at the cost of retrieving �log N� blocks, and has limited client
side storage overhead, O(1), due to the storage of the address of root node only.

Access Privacy in the Cloud 203

00 I
-

00→13 00 J
25

- 24
.

04 T
25

04→19 04 X
14

07 18

05 F
15

05→12 05 D
02

02 21
.

12 X
-

12→04 12 F
15

18 05

13 M
04

13→15 13 I
-

19 -

14 D
05

14→05 14 Y
16

21 -

15 H
00

15→24 15 N
19

23 00
.

19 L
01

19→25 19 T
04

24 07
.

24 J
09

24→00 24 H
13

14 23

25 Y
16

25→14 25 L
01

12 09

00 βΥ # 01

02 γι πu 03

04 Ξψ h 05

06 +Ω ϕΨ 07

08 ρ$ pΓ 09

10 r qΔ 11

12 τw θμ 13

14 eυ αη 15

16 ζj εσ 17

18 fλ κω 19

20 Σχ ΛΘ 21

22 φϑ 23

24 νξ ς! 25

00 mμ # 01

02 γι πu 03

04 kψ ων 05

06 +Ω ϕΨ 07

08 ρ$ pΓ 09

10 r qΔ 11

12 rα :τ 13

14 Ξς ξΥ 15

16 ζj εσ 17

18 fλ ηj 19

20 Σχ ΛΘ 21

22 φϑ 23

24 θβ κυ 25

(a) (b) (c)

Fig. 7. An example of physical re-allocation (a) and of view of the server before (b)
and after (c) the access in Fig. 6

4 Conclusion

In this chapter, we have illustrated different solutions for protecting access
and pattern confidentiality. The approaches illustrated have been classified in
two main classes: ORAM-based techniques, and dynamically allocated data
structures. For each of these classes, we have described some representative
approaches, discussing the structure for data storage and the working of access
operations.

Acknowledgements. This work was supported in part by the EC within the H2020
under grant agreement 644579 (ESCUDO-CLOUD), and with in the FP7 under grant
agreement 312797 (ABC4EU).

References

1. Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa, M.,
Samarati, P.: Distributed shuffle index in the cloud: implementation and evalua-
tion. In: Proceedings of the 4th IEEE International Conference on Cyber Security
and Cloud Computing (IEEE CSCloud 2017), New York, USA, June 2017

2. Bindschaedler, V., Naveed, M., Pan, X., Wang, X., Huang, Y.: Practicing oblivious
access on cloud storage: the gap, the fallacy, and the new way forward. In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS 2015), Denver, CO, USA, October 2015

3. Chen, C., Cichocki, A., McIntosh, A., Panagos, E.: Privacy-protecting index for
outsourced databases. In: Proceedings of the Workshops of the 29th IEEE Inter-
national Conference on Data Engineering (ICDE 2013), Brisbane, Australia, April
2013

204 S. De Capitani di Vimercati et al.

4. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Supporting concurrency and multiple indexes in private access to outsourced data.
J. Comput. Secur. 21(3), 425–461 (2013)

5. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing
data in the cloud: Privacy risks and approaches. In: Proceedings of the 7th Inter-
national Conference on Risks and Security of Internet and Systems (CRiSIS 2012),
Cork, Ireland, October 2012

6. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Enforcing authorizations while protecting access confidentiality. J. Comput. Secur.
26(2), 143–175 (2018)

7. De Capitani di Vimercati, S., Foresti, S., Moretti, R., Paraboschi, S., Pelosi, G.,
Samarati, P.: A dynamic tree-based data structure for access privacy in the cloud.
In: Proceedings of the 8th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2016), Luxembourg, December 2016

8. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Efficient and private access to outsourced data. In: Proceedings of the 31st Interna-
tional Conference on Distributed Computing Systems (ICDCS 2011), Minneapolis,
MN, USA, June 2011

9. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati,
P.: Supporting concurrency in private data outsourcing. In: Atluri, V., Diaz, C.
(eds.) ESORICS 2011. LNCS, vol. 6879, pp. 648–664. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23822-2 35

10. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Distributed shuffling for preserving access confidentiality. In: Crampton, J., Jajo-
dia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 628–645. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 35

11. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Shuffle index: efficient and private access to outsourced data. ACM Trans. Storage
11(4), 19:1–19:55 (2015)

12. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Three-server swapping for access confidentiality. IEEE Trans. Cloud Comput. 6,
492–505 (2015)

13. Goldreich, O.: Towards a theory of software protection and simulation by Obliv-
ious RAMs. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing (STOC 1987), New York, NY, USA, May 1987

14. Goldreich, O., Ostrovsky, R.: Software protection and simulation on Oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

15. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: Proceedings of the 19th Annual
Network and Distributed System Security Symposium (NDSS 2012), San Diego,
California, USA, February 2012

16. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure out-
sourced databases. In: Proceedings of the 23rd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS 2016), Vienna, Austria, October 2016

17. Lin, P., Candan, K.S.: Hiding traversal of tree structured data from untrusted data
stores, Porto, Portugal, April 2004

18. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS 2015), Denver, CO, USA, October
2015

https://doi.org/10.1007/978-3-642-23822-2_35
https://doi.org/10.1007/978-3-642-40203-6_35

Access Privacy in the Cloud 205

19. Ostrovsky, R.: Efficient computation on Oblivious RAMs. In: Proceedings of the
22nd Annual ACM Symposium on Theory of Computing (STOC 1990), Baltimore,
MD, USA, May 1990

20. Ostrovsky, R., Skeith, W.E.: A survey of single-database private information
retrieval: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71677-8 26

21. Ren, L., et al.: Constants count: practical improvements to Oblivious RAM. In:
Proceedings of the 24th USENIX Security Symposium (USENIX 2015), Washing-
ton, DC, USA, August 2015

22. Stefanov, E., et al.: Path ORAM: an extremely simple Oblivious RAM protocol.
In: Proceedings of the 20th ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS 2013), Berlin, Germany, November 2013

23. Tang, J., Cui, Y., Li, Q., Ren, K., Liu, J., Buyya, R.: Ensuring security and privacy
preservation for cloud data services. ACM Comput. Surv. 49(1), 13:1–13:39, June
2016

https://doi.org/10.1007/978-3-540-71677-8_26
https://doi.org/10.1007/978-3-540-71677-8_26

A Strategy for Effective Alert Analysis
at a Cyber Security Operations Center

Rajesh Ganesan(B) and Ankit Shah

George Mason University, Fairfax, VA 22030, USA
rganesan@gmu.edu

Abstract. Alert data management entails several tasks at a Cyber Secu-
rity Operations Center such as tasks related to alert analysis, those
related to threat mitigation if an alert is deemed to be significant, signa-
ture update for an intrusion detection system, and so on. This chapter
presents a metric for measuring the performance of the CSOC, and
develop a strategy for effective alert data management that optimizes
the execution of certain tasks pertaining to alert analysis. One of the
important performance metrics pertaining to alert analysis include the
processing of the alerts in a timely manner to maintain a certain Level
of Operational Effectiveness (LOE). Maintaining LOE requires two fore-
most tasks among several others: (1) the dynamic optimal scheduling of
CSOC analysts to respond to the uncertainty in the day-to-day demand
for alert analysis, and (2) the dynamic optimal allocation of CSOC ana-
lyst resources to the sensors that are being monitored. However, the
above tasks are inter-dependent because the daily allocation task per
shift requires the availability of the analysts (resource) to meet the uncer-
tainties in the demand for alert analysis at the CSOC due to varying
alert generation and/or service rates, and the resource availability must
be scheduled ahead of time, despite the above uncertainty, for practi-
cal implementation in the real-world. In this chapter, an optimization
modeling framework is presented that schedules the analysts using his-
torical and predicted demand patterns for alert analysis over a 14-day
work-cycle, selects additional (on-call) analysts that are required in a
shift, and optimally allocates all the required analysts on a day-to-day
basis per each working shift. Results from simulation studies validate
the optimization modeling framework, and show the effectiveness of the
strategy for alert analysis in order to maintain the LOE of the CSOC at
the desired level.

1 Introduction

The mission of a Cyber Security Operations Center (CSOC) is to provide a
strong cyber-defense strategy against the ever-increasing cybersecurity threats.
The readiness level of a CSOC is paramount to achieving the above mission
successfully. The readiness level must be quantified and measured so that it pro-
vides a manager with full understanding of the impact of the interdependencies

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 206–226, 2018.
https://doi.org/10.1007/978-3-030-04834-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_11

A Strategy for Effective Alert Analysis at a CSOC 207

between various factors that affect the dynamics of the CSOC operations, and
take corrective actions as needed. Some of these factors include (1) backlog of
alerts that depends on the alert generation and processing rates, (2) the false
positive and negative rates of analysts, (3) the optimal allocation of analysts to
sensors, (4) optimal scheduling of the analysts with the right expertise mix in a
shift, (5) grouping of sensors, (6) triaging of alerts, (7) the availability of tool-
ing and credentials of analysts in a shift, and (8) effective team formation with
highest collaborative scores among the analysts. In this chapter the readiness of
the CSOC is defined as the level of operational effectiveness (LOE) of a CSOC,
which is a color-coded scheme that indicates the timely manner in which an alert
was investigated at the CSOC [1]. The LOE is continuously monitored for every
hour of the work shift. Among the factors given above that affect the LOE of
a CSOC, this chapter investigates two factors, namely, (1) the dynamic optimal
scheduling of CSOC analysts to respond to the uncertainty in the day-to-day
demand for alert analysis, and (2) the dynamic optimal allocation of CSOC ana-
lyst resources to the sensors that are being monitored. Thus, the objective of
this research is to maintain the LOE of a CSOC at the desired level through the
dynamic optimal scheduling and allocation of CSOC analyst resources.

In this chapter, the LOE of a CSOC is monitored as follows. The chapter
identifies a common metric that is influenced by the disruptive factors that affect
the normal operating condition of a CSOC, and this metric is the total time for
alert investigation (TTA) for an alert after its arrival in the CSOC database.
Any delay in data transmission between the IDS and the CSOC is ignored, and
is not part of the TTA metric. In this chapter, it is assumed that an alert will be
immediately queued after it arrives in the CSOC database. The TTA of an alert
consists of the sum of two parts as shown in Fig. 1: (1) waiting time in queue,
and (2) time to investigate an alert, after it has been drawn for investigation by
the analyst. Clearly, when the rate of alert generation increases or a new alert
pattern decreases the throughput of the system or when the CSOC capacity is
reduced by analyst absenteeism the immediate impact is felt in terms of the
delays experienced by the alerts waiting in the queue for investigation. Since all
the alerts must be investigated, the queue length could become very long. The
above means that the alerts stay much longer in the system and the average
TTA calculated for each hour (avgTTA/hr) of operation of the CSOC increases.

The avgTTA/hr is calculated at the end of each hour of CSOC operation
by using the individual values of TTA for all the alerts that completed inves-
tigation during that hour. A baseline value for avgTTA/hr is established for
normal operating condition of the CSOC as shown in Fig. 2. It is a requirement
of the CSOC that the avgTTA/hr remain within a certain upper-bound (four
hours, for example), which is referred as the threshold value for avgTTA/hr.
If the avgTTA/hr is maintained below the threshold during any given hour of
CSOC operation then the LOE is said to be optimal, however, if the avgTTA is
maintained at the baseline value then the LOE is said to be ideal. Different tol-
erance bands are created both below and above the threshold value of avgTTA
to indicate a color-coded representation of LOE status (see Fig. 2).

208 R. Ganesan and A. Shah

Fig. 1. Total time for alert investigation (TTA) [1]

Fig. 2. Color-coded representation of (LOE) [1] (Color figure online)

As the shift progresses, the value of avgTTA/hr will dynamically change
based on the arrival rates of alerts and service rates of analyst investigation. A
dynamic avgTTA monitoring framework is developed and tested in [1], which
allows the manager of the CSOC to (1) quantify the LOE using avgTTA/hr
under the influence of different disruptive factors that adversely affect the CSOC,
(2) continuously monitor the LOE of the CSOC operation, and (3) take corrective
actions depending on the extent of deviation of the current avgTTA/hr value
from the baseline value of avgTTA/hr for the CSOC system.

When the LOE of a CSOC deviates from its desired value, one of the ways
for the manager to take corrective actions is by allocating analyst resource. It
should be noted that in the real world the analysts are scheduled prior to the
start of a 14-day work-cycle. The 14-day work-cycle is commonly used to match
with their bi-monthly pay cycle. It was shown in [2] that static analyst schedule
does not provide the ability for the CSOC to respond dynamically to the uncer-
tainties in alert generation and service rates. Hence, the analysts are scheduled
in such a way that a portion of the schedule is static while the other portion
is dynamic (known as on-call analysts) [3]. In this chapter, it is assumed that
the static schedule exists for a 14-day work-cycle, which is fine-tuned every few
months. The chapter presents three different optimization models as part of
the optimization modeling framework to maintain the LOE of a CSOC at the
desired level (1) A dynamic scheduling model in which the on-call analysts sched-
ule is fine-tuned every 14-day work-cycle based upon historical alert generation
and service patterns and any known or predicted events within the following

A Strategy for Effective Alert Analysis at a CSOC 209

14-day work-cycle, (2) for given schedule of static and on-call analysts in a shift,
a dynamic programming optimization model is used to make daily decisions
on selecting the required on-call analysts among those scheduled to be on-call,
and (3) and an optimal sensor-to-analyst allocation model, which allocates the
combined static and selected on-call workforce to sensors at the beginning of a
shift.

There are several contributions in this chapter. The primary contribution
is the modeling framework that integrates optimal analyst scheduling of both
static and on-call analysts with optimal selection and allocation of the analysts
to sensors in order to maintain the LOE of a CSOC throughout the given 14-day
work-cycle. The novelty lies in the above integration of optimization algorithms
that deliver a practically useful decision-making tool for CSOC managers to
optimally manage analysts resources to meet the uncertain demands in alert
analysis while evaluating the CSOC performance using the LOE metric. Another
contribution of this chapter include a detailed study of the dynamic avgTTA
metric that can be used by the CSOC manager to understand (a) the effect of
several disruptive factors that adversely affect the normal operating conditions
of the CSOC, and (b) the impact of the actions on the recovery time of the
CSOC to its normal operating conditions, where recovery time is defined as the
time required, from the moment an action is taken, for the avgTTA/hr value
to return to its baseline value. Other contributions include meta-principles that
provide deeper insights into the dynamic behavior of TTA, which are very useful
in designing an efficient CSOC whose LOE can be optimized.

The chapter is organized as follows. Section 2 presents related literature. In
Sect. 3 the current alert analysis is described to provide context. In Sect. 4, the
three optimization models and a simulation model for measuring LOE is pre-
sented. Section 5 presents the results, which is followed by Sect. 6 with conclu-
sions.

2 Related Literature

Intrusion detection has been studied for over three decades beginning with the
pioneering works by Anderson [4] and Denning [5,6]. Threats from various strate-
gically placed sensors that are encoded with a computer readable Intrusion
Detection System (IDS) signature are considered as alerts. Much research has
focused in developing automated techniques for detecting malicious behavior [7–
9]. The alerts that are identified by the IDS or Security Information and Event
Management (SIEM) tools are then thoroughly examined by the cybersecurity
analysts.

As the volume of alerts generated by intrusion detection sensors became over-
whelming, a great deal of later research work focused on developing techniques
(based on machine learning [10] or data mining [11], for example) for reduc-
ing false positives by developing automated alert reduction techniques. Indeed,
there are open source [12] and commercially available [13] Security Information
and Event Management (SIEM) tools that take the raw sensor data as input,

210 R. Ganesan and A. Shah

aggregate and correlate them, and produce alerts that require remediation by
cybersecurity analysts. The chapter differs from the above literature by focusing
on the cybersecurity analysts who are viewed as a critical resource. It develops
a generic dynamic optimization algorithm that provides the flexibility to opti-
mally schedule the cybersecurity analysts, by splitting the workforce into two
components - static and dynamic (on-call) workforce [3].

The dynamic scheduling in this chapter in comparison with extensive work in
the fields of reactive scheduling, real-time scheduling, online scheduling, dynamic
scheduling for parallel machines and multi-agents, would apparently appear to
be similar in terms of the overall goal where in scheduling decisions are done
under uncertainty, however, dynamic scheduling in the cybersecurity field poses
several new challenges. The cybersecurity scheduling problem is unique in terms
of the factors that affect its implementation, namely, the sensor deployment,
alert generation rates, 24/7 work time, shift periods, occurrence of unexpected
events affecting analysts’ workload, broad scope of cybersecurity vulnerabilities
and exploits, and analyst experience.

Some of the literature pertaining to dynamic scheduling include the work
by [14], where the authors discuss a heuristic dynamic scheduler to generate
long-term schedules in the field of network technicians with the objective to
minimize cost. Examples of dynamic scheduling from freight handling, and airline
fleet and crew scheduling are also geared toward reducing operational costs to
improve customer satisfaction [15]. In comparison to the dynamic scheduling
work in manufacturing, distribution, and supply chain management that uses
multi-agents, the chapter’s dynamic aspects are very different [16,17].

Though queueing statistics are tied to the performance or effectiveness of an
operation in various fields, there has been no formal methodology to measure and
monitor the level of operational effectiveness of a CSOC. A CSOC will benefit
immensely by calculating, measuring, monitoring, and controlling a key queueing
statistic (avgTTA in this chapter) that can quantify the level of operational
effectiveness of a CSOC when normal operating conditions are impacted.

Several queueing statistics have been studied in published literature to mea-
sure and monitor systems with queues, especially in the cases where normal con-
ditions are adversely impacted resulting in congested systems. For example, in
a highly utilized hospital where the scheduled admission gateway is infeasible to
enter by the subset of patients and doctors, waiting time in a queue is monitored
for a decision on implementing an expedited patient care queue [18]. A waiting
delay statistic, which is defined as the interval from the date of diagnosis to start
of radiotherapy, is calculated in establishing a relationship between radiotherapy
and clinical outcomes for cancer patients [19]. A common objective in congested
operating theaters is increasing patient throughput by maximizing the utiliza-
tion of overtime resources without excessive patient waiting times [20]. M/D/c
queueing model is one of the classical models in published literature [21]. Queue-
ing statistics are studied for finding optimal location of hubs in airline networks,
where congested airports are modeled as a M/D/c queueing system [22].

A Strategy for Effective Alert Analysis at a CSOC 211

3 Current Alert Analysis

In this section, a background of the alert generation, alert estimation, current
alert analysis process and its categorization are presented.

3.1 Alert Generation

The network data collected by the sensors is analyzed by an IDS or a SIEM,
which automatically analyses the data and generates alerts. Most of the alerts are
deemed insignificant by the IDS or SIEM, and about 1% of the alerts generated
are classified as significant alerts.1 The significant alerts are those with a different
pattern in comparison to previously known alerts. The significant alerts must be
further investigated by cybersecurity analysts and categorized.

Based on the past alert generation rate per day, a historical daily average
alert generation rate can be derived, which is used as a baseline for determin-
ing a static workforce size, their expertise levels, and their daily work schedule.
In reality, the number of alerts generated per sensor per hour varies through-
out the day. On days when the number of alerts generated exceeds the above
historical daily average alert generation rate, the static workforce size cannot
cope with the additional workload, which will result in many alerts that will not
be thoroughly investigated. Consequently, the backlog also increases (LOE is
reduced). Hence, dynamic scheduling of cybersecurity analysts is a critical part
of cybersecurity defense, which includes both the static workforce and a dynamic
(on-call) workforce to meet the everyday varying demands on the workforce for
alert investigation. In this chapter, the alert generation is modeled as a Pois-
son distribution, whereas the variation in alert generation per sensor is modeled
as a Poisson distribution. The sum of the above distributions taken together
will generate the historical daily-average alert generation per day (referred as
the baseline alert generation rate). The parameters of the above distributions
can be altered as needed based on historical patterns in alert generation, and
the dynamic programming model presented in this chapter will adapt and con-
verge to find the optimal dynamic schedules for the analysts that minimizes the
backlog (avgTTA/hr).

3.2 Alert Prediction

The uncertainty in the alert generation rate is the primary driver for modeling
a dynamic (on-call) workforce in addition to the static workforce that report to
work daily. In order to determine the size and expertise composition of the static
workforce, the historical daily-average for alert generation is used. However, to
determine the size of the dynamic (on-call) workforce on a daily basis, one of the

1 We arrived at the 1% figure based on our literature search and numerous conversa-
tions with cybersecurity analysts and Cybersecurity Operations Center (SOC) man-
agers. Our model treats this value as a parameter that can be changed as needed.

212 R. Ganesan and A. Shah

key inputs to the stochastic dynamic programming model is the number of addi-
tional alerts (over and above historical daily-average) estimated per sensor for the
next day. It should be noted that the dynamic scheduling of analysts is required
not only due to the dynamic increase in alert traffic generation rate of the sensors
but also the detection of very important attacks/exploits/vulnerabilities such as
the first-time detection of zero-day attacks and vulnerabilities (e.g., heartbleed
vulnerability and exploit), which could trigger an increase in alert generation
rates for the shifts and days following the attack or requires additional moni-
toring as explained below. When a new zero-day attack is detected or reported
in the news, additional dynamic (on-call) analysts are required to determine (i)
whether such (zero-day) attacks have already exploited any vulnerability in the
network, (ii) what defensive mechanisms such as new signatures (or attack detec-
tion rules) must be developed and used to detect (zero-day) attacks, and (iii)
what and how attack detection should be reported to upper level management
and other agencies. Hence, workload of cybersecurity analysts is increased sig-
nificantly when zero-day attacks are detected or reported in the industry, even if
the traffic rate of sensors during this period may not have necessarily increased.
This type of significant event is expected to increase the workload between shifts
and the team work of analysts includes not only thorough inspection of events
but also preparing and sharing reports, and developing new attack detection
rules if needed.

In this research, a one-day (one-shift) look-ahead on-call analyst selection
model will be run every day (shift) at an appropriate time such that there is
sufficient time for the dynamic force to report to work prior to the starting of
their shift. For this chapter, time indexes at 7PM each day and the two 12-h
shifts for each day run from 7PM–7AM and 7AM–7PM.

In this chapter, the alert estimation or prediction model is not developed.
Hence, the chapter assumes a Poisson distribution for the baseline average hourly
rate of alert generation and a Poisson distribution to introduce variability and
spikes in the hourly rate of alert generation. To use the dynamic programming
model in practice, the cyber-defense organization could develop statistical mod-
els to analyze their data patterns, and replace the distributions that are used in
this chapter for making hourly alert predictions for each day of operation. The
chapter assumes that the organization has developed a statistical model for alert
prediction using historical actual alert generation data, and has determined that
the alert generation rate comprises of two distributions. Since, real alert data was
not available, the chapter assumes another stream of data to mimic the actual
alert generation rate that draws a single random number using only a Poisson
distribution whose average is the sum of average of the Poisson distributions
that was used to generate the predicted stream of data. In summary, in the real-
world, the actual alert rate will come from the intrusion detection system itself
and the predicted alert rate will come from the statistical alert prediction model
developed by the organization. The avgTTA/hr (LOE status) is estimated using
the above rate of alert generation.

A Strategy for Effective Alert Analysis at a CSOC 213

3.3 Current Alert Analysis Process

Alerts are generated and analyzed by cyber security analysts as shown in Fig. 3.
In the current system, the number of analysts that report to work remains fixed,
and sensors are pre-assigned to analysts. A 12 h shift cycle is used, and analysts
work six days on 12 h shift and one day on 8 h shift, thus working a total of 80 h
during a 2-week period. There is a very small overlap between shifts to handover
any notes and the work terminal or workstation to the analyst from the following
shift. The type and the number of sensors allocated to an analyst depend upon
the experience level of the analysts. The experience level of an analyst further
determines the amount of workload that they can handle in an operating shift.
The workload for an analyst is captured in terms of the number of alerts/hr
that can be analyzed based on the average time taken to analyze an alert. In
this chapter, three types of analysts are considered (senior L3, intermediate L2,
and junior L1 level analysts), and their workload value is proportional to their
level of expertise.

Fig. 3. Alert analysis process [2].

Alert Categorization. A cybersecurity analyst must do the following: (1)
observe all alerts from the IDS or SIEM system, (2) thoroughly analyze the alerts
that are identified as significant alerts that are pertinent to their pre-assigned
sensors, and (3) hypothesize the severity of threat posed by a significant alert
and categorize the significant alert under Category 1–9. The description of the
categories are given in Table 1 [23]. If an alert is hypothesized as a very severe
threat and categorized under Cat 1, 2, 4, or 7 (incidents) then the watch officer
for the shift is alerted and a report is generated (see Fig. 3).

214 R. Ganesan and A. Shah

Table 1. Alert categories [23]

Category Description

1 Root Level Intrusion (Incident): unauthorized privileged access
(administrative or root access) to a DoD system

2 User Level Intrusion (Incident): unauthorized non-privileged access
(user-level permissions) to a DoD system. Automated tools, targeted
exploits, or self-propagating malicious logic may also attain these
privileges

3 Unsuccessful Activity Attempted (Event): attempt to gain unauthorized
access to the system, which is defeated by normal defensive mechanisms.
Attempt fails to gain access to the system (i.e., attacker attempts valid
or potentially valid username and password combinations) and the
activity cannot be characterized as exploratory scanning. Can include
reporting of quarantined malicious code

4 Denial of Service (DOS) (incident): activity that impairs, impedes, or
halts normal functionality of a system or network

5 Non-compliance Activity (event): this category is used for activity that,
due to DoD actions (either configuration or usage) makes DoD systems
potentially vulnerable (e.g., missing security patches, connections across
security domains, installation of vulnerable applications, etc.). In all
cases, this category is not used if an actual compromise has occurred.
Information that fits this category is the result of non-compliant or
improper configuration changes or handling by authorized users

6 Reconnaissance (Event): an activity (scan/probe) that seeks to identify
a computer, an open port, an open service, or any combination for later
exploit. This activity does not directly result in a compromise

7 Malicious Logic (Incident): installation of malicious software (e.g.,
trojan, backdoor, virus, or worm)

8 Investigating (Event): events that are potentially malicious or anomalous
activity deemed suspicious and warrants, or is undergoing, further
review. No event will be closed out as a category 8. Category 8 will be
re-categorized to appropriate Category 1–7 or 9 prior to closure

9 Explained Anomaly (Event): events that are initially suspected as being
malicious but after investigation are determined not to fit the criteria for
any of the other categories (e.g., system malfunction or false positive)

3.4 Effective Alert Analysis at a CSOC- Requirements
and Modeling Assumptions

The requirements of the cybersecurity system can be broadly described as fol-
lows. The cybersecurity analyst scheduling system,

1. shall ensure that LOE is maintained at the baseline that is established for
normal operating conditions,

A Strategy for Effective Alert Analysis at a CSOC 215

2. shall ensure that an optimal number of staff is available and are optimally
allocated to sensors to meet the demand to analyze alerts,

3. shall ensure that a right mix of analysts are staffed at any given point in time,
and

4. shall ensure that weekday, weekend, and holiday schedules are drawn such
that it conforms to the working hours policy of the organization.

3.5 Model Assumptions

The assumptions of the optimization model are as follows.

1. Analysts work in two 12-h shifts, 7PM–7AM and 7AM–7PM. However, the
optimization model can be adapted to 8 h shifts as well.

2. Each analyst on regular (static) schedule works for 80 h in 2 weeks (6 days in
12-h shift and 1 day in 8-h shift)

3. At the end of the shift any unanalyzed alert is carried forward into the next
shift. The backlog indicates the avgTTA/hr, which in turn indicates the LOE
status of the CSOC.

4. When a group of analysts are allocated to a group of sensors by the optimiza-
tion algorithm, the alerts generated by that group of sensors are arranged
in a single queue based on their arrival time-stamp, and the next available
analyst within that group will draw the alerts from the queue based on a
first-in-first-out rule.

5. Based on experience, an analyst spends, on average, about the same amount
of time to investigate alerts from the different sensors that are allocated,
which can be kept fixed or drawn from a probability distribution.

6. Analysts of different experience levels can be paired to work on a sensor.
7. Writing reports of incidents and events during shifts is considered as part of

alert examining work, and the average time to examine the alert includes the
time to write the report.

8. L1 analysts are not scheduled on-call because the purpose of on-call workforce
is to schedule the most efficient workforce to handle the additional alerts above
the historical daily-average that are generated.

4 Optimization Model

To maintain the LOE of a CSOC requires two major operations: (1) the dynamic
optimal scheduling of CSOC analysts to respond to the uncertainty in the day-to-
day demand for alert analysis, and (2) the dynamic optimal allocation of CSOC
analyst resources to the sensors that are being monitored. The dynamic optimal
scheduling of CSOC analysts involves two steps (a) scheduling of regular (static)
and on-call analysts for a 14-day work period (to match biweekly pay-period)
and (b) selection of on-call analysts for a given shift. Hence, there are a total of
three optimization models that are inter-connected to achieve the desired LOE:
(i) to schedule regular and on-call analysts, (ii) to select on-call analysts from

216 R. Ganesan and A. Shah

those scheduled, and (iii) to allocate analysts to sensors. It is obvious that all
the regular analysts report to work as per their schedule. The framework for the
optimization of parameters and the subsequent simulation to determine LOE
performance is given in Fig. 4. The details of the framework is presented next.

Fig. 4. Optimization-simulation model framework.

4.1 Scheduling Model

The days-off scheduling heuristic is given in [24]. The minimum number of
employees needed W as per the scheduling constraints is given as follows.

W1 ≥ �k2max(n1, n7)
k2 − k1

� (1)

W2 ≥ �1
5

7∑

j=1

nj� (2)

W3 ≥ max(n1, . . . , n7) (3)
W = max(W1,W2,W3) (4)

where k1 weekends are off in k2 weekends, and n1, . . . , n7 is the number of
employees needed on Sunday, . . . , Saturday respectively. For a sample scenario
of 10 sensors and 6 L1, 6 L2, and 8 L3 analysts required per day (split equally
in two 12 h shifts), k1 = 1, and k2 = 2, and n1, . . . , n7 = 20. The value of W is
40 (12 L1, 12 L2, and 16 L3), which is the number of employees that the orga-
nization must hire (be on payroll) to meet the days-off constraints given above.

A Strategy for Effective Alert Analysis at a CSOC 217

It should be noted that in the above situation, there are no part-time analysts
and all full-time analysts work 12 h shifts (12 ∗ 7 = 84 h in every 14-day cycle).
Table 2 in the results show a sample schedule obtained by applying the above
heuristic [3].

4.2 Selection Model

Once the schedule is drawn for a 14-day period, a dynamic programming opti-
mization algorithm is used to make a decision of how many on-call analyst to
select for a given shift. The three main inputs to the dynamic optimization
model are (1) the current and estimated additional number of alerts per sensor
per hr for the following day (shift), (2) the available on-call analyst resource
that must be optimally selected, and (3) the current LOE of the system (see
Fig. 4). The additional number of alerts per sensor per hr is the number that
is over and above the historical daily-average per sensor per hr that was used
in the above static optimization. Also, alert rates for a sensor could drop below
the average per hr. All sensors are not treated equally and the alert generation
rate is assumed to be different for all sensors both within a day and between
days over the next 14-day period. The above estimation is provided by the alert
estimator model on a daily basis, however such a model was not developed in
this chapter. Instead of an alert estimator model, the chapter assumes distribu-
tions for alert prediction, which could be replaced with the outputs of an alert
estimator model. The dynamic optimization algorithm uses the information on
next-day alert estimation, available on-call resource, the number of days left in
a 14-day cycle, and its own state-value functions to determine the optimal num-
ber of dynamic (on-call) workforce needed along with their expertise level. As
explained later, the state value function plays a very important role by avoiding
a myopic decision of reacting to completely fulfill all immediate analyst needs
and running out of on-call analysts in the future when the estimated alert is
high. Instead, the state value function guides the decision making process to be
optimal overall by taking a long-term view that effectively manages the limited
on-call resource. The details of the optimization model are given in [3].

4.3 Allocation Model

The sensor-to-analyst allocation for the following day (shift) is done by a genetic
algorithm heuristic that considers the total workforce (static and dynamic) that
reports to work and allocates them to sensors such that the model constraints
are met under the one-day (one-shift) look-ahead allocation. LOE is measured
for the given allocation. If the allocation is not acceptable then the constraints
could be relaxed and/or the size and expertise mix of the on-call workforce
could be overridden by a watch officer until an acceptable and feasible solution
is found. In the long-run, it is expected that the alert estimation would improve
and the dynamic programming model would have learnt to find the optimal
actions (optimal number of on-call workforce per day) so that the genetic algo-
rithm would also find an acceptable sensor-to-analyst allocation that meets the

218 R. Ganesan and A. Shah

constraints of the model. Decoupling the on-call decision making process by
dynamic programming and the allocation process by heuristic has a computa-
tional advantage because the dynamic programming model is driven by the need
to minimize and balance the avgTTA/hr over the 14-day period, and the compu-
tational complexity of finding a feasible sensor-to-analyst allocation subject to
the constraints will not slow down the dynamic programming’s decision making
process. Besides, another advantage is that human intervention can be modeled
separately whose decision to override the dynamic programming’s on-call work-
force size decision will only affect the available on-call resource for the next day
but not the current optimal decision of the dynamic programming model. Once
an acceptable sensor-to-analyst allocation is implemented for the following day
based on estimated alert generation, at the end of that day, performance metrics
on LOE and analyst utilization are obtained using the actual alert generated
and investigated by the analysts. The steps of the optimization algorithm are
given in [2].

Model Parameters to Simulate LOE. The input and output parameters of
the dynamic avgTTA/hr simulation model are described below [1]. Simulation
is performed to measure the LOE performance of the CSOC after the shift is
executed with the above sensor-to-analyst allocation. The LOE thus measured
is fed back as an input the dynamic programming algorithm.

Inputs and Notation: The following inputs are considered for the case studies:

1. S is the total number of sensors.
2. A is the number of analysts available.
3. Ks is the average number of alerts generated per sensor s per day (the average

time between alert arrivals can be determined).
4. U is the % effort spent by an analyst towards alert analysis.
5. T is the average time taken to investigate an alert in hours by one analyst.
6. λ is the average alert arrival rate per hour of the system considering all

sensors.
7. μ is the average alert service rate per hour of the system considering all

analysts.
8. ρ is the traffic intensity of the system.

Outputs: The following outputs are recorded from the case studies:

1. Total time for alert investigation for each alert i: TTAi.
2. Average of total time spent by alerts that completed investigation during an

hour of CSOC operation: avgTTA/hr.

The following are the equations used for CSOC process simulations in the
experiment section: The average alert arrival rate per hour for the system, λ,
that follows the Markovian distribution is calculated by

λ =
∑

s Ks

24
. (5)

A Strategy for Effective Alert Analysis at a CSOC 219

The individual average alert arrival rates of the sensors Ks can be varied. Ks

follows a Markovian distribution, and the sum of several Markovian distributions
also follows a Markovian distribution.

The average alert service rate per hour for the system, μ, that follows the
deterministic service rate distribution is calculated by

μ =
A ∗ U

T
(6)

The alert traffic intensity of the system, ρ, is calculated by

ρ =
λ

μ
(7)

The avgTTA/hr is given as follows

avgTTAt =
∑n

i TTAi

n
(8)

where TTAi is the individual value of TTA for alert i, and n is the number
of alerts that completed investigation in the previous hour of CSOC operation
between time t − 1 and t.

While LOE is said to be optimal for a CSOC if the value of avgTTA/hr is
below the threshold value for avgTTA/hr, it is important to maintain the normal
operating value of avgTTA/hr well below the threshold (see Fig. 2). Color-coding
is used to indicate LOE status of a CSOC. For example, if avgTTA/hr is below
the 50th percentile of the threshold then LOE is color-coded with green. Simi-
larly, avgTTA/hr between the 50th and 75th percentile of the threshold value of
avgTTA/hr is color-coded with yellow, and avgTTA/hr between the 75th and
100th percentile of the threshold is color-coded with orange. Above the threshold
value of avgTTA/hr, LOE is color-coded with red.

The avgTTA per hour can be obtained empirically via simulation of CSOC
alert analysis process with the factors that affect the normal operating condi-
tion of the CSOC. When ρ > 1, the difference between the number of alerts
that arrived and the number of alerts that were investigated provides the back-
log in alerts that remained unanalyzed in that hour. For a given service rate,
the amount of time needed to clear the backlog can be obtained, which will
cumulatively increase for each hour of operation as long as ρ > 1. As soon as
ρ < 1, which happens when a corrective action is taken or when the causal fac-
tors that caused ρ > 1 are no longer present, an estimate for when the backlog
will eventually be cleared can be obtained for a given service rate. However, it
must be clearly noted that LOE of a CSOC is determined by the avgTTA per
hour that will be reached both during normal operating conditions and during
the time period when normal operating condition was adversely affected. Since
alerts are investigated using a first-come-first-served basis (FCFS), during an
hour of operation of the CSOC, the backlog from the previous hour is first inves-
tigated. Newly arrived alerts that remain unanalyzed during an hour become
the new backlog, which is then carried forward to the next hour. Hence, backlog

220 R. Ganesan and A. Shah

is a dynamic list of the most recent arrivals of alerts, which changes from hour
to hour. While the time needed to clear the backlog and return the system to
normal operating condition could be long, the avgTTA/hr attained during this
period is often much smaller due to the FCFS rule. LOE of a CSOC is a dynamic
status that is indicated using the avgTTA per hour that is reached during alert
investigation, and is not the amount of time needed to clear the backlog of alerts
when ρ < 1 is restored. Further details of the simulation model are provided
in [1].

5 Results

The following section presents the results of the above optimization models. A
24-h case study with two 12-h shifts is presented in which 10 sensors (or sensor
groups) are being monitored per shift.

5.1 Results of a Heuristic for Static and Dynamic Workforce
Scheduling

A 14-day schedule is drawn for the regular and on-call workforce using the days-
off heuristic. Table 2 shows the combined output of the scheduling heuristic for
scheduling static and a fixed dynamic workforce in which X represents days-off
for analysts, and c indicates the days on which on-call analysts are scheduled
at each level of expertise. The issue with fixing the number of people that are
on-call per day at the beginning of the 14-day period is that the cyber defense
system is no longer adaptable to higher alert generation rates that exceed the
alert rates covered by the fixed on-call workforce. In contrast to the above, the
dynamic programming algorithm will select the actual number of on-call work-
force required for the next day from the available on-call workforce for that day,
which provides greater scheduling flexibility and adaptability to varying alert
generation rates. L1 (junior) analysts are not scheduled for on-call workforce. It
can be observed that on average about 15–18 analyst report to work per day
(about 7 to 9 per shift with different levels of expertise).

5.2 Results of the Dynamic Programming Selection Model

For a case study with 10 sensors, the regular number of analysts required for
a given day was 4-L1, 4-L2, and 6-L3 (2-L1, 2-L2, and 3-L3 per 12-h shift).
However, due to a predicted 15% increase in alert generation, the dynamic pro-
gramming optimization model selected an additional L2 analyst from the on-call
analyst workforce for each shift (2-L1, 3-L2, and 3-L3 per 12-h shift). The details
of the dynamic programming model and results are given in [3].

A Strategy for Effective Alert Analysis at a CSOC 221

Table 2. Scheduling of L1, L2, and L3 level analysts for both static and a fixed dynamic
workforce using days-off scheduling heuristics, X- days-off, and c- on-call [3]

Level Analyst ID Day

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

L3 1 x c x x c x x x x

2 x x c x x c x x x

3 x x c x x x c x x

4 x x c x x x c x x

5 x c x x c x x x x

6 x x x c x x c x x

7 x x x x c x x c x

8 x x x c x x x c x

9 c x x x x c x

10 x c x x x x c

11 c x x x x x c

12 c x x x x x c

13 x x c c x x x

14 x x x c c x x

15 x x x c c x x

16 x x c c x x x

L2 1 x c x x c x x x x

2 x x c x x c x x x

3 x x c x x x c x x

4 x x c x x x c x x

5 x c x x c x x x x

6 x x x c x x c x x

7 x x x x c x x c x

8 x x x c x x x c x

9 c x x x x c x

10 x c x x x x c

11 c x x x x x c

12 c x x x x x c

L1 1 x x x x x x x x x

2 x x x x x x x x x

3 x x x x x x x x x

4 x x x x x x x x x

5 x x x x x x x x x

6 x x x x x x x x x

7 x x x x x x x x x

8 x x x x x x x x x

9 x x x x x x x

10 x x x x x x x

11 x x x x x x x

12 x x x x x x x

5.3 Results of the Heuristic for Static and Dynamic Workforce
Allocation

Once the number of analysts are determined per shift, they are allocated to the
sensors. The on-call analyst can be availed at any point in time during the shift.

222 R. Ganesan and A. Shah

Table 3 presents a sample of sensor-to-analyst allocation for a CSOC with 10
sensors with 2-L1, 3-L2, and 3-L3 level analysts that report in a shift.

Table 3. Sensor-to-analyst allocation, 2-L1, 3-L2, and 3-L3 level analysts [2]

Analyst Sensor

1 2 3 4 5 6 7 8 9 10

L3 1 1 0 0 0 1 0 0 1 1

L3 0 0 0 0 0 1 1 1 1 1

L3 1 1 1 1 1 0 0 0 0 0

L2 0 0 1 1 1 0 0 0 0 0

L2 0 0 0 0 0 0 1 1 1 0

L2 0 0 0 1 1 0 1 0 0 0

L1 0 0 1 0 0 0 0 0 0 0

L1 0 0 0 0 0 1 0 0 0 0

5.4 Results from Measuring the LOE Metric

This section presents the impact on the CSOC’s LOE due to adding and not
adding on-call analysts when there is a surge in alert arrival rate. Table 4 pro-
vides the input data for the normal operating condition of the CSOC where the
baseline avgTTA for alert analysis is 80 s. The baseline is shown in Fig. 5.

In the following case study, a short-term increase in alert arrival rate is
simulated. All the input parameter values are as per Table 4 except that the
average time between alert generations is reduced. The average time between
alert generations (4.35 s) that produces a 15% increase in the number of alerts
per hour is used in this case study (see Table 5). The traffic intensity (ρ) is
sustained above 1 (at 1.148) for various short durations of time in the day. The
system is studied over a 24-h period.

Table 4. Inputs for normal operation case study [1]

Number of sensors 10

Number of analysts per day 15

Average time between alert generation (s) Expo (5)

% effort of analysts towards alert analysis 60%

Average time taken to investigate an alert T (s) 3

It can be observed in Fig. 5 that the average total time for alert investigation
increases for a few hours with the increase in the alert arrival rate (increase in the
traffic intensity (ρ > 1)). When the alert arrival rate is restored to its nominal

A Strategy for Effective Alert Analysis at a CSOC 223

Table 5. Inputs for case study with alert/service rate increase over normal [1]

Case Average time between alert generation (sec)

15% alert rate increase for 4 h Expo (4.35)

Action: on-call analyst added Effect

None 0% service rate increase

1-L2 15% service rate increase

1-L2 and 1-L3 25% service rate increase

value (ρ < 1) after a short duration, it can be observed that the avgTTA settles
at a higher value for the rest of the day than the average total time (80s) reported
in the baseline case. For example, in the case of a 15% increase in arrival rate for
the first 4 h, the effect of an increase in avgTTA per hour can be observed for
another 7 h before settling down close to the threshold line (2000 s). In another
example, where the increase in arrival rate is only for 1 h at the start of the day,
it can be seen that the avgTTA per hour goes up for the first 2 h before slowly
returning to the average total time of the baseline case by the end of the day. If
the 15% increase in alert arrival rate was sustained for more than 4 h then the
avgTTA per hour was found to remain above the upper bound (threshold value
of avgTTA per hour) for the rest of the day. Based on the above observation,
the following meta-principle is derived:

– With a short-term small surge in alert arrival rate (i.e., ρ slightly above the
value of 1 for a short duration of the day), and with no other action taken by
the CSOC, the avgTTA would rapidly increase towards its threshold value,
and it will take a very long time (hours or days) before the desired level of
operational effectiveness is restored. The above emphasizes the need for quick
action by the CSOC manager to restore normal operating conditions. One of
the means for the CSOC manager to restore normal operations is to bring
additional on-call analysts.

The following case study demonstrates the effect of adding on-call analysts to
maintain LOE as recommended by the dynamic programming analyst selection
model. The case study considers a 15% increase in arrival rate that is sustained
for 4 h (average time between alert arrivals is 4.35 s, which follows an exponential
distribution) for all the sensors. In order to maintain the level of operational
effectiveness of the CSOC by keeping the avgTTA per hour under the threshold of
2000 s, different increases in alert service rates (from on-call analysts) at various
times of the day were simulated. The impacts of two different CSOC decisions
at the beginning of the fifth hour after resetting the alert arrival rate back to its
normal value are reported. The alert service rate in the first case is increased by
15% (by adding one L2 analyst) and in second case by 25% (by adding one each
of L2 and L3 analyst), both at the beginning of the fifth hour (see Table 5). The
results are shown in Fig. 6.

224 R. Ganesan and A. Shah

Fig. 5. Case study: short term (in hrs) surge in alert arrival rate by 15% [1]

It can be observed that the avgTTA/hr does not cross the threshold line for
both the cases. In the first (second) case, it takes 6 (4) hours with a sustained
increase of 15% (25%) alert service rate to reach the baseline avgTTA of 80 s.
Based on the above observation, the following meta-principle is derived:

– From Fig. 6, it is observed that with small increases (such as 15%) in alert
generation for each hour of operation, the avgTTA reached the threshold
limit, and the LOE status quickly transitioned into the red zone in about 4
to 5 h. Hence, it is important to take corrective action much earlier when the
LOE is in the yellow zone. Dynamic monitoring of LOE would provide the
much needed situational awareness for a CSOC manager to take appropriate
corrective actions (through the optimization on-call selection model) before
it is too late (i.e., avgTTA per hour exceeds the threshold limit).

Fig. 6. Case study: short term surge (4 h) in alert arrival rate with 15% and 25%
increase in alert service rate [1] (Color figure online)

A Strategy for Effective Alert Analysis at a CSOC 225

6 Conclusions

The chapter presented an efficient strategy for alert analysis that maintains the
LOE of a CSOC. A combination of three optimization models is presented that
achieves the following (1) scheduling of regular and on-call analysts over 14-day
period, (2) selection of the required on-call analysts from those available for a
shift, and (3) allocating sensors-to-analysts for a shift. The efficiency of the above
scheduling, selection, and allocation process is measured via simulation, which
outputs the LOE of the system. Results show that the dynamic programming
algorithm is able to make efficient selection decisions for the number of on-call
analysts that assist in maintaining the LOE within a shift. Quantifying LOE of
a CSOC and providing continuous situational awareness to CSOC managers is
a paradigm shift in CSOC operations, which could benefit from the results and
recommendations of the above study.

Acknowledgment. The authors would like to thank Dr. Sushil Jajodia of the Center
for Secure Information Systems, Dr. Hasan Cam and Dr. Cliff Wang of the Army
Research Office for the many discussions which served as the inspiration for this
research. Ganesan, and Shah were partially supported by the Army Research Office
under grants W911NF-13-1-0421 and W911NF-15-1-0576 and by the Office of Naval
Research grant N00014-15-1-2007.

References

1. Shah, A., Ganesan, R., Jajodia, S., Cam, H.: A methodology to measure and
monitor level of operational effectiveness of a CSOC. Int. J. Inf. Secur. 17(2),
121–134 (2018)

2. Ganesan, R., Jajodia, S., Cam, H.: Optimal scheduling of cybersecurity analysts
for minimizing risk. ACM Trans. Intell. Syst. Technol. 8(4), 52:1–52:32 (2017).
https://doi.org/10.1145/2914795

3. Ganesan, R., Jajodia, S., Shah, A., Cam, H.: Dynamic scheduling of cybersecurity
analysts for minimizing risk using reinforcement learning. ACM Trans. Intell. Syst.
Technol. 8(1), 4:1–4:21 (2016). https://doi.org/10.1145/2882969

4. Anderson, J.P.: Computer security threat monitoring and surveillance. Technical
report, James P. Anderson Co., Fort Washington (1980)

5. Denning, D.E.: An intrusion-detection model. In: Proceedings of IEEE Symposium
on Security and Privacy, Oakland, CA, pp. 118–131, May 1986

6. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222–
232 (1987)

7. Northcutt, S., Novak, J.: Network Intrusion Detection, 3rd edn. New Riders Pub-
lishing, Thousand Oaks (2002)

8. Di Pietro, R., Mancini, L.V. (eds.): Intrusion Detection Systems. ADIS, vol. 38.
Springer, Boston (2008). https://doi.org/10.1007/978-0-387-77265-3

9. Subrahmanian, V.S., Ovelgönne, M., Dumitras, T., Prakash, B.A.: The Global
Cyber-Vulnerability Report. TSC. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25760-0

10. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for
network intrusion detection. In: Proceedings of IEEE Symposium on Security and
Privacy, pp. 305–316, May 2010

https://doi.org/10.1145/2914795
https://doi.org/10.1145/2882969
https://doi.org/10.1007/978-0-387-77265-3
https://doi.org/10.1007/978-3-319-25760-0
https://doi.org/10.1007/978-3-319-25760-0

226 R. Ganesan and A. Shah

11. Barbará, D., Jajodia, S. (eds.): Application of Data Mining in Computer Security.
ADIS, vol. 6. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0953-0

12. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput.
Netw. 31(23–24), 2435–2463 (1999)

13. Zimmerman, C.: The strategies of a world-class cybersecurity operations center.
The MITRE Corporation, McLean (2014)

14. Lesaint, D., Voudouris, C., Azarmi, N., Alletson, I., Laithwaite, B.: Field workforce
scheduling. BT Technol. J. 21(4), 23–26 (2003)

15. Nobert, Y., Roy, J.: Freight handling personnel scheduling at air cargo terminals.
Transp. Sci. 32(3), 295–301 (1998)

16. Reis, J., Mamede, N.: Multi-Agent Dynamic Scheduling and Re-Scheduling with
Global Temporal Constraints. Kluwer Academic Publishers, Dordrecht (2002)

17. Zhou, F., Wang, J., Wang, J., Jonrinaldi, J.: A dynamic rescheduling model with
multi-agent system and its solution method. J. Mech. Eng. 58(2), 81–92 (2012)

18. Helm, J.E., AhmadBeygi, S., Van Oyen, M.P.: Design and analysis of hospital
admission control for operational effectiveness. Prod. Oper. Manag. 20(3), 359–
374 (2011)

19. Chen, Z., King, W., Pearcey, R., Kerba, M., Mackillop, W.J.: The relationship
between waiting time for radiotherapy and clinical outcomes: a systematic review
of the literature. Radiother. Oncol. 87(1), 3–16 (2008)

20. Guerriero, F., Guido, R.: Operational research in the management of the operating
theatre: a survey. Health Care Manag. Sci. 14(1), 89–114 (2011)

21. Tijms, H.: New and old results for the M/D/c queue. AEU-Int. J. Electron. Com-
mun. 60(2), 125–130 (2006)

22. Marianov, V., Serra, D.: Location models for airline hubs behaving as M/D/c
queues. Comput. Oper. Res. 30(7), 983–1003 (2003)

23. DON CIO: Cyber Crime Handbook. Department of Navy, Washington, DC (2008)
24. Pinedo, M.L.: Planning and Scheduling in Manufacturing and Services. Springer,

New York (2009). https://doi.org/10.1007/978-1-4419-0910-7

https://doi.org/10.1007/978-1-4615-0953-0
https://doi.org/10.1007/978-1-4419-0910-7

Retrieval of Relevant Historical Data
Triage Operations in Security

Operation Centers

Tao Lin1, Chen Zhong2, John Yen1, and Peng Liu1(B)

1 Pennsylvania State University, University Park, PA 16802, USA
{lint,jyen,pliu}@psu.edu

2 Indiana University Kokomo, Kokomo, IN 46904, USA
chzhong@iuk.edu

Abstract. Triage analysis is a fundamental stage in cyber operations
in Security Operations Centers (SOCs). The massive data sources gener-
ate great demands on cyber security analysts’ capability of information
processing and analytical reasoning. Furthermore, most junior security
analysts perform much less efficiently than senior analysts in deciding
what data triage operations to perform. To help (junior) analysts per-
form better, several retrieval methods have been proposed to facilitate
data triaging through retrieval of the relevant historical data triage oper-
ations of senior security analysts. This paper conducts a review of the
existing retrieval methods, including rule-based retrieval and context-
based retrieval of data triage operations. It further discusses the new
directions in solving the data triage operation retrieval problem.

Keywords: Cyber situational awareness · Data Triage
Retrieval systems

1 Introduction

There are colossal, complex, and undetermined threats in the cyber world. As
cyber attacks are happening on a daily basis and could be launched against an
enterprise network at any moment, more and more organizations have established
Security Operations Center (SOCs) to coordinate the defenses against cyber
attacks [4].

When a security incident happens, the top three questions a SOC seeks to
answer are: What attack has happened? Why did it happen? What action should
be done? While a variety of software tools (e.g., security information manage-
ment system, host-based security systems) and hardware equipment (e.g., net-
work intrusion detection systems) have been deployed in today’s enterprise net-
works to detect and correlate security-related events, real-world SOCs still rely
on security analysts (and watch officers) to make decisions on “What should
I do?”. Due to several critical limitations (e.g., high false positive rates) of the

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 227–243, 2018.
https://doi.org/10.1007/978-3-030-04834-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_12

228 T. Lin et al.

deployed software tools and hardware equipment, autonomous intrusion response
is not yet being adopted by SOCs.

From the perspective of “data to decisions,” the intrusion response decisions
made by a SOC can be viewed as the main output of a particular human-in-
loop data triage system. Not surprisingly, how soon the right intrusion response
decisions can be made heavily depends on the efficiency (i.e., avoid performing
useless data triage operations) of the system’s data triage operations. Since there
are a large variety of “sensors” monitoring an enterprise network, the enterprise’s
SOC will gather a huge amount of heterogeneous data coming from different
types of data sources. Accordingly, a critical challenge faced by the SOC is that
the massive data sources generate great demands on security analysts’ capability
of information processing and analytical reasoning.

To address this critical challenge, SOCs have been putting in a lot of effort
to recruit and train security analysts. However, it is widely observed that the
amount of time and effort required to train a security analyst is overwhelming. It
usually takes a newly hired security analyst several years to complete his or her
training and become an experienced analyst. Moreover, during the long on-job
training process, it is observed that most inexperienced (junior) security analysts
perform much less efficiently than senior analysts in deciding what data triage
operations to perform.

To address these training challenges, several retrieval methods have been
proposed to facilitate the data triage of inexperienced security analysts through
retrieval of the relevant past data triage operations of experienced (senior) ana-
lysts. These research works have shown that data triage operation retrieval could
help an inexperienced security analyst a lot in reducing the number of useless
triage operations during his or her data triage processes.

In this article, we first conduct a review of the existing retrieval methods,
including experience-based retrieval and context-driven retrieval of data triage
operations. We then discuss the new directions (e.g., apply machine learning
techniques) in solving the data triage operation retrieval problem.

The remainder of this paper is organized as follows. In Sect. 2, we present an
overview of data triage in SOCs. In Sect. 3, we give an overview of data triage
operation retrieval systems. In Sect. 4, we discuss the main challenges in develop-
ing effective triage operation retrieval systems. In Sect. 5, we conduct a review of
two existing data triage operation retrieval methods, namely, experience-based
retrieval and context-driven retrieval of triage operations. In Sect. 6, we discuss
some future directions in building better triage operation retrieval systems. We
conclude the paper in Sect. 7.

2 Triage Analysis in SOCs

We define the triage analysis as a dynamic Cyber-Human System (CHS) evolv-
ing over time in this section. We mainly describe the details of the input data
sources and the analysts’ operations performed by analysts in the process of
triage analysis and explain the challenges faced by the analysts. The definition

Retrieval of Relevant Historical Data Triage Operations in SOCs 229

of triage analysis lays the base for understanding the work of developing the
knowledge retrieval systems described in the following sections.

2.1 Data Triage for Cyber SA

Figure 1 demonstrates the human-in-the-loop process of the triage analysis in a
SOC. The goal of the cyber security analysts is to detect the potential attack
chains. Given the data sources collected by multiple sensors, an analyst conducts
a series of data triage operations to rule out the false alerts or unrelated reports.
Therefore, we define the data triage process as a dynamic Cyber-Human System
(CHS), which includes the following components: (1) the attack chains, (2) the
network monitoring data collected from multiple sources, (3) a collection of inci-
dent reports which concludes the analysts’ findings, (4) a collection of domain
knowledge and experience knowledge, (5) the data triage operations performed
by the analysts for accomplishing data triage, and (6) the hypotheses gener-
ated by analysts based on the existing findings about the potential attack chains
(i.e., the mental model of analysts) [10]. Next, we explain the data sources and
analysts’ data triage operations in details.

Fig. 1. Data triage operations conducted by analysts to identify and correlate the
suspicious network connection events that indicate potential attack chains. [11]

2.2 Multi-Source Data in SOCs

SOCs usually deploy multiple cyber security defense technologies to protect
an organization’s network (such as intrusion detection systems (IDS) and fire-
wall). The network connection activities are being monitored and controlled by
these defense technologies over time. These network monitoring data collected
from multiple sources usually have a high noise-to-signal ratio and are changing
rapidly in the dynamic network environment. The common data sources include

230 T. Lin et al.

the alerts generated from intrusion detection/prevention systems (IDS/IPS), fire-
wall logs, server logs, network status reports, vulnerability scanning reports,
anti-virus reports, traffic packages, and so on.

Going through the automatic data cleaning, aggregation, and correlation, the
data sources will be further provided to the analysts to identify the key evidence
of potential cyber attacks so that they can reason about the potential attack
chains. Therefore, such multi-source data are the input of the data analysis
process of human analysts.

The multi-source data collected from the cyber defense technologies can be
represented by a collection of network connection events. These events can be
further ordered according to their occurrence time. Therefore, the multi-source
data can be represented as a sequence of network connection events, part of which
are indicators of the ongoing attack activities and the remaining are the benign
network activities, as it is shown in Fig. 1. Each network connection event
can be defined by a vector that specifies the attributes of a network connection
[10]:

e =< t, type, ips, ports, ipd, portd, protocol, source, severity, conf,msg > (1)

where t is the occurrence time of the event; type is the type of network connection
(e.g., built, teardown and deny); ips and ports are the IP address and port of the
source, respectively; ipd and portd are the IP address and port of the destination,
respectively; protocol is the network protocol; source is the data source; severity
and conf specify the level of severity and confidence of the event, respectively;
msg specifies other important characteristics of the event, determined by the
sensor [10].

2.3 Data Triage Operation

The data triage of the network monitoring data refers to the process where an
analyst conducts a sequence of data triage operations to filter and correlate
the suspicious network connection events. To accomplish a data triage task, an
analyst needs to iteratively search and identify the suspicious events from the
raw data, to interpret the suspicious events, and to generate hypotheses about
potential attack chains based on the existing observation, and to search for
supporting/denying evidence if a hypothesis needs to be further investigated [9].
There are in general three types of operations performed during data triage [11]:

– FILTER: filtering based on a condition.
– SELECT: identifying a subset of suspicious events.
– SEARCH: searching according to keywords.

As a result, the data triage analysts concludes his/her hypotheses about the
possible attack chains with the evidence found in the raw data sources in the
incident reports. Therefore, one main output of the triage analysis is the updates
of the collection of incident reports.

Retrieval of Relevant Historical Data Triage Operations in SOCs 231

3 Data Triage Operation Retrieval Systems

3.1 Difficulties in Data Triage Tasks

The primary challenge faced by most SOCs is the gap between increasing data
collected by cyber defense technologies and the limited resources of expert ana-
lysts. Security analysts face several major difficulties in conducting their data
triage tasks. First of all, the raw data from multiple sources has a large volume
and very high noise-to-signal ratio. It has been impossible for analysts to go
through all of them in details. Besides, considering the time pressure, analysts
need to be highly concentrated on the task. Analysts need to decide whether
or not a cyber event is suspicious or benign in minutes. Even worse, more and
more cyber attacks have multiple steps to achieve their ultimate goal, which
make detection harder. Last but not the least, the training of analysts always
requires long-time on-the-job training. It is usually found that experts may not
be able to explain the practical knowledge and their strategies precisely, although
they are able to accomplish the tasks.

3.2 Experts’ Knowledge of Data Triage

Analysts’ experience and domain knowledge play a critical role in accomplishing
data triage tasks. There have been several cognitive task analysis (CTA) studies
conducted to investigate the working procedure of triage analysis. D’Amico et
al. studied the main data sources and workflow of triage analysis [2]. Erbacher
et al. investigated analysts’ tasks, concerns, and needs for data analysis [3]. It
has shown that analysts are good at interpreting data, comprehending contexts,
generating hypotheses and drawing conclusions through a complicated analytical
reasoning process [8,9]. Therefore, it is desirable to elicit experts’ knowledge from
their past data triage operations.

3.3 A Framework for Data Triage Knowledge Retrieval System
Designs

A framework for data triage knowledge retrieval system designs is shown in
Fig. 2. The system maintains a triage operation trace collection which manages
all the data triage operations performed by experts for solving previous data
triage tasks. A novice analyst is working on the triage of the incoming data
sources. The analyst can directly create a query based on his/her attention of
interest. Otherwise, his/her operations can be tracked in order to automatically
construct a query based on the current context. Given a query, the operation
retrieval engine will search for relevant operation traces in the trace collection
and rank the results according to the relevance. The relevance can be determined
by the similarity of the contexts. The retrieval result will then be presented to
the analyst as a next-step suggestion.

The benefits of a retrieval system can be two-fold. First of all, a junior ana-
lyst can learn what could be effective data triage operations to conduct in the

232 T. Lin et al.

Fig. 2. The framework for the data triage knowledge retrieval systems. [10].

current context, if he/she is provided with the retrieved operations performed
by other senior analysts in similar situations. Secondly, the junior analyst can
learn how to interpret the suspicious network events and how to generate the
valuable hypotheses for further investigation. Considering that most junior ana-
lysts are currently working under the supervision of senior analysts for guidance,
a retrieval system can offer immediate and relevant suggestions in a more cost-
efficient way. We have found little prior work specific to the information retrieval
on data triage operations to assist analysts. However, we noted several areas of
related work that are of interest in this work, which will be described in the next
section.

4 Challenges in Developing Effective Data Triage
Knowledge Retrieval Systems

The unique characteristics of how a SOC operates lead to several notable chal-
lenges in developing effective data triage operation retrieval systems. These chal-
lenges are as follows.

– The nature of data triage operation retrieval is Knowledge Retrieval, not
Information Retrieval. Knowledge representation plays an essential role in
triage operation retrieval, but not in standard information retrieval systems.
Accordingly, the existing information retrieval techniques, including text
retrieval and web (page) retrieval techniques, could not be directly applied
to solve the data triage operation retrieval problem. The subject of the data
triage operation retrieval is the practical knowledge gained by analysts from
experience. Such tacit knowledge has been represented in an explicit format
that a system can manage. A good representation of such knowledge needs to
incorporate the key components in analysts’ analytical reasoning processes.

Retrieval of Relevant Historical Data Triage Operations in SOCs 233

Zhong et al. proposed a conceptual AOH model of an analyst’s analytical
reasoning process: (A) actions performed by the analyst to filter and corre-
late the provided data sources; (O) observations of suspicious network events
gained by performing actions; (H) hypotheses of the potential attack chains
generated based on the existing observations [9].

– The specific knowledge representation needed by data triage operation
retrieval cannot be directly handled by existing knowledge retrieval systems.
First, one unique characteristic of how a SOC operates is that there are a
large variety of data sources (e.g., over 100 log files are collected from each
host) are involved in data triage. Such amount of heterogeneity is usually
not assumed in existing knowledge retrieval systems. For example, rule-based
logic representations are generally used to represent knowledge, but the highly
formalized structure makes this kind of representation limited to handle the
aforementioned heterogeneity. Second, the data triage knowledge representa-
tion in a SOC has domain-specific characteristics which cannot be handled
by generic knowledge retrieval systems.

– Data triage knowledge inherently covers a large amount of analytical reason-
ing conducted by security analysts, and the analytical reasoning in a SOC has
domain-specific characteristics. Given that a common challenge of develop-
ing a knowledge retrieval system is to make the system domain-specific, data
triage operation retrieval systems face the same challenge. This challenge will
affect both knowledge representation and the retrieval algorithms. It is nec-
essary to develop retrieval systems that can handle both the task operation
information (i.e. actions and observations) and the analyst’s mental process-
ing (i.e., hypothesis).

– A new challenge which is faced by a SOC but is not addressed in other
knowledge retrieval systems is that data triage operations are being retrieved
in adversarial settings. That is, the attacker may purposely obfuscate their
attack actions in such a way that the accuracy of triage operation retrieval
could be significantly reduced. How to make the retrieval system resilient to
such adversarial obfuscation is a new challenge. Since keyword-based retrieval
is usually not really resilient, it is important to incorporate semantics in triage
operation retrieval.

5 Current Research on Data Triage Knowledge Retrieval

In this section, we review two data triage knowledge retrieval systems that were
constructed under the retrieval framework proposed in Sect. 3.3: a rule-based
retrieval system and a context-based retrieval system. According to the chal-
lenges discussed in the previous section, we will mainly introduce the knowledge
representation and matching algorithms of the knowledge retrieval systems.

5.1 Rule-Based Data Triage Retrieval System

Chen et al. developed a knowledge-based intrusion detection approach, which
using Horn rules to illustrate experts’ experience [1]. As shown in Fig. 3, a large

234 T. Lin et al.

number of data filtered by intrusion detection systems. Coordination agents will
determine the events with the potential relationship. Inference agents will decide
the related events with specific rules. Most works focus on the layers rely on
the results of data triage analysis. This work represented analysts’ data triage
knowledge of as logic rules and invented a rule relaxation approach to gain
flexibility.

Fig. 3. Data analysis processes in SOCs.

Knowledge Representation. According to the retrieval framework (Sect. 2),
analysts’ data triage knowledge is managed in the triage Operation trace collec-
tion. Each knowledge piece is represented by logic rules. An event-alert system
S is formalized as a 4-tuple (E,A,C, T), where E = E1,. . . ,Em is a finite set
consisting of Event Types, A = A1,. . . ,A2 is a finite set consisting of Alert Types,
C = C1,. . . ,Co is the causality relationship hyper edges between Event Types.
T = T1,. . . ,T2 is links about Event Type to Alert Type. A partially observable
event-alert system S is a system where all alert events are observable but may
be hidden from the users. These hidden events can still be indirectly observed
through context. Because alerts are observable, while events are unobservable,
the runtime information is an alert sequence.

Given a partially observable event-alert system S = (E,A,C, T), there is an
alert sequence q = < a1,. . . ,an > being generated at run-time. Each instance of
the alert ai = TA, tA, TE , tE contains these information:

Retrieval of Relevant Historical Data Triage Operations in SOCs 235

– TA: the alert instance’s type;
– tA: the time stamp of this alert becoming available;
– TE : the type of the event;
– tE : the time stamp of the hidden event occurs.

An Example of Rule-Based Representation. In this section, to help under-
stand experiences in data triage operation retrieval, an example is provided to
illustrate the core idea of hierarchical experience representation. An attack graph
can be constructed to show its vulnerabilities and their dependencies. Figure 4
explains the important features from an attack graph. Firstly, the upper part
of the graph is a list of alert types. These alert types are observable to ana-
lysts. In addition, each alert contains information about its triggering event. In
this survey, we use dashed line to represent this relationship. The events are
often hidden from the analysts. Lastly, several events are linked by their causal
relationships. These causal relationships infer a typical temporal order of alerts.

Fig. 4. The critical features in an attack graph

Knowledge Capturing. Before retrieving analyst’s experience, it is necessary
to capture experience to construct the knowledge base. Chen et al. identified the
following important properties of cyber situation recognition:

– Events type;
– Events temporal relationships;
– Alert correlation information.

Based on them, Chen et al. use forward-changing rules stemming from Horn logic
to illustrate experience patterns [1]. There are two patterns for each experience:
event pattern and alert pattern. Hidden events are important clues for data triage
operation retrieval. Event pattern captures the hidden events, and the temporal
orders among the hidden events indicate the causal relationship. Alert pattern
captures the observable alerts. They are the clues discovered by analysts.

236 T. Lin et al.

Fig. 5. Experience relaxation levels

Knowledge Matching and Rule Relaxation. Given the rule-based repre-
sentation, a past incident can be described by a rule condition, which includes
every specific detail at that moment, such as the time slot and the geographical
location of the events. Therefore, an experience will not repeat itself with each
same single details. As shown in the retrieval framework, the current context
will be searched in the knowledge base. However, the rule matching requires
every single detail of the rules to be matched, which may limit the usefulness
of the retrieval results. To make the rule matching more flexible, Chen et al.
proposed rule relaxation based on the Horn clause representation [1]. In regard
to rule-based representation, researchers can relax the constraints by remov-
ing conditions from antecedents of that rule. The higher the degree to which
an experience can be relaxed, the higher the possibility exists that it can be
matched against a new situation. Figure 5 shows that the knowledge generated
by relaxation form a hierarchy: the most specific knowledge at the bottom while
the top is the most relaxed ones. Overall, upper-level experiences have better
precision. While lower level experiences provide broader coverage. The entire
experience hierarchy is formed through a consistent process, where each level of
relaxation is defined with a specification guideline (i.e., how a higher-level expe-
rience should be relaxed into lower-level ones). All experiences on the same level
will have a consistent specificity. According to Fig. 6, rule matching is performed
on each piece of knowledge in the network. Rule relaxation enables a larger set
of matching candidates. Meanwhile, it may influence the precision of the results.

Retrieval of Relevant Historical Data Triage Operations in SOCs 237

Fig. 6. Hierarchical experience networks

Case Study. The rule-based retrieval system has been implemented and eval-
uated in a case study. Figure 7 demonstrates the architecture of the system:
the experience base is the collection of knowledge; the cyber security adapter
takes in the network data (alerts); the recognizer performs the rule matching
and rule relaxation by consulting the knowledge base and the rule system, and
the matched results will be suggested to the user.

Fig. 7. The architecture of the rule-based knowledge retrieval system.

In the case study, Chen et al. evaluated the performance of the retrieval sys-
tem by comparing the recommendations against the ground truth of a simulated

238 T. Lin et al.

data set. It showed that the rule representation made knowledge capturing pos-
sible. Besides, the rule relaxation makes the retrieval system more flexible and
the analysts can adjust the coverage or precision of the matching results based
on their needs.

5.2 Context-Based Data Triage Knowledge Retrieval System

Zhong, et al. proposed a context-based data triage knowledge retrieval system
that represents analysts’ analytical reasoning processes in a tree structure [7].
Given the structure-based knowledge representation, the context of an analytical
reasoning process was further defined so that the similarity between two contexts
can be measured. The retrieval results were ranked according to the similarity
between them with the current context.

Knowledge Representation. According to the conceptual AOH model, an
analyst’s analytical reasoning process in data triage contains three types of com-
ponents: actions, observations, and hypotheses (Sect. 4): an action may trigger
an observation; gaining an observation may let the analyst generate a hypoth-
esis; the further investigation of the hypothesis requires further actions. Based
on the conceptual model, Zhong et al. proposed a tree structure, named Expe-
rience Tree (E-Tree), to represent actions, observations, hypotheses, and their
relationships [7].

The nodes of an E-Tree are the instances of actions, observations, and
hypotheses, and the edges are the relationships between them. The root of an
E-Tree is the initial action or observation in the analytical process. The con-
text of a hypothesis is defined by the path in the E-Tree from the root to this
hypothesis. Figure 8 demonstrates an example of E-Tree: “EU” refers to a pair
of action and its resulting observation. According to the context definition, the
context of “H4” consists of “Root EU1”,“H1”, and “EU2”.

Knowledge Matching. Given the definition of context, the similarity measure
was proposed to determine whether two pieces of knowledge (E-Tree) matches
or not. Both base matching and weighted matching are used to calculate simi-
larity. Base Matching is the minimum criteria. For instance, Two E-Trees should
come from the same data source. Weighted Matching is based on Base Matching.
We can calculate the degree of matching through Weighted matching. To effi-
ciently rank E-Trees based on similarity, Zhong et al. further proposed a Match
Propagation (MP) algorithm to efficiently rank E-Trees by similarity [7].

In summary, [7] presents an AOH model to retrieve data triage operation.
After representing analysts’ experience as an experience tree, there are several
approaches to retrieve data triage operations. For example, this work constructs
indexes for retrieving efficiently.

Retrieval of Relevant Historical Data Triage Operations in SOCs 239

Fig. 8. An E-Tree example.

6 Future Directions in Data Triage Operation Retrieval

The existing studies introduced in the above section has demonstrated promising
results for future studies. In this section, we propose several research directions
for developing data triage knowledge retrieval systems.

6.1 Graph-Based Data Triage Knowledge Retrieval System

According to the conceptual AOH model, an action is a data triage operation
performed by an analyst to filter or to correlate network events, which usually
specify a condition on the network events to narrows down the dataset. It is
through conducting a series of data triage operations enables an analyst to find
the critical “indicators” of potential attack chains. Therefore, the analytical rea-
soning strategies used by an analyst are embedded in the relationships (both
logical and temporal relationships) among the data triage operations. With this
insight, a graph-based data triage knowledge retrieval system can be developed
that represents and retrieves not only the analytical reasoning process but also
the underlying logic and reasoning strategies used by analysts.

Knowledge Representation. Recall that there are three types of data triage
operations in SOC:

– FILTER (D, C): to filter a set of events based on a constraint.
– SEARCH (D, C): to search a keyword in an events group.
– SELECT (D, C): to select a subset of events with a specific feature.

240 T. Lin et al.

All these operations are performed to obtain a subset satisfying a specific con-
straint. Therefore, a constraint is a critical component in a data triage opera-
tion. A constraint specifies the characteristics of network events, indicating the
analyst’s focus of attention. The constraint can be multidimensional if multi-
ple characteristics are specified. Therefore, a constraint can be represented by a
predicate in disjunctive normal form.

Fig. 9. An example of the logical relationships between data triage operations.

The relationships between data triage operations include both temporal and
logical relationships [11]. An analyst performs data triage operations in a tem-
poral sequence: one operation precedes the next one. The logical relationships
between data triage operations are defined by the constraints specified in the
operations. Let C1 and C2 be two constraints of operation O1 and O2 respec-
tively, we have

– if C1 ↔ C2, O1 “is-equal-to” O2;
– if C1 → C2, O1 “is-subsumed-by” O2;
– if C2 → ¬C2 and C2 → ¬C1, O1 “is-complementary-with” O2;

The examples of the “is-subsumed-by” and“is-complementary-with” relation-
ships are demonstrated in Fig. 9. The nodes are the constraints that specify the
characteristics of network events (i.e., C1, C2, C3, and C4). C2 is subsumed by
C1, and C3 is subsumed by C2. C1 and C4 don’t have overlap so that they are
complementary with each other.

To discover an analyst’s analytical reasoning process, both temporal and log-
ical relationships need to be considered. More specifically, we are mainly inter-
ested in learning how a data triage operation is related to the previous opera-
tions. Therefore, given all the operations performed by an analyst, we identify
the logical relationships between each operation and all its preceding operations
and represent them in a graph structure.

Retrieval of Relevant Historical Data Triage Operations in SOCs 241

Knowledge Matching and Challenges. The context of a data triage opera-
tion can be defined as all its preceding operations and their temporal and logical
relationships. Given the graph structure, the context of a data triage operation is
a graph. Therefore, the matching problem becomes a graph matching problem:
we need to search in the knowledge base (i.e., a collection of graphs) to find the
graphs/subgraphs that matches the current context of the user of the retrieval
system.

The time efficiency is the main challenge for graph matching. Graph isomor-
phism analysis is usually time-consuming. In order to improve the time perfor-
mance, it worths considering the similarity calculation based on the “centroid”
of graphs: first, to develop a method for calculating the“centroid” of a graph; sec-
ond, to develop a similarity measure to compare the “centroids” of two graphs;
and then match the graphs based on the centroid similarity.

6.2 Machine Learning Based Retrieval of Triage Operations

Due to the following observations, machine learning could play an essential role
in developing better data triage operation retrieval systems. First, the methods
we have discussed in the previous sections make use of pre-determined similarity
measurements when checking which historical data triage operations are most
relevant to the current cyber situation. However, there is no guarantee that the
pre-determined similarity metrics are the most suitable. Machine learning could
be leveraged to help learn the most suitable similarity metrics. Second, data
triage operation retrieval systems must be able to handle a variety of uncer-
tainties such as the uncertainty introduced by false positives, false negatives,
and incomplete information. Machine learning could be leveraged to increase
retrieval systems’ capability in dealing with the uncertainties.

Machine learning, especially neural networks, is a potential approach, which
can be used for data triage operation retrieval in a SOC. There are a variety
of artificial neural networks, such as convolutional neural networks, long short-
term memory [6], and deep belief networks. Instead of providing a comparative
viewpoint, below we only discuss the potential application of recurrent neural
networks.

Data Triage Operation Retrieval Based on Recurrent Neural Net-
works. For data triage operation retrieval, the most promising neural networks
approach seems to be recurrent neural networks (RNN), mainly because this type
of neural network is good at dealing with sequence data. One of the most notable
features in data triage operations is that security-related events are sequential.
The fundamental philosophy behind RNN models is that rather than rewriting
all information, each element in an RNN model updates the current state by
adding new information. Accordingly, when an RNN is trained to classify the
newly arrived data triage operations, the RNN can be incrementally maintained
to incorporate substantial new data triaging knowledge.

But, before training and deploying any RNNs in a SOCs, the SOC should
cautiously consider the potential adversaries. A new challenge which is faced by

242 T. Lin et al.

a SOC but is not addressed in other knowledge retrieval systems is that data
triage operations are being retrieved in adversarial settings. That is, the attacker
may purposely obfuscate their attack actions in such a way that the accuracy
of triage operation retrieval could be significantly reduced. Recently, substan-
tial research work has shown that most existing machine learning classifiers are
highly vulnerable to adversarial examples. The RNNs deployed in a SOC should
be resilient to adversarial examples.

Challenges in Using Machine Learning for Data Triage Operation
Retrieval. Machine learning has been playing an increasingly important role
in performing various tasks in SOCs. For example, network intrusion detec-
tion systems and malware classification systems are leveraging more and more
automation achieved through machine learning.

However, although machine learning is good at (dealing with) average cases,
it is not easy to implement any machine learning methods for data triage oper-
ation retrieval systems, since data triage operation retrieval systems are related
to worst cases. It is possible to bypass a machine learning based content filter
through malicious manipulations in adversarial settings. The attacker could com-
bine malicious samples with benign events to evade several retrieval classifiers.
For example, some very small manipulations in events logs can lead to distinct
opposite results in data triage operation retrieval systems. It is not an easy
task to guarantee accuracy and sensitivity simultaneously. In data triage oper-
ation retrieval, because of the inherent temporal relationships between events,
the adversary has the possibility to infer the similarity metrics to bypass the
retrieval system.

6.3 Ontology-Based Data Triage Operation Retrieval

Ontology-based retrieval is widely used in semantic web (data) search [5].
Researchers may apply this approach to solving several relevant triage opera-
tion retrieval problems (e.g., semantics-aware retrieval of triage operations). In
order to apply this approach, researchers need to map data triage operations
into an ontological knowledge base. To achieve this goal, the main hurdle is the
ontological annotations. After the ontological annotations are obtained, the next
step of data triage operation retrieval seems to “embed” semantic features into
the retrieval process.

7 Concluding Remarks

A major challenge of data triage in SOCs is the inefficient performance of junior
security analysts caused by the lack of experience. It can be effectively addressed
through retrieval of the relevant past data triage operations performed by the
senior analysts. We conducted a review of the existing data triage knowledge
retrieval methods and discussed the new directions in solving the retrieval prob-
lem in this field.

Retrieval of Relevant Historical Data Triage Operations in SOCs 243

Acknowledgment. This work was supported by ARO W911NF-13-1-0421 (MURI)
and ARO W911NF-15-1-0576.

References

1. Chen, P.C., Liu, P., Yen, J., Mullen, T.: Experience-based cyber situation recogni-
tion using relaxable logic patterns. In: 2012 IEEE International Multi-Disciplinary
Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA), pp. 243–250. IEEE (2012)

2. D’Amico, A., Whitley, K.: The real work of computer network defense analysts.
In: Goodall, J.R., Conti, G., Ma, K.L. (eds.) VizSEC 2007. Mathematics and Visu-
alization, pp. 19–37. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78243-8 2

3. Erbacher, R.F., Frincke, D.A., Wong, P.C., Moody, S., Fink, G.: A multi-phase
network situational awareness cognitive task analysis. Inf. Vis. 9(3), 204–219 (2010)

4. Ganame, A.K., Bourgeois, J., Bidou, R., Spies, F.: A global security architecture
for intrusion detection on computer networks. Comput. Secur. 27(1), 30–47 (2008)

5. Lukasiewicz, T.: Ontology-based semantic search on the web. Ann. Math. Artif.
Intell. 65(2–3), 83–121 (2011)

6. Palangi, H., et al.: Deep sentence embedding using long short-term memory net-
works: analysis and application to information retrieval. IEEE/ACM Trans. Audio
Speech Lang. Process. (TASLP) 24(4), 694–707 (2016)

7. Zhong, C., et al.: RankAOH: context-driven similarity-based retrieval of experi-
ences in cyber analysis. In: 2014 IEEE International Inter-Disciplinary Conference
on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA),
pp. 230–236. IEEE (2014)

8. Zhong, C., Yen, J., Liu, P., Erbacher, R., Etoty, R., Garneau, C.: ARSCA: a com-
puter tool for tracing the cognitive processes of cyber-attack analysis. In: 2015
IEEE International Inter-Disciplinary Conference on Cognitive Methods in Situa-
tion Awareness and Decision Support (CogSIMA), pp. 165–171. IEEE (2015)

9. Zhong, C., Yen, J., Liu, P., Erbacher, R., Etoty, R., Garneau, C.: An integrated
computer-aided cognitive task analysis method for tracing cyber-attack analysis
processes. In: Proceedings of the 2015 Symposium and Bootcamp on the Science
of Security, p. 9. ACM (2015)

10. Zhong, C., Yen, J., Liu, P., Erbacher, R.F., Garneau, C., Chen, B.: Studying ana-
lysts’ data triage operations in cyber defense situational analysis. In: Liu, P., Jajo-
dia, S., Wang, C. (eds.) Theory and Models for Cyber Situation Awareness. LNCS,
vol. 10030, pp. 128–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61152-5 6

11. Zhong, C., Yen, J., Liu, P., Erbacher, R.F.: Automate cybersecurity data triage
by leveraging human analysts’ cognitive process. In: 2016 IEEE 2nd International
Conference on Intelligent Data and Security (IDS), 2nd edn., pp. 357–363. IEEE
(2016)

https://doi.org/10.1007/978-3-540-78243-8_2
https://doi.org/10.1007/978-3-540-78243-8_2
https://doi.org/10.1007/978-3-319-61152-5_6
https://doi.org/10.1007/978-3-319-61152-5_6

Supporting Users in Cloud Plan Selection

Sabrina De Capitani di Vimercati, Sara Foresti, Giovanni Livraga(B),
Vincenzo Piuri, and Pierangela Samarati

Università degli Studi di Milano, 20133 Milan, Italy
{sabrina.decapitani,sara.foresti,giovanni.livraga,

vincenzo.piuri,pierangela.samarati}@unimi.it

Abstract. Cloud computing is a key technology for outsourcing data
and applications to external providers. The current cloud market offers
a multitude of solutions (plans) differing from one another in terms of
their characteristics. In this context, the selection of the right plan for
outsourcing is of paramount importance for users wishing to move their
data/applications to the cloud. The scientific community has then devel-
oped different models and tools for capturing users’ requirements and
evaluating candidate plans to determine the extent to which each of
them satisfies such requirements. In this chapter, we illustrate some of
the existing solutions proposed for cloud plan selection and for support-
ing users in the specification of their (crisp and/or fuzzy) needs.

Keywords: Cloud computing · Cloud plan selection
User requirements · Fuzzy logic

1 Introduction

The cloud providers offer today a large, rich, and diversified set of services on
which users can rely to store their data and deploy their applications. Usually,
such services are proposed in terms of pre-defined configurations (plans) with dif-
ferent features that make, for example, a solution more suitable for data storage,
another for the deployment of performant applications, and so on. This can be
easily observed by a simple look at the current panorama, where cloud providers
(e.g., Amazon) offer a plethora of different plans (e.g., S3, EC2, just to mention
a few). Although the richness and diversity of the current cloud market can be
beneficial to users since, the more the possible options, the more each user will be
able to find a plan well-aligned to her needs, the selection of a plan among those
available in the market can be a difficult task that requires to address several
problems. First, there is the need to determine the parameters that can be used
to evaluate and compare candidate plans and to select the right one. Typically,
every provider publishes Service Level Agreements (SLAs), which are binding
contracts that specify minimum guarantees on Quality of Service (QoS) param-
eters ensured during service provision. For instance, SLAs include the minimum
uptime percentage that is guaranteed, together with indications on the possible
c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 244–260, 2018.
https://doi.org/10.1007/978-3-030-04834-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_13

Supporting Users in Cloud Plan Selection 245

compensations that the user can get if such minimum level is not met. How-
ever, since there is not a general template for SLA definition, different SLAs can
include different information, or even the same information but with different
names (e.g., ‘monthly uptime’ in Amazon’s Compute SLA and ‘monthly avail-
ability’ in Rackspace’s Cloud SLA). Hence, while it can seem natural to look
at parameters declared in SLAs to compare cloud plans for their assessment
and selection, the task can be very complex. A second problem consists in iden-
tifying a way to actually perform the assessment of cloud plans. In this case,
the optimization criteria to be met can be multiple and possibly contrasting:
as an example, the cheapest plan might not be the most performant, and yet a
user might want to select a plan which maximizes performance while minimizing
cost. Orthogonally to these problems, another issue relates to providing support
to users in the specification of their requirements to be taken into account in
the assessment and selection of cloud plans. Different users might have differ-
ent (and possibly contrasting) needs to be considered, due to, for example, laws,
regulations, or simply due to the specific applicative scenario. Having means and
techniques for allowing users to specify arbitrary requirements and for enforcing
them is therefore fundamental for responding to users’ desiderata.

The scientific community has devoted many efforts to study and design
solutions for the general problem of secure data management (e.g., [28,29]),
also focusing on the cloud plan selection problem thus generating solutions to:
(i) define standardized sets of attributes and/or metrics over which evaluate
a candidate plan (e.g., [4,18]); (ii) evaluate multiple/conflicting requirements
(e.g., [8,9])s; and (iii) support users in a friendly and easy specification of their
needs (e.g. [6,12,17]). In this chapter, we present some of the existing models
and solutions proposed for addressing all these aspects.

The remainder of this chapter is organized as follows. Section 2 illustrates
existing techniques for identifying attributes to be used for selecting and assess-
ing cloud plans. Section 3 focuses on the problem of supporting users towards
a flexible and user-friendly specification of requirements and preferences that
should be taken into account in cloud plan selection. Section 4 overviews the
possible use of fuzzy logic in cloud plan selection for specifying user require-
ments. Finally, Sect. 5 concludes the chapter.

2 Attributes Identification

The problem of cloud plan selection requires to analyze the characteristics of
the plans available in the market to determine the ones that can be considered
acceptable (or more appealing) than others for outsourcing. For instance, the
selection of a plan for outsourcing mission-critical but non-sensitive data might
consider optimal a plan that ensures maximum availability. In this section, we
first illustrate some of the existing solutions that rely on Quality of Service (QoS)
evaluation (Sect. 2.1), and then discuss proposals that focus on specific aspects
of the problem such as QoS values predictions, dependencies management, and
security parameters (Sects. 2.2, 2.3 and 2.4).

246 S. De Capitani di Vimercati et al.

Fig. 1. Brokerage-based cloud plan selection

2.1 Quality of Service (QoS) Evaluation

The most simple approach for assessing, and hence selecting, cloud plans requires
to evaluate its low-level characteristics (e.g., CPU and network throughput).
Typically, the most relevant characteristics considered in the analysis of cloud
plans include cost, which should be low, and performance, which should be high.
CloudCmp [18] compares the performance and cost of different cloud providers.
CloudCmp first identifies common services offered by different cloud providers
(i.e., elastic computing, persistent storage, and networking services) and then
identifies the performance and cost metrics according to which such common
services are compared. The values for these metrics are computed with a combi-
nation of benchmarking tasks (for elastic computing and persistent storage) and
service invocations through standard tools such as ping (for networking services).

Besides the natural need for a performant plan (possibly at affordable cost),
users might have more complex requirements, identifying, for example, minimum
levels for different QoS attributes ensured by a provider during service provision.
The solutions proposed in this context are typically based on the presence of a
middleware in the system architecture playing the role of a broker [14], which can
be trusted or verified for behavior correctness [19]. Figure 1 illustrates a typical
broker-based cloud plan selection process: the selection broker is in charge of
collecting both user’s desiderata and plans’ characteristics (possibly expressed
in a machine-readable format [27]), reasoning over them, and returning to the
user the result of its assessment.

There have been recent efforts, by both the academia and international stan-
dardization bodies, towards the definition of a standardized set of QoS attributes

Supporting Users in Cloud Plan Selection 247

Attribute Example of sub-attributes

Accountability Auditability, Compliance to standards, Environmental sustainability
Agility Elasticity, Portability, Flexibility
Assurance Reliability, Resiliency
Cost Acquisition cost, On-going cost
Performance Throughput, Efficiency
Security and Privacy Measures for confidentiality, integrity, availability
Usability Ease of usage, Ease of installation

Fig. 2. SMI attributes and an example of their sub-attributes

that could be used by users to formulate requirements. For instance, the Cloud
Service Measurement Index Consortium (CSMIC) has identified a set of QoS
attributes and sub-attributes, organized in a hierarchical way, composing the
Service Measurement Index (SMI) [14]. Figure 2 lists the seven higher-level SMI
attributes and, for each of them, possible sub-attributes that contribute to it.
For instance, high-level attribute cost depends on two sub-attributes acquisition
cost and on-going cost, meaning that the cost associated with a certain cloud
plan is influenced by both the cost to acquire cloud resources, and the cost to
maintain and use them (e.g., communication, storage, and computation costs
charged by the provider). The SMI attributes form the basis over which the pro-
posal in [14] compares and ranks cloud plans. User requirements set bounds to
the values that the attributes of interest to the user can assume, and the values
assumed by plans (harvested by a broker) are evaluated against such require-
ments. Such an evaluation is however complex as it can also require to solve
conflicts: for instance, when assessing two plans P1 and P2, it might happen that
P1 is better than P2 for an attribute (say, cost) and worse than P2 for another
attribute (say, performance). To solve these issues, in [14] the authors propose
to adopt a Multi-Criteria Decision Method (MCDM) that, among alternative
solutions, identifies the one that optimizes a set of objective functions [2,7,26]
(e.g., minimize cost while maximizing performance).

The proposal in [16] adopts a hybrid MCDM-based approach to select cloud
plans, which combines two well-known techniques (AHP-Analytic Hierarchy Pro-
cess, and TOPSIS-Technique for Order of Preference by Similarity to Ideal Solu-
tion) to reason over QoS attributes and values. MCDM, possibly coupled with
machine learning, has also been proposed to select the instance type (i.e., the
configuration of computing, memory, and storage capabilities) enjoying the best
trade-off between economic costs and performance while satisfying user require-
ments (e.g., [23,30]). For each of the resources to be employed (e.g., memory
and CPU), these proposals select the provider (or set thereof) to be used for its
provisioning as well as the amount of the resource to be obtained from each of
them, so to satisfy user requirements.

QoS evaluation has also been adopted in combination with other criteria for
cloud plan selection (e.g., subjective assessments and personal experience [10,
15,24,33]) as well as with other reasoning techniques (e.g., fuzzy logic [5,11,22],
as we will illustrate in Sect. 4), and consensus-based voting techniques (e.g., [2]).

248 S. De Capitani di Vimercati et al.

2.2 QoS Prediction

The values assumed by a cloud plan for QoS attributes are usually harvested
by brokers from the SLAs published by cloud providers. However, it should not
be forgotten that the interaction between a user and a cloud platform oper-
ates through an Internet connection. For this reason, the values declared by the
provider (provider-side QoS) can differ from those observed by a user (user-side
QoS). Also, different users can observe different user-side QoS values for the
same plan. For instance, the response time experienced by two different users
might be different if they are located in different geographical areas or if they
have access to networks with different latencies. Therefore, assessing cloud plans
only based on provider-side QoS might fall short in real-world scenarios, as the
criteria over which the selection operates might not consider what is actually
locally observed by the user. To overcome this problem, some techniques intro-
duced the idea of selecting cloud plans based on the user-side values of QoS
attributes (e.g., [34]). A precise evaluation of user-side QoS values can however
be a difficult task, as it can require actual invocations and/or usage of cloud ser-
vices, causing both communication overhead and economic charges. Moreover,
due to the possible differences in the values observed by different users, the same
plan might be assessed differently by different users. A possible solution to this
issue can consider past usage experiences of ‘similar users’ (e.g., users expecting
to observe similar values). Measured or estimated QoS parameters are finally
used to rank all the (functionally equivalent) providers among which the user
can choose (e.g., [34]).

2.3 Dependencies Management

Recent lines of work have investigated the problem of supporting users in spec-
ifying arbitrary requirements that can be considered in cloud plan selection and
in SLA definition (e.g., see Sect. 3). Recent approaches have specifically pro-
posed the definition of a brokering service in charge of interpreting requirements
on arbitrary attributes, and of querying candidate providers on their satisfac-
tion [9,32]. However, when using arbitrary attributes, it may happen that certain
service guarantees can be satisfied by a provider only if other conditions (maybe
even insisting at the user side) are also satisfied. This is because there might be
some dependencies among conditions: for example, the response time of a system
may depend on the incoming request rate (i.e., the number of incoming requests
per second). In a scenario where the user is free to set arbitrary conditions on
the response time of a service, the process of evaluating requirements should
carefully consider whether a candidate provider is able to respect such a require-
ment only if an upper bound is enforced on the number of requests per time
unit. Note that, clearly, different providers/plans might entail different depen-
dencies (e.g., two plans with different hardware/software configurations might
accept different request rates to guarantee the same response time). This clearly
further complicates the cloud plan selection problem. Recent approaches have
designed solutions for negotiating an SLA between a user and a cloud provider

Supporting Users in Cloud Plan Selection 249

based on generic user requirements and on the automatic evaluation of depen-
dencies existing for the provider (e.g., [9]). The solution in [9] takes as input a set
of generic user requirements and a set of dependencies for a provider, and deter-
mines (if any) a valid SLA (vSLA) that satisfies the conditions expressed by the
user as well as further conditions possibly triggered by dependencies. With refer-
ence to the example above, if the user requirements include a condition over the
response time, the generated vSLA will also include a condition on the maximum
supported request rate. Given a set of requirements and a set of dependencies,
different valid SLAs might exist. The approach in [8] extends the work in [9]
by allowing users to specify preferences over conditions that can be considered
for selecting, among the valid SLAs, the one that the user prefers. Preferences
are expressed over the values that can be assumed by the attributes involved in
requirements and dependencies (e.g., response time and request rate). Building
on the approach proposed in [9], these preferences are used to automatically
evaluate vSLAs, ranking higher those that better satisfy the preferences of the
user.

2.4 Security Parameters

Security is undoubtedly a key requirement for many users when moving to the
cloud since, by delegating the management of their resources to an external
provider, they lose control over them. The selection of the cloud provider offering
the best plan with respect to the required needs should then be based also
considering the security guarantees ensured during service provision.

In the context of cloud service provision, security is typically guaranteed
by providers through the adoption of certifications that are based on estab-
lished standards, possibly specifically designed for the cloud environment [20].
Among cloud-specific solutions, the Cloud Security Alliance Cloud Controls
Matrix (CSA CCM) [4] is a framework designed to provide security concepts
and principles to cloud providers and to allow users to assess the security risks
associated with a provider. The CSA CCM organizes concepts and principles
in domains including, for example, application & interface security, identity &
access management, and encryption & key management. For each domain, the
CCM introduces a set of security principles: for example, a principle within
domain ‘encryption & key management’ is ‘keys must have identifiable owners
(binding keys to identities) and there shall be key management policies’. With
each principle, the CCM identifies the security standards and regulations whose
satisfaction requires the implementation of the principle. By verifying the satis-
faction of the principles declared by a provider, a user can evaluate the security
guarantees of the plans offered by the provider. The Cloud Controls Matrix is
well aligned to the Cloud Security Alliance guidance as well as to the Consensus
Assessments Initiative Questionnaire (CAIQ), which is a set of Boolean yes/no
security-related questions (e.g., ‘are all requirements and trust levels for cus-
tomers’ access defined and documented?’) that can further help a user to assess
security guarantees.

250 S. De Capitani di Vimercati et al.

We close this section by highlighting some recent attempts towards incor-
porating security guarantees into SLAs, also known as secSLAs (e.g., [3,20]).
The key idea is that secSLAs should include information on the security con-
trols implemented by the provider, their associated metrics (i.e., criteria and
techniques for their evaluation), and the values guaranteed by the provider dur-
ing service delivery. In this way, traditional approaches (e.g., approaches based
on QoS) for assessing and selecting cloud plans could automatically take into
account the security requirements of users as well as the security guarantees
offered by cloud providers [7].

3 Requirements Specification

The techniques illustrated in the previous section mainly deal with the prob-
lems of identifying attributes relevant for the evaluation of candidate plans or
of developing techniques for the evaluation process. Orthogonally to these prob-
lems, there is also the need of allowing users to easily express their requirements
to discriminate those plans that are suitable for outsourcing. The framework
in [6] addresses this need by proposing a high-level and user-friendly language
for expressing requirements and preferences. Requirements are hard constraints
that a plan must satisfy to be acceptable for outsourcing. Preferences are soft
constraints evaluated against acceptable plans (i.e., plans satisfying the require-
ments) and that can help in producing a rank among such acceptable plans: the
higher the position of a plan in the ranking, the closer the plan to the needs of
the user. The evaluation of requirements and preferences is executed by a bro-
ker, which verifies them against the characteristics of the plans, called attributes
in [6], and returns to the user the computed plan ranking (Fig. 3). Attributes
might be metadata associated with the provider of a plan or, in general, any mea-
surable property. We now illustrate more in details the specification language for
requirements and preferences and the strategies for enforcing them. We will refer
our examples to a set of attributes modeling, for each plan, the provider (prov),
the geographical location of its servers (loc), the adopted encryption scheme
(encr), the guaranteed availability (avail), the authority running penetration
testing (test), the possessed security certification (cert), and the security audit-
ing frequency (aud).

Requirements Specification and Enforcement. The building block of
the requirements specification language is the attribute term. An attribute
term t states that an attribute must assume a certain set of values (denoted
attribute(v1, . . . , vn)) or that, on the contrary, cannot assume a certain set of
values (denoted ¬attribute(v1, . . . , vn)) in its domain. For instance, attribute
term ‘t = prov(Ghost,Mist,Cloudy)’ states that a plan must be offered by
providers Ghost, Mist, or Cloudy. Starting from this building block, the pro-
posed requirement specification language allows users to specify in a flexible way
a variety of requirements. The language supports the definition of the following
requirements.

Supporting Users in Cloud Plan Selection 251

Fig. 3. Cloud plan selection and ranking with requirements and preferences [6]

– Base requirement. It corresponds to an attribute term t, requiring that an
attribute assumes/does not assume a certain set of values. For instance, a
basic requirement of the form ‘prov(Ghost,Mist,Cloudy)’ states that a plan
is considered acceptable only if it is offered by providers Ghost, Mist, or
Cloudy.

– any requirement. It models alternatives among base requirements. For
instance, a requirement of the form ‘any({loc(EU), cert(cert γ)})’ states
that a plan is considered acceptable only if its servers are geographically
located in the EU or if it has certification ‘cert γ’.

– all requirement. It represents sets of base requirements that must be jointly
satisfied. For instance, ‘all({loc(EU,US),¬encr(DES)})’ states that a plan
is considered acceptable only if servers are located in the EU or the US, and
if the adopted encryption is not DES.

– if–then requirement. It specifies that certain base requirements (those
appearing in the then part) must be satisfied every time other base require-
ments (those appearing in the if part) are also satisfied. For instance,
‘if all({loc(US), encr(3DES)) then any(audit(3M, 6M), cert(cert α))’
states that if a plan has servers in the US and encrypts with 3DES, then it
must be audited for security every three or six months, or have certification
‘cert α’.

– forbidden requirement. It identifies forbidden configurations, that is, com-
binations of base requirements that cannot be all satisfied at the same time
by an acceptable plan. For instance, ‘forbidden({¬loc(EU), test(authC)})’

252 S. De Capitani di Vimercati et al.

states that a plan with servers not located in the EU and tested by authC is
not acceptable.

– at least requirement. It demands that at least n among a set of
base requirements be satisfied. For instance, ‘at least(2, {loc(EU),
encr(AES), prov(Mist, Ghost)})’ states that a plan is acceptable only if at
least two among the conditions ‘having servers within the EU’, ‘adopting AES
encryption’, and ‘having Mist or Ghost as provider’ are satisfied.

– at most requirement. It demands that at most n among a set of condi-
tions be satisfied. For instance, ‘at most(2, {prov(Ghost), avail(M, MH),
encr(3DES)})’ states that a plan is acceptable only if at most two among
the conditions ‘being offered by provider Ghost’, ‘having a medium (M) or
medium-high (MH) availability’, and ‘adopting 3DES encryption’ are satis-
fied.

A plan is considered acceptable by a user iff it satisfies all her requirements.
Given a set of requirements and a set of cloud plans, the approach in [6] checks
whether the plans are acceptable using a Boolean interpretation of the require-
ments. For example, consider the plans in Fig. 4(a) (abstractly represented as
vectors with one element for each attribute reporting the value assumed by the
attribute in the plan or symbol ‘—’ if not specified) and the set r1, . . . , r10 of
requirements in Fig. 4(b). It is easy to see that only plans P1, P2, and P3 are
acceptable, as P4 does not satisfy requirements r3, r4, r8, and r10.

Fig. 4. Abstract representation of cloud plans (a) and set of user requirements (b)

Supporting Users in Cloud Plan Selection 253

Preferences Specification and Enforcement. Like requirements, also pref-
erences (used by the broker to rank acceptable plans) can be specified by the
user, and the approach in [6] aims to support users with an intuitive specifica-
tion model. In particular, we consider the following two levels of specifications
for preferences:

– attribute values, to specify that certain values are more preferred than others
(e.g., for attribute encr, a user might state that she prefers AES over 3DES);
and

– attributes, to specify the importance that each attribute has for the user
(e.g., a user interested in outsourcing mission-critical but non-sensitive data
might state that attributes related to performance are more important than
attributes related to security).

Preferences on attribute values are expressed as a total order relationship
among sets of values that attributes can assume (i.e., the attribute domain is
partitioned and preferences represent a total order relationship among parti-
tions of values). For instance, if attribute prov can assume values Cloudy, Mist,
and Ghost, a user might specify an ordering stating that Cloudy is preferred
over Mist, which is in turn preferred over Ghost. Preferences on attributes are
instead defined through a weight function that assigns a weight to each attribute.
For instance, with reference to the example above, attributes related to perfor-
mance can be assigned higher weights than attributes related to security. Figure 5
illustrates an example of preferences for the plans in Fig. 4(a). Preferences on
attribute values are graphically represented as a hierarchy among attribute val-
ues, with preferred elements appearing higher in the hierarchy. For each value,
the figure also represents the relative position of the value in the ordering (with
the most preferred value having preference 1, and the least preferred value hav-
ing preference 1/k, with k the number of partitions). Preferences on attributes
are instead reported in round brackets on the right side of each attribute: in this
example, all attributes have the same weight (1) except attribute avail (which
has weight 10).

Fig. 5. User preferences for the plans in Fig. 4(a)

254 S. De Capitani di Vimercati et al.

To rank plans based on preferences, the approach in [6] defines three possible
strategies, including the intuitive Pareto-based ranking, and two distance-based
rankings. According to the Pareto-based ranking, a plan Pi is preferred over a
plan Pj if, for all attributes, its values are equally or more preferred than those
in Pj and for at least one attribute, Pi has a more preferred value than Pj . For
instance, Fig. 6(a) illustrates the Pareto-based ranking computed over the plans
in Fig. 4(a), considering the preferences in Fig. 5. As it is visible from this figure,
P1 dominates P2 since they have the same value for prov, encr, avail, and aud,
but P1 has more preferred values for loc, test, and cert. On the contrary, P2

and P3 are not comparable. Distance-based rankings consider plans as points
in an m-dimensional space (with m the number of attributes), located through
coordinates that are the relative positions assumed by their attribute values
in the rankings induced by the preferences. For instance, with reference to the
plans in Fig. 4, plan P1 has coordinates [2/3, 1, 1, 1, 1, 1, 1/4] since, for example,
it assumes value Mist for attribute prov which has a relative position of 2/3 in
the preferences in Fig. 5. The ranking of cloud plans is then based on how distant
each plan is from an ideal plan (i.e., a possibly non-existing plan that assumes, for
each attribute, one of the top preferred values and has therefore coordinate equal
to 1 for each attribute), with closer plans ranked higher. Distance can possibly
be measured taking into account attribute weights. In the latter case, the relative
position of each attribute value is multiplied by the weight of the corresponding
attribute (i.e., attribute preferences are interpreted as scaling factors on the m-
dimensional space). Figure 6(b) illustrates the distance-based rankings over the
plans in Fig. 4(a), considering the preferences in Fig. 5. The ranking on the left
does not consider preferences among attributes, while the one on the right takes
attributes preferences into consideration. For each plan, the figure reports the
scores assumed by attribute values, and used as coordinates in the m-dimensional

Fig. 6. Rankings of plans P1, P2, P3 in Fig. 4(a) that satisfy the requirements in
Fig. 4(b) and considering the preferences in Fig. 5

Supporting Users in Cloud Plan Selection 255

space, and the distance (in boldface on the right-hand-side of each node) from
the ideal plan.

4 Fuzzy Logic for Flexible Requirements Specification

The approaches illustrated in the previous sections mainly operate on crisp values
assumed by generic attributes of cloud plans. However, reasoning directly over
crisp, and possibly low-level, characteristics of cloud plans implicitly assumes
that users are familiar with technical details of the cloud environment to dif-
ferentiate, for example, the attractiveness of a plan offering an availability of
99.99% from that of a plan offering 99.98%. This assumption might be limiting
in some real-world scenarios, for two main reasons. First, users might not possess
technical skills allowing them to fully understand the low-level characteristics of
a cloud plan, and hence to formulate complete and/or sound requirements pre-
cisely capturing their needs. Second, operating on crisp values inevitably intro-
duces sharp boundaries between ‘good’ and ‘bad’ values, while human reasoning
is typically more flexible and good and bad values might slightly overlap.

To overcome these limitations, a possible solution relies on the adoption
of fuzzy logic [7,12]. In fact, by permitting to reason with linguistic values
(such as ‘high’, ‘low’, ‘good’, and ‘bad’) and imprecise information (and pro-
viding the mathematical foundation for approximate reasoning, mapping lin-
guistic/imprecise information to the actual characteristics of cloud plans), fuzzy
logic can help users in formulating requirements and preferences in a way that is
more similar to human reasoning, which entails intrinsic imprecision and vague-
ness. Fuzzy logic can then allow users to define their application needs in a
flexible way, capturing natural linguistic expressions, when users are not spe-
cialists in information systems and technologies and when requirements are not
easily definable.

In particular, the proposal in [12] uses fuzzy logic to support the definition
of both user requirements in terms of fuzzy parameters and fuzzy concepts, as
well as the importance of (crisp) requirements.

Fuzzy Parameters. Fuzzy parameters permit to define requirements when
users are unable to determine a specific value of a characteristic of the cloud
environment, but they are fully conscious of the required size of the considered
characteristic and are linguistically able to describe it (e.g., with adjectives of
periphrases). To illustrate, suppose that a provider allows users to choose among
several key lengths for encrypting data at rest or in transit, and consider a non
technically skilled user who wishes to outsource her medical data. Being her data
sensitive, the user wants confidentiality to be guaranteed and, for this reason, she
would like to use a long encryption key. If the user does not have a precise idea of
the needed key length, she may prefer to simply state that ‘key length should
be long’, accepting a conventional definition of ‘long’ key as a fuzzy range of
values. A common vocabulary about the meaning of linguistic expressions must
be shared between the user and the provider to understand and satisfy user

256 S. De Capitani di Vimercati et al.

Fig. 7. An example of fuzzy specification of key length parameter (a) and of data
security concept (b)

requirements. Figure 7(a) illustrates an example of fuzzy vocabulary for the key
length property. The separation between ranges of values for key length is not
crisp, but ranges may overlap. Note that, besides helping users in formulating
requirements, such a fuzzy specification of requirements allows cloud providers to
manage with higher elasticity their resources. Indeed, fuzzy specification enables
users to express flexible requirements that cloud providers can satisfy without
leaving resources unused when applications do not explicitly demand for them.
Consider, as an example, two applications expressing requirements on storage
space and a cloud provider with 1.9 TB of free space. The provider could not
accommodate two applications requiring 1 TB of storage space, while it could
manage them if requesting large storage space, where large is between 0.7 TB
and 1 TB and the first application actually uses 0.8 TB and the second one
uses 0.95 TB. The definition of fuzzy parameters enables for better resource
allocation, with higher quality of service at lower costs for both the provider and
the users.

Fuzzy Concepts. While supporting users in requirements formulation, fuzzy
parameters can still require some technological competence to users (with ref-
erence to the example above, a user formulating a fuzzy requirement over the
key length parameter should still know that the length of an encryption key
typically impacts the offered protection). Fuzzy logic can also provide a further
level of support, by operating on an abstract level more easily accessible also to
non-skilled users. To this end, fuzzy logic can operate on fuzzy concepts, that
is, high level features that do not directly correspond to a cloud characteristic
or parameter, but map on an appropriate combination of them. In this context,
fuzzy logic can provide the mathematical foundation for merging real charac-
teristics and metrics, translating the linguistic high-level description given by
the user. To illustrate, consider the example above and suppose that the user is
agnostic about the security provided by different encryption algorithms and key
lengths. If the user is still wishing to protect her medical data upon outsourcing,
she may simply prefer to request ‘high data security’ instead of specifying which
algorithm or key length is appropriate (Fig. 7(b)). Such high-level requirement
can then be formalized and processed through fuzzy logic, translating it into an
equivalent combination of parameter values to be guaranteed by the provider.

Supporting Users in Cloud Plan Selection 257

Weighting Crisp Requirements. Fuzzy logic might also be used to assign a
weight, or importance level, to a set of crisp requirements specified by the user
(e.g., like those illustrated in Sect. 3). Weighting requirements becomes more
relevant when, for any reason, not all of them can be satisfied at the same time
(e.g., when the response time grows above the requested threshold in case of
a burst of incoming requests, or heavy workload). If requirements do not have
the same relevance to the user, fuzzy logic might be employed to specify the
importance of each requirement in such a way to discriminate between critical
requirements (whose satisfaction must always be guaranteed) and secondary ones
(whose satisfaction is important, but less than that of critical ones). For instance,
when outsourcing a mission-critical application that needs to be up and running
24/7 with no delays, the user might specify that the availability requirement has
‘high importance’, while storage requirement has ‘medium importance’ and user
interface and interaction have ‘low importance’.

Fuzzy parameters, fuzzy concepts, and fuzzy importance of crisp require-
ments can then be transformed in a format that can be processed in a homo-
geneous way with other crisp requirements having a crisp weight, to take all of
them into account in a comprehensive strategy.

Fig. 8. Possible applications of fuzzy logic in cloud selection and management

We close this section observing that, besides being applicable at the user side
for specifying requirements, fuzzy logic can prove beneficial also at the provider
side, that is, in the low-level management of the cloud resources (e.g., CPU or vir-
tual machine instances allocation) [1,5,11–13,21,22,25,31]. Figure 8 graphically
illustrates a high-level representation of a cloud management system, including a

258 S. De Capitani di Vimercati et al.

user (with requirements and preferences over the characteristics of cloud plans),
and a set of provider-side technological components that manage the overall ser-
vice provision. We graphically highlight the possible adoption of fuzzy logic with
a star on the corresponding component/interaction among parties. In particular,
by making available flexible reasoning possibly with imprecise/partial informa-
tion, fuzzy logic can be used at the provider side to: (i) continuously monitor the
cloud infrastructure (cloud infrastructure monitor in the figure) to identify and
characterize the current status of the cloud environment; (ii) predict the future
status of the infrastructure (cloud status predictor in the figure), for example,
to forecast peaks in incoming requests; and (iii) flexibly allocate resources to
the tasks required by the user applications (resource allocation engine in the
figure), for example, to scale up or down allocated resources when higher or
lower demands are forecasted or observed.

5 Conclusions

Selecting the right cloud plan when outsourcing data and applications to the
cloud is a key issue for ensuring a satisfying experience for users. The problems
related to cloud plan selection are challenging and diverse, and the scientific
community has recently addressed them by proposing models and techniques
that support users in assessing a set of cloud plans to select the right one. In
this chapter, we have illustrated some of the existing techniques for determining
attributes for evaluating cloud plans, for practically evaluating users’ require-
ments and desiderata to assess a set of candidate plans, and for supporting
users in the specification of their requirements and preferences. We have also
highlighted how fuzzy logic can be beneficial in cloud plan selection.

Acknowledgments. This work was supported in part by the EC within the H2020
under grant agreement 644579 (ESCUDO-CLOUD), and within the FP7 under grant
agreement 312797 (ABC4EU).

References

1. Anglano, C., Canonico, M., Guazzone, M.: FC2Q: exploiting fuzzy control in server
consolidation for cloud applications with SLA constraints. Concurrency and Com-
putation: Practice and Experience 22(6), 4491–4514 (2014)

2. Arman, A., Foresti, S., Livraga, G., Samarati, P.: A consensus-based approach for
selecting cloud plans. In: Proceedings of IEEE RTSI 2016, Bologna, Italy, Septem-
ber 2016

3. Casola, V., De Benedictis, A., Eraşcu, M., Modic, J., Rak, M.: Automatically
enforcing security SLAs in the cloud. IEEE Trans. Serv. Comput. (TSC) 10(5),
741–755 (2017)

4. Cloud Security Alliance: Cloud Control Matrix v3.0.1. https://
cloudsecurityalliance.org/research/ccm/. Accessed 05 June 2018

5. Dastjerdi, A.V., Buyya, R.: Compatibility-aware cloud service composition under
fuzzy preferences of users. IEEE Trans. Cloud Comput. (TCC) 2(1), 1–13 (2014)

https://cloudsecurityalliance.org/research/ccm/
https://cloudsecurityalliance.org/research/ccm/

Supporting Users in Cloud Plan Selection 259

6. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Piuri, V., Samarati, P.:
Supporting user requirements and preferences in cloud plan selection. IEEE Trans.
Serv. Comput. (TSC) (2017, pre-print)

7. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Supporting
users in data outsourcing and protection in the cloud. In: Helfert, M., Ferguson,
D., Méndez Muñoz, V., Cardoso, J. (eds.) CLOSER 2016. CCIS, vol. 740, pp. 3–15.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62594-2 1

8. De Capitani di Vimercati, S., Livraga, G., Piuri, V.: Application requirements with
preferences in cloud-based information processing. In: Proceedings of IEEE RTSI
2016, Bologna, Italy, September 2016

9. De Capitani di Vimercati, S., Livraga, G., Piuri, V., Samarati, P., Soares, G.:
Supporting application requirements in cloud-based IoT information processing.
In: Proceedings of IoTBD 2016, Rome, Italy, April 2016

10. Ding, S., Wang, Z., Wu, D., Olson, D.L.: Utilizing customer satisfaction in ranking
prediction for personalized cloud service selection. Decis. Support Syst. 93, 1–10
(2017)

11. Esposito, C., Ficco, M., Palmieri, F., Castiglione, A.: Smart cloud storage service
selection based on fuzzy logic, theory of evidence and game theory. IEEE Trans.
Comput. (TC) 65(8), 2348–2362 (2016)

12. Foresti, S., Piuri, V., Soares, G.: On the use of fuzzy logic in dependable cloud
management. In: Proceedings of IEEE CNS 2015, Florence, Italy, September 2015

13. Frey, S., Lüthje, C., Reich, C., Clarke, N.: Cloud QoS scaling by fuzzy logic. In:
Proceedings of IEEE IC2E 2014, Boston, MA, USA, March 2014

14. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing
services. Future Generation Computer Systems 29(4), 1012–1023 (2013)

15. Ghosh, N., Ghosh, S.K., Das, S.K.: SelCSP: a framework to facilitate selection of
cloud service providers. IEEE Trans. Cloud Comput. (TCC) 3(1), 66–79 (2015)

16. Jatoth, C., Gangadharan, G., Fiore, U., Buyya, R.: SELCLOUD: a hybrid multi-
criteria decision-making model for selection of cloud services. Soft Comput. 1–15
(2018)

17. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: Proceedings of IEEE CSE 2012, Paphos,
Cyprus, December 2012

18. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of ACM IMC 2010, Melbourne, Australia, November
2010

19. Li, J., Squicciarini, A.C., Lin, D., Sundareswaran, S., Jia, C.: MMBcloud-tree:
authenticated index for verifiable cloud service selection. IEEE Trans. Dependable
Secure Comput. (TDSC) 14(2), 185–198 (2017)

20. Luna, J., Suri, N., Iorga, M., Karmel, A.: Leveraging the potential of cloud secu-
rity service-level agreements through standards. IEEE Cloud Comput. 2(3), 32–40
(2015)

21. Patiniotakis, I., Rizou, S., Verginadis, Y., Mentzas, G.: Managing imprecise criteria
in cloud service ranking with a fuzzy multi-criteria decision making method. In:
Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135,
pp. 34–48. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40651-
5 4

22. Patiniotakis, I., Verginadis, Y., Mentzas, G.: PuLSaR: preference-based cloud ser-
vice selection for cloud service brokers. J. Internet Serv. Appl. 6(26), 1–14 (2015)

https://doi.org/10.1007/978-3-319-62594-2_1
https://doi.org/10.1007/978-3-642-40651-5_4
https://doi.org/10.1007/978-3-642-40651-5_4

260 S. De Capitani di Vimercati et al.

23. Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S.: Introducing
STRATOS: a cloud broker service. In: Proceedings of IEEE CLOUD 2012, Hon-
olulu, HI, USA, June 2012

24. Qu, L., Wang, Y., Orgun, M.A., Liu, L., Liu, H., Bouguettaya, A.: CCCloud:
context-aware and credible cloud service selection based on subjective assessment
and objective assessment. IEEE Trans. Serv. Comput. (TSC) 8(3), 369–383 (2015)

25. Rao, J., Wei, Y., Gong, J., Xu, C.Z.: DynaQoS: model-free self-tuning fuzzy control
of virtualized resources for QoS provisioning. In: Proceedings of IEEE IWQoS 2011,
San Jose, CA, USA, June 2011

26. Rehman, Z., Hussain, O., Hussain, F.: IaaS cloud selection using MCDM methods.
In: Proceedings of IEEE ICEBE 2012, Hangzhou, China, September 2012

27. Ruiz-Alvarez, A., Humphrey, M.: An automated approach to cloud storage service
selection. In: Proceedings of ACM ScienceCloud 2011, San Jose, CA, USA, June
2011

28. Samarati, P.: Data security and privacy in the cloud. In: Huang, X., Zhou, J. (eds.)
ISPEC 2014. LNCS, vol. 8434, pp. 28–41. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-06320-1 4

29. Samarati, P., De Capitani di Vimercati, S.: Cloud security: issues and concerns.
In: Murugesan, S., Bojanova, I. (eds.) Encyclopedia on Cloud Computing. Wiley
(2018)

30. Samreen, F., Elkhatib, Y., Rowe, M., Blair, G.S.: Daleel: Simplifying cloud instance
selection using machine learning. In: Proceedings of IEEE/IFIP NOMS 2016, Istan-
bul, Turkey, April 2016

31. Sun, L., Ma, J., Zhang, Y., Dong, H., Hussain, F.K.: Cloud-FuSeR: fuzzy ontology
and MCDM based cloud service selection. Futur. Gener. Comput. Syst. 57, 42–55
(2016)

32. Sundareswaran, S., Squicciarini, A., Lin, D.: A brokerage-based approach for cloud
service selection. In: Proceedings of IEEE CLOUD 2012, Honolulu, HI, USA, June
2012

33. Tang, M., Dai, X., Liu, J., Chen, J.: Towards a trust evaluation middleware for
cloud service selection. Futur. Gener. Comput. Syst. 74, 302–312 (2017)

34. Zheng, Z., Wu, X., Zhang, Y., Lyu, M.R., Wang, J.: QoS ranking prediction for
cloud services. IEEE Trans. Parallel Distrib. Syst. (TPDS) 24(6), 1213–1222 (2013)

https://doi.org/10.1007/978-3-319-06320-1_4
https://doi.org/10.1007/978-3-319-06320-1_4

Distributed Services Attestation in IoT

Mauro Conti1, Edlira Dushku2(B), and Luigi V. Mancini2

1 University of Padua, Padua, Italy
conti@math.unipd.it

2 Dipartimento di Informatica, Sapienza University of Rome, Rome, Italy
{dushku,mancini}@di.uniroma1.it

Abstract. Remote attestation has emerged as a powerful security mech-
anism that ascertains the legitimate operation of potential untrusted
devices. In particular, it is used to establish trust in Internet of Things
(IoT) devices, which are becoming ubiquitous and are increasingly inter-
connected, making them more vulnerable to malware attacks. A con-
siderable number of prior works in Remote attestation aim to detect
the presence of malware in IoT devices by validating the correctness of
the software running on a single device. However, the interoperability
between IoT devices raises a need for an extension of the existing attes-
tation schemes towards an approach that detects the possible malicious
behavior of devices caused by compromised remote services in the sys-
tem.

In this paper, we discuss the impact of a compromised service in a dis-
tributed service setting. We show that due to a malicious input received,
a device of the distributed service can perform an unexpected task, even
though it runs a genuine software. To detect these devices that exhibit
a non legitimate behavior in the system, we propose a novel approach
that ensures the integrity of distributed services in a collaborative IoT
system. We discuss the effectiveness of our proposal on validating the
impact of a malicious service over a set of distributed services.

Keywords: IoT attestation · Secure interoperability
Distributed services · Service flow

1 Introduction

Interactions between a large set of heterogeneous smart devices are continuously
providing a representation of the physical world into a massively interconnected
network, empowering the paradigm of the so-called Internet of Things (IoT).
While IoT systems pose a wide range of challenges due to the limited resources
of their devices, a number of pressing issues which arise in these systems are
known in the context of Wireless Sensor Networks (WSNs). Therefore, the inten-
sive researches that have addressed the issues of WSNs can play a major role in
IoT. For example, methods of obtaining accurate information from IoT devices
are required to meet several energy constraints. In this context, since WSNs are

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 261–273, 2018.
https://doi.org/10.1007/978-3-030-04834-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_14

262 M. Conti et al.

regarded as a revolutionary information gathering method, the data aggregation
techniques that have been introduced in WSN [1–6] can be adopted in IoT set-
ting. Moreover, the performance of data aggregation protocol is closely related
to the network topology. Hence, the solution for secure topology maintenance
protocols [7] can be applied to the management and control of IoT devices,
e.g., the management of vehicular networks. Additionally, as a secure onboard-
ing service is a big concern for IoT systems [8], the secure key management
mechanisms proposed in WSNs [9] can be inspiring, if not helpful, in dealing
with this challenge. Finally, WSNs clone detection schemes [10], [11] can be used
in addressing the identity of IoT devices which represents a crucial concern in
deploying interoperable IoT systems.

Despite the similarities with WSNs sensors, IoT devices tend to be heteroge-
neous devices. Also, they rely on edge and cloud computing infrastructures, and
the recent IoT devices are designed to be tamper-evident. For this reason, some
security solutions developed at protocol and network level in WSNs that consider
non-tamper evident devices may not be compatible in IoT domain. The ability
of the IoT devices to connect and communicate among themselves enables the
interoperability in the IoT systems, which allows these systems to deal with a
variety of complex operations that exceed the constrained resources of individual
IoT devices. While the interoperability in IoT is estimated to create 40% of the
potential value that can be generated by the Internet of Things in various set-
tings [12], a key role in the well-functioning of interoperable environments plays
the secure collaboration between their devices. However, the limited capabilities
of the IoT devices to adopt even well-known security techniques expose the IoT
systems to a huge number of potential attacks [13–15]. Considering these vulner-
abilities and the rapidly increasing numbers of the insecure IoT devices in many
safety-critical domains, the defense of the IoT systems becomes crucial. Hence,
some techniques that verify the genuine state of the IoT devices, and guarantee
the trustworthy interoperability between them, are a fundamental necessity.

One promising security mechanism that provides assurance about the gen-
uine operation of a device is Remote attestation. In principle, remote attestation
provides some unforgeable evidence to a remote trusted entity, called Verifier,
to testify the authenticity and integrity of the software running on an untrusted
platform, called Prover. In the domain of resource-constrained devices, most
of the existing attestation protocols attest the prover only partially, analyzing
the software components loaded on the prover’ s program memory lacking the
capability to detect prevalent runtime software attacks. To mitigate the runtime
attacks, some other attestation approaches have emerged in checking the cor-
rectness of the application during the execution time. For instance, C-FLAT [16]
proposes as a control-flow attestation scheme, which tracks and stores the exact
sequence of the executed instructions at run-time.

This paper proposes an attestation approach to ensure the integrity of dis-
tributed services in a collaborative IoT system. It uses C-FLAT protocol to
perform the runtime attestation of the software executed locally in each device
and enhances C-FLAT to support verification of the runtime state of the entire
distributed service. We argue that, the proof that a device is performing a cor-

Distributed Services Attestation in IoT 263

rect operation requires a comprehensive evidence that presents not only details
about the software running on the device, but also sufficient reliable information
about the integrity of the entire set of the distributed services called by this
software during its execution.

Our Contribution: In this paper, we propose a novel approach for attestation
of distributed services that is efficient for a large number of IoT devices that
interoperate among themselves. The contributions of this paper are threefold:

– We present a novel approach for remote attestation of the distributed services
in IoT. This scheme aims to provide a complete evidence about the integrity
of the device that ensures its fair participation in an IoT system.

– We define a system model and security requirements for distributed services.
– We describe the verification process of our approach and discuss its efficiency.

Outline: The rest of the paper is organized as follows. In Sect. 2, we provide
an overview of the current state-of-the-art remote attestation approaches and
provide a comparison with our work. We describe the problem that we address
in Sect. 3 and present the adversary model in Sect. 4. Finally, we define the
security requirements, the system design, and introduce our novel attestation
approach in Sect. 5. The paper concludes in Sect. 6.

2 Related Works

The existing remote attestation protocols focus on ensuring integrity and authen-
ticity of software running on devices. These solutions differ in the design choices,
scalability, and the parts of the device’s memory that they consider in the vali-
dation process.

Collective Attestation: Collective attestation schemes address the problem of
verifying the internal state of a large group of devices in a more efficient way
than attesting each device individually. For example, the approach proposed in
SEDA [17] constructs the interconnected network as a spanning-tree. In this
scheme, each device statically attests its children and reports back to its parent
the number of children that successfully passed the attestation protocol. In the
end, an aggregated report with the total number of the devices successfully
attested will be transmitted to the Verifier. The weakest point of this protocol
is that a compromised node can impact the integrity of the attestation result
of all its children nodes in the aggregation tree. This problem is tackled by
SANA [18], which relies on the use of a multi-signature scheme to propose a
scalable attestation protocol with untrusted aggregators. Here, devices sign the
attestation responses and an aggregation of the signatures is used to validate
the network in a constant time. The basic assumption followed by both SEDA
and SANA is that the network is fully interconnected. The work in [19] rules out
this assumption and proposes an efficient protocol for highly dynamic networks.
In this proposal, each device performs the local attestation at the same point in

264 M. Conti et al.

time and shares the individual result with other devices in the network. Then,
devices use the consensus algorithm to gain knowledge about the state of the
other devices in the network. At the attestation time, the verifier can perform
the attestation over a random device, which will report the consensus state of
the entire network.

The existing collective attestation schemes verify only the integrity of the
static program memory without providing a validation mechanism for the data
memory. Thus, runtime attacks remain undetected. Also, the collective attesta-
tion schemes do not consider the flow of the interactions between devices and the
data flow that goes from one device to another. Therefore, these schemes detect
devices that are running a modified software, but they do not check whether
the devices with legitimate software are executing a task on malicious data. We
argue that, in a distributed system, a service victim of a run-time attack can
propagate malicious behavior to all the devices that requested that service, even
though the software running on those devices is legitimate.

Dynamic Attestation: Dynamic attestation approaches aim to verify the run-
time state of the Prover during the normal software execution. The work in
[20] proposes an attestation protocol (ReDAS) that verifies the properties of the
run-time behavior of the Prover. When any of the properties is violated, ReDAS
stores the relevant evidence in a Trusted Platform Module (TPM). ReDAS checks
the system integrity only at system calls, and it traces only the order of the
launched modules in a system. Therefore, it does not detect the malware presence
between system calls, and it does not check the runtime flow of the instructions
of a specific module.

C-FLAT [16] proposes a complete attestation of the run-time state of the
Prover. During the execution, each software instruction is reported into a so-
called “trusted anchor” and from there, a hash engine mechanism accumulates
the sequence of the instructions into a single hash value that represents the entire
control flow of the Prover’s state. A Verifier, who has initially computed and
stored a set of all the possible valid hashes of the Prover, can detect control-flow
attacks, since a Prover targeted with a control-flow run-time attack will report
an unexpected hash value to the Verifier. A practical version of this work is intro-
duced in LO-FAT [21]. Instead of the software instrumentation used in C-FLAT
for reporting each code instruction to the trusted anchor, LO-FAT explores the
features of the microcontroller to intercept the instructions, providing in this
way an implementation of C-FLAT with low overhead.

However, C-FLAT and LO-FAT work as single device attestation, without
considering the attestation of the run-time state over a group of interconnected
devices. Also, they do not detect the non-control data attacks that are derived
from a decision making variable that is not assigned inside the device, but is
assigned as result of the response of a remote service running on another device.
Our paper builds on the fact that the internal state from a device is also a
function of the information that it receives from other devices.

Distributed Services Attestation: BIND [22] is a fine-grained attestation scheme
for traditional distributed systems. BIND assumes that the most critical parts

Distributed Services Attestation in IoT 265

of the service software are predefined by programmers. Thus, in the attestation
time, instead of attesting the code for the entire sequence of the distributed
services, BIND attests only the selected piece of code for each service. BIND
measures a critical code immediately before entering in the code execution and
uses a sand-boxing mechanism to serve as a protection for ensuring the untam-
pered code execution. However, BIND is not designed for resource-constrained
devices. Also, BIND does not address attacks that happen in the intermediary
code that is not annotated for attestation. In our protocol, the runtime attesta-
tion takes into consideration all the software of the service without limiting the
attestation only to a predefined section of code.

3 Problem Setting

In a heterogeneous IoT system, some of the devices can operate both as clients
and servers, and these devices interact among themselves through their avail-
able services in the network. A conceptual view of these interactions is illustrated
in Fig. 1. Here, each of the devices shown in Level 1, Device i, Device j, and
Device x provide a set of services, as represented in Level 2. In this setting, the
execution of a complex operation, which is beyond the capacities or function-
alities of a single device, requires the invocation of a remote service provided
by other devices. Likewise, the called service might still be too complex for the
resources of a device, and therefore it invokes other service calls to complete its
task. The sequence of all the services involved in fulfilling an operation is called
Service F low, and it is depicted with notation Si1 → Sj3 → Sx2.

In the following, we consider the interoperation between services in a Smart
Home IoT system enabled by the communication of three IoT devices: an Out-
door Camera, a central Security Monitor, and a Smart Door. A motion sensing
Outdoor Camera observes outside the main door of the home, and when any
movement of objects or people is detected, the camera captures an image and
reports it to a Security Monitor. Once the Security Monitor gets the captured
image, it analyzes the image, and if it identifies a family member, it sends an
unlock command to open the Smart Door, as shown in Fig. 2. The service flow
in this scenario is: captureImage() → checkImage() → unlockDoor().

Fig. 1. Service flow of IoT devices

Devil’s Ivy attack [23] shows how an attacker takes control over a secu-
rity camera by using Return-Oriented Programming (ROP) technique [24] to

266 M. Conti et al.

maliciously combine pieces of code already present in the device’s memory at
run-time. In this way, the attacker is able to produce a malicious code only
by changing the execution flow of a legitimate software running on a sin-
gle device. As these attacks can impact millions of IoT devices and become
pervasive in IoT systems [23], a prominent requirement for the attestation
schemes is the detection of run-time attacks, which target the data memory
and do not modify the program memory of a device. The attestation of data
memory of individual devices requires the execution of a single-device control-
flow attestation protocol, e.g., C-FLAT that detects subverted control flows.
Indeed, in the case the device is not compromised, a standard control-flow
attestation protocol, running on a single device, will report to the Verifier
the benign state of the device. For instance, when a single-device control-flow
attestation protocol attests the uncompromised Smart Door, it will ensure its
correctness.

Fig. 2. Device interaction in Smart Home IoT system

Now, consider an attack scenario where an adversary subverts the control-
flow of another device of the distributed service, e.g., the Security Monitor device.
After this attack, a single-device control-flow attestation procedure executed on
the Smart Door will report again the correctness of the Smart Door. This is
because the adversary has not changed the software of Smart Door and has not
deviated its control-flow. However, even though the adversary is located only in
the Security Monitor and the Smart Door passes all the checks of a single-device
control-flow attestation protocol, we show that the Smart Door can be forced
into an incorrect state.

To explain how the run-time attack occurs, the Control Flow Graph depicted
in Fig. 3 represents the legitimate execution flow of the instructions on the
three services involved in the aforementioned service flow: captureImage() →
checkImage() → unlockDoor(). During the normal operation, each service fol-
lows the intended control-flow and then initiates a service call to the next device.

The adversary located in Security Monitor performs a control-flow attack by
changing the pointer between two nodes of the Control Flow Graph (A goes into
D instead of going into B), as shown in Fig. 3. This malicious software execution
on the Security Monitor can produce malicious data, and can influence the cur-
rent behavior of the other interconnected devices. For example, an unlockDoor()
command initiated as result of a control-flow attack can open the door even if the
camera has not captured the image of a family member. This means that Smart
Door, even though is genuine, can maliciously perform an unexpected operation

Distributed Services Attestation in IoT 267

due to the command or compromised input that it received from a malicious code
executed in the Security Monitor device. Furthermore, since some of the instruc-
tions are not executed, e.g., node B in Security Monitor, the malicious subversion
of the control-flow can also change the interaction flow between devices. Specif-
ically, instead of calling the device that provides the service in node B, Security
Monitor will call directly the Smart Door, which provides the service of the node
D in Security Monitor. As a result, a compromised distributed service induces a
malicious behavior into a subset of IoT devices, even though the software running
on the subset of the devices is not altered in any way by the attacker.

Fig. 3. Control flow of the distributed services in Fig. 2

The attestation approach of running a control-flow attestation protocol on
every device of the IoT system would report the Security Monitor as a compro-
mised device and the Smart Door in a legitimate state. Indeed, a single-device
control-flow attestation protocol cannot report the devices that have been influ-
enced by the attacker and forced into an incorrect state. Therefore, to produce a
correct attestation response, the attestation scheme is required not only to report
the device running the malicious code, but also to verify all other devices which
interact with the infected device and are performing a non intended operation
due to their interactions with the infected devices.

4 Adversary Model

We consider the following adversary model in distributed IoT services.

Data Memory Attack: An adversary performs an attack on data memory by
exploiting a program vulnerability to alter the intended control-flow of the ser-
vice. The adversary can do this either by injecting malicious code typically in

268 M. Conti et al.

the local buffer or by changing the stack pointers between existing pieces of code
to construct a malicious program.

Program Memory Attack: An adversary can manipulate the binaries of the ser-
vices located in program memory or can inject malicious code in the free space
of the program memory.

Man-in-the-Middle Attack: An adversary can eavesdrop on and compromise the
data flow between services. In this context, the correct state of the entire service
flow is not only depended on the benign state of the loaded software for each
device but also on the trustworthy information exchanged between these services.

Assumptions Like in other proposals, we assume that the adversary does not
modify the device hardware. Also, we rule out Denial-of-Service attacks and
runtime attacks that do not deviate the control-flow of the application. It is also
assumed that the verifier knows the software of the services running on devices.

5 Proposed Solution

In this section, we first describe the system requirements and present the compo-
nents of our system model. We then outline the possible solution and discuss the
efficiency of the proposed approach in ascertaining the integrity of a distributed
IoT service.

5.1 Requirements

The distributed services attestation scheme requires the following security
properties:

– Authenticity and Integrity of software: The attestation of the dis-
tributed services should validate both the program memory and data memory
of the individual IoT services. The entire sequence of the distributed services
should guarantee the authenticity and integrity of the devices involved in the
interoperation.

– Integrity of communication: A service should be able to verify the trust-
worthy origin of the inputs it gets, and it should reject service calls launched
by an unauthorised service and/or associated with non authenticated data
inputs.

– Continuous attestation: Attestation protocol should run continuously dur-
ing the normal operation of each IoT device. This property addresses the
attacks that may happen between two attestation procedures, known as Time-
of-check to Time-of-use (TOCTTOU) attacks. Also, this property allows
devices to keep a complete evidence of the interactions that occur between
services.

– Freshness: Services should not be able to report to the Verifier a precom-
puted internal state that could hide the presence of malicious software and
incorrect operation.

Distributed Services Attestation in IoT 269

5.2 Building Blocks

In order to achieve all the security properties described above, our attestation
scheme requires the following components.

A Trust Anchor: A trust anchor provides an isolated measurement engine, which
cannot be disabled or modified by non-physical means.

Message Authentication Code: Message Authentication Code (MAC) is a pair
of algorithms signMac() and verifyMac() such that t ← signMac(k,m) and
0, 1 ← verifyMac(k,m, t).

Hash Engine: C-FLAT (described in Sect. 2) captures the runtime state of the
Prover and constructs a Control Flow Graph to represent the valid execution
flow of the software. C-FLAT associates each valid flow with a unique hash value.
For each instruction N of a valid execution flow, the hash value is calculated as
Hi = Hash(Hi−1, N), as depicted in Fig. 4.

Fig. 4. Hashing control flow graph of standard C-FLAT

5.3 System Design

In modelling the attestation scheme, we consider two entities: Verifier V rf and
Device D. In Table 1, we summarize the terms used in this model.

Setup phase is an initial offline procedure that covers two operations (a)
network deployment, and (b) software measurement.

Network Deployment. To ensure the security of the devices that will be con-
nected to a network, an IoT system operator OP validates the identities of the
devices, authorizes their access, and verifies the correct version of the software

270 M. Conti et al.

Table 1. Notation summary

Term Description

V rf Verifier

Di Device i

ski Secret key of device i

pki Public key of device i

kij Symmetric attestation key shared between Di and Dj

SFi Service flow

CFi Control flow

CFG Control flow graph

and services available on them. Specifically, we assume that each deployed device
Di is equipped with a trusted anchor and an asymmetric key-pair (pki, ski).
Also, we suppose that between two devices Di and Dj , that will interact during
the normal operations in the network, is established a shared symmetric Mes-
sage Authentication Code (MAC) key kij . The secret signing key ski and the
shared attestation key kij are both protected within the trust anchor, preventing
untrusted parties from using these keys. Note that the process of key manage-
ment between devices is maintained by OP , and this paper does not describe
the details of the key exchanging scheme. In addition, the MAC mechanism can
be easily replaced with a public key signature.

Software Measurement. For simplicity, we assume there is only one application
running on a device, and V rf is authorized to access the software of each device.
We also suppose that an application is fully constructed as a composition of a
set of services, where some of them are publicly accessible (public service) and
the others dedicated only for internal computations of the application (private
service). For each of the services available in a device, V rf generates the control
flow graph (CFG) and measures all possible valid transitions that a service might
follow at runtime. Then, V rf stores the measurements in a database so that can
be quickly accessed at the attestation time.

5.4 Solution Approach

Since in a collaborative environment devices repeatedly interact, in the attesta-
tion approach we include the phase of capturing the running state while devices
communicate, and afterwards, we define how this state is reported to the V rf .

Device Interactions. Each device in the network starts to perform the operation
when it gets an input that might come from: (1) the environment, (2) human
command, or (3) another device in the network. For the input (1) and (2), we
suppose that there are some mechanisms that control the trusted state of the
source, and for the data taken in (3) the device should control the authenticity
of the input before starting the operation.

Distributed Services Attestation in IoT 271

Consider the normal activity of a device Di which reads an input and per-
forms the operation by executing a service. The initialization of the service Si1
invokes a procedure register() which triggers the trusted anchor in device Di

to store the name of the service in SFi and to record the entire control-flow of
the service instructions in CFi. In the end of the execution, the trusted anchor
stores an accumulated hash value in CFGi which represents the entire runtime
state of Di.

When Si1 calls the service Sj3 offered by Dj , Di computes a MAC over
SFi and CFi registered in TPMi and attaches these values to the service call
that it is initiating. Before running the service, Dj proves the authenticity and
integrity of the request by verifying the MAC. In case it results a valid call, Dj

saves the current state of Di in TPMj which means that SFj and CFj in Dj

will be initialized with SFi and CFi taken from Di.

Verifier Activity. The process of attestation starts with V rf that establishes
a communication with a random device Di. Once V rf sends an attestation
request with a random challenge R, Di retrieves SF and CF stored locally and
generates an attestation response. V rf verifies the signature of the response and
then proceeds with hash validation. Since the verifier has initially stored the
valid hash for each service, in order to validate the attestation response, V rf
goes through the service flow, SF retrieved from the response and calculates
the final hash value. If the hash matches with CF transmitted in response, then
this is the evidence that the whole runtime state of the devices involved in the
service flow has been legitimate.

Discussion of the Effectiveness

1. At a given moment, each device has a full path and state of the previous
devices included in the call. This allows the verifier to: (1) verify the runtime
state of the current device, (2) verify the runtime state of the previous devices
that initiated the call to this device, (3) verify that input and output between
devices match together, and (4) verify that the behaviour of the current device
is not malicious.

2. Based on the previous feature, V rf does not need to attest all the devices.
Instead, V rf can choose to attest critical devices and check that all the
devices that generated that service call were in a trusted mode. In the case of
synchronous service calls, V rf can attest only the first devices that generate
all the other calls, and in this way has verified all the devices deployed in the
system.

3. Additionally, when V rf knows the legitimate interactions between devices,
V rf can verify whether the interaction flow present in a device is legitimate.
This is because the hash represents not only the internal state of the services
that compose a service flow, but also the interaction flow. This interaction
flow gives the verifier an overview of what has happened and indications about
devices of the system that are infected.

272 M. Conti et al.

6 Conclusions

Through synthesizing existing WSN solutions and protocols as part of the IoT
systems, potential new IoT solutions can be identified and developed to overcome
the current security challenges in the IoT domain. However, due to the inter-
operability among heterogeneous IoT devices, more researches should focus on
securing the interoperability in IoT. In this paper, we showed that interactions
between IoT devices require a comprehensive evidence from Remote Attesta-
tion techniques in IoT. Such evidence should present not only details about the
software running on the device, but also sufficient reliable information about
the integrity of the entire set of the distributed services called by this software
during its execution.

Acknowledgement. Mauro Conti is supported by a Marie Curie Fellowship funded
by the European Commission (agreement PCIG11-GA-2012-321980). This work is
also partially supported by the EU TagItSmart! Project (agreement H2020-ICT30-
2015-688061), the EU-India REACH Project (agreement ICI+/2014/342-896), by the
project CNR-MOST/Taiwan 2016-17 “Verifiable Data Structure Streaming”, the grant
n. 2017-166478 (3696) from Cisco University Research Program Fund and Silicon Val-
ley Community Foundation, and by the grant “Scalable IoT Management and Key
security aspects in 5G systems” from Intel. Luigi V. Mancini and Edlira Dushku are
supported by the Progetto Ateneo 2017, “Protect yourself and your data when using
social network”, Sapienza University of Rome.

References

1. Roy, S., Conti, M., Setia, S., Jajodia, S.: Secure data aggregation in wireless sensor
networks: filtering out the attacker’s impact. IEEE Trans. Inf. Forensics Secur.
9(4), 681–694 (2014)

2. Roy, S., Conti, M., Setia, S., Jajodia, S.: Secure data aggregation in wireless sensor
networks. IEEE Trans. Inf. Forensics Secur. 7(3), 1040–1052 (2012)

3. Zhang, L., Zhang, H., Conti, M., Di Pietro, R., Jajodia, S., Mancini, L.V.: Pre-
serving privacy against external and internalthreats in WSN data aggregation.
Telecommun. Syst. 52(4), 2163–2176 (2011)

4. Roy, S., Conti, M., Setia, S., Jajodia, S.: Secure mediancomputation in wireless
sensor networks. Ad Hoc Netw. 7(8), 1448–1462 (2009)

5. Conti, M., Zhang, L., Roy, S., Di Pietro, R., Jajodia, S., Mancini, L.V.: Privacy-
preserving robust data aggregation in wireless sensornetworks. Secur. Commun.
Netw. 2(2), 195–213 (2009)

6. Conti, M.: Secure Wireless Sensor Networks. Springer, New York (2015). https://
doi.org/10.1007/978-1-4939-3460-7

7. Gabrielli, A., Mancini, L.V., Setia, S., Jajodia, S.: Securing topology maintenance
protocols for sensor networks. IEEE Trans. Dependable Secur. Comput. 8(3), 450–
465 (2011)

8. Compagno, A., Conti, M., Droms, R.: OnboardICNg: a secure protocol for on-
boarding IoT devices in ICN. In: Proceedings of the 2016 Conference on 3rd ACM
Conference on Information-Centric Networking-ACM-ICN 2016. ACM Press (2016)

https://doi.org/10.1007/978-1-4939-3460-7
https://doi.org/10.1007/978-1-4939-3460-7

Distributed Services Attestation in IoT 273

9. Di Pietro, R., Mancini, L.V., Jajodia, S.: Providing secrecy in key management
protocols for large wireless sensors networks. Ad Hoc Netw. 1(4), 455–468 (2003)

10. Zhu, B., Setia, S., Jajodia, S., Roy, S., Wang, L.: Localized multicast: efficient
and distributed replica detection in large-scale sensor networks. IEEE Trans. Mob.
Comput. 9(7), 913–926 (2010)

11. Conti, M., Di Pietro, R., Mancini, L.V., Mei, A.: Distributed detection of clone
attacks in wireless sensor networks. IEEE Trans. Dependable Secur. Comput. 8(5),
685–698 (2011)

12. Company, M.: The internet of things: mapping the value beyond the hype, June
2015. http://www.mckinsey.com/. Accessed 15 Dec 2017

13. KrebsonSecurity: Mirai Botnete, October 2016.http://krebsonsecurity.com/tag/
mirai-botnet. Accessed 15 Dec 2017

14. Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home
applications. In: 2016 IEEE Symposium on Security and Privacy (SP). IEEE, May
2016

15. Ronen, E., Shamir, A., Weingarten, A.O., OFlynn, C.: IoT goes nuclear: creating
a ZigBee chain reaction. In: 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, May 2017

16. Abera, T., et al.: C-FLAT: control-flow attestation for embedded systems soft-
ware. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS 2016. ACM Press (2016)

17. Asokan, N., et al.: SEDA: scalable embedded device attestation. In: Proceedings
of the 22nd ACM SIGSAC Conferenceon Computer and Communications Security
- CCS 2015. ACM Press (2015)

18. Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.R., Schunter, M.:
SANA: secure and scalable aggregate network attestation. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security - CCS
2016. ACM Press (2016)

19. Ambrosin, M., Conti, M., Lazzeretti, R., Rabbani, M.M., Ranise, S.: Toward secure
and efficient attestation for highly dynamic swarms.In: Proceedings of the 10th
ACM Conference on Security and Privacy in Wireless and Mobile Networks - WiSec
2017. ACM Press (2017)

20. Kil, C., Sezer, E.C., Azab, A.M., Ning, P., Zhang, X.: Remote attestation to
dynamic system properties: towards providing complete system integrity evidence.
In: 2009 IEEE/IFIP International Conference on Dependable Systems & Networks.
IEEE, June 2009

21. Dessouky, G., et al.: LO-FAT: low-overhead control flow attestation in hardware.
In: Proceedings of the 54th Annual Design Automation Conference 2017 - DAC
2017. ACM Press (2017)

22. Shi, E., Perrig, A., Doorn, L.V.: BIND: a fine-grained attestation service for secure
distributed systems. In: 2005 IEEE Symposium on Security and Privacy (SP).
IEEE, May 2005

23. Senrio: Devil’s Ivy, July 2017. http://blog.senr.io/blog/devils-ivy-flaw-in-widely-
used-third-party-code-impacts-millions. Accessed 15 Dec 2017

24. Shacham, H.: The geometry of innocent flesh on the bone. In: Proceedings of the
14th ACM Conference on Computer and Communications Security - CCS 2007.
ACM Press (2007)

http://www.mckinsey.com/
http://krebsonsecurity.com/tag/mirai-botnet
http://krebsonsecurity.com/tag/mirai-botnet
http://blog.senr.io/blog/devils-ivy-flaw-in-widely-used-third-party-code-impacts-millions
http://blog.senr.io/blog/devils-ivy-flaw-in-widely-used-third-party-code-impacts-millions

Exploiting Data Sensitivity
on Partitioned Data

Sharad Mehrotra(B), Kerim Yasin Oktay, and Shantanu Sharma(B)

Department of Computer Science, University of California, Irvine, USA
sharad@ics.uci.edu, shantanu.sharma@uci.edu

Abstract. Several researchers have proposed solutions for secure data
outsourcing on the public clouds based on encryption, secret-sharing,
and trusted hardware. Existing approaches, however, exhibit many limi-
tations including high computational complexity, imperfect security, and
information leakage. This chapter describes an emerging trend in secure
data processing that recognizes that an entire dataset may not be sen-
sitive, and hence, non-sensitivity of data can be exploited to overcome
some of the limitations of existing encryption-based approaches. In par-
ticular, data and computation can be partitioned into sensitive or non-
sensitive datasets – sensitive data can either be encrypted prior to out-
sourcing or stored/processed locally on trusted servers. The non-sensitive
dataset, on the other hand, can be outsourced and processed in the clear-
text. While partitioned computing can bring new efficiencies since it does
not incur (expensive) encrypted data processing costs on non-sensitive
data, it can lead to information leakage. We study partitioned comput-
ing in two contexts - first, in the context of the hybrid cloud where local
resources are integrated with public cloud resources to form a effective
and secure storage and computational platform for enterprise data. In
the hybrid cloud, sensitive data is stored on the private cloud to prevent
leakage and a computation is partitioned between private and public
clouds. Care must be taken that the public cloud cannot infer any infor-
mation about sensitive data from inter-cloud data access during query
processing. We then consider partitioned computing in a public cloud
only setting, where sensitive data is encrypted before outsourcing. We
formally define a partitioned security criterion that any approach to parti-
tioned computing on public clouds must ensure in order to not introduce
any new vulnerabilities to the existing secure solution. We sketch out
an approach to secure partitioned computing that we refer to as query
binning (QB) and show how QB can be used to support selection queries.
We evaluate conditions under which partitioned computing approaches

The full approaches proposed in this chapter may be found in [33,36]. This material
is based on research sponsored by DARPA under agreement number FA8750-16-2-
0021. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government. This work is partially supported by NSF
grants 1527536 and 1545071.

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 274–299, 2018.
https://doi.org/10.1007/978-3-030-04834-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_15

Exploiting Data Sensitivity on Partitioned Data 275

such as QB can improve the performance of cryptographic approaches
that are prone to size, frequency-count, and workload attacks.

1 Introduction

Organizations today collect and store a large volume of data, which is analyzed
for diverse purposes. However, in-house computational capabilities of organiza-
tions may become obstacles for storing and processing data. Many untrusted
cloud computing platforms (e.g., Amazon AWS, Google App Engine, and
Microsoft Azure) offer database-as-a-service using which data owners, instead
of purchasing, installing, and running data management systems locally, can
outsource their databases and query processing to the cloud. Such cloud-based
services available using the pay-as-you-go model offers significant advantages
to both small, medium and at times large organizations. The numerous ben-
efits of public clouds impose significant security and privacy concerns related
to sensitive data storage (e.g., sensitive client information, credit card, social
security numbers, and medical records) or the query execution. The untrusted
public cloud may be an honest-but-curious (or passive) adversary, which executes
an assigned job but tries to find some meaningful information too, or a mali-
cious (or active) adversary, that may tamper the data or query. Such concerns
are not a new revelation – indeed, they were identified as a key impediment
for organizations adopting the database-as-as-service model in early work on
data outsourcing [25,26]. Since then, security/confidentiality challenge has been
extensively studied in both the cryptography and database literature, which has
resulted in many techniques to achieve data privacy, query privacy, and infer-
ence prevention. Existing work can loosely be classified into the following three
categories:

1. Encryption based techniques. E.g., order-preserving encryption [3], deter-
ministic encryption (Chap. 5 of [24]), homomorphic encryption [21], bucketiza-
tion [25], searchable encryption [41], private informational retrieval (PIR) [8],
practical-PIR (P-PIR) [42], oblivious-RAM (ORAM) [23], oblivious transfers
(OT) [39], oblivious polynomial evaluation (OPE) [34], oblivious query pro-
cessing [5], searchable symmetric encryption [13], and distributed searchable
symmetric encryption (DSSE) [27].

2. Secret-sharing [40] based techniques. E.g., distributed point func-
tion [22], function secret-sharing [7], functional secret-sharing [30],
accumulating-automata [18,19], Obscure [46], and others [20,31,32].

3. Trusted hardware-based techniques. They are either based on a secure
coprocessor or Intel SGX, e.g., [4,6]. The secure coprocessor and Intel
SGX [12] allow decrypting data in a secure area and perform some com-
putations.

While approaches to compute over encrypted data and systems support-
ing such techniques are plentiful, secure data outsourcing and query process-
ing remain an open challenge. Existing solutions suffer from several limitations.

276 S. Mehrotra et al.

Se
cu

ri
ty

 le
ve

ls

DET
1.43x

Access-pattern
hiding
3291x

SGX
6724x

Entire DB
retrieval
11135x

x = time to search a keyword in cleartext

Time
NDET
1.43x

Fu
ll

se
cu

re

Si
ze

, f
re

qu
en

cy
-c

ou
nt

, a
nd

 w
or

kl
oa

d
at

ta
ck

s
bu

t n
o

ac
ce

ss
-p

at
te

rn
 a

tta
ck

Si
ze

, f
re

qu
en

cy
-c

ou
nt

, a
nd

 w
or

kl
oa

d
at

ta
ck

s
bu

t n
o

ac
ce

ss
-p

at
te

rn
 a

tta
ck

N
ot

 se
cu

re

N
ot

 se
cu

re

The x-axis shows the ratio between the selection query execution time on
encrypted data using a cryptographic technique and on cleartext data for a fixed
dataset on a specific database system (in both cases), and The y-axis shows
the security levels. Weak cryptographic techniques (e.g., deterministic encryption
(DET)) are very fast but provide no security (against output size, frequency-count,
access-patterns, and workload attacks), while access-pattern hiding techniques are
relatively secure but slow. The completely secure technique may retrieve the entire
dataset and process at the user-side but this technique is very slow. For join queries,
weak cryptographic techniques are efficient since they can exploit hash/merge
join. However, more secure techniques, since they need nested loop join, tends
to become worse. NDET denotes non-deterministic encryption.

Fig. 1. Comparing different cryptographic techniques.

First, cryptographic approaches that prevent leakage, e.g., fully homomorphic
encryption coupled with ORAM, simply do not scale to large data sets and com-
plex queries for them to be of practical value. Most of the above-mentioned tech-
niques are not developed to deal with a large amount of data and the correspond-
ing overheads of such techniques can be very high (see Fig. 1 comparing the time
taken for TPC-H selection queries under different cryptographic solutions). To
date, a scalable non-interactive mechanism for efficient evaluation of join queries
based on homomorphic encryption that does not leak information remains an
open challenge. Systems such as CryptDB [38] have tried to take a more practi-
cal approach by allowing users to explore the tradeoffs between the system func-
tionality and the security it offers. Unfortunately, precisely characterizing the
security offered by such systems given the underlying cryptographic approaches
have turned out to be extremely difficult. For instance, [28,35] show that when
order-preserving and deterministic encryption techniques are used together, on a
dataset in which the entropy of the values is not high enough, an attacker might
be able to construct the entire plaintext by doing a frequency analysis of the
encrypted data. While mechanisms based on secret-sharing [40] are potentially

Exploiting Data Sensitivity on Partitioned Data 277

more scalable, splitting data amongst multiple non-colluding cloud operators (an
assumption that is not valid in a general setting) incurs significant communica-
tion overheads and can only support a limited set of selection and aggregation
queries efficiently.

While the race to develop cryptographic solutions that (i) are efficient, (ii)
support complex SQL queries, (iii) offer provable security from the application’s
perspective is ongoing, this chapter departs from the above well-trodden path by
exploring a different (but complementary) approach to secure data processing by
partitioning a computation over either the hybrid cloud or the public cloud based
on the data classification into sensitive and non-sensitive data. We focus on an
approach for situations when only part of the data is sensitive, while the remain-
der (that may consist of the majority) is non-sensitive. In particular, we consider
a partitioned computation model that exploits such a classification of data
into sensitive/non-sensitive subsets to develop efficient data processing solutions
with provable security guarantees. Partitioned computing potentially pro-
vides significant benefits by (i) avoiding (expensive) cryptographic operations
on non-sensitive data, and, (ii) allowing query processing on non-sensitive data
to exploit indices.

The data classification into sensitive or non-sensitive may seem artifi-
cial/limiting at first, we refer to the readers to the ongoing dialogue in the
popular media [1,2] about cloud security and hybrid cloud that clearly identify
data classification policies to classify data as sensitive/non-sensitive as a key
strategy to securing data in a cloud. Furthermore, similar to the model consid-
ered in this chapter, such articles emphasize either storing sensitive data on a
private cloud while outsourcing the rest in the context of hybrid cloud or encrypt-
ing only the sensitive part of the data prior to outsourcing. Also, note that data
classification based on column-level sensitivity is not a new concept. Papers [9–
11,15–17] have explored many ways to outsource column-level partitioned data
to the cloud. However, these papers does not dictate a joint query execution on
two relations. Some recent database systems such as Jana1 and Opaque [45] are
exploring architectures will allow for only some parts of the data (that is sensi-
tive) to be encrypted while the remainder of the (non-sensitive) data remains in
plaintext, thereby supporting partitioned computing. That organizational data
can actually be classified as sensitive/non-sensitive is not difficult to see if we con-
sider specific datasets. For instance, in a university dataset, data about courses,
catalogs, location of classes, faculty and student enrollment would likely be not
considered sensitive, but information about someone’s SSN, or grade of the stu-
dent would be considered sensitive.

Contribution. Our contributions in this chapter are twofold:

Partition computation on the hybrid cloud. Our work is motivated by
recent works on the hybrid cloud that has exploited the fact that for a large
class of application contexts, data can be partitioned into sensitive and non-
sensitive components. Such a classification was exploited to build hybrid cloud

1 https://galois.com/research-development/cryptography/.

https://galois.com/research-development/cryptography/

278 S. Mehrotra et al.

solutions [29,36,37,43,44] that outsource only non-sensitive data and enjoy
both the benefits of the public cloud as well as strong security guarantees
(without revealing sensitive data to an adversary).

Partition computation on the public cloud. In the setting of the public
cloud, sensitive data is outsourced in an appropriate encrypted form, while
non-sensitive data can be outsourced in cleartext form. While partitioned
computing offers new opportunities for efficient and secure data processing
due to avoiding cryptographic approach on the non-sensitive data, it raises
several challenges when used in the public cloud. Specifically, the partitioned
approach introduces a new security challenge – that of leakage due to simul-
taneous execution of queries on the encrypted (sensitive) dataset and on the
plaintext (non-sensitive) datasets. In this chapter, we will study such a leak-
age (Sect. 3), a partitioned computing security definition in the context of the
public cloud (Sect. 3), and a way to execute partitioned data processing tech-
niques for selection queries (Sect. 4) that support partitioned data security
while exploiting existing cryptographic mechanisms for secure processing of
sensitive data and cleartext processing of non-sensitive data. Note that the
proposed approach can also be extended to other operations such as join or
range queries, which are provided in [33].

2 Partitioned Computations at the Hybrid Cloud

In this section, our goal is to develop an approach to execute SQL style queries
efficiently in a hybrid cloud while guaranteeing that sensitive data is not leaked to
the (untrusted) public machines. At the abstract level, the technique partitions
data and computation between the public and private clouds in such a way that
the resulting computation (i) minimizes the execution time, and (ii) ensures
that there is no information leakage. Information leakage, in general, could occur
either directly by exposing sensitive data to the public machines, or indirectly
through inferences that can be made based on selective data transferred between
public and private machines during the execution.

The problem of securely executing queries in a hybrid cloud naturally leads
to two interrelated subproblems:

Data distribution: How is data distributed between private and public clouds?
Data distribution depends on factors such as the amount of storage available
on private machines, expected query workload, and whether data and query
workload is largely static or dynamic.

Query execution: Given a data distribution strategy, how do we execute a
query securely and efficiently across the hybrid cloud, while minimizing the
execution time and obtaining the correct final outputs?

Since data is stored on public cloud in the clear text, data distribution strat-
egy must guarantee that sensitive data resides only on private machines. Non-
sensitive data, on the other hand, could be stored on private machines, public

Exploiting Data Sensitivity on Partitioned Data 279

machines, or be replicated on both. Given a data distribution, the query process-
ing strategy will split a computation between public and private machines while
simultaneously meeting the goals of good performance and secure execution.

2.1 Split Strategy

In order to ensure a secure query execution, we develop a split strategy for exe-
cuting SQL queries in the hybrid cloud setting. In a split strategy, a query Q
is partitioned into two subqueries that can be executed independently over the
private and the public cloud respectively, and the final results of the query can
be computed by appropriately merging the results of the two sub-queries. In
particular, a query Q on dataset D is split as follows:

Q(D) = Qmerge

(
Qpriv(Dpriv), Qpub(Dpub)

)

where Qpriv and Qpub are private and public cloud sub-queries respectively. Qpriv

is executed on the private subset of D (i.e., Dpriv); whereas Qpub is performed
over the public subset of D (i.e., Dpub). Qmerge is a private cloud merge sub-
query that reads the outputs of former two sub-queries as input and creates the
outputs equivalent to that of original Q. We call such an execution strategy as
split-strategy.

Two aspects of split-strategy are noteworthy:

1. It offers full security, since the public machines only have access to Dpub that
do not contain any sensitive data. Moreover, no information is exchanged
between private and public clouds during the execution of Qpub, resulting
in the execution at the public cloud to be observationally equivalent to the
situation where Dpriv could be any random data.

2. Split-strategy gains efficiency by executing Qpriv and Qpub in parallel at the
private and public cloud respectively, and furthermore, by performing inter-
cloud data transfer at most once throughout the query execution. Note that
the networks between private and public clouds can be significantly slower
compared to the networks used within clouds. Thus, minimizing the amount
of data shuffling between the clouds will have a big performance impact.

Split strategy, and its efficiency, depends upon the data distribution strategy
used to partition the data between private and public clouds. Besides storing
sensitive data, the private cloud must also store part of non-sensitive data (called
pseudo sensitive data) that may be needed on the private side to support efficient
query processing. For instance, a join query may necessitate that non-sensitive
data be available at the private node in case-sensitive records from one relation
may join with non-sensitive records in another. Since in the split-execution strat-
egy, the two subqueries execute independently with no communication, if we do
not store non-sensitive data at the private side, we will need to transfer entire
relation to the private side for the join to be computed as part of the merge
query.

280 S. Mehrotra et al.

Split-Strategy for Selection or Projection. An efficient split-strategy for
selection or projection operation is straightforward. In this case, Qpriv is equiva-
lent to the original query Q, but is performed only over sensitive records in Dpriv.
Likewise, Qpub = Q, but only runs over Dpub. Finally, Qmerge = Qpriv ∪ Qpub.

S

Name Region

Ma 1

James 2

Chris 1

R

Fruit Region

apple 1

grape 2

orange 1

T

Country Region

U.S 1

France 3

Japan 2

Fig. 2. Example relations.

Split-Strategy for Equijoin. An efficient split-strategy for performing a join
query such as Q = R ��

C
S is more complex. To see this, consider the relations R

and S as shown above in Fig. 2, where sensitive portions of R and S are denoted
as Rs and Ss, respectively, and remaining fraction of them are non-sensitive,
denoted as Rns and Sns, and the join condition is C = (R.region = S.Region).
Let us further assume that Rns and Sns, besides being stored in the public cloud
are also replicated on the private cloud.

The naive split-strategy for R ��
C

S would be:

– Qpub = Rns ��
C

Sns

– Qpriv = (Rs ��
C

Ss) ∪ (Rs ��
C

Sns) ∪ (Rns ��
C

Ss).

Note that if Q is split as above, Qpriv consists of three subqueries which scan
2, 3, and 3 tuples in R and S respectively resulting in 8 tuples to be scanned
and joined. In contrast, if we simply executed the query Q on the private side
(notice that we can do so, since R and S are fully stored on the private side),
it would result in lower cost requiring scan of 6 tuples on the private side.
Indeed, the overhead of the above split strategy increases even further if we
consider multiway joins (e.g., R ��

C
S ��

C′
T) compared to simply implementing

the multiway join locally. Thus, if we use split-strategy for computing R ��
C

S ��
C′

T , where C ′ is S.Region = T.Region, then the number of tuples that are

scanned/joined in the private cloud will be much higher than that of the original
query.

A Modified Approach for Equijoin. The cost of executing Q in the private
cloud can be significantly reduced by pre-filtering relations R and S based on
sensitive records of the other relation. To perform such a pre-filtering operation,
the tuples in the relations Rns and Sns have to be co-partitioned based on
whether they join with a sensitive tuple from the other table under condition C
or not.

Exploiting Data Sensitivity on Partitioned Data 281

Let RS
ns be a set of non-sensitive tuples of R that join with any sensitive

tuple in S. In our case, RS
ns = 〈apple, 1〉. Similarly, let SR

ns be non-sensitive
tuples of S that join with any record from Rs, i.e., 〈Chris, 1〉. In that case, the
new private side computation can be rewritten as:

(Rs ∪ RS
ns) ��

C
(Ss ∪ SR

ns). (1)

Thus, the scan and join cost of this new plan at the private cloud is 4, which is
lower compared to computing the query entirely on the private side that had a
cost of 6.

Guarded Join. The above mentioned modified strategy, nonetheless, introduces
a new challenge. Since RS

ns ��
C

SR
ns is both repeated at public and private cloud,

the output of RS
ns ��

C
SR

ns, 〈apple, Chris, 1〉, is computed on both private and

public clouds. To prevent this, we do a guarded join (��′) on the private cloud,
which discards the output, if it is generated via joining two non-sensitive tuples.
This feature can easily be implemented by adding a column to R and S that
marks the sensitivity status of a tuple, whether it is sensitive or non-sensitive,
and then by adding an appropriate selection after the join operation. In other
words, the complete representation of private side computation for R ��

C
S would

be
σR.sens=true∨S.sens=true((Rs ∪ RS

ns) ��
C

(Ss ∪ SR
ns)) (2)

where sens is a boolean column (or partition id) appended to relations R and S
on the private cloud. Assume that it is set to true for sensitive records and false
for non-sensitive records.

Challenges. There exist multiple challenges in implementing this new approach.
First challenge is the cost of creating RS

ns and SR
ns beforehand. Extracting these

partitions for a query might take as much time as executing the original query.
However, the costs are amortized since these relations are computed once, and
used multiple times to improve join performance at the private cloud.

The second challenge is the creation of co-partitioning tables for complex
queries. For instance, in case of a query R ��

C
S ��

C′
T , the plan would be to first

compute results of R ��
C

S, and then to join them with T . However, if we do the

private side computation of R ��
C

S, based on Eq. 1 (no duplicate filtering) and

join the results with T , then we will not be able to obtain the complete set of
sensitive R ��

C
S ��

C′
T results.

To see this, consider the sensitive record (in Fig. 2) 〈Japan, 2〉 in T that
joins with non-sensitive 〈grape, 2〉 tuple in R − RS

ns or joins with non-sensitive
〈James, 2〉 tuple from S − SR

ns. Thus, the non-sensitive records of R and S has
to be co-partitioned based on the sensitive records of T via their join paths from
T . In R ��

C
S ��

C′
T , the join path from T to R is T ��

C′
S ��

C
R and from T to S is

T ��
C′

S. Similarly, the non-sensitive T records has to be co-partitioned based on

the sensitive R and S records via join paths specified in the query.

282 S. Mehrotra et al.

Final challenge is in maintaining these co-partitions and feeding the right
one when an arbitrary query arrives. Given a workload of queries and multiple
possible join paths between any two relations, each relation R in the dataset may
need to be co-partitioned multiple times. This implies that any non-sensitive
record r of R might appear in more than one co-partition of R. So, maintaining
each co-partition separately might be unfeasible in terms of storage. However,
the identifiers of each co-partition that record r belongs to can be embedded into
r as a new column. We call such a column as the co-partition (CPT) column.
Note that CPT column is only defined on the private cloud data, since revealing
it to public cloud would violate our security requirement.

CPT column initially will be set to null for sensitive tuples in the private side,
since the co-partitions are only for non-sensitive tuples. Thus, it can further be
used to serve another purpose, indicating the sensitivity status of a tuple r by
setting it to “sens” only for sensitive tuples.

Join Path. To formalize the concept of co-partitioning, we first need to define
the notion of join path. Let Ri be a relation in our dataset D, and let Q be a
query over the relation Ri. We say a join path exists from a relation Rj to Ri,
if either Ri is joined with Rj directly based on a condition C, i.e., Rj ��

C
Ri,

or Rj is joined with Ri indirectly using other relations in Q. A join path p can
be represented as a sequence of relations and conditions between Rj and Ri

relations. Let PathSet be the set of all join paths that are extracted either from
the expected workload or a given dataset schema.

PathSeti = {∀p ∈ PathSet : path p ends at relation Ri}. (3)

Let CP (Ri, p) be the set of non-sensitive Ri records that will be joined with
at least one sensitive record from any other relation Rj via the join path p. Note
that p starts from Rj and ends at Ri that can be used as an id to CP (Ri, p).
Any CP (Ri, p) is called as “co-partition” of Ri. Given these definitions, the CPT
column of a Ri record, say r, can be defined as:

r.CPT =

{
sens if r is sens.
{∀p ∈ PathSeti : r ∈ CP (Ri, p)} otherwise

(4)

Figure 3 shows our example R, S and T relations with their CPT column.
For instance, the join path R �� S will be appended to the CPT column of all
the tuples in SR

ns. Additionally, the CPT column of all tuples in Rs will be set
to sens.

2.2 Experimental Analysis

To study the impact of table partitioning discussed in the previous section, we
differentiate between two realizations of our strategy: in our first technique,
entitled (CPT-C), every record in a table at the private cloud contains a CPT
column and they are physically stored together; whereas in our second approach,

Exploiting Data Sensitivity on Partitioned Data 283

T

Country Region CPT

U.S 1

Japan 2 sens

France 3 null

S

Name Region CPT

Ma 1 sens

James 2

Chris 1

R

Fruit Region CPT

apple 1

grape 2 T

orange 1 sens

Fig. 3. Example relations with the CPT columns.

entitled CPT-P, the tables are partitioned based on their record’s CPT column
and each partition is stored separately. Each partition file then appended to
the corresponding Hive table as a separate partition, so at querying stage, Hive
filters out the unnecessary partitions for that particular query.

Sensitive Data Ratio. For these experiments, we varied the amount of sensi-
tive records (1, 5, 10, 25, 50%) in customer and supplier tables. Also, we set the
number of public machines to 36. As expected, Fig. 4 shows that a larger percent-
age of sensitive data within the input leads to a longer workload execution time
for both, CPT-C and CPT-P in Hadoop and Spark. The reason behind this is
that a higher sensitive data ratio results in more computations being performed
on the private side and implies a longer query execution time in split-strategy.
When the sensitivity ratio increases, CPT-P’s scan cost increases dramatically.
Since the scan cost of queries is the dominant factor compared to other opera-
tors (join, filtering etc.) in Spark, CPT-C provides a very low-performance gain
compared to All-Private in Spark. Because the scan cost of these two approaches
is same. Overall, when sensitivity ratio is as low as 1%, CPT-P provides 8.7×
speed-up in Hadoop and 5× speed-up in Spark compared to All-Private.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

1 5 10 25 50W
or

kl
oa

d
R

un
ni

ng
 T

im
e

(s
ec

)

Sensitive Data Ratio (%)

Hadoop 200GB

CPT-P
All-Private
All-Public

 0

 2000

 4000

 6000

 8000

 10000

1 5 10 25 50W
or

kl
oa

d
R

un
ni

ng
 T

im
e

(s
ec

)

Sensitive Data Ratio (%)

Spark 200GB

Fig. 4. Running times for different sensitivity ratios.

Recall that we created the CPT column using a Spark job for CPT-C solution.
We then physically partitioned tables for CPT-P solution. Figure 5 shows how
much time we spent in preparing private cloud data for both CPT-C and CPT-
P. It also indicates the gains of these approaches compared to All-Private in
terms of the overall workload execution time. As indicated in Fig. 5, until 25%

284 S. Mehrotra et al.

 0
 4000
 8000

 12000
 16000
 20000
 24000
 28000
 32000

1 5 10 25 50

T
im

e
(s

ec
)

Sensitive Data Ratio (%)

Hadoop 200GB

CPT-P Create
CPT-P Gain

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

1 5 10 25 50

T
im

e
(s

ec
)

Sensitive Data Ratio (%)

Spark 200GB

Fig. 5. The CPT column’s creation for different sensitivity ratios.

 0
 10
 20
 30
 40
 50
 60

 80

 100

1 5 10 25 50

R
at

io
 to

 A
ll

D
at

a
(%

)

Sensitive Data Ratio (%)

Data Ratio 20GB

Pseudosensitive

Fig. 6. Comparison of pseudo-sensitive data and sensitivity ratio.

sensitivity, CPT-P’s data preparation time is less than that of performance gain
in Hadoop; whereas in Spark, data preparation time is always higher than the
performance gain for both CPT-P and CPT-C. Note that, we prepare the CPT
column only once on a static data for an expected workload that will more likely
be executed more than once with different selection and projection conditions.
In Spark, if the sensitivity ratio is as high as 10%, executing the workload more
than once will be enough for the performance gain of CPT-P solution to be
higher than the overhead of data preparation time.

Size of Private Storage. Besides storing sensitive data, in our technique,
we also store pseudo-sensitive data on the private cloud. This enables us to
execute queries in a partitioned manner while minimizing expensive inter-cloud
communication during query execution. In Fig. 6, we plot the size of pseudo-
sensitive data as a percentage of total database size at different sensitivity levels.
We note that even when sensitivity levels are as high as 5–10%, the pseudo-
sensitive data remains only a fraction (15–25% of the total data). At smaller
sensitivity levels, the ratio is much smaller.

2.3 Other Approaches to Partitioned Computing

The discussion above focused on partitioned computing in hybrid clouds in the
context of SQL queries and is based primarily on the work that appeared in [36].

Exploiting Data Sensitivity on Partitioned Data 285

Several other approaches to partitioned computing in the hybrid cloud have also
been developed in the literature that, similar to the above-mentioned method,
offer security by controlling data distribution between private and public clouds.
Many of these approaches [29,37,43,44] have been developed in the context of
MapReduce job execution, and they address security at a lower level compared
to the approach defined above, which is at SQL level. Note that one could,
potentially, transform SQL/Hive queries into lower level MapReduce jobs and
run such MapReduce jobs using privacy preserving extensions. There are several
limitations of such an approach, however, and we refer the reader to [36] for
a detailed discussion of the limitations of such an approach and to [14] for a
detailed survey on the hybrid cloud based MapReduce security.

3 Partitioned Computations at the Public Cloud
and Security Definition

In this section, we define the partitioned computation, illustrate how such a
computation can leak information due to the joint processing of sensitive and
non-sensitive data, discuss the corresponding security definition, and finally dis-
cuss system and adversarial models under which we will develop our solutions.

Partitioned Computations

Let R be a relation that is partitioned into two sub-relations, Re ⊇ Rs and
Rp ⊆ Rns , such that R = Re ∪ Rp. The relation Re contains all the sensitive
tuples (denoted by Rs) of the relation R and will be stored in encrypted form
in the cloud. Note that Re may contain additional (non-sensitive) tuples of R,
if that helps with secure data processing). The relation Rp refer to the sub-
relation of R that will be stored in plaintext on the cloud. Naturally, Rp does
not contain any sensitive tuples. For the remainder of the chapter, we will assume
that Re = Rs and Rp = Rns, though our approach will be generalized to allow for
a potentially replicated representation of non-sensitive data in encrypted form,
if it helps to evaluate queries more efficiently. Let us consider a query Q over
relation R. A partition computation strategy splits the execution of Q into two
independent sub-queries: Qs: a query to be executed on E(Re) and Qns : a query
to be executed on Rp. The final results are computed (using a query Qmerge) by
appropriately merging the results of the two sub-queries at the trusted database
(DB) owner side (or in the cloud, if a trusted component, e.g., Intel SGX, is
available for such a merge operation). In particular, the query Q on a relation
R is partitioned, as follows:

Q(R) = Qmerge

(
Qs(Re), Qns(Rp)

)

Let us illustrate partitioned computations through an example.

286 S. Mehrotra et al.

EId FirstName LastName SSN Office# Department
t1 E101 Adam Smith 111 1 Defense
t2 E259 John Williams 222 2 Design
t3 E199 Eve Smith 333 2 Design
t4 E259 John Williams 222 6 Defense
t5 E152 Clark Cook 444 1 Defense
t6 E254 David Watts 555 4 Design
t7 E159 Lisa Ross 666 2 Defense
t8 E152 Clark Cook 444 3 Design

Fig. 7. A relation: Employee.

Example 1. Consider an Employee relation, see Fig. 7. In this relation, the
attribute SSN is sensitive, and furthermore, all tuples of employees for the
Department = “Defense” are sensitive. In such a case, the Employee relation
may be stored as the following three relations: (i) Employee1 with attributes
EId and SSN (see Fig. 8); (ii) Employee2 with attributes EId, FirstName, Last-
Name, Office#, and Department, where Department =“Defense” (see Fig. 9);
and (iii) Employee3 with attributes EId, FirstName, LastName, Office#, and
Department, where Department <> “Defense” (see Fig. 10). Since the relations
Employee1 and Employee2 (Figs. 8 and 9) contain only sensitive data, these two
relations are encrypted before outsourcing, while Employee3 (Fig. 10), which
contains only non-sensitive data, is outsourced in clear-text. We assume that
the sensitive data is strongly encrypted such that the property of ciphertext
indistinguishability (i.e., an adversary cannot distinguish pairs of ciphertexts) is
achieved. Thus, the two occurrences of E152 have two different ciphertexts.

EId SSN
t1 E101 111
t2 E259 222
t3 E199 333
t5 E152 444
t6 E254 555
t7 E159 666

Fig. 8. A sensitive relation: Employee1.

Consider a query Q: SELECT FirstName, LastName, Office#,
Department from Employee where FirstName = ’’John’’. In partitioned
computation, the query Q is partitioned into two sub-queries: Qs that executes
on Employee2, and Qns that executes on Employee3. Qs will retrieve the tuple
t4 while Qns will retrieve the tuple t2. Qmerge in this example is simply a union

Exploiting Data Sensitivity on Partitioned Data 287

EId FirstName LastName Office# Department
t1 E101 Adam Smith 1 Defense
t4 E259 John Williams 6 Defense
t5 E152 Clark Cook 1 Defense
t7 E159 Lisa Ross 2 Defense

Fig. 9. A sensitive relation: Employee2.

EId FirstName LastName Office# Department
t2 E259 John Williams 2 Design
t3 E199 Eve Smith 2 Design
t6 E254 David Watts 4 Design
t8 E152 Clark Cook 3 Design

Fig. 10. A non-sensitive relation: Employee3.

operator. Note that the execution of the query Q will also retrieve the same
tuples.

Inference Attack in Partitioned Computations

Partitioned computations, if performed naively, could lead to inferences about
sensitive data from non-sensitive data. To see this, consider following three
queries on the Employee2 and Employee3 relations: (i) retrieve tuples of the
employee Eid = E259, (ii) retrieve tuples of the employee Eid = E101, and
(iii) retrieve tuples of the employee Eid = E199. We consider an honest-but-
curious adversarial cloud that returns the correct answers to the queries but
wishes to know information about the encrypted sensitive tables, Employee1
and Employee2.

Table 1 shows the adversary’s view based on executing the corresponding Qs

and Qns components of the above three queries assuming that the tuple retriev-
ing cryptographic approaches are not hiding access-patterns. During the execu-
tion, the adversary gains complete knowledge of non-sensitive tuples returned,
and furthermore, knowledge about which encrypted tuples are returned as a
result of Qs (E (ti) in the table refers to the encrypted tuple ti).

Given the above adversarial view, the adversary learns that employee E259
has tuples in both Ds (= De) and Dp (= Dns). Coupled with the knowledge
about data partitioning, the adversary can learn that E259 works in both sensi-
tive and non-sensitive departments. Moreover, the adversary learns which sensi-
tive tuple has an Eid equals to E259. From the 2nd query, the adversary learns
that E101 works only in a sensitive department, (since the query did not return
any answer from the Employee3 relation). Likewise, from the 3rd query, the
adversary learns that E199 works only in a non-sensitive department.

In order to prevent such an attack, we need a new security definition. Before
we discuss the formal definition of partitioned data security, we first provide

288 S. Mehrotra et al.

Table 1. Queries and returned tuples/adversarial view.

Query value Returned tuples/adversarial view

Employee2 Employee3

E259 E(t4) t2

E101 E(t1) Null

E199 Null t3

intuition for the definition. Observe that before retrieving any tuple, under the
assumption that no one except the DB owner can decrypt an encrypted sensitive
value, say E(si), the adversary cannot learn which non-sensitive value is identical
to cleartext value of E(si); let us denote si as cleartext of E(si). Thus, the
adversary will consider that the value si is identical to one of the non-sensitive
values. Based on this fact, the adversary can create a complete bipartite graph
having |S| nodes on one side and |NS | nodes on the other side, where |S| and
|NS | are a number of sensitive and non-sensitive values, respectively. The edges
in the graph are called surviving matches of the values. For example, before
executing any query, the adversary can create a bipartite graph for 4 sensitive
and 4 non-sensitive values of EID attribute of Example 1; as shown in Fig. 11.

Sensitive
values

Non-sensitive
values

E101
E259
E152
E159

E259
E199

E254
E152

Fig. 11. A bipartite graph showing an initial condition sensitive and non-sensitive
values before query execution.

The query execution on the datasets creates an adversarial view that guides
the adversary to create a (new) bipartite graph of the same number of nodes on
both sides. The requirement is to preserve all the edges of the initial bipartite
graph in the graph obtained after the query execution, leading to the initial
condition that the cleartext of the value E(si) is identical to one of the non-
sensitive values. Note that if the query execution removes any surviving matches
of the values, it will leak that the value si is not identical to those non-sensitive
values.

We also need to hide occurrences of a sensitive value. Before a query execu-
tion, due to ciphertext indistinguishability, all occurrences of a single sensitive
value are different, but a simple search or join query may reveal how many
tuples have the same value. Based on the above two requirements, we can define
a notion of partitioned data security.

Exploiting Data Sensitivity on Partitioned Data 289

Partitioned Data Security at the Public Cloud

Let R be a relation containing sensitive and non-sensitive tuples. Let Rs and
Rns be the sensitive and non-sensitive relations, respectively. Let q(Rs, Rns)[A]
be a query, q, over an attribute A of the Rs and Rns relations. Let X be the
auxiliary information about the sensitive data, and PrAdv be the probability of
the adversary knowing any information. A query execution mechanism ensures
the partitioned data security if the following two properties hold:

– PrAdv [ei
a= nsj |X] = PrAdv [ei

a= nsj |X, q(Rs, Rns)[A]], where ei = E(ti)[A]
is the encrypted representation for the attribute value A for any tuple ti of the
relation Rs and nsj is a value for the attribute A for any tuple of the relation
Rns . The notation a= shows a sensitive value is identical to a non-sensitive
value. This equation captures the fact that an initial probability of linking
a sensitive tuple with a non-sensitive tuple will be identical after executing
several queries on the relations.

– PrAdv [vi
r∼ vj |X] = PrAdv [vi

r∼ vj |X, q(Rs, Rns)[A]], for all vi, vi ∈
Domain(A). The notation r∼ shows a relationship between counts of the num-
ber of tuples with sensitive values. This equation states that the probability of
adversary gaining information about the relative frequency of sensitive values
does not increase by the query execution.

The definition above formalizes the security requirement of any partitioned
computation approach. Of course, a partitioned approach, besides being secure,
must also be correct in that it returns the same answer as that returned by the
original query Q if it were to execute without regard to security.

4 Query Binning: A Technique for Partitioned
Computations Using a Cryptographic Technique at the
Public Cloud

In this section, we will study query binning (QB) as a partitioned computing
approach. QB is related to bucketization, which is studied in past [25]. While
bucketization was carried over the data in [25], QB performs bucketization on
queries. In general, one may ask more queries than original query while adding
overhead but it prevents the above-mentioned inference attack. We study QB
under some assumption and setting, given below.2.

Problem Setup. We assume the following two entities in our model: (i)
A database (DB) owner : who splits each relation R in the database having
attributes Rs and Rns containing all sensitive and non-sensitive tuples, respec-
tively. (ii) A public cloud : The DB owner outsources the relation Rns to a pub-
lic cloud. The tuples in Rs are encrypted using any existing mechanism before

2 Some of these assumptions are made primarily for ease of the exposition and will be
relaxed in [33].

290 S. Mehrotra et al.

outsourcing to the same public cloud. However, in the approach, we use non-
deterministic encryption, i.e., the cipher representation of two occurrences of an
identical value has different representations.

DB Owner Assumptions. In our setting, the DB owner has to store some
(limited) metadata such as searchable values and their frequency counts, which
will be used for appropriate query formulation. The DB owner is assumed to
have sufficient storage for such metadata, and also computational capabilities
to perform encryption and decryption. The size of metadata is exponentially
smaller than the size of the original data.

Adversarial Model. The adversary (i.e., the untrusted cloud) is assumed to be
honest-but-curious, which is a standard setting for security in the public cloud
that is not trustworthy. An honest-but-curious adversarial public cloud, thus,
stores an outsourced dataset without tampering, correctly computes assigned
tasks, and returns answers; however, it may exploit side knowledge (e.g., query
execution, background knowledge, and the output size) to gain as much infor-
mation as possible about the sensitive data. Furthermore, the adversary can
eavesdrop on the communication channels between the cloud and the DB owner,
and that may help in gaining knowledge about sensitive data, queries, or results.
The adversary has full access to the following information: (i) all non-sensitive
data outsourced in plaintext, and (ii) some auxiliary information of the sensitive
data. The auxiliary information may contain the metadata of the relation and
the number of tuples in the relation. Furthermore, the adversary can observe
frequent query types and frequent query terms on the non-sensitive data in case
of selection queries. The honest-but-curious adversary, however, cannot launch
any attack against the DB owner.

Assumptions for QB. We develop QB initially under the assumption that
queries are only on a single attribute, say A. The QB approach takes as inputs:
(i) the set of data values (of the attribute A) that are sensitive along with their
counts, and (ii) the set of data values (of the attribute A) that are non-sensitive,
along with their counts. The QB returns a partition of attribute values that form
the query bins for both the sensitive as well as for the non-sensitive parts of the
query.

In this chapter, we also restrict to a case when a value has at most two tuples,
where one of them must be sensitive and the other one must be non-sensitive,
but both the tuples cannot be sensitive or non-sensitive. The scenario depicted
in Example 1 satisfies this assumption. The EId attribute values corresponding
to sensitive tuples include 〈E101, E259, E152, E159〉 and from the non-sensitive
relation values are 〈E199, E259, E152, E254〉. Note that all the values occur only
one time in one set.

Full Version. In this chapter, we restrict the algorithm for selection query only
on one attribute. The full details of the algorithm, extensions of the algorithm
for values having a different number of tuples, conjunctive, range, join, insert
queries, and dealing with the workload-skew attack is addressed in [33]. Further,

Exploiting Data Sensitivity on Partitioned Data 291

the computing cost analysis and efficiency analysis of QB at different or identical-
levels of security against a pure cryptographic technique is given in [33].

The Approach. We develop an efficient approach to execute selection queries
securely (preventing the information leakage as shown in Example 1) by appro-
priately partitioning the query at a public cloud, where sensitive data is cryp-
tographically secure while non-sensitive data stays in cleartext. For answering a
selection query, naturally, we use any existing cryptographic technique on sensi-
tive data and a simple search on the cleartext non-sensitive data. Naturally, we
can use a secure hardware, e.g., Intel SGX, for all such operations; however, as
mentioned in Sect. 1 Fig. 1, SGX-based processing takes a significant amount of
time, due to limited space of the enclave.

Informally, QB distributes attribute values in a matrix, where rows are sensi-
tive bins, and columns are non-sensitive bins. For example, suppose there are 16
values, say 0, 1, . . . , 15, and assume all the values have sensitive and associated
non-sensitive tuples. Now, the DB owner arranges 16 values in a 4 × 4 matrix,
as follows:

NSB0 NSB1 NSB2 NSB3

SB0 11 2 5 14

SB1 10 3 8 7

SB2 0 15 6 4

SB3 13 1 12 9

In this example, we have four sensitive bins: SB0 {11, 2, 5, 14},SB1 {10, 3, 8,
7},SB2 {0, 15, 6, 4},SB3 {13, 1, 12, 9}, and four non-sensitive bins: NSB0

{11, 10, 0, 13},NSB1 {2, 3, 15, 1},NSB2 {5, 8, 6, 12},NSB3 {14, 7, 4, 9}. When a
query arrives for a value, say 1, the DB owner searches for the tuples containing
values 2,3,15,1 (viz. NSB1) on the non-sensitive data and values in SB3 (viz.,
13, 1, 12, 9) on the sensitive data using the cryptographic mechanism integrated
into QB. While the adversary learns that the query corresponds to one of the
four values in NSB1, since query values in SB3 are encrypted, the adversary
does not learn any sensitive value or a non-sensitive value that is identical to a
clear-text sensitive value.

Formally, QB appropriately maps a selection query for a keyword w, say q(w),
to corresponding queries over the non-sensitive relation, say q(Wns)(Rns), and
encrypted relation, say q(Ws)(Rs). The queries q(Wns)(Rns) and q(Ws)(Rs),
each of which represents a set of query values that are executed over the rela-
tion Rns in plaintext and, respectively, over the sensitive relation Rs, using the
underlying cryptographic method. The sets Wns from Rns and Ws from Rs are
selected such that: (i) w ∈ q(Wns)(Rns)∩q(Ws)(Rs) to ensure that all the tuples
containing w are retrieved, and, (ii) the execution of the queries q(Wns)(Rns)
and q(Ws)(Rs) does not reveal any information (and w) to the adversary. The set
of q(Wns)(Rns) is entitled non-sensitive bins, and the set of q(Ws)(Rs) is entitled

292 S. Mehrotra et al.

Algorithm 1. Bin-creation algorithm, the base case.
Inputs: |NS |: the number of values in the non-sensitive data, |S|: the number
of values in the sensitive data.
Outputs: SB : sensitive bins; NSB : non-sensitive bins

1 Function create bins(S ,NS) begin
2 Permute all sensitive values
3 x, y ← approx sq factors(|NS |): x ≥ y
4 |NSB | ← x, NSB ← �|NS |/x�, SB ← x, |SB | ← y
5 for i ∈ (1, |S|) do SB [i modulo x][∗] ← S[i]
6 for (i, j) ∈ (0,SB − 1), (0, |SB | − 1) do

NSB [j][i] ← allocateNS(SB [i][j])
7 for i ∈ (0,NSB − 1) do NSB [i][∗] ← fill the bin if empty with the size limit

to x
8 return SB and NSB

end
9 Function allocateNS(SB [i][j]) begin

find a non-sensitive value associated with the jth sensitive value of the ith

sensitive bin
end

sensitive bins. Algorithm 1 provides pseudocode of bin-creation method.3 Results
from the execution of the queries q(Wns)(Rns) and q(Ws)(Rs) are decrypted,
possibly filtered, and merged to generate the final answer.

Based on QB Algorithm 1, for answering the above-mentioned three queries
in Example 1, given in Sect. 2, Algorithm 1 creates two sets or bins on sensitive
parts: sensitive bin 1, denoted by SB1, contains {E101, E259}, sensitive bin 2,
denoted by SB2, contains {E152, E159}, and two sets/bins on non-sensitive parts:
non-sensitive bin 1, denoted by NSB1, contains {E259, E254}, non-sensitive bin
2, denoted by NSB2, contains {E199, E152}.

Table 2. Queries and returned tuples/adversarial view when following QB.

Query value Returned tuples/adversarial view

Employee1 Employee2

E259 E(t4), E(t1) t2, t6

E101 E(t4), E(t1) t3, t8

E199 E(t4), E(t1) t3, t8

Algorithm 2 provides a way to retrieve the bins. Thus, by following Algo-
rithm2, Table 2 shows that the adversary cannot know the query value w or
3 The function approx sq factors in Algorithm 1 two factors x and y of a number n,

such that either they are equal or close to each other so that the difference between
x and y is less than the difference between any two factors of n (and x × y = n).

Exploiting Data Sensitivity on Partitioned Data 293

Algorithm 2. Bin-retrieval algorithm.
Inputs: w: the query value.
Outputs: SBa and NSBb: one sensitive bin and one non-sensitive bin to be
retrieved for answering w.
Variables: found ← false

1 Function retrieve bins(q(w)) begin
2 for (i, j) ∈ (0,SB − 1), (0, |SB | − 1) do

if w = SB i[j] then
3 return SB i and NSBj ; found ← true; break

end

end
4 if found �= true then
5 for (i, j) ∈ (0,NSB − 1), (0, |NSB | − 1) do
6 if w = NSB i[j] then

return NSB i and SBj ; break
end

end

end
7 Retrieve the desired tuples from the cloud by sending encrypted values of

the bin SB i (or SBj) and clear-text values of the bin NSBj (or NSB i) to
the cloud

end

find a value that is shared between the two sets, when answering to the above-
mentioned three queries. The reason is that the desired query value, w, is
encrypted with other encrypted values of the set Ws, and, furthermore, the
query value, w, is obscured in many requested non-sensitive values of the set
Wns , which are in cleartext. Consequently, the adversary is unable to find an
intersection of the two sets, which is the exact value. Thus, while answering a
query, the adversary cannot learn which employee works only in defense, design,
or in both.

Correctness. The correctness of QB indicates that the approach maintains an
initial probability of associating a sensitive tuple with a non-sensitive tuple will
be identical after executing several queries on the relations.

We can illustrate the correctness of QB with the help of an example. The
objective of the adversary is to deduce a clear-text value corresponding to an
encrypted value of either {E101, E259} or {E152, E159}, since we retrieve the
set of these two values. Note that before executing a query, the probability of an
encrypted value, say Ei, (where Ei may be E101, E259, E152, or E159) to have
the clear-text value is 1/4, which QB maintains at the end of a query. Assume
that E1 and E2 are encrypted representations of E101 and E259, respectively.
Also, assume that v1, v2, v3, v4 are showing the cleartext value of E259, E254,
E199, and E152, respectively.

When the query arrives for 〈E1, E2, v1, v2〉, the adversary gets the fact that
the clear-text representation of E1 and E2 cannot be v1 and v2 or v3 and v4.

294 S. Mehrotra et al.

If this will happen, then there is no way to associate each sensitive bin of the
new bipartite graph with each non-sensitive bin. Now, if the adversary considers
the clear-text representation of E1 is v1, then the adversary have four possible
allocations of the values v1, v2, v3, v4 to E1, E2, E3, E4, such as: 〈v1, v2, v3, v4〉,
〈v1, v2, v4, v3〉, 〈v1, v3, v4, v2〉, 〈v1, v4, v3, v2〉.

Since the adversary is not aware of the exact clear-text value of E1, the
adversary also considers the clear-text representation of E1 is v2, v3, or v4. This
results in 12 more possible allocations of the values v1, v2, v3, v4 to E1, E2,
E3, E4. Thus, the retrieval of the four tuples containing one of the following:
〈E1, E2, v1, v2〉, results in 16 possible allocations of the values v1, v2, v3, and v4
to E1, E2, E3, and E4, of which only four possible allocations have v1 as the
clear-text representation of E1. This results in the probability of finding E1 = v1
is 1/4.

Note that following this technique, executing queries under for each keyword
will not eliminate any surviving matches of the bipartite graph, and hence, the
adversary can find the new bipartite graph identical to a bipartite graph before
the query execution. Figure 11 shows an initial bipartite graph before the query
execution and Fig. 12 shows a bipartite graph after the query execution when
creating bins on the values. Note that in Fig. 12 each sensitive bin is linked to
each non-sensitive bin, that in turns, shows that each sensitive value is linked to
each non-sensitive value.

Sensitive
values

Non-sensitive
values

E101
E259
E152
E159

E152
E199

E254
E259

SB1

SB2

NSB1

NSB2

Fig. 12. A bipartite graph showing sensitive and non-sensitive bins after query execu-
tion, where each sensitive value gets associated with each non-sensitive value.

5 Effectiveness of QB

From the performance perspective, QB results in saving of encrypted data pro-
cessing over non-sensitive data – the more the non-sensitive data, the more
potential savings. Nonetheless, QB incurs overhead – it converts a single pred-
icate selection query into a set of predicates selection queries over cleartext
non-sensitive data, and, a set of encrypted predicates selection queries albeit
over a smaller database consisting only of sensitive data. In this section, we
compare QB against a pure cryptographic technique and show when using QB
is beneficial.

For our model, we will need the following notations: (i) Ccom : Communi-
cation cost of moving one tuple over the network. (ii) Cp (or Ce): Processing

Exploiting Data Sensitivity on Partitioned Data 295

cost of a single selection query on plaintext (or encrypted data). In addition, we
define three parameters:

α: is the ratio between the sizes of the sensitive data (denoted by S) and the
entire dataset (denoted by S + NS , where NS is non-sensitive data).

β: is the ratio between the predicate search time on encrypted data using a
cryptographic technique and on clear-text data. The parameter β captures
the overhead of a cryptographic technique. Note that β = Ce/Cp.

γ: is the ratio between the processing time of a single selection query on
encrypted data and the time to transmit the single tuple over the network
from the cloud to the DB owner. Note that γ = Ce/Ccom .

Based on the above parameters, we can compute the cost of cryptographic
and non-cryptographic selection operations as follows:

Costplain(x,D) is the sum the processing cost of x selection queries on plaintext
data and the communication cost of moving all the tuples having x predicates
from the cloud to the DB owner, i.e., x(log(D)Pp + ρDCcom).

Costcrypt(x,D) is the sum the processing cost of x selection queries on encrypted
data and the communication cost of moving all the tuples having x predicates
from the cloud to the DB owner, i.e., PeD + ρxDCcom , where ρ is the selec-
tivity of the query. Note that cost of evaluating x queries over encrypted data
using techniques such as [20,22,41], is amortized and can be performed using
a single scan of data. Hence, x is not the factor in the cost corresponding to
encrypted data processing.

Given the above, we define a parameter η that is the ratio between the com-
putation and communication cost of searching using QB and the computation
and communication cost of searching when the entire data (viz. sensitive and
non-sensitive data) is fully encrypted using the cryptographic mechanism.

η =
Costcrypt(|SB |, S)
Costcrypt(1,D)

+
Costplain(|NSB |,NS)

Costcrypt(1,D)

Filling out the values from above, the ratio is:

η =
CeS + |SB |ρDCcom

CeD + ρDCcom
+

|NSB | log(D)Cp + |NSB |ρDCcom

CeD + ρDCcom

Separating out the communication and processing costs, η becomes:

η =
S

D

Ce

Ce + ρCcom
+

|NSB | log(D)Cp

CeD + ρDCcom
+

ρDCcom(|NSB | + |SB |)
CeD + ρDCcom

Substituting for various terms and cancelling common terms provides:

η = α
1

(1 + ρ
γ)

+
log(D)

D

|NSB|
β(1 + ρ

γ)
+

ρ

γ

|NSB | + |SB |
(1 + ρ

γ)

296 S. Mehrotra et al.

Note that ρ/γ is very small, thus the term (1 + ρ/γ) can be substituted by 1.
Given the above, the equation becomes:

η = α + log(D)|NSB/Dβ + ρ(|NSB | + |SB |)/γ

Note that the term log(D)|NSB |/Dβ is very small since |NSB | is the number of
distinct values (approx. equal to

√|NS |) in a non-sensitive bin, while D, which
is the size of a database, is a large number, and β value is also very large. Thus,
the equation becomes:

η = α + ρ(|SB | + |NSB |)/γ

QB is better than a cryptographic approach when η < 1, i.e., α + ρ(|SB | +
|NSB |)/γ < 1. Thus,

α < 1 − ρ(|SB | + |NSB |)
γ

Note that the values of |SB | and |NSB | are approximately
√|NS |, we can sim-

plify the above equation to: α < 1 − 2ρ
√|NS |/γ. If we estimate ρ to be roughly

1/|NS | (i.e., we assume uniform distribution), the above equation becomes:
α < 1 − 2/γ

√|NS |.
The equation above demonstrates that QB trades increased communication

costs to reduce the amount of data that needs to be searched in encrypted form.
Note that the reduction in encryption cost is proportional to α times the size
of the database, while the increase in communication costs is proportional to√|D|, where |D| is the number of distinct attribute values. This, coupled with
the fact that γ is much higher than 1 for encryption mechanisms that offer
strong security guarantees, ensures that QB almost always outperforms the full
encryption approaches. For instance, the cryptographic cost for search using
secret-sharing is ≈10ms [20], while the cost of transmitting a single row (≈200
bytes for TPCH Customer table) is ≈4µs making the value of γ ≈ 25000. Thus,
QB, based on the model, should outperform the fully encrypted solution for
almost any value of α, under ideal situations where our assumption of uniformity
holds. Figure 13 plots a graph of η as a function of γ, for varying sensitivity and
ρ = 10%.

Fig. 13. Efficiency graph using equation η = α + ρ(|SB | + |NSB |)/γ.

Exploiting Data Sensitivity on Partitioned Data 297

Fig. 14. Dataset size.

To explore the effectiveness of QB under different DB sizes, we tested QB
for 3 DB sizes: 150K, 1.5M, and 4.5M tuples. Fig. 14 plots η values for the three
sizes while varying α. The figure shows that η < 1, irrespective of the DB sizes,
confirming that QB scales to larger DB sizes.

References

1. http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-
building-a-successful-hybrid-cloud.html

2. https://digitalguardian.com/blog/expert-guide-securing-sensitive-data-34-
experts-reveal-biggest-mistakes-companies-make-data

3. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for
numeric data. In: SIGMOD Conference, pp. 563-574. ACM (2004)

4. Arasu, A., et al.: Orthogonal security with cipherbase. In: CIDR. www.cidrdb.org
(2013)

5. Arasu, A., Kaushik, R.: Oblivious query processing. In: ICDT, pp. 26–37. Open-
Proceedings.org (2014)

6. Bajaj, S., Sion, R.: Correctdb: SQL engine with practical query authentication.
PVLDB 6(7), 529–540 (2013)

7. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

8. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

9. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation and encryption to enforce privacy in data storage.
In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 171–186.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74835-9 12

10. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Keep a few: outsourcing data while maintaining confidentiality. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 440–455. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 27

11. Ciriani, V., De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, S.P., Samarati,
P.: Combining fragmentation and encryption to protect privacy in data storage.
ACM Trans. Inf. Syst. Secur. 13(3), 22:1–22:33 (2010)

http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-building-a-successful-hybrid-cloud.html
http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-building-a-successful-hybrid-cloud.html
https://digitalguardian.com/blog/expert-guide-securing-sensitive-data-34-experts-reveal-biggest-mistakes-companies-make-data
https://digitalguardian.com/blog/expert-guide-securing-sensitive-data-34-experts-reveal-biggest-mistakes-companies-make-data
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-540-74835-9_12
https://doi.org/10.1007/978-3-642-04444-1_27

298 S. Mehrotra et al.

12. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive
2016:86 (2016)

13. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

14. Derbeko, P., Dolev, S., Gudes, E., Sharma, S.: Security and privacy aspects in
mapreduce on clouds: a survey. Comput. Sci. Rev. 20, 1–28 (2016)

15. De Capitani di Vimercati, S., Erbacher, R.F., Foresti, S., Jajodia, S., Livraga, G.,
Samarati, P.: Encryption and fragmentation for data confidentiality in the cloud.
In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-2013. LNCS, vol. 8604,
pp. 212–243. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10082-1 8

16. De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, G., Livraga, S.P., Samarati,
P.: Fragmentation in presence of data dependencies. IEEE Trans. Dependable Sec.
Comput. 11(6), 510–523 (2014)

17. De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, S.P., Samarati, P.: Fragments
and loose associations: respecting privacy in data publishing. PVLDB 3(1), 1370–
1381 (2010)

18. Dolev, S., Gilboa, N., Li, X.: Accumulating automata and cascaded equations
automata for communicationless information theoretically secure multi-party com-
putation: extended abstract. In: SCC@ASIACCS, pp. 21–29. ACM (2015)

19. Dolev, S., Li, Y., Sharma, S.: Private and secure secret shared MapReduce -
(extended abstract). In: DBSec, pp. 151–160 (2016)

20. Emekçi, F., Metwally, A., Agrawal, D., El Abbadi, A.: Dividing secrets to secure
data outsourcing. Inf. Sci. 263, 198–210 (2014)

21. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

22. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

23. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC, pp. 182–194. ACM (1987)

24. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

25. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted
data in the database-service-provider model. In: SIGMOD Conference, pp. 216–
227. ACM (2002)

26. Hacigümüs, H., Mehrotra, S., Iyer, B.R.: Providing database as a service. In: ICDE,
pp. 29–38. IEEE Computer Society (2002)

27. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with
distributed searchable symmetric encryption. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 90–107. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8 6

28. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure out-
sourced databases. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, 24–28 October 2016, pp.
1329–1340 (2016)

29. Ko, S.Y., Jeon, K., Morales, R.: The HybrEx model for confidentiality and privacy
in cloud computing. In: 3rd USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud 2011, Portland, OR, USA, 14–15 June 2011 (2011)

30. Komargodski, I., Zhandry, M.: Cutting-edge cryptography through the lens of
secret sharing. In: TCC, pp. 449–479 (2016)

https://doi.org/10.1007/978-3-319-10082-1_8
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-319-29485-8_6

Exploiting Data Sensitivity on Partitioned Data 299

31. Li, L., Militzer, M., Datta, A.: rPIR: ramp secret sharing based communication
efficient private information retrieval. IACR Cryptology ePrint Archive 2014:44
(2014)

32. Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private information
retrieval. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 168–
186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 10

33. Mehrotra, S., Sharma, S., Ullman, J.D., Mishra, A.: Partitioned data security on
outsourced sensitive and non-sensitive data. In: 34th IEEE International Confer-
ence on Data Engineering, ICDE 2019, Macau, China, April 08-12, 2019. Technical
report, Department of Computer Science, University of California, Irvine (2018).
http://isg.ics.uci.edu/pubs/tr/partitioned.pdf

34. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

35. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, 12-16 October 2015,
pp. 644–655 (2015)

36. Oktay, K.Y., Kantarcioglu, M., Mehrotra, S.: Secure and efficient query processing
over hybrid clouds. In: ICDE, pp. 733–744. IEEE Computer Society (2017)

37. Oktay, K.Y., Mehrotra, S., Khadilkar, V., Kantarcioglu, M.: SEMROD: secure
and efficient MapReduce over hybrid clouds. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, 31 May–4 June 2015, pp. 153–166 (2015)

38. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: SOSP, pp. 85–100. ACM (2011)

39. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187 (2005)

40. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
41. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on

encrypted data. In: IEEE Symposium on Security and Privacy, pp. 44–55. IEEE
Computer Society (2000)

42. Wang, S., Ding, X., Deng, R.H., Bao, F.: Private information retrieval using trusted
hardware. IACR Cryptology ePrint Archive, 2006:208 (2006)

43. Zhang, C., Chang, E., Yap, R.H.C.: Tagged-MapReduce: a general framework
for secure computing with mixed-sensitivity data on hybrid clouds. In: 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2014, Chicago, IL, USA, 26–29 May 2014, pp. 31–40 (2014)

44. Zhang, K., Zhou, X., Chen, Y., Wang, X., Ruan, Y.: Sedic: privacy-aware data
intensive computing on hybrid clouds. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, 17–
21 October 2011, pp. 515–526 (2011)

45. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: NSDI, pp.
283–298. USENIX Association (2017)

46. Li, Y., Mehrotra, S., Panwar, N., Sharma, S., Almanee, S.: Obscure: information-
theoretic oblivious and verifiable aggregation queries. Technical report. Depart-
ment of Computer Science, University of California, Irvine (2018). http://isg.ics.
uci.edu/pubs/tr/Obscure.pdf

https://doi.org/10.1007/978-3-662-47854-7_10
http://isg.ics.uci.edu/pubs/tr/partitioned.pdf
http://isg.ics.uci.edu/pubs/tr/Obscure.pdf
http://isg.ics.uci.edu/pubs/tr/Obscure.pdf

A Review of Graph Approaches to Network
Security Analytics

Steven Noel(&)

The MITRE Corporation, McLean, VA, USA
snoel@mitre.org

ABSTRACT. There is a line of research extending over the last 20+ years
applying graph-based methods for assessing and improving the security of
operational computer networks, maintaining situational awareness, and assuring
organizational missions. This chapter reviews a number of key developments in
these areas, and places them within the context of a number of complementary
dimensions. These dimensions are oriented to the requirements of operational
security, to help guide practitioners towards matching their use cases with
existing technical approaches. One dimension we consider is the phase of
security operations (prevention, detection, and reaction) to which an approach
applies. Another dimension is the operational layer (network infrastructure,
security posture, cyberspace threats, mission dependencies) that an approach
spans. We also examine the mathematical underpinnings of the various
approaches as they apply to security requirements. Finally, we describe archi-
tectural aspects of various approaches, especially as they contribute to scalability
and performance.

Keywords: Network security � Graph analytics � Visualization
Situational understanding � Mission assurance

1 Introduction

In operational cybersecurity, there is often limited value in considering individual
events and data elements in isolation. Rather, such items need to be assessed within the
context of complex network environments and threat landscapes. In short, it is the
relationships among the individual entities that provide the most insight into opera-
tional decision making. Graphs are an ideal mathematical structure for capturing and
analyzing such relationships. They provide formal semantics and well-known algo-
rithms for analytic work, and have intuitive features that can be captured in visual-
izations for communication and ease of understanding.

An early application of graphs to cybersecurity (introduced in 1991) is threat logic
trees, for modeling attacks against computers [1]. These bear similarities to fault trees
[2], which were developed three decades earlier for safety modeling, and were later
popularized as attack trees [3]. The term attack graph was coined in 1998 [4], which
represented a shift from a logical tree of insecurity conditions to a graph of security
states with attacker exploits causing state changes. Model checkers were employed to

© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 300–323, 2018.
https://doi.org/10.1007/978-3-030-04834-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_16

automatically generate attack graphs by enumerating sequences of state changes (attack
paths) [5, 6], although this results in state-space explosion [7].

Moving from enumerating attack sequences to mapping dependencies among
exploits resulted in graphs that scale quadratically with the number of network hosts
[8]. There have been further improvements that reduce attack graph complexity while
preserving semantics and maintaining analytic expressiveness [9–12]. A recent study
[13] finds that this kind of attack graph model is more effective in terms of analytic
perception of cyberattacks, particularly for experienced cybersecurity analysts.

At this point, research and development in graph-based approaches for network
security has reached a fair degree of maturity. One indicator of this is the emergence of
a number of off-the-shelf tools, from both the government and commercial sectors [14–
19]. There is also a research workshop dedicated to graphical models for security [20],
in its fifth year.

There is a literature review [21] from as early as 2005 covering aspects of this line
of research. More recent reviews [22, 23] describe over 30 categories of (acyclic)
graph-based approaches for modeling network attacks and defenses, with many other
approaches described for more general directed graphs. Even more recently [13], it is
pointed out that over 50 methods have been proposed for representing attack graphs,
each having key differences in representation. Another taxonomic treatment [24] cat-
egorizes aspects of attack graph generation in terms of the phases of model
construction.

2 Operational Orientation

When applying technical solutions to a problem domain, a key first step is to identify
the desired outcomes. This in turn helps define the scope of the problem, which needs
to be aligned with the capabilities of a potential technical solution. In this section, we
consider two major aspects of the cybersecurity problem domain:

1. The particular phase of the overall security process (prevention, detection, or
reaction). This is the “when” aspect of security.

2. The operational layer of concern (network infrastructure, security posture, cyber-
space threats, mission dependencies). This is the “where” aspect of security.

The following two sub-sections examine how various technical approaches for
graph-based network security align with these security phases and operational layers.

2.1 Phases of Security Operations

A phased approach to security helps provide defense in depth. Graphical models have
applicability to all phases of operational security, as described in the following sub-
sections.

2.1.1 Prevention
The first phase of security is to help prevent attacks from succeeding, through remedial
activities that reduce the likelihood of attackers succeeding. Cybersecurity is conducted

A Review of Graph Approaches to Network Security Analytics 301

in complex environments, with numerous factors contributing to attack success. For
example, network topology, host configurations, vulnerabilities, firewall settings, and
many other elements can play parts. To go beyond rudimentary protection measures,
there is a need to merge isolated data into an overall model of network-wide attack
vulnerability, especially one that captures how adversaries can leverage multiple vul-
nerabilities to incrementally penetrate a network.

Historically, graph-based models were first applied to preventing attacks, as the first
(and arguably most important) phase of security. Early graph-based models (e.g., attack
trees) usually captured logical combinations for attack a single system (e.g., host
machine). By 1996, attack graphs for multiple hosts were considered [25]. An attack
graph template for general TCP/IP connectivity [26] paved the way for models
applicable to general (vulnerable) network services, with firewall rules restricting
connectivity. Automatic population of models via vulnerability scan reports [27] and
firewall rules [28] helped make it feasible to generate attack graphs for operational
networks. Figure 1 illustrates building a model from a network topology, host vul-
nerabilities (scan reports), and firewall configuration files (access control rules). This
network model can then be analyzed for generating an attack graph.

Fig. 1. Building a network model for attack graph analysis

302 S. Noel

Modeling multi-step exploitation at the level of network hosts and their vulnerable
services, rather than individual exploits (under the worst-case assumption that any
multiple lower-level exploit sequences on a machine can be carried out by an attacker)
reduces complexity of attack graphs [9]. Other simplifying assumptions (e.g., “pro-
tection domains” for sets of machines that have implicit unrestricted access to each
other’s vulnerable services) further reduce graph complexity. Such reductions in graph
complexity help both computationally (improving scaling and performance) and cog-
nitively (ease of understanding analytic results, e.g., when visualized).

This is illustrated in Fig. 2. The top of the figure shows the full complexity of a raw
attack graph, at the level of individual exploits, in which protection domain aggregation
with implicit within-domain exploitation is not applied. Here, the fully explicit non-
aggregated graph is shown for illustration only. The within-domain edges are not
actually computed in the operational tool.

The bottom of Fig. 2 shows an analytic dashboard in which the complexity-
reducing techniques are applied. This has a number of protection domains (boxes),
each containing a set of hosts. Within each protection domain, the hosts are implicitly

Fully Explicit
Non-Aggregated

A ack Graph

Analysis
Dashboard

Fig. 2. Attack graph analytic dashboard

A Review of Graph Approaches to Network Security Analytics 303

assumed to have their vulnerable services fully exposed within the domain. Attack
vectors are then explicit across protection domains only. In the dashboard, the security
analyst can select a starting point (machine within a subnet) and/or ending point
(critical host to protect) for the attack scenario. The tool then constrains the attack
graph to only include those hosts that are reachable between the starting and ending
points.

In a recent study [13], participants with a range of backgrounds are given tests
designed to measure the perceptual effectiveness of certain graph models, in terms of
the ability to recall, comprehend, and apply each model. The selected models were
(1) an “adapted attack graph,” i.e., the kind of exploit-dependency graph described
above, and (2) the more traditional fault tree model. These two classes of model are
selected because of functional considerations (correspondence to fundamental cyber-
attack constructs) and their strength of acceptance in the academic community. This
study finds that the exploit-dependency graph representation is more effective for
analytic perception of cyberattacks, particularly for cybersecurity experts.

Once an attack graph model is built, we can apply algorithms for hardening the
network (reducing the attack graph) according to some criteria for optimality. One
example is to compute the minimum cut [29] (at the level of protection domains)
between a selected starting and ending point of the attack. That finds the fewest number
of network changes (patched vulnerabilities or firewall rule modifications) needed to
keep the adversary from reaching the critical host. Another (greedy, sub-optimal)
heuristic is to rank distinct vulnerabilities according to the number of times that they
are exposed across protection domains [30]. A variety of metrics have been proposed
for measuring overall network security through hardening measures according to this
general attack graph model [31, 32].

For more precise network hardening decisions (based on sequences of exploits), we
can compute sets of hardening measures (initial network conditions) that guarantee the
safety of given critical resources [8, 33]. This involves building a logical expression
from an attack graph, expressing an attack goal in terms of conditions required for its
(usually multi-step) exploitation. The expression is converted to canonical conjunctive
normal form, so that each conjunctive maxterm represents a combination of initial
conditions (perhaps sub-optimal) that prevent the attack goal. The algorithm then forms
a partial order among maxterms according to the number of network configuration
changes they require, thus finding the optimal hardening solution (i.e., that requires the
fewest configuration changes).

The conditions for optimality in network hardening can take additional practical
considerations into account. In practice, hardening options are often interrelated, such
as applying the same patch to many hosts, or choosing between hardening options
(such as patches versus firewall rule changes) that can have unintended effects on
service availability. By formalizing hardening strategies in terms of allowable actions,
and defining a cost for (potentially interdependent) hardening actions, one can apply an
approximation algorithm that provides near-optimal solutions, while scaling linearly
with the size of the attack graph [34]. Harding measures based on attack graphs have
also been optimized through simulated annealing [35].

The general structure of attack graphs can also be applied for analyzing resilience to
exploitation of unknown (zero-day) vulnerabilities. This involves enumerating the

304 S. Noel

distinct services on each network host, and building an attack graph in terms of con-
nectivity to those services, supplemented with any known service vulnerabilities.
A metric can then be defined based on the number of zero-day vulnerabilities needed to
achieve an attack goal [36] [37]. While computing the actual number of required zero-
day vulnerabilities is NP-hard, testing if a network is safe up to a given (reasonably
small) number of zero-day vulnerabilities is computationally feasible.

2.1.2 Detection
Of course, an organization should strive to prevent cyberattacks from succeeding in the
first place. But as a practical matter, there often remain residual vulnerabilities, e.g.,
from lack of patches or the need to field legacy systems. The next line of defense is to
detect adversarial attempts at attacking one’s network environment. Once again, for
effective security, intrusion alerts should not be considered in isolation. For example,
multiple alerts might be raised as an attacker attempts to gain a greater network
presence. Or, alerts against machines with known vulnerabilities (especially those
matching the alerted behavior) might warrant more concern. This is especially
important given the large numbers of false-positive alerts for many intrusion detection
systems.

Semantically, intrusion alerts have correspondence to attacker exploits. Indeed,
alert correlation graphs have been proposed for discovering multi-step attack scenarios
from streams of alerts [38]. Alerts are correlated in terms of matching preconditions and
postconditions, as for exploit dependencies in predicted (versus observed) attack
graphs. In such an approach, missing alerts (false negatives) are handled through
indirect dependencies inferred from other observed events such as scans. It is also
possible to fill in gaps in detected adversary actions through relationships among
standardized attack patterns [39], e.g., Common Attack Pattern Enumeration and
Classification (CAPEC)™ [40].

If we have computed a graph of potential attacks for a network (as in Fig. 2), it is
reasonable to ensure that we monitor traffic along the exposed vulnerable paths. Given
that there are non-negligible costs for deploying and maintaining each intrusion sensor,
we can minimize the total cost (number of sensors) for covering all known attack paths
[41–43]. This is illustrated in Fig. 3. The attack graph (at the protection domain level)
is shown in the upper right. The problem is to find the location of intrusion sensors (co-
located with routers in the topology) that covers all inter-domain exposed vulnerabil-
ities, using the least number of sensors.

This sensor placement problem is an instance of the minimal set cover problem
[44]. While set cover is NP-hard, we solve this problem through a greedy algorithm,
known to be the best possible polynomial-time approximation for general set cover
[45]. In set cover, we are given certain sets of elements, and they may have elements in
common. The problem is to choose a minimum number of those sets, so that they
collectively contain all the elements.

In this case, the elements are the edges (between protection domains) of the attack
graph, and the sets are intrusion sensors deployed on particular network devices. Each
sensor monitors a given set of edges, i.e., can see the traffic between the given
attacker/victim machines. In the greedy set covering algorithm, we iteratively choose
the set that contains the largest number of uncovered elements. For each choice

A Review of Graph Approaches to Network Security Analytics 305

iteration, we favor large sets that contain infrequent elements. For the example in
Fig. 3, placing sensors at Routers A and D covers all 5 edges of the attack graph. In
general, the greedy algorithm approximates the optimal solution within a factor of ln
(n), for n elements to be covered, though in practice it usually does much better than
this. For example, the solution in Fig. 3 (derived through the greedy algorithm) is
optimal.

Using particular data structures, the greedy algorithm for set cover has complexity
O(n), where n is the number of domain-level attack graph edges. Improved solutions
are possible through algorithms with longer run times [46], such as simulated annealing
or genetic algorithms [47]. Set cover is one the most well-studied problems in computer
science [48], putting our problem of optimal placement of sensors on firm theoretical
ground.

Once intrusion detection sensors are in place and alerts are generated, we can use
attack graphs to correlate alerts, prioritize them (e.g., by distance to critical assets),
determine vulnerable paths that can possibly be exploited next, etc. As an example,
consider Fig. 4. This illustrates how a graph of potential attacks can be leveraged for
inferring multi-step attack incidents from a stream of intrusion alerts [49].

In Fig. 4, the Alert Distances in the uppermost time-series plot shows the graph
distances between pairs of alerts that have been embedded within a vulnerability-based
host-to-host attack graph. Here, a distance of one means that two alerts are immediately

Network
Topology

Fig. 3. Optimal placement of intrusion detection sensors

306 S. Noel

adjacent (a distance of one) when embedded in the attack graph. Then, a distance of
two represents that while the alerts are not directly adjacent, there is only one
exploitable vulnerability that separates them (e.g., there was a missed detection). For
correlating alerts in terms of an attack graph, it is convenient to invert the distances to
form similarities (versus dissimilarities), as in the Similarities (lowermost time-series
plot) of Fig. 4.

Because of noise (errors) in the measurements (e.g., missed detections that cause
lower similarities between alerts), it is reasonable to apply some form of averaging
(low-pass filtering) to the series of similarity values. As shown in Fig. 4 (second series
from top), computing a Global Average of previously seen values can smooth out
fluctuations, it does not respond well to local trends. On the other hand, the Moving
Average (second series from top) offers some robustness to strong fluctuations, while
still tracking reasonably well with local trends. Here we apply the exponentially-
weighted moving average [50], which gives progressively less weight to data further
removed in time. This is equivalent to a first-order low-pass signal filter, computed
through an efficient recursive formula that that requires no storage of past values
(memoryless).

As shown in Fig. 4, by applying a threshold to the moving average of the alert
similarities (based on attack graph distance), we are able to infer multi-step incidents as
groups of correlated alerts. By maintaining multiple alert sequences and computing
filtered similarities for each of them, it is possible to track simultaneous incidents [49].

Incident
1

Incident
2

Incident
3

Alert Distances

Global Average

Moving Avg.

Similari es

Fig. 4. Inferring incidents from graph distances between intrusion alerts

A Review of Graph Approaches to Network Security Analytics 307

Having richer graph models of potential multi-step attacks gives other options for
correlating intrusion alerts [39]. This is illustrated in Fig. 5. Here, we have constructed
a graph of interrelated data for a security incident, as shown in the top of the figure.
This includes host machines, topology information (protection domains and firewall
devices), vulnerabilities and associated data from the National Vulnerability Database
(CVE, CWE, CPE, CVSS, etc.) [51], and potential attacker exploits expressed with
CAPEC attack patterns. Here, the exploits (attack patterns) are linked together (via
PREPARES relationships) based on how one kind of exploit prepares for another. The
exploits are also associated with the particular vulnerabilities that they work against.

The bottom of Fig. 5 shows how two intrusion alerts are correlated, along with
additional context and inferences, by traversing through the incident graph. The
traversal is constrained to start at nodes of type Alert within the graph, and to follow

Alert
Correla on

Incident
Graph

Fig. 5. Finding relationships between intrusion alerts

308 S. Noel

edges of type [ALERT, AGAINST, VICTIM, ON, LAUNCHES, PREPARES]. These
are the edge types that relate alerts to exploits (type ALERT), exploits to vulnerabilities
(AGAINST), exploits to machines (VICTIM), vulnerabilities on machines (ON),
machines to exploits (LAUNCHES), and exploits to other exploits (PREPARES).

This traversal result shows that the “client-side buffer overflow” alert (against a
QuickTime vulnerability on the mission client) leads along an exploitable path to the
“web application fingerprinting” alert (against the database front-end). From this, we
might surmise that the alerts are potentially multiple attack steps by the same adversary.
Here is the associated chain of exploits:

• Client-side buffer overflow against mission client.
• Lifting of database login credentials on client.
• Logging in to database (via web front-end) from client.
• Fingerprinting to discover back-end database details.
• SQL injection attack against the database.

This ability to discover vulnerability paths between alerts is especially important
because in many cases key attacker behaviors go undetected, especially from advanced
adversaries.

2.1.3 Reaction
In advance of attacks, an organization can take remedial steps to help prevent and limit
the spread of security incidents, and deploy intrusion detection sensors for monitoring
the network. Then, once attacks actually occur and are detected, the final line of
defense is to react to minimize attacker impact. Graph analytics can help in that regard
as well, for formulating effective ways of reacting to attacks. For example, graphs can
be applied for clustering related alerts, prioritizing attack responses according to
mission-essential systems, showing access policy changes that prevent attack spread
while minimizing disruption to other network services, or assessing the effectiveness of
operational processes for responding to attacks.

In the previous section, we described how attack graphs can be leveraged for
inferring potential multi-step cyberattack incidents from isolated intrusion alerts and
related data. The inferred incidents can then be ranked by priority, to focus the efforts
of security operators. For example, consider Fig. 6. This portrays intrusion detection
alerts detected over a period of time, with source and destination addresses as nodes,
and each edge representing one or more alerts between a pair of addresses.

This illustrates how clusters of alerts (separated from other clusters as indepen-
dently connected graph components) form sets of alerts that can be investigated as a
whole. Figure 6 is a simulation that bears strong similarity to real alerts from Host
Based Security System (HBSS) [52] deployed on an enterprise. The figure shows that
such alert graphs are composed of relatively few large clusters (weakly connected
components), and many small clusters (including clusters of only one address, i.e., a
local host alert). This is an example of the commonly encountered power-law distri-
bution [53], in which large events are rare, but small ones are common.

We can leverage this by ranking the clusters by some measure importance, gen-
erally based on the size of the cluster. Such prioritization could potentially take other
information into account, such as severity of alerts and/or nearness to mission-critical

A Review of Graph Approaches to Network Security Analytics 309

cyber assets. Here, nearness to critical assets is in terms of exploitable vulnerability
paths [41], as illustrated in Fig. 7. This shows machines grouped into subnets (pro-
tection domains), with machine-to-machine edges (explicit vulnerability exposures)
from across subnets. One or more hosts can be designated as critical assets (shown as
crowns in the figure). We can then prioritize alerts based on attack graph distance, e.g.,
shortest path to a critical asset. That is, attacks closer to a critical asset are given higher
priority, since they represent a greater risk. We can extend this from individual alerts to
an alert cluster, e.g., the shortest path from any alert in the cluster to a critical asset.

Intrusion alerts can be combined with network flow data, yielding graphs that
provide a more complete picture for cyber resilience and situational understanding. For
example, network flow records can help fill gaps in detected attacks (false negatives).
Such a combined alert+flow graph usually merges clusters (in the sense of Fig. 6) in a
way that independent components alone are not enough to distinguish incident clusters.
To address that, we can apply graph pattern matching queries [54] that constrain the
graph (e.g., distance from alerts and key cyber assets) ways that separate incident
clusters as independent components.

At any point that an attack is detected, we can use to graph to predict next possible
steps, and take specific actions such as blocking specific source/destination machines

Fig. 6. Prioritizing clusters of alerts for reacting to cyberattacks

310 S. Noel

and destination port. For example, in Fig. 7, assume that the Priority-3 alert (within
Subnet 2) is raised. At that point, we know that the attacker could next move anywhere
within Subnet 2, or could launch an attack from the victim machine against a machine
in Subnet 5. Thus, to prevent penetration towards the critical assets, traffic could be
blocked from the victim machine to the Subnet-3 machine, for the specific ports for its
vulnerable service(s). A graph query can also explicitly show the paths through the
network topology between a compromised machine and critical assets, for identifying
which firewalls can block the traffic [55].

For this kind of alert prioritization, there remains the problem of capturing the
dependencies between computer assets and mission functions. Indeed, a deeper kind of
organizational decision making is possible if we can also relate lower-level mission
functions to higher-level mission elements, e.g., tasks, objectives, and entire missions.
This is illustrated in Fig. 8, which is a mission dependency model developed for
demonstrating cyber situational understanding and decision support capabilities [56,
57].

This model maps dependencies from an overall mission down through various
levels of abstraction, finally to a particular type of cyber asset. In particular, each

Fig. 7. Prioritizing alerts via graph distance to critical assets

A Review of Graph Approaches to Network Security Analytics 311

mission has a number of objectives to fulfil, with each objective carried out by one or
more tasks. Each task depends on a set of functions to fulfil it, which in turn depend on
particular cyber assets. The dependencies are related though logical relationships
(Boolean ANDs/ORs), with the default relationship being conjunctive (AND). This
model also includes criticality weighting for the dependencies, as a way of denoting the
degree of impact on a parent if the child on which it depends is unavailable. This is a
four-level criticality model (total mission failure, significant degradation, partial
capability loss, negligible loss) in common use across the United States Department of
Defense [58, 59].

Through graph queries, we can determine the potential impact on mission elements
as a result of cyberattacks. This is illustrated in Fig. 9. This sub-graph (a subset of the
full mission-cyber graph) shows the transitive dependencies of the Obtain Target
Position mission task, down to cyber asset type (server). From this, we analyze the
impact of a cyberattack against the Wideband Satellite Service, and recommend how
additional redundancy could prevent mission failure.

In analyzing mission impact, we can ignore FFT Service, since it does not depend
in any way on Wideband Satellite Service. The redundancy via the OR2 node provides
alternatives to losing voice communications via VOIP Service (which requires both
Wideband Satellite Service and VOIP Phone). The EMAIL Service is lost because of
losing Wideband Satellite Service (while there are redundant email servers, there is still
a required dependency on Wideband Satellite Service). Still, the CHAT Service is
available because of redundancies at OR4.

There still remains the dependency on COP Service. While OR7 provides one kind
of redundancy, COP Service still depends directly on Wideband Satellite Service.
Because Obtain Target Position critically depends on COP Service, (as a Level I
dependency), the mission cannot perform the Obtain Target Position task. As a

Missions
Objec ves

Tasks

Func ons

Assets

Logic

Fig. 8. Mission dependency model

312 S. Noel

recommendation for mitigating this risk (losing Obtain Target Position in the face of
losing Wideband Satellite Service), redundant alternatives for either COP Service itself
or its dependence on Wideband Satellite Service are needed.

The graph models we have described capture cyberspace and how mission elements
depend on it. Another dimension of cybersecurity is the operational process that is
carried out. Being able to capture that in an executable model allows formal assessment
of process effectiveness through simulation [60]. In this approach, one captures process
flows through Business Process Model Notation (BPMN) [61]. This includes processes
for (1) a mission to fulfil and defend from cyberattack, (2) the cyber defenses, and
(3) adversary tactics, techniques, and procedures. Through discrete-event simulation of
this integrated model, one can quantify impacts in terms of mission-based measures, for
various threat scenarios.

Figure 10 shows a high-level portion of such a cyber defender process model. The
process is triggered by an alert (intrusion detection system, user tipoff, etc.), followed
by triage to understand the basic nature of the alert. Depending on the severity of the
incident and past history with the victim machine, the defender either reboots the
machine, restores corrupted data, or rebuilds the machine from a non-compromised
image. If an infection is detected or a machine is a victim in multiple incidents, the

Level IV (negligible or no loss)

Level I (total mission failure)
Level III (partial capability loss)

Criticality

Compromised

Impacted

Fig. 9. Analyzing mission impact from cyberattack

A Review of Graph Approaches to Network Security Analytics 313

defender conducts more in-depth forensics (e.g., searching for other infections and
rebuilding victims as needed).

2.2 Security Operational Layers

Graph analytics have roles to play in all operational layers of security. Cyber resilience
involves complex interrelationships within and across network infrastructure, security
posture, cyber threats, and mission dependencies.

Forensics

Triage

Rebuild

Reboot

Restore

Fig. 10. Process model for cyber defender responses to attack

314 S. Noel

As illustrated in Fig. 11, lower-level aspects tend to influence the aspects above
them. Security posture is influenced by elements of the network configuration (firewall
rules, access control policy, web gateways, known vulnerabilities, etc.). The success of
cyber threat actors is influenced by the strength of defensive posture. Mission success
in turn depends on the ability of defenders to protect key cyber assets.

In this depiction, security posture and cyber threats are shown as overlapping; some
threats are more serious because of weaknesses in cyber posture, while some vulner-
abilities are less serious if they are never attacked. In terms of the three phases of
security (prevention, detection, reaction), an organization’s security posture is
improved in the prevention phase of security, through changes to network infrastruc-
ture (software patches, access policy, etc.). Cyber threats are engaged in the detection
phase, taking into account security posture (e.g., known vulnerability paths) as well as
mission dependencies.

Thus, while it is conceptually helpful to consider security concerns as occurring in
separate layers, in actuality, interrelationships exist within and across layers, in each
direction. Graph-based models provide a structured yet flexible approach to incorpo-
rating these aspects into a unified knowledge base for cyber situational understanding,
risk analysis, proactive remediation, and reactive mitigation.

Fig. 11. Graph analytics applied to various operational layers

A Review of Graph Approaches to Network Security Analytics 315

3 Mathematical Structures

In essentially every graph-based approach to cybersecurity, the underlying mathematics
are not purely graph theoretic. Rather, the graph structures are part of a framework that
also incorporates other kinds of mathematical structures and algorithms. It is important
to understand the underlying mathematical properties of each approach, to match them
to the semantics of the particular problem domain being addressed and the analytic
results needed to fulfil operational security requirements.

For example, one of the earliest instances of graph-based analysis for cybersecurity
is threat logic trees [1], which use graphs (trees) to organize the logical relationships
leading to an insecure condition on system. This kind of logical framework has been
subsequently applied for finding optimal solutions (combinations of logic initial con-
ditions) to hardening against such threats [8, 33, 34, 62]. The problem of network
hardening has also been formulated as a multi-objective optimization problem [35, 63].
Researchers have applied more general logic-based technologies to the generation of
attack graphs, including logic programming [64] and model checking [5, 6].

Bayesian approaches have also been incorporated into security graph analytics.
This provides more nuanced models that admit the possibility of uncertainty in the
cyber environment (e.g., the likelihood of particular a vulnerability being exploited),
versus strictly Boolean decisions. For example, Bayesian networks have been gener-
ated from attack graph models for assessing network security [65, 66]. Bayesian net-
works have also been applied for intrusion response, e.g., for handling uncertainty in
attack structure (preconditions), adversary behaviors, or intrusion detection accuracy
[67]. Bayesian models are also amenable to analysis via simulations [68], for deeper
insight into probability distributions of attack outcomes.

Shifting to a higher level of abstraction (fewer low-level details) has the advantage
of reduced complexity, relieving both computational and cognitive burdens. By
assuming the worst case (for the defender) that an attacker will successfully exploit an
exposed vulnerability, the details of such exploitation can be abstracted away [9]. With
this kind of straightforward model, an attack graph can be treated as a flow network
[69], to which we can apply the Ford–Fulkerson method for minimum cut [44], which
finds the fewest number of exposed vulnerabilities to harden that prevent an adversary
from reaching a given attack goal from a given starting point [70]. It also provides a
direct way to apply attack graph distance for correlating intrusion alerts [49].

An alternative to applying standard graph algorithms to simplified attack graph
models is to adapt standard graph algorithms to the particular semantics of attack
graphs. An example of this is a generalization of the well-known PageRank algorithm
[71, 72], generalized to handle attack graph semantics [73]. In some cases, optimization
problems embedded in graph structures are amenable to set theoretic solutions [41–43].
The correspondence between graph and matrices (via the adjacency matrix [74]) can be
leveraged for certain attack graph analytics, e.g., clustering related patterns of exposed
vulnerabilities [75].

Another kind of extension to basic attack graph models it to incorporate dynamics
(changes over time). Time-varying graphs have been studied in many disciplines, and
are known by many names [76]. There are additional considerations for visual-based

316 S. Noel

analytics over such graphs [77]. Support for time-varying graphs has been included in
some cybersecurity graph analysis tools [55]. Dynamics have also been incorporated
into attack graphs models via ambients (mobile concurrent systems) [78], e.g., for
tracking stolen credentials [79, 80].

Standardized modeling specifications have been applied to dynamic security
modeling based on process modeling [61], e.g., for evaluating time-dependent effects
of cyberattacks on mission effectiveness and performance [81], including the dynamic
interplay of cyber attackers and defenders [60]. A game-theoretic approach has been
applied to attacker-defender dynamics for determining the optimal security methods for
a given level of investment [82].

Graph analytics for network security have also leveraged property graph formalism
[39, 54, 55]. Property graphs are attributed multi-relational graphs in which vertices
and edges are labeled and can have arbitrary properties associated with them [83]. This
approach builds a property graph model from ingested data, which it stores in a graph
database. This provides a rich source of graph features that support graph pattern
queries (traversals with property constraints), which are visualized in a user interface.

4 Architectural Aspects

Historically, applications built for security graph analytics were written as custom code,
running on a single host computer. More general-purpose frameworks such as model
checkers have been applied [5] [6] for such analysis. While model checking has long
suffered from the problem of state-space explosion because of its high level of general
expressiveness, there have been some improvements in scalability such as multi-core
model checking [84]. Parallel distributed search algorithms have also been proposed for
coping with state-space explosion when building attack graphs, by providing a virtual
shared memory abstraction over a distributed multi-agent system [35, 85].

Relational databases have also been employed for implementing attack graph
analytics [86]. While this has the advantage of a standard data representation, it has
known performance limitations, since graph traversal requires expensive self-join
operations [83]. Keeping pace with evolving network environments and analytic
requirements is difficult, since extending a relational model requires schema redesign,
database reloading, etc. Also, many graph operations are difficult to express in
Structured Query Language (SQL).

A class of non-relational databases known as graph databases has emerged, which
store and compute over property graphs and are optimized for graph operations
(especially traversals). Examples include including NoSQL graph databases such as
Neo4j [87, 88] and JanusGraph [89], Resource Description Framework (RDF) stores
such as Rya [90], and the Apache TinkerPop [91] graph computing framework. There
have been standardization efforts for querying non-relational graph databases [92], and
there is multi-vendor support for such graph query languages as Cypher [93], SPARQL
[94], and Gremlin [95].

Graph query languages are generally declarative [96], in which one specifies a
graph query pattern to be matched. The database implementation accesses the data
based on the query declaration, allowing for implementation-specific optimizations.

A Review of Graph Approaches to Network Security Analytics 317

There is a direct correspondence between a graph data model and language for
querying it [97], i.e., how data are analyzed (queried) needs to match how they are
represented.

NoSQL graph database technology has been leveraged for network security ana-
lytics and visualization [39, 54, 55]. After ingesting data from various network and host
sources, this approach maps the data to a property graph stored in a graph database,
capturing complex relationships among entities in the cybersecurity domain. In this
architecture, the cybersecurity model schema is free to evolve with the available data
sources and desired analytics, rather than being fixed at design time. The approach
defines a query language specific to the cybersecurity domain, for ease of under-
standing by security operators, which it compiles to the native backend graph database
query language. It also automatically infers the underlying graph model through
inspection of an instantiated database, and presents the model to the user for interactive
query formulation. It then renders the graph query results in an interactive graph
visualization.

5 Summary

This chapter reviews a line of research applying graph-based methods for network-
based cybersecurity. Application areas include assessing and improving the security of
computer networks, maintaining situational awareness, and assuring organizational
missions. The discussion is oriented to operational security requirements. One aspect
we examine is the phase of security operations (prevention, detection, and reaction) to
which a graph-based approach applies. Another aspect is the operational layer (network
infrastructure, security posture, cyberspace threats, mission dependencies) that an
approach spans. We also examine the mathematical underpinnings and architectural
aspects of various approaches, especially as they contribute to scalability and
performance.

Acknowledgements. This work was funded by the MITRE Innovation Program (as CyGraph,
project number EPF-14-00341), with George Roelke as Cybersecurity Innovation Area Leader.
Approved for Public Release; Distribution Unlimited. Case Number 17-4428.

References

1. Weiss, J.: A system security engineering process. In: 14th Annual NCSC/NIST National
Computer Security Conference (1991)

2. Ericson, C.: Fault Tree Analysis Primer. CreateSpace, Charleston (2011)
3. Schneier, B.: Attack trees. Dr Dobb’s J. 24(12), 21–29 (1999)
4. Phillips, C., Swiler, L.: A graph-based system for network-vulnerability analysis. In: New

Security Paradigms Workshop, Charlottesville, VA (1998)
5. Ritchey, R., Ammann, P.: Using model checking to analyze network vulnerabilities. In:

IEEE Symposium on Security and Privacy, Oakland, CA (2000)
6. Sheyner, O., Wing, J.: Tools for generating and analyzing attack graphs. In: Workshop on

Formal Methods for Components and Objects (2004)

318 S. Noel

7. Noel, S., O’Berry, B., Hutchinson, C., Jajodia, S., Keuthan, L., Nguyen, A.: Combinatorial
analysis of network security. In: 16th Annual International Symposium on
Aerospace/Defense Sensing, Simulation, and Controls (AeroSense), Orlando, FL (2002)

8. Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network hardening via
exploit dependency graphs. In: 19th Annual Computer Security Applications Conference
(ACSAC), Las Vegas, NV (2003)

9. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: ACM CCS Workshop on Visualization and Data Mining for Computer
Security, Fairfax, VA (2004)

10. Noel, S., Jacobs, M., Kalapa, P., Jajodia, S.: Multiple coordinated views for network attack
graphs. In: Workshop on Visualization for Computer Security, Minneapolis, MN (2005)

11. Homer, J., Varikuti, A., Ou, X., McQueen, M.: Improving attack graph visualization through
data reduction and attack grouping. In: 5th International Workshop on Visualization for
Cyber Security, Cambridge, MA (2008)

12. Lippmann, R., Williams, L., Ingols, K.: An interactive attack graph cascade and reachability
display. In: IEEE Workshop on Visualization for Computer Security, Sacramento, CA
(2007)

13. Lallie, H.S., Debattista, K., Bal, J.: An empirical evaluation of the effectiveness of attack
graphs and fault trees in cyber-attack perception. IEEE Trans. Inf. Forensics Secur. 13,
1110–1122 (2017)

14. Dark Reading: NSA-Funded ‘Cauldron’ Tool Goes Commercial. http://www.darkreading.
com/nsa-funded-cauldron-tool-goes-commercial/d/d-id1131178

15. CyberAnalytix takes a 7-Year Path to $100 K. http://www.bizjournals.com/boston/blog/
mass-high-tech/2008/05/cyberanalytix-takes-a-7-year-path-to-100k.html

16. MulVAL Project at Kansas State University. http://people.cs.ksu.edu/*xou/mulval/
17. Skybox. http://www.skyboxsecurity.com/. Risk Analytics for Cyber Security Management
18. RedSeal Networks. http://www.redsealnetworks.com/
19. Sqrrl Threat Hunting. https://sqrrl.com
20. International Workshop on Graphical Models for Security. http://gramsec.uni.lu
21. Lippmann, R., Ingols, K.: An annotated review of past papers on attack graphs. Technical

report, MIT Lincoln Laboratory (2005)
22. Schweitzer, P.: Attack–defense trees. Doctoral dissertation, University of Luxembourg

(2013)
23. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense modeling:

don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14, 1–38 (2014)
24. Kaynar, K.: A taxonomy for attack graph generation and usage in network security. J. Inf.

Secur. Appl. 29, 27–56 (2016)
25. Zerkle, D., Levitt, K.: Netkuang – a multi-host configuration vulnerability checker. In: 6th

USENIX Unix Security Symposium, San Jose, CA (1996)
26. Ritchey, R., O’Berry, B., Noel, S.: Representing TCP/IP connectivity for topological

analysis of network security. In: 18th Annual Computer Security Applications Conference
(ACSAC), Las Vegas, NV (2002)

27. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnerability. In:
Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats: Issues, Approaches
and Challenges, pp. 247–266. Springer, Heidelberg (2005). https://doi.org/10.1007/0-387-
24230-9_9

28. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for network
defense. In: 22nd Annual Computer Security Applications Conference (2006)

A Review of Graph Approaches to Network Security Analytics 319

http://www.darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id1131178
http://www.darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id1131178
http://www.bizjournals.com/boston/blog/mass-high-tech/2008/05/cyberanalytix-takes-a-7-year-path-to-100k.html
http://www.bizjournals.com/boston/blog/mass-high-tech/2008/05/cyberanalytix-takes-a-7-year-path-to-100k.html
http://people.cs.ksu.edu/%7exou/mulval/
http://www.skyboxsecurity.com/
http://www.redsealnetworks.com/
https://sqrrl.com
http://gramsec.uni.lu
http://dx.doi.org/10.1007/0-387-24230-9_9
http://dx.doi.org/10.1007/0-387-24230-9_9

29. Noel, S.: Cauldron - network assessment tool demonstration. In: 9th Annual Air Force
Intelligence, Surveillance, and Reconnaissance (ISR) Agency Communications and
Information Conference, San Antonio, TX (2010)

30. Jajodia, S., Noel, S., Kalapa, P., Albanese, M., Williams, J.: Cauldron: mission-centric cyber
situational awareness with defense in depth. In: 30th Military Communications Conference
(MILCOM), Baltimore, MD (2011)

31. Noel, S., Jajodia, S.: Metrics suite for network attack graph analytics. In: 9th Annual Cyber
and Information Security Research Conference (CISRC), Oak Ridge National Laboratory,
TN (2014)

32. Noel, S., Jajodia, S.: A suite of metrics for network attack graph analytics. Network Security
Metrics, pp. 141–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66505-4_7

33. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack graphs.
Comput. Commun. 29(18), 3812–3824 (2006)

34. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hardening
using attack graphs. In: 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Boston, MA (2012)

35. Kaynar, K.: Distributed log analysis for scenario-based detection of multi-step attacks and
generation of near-optimal defense recommendations, dissertation, Technischen Universita ̈t
Berlin (2017)

36. Wang, L., Jajodia, S., Singhal, A., Noel, S.: k-Zero day safety: measuring the security risk of
networks against unknown attacks. In: European Symposium on Research in Computer
Security (ESORICS), Athens, Greece (2010)

37. Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: k-Zero day safety: a network security
metric for measuring the risk of unknown vulnerabilities. IEEE Trans. Dependable Secur.
Comput. 11, 30–44 (2013)

38. Ning, P., Xu, D., Healey, C., St. Amant, R.: Building attack scenarios through integration of
complementary alert correlation methods. In: 11th Annual Network and Distributed System
Security Symposium (2004)

39. Noel, S., Harley, E., Tam, K.H., Gyor, G.: Big-data architecture for cyber attack graphs:
representing security relationships in NoSQL graph databases. In: IEEE Symposium on
Technologies for Homeland Security (HST), Boston, MA (2015)

40. The MITRE Corporation: Common Attack Pattern Enumeration and Classification: A
Community Resource for Identifying and Understanding Attacks. https://capec.mitre.org/

41. Noel, S., Jajodia, S.: Attack graphs for sensor placement, alert prioritization, and attack
response. In: Cyberspace Research Workshop, Air Force Cyberspace Symposium,
Shreveport, LA (2007)

42. Noel, S., Jajodia, S.: Optimal IDS sensor placement and alert prioritization using attack
graphs. J. Netw. Syst. Manag. Spec. Issue Secur. Config. Manag. 16, 259–275 (2008)

43. Noel, S., Jajodia, S.: Advanced vulnerability analysis and intrusion detection through
predictive attack graphs. In: Critical Issues in C4I, Armed Forces Communications and
Electronics Association (AFCEA) Solutions Series, Lansdowne, VA (2009)

44. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn. MIT
Press and McGraw-Hill, Cambridge and New York (2009)

45. Feige, U.: A threshold of Ln N for approximating set cover. J. ACM 45(4), 634–652 (1998)
46. Grossman, T., Wool, A.: Computational experience with approximation algorithms for the

set covering problem. Eur. J. Oper. Res. 101(1), 81–92 (1997)
47. Sen, S.: Minimal cost set covering using probabilistic methods. In: ACM/SIGAPP

Symposium on Applied Computing: States of the Art and Practice, Indianapolis, IN (1993)
48. Yelbay, B., Birbil, Ş.İ., Bülbül, K.: The set covering problem revisited: an empirical study of

the value of dual information. J. Ind. Manag. Optim. 11(2), 575–594 (2015)

320 S. Noel

http://dx.doi.org/10.1007/978-3-319-66505-4_7
https://capec.mitre.org/

49. Noel, S., Robertson, E., Jajodia, S.: Correlating intrusion events and building attack
scenarios. In: 20th Annual Computer Security Applications Conference (ACSAC), Tucson,
AZ (2004)

50. NIST/SEMATECH, e-Handbook of Statistical Methods: §6.4.3.1, Single Exponential
Smoothing. http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm

51. National Institute of Standards and Technology (NIST): National Vulnerability Database.
https://nvd.nist.gov/

52. Galliani, J.: What is DISA’s Host Based Security System (HBSS)? (2015). https://www.
seguetech.com/disas-host-based-security-system-hbss/

53. Adamic, L.: Zipf, Power-Laws, and Pareto - A Ranking Tutorial (2012)
54. Noel, S., Bodeau, D., McQuaid, R.: Big-data graph knowledge bases for cyber resilience. In:

NATO IST-153 Workshop on Cyber Resilience, Munich, Germany (2017)
55. Noel, S., Harley, E., Tam, K.H., Limiero, M., Share, M.: CyGraph: graph-based analytics

and visualization for cybersecurity. In: Cognitive Computing: Theory and Applications,
Volume 35 of Handbook of Statistics. Elsevier (2016)

56. Heinbockel, W., Noel, S., Curbo, J.: Mission dependency modeling for cyber situational
awareness. In: NATO IST-148 Cyber Defence Situation Awareness, Sofia, Bulgaria (2016)

57. Moye, R. Sawilla, R., Sullivan, R., Lagadec, P.: Cyber defence situational awareness
demonstration/request for information (RFI) from industry and government. NATO NCI
Agency Acquisition, CO-14068-MNCD2 (2015)

58. Defense Acquisition University: Defense Acquisitions Guidebook (DAG). https://www.dau.
mil/tools/dag

59. Deputy Assistant Secretary of Defense for Systems Engineering (DASD(SE)) and
Department of Defense Chief Information Officer (DoD CIO), “Trusted Systems and
Networks (TSN) Analysis”: United States Department of Defense (2014)

60. Noel, S., et al.: Analyzing Mission Impacts of Cyber Actions (AMICA). In: NATO IST-128
Workshop on Cyber Attack Detection, Forensics and Attribution for Assessment of Mission
Impact, Istanbul, Turkey (2015)

61. Object Management Group: Business Process Model and Notation. http://www.bpmn.org/
62. Wang, L., Albanese, M., Jajodia, S.: Network Hardening - An Automated Approach to

Improving Network Security. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
319-04612-9

63. Dewri, R., Poolsappasit, N., Ray, I., Whitley, D.: Optimal security hardening using multi-
objective optimization on attack tree models of networks. In: 14th ACM Conference on
Computer and Communications Security (CCS), Alexandria, VA (2007)

64. Ou, X., Govindavajhala, S.A.A.: MulVAL: a logic-based network security analyzer. In: 14th
USENIX Security Symposium (2005)

65. Frigault, M., Wang, L.: Measuring network security using bayesian network-based attack
graphs. In: Annual IEEE International Computer Software and Applications Conference
(2008)

66. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using dynamic
Bayesian network. In: 4th ACM Workshop on Quality of Protection (2008)

67. Xie, P., Li, J., Ou, X., Liu, P., Levy, R.: Using Bayesian networks for cyber security
analysis. In: IEEE/IFIP International Conference on Dependable Systems & Networks
(2010)

68. Noel, S., Jajodia, S., Wang, L., Singhal, A.: Measuring security risk of networks using attack
graphs. Int. J. Next-Gener. Comput. 1(1), 135–147 (2010)

69. Goldberg, A., Tardos, É., Tarjan, R.: Network Flow Algorithms. Stanford University,
Technical report STAN-CS-89-1252 (1989)

A Review of Graph Approaches to Network Security Analytics 321

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm
https://nvd.nist.gov/
https://www.seguetech.com/disas-host-based-security-system-hbss/
https://www.seguetech.com/disas-host-based-security-system-hbss/
https://www.dau.mil/tools/dag
https://www.dau.mil/tools/dag
http://www.bpmn.org/
http://dx.doi.org/10.1007/978-3-319-04612-9
http://dx.doi.org/10.1007/978-3-319-04612-9

70. Noel, S., Jajodia, S.: Proactive intrusion prevention and response via attack graphs. In:
Practical Intrusion Analysis: Prevention and Detection for the Twenty-First Century.
Addison-Wesley Professional (2009)

71. Page, L., Brin, S.: The anatomy of a large-scale hypertextual web search engine. In: 7th
International Web Conference (1998)

72. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing
order to the web. Stanford University InfoLab Technical report (1999)

73. Ou, X., Sawilla, R.: Googling attack graphs. Technical report TM 2007-205, Defence R&D
Canada - Ottawa (2007)

74. Bondy, J., Murty, U.: Graph Theory with Applications, North-Holland (1976)
75. Noel, S., Jajodia, S.: Understanding complex network attack graphs through clustered

adjacency matrices. In: 21st Annual Computer Security Applications Conference (ACSAC),
Tucson, AZ (2005)

76. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
77. Gottumukkala, R., Venna, S., Raghavan, V.: Visual analytics of time evolving large-scale

graphs. IEEE Intell. Inform. Bull. 16(1), 10–16 (2015)
78. Cardelli, L., Gordon, A.: Mobile ambients. In: First International Conference on Foundations

of Software Science and Computation Structure (1998)
79. Franqueira, V.N.L.: Finding multi-step attacks in computer networks using heuristic search

and mobile ambients. Dissertation, University of Twente, the Netherlands (2009)
80. Franqueira, V.N., Lopes, R., van Eck, P.: Multi-step attack modelling and simulation

(MsAMS) framework based on mobile ambients. In: 24th Annual ACM Symposium on
Applied Computing, Honolulu, HI (2009)

81. Musman, S., Tanner, M., Temin, A., Elsaesser, E., Loren, L.: Computing the impact of cyber
attacks on complex missions. In: IEEE International Systems Conference (2011)

82. Musman, S., Turner, A.: A game theoretic approach to cyber security risk management.
J. Def. Model. Simul.: Appl. Methodol. Technol. 15, 127–146 (2017)

83. Robinson, I., Webber, J., Eifrem, E.: Graph Databases, 2nd edn. O’Reilly, Massachusetts
(2015)

84. Laarman, A.: Scalable multi-core model checking. Dissertation, Centre for Telematics and
Information Technology, University of Twente (2014)

85. Kaynar, K., Sivrikaya, F.: Distributed attack graph generation. IEEE Trans. Dependable
Secur. Comput. 13(5), 519–532 (2016)

86. Wang, L., Yao, C., Singhal, A., Jajodia, S.: Implementing interactive analysis of attack
graphs using relational databases. J. Comput. Secur. 16(4), 419–437 (2008)

87. Neo Technology: Neo4j Graph Database. https://neo4j.com. Accessed 30 May 2017
88. Robinson, I., Webber, J., Eifrem, E.: Graph Databases, 2nd edn. O’Reilly Media, Sebastopol

(2015)
89. The Linux Foundation: JanusGraph – Distributed Graph Database. http://janusgraph.org.

Accessed 30 May 2017
90. Punnoose, R., Crainiceanu, A., Rapp, D.: Rya: a scalable RDF triple store for the clouds. In:

1st International Workshop on Cloud Intelligence, Istanbul, Turkey (2012)
91. The Apache Software Foundation: Apache TinkerPop™. http://tinkerpop.apache.org.

Accessed 30 May 2017
92. Barcelo, P.: Task Force for the Design of a Query Language for Graph-Structured Data.

https://databasetheory.org/node/47. Accessed 30 May 2017
93. Eifrem, E.: Meet openCypher: the SQL for Graphs. https://neo4j.com/blog/open-cypher-sql-

for-graphs/. Accessed 30 May 2017
94. W3C Recommendation: SPARQL 1.1 Query Language, 21 Mar 2013. https://www.w3.org/

TR/sparql11-query/. Accessed 30 May 2017

322 S. Noel

https://neo4j.com
http://janusgraph.org
http://tinkerpop.apache.org
https://databasetheory.org/node/47
https://neo4j.com/blog/open-cypher-sql-for-graphs/
https://neo4j.com/blog/open-cypher-sql-for-graphs/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

95. The Apache Software Foundation: The Gremlin Graph Traversal Machine and Language.
http://tinkerpop.apache.org/gremlin.html. Accessed 30 May 2017

96. Chao, J.: Imperative vs. Declarative Query Languages: What’s the Difference? 19 September
2016. https://neo4j.com/blog/imperative-vs-declarative-query-languages/. Accessed 30 May
2017

97. Sasaki, B.: Graph Databases for Beginners: Why a Database Query Language Matters, 21
August 2015. https://neo4j.com/blog/why-database-query-language-matters/. Accessed 30
May 2017

A Review of Graph Approaches to Network Security Analytics 323

http://tinkerpop.apache.org/gremlin.html
https://neo4j.com/blog/imperative-vs-declarative-query-languages/
https://neo4j.com/blog/why-database-query-language-matters/

Advanced Biometric Technologies:
Emerging Scenarios and Research Trends

Angelo Genovese, Enrique Muñoz, Vincenzo Piuri(B), and Fabio Scotti

Department of Computer Science, Università degli Studi di Milano,
via Celoria 18, 20133 Milan, MI, Italy

{angelo.genovese,enrique.munoz,vincenzo.piuri,fabio.scotti}@unimi.it

Abstract. Biometric systems are the ensemble of devices, procedures,
and algorithms for the automatic recognition of individuals by means of
their physiological or behavioral characteristics. Although biometric sys-
tems are traditionally used in high-security applications, recent advance-
ments are enabling the application of these systems in less-constrained
conditions with non-ideal samples and with real-time performance. Con-
sequently, biometric technologies are being increasingly used in a wide
variety of emerging application scenarios, including public infrastruc-
tures, e-government, humanitarian services, and user-centric applica-
tions. This chapter introduces recent biometric technologies, reviews
emerging scenarios for biometric recognition, and discusses research
trends.

Keywords: Biometrics · Emerging scenarios · Research trends
Touchless · Less-constrained applications

1 Introduction

Traditional authentication mechanisms are based on something that is known or
possessed, such as keys, tokens, passwords, and codes. In these mechanisms, the
information to be recalled and the objects to be stored can be stolen or spoofed.
In contrast, biometric systems are based on the characteristics of individuals
that cannot be stolen or forgotten and are more difficult to spoof [27].

The interest in these technologies is growing and the biometric market is
expected to reach 21 billion US$ by the end of 2020 [43]. This market growth
is mostly due to the increased adoption of automatic recognition systems for
national biometric identification, border control, access control, and mobile
phones. Biometric identification systems are also increasingly being used in foren-
sic analyses to identify criminals and terrorists.

The increased adoption of biometric systems has been fostered by the intro-
duction of advanced processing algorithms, high-resolution acquisition systems,
and parallel architectures, which have enabled the development of highly accu-
rate real-time biometric systems that are capable of handling less-constrained

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 324–352, 2018.
https://doi.org/10.1007/978-3-030-04834-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_17

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 325

conditions and the presence of sample non-idealities, commonly defined as the
possible problems affecting the quality of the biometric samples.

The innovations in recent biometric systems have led to the heightened accep-
tance and popularity of biometric technologies in consumer applications, in addi-
tion to governmental and forensic scenarios. Less-constrained and highly usable
biometric systems are enabling technologies for creating smart applications that
simplify human-machine interactions by adapting their characteristics to users’
needs. Emerging application scenarios for biometric technologies include public
infrastructures (e.g., automated systems for border control, surveillance, human-
itarian services, e-health, and public transport), private infrastructures (e.g.,
e-banking, e-commerce, and private transportation), user-centric applications
(e.g., home automation, user-centric entertainment, and social media), and per-
sonal devices (e.g., smartphones and laptops).

To further expand the possible applications of biometric technologies, the
research community is currently studying novel hardware and software solu-
tions by considering all the aspects that characterize biometric systems, such
as usability, user acceptance, privacy, security, accuracy, execution time, and
interoperability.

This chapter introduces recent advances in the main biometric technolo-
gies, reviews emerging scenarios for biometric recognition, and discusses research
trends considering the different aspects of a biometric system.

The remainder of this chapter is structured as follows. Section 2 describes
the main biometric traits and recent advances in each trait. Section 3 presents
the emerging scenarios for biometric recognition. Section 4 analyzes the chal-
lenges and research trends of current biometric systems by analyzing biometric
technologies from different perspectives. Finally, Sect. 5 concludes the overview.

2 Recent Advances in Biometric Technologies

Biometric traits are physiological or behavioral characteristics that present suf-
ficient distinctiveness and permanence to be used for recognizing individuals.
Regarding physiological traits, the characteristics are related to a person’s body
and include the face, fingerprint, iris, and palmprint. For behavioral traits, the
characteristics are related to actions performed by an individual and include
their voice and gait.

Biometric traits have different characteristics that should be evaluated based
on the application scenario and its requirements, with no biometric system being
the perfect choice for every situation. In particular, the most important char-
acteristics are related to the recognition accuracy that can be achieved using a
specific biometric trait and the user acceptance of the corresponding acquisition
procedure. The recognition accuracy measures the ability of the biometric sys-
tem to discriminate between individuals based on the biometric trait, while the
user acceptance refers to how the users perceive the system based on its usability,
invasiveness, and perceived risks. These two aspects are strictly related and must
be evaluated at the same time. In fact, biometric systems with higher recogni-
tion accuracies usually have intrusive acquisition procedures, resulting in a lower

326 A. Genovese et al.

Table 1. Summary of the accuracy and user acceptance of the main biometric traits

Biometric trait Accuracy User acceptance

Face Medium (96% TAR at 0.1% FAR) [29] High [28]

Fingerprint High (99.4% TAR at 0.01% FAR) [29] Medium [28]

Iris Very high (99.1% TAR at 0.001% FAR) [20] Low [28]

Voice Medium (93% TAR at 0.1% FAR) [29] High [28]

Notes: TAR (True Acceptance Rate) represents the probability that the system cor-
rectly grants access to an authorized person; FAR (False Acceptance Rate) represents
the probability that the system incorrectly grants access to a non-authorized person

user acceptance. As a consequence, more accurate biometric systems are usually
deployed when it is necessary to guarantee high security (e.g., military installa-
tions, border control), while biometric systems with greater user acceptance are
often preferred for low-security applications (public transport, personal devices).

In contrast to biometric traits, soft biometric features are characteristics with
limited distinctiveness or permanence and can be used to complement the bio-
metric information or to classify individuals into sets of people with a common
characteristic [27]. Examples of soft biometric features include age, gender, eth-
nicity, and height.

Every biometric technology presents a different recognition accuracy and user
acceptance. These characteristics greatly influence the diffusion of each biometric
technology. Table 1 summarizes the recognition accuracy and user acceptance of
systems based on the mostly used physiological and behavioral biometric traits
[20,28,29]. The accuracy is expressed using the following figures of merit: True
Acceptance Rate (TAR), which represents the probability that the system cor-
rectly grants access to an authorized person; False Acceptance Rate (FAR),
which represents the probability that the system incorrectly grants access to a
non-authorized person. Differently, the user acceptance is expressed using qual-
itative values, because this characteristic of biometric systems is particularly
subjective and cannot be easily described using quantitative figures of merit.
Table 1 shows that the most accurate biometric systems are based on the iris
and fingerprint. On the other hand, biometric systems based on the face and
voice are more accepted by the users but are less accurate. In addition to the
biometric traits analyzed in Table 1, palmprint, electrocardiogram, gait, and soft
biometric features are obtaining increasing attention from the research commu-
nity due to their favorable trade-off between accuracy and user acceptance for a
wide set of application scenarios.

This section introduces the main biometric technologies based on physio-
logical traits, behavioral traits, and soft biometric features. For each biometric
trait and soft biometric feature discussed, this section presents the traditional
recognition methods, followed by the recent advances and the research trends
in biometrics. Finally, this section presents recent advances in multibiometric
systems.

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 327

Fig. 1. Examples of face images of different individuals, along with the local features
(dots) used for face recognition

2.1 Face

The face is one of the biometric traits most used for recognition because it offers
the advantages of being socially accepted and having a non-intrusive acquisition
process.

Methods for face recognition include approaches based on either global fea-
tures or local features. The first class of methods considers the entire facial image
for recognition, whereas the second class analyzes facial landmarks such as the
eyes, mouth, and nose. Methods based on global features generally present higher
recognition accuracy but require high-quality samples, whereas methods based
on local features are more robust to non-ideal acquisitions of face images, such as
the ones performed with non-uniform illumination, non-frontal pose, or different
expressions. Figure 1 shows examples of local features used for face recognition.

Traditional methods for face recognition can achieve relevant accuracy in
applications characterized by cooperative users and controlled illumination con-
ditions, in which the acquisitions are performed by illuminating uniformly the
face, without occlusions caused by glasses or hair, and using steady subjects with
frontal gazes and neutral expressions. However, the performance of these meth-
ods can be decreased by negative factors, such as aging of the users, uncontrolled
illumination, lateral poses, expressions, and non-idealities of the face images
caused by occlusions, blur, noise, and low resolution.

Research trends aim to increase the biometric recognition accuracy and the
possible applications of face recognition methods. In particular, the research
community is currently studying several approaches, such as techniques based
on three-dimensional models; hybrid methods that combine global and local
information; algorithms to compensate rotations, facial expressions and aging;

328 A. Genovese et al.

Fig. 2. Examples of fingerprint images of different individuals with respective minutiae
points

and methods based on global features using recent machine learning techniques,
such as Deep Learning (DL) and Convolutional Neural Networks (CNNs) [6].

2.2 Fingerprint

The fingerprint is one of the biometric traits most widely used because, even
though its acquisition can be considered as more intrusive than the acquisition
of facial images, it offers a good trade-off between accuracy and user acceptance.

Fingerprint recognition systems typically require the user to touch a surface
to perform a biometric acquisition. The acquired sample consists of a greyscale
image representing the pattern of the ridges and valleys of the fingertip. The
majority of fingerprint recognition algorithms exploit information related to dis-
continuities in the ridges, called minutiae points. The patterns of minutiae points
are highly distinctive, are unique for every person, and do not change throughout
life. The biometric algorithms typically perform the recognition by enhancing the
image, extracting the minutiae points, and then comparing the relative coordi-
nates of the minutiae in the samples using non-exact graph matching techniques
[27]. Figure 2 shows examples of fingerprints of different individuals with the
corresponding minutiae points.

One of the main drawbacks of traditional fingerprint recognition systems lies
in the acquisition process. The contact with a sensor surface can be considered
by the users as being uncomfortable or privacy-invasive, introduces non-linear
distortions in the ridge pattern, and can be inaccurate in the case of dirty fingers.
Fingerprint sensors are also prone to presentation attacks that are performed

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 329

Fig. 3. Examples of images of the eyes of different individuals and their corresponding
iris regions

using fake fingerprints. Furthermore, fingerprint recognition algorithms generally
perform identity verifications by comparing two samples per time. Therefore, an
identification query needs to compare a fingerprint sample with all the identities
stored in a biometric database, which requires hours or days of computation in
the case of governmental databases containing millions of identities.

One of the main research trends in fingerprint recognition aims to overcome
the limitations of traditional touch-based acquisitions by focusing on touchless
acquisition systems using two-dimensional images or three-dimensional models
[16]. Other research trends focus on improving the robustness and accuracy of
traditional touch-based fingerprint recognition for low-quality samples, detecting
fake samples, and reducing the computational time needed for identification
queries [34].

2.3 Iris

The iris is a ring-shaped membrane on the frontal part of the eye that, together
with the pupil, controls the amount of light that a person perceives. Iris recog-
nition systems offer very high accuracy and low matching times. Iris recognition
is particularly useful in countries where the face may be partially covered due
to traditional habits or in the case of worn fingerprints (e.g., manual workers or
elderly people).

The acquisition process consists of capturing an ocular image with an iris
scanner, which is a digital camera capable of capturing near-infrared images at
a distance of approximately 30 cm. The biometric recognition process includes
three main steps: segmentation, feature extraction, and matching. The majority
of the methods in the literature segment the iris by approximating its shape to
a ring delimited by two concentric circles, extracting biometric templates con-
sisting of binary strings, and using a fast matching algorithm based on the com-
putation of the Hamming distance between two templates [27]. Figure 3 shows

330 A. Genovese et al.

examples of images of the eyes of different individuals and their corresponding
iris regions.

The main limitation of iris recognition systems consists of the used acquisition
procedure, which requires high cooperation from the users to avoid possible
problems due to a non-frontal gaze and occlusions caused by eyelids, eyelashes,
and glasses. Furthermore, the acquisition procedure can be negatively influenced
by environmental light conditions, which can introduce reflections, reduce the
contrast of the iris pattern and modify the size of the pupil. The acquisition
procedure also presents low user acceptance and can erroneously be considered
as dangerous to health due to the use of near-infrared illuminators.

The main research trend consists of reducing the constraints of the acquisition
process by studying methods working at distances greater than 30 cm from the
sensor in natural light conditions and with non-cooperative users [15]. To achieve
this goal, researchers are studying novel techniques to increase the robustness
of the overall biometric recognition process. Specifically, the research commu-
nity is working in the following directions: designing less-constrained acquisi-
tion setups and hardware, studying algorithms for segmenting the iris region as
a non-circular shape from noisy ocular images affected by occlusions and poor
illumination, implementing techniques for compensating pupil dilations and gaze
deviations, and realizing feature extraction and matching techniques based on
recent machine learning techniques, such as DL and CNNs.

2.4 Palmprint

The palmprint is the region of the hand from the wrist to the base of the fingers.
The skin in this area is of the same type as that covering the fingertips and con-
tains highly distinct features. The advantages of palmprint recognition systems
with respect to other biometric technologies reside mainly in the fact that they
can use low-cost acquisition devices, achieve high recognition accuracy, and are
generally well-accepted by users.

Palmprint recognition systems can perform touch-based and touchless acqui-
sitions. Based on the acquisition device used, biometric matching algorithms can
use ad hoc segmentation algorithms and feature extraction approaches based on
the principal lines of the palm, local texture descriptors, or coding-based algo-
rithms that output a binary image of the palm [17]. Figure 4 shows examples of
segmented regions of interest considered by palmprint recognition systems.

One of the main limitations of palmprint recognition systems is that they
need high-quality acquisitions to achieve satisfactory accuracy. Therefore, palm-
print acquisition systems require training the users to properly place their hand
in front of the camera or adopting physical guides to direct hand positioning.

The main research trend consists of studying techniques for achieving highly
accurate recognitions while reducing the acquisition constraints. In particular,
the research community is studying methods based on three-dimensional models
to compensate possible problems due to unconstrained hand positions in touch-
less acquisitions and novel feature extraction and matching techniques based on
local texture descriptors, coding methods, or CNNs [49].

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 331

Fig. 4. Examples of regions of interest considered by palmprint recognition systems,
which correspond to the region of the hand covering from the wrist to the base of the
fingers

2.5 Electrocardiogram

The electrocardiogram (ECG) is a set of physiological signals representing the
electrical activity of the heart over a period of time and collected using electrodes
placed on the skin. ECG signals are generally collected for medical purposes, but
studies in the literature have proven that they present sufficient discriminabil-
ity to also be used for biometric recognition. With respect to other biometric
traits, the ECG presents the advantages of being more difficult to counterfeit
and acquirable for longer periods of time without requiring specific actions from
the user.

In the literature, there are different methods for ECG recognition, which
can be based on signals acquired using one or more electrodes. The biometric
recognition approaches can use fiducial or non-fiducial features. Methods based
on fiducial features extract points of interest within the heartbeat wave, called
fiducial points. Systems based on non-fiducial features do not consider fiducial
points and generally extract features in a transformed domain (frequency or
wavelet) [40]. Figure 5 shows the fiducial points commonly extracted from a
heartbeat wave.

The main problem with using ECG signals for biometric recognition is that
the research community has not yet proven the stability of the trait over long
periods of time and in heterogeneous emotional and physiological conditions.
Furthermore, the interoperability between acquisition devices has not been suf-
ficiently analyzed.

An important research trend in ECG-based biometric recognition consists
of studying techniques to guarantee the stability and interoperability of ECG
signals. Other trends consists of adapting ECG recognition methods for signals

332 A. Genovese et al.

Fig. 5. Example of a heartbeat wave in an ECG signal, with the fiducial points used
for recognition

acquired from wearable devices (e.g., from smartwatches or hardware for contin-
uous health monitoring) and in designing continuous authentication techniques
based on ECG signals [44].

2.6 Voice

The voice is one of the most widespread behavioral traits used for biometric
recognition since the acquisition of voice signals requires only a microphone and
in most cases does not require additional devices [27]. It is possible to divide voice
recognition systems into speaker recognition and speech recognition systems.
Whereas the former is aimed at recognizing the identity of the speaker, the
latter is mostly used in human-computer interaction to transcribe spoken words
into a digital format; therefore, it will not be discussed here.

Speaker recognition can be conducted with either text-dependent or text-
independent verification techniques, based on whether the words spoken by the
individual need to be identical to a text. In both text-dependent and text-
independent verification, the majority of voice recognition methods use the mel-
frequency cepstral coefficients, which are features designed to resemble the fre-
quency characteristics perceived by humans.

Although a satisfactory recognition performance can be achieved using high-
quality signals, state-of-the-art voice recognition systems have the main draw-
back of having a significant decrease in accuracy when low-quality or noisy signals
are used.

The main research trend consists of designing biometric recognition methods
that are robust to poor-quality signals, and the research community is mainly
focused on DL techniques, which learn the discriminative representation of an
individual directly from the raw input signal [18].

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 333

Fig. 6. Examples of images used to perform gait recognition

2.7 Gait

The gait is a behavioral biometric trait that is especially used for recognition
when the traditional biometric traits cannot be easily observed, for example,
when the individual is distant or presents a non-frontal pose. Biometric systems
based on gait consider the distinctive characteristics of the way an individual
walks to perform the recognition.

The distinctive pattern of the gait can be extracted from frame sequences
acquired at long distances and with low-quality cameras. For each frame, the
recognition methods extract the silhouette of the individual. The silhouettes are
processed to extract motion features, which are the inputs of machine learning
techniques used to recognize the individual. Figure 6 shows examples of images
used to perform gait recognition.

Although they exhibit satisfactory performance under partially constrained
situations (e.g., constant direction with respect to the camera and uniform walk-
ing speed), the current methods for gait recognition are less reliable for recog-
nition in the presence of non-ideal acquisitions, such as those performed at long
distances, with different points of view, non-frontal poses, uncontrolled back-
grounds, blur, or occlusions.

One of the main research trends consists of studying novel approaches capa-
ble of handling samples acquired in unconstrained scenarios. In particular,
the research community is working on innovative techniques based on three-
dimensional models and CNNs [50] and on using gait features to perform unob-
trusive continuous authentication [47].

334 A. Genovese et al.

Fig. 7. Examples of age and gender estimation from facial images of different individ-
uals

2.8 Soft Biometric Features: Age and Gender

Age and gender are two of the most used soft biometric features due to the
possibility of estimating them from face images to complement the biometric
information used in face recognition systems. Age and gender estimation is per-
formed in different scenarios, including face recognition systems, surveillance,
and ambient intelligence applications.

Age and gender estimation techniques typically extract features from the
images and then use machine learning approaches to perform the estimation.
Examples of features include Gabor features, local binary patterns, and ad hoc
features [52]. Figure 7 shows examples of age and gender estimation from facial
images of different individuals.

The performance of age and gender estimation methods are satisfactory for
face images acquired in controlled conditions and from cooperative users. How-
ever, state-of-the-art methods suffer from decreasing performance in the presence
of samples affected by rotations, non-neutral facial expressions, poor illumina-
tion, and occlusions.

The research trends in age and gender estimation are increasingly considering
DL and CNNs to achieve high accuracy and to estimate a person’s age and gender
directly from images acquired in uncontrolled conditions [22].

2.9 Multibiometrics

Multibiometric systems fuse biometric data from multiple sources, for example,
different biometric traits or different biometric algorithms. The goal of multi-
biometric systems is to overcome some of the problems of systems based on a

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 335

single biometric trait, such as non-universality of the trait, limited distinctive-
ness, noisy data, or variability in different biometric acquisitions of the same
individual. Furthermore, the use of multiple biometric traits improves the recog-
nition accuracy and the resistance to spoofing attacks with respect to systems
based on a single biometric trait.

Typically, biometric systems consider data originated from a single source
(e.g., a single biometric trait). They can be divided into four main components:
(i) the sensor module, which acquires the biometric sample; (ii) the feature
extraction module, which extracts an abstract and discriminative representation
from the sample, called biometric template; (iii) the matching module, which
compares the biometric templates and outputs a match score representing the
degree of similarity or dissimilarity between the templates; (iv) the decision
module, which compares the match score against a threshold and returns a
Boolean (yes/no) decision indicating whether the considered biometric templates
belong to the same person or not.

Multibiometric systems can integrate biometric information at four levels,
corresponding to every module of typical biometric systems: (i) at the sensor
level, they combine raw biometric samples to obtain a more complete represen-
tation; (ii) at the feature level, it is possible to concatenate the features obtained
using different feature extraction algorithms to obtain a single template; (iii) at
the match score level, multibiometric systems can merge the scores resulting
from different matching algorithms; (iv) at the decision level, they combine the
Boolean decisions of the single biometric systems.

The majority of multibiometric systems perform the fusion at the match
score level, which enables them to fuse information from heterogeneous biometric
sources with significant increases in accuracy and in a technology-independent
manner [27]. Figure 8 presents an outline of the match score-level fusion of face
and fingerprint biometrics.

Although it is almost always possible to improve the recognition accuracy by
fusing biometric information originating from different sources, multibiometric
systems presents different drawbacks based on the fusion level considered. At the
sensor level, it is necessary to combine samples captured with compatible devices
and in similar conditions. As a consequence, the diffusion of heterogeneous sen-
sors increases the complexity of sensor-level fusion methods. At the feature level,
it is not always possible to concatenate features obtained using heterogeneous
feature extraction algorithms, since they might use a different representation.
At the match score level, fusion algorithms are dependent on the distribution of
the scores in the considered application scenario, which might not be available
in every situation. In some cases (e.g., commercial biometric systems already
deployed), it might not be possible at all to access information at intermediate
levels such as sensor, feature, or match score level.

An important research trend in multibiometric systems consists of design-
ing an advanced feature-level fusion of heterogeneous biometric sources, which
can improve the accuracy and robustness of the state-of-the-art multibiomet-
ric systems [24]. The research community is also working on machine learning

336 A. Genovese et al.

Fig. 8. Outline of the match score-level fusion of face and fingerprint biometrics

techniques to perform an adaptive fusion at the match score level [2] and on
multibiometric fusion strategies for ambient intelligence applications.

3 Emerging Scenarios for Biometric Recognition

Biometric systems have gained increasing user acceptance and popularity and
are now also being applied to novel scenarios beyond the traditional security
and forensic applications. This section reviews the main emerging scenarios in
which biometric systems are becoming more widespread, considering four main
areas: (i) public infrastructures, (ii) private infrastructures, (iii) user-centric
applications, and (iv) personal devices.

3.1 Public Infrastructures

For infrastructures owned by public institutions or destined for public use (e.g.,
trains or buses), the main emerging scenarios include automated systems for
border control, surveillance, humanitarian services, e-health, and public trans-
port.

Automated Border Controls. The term Automated Border Control (ABC)
refers to an ensemble of technologies that enable automatic verification of the
identities of travelers at border crossing points (i.e., without requiring constant
human intervention). In particular, ABC gates (or e-Gates) use biometrics to
perform a fast, reliable, and accurate verification of a traveler’s identity. The
deployment of e-Gates has been growing in recent years and has been increasingly
adopted worldwide, with 48 countries currently using ABC systems in airports,
land borders, and seaports. Therefore, the problem of developing a harmonized
global framework for ABC systems is receiving increasing attention from the
academic and industrial communities.

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 337

The diffusion of machine-readable travel documents such as electronic pass-
ports (or e-Passports) and electronic ID cards is also increasing. These doc-
uments store biometric samples of the owner and enable the use of e-Gates
without needing the users to be enrolled in dedicated databases. Typically, the
documents store a face image and, optionally, fingerprint and/or iris samples.

With the increased adoption of ABC systems and e-Passports, and therefore,
the greater flow of passengers using such systems that is expected in the near
future, it is necessary to design biometric systems with high usability, accu-
racy, and speed. Biometric systems for e-Gates should be easy to use by the
majority of the population; able to guarantee an accurate biometric recognition,
with sufficiently low execution times to enable a high throughput of passen-
gers; and resistant to spoofing attacks. In particular, to improve the usability
of ABC systems, research trends are considering advanced quality assessment
algorithms that are able to detect and identify specific acquisition problems in
fingerprint and face biometric modalities. To increase the recognition accuracy,
other research trends are focusing on novel privacy-compliant multibiometric
fusion techniques that can be tuned to operate in ABC systems [14].

Surveillance. Biometric recognition in surveillance applications consists of rec-
ognizing individuals from samples captured at long distances, on the move, with
non-frontal poses, and from uncooperative subjects. In surveillance scenarios,
the most useful biometric traits are those that can be acquired at a distance,
such as face or gait, but soft biometric features can also be extracted from face
or body images. However, biometric recognition in surveillance systems faces
problems caused by low-resolution images and poor-quality samples, making the
use of such traits complex. To overcome the problem of low-resolution images,
academic and industrial communities are considering the use of pan-tilt-zoom
cameras, which enable acquiring high-resolution biometric data even at high dis-
tances. Other research trends are focusing on surveillance applications based on
gait and soft biometrics, which are showing encouraging results for biometric
recognition under unconstrained conditions. Gait information and soft biomet-
ric features can also be used together with other biometric traits in multimodal
systems to achieve higher accuracy [38].

Humanitarian Services. Humanitarian services consists of the ensemble of
aid given by a government to those who need help (e.g., due to war, famine,
or natural disasters). The success of humanitarian actions depends to a signif-
icant degree on being able to identify people in need of essential goods and
services. For this purpose, biometrics can act as enabling technologies that allow
enrolling and identifying aid recipients and helps to reduce fraud. Recently, bio-
metric technologies have been receiving increasing attention as useful tools for
emergency support and refugee management. In fact, the United Nations High
Commissioner for Refugees considers the adoption of biometric technologies to
be strategic [26]. However, biometric systems used for the recognition of individ-
uals in the context of humanitarian services face problems such as a high risk

338 A. Genovese et al.

Fig. 9. Examples of images used to count pedestrians in public transportation

of spoofing attempts performed to receive goods and services allocated to other
individuals and the impossibility to enroll a part of the population when using
a particular biometric trait (e.g., fingerprints worn or damaged). To overcome
these problems, iris recognition systems are being studied to identify refugees in
Afghan regions [25].

E-health. Electronic healthcare (or e-health) consists of the ensemble of hard-
ware and software architectures that permit access to healthcare services through
information and communication technologies. In e-health applications, the major
issue is represented by the low confidence of people toward the exchange of health
information, considered as private and sensitive information, over communica-
tion networks. Biometric technologies are therefore emerging in this field to pro-
vide greater security with respect to traditional authentication mechanisms and
to increase the confidence of the users toward the use of healthcare services. In
this case, biometrics can be used to protect and manage sensitive information,
verify the identities of patients, improve security in medical facilities, restrict
access, and reduce fraud. Thanks to these advantages, research trends are con-
sidering the application of fingerprint recognition in e-health to control access
to medical resources and encrypt personal medical data [1].

Public Transport. Public transport refers to the means and technologies used
to transport groups of passengers, which are available to the general public and
often operating on fixed schedules. In public transport applications, biometrics
offer many possibilities for authorities to monitor and secure the infrastructures.
In fact, biometrics can verify the identities of driver’s license holders or travel
documents when they include biometric data such as face, fingerprint or iris.
Other possible applications include securing access to traffic management centers
and providing accurate estimates of the number of pedestrians [23]. Figure 9
shows examples of images used to count pedestrians in public transport.

Since public transport applications typically represent low-security applica-
tions that need to guarantee a high throughput of passengers, biometric recog-
nition technologies should perform a fast and highly usable recognition. Recent
trends in public transport are therefore focusing on technologies based on uncon-
trolled face recognition or touchless fingerprint acquisition [36].

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 339

Fig. 10. Architecture of a biometric and health monitoring system for cars based on
ECG signals. The system processes the ECG signal to detect heart rate anomalies and
to perform continuous driver authentication.

3.2 Private Infrastructures

Private infrastructures consist of the structures that are owned by private compa-
nies and are not necessarily available for public use. Among the numerous appli-
cations of biometric systems in this area, the main emerging scenarios include
e-commerce, e-banking, and private transport.

E-commerce and E-banking. E-commerce is increasingly used on the Inter-
net to perform online transactions such as payments and e-banking operations.
Although online payments are only a small proportion of total transactions,
they represent a major source of losses for financial institutions due to fraud.
Another major issue faced by e-commerce and e-banking applications is the pos-
sible lack of confidence of people toward performing online transactions that
may involve considerable amounts of money. In online transactions, many of the
security challenges involve user authentication because the service provider and
the user are not in the same location. To address these issues and minimize losses
in e-commerce and e-banking, novel techniques based on biometric systems are
increasingly being studied to improve the security of identification and authen-
tication tasks. In particular, biometric traits such as palmprint and fingerprint
are being studied to enhance the security of one-time passwords for e-commerce
and e-banking transactions [42].

Private Transport. Private transport refers to the means and technologies for
transportation that are not available to the general public. In private transport
applications, biometrics are receiving increasing interest due to the recent pos-
sibility of using portable devices with embedded biometric sensors that can also
monitor the health status of the driver in real time. Biometric technologies, such
as fingerprint readers, can be used to prevent thefts. A promising research trend
consists of using portable devices with biometric capabilities to capture ECG
signals, which can then be used to detect important factors that affect safe driv-
ing behavior, such as distractions, drowsiness, and drunkenness [33]. Figure 10

340 A. Genovese et al.

shows an example of an architecture of a biometric and health monitoring system
for cars based on ECG signals.

A different area of private transport that can benefit from biometrics is car
sharing since the service supports short-term car rentals, typically for a duration
of minutes or hours, requesting a fast recognition of the authorized users. The
market for this type of service is evolving quickly, although the security part is
evolving more slowly. To use car-sharing services, users simply need to log in with
a password; then, they receive a smart key that they can use to unlock the car
and drive. In car-sharing applications, biometric authentication mechanisms are
being increasingly studied to increase the security of the driver authentication
and guarantee a more reliable service for both users and the service provider
[41].

3.3 User-Centric Applications

User-centric applications represent ensembles of systems and technologies that
facilitate individuals’ interactions with the environment by providing adaptive
services tailored to their preferences and activity patterns. Some of the emerging
scenarios that apply biometric systems to user-centric applications include home
automation, user-centric entertainment, and social media.

Home Automation. Home automation refers to the technologies used to
facilitate human-computer interactions in ambient intelligence scenarios, with
a specific focus on home environments. In these scenarios, a growing area of
research considers the application of biometric technologies to facilitate a trans-
parent human-computer interaction and support individuals in their everyday
life tasks and activities. The biometric technologies required for ambient intelli-
gence should be less constrained than those in traditional biometric systems. In
addition, given the limited computational resources available for ambient intel-
ligence devices, ambient intelligence and home automation applications should
use low-complexity and optimized algorithms. In particular, fingerprint recogni-
tion systems are being increasingly studied in home automation scenarios, for
example, by using mobile applications on smartphones to restrict access to appli-
ances after the user performs a user-friendly authentication via the integrated
fingerprint reader [10]. Similarly, voice recognition systems are being studied to
identify users independently of their position in home environments, with the
purpose of personalizing the user experience in home control applications [7].

User-Centric Entertainment. User-centric entertainment refers to the tech-
nologies used to provide amusement to a single individual. Electronic games are
the most common form of user-centric entertainment and are being increasingly
studied as a test field for biometric technologies. In fact, computer games are
virtual environments that allow researchers to evaluate biometric and physiolog-
ical sensors in simulated applications without causing harm to the individuals
[35]. Entertainment devices used in electronic games are evolving to integrate

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 341

Fig. 11. Example of age and gender estimation using three-dimensional body metrics
obtained with the Kinect sensor

an increasing number of smart functionalities. In these devices, biometric recog-
nition technologies can be used to automatically recognize users and tailor the
entertainment content according to their preferences or to estimate the user’s age
to limit access to mature content [5]. In particular, research trends are attempt-
ing to use off-the-shelf depth sensors designed for games to perform in-game face
recognition or age estimation [8]. Figure 11 shows an example of age and gender
estimation using three-dimensional body metrics obtained with a depth sensor.

Social Media. Social media refers to the computer technologies used to cre-
ate virtual communities where individuals can exchange information and ideas.
In this field, impersonation attacks represent a serious issue because they are
difficult to discover and relatively easy to perform. Biometric technologies, as
user-friendly approaches that can authenticate users both at the beginning of
the session and then continuously, are emerging in social media applications as
useful tools for preventing impersonation attacks. In addition, social media ser-
vice providers can use biometrics to build user profiles for targeted marketing
[31].

Another emerging topic in social media is the definition of distinctive features
based on social network activities, called social behavioral biometrics. These
biometric features are increasingly being used to verify a user’s identity in virtual
domains, perform continuous authentication in cyberspace, or obtain forensic
information for cybercrimes. These biometric features can be used alone and in
combination with other biometric traits [48].

3.4 Personal Devices

Personal (or mobile) devices are computing devices that are small enough to
be held and operated with one hand, such as smartphones or personal digital

342 A. Genovese et al.

Fig. 12. Examples of fingerprint images acquired with a smartphone under different
environmental illumination and background conditions

assistants (PDAs). Today, many such devices are equipped with biometric capa-
bilities, and many users prefer their use over traditional passwords or personal
identification numbers. However, biometric systems deployed on personal devices
must address several issues, such as limited computational capabilities, limited
size of the sensors, use in uncontrolled conditions, and spoofing attacks.

To overcome these issues and the specific drawbacks of biometric recogni-
tion using personal devices, research trends are considering different biometric
traits. In particular, fingerprint recognition has been increasingly adopted due to
the decreasing size of touch-based capacitive sensors, which are currently inte-
grated in many mobile devices. Touchless fingerprint recognition algorithms for
personal devices are also being studied since they can perform the recognition
without requiring dedicated sensors but using only the integrated camera. How-
ever, touchless acquisitions of fingerprint images are more sensitive to variations
in illumination and background with respect to touch-based acquisitions. There-
fore, research trends are considering robust processing algorithms able to extract
the pattern of minutiae points in touchless acquisitions performed using personal
devices. Figure 12 shows examples of fingerprint images captured by the cam-
era of a smartphone under different environmental illumination and background
conditions.

Facial recognition is also a popular trait in mobile devices. However, per-
sonal devices capture face samples under uncontrolled conditions, with the con-
sequence that the acquisitions present uncontrolled backgrounds, non-uniform
illumination, and differences in pose and expression. For these reasons, research
trends are focusing on dedicated sensors that can capture the three-dimensional
model of the face in real time, thereby increasing the robustness to differences
in background, illumination, and pose variations.

The use of iris recognition is also gradually becoming popular for personal
devices, and research trends are studying recognition algorithms using uncon-
trolled acquisitions performed using visible light, with non-frontal gaze and with

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 343

a non-constant distance from the sensor. Furthermore, studies are focusing on
optimizing the iris processing algorithms due to the limited computational capa-
bilities of personal devices.

Other biometric traits that are being considered for mobile devices include
the voice, which can be captured using the microphone integrated in all per-
sonal devices, and the palmprint, whose recognition can be performed even with
low-resolution images captured using an integrated camera. In addition, other
research trends are studying biometric features specific to personal devices, such
as touch screen dynamics [37].

Because almost all mobile devices integrate biometric sensors such as cam-
eras, microphones or fingerprint scanners, the next natural step is to fuse their
information using multimodal biometrics, which can provide higher accuracy
and increase the difficulty of spoofing attacks [19].

4 Challenges and Research Trends of Current
Biometric Systems

In this section, we present challenging aspects and emerging solutions in cur-
rent biometric systems by analyzing their main characteristics from different
perspectives.

To incentivize more people to adopt and correctly use biometric systems in
a growing number of scenarios, it is necessary to consider and improve different
aspects of the biometric recognition process. The methods used to evaluate these
aspects belong to different fields, ranging from engineering and computer science
to social sciences and economics. In particular, the aspects to consider are the
following (Fig. 13):

– Usability refers to how user friendly a system is to use and the time required
for people to learn how to use it. Its measurement is related to the acquisition
time and to the number of acquired samples of insufficient quality, as well as
to the overall experience.

– User acceptance is based on how users perceive the system. It is related to
the system’s invasiveness and usability, as well as to personal inclinations or
perceived privacy risks.

– Privacy considers the degree to which a biometric system protects the users’
personal data and avoids data theft or misuse.

– Security refers to the robustness of the system against attacks made using
fake biometric traits or malicious software.

– Accuracy is measured as the capability of the biometric system to effectively
discriminate between users.

– Execution time is the amount of time required to perform the recognition,
including the enrollment and matching procedures. This aspect is important
because it influences the usability of the system. In fact, people can become
frustrated when they feel that the recognition process takes too long.

344 A. Genovese et al.

Fig. 13. Different aspects and emerging technologies in biometric systems

– Interoperability considers the degree of compatibility between different sys-
tems. Interoperability is influenced by both the type of device (e.g., touch-
based or touchless) and the data format used to store the biometric infor-
mation. Biometric standards are used to partially mitigate interoperability
issues.

– Scalability refers to the way in which the performance is affected when the
number of users enrolled in the system increases or when the computer
and network architecture face a greater number of requests. This aspect is
related to both architectural aspects (e.g., CPU/GPU performance, hard disk
throughput, and network bandwidth) and software aspects (e.g., the algorith-
mic complexity of the software implementation).

4.1 Usability and User Acceptance

To improve the usability and user acceptance of biometric systems, research
trends are currently focusing on aspects such as enhancing the characteristics of
acquisition devices and their ergonomics, improving the robustness of the recog-
nition algorithms to sample non-idealities, and using proper feedback techniques
to achieve effective human-machine interactions.

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 345

Fig. 14. Automatically detecting and correcting biometric acquisition problems in the
ABC case

To enhance the characteristics of acquisition devices, the research community
is designing less-constrained and less-intrusive technologies for biometric recog-
nition, such as touchless fingerprint/palmprint recognition [17], uncontrolled face
recognition [6], iris recognition at a distance [39], and voice recognition in ambi-
ent intelligence scenarios [4]. Research on less-intrusive technologies includes the
design of appropriate acquisition devices (e.g., scanners and cameras) and ded-
icated software. These technologies should be able to perform biometric verifi-
cations under less-controlled conditions compared to current biometric systems,
for instance, at higher distances, in natural light, while a person is moving, or by
using mobile devices. Touchless technologies are better accepted by users than
touch-based biometric systems, and they can provide a better solution in terms
of hygiene because they require no contact with any surface.

To achieve more robustness and flexibility in biometric identification, research
trends are considering matching algorithms that can work with samples captured
in non-ideal conditions [46]. For this purpose, DL and CNNs are also being
increasingly studied for face [6] and gait [50] recognition systems to compensate
for different non-idealities, such as acquisitions performed at high distances,

346 A. Genovese et al.

from different points of view, and with differences in illumination, pose, and
expression.

To achieve an effective human-machine interaction, the algorithms that eval-
uate the quality of the acquired samples are particularly important. When peo-
ple are tired, stressed, or inexperienced, such conditions can result in the cap-
ture of poor-quality samples, which can negatively affect the overall recognition
accuracy. Research trends are therefore addressing advanced quality assessment
algorithms for face, fingerprint [13], and iris samples [45] that can detect the
different acquisition problems and improve the signaling by providing users with
more precise feedback about which corrective action to perform. Figure 14 shows
an example of how advanced quality assessment algorithms for face and finger-
print acquisitions can be used in ABC systems to perform corrective actions
tailored to the situation, such as compensating for non-idealities or using intel-
ligent signaling.

4.2 Privacy and Security

Biometric samples are personal and sensitive data that cannot be changed and
that are unequivocally related to their owner. Therefore, protecting privacy and
security is of paramount importance. In fact, if a person’s biometric information
is stolen, the thief could potentially use the stolen biometric data to impersonate
the victim for an indefinite amount of time because it is not possible for peo-
ple to change their biometric traits as they can with traditional authentication
mechanisms (e.g., a password or a token) [27].

To increase people’s confidence in biometric systems, users may need assur-
ance about the privacy measures that such systems adopt. Therefore, interna-
tional restrictions limit the retention of sensitive personal data strictly to the
period during which they are effectively used and use logs for monitoring system
quality that store data in an anonymized format [12]. To ensure the privacy of
biometric data, some systems store templates rather than the original samples
and use cryptographic techniques that were specifically developed for biomet-
ric systems [6]. Other methods use privacy-compliant and adaptive match-score
normalization and fusion approaches [3].

Regarding the security of biometric verification, researchers are studying
innovative antispoofing techniques, such as liveness detection methods able to
detect a greater number of fake biometrics traits, including printed face images,
fake fingers made of silicone, or synthetic irises [6]. Antispoofing techniques for
multibiometric systems are also being studied [53].

4.3 Accuracy and Execution Time

The execution time is also a decisive factor for biometric recognition because
lower biometric matching times decrease the time required for authentication
and enable more transparent user interactions. At the same time, lower matching
times could enable the real-time identification of individuals on blacklists or in
large-scale automated fingerprint identification systems.

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 347

Recently, biometric systems based on DL techniques and CNNs have been
gaining popularity and have achieved accuracy improvements for face, fingerprint
[30], iris [6], palm [49], ECG [44], voice [18], and gait [50] recognition, as well as
for age and gender estimation. DL techniques are also being used in multibio-
metric systems to increase accuracy [2] or to learn multiple representations from
the same biometric sample [22]. However, the main drawbacks of methods based
on DL techniques are the need for large amounts of training data, which can be
difficult to collect, and the potentially large number of features to be stored in
the template, which can cause storage problems when high numbers of users are
present in the system [4]. Furthermore, these methods could require too much
computational time for some live applications. To reduce the execution time
in biometric systems, recent techniques have considered optimized implementa-
tions using parallel and general-purpose computing on graphics processing units,
allowing performance gains of up to 14 times compared to sequential CPU-based
implementations [21].

4.4 Interoperability

At present, biometric systems are composed of several collaborating subsystems
and use common rules to favor the exchange of biometric information [14]. These
rules specify the data format, the type of data exchanged, and the cryptographic
schemes. However, even if standards for biometric data interchange exist, inter-
operability problems between different biometric systems can arise when, for
example, different sensors are used to collect the samples [32].

Recent methods to improve the interoperability use cross-database evalua-
tion techniques to increase the matching accuracy between different databases
captured with different sensors. The current research trends focus on fingerprints
[32], irises [11], and online signatures [51].

Biometric algorithms are also using machine learning approaches to perform
matching among heterogeneous databases. In fact, recent methods are able to
train and test models on samples captured with different modalities, with only
limited performance decreases [3].

4.5 Scalability

The scalability of a biometric system is measured as the amount that the per-
formance of the system is negatively affected in terms of both accuracy and
execution time when the size of biometric databases enlarges or when the hard-
ware and network infrastructure must handle a greater number of requests. A
scalable biometric is able to perform an accurate biometric match and respond
within an acceptable time window when both the number of enrolled users and
the number of requests increase, without requiring significant changes in the
software, hardware, and network architectures.

Scalability is particularly important in biometric systems working in the iden-
tification modality when it is necessary to match a biometric sample against
many other samples to determine the identity of the individual (e.g., in national

348 A. Genovese et al.

law enforcement databases composed of millions of biometric records) or operat-
ing with large populations of users (e.g., border control applications with thou-
sands of passengers per day).

Recent trends are considering the use of techniques based on distributed
computation, parallelism, and modularity. For example, some approaches have
studied the adoption of biometric recognition as a service using cloud computing
architectures [9].

5 Conclusions

This chapter provided an overview on recent technologies, emerging scenarios,
and research trends in biometric recognition.

One of the main goals of the research community is to increase the robustness
of state-of-the-art biometric systems to samples acquired in uncontrolled condi-
tions. Important research trends consist of studying novel and robust methods to
perform the recognition in unconstrained conditions using physiological traits,
behavioral traits, soft biometric features, and multibiometric systems. For this
purpose, recent machine learning approaches based on DL and CNNs showed par-
ticularly promising results in terms of accuracy and robustness to poor-quality
acquisitions. The improve robustness of biometric recognition methods to poor-
quality samples acquired in uncontrolled conditions is enabling a diffusion of bio-
metric technologies in a wider set of application scenarios. Emerging scenarios
include public infrastructures, where it is necessary to perform accurate biomet-
ric recognitions using databases of millions of identities, such as border control,
surveillance, and humanitarian services. Other emerging scenarios include pri-
vate infrastructures, where it is necessary to guarantee a correct recognition to
avoid fraud, such as e-commerce and e-banking. Furthermore, emerging scenar-
ios include user-centric applications where biometrics can facilitate the interac-
tion of the person with the environment, such as home automation, user-centric
entertainment, and personal devices.

Although the diffusion of biometric technologies is increasing in heteroge-
neous application scenarios, academic and industrial communities are still study-
ing new methods to improve the different aspects of biometric technologies, mak-
ing them more usable, socially acceptable, privacy compliant, and secure, as well
as with higher accuracy, faster execution, and improved interoperability. How-
ever, although the research community is proposing important novelties, further
studies should be performed to design biometric systems that are deployable
in completely unconstrained conditions, thus permitting their diffusion in fur-
ther application scenarios and making them enable technologies for new types
of human-centric personalized services.

Acknowledgments. This work was supported in part by: the EC within the 7FP
under grant agreement 312797 (ABC4EU); the EC within the H2020 program under
grant agreement 644597 (ESCUDO-CLOUD); and the Italian Ministry of Research
within the PRIN 2015 project COSMOS (201548C5NT).

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 349

References

1. Abbas, A., Khan, S.U.: A review on the state-of-the-art privacy-preserving
approaches in the e-health clouds. IEEE J. Biomed. Health Inf. 18(4), 1431–1441
(2014)

2. Al-Waisy, A.S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., Nagem, T.A.M.: A multi-
biometric iris recognition system based on a deep learning approach. Pattern Anal.
Appl. 21(3), 783–802 (2017)

3. Anand, A., et al.: Enhancing the performance of multimodal automated border con-
trol systems. In: Proceedings of the 15th International Conference of the Biometrics
Special Interest Group (BIOSIG), Darmstadt, Germany, pp. 1–5, September 2016

4. Anand, A., Donida Labati, R., Hanmandlu, M., Piuri, V., Scotti, F.: Text-
independent speaker recognition for ambient intelligence applications by using
information set features. In: Proceedings of the 2017 IEEE International Con-
ference on Computational Intelligence and Virtual Environments for Measurement
Systems and Applications (CIVEMSA), Annecy, France, pp. 30–35, July 2017

5. Antipov, G., Baccouche, M., Berrani, S.A., Dugelay, J.L.: Apparent age estimation
from face images combining general and children-specialized deep learning models.
In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 801–809, June 2016

6. Bhanu, B., Kumar, A. (eds.): Deep Learning for Biometrics. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61657-5

7. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Distributed
speech and speaker identification system for personalized domotic control. In:
Conti, M., Mart́ınez Madrid, N., Seepold, R., Orcioni, S. (eds.) Mobile Networks
for Biometric Data Analysis. LNEE, vol. 392, pp. 159–170. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39700-9 13

8. Boutellaa, E., Bengherabi, M., Ait-Aoudia, S., Hadid, A.: How much informa-
tion kinect facial depth data can reveal about identity, gender and ethnicity? In:
Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp.
725–736. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5 55

9. Castiglione, A., Choo, K.K.R., Nappi, M., Narducci, F.: Biometrics in the cloud:
challenges and research opportunities. IEEE Cloud Comput. 4(4), 12–17 (2017)

10. Chantal, M., Lee, S.W., Kim, K.H.: A security analysis and reinforcement design
adopting fingerprints over drawbacks of passwords based authentication in remote
home automation control system. In: Proceedings of the 6th International Con-
ference on Informatics, Environment, Energy and Applications (IEEA), pp. 71–75
(2017)

11. Connaughton, R., Sgroi, A., Bowyer, K., Flynn, P.J.: A multialgorithm analysis of
three iris biometric sensors. IEEE Trans. Inf. Forensics Secur. 7(3), 919–931 (2012)

12. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Data pri-
vacy: definitions and techniques. Int. J. Uncertainty Fuzziness Knowl.-Based Syst.
20(06), 793–817 (2012)

13. Donida Labati, R., Genovese, A., Muñoz, E., Piuri, V., Scotti, F., Sforza, G.: Auto-
matic classification of acquisition problems affecting fingerprint images in auto-
mated border controls. In: Proceedings of the 2015 IEEE Symposium on Compu-
tational Intelligence in Biometrics and Identity Management (CIBIM), Cape Town,
South Africa, pp. 354–361 (2015)

14. Donida Labati, R., Genovese, A., Muñoz, E., Piuri, V., Scotti, F., Sforza, G.:
Biometric recognition in automated border control: a survey. ACM Comput. Surv.
49(2), 24:1–24:39 (2016)

https://doi.org/10.1007/978-3-319-61657-5
https://doi.org/10.1007/978-3-319-39700-9_13
https://doi.org/10.1007/978-3-319-16181-5_55

350 A. Genovese et al.

15. Donida Labati, R., Scotti, F.: Noisy iris segmentation with boundary regularization
and reflections removal. Image Vis. Comput. 28(2), 270–277 (2010)

16. Donida Labati, R., Piuri, V., Scotti, F.: Touchless Fingerprint Biometrics. CRC
Press, Boca Raton (2015)

17. Genovese, A., Piuri, V., Scotti, F.: Touchless Palmprint Recognition Systems. AIS,
vol. 60. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10365-5

18. Ghahabi, O., Hernando, J.: Deep learning backend for single and multisession i-
vector speaker recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 25(4),
807–817 (2017)

19. Gofman, M.I., Mitra, S., Cheng, T.H.K., Smith, N.T.: Multimodal biometrics for
enhanced mobile device security. Commun. ACM 59(4), 58–65 (2016)

20. Grother, P.: IREX I - performance of iris recognition algorithms on standard
images. Technical report, Interagency Report 7629 Supplement One, NIST (2010)

21. Gutiérrez, P.D., Lastra, M., Herrera, F., Beńıtez, J.M.: A high performance fin-
gerprint matching system for large databases based on GPU. IEEE Trans. Inf.
Forensics Secur. 9(1), 62–71 (2014)

22. Han, H., Jain, A.K., Shan, S., Chen, X.: Heterogeneous face attribute estimation:
a deep multi-task learning approach. IEEE Trans. Pattern Anal. Mach. Intell.
40(11), 2597–2609 (2018)

23. Hernandez, D., Castrillon, M., Lorenzo, J.: People counting with re-identification
using depth cameras. In: IET Conference Proceedings, p. 16 (2011)

24. Hezil, N., Boukrouche, A.: Multimodal biometric recognition using human ear and
palmprint. IET Biometrics 6(5), 351–359 (2017)

25. Jacobsen, K.L.: Experimentation in humanitarian locations: UNHCR and biomet-
ric registration of Afghan refugees. Secur. Dialogue 46(2), 144–164 (2015)

26. Jacobsen, K.L.: On humanitarian refugee biometrics and new forms of intervention.
J. Interv. Statebuilding 11(4), 529–551 (2017)

27. Jain, A.K., Flynn, P., Ross, A. (eds.): Handbook of Biometrics. Springer, Cham
(2008). https://doi.org/10.1007/978-0-387-71041-9

28. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition.
IEEE Trans. Circ. Syst. Video Technol. 14(1), 4–20 (2004)

29. Jain, A.K., Nandakumar, K., Ross, A.: 50 years of biometric research: accomplish-
ments, challenges, and opportunities. Pattern Recogn. Lett. 79, 80–105 (2016)

30. Jang, H.U., Kim, D., Mun, S.M., Choi, S., Lee, H.K.: DeepPore: fingerprint pore
extraction using deep convolutional neural networks. IEEE Sig. Process. Lett.
24(12), 1808–1812 (2017)

31. Li, C.: Biometrics in social media applications. In: Biometrics in a Data Driven
World: Trends, Technologies, and Challenges, p. 147 (2016)

32. Lin, C., Kumar, A.: Matching contactless and contact-based conventional finger-
print images for biometrics identification. IEEE Trans. Image Process. 27(4), 2008–
2021 (2018)

33. Lourenço, A., Alves, A.P., Carreiras, C., Duarte, R.P., Fred, A.: CardioWheel:
ECG biometrics on the steering wheel. In: Bifet, A., et al. (eds.) ECML PKDD
2015. LNCS (LNAI), vol. 9286, pp. 267–270. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23461-8 27

34. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recog-
nition, 2nd edn. Springer, London (2009). https://doi.org/10.1007/978-1-84882-
254-2

https://doi.org/10.1007/978-3-319-10365-5
https://doi.org/10.1007/978-0-387-71041-9
https://doi.org/10.1007/978-3-319-23461-8_27
https://doi.org/10.1007/978-3-319-23461-8_27
https://doi.org/10.1007/978-1-84882-254-2
https://doi.org/10.1007/978-1-84882-254-2

Advanced Biometric Technologies: Emerging Scenarios and Research Trends 351

35. Mandryk, R.L., Nacke, L.E.: Biometrics in Gaming and Entertainment Technolo-
gies, pp. 191–224. CRC Press, Boca Raton (2016)

36. Mears, J.: Lift-off: can biometrics bring secure and streamlined air travel? Biomet-
ric Technol. Today 2017(2), 10–11 (2017)

37. Meng, W., Wong, D.S., Furnell, S., Zhou, J.: Surveying the development of biomet-
ric user authentication on mobile phones. IEEE Commun. Surv. Tutorials 17(3),
1268–1293 (2015)

38. Neves, J., Narducci, F., Barra, S., Proença, H.: Biometric recognition in surveil-
lance scenarios: a survey. Artif. Intell. Rev. 46(4), 515–541 (2016)

39. Nguyen, K., Fookes, C., Sridharan, S., Denman, S.: Quality-driven super-resolution
for less constrained iris recognition at a distance and on the move. IEEE Trans.
Inf. Forensics Secur. 6(4), 1248–1258 (2011)

40. Odinaka, I., Lai, P.H., Kaplan, A.D., O’Sullivan, J.A., Sirevaag, E.J., Rohrbaugh,
J.W.: ECG biometric recognition: a comparative analysis. IEEE Trans. Inf. Foren-
sics Secur. 7(6), 1812–1824 (2012)

41. Park, S.-H., Kim, J.-H., Jun, M.-S.: A design of secure authentication method
with bio-information in the car sharing environment. In: Park, J.J.J.H., Pan, Y.,
Yi, G., Loia, V. (eds.) CSA/CUTE/UCAWSN-2016. LNEE, vol. 421, pp. 205–210.
Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-3023-9 33

42. Plateaux, A., Lacharme, P., Jøsang, A., Rosenberger, C.: One-time biometrics for
online banking and electronic payment authentication. In: Teufel, S., Min, T.A.,
You, I., Weippl, E. (eds.) CD-ARES 2014. LNCS, vol. 8708, pp. 179–193. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10975-6 14

43. PR Newswire: Market forecast by technologies, applications, end use, regions and
countries (2015). https://www.prnewswire.com/news-releases/global-biometrics-
market-2014-2020-market-forecast-by-technologies-applications-end-use-regions-
and-countries-300095676.html

44. Sarlija, M., Jurisić, F., Popović, S.: A convolutional neural network based approach
to QRS detection. In: Proceedings of the 10th International Symposium on Image
and Signal Processing and Analysis, pp. 121–125, September 2017

45. Schmid, N., Zuo, J., Nicolo, F., Wechsler, H.: Iris quality metrics for adaptive
authentication. In: Bowyer, K.W., Burge, M.J. (eds.) Handbook of Iris Recognition.
ACVPR, pp. 101–118. Springer, London (2016). https://doi.org/10.1007/978-1-
4471-6784-6 5

46. Si, X., Feng, J., Zhou, J., Luo, Y.: Detection and rectification of distorted finger-
prints. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 555–568 (2015)

47. Stone, E.E., Skubic, M.: Unobtrusive, continuous, in-home gait measurement using
the microsoft kinect. IEEE Trans. Biomed. Eng. 60(10), 2925–2932 (2013)

48. Sultana, M., Paul, P.P., Gavrilova, M.: Social behavioral biometrics: an emerging
trend. Int. J. Pattern Recogn. Artif. Intell. 29(08), 1556013 (2015)

49. Svoboda, J., Masci, J., Bronstein, M.M.: Palmprint recognition via discrimina-
tive index learning. In: Proceedings of the 2016 23rd International Conference on
Pattern Recognition (ICPR), pp. 4232–4237, December 2016

50. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: On
input/output architectures for convolutional neural network-based cross-view gait
recognition. IEEE Trans. Circ. Syst. Video Technol. (2017)

https://doi.org/10.1007/978-981-10-3023-9_33
https://doi.org/10.1007/978-3-319-10975-6_14
https://www.prnewswire.com/news-releases/global-biometrics-market-2014-2020-market-forecast-by-technologies-applications-end-use-regions-and-countries-300095676.html
https://www.prnewswire.com/news-releases/global-biometrics-market-2014-2020-market-forecast-by-technologies-applications-end-use-regions-and-countries-300095676.html
https://www.prnewswire.com/news-releases/global-biometrics-market-2014-2020-market-forecast-by-technologies-applications-end-use-regions-and-countries-300095676.html
https://doi.org/10.1007/978-1-4471-6784-6_5
https://doi.org/10.1007/978-1-4471-6784-6_5

352 A. Genovese et al.

51. Tolosana, R., Vera-Rodriguez, R., Ortega-Garcia, J., Fierrez, J.: Preprocessing and
feature selection for improved sensor interoperability in online biometric signature
verification. IEEE Access 3, 478–489 (2015)

52. Tome, P., Fierrez, J., Vera-Rodriguez, R., Nixon, M.S.: Soft biometrics and their
application in person recognition at a distance. IEEE Trans. Inf. Forensics Secur.
9(3), 464–475 (2014)

53. Wild, P., Radu, P., Chen, L., Ferryman, J.: Robust multimodal face and fingerprint
fusion in the presence of spoofing attacks. Pattern Recogn. 50, 17–25 (2016)

Attribute-Based Encryption: Applications
and Future Directions

Bruhadeshwar Bezawada(B) and Indrakshi Ray

Computer Science Department, Colorado State University,
Fort Collins, CO 80523, USA

{Bru.Bezawada,Indrakshi.Ray}@colostate.edu

Abstract. This survey focuses on the cryptographic access control tech-
nique, attribute-based encryption (ABE), its applications and future
directions. Since its inception, there has been a tremendous interest in
applying this technique to solve various problems related to access con-
trol. Significant research efforts have been devoted to design efficient con-
structions and operational parameters to suit various applications. The
main functionality of ABE is to enforce cryptographic access control with
help of policies specified over a set of system defined attributes. A key
generator maps the attributes, in an access policy, into encryption and
decryption keys for a resource access request. ABE is categorized into
Key-Policy ABE (KP-ABE) and Cipher-text Policy ABE (CP-ABE),
depending on the approach used to map the attributes to the encryption
and decryption keys. Implementations of ABE have relied on mathe-
matical primitives such as elliptic curves, pairing functions, generalized
secret sharing notions and on the hardness of problems like comput-
ing discrete logarithm and computational Diffie-Hellman problem over
elliptic curves. As they are essentially public-key systems, these schemes
are usually proven secure under the semantically secure adaptive cho-
sen cipher-text attack (IND-CCA). ABE has been utilized in solving a
number of problems in different application domains including network
privacy, broadcast encryption for on-demand television programming,
health data access control, cloud security, and verifiable computation. In
this survey, we discuss the evolution of ABE, covering significant devel-
opments in this area, the applications of ABE across various domains,
and the future directions for ABE.

1 Introduction

1.1 Motivation

Access control of sensitive data is a central problem for information security and
assurance. The goal is to ensure that only authorized entities are allowed access
to sensitive data following certain system specific access policies. The ability
to specify fine-grained expressive policies to capture all possible authorization
contexts has been the holy grail of access control models. Attribute-based access
control is an interesting model wherein a combination of attributes, which are
c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 353–374, 2018.
https://doi.org/10.1007/978-3-030-04834-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_18

354 B. Bezawada and I. Ray

arbitrary strings, enables system administrators1 to specify policies that are
almost in natural language. For the rest of the survey, we will assume that the
system administrator prefers to express access policies in terms of attributes
defined over natural language.

In the modern computing scenario, the use of distributed storage has become
the de-facto approach for the storage management problem. One interesting
problem in this context is to secure data-at-rest and protect it from leakage
through malicious channels. An attacker could obtain copies of the sensitive data
through covert side-channels. Therefore, when data is stored in such third-party
servers, there needs to be some assurance on the security of the data against such
attacks. Data encryption protects against such leakages as an attacker obtaining
a copy of the encrypted data through malicious channels will not be able to
decrypt it.

When data is encrypted, the major challenge for a system administrator
is in specifying access control policies using user attributes and to effectively
create the bridge between the user attributes and the decryption keys for the
encrypted data. This problem has been addressed by the cryptographic tech-
nique, “attribute-based encryption” (ABE), which describes algorithms to spec-
ify a data access policy in terms of attributes and to create mapping of such a
policy to a decryption key. Due to its vast potential, ABE has received wide-
spread attention in the community and has been the subject of active research.
In the following discussion, we trace the development of attribute-based encryp-
tion starting with the general foundational concepts of identity-based encryption
and fuzzy identity-based encryption.

1.2 Background: Identity-Based Encryption

The genesis of attribute-based encryption can be traced back to the notion of
identity-based encryption (IBE) posed by Shamir in the 1984 paper [27]. The
question was whether it is possible to use any generic public string as a public-
key in a public-key cryptosystem. The answer to this question is to use a master
private-key generator (PKG) that is responsible for providing the decryption keys
that are tied to a generic identity such as an email address. Such a cryptosystem
consists of four algorithms [9], setup, which generates a master-key, extract,
which uses the master-key to map a private key to an arbitrary public key
string ID ∈ {0, 1}∗, encrypt, which encrypts messages using ID, and decrypt,
which decrypts messages using the mapped private key2. The user possessing
the identity ID needs to authorize himself to the PKG to obtain the necessary
decryption keys.

1 The system administrator is used in the generic sense and covers other designations
like “data owner”, “data base owner”, “system designer”, “reference monitor”, “key
generator” and so on.

2 As much as possible the original notation of these seminal papers has been retained
as a mark of honor to the inventors of these techniques. Additional notes have been
added to help a broader audience to appreciate the nuances of these techniques.

Attribute-Based Encryption: Applications and Future Directions 355

Several non-trivial challenges needed to be addressed to achieve this task,
specifically, there was need for a provably secure scheme under standard com-
plexity assumptions based on well-known problems like the discrete logarithm
problem (DLP) or the computational Diffie-Hellman problem (CDH). In their
seminal work in [9] in 2001, Boneh and Franklin designed such a construction
and proved it secure under the chosen-ciphertext attack [7,22], as is the stan-
dard for public-key cryptosystems3. Their approach used the findings of Joux
[15] as basis, which showed that Weil pairing can be successfully used for develop-
ing cryptographic primitives. The Weil pairing provided the bridge for mapping
a random public string -the user’s identity, to a cryptographic public key -to
encrypt data sent to this user, and allowed for the generation of a suitable pri-
vate key -that is used to decrypt messages encrypted with the public key. We
will first give some preliminaries for this scheme and then proceed to describe
the construction in detail.

Bilinear Pairing. Let G1 and G2 be two groups of order q for some large prime
q. An admissible bilinear map e : G1 ×G1 → G2 between these two groups must
satisfy the following properties:

1. Bilinear : We say that a map e : G1 × G1 → G2 is bilinear if e(aP, bQ) =
e(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z.

2. Non-degenerate: As G1,G2 are groups of prime order and if P is a generator
of G1 then e(P, P) is a generator of G2 and hence, e(P, P) �= 1.

3. Computable: There is an efficient algorithm to compute e(P,Q) for any P,Q ∈
G1.

The group G1 is a subgroup of the additive group of points of an elliptic
curve E/Fp and G2 is a subgroup of the multiplicative group of a finite field F

∗
p2 .

For rest of the survey, we assume that all schemes use elliptic curves on which
admissible bilinear pairings exist subject to additional constraints as required
by hardness problem described in the following.

A bilinear pairing can be used for building a cryptosystems only if the discrete
logarithm problem is intractable for that elliptic curve. The decision problem
of Diffie-Hellman (DDH) in this setting is easy as shown in [16], which is to
distinguish between the distributions 〈P, aP, bP, abP 〉 and 〈P, aP, bP, cP 〉 where
a, b, c are random in Z

∗
q and P is random in G

∗
1. The computational Diffie-

Hellman (CDH) problem, however, is still believed to be intractable. The CDH
problem is as follows: given 〈P, aP, bP 〉 in G1 to find abP in G1 and this is
equivalent to the hardness of the discrete logarithm problem (DLP) in cyclic
groups. To prove the security of their IBE scheme, Boneh and Franklin defined
a modified version of the CDH problem on bilinear pairing called Bilinear Diffie-
Hellman (BDH) assumption.

3 Canetti et al. gave the first IBE construction in [10] with slightly weaker security.

356 B. Bezawada and I. Ray

Bilinear Diffie-Hellman (BDH) Assumption. The BDH assumption is as
follows: given an admissible bilinear map e : G1 × G1 → G2 and the distribu-
tion 〈P, aP, bP, cP 〉 in G1, an adversary has negligible advantage of computing
e(P, P)abc. At present, this problem is known to be hard [15].

1.3 IBE: Construction from Weil Pairing

Now, given the above background, Boneh and Franklin’s Identity-Based Encryp-
tion(IBE) scheme is described in the following discussion, which consists of the
necessary four algorithms: setup, extract, encryption and decryption.

Setup: The PKG4 uses a system security parameter k ∈ G+ to generate the
necessary parameters in the setup phase.

– Step 1 : Using k generate a prime q, two groups G1, G2 of order q, and an
admissible bilinear map e : G1 × G1 → G2. Choose a random generator
P ∈ G1.

– Step 2 : Pick a random s ∈ Z
∗
q and set Ppub = sP . The value of s can be

viewed as the master-secret held by the PKG and it is used as a link between
the user public-identity and the corresponding private key generated from the
identity.

– Step 3 : Choose two cryptographic hash functions: H1 : {0, 1}∗ → G
∗
1 and

H2 : G2 → {0, 1}n for some n.

The message space is M = {0, 1}n, the ciphertext space is C = G∗
1 × {0, 1}n

and, the system parameters are params = 〈q,G1,G2, e, n, P, Ppub,H1,H2〉 The
master-key is s ∈ Z∗

q where the security of s, in Ppub = sP , follows from the
intractability of the DLP problem for selected elliptic curves.

Extract: The purpose of this algorithm is to generate the private key for the
given public-identity. Given the public string ID ∈ {0, 1}∗ the algorithm com-
putes QID = H1(ID) ∈ G∗

1, and sets the private key dID = sQID where s is the
master key.

Encrypt: Any other user wishing to send a message M ∈ M, under the pub-
lic key ID, computes QID = H1(ID) ∈ G∗

1 and chooses a random r ∈ Z∗
q .

The parameter r has interesting properties, in that, it adds randomness to the
encryption process and it is only unmasked through the Weil pairing opera-
tion, making it difficult to subvert this value. Now, set the ciphertext to be
C = 〈rP,M

⊕
H2(gr

ID)〉 where gID = e(QID, Ppub) ∈ G
∗
2.

4 Private-key Generator as defined previously.

Attribute-Based Encryption: Applications and Future Directions 357

Decrypt: Let C = 〈U, V 〉 ∈ C be a ciphertext encrypted using the public key ID
where U = rP and V = M

⊕
H2(gr

ID). We assume that the user ID receives the
private key dID from the PKG. To decrypt C using the private key dID compute
: V

⊕
H2(e(dID, U))

= V
⊕

(H2(e(sQID, rP)) = V
⊕

H2(e(QID, P)sr)
= V

⊕
H2(e(QID, sP)r)[Now, substitute V ’s value]

= M
⊕

H2(gr
ID)

⊕
H2(e(QID, sP)r) = M ��

The key takeaway from the IBE construction is that it showed that any
arbitrary string can be used a public-key and there exist strong cryptographic
constructs that allow us to generate a usable public-key cryptosystem. In fur-
ther explorations, Yao et al. [30], showed that IBE can be applied to multiple
hierarchically arranged identities giving rise to what is known as Hierarchical
Identity-Based Encryption (HIBE). The HIBE construction showed that it is
possible to encrypt a message under several identities while allowing each iden-
tity to decrypt the message. Although HIBE was not deployed in practical appli-
cations, it acted as a proof-of-concept for attribute-based encryption where an
attribute can be viewed as an identity in HIBE. Sahai and Waters explored this
notion further in their work called fuzzy identity based encryption (FIBE) [24],
which eventually led to the development of efficient attribute-based encryption
(ABE) techniques.

1.4 Fuzzy Identity-Based Encryption: FIBE

In chronological terms, FIBE was the precursor to attribute-based encryption
and our discussion focuses on this facet of FIBE, although FIBE has other appli-
cations as well. The key notion of FIBE is to allow decryption of message with
some “tolerance” in public-keys, i.e., a user is allowed to produce a public-key
that is within a certain threshold (of similarity), and be able to decrypt the
message encrypted under a large public identity, which exceeds the threshold.
To appreciate this notion, the “public-key” is expressed as a set of elements ω,
which is derived from an identity. Under FIBE, any user who produces ω′ in such
a way that |ω

⋂
ω′| ≥ d for a threshold d, then she will be allowed to decrypt

the message encrypted under ω.
Now, extending this notion further, a user’s identity can be seen as being a

subset of the elements or attributes from the set ω and therefore, the user can
utilize her attributes to decrypt a message as long as the user attributes satisfy
the condition on the system threshold d. This notion can be intuitively viewed as
enforcing access control, i.e., only those users who have the necessary attributes
are authorized to access the data. If the attributes are assigned (or verified) by
an authority or reference monitor, e.g., a PKG, then attribute-based data access
control is possible. A threshold secret distribution system, such as Shamir’s secret
sharing scheme [26], can be used to achieve the desired functionality. Therefore,
FIBE can be viewed as a combination of IBE and Shamir’s secret sharing scheme
with slightly different complexity assumptions, which we state next.

358 B. Bezawada and I. Ray

Decisional Bilinear Diffie-Hellman (BDH) Assumption. Let a, b, c, z ∈
Zp be chosen at random. The Decisional BDH assumption is that no polynomial-
time adversary is able to distinguish the tuple (A = ga, B = gb, C = gc, Z =
e(g, g)abc) from the tuple (A = ga, B = gb, C = gc, Z = e(g, g)z) with non-
negligible advantage.

Decisional Modified Bilinear Diffie-Hellman (MBDH) Assumption.
Similarly, the Decisional MBDH assumption is that no polynomial-time adver-
sary is able to distinguish the tuple (A = ga, B = gb, C = gc, Z = e(g, g)

ab
c)

from (A = ga, B = gb, C = gc, Z = e(g, g)z) with non-negligible advantage.

FIBE Construction: The identities are sets of attributes and d represents the
error-threshold for the intersection of sets, i.e., it is the minimum possible size
of the intersection. Now, when the PKG creates a private key for a user she
will associate a random d − 1 degree polynomial, q(x), with each user with the
condition that each polynomial has the same valuation at point 0, that is q(0) =
y, which represents the secret that will be used to unmask the encryption of the
cipher-text. Given d points of a polynomial of degree d, we can reconstruct the
polynomial using Lagrange’s polynomial interpolation method. The Lagrange
co-efficient, Δi,S for point i ∈ Zp and set S of elements is defined as follows:

Δi,S =
∏

j∈S,j �=i

x − i

i − j

Setup. Let U ⊂ Z
∗
p denote the universe of elements. Choose t1, · · · , t|U | and y

uniformly at random from Zp. Now, the published public parameters are:

T1 = gt1 , · · · , T|U | = gt|U| , Y = e(g, g)y.

The master key is: t1, . . . , t|U | and y.

Key Generation. To generate a private key for identity ω ⊂ U the following
steps are taken. A d1 degree polynomial q is randomly chosen such that q(0) = y.

The private key consists of components, (Di)i∈ω, where Di = g
q(i)
ti for every

i ∈ ω. The aim of FIBE is to ensure that this key can decrypt a message that is
encrypted with a public identity ω′ ≤ ω while subject to the necessary tolerance
threshold.

Encryption. Given a public key ω′ and message M ∈ G2, a random value
s ∈ Zp is chosen. The ciphertext is then published as:

E = (ω′, E′ = MY s, {Ei = T s
i }i∈ω′).

The intuition of this construction is that the secret s needs to be unmasked to
extract the message M .

Attribute-Based Encryption: Applications and Future Directions 359

Decryption. Now, consider that a ciphertext, E, is encrypted with a key for
identity ω′ and the user has a private key for identity ω where |ω

⋂
ω′| ≥ d.

Choose an arbitrary d-element subset, S, of ω
⋂

ω′. The decryption is as follows:

E′/
∏

i∈S

(e(Di, Ei))Δi,S(0) = Me(g, g)sy/
∏

i∈S

(e(g
q(i)
ti , gsti))Δi,S(0)

= Me(g, g)sy/
∏

i∈S

(e(g, g)sq(i))Δi,S(0) = M ��

The last step is an addition of the d Lagrange coefficients in the denominator’s
exponent and evaluates the polynomial at point 0, which is y. This subsequently
cancels out the e(g, g)sy term in the denominator.

Complexity of FIBE. The size of the cipher-text is linear in the size of the
identity being encrypted. The number of exponentiations are linear in the size
of the identity description and d bilinear pairings per decryption.

The FIBE system showed that it is possible create an ABE that will allow
users with different attributes to share access to the same data item. However, the
FIBE system is unsuitable for general access control as it’s use of threshold secret
sharing is not very expressive in terms of specifying access control policies. Any
user with d or more attributes will be able to decrypt the message. In real-world
applications, access control policies are usually specified as a boolean function of
the attributes with AND and OR conditions. These considerations are handled
by the general ABE techniques, which we will describe in detail in the following
sections.

Organization. In Sect. 2, we will describe two popular construction of ABE,
Key-Policy ABE and Ciphertext-Policy ABE. In Sect. 3, we describe the various
applications of ABE and show the applicability of ABE across a wide variety of
application domains. In Sect. 4, we describe the various challenges in ABE and
point out possible future directions in this area of research and make concluding
remarks in Sect. 5.

2 Attribute-Based Encryption

Attribute-based encryption (ABE) can be viewed as a technique for enforcing
cryptographic access control on data where the access policy is specified over
attributes such as: {Name = “John” AND (Age = “30” OR (Location = “Vir-
ginia” AND Role = “Manager”)) AND Department = “Finance”}. In general,
an access control policy is specified as a boolean function over the attributes
as it is the most intuitive and expressive approach. A key advantage of ABE
is that a single encryption is likely to encompasses a wide range of access poli-
cies due to the expressive nature of boolean logic. ABE primarily comes in two
flavors, depending on the way in which the decryption keys are mapped to the
attributes, Key-Policy ABE (KP-ABE) [13] and Ciphertext-Policy ABE (CP-
ABE) [8]. The mathematical constructs used in ABE are almost same as in
FIBE, i.e., elliptic-curve pairings and linear secret sharing schemes (LSSS), with

360 B. Bezawada and I. Ray

some modifications necessary for expressing the complex access control policies.
ABE constructions are primarily based on the Bilinear Diffie-Hellman (BDH)
assumption (cf. Sect. 1.2).

2.1 Access Structures

Let P = {P1, P2, · · · , Pn} be a set of parties. In ABE, these are equivalent to
the set of user specific attributes. Intuitively, an access structure is a collection
of all authorized subsets of P . Now, an authorized collection A ⊆ 2{P1,P2,··· ,Pn}

is monotone if ∀B,C: if B ∈ A and B ⊆ C then C ∈ A5.

Linear Secret Sharing Schemes (LSSS). In a linear secret sharing scheme
[26], an authorized party distributes “shares” of a secret among a group of users.
An authorized group of users can recover the secret by using a linear combination
of these shares.

Monotone Span Programs (MSP). Let K be a field, and {x1, x2, · · · , xn}
be a set of variables. A span program over K is labeled M(M,ρ) where M is a
matrix over K and ρ is a labeling of the rows of M by literals from {x1, · · · , xn}
or {x̄1, · · · , x̄n} and every row is labeled with one literal. Now, for an input
δ ∈ {0, 1}n, define sub-matrix Mδ of M consisting of rows whose labels are set
to 1 by δ, i.e., rows are either labeled by some xi and δi = 1, or rows labeled
by x̄i and δi = 0. The span program accepts δ if and only if there exists some
linear combination of rows induced by δ that generates the all 1’s row. A span
program is called monotone span program (MSP) if the labels of the rows are
only positive literals {x1, · · · , xn} where the MSP computes monotone functions.
An MSP is said to compute a boolean function f if every δ where f(δ) = 1 is
accepted by the MSP. There is an equivalence relation between any LSSS and
a MSP [6], which is a fact used by most ABE schemes to generate the LSSS
matrix from the MSP. Lewko and Waters [18] provide an efficient algorithm to
generate the LSSS matrix from the boolean function representation.

Access Trees. Access trees are used to represent the boolean functions defined
over the attributes. The decryption keys are identified by a tree-access structure
T in which each interior node of the tree is a threshold gate and the leaves
are associated with attributes. This setting is very expressive as it is possible
to represent a tree with AND and OR gates by using respectively 2-of-2 and
1-of-2 threshold gates. Each non-leaf node of the tree represents a threshold
gate, described by its children and a threshold value. If numx is the number of
children of a node x and kx is its threshold value, then 0 < kx ≤ numx. When
kx = 1, the threshold gate is an OR gate and when kx = numx, it is an AND
5 Although most ABE techniques in literature primarily work with monotone access

structures, as defined next, there are schemes [21] that support non-monotone access
structures as well.

Attribute-Based Encryption: Applications and Future Directions 361

gate. Each leaf node x of the tree is described by an attribute and a threshold
value kx = 1. The parent of the node x in the tree is denoted by parent(x).
The function att(x) is defined only if x is a leaf node and denotes the attribute
associated with the leaf node x. The children of a node x are numbered from 1
to num denoted by the function index(x), which returns the number associated
with a child node of x.

A user will be able to decrypt a ciphertext if and only if there is an assignment
of attributes to the leaf nodes of the tree such that the threshold gate of the
root of the tree is eventually satisfied with this assignment. Let R denote the
root of an access tree and Tx denote a sub-tree rooted at node x with threshold
condition kx. An access tree is said to be satisfied, if for some set of attributes,
a recursive evaluation of the tree, starting from the leaf nodes corresponding to
these attributes, satisfies the threshold condition kR of the root node R. Since
all intermediate nodes x are threshold gates, they need to be satisfied before the
root node threshold condition is satisfied.

Attribute Generation. The general approach to generate attributes is to first
express the boolean function as an access tree and generate labeling of the leaf
nodes, which can then be represented as rows of an MSP as described in [18]. The
threshold gates are expanded into AND or OR gates. Since a straightforward
expansion of threshold gates into AND or OR gates might generate a large access
tree, there have been various optimization methods [19] that create smaller MSPs
to minimize the number of AND gates. Finally, each row of the resulting MSP
corresponds to an attribute.

2.2 Key-Policy Attribute-Based Encryption KP-ABE

The logical intuition of KP-ABE is to encode the access policies within the
decryption keys of the user depending on the attributes of the user, i.e., the
decryption key of the user encapsulates the access policies of that user. The con-
struction follows the standard procedures of Setup, Key Generation, Encryption
and Decryption as in IBE. While the Setup and Key Generation procedures of
KP-ABE are identical to those of FIBE, the difference is in the Encryption and
Decryption procedures, which we describe next.

Encryption. Choose a random polynomial qx for each node x, including the
leaves, in the access tree T , such that the degree dx of the polynomial is one less
than the threshold value kx of that node, i.e., dx = kx−1. For the root node R, set
qR(0) = y and choose dR other points of the polynomial qR randomly to define
it completely. The intermediate nodes are encoded based on the polynomial
defined for their respective parent nodes. Specifically, the secret of a child node
is generated as a random point of the polynomial associated with the parent
node. For an intermediate node x, set qx(0) = qparent(x)(index(x)) and choose

362 B. Bezawada and I. Ray

dx other points randomly6 to completely define qx. For each leaf node x, such
that i = att(x), a secret value is associated as follows:

Dx = g
qx(0)

ti

The set of all such values is the decryption key D = {Dx = g
qx(0)

ti } ∀x. A user
will receive a subset of D depending on her attributes.

Decryption. Define a recursive algorithm, DecryptNode(E,D, x) that takes
as input the ciphertext E = (γ,E′, {Ei}i∈γ), the private key D and a node x in
the tree. The algorithm outputs a group element of G2 or ⊥. Let i = att(x) and
if the node x is a leaf node then:

DecryptNode(E, D, x) =

{
e(Dx, Ei) = e(g

qx(0)
ti , gs.ti) = e(g, g)s.qx(0), if i ∈ γ

⊥, otherwise

For any other node x, the DecryptNode algorithm is applied recursively. If
there are at least kx ∈ Sx child nodes that satisfy the condition for a set Sx, the
decryption algorithm is as follows:

Fx =
∏

z∈Sx

F
Δi,S′

x
(0)

z where i = index(z) and S′
x = index(z) : z ∈ Sx

=
∏

z∈Sx

(e(g, g)s.qz(0))Δi,S′
x
(0) =

∏

z∈Sx

(
e(g, g)s.qparent(z)index(z)

)Δi,S′
x
(0)

=
∏

z∈Sx

e(g, g)s.qx(i).Δi,S′
x
(0) = e(g, g)s.qx(0)

Proceeding recursively, at root node DecryptNode(E,D,R) = e(g, g)ys = Y s, if
and only if the user attributes satisfy the tree and given that E′ = MY s, it is
straightforward to obtain M by dividing out Y s.

The size of the public parameters are linear in the number of attributes and
the decryption complexity determines the number of pairings required. Various
techniques [4,18,23,29] have been proposed to optimize this process.

2.3 Cipher-Text Policy Attribute-Based Encryption CP-ABE

The CP-ABE [8] is a more popular version of ABE due its structure and inherent
ability to protect data on outsourced servers. In KP-ABE, the encrypter may not
have control on who will be able to decrypting the cipher-text as the decryption
keys are with the users. CP-ABE is a dual of KP-ABE i.e., the access policies are
encoded inside the cipher-text and the user needs to provide valid attributes to
be able to decrypt the message. The PKG only needs to check the user attributes
and perform the decryption accordingly. The CP-ABE differs primarily in the
encryption and decryption steps. The remaining constructs of access tree and
the complexity assumptions are the same as in KP-ABE.
6 The choice of random points is essential due to the condition on qx(0). A randomly

defined polynomial will not satisfy this property.

Attribute-Based Encryption: Applications and Future Directions 363

Setup. The setup algorithm chooses a bilinear group G0 of prime order p with
generator g and two random exponents α, β ∈ Zp. The public key is published
as:

PK = G0, g, h = gβ , f = g1/β , e(g, g)α

and the master key MK is (β, gα).

Encrypt. The access tree T is included with the cipher-text. A secret parameter
s is chosen and let qR(0) = s for T . This parameter is used to encode the message.
Let Y denote the set of leaf nodes in T and att(y) denote the attribute value
associated with leaf node y ∈ Y .

CT =
(
T , C̃ = Me(g, g)αs, C = hs,∀y ∈ Y : Cy = gqy(0) , C ′

y = H(att(y))qy(0)
)
.

Note that, the attributes are tied to the cipher-text in this construction through
C ′

y and will be used to recover the message.

KeyGen. The key generation algorithm uses the master-key MK and the set of
user attributes S to output a decryption key that identifies with S. The algorithm
first chooses a random r ∈ Zp and, a random rj ∈ Zp for each attribute j ∈ S.
The decryption key is computed as:

SK =
(
D = g

(α+r)
β ,∀j ∈ S : Dj = gr.H(j)rj ,D′

j = grj

)
.

Note that, α is part of the decryption key as it is required to unmask, e(g, g)αs

and also, that H(j) is the same as H(att(y)) since j and att(y) are attributes.

Decrypt. The decryption operation requires the decryption key SK and the
cipher-text CT = (T , C̃, C,∀y ∈ Y : Cy, C ′

y). The algorithm uses the routine
DecryptNode(CT, SK, x) where x denotes a node in the access tree T . As in KP-
ABE, the algorithm is recursive and invoked at the root node R of T . Assuming
that the recursion has reached a leaf node, x, we let i = att(x) where i ∈ S and
perform the following steps:

DecryptNode(CT, SK, x) =
e(Di, Cx)
e(D′

i, C
′
x)

=
e(gr.H(i)ri , hqx(0))
e(gri ,H(i)qx(0))

= e(g, g)rqx(0)

Now, if x is a non-leaf node, DecryptNode(CT, SK, x) works as follows: ∀z
where z is a child of x, we perform DecryptNode(CT, SK, z) and store the
output as Fz. The rest of the interpolation steps are same as in Sect. 2.2. Let
the output of this step be Fx = e(g, g)r.qx(0) and finally, at the root node this
will be FR = e(g, g)r.qR(0) = e(g, g)r.s. The final decryption of M is as fol-

lows: C̃/(e(C,D)/FR) = C̃/

(

e(hs, g(α+r)/β)/e(g, g)rs

)

= M. On an average,

the complexity of CP-ABE is close to KP-ABE with slight changes in the setup
and the final decryption step.

This concludes the discussion of KP-ABE and CP-ABE. We discuss the var-
ious applications of these techniques in the following section.

364 B. Bezawada and I. Ray

3 Applications of Attribute-Based Encryption

In this section, we outline the various applications in which ABE has proven to
be valuable. First, we discuss where the respective techniques of KP-ABE and
CP-ABE are likely to be useful. Second, we discuss the various ABE applications
including a commercial case study for commercializing ABE. For each domain,
we discuss the details of how ABE was used and adapted to suit the respective
application domain.

3.1 KP-ABE or CP-ABE?

The two ABE techniques are dual in nature and this brings in a question of
which applications will benefit by KP-ABE and which ones by CP-ABE.

The access control view implemented by KP-ABE is analogous to that of
a capability list, i.e., a user’s decryption keys decide the set of objects that are
allowed. The user’s private keys encapsulate the mapping between her attributes
and the corresponding access policy. Therefore, KP-ABE implements a user-
oriented view of access control. For instance, this kind of implementation might
be best suited for system controlling access to its users on a local network.

Conversely, the access control view implemented by CP-ABE is analogous
to an access control list, i.e., the resource or object has a list of authorized
users and their respective permissions on that object. In CP-ABE, the object
encapsulates the user attributes with the corresponding access control policy.
Therefore, CP-ABE implements an object-oriented view of access control. For
instance, this kind of implementation might be best suited for outsourced data
storage or data-at-rest applications.

Their dual nature allows either ABE technique to be used in any given appli-
cation and the choice is mainly dictated by the access control policy complexity
and performance constraints, among other factors. In the following discussion,
for each of the applications, we mention the type of ABE that is best suited for
the application.

3.2 On-Demand Live TV Broadcasting

One of the first practical applications where ABE was tested was for encryption
of on-demand broadcast content in [28,32]. Such systems are classified under
the conditional access (CA) systems. We focus on the work from [28] for this
discussion where the authors used an early variation of KP-ABE, which is a tech-
nique called “large-universe” variant of FIBE [24] by Sahai and Waters. In [28],
the authors identify three forms of on-demand services: subscription channels
with a monthly fees, pay-per-view service where a user signs up for a program
of interest, and ad-hoc pay-per-view where a user can sign up for a program
without any advance notice or setup by hitting the “subscribe” button on his
remote control. One approach used by content providers is to arrange users into
group as per their subscribed programs. For normal subscription, this solution is
scalable and efficient as users are relatively static in a group for a fixed amount

Attribute-Based Encryption: Applications and Future Directions 365

of time. However, for pay-per-view programs, the group membership is dynamic
and causes problems to the service provider in terms of group management for
large groups or flash crowds. To solve this problem, the solution devised was to
create a two-tiered architecture and use ABE to control access to the content.

First, the users are divided into smaller groups and assigned a “group” spe-
cific attribute. The “group” attribute needs to be decrypted before gaining access
to the final content. At the lower-tier this access is based on the user attributes
and control is fine-grained. This tiering ensures that group management is per-
formed within smaller groups and does not affect the entire universe of users
accessing the same content. By creating such a tiered architecture, the solution
demonstrated that it is possible to use ABE in novel ways to solve practical
systems.

The authors validated their architecture by considering systems with 50k,
100k and 500k viewers. The decryption costs for accessing content was of the
order of 50 to 100 ms. The system was able to handle several simultaneous joins
and tolerated leaves of the group with minimal latency for real-world workloads.

3.3 Online Social Network Privacy

Online social networks (OSN) like Facebook R© have often leaked private infor-
mation of users to third-parties. While there are security and privacy controls
in place, these are insufficient as a user cannot achieve fine-grained access con-
trol of his data. Users are forced to rely on the OSN service to protect personal
information but the OSN provider seeks to benefit from examining and sharing
that information. In [5], the authors solve this problem by creating a framework
called Persona that enables users to control the flow of their personal information
to their OSN connections in a fine-grained manner. The authors compose CP-
ABE with public-key cryptosystems and symmetric key management to create
a usable access control framework for OSNs.

Intuitively, Persona enables users to create groups and choose which users
are part of a given group. With the help of ABE, users can define the attributes
necessary to be part of specific groups and users control access to personal data
by releasing encrypted data to groups. This allows users to have fine-grained
access control over their data without relying on unknown policies used by the
commercial OSNs. This entire framework was implemented and tested on mobile
phone devices, which represents the majority of OSN user base.

The authors demonstrated that this system is scalable and can achieve the
desired functionality without effecting user’s quality of experience. The design of
this system allows it to inter-operate with existing OSNs, specifically, the Persona
prototype integrates with Facebook. The Persona applications are accessible as
Facebook applications and can interact with Facebook’s API, providing privacy-
enabled applications through the popular interfaces of Facebook. For various
work loads, the authors demonstrated that the page load times of pages with
encrypted data was in the range of few seconds and did not impose any noticeable
change to the experience of users when accessing encrypted content. This system

366 B. Bezawada and I. Ray

was a strong validation to show that ABE is practical even on mobile devices,
which is the popular platform for accessing OSN data.

3.4 Assurance for Cloud Storage Data

Cloud storage services have become very popular for storing user data and pro-
vide good interfaces for sharing such data among several users. However, there
are inherent challenges in maintaining the security of such data as it may be
leaked through misconfiguration or due to an attack from outside. There are
many new challenges for data security and access control when users outsource
sensitive data for sharing on cloud servers, which are not within the same trusted
domain.

In [31], the authors explored the use of ABE for these problems and described
a solution framework that uniquely combined KP-ABE, Proxy Re-Encryption
(PRE) and lazy re-encryption where re-encryption is a means of revoking users
from a given access control policy. As ABE can involve considerable overhead for
the data owner, the authors devised solutions so that the data owner could del-
egate tasks of data file re-encryption and user secret key update to cloud servers
without disclosing data contents or user access policies. For this application, the
reason for using KP-ABE as the base ABE is to allow authorized parties to
seamlessly access the data from the cloud without burdening the data owner.
They used the popular PRE cryptographic primitive in which a semi-trusted
proxy is able to convert a ciphertext encrypted under Alice’s public key into
another ciphertext that can be opened by Bob’s private key without accessing
the underlying plaintext. They were able to validate the security of these con-
structions, a result that demonstrated that ABE is capable of solving difficult
problems and could be composed with other primitives to create new solution
frameworks that could offset any overheads introduced by ABE.

3.5 Fine-Grained Health-Record Access Control

The protection of patient health records has been a critical area of privacy and
has received considerable attention. However, controlling access to health data
is still an unsolved problem. Furthermore, when records are transmitted among
institutions, recipients of the records obtain the plain-text records and this data
might be cached in an unprotected way on user devices. On the other hand,
most hospital systems require online access control decisions. If the server is
unavailable, access control decisions are not possible and the records cannot
be obtained. Medical administrators are faced with a tremendous number of
records with a wide array of policies associated with them. There are dozens of
personnel, e.g., pharmacists, doctors, nurses, billing staff, auditors and so on,
with varying levels of authorization, who are attempting to access this sensitive
data. A sample illustration of the complexity of access is shown in Fig. 1 [31].
The state of the art solution of using an access control matrix to enumerate
access and provide decisions is complex, costly, and error prone.

Attribute-Based Encryption: Applications and Future Directions 367

Fig. 1. Access control policies for health records

In [3], the authors provided a solution to this problem by using ABE, which
is specifically targeted to mobile phones. They implemented a prototype system
with a KP-ABE and CP-ABE library, which included an iPhone R© app for stor-
ing and managing EMRs offline and enabled for flexible and automated policy
generation. For automatic policy generation, they parsed the XML-based health-
records, which contained the roles allowed to access the record, to calculate
an appropriate access policy and encrypt the data using the policy attributes.
Figure 2, shows their system and the interactions of the various entities involved.

Fig. 2. Protection of health records for mobile phones

To demonstrate the validity of their system, the authors considered the com-
plexity of policy generation, encryption and decryption with variable number
of attributes. In practice, the encryption and decryption times were the order

368 B. Bezawada and I. Ray

of a few seconds for about 100 attributes. When revoking access to the records
was checked, the re-encryption of data was in order of 3.5 s for 50 to 80 users,
which represents a significant revocation scenario. This demonstrates that ABE
can be integrated with lightweight devices such as mobile phones and provide
guarantees of security without affecting user experience.

3.6 Policy Sealed Data

Trusted platform modules (TPMs) are seen as a way of enforcing secure access
control on outsourced data. However, accidental or intentional mismanagement
of cloud software poses a serious threat to the security of customer data hosted
on the cloud. TPMs have a host of problems that do not address this kind of
leakage in a satisfactory manner. Mainly, TPM abstractions were designed to
protect data on a stand-alone machine and are unsuitable for multi-host and
multi-tenant data that has potential of moving seamlessly across the platforms.
Furthermore, the state-of-the-art implementation of TPM abstractions is inef-
ficient and introduces scalability bottlenecks to cloud services. An attacker is
assumed to be an agent with privileged access to the cloud node’s management
interface who is typically a cloud provider employee and manages cloud software
and behaves inappropriately. The attacker seeks to compromise customer data
by extracting it from integrity-protected cloud nodes and is successful if either
the data is moved to a machine running insecure software platform or is moved
outside the provider’s premises.

In [25], the authors proposed a new trusted computing abstraction, Policy-
sealed data, to resolve these problems. This abstraction allows customer data
to be encrypted according to a customer chosen policy and guarantees that
only those cloud nodes whose configuration, modeled as attributes, satisfies that
policy can decrypt the data. They developed protocols using CP-ABE, which
reduced the communication needs between the trusted monitor and production
nodes. Their design allowed to implement a system that offered the policy-sealed
data primitive with the help of commodity TPMs. They were able to validate the
system under standard ABE measurement parameters such an policy generation,
encryption and decryption overheads.

3.7 Forward-Secure Messaging

More recently, in [14], the authors used ABE to address the problem of forward-
secure messaging. In this scenario, a user periodically changes her secret key,
so that past messages sent over email or SMS remain confidential, in the event
that her key is compromised or if the user does not want some parties to be able
to read the messages after a designated period. An instance of such an applica-
tion is the TextSecure protocol used by WhatsApp, which implements a highly
fine-grained forward secrecy mechanism. The recently introduced “delete-for-all”
feature falls in this category where access to some past messages can be revoked
by the sender. An initial proposal for this problem was the forward secure public

Attribute-Based Encryption: Applications and Future Directions 369

key encryption scheme (FS-PKE) [10] FS-PKE describes an efficient update pro-
cedure by which a user’s secret key can be altered to revoke decryption capability
for any cipher-text encrypted during time period Tpast < Tpresent. However, this
mechanism does not provide fine-grained control of messages to be deleted, i.e.,
all messages within a given period are deleted and user has no control on the
selection of the messages.

In [14], the authors used a modification of FS-PKE combined with ABE
capabilities to describe what is called as “punctured” encryption to achieve fine-
grained control of revocation of messages. The approach is a form of tag-based
encryption, which on input the current secret key SK and a tag t ∈ {0, 1}∗,
outputs a new secret key SK0 that will decrypt all ciphertexts not encrypted
under tag t. The key effectively “punctures” the decryption capability and this
can be repeated many times to realize the capability of fine-grained control
and normal message deletion. By combining the punctured encryption with FS-
PKE the authors were able to implement a practical forward-secure public key
encryption under real-life workloads of messages and revocations. This unified
scheme ensures that an attacker who obtains the secrets for time period T and
T + 1 cannot recombine any portions of the key to obtain access to messages
deleted during an earlier time period. The experimental validation considered
fixed amount of time (100,000 s) and chose parameters so that each public key of
a user covers one year worth of intervals. The scheme was able to deal with mes-
sage rates of one per second and decryption times of 20 ms, which is completely
acceptable for any real-life messaging application.

The authors also showed that this scheme might be applicable to most sce-
narios where secure deletion is a concern. For instance, secure deletion of files in
cloud based storage is a challenging problem and this scheme has possible appli-
cability to it. Also, considering that the cloud storage inherently lends itself
to ABE type of access control, such an implementation is more than likely to
find wide-spread adoption. The key takeaway is that by combining the punc-
tured encryption primitive with an FS-PKE scheme supported with ABE, the
authors demonstrated the applicability of ABE in developing far more stronger
cryptographic tools for wide-ranging applications.

3.8 Case Study of Commercial Products: Zeutro

The push for ABE commercialization is beginning to see the light with organiza-
tions like Zeutro R© [20], which are building products for securing client data on
cloud platforms. Zeutro has developed commercial-grade and robust attribute-
based encryption toolkit (ZTK) to secure cloud applications while achieving
fine-grained access control. They have developed Arethusa R©, an advanced data
protection and key management system for encrypting enterprise data-at-rest,
which is shown in Fig. 3. Arethusa uses ABE to protect all data object and
employs a centralized reference monitor to implement online access control.

Zeutro uses CP-ABE and KP-ABE to achieve different forms of access con-
trol. They use KP-ABE to achieve what is known as Content-Based Access
Control wherein the attributes are derived from the content of the message.

370 B. Bezawada and I. Ray

Fig. 3. The Arethusa system for protecting data-at-rest

For example, in a system that encrypts emails, the attributes can be “To:” and
“From:” addresses and the body of the email is encrypted as the secret data. As
possible in KP-ABE, the private (decryption) keys can be generated to identify
the kind of cipher-text it can decrypt. They use CP-ABE to implement Role-
based Access Control wherein the decryption capability of the user depends on
her attributes and the cipher-text carries the corresponding policy. For example,
one could restrict a ciphertext only to employees who have been with the com-
pany since 2012 and worked on “Project A” software project and where the other
user attributes are defined as per the context of the operating environment.

4 Challenges and Future Directions

The challenges in deploying ABE arise mainly due to the encryption and decryp-
tion times, which are dependent on the number and size of the attributes being
used. We give a brief overview of possible challenges faced.

4.1 Sizes of Attribute Sets

The encryption and decryption times of a given ABE system depends on the
number and the domain of the attributes involved. Most earlier systems scale
linearly with the number of attributes making them inefficient for real-world
applications. However, in theory [1,2,4,18,23], some significant advances have
been made to address this problem in what are known as the “large-universe”
settings. In practice, as demonstrated by the approach in [28], such optimiza-
tion attempts have been successful and this shows that the proper management

Attribute-Based Encryption: Applications and Future Directions 371

of attribute sets can result in usable ABE systems. However, this remains an
interesting and open challenges for wide-scale deployment of ABE.

4.2 Attribute Structure

Existing ABE systems do have issues in using arbitrary strings as attributes.
Often times, the attribute sets are constrained to be obtained from a fixed space.
However, it is an open challenge to be able use any arbitrary string for achieving
ABE.

4.3 Pairing Operations

There is need for a smaller number of pairings for decryption as this another
way of scaling the ABE system. Often, the access structure and the decryption
policy seems to dictate the number of pairings required. It may happen that due
to a poor strategy even a small universe ABE might require sub-optimal number
of pairings. An open challenge is to explore the strategy of decryption and/or
devise efficient access structures that naturally bound the number of pairings
required.

4.4 Secure Elliptic Curves

ABE depends on the availability of secure elliptic curves on which the hardness
assumptions of the standard problems hold. There is a constant attempt to find
curves that are not only secure but also support efficient pairing operations. NIST
has made attempts to standardize the types of curves that can be used. However,
this remains an open area of exploration in ABE as recent schemes [1,11] have
shown the possibility of newer curves being used for ABE, that improve both
security and efficiency.

5 Conclusion and Future Directions

In this survey, we described Attribute-Based Encryption (ABE) in detail and
demonstrated its applicability in various scenarios. We have taken an applica-
tion oriented view in this survey as ABE has received considerable attention in
the community and already there have been attempts to commercialize these
techniques. The goal of this survey is to encourage further ideas for deployment
of ABE in real-world settings and to drive more innovations in existing systems.
We have described some open challenges that hinder such attempts, but ABE
has been resilient to these changes so far and lent itself to deployment across
various applications. We will conclude by describing a couple of promising future
directions for ABE.

There is considerable push for applying ABE in security for emerging
domains, especially, the rapidly evolving Internet-of-Things [17]. In [17], the

372 B. Bezawada and I. Ray

authors devised an ABE policy framework, called Secure Identity-Based Broad-
cast Encryption (SIBBE), that allows a “task manager” to coordinate multiple
devices working towards a common task and implement appropriate policy of
data sharing across them. A powerful node called “commissioner” is in charge of
policy management and revocation details. The authors showed that it is possi-
ble to use ABE and create a practical framework for securely managing the IoT
devices.

Another interesting future direction is to check for the applicability of ABE
for access control in more general sense, say like in XACML, that work for a large
class of access control policies. In [12], the authors look at newer constructions
based on more generalized secret sharing mechanisms than that of Shamir [26]
and prove that it is indeed possible. This line of work marks a vast area of
unexplored applications for ABE and scope for development of novel solutions
to problems in many domains.

References

1. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 665–682
(2017). https://doi.org/10.1145/3133956.3134014

2. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

3. Akinyele, J.A., Pagano, M.W., Green, M.D., Lehmann, C.U., Peterson, Z.N.J.,
Rubin, A.D.: Securing electronic medical records using attribute-based encryption
on mobile devices. In: Proceedings of the 1st ACM Workshop Security and Privacy
in Smartphones and Mobile Devices, Co-located with CCS, SPSM 2011, Chicago,
IL, USA, 17 October, pp. 75–86 (2011). https://doi.org/10.1145/2046614.2046628

4. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

5. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an
online social network with user-defined privacy. SIGCOMM Comput. Commun.
Rev. 39(4), 135–146 (2009). https://doi.org/10.1145/1594977.1592585

6. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.W., et al. (eds.) IWCC
2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20901-7 2

7. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, S&P 2007, Oakland, California,
USA, 20–23 May 2007, pp. 321–334 (2007). https://doi.org/10.1109/SP.2007.11

https://doi.org/10.1145/3133956.3134014
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1145/2046614.2046628
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1145/1594977.1592585
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1109/SP.2007.11

Attribute-Based Encryption: Applications and Future Directions 373

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

11. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

12. Crampton, J., Pinto, A.: Attribute-based encryption for access control using ele-
mentary operations. In: 2014 IEEE 27th Computer Security Foundations Sympo-
sium, pp. 125–139, July 2014

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS, Alexandria, VA, USA,
30 October–3 November 2006, pp. 89–98 (2006). https://doi.org/10.1145/1180405.
1180418

14. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: IEEE Symposium on Security and Privacy, SP, San Jose, CA, USA,
17–21 May, pp. 305–320 (2015). https://doi.org/10.1109/SP.2015.26

15. Joux, A.: The weil and tate pairings as building blocks for public key cryptosys-
tems. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 20–32.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45455-1 3

16. Joux, A., Nguyen, K.: Separating decision Diffie-Hellman from computational
Diffie-Hellman in cryptographic groups. J. Cryptol. 16(4), 239–247 (2003)

17. Kim, J.Y., Hu, W., Sarkar, D., Jha, S.: ESIoT: Enabling secure management of
the Internet of Things. In: Proceedings of the 10th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec 2017, pp. 219–229. ACM,
New York (2017)

18. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

19. Liu, Z., Cao, Z., Wong, D.S.: Efficient generation of linear secret sharing scheme
matrices from threshold access trees. Cryptology ePrint Archive: Listing (2010)

20. Zeutro LLC. http://www.zeutro.com/
21. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-

monotonic access structures. In: Proceedings of the ACM Conference on Com-
puter and Communications Security, CCS 2007, Alexandria, Virginia, USA, 28–31
October 2007, pp. 195–203 (2007). https://doi.org/10.1145/1315245.1315270

22. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-
1 35

23. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2013, Berlin, Germany, 4–8 November
2013, pp. 463–474 (2013). https://doi.org/10.1145/2508859.2516672

24. Sahai, A., Waters, B.: Fuzzy identity based encryption. IACR Cryptology ePrint
Archive 2004, 86 (2004). http://eprint.iacr.org/2004/086

https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1007/3-540-45455-1_3
https://doi.org/10.1007/978-3-642-20465-4_30
http://www.zeutro.com/
https://doi.org/10.1145/1315245.1315270
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1145/2508859.2516672
http://eprint.iacr.org/2004/086

374 B. Bezawada and I. Ray

25. Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-sealed data: a
new abstraction for building trusted cloud services. In: Proceedings of the
21st USENIX Security Symposium, Bellevue, WA, USA, 8–10 August, pp.
175–188 (2012). https://www.usenix.org/conference/usenixsecurity12/technical-
sessions/presentation/santos

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://
doi.org/10.1145/359168.359176

27. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

28. Traynor, P., Butler, K.R.B., Enck, W., McDaniel, P.D.: Realizing massive-scale
conditional access systems through attribute-based cryptosystems. In: Proceed-
ings of the Network and Distributed System Security Symposium, NDSS, San
Diego, California, USA, 10 February–13 February (2008). http://www.isoc.org/
isoc/conferences/ndss/08/papers/06 realizing massive-scale conditional.pdf

29. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

30. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: Id-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In: Pro-
ceedings of the 11th ACM Conference on Computer and Communications Secu-
rity, CCS 2004, Washington, DC, USA, 25–29 October 2004, pp. 354–363 (2004).
https://doi.org/10.1145/1030083.1030130

31. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: INFOCOM 29th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Com-
puter and Communications Societies, San Diego, CA, USA, 15–19 March, pp.
534–542 (2010). https://doi.org/10.1109/INFCOM.2010.5462174

32. Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption and
broadcast encryption: extended abstract. In: Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security, CCS 2010, pp. 753–755. ACM,
New York (2010). https://doi.org/10.1145/1866307.1866420

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/santos
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/santos
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-39568-7_5
http://www.isoc.org/isoc/conferences/ndss/08/papers/06_realizing_massive-scale_conditional.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/06_realizing_massive-scale_conditional.pdf
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1145/1030083.1030130
https://doi.org/10.1109/INFCOM.2010.5462174
https://doi.org/10.1145/1866307.1866420

Static Analysis for Security Vetting of
Android Apps

Sankardas Roy(B), Dewan Chaulagain, and Shiva Bhusal

Department of Computer Science, Bowling Green State University,
Bowling Green, OH 43403, USA

{sanroy,dewanc,sbhusal}@bgsu.edu

Abstract. In recent years, Android has become the most popular oper-
ating system worldwide for mobile devies, including smartphones and
tablets. Unfortunately, the huge success of Android also attracted hack-
ers to develop malicious apps or to exploit vulnerable apps (developed by
others) for fun and profit. To guard against malicious apps and vulnera-
ble apps, app vetting is important. Static analysis is a promising vetting
technique as it investigates the entire codebase of the app, and it is hard
to evade.

In this article, we present the basic theory of static analysis (as applied
to Android apps) for the beginners (who have recently started exploring
this exciting yet challenging field) in a lucid language. Using short exam-
ple apps, we explain how static analysis algorithms can achieve security
vetting. For instance, we illustrate how tracking data flows and data
dependency paths in an app can help us detect a private information
leakage issue. We also review the state-of-the-art static analysis tools for
security vetting of Android apps. We particularly study FlowDroid and
Amandroid as the representatives of the state-of-the-art. Furthermore,
we remind the reader about the limitations of static analysis.

1 Introduction

Android operating system for mobile devices became commercially available in
2008. Over the years Android has experienced a steady rise in popularity. Accord-
ing to the recent study by Gartner [2] Android has gained the simple majority of
market of the operating system for smartphones and tablets. Wikipedia reports
that Android has at least two billion monthly active users as of May, 2017.

The Android ecosystem is large, and it involves multiple parties. There are
more than 3.5 million apps in the official Android app store (known as Google
Play) and more in unofficial stores. Developers (individual programmers or com-
panies) build apps (some of which are free and some are not) and publish them

This work was partially supported by the U.S. National Science Foundation under grant
no. 1718214. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
above agency.
c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 375–404, 2018.
https://doi.org/10.1007/978-3-030-04834-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_19

376 S. Roy et al.

on the app store. A typical phone user is expected to download the app of choice
from the official app store and install it on her phone. The above scenario reflects
intended interaction among developers, the online app store, and phone users.

Unfortunately, the huge success of Android also attracted hackers to develop
malicious apps that aim to do nefarious activities for fun and profit, e.g., stealing
user’s sensitive information, tracking the user, turning the phone into a bot, etc.
These bad guys attempt to sneak their malicious apps into the Android store.
Google Play performs app vetting before accepting an app. In particular, Google
Play runs the Bouncer System [5] to fend the malicious apps off the market.
However, with some probability, the malicious apps do sneak into the market [1]
and create havoc to millions of victim users. Invading into unofficial app stores
(e.g., in China, Korea, Russia, India, Iran, etc.) is even easier for the attacker as
their vetting system is either less accurate or less strict (or non-existent). The
anti-malware companies occasionally report [24,26] that they discover malicious
apps in such unofficial markets in higher rate.

In addition to security issues due to malicious apps, another challenge comes
from the vulnerable apps. Due to time constraint, sloppiness, or lack of knowl-
edge, many developers do not always follow the right practice during the app
building process. This may result in apps having security holes (e.g., vulnerable
code) in them, which hackers can exploit later to achieve their goal.

To guard against malicious apps and vulnerable apps, app vetting is impor-
tant. App developers, app store management, app analysts (in anti-malware
companies, research institutes, the Security Operation Center of an organiza-
tion, etc.), and phone users each party has a role. In particular, each of these
parties needs to take some responsibility, e.g., the phone user avoiding installing
apps which are not from the official market.

There are two main approaches of app vetting: static analysis and dynamic
analysis. A static analyzer tool investigates the app code (source code, bytecode,
resource files, etc.) and tries to figure out whether there is a match with a
signature or pattern (e.g., data leakage over the Internet). The signature can be
defined in terms of control and data flows. A static analyzer does not actually
execute the app. On the other hand, a dynamic analyzer executes the app in
a sandbox and tries to observe the app’s runtime behavior to discover whether
there is a match with the signature.

Static analysis is particularly attractive from the security standpoint because
this type of vetting attempts to analyze the whole code of the app whereas
dynamic analysis may not be able to reach some part of the code. Furthermore,
a malicious app may try to detect whether it is running under a test environ-
ment (a.k.a. sandbox) and if yes, it may hide all of the maliciousness to evade
detection. In this article, we aim to review the state-of-the-art static analysis
tools for security vetting of Android apps. We particularly study FlowDroid [4]
and Amandroid [31] as the representatives of the state-of-the-art. With example
apps, we study how much these tools can detect and where they face difficulty,
which gives us a sense of the inherent challenges of static analysis. The main

Static Analysis for Security Vetting of Android Apps 377

challenge a static analyzer faces is to keep the number of false alarms within a
bound while keeping the number of missed behaviors (a.k.a. false negatives) low.

We envision this article to serve as an introductory tutorial to students who
want to dive into the exciting field of app vetting in near future. As this field of
research is at the intersection of multiple major fields (namely program analysis,
android apps development, and computer security) many beginners get over-
whelmed when they attempt to study a research paper on the recent advance-
ment of the field. We ourselves faced this difficulty and always felt the need
of an easy tutorial which may give a quick introduction of things with short
examples. This is one of our main motivations to write this article. We attempt
to illustrate the basics of static analysis with example apps which are easy to
understand. We strive to present things in a modular way and we gradually
introduce sophistication as needed.
The main contributions of this article are listed below.

1. We present the basic theory of static analysis with short examples (with
gradually increasing complexity). For instance, the traditional algorithm to
build the control and data flow graph is explained.

2. Via short yet illustrating example apps, we show how static analysis can do
security vetting of Android apps.

3. Through experimental results, we present a comparative study of the state-
of-the-art static analysis tools for security vetting of Android apps. We also
identify the limitations of static analysis.

Organization. The rest of the paper is organized as follows. Section 2 presents a
motivating example (an Android app) which shows the need of security vetting.
Section 3 presents the terminologies and basic theory of static analysis. Section 4
explains how a static analyzer can detect data leakage in Android apps whereas
Sect. 5 presents the state-of-the-art tools. Section 6 illustrates the outcome of
analysis on a benchmark of apps whereas Sect. 7 presents the body of related
work. Finally, Sect. 8 concludes this article.

2 A Motivating Example

An excerpt of an example app named SmsStealer (written in Java) is shown
in Listing 1.11. The SmsStealer app retrieves the latest SMS from an Android
phone of the victim user and uploads the SMS to a remote server. A variant
of this example app may exist in disguise of a good app and can steal sensitive
information from the victim’s phone. The victim may not realize that her SMS
data is compromised.

1 The entire source code of the app is available at https://github.com/AppAnalysis-
BGSU/Applications.

https://github.com/AppAnalysis-BGSU/Applications
https://github.com/AppAnalysis-BGSU/Applications

378 S. Roy et al.

pub l i c c l a s s MainActivity extends . . . {
@Override
protec ted void onCreate (Bundle savedIns tanceState) {
. . .
#1. s t a r t S e r v i c e (new Intent (getAppl i cat ionContext () , LeakSms . c l a s s)) ;
}

}
// LeakSMS s e r v i c e

pub l i c c l a s s LeakSMS extends . . . {
. . .
@Override
pub l i c i n t onStartCommand(Intent intent , i n t f l a g s , i n t s t a r t I d) {

#10. S t r ing sms=getSMS () ;
#11. uploadSMS(sms) ;
#12. re turn super . onStartCommand(intent , f l a g s , s t a r t I d) ;

}
pub l i c S t r ing getSMS ()
{

#25. S t r ing s t r = "" ;
#26. Uri inboxURI = Uri . parse (" content :// sms/ inbox") ;
#27. Cursor cur = getContentReso lver () . query (inboxURI , nu l l . . .) ;
#28. S t r ing s t r = cur . g e tS t r i ng (. . .) ;
#29. re turn s t r ;

}
pub l i c void uploadSMS(St r ing sms)
{

#34. RequestQueue queue = Vol ley . newRequestQueue (t h i s) ;
#35. S t r ing u r l = "http :// e v i l . com / . . . ? sms_content=sms" ;
#36. Str ingRequest S = new Str ingRequest (. . . , ur l , . . .) ;
#37. queue . add (S) ;

}
. . .

}

Listing 1.1. An example app: SmsStealer

Specifically, in the given example, whenever the app is opened, the onCreate
method of the MainActivity gets invoked. This in turn starts the LeakSMS
service (L1)2, and then method onStartCommand is invoked, and then, getSMS
method is called (L10), and the latest SMS is retrieved from victim’s phone
(L27). Method uploadsms (L37) uploads the SMS to a remote server via HTTP.

In this app, the manifest file should consist of READ_SMS and INTERNET
permissions. One may doubt that this app may not work in the latest versions
of Android (6.0 or higher) in which users need to provide permission during
runtime. The answer is, attackers can find ways to make this app work in the
latest Android versions. One of the tricks attackers can use is building the project
using the lower SDK version of Android.

The underlying challenge for a static analysis tool is to detect the source
of the leakage (L27), the sink (L37), and the path between these two points.
The security vetting can be even more challenging if techniques such as string
concatenation, reflection etc. are used, which is explained in the later sections of
this article.

2 L1 is shown as #1 in Listing 1.1. In this article, to refer to Line j we interchangeably
use #j, Lj, or just j.

Static Analysis for Security Vetting of Android Apps 379

3 Common Terminologies and Theory of Static Analysis

Here we present some of the terminologies and theory of static analysis, including
semantic domains, definitions, algorithms, and more. These prepare us for the
technical discussion in the later part of the paper.

Table 1. Formalization domains (� denotes disjoint union)

Name Description

Stmt The set of statements (i.e., bytecode
instructions) of the input program

VarId The set of program variables
FieldId The set of field identifiers
Loc The set of memory locations a.k.a. the set

of created objects/Instances
Val = Loc � {null} The set of values of non-primitive type

symbols
Fact = VarFact � HeapFact The points-to facts of the input program
VarFact ⊆ VarId × Val The points-to facts of the program variables
HeapFact = FieldFact � ArrayFact The points-to facts which model the heap
FieldFact ⊆ Loc × FieldId × Val The points-to facts about the inner fields of

the objects;
ArrayFact ⊆ Loc × Val The points-to facts about the array objects;
VS : VarId → 2Val VS(v) denotes the set of values a program

variable v points to

#106. v1:= new A1 ;
// v1 po in t s to a newly c rea ted type A1 ob j e c t .

#107. v1 . f := new A2 ;
// A new ob j e c t i s a s s i gned to f i e l d f o f v1 .

#108. v2:= new A1 [1 0] ;
// An array o f type A1 i s c reated .

#109. v2 [5] := v1 ;
// One element o f array v2 i s a s s i gned .

#110. v3:= v1 . f ;
// The f i e l d f o f v1 i s a s s i gned to v3 .

#111. v3 . g:= new A3 ;
// A new ob j e c t i s a s s i gned to f i e l d g o f v3 .

#112. v4:= new android : os : Bundle ;
// One Bundle ob j e c t i s c r eated .

#113. v5:= "key" ;
// v5 po in t s to a St r ing .

#114. v6:= " value " ;
// v6 po in t s to a St r ing .

#115. c a l l temp:= putStr ing (v4 , v5 , v6) ;
// I t i s a c a l l statement . One proc . o f Bundle v4
// i s invoked , i . e . , v4 i s the r e c e i v e r .

Listing 1.2. A few statements in Intermediate Representation (IR) of a method,
which involve object creation, field access, and array access.

380 S. Roy et al.

3.1 Semantic Domains

The semantic domains are listed in Table 1. Stmt represents the set of statements
(i.e., bytecode instructions) of the whole program. Without loss of generality,
each statement is assigned a unique index. Following the Java type system, there
are two kinds of types: primitive types and non-primitive types. In the analysis,
we only track the values of the non-primitive type symbols to save computing
resources; this makes sense because the control flow graph expansion (e.g., in
deciding callee names in a virtual method call) does not depend on primitive
types. In this article, we only discuss tracking the values of non-primitive type
symbols unless mentioned otherwise. Loc represents the set of memory locations
a.k.a. the set of created objects i.e., Instances. We represent a memory location
by the object creation statement’s index as the object type is known. So, Loc =
{j | j is the index of an object creation statement}. As an example, the first
statement of a method in Listing 1.2, whose index is 106, is an object creation
instruction and we denote the created object simply by 106. Note that Listing 1.2
presents the code in the Intermediate Representation (IR), which is like Jimple.

Fact denotes the points-to facts of the program involving both the stack and
the heap. It represents the state of the whole program memory. Fact has two
partitions: (a) VarFact represents the points-to facts of the program variables
(sitting in the stack), and (b) HeapFact represents the facts related to the heap.
Again, HeapFact has two partitions: (a) the facts about inner fields of objects
(denoted by FieldFact), and (b) facts about the elements of the arrays (denoted
by ArrayFact). For an array, we can track the values of all elements of the array
as a single set. To get an example of a fact, let us again consider statement 106 in
Listing 1.2. A fact α1 (α1 ∈ VarFact) is generated here, which is represented by
〈v1, 106〉. The next statement in Listing 1.2 generates a fact, α2 (α2 ∈ FieldFact)
which is represented by 〈(106, f), 107〉. The statement 108 generates a fact, α3

(α3 ∈ VarFact) which is 〈v2, 108〉. The statement 109 generates a fact, α4

(α4 ∈ ArrayFact) which is represented by 〈(108), 106〉. We interpret α4 as
the following: The array Instance which is represented by “(108)” contains an
element which points to Instance 106. One might ask how we represent the
situation when the value set of a variable v ∈ VarId (formally, VS (v)) contains
multiple Instances. The answer is we include one separate fact (in Fact) for each
such Instance. Some of the symbols which are introduced are listed in Table 2.

3.2 Common Terminologies of Static Analysis

Let us now introduce a few more terminologies, setting the stage for the technical
discussion later. We use the following definitions in this paper. The notations
which are frequently used in this paper are presented in Table 2.

Location of a Statement. It is the index of the statement, such as the sequen-
tial line number. As an example, the first (shown) statement of Listing 1.2
denotes an assignment statement whose location is 106. Without loss of gen-
erality, in this paper we consider that no two statements’ (in same or different
methods) locations are same.

Static Analysis for Security Vetting of Android Apps 381

Table 2. A list of notations which are frequently used in this paper.

Symbol Meaning

〈v, j〉 a fact ∈ VarFact : v points to Instance j ∈ Loc

〈(j, f), k〉 a fact ∈ FieldFact : The field f in Instance j points to Instance k

〈(j), k〉 a fact ∈ ArrayFact : The array Instance j contains Instance k

(j, k) a TupleInstance containing two Instances j and k

CFG(M) the control flow graph of method M

EntryNodeM the EntryNode of method M

ExitNodeM the ExitNode of method M

ICFG(EP) the ICFG where the entry point method is EP

DFG(EP) the DFG where the entry point method is EP

Node(j) the RegularNode corresponding to the statement at j
CallNode(j) the CallNode corresponding to the statement at j
ReturnNode(j) the ReturnNode corresponding to the statement at j
entryFS(n) the EntryFactSet of node n in the ICFG

gFS(n) the generated fact set (gFS) of node n in the ICFG

kFS(n) the killed fact set (kFS) of node n in the ICFG

exitFS(n) the ExitFactSet of node n in the ICFG

ValueSet (VS). The set of objects a variable v points to is called the ValueSet
of v, i.e. VS(v).

Object Instance and the Creation Site. An object Instance (or simply an
Instance) is created in a statement. As an example, Stmt(106) of Listing 1.2
(where A1 is a class name) is a creation site. The Instance is represented by
A1@loc 106 or simply by loc 106 as only one object can possibly be created at
one location. After this statement is executed, loc 106 ∈ VS(v1).

Slot. A variable or a heap entity (e.g., an object Instance or its one inner field)
in a statement is called a slot. The variable is called a VarSlot while the heap
entity is called a HeapSlot. A HeapSlot can be of two kinds: FieldSlot which
corresponds to an inner field of an object, and an ArraySlot which corresponds
to an array instance. As an example, in Stmt(106) of Listing 1.2, v1 is a VarSlot.
Furthermore, considering Stmt(106) and Stmt(107) we have a FieldSlot such as
(106, f) in Stmt(107). The Instance, 106 is called the container of this FieldSlot.
Also, considering Stmt(108) and Stmt(109) we have an ArraySlot such as (108)
in Stmt(109). The Instance, 108 is called the container of this ArraySlot.

Fact. A fact is a tuple of a slot q and one object Instance which q contains (a.k.a.
points to). As an example, the statement Stmt(106) of Listing 1.2 generates a
fact α1 which is 〈v1, 106〉. A fact can be of two types: VarFact whose slot is a
VarSlot, and HeapFact whose slot is a HeapSlot. A HeapFact can be of two kinds:
FieldFact whose slot is a FieldSlot, and ArrayFact whose slot is an ArraySlot.

382 S. Roy et al.

Call statement. It is a statement which invokes a method. A call statement is
also named a call site. As an example, a virtual call “call temp: = foo(r, arg1);”
is the IR (Intermediate Representation) form of the Java source statement “temp
= r.foo(arg1);”. For a virtual call, the variable r is called the receiver. A static
call is represented like “call temp: = foo(arg1);” in the IR.

TupleInstance. It is a special Instance which is represented by a pair of two
Instances. As an example, statement 112 of Listing 1.2 creates a Bundle object
represented by 112 ∈ Loc, which is like a HashMap. The next three statements
effectively put a (key, value) pair into the Bundle. According to our Bundle
model, statement 115 generates a fieldfact which is represented by 〈(112, field),
(113, 114)〉 where (113, 114) is a TupleInstance. This fact denotes that a special
field of the Bundle holds the (key, value) pair.

Control Flow Graph (CFG). The CFG of a method M , represented by
CFG(M), is a directional graph (NM , EM). The node set is NM = QM ∪
{EntryNodeM ,ExitNodeM} where each statement s of M (in IR) corresponds to
a node in QM . The extra node EntryNodeM or ExitNodeM does not correspond
to a statement. There is an edge e ∈ EM , e.g., ni → nj (ni, nj ∈ QM) if the
control goes from statement of node ni to the statement of node nj . In addition,
there is an edge from EntryNodeM to the node corresponding to the first state-
ment. Also, from any return statement there is an edge to ExitNodeM . There are
two disjoint subsets in QM—one corresponds to the set of regular statements
and the other one to the set of call statements.

ICFG (Inter-procedural Control Flow Graph). Informally, the ICFG of a
program (e.g., a whole app) is the conglomeration of the CFGs of the methods
which are reachable from an entry point method. It is represented by ICFG(EP)
where EP is the entry point method. In other words, a method M is included in
ICFG(EP) only if M is reachable from EP . In addition to the edges inside an
included CFG , the ICFG has extra edges which are between a caller method and
a related callee method. A regular statement s (which is not a call statement)
in M contributes to a RegularNode n in the ICFG . If index of s is j, then n
can be uniquely represented by Node(j). On the other hand, a call statement s
in M contributes to a pair of nodes in the ICFG , namely a CallNode n1 and
a ReturnNode n2. We consider that n1 is a concrete node (i.e., it actually does
the work specified in statement s) while n2 is a virtual node (which merely
helps the control flow). If index of s is j, then n1 can be uniquely represented
by CallNode(j) and n2 can be uniquely represented by ReturnNode(j). Also,
EntryNode and ExitNode of each M are included in the node set of ICFG . In a
nutshell, the ICFG of a program is a directional graph (N,E) where the node
set is defined as above. The edges in ICFG can be derived from the edges in the
reachable methods’ CFGs intuitively. For any node ni ∈ N , the predecessors(ni)
and successors(ni) are defined over the ICFG in the obvious sense.

Types of Nodes in ICFG. As discussed above, there are five kinds of nodes
in the ICFG : EntryNode, ExitNode, CallNode, ReturnNode, and RegularNode.
An EntryNode, ExitNode, or ReturnNode is also called a VirtualNode. On the

Static Analysis for Security Vetting of Android Apps 383

other hand, a CallNode or a RegularNode corresponds to a concrete statement
and does statement processing and is called a ConcreteNode. Say the set of
VirtualNodes in the ICFG is V while the set of ConcreteNodes in the ICFG is
U . So, the set of nodes of the ICFG N is V � U .

Entry Fact Set, Exit Fact Set. We observe that facts may flow from a
RegularNode to another RegularNode of a method. In addition, facts also flow
from the caller method’s CallNode to the callee method’s EntryNode, and so on.
The set of facts which reach a node n ∈ N is called its Entry Fact Set. Formally,
a map entryFS : N → 2F represents this set of facts for any node. Similarly, the
set of facts which leave a node n ∈ N is called its Exit Fact Set. Formally, a map
exitFS : N → 2F represents this set of facts for any node.

Flow Function gen. Given a node of the ICFG , say n, and its EntryFactSet i.e.,
entryFS (n), we apply the flow function gen on the corresponding statement to
compute the facts-to-be-generated at this particular node. Formally, a function
gen : U × 2F → 2F represents this flow function. In particular, if a node n ∈ U
corresponds to statement and given entryFS (n) this statement generates two
facts α1 and α2, then we denote this by gen(n, entryFS (n)) = {α1, α2}. The set
of facts-to-be-generated is also represented by gFS (n). For a node n ∈ N which
does not corresponds to any statement, such as an EntryNode or an ExitNode
or a ReturnNode, no gen function is defined.

Flow Function kill . Given a node of the ICFG , say n, and its EntryFactSet
i.e., entryFS (n), we apply the flow function kill on the corresponding statement
to compute the facts-to-be-killed at this particular node. Formally, a function
kill : U × 2F → 2F represents this flow function. In particular, if a node n ∈ U
corresponds to statement and given entryFS (n) this statement kills two facts
α3 and α4, then we denote this by kill(n, entryFS (n)) = {α3, α4}. The set of
facts-to-be-killed is also represented by kFS (n). For a node n ∈ N which does
not corresponds to any statement, such as an EntryNode or an ExitNode or a
ReturnNode, no kill function is defined.

Flow Equations. Given the entryFS , a ConcreteNode may generate some fact
or kill some fact, which determines its exitFS . It is straightforward to get the
following equation for each ConcreteNode n.

exitFS (n) = entryFS (n) ∪ gFS (n) \ kFS (n) (1)

gFS (n) = gen(n, entryFS (n)) (2)

kFS (n) = kill(n, entryFS (n)) (3)

Recall that a VirtualNode does not process any statement, i.e., no fact is gener-
ated or killed. Hence, we get the following for each VirtualNode n.

exitFS (n) = entryFS (n) (4)

384 S. Roy et al.

Also, we observe that a node’s entryFS is basically the confluence of its
predecessors’ exitFS . That means, for each node n ∈ N

entryFS (n) =
d⋃

j=1

exitFS (nj), (5)

where nj , 1 ≤ j ≤ d is a predecessor node of n in the ICFG . The above equations
can be used to compute the entryFS (n) and exitFS (n) of each node n ∈ N
after they are initialized as empty. As an example, if we consider the first two
statements of Listing 1.2, then entryFS (Node(107)) contains a fact which is 〈v1,
106〉 while exitFS (Node(107)) contains a fact which is 〈(106, f), 107〉.

3.3 Dimensions of Static Analysis

Recall that the basic purpose of static analysis is to capture the behavior of
the input program without running the program. There are various dimensions
along which a static analysis tool can be judged for accuracy. Typically, there
is a trade-off between the resource (memory, time, etc.) requirement and the
accuracy of analysis along any dimension. A dimension also represents the style
of analysis. A particular analyzer tool may be accurate over one dimension x;
however, it may not be accurate over another dimension y, and it typically over-
approximates over such a dimension y.

Object-Sensitive Analysis. An analysis is object-sensitive if it can differenti-
ate between two objects (even if they are instances of the same class) which can
be in the ValueSet of a variable.

Flow-Sensitive Analysis. We call an analysis flow-sensitive if the analysis
can independently determine the fact sets of statements which are located on
different control flows. Typically, it means the analysis is able to track the Val-
ueSet of a field of an object (and other variables) independently for two different
locations of the program. In particular, the update information of the field in
different locations do not get merged.

Context-Sensitive Analysis. The context of a statement s is the sequence of
calling methods including the line number of the call statements. In other words,
the context of a statement s represents the picture of the program stack while
statement s is executed. If we track the context up to length k, then the analysis
is called k-limiting context-sensitive, and the context of a statement s of method
M1 can be represented by a list [(M1, j1), (M2, j2), . . . , (Md, jd)] where d ≤ k
and j1 is the index of s itself. Note that if (in reality) the context length of a
statement s is greater than k, we need to merge some information while we do
a k-limiting context-sensitive analysis.

Static Analysis for Security Vetting of Android Apps 385

3.4 Algorithms for Static Analysis

Recall that static analysis aims to emulate the execution of the input program
statement by statement to capture its behavior. To emulate the execution of
the input, the traditional approach [18] of static analysis is to start emulating
any entry-point method EP of the input and then to figure out what method
(if any) is called by EP , and then to emulate the callee method. This process
continues until we reach a fixed-point, and at this point, we know the control
flows and data flows of the input program. Using the above flows, we can do
further analysis, such as figuring out data dependency paths across the program,
and taint analysis, and more.

Note that there is inter-dependence between the control flows and the data
flows of the input program, which poses a challenge to inter-procedural static
analysis. In particular, in an object-oriented language, such as Java which sup-
ports polymorphism, to determine the set of callee methods (i.e., part of control
flows), we need to know the receiver object (i.e., part of data flows), and on the
other hand, a method call influences the data flows.

Algorithm 1. Data Flow Graph (DFG) Building Algorithm
Require: The entry point method (EP) of the input program.
Ensure: Inter-procedural Data Flow Graph, i.e., DFG(EP)
1: procedure MakeDFG(EP)
2: icfg ← empty;
3: add intra-procedural CFG of EP to icfg ;
4: entryFS ← empty ;
5: listToProcess ← empty ;
6: entryFS (EntryNodeEP) ← initial fact set;
7: listToProcess ← listToProcess :: EntryNodeEP ;
8: while listToProcess 	= empty do
9: n ← deque head from listToProcess;

10: if n is a CallNode then � Here icfg grows by adding callee’s CFG.
11: determine the calleeSet;
12: add an edge (if not present) from n to the EntryNode of each callee;
13: add an edge (if not present) from ExitNode of each callee to n;
14: pass related facts from n to the EntryNode of each callee;
15: pass related facts from ExitNode of each callee to the ReturnNode;
16: pass related facts from n to the ReturnNode;
17: if any of successors(n) gets a new fact then
18: tempList = successors(n);
19: else � n is a RegularNode, EntryNode, ExitNode, or ReturnNode
20: exitFS(n) = entryFS(n) ∪ gFS(n) \ kFS(n);
21: pass exitFS(n) to successors(n);
22: if any of successors(n) gets a new fact then
23: tempList = successors(n);
24: listToProcess ← listToProcess : : : tempList ;
25: return (icfg, entryFS);

386 S. Roy et al.

A traditional approach [18] of static analysis attempts to track the points-to
facts (of each variable, each inner field of each object, etc.) at each program point
(e.g., a statement) to address the above puzzle. Basically, in this approach, we
start with an empty set of facts and start emulating the entry-point method,
and then incrementally track the points-to facts while determining the inter-
procedural control flow graphs (ICFG) and data flows.

The inter-procedural data flow graph (DFG) of a program is nothing but
ICFG and entryFS (a.k.a. reaching facts) of each node in ICFG . In other
words, DFG is ICFG plus a map from each node of ICFG to its entry fact
set, i.e. entryFS . The basic algorithm of building DFG is presented in Algo-
rithm1. Amandroid [31] tool uses this traditional approach and a more detailed
version of DFG building algorithm is available in [31].

The DFG building algorithm starts by constructing the ICFG from the entry
point EP ’s CFG and initializing entryFS of EntryNodeEP with the initial facts,
if any. Recall that if there is a call statement s in EP , it will introduce a pair
of nodes, i.e., (CallNode, ReturnNode) in the ICFG . In general terms, this is a
worklist algorithm which terminates when a fixed-point is reached. Each node n
in the worklist is processed to determine its exitFS which is then pushed to its
successors. If a successor gets a new fact in the previous action, it is enqueued
in the worklist. How to exactly do the above (for node n) depends on the type
of node n, e.g., EntryNode, ExitNode, etc. as illustrated in Algorithm1.

If in the ICFG the current node (being processed) n is a CallNode, then
there is a chance that it will extend the ICFG by adding one or more callees’
CFGs if they are not already included. In particular, we need to divide the facts
of a CallNode among the related callees’ EntryNodes and the corresponding
ReturnNode.

After DFG is built, we can run data dependency analysis on that and build
the data dependency graph (DDG). The node set of DDG is same as the node
set of DFG , and there exists an edge (from node x to node y) in DDG if a
variable or on object was defined/created at x and is used at y. Note that the
data dependency essentially captures the idea of def-use chain. The main idea
of taint analysis is to identify taint sources and sinks in the code and to check
whether there exists a path from a source to a sink in DDG .

3.5 Examples Illustrating the DFG Building Process

Here we construct few short examples to explain the basics of the DFG building
algorithm. Note that these example codes are not Android apps but they serve
our purpose of illustration quite well.

Example 0. Let us take a small example input program which has a single
method named main. The method has an infinite while loop over three lines
of code where line L1 creates an object, say o1 (of type A1) and assigns it to
variable V 1. This generates a fact which is represented by 〈V1, L1〉. Then, line L2
creates another object, say o2 (of type A2) and assigns o2 to the same variable
V 1, which kills the previous fact. The newly generated fact is represented by

Static Analysis for Security Vetting of Android Apps 387

〈V1, L2〉. Line L3 creates another object, say o3, and assigns o3 to an inner
field of o2. The newly generated fact is represented by 〈(L2, f), L3〉. One might
think that the consecutive gen and kill of facts may prevent the DFG building
algorithm (Algorithm1) from reaching a fixed point (i.e., convergence). Similar
doubt may rise if there is an infinite loop in the code. However, if we closely
look at any particular node’s entryFS , we observe that this set can only grow
over time and hence a convergence is guaranteed as there is a finite set of facts
in the program. In summary, Algorithm1 tracks the entryFS of each node from
the beginning, and emulates generation (or killing) of facts at each node and the
fact flows to successor nodes. In Fig. 1, we see how the fixed-point is reached in
each node’s entryFS , and the algorithm successfully terminates.

Fig. 1. Convergence of Algorithm1: An example input program with infinite loop;
however, a fixed-point is reached in entryFS of each node in DFG.

Example 1. This example is bigger than the previous one; however, still the
entry point method EP has no call statement. So, the final ICFG is the same
as the intra-procedural control flow graph of EP . The EP is goo as shown in
Listing 1.3, and the ICFG looks like the graph illustrated in Fig. 2. Note the
correspondence between the statements of goo and the nodes in the ICFG . In
particular, in statement 1 the variable v2 gets a new object. So, the gFS (gener-
ated fact set) of this statement has a fact which is 〈v2, L1〉 while the kFS (killed
fact set) is empty. Similarly, we can figure out the gFS and kFS of other state-
ments. For each node n, the gFS (n) and the kFS (n) are also shown in Fig. 2.
We remind the reader that here the values of a primitive type variable are not
tracked, such as int, char, etc. So, no fact is generated at statement 4. Among
all statements, only statement 5 has a non-empty kFS , i.e., kFS (n) is empty
for other nodes. At this point, we can use Equation Set 1, Equation Set 4 and
Equation Set 5 to compute the final value of entryFS (n) for each node n. Thus,
the final DFG is obtained.

388 S. Roy et al.

pub l i c goo () {
#1. v2:= new A1 ; // A type A1 ob j e c t i s c r eated .
#2. v2 . f := new A2 ; // An assignment to one f i e l d .
#3. v3:= new A1 [1 0] ; // An array i s c r eated .
#4. v4:= 5 ;
#5. v2:= new A3 ; // Note that A3 extends A1 .
#6. v3 [v4] := v2 ;

// v2 i s a s s i gned to an element o f array v3 .
}

Listing 1.3. Method goo (in IR)

Fig. 2. The DFG where EP , goo does not have a call statement: So, no other method
is included in the ICFG.

// The foo method o f A0 i s overr idden in A1 .
pub l i c foo () {

#1. i f (x = 0) goto 5 ;
#2. v2:= new A1 ;
#3. v2 . f 1 := new B;
#4. goto 6 ;
#5. v2:= new A2 ; //Note : A2 i s a subc l a s s o f A1
#6. v3:= "abc" ;
#7. c a l l temp:= bar (v2 , v3) ; // Invoking bar on v2 .

@signature A0 . bar (S t r ing) St r ing @type v i r t u a l
//Note : A1 i s a subc l a s s o f A0

#8. c a l l temp:= f (v2 . f 1) ; // Invoking f on v2 . f 1
@signature B. f () i n t @type v i r t u a l

}

// The bar method o f A0 i s overr idden in A1 .
pub l i c bar (A1 v4 , S t r ing v5) { //v4 i s " t h i s "

#9. v4 . f 2 := v5 ; // Ass igns v5 to a f i e l d .
#10. re turn v5 ;

}

Listing 1.4. Example methods, foo and bar

Static Analysis for Security Vetting of Android Apps 389

EntryNodeEP

Node(6)

CallNode(7)

ReturnNode(7)

CallNode(8)

ExitNodeEP

EntryNode
A1.bar

Node(9)

Node(10)

ExitNode
A1.bar

EntryNode
A2.bar

Node(11)

Node(12)

Node(13)

ExitNode
A2.bar

entryFS(.)={<v4,L5>,
<(L5,f1),L12>,<(L5,f2),L6>,

<v5,L6>}

entryFS(13)={<v4,L5>,
<(L5,f1),L12>,
<(L5,f2),L6>, <v5,L6>}

entryFS(.)={<v4,L5>,<v5,L6>}

entryFS(8)={<v2,L2>,<v2,L5>,<(L2,f1),L3>,<(L5,f2),L6>,
<v3,L6>,<temp,L6>}

entryFS(.)={<v4,L2>,<(L2,f1),L3>
,<(L2,f2),L6>,<v5,L6>}

entryFS(10)={<v4,L2>,
<(L2,f1),L3>,
<(L2,f2),L6>,<v5,L6>}

entryFS(.)={<v4,L2>,
<(L2,f1),L3>,<v5,L6>}

entryFS(.)={}

Facts unrelated
to any callee

entryFS(9)={<v4,L2>,
<(L2,f1),L3>,<v5,L6>}

entryFS(6)={<v2,L2>, <v2,L5>
<(L2,f1),L3>}

entryFS(11)={<v4,L5>, <v5,L6>}

entryFS(12)={<v4,L5>,
<(L5,f2),L6>,<v5,L6>}

Fig. 3. Extending the ICFG to multiple callees:class A1 and class A2 both define
method bar. So, CallNode(7) connects to the callee A1.bar and callee A2.bar.

Example 2: First, let us take a look of the foo-bar methods’ code as presented
in Listing 1.4. These methods are overridden by class A1 that inherits from class
A0. Now let us make an extension to the above code so that the call statement
(statement 7) has more than one callee options. Let us consider that class A2
inherits from class A1, and class A2 redefines method bar, i.e., now either of A1
and A2 has its own method bar. The A2.bar is shown in Listing 1.5 while A1.bar is
as in Listing 1.4. So, examining the entryFS (CallNode(7)) for Listing 1.4, we see
that statement 7 has now have two callee options which are A1.bar and A2.bar.
So, at CallNode(7) the ICFG should expand to include A1.bar and A2.bar as
shown in Fig. 3. In particular, an edge exists from CallNode(7) to the EntryNode
of A1.bar (or A2.bar) and another edge from the ExitNode of A1.bar (or A2.bar)
to ReturnNode(7).
// The f o l l ow ing d e f i n i t i o n i s made by Class A2 .
pub l i c bar (A2 v4 , S t r ing v5) {

#11. v4 . f 2 := v5 ; // Assignment to a f i e l d .
#12. v4 . f 1 := new B1 ; // Note : Class B1 extends B
#13. re turn v5 ;

}

Listing 1.5. Procedure A2.bar

We apply the relevant division, mapping and filtering rules at the facts trans-
fer point, such as CallNode(7). The ICFG looks like the graph illustrated in
Fig. 3. As resolving the call at statement 8 will be a similar exercise, we do not
further discuss this example.

3.6 Additional Technical Issues

There are additional challenges in DFG construction of an Android app. Below
we highlight some of the undiscussed issues, which are especially important.

390 S. Roy et al.

– Android is an event-based system, i.e., a runtime event (e.g., an incoming
SMS, phone call, boot, etc.) may invoke a method in an app (i.e., event han-
dler/receiver). That poses a challenge to the static analyzer to figure out the
sequence of method execution. Along the same line of discussion, there is no
fixed entry-point method (e.g., main method in a Java application) in an
Android app. So, a static analyzer needs to figure out all possible entry-point
methods, and for each entry-point it needs to perform the analysis. In reality,
an Android app is made of one or more components (e.g., Activity, Service,
Broadcast Receiver, and Content Provider) where each type of component
has a fixed set of lifecycle methods (e.g., onCreate in an Activity component
and onStartCommand in a Service). Depending on the recent event in the
system, an appropriate lifecycle method in a component is invoked. In addi-
tion to lifecycle methods, there are also many callback methods (e.g., onLo-
cationChanged) associated with an Android app, which are also invoked by
corresponding events during runtime. To address this challenge, researchers
(e.g., [4]) came up with an idea of introducing a fictitious entry-point method
(typically called dummyMain method) which in turn invokes all possible life-
cycle methods and callback methods. In essence, this dummyMain method
emulates the environment of a component or of the whole app.

– We need to have concrete models for the library APIs which are particularly
related to the security analysis goal. In particular, related APIs in two types
of classes should be concretely modeled: (i) Android Framework classes e.g.,
Bundle, Intent, IntentFilter, ComponentName, Activity, Service, Broadcas-
tReceiver, ContentProvider, and others. (ii) Java core library classes, such as
String, StringBuilder, StringBuffer, URI, and others. We should have a sound
model for the string operations. Furthermore, we also need to have models for
the native code, which can be challenging. In practice, a conservative simple
model for the native code is used to make the analysis sound.

– Some of the static analysis tools (such as Amandroid) perform flow-sensitive
analysis in building ICFG while other tools such as Soot [14] does only a
flow-insensitive analysis [14]. Let us take an example method as shown in
Listing 1.6, which contains field load, field store and call statements. Soot
merges the facts of the two field store statements (i.e., 302 and 305) and
infers that the field f points to either an A1 or an A3 object. In contrast,
Amandroid tracks the facts of these statements separately and infers accurate
information (e.g., v2.f points to only an A1 object just after statement 302).
As a result, Amandroid can precisely resolve the call statements (i.e., 304
and 307).
In the DFG building algorithm, whenever appropriate, we can try to do the
strong update for a field of a class, which results in more precise analysis.
In particular, for a field store statement if the base (i.e., the class) variable
of the field points to only one Instance, then we can do the strong update.
Otherwise, we are forced to consider a weak update for the field to ensure that
our analysis is sound.

Static Analysis for Security Vetting of Android Apps 391

. . .
#302. v2 . f := new A1 ; // A f i e l d s t o r e statement .
#303. v5:= v2 . f ; // A f i e l d load statement .
#304. c a l l temp:= bar (v5) ; // A c a l l statement .
#305. v2 . f := new A3 ;
// Another ob j e c t i s a s s i gned to the same f i e l d .

#306. v6:= v2 . f ;
#307. c a l l temp:= bar (v6)
. . .

Listing 1.6. Explaining flow-sensitive points-to analysis.

4 Running Static Analysis Algorithms on Example Apps

It is now time to consider real app examples and to show how static analysis
algorithms can detect data leakage, if any. First, we focus on the SmsStealer
app (presented in Sect. 2), and explain in details how DFG and DDG building
algorithms work on this app, which lead to detect the leak. Then, we briefly
explain how the same algorithms detect problems in other apps3. For the ease of
presentation, the app code is shown in Java though in reality the static analysis
is done on the IR form of the code. For the sake of presentation, we sometimes
abuse the line number (of Java source) while we illustrate the facts generation.

Let us start with discussion on how we build DFG for the SmsStealer app,
following Algorithm1. Recall that this app has two components namely Main-
Activity (which is an Activity) and LeakSms (which is a Service). To get the
entry-point of analysis, the analyzer tool first generates the dummyMain method
of this app. For instance, Amandroid generates the dummyMain method for each
individual component whereas dummyMain method invokes the lifecycle (and
callback) methods of that component. In particular, let us consider two events
(highlighted in Fig. 4): With Event (1) (e.g., user’s clicking the app icon), the
MainActivity starts, i.e., onCreate method is invoked. With Event (2), LeakSms
Service starts, i.e., onStartCommand method is invoked. For each such entry-
point method (a.k.a. dummyMain method), Algorithm1 is executed to build the
data flow graph of the corresponding app-component. As discussed before, Algo-
rithm1 starts with an empty fact set and tracks the fact generation/killing in
each statement, and this continues until a fixed point is reached. At this point,
we know the entryFS of each statement as shown in the DFG presented in Fig. 4.
In particular, the DFG of each component is shown in this figure whereas each
component’s boundary is delineated.

For instance, in entryFS of L10, one fact is 〈intent, env〉 that basically repre-
sents that the intent is coming from the environment of the LeakSms component.
We observe that L10 generates a fact 〈sms, L28〉 that basically represents that
sms variable’s creation-site is at L28 (which is a sensitive source API related to
SMS data). We further see that via a method call (uploadSMS) at L11 the above
fact 〈sms, L28〉 flows as further as to the entryFS of L37 (which is a sensitive
sink API related to network write). Moreover, by tracking the def-use chain in

3 The entire source code of the apps is available at https://github.com/AppAnalysis-
BGSU/Applications.

https://github.com/AppAnalysis-BGSU/Applications
https://github.com/AppAnalysis-BGSU/Applications

392 S. Roy et al.

public class LeakSms extends Service{

public int onStartCommand(Intent intent, int flags,int startId){

L10: String sms = getSMS();

L11: uploadSMS(sms);

L12: return super.onStartCommand(intent,flags,startId);

}

public String getSMS(){

L25: String str = “”;

L26: Uri inboxURI = Uri.parse(“content://sms/inbox”);

L27: Cursor cur = getContentResolver.query(inboxURI,null,…)

L28: str = cur.getString(cur.getColumnIndexOrThrow(“body”));

L29: return str;

}

public void uploadSMS(String sms){

L34: RequestQueue queue = Volley.newRequestQueue(this);

L35: String url = “h p://....sms-content=sms”;

L36: StringRequest S = new StringRequest(…,url,…);

L37: queue.add(S);

}
…

public class MainAc vity extends AppCompatAc vity{

protected void onCreate(Bundle b){

…

L1: startService(new Intent(getApplica onContext(),LeakSms.class));

}
}

{<intent, L1>,<(L1,ComponentName),“LeakSms”>}

{<intent, env>}

{<intent, env> , <sms,L28>}

{<str,L25>}

{<str,L25>, <inboxURI, L26>}

{<str,L25>, <inboxURI,L26>,<cur,L27>}

{<str,L28>, <inboxURI,L26>,<cur,L27>}

{<intent,env>,<sms,L28>}

{<sms,L28>}

{<sms,L28>,<queue,L34>}

{<sms,L28>,<queue,L34>,<url,L35>}

{<sms,L28>,<queue,L34>,<url,L35>,<S,L36>}

Intra Component Control flow
Inter Component Control/Data flow
Data Dependency

1

2

Fig. 4. DFG (plus relevant data dependency edges) for SmsStealer app

Static Analysis for Security Vetting of Android Apps 393

data-dependency analysis, the following data-dependency edges are discovered:
L28 → L35, L35 → L36, L36 → L37, and more. This shows that there is a path
from the API source L28 to the API sink L37, which indicates data leakage.

In the previous example (SmsStealer), detecting data leakage does not require
us to track inter-component communication (ICC). Let us now take an example
app named User-Input-Leaker where ICC tracking is necessary, and this app’s
(partial) source is shown in Listing 1.7. User-Input-Leaker app receives the name
and password from the user, and it eventually leaks the password out to the
attacker. Note that the user’s name and password flow across components (from
MainActivity to ServiceClass) via an intent, and the user’s name flows across
components (from MainActivity to SecondActivity).
pub l i c c l a s s MainActivity extends . . . {

. . .
@Override
pub l i c void onCl ick (View v) {
. . .
#2. Edi tab le e1 =et1 . getText () ;
#3. s1= e1 . t oS t r i ng () ;
. . .
#6. Intent i 1=new Intent (MainActivity . th i s , S e rv i c eC l a s s . c l a s s) ;
#7. i 1 . putExtra ("pwd" , s1) ;
#8. i 1 . putExtra (" usr " , s2) ;
#9. s t a r t S e r v i c e (i 1) ;
#10. Intent i 2=new Intent (MainActivity . th i s , SecondAct iv i ty . c l a s s) ;
#11. i 2 . putExtra (" usr " , s2) ;
#12. s t a r tAc t i v i t y (i 2) ;

}
}
// Se rv i c eC l a s s
pub l i c c l a s s S e rv i c eC l a s s extends Se rv i c e {

. . .
@Override

pub l i c i n t onStartCommand(Intent intent , i n t f l a g s , i n t s t a r t I d) {
#13. S t r ing uname=in t en t . getExtras () . g e tS t r i ng (" usr ") . toSt r . . . ;
#14. S t r ing usrpwd=in t en t . getExtras () . g e tS t r i ng ("pwd") . toSt r . . ;
. . .
#16. sendToServer (usrpwd) ;
#17. re turn super . onStartCommand(intent , f l a g s , s t a r t I d) ;

}
pub l i c void sendToServer (S t r ing uname_pass)
{

#18. RequestQueue queue = Vol ley . newRequestQueue (t h i s) ;
#19. S t r ing u r l = "http :// e v i l . com / . . . ? content=uname_pass" ;
#20. Str ingRequest S = new Str ingRequest (. . . , ur l , . . .) ;
#21. queue . add (S) ;

}
}
//Display normal a c t i v i t y s c r een with welcome sc r een layout to user
pub l i c c l a s s SecondAct iv i ty extends Act iv i ty {

@Override
protec ted void onCreate (Bundle savedIns tanceState) {

#22. super . onCreate (savedIns tanceState) ;
#23. setContentView (R. layout . act iv i ty_second) ;
#24. Intent i=ge t In t en t () ;
#25. S t r ing name=i . getExtras () . g e tS t r i ng (" usr ") . t oS t r i ng () ;
#26. Toast . makeText (getAppl i cat ionContext () , "Hi"+name , Toast .

LENGTH_LONG) . show () ;
}

}

Listing 1.7. User-Input-Leaker app

394 S. Roy et al.

Fig. 5. DFG (plus relevant data dependency edges) for User-Input-Leaker app

Static Analysis for Security Vetting of Android Apps 395

The DFG of User-Input-Leaker is presented in Fig. 5. The DFG can be gener-
ated in two phases (as done by Amandroid [31]). In particular, in the first phase,
the DFG of individual component is generated (as shown in Fig. 5). We main-
tain a summary repository for each component, documenting all incoming flow
points (e.g., received intent) and outgoing flows (e.g., sent intent). As an exam-
ple, the fact 〈usrpwd, env〉 in entryFS of L16 indicates that usrpwd is coming
from the environment method of the (ServiceClass) component. In the second
phase, these component-based DFGs can be merged to build an app-level DFG
and DDG . We observe that L3 generates a fact 〈s1, L3〉 (in first phase) which
carries user’s password. As this data is sent via an intent to the ServiceClass, fact
〈(l6,mExtra),(“pwd”, L3)〉 can be linked to the environment of the ServiceClass
in the second phase. By tracking def-use chain, we discover data dependency
edges as follows: L3→ L7, L7→L14, L14→L19, and L19→L20. This shows that
there is a DDG path from source L3 to sink L20, which indicates data leakage.
Note that one data dependency edge (L7→L14) is across two components.
pub l i c c l a s s MainActivity extends . . . {

@Override
protec ted void onCreate (Bundle savedIns tanceState) {

#1. super . onCreate (savedIns tanceState) ;
#2. setContentView (R. layout . act iv ity_main) ;
#3. Intent i 1 = new Intent (MainActivity . th i s , ServClass . c l a s s) ;
#4. s t a r t S e r v i c e (i 1) ;
}

}
//NonAct iv ityClass . java
pub l i c c l a s s NonComponentClass{

pub l i c void LeakImei (S t r ing imei)
{

#7. SmsManager sms = SmsManager . ge tDe fau l t () ;
#8. sms . sendTextMessage ("dest_num" , nul l , imei , nu l l , nu l l) ;

}
}
// ServClass . java
pub l i c c l a s s ServClass extends Se rv i c e {

. . .
@Override

pub l i c i n t onStartCommand(Intent intent , i n t f l a g s , i n t s t a r t I d) {
#13. S t r ing imei = obta inImei () ;
#14. NonComponentClass obj = new NonComponentClass () ;
#15. obj . LeakImei (imei) ;
#16. re turn super . onStartCommand(intent , f l a g s , s t a r t I d) ;

}
pub l i c S t r ing obta inImei ()
{

#20. TelephonyManager tm = (TelephonyManager) getSystemServ ice (
Context .TELEPHONY_SERVICE) ;

#21. S t r ing imei = tm . getDevice Id () ; // source
#22. re turn imei ;

}
}

Listing 1.8. App with non-component class

An Android app can also use a non-component class’s (i.e., not an Activity,
Service, BroadcastReceiver, or ContentProvider) methods to leak sensitive infor-
mation. The With-non-component app presented in Listing 1.8 is one such app.
Figure 6 shows the DFG . We see that the Service component ServClass invokes

396 S. Roy et al.

Fig. 6. DFG (plus relevant data dependency edges) for with-non-component app

Static Analysis for Security Vetting of Android Apps 397

a non-component class’s method called LeakImei (at L15). Furthermore, L13
generates a fact 〈imei, L21〉 which indicates that the variable imei ’s creation
site at L21 (a data source). This sensitive data is passed (as argument) to the
non-component class’s method LeakImei (at L15), which leaks the information
as SMS message (at L8). Data dependency edge L21 → L8 indicates the data
leakage.

5 Understanding the State-of-the-Art

Until now we avoided to tie our discussion to any specific static analysis tool
to make our discussion generic. We presented a traditional approach of doing
the core part of static analysis (DFG , DDG , taint analysis, etc.) for security
vetting of Android apps. As Amandroid follows the traditional approach, our
presentation so far closely aligns with Amandroid whereas other tools (such as
FlowDroid) may take a somewhat different approach of analysis. Furthermore,
in addition to core analysis, a static analysis tool needs to do many more things
some of which are straightforward (such as decompiling the Dalvik bytecode,
collecting meta-information from the manifest and resource files, etc.) and some
are more challenging (such as tracking inter-component communication (ICC),
modeling the Android library and native code, etc.) In this section, we present
some details of few specific tools, which represent the state-of-the-art in our
opinion. Given an app, each of these tools decompile the Dalvik bytecode to get
IR (Intermediate Representation), extracts metadata (e.g., from the manifest
file), and does static analysis to find the security problem, if any. One more
thing to note is that these tools have evolved to some extent over time as multiple
versions have been published on their official website.

5.1 Flowdroid/IccTA

FlowDroid [4] targets to detect information leakage in an Android app, and to
this aim, it does taint analysis. To the best of our knowledge, FlowDroid is the
tool which first introduced the concept of dummy-main method to address the
event-based nature of Android app. In particular, to model the entry-point of
analysis, FlowDroid constructs an app-level dummy-main method which basi-
cally invokes possible lifecycle methods of each component and the relevant call-
back methods. Then it does a two-phase analysis: (a) Starting from the dummy-
main method, FlowDroid utilizes the famous Soot framework to build a callgraph
of the app. This callgraph building process is lightweight (not flow-sensitive and
not context-sensitive) to save computation. Flowdroid searches for a taint source
(typically the return of a library API) in the code. (b) If a heap element (e.g.,
a field of an object) is found to be tainted, then a backward analysis kicks in
starting from the taint source statement to find the aliases of the taint source.
Then, if a sink statement (typically a library API) takes in a tainted source alias,
then a data leakage path is found. Phase b is flow-sensitive and context-sensitive
as it is done utilizing the IFDS [22] framework. To track ICC (control and data

398 S. Roy et al.

flows) in the input app, FlowDroid research-group has built another tool called
IccTA [15]. IccTA utilizes another tool named IC3 [19] that is a constant prop-
agation engine to find the values of intents. The current version of FlowDroid is
integrated with IccTA, and they are available as a single jar file. To the best of
our knowledge, FlowDroid is not able to capture all ICC. For instance, it is yet
to track calling a RPC (Remote Procedure Call) method of a bound Service.

5.2 Amandroid

Amandroid [30,31] claims to be a more generic tool than just targeting taint
analysis. The design theme of Amandroid is to allow the analyst to run specific
analyses (depending on the need) on top of the same DFG and DDG generated
by the core engine. In addition to taint analysis for data leakage detection, exam-
ples of specific analysis include data injection detection, API misuse detection
and more.

As noted before, Amandroid takes the traditional approach to build DFG and
DDG , and our discussion in Sect. 3 closely aligns with the core engine of Aman-
droid. Unlike FlowDroid’s app-level dummy-main method, Amandroid constructs
a separate dummy-main method for each app component. This allows Amandroid
[31] to build DFG for each component independently. For each component Aman-
droid also records the inter-component communication related items (incoming
and outgoing communication elements, e.g., intents and intent filters) in a sum-
mary table, and later when necessary, these component-level DFGs are merged
to build an app-level DFG and also an app-level DDG . Amandroid is capable
of tracking most of the ICC, including calling RPC (Remote Procedure Call)
method of a bound Service and stateful ICC.

6 Experimental Results

A static analysis tool strives to minimize two types of errors: (a) number of
missed behaviors, and (b) number of false alarms. When a static analysis tool
generates the control/data flow graph, it tries to avoid over-approximation (i.e.,
spurious edges on the graph, which leads to false alarms or lower precision) as
well as under-approximation (which leads to missed behaviors or lower recall).
There is trade-off between precision and recall of a static analysis tool. To make a
fair comparative evaluation of available tools is important for the advancement of
research in the field. It is challenging to select (or design) an unbiased benchmark
of apps, which should not give unfair advantage to any tool. The precision and
recall of FlowDroid and Amandroid are studied on variety of apps, which are
publicly available as DroidBench [4] and ICC-Bench [31]. So, in this article, we
do not focus on quantitative comparison of these tools on those metrics. Instead,
we test the tools on a set of carefully-designed apps to verify whether these tools
are able to detect different types of data leakage. The source code of the apps is
available at https://github.com/AppAnalysis-BGSU/Applications.

https://github.com/AppAnalysis-BGSU/Applications

Static Analysis for Security Vetting of Android Apps 399

6.1 Evaluation of Static Analysis Tools

Below we present the comparative results of the state-of-the-art static analysis
tools on a benchmark of apps. This benchmark includes the example apps that
we discussed in Sect. 4 plus few more apps which offer variety of challenges to
static analysis.

Table 3. Leakage detection capability of flowdroid and Amandroid

Leakage Detection Summary
Apps Flowdroid Amandroid

1 SmsStealer Yes Yes
2 User-Input-Leaker Yes Yes
3 With-Non-Component Yes Yes
4 BoundService No Yes
5 Stateful-ICC Yes Yes
6 Leak-Via-Storage Yes Yes
7 Reflection No No

Discussion. Table 3 demonstrates the leakage detection capability of Flowdroid
and Amandroid while they are run on seven apps posing variety of challenges.
In order to run Flowdroid and Amandroid, a list of source and sinks is required.
For this evaluation, we have used the default source and sink lists provided by
the developers of the respective tools.

The apps are chosen (and listed) in such a way that the difficulty level of
the taint path detection for a static analyzer increases gradually (from top to
bottom of Table 3).

The first app, SmsStealer steals sensitive data (SMS) from victim’s device,
and uploads it using http. The source and sink statments both are in a single
component (a Service). Flowdroid and Amandroid both are able to detect this
data leakage path.

In the second app, the user’s password flows from one Activity to another
Activity and eventually leaks through http. As the current version of FlowDroid
and Amandroid tracks inter-component communication (ICC), both of these
tools are able to detect the above data leakage.

In the third app, a Java class (which is not a regular app component) holds
the sink statement (the imei number of the victim’s device is sent via SMS).
The taint path between source and the sink is detected by both Flowdroid and
Amandroid.

In the fourth app, an Activity calls a bound Service’s two RPC (remote
procedure call) methods. One RPC method contains the data source statement
whereas the other RPC method contains the sink statement. The data source

400 S. Roy et al.

statement retrieves the IMEI number of the victim’s device, and the sink state-
ment sends this information out via SMS. An Activity’s one static field is used
as the temporary storage place for the IMEI (which lies on the path between
the source and the sink), adding more challenge to the static analyzer. The taint
path between source and the sink is detected by Amandroid, but FlowDroid
misses to detect this leakage (as FlowDroid is yet to track RPC calls).

The fifth app—stateful-ICC—where an Activity X sends a data request to
another Activity Y via an ICC (startActivityForResult) call and later X receives
some data (e.g., intended result) from Y via another ICC(onActivityResult).
Both Amandroid and Flowdroid are able to detect the taint path.

In the sixth app, sensitive data of the victim user is first stored in the SQLite
database. The data from SQLite is retrieved in the form of string and is leaked
through SMS (sink). Both Amandroid and Flowdroid are able to detect this
leakage.

In the seventh app, a couple of method calls (which are placed on the path
between the source and the sink) are made using Java reflection, which makes
it difficult for the static analysis tools to identify the callee method’s name.
Although this app has (effectively) similar source and sink as that of other apps,
neither Amandroid nor Flowdroid is able to detect the taint path.

Limitation of Static Analysis. As illustrated by our previous experiment
with the seventh app, static analysis tools typically have weakness against reflec-
tion. This weakness becomes worse if additional string operations (e.g., concate-
nation, indexing, etc.) are used to determine the callee method of the reflec-
tion call. Other obfuscation techniques (e.g., code encryption and decryption,
dynamic loading, etc.) can make the detection task even harder. The adversary
may exploit these limitations while designing the malicious app. One defense
for the static analysis tool against this challenge is to raise an alarm when it
encounters these issues in the input app.

7 Related Work

Since Android system started gaining popularity (circa 2010), many security
research-groups proposed static and/or dynamic analysis techniques for security
vetting of Android apps. In this section, we briefly mention the body of literature
that is closely related to this article. For the ease of presentation, we classify the
body of related work in three parts as follows.

7.1 Static Analysis of Android Apps

In addition to FlowDroid and Amandroid, there has been a long line of
works [7,9,11,16,20] that present static analysis techniques for security vetting
of Android apps. Some of these techniques utilize existing generic (i.e., not spe-
cific to Android) static analysis frameworks (e.g., Spark/Soot [27], Wala [28]) to
build call graph based on points-to analysis.

Static Analysis for Security Vetting of Android Apps 401

Recently, Gordon et al. designed DroidSafe [10], which is a static analysis tool
that is capable of tracking both intents and remote procedure calls (RPC) like
Amandroid. However, DroidSafe tool is no longer maintained by the developer
group for some reason, and consequently, execution of this tool occassionally fails
on apps (at least in our experience). Furthermore, Jing et al. proposed intent
space analysis [13] providing a systematic approach to address the complexities
involved in checking intent based communication of an Android system. They
also presented a policy checking framework called Interscope to simplify the
process. This work has been influenced by the prior works on the static analy-
sis of Android applications such as ComDroid [7], FlowDroid, Amandroid, and
Epicc [20]. In addition, Wang et al. [29] explored the design flaws in Android
system services (SS) induced by the improper use of synchronous callback mech-
anism. The authors designed a static analysis tool to detect such vulnerability.

7.2 Dynamic Analysis of Android Apps

A well known dynamic analyzer is TaintDroid [8]. It is a runtime taint-tracking
system to find potential leakage of the user’s private information. Furthermore,
Sun et al. identified the limitations of the static analysis in detecting the run-
time information leakage, and presented TaintArt [23]—a dynamic taint analysis
system. This tool especially targets the new Android Run Time Environment
that was first introduced in Android 5.0. TaintArt was based on TaintDroid, but
unlike TaintDroid, it does multi-level taint analysis. However, we remind the
reader that all dynamic analyses are subject to evasion attacks.

7.3 Other Works

There have been research works that utilize both static and dynamic analysis,
and possibly machine learning algorithms. Hassanshahi et al. studied the possible
attacks on the Android database by creating an analyzer called DBDroidScanner
[12] based on static dataflow analysis and dynamic testing, which they used to
find database vulnerabilities. DBDroidScanner not only scans the Android apps
and detects public and private database vulnerabilities but also confirms their
presence by generating corresponding exploits. Chen et al. presented StormDroid
[6], a machine learning based system for detecting android malware through the
static and dynamic observation of different behaviors.

MAMADROID [21] presents a malware detection system that relies on an
abstract sequence of API calls to capture the behavior of the app. Behavior
of the app modeled as a Markov chain was then used to extract features for
classification. Pointing the rapidly changing android ecosystem, authors conclude
that MAMADROID not only outperforms existing state-of-the-art systems like
DroidAPIMiner [3] (that uses frequency of API calls to model app behavior)
but is also resilient to the age (i.e., newer vs. older) of the apps. Mirzaei et al.
[17] used static features extracted from an app’s code to predict the existence
of particular information flow. This information was then used to rank apps
according to their potential risks. For a dynamic, versatile and rapidly changing

402 S. Roy et al.

eco-system such as Android, it is essential for a security analyst to understand
how permission usage and security vulnerabilities have changed over the years in
the Android apps. Furthermore, Taylor et al. [25] took the snapshots of Google
Play store every three months over a period of two years, and analyzed the
frequency of app updates and the respective changes in permissions, and tracked
how security and vulnerability of the Android apps have evolved over the years.

8 Conclusions

Android system’s huge success lured the adversary to launch attacks for fun
and profit. To guard against malicious apps and vulnerable apps, one defense
is vetting. Static analysis is an attractive vetting approach because this type of
vetting attempts to analyze the whole code of the app and it is hard to evade. In
this article, we presented the basic theory of static analysis along with illustration
of short examples. Furthermore, we showed how static analysis performs vetting
via multiple app examples. In addition, we presented a comparative study of the
state-of-the-art static analysis tools through experimental results, identifying
their strength and weakness.

References

1. Malware displaying porn ads discovered in game apps on Google Play. https://
blog.checkpoint.com/2018/01/

2. Market Share: Devices, all countries, 4Q14 update. http://www.gartner.com/
newsroom/id/2996817

3. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust
malware detection in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M.
(eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-04283-1_6

4. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. In: Proceedings of the ACM PLDI (2014)

5. G-Bouncer (2012). http://googlemobile.blogspot.com/2012/02/android-and-
security.html

6. Chen, S., Xue, M., Tang, Z., Xu, L., Zhu, H.: StormDroid: a streaminglized machine
learning-based system for detecting android malware. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, ASIA CCS
2016, pp. 377–388 (2016)

7. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in Android. In: Proceedings of the ACM Mobisys (2011)

8. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In: Proceedings of the USENIX OSDI (2010)

9. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why Eve and Mallory love android: an analysis of android SSL (in) security. In:
Proceedings of the ACM CCS (2012)

10. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.:
Information flow analysis of android applications in DroidSafe. In: NDSS. Cite-
seer (2015)

https://blog.checkpoint.com/2018/01/
https://blog.checkpoint.com/2018/01/
http://www.gartner.com/newsroom/id/2996817
http://www.gartner.com/newsroom/id/2996817
https://doi.org/10.1007/978-3-319-04283-1_6
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html

Static Analysis for Security Vetting of Android Apps 403

11. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.R.: Unsafe exposure analysis of
mobile in-app advertisements. In: Proceedings of the ACM Conference on Security
and Privacy in Wireless and Mobile Networks (2012)

12. Hassanshahi, B., Yap, R.H.: Android database attacks revisited. In: Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security,
ASIA CCS 2017, pp. 625–639 (2017)

13. Jing, Y., Ahn, G.J., Doupé, A., Yi, J.H.: Checking intent-based communication
in android with intent space analysis. In: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, ASIA CCS 2016, pp. 735–
746 (2016)

14. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In: Hedin, G.
(ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36579-6_12

15. Li, L., et al.: IccTA: detecting inter-component privacy leaks in android apps. In:
Proceedings of the 37th International Conference on Software Engineering (ICSE
2015) (2015)

16. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: CHEX: statically vetting android apps
for component hijacking vulnerabilities. In: Proceedings of the ACM CCS (2012)

17. Mirzaei, O., Suarez-Tangil, G., Tapiador, J., de Fuentes, J.M.: TriFlow: triaging
android applications using speculative information flows. In: Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, ASIA
CCS 2017, pp. 640–651 (2017)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

19. Octeau, D., Luchaup, D., Dering, M., Jha, S., McDaniel, P.: Composite constant
propagation: application to android inter-component communication analysis. In:
Proceedings of the 37th International Conference on Software Engineering (ICSE)
(2015)

20. Octeau, D., et al.: Effective inter-component communication mapping in Android
with Epicc: an essential step towards holistic security analysis. In: Proceedings of
the USENIX Security Symposium (2013)

21. Onwuzurike, L., Mariconti, E., Andriotis, P., De Cristofaro, E., Ross, G., Stringhini,
G.: MamaDroid: detecting android malware by building Markov chains of behav-
ioral models (extended version) (2017)

22. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages (1995)

23. Sun, M., Wei, T., Lui, J.C.: Taintart: a practical multi-level information-flow track-
ing system for android runtime. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2016, pp. 331–342 (2016)

24. Symantec: Internet Security Threat Report. https://www4.symantec.com/
mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-
volume-20-2015-social_v2.pdf, April 2015

25. Taylor, V.F., Martinovic, I.: To update or not to update: insights from a two-
year study of android app evolution. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS 2017, pp. 45–
57 (2017)

26. TrendMicro: Trendlabssm 1Q 2014 Security Roundup (2014). http://www.
trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-
cybercrime-hits-the-unexpected.pdf

https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/978-3-662-03811-6
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-cybercrime-hits-the-unexpected.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-cybercrime-hits-the-unexpected.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-cybercrime-hits-the-unexpected.pdf

404 S. Roy et al.

27. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.:
Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-46423-9_2

28. WALA: WALA documentation: CallGraph (2014)
29. Wang, K., Zhang, Y., Liu, P.: Call me back!: attacks on system server and system

apps in android through synchronous callback. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2016, pp.
92–103 (2016)

30. Wei, F., Roy, S., Ou, X., Robby: AmanDroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. In: Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1329–1341. ACM, Scottsdale (2014)

31. Wei, F., Roy, S., Ou, X., Robby: AmanDroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. ACM Trans.
Priv. Secur. 21(3), 14:1–14:32 (2018)

https://doi.org/10.1007/3-540-46423-9_2

Breaking Bad: Forecasting Adversarial
Android Bad Behavior

Shang Li1, Srijan Kumar2, Tudor Dumitras1, and V. S. Subrahmanian3(B)

1 University of Maryland, College Park, MD 20740, USA
{shangli,tdumitra}@umd.edu

2 Stanford University, Stanford, CA 94305, USA
srijan@cs.stanford.edu

3 Dartmouth College, Hanover, NH 03755, USA
Venkatramanan.Siva.Subrahmanian@dartmouth.edu

Abstract. A number of Android applications exhibit malicious behav-
ior during certain periods of time and exhibit benign behavior at others.
Such malicious applications may bypass existing techniques for detect-
ing mobile malware which focus on identifying malicious behavior at a
specific point in time. Building on the observation that many of these
malicious behaviors are visible to users, we describe the design of a sys-
tem that finds temporary unwanted behaviors by mining user reviews
from the Google Play Store, which is the largest Android marketplace.
We characterize the behavior of these applications and develop methods
to predict which applications will turn malicious. Our best predictive
models have an AUC of 0.86, false positive rate of 0.10 and true posi-
tive rate of 0.67. In addition, we assess our system’s robustness against
adversaries who post fake reviews in order to poison our models.

Keywords: Cybersecurity · Android · Mobile malware
Malware detection · Deception

1 Introduction

Given the popularity of mobile devices, considerable effort has been devoted
to identifying and classifying mobile malware [8,14,16,20,23,29–32,37]. Like
desktop anti-virus programs, these techniques primarily focus on identifying
malicious behaviors that may not be user visible, but that are reflected in an
application’s code, manifest or API call trace, with the aim of removing such
applications (apps, in short) from marketplaces. The output of these techniques
indicates that an app misbehaves at a specific point in time—when the app is
analyzed.

In contrast, many mobile apps introduce user-visible threats, such as stealing
sensitive personal information that is often collected by mobile devices, abuse

First two authors contributed equally.

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 405–431, 2018.
https://doi.org/10.1007/978-3-030-04834-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_20

406 S. Li et al.

of the advertisement ecosystem, or financial scams. Such threats may be dif-
ficult for anti-virus products to detect, as they involve behaviors that are not
unambiguously malicious, but that are nevertheless undesirable as they are not
necessarily consistent with the expectations of end users. Moreover, adversaries
may bypass existing detection methods by creating apps that exhibit unwanted
behaviors at intermittent periods of time, while providing benign functionality
at other times, in order to attract users. This can be achieved by introducing
malicious behavior with an update when the app has accumulated a good rep-
utation [3,36], by purchasing benign apps from other developers and bundling
them with malware and potentially unwanted functionality [1,36], by injecting
malicious ads in benign ad-supported apps [21], by creating apps that exhibit
malicious behavior in response to remote commands [36], or by creating apps
with hidden vulnerabilities, which do not trigger suspicion during the vetting
process performed by the marketplace but allow the attackers to exploit the
apps remotely and inject malicious code [34]. The ability for hackers to turn on
and off the malicious behavior at points of their choosing increases the prob-
ability that these apps will pass the initial vetting process which usually uses
existing static and dynamic techniques to analyze the app’s behavior at a single
point in time, namely the time when the app is initially vetted. Therefore, these
apps are initially benign and then become malicious, and may oscillate between
these two states.

Virus!!! Stay away this is virus and spam

MALWARE ALERT This app causes ads to open in your Internet browser and in Play Store.
These ads also contain malware. DO NOT INSTALL

Fig. 1. Example reviews for the Durak app which was installed by over a million users.
Its spyware functionality was introduced almost two years after it was first published.
We emphasize the seed keywords (in bold), and the new keywords we learn through
keyword expansion (in italic), that are used to flag the app as malicious. These reviews
were posted 4 months before the app was removed from the Google Play store.

Our hypothesis is that we can detect such apps by mining the reviews from
the app market. As we benefit from the many eyes that scrutinize popular apps,
this is a form of crowdsourcing that exposes the periods of bad behavior for each
app. Additionally, this allows us to capture new threats, which may be outside
the traditional anti-virus threat models, but are user visible.

We illustrate this with a real-world example. Durak was an Android app that
was launched in February 2013 and gathered a user base of over a million users.
Until late 2014, this app provided benign functionality as a card game. The initial
reviews included a few complaints about the ads displayed by the app, but these
complaints were infrequent and did not appear to warrant a closer investigation.
Then, in October 2014, a new wave of negative reviews, such as those shown
in Fig. 1, indicated that Durak had started collecting sensitive user information.

Breaking Bad: Forecasting Adversarial Android Bad Behavior 407

The app was finally removed from the marketplace in February 2015, apparently
after the Avast anti-virus provider reported the malicious behavior to Google [2].

In this paper, we characterize the set of user-visible threats in apps that
change behavior dynamically and we explore methods to detect these threats by
mining user reviews from the most popular English-language market: the Google
Play store. We show that the apps detected using existing techniques tend to
exhibit malicious behaviors that are not user-visible. We identify five general
categories of user-visible threats, which often remain undetected for long periods
of time. We also describe the design of an automated framework that combines
several techniques for identifying and measuring these threats. We call this the
Forecasting Adversarial Android Bad Behavior (or FAABB) framework for short.

Fig. 2. Two apps that show multiple windows of bad behavior, shaded in gray. App1
(on the left) is a children’s app that shows sexually explicit material, and App2 (on the
right) is a banking app that asks for permissions to capture pictures and video. The
windows of bad behavior are characterized by a substantial fraction of reviews that
flag the app as suspicious.

Our framework detects apps that exhibit temporary/intermittent bad behav-
ior in three steps. In the first step, we develop a method to automatically extract
information from user comments, using a keyword expansion technique for learn-
ing keywords that correspond to five threat categories: potentially unwanted
programs or PUPs, spyware, permission related bad behaviors, scams, and apps
that clearly inject malware. In the second step, we define a set of temporal fea-
tures, inspired from signal processing, to characterize and detect periods of bad
behavior in the presence of noise (e.g., infrequent complaints about ads). As
shown in Fig. 2, such features are key in our work because we are characterizing
a temporal event—that currently benign apps will turn bad. In the third step,
we train a classifier, using a combination of new and previously used features,
and we evaluate its ability to predict that an app will start exhibiting malicious
behaviors. The insights from our investigation into the nature of temporarily bad

408 S. Li et al.

apps allow us to assemble a highly accurate ground truth data set1 for training
this classifier. Because realistic adversaries could inject fake reviews into the app
market to poison our detector, we also introduce a threat model for our system
and we conduct simulations to evaluate our system’s resilience to such attacks.
Finally, we discuss the broader implications of our findings for mobile security.

In summary, we make the following contributions:

– We systematically characterize the landscape of user-visible threats. We iden-
tify a new threat, namely that of apps that dynamically and intermittently
switch back and forth from good to bad behavior (see Fig. 2) to evade detec-
tion.

– We describe a system that extracts features from app reviews and uses these
features to flag suspicious apps for further analysis. Our system is generic and
can be applied to any mobile marketplace that accepts user reviews.

– We introduce a threat model specific to this system and we evaluate the
amount of damage that an adversary can inflict by posting fake reviews.

This paper is organized as follows: we discuss our threat model in Sect. 2. We
provide an overview of the FAABB system in Sect. 3. We discuss the detection of
periods of bad behavior in Sect. 4, we analyze the apps that exhibit such behavior
in Sect. 5, and describe a classifier trained to predict such occurrences in Sect. 6.
Section 7 evaluates attacks against the FAABB system, and Sect. 8 discusses the
implications of our results for mobile security.

2 Intermittently Malicious Threats

Malware on traditional desktop platforms (e.g., bots, viruses, worms, spyware)
usually conducts its activities in the background and aims to stay hidden from
users in order to evade detection. Some mobile malware variants also try to con-
ceal their activities from users [36]. However, the security models of recent mobile
operating systems make it more difficult to stay hidden. For example, Android’s
fine-grained permissions model [18] forces apps to request permissions to conduct
sensitive operations, such as capturing pictures or recording audio/video from
the device, and the app sandbox makes it difficult for malware to infect other
apps on the device. As a consequence, many of the bad behaviors that mobile
apps exhibit are user-visible.

This forces attackers to look for alternative ways to evade detection. In par-
ticular, they may focus on apps that start misbehaving after they have accumu-
lated good reputations and large user bases, and they may also suspend the bad
behavior temporarily. Such temporary bad behaviors may not be caught by exist-
ing static and dynamic analysis techniques [8,16,20,23,29–32,37], which reflect
the apps’ malice at specific points in time.

1 We responsibly disclosed the suspicious apps our system detected to Google. In this
submission, we anonymize the names of these apps in order to allow Google sufficient
time to investigate them.

Breaking Bad: Forecasting Adversarial Android Bad Behavior 409

As many of these temporary bad behaviors are user-visible, we seek to detect
them by mining user reviews from app marketplaces. We focus on behaviors
that pose security and privacy threats. For example, an app that takes a phone
number for user registration may legitimately require it, but it may also turn
out to be a malicious app that collects and sells phone numbers. As another
example, while showing ads is a legitimate monetization strategy, showing ads
with sexually explicit material to minors (as reviews of the App1 app alleged it
did) represents criminal behavior. The content, volume and temporal features of
user reviews enable us to separate malicious apps from benign ones. At the same
time, we do not prescribe a precise set of bad behaviors, because the unique
properties of mobile ecosystems may give rise to forms of malice that have not
been described before. We, therefore, seek to discover the bad behaviors that are
prevalent in the wild.

Non Goals. We do not seek to predict which apps will be deleted from the
marketplace. Many such apps are not offered for download long enough to gar-
ner sufficient reviews that we can analyze; their prompt removal also suggests
that they can be detected using existing techniques. Instead, we seek to discover
new bad behaviors, which may fall outside the threat models of existing mal-
ware detection tools, and corresponding apps that remain in the marketplace for
extended periods of time. We also do not try to predict which apps are mali-
cious at a fixed point in time. Instead, we look for apps with periods of good
and bad behavior. Finally, while our technique is generic, we only evaluate it on
the Google Play store. The threat landscape in other Android marketplaces may
have different characteristics, and identifying the most appropriate features for
detecting the bad apps on those marketplaces may require a separate study. In
this paper, we provide a blueprint for how such a study can be performed.

Fig. 3. Architecture of the FAABB system

410 S. Li et al.

3 Detecting Temporary Threats

To identify, characterize and predict new user-visible threats, we have developed
a framework called Forecasting Adversarial Android Bad Behavior (FAABB).
Figure 3 shows the architecture of our system. FAABB combines unsupervised
techniques, for discovering keywords indicative of bad behaviors and the periods
when the apps exhibit these behaviors, and supervised techniques for predicting
if an app will become bad in the future.

Dataset. We crawled the Google Play Store twice: in October 2015 and May
2016. We randomly selected 100,000 Android apps from a public index of apps
from the Play Store [26]. FAABB crawls the description, permissions, developer
information, and user reviews associated with all these apps. User reviews include
the star rating, comments, and the timestamp associated with the review. We
perform all our analysis on the October 2015 data; we use the May 2016 data
only to identify the apps that were deleted from the Play Store between the two
crawls.

We eliminate all apps which either have not been present in the Play Store
for four full months or which have under 10 reviews. We chose 4 months as
the threshold because it is the smallest number that will enable our time-series
analysis, which we will illustrate in a later section. This results in 13,624 apps,
suggesting that about 86% of the apps in our crawl are not very popular and,
therefore, are not attractive to attackers. We group the reviews on a monthly
basis and we represent the reviews as time series, where each data point is the
number of reviews per month that meet a certain criterion (e.g., they match
keywords indicative of bad behavior). We aggregate the data in this manner to
remove the sparsity in the number of reviews received daily.

We then follow a systematic procedure to identify bad behaviors.

Table 1. Keywords obtained starting from the set of seed keywords (in bold). These
keywords are used to identify the user-visible malicious behavior in apps.

Categories Keywords

Potentially Unwanted Programs (PUPs) adware, advert, ads, spam, bloatware

Spyware password, trojan, spy, contact, steal

Permission permission, root

Malware malicious, malware, virus

Scam scam, money, sms, phish

Keyword Expansion. We develop an automated technique for identifying key-
words indicative of bad behavior. For each app a, let us denote the set of reviews
by REV (a). We use the keywords “malware”, “virus”, “spy”, and “adware” to
seed our search. Let MAL(a) be the group of reviews that contain one of the

Breaking Bad: Forecasting Adversarial Android Bad Behavior 411

seed keywords and that have either 1 or 2 star ratings (ratings in Play Store
go up to 5 stars). The sets SPY (a), AD(a), V IRUS(a) likewise denote the set
of reviews that contain the words spyware, adware, and virus, respectively and
have either a 1 or a 2 star rating. This strategy allows us to avoid ambigui-
ties that cannot be resolved through keyword search, for example with words
like “anti-virus” that do not denote the presence of a virus, because reviews for
benign apps are less likely to have a low star rating. We then use a Part-of-Speech
Tagging (POS) tagging algorithm2 to extract important keywords from reviews
in the set

⋃
appa(MAL(a) ∪ SPY (a) ∪ AD(a) ∪ V IRUS(a)). Topia identifies

the nouns as important words in the text of the comment. For instance, when
applied to the comment “Spyware... I don’t know how they can justify the permis-

sions they demand for installation”, the algorithm identifies the words “spyware”,
“permissions”, “demand” and “installation” as significant. We then compute the
frequency of the significant words across all the reviews. We manually inspect
the 110 keywords returned and prune the ambiguous terms from the list. For
example, we prune “hate”, “mess”, “error” because they do not reveal specific
behaviors—the user may have hated the app’s interface or functionality. This
leaves us with the 19 keywords shown in Table 1.

Fig. 4. Plot showing the total number of all reviews and flagging reviews per month
as it varies over time for an app App3.

Flagging Reviews. We say a review was flagged (as a potential report of bad
activity by an app) if it has either a 1 or a 2 star rating and contains at least
one of the 19 keywords from Table 1. For instance, Fig. 4 shows the number of
flagged reviews and the total number of reviews over time for a card game app
called App3.

Threshold Selection. To prioritize manual review, we define two variables for
each app: the number n(a) of flagged reviews associated with that app a and
2 We use the Topia POS algorithm [4].

412 S. Li et al.

the fraction f(a) of reviews for that app (per month) that are flagged. We set
minimum thresholds for these two variables to ensure that (1) we have enough
reviews to flag an app, and (2) these reviews are not just a tiny fraction of all
the reviews received. We label an app as potentially bad if there exists a month
(remember all apps must have at least 4 months of data) in which it meets both
the n(a), f(a) thresholds. Setting the thresholds to a correct value is critical—if
the thresholds are set too low then false positives will be introduced, while if the
thresholds are too high, then many apps that were bad would be missed.

Table 2. Variation of false positive apps and all flagged apps with change in the two
thresholds. Each cell reports false positive/total flagged apps.

Fraction f of flagging reviews

0.10 0.20 0.25 0.30 0.40

Number n of flagging reviews 5 16/116 9/85 5/62 4/51 1/26

10 13/67 3/42 0/19 0/10 0/3

15 4/36 0/11 0/6 0/4 0/2

Final Manual Curation. We take a sample of 1000 apps from the above and
vary the thresholds to get the apps that were flagged as potentially bad. We
manually examined these apps to identify any false positives. Table 2 summarizes
the number of false positives and the total number of flagged apps. We observe
that n = 10 and f = 0.25 gives 0 false positive apps among 19 that it flags.
Therefore, we select these values as thresholds to ensure zero false positives in
our ground truth, and to get as many bad apps as possible. As a consequence,
an app that has at least one month with at least 10 flagging reviews, and the
flagging reviews are at least 25% of the reviews in that month, is labeled as a bad
app.

We then use these thresholds to label all the 13,624 apps that we randomly
selected for our dataset. This results in a total of 123 bad apps; we label the
remaining 13,501 apps as good. We further verify these 123 apps to confirm that
they are not false positives and that these apps were genuinely criticized by the
users for behaving in a suspicious manner.

Threat Categories. As shown in Table 1, we use a set of seed keywords that
correspond to three different types of bad behavior. Our keyword expansion
technique discovers results in keywords from two additional categories, for a
total of five threat categories:

– PUP : Potentially Unwanted Programs include apps that are not obviously
malicious, but that nevertheless exhibit unwanted behavior. These include
adware and bloatware. It is generally difficult for anti-virus programs to iden-
tify PUPs, as these apps share some of the characteristics of benign apps.
However, because we analyze user reviews, we can establish that an app is

Breaking Bad: Forecasting Adversarial Android Bad Behavior 413

Bloatware A pay for use bloatware app! Wish I could take this off my phone without root!

Bloatware Don’t use. Expensive and worthless.

Why does it need to send SMS and other new permissions? Would uninstall if it was allowed . New permissions
are ridiculous. Needs to send SMS? Really? No.

(a) Potentially Unwanted Program

Rights? Why this app would need so many permissions for personal data... Please stop this... I really like
the app but all these permissions are completely unnecessary

Good info - SPY Permissions!! While this app is a good basic information source, the latest app upgrade
(11/26/2013) contains new permission to ’read phone number & ID’s & a REMOTE Number if connected
in a call’, ’Your Precise GPS Location’, and ’Network Connections’ - if there are no Ads, what do they
need my location for, much less my phone number OR THE NUMBER OF THE PERSON I’M ON THE
PHONE WITH?? That is unnecessary, and unacceptable!! I will NOT update this app! If you don’t have
the older app, don’t bother downloading.

(b) Excessive Permissions

Possible Malware This is a neat game and it’s quite addictive but bad I had to uninstall the game due
to lots of ads and at times opens chrome and displays popup virus warnings.

Malware Keeps trying to make purchases through Google play without my permission.

Links to malware sites with ads

(c) Malware

Fig. 5. Examples of negative reviews, revealing different types of bad behavior.

unwanted. An example from this category is App4, which elicited the com-
ments shown in Fig. 5(a).

– Excessive permissions: Bad apps in this category try to acquire more per-
missions than they need to deliver the services that they claim to perform.
Users may see this when, for example, an app asks for root permission or
permission to access a camera. This, for instance, is the case with an educa-
tional app called App5. As we can see from the user reviews form Fig. 5(b),
it tries to acquire permissions that it does not need for providing its stated
functionality.

– Spyware: Apps in this category may scan and upload personal information
on a mobile phone (e.g. contacts, who the person calls, etc.) to a remote
web server. Users might notice this behavior when the app tries to access
the phone contacts. The App5 discussed above exhibits behavior from this
category as well.

– Malware: Though users find it difficult to actually spot the activities of
stealthy malware, they may mention in their reviews that an anti-virus pro-
gram running on their device flags an app for using malware. An example in
this category is App6, that garnered the reviews from Fig. 5(c).

– Scam: Apps in this category initiate phishing attacks, try to socially engineer
attacks, or incur a finance charge by sending unwanted premium content that
the user never requested, leading to financial loss for the user.

414 S. Li et al.

Comparison with Other Mobile Threats. By comparing the list of apps
from our two crawls, we identify 1368 apps that were removed during this time.
None of these apps were flagged as suspicious by FAABB; most of them had few
reviews, and their reviews do not suggest that users were aware of the threats
they posed. Conversely, the 123 apps our system detects have remained in the
Play Store for more than four months (earliest one uploaded in March, 2009)
and have reviews that place them in one or several of the five threat categories
discussed above. We notified Google about our findings. We have observed that
35 out of the 123 apps have been removed since then, though the reason for
removal and whether the apps were removed by the developers themselves are
both unknown. This suggests that FAABB detects threats that are distinct from
the ones covered by existing techniques, and complements these techniques by
providing insights into different aspects of the threat landscape.

4 Identifying Periods of Temporary Bad Behavior

In this section, we describe techniques to identify periods when an app receives
many flagged reviews, indicating that users are reporting bad behavior by the
app. As there are daily ups and down in connection with reports of bad behavior,
we need a technique that is robust against such “ambient noise”. If we plot the
number of flagged reviews on the y-axis against time on the x-axis, this suggests
that we want to find peaks in this graph. In order to achieve this, we build upon
well-known signal processing domains applied to the time domain. Using the
time domain is natural here because we are interested in identifying periods of
time when a certain variation (flagged reviews) occurred. We do this via a step
by step process described below.

Fig. 6. Figure showing the Weighted Moving Average (WMA), derivative of WMA,
and the duration for which the app was bad (shaded region), for an app detected by
FAABB.

Breaking Bad: Forecasting Adversarial Android Bad Behavior 415

Step 1: Noise Reduction and Smoothing. Our first step is to remove noise and
eliminate small fluctuations in the graph. To eliminate the influence of small
variations, we apply a moving average function [22] to smooth out the signal.

This method is widely used in time series analysis for economics and signal
processing. There are several types of moving averages, including Simple Moving
Average (SMA), Cumulative Moving Average (CMA) and Weighted Moving
Average (WMA). SMA gives equal weight to each data point, makes the graph
smooth, but it is less sensitive to changes; CMA calculates the output based
on the average of all previous data points, equivalently gives 1/m weight of the
input; WMA gives arbitrary weights any data points, making it flexible to adjust
the sensitivity; The equations for calculating the moving averages are as follows:

SMAm =
∑L

n=1 pm−n+1

L
(1)

CMAm =
CMAm + (m − 1) · CMAm−1

m
(2)

WMAm =
∑n=L

n=1 µn · pm−n+1
∑n=L

n=1 µn

(3)

where pm is the m-th data point of an input sequence, and SMAm, CMAm,
WMAm are corresponding m-th outputs. L in 3 is the length of the window
over which we are computing the SMA and WMA. In our case, since we only
work on apps with more than 4 months of review data, the window length is 4.

In order to leverage the responsiveness and smoothness, WMA is preferred
over the other two moving averages.

Step 2: Identifying Time Periods of Bad Behavior. After creating the smoothed
WMA signal, we obtain its derivative to find the peaks and troughs associated
with the app’s reviews. Finally, we use the n(a) and f(a) thresholds for an app
a that we introduced in Sect. 3 to eliminate the time periods that do not meet
the thresholds at any point of time. We use derivatives to identify durations in
which the app starts to become bad and those during which it becomes good,
e.g. a positive derivative indicates a rising edge in flagging reviews.

Note that this process would keep the infrequently-reviewed tail of reviews
even if they do not meet the threshold criteria, if these tails are part of a duration
that meets the thresholds at any point of that duration.

At the conclusion of these two steps, we are able to identify periods when
any given app a behaved badly (i.e., got lots of flagged reviews). Figure 6 shows
the derivative of WMA and the shaded region indicates the relevant duration
where it was bad. In all, we found 163 periods of badness among the 123 bad
apps.

416 S. Li et al.

5 Characteristics of Bad Apps

The manually vetted ground truth data prepared earlier contains a total of 123
apps that exhibit malicious behavior during at least one period of time during
our study.

In this section, we characterize temporary malicious behaviors by asking
several questions: How long after deployment do apps start exhibiting malicious
behaviors? How prevalent are these behaviors among different types of apps?
What are the temporal dynamics of reviews for these apps, and how do the app
developers respond to these reviews? How do some benign apps become malicious
and then become benign again?

Fig. 7. (a) Most apps turn bad early after being uploaded. (b) Most apps turn bad
once, while there are few that turn bad multiple times.

When Does an App Go Bad? The histogram in Fig. 7(a) shows the time
when apps start exhibiting malicious behavior. We observe that there is a clear
negative correlation between the number of months since the app was deployed
(m) and the number of apps that go bad after m months. The Pearson Corre-
lation Coefficient of these two variables is −0.74 with its p-value being 10−12.
This validates the intuition that apps with long histories in the Play Store and
with no signs of bad behavior are less likely to become bad in the future.

However, we also identify apps that oscillate between good and bad behaviors.
The 123 apps we identify have 168 periods of bad behavior. Figure 7(b) shows
that 77% of these apps turn bad only once. This could be explained by the fact
that once an app has started exhibiting bad behavior, it is more likely to be
removed from the app marketplace. An alternate explanation is that the app
developers quickly abandon their bad behavior when they start seeing negative
reviews. In fact, we observe that some apps turn bad multiple times, including 5
apps that each have 4 periods of bad behaviors. We will explore these oscillations
in more detail later.

Breaking Bad: Forecasting Adversarial Android Bad Behavior 417

Categories of Bad Apps. Figure 8 shows the distribution of categories for
good and bad apps. Games, Tools (alarms, power management, etc.) and Enter-
tainment are the top 3 categories that attract bad reviews. Even though most
bad apps belong to the Games category, we also see a high fraction of good apps
in this category. In contrast, we observe that in the Lifestyle, Education, Person-
alization and Photography categories, the percentage of apps with bad reviews
is relatively low. On the other hand, in the case of Finance and Productivity, the
fraction of bad apps is higher than the fraction of good apps, suggesting that
such apps present a higher risk to end users.

Fig. 8. Categories for Good and Bad apps, sorted according to the fraction of bad apps
in the categories. The black dots represents the fraction of all apps in the category.

Rise and Fall of Bad Reviews. Our time series analysis technique from Sect. 4
also tells us how long it takes for users to react (by posting reviews) to an app’s
bad behavior. For example, when users react quickly to a malicious update, we
expect to see a steep increase in the time series of flagged reviews, leading up to
a peak in the curve. When app developers notice this pushback from the user
community and revert to a previous version, or the number of users decreases
because of flagging reviews, we expect to see a downward curve from the peak.

We illustrate these rising and falling periods in Fig. 9. The rising period is
the period where the derivative of the WMA of bad reviews is positive, while the
falling period occurs when this derivative is negative. The length of the rising
duration is the number of months it takes for the app to reach the peak of its
flagging reviews, starting from the time it started receiving negative reviews.
Similarly, the falling duration is the number of months from the peak to the
time the derivative becomes zero. The total duration this bad behavior occurs
is the total number of months the app remained bad.

418 S. Li et al.

Fig. 9. (a) The histogram for the number of months it takes for each the bad app to
reach peak (rise), become good after peak (fall) and total duration of badness (total).
(b) Number of peaks with certain rise and fall durations. Peaks have quick rise, but
slow fall of indicative reviews.

Figure 9(a) shows that more than 40% of apps that turned bad reached a peak
of negative reviews in a month, indicating that users react promptly to the newly
observed bad behavior of the app. In contrast, the drop in the number of negative
reviews usually takes longer than the rise. Figure 9(b) presents this interplay
between rise and fall durations as a heatmap. This suggests that negative reviews
tend to have a long tail, which is consistent with previous observations that users
give most feedback in the first few days after a release [28].

Categories of Malicious Behavior. For each period of bad behavior, we
assign a category as discussed in Sect. 3. Figure 10(a) below shows the percentage
of bad periods that belong to each of these categories.

Most of the periods of bad behavior (68%) correspond to complaints about
potentially unwanted programs (PUPs), such as apps that suddenly start dis-
playing a large number of ads. This can be explained by the fact that such apps
are not obviously harmful and may remain in the marketplace for long time peri-
ods. Other categories are spyware (14%), permission-related (12%), scam and
malware (both 3%).

We also observe cases when the reviews discuss more than one category of
bad behavior. At peaks of bad behaviors, this happens in 82% of cases.

Figure 10(b) shows this frequency of co-occurrence of different behavior cat-
egories. In particular, some PUPs seem to also exhibit behaviors from the spy-
ware, permission-related and malware categories, which suggests that they are
more harmful than the PUP label would indicate. This is consistent with prior
observations that abusive ad displays may lead, subsequently, to more danger-
ous behavior. We also observe that spyware and permission-related categories
co-occur in some periods, as spyware can benefit from more permissions or from
root access.

Breaking Bad: Forecasting Adversarial Android Bad Behavior 419

Fig. 10. Categories of malicious behavior

Recurrence of Bad Peaks. Figure 7(b) shows that 23% of the apps turn bad
more than once. As expected, the number of apps that turn bad n times decreases
as n increases.

The probability of an app turning bad at least once is very low = 0.000123.
But we see from the table below that apps that turn bad once seem to have a
higher probability of turning bad again. And the probability that an app that
turns bad twice will turn bad again is still higher. The following table shows
these conditional probabilities.

Condition C P(turn bad|C held before)
Never turned bad 0.000123
Turned bad and then good 0.23
Turned bad twice before 0.36

Simply put, this suggests that the old adage “once a cheater, always a cheater”
seems to be valid in the case of developers of malicious apps. Figure 11(a) shows
the histogram of the time that elapses between when an app goes from bad
to good to the next time it goes bad. We see that most bad apps repeat their
bad behavior one month after complaints about the app subside (mean = 3.1,
median = 1.0 months). This could happen for two reasons – either the users who
complain uninstall the app and stop complaining, or the developer temporarily
exhibits good behavior in order to avoid trouble.

Figure 11(b) shows the histogram of the number of months between two con-
secutive peaks of bad behavior. We observe that the peaks are separated by
much longer time period (mean = 8.4, median = 7.0 months). This suggests
that though developers of malicious apps start behaving badly within 1 month
(median) of complaints subsiding, they ramp back up to reach new peaks of bad
behavior.

Reasons for Behavioral Oscillations. The table below shows the percentage
of time periods corresponding to bad behavior by each type of threat.

420 S. Li et al.

Fig. 11. (a) Apps become bad again shortly after becoming good. (b) The number of
months between two consecutive peaks of badness is large.

Threat type % of time periods with threat
type turning bad > once

PUP 74%
Spyware 14.5%
Permission-related 10.1%
Malware 1.5%
Scam 0%

We see that the threat type that dominates repeated bad behavior is PUP
which covers 74% of all time periods when bad behavior was exhibited. For
instance, the App1 app shows inappropriate sexualized content to kids and
switches routines (almost once a year) from good to bad behavior.

Examples of Bad Apps. To provide further insights into these oscillating
behaviors, we describe a few examples of apps that FAABB marks as suspicious.

– App1 is a painting program within the Education category, targeting children.
It has more than 5 million downloads, and the average rating is 3.9 out of
5. After one year of good reviews, FAABB identified three periods when the
app exhibited PUP behavior, in August 2010, October 2011, and May 2012.
“Seriously? Sex ads on kids game! My child loved it but I can’t let her play
it” is a typical review for the second period. Similar complaints recurred 7
months later.

– App5 is another education app showing the chemistry periodic table. It was
downloaded more than 100K times and had a high rating of 4.3. However,
in the update introduced in November 2013, it started asking for intrusive
permissions, such as accessing the internet browsing history and bookmarks.
FAABB places this app in the spyware category.

– App9 is an app that cooperates with a program running on a PC. It had more
than 10K downloads and a high average rating of 4.2. After more than a year
on the Google Play Store, it received a peak of flagging reviews, placing it in
the malware category, for instance: “Malaware mobogenie. I paid for the pro
version after using the free version for a couple of months... The mouse server

Breaking Bad: Forecasting Adversarial Android Bad Behavior 421

to be installed on your Windows pc is full of malaware, mobogenie being one
of them.” It appears that while the app itself was not infected, the associated
PC software included malware. For this reason, App9 was not deleted from
the Play Store, but was nevertheless detected by FAABB.

6 Predicting Temporary Malicious Behavior

The peak detection techniques discussed in the previous sections can identify
unwanted behavior during or after these events. However, our observation that
bad behavior in the past increases the chances that the app will turn bad in
the future suggests that we may be able to predict such occurrences. Such a
prediction system could be utilized to focus the attention of the security team
to the apps that are predicted to turn bad, so that malicious behavior can be
blocked as soon as possible.

We train a machine learning classifier to predict when an app will go from a
benign state to a malicious state, and we report on the accuracy of our classifi-
cation results. We start by describing the features we use in our classifier, and
then describe our split-sample validation results. Our ground truth data includes
13,624 apps, of which 123 are bad. This ground truth is the result of a careful
curation process, described in Sect. 3. We note that 35 bad apps we found and
reported to Google have subsequently been removed.

Features. We focus on features that can be collected systematically for the
entire version history of an app. We use three categories of features for the
classification task: rating-based, sibling-based and developer-based.3 The list of
features is presented in Table 3.

Table 3. The three categories of features used to detect bad apps.

Category Rating Developer Sibling

Feature Total ratings;
Avg. and mean
rating;
Rating
distribution

apps by developer;
Days since first app by
developer;
Is first app by
developer

Avg. # of reviews;
Avg. and mean
ratings

Rating based features are derived from the ratings that an app receives. This
set contains the total number of ratings, the average and median rating of the
app, and the distribution of ratings that the app receives. Intuitively, good apps
should have a higher rating value compared to bad apps, which is what these

3 All these features are based on data that is publicly collectible from the Play Store.
Other information, such as the historical permissions, number of users, or app down-
load numbers, are not publicly available and hence we did not use them as features
for our classifiers.

422 S. Li et al.

features exploit. To avoid contamination, we avoid extracting features from the
comments associated with the ratings, as that is what is used to define the good
and bad apps.

Developer features reflect the experience of the developer in terms of the total
number of apps the developer created, the developer’s age (defined as the time
since the developer deployed his first ever app on the Play Store), and whether
the app is the first app created by the developer.

A sibling of an app a is any other app a′ created by the same developer. Each
app has a set of sibling-based features which are derived from the ratings that
these sibling apps receive. These include the average number of ratings and the
average and median ratings of the siblings. If the app has no siblings, then the
values are all zeros. We expect that a developer who creates a malicious app is
more likely to inject malicious behaviors in his other apps as well so that the
ratings of apps are linked to the ratings of their siblings.

Setting and Performance Metrics. We tested the predictive accuracy of mul-
tiple classification algorithms using the features listed in Table 3. The predictive
algorithms tested were K-Nearest Neighbors [6], Decision Trees [11], SVM [17],
Random Forest classifier [10], and Logistic Regression [35]. We use the Area
under the ROC curve (AUC), Accuracy, True Positive rate (TPR) and False
Positive Rate (FPR) as the performance metrics. AUC is an aggregate measure
of the variation of the true positive rate of classification with variation in the
false positive rate—the higher the value, the better the classification. An AUC
value of 0.0 indicates that all the classifications are wrong, 1 if indicates that all
are correct, and a 0.5 indicates the results of random guessing. Accuracy is the
fraction of predictions that are correctly made.

Our classification task seeks to predict whether an app will ever turn bad.
Specifically, given that an app is not bad during the first m months after being
uploaded to the app store, the task is to identify if it will become bad. To evaluate
the performance of our classifiers, we create a balanced data set of good and bad
apps for each value of m ∈ {1, . . . , 6}. Specifically, for each m, we take the bad
apps that were good in the first m months, and these serve as the set of positive
samples. Then for each bad app, we randomly sample a good app (that does
not have any review with any of the malicious keywords) while ensuring that
the two apps belong to the same category (according to the Google Play Store)
and were uploaded in the same month. These two control factors are enforced
to avoid confounding factors related to the app category or to external factors
(e.g., app store policy changes) that may affect whether or not the app will turn
bad or not. After this step, we have a balanced dataset of both good and bad
apps that are both good in the first m months, for each m.

Prediction. The following table shows the AUCs, accuracy, TPR, and FPR
we obtain for the classifiers, when m = 6. All experiments used 10-fold cross-
validation with a 90% training set and a 10% validation/test set that the algo-
rithm being tested has not previously seen. In 10-fold cross-validation, training
and testing is done 10 times, once for each validation set, where the classifier
is optimized by training on the 90% training set, and then the performance

Breaking Bad: Forecasting Adversarial Android Bad Behavior 423

metrics are averaged on the performance on the validation set. The performance
observed is described below.

Algorithm AUC Accuracy TPR FPR

SVM 0.84 0.76 0.66 0.14
Decision tree 0.73 0.70 0.69 0.24
K-nearest neighbors 0.75 0.69 0.67 0.28
Random forest 0.83 0.75 0.65 0.18
Logistic regression 0.86 0.77 0.67 0.10

Of the multiple classifiers tested, we see that logistic regression delivers the
best results with 0.86 AUC, 0.77 accuracy, 0.67 TPR, and 0.10 FPR. As a conse-
quence, in the rest of this paper we focus on the results from our best classifier—
Logistic Regression—and with m = 6. As the behaviors we identify may not be
explicitly malicious, or the malicious behaviors may not be due to the app itself,
this classifier is not designed to mark apps for deletion from the market, but to
prioritize further investigations.

Fig. 12. Plots showing the ROC curves for three values of m, for classifiers that detect
bad apps from good ones. The area under the ROC curve is the AUC. We observe that
the higher the value of m, the better the performance.

Figure 12 shows the performance of the Logistic Regression classifier with all
the three types of features for three different values of the month m. The area
under each of the ROC curves is essentially its AUC value. On the y-axis of the
plot is the true positive rate which increases as the false positive rate on the
x-axis increases. A classifier is better if it has high true positive rate for a low
false positive rate. We observe that the true positive rate is higher for higher
values of m, which means the more time we wait after the app is uploaded, the
easier it is to identify the bad app. We note that when m = 6 and the false
positive rate is 0, the true positive rate is 0.6 which is quite high.

We note that this is a challenging task—if it was trivial to identify apps
that are currently benign but would turn bad, then these apps would have been
at least flagged and at best removed from the Google Play Store before they
turned bad. Instead, our classifier detects bad behavior in apps with as little as
one month of reviews in the Play Store.

424 S. Li et al.

Fig. 13. Distribution of a subset of features for good and bad apps when m = 6
months. Each dot shows the mean of monthly average values and the bars show the
95% confidence interval of the app feature. We observe that rating based features are
more distinguishing than developer or sibling based features.

6.1 Findings

Figure 13 shows a subset of features that we tested in order to identify the
features that make it possible for us to predict whether an app will be good or
bad. For each feature, these figures show the mean of monthly average values
over all good and bad apps, along with the 95% confidence interval of these
features. Our findings are listed below. The figure is for the value of m = 4
months, but the trend is similar for other values of m.

Finding 1. Figure 13(b) shows that the number of ratings for apps that are likely
to go bad is much higher than the number of ratings for apps that are likely to
stay good.

The reason for this is that users tend to complain more about the bad behav-
ior of the app, which increases the number of reviews in general. This observation
suggests that this feature is resilient to adversarial interference. The only way for
an adversary to counter the weight of this feature is to artificially inject reviews
to benign apps so that the number of reviews of benign apps are similar in num-
bers to those of malicious ones. However, as the training sample of benign apps
is randomly selected, the adversary cannot predict which apps will be included
in the sample and must generate reviews for all the benign apps. This poses a
challenge for the adversary, as there are more than 100 times as many benign
apps as compared to malicious apps.

Finding 2. Figure 13(c) and (d) show that both the fraction and number of 1
star ratings received are higher for bad apps. At the same time, Fig. 13(e) and

Breaking Bad: Forecasting Adversarial Android Bad Behavior 425

(f) show that while the number of 5 star ratings received by a bad app in a month
is higher, on average, than good apps, the fraction of 5 star ratings is lower.

Bad behavior of apps attracts low rated reviews, which is reflected both in raw
numbers and in ratio to all reviews. On the other hand, the pattern for 5-
star ratings is less reliable for distinguishing good and bad apps. This could be
because adversaries target apps that have already established a good reputation;
alternatively, the adversaries may be injecting fake 5 star ratings in order to
mask the app’s bad behavior. This suggests that the features derived from the
top ratings do not distinguish good and bad apps reliably ; in contrast, the number
and fraction of 1 star ratings reflect negative sentiments expressed by many users
and are more difficult for an adversary to manipulate directly.

Finding 3. Rating-based features are more discriminative compared to
developer- and sibling-based features.

Figure 13(a), (g) and (h) show that the developer and sibling features for
good and bad apps are very close to each other on average, making them less
discriminative than the rating-based features.

False Positive Analysis. We note that in most cases of false positives, the
good app received both many low star reviews and had a low average rating.
Moreover, the app usually turns out to be the only app by the developer, making
it further suspicious as bad apps have a lower number of siblings on average. The
individual feature analysis discussed in preceding paragraphs suggests that these
are all indicators of apps that exhibit undesirable behavior, resulting in potential
misclassification of good apps as bad. Future work can focus on the development
of more robust features including ones that are possibly based on the actual text
of the reviews.

7 Classification with Fake Reviews

The FAABB framework should flag bad apps before they go bad—but at the same
time, it should never flag good apps that did not become bad. An adversary could
try to manipulate the inputs to the system to evade detection. Studying these
attacks would help us in modeling the resilience of the system against smart
adversaries, and suggest ways to strengthen the system against those attacks.

Threat Model. An adversary trying to bypass our system may have two goals—
to break the integrity of the system, by preventing the detection of bad apps,
or its availability, by inducing false positives [9]. Integrity attacks increase false
negatives of the system, while the availability attacks increase false positives.
Moreover, the adversary may be causative and indiscriminate in the attacks,
by manipulating the training phase of any app, or exploratory and targeted to
manipulate certain apps during the testing phase. In the former case, the main
goal is to render the system unusable, while in the latter the aim is to pass a
certain bad app as good.

426 S. Li et al.

To achieve these goals, the adversary may buy fake reviews for apps, both
good and bad and create more apps (to increase the number of siblings of each
app it owns). App reviews can be bought on the underground market for $1.05–$3
each.4 We consider the lowest value for our simulations. However, the adversary
cannot prevent other users from posting their reviews, nor can he increase the
duration of his account or the identities of the apps that he has previously
released. We now focus on the attacks that an adversary could carry out in
order to damage the classifier in the FAABB framework, given a fixed budget.

Fig. 14. Plots showing the performance of the FAABB system under four types of
attacks performed by adversaries. Our model is very robust against the first three
attacks.

Resilience to Adversarial Interference. We create 4 adversarial models that
attack integrity or availability or both.

The first adversary seeks to increase both the false positives and false neg-
atives. To increase false positives, the adversary posts 1-star reviews to good
apps. T increase false negatives, he may give 5-star reviews to bad apps. This
enables him to manipulate the rating and sibling features of the input to the
system. In this attack, the adversary behaves indiscriminately by randomly dis-
tributing his budget to manipulate the features of good and bad apps at the
same time. We run the 10-fold cross-validation experiment multiple times for
each budget value and report the mean performance of the resulting flagging
system, along with its 95% confidence intervals. Figure 14(a) shows the varia-
tion of system performance as the budget of the adversary increases. We observe
that the AUC slightly decreases as the amount of money spent by the adversary
increases, but still succeeds in remaining over 0.80.5 For brevity, we show the
results using AUC, but similar observations may be made for other performance
metrics as well. This shows that our flagging framework and classifier are robust
with respect to this attack.

4 www.appsuch.com, www.bestreviewapp.com.
5 We note that after a certain point, the distinction starts to increase as the features of

good apps and bad apps are reversed and the corresponding points can be separated
again in the feature space.

www.appsuch.com
www.bestreviewapp.com

Breaking Bad: Forecasting Adversarial Android Bad Behavior 427

The second adversary only wants to attack the integrity of the system by
passing off bad apps as good. Therefore, in this simulation, we only provide fake
5-star ratings to bad apps. Figure 14(b) shows that there is not much of a drop
in performance when manipulating the behavior of the bad apps. Similarly, in
the third adversary model, in which the adversary attacks the availability of the
system by providing 1-star reviews to good apps, we see that performance drops
by 5%, but again delivers an AUC over 0.80. Comparing the second and the third
adversary models, we observe that it is easier for the adversary to make good
apps look bad as opposed to making bad apps appear to be good. Therefore,
our system is robust to causative and indiscriminate attackers, as shown by the
three adversary models above.

The fourth adversary model is targeted and seeks to break the system’s
integrity, i.e., the adversary wishes to make a single bad app bypass detection.
This targeted adversary simulates a malicious developer who wants to success-
fully evade FAABB. Therefore, under this attack, the adversary manipulates only
the features of the app that it wants to get accepted. To model this, we per-
form a leave-one-out cross-validation, where training is done on all good and bad
apps, except the one bad app in question. Given the budget of the attacker, fake
5-star ratings for the test app are provided. We measure the performance of the
system under this attack by calculating its detection rate, i.e., the fraction of
times that the test app is detected to be bad. We observe a clear drop in the
performance as the budget increases. The developer and sibling features are not
very effective in preventing the targeted adversary’s attack. The rating features,
which are the most important set of features, can be manipulated, which reduces
the performance of the system. Compared with the second adversarial model,
we find that it is easier and possible for an adversary to fake a single bad app
as good, rather than multiple ones at the same time.

Overall, these attack models show that the adversary is able to manipulate
the system for a reasonable cost when it is targeted, but the system is very robust
when the attacker is indiscriminate. We believe that in order to defend against
an adversary who focuses on a single app, we could incorporate techniques for
identifying fake accounts as opposed to directly finding the bad apps. This is an
interesting direction for future work.

8 Discussion

We designed the FAABB framework in order to understand the behavior of apps
that oscillate between good and bad states. The behaviors we study are drawn
from five categories—PUP, spyware, excessive permissions, malware, and scam.
Among these categories, PUP and excessive permissions are not obviously mali-
cious behaviors and hence they often survive in the marketplace for long periods
of time. This is one of the major reasons that 80% of the apps that we study in
the paper belong to these two categories. However, these apps are not entirely
benign. For example, we find that these apps may exhibit behaviors from three

428 S. Li et al.

other categories. This suggests that malicious threats in apps are often over-
shadowed by seemingly innocuous threats, enabling them to mask their behavior
and elude detection and deletion from the Play Store.

Moreover, deleting the apps may not be the best defense against this behav-
ior. For example, it is not clear if is the developer is at fault for presenting
suspicious ads, or the undesirable behavior is due to the ad network (as in case
of App1 seen in Sect. 5). If it is the former, then the app should be removed from
the app market, while if it is the latter, then blocking the ad-related revenue col-
lecting account of the developer would prevent him from using the malicious ad
agency. Another solution would be to integrate a variant of Google Safe Brows-
ing into the Android framework, in order to protect ad-supported apps from
malicious ads.

Moreover, we identify a novel threat that involves oscillations between good
and bad states and mainly affects apps from the PUP category. For example,
in the case of App1, the recurring character of these behaviors suggests that a
determined attacker was trying to take advantage of an app with generally good
reviews.

The FAABB framework is platform independent—it can be applied to any
marketplace where users leave reviews for apps, such as the Apple App Store,
or browser plugins on Chrome Web Store and Firefox Extension Store. Because
the threat landscapes in these marketplaces may differ, FAABB may need to be
adapted or extended to include additional features, over and above the ones we
proposed in this paper. For example, FAABB does not currently take permission-
based and developer-based features into account, but such features can easily be
integrated into FAABB if the information is available. Moreover, by providing
certain keywords as seed sets, FAABB can be used to monitor the behavior of
apps by continuously discovering new keywords indicative of bad behavior.

9 Related Work

Mobile Malware Detection. Zhou et al. [36] presented the first comprehen-
sive survey of Android malware and observed that malicious behavior may be
introduced either through updates or triggered remotely using a command-and-
control channel. Subsequent work has focused on identifying the code responsi-
ble for the malicious behavior and the required permissions and performance
metrics, with the goal of removing malware from mobile app marketplaces.
DroidRanger detected 211 malicious apps from five android markets using the
apps’ manifest to get the permissions, and the byte code to get the semantic
flow of the app [37]. WebEval identified malware in the Chrome Web Store by
analyzing the permissions, web requests, file and folder structure, and devel-
oper information such as login and email domains they use to register [24].
They identified 10% of extensions as malicious. Another approach examines the
differences and relationships between an unknown app and a known app to
identify malicious repackaged apps that contain common payloads [16]. Other
approaches include using performance features such as CPU load and power

Breaking Bad: Forecasting Adversarial Android Bad Behavior 429

consumption, network traffic, system calls, static analysis, and other code based
features [8,18,29,30,32].

Our work differs from these prior efforts in two ways. First, we predict
whether an app will become bad after being good for some time, and not at
the current instance. Second, we solely leverage the user comments to identify
malicious apps, and do not use any code based, performance-based or permission-
based attributes.

User Comment Mining on App Stores. Mining user reviews and comments
has been studied extensively in the Natural Language Processing and Social
Network Analysis literature. Various techniques have been developed to under-
stand user feedback on Twitter [5], user sentiment for movies [15,38], online
shopping [7,33] and other tasks [27].

In the context of mobile app markets, researchers have studied the comments
that users leave for apps to improve app quality and identify functionality issues.
User comments have been studied to understand why users like or dislike an
app [19], topics of reviews on the Apple App Store [28], and 12 types of general
user complaints [25]. These papers do not deal with identifying malicious or
unwanted app behavior, either at the time of inspection or in the future.

More closely related are two works that utilize user comments to identify
security and privacy issues in apps [12,13]. These develop a machine learning
model on a manually annotated set of user comments to identify the ones that
complain about five categories of issues – system, privacy, spam, finance and
others [13]. This is then used to assess the risk of apps [12]. On the other hand,
we provide a keyword-based time series analysis technique to identify the bad
apps and use it to study their oscillating behavior between good and bad, for the
first time. Moreover, we try to predict an app’s future bad behavior, which is not
addressed by any of the prior works.

10 Conclusions

We identify and characterize a novel threat to mobile security: apps that exhibit
user-visible unwanted behaviors and that start misbehaving only after the apps
have accumulated large user bases. These apps may also temporarily or intermit-
tently suspend exhibiting bad behavior in order to continue evading detection.
We develop FAABB (Forecasting Adversarial Android Bad Behavior), a frame-
work that provides early warnings about apps that are temporarily bad.

We identify 5 categories of temporary bad behavior and study the incidence
of these threats in the Google Play Store. We conduct a detailed measurement
study focusing on how long apps take to go bad, on identifying conditions under
which good apps go bad and then oscillate between the two states. We define
three types of features to predict which apps will go bad: (i) temporal features
that capture the evolution of an app’s behavior, (ii) crowdsourced linguistic
analysis of app reviews, and (iii) properties of other apps that were created
by the same developer. We use multiple machine learning techniques (Logistic
Regression, SVM, Decision Tree, K-Nearest Neighbors and Random Forests)

430 S. Li et al.

and show that logistic regression with these features provides the best predictive
accuracy with an area under the ROC curve of 0.86, accuracy 0.77, achieves a
true positive rate of 0.67 for a false positive rate of 0.10.

Finally, we introduce a threat model, specific to our problem, with 4 adver-
saries aiming to inhibit FAABB’s early warning capability. For 3 out of the 4
adversary goals, we show via extensive simulations of fake review injections that
FAABB is robust to these attacks without relying on any out-of-band informa-
tion about the reviews or the reviewers.

Acknowledgements. Parts of this research were funded by ARO grants
W911NF1410358 and W911NF1310421 and by ONR grants N000141512007,
N000141612896, and N000141512742.

References

1. Adware vendors buy chrome extensions to send ad- and malware-filled
updates. http://arstechnica.com/security/2014/01/malware-vendors-buy-chrome-
extensions-to-send-adware-filled-updates/

2. Apps on Google play pose as games and infect millions of users with
adware. https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-
and-infect-millions-of-users-with-adware/

3. Brain test re-emerges: 13 apps found in Google play. https://blog.lookout.com/
blog/2016/01/06/brain-test-re-emerges/

4. Topia term extractor. https://pypi.python.org/pypi/topia.termextract/
5. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis

of Twitter data. In: LSM. ACL (2011)
6. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric

regression. Am. Stat. 46(3), 175–185 (1992)
7. Archak, N., Ghose, A., Ipeirotis, P.G.: Show me the money!: deriving the pricing

power of product features by mining consumer reviews. In: SIGKDD (2007)
8. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: effective

and explainable detection of android malware in your pocket. In: NDSS (2014)
9. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.: The security of machine learning.

Mach. Learn. 81, 121–148 (2010)
10. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
11. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression

Trees. CRC Press, Boca Raton (1984)
12. Cen, L., Kong, D., Jin, H., Si, L.: Mobile app security risk assessment: a crowd-

sourcing ranking approach from user comments. In: SDM 2015 (2015)
13. Cen, L., Si, L., Li, N., Jin, H.: User comment analysis for Android apps and CSPI

detection with comment expansion. In: SIGIR (2014)
14. Chakraborty, T., Pierazzi, F., Subrahmanian, V.: Ec2: ensemble clustering and

classification for predicting Android malware families. IEEE Trans. Dependable
Secure Comput. (2017)

15. Chaovalit, P., Zhou, L.: Movie review mining: a comparison between supervised
and unsupervised classification approaches. In: HICSS (2005)

16. Chen, K., et al.: Finding unknown malice in 10 seconds: mass vetting for new
threats at the Google-play scale. In: USENIX Security (2015)

http://arstechnica.com/security/2014/01/malware-vendors-buy-chrome-extensions-to-send-adware-filled-updates/
http://arstechnica.com/security/2014/01/malware-vendors-buy-chrome-extensions-to-send-adware-filled-updates/
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/
https://blog.lookout.com/blog/2016/01/06/brain-test-re-emerges/
https://blog.lookout.com/blog/2016/01/06/brain-test-re-emerges/
https://pypi.python.org/pypi/topia.termextract/

Breaking Bad: Forecasting Adversarial Android Bad Behavior 431

17. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20, 273–297 (1995)
18. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-

tified. In: CCS (2011)
19. Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., Sadeh, N.: Why people hate your

app: making sense of user feedback in a mobile app store. In: SIGKDD (2013)
20. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-

rate zero-day android malware detection. In: MobiSys (2012)
21. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.R.: Unsafe exposure analysis of

mobile in-app advertisements. In: WISEC (2012)
22. Hamilton, J.D.: Time series analysis (1994)
23. Isohara, T., Takemori, K., Kubota, A.: Kernel-based behavior analysis for android

malware detection. In: CIS (2011)
24. Jagpal, N., et al.: Trends and lessons from three years fighting malicious extensions.

In: USENIX Security (2015)
25. Khalid, H., Shihab, E., Nagappan, M., Hassan, A.E.: What do mobile app users

complain about? Softw. IEEE 32, 70–77 (2015)
26. Lins, M.: Google play index. https://github.com/MarcelloLins/

GooglePlayAppsCrawler
27. Mudambi, S.M., Schuff, D.: What makes a helpful review? A study of customer

reviews on Amazon.com. MIS Q. 34, 185–200 (2010)
28. Pagano, D., Maalej, W.: User feedback in the appstore: an empirical study. In: RE

(2013)
29. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation

technique to automatically reconstruct android malware behaviors. In: EuroSec,
April 2013

30. Sahs, J., Khan, L.: A machine learning approach to android malware detection. In:
EISIC (2012)

31. Schmidt, A.D., et al.: Static analysis of executables for collaborative malware detec-
tion on android. In: ICC (2009)

32. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: “Andromaly”: a behav-
ioral malware detection framework for android devices. JIIS 38, 161–190 (2012)

33. Vinodhini, G., Chandrasekaran, R.: Sentiment analysis and opinion mining: a sur-
vey. Int. J. 2, 282–292 (2012)

34. Wang, T., Lu, K., Lu, L., Chung, S.P., Lee, W.: Jekyll on iOS: when benign apps
become evil. In: USENIX Security (2013)

35. Yu, H.F., Huang, F.L., Lin, C.J.: Dual coordinate descent methods for logistic
regression and maximum entropy models. Mach. Learn. 85, 41–75 (2011)

36. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: Security and Privacy (2012)

37. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In: NDSS (2012)

38. Zhuang, L., Jing, F., Zhu, X.Y.: Movie review mining and summarization. In:
CIKM (2006)

https://github.com/MarcelloLins/GooglePlayAppsCrawler
https://github.com/MarcelloLins/GooglePlayAppsCrawler

Bot or Human? A Behavior-Based Online Bot
Detection System

Zi Chu1, Steven Gianvecchio2, and Haining Wang3(B)

1 Airbnb, San Francisco, CA 94117, USA
2 MITRE, Hampton, VA 23666, USA

3 University of Delaware, Newark, DE 19716, USA
hnw@udel.edu

Abstract. The abuse of Internet online services by automated programs, known
as bots, poses a serious threat to Internet users. Bots target popular Internet online
services, such as web blogs and online social networks, to distribute spam and
malware. In this work, we will first characterize the human behaviors and bot
behaviors in online services. Based on the behavior characterization, we propose
an effective detection system to accurately distinguish bots from humans. Our
proposed detection system consists of two main components: (1) a client-side
logger and (2) a server-side classifier. The client-side logger records user behav-
ioral events such as mouse movement and keystroke data, and provides this data
in batches to a server-side classifier which identifies a user as human or bot. Our
experimental results demonstrate that our proposed detection is able to achieve
very high accuracy with negligible overhead.

1 Introduction

Interactive Internet applications like online blogs have become popular in the past
decade. These applications enable interactive communications among Internet users,
in terms of text messages. Millions of people around the world use these interactive
applications to exchange information and discuss a broad range of topics on-line. Such
applications are different from conventional networked applications, because of their
human-to-human interaction and low bandwidth consumption. However, the large user
base and open nature of the Internet make them ideal targets for malicious exploitation.

Currently the most common form of malicious exploit and the most difficult to
thwart, is the use of automated programs known as bots to automatically perform human
tasks on online applications. Bots have been found on a number of online systems,
including online blogging and online social networking. Bots exploit these on-line sys-
tems to send spam, spread malware, and mount phishing attacks. The abuse of online
services by bots has caused serious damages and posed serious threats to on-line users.

So far, the efforts to combat bots have focused on two different approaches: (1)
content-based filtering and (2) human interactive proofs (HIPs). The content-based fil-
ters, used by third party clients, suffer from high false negative rates because bot makers
frequently update bots to evade the filtering rules. The use of human interactive proofs,
such as CAPTCHAs [11,15], is also ineffective because bot operators can assist bots in

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 432–449, 2018.
https://doi.org/10.1007/978-3-030-04834-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_21

Bot or Human? A Behavior-Based Online Bot Detection System 433

passing the tests to log in [22,23]. Thus, multiple CAPTCHA tests are needed through-
out a session to block the login of bots; otherwise, an adversary can pass the one-time
test and log a bot into the session. However, although multiple tests can foil the adver-
sary’s attempt for bot login, they are too obtrusive and distractive for a regular human
user to tolerate as well.

In this work, we introduce a new approach based on human observational behaviors
(HOBs) for detecting and blocking bots. In particular, our proposed approach exploits
behavioral biometrics, including mouse and keystroke dynamics, for bot detection.
HOBs offer two distinct advantages over conventional detection methods like HIP-
based approach. First, HOPs provide continuous monitoring throughout an online ses-
sion. Second, HOPs are non-interactive, i.e., no test is presented to a user, making
HOPs completely non-obtrusive. HOPs differentiate bots from human users by pas-
sively observing those tasks that are difficult for bots to perform in a human-like man-
ner. Therefore, adversaries must resolve a difficult problem in human behavior mod-
eling to evade a well-designed HOP. However, modeling human behavior is known to
be very difficult, as shown in behavioral biometric research [10,12,26]. Moreover, the
HOP approach is not based on any single metric of the human behavior, but rather a
collection of different kinds of behavioral metrics.

Based on the proposed HOB approach, we build a prototype of an automatic classi-
fication system that detects bots. The system consists of two components, a client-side
logger and a server-side detector. The client-side logger is implemented as a JavaScript
snippet that runs in the client browser. It records a user’s input actions during her stay
at the site and streams the data to the server-side detector. The detector processes raw
user input (UI) data, and extracts biometrics-related features. The core of the detector
is a machine-learning-based classifier which is tuned with training data for the binary
classification, namely determining whether the user is human or bot. To validate the
efficacy of our proposed HOB approach, we conduct a case study in the detection of
blog bots for online blogging systems. We collect user input activities on a real, active
blog site. By measuring and characterizing biometric features of user input data, we dis-
cover the fundamental differences between human and blog bot in how they surf web
pages and post comments. Our experimental results demonstrate an overall detection
accuracy greater than 99% with minor overhead.

2 Behavior Characterization

In this section, we analyze user behaviors, namely how a user surfs blog pages and posts
comments, based on data collected from a large corpus of users. We first introduce three
types of blog bots, then describe how we collect user input data from a blog site. Finally,
we characterize the behavioral differences between human and blog bot, in terms of
keystroke and mouse dynamics.

2.1 Blog Bots

Fundamentally, current blog bots can be categorized into three different types based on
their working mechanisms: Form Injection Bot, Human Mimic Bot, and Replay Bot.

434 Z. Chu et al.

Form Injection Bots do not post comments via the browser. Rather, it directly sends an
HTTP request to the server for the blog page where it plans to post comments. After
receiving the HTML content of the requested page, it analyzes the HTML structure of
the comment form. Then, it injects content into form fields1, constructs a syntactically
legal HTTP response with the HTML form data as the body, and sends it to the submis-
sion URL at the server. To evade the server’s check on the HTTP response, the bot often
forges certain fields in the response header, such as Referer, User Agent, and Cookie.
Furthermore, some bots are equipped with CAPTCHA deciphering capability to crack
the CAPTCHA defense. However, they do not generate any mouse or keystroke events.
Currently this type of bot is the most widely used blog bot in cyberspace [5].

Contemporary detection methods have realized the importance of detecting human
activities during the form filling procedure. A server only accepts a user as human
if mouse or keyboard events are detected. Thus, bot authors are motivated to create
a more advanced bot type, namely the Human Mimic Bot. These bots open a blog
page in the browser, and use OS API calls to generate keystroke and mouse events.
In this manner, it mimics human browsing behavior, fooling older detection methods.
For example, the bot strolls down the page to the bottom by repetitively sending “Press
down-key” commands. Then, it moves the mouse cursor into each field of the comment
form, and types in prepared text content by sending a sequence of keystrokes. Finally,
the bot posts the comment by generating a mouse click on the submit button. The server
cannot distinguish whether the UI events are generated via hardware (such as the mouse
device and keyboard) or via software (such as Human Mimic Bot) by merely checking
the received user input data. The server will be deceived by Human Mimic Bot if it only
relies on the presence of UI events for bot detection.

Some research into behavioral biometrics has found out that human behavior is
more complex than bot behavior. Compared with the inherent irregularity and burstiness
of human behavior, bots exhibit regular patterns of limited variety [17]. For example,
many bots move the mouse cursor in straight lines at a constant speed, or strike keys
with even intervals. Such perfect regular actions cannot be achieved by human. Thus,
the server could detect HumanMimic Bot by taking behavioral complexity into account.
With high fidelity of mimicry, Replay Bots are more advanced than HumanMimic Bots,
and are probably the most difficult to detect among contemporary blog bots. When a
human is filling a form, Replay Bot records her actions. Later on, it impersonates the
human by replaying recorded traces on form submission pages. The standard interfaces
utilized by popular blogs and message boards, such as WordPress or vBulletin, make
such replay attacks possible.

To characterize the bot behaviors, we use existing bot tools or libraries to configure
the three types of blog bots. The Form Inject Bot is implemented as a PHP cURL script.
The comment form at our blog site is submitted via the POST method. The cURL
script assigns every input field with an appropriate value, encapsulates the form data
into a string, and submits it to the PHP script at the server that processes the form. We
configure the Human Mimic Bot based on the AutoHotkey script [2], which is an open-

1 The form is usually well-structured, and the ID/name of each input field remains constant. For
example, <input type=“text” name=“email” /> is the text field to enter email address. Thus,
the bot author programs the bot to recognize fields and fill in appropriate content.

Bot or Human? A Behavior-Based Online Bot Detection System 435

source Windows program designed for automating the Windows GUI and for general
scripting2. We customize the script for our blog site, and thus it can generate actions
corresponding to the page layout3. The script mimics all kinds of normal human actions,
such as moving and clicking the mouse cursor, scrolling the page up and down, drag-
and-dropping an area, and typing keys. To simulate various effects, we assign action
parameters with different constants or random values. Taking mouse movement as an
example, we change endpoint coordinates and movement speed to generate different
traces. For keystrokes, we change the duration (the length of time the key is held) and
inter-arrival time (the time from pressing one key to another) to generate different typing
rhythms. We choose the Global Mouse and Keyboard Library for Windows [6] as the
Replay Bot in our experiments, which has both record and replay capabilities. The
record and replay are implemented using the mouse and keyboard APIs in Windows.
Specifically, for recording, global hooks are created to capture keyboard and mouse
events; and for replaying, the keybd event and mouse event APIs in Windows are used.

2.2 UI Data Collection

For client-side monitoring, we develop a logger written in JavaScript, which is embed-
ded in the header template of every webpage, and in this way it records UI data during
the user’s entire visit at the site. The user behavior is in constant monitoring, which pre-
vents bots from bypassing routing checkpoints (such as CAPTCHA recognition during
login). More specifically, five raw UI events generated by the user in the browser are
collected, including Key Press, Key Release, Mouse Move, Mouse Button Press, and
Mouse Button Release. The logger streams the UI data to the server for further pro-
cessing and classification. More details of the logger implementation are presented in
Sect. 3.1. Note that no user sensitive data content (e.g., password) is recorded by our
logger. We have also obtained the approval from the Institutional Review Board (IRB)
of our university, which ensures the appropriate and ethical use of human input data in
our work.

The collection of human UI data is described as follows. We collected data from
a busy blog site consisting of over 65,000 members. The site averages 800 simultane-
ous online users, and in order to prevent spam, the site requires visitors to register with
real credentials and log in before posting content. Content is manually reviewed by site
administrators, moderators, and a community of dedicated users. Should an account
post spam and be reported, the associated content is quickly removed and the account
gets suspended. We collected data from 1,078 distinct signed-in site members during
several two-hour monitoring sessions on a single day. The data collection was com-
pletely transparent to users, and the interactions consist of both reading and posting
of content. Our real-world data with the large user population covers a wide range of
human input behavior. The data also presents an advantage over the lab environment

2 There are other similar bot tools that may generate simple human behavior, such as AutoIt [3]
and AutoMe [4].

3 The page layout is different from page to page, and may affect how the Human Mimic Bot
works. For example, by moving down the same amount of pixels, the mouse enters the com-
ment form on one page, but falls out of the form on another page.

436 Z. Chu et al.

tests, where a user’s performance might be at odds with her normal behavior. We main-
tain a high degree of confidence that the users in this dataset are indeed human, as
their registrations are manually screened by site administrators, and posted content is
screened by a community of users, resulting in a low overall observed incidence of
spam.

Table 1. User input actions

Action Description

Keystroke The press and release of the same key

Point A set of continuous mouse moves
with no mouse clicks, and the interval
between two consecutive moves is no
more than 0.4 s

Click The press and release of the same
mouse button

Point-and-Click A point followed by a click within
0.4 s

Drag-and-Drop Mouse button down, movement, and
then mouse button up

Correspondingly, we run three types of blog bots to collect bot input data. By includ-
ing username and password to the POST data body, Form Inject Bots can post com-
ments. As it does not open a webpage in the browser to generate any input events, the
server does not receive any UI data. Thus, Form Inject Bots can be easily detected. We
also run multiple instances of the Human Mimic Bot, and each instance is assigned
with different settings (such as varied typing rhythms and mouse movement speeds) to
generate different behavior. We generate the traces of Human Mimic Bot for 30 h. We
run the Replay Bot for six rounds, which last for 2 h in total. In each round, a human
user fills in the comment form, and Replay Bot records the human trace and replays it.

Lastly, we explain the reasons that we run customized bots in the controlled “sand
box” to generate bot input data. First, ground truth creation and data collection is an
example of the chicken or the egg causality dilemma. We must know the true identity
of a user to label it as human or bot in the ground truth set. In other words, we cannot
collect data in the wild and recognize what data are generated by bot or not. After
being trained on the ground truth set, the classifier can distinguish between human and
bot. Second, we do not create bots. Instead, we customize bots based on existing tools
and libraries without changing their mechanisms. The authenticity of bot input data is
reserved. In addition, a bot needs to be customized to operate on a specific blog site4,
and no existing tools can be generative to all blogs.

Raw UI events cannot efficiently describe user browsing activities. We develop a
parser to integrate raw events into compound actions as shown in Table 1. For example,

4 For example, the position of the submit button may vary in the webpage layout. The bot must
be customized to move to the button and generate a click event on it.

Bot or Human? A Behavior-Based Online Bot Detection System 437

toBcimiMnamuH)b(namuH)a(

Fig. 1. Displacement for Point-and-Click

toBcimiMnamuH)b(namuH)a(

Fig. 2. Speed for Point-and-Click

the Key Press event and the following Key Release event of the same key is integrated
as a Keystroke action, and a set of continuous Mouse Move events are grouped as a
Point action.

2.3 UI Data Measurements

Based on the collected UI data from human and bot, we analyze the keystroke and
mouse dynamics and characterize different behavioral patterns for humans and bots,
respectively. For the profiling of bot behavior, we only use the traces of Human Mimic
Bot, and exclude those of Form Inject Bot and Replay Bot5.

Figures 1 and 2 illustrate two mouse kinematics features, displacement and speed,
for the Point-and-Click action, respectively. In Fig. 1 with the bin resolution of 100
pixels, we observe that human users generate far more displacements with short length

5 Form Inject Bot generates no UI data. As Replay Bot replays traces generated by human, it is
inappropriate to include human traces to characterize bot behavior.

438 Z. Chu et al.

than with long length. About 60.64% of displacements are less than 400 pixels, while
only 8.52% are greater than 1000 pixels. In contrast, bots tend to move the mouse at
all displacements. Figure 2 with the bin resolution of 100 pixels per second shows the
movement speed of bot is faster than that of human. The average speed of bot is 1520.83
pixels per second in our observation, but the average speed of human is 427.43 pixels
per second. Furthermore, human speed is limited within 3500 pixels per second, due
to the physical movement constraints of human wrist and arm. Finally, we observe that
some bots move the mouse at fixed speeds.

Figure 3 shows the mouse movement efficiency for the Point-and-Click action, with
the bin resolution of 0.02 s. For a mouse movement from the starting point to the end
point, displacement is the segment length between the two points, and distance is the
actual length traversed. Movement efficiency is defined as the ratio of displacement
over distance. Straight line movement has the highest efficiency at 1. The more curvy
the movement is, the lower its efficiency is. Our first observation is that bots move the
mouse cursor with much greater efficiency than humans. About 59.23% of bot move-
ments achieve efficiency greater than 0.94, while only 28.60% of human movements are
equally efficient. As the Point action is the integration of a set of continuous raw Mouse
Move events, we could have treated several segments of Move event as the curve of
Point action, which lowers the bot efficiency during the calculation. Thus, there could
have been more bot movements with the efficiency of 1 (namely, straight movement).
Our second observation is that, the probability of human movement efficiency follows
a lognormal (3P) distribution in our dataset6, and the bot probability does not fit any
well-known distributions. For humans, most movements are curves, since it is physi-
cally difficult to generate perfect straight lines over certain length or time.

toBcimiMnamuH)b(namuH)a(

Fig. 3.Movement efficiency for Point-and-Click

Figure 4 shows the distribution of inter-arrival times for the Keystroke action, with
a bin resolution of 0.05 s. We make two observations from the figure. First, bots strike

6 Kolmogorov-Smirnov test presents P-value of the distribution fitting at 0.882 with a 99% con-
fidence level.

Bot or Human? A Behavior-Based Online Bot Detection System 439

toBcimiMnamuH)b(namuH)a(

Fig. 4. Inter-arrival time distribution for Keystroke

keys obviously faster than humans. About 21.49% of bot keystrokes are less than 0.05 s,
and only 5.82% of human keystrokes are issued within that range. A human user has
to look up keys on the keyboard, and moves her fingers to hit keys. Physical move-
ments cannot compete with keystroke events generated by software. Second, for bots,
the probabilities of intervals at 0.05 and 0.25 s are greatly higher than other values. This
implies that some bots may use periodic timers to issue keystrokes at fixed intervals.

We also observe similar distribution patterns of Keystroke duration between human
and bot. The keystroke duration is the elapsed time between a key press and its corre-
sponding release. The distribution patterns are similar with those in Fig. 4. Bots hold
keys much shorter than humans. While 45.42% of bot keystrokes are held less than
0.3 s, only 23.11% of human keystrokes are within that range. A human needs time to
move his finger up to release the key after he presses it down. In addition, for bots, the
probability of intervals between 0.05 and 0.15 s are greatly higher than other values.
The periodic timer may set fixed intervals between consecutive key press and release
events. Due to the space limit, the related figures are not included in the chapter.

3 System Design

Our detection system is mainly composed of the webpage-embedded logger and the
server-side detector. The logger collects UI activities in the client browser and sends
data to the server. The detector analyzes the UI data of a user and decides whether it is
human or bot. The high-level system architecture is shown in Fig. 5.

3.1 Webpage-Embedded Logger

As mentioned in Sect. 2.2, the logger is implemented as JavaScript code, and embedded
in every webpage of the blog site. As a result, JavaScript is required by the blog site
and non-JavaScript clients are blocked from posting or must pass a conventional HIP,
such as a CAPTCHA. When a user visits the blog, the logger runs silently inside the

440 Z. Chu et al.

client browser. It is totally transparent to the user, and no extensions need to be installed.
The logger collects five raw UI events generated by the user inside the browser, includ-
ing Key Press, Key Release, Mouse Move, Mouse Button Press, and Mouse Button
Release. Each event is associated with a JavaScript listener. After an event happens,
the listener is triggered to generate a record in the JSON format [7]. Every record has
several fields to describe the event attributes7. The polling rate of the logger is decided
by the client operating system, and is generally high enough to capture UI events. For
example, in Windows 7, the polling rate is 125Hz, namely polling every 8ms. The log-
ger buffers the collected events within a small time window, and then sends the data in
a batch to the server via Ajax (Asynchronous JavaScript and XML). The asynchronous
communication mechanism helps save network traffic between server and client, as no
additional traffic occurs when no events happen within the window. Besides, according
to Sect. 4.2, only a certain number of user actions are needed to correctly classify a user.
It also helps reduce network traffic.

Fig. 5. Detection system architecture

As our detection method is generic to other types of form bots, such as those auto-
matically perform massive account registration and online voting, we need to address
the privacy and security concerns of using the logger to collect user input data. First,
we discuss the user privacy protection. As the logger is implemented as JavaScript code
running in web pages of the blog site, it is strictly constrained by the same-origin policy

7 Take the following Mouse Move record as an example, {“time”:1278555037098,
“type”:“Mouse Move”, “X”:590, “Y”:10, “tagName”:“DIV”, “tagID”:“footnote”}. The
“time” field contains the time stamp of the event in the unit of millisecond. The two coor-
dinates, X and Y, denote the mouse cursor position. The last two fields describe the name
and ID of the DOM element where the event happens, such as <div ID=“footnote”>. In a
record of Mouse Press, {“time”:1278555074750, “type”:“Mouse Press”, “virtualKey”:0x01,
“tagName”:“HTML”}, The “virtualKey” field denotes the virtual-key code of 0x01 in hex-
adecimal value, which corresponds to the left mouse button here.

Bot or Human? A Behavior-Based Online Bot Detection System 441

[19] enforced by the browser, and thus cannot access content of other sites or programs.
This makes it very different from the OS-level keyloggers. In other words, our logger
can only access the data that a user generates on the blog, which will be submitted to
the blog site anyway. Thus, the logger does not endanger user privacy. Second, we con-
sider the confidentiality of user input content transferred over the Internet. When a user
types in content on the webpage, the key values of strokes are recorded in the format of
virtual-key codes [9]. The link between the logger and the server is not encrypted. To
prevent an eavesdropper from intercepting data packages in plain text and recovering
the user input content, the logger replaces each key value of strokes with a wildcard
character. This wildcard replacement enforces the confidentiality of user input content,
and avoids the additional overhead by encryption.

3.2 Server-Side Detector

The detector consists of three components: the log processor, the classifier, and the
decision maker. The UI data of each user is processed by the log processor, which
converts raw events into high-level actions and encapsulates an adjustable number of
consecutive actions to form action groups. The classifier processes each action group in
the user log and assigns it with a classification score, indicating how likely the action
group is generated by human or bot. Finally, the decision maker determines the class of
the user based on the classification results of action groups. Each of the components is
explained as follows.

Log Processor. When the UI data arrives at the server, it is in the format of raw events,
such as Mouse Move and Key Press. The raw data is stored at the back-end MySQL
database, and can be easily grouped per user who generates the data. Before classifying
a user, the log processor processes the user log by converting raw events into high-
level UI actions defined in Table 1. Furthermore, the log processor calculates the timing
entropy of intervals of the whole raw event sequence in the user log, which detects
periodic or regular timing of the entire user behavior.

The human behavior is often more complicated than that of bot [13,16], which can
be measured by entropy rate. It is a measure of the complexity of a process [14]. A high
entropy rate indicates a random process, whereas a low indicates a regular process.
The entropy rate is defined as the conditional entropy of an infinite sequence. As our
real dataset is finite, the conditional entropy of finite sequences is used to estimate the
entropy rate. For estimation, we use the corrected conditional entropy [24], which is
defined as follows.

A random process X = {Xi} is defined as a sequence of random variables. The
entropy of such a sequence is defined as:

E(X1, ...,Xn) = −
n∑

i=1

P (x1, ..., xn) logP (x1, ..., xn), (1)

where P (x1, ..., xn) is the joint probability P (X1 = x1, ..., Xn = xn).

442 Z. Chu et al.

Thus, the conditional entropy of a random variable is:

E(Xn | X1, ...,Xn−1) = E(X1, ...,Xn)− E(X1, ...,Xn−1). (2)

Then the entropy rate of a random process is defined as:

E(X) = lim
n→∞E(Xn | X1, ...,Xn−1). (3)

The corrected conditional entropy is computed as a modification of Eq. 3. First, the
joint probabilities, P (X1 = x1, ...,Xn = xn) are replaced with empirically-derived
probabilities. The data is binned into Q bins, i.e., values are converted to bin numbers
from 1 to Q. The probabilities are then determined by the proportions of bin number
sequences in the data. The entropy estimate and conditional entropy estimate, based on
empirically-derived probabilities, are denoted as EN and CE, respectively. Second,
a corrective term, perc(Xn) · EN(X1), is added to adjust for the limited number of
sequences for increasing values of n [24]. The corrected conditional entropy, denoted
as CCE, is computed as:

CCE(Xn | X1, ...,Xn−1) =
CE(Xn | X1, ...,Xn−1) + perc(Xn) · EN(X1)

(4)

Based on Eq. 4, we calculate the CCE of intervals of the raw event sequence for a
user as the timing entropy.

Finally, a set of classification features are generated for every action, which are
listed in Table 2. They are used by the machine-learning based classifier for bot detec-
tion. More specifically, we group raw UI events into an action record as shown in
Table 1. For example, a “Point” action contains a set of mouse move events. The value
of duration feature is the timestamp difference between the last and first mouse move
events. Similarly, the value of distance feature is the actual length traversed by all the
mouse move events. The former seven features are directly retrieved from the action
itself. In particular, the first four features are the basic ones, while average speed and
move efficiency are derived from them8. These two derived features reveal the inherent
correlation among features and accelerate the tree building. The last feature is the tim-
ing entropy of the whole event interval sequence of a user, not of a single action. An
action only consists of several events, which are too few to extract timing regularity. It
is statistically meaningful to calculate entropy at the user level. We include the entropy
feature in the action record to inform the classifier the behavioral timing pattern of the
user who generates the action.

Classifier. Our classifier is based on the C4.5 algorithm [20] that builds a decision
tree for classification. The decision tree predicts the class of an unknown sample based
on the observed attributes. There are two types of nodes in the decision tree, the leaf
node labeled with the class value (such as human or bot), and the interior node that
corresponds to an attribute and links to a subtree. The tree is constructed by dividing the

8 Average speed is distance over duration, and move efficiency is displacement over distance.

Bot or Human? A Behavior-Based Online Bot Detection System 443

Table 2. Classification features of user actions

Feature Description

Duration Mouse/keystroke actions

Distance Mouse actions

Displacement Mouse actions

Displacement angle Mouse actions

Average speed Mouse actions

Move efficiency Mouse actions

Virtual key value Left/middle/right button for mouse
actions, and a wildcard character
for keystrokes

Timing entropy Event interval sequence of the
target user

training dataset into subsets based on the attribute value test. This partitioning process
is executed on each derived subset in a recursive manner. The fundamental ideas behind
C4.5 are briefly described as follows. The tree is built from the root downward to leaves.
During the construction path, each interior node must be associated with the attribute
that is most informative among the attributes not yet included in the path. C4.5 uses
entropy to measure how informative an attribute is. Given a probability distribution
P = {p1, p2, ..., pn}, the entropy of P is defined as

E(P) = −
n∑

i=1

pi log pi, (5)

We denote D as the dataset of labeled samples, and C as the class with k values,
C = {C1, C2, ..., Ck}. The information required to identify the class of a sample in D
is denoted as Info(D) = E(P), where P, as the probability distribution of C, is

P = { |C1|
|D| ,

|C2|
|D| , . . . ,

|Ck|
|D| }. (6)

If we partition D based on the value of an attribute A into subsets
{D1,D2, . . . , Dm},

Info(A,D) =
m∑

i=1

|Di|
|D| Info(Di). (7)

After the value of attribute A is obtained, the corresponding gain in information due to
A is denoted as

Gain(A,D) = Info(D)− Info(A,D), (8)

As Gain favors attributes that have a large number of values, to compensate for this
the C4.5 algorithm uses Gain Ratio as

GainRatio(A,D) =
Gain(A,D)

SplitInfo(A,D)
(9)

444 Z. Chu et al.

where SplitInfo(A,D) is the information due to the splitting of D based on the value of
attribute A. Thus,

SplitInfo(A,D) = E(
|D1|
|D| ,

|D2|
|D| , ...,

|Dn|
|D|) (10)

The gain ratio is used to rank how informative attributes are and to construct the
decision tree, where each node is associated with an attribute having the greatest gain
ratio among the attributes not yet included in the path from the root. In other words,
C4.5 applies a greedy search by selecting the candidate test that maximizes the heuristic
splitting criterion.

We choose the C4.5 algorithm for the classification due to the following four rea-
sons. First, it builds the decision tree in an efficient manner by processing a large amount
of training data in a short time. Furthermore, the tree is robust even if assumptions, to
some extent, are violated by the real data model. Second, it uses the white box model,
which is easy to understand and interpret by boolean logic. Third, C4.5 is capable of
processing both continuous and discrete values (such as numerical and categorical data),
which is an improvement from the earlier ID3 algorithm [25]. Last, after the tree cre-
ation, C4.5 prunes the tree from top down with attempts to constrain the tree height and
avoid overfitting.

We use J48 as implementation, which is an open source Java program of the C4.5
algorithm in the Weka data mining tool [18]. Each action record is in such a format
of feature vector as <duration, distance, displacement, displacement angle, average
speed, move efficiency, virtual key value, timing entropy>, listed in Table 2. The J48
classifier takes input from all actions in an action group9, and outputs the classification
result indicating whether the action group is generated by human or bot.

DecisionMaker. The user log contains multiple action groups, and each group is deter-
mined by the classifier as generated by either human or bot. The decision maker presents
the summary of the classifications of UI actions over a period of time by employing the
majority voting rule. More specifically, if the majority10 of action groups are classified
as human, then the user is classified as human, and vice versa. Since classification on
individual actions cannot always be accurate, the more actions are included, the more
confident the final decision is.

4 Evaluation

In this section we evaluate the efficacy of our detection system in terms of detection
accuracy, detection time, and induced system overhead.

9 Input is converted the ARFF format required by Weka [1].
10 As our classification only involves two categories, human and bot, a majority means more than
half of the votes.

Bot or Human? A Behavior-Based Online Bot Detection System 445

4.1 Experimental Setup

Our experiments are based on 239 h of user traces, including 207 h of human and 32 h of
bot11. The traces are collected from more than 1,000 human users and two types of blog
bots (namely Human Mimic Bot and Replay Bot). The details about user composition
are described in Sect. 2.2. In summary, the user input dataset consists of 4,520,165 raw
events, which are further converted into 190,677 compound actions.

Table 3. True positive and negative rates vs No. of actions per group

Actions per group TPR TNR

2 0.974 0.9993

4 0.9945 0.9996

6 0.9865 0.9989

8 0.9879 0.9989

We use cross validation with ten folds [21] to train and test the classifier on our UI
dataset. The dataset is randomly partitioned into ten complementary subsets. In each
round, one of the ten subsets is retained to validate the classifier (as the test set), while
the remaining nine subsets are used to train the classifier (as the training set). Every
round is an independent procedure, as the classifier is reset at the beginning of the
round and then re-trained. The test results from ten rounds are averaged to generate the
final estimation. The advantage of cross validation is that, all the samples in the dataset
are used for both training and validation and each sample is validated exactly once.

4.2 System Performance

Our detection system has two adjustable parameters that affect the system performance:
(1) the number of actions per group and (2) the total number of actions required to
correctly classify a user. We describe the configuration procedure of each parameter as
follows.

We set different values for the number of actions per group, run cross validation
tests, and then calculate the true positive rate (TPR)12 and true negative rate (TNR)13

for each value. The results are listed in Table 3. During the classification, the classifier
treats a group of actions as one entity14, and produces the classification result for the
group, not for individual actions. In our experiment, the setting of four generates the

11 The idle time is not included in the traces. The bot trace consists of 30 h of Human Mimic Bot
data and 2 h of Replay Bot data.

12 The true positive rate is the ratio of the number of bots which are correctly classified to the
number of all the bots.

13 The true negative rate is the ratio of the number of humans which are correctly classified to the
number of all the humans.

14 A series of consecutive actions represent continuous behavior well.

446 Z. Chu et al.

highest TPR and TNR among all the values. Therefore, we set the number of actions
per group as four.

The second parameter, the total number of actions required to correctly classify a
user, directly affects the system performance in terms of detection accuracy and detec-
tion time. Generally speaking, the more actions observed from the user, the more accu-
rate the classification result will be. On the other hand, processing more actions costs
more time and increases the detection time. Given the number of actions per group is
four, we run experiments with cross validation on the whole ground truth to determine
how many actions are required to achieve a high accuracy. The results are summarized
in the column labeled as “Both Bots” in Table 4. Since each action group is configured
to contain four actions, the total number of actions required equals the group number
multiplied by four. The last row in Table 4 labeled as “Entire” corresponds to the base-
line case, in which the classifier takes all the actions in the user log as input. It is used
as upper-limit for accuracy comparison. We can see that the detection accuracy in terms
of TPR and TNR increases as the total number of actions processed by the classifier
increases. With the group number as 24 (namely 24 * 4 = 96 actions in total), TPR and
TNR are very close to those of the entire log. Besides, the accuracy gain increases very
slowly after the group number exceeds 24. Thus, the system is configured to process
24 action groups while each group includes 4 actions. Each group is labeled as either
human or bot, and the user is eventually classified as the category with more labels
using the majority voting rule. For example, if the action group sequence is labeled
as <human, human, bot, human, · · · , human>, then the user is classified as human.
The C4.5 algorithm generates a decision tree based on our dataset and prunes it after-
wards. The construction procedure costs 4.96 s, and returns a tree with 57 nodes. The
tree consists of 29 leaves and 28 interior nodes including the root. The overall detection
accuracy is 0.9972 with the root mean squared error at 0.0244.

Table 4. True positive and negative rates vs Number of groups

Group no Both Bots Human Mimic Bot Replay Bot

TPR TNR TPR TNR TPR TNR

4 0.6975 0.9972 0.7016 0.998 0.6359 0.9992

8 0.7673 0.9956 0.7710 0.9982 0.7117 0.9974

12 0.8172 0.9973 0.8198 0.9991 0.7781 0.9982

16 0.8788 0.9978 0.8802 0.9992 0.8578 0.9986

20 0.917 0.9982 0.9208 0.9994 0.8599 0.9988

24 0.9794 0.9983 0.9817 0.9996 0.9448 0.9987

Entire 0.9945 0.9996 0.9964 0.9999 0.9660 0.9997

The detection time is mainly decided by the total number of actions processed by
the classifier. The average time per action is less than one millisecond. The overall time
cost per user, including log processing and classification, is averagely 3.2 s.

Bot or Human? A Behavior-Based Online Bot Detection System 447

We speculate whether one bot type is more difficult to detect than the other. Thus, we
separate the evaluation on Human Mimic Bot and Replay Bot to see how accurately our
system can detect the two types of blog bots. More specifically, we derive two subsets
of the ground truth: one with the entire trace of human and Human Mimic Bot, and
the other with that of human and Replay Bot. The results are displayed in the last two
columns in Table 4. We have two observations. Firstly, for each row, the TPR of Human
Mimic Bot is greater than that of Replay Bot. It is easier to detect Human Mimic Bot
thanks to the simplicity and regularity of its behavior. Due to certain implementation
deficiencies of the Replay Bot tools, our system also effectively detects Replay Bot with
the TPR greater than 0.966. Secondly, the TNR is greater than the corresponding TPR
for every bot type. In other words, the FNR is greater than the FPR. It reflects our design
philosophy that, the system may miss capturing some bots, but it seldom mis-classifies
human as bot to upset legitimate users.

4.3 System Overhead

As the detector is employed on the server side, it must be light-weight and scalable
enough to accommodate numerous concurrent user classifications. We estimate the
additional overhead induced by the detector for the case, in which 10,000 users access
the server simultaneously.

In terms of network bandwidth consumption, the logger streams the user input data
in the JSON format to the server. An average user generates a trace at a size around
200 Kbytes. Then, the aggregated network bandwidth consumed at the server-side for
receiving UI data is about 4.2 Mbps. Considering the wide deployment of Gigabit Eth-
ernet, this network bandwidth requirement can be easily met.

The main memory cost at the server side is to accommodate user input actions and
the decision tree outputs for each user. An input action contains eight features, and
each feature occupies 5 bytes, except the virtual key value with 2 bytes. Thus, a single
action consumes 37 bytes. Each action group contains 4 actions, and is assigned with
a result that occupies 1 byte. The detector only needs 24 action groups from the user
log for classification, and thus classifying a single user consumes up to 3.49 Kbytes
of memory. Scaled to 10,000 online users, the memory cost of the server will be 34.1
Mbytes, which is very affordable for a modern server.

The computational overhead is also very minor. We run J48 in the Weka, a Java
implementation of the C4.5 algorithm, on a workstation with an Inter Core 2 Duo
2.4GHz CPU. The classification time is 10.85 s for the traces of 239 h.

5 Conclusion

This chapter presents a bot detection system, which leverages the behavioral differ-
ences between human users and bots in their mouse and keystroke activities. Com-
pared to conventional detection methods based on Human Interactive Proofs, such as
CAPTCHA, our detection system does not require additional user participation, and
is thus both transparent and unobtrusive to users. We have collected real user input
traces of 239 h from a busy blog site. Based on these real UI traces, we have discovered

448 Z. Chu et al.

different user behavioral characteristics, and further developed useful features for clas-
sification. Our detection system consists of a client-side logger and server-side detector.
The logger passively collects user activities and streams this data to the server. The
detector processes the log and identifies whether it is generated by human or bot. The
core of our detection system is a statistical classifier (i.e., C4.5 algorithm) that builds a
decision tree. It takes the action stream as input, and classifies the user by the majority
voting rule. We perform a set of experiments to tune the system parameters and evalu-
ate the system’s performance. The experimental results show that the overall detection
accuracy is higher than 99%. The additional overhead induced by the detection is minor
in terms of CPU and memory costs.

References

1. Attribute-relation file format (arff). http://www.cs.waikato.ac.nz/ml/weka/arff.html
2. Autohotkey - free mouse and keyboard macro program with hotkeys. http://www.autohotkey.

com/
3. Autoit, automation and scripting language. http://www.autoitscript.com/site/autoit/
4. Autome - automate mouse and keyboard actions. http://www.asoftech.com/autome/
5. Blogbot by incansoft. http://blogbot.auto-submitters.com/
6. Global mouse and keyboard library. http://www.codeproject.com/KB/system/

globalmousekeyboardlib.aspx
7. Json, javascript object notation. http://www.json.org/
8. Ultimate wordpress comment submitter. http://www.wordpresscommentspammer.com/
9. Virtual-key codes. http://msdn.microsoft.com/en-us/library/ms927178.aspx
10. Ahmed, A.A.E., Traore, I.: A new biometric technology based on mouse dynamics. IEEE

Trans. Dependable Secure Comput. 4(3), 165–179 (2007)
11. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI problems for

security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 18

12. Van Balen, N., Ball, C.T., Wang, H.: A behavioral biometrics based approach to online gen-
der classification. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds.) SecureComm
2016. LNICST, vol. 198, pp. 475–495. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-59608-2 27

13. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is tweeting on Twitter: human, bot or
cyborg? In: Proceedings of the 2010 Annual Computer Security Applications Conference,
Austin, TX, USA (2010)

14. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York
(2006)

15. Funk, C., Liu, Y.: Symmetry reCAPTCHA. In: Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, June 2016

16. Gianvecchio, S., Wang, H.: Detecting covert timing channels: an entropy-based approach.
In: Proceedings of the 2007 ACM Conference on Computer and Communications Security,
Alexandria, VA, USA, October–November 2007

17. Gianvecchio, S., Wu., Z., Xie, M., Wang, H.: Battle of botcraft: fighting bots in online games
with human observational proofs. In: Proceedings of the 16th ACMConference on Computer
and Communications Security, Chicago, IL, USA (2009)

18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data
mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://www.autohotkey.com/
http://www.autohotkey.com/
http://www.autoitscript.com/site/autoit/
http://www.asoftech.com/autome/
http://blogbot.auto-submitters.com/
http://www.codeproject.com/KB/system/globalmousekeyboardlib.aspx
http://www.codeproject.com/KB/system/globalmousekeyboardlib.aspx
http://www.json.org/
http://www.wordpresscommentspammer.com/
http://msdn.microsoft.com/en-us/library/ms927178.aspx
https://doi.org/10.1007/3-540-39200-9_18
https://doi.org/10.1007/978-3-319-59608-2_27
https://doi.org/10.1007/978-3-319-59608-2_27

Bot or Human? A Behavior-Based Online Bot Detection System 449

19. Jackson, C., Bortz, A., Boneh, D., Mitchell, J.C.: Protecting browser state from web privacy
attacks. In: Proceedings of the 15th International Conference on World Wide Web, pp. 737–
744 (2006)

20. Kohavi, R., Quinlan, R.: Decision tree discovery. In: Handbook of Data Mining and Knowl-
edge Discovery, pp. 267–276. University Press (1999)

21. McLachlan, G., Do, K., Ambroise, C.: Analyzing Microarray Gene Expression Data. Wiley,
Hoboken (2004)

22. Mohta, A.: Bots are back in Yahoo! chat rooms. http://www.technospot.net/blogs/bots-are-
back-in-yahoo-chat-room/

23. Mohta, A.: Yahoo! chat adds CAPTCHA check to remove bots. http://www.technospot.net/
blogs/yahoo-chat-captcha-check-to-remove-bots/

24. Porta, A., et al.: Measuring regularity by means of a corrected conditional entropy in sympa-
thetic outflow. Biol. Cybern. 78(1), 71–78 (1998)

25. Quinlan, J.R.: Discovering Rules from Large Collections of Examples: A Case Study. Edin-
burgh University Press, Edinburgh (1979)

26. Zheng, N., Bai, K., Huang, H., Wang, H.: You are how you touch: user verification on smart-
phones via tapping behaviors. In: Proceedings of IEEE Conference on Network Protocol
(ICNP 2014), Research Triangle Park, NC, USA, October 2014

http://www.technospot.net/blogs/bots-are-back-in- yahoo-chat-room/
http://www.technospot.net/blogs/bots-are-back-in- yahoo-chat-room/
http://www.technospot.net/blogs/yahoo-chat-captcha- check-to-remove-bots/
http://www.technospot.net/blogs/yahoo-chat-captcha- check-to-remove-bots/

Network Security Metrics: From Known
Vulnerabilities to Zero Day Attacks

Lingyu Wang1(B), Mengyuan Zhang1, and Anoop Singhal2

1 Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, QC H3G 1M8, Canada

{wang,mengy zh}@ciise.concordia.ca
2 Computer Security Division, NIST, Gaithersburg, MD 20899, USA

anoop.singhal@nist.gov

Abstract. Network Secunetwork security metric enables the direct mea-
surement of the relative effectiveness of different security solutions. The
results thus provide quantifiable evidences to assist security practition-
ers in choosing among those security solutions, which makes network
security hardening a science rather than an art. The development of net-
work security metrics has evolved from focusing on known vulnerabilities
to considering also unknown zero day attacks. This chapter reviews the
challenges and solutions in designing network security metrics for both
known and unknown threats. Specifically, we first examine how CVSS
scores may be combined based on attack graphs to measure the overall
threat of residue vulnerabilites; we then estimate the resilience of net-
works against unknown vulnerabilities by counting the number of such
vulnerabilities along the shortest attack path; finally, we model the effect
of diversity on network security with respect to zero day attacks.

1 Introduction

Today’s economy and national security critically depend on data centers and
computer networks which are widely used in enterprises and critical infrastruc-
tures including power grids, financial data systems, and emergency communi-
cation systems. In protecting such infrastructures against malicious attacks, a
standard way for measuring network security will bring together users, ven-
dors, and labs in specifying, implementing, and evaluating network security
products. Despite existing efforts in standardizing security metrics [8,12], a
widely-accepted network security metric is largely unavailable in practice. As
to research, a qualitative and imprecise view toward the evaluation of network
security is still dominant, and researchers are mostly concerned about issues with
binary answers, such as whether a given critical resource is secure (vulnerability
analysis) or whether an insecure network can be hardened (network hardening).

In such a context, a network security metric is desirable since it would enable
the direct measurement of the relative effectiveness of different security solutions.
The results thus provide quantifiable evidences to assist security practitioners in

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 450–469, 2018.
https://doi.org/10.1007/978-3-030-04834-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_22

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 451

choosing among those security solutions, which makes network security harden-
ing a science rather than an art. The development of network security metrics
has evolved from focusing on known vulnerabilities to considering also unknown
zero day attacks. This chapter reviews the challenges and solutions in designing
network security metrics for both known and unknown threats.

In particular, an important challenge in developing network security metrics
is to compose measures of individual vulnerabilities, resources, and configura-
tions into a global measure. A naive approach to such compositions may lead
to misleading results. For example, less vulnerabilities are not necessarily more
secure, considering a case where these vulnerabilities must all be exploited in
order to compromise a critical resource. On the other hand, less vulnerabilities
can indeed mean more security when exploiting any of these vulnerabilities is
sufficient for compromising that resource. This example shows that to obtain
correct compositions of individual measures, we need to first understand the
interplay between different network components.

In addition, the aforementioned approach of composing measures of indi-
vidual vulnerabilities is no longer feasible when it comes to zero day attacks,
since the measures will not be available for the previously unknown vulnerabili-
ties exploited during such attacks. In fact, a popular criticism of past efforts on
security metrics is that they cannot deal with unknown vulnerabilities, which
are generally believed to be unmeasurable [6]. Unfortunately, without consider-
ing unknown vulnerabilities, a security metric will only have questionable value
at best, since it may determine a network configuration to be more secure while
that configuration is in fact equally susceptible to zero day attacks. We thus fall
into the agnosticism that security is not quantifiable until we can fix all potential
security flaws but by then we certainly do not need security metric at all [6].

To address those challenges, this chapter examines several existing
approaches to network security metrics. First, we examine how the CVSS scores
of individual vulnerabilities may be combined into an overall measure for net-
work security. Specifically, we convert CVSS base scores into probabilities and
then propagate such probabilities along attack paths in an attack graph in order
to obtain an overall metric. We also represent the attack graph and its assigned
probabilities as a Bayesian network and then derive the overall metric value
through Bayesian inferences. Second, we describe the k-zero day safety metric
which simply counts how many zero day vulnerabilities are required to com-
promise a network asset; a larger count will indicate a relatively more secure
network, since the likelihood of having more unknown vulnerabilities all avail-
able at the same time, applicable to the same network, and exploitable by the
same attacker, will be lower. Third, we review a network diversity metric based
on first adapting well known mathematical models of biodiversity in ecology
and then integrating such models with the attack graph-based security metrics
to measure the effect of diversity on network security.

452 L. Wang et al.

2 Combining CVSS Scores to Measure the Risk
of Residue Vulnerabilities

In practice, many vulnerabilities may still remain in a network after they are
discovered, due to either environmental factors (such as latency in releasing soft-
ware patches or hardware upgrades), cost factors (such as money and adminis-
trative efforts required for deploying patches and upgrades), or mission factors
(such as organizational preferences for availability and usability over security).
To remove such residue vulnerabilities in the most cost-efficient way, we need
to evaluate and measure the likelihood that attackers may compromise criti-
cal resources through cleverly combining multiple vulnerabilities. To that end,
there already exist standard ways for assigning scores to vulnerabilities, such
as the Common Vulnerability Scoring System (CVSS) [7]. The CVSS scores of
most known vulnerabilities are readily available in public databases, such as the
NVD [9]. However, there is a gap between CVSS, which mostly focus on indi-
vidual vulnerabilities, and the need for a metric of overall network security. To
fill this gap, this section describes ways for combining the CVSS scores into a
network security metric.

2.1 Propagating Attack Probabilities Along Attack Paths

Attack graphs model how multiple vulnerabilities may be combined for advanc-
ing an intrusion. Figure 1 shows a toy example in which the attack graph is a
directed graph with two kinds of vertices, namely, exploits shown as predicates
inside ovals and conditions shown in plaintexts. For example, rsh(0, 1) represents
a remote shell login from machine 0 to machine 1, and trust(0, 1) means a trust
relationship is established from machine 0 to machine 1. A directed edge from a
condition to an exploit means executing the exploit requires the condition to be
satisfied, and that from an exploit to a condition means executing the exploit
will satisfy the condition.

The attack graph in Fig. 1 depicts three attack paths. On the right, the attack
path starts with an ssh buffer overflow exploit from machine 0 to machine 1,
which gives the attacker the capability of executing arbitrary codes on machine
1 as a normal user. The attacker then exploits the ftp vulnerability on machine 2
to anonymously upload a list of trusted hosts. Such a trust relationship enables
the attacker to remotely execute shell commands on machine 2 without providing
a password. Consequently, a local buffer overflow exploit on machine 2 escalates
the attacker’s privilege to be the root of that machine. Details of the other two
attack paths are similar and are omitted.

Informally, the numerical value inside each oval is an attack probability that
indicates the relative likelihood of the corresponding exploit being executed by
attackers when all the required conditions are already satisfied. This value thus
only depends on each individual vulnerability, which is similar to many exist-
ing metrics, such as the CVSS [7]. On the other hand, we can clearly see the
limitation of such metrics in assessing the impact, damage, or relevance of vul-
nerabilities, because such factors are rather determined by the combination of

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 453

`

Workstation
Machine 0

Firewall Router

Database
Server

Machine 2

File
Server

Machine 1

rsh

rsh
sshftp

ftp

ftp_rhosts(0,1)
0.8

root(2)

rsh(0,1)
0.9

trust(0,1)

sshd_bof(0,1)
0.1

user(1)

ftp_rhosts(1,2)
0.8

trust(1,2)

rsh(1,2)
0.9

rsh(0,2)
0.9

trust(0,2)

ftp_rhosts(0,2)
0.8

user(2)

local_bof(2,2)
0.1

0.087

0.72

0.6

0.72 0.54

user(0)

0.1

0.8

Fig. 1. An example of network configuration and attack graph

exploits. While we delay its definition and computation to later sections, the
numerical value beside each oval represents the likelihood of reaching the corre-
sponding exploit in this particular network. Clearly, a security administrator will
be much happier to see the single score beside the last exploit (local bof(2, 2))
than looking at all the eight values inside ovals and wondering how those values
may be related to each other.

More specifically, we associate each exploit e and condition c with two proba-
bilities, namely, p(e) and p(c) for the individual score, and P (e) and P (c) for the
cumulative score. The individual score p(e) stands for the intrinsic likelihood of
an exploit e being executed, given that all the conditions required for executing
e in the given attack graph are already satisfied. On the other hand, the cumu-
lative score P (e) and P (c) measures the overall likelihood that an attacker can
successfully reach and execute the exploit e (or satisfy the condition c) in the
given attack graph.

For exploits, we assume the individual score is assigned based on expert
knowledge about the vulnerability being exploited. In practice, individual scores
can be obtained by converting vulnerability scores provided by existing stan-
dards, such as dividing the CVSS base score by 10 [7], to probabilities. For
conditions, we assume in this chapter that the individual score of every condi-
tion is always 1. Intuitively, a condition is either initially satisfied (for example,
user(0) in Fig. 1), or immediately satisfied after a successful exploit (in practice,
we can easily remove such assumptions by assigning less-than-1 individual scores
to conditions).

Unlike individual scores, the cumulative score takes into accounts the causal
relationships between exploits and conditions. In an attack graph, such causal

454 L. Wang et al.

relationships may appear in two different forms. First, a conjunction exists
between multiple conditions required for executing the same exploit. Second,
a disjunction exists between multiple exploits that satisfy the same condition.
The cumulative scores are defined in the two cases similar to the probabil-
ity of the intersection and union of random events. That is, if the execu-
tion of e requires two conditions c1 and c2, then P (e) = P (c1) · P (c2) · p(e);
if a condition c can be satisfied by either e1 or e2 (or both), then P (c) =
p(c)(P (e1) + P (e2) − P (e1) · P (e2)).

In Fig. 1, the cumulative scores of two exploits (shown as plaintexts besides
corresponding exploits) can be calculated as follows.

1. P (rsh(0, 1)) = P (trust(0, 1) × p(rsh(0, 1)) = 0.8 × 0.9 = 0.72
2. P (user(1)) = P (rsh(0, 1)) + P (sshd bof(0, 1)) − P (rsh(0, 1)) × P (sshd

bof(0, 1)) = 0.72 + 0.1 − 0.72 × 0.1 = 0.748

From the above example, the score of conditions may seem rather unnec-
essary (as a matter of fact, we do not show the score of conditions in Fig. 1).
However, the attack graph shown in Fig. 1 is a special case where all the causal
relationships between exploits happen to be disjunction only. In general, more
complicated relationships may arise between exploits rather than just conjunc-
tion and disjunction. It would be cumbersome to explicitly deal with all possible
relationships in defining our metric. However, as long as we include conditions
as an intermediate between exploits, we can safely ignore the difference between
those cases.

2.2 Attack Graphs as Bayesian Networks

In this section, we look at a different approach of interpreting attack graphs
as Bayesian networks and combining individual scores through Bayesian infer-
ences. Specifically, given an attack graph G(E ∪ C,Rr ∪Ri), we can construct a
Bayesian network-based attack graph (AG) B = (G,Q) where G is the directed
graph corresponding to the AG in which the vertices now represent the binary
variables of the system and the edges represent the conditional relationships
among the variables; Q is the set of parameters that quantify the BN, i.e., con-
ditional probabilities for the vertices. The key challenges are to encode in B
both the CVSS scores of individual vulnerabilities, and the causal relationships
among the exploits and conditions. Such encoding is possible through assigning
special conditional probabilities. Specifically,

1. We assign a probability of 1 to all the initial conditions in the attack graph
since those conditions are satisfied initially.

2. We assign the CVSS score of corresponding vulnerability divided by 10 as
the conditional probability of satisfying each exploit node given that all of its
pre-conditions are already satisfied.

3. We assign 0 as the conditional probability of satisfying each exploit when at
least one of its pre-conditions is not satisfied (since by definition of an exploit
cannot be executed until all its pre-conditions are satisfied).

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 455

4. We assign 1 as the conditional probability of satisfying each condition if the
condition is the post-condition of at least one satisfied exploit (since a post-
condition can be satisfied by any exploit alone).

The following illustrates this methodology through two simple cases.

• Figure 2 depicts a simple AG with three exploits. Clearly, the AG indicates
that one must execute either e1 or e2 before he/she can execute e3 to reach
the goal state. Such logic relationships (disjunctive between e1 and e2 and
conjunctive with e3) are encoded following the above methodology in the
conditional probability tables (CPTs) shown in the figure. For example, c1
is initially satisfied so assigned a value of 1; e1 only depends on c1, and its
probability of being satisfied is 0 if c1 is not true, whereas the probability
is 0.3 otherwise (where 0.3 is the CVSS score of the vulnerability inside e1
divided by 10). The overall security, i.e., the probability of satisfying c5 given
c1 is satisfied may be calculated through Bayesian inferences as P (c5 = T) =
0.036.

• Figure 3 depicts a slightly different case. In the previous case, exploits e1
and e2 are assumed to be independent, whereas in this case, we assume the
likelihood of exploit B would increase upon successful exploitation of vulner-
ability A. This could be the case where an attacker has gained knowledge
following a successful exploit, e.g., if both exploits share the same or a similar
vulnerability. In particular, we assume the likelihood of successfully exploit-
ing vulnerability B without prior exploitation of vulnerability A is 0.3 (same
as in case 2), and a successful exploitation of A would increase the likeli-
hood of exploiting B to 0.5. The probability of achieving the goal state is
the P (C = T) = 0.204, which is the same as in case 2. An interpretation
of this result is that in order to exploit C we must have either a successful
exploitation of A or B. In the event A is successfully exploited, the likelihood
of B increases. However, the attacker can go directly to the attack phase on
C without attempting to exploit B (in which case the adjusted score makes
no difference) which is the same as in case 2.

More formally, given an attack graph G(E ∪ C,Rr ∪ Ri), and a function f()
that maps each e ∈ E to its CVSS score divided by 10, the Bayesian network-
based attack graph is the Bayesian network B = (G′(E ∪ C,Rr ∪ Ri), Q), where
G′ is obtained by annotating each e ∈ E with f(e), and regarding each node as a
discrete random variable with two states T and F , and Q is the set of parameters
of the Bayesian network given as follows.

1. P (c = T) = 1 for all the initial conditions c ∈ CI .
2. P (e | ∃c〈c,e〉∈Rr

= F) = 0 (that is, an exploit cannot be executed until all of
its pre-conditions are satisfied).

3. P (c | ∃e〈e,c〉∈Ri
= T) = 1 (that is, a post-condition can be satisfied by any

exploit alone).
4. P (e | ∀c〈c,e〉∈Rr∪Rs

= T) = f(e) (that is, the probability of successfully
executing an exploit when its pre-conditions have all been satisfied).

456 L. Wang et al.

c5

c1

e1

c3

e3

c2

e2

c4

1
1

.3 .3

.4

1
Goal State

1
1

c1

F 0

T 1

c2

F 0

T 1

c5

e3 F T

F 1 0

T 0 1

c4

e2 F T

F 1 0

T 0 1

c3

e1 F T

F 1 0

T 0 1

e1

c1 F T

F 1 .7

T 0 .3

e2

c2 F T

F 1 .7

T 0 .3

e3

c3 F T

c4 F T F T

F 1 1 1 .6

T 0 0 0 .4

Fig. 2. Case 1

A

C

.3

.4

Goal State

B
.3

(.5)

A

T F

.3 .7

C

A B T F

F F 0 1

F T .4 .6

T F .4 .6

T T .4 .6

B

A T F

T .5 .5

F .3 .7

Fig. 3. Case 2

The BN-based model we just presented may handle some cases which the
previous approach introduced in Sect. 2 cannot. Consider the case depicted in
Fig. 4 in which exploit e6 has an individual score of 0.7. However, if an attacker
successfully exploits e4, they will gain knowledge that will make exploiting e6
easier and more likely. We represent this with the increased score for e6 to
0.8 shown in the square brackets. If we would follow the previous approach
introduced in Sect. 2, we would face a problem in selecting a value for e6 between
0.7 and 0.8, since we do not know whether attacker would have already reached
e4 before reaching e6, which would yield different scores for e6. However, the
BN-based approach can clearly handle such a case without the need for special
considerations.

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 457

e1

e2

c1

c2

e3

e7

c3

e5

c5

c4

e6

c6

e8

e4

c7

1,(1)

.2,(.2)

.4,(.4)
1,(.2)

.5,(.1)

1,(.46)

.6,(.276)

1,(.276)

.8,(.2208)

1,(.446)

.9,(.4014)

1,(.4014)

.7,(.21)

1,(.3)

.3,(.3)

[.8]

Fig. 4. Dependency among exploit nodes

3 Estimating Networks’ Resilience Against Zero Day
Attacks

In previous section, we compose existing scores of individual vulnerabilities to
measure their combined risk. However, such measures are no longer feasible when
it comes to zero day attacks which exploit previously unknown vulnerabilities.
This section examines how we can estimate a network’s resilience against such
zero day attacks.

3.1 Motivating Example

We first build intuitions through a toy example. In Fig. 5, host 1 and 2 comprise
the internal network in which the firewall allows all outbound connection requests
but blocks inbound requests to host 2. Assume the main security concern here is
whether any attacker on host 0 can obtain the root privilege on host 2. Clearly, if
we assume all the services to be free of known vulnerabilities, then a vulnerability
scanner or attack graph will both draw the same conclusion that this network is
secure (attackers on host 0 cannot obtain the root privilege on host 2.

Now consider the following two iptables policies. Policy 1 : The iptables rules
are left in a default configuration that accepts all requests. Policy 2 : The ipta-
bles rules are configured to only allow specific IPs, excluding host 0, to access
the ssh service. Clearly, since the network is already secure, policy 1 will be
preferable due to its simplicity (no special iptables rules need to be configured

458 L. Wang et al.

host 1

host 2

http

(iptables) ssh

ssh

firewall
host 0

(all to 1)

(all to all)

Fig. 5. An example network

by the administrator) and functionality (any external host may connect to the
ssh service on host 1).

Next, we compare the two policies with respect to the network’s resistance
to potential zero-day vulnerabilities. Specifically, Under Policy 1, the upper dia-
gram in Fig. 6 (where each triple indicates an exploit 〈vulnerability, source host,
destination host〉 and a pair indicates a condition 〈condition, host〉) illustrates
three possible ways for compromising host 2. The first and third paths require
two different zero-day vulnerabilities, whereas the second only requires one zero-
day vulnerability (in the secure shell service). Therefore, the network can be
compromised with at least one zero-day attack under Policy 1. On the other
hand, under Policy 2, only the second case is different, as illustrated in the lower
diagram in Fig. 6. However, all three cases now require two different zero-day vul-
nerabilities. The network can thus be compromised with at least two zero-day
attacks under Policy 2.

Fig. 6. Sequences of zero day attacks

Considering the fact that each zero-day attack has only a limited lifetime
(before the vulnerability is disclosed and fixed), it is reasonable to assume that
the likelihood of having a larger number of distinct zero-day vulnerabilities all
available at the same time in this particular network will be significantly smaller
(the probability will decrease exponentially if the occurrences of different vul-
nerabilities can be regarded as independent events; however, our metric will not

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 459

depend on any specific statistical model, considering the process of finding vul-
nerabilities is believed to be chaotic). To revisit the above example, the network
can be regarded as more secure under Policy 2 than under Policy 1 since the
former requires more (two) zero-day attacks to be compromised. The key obser-
vation is, considering a network’s resistance to potential zero-day vulnerabilities
may assist in ranking the relative security of different network configurations,
which may be otherwise indistinguishable under existing vulnerability analysis
or attack graph-based techniques.

3.2 Modeling k-Zero Day Safety

This section introduces the k-zero day safety metric model. First, the following
formalizes our network model.

Definition 1 (Network). The network model includes:

– the sets of hosts H, services S, and privileges P .
– the mappings from hosts to sets of services serv(.) : H → 2S and privileges

priv(.) : H → 2P .
– the relation of connectivity conn ⊆ H × H.

The main design rationale here is to hide internal details of hosts while focus-
ing on the interfaces (services and connectivity) and essential security properties
(privileges). A few subtleties are as follows. First, hosts are meant to include not
only computers but all networking devices potentially vulnerable to zero-day
attacks (e.g., firewalls). Second, a currently disabled connectivity (e.g., 〈0, 2〉 in
the above example) still needs to be considered since it may potentially be re-
enabled through zero-day attacks (e.g., on firewalls). Third, only remote services
(those remotely accessible over the network), and security services (those used
for regulating accesses to remote services) are considered. Modeling local ser-
vices or applications is not always feasible (e.g., attackers may install their own
applications after obtaining initial accesses to a host). Instead, we will model
the effect of compromising such applications through privilege escalation. For
this purpose, privileges under which services are running, and those that can be
potentially obtained through a privilege escalation, will both be considered.

Next, we model zero day exploits. The very notion of unknown vulnerabil-
ity means that we cannot assume any vulnerability-specific property, such as
exploitability or impact. Instead, our model is based on generic properties of
existing vulnerabilities. Specifically, we define two types of zero-day vulnera-
bilities. First, a zero-day vulnerability in services are those whose details are
unknown except that their exploitation requires a network connection between
the source and destination hosts, a remotely accessible service on the destina-
tion host, and existing privilege on the source host. In addition, exploiting such
a vulnerability can potentially yield any privilege on the destination host. Those
assumptions are formalized as the first type of zero-day exploits in Definition 2.
The second type of zero-day exploits in the definition represent privilege escala-
tion following the exploitation of services.

460 L. Wang et al.

Definition 2 (Zero-Day Exploit). Given a network,

– for each remote service s, we define a zero-day vulnerability vs such that
the zero-day exploit 〈vs, h, h′〉 has three pre-conditions, 〈s, h′〉 (existence of
service), 〈h, h′〉 (connectivity), and 〈p, h〉 (attacker’s existing privilege); it has
one post-condition 〈ps, h′〉 where ps is the privilege of service s on h′.

– for each privilege p, we define a zero day vulnerability vp such that the pre-
conditions of the zero-day exploit 〈vp, h, h〉 include the privileges of remote
services on h, and the post-condition is 〈p, h〉.
Now that we have defined zero-day exploits, it is straightforward to extend

a traditional attack graph with zero-day exploits. Specifically, a zero-day attack
graph is simply a directed graph composed of both zero-day and known exploits,
with edges pointing from pre-conditions to corresponding exploits and from
exploits to their post-conditions. For example, Fig. 7 shows the zero day attack
graph (in this special case, all exploits are zero day).

<user,0>

<v_iptables,0,1> <v_firewall,0,F><v_http,0,1>

<v_ssh,0,1> <v_ssh,0,2>

<firewall,F> <0,F><iptables,1><0,1>

<ssh,1>

<user,1>

<v_root,1,1> <v_ssh,1,2>

<root,1>

<root,F> <0,2>

<http,1>

<ssh,2>

<1,2>

<user,2>

<v_root,2,2>

<root,2>

Fig. 7. An example zero day attack graph

In a zero-day attack graph, we use the notion of initial condition for condi-
tions that are not post-conditions of any exploit (e.g., initially satisfied condi-
tions, or those as the result of insider attacks or user mistakes). We also need
the notion of attack sequence, that is, any sequence of exploits in which the
pre-conditions of every exploit are either initial conditions, or post-conditions
of some preceding exploits (intuitively, this indicates an executable sequence of
attacks). For example, in Fig. 7, four attack sequences may lead to 〈root, 2〉.
Finally, we regard a given condition a as the asset (which can be extended to
multiple assets with different values [13]) and use the notation seq(a) for any
attack sequence that leads to a.

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 461

We are now ready to define the k-zero day safety metric. In Definition 3,
we do so in three steps. First, we model two different cases in which two zero
day exploits should be counted only once, that is, either when they involve the
same zero day vulnerability or when they correspond to a trivial privilege escala-
tion due to the lack of isolation techniques. Although the equivalence relation in
those two cases has very different semantics, the effect on our metric will be the
same. The metric function k0d(.) counts how many exploits in their symmetric
difference are distinct (not related through ≡v). Defining this function over the
symmetric difference of two sets allows it to satisfy the required algebraic prop-
erties. The k-zero day safety metric is defined by applying the metric function
k0d(.) to the minimal attack sequences leading to an asset. We note that k0d(a)
is always unique even though multiple attack sequences may lead to the same
asset. The empty set in the definition can be interpreted as the conjunction of
all initial conditions (which are initially satisfied).

Definition 3 (k-Zero Day Safety). Given the set of zero-day exploits E0, we
define

– a relation ≡v ⊆ E0 × E0 such that e ≡v e′ indicates either e and e′ involve
the same zero day vulnerability, or e = 〈vs, h1, h2〉 and e′ = 〈vp, h2, h2〉 are
true, and exploiting s yields p. e and e′ are said distinct if e �≡v e′.

– a function k0d(.) : 2E0 × 2E0 → [0,∞] as k0d(F, F ′) = max({ |F ′′| : F ′′ ⊆
(FF ′), (∀e1, e2 ∈ F ′′) (e1 �≡v e2)}) where |F ′′| denotes the cardinality,
max(.) the maximum value, and FF ′ the symmetric difference (F \ F ′) ∪
(F ′ \ F).

– for an asset a, we use k = k0d(a) for min({k0d(q∩E0, φ) : q ∈ seq(a)}) where
min(.) denotes the minimum value. For any k′ ∈ [0, k), we say a is k′-zero
day safe (we may also say a is k-zero day safe when the meaning is clear from
the context).

Example 1. For the running example, suppose all exploits of services involve
distinct vulnerabilities except 〈vssh, 0, 1〉, 〈vssh, 1, 2〉, and 〈vssh, 0, 2〉. Assume
ssh and http are not protected by isolation but iptables is protected. Then, the
relation ≡v is shown in Table 1 where 1 indicates two exploits are related and
0 the opposite. Clearly, if we assume A = {〈root, 2〉} then we have k0d(A) = 2,
and the network is 0 or 1-zero day safe (we may also say it is 2-zero day safe
when the meaning is clear from the context).

3.3 Redefining Network Hardening

Network hardening is to improve the security of existing networks through
deploying security solutions or making configuration changes. In most existing
work, network hardening is defined as a reachability problem in attack graphs,
that is, finding a set of security conditions, disabling which will render goal con-
ditions (assets) not reachable from initial conditions [3,11,14]. Since the reacha-
bility is a binary property, such a definition is qualitative in nature. Each network

462 L. Wang et al.

Table 1. An example of relation ≡v

hardening solution is either valid or invalid, and all valid solutions will be deemed
as equally good in terms of security (although those solutions may be ranked
from other aspects, such as their costs [14]).

Based on the proposed k-zero day safety metric, we can now redefine network
hardening as rendering a network k-zero day safe for a larger k. Clearly, such
a concept generalizes the above qualitative approaches. Specifically, under our
model, those qualitative approaches essentially achieve k > 0, meaning that
attacks are no longer possible with known vulnerabilities only. In contrast to
those qualitative approaches, our definition can rank network hardening solutions
based on the relative degree of security guarantee provided by those solutions.
Such a ranking would enable us to model network hardening as various forms
of optimization problems, either with k as the objective function and cost as
constraints (that is, to maximize security) or vice versa.

Moreover, the metric also provides insights to specific hardening options,
since any means for increasing k would now become a potential hardening option.
For clarify purposes, we unfold k based on our model in Eqs. (1) through (4).
Based on those equations, we can see that k may be increased in many ways,
including:

k = k0d(A) =
∑

a∈A

(k0d(a) · v(a))/
∑

a∈A

v(a) (1)

k0d(a) = min({k0d(q ∩ E0, φ) : q ∈ seq(a)}) (2)
k0d(q ∩ E0, φ) = max({ |F | : F ⊆ q ∩ E0, (∀e1, e2 ∈ F) (e1 �≡v e2)}) (3)

seq(a) = {e1, e2, . . . , ej : a is implied by ∪j post(ej), (∀i ∈ [1, j]) (∀c ∈ pre(ei)) (4)
(c ∈ CI) ∨ (∃x ∈ [1, i − 1] c ∈ post(ex))} (5)

– Increasing Diversity. Increasing the diversity of services will enable stronger
assumptions about distinct zero day exploits (less exploits related by ≡v) in
Eq. (3), and consequently likely (but not necessarily, which is exactly why a
metric is needed) increase k.

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 463

– Strengthening Isolation. Strengthening isolation around services will provide
a similar effect as the above option.

– Disabling Services. Disabling or uninstalling unnecessary services will disable
corresponding initial conditions and therefore yield longer attack sequences
in Eq. (4) and consequently a larger k.

– Firewalls. Blocking unnecessary connectivity will provide a similar effect as
the above option since connectivity is a special type of initial conditions.

– Stricter Access Control. Enforcing stricter policies may improve user security
and lessen the risk of insider attacks or unintentional user mistakes and thus
disable existing initial conditions in Eq. (4) and lead to a larger k.

– Asset Backup. Asset backup will lead to more conjunctive clauses of conditions
in the definitions of assets, and consequently longer attack sequences and a
larger k.

– Detection and Prevention. Protecting services and assets with intrusion detec-
tion and prevention efforts will lead to negation of conditions in the definition
of assets and consequently a similar effect as the above option.

– Security Services. Introducing more security services to restrict accesses to
remote services may also disable initial conditions and consequently lead to
longer attack sequences and a larger k.

– Patching Known Vulnerabilities. Since known vulnerabilities may serve as
shortcuts for bypassing zero day exploits, patching them will likely yield
longer attack sequences and a larger k.

– Prioritizing Hardening Options. The hardening options maybe prioritized
based on the asset values in Eq. (1) and shortest attack sequences in Eq. (2)
such that an option is given higher priority if it can lead to more significant
reduction in k.

The above hardening options closely match current practices, such as the
so-called layered defense, defense in depth, security through virtualization, and
security through diversity approaches, and so on. This confirms the practical
relevance of the proposed metric. Note that none of those hardening options can
always guarantee improved security (that is, a hardening option does not always
increase the value of k). With the proposed metric, the relative effectiveness of
potential network hardening options can now be directly compared in a simple,
intuitive manner. Their cost can also be more easily justified, not based upon
speculation or good will, but simply with a larger k.

4 Measuring the Effect of Diversity on Network Security

Diversity has long been regarded as a security mechanism and it has found new
applications in security, e.g., Moving Target Defense (MTD). However, most
existing efforts rely on intuitive and imprecise notions of diversity, and the few
existing models of diversity are mostly designed for a single system running
diverse software replicas or variants. At a higher abstraction level, as a global
property of the entire network, diversity and its effect on security have received
limited attention. In this chapter, we show how to formally model network diver-
sity as a security metric.

464 L. Wang et al.

4.1 From Biodiversity to Network Diversity

Although the notion of network diversity has attracted limited attention, its
counterpart in ecology, biodiversity, and its positive impact on the ecosystem’s
stability has been investigated for many decades [1]. While many lessons may
potentially be borrowed from the rich literature of biodiversity, in this chapter we
will focus on adapting existing mathematical models of biodiversity for modeling
network diversity.

Specifically, the number of different species in an ecosystem is known as
species richness [10]. Similarly, given a set of distinct resource types (we will
consider similarity between resources later) R in a network, we call the cardi-
nality | R | the richness of resources in the network. An obvious limitation of
this richness metric is that it ignores the relative abundance of each resource
type. For example, the two sets {r1, r1, r2, r2} and {r1, r2, r2, r2} have the same
richness of 2 but clearly different levels of diversity.

To address this limitation, the Shannon-Wiener index, which is essentially
the Shannon entropy using natural logarithm, is used as a diversity index to
group all systems with the same level of diversity, and the exponential of the
diversity index is regarded as the effective number metric [2]. The effective num-
ber basically allows us to always measure diversity in terms of the number of
equally-common species, even if in reality those species may not be equally com-
mon. In the following, we borrow this concept to define the effective resource
richness and our first diversity metric.

Definition 4 (Effective Richness and d1-Diversity). In a network G with
the set of hosts H = {h1, h2, . . . , hn}, set of resource types R = {r1, r2, . . . , rm},
and the resource mapping res(.) : H → 2R (here 2R denotes the power set of
R), let t =

∑n
i=1 | res(hi) | (total number of resource instances), and let

pj =
| {hi : rj ∈ res(hi)} |

t
(1 ≤ i ≤ n, 1 ≤ j ≤ m)

(relative frequency of each resource). We define the network’s diversity as d1 =
r(G)
t , where r(G) is the network’s effective richness of resources, defined as

r(G) =
1

∏n
1 ppi

i

One limitation of the effective number-based metric is that similarity between
different resource types is not taken into account and all resource types are
assumed to be entirely different, which is not realistic (e.g., the same application
can be configured to fulfill totally different roles, such as NGinx as a reverse proxy
or a web server, respectively, in which case these should be regarded as different
resources with high similarity). Therefore, we borrow the similarity-sensitive
biodiversity metric recently introduced in [4] to re-define resource richness. With
this new definition, the above diversity metric d1 can now handle similarity
between resources.

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 465

Definition 5 (Similarity-Sensitive Richness). In Definition 4, suppose a
similarity function is given as z(.) : [1,m]×[1,m] → [0, 1] (a larger value denoting
higher similarity and z(i, i) = 1 for all 1 ≤ i ≤ m), let zpi =

∑m
j=1 z(i, j)pj . We

define the network’s effective richness of resources, considering the similarity
function, as

r(G) =
1

∏n
1 zppi

i

The effective richness-based network diversity metric d1 is only suitable
for cases where all resources may be treated equally, and causal relationships
between resources either do not exist or may be safely ignored. On the other
hand, this metric may also be used as a building block inside other network
diversity metrics, in the sense that we may simply say “the number of dis-
tinct resources” without worrying about uneven distribution of resource types
or similarity between resources, thanks to the effective richness concepts given
in Definitions 4 and 5.

The effect of biodiversity on the stability of an ecosystem has been shown to
critically depend on the interaction of different specifies inside a food Web [5].
Although such interaction typically takes the form of a “feed-on” relationship
between different specifies, which does not directly apply to computer networks,
this observation has inspired us to model diversity based on the structural rela-
tionship between resources, which will be detailed in the coming sections.

4.2 Least Attacking Effort-Based Network Diversity Metric

This section models network diversity based on the least attacking effort. To
make our discussion more concrete, we consider the example shown in Fig. 8 by
making the following assumptions. Accesses from outside firewall 1 are allowed
to host 1 but blocked to host 2; accesses from host 1 or 2 are allowed to host 3
but blocked to host 4 by firewall 2; hosts 1 and 2 provide http service; host 3
provides ssh service; Host 4 provides both http and rsh services.

Figure 9 depicts a corresponding resource graph, which is syntactically equiv-
alent to an attack graph, but models zero day attacks rather than known vul-
nerabilities. Each pair in plaintext is a self-explanatory security-related con-

host0

host1

host2

firewall1 firewall2

host3

host4

Fig. 8. The running example

466 L. Wang et al.

<http,0,1>

>F,0<>0,resu<>1,0<

<firewall,0,F>

<ssh,1,4> <http,0,2>

<2,3>
<user,2>

<user,3> <3,4>

<user,4>

<http,1,2>

<user,1>
<1,4> <0,2><1,2>

<rsh,3,4> <http,3,4>

<ssh,2,3>

Fig. 9. An example resource graph

dition (e.g., connectivity 〈source, destination〉 or privilege 〈privilege, host〉),
and each triple inside a box is a potential exploit of resource 〈resource,
source host, destination host〉; the edges point from the pre-conditions to a zero
day exploit (e.g., from 〈0, 1〉 and 〈user, 0〉 to 〈http, 0, 1〉), and from that exploit
to its post-conditions (e.g., from 〈http, 0, 1〉 to 〈user, 1〉). Exploits or conditions
involving firewall 2 are omitted for simplicity.

We simply regard resources of different types as entirely different (their simi-
larity can be handled using the effective resource richness given in Definition 5).
Also, we take the conservative approach of considering all resources (services and
firewalls) to be potentially vulnerable to zero day attacks. Definition 6 formally
introduces the concept of resource graph.

Definition 6 (Resource Graph). Given a network with the set of hosts H,
set of resources R with the resource mapping res(.) : H → 2R, set of zero
day exploits E = {〈r, hs, hd〉 | hs ∈ H,hd ∈ H, r ∈ res(hd)} and their pre-
and post-conditions C, a resource graph is a directed graph G(E ∪ C,Rr ∪ Ri)
where Rr ⊆ C × E and Ri ⊆ E × C are the pre- and post-condition relations,
respectively.

Next consider how attackers may potentially attack a critical network asset,
modeled as a goal condition, with the least effort. In Fig. 9, by following the
simple rule that an exploit may be executed if all the pre-conditions are satisfied,
and executing that exploit will cause all the post-conditions to be satisfied, we
may observe six attack paths, as shown in Table 2 (the second and third columns
can be ignored for now and will be explained shortly).

We are now ready to consider how diversity could be defined based on the
least attacking effort (the shortest path). There are actually several possible
ways for choosing such shortest paths and for defining the metric, as we will
illustrate through our running example in the following.

• First, as shown in the second column of Table 2, path 1 and 2 are the shortest
in terms of the steps (i.e., the number of zero day exploits). Clearly, those do

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 467

Table 2. Attack paths

Attack path # of steps # of resources

1. 〈http, 0, 1〉 → 〈ssh, 1, 4〉 → 〈rsh, 4, 5〉 3 3

2. 〈http, 0, 1〉 → 〈ssh, 1, 4〉 → 〈http, 4, 5〉 3 2

3. 〈http, 0, 1〉 → 〈http, 1, 2〉 → 〈ssh, 2, 4〉 → 〈rsh, 4, 5〉 4 3

4. 〈http, 0, 1〉 → 〈http, 1, 2〉 → 〈ssh, 2, 4〉 → 〈http, 4, 5〉 4 2

5. 〈firewall, 0, F 〉 → 〈http, 0, 2〉 → 〈ssh, 2, 4〉 → 〈rsh, 4, 5〉 4 4

6. 〈firewall, 0, F 〉 → 〈http, 0, 2〉 → 〈ssh, 2, 4〉 → 〈http, 4, 5〉 4 3

not reflect the least attacking effort, since path 4 may actually take less effort
than path 1, as attackers may reuse their exploit code, tools, and skills while
exploiting the same http service on three different hosts.

• Next, as shown in the third column, path 2 and 4 are the shortest in terms
of the number of distinct resources (or effective richness). This seems more
reasonable since it captures the saved effort in reusing exploits. However,
although path 2 and 4 have the same number of distinct resources (2), they
clearly reflect different diversity.

• Another seemingly valid solution is to base on the minimum ratio
of resources

of steps (which is given by path 4 in this example), since such a ratio
reflects the potential improvements in terms of diversity (e.g., the ratio 2

4 of
path 4 indicates 50% potential improvement in diversity). However, we can
easily imagine a very long attack path minimizing such a ratio but does not
reflect the least attacking effort (e.g., an attack path with 9 steps and 3 dis-
tinct resources will yield a ratio of 1

3 , less than 2
4 , but clearly requires more

effort than path 4).
• Finally, yet another option is to choose the shortest path that minimizes

both the number of distinct resources (path 2 and 4) and the above ratio
of resources

of steps (path 4). However, a closer look will reveal that, although path
4 does represent the least attacking effort, it does not represent the maxi-
mum amount of potential improvement in diversity, because once we start to
diversify path 4, the shortest path may change to be path 1 or 2.

Based on these discussions, we define network diversity by combining the
first two options above. Specifically, the network diversity is defined as the ratio
between the minimum number of distinct resources on a path and the minimum
number of steps on a path (note these can be different paths). Going back to our
running example above, we find path 2 and 4 to have the minimum number of
distinct resources (two), and also path 1 and 2 to have the minimum number of
steps (three), so the network diversity in this example is equal to 2

3 (note that
it is a simple fact that this ratio will never exceed 1). Intuitively, the numerator
2 denotes the network’s current level of robustness against zero day exploits (no
more than 2 different attacks), whereas the denominator 3 denotes the network’s
maximum potential of robustness (tolerating no more than 3 different attacks)

468 L. Wang et al.

by increasing the amount of diversity (from 2
3 to 1). More formally, we introduce

our second network diversity metric in Definition 7.

Definition 7 (d-Diversity). Given a resource graph G(E ∪ C,Rr ∪ Ri) and a
goal condition cg ∈ C, for each c ∈ C and q ∈ seq(c), denote R(q) for {r : r ∈
R, r appears in q}, the network diversity is defined as (where min(.) returns the
minimum value in a set)

d =
minq∈seq(cg) | R(q) |
minq′∈seq(cg) | q′ |

5 Conclusion

The development of network security metrics is important because such metri-
ces may provide quantifiable evidences to make choosing the most cost-effective
security solutions a science rather than an art. This chapter has examined some
challenges and solutions in developing network security metrics for both known
vulnerabilities and unknown zero day attacks. We have shown how CVSS scores
may be combined based on attack graphs, how to estimate the resilience of net-
works against unknown vulnerabilities, and how to model the effect of diversity
on network security. Future research will be directed toward developing metrics
that focus on more specific aspects of network security, such as the resilience to
side channel or DoS attacks, and applying such metrics to network hardening.

Acknowledgements. The author with Concordia University was partially supported
by the Natural Sciences and Engineering Research Council of Canada under Discovery
Grant N01035 and by the National Institutes of Standard and Technology under grant
60NANB16D287.

References

1. Elton, C.: The Ecology of Invasion by Animals and Plants. University Of Chicago
Press, Chicago (1958)

2. Hill, M.O.: Diversity and evenness: a unifying notation and its consequences. Ecol-
ogy 54(2), 427–432 (1973)

3. Jha, S., Sheyner, O., Wing, J.M.: Two formal analysis of attack graph. In: Proceed-
ings of the 15th Computer Security Foundation Workshop (CSFW 2002) (2002)

4. Leinster, T., Cobbold, C.A.: Measuring diversity: the importance of species simi-
larity. Ecology 93(3), 477–489 (2012)

5. McCann, K.S.: The diversity-stability debate. Nature 405, 228–233 (2000)
6. McHugh, J.: Quality of protection: measuring the unmeasurable? In: Proceedings

of the 2nd ACM QoP, pp. 1–2 (2006)
7. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE

Secur. Priv. 4(6), 85–89 (2006)
8. National Institute of Standards and Technology: Technology assessment: Methods

for measuring the level of computer security. NIST Special Publication 500-133
(1985)

Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks 469

9. National vulnerability database. http://www.nvd.org. Accessed 9 May 2008
10. Pielou, E.C.: Ecological Diversity. Wiley, New York (1975)
11. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation

and analysis of attack graphs (2002)
12. Swanson, M., Bartol, N., Sabato, J., Hash, J., Graffo, L.: Security metrics guide

for information technology systems. NIST Special Publication 800-55 (2003)
13. Wang, L., Jajodia, S., Singhal, A., Noel, S.: k-zero day safety: measuring the secu-

rity risk of networks against unknown attacks. In: Gritzalis, D., Preneel, B., Theo-
haridou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 573–587. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15497-3 35

14. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack
graphs. Comput. Commun. 29(18), 3812–3824 (2006)

http://www.nvd.org
https://doi.org/10.1007/978-3-642-15497-3_35

Theoretical Foundations for Mobile
Target Defense: Proactive Secret Sharing

and Secure Multiparty Computation

Karim Eldefrawy1(B), Rafail Ostrovsky2, and Moti Yung3

1 Computer Sciences Laboratory, SRI International, Menlo Park, USA
karim.eldefrawy@sri.com

2 Department of Computer Science and Department of Mathematics, UCLA,

Los Angeles, USA
3 Google and Department of Computer Science, Columbia University,

New York City, USA

Abstract. One option to instantiate Mobile Target Defense (MTD) [27]
strategies in distributed storage and computing systems is to design
such systems from the ground up using cryptographic techniques such as
secret sharing (SS) and secure multiparty computation (MPC). In stan-
dard SS a dealer shares a secret s among n parties such that an adversary
corrupting no more than t parties does not learn s, while any t+1 parties
can efficiently recover s. MPC protocols based on secret sharing allow
one to perform computations on such secret shared data without requir-
ing reconstructing the data at a central location. MPC thus enables a set
of distrusting parties to perform computation on their secret shared data
while guaranteeing secrecy of their inputs and outputs, and correctness
of the computation, also as long as no more than t parties are corrupted.
Over a long period of time all parties may be corrupted and the threshold
t may be violated, which is accounted for in proactively secure protocols
such as Proactive Secret Sharing (PSS) and Proactive MPC (PMPC).
Proactive security is an example of a cryptographically grounded and
theoretically well-studied approach to realize MTD. PSS retains confi-
dentiality even when a mobile adversary corrupts all parties over the
lifetime of the secret, but no more than a threshold t during a certain
window of time, called the refresh period. As an example of a proac-
tively secure protocol that realizes an MTD strategy we overview the
first PSS scheme secure in the presence of a dishonest majority (devel-
oped recently in [15]). The PSS scheme is robust and secure against
t < n− 2 passive adversaries when there are no active corruptions, and
secure but non-robust (but with identifiable aborts) against t < n/2− 1
active adversaries when there are no additional passive corruptions. The
scheme is also secure (with identifiable aborts) against mixed adversaries
controlling a combination of passively and actively corrupted parties such
that if there are k active corruptions there are less than n− k − 2 total
corruptions.

c© Springer Nature Switzerland AG 2018
P. Samarati et al. (Eds.): Jajodia Festschrift, LNCS 11170, pp. 470–486, 2018.
https://doi.org/10.1007/978-3-030-04834-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04834-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-04834-1_23

Theoretical Foundations for Mobile Target Defense 471

1 Introduction

It is common these days to see news of massive breaches that expose private
information of millions of individuals. Notable examples include the 2017 breach
of Equifax [23] which exposed the sensitive personal information of 143 million
Americans, and the 2015 breach [28] of the health insurance company Anthem
which affected 80 million patient and employee records. The Anthem breach
for example occurred over several weeks, beginning in December 2014. While
storing encrypted data, and regularly re-encrypting it improves security, it does
not protect against determined capable attackers that exfiltrate encrypted data
by compromising servers storing it at a slow hard-to-detect rate, and by obtaining
encryption keys through other means. The situation becomes more challenging
when insiders are involved in such attacks, or when the confidentiality of the data
has to be guaranteed for tens of years, e.g., for sequenced genomes of individuals,
or other sensitive personal, corporate or government information. We argue that
Mobile Target Defense (MTD) [27] strategies instantiated via cryptogrpahy in
distributed storage and computing systems can combat such threats.

Mobile Target Defense and Long-term Confidentiality via Proactive Security:
Secret sharing is a cornerstone primitive often utilized in constructing secure
distributed systems and protocols [1,8,9,13,14,16,17,20,25], and especially in
secure multiparty computation (MPC) [2,4,5,10–12,24,26,29,30]. In standard
(linear) secret sharing [6,32] a dealer shares a secret (s) among n parties such
that an adversary that corrupts no more than a threshold (t) of the parties does
not learn s, while any t+1 parties can efficiently recover it. In reality, over a long
period of time all parties may be corrupted and the threshold may be violated,
even if sometimes only for short duration. An approach to deal with an adver-
sary’s ability to move around and eventually corrupt all parties is the so-called
proactive security model introduced in [29]. The proactive security model puts
forward the notion of a mobile adversary motivated by the persistent corrup-
tion of parties in a protocol, or nodes/servers in a distributed system. A mobile
adversary is one that moves around and can corrupt all parties in a protocol
during the execution but with the following limitations: (1) only a constant frac-
tion of parties can be corrupted during any round of the protocol; (2) parties are
periodically rebooted (reset) to a pristine predictable initial state, guaranteeing
small fraction of corrupted parties, assuming that the corruption rate is not more
than the reboot rate. The model assumes that the process of rebooting to a clean
state includes global computation information, e.g., identities of other parties,
access to secure point-to-point channels and to a broadcast channel; the model
also assumes that parties can erase information from their memory and that such
information cannot be recovered by adversaries. Dealing with a mobile adver-
sary requires an Mobile Target Defense (MTD) approach. The proactive security
model is a theoretically well-studied instantiation of MTD in cryptographic set-
tings. It is not a coincidence that the title of the first paper [29] putting forth
the notion of the proactive security model was called “How to withstand mobile
virus attacks.” Utilizing proactive secret sharing to distribute the data among
several storage servers, and periodically rerandomize (also called refresh) shares

472 K. Eldefrawy et al.

in a distributed manner realizes an MTD defense in databases and can sig-
nificantly increase the security guarantees for such data. In addition, proactive
protocols can be adapted to dynamic groups where new uncorrupted parties join
the group, and the threshold of tolerated corruptions can be adjusted depending
on the group size [3,13,21]. A high level of security ensures that as long as a
single server remains uncorrupted during the period between two refreshes (and
thus deletes its old shares when refreshed), and as long as different servers are
uncorrupted at different periods, then the secret shared data is never revealed;
this should be the case even if all the data (shares) on all other servers is obtained
when they are corrupted. To achieve this requires (ideally) tolerating a passive
corruption threshold of up to n−1 in the face of mobile adversaries. Such a level
of security is paramount when the secret shared data is a cryptographic key that
should be secured for years; some of the early work in proactive security focused
on threshold decryption and signature generation [20,25].

As an example of proactive protocol realizing MTD we overview a recent
result [15] developing the first PSS scheme secure in the presence of a dishonest
majority. The new PSS scheme is secure and robust against t < n − 2 passive
adversaries when there are no active corruptions, and secure but non-robust
(with identifiable aborts) against t < n/2 − 1 active adversaries when there
are no additional passive corruptions. The scheme is also secure (but non-robust
with identifiable aborts) against mixed adversaries that control a combination of
passively and actively corrupted parties such that if there are k active corruptions
there are less than n − k − 2 total corruptions. Existing PSS schemes cannot
handle a dishonest passive majority, and mixed adversaries that may form a
majority as described above. Existing PSS schemes can only guarantee secrecy
in the presence of an honest majority with at most n/2 − 1 total compromises;
an adversary that compromises a single additional party beyond the n/2 − 1
threshold, even if only passively and only for a short period of time, obtains
the secret. While we also discuss techniques to reduce communication in our
protocols, we do not achieve optimal communication. To construct our PSS
scheme requires designing new protocols for refreshing and recovering shares, this
is achieved using a combination of information-theoretic, e.g., additive sharing,
and cryptographic commitments to protect against active adversaries.

Outline: The rest of the paper is organized as follows, Sect. 2 provides an
overview of the current state of proactively secure protocols and why they are
insecure in the face of a passively dishonest majority or mixed adversaries that
also exceed a majority. Section 3 contains definitions and preliminaries required
for the rest of the paper, and Sect. 4 contains the technical details of a PSS
scheme secure against a dishonest majority as an example of a cryptographic
protocol that realizes MTD. We conclude with a discussion of open problems
and possible follow up work in Sect. 5.

2 Current State of Proactively Secure Protocols

Existing Proactive Secret Sharing (PSS) schemes, summarized in Table 1, are
insecure when a majority of the parties are compromised, even if the compro-

Theoretical Foundations for Mobile Target Defense 473

Table 1. Comparison of Proactive Secret Sharing (PSS) schemes. Threshold is for
each reboot/refresh phase. Communication complexity is amortized per bit. Note that
in the above table none of the previous schemes could tolerate the combination of the
active threshold plus one or more passively compromised parties.

Scheme Threshold passive (active) Security Network

type

Comm.

complexity

[33] t < n/2 (n/2) Crypto Synch. exp(n)

[34] t < n/3 (n/3) Crypto Asynch. exp(n)

[7] t < n/3 (n/3) Crypto Asynch. O(n4)

[31] t < n/3 (n/3) Crypto. Asynch O(n4)

[25] t < n/2 (n/2) Crypto Synch. O(n2)

[2] t < n/3 − ε (n/3 − ε) Perfect Synch. O(1) (amortized)

[2] t < n/2 − ε (n/2 − ε) Statistical Synch. O(1) (amortized)

This paper t < n − 2 (passive only)

t < n/2 − 1 (active only)

& mixed passive/active adversaries

where with k active corruptions

< n − k − 2 total corruptions exist

Crypto Synch O(n4)for

single secret

O(n3)for

batch of n

secrets

mise is only passive. Such schemes [2,25,29,31,33,34] typically store the secret
as the free term in a polynomial of degree t < n/2; once an adversary com-
promises a majority of the parties (even if only passively) it will obtain more
than t + 1 shares, and it will be able to reconstruct the polynomial and recover
the secret. PSS and MPC schemes with optimal-communication and dynamic
groups and thresholds [2,3,21] also use a similar technique but instead of stor-
ing the secret in the free term, they store a batch of O(n) secrets at different
points in the polynomial; similar to the single secret case, even when secrets are
stored as multiple points on a polynomial, once the adversary compromises a
majority of the parties, it can reconstruct the polynomial and recover the stored
secrets. Another line of work has inspected redistribution of shares to new access
structures for dynamic groups is [13].

The most relevant related work in (non-proactive) secret sharing is [26], it
develops a gradual secret sharing scheme for mixed adversaries, and utilizes it to
build MPC protocols for such adversaries. An approach to design a PSS scheme
for a dishonest majority is to proactivize the gradual secret sharing scheme of
[26]. If the adversary is static, i.e., non-mobile, then the PSS protocol presented
here reduces to that in [26] as no refreshing or recovering of shares is needed
against static non-mobile adversaries.

3 Definitions and Preliminaries

This section provides required definitions and preliminaries. We build on pre-
vious definitions of Verifiable Secret Sharing (VSS) for mixed adversaries from
[26], and Proactive Secret Sharing (PSS) from [2,3]; we combine and extend
these two to define PSS for mixed adversaries in Sect. 3.3.

474 K. Eldefrawy et al.

3.1 System and Network Model

We consider a set of n parties, P = {Pi}n
i=1, connected via a synchronous net-

work, and an authenticated broadcast channel. Each pair of parties also share
a secure authenticated communication channel which can be instantiated via
appropriate encryption and digital signature schemes.

Time Periods and Refresh Phases: We assume that all parties are synchronized
via a global clock. Time is divided into time periods or epochs; at the beginning
of each period (e.g., an hour, a day or a week) all parties engage in an interactive
refresh protocol (also called refresh phase). At the end of the refresh phase all
parties hold new shares for the same secret, and delete their old shares. We note
that honest parties must delete their old shares so that if they get compromised
in future periods, the adversary cannot recover their shares from old periods.
The parties may additionally engage in a recovery protocol to allow parties that
have lost their shares due to corruption or rebooting to recover new shares for
the same secret. In Sect. 3.3 we provide a detailed definition of PSS and the
refresh and recovery phases and protocols.

3.2 Adversary Model

To model a mixed mobile adversary, we adopt a characterization similar to the
one for static mixed adversaries in [26], and extend it to the mobile case, i.e., the
protocol has phases and as long as the corruption thresholds are not violated in
each phase, the properties and security of a PSS scheme (defined below) are guar-
anteed. We assume the existence of an adversary with (polynomially) bounded
computing power who moves around and passively corrupts a set of parties (P∗)
and only reads their internal state; the adversary may also actively corrupt some
of these parties (A∗) and makes them misbehave arbitrarily, i.e., they do not fol-
low the steps of the protocol, and may inject, modify, or delete messages, among
other actions. To simplify the notation we assume that A∗ ⊆ P∗. Note that A∗

may also be empty. We believe that this mixed mobile adversary model captures
the situation in practice, where sometimes the same attacker may be able to
compromise different components of a distributed system with various degrees
of success, e.g., escalation of privileges leading to a complete compromise may
only work on some components, while on some other components all the adver-
sary is able to achieve is reading portions of the memory or some files without
being able to modify or control the software.

We note that the thresholds of t < n − 2 and t < n/2 − 1 given in Table 1
apply to the cases of A∗ = ∅ and A∗ = P∗, respectively. When discussing mixed
adversaries, we use the symbol ta to denote the threshold of active corruptions
and tp to denote the threshold of passive corruptions. That is, |A∗| ≤ ta and
|P∗| ≤ tp. The inequalities in Table 1 can then be written tp < n − 2 and
ta < n/2 − 1. Combinations of active and passive corruptions can be obtained
by “swapping” active and passive corruptions such that each active corruption
is “worth” two passive corruptions. More formally, in addition to satisfying tp <
n−2 and ta < n/2−1, the corruptions must also satisfy ta+tp < n−2. Note that

Theoretical Foundations for Mobile Target Defense 475

since each active corruption is also a passive corruption, each active corruption is
counted twice in the preceding inequality. To simplify the illustration, we assume
that if a party does not receive an expected message (or gets an invalid one), a
default one is used instead. Finally, in the rest of the paper honest parties are
the uncorrupted parties, while non-actively corrupted parties are called correct
parties. To model security guarantees against incomparable maximal adversaries,
we consider multiple pairs of thresholds similar to [26]. We use multi-thresholds
T = {(ta,1, tp,1), . . . , (ta,k, tp,k)}, i.e., sets of pairs of thresholds (ta, tp). In this
model, security is guaranteed if (A∗,P∗) ≤ (ta, tp) for some (ta, tp) ∈ T , denoted
by (A∗,P∗) ≤ T , where (A∗,P∗) ≤ (ta, tp) is a shorthand |A∗| ≤ ta and |P∗| ≤
tp. Similar to [26], the level of security (correctness, secrecy, robustness) depends
on the number (A∗,P∗) of actually corrupted parties. We consider three multi-
thresholds T c, T s, T r. Correctness (with agreement on abort, and identification
of misbehaving parties) is guaranteed for (A∗,P∗) ≤ T c, secrecy is guaranteed
for (A∗,P∗) ≤ T s, while robustness is guaranteed for (A∗,P∗) ≤ T r. We note
that T r ≤ T c and T s ≤ T c, as secrecy and robustness are not well defined
without correctness.

3.3 Definition of Proactive Secret Sharing (PSS)

A Secret Sharing (SS) scheme consists of two protocols, Share and Reconstruct.
Share allows a dealer to share a secret, s, among n parties such that the secret
remains secure against an adversary that controls up to ta parties and reads
the state/information of up to tp parties, while allowing any group of n − ta
or more uncorrupted parties to reconstruct the secrets via Reconstruct if it
is a robust scheme against ta. If the SS scheme is non-robust against ta then
the remaining honest parties may not be able to reconstruct the secret, but if
the protocol provides identifiable aborts against ta (e.g., similar to [26]) then
corrupted parties are identified on abort. A Verifiable Secret Sharing (VSS)
scheme allows parties to verify that a dealer has correctly shared a secret. The
definition of a Proactive Secret Sharing (PSS) scheme is similar to that of a
standard SS scheme, but operates in phases, where between consecutive phases
refreshing of shares (and recovery of shares of rebooted parties) is performed. PSS
requires the addition of two new protocols to perform Refresh and Recovery
for securing the secret against a mobile adversary that can corrupt all n parties
over a long period of time, but no more than a specific threshold during any
phase. The Refresh protocol refreshes shares to prevent a mobile adversary
from collecting (over a long period) a large number of shares that could exceed
the reconstruction threshold and thus reveal the secret. The Recovery protocol
allows de-corrupted (or rebooted) parties to recover their shares, preventing the
adversary from destroying the secrets that are shared. As our definitions of SS
and VSS are standard, we refer to their previous formal definitions in [26]; we
provide a definition of PSS below. We start by first defining the refresh and
recovery phases.

476 K. Eldefrawy et al.

Definition 1. Refresh and Recovery Phases
Execution of PSS proceeds in phases. A refresh phase (resp. recovery phase)

is the period of time between two consecutive executions of the Refresh (resp.
Recovery) protocol. Furthermore, the period between Share and the first Refresh
(resp. Recovery) is a phase, and the period between the last Refresh (resp.
Recovery) and Reconstruct is a phase. Any Refresh (resp. Recovery) protocol
is considered to be in both adjacent phases, i.e., their execution occurs between
phases number w and w + 1.

Definition 2. Proactive Secret Sharing (PSS) for Mixed Adversaries
A (T s, T r, T c)-secure PSS scheme consists of four protocols, Share, Refresh,

Recover, and Reconstruct. Share allows a dealer to share a secret, s, among a
group of n parties. Refresh is executed between two consecutive phases, phases
w and w + 1, and generates new shares for phase w + 1 that encode the same
secret as shares of phase w. Recover allows parties that lost their shares to
obtain new shares encoding the same secret s with the help of the other honest
parties. Recover allows parties to recover a value s′. These four protocols are
(T s, T r, T c)-secure if the following holds:

1. Termination: All honest parties will complete each execution of Share,
Refresh, Recover, and Reconstruct.

2. Correctness: Upon completing Share, the dealer is bound to a value s′,
where s′ = s if the dealer is correct. If (A∗,P∗) ≤ T c and upon completing
Refresh and/or Recover, either the shares held by the parties encode s′, or
all (correct) parties abort. In Reconstruct, either each (correct) party outputs
s′ or all (correct) parties abort.

3. Secrecy: If (A∗,P∗) ≤ T s, then in Share the adversary obtains no informa-
tion about s. If (A∗,P∗) ≤ T s in both phase w and in phase w + 1, and if
Refresh and Recover are run between phases w and w+1, then the adversary
obtains no information about s.

4. Robustness: The adversary cannot abort Share. If (A∗,P∗) ≤ T r, then the
adversary cannot abort Refresh, Recover, and Reconstruct.

3.4 Batched Secret Sharing

One of the main techniques to achieve efficient amortized communication com-
plexity is batched (or packed) secret sharing, it is a generalization of the poly-
nomials based linear secret sharing scheme. The idea, introduced in [22], is to
encode a “batch” of multiple secrets as distinct points on a single polynomial,
and then distribute shares to each party as in standard linear secret sharing [32].
The number of secrets stored in the polynomial (the “batch size”) is O(n). This
allows parties to share O(n) secrets with O(n) communication complexity which
results in an amortized complexity of O(1) per secret.

Theoretical Foundations for Mobile Target Defense 477

3.5 Homomorphic Commitments and Verifiable Secret Sharing

A commitment scheme is a protocol between two parties, P1 and P2, that allows
P1 to commit to a secret message m by sending to P2 the value of the com-
mitment to m computed with some randomness r, i.e., Comm(m, r). Later P1

may open the commitment and reveal to P2 that she committed to m, typi-
cally by revealing the randomness that was used. Commitment schemes must
be binding and hiding. The binding property ensures that P1 cannot change
her mind, a commitment can only be opened to a single message m; the hid-
ing property ensures that P2 does not learn the message that P1 commit-
ted to. An (additively) homomorphic commitment scheme, allows P2 to com-
pute the commitment to the sum of m1 and m2 under the sum of r1 and r2
using Comm(m1, r1) and Comm(m2, r2) as follows: Comm(m1 +m2, r1 + r2) =
Comm(m1, r1) � Comm(m2, r2), where � indicates the homomorphic operator
of the group the commitment is typically defined over.

A problem with standard secret sharing, e.g., Shamir’s scheme or a batched
version thereof, is that a dishonest dealer may deal inconsistent shares from
which t + 1 or more parties may not be able to reconstruct the secret. This
malicious behavior can be prevented by augmenting the secret sharing scheme
with homomorphic commitments, this is essentially what a VSS scheme does.
(In the full version we utilize Feldman’s VSS [19], where security is based on the
hardness of computing discrete logarithms over Zp for a large prime p.)

4 Proactive Secret Sharing for a Dishonest Majority

This section starts with notation required to describe our PSS scheme, it then
provides an overview and then the details of the four protocols constituting the
PSS scheme. We note that protocols for sharing and reconstructing a secret are
similar to those in [26] but with a minor difference in the number of summands
and the highest degree of the sharing polynomials used.

4.1 Notation and Preliminaries

Field operations occur over a finite field Zp for some prime p. Let α be a generator
of Z∗

p and let β = α−1. In the case of multiple secrets, secrets will be stored at
locations that are multiple values of β, i.e., if f(x) is a sharing polynomials then
f(β1) and f(β2) will evaluate to secret 1 and 2 respectively, while shares will
be computed as the evaluation of f(x) at different values of α, i.e., f(α1) and
f(α2) are the shares of party 1 and 2 respectively, the αi for party Pi is public
information. We note that in the case of sharing a single secret, only one β is
needed, and in that case it will not be the inverse of α, traditionally it has been
the case that for single secrets β = 0, thus the secret s is stored at the free
term of the sharing polynomial, i.e., f(0) = s. The shares can be evaluations of
f(x) at indices of the parties, i.e. f(1), f(2) . . . f(n). (We defer more details on
handling multiple secrets to the full version.)

478 K. Eldefrawy et al.

4.2 Intuition and Overview of Operation

To simplify the illustration we assume in this subsection when describing the
intuition of the share, reconstruct and refresh protocols, that adversaries only
compromise parties temporarily, so only refreshing of shares is needed. If recovery
of shares of rebooted parties is required, the tolerated threshold of those proto-
cols has to be decreased by the maximum number of parties that are rebooted
in parallel and can loose their shares at the same time. If parties are rebooted
serially such that only a single share needs to be recovered at any instant, then
the tolerated thresholds are only decreased by 1. Specifically, if no recovery of
shares is needed then the protocols can withstand <n/2 active only corruptions,
and <n passive only corruptions, and combinations of passive and active corrup-
tions that may exceed half the parties but where with k active corruptions there
are less than n − k total corruptions; when recovery of a single share is needed
then the thresholds become <n/2−1 active only corruptions, and <n−2 passive
only corruptions, and combinations of passive and active corruptions that may
exceed half the parties but where with k active corruptions there are less than
n − k − 2 total corruptions (when c shares should be recovered at once then the
condition becomes <n/2 − c active only corruptions, and <n − (c + 1) passive
only corruptions, and with k active corruptions there are <n − k − (c + 1) total
corruptions).

As mentioned in the related work and roadblocks section (Sect. 2), in order
to tolerate a dishonest majority it is not enough to directly store secrets in the
free term, or as other points on a polynomial. What is needed is to encode the
secret in a different form resistant to a dishonest majority of say up to n − 2
parties. This can be achieved by first additively sharing the secret into d = n−2
random summands (this provides security against t < n−1 passive adversaries),
then those random additive summands may be shared and proactively refreshed
using methods that can tolerate t < n/2 active adversaries with aborts, i.e., if less
than n/2 of the parties are actively corrupted their misbehavior will be detected
and flagged by the other n/2 + 1 or more parties while ensuring confidentiality
of the shared secret. This is the blueprint that we follow, specifically, we start
from the gradual secret sharing schemes from [26] which can tolerate up to
n − 1 passive adversaries with no active corruptions, or up to n/2 − 1 active
corruptions such that when there are k active corruptions there no more than
n − k − 1 total corruptions in total. We develop two new protocols to verifiably
generate refreshing polynomials with the required properties, i.e., they have a
random free term that encodes random additive shares that add up to zero. To
recover shares with the above security guarantees, we observe that it is enough
that the recovery protocol ensures security against t < n/2−1 active adversaries,
as passive adversaries only generate random polynomials and send them to the
recovering party, i.e., if they respect the polynomials generation process, and as
long as one honest party generates a random polynomial, the rest of the n − 3
potentially passively corrupted parties will only see random polynomials with
the appropriate degrees.

Theoretical Foundations for Mobile Target Defense 479

4.3 Sharing and Reconstruction for Dishonest Majorities

To simplify the presentation and due to space constraints we describe our pro-
tocols in this section using a generic homomorphic commitment scheme and in
terms of a single secret1. For completeness, we provide below the protocols for
gradual sharing of a secret (DM-Share), and gradual reconstruction of the same
secret (DM-Reconstruct) which are secure against a dishonest majority, both
similar to those in [26]. The gradual secret sharing scheme in [26] is secure against
t < n passive adversaries, and t < n/2 active adversaries, and mixed adversaries
that control a combination of passively and actively corrupted parties that add
up to more than n/2, but such that if there are k active corruptions there no more
than n−k−1 total corruptions. Sections 4.4 and 4.5 contain our new refresh and
recovery protocols that together with DM-Share and DM-Reconstruct constitute
a PSS scheme secure against a dishonest majority of parties. Our PSS scheme
provides security against <n/2 − 1 active corruptions only with no additional
passive ones, and <n− 2 passive only corruptions with no active ones, and com-
binations of passive and active corruptions that may exceed half the parties but
where with k active corruptions there are less than n − k − 2 total corruptions.

Sharing a Secret with a Dishonest Majority. The protocol DM-Share
shares a secret s in two phases, first an additive sharing phase (Step 1 in
DM-Share) by splitting s into d random summands; in our case to achieve the
maximum secrecy thresholds we use d = n − 3, where as in [26] the protocol
is described in terms of the variable d < n, and thus called gradual d-sharing
(see Definition 3 in [26]). This first sharing phase provides protection against
less than n − 2 passive adversaries only. In the second phase (Steps 2.1 to 2.4 of
the loop in step 2 in DM-Share) one performs linear secret sharing of each of the
additive shares from the first phase by using polynomials of increasing degrees,
from 1 to d. We stress that the above value of d = n−3 assumes that recovery of
shares of a single node will be needed; if this is not the case and only refreshing
of shares is needed, then only d = n − 1 is needed. Note also that other lower
values of d can be chosen but they would result in lower thresholds.

Secret Sharing for Dishonest Majorities (DM-Share) [26]

A dealing party (PD) sharing a secret s performs the following:
1. PD chooses d random summands s1, . . . , sd which add up to s, Σd

i=1si = s.
2. For i ∈ {1, . . . , d} PD does the following:

2.1 PD generates a random polynomial fi(x) of degree i with the free
term equal to the i-th summand, fi(0) = si.

2.2 PD then computes and broadcasts to each of the other n−1 receiving
parties, Pr, (homomorphic) commitments of the coefficients of fi(x).

1 In the full version we generalize the protocols to handle multiple secrets to increase
communication and storage efficiency, and provide an instantiation using commit-
ments based on hardness of discrete logarithms using Feldman’s VSS [19].

480 K. Eldefrawy et al.

2.3 For each share shi,r = fi(αr), each receiving party, Pr, locally com-
putes a commitment ci,r; this is possible based on the homomorphism
of the commitment scheme. PD sends the corresponding opening infor-
mation oi,r to party Pr. Pr broadcasts a complaint bit, indicating
whether oi,r correctly opens ci,r to some value sh

′
i,r.

2.4 For each share shi,j for which an inconsistency was reported, PD

broadcasts the opening information oi,j , and if oi,j opens ci,j , Pr

accepts oi,j . Otherwise, PD is disqualified (and a default sharing of a
default value is used).

3. Each receiving party Pr outputs its d shares (sh1,r, o1,r), ..., (shd,r, od,r) and
all commitments.

DM-Share requires O(n2) communication to share a single secret s, s is first split
into O(n) summands, then each one is split into O(n) shares because d = O(n).

Reconstructing a Secret with a Dishonest Majority. Assuming that a
secret s is shared using DM-Share with the number of summands and the highest
degree of sharing polynomials being d, the protocol DM-Reconstruct gradually
reconstructs the d (again, d = n − 3 for highest secrecy threshold) summands
by requiring parties to broadcast their shares of each of the i = {d, . . . 1} poly-
nomials of decreasing degrees i. Each polynomial can be interpolated from the
shares that are broadcast if at least i + 1 parties are honest.

Secret Reconstruction for Dishonest Majorities (DM-Reconstruct) [26]

Given a sharing of a secret s using DM-Share, parties can reconstruct s as follows:
1. For i ∈ {d, . . . , 1} do:

1.1 Each party Pj broadcasts openings of the commitments to its shares
shi,j corresponding to the sharing polynomial fi(x). Remember that
the i-th summand of s is stored in the free term of that polynomial,
i.e., fi(0) = si.

1.2 If i + 1 or more parties correctly opened their commitments to their
respective shares, each party locally interpolates fi(x) and computes
the i-th summand as the free term of the recovered fi(x), si = fi(0).

1.3 If only i parties or less opened correctly, then abort and each party
outputs the set B of parties that did not broadcast correct openings
to their commitments.

2. Each party outputs the secret as the sum of the reconstructed summands,
s = s1 + s2 + · · · + sd.

DM-Reconstruct requires O(n2) communication to reconstruct a single secret,
as d = O(n), O(n) shares are broadcast for each of the O(n) summands.

Theoretical Foundations for Mobile Target Defense 481

4.4 Refreshing Shares with a Dishonest Majority

In the DM-Refresh protocol below, each party generates d (again, d = n − 3 for
highest secrecy threshold) random refreshing polynomials with the appropriate
degrees, i.e., from 1 to d. Each party then verifiably shares these refreshing
polynomials with the other n−1 parties by committing to the coefficients of these
generated refreshing polynomials. These refreshing polynomials should satisfy
the following condition: they have random constant coefficients (when a single
secret is shared in the free term) that add up to 0, this can be enforced by
checking that the polynomials shared by each party have this property. This
condition ensures that the shared secret remains unchanged when its shares are
refreshed by adding the shares generated from the new polynomials to the old
shares. Once each party receives all the shares generated by other parties, they
add them to their local shares, and delete the shares that resulted from the
previous execution of DM-Refresh.

Refreshing Shares for Dishonest Majorities (DM-Refresh)

1. Each party Pj generates an additive random sharing (of d randomization
summands) which add up to 0, i.e., Σd

i=1rj,i = 0.
2. For i ∈ {1, . . . , d} do:

2.1 Each party Pj generates a random polynomial gj,i(x) of degree i with
the free term equal to its i-th randomization summand, i.e., gj,i(0) =
rj,i.

2.2 Each party verifiably shares its generated randomization summands
by sharing the random polynomial gj,i(x) with the other n−1 parties
as follows: Pj computes and broadcasts to each of the other n − 1
receiving parties, Pr, (homomorphic) commitments of the coefficients
of gj,i(x) and sends to each Pr each share shr

j,i = gj,i(αr) over a
private channel.

2.3 For each share shr
j,i, each receiving party Pr, locally computes a com-

mitment cr
j,i; this is possible based on the homomorphism of the com-

mitment scheme. Pj sends the opening information or
j,i corresponding

to each of the cr
j,i commitments to party Pr. Pr broadcasts a complaint

bit, indicating if or
j,i correctly opens cr

j,i to some value zr
j,i.

2.4 For each share shr
j,i for which an inconsistency was reported, Pj broad-

casts the opening information oj,i , and if oj,i opens cj,i, Pr accepts
oj,i. Otherwise, Pj is disqualified, and Pj is added to the set B of
parties that did not share correctly and did not broadcast correct
openings to their commitments.

3. Each party Pj broadcasts an opening to the commitment to Σd
i=1gj,i(0) =

Σd
i=1rj,i, and each receiving party Pr checks that the free terms of the d

sharing polynomials used by each other party Pj add up to 0 by combin-
ing the commitments to the free terms and using the broadcast opening
information. This can be checked based on the homomorphic properties of

482 K. Eldefrawy et al.

the commitment scheme. If Pj does not broadcast correct commitments it
is added to the set B of parties that did not share correctly and did not
broadcast correct openings to their commitments.

4. For i ∈ {1, . . . , d} each receiving party Pr adds up the shares it receives from
the other n − 1 parties Pj at the current time period (denoted shr

j,i where
j �= r), and its shares of the randomization polynomials it generated at pw+1

(denoted shr
r,i), to its existing share at the previous time period pw (denoted

shpw,r
i); the result is the final refreshed shares at the end of the current time

period pw+1 (denoted sh
pw+1,r
i), i.e., sh

pw+1,r
i = shpw,r

i + Σn
j=1sh

r
j,i.

5. Each honest party must delete all old shares it had from period pw (shpw,r
j,i)

after executing the above steps.

There are O(n) parties, and each one will generate O(n) shares (step 2.1 to
2.4) for each of the O(n) (d = O(n)) refreshing polynomials, hence a total of
O(n3) communication.

4.5 Recovering Shares with a Dishonest Majority

When recovery of shares of a single rebooted party has to be performed, then
the other n − 1 parties can recover the shares of that rebooted party using the
protocol DM-Recover below. Remember that in each refresh period there are d
(d = n − 3 for maximum secrecy threshold) current sharing polynomials with
degrees ranging from d to 1, and each party has a share for each of these poly-
nomials. When a party Prc is rebooted and needs to recover its shares, i.e., the
evaluation of each of the current sharing polynomials at Prc’s evaluation point
αrc, what the other parties need to perform is generate and verifiably share d
random polynomials that evaluate to the same values as the current sharing
polynomials at αrc. To achieve this, parties generate and verifiably share d ran-
dom recovery polynomials that evaluate to 0 at αrc. All parties add their local
shares of the current sharing polynomials to the shares of these random recovery
polynomials, this results in d shared random recovery polynomials that have only
the point at αrc in common with the current sharing polynomials. All parties
then send their shares of these d shared random recovery polynomials to Prc,
and Prc can then interpolate these polynomials without learning anything about
the secret or the actual sharing polynomials of the current period. We note that
passively corrupted parties in the recovery will execute the protocol correctly,
and actively corrupted parties are limited to t < n/2 − 1; we mainly need a
recovery protocol secure against t < n/2 − 1 active adversaries because only
the recovering party receives information. Every other party generates random
polynomials and shares it with the rest of the parties, so there is no information
related to the secret that is revealed to any party. As long as there is a single
honest party, the random recovery polynomials that such an honest party gen-
erates ensures randomness of overall recovery polynomials; this ensures that the
only thing Prc learns are its d shares at αrc.

Theoretical Foundations for Mobile Target Defense 483

Recovering Shares for Dishonest Majorities (DM-Recover)

1. Assume that party Prc is the one that needs recovery and that its shares are
the evaluation of the sharing polynomials (fi(x) for i ∈ {1, . . . , d}) at αrc.

2. For i ∈ {1, . . . , d} do:
2.1 Each party Pj generates a random polynomial gj,i(x) of degree i with

gj,i(αrc) = 0.
2.2 Each party verifiably shares its generated polynomial with the other

n − 2 parties (which do not include Prc) as follows: Pj computes
and sends to each of the other n − 2 receiving parties Pr the value
gj,i(αr), and broadcasts (homomorphic) commitments of the coeffi-
cients of gj,i(x) to all parties.

2.3 For each share shr
j,i = gj,i(αr), each receiving party Pr, locally com-

putes a commitment cr
j,i, each party also ensures that the polyno-

mials corresponding to its received share evaluates to 0 at αrc, i.e.,
gj,i(αrc) = 0. Both checks are possible based on the homomorphism of
the commitment scheme. Pj sends the opening information or

j,i corre-
sponding to each of the cr

j,i commitments to party Pr. Pr broadcasts
a complaint bit, indicating if or

j,i correctly opens cr
j,i to some value

zr
j,i.

2.4 For each share shr
j,i for which an inconsistency was reported, Pj broad-

casts the opening information oj,i , and if oj,i opens cj,i, Pr accepts
oj,i. Otherwise, Pj is disqualified and is added to the set B of parties
that did not share correctly and did not broadcast correct openings
to their commitments.

2.5 Each party Pr adds all the shares it received from the other n − 2
parties for the random recovery polynomials gj,i(αr) to its share of fi,
i.e., zr

i = fi(αr) + Σn−2
j=1 shr

i,j = fi(αr) + Σn−2
j=1 gj,i(αr).

2.6 Each party Pr sends zr
i to Prc; Prc then interpolates the random recov-

ery polynomial zi and obtain its current share as zi(αrc) = fi(αrc)

Since O(n) parties may need recovery in series at each period, for each recov-
ering party O(n) parties will need to share O(n) polynomials, with each resulting
in O(n) shares, the total will be O(n4) communication.

4.6 Security and Correctness of the PSS Scheme

Recall that d, the degree of gradual secret sharing adopted from [26], is the
crucial parameter in the PSS scheme. d determines in DM-Share the number of
summands in the additive sharing phase, the number of polynomials used to
linearly share those summands, and the maximum degree of those polynomials.
A similar set of polynomials of similar degrees is used for refreshing shares of,
recovering shares of, and reconstructing those summands in DM-Refresh, DM-

484 K. Eldefrawy et al.

Recover, and DM-Reconstruct. d should be less than n − c − 1 (where c is the
maximum number of parties that will be recovering in parallel, c = 1 when only a
single party at a time is recovered), and for the maximum secrecy threshold with
a single recovering party d = n − 3. We stress the maximum secrecy threshold
because this is typically the main motivation for proactive secret sharing of data,
i.e., to ensure long-term confidentiality against a mobile adversary.

The interested reader can check the security proof of the protocols in [15].

5 Conclusion and Open Questions

As an example of proactively secure protocols realizing Moving Target Defense
(MTD) we present a recent result constructing the first Proactive Secret Sharing
(PSS) scheme for a dishonest majority. The PSS scheme is robust and secure
against t < n − 2 passive adversaries with no active corruptions, and secure but
non-robust (but with identifiable aborts) against t < n/2 − 1 active adversaries
when there are no additional passive corruptions. The scheme is also secure, and
non-robust but with identifiable aborts, against mixed adversaries that control a
combination of passively and actively corrupted parties such that with k active
corruptions there are less than n−k −2 total corruptions. We think that there’s
interesting research to be carried out to tighten the connection between proactive
security, dynamic adversaries, and MTD in general. For example extending var-
ious proactively secure protocols to general adversary structures, and dynamic
groups remains opne. Specific open issues related to the presented PSS protocol
are: (i) It is unclear what the lowest communication required for a PSS scheme
secure against a dishonest majority is; we achieve O(n3) for batches of O(n)
secrets, and it remains open if this can be further reduced. We conjecture that
O(n) is the lower bound for our blueprint which first shares the secret via an
additive scheme as such an additive step does not seem to be amenable to batch-
ing using standard techniques for batching the linear sharing step. (ii) There are
currently no PSS schemes secure against dishonest majorities and operate over
asynchronous networks. The scheme presented here assumes a synchronous net-
work. (iii) It should be possible to extend the PSS scheme to a PMPC protocol
because additional can still be performed local, multiplication is the tricky step.
A recent result [18] currently in submission develops such a PMPC protocol for
dishonest majorities.

References

1. Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission in asyn-
chronous networks. In: Proceedings of the Twenty-Second ACM Symposium on
Principles of Distributed Computing. PODC 2003, 13–16 July 2003, Boston, Mas-
sachusetts, USA, pp. 223–232 (2003). https://doi.org/10.1145/872035.872069

2. Baron, J., ElDefrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand mobile
virus attacks, revisited. In: Proceedings of the 2014 ACM Symposium on Principles
of Distributed Computing. PODC 2014, pp. 293–302. ACM, New York (2014).
https://doi.org/10.1145/2611462.2611474

https://doi.org/10.1145/872035.872069
https://doi.org/10.1145/2611462.2611474

Theoretical Foundations for Mobile Target Defense 485

3. Baron, J., Defrawy, K.E., Lampkins, J., Ostrovsky, R.: Communication-optimal
proactive secret sharing for dynamic groups. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 23–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 2

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

5. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

6. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS National
Computer Conference, vol. 48, pp. 313–317 (1979)

7. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable
secret sharing and proactive cryptosystems. In: ACM Conference on Computer
and Communications Security, pp. 88–97 (2002)

8. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 425–438. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 38

9. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

10. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing. STOC 1988, pp. 11–19. ACM, New York (1988). https://doi.org/10.
1145/62212.62214

11. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

12. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

13. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures
and its applications. Technical report ISSE TR-97-01, George Mason University,
Fairfax, VA, July 1997 (1997)

14. Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V.: Swarming secrets. In: 2009 47th
Annual Allerton Conference on Communication, Control, and Computing. Allerton
2009, pp. 1438–1445, September 2009

15. Dolev, S., ElDefrawy, K., Lampkins, J., Ostrovsky, R., Yung, M.: Proactive secret
sharing with a dishonest majority. In: Zikas, V., De Prisco, R. (eds.) SCN 2016.
LNCS, vol. 9841, pp. 529–548. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44618-9 28

16. Dolev, S., Garay, J.A., Gilboa, N., Kolesnikov, V.: Secret sharing Krohn-Rhodes:
private and perennial distributed computation. In: Proceedings of Innovations in
Computer Science - ICS 2010, 7–9 January 2011, Tsinghua University, Beijing,
China, pp. 32–44 (2011). http://conference.itcs.tsinghua.edu.cn/ICS2011/content/
papers/18.html

17. Dolev, S., Garay, J.A., Gilboa, N., Kolesnikov, V., Yuditsky, Y.: Towards efficient
private distributed computation on unbounded input streams. J. Math. Cryptol.
9(2), 79–94 (2015). https://doi.org/10.1515/jmc-2013-0039

https://doi.org/10.1007/978-3-319-28166-7_2
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/3-540-48658-5_38
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-319-44618-9_28
https://doi.org/10.1007/978-3-319-44618-9_28
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/18.html
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/18.html
https://doi.org/10.1515/jmc-2013-0039

486 K. Eldefrawy et al.

18. Eldefrawy, K., Ostrovsky, R., Park, S., Yung, M.: Proactive secure multiparty
computation with a dishonest majority. In: Catalano, D., De Prisco, R. (eds.) SCN
2018. LNCS, vol. 11035, pp. 200–215. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98113-0 11

19. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
Proceedings of the 28th Annual Symposium on Foundations of Computer Sci-
ence. SFCS 1987, pp. 427–438, IEEE Computer Society, Washington, DC (1987).
https://doi.org/10.1109/SFCS.1987.4

20. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Proactive RSA. In: Pro-
ceedings of the 17th Annual International Cryptology Conference on Advances in
Cryptology. CRYPTO 1997, pp. 440–454. Springer, London (1997). http://dl.acm.
org/citation.cfm?id=646762.706164

21. Frankel, Y., Yung, M.: Cryptosystems robust against “dynamic faults” meet enter-
prise needs for organizational “change control”. In: Franklin, M. (ed.) FC 1999.
LNCS, vol. 1648, pp. 241–252. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48390-X 18

22. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract) In: STOC, pp. 699–710(1992)

23. Federal Trade Commission FTC: The Equifax data breach (2017). https://www.
ftc.gov/equifax-data-breach. Accessed 27 Apr 2018

24. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing.
STOC 1987, pp. 218–229. ACM, New York (1987). https://doi.org/10.1145/28395.
28420

25. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

26. Hirt, M., Maurer, U., Lucas, C.: A dynamic tradeoff between active and pas-
sive corruptions in secure multi-party computation. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 203–219. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 12

27. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, 1st edn. Springer,
New York (2011). https://doi.org/10.1007/978-1-4614-0977-9

28. LATimes: Anthem is warning consumers about its huge data breach. Here’s a
translation (2016). http://www.latimes.com/business/hiltzik/la-fi-mh-anthem-is-
warning-consumers-20150306-column.html. Accessed 27 Apr 2018

29. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: PODC, pp. 51–59 (1991)

30. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing. STOC 1989, pp. 73–85. ACM, New York (1989). https://
doi.org/10.1145/73007.73014

31. Schultz, D.: Mobile proactive secret sharing. Ph.D. thesis, Massachusetts Institute
of Technology (2007)

32. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
33. Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for archive

system. In: IEEE Security in Storage Workshop, pp. 94–106 (2002)
34. Zhou, L., Schneider, F.B., van Renesse, R.: APSS: proactive secret sharing in asyn-

chronous systems. ACM Trans. Inf. Syst. Secur. 8(3), 259–286 (2005)

https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1109/SFCS.1987.4
http://dl.acm.org/citation.cfm?id=646762.706164
http://dl.acm.org/citation.cfm?id=646762.706164
https://doi.org/10.1007/3-540-48390-X_18
https://doi.org/10.1007/3-540-48390-X_18
https://www.ftc.gov/equifax-data-breach
https://www.ftc.gov/equifax-data-breach
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/978-3-642-40084-1_12
https://doi.org/10.1007/978-1-4614-0977-9
http://www.latimes.com/business/hiltzik/la-fi-mh-anthem-is-warning-consumers-20150306-column.html
http://www.latimes.com/business/hiltzik/la-fi-mh-anthem-is-warning-consumers-20150306-column.html
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014

Author Index

Albanese, Massimiliano 1
Atluri, Vijayalakshmi 24

Bacis, Enrico 125
Bezawada, Bruhadeshwar 353
Bhusal, Shiva 375

Chandramouli, Ramaswamy 55
Chaulagain, Dewan 375
Chu, Zi 432
Cimato, Stelvio 113
Conti, Mauro 261
Cuppens, Frédéric 78
Cuppens-Boulahia, Nora 78
Cybenko, George 104

Damiani, Ernesto 113
Das, Saptarshi 24
De Capitani di Vimercati, Sabrina 125, 186,

244
Desmedt, Yvo 143
Di Pietro, Roberto 166
Dumitras, Tudor 405
Dushku, Edlira 261

Eldefrawy, Karim 470

Foresti, Sara 125, 186, 244

Ganesan, Rajesh 206
Genovese, Angelo 324
Gianvecchio, Steven 432

Kumar, Srijan 405

Li, Shang 405
Lin, Tao 227
Liu, Peng 227
Livraga, Giovanni 244
Lombardi, Flavio 166

Mancini, Luigi V. 261
Mehrotra, Sharad 274
Mitra, Barsha 24
Muñoz, Enrique 324

Noel, Steven 300

Oktay, Kerim Yasin 274
Ostrovsky, Rafail 470

Paraboschi, Stefano 125, 186
Pelosi, Gerardo 186
Piuri, Vincenzo 244, 324

Ray, Indrakshi 353
Rosa, Marco 125
Roy, Sankardas 375

Samarati, Pierangela 125, 186, 244
Scotti, Fabio 324
Shaghaghi, Arash 143
Shah, Ankit 206
Sharma, Shantanu 274
Singhal, Anoop 450
Stocco, Gabriel F. 104
Subrahmanian, V. S. 405
Sural, Shamik 24

Vaidya, Jaideep 24

Wang, Haining 432
Wang, Lingyu 450

Yen, John 227
Yung, Moti 470

Zhang, Mengyuan 450
Zhong, Chen 227

	Preface
	Contents
	From Cyber Situational Awareness to Adaptive Cyber Defense: Leveling the Cyber Playing Field
	1 Introduction
	2 Cyber Situational Awareness
	2.1 Motivating Example
	2.2 The Cyber Situational Awareness Framework
	2.3 Zero-Day Analysis

	3 Adaptive Cyber Defense
	3.1 Adaptation Techniques
	3.2 Quantification Framework

	4 Conclusions and Future Work
	References

	Policy Engineering in RBAC and ABAC
	1 Introduction
	2 Policy Engineering in Role-Based Access Control (RBAC)
	2.1 Overview of the Model
	2.2 Role Engineering
	2.3 Role Mining
	2.4 Unconstrained Role Mining
	2.5 Constrained Role Mining
	2.6 Future Research Directions

	3 Policy Engineering in Attribute-Based Access Control (ABAC)
	3.1 Attribute-Based Access Control (ABAC)
	3.2 Approaches for Policy Engineering
	3.3 Future Directions

	4 Conclusions
	References

	Comprehensive Security Assurance Measures for Virtualized Server Environments
	1 Introduction
	2 Virtualized Server Environment – a Technology Overview
	3 Virtualized Server Hardware Functions
	4 Hypervisor Baseline Functions And Threats
	4.1 Potential Threats to VM Process Isolation (HY-BF1)
	4.2 Potential Threats to Devices Mediation (HY-BF2)
	4.3 Potential Threats to the Execution of Instructions by Hypercall Interface (HY-BF3)
	4.4 Potential Threats Originating from VM Lifecycle Management (HY-BF4)
	4.5 Potential Threats to Management of Hypervisor (HY-BF5)

	5 Threats To The Secure Execution Of VM-Resident Programs
	6 Protection For Virtual Network Configurations
	7 Security Assurance For Hypervisor Baseline Functions
	7.1 Security Assurance for VM Process Isolation (HY-BF1)
	7.2 Security Assurance for Devices Mediation (HY-BF2)
	7.3 Security Assurance for VM Lifecycle Management Functions (HY-BF4)
	7.3.1 VM Image Management
	7.3.2 VM Live Migration
	7.3.3 Fine-Grained Administrative Privileges for VM Management

	7.4 Security Assurance for Management of Hypervisor (HY-BF5)
	7.4.1 Centralized Administration
	7.4.2 Securing the Management Network

	8 Security Assurance For Execution Of VM-Resident Programs
	9 Security Assurance For Virtual Network Configurations
	9.1 Assurance for Network Segmentation
	9.2 Assurance for Network Path Redundancy Configuration
	9.3 Assurance for Firewall Configuration
	9.4 Assurance for VM Traffic Monitoring

	10 Security Assurance for Booting a Virtualized Server Platform
	11 Summary and Conclusions
	References

	Stratification Based Model for Security Policy with Exceptions and Contraries to Duty
	1 Introduction
	2 Issues Related to CTD Management
	3 Management of Policies with Exceptions
	3.1 Conflict Analysis and Classification
	3.2 Language Definition
	3.3 Security Policy Encoding
	3.4 Prioritizing Security Rules
	3.5 Stratifying Security Rules
	3.6 Examples

	4 Management of Security Policies with Exceptions and CTD
	4.1 Language Extension
	4.2 Prioritizing CTD Rules
	4.3 Encoding Policies with CTD
	4.4 Combining Stratification of CTD and Exception
	4.5 Case of Implicit CTD
	4.6 Deriving Actual Obligations and Permissions
	4.7 Examples

	5 Related Work and Discussion
	6 Conclusion
	References

	Asymptotic Behavior of Attack Graph Games
	1 Introduction
	2 Results
	2.1 Asymptotic Behavior of M2P2 Solutions

	3 Summary and Discussion
	References

	Some Ideas on Privacy-Aware Data Analytics in the Internet-of-Everything
	1 Introduction
	1.1 The Data Analytics Pipeline

	2 Background
	3 An Introductory Example
	4 Randomizing Decision Trees
	4.1 Interactive Vs. Non-interactive Randomization

	5 Methods Based on the Partition Lattice
	6 Randomizing Neural Networks
	7 Relaxations
	8 Discussion
	References

	Protecting Resources and Regulating Access in Cloud-Based Object Storage
	1 Introduction
	2 Server-Side Encryption
	2.1 Discussion
	2.2 Case Study: OpenStack Swift IBM Key Rotation

	3 Client-Side Encryption
	3.1 Discussion
	3.2 Case Study: Mega

	4 Hybrid Encryption
	4.1 Discussion
	4.2 Case Study: EncSwift

	5 Discussion and Conclusions
	References

	Function-Based Access Control (FBAC): Towards Preventing Insider Threats in Organizations
	1 Introduction
	2 Background
	2.1 Traditional Access Control Models
	2.2 Modern Access Control Models
	2.3 Access Control with Data-Block Granularity
	2.4 Digital Right Management
	2.5 Functional Encryption

	3 Function-Based Access Control
	3.1 A First Definition
	3.2 The Main Definition
	3.3 Access Control Tensor (ACT) in Practice

	4 Policy, Enforcement and Implementation
	4.1 Policy
	4.2 Enforcement and Implementation

	5 Proof of Concept Implementation: The Smacs Editor
	5.1 Usability and Performance Analysis of Smacs

	6 Discussion and Related Work
	7 Future Work
	8 Conclusion
	References

	Virtualization Technologies and Cloud Security: Advantages, Issues, and Perspectives
	1 Introduction
	2 Technology Background
	2.1 Virtualization Frameworks
	2.2 CPU Virtualization
	2.3 GPU Virtualization

	3 Virtualization Security Issues
	3.1 Co-location Issues
	3.2 Randomness and Virtualization
	3.3 Container Security
	3.4 Unikernel Security
	3.5 Virtualization and Spectre/Meltdown

	4 Virtualization Benefits for Security
	4.1 Virtual Machine Monitoring
	4.2 Semantic Introspection and Modeling VM Behavior
	4.3 Finer-Grained Security

	5 Secure Enclaves and Virtualization
	5.1 Intel SGX
	5.2 SGX Security Issues

	6 Use Cases for Virtualization
	6.1 BYOD and Virtualization
	6.2 Virtualization and Smartphones
	6.3 Future Research Directions

	7 Conclusion
	References

	Access Privacy in the Cloud
	1 Introduction
	2 Oblivious RAM Data Structures
	2.1 Hierarchical ORAM
	2.2 Path ORAM
	2.3 Ring ORAM

	3 Dynamically Allocated Data Structures
	3.1 Shuffle Index
	3.2 A Dynamic Tree-Based Data Structure

	4 Conclusion
	References

	A Strategy for Effective Alert Analysis at a Cyber Security Operations Center
	1 Introduction
	2 Related Literature
	3 Current Alert Analysis
	3.1 Alert Generation
	3.2 Alert Prediction
	3.3 Current Alert Analysis Process
	3.4 Effective Alert Analysis at a CSOC- Requirements and Modeling Assumptions
	3.5 Model Assumptions

	4 Optimization Model
	4.1 Scheduling Model
	4.2 Selection Model
	4.3 Allocation Model

	5 Results
	5.1 Results of a Heuristic for Static and Dynamic Workforce Scheduling
	5.2 Results of the Dynamic Programming Selection Model
	5.3 Results of the Heuristic for Static and Dynamic Workforce Allocation
	5.4 Results from Measuring the LOE Metric

	6 Conclusions
	References

	Retrieval of Relevant Historical Data Triage Operations in Security Operation Centers
	1 Introduction
	2 Triage Analysis in SOCs
	2.1 Data Triage for Cyber SA
	2.2 Multi-Source Data in SOCs
	2.3 Data Triage Operation

	3 Data Triage Operation Retrieval Systems
	3.1 Difficulties in Data Triage Tasks
	3.2 Experts' Knowledge of Data Triage
	3.3 A Framework for Data Triage Knowledge Retrieval System Designs

	4 Challenges in Developing Effective Data Triage Knowledge Retrieval Systems
	5 Current Research on Data Triage Knowledge Retrieval
	5.1 Rule-Based Data Triage Retrieval System
	5.2 Context-Based Data Triage Knowledge Retrieval System

	6 Future Directions in Data Triage Operation Retrieval
	6.1 Graph-Based Data Triage Knowledge Retrieval System
	6.2 Machine Learning Based Retrieval of Triage Operations
	6.3 Ontology-Based Data Triage Operation Retrieval

	7 Concluding Remarks
	References

	Supporting Users in Cloud Plan Selection
	1 Introduction
	2 Attributes Identification
	2.1 Quality of Service (QoS) Evaluation
	2.2 QoS Prediction
	2.3 Dependencies Management
	2.4 Security Parameters

	3 Requirements Specification
	4 Fuzzy Logic for Flexible Requirements Specification
	5 Conclusions
	References

	Distributed Services Attestation in IoT
	1 Introduction
	2 Related Works
	3 Problem Setting
	4 Adversary Model
	5 Proposed Solution
	5.1 Requirements
	5.2 Building Blocks
	5.3 System Design
	5.4 Solution Approach

	6 Conclusions
	References

	Exploiting Data Sensitivity on Partitioned Data
	1 Introduction
	2 Partitioned Computations at the Hybrid Cloud
	2.1 Split Strategy
	2.2 Experimental Analysis
	2.3 Other Approaches to Partitioned Computing

	3 Partitioned Computations at the Public Cloud and Security Definition
	4 Query Binning: A Technique for Partitioned Computations Using a Cryptographic Technique at the Public Cloud
	5 Effectiveness of QB
	References

	A Review of Graph Approaches to Network Security Analytics
	Abstract
	1 Introduction
	2 Operational Orientation
	2.1 Phases of Security Operations
	2.1.1 Prevention
	2.1.2 Detection
	2.1.3 Reaction

	2.2 Security Operational Layers

	3 Mathematical Structures
	4 Architectural Aspects
	5 Summary
	Acknowledgements

	Advanced Biometric Technologies: Emerging Scenarios and Research Trends
	1 Introduction
	2 Recent Advances in Biometric Technologies
	2.1 Face
	2.2 Fingerprint
	2.3 Iris
	2.4 Palmprint
	2.5 Electrocardiogram
	2.6 Voice
	2.7 Gait
	2.8 Soft Biometric Features: Age and Gender
	2.9 Multibiometrics

	3 Emerging Scenarios for Biometric Recognition
	3.1 Public Infrastructures
	3.2 Private Infrastructures
	3.3 User-Centric Applications
	3.4 Personal Devices

	4 Challenges and Research Trends of Current Biometric Systems
	4.1 Usability and User Acceptance
	4.2 Privacy and Security
	4.3 Accuracy and Execution Time
	4.4 Interoperability
	4.5 Scalability

	5 Conclusions
	References

	Attribute-Based Encryption: Applications and Future Directions
	1 Introduction
	1.1 Motivation
	1.2 Background: Identity-Based Encryption
	1.3 IBE: Construction from Weil Pairing
	1.4 Fuzzy Identity-Based Encryption: FIBE

	2 Attribute-Based Encryption
	2.1 Access Structures
	2.2 Key-Policy Attribute-Based Encryption KP-ABE
	2.3 Cipher-Text Policy Attribute-Based Encryption CP-ABE

	3 Applications of Attribute-Based Encryption
	3.1 KP-ABE or CP-ABE?
	3.2 On-Demand Live TV Broadcasting
	3.3 Online Social Network Privacy
	3.4 Assurance for Cloud Storage Data
	3.5 Fine-Grained Health-Record Access Control
	3.6 Policy Sealed Data
	3.7 Forward-Secure Messaging
	3.8 Case Study of Commercial Products: Zeutro

	4 Challenges and Future Directions
	4.1 Sizes of Attribute Sets
	4.2 Attribute Structure
	4.3 Pairing Operations
	4.4 Secure Elliptic Curves

	5 Conclusion and Future Directions
	References

	Static Analysis for Security Vetting of Android Apps
	1 Introduction
	2 A Motivating Example
	3 Common Terminologies and Theory of Static Analysis
	3.1 Semantic Domains
	3.2 Common Terminologies of Static Analysis
	3.3 Dimensions of Static Analysis
	3.4 Algorithms for Static Analysis
	3.5 Examples Illustrating the DFG Building Process
	3.6 Additional Technical Issues

	4 Running Static Analysis Algorithms on Example Apps
	5 Understanding the State-of-the-Art
	5.1 Flowdroid/IccTA
	5.2 Amandroid

	6 Experimental Results
	6.1 Evaluation of Static Analysis Tools

	7 Related Work
	7.1 Static Analysis of Android Apps
	7.2 Dynamic Analysis of Android Apps
	7.3 Other Works

	8 Conclusions
	References

	Breaking Bad: Forecasting Adversarial Android Bad Behavior
	1 Introduction
	2 Intermittently Malicious Threats
	3 Detecting Temporary Threats
	4 Identifying Periods of Temporary Bad Behavior
	5 Characteristics of Bad Apps
	6 Predicting Temporary Malicious Behavior
	6.1 Findings

	7 Classification with Fake Reviews
	8 Discussion
	9 Related Work
	10 Conclusions
	References

	Bot or Human? A Behavior-Based Online Bot Detection System
	1 Introduction
	2 Behavior Characterization
	2.1 Blog Bots
	2.2 UI Data Collection
	2.3 UI Data Measurements

	3 System Design
	3.1 Webpage-Embedded Logger
	3.2 Server-Side Detector

	4 Evaluation
	4.1 Experimental Setup
	4.2 System Performance
	4.3 System Overhead

	5 Conclusion
	References

	Network Security Metrics: From Known Vulnerabilities to Zero Day Attacks
	1 Introduction
	2 Combining CVSS Scores to Measure the Risk of Residue Vulnerabilities
	2.1 Propagating Attack Probabilities Along Attack Paths
	2.2 Attack Graphs as Bayesian Networks

	3 Estimating Networks' Resilience Against Zero Day Attacks
	3.1 Motivating Example
	3.2 Modeling k-Zero Day Safety
	3.3 Redefining Network Hardening

	4 Measuring the Effect of Diversity on Network Security
	4.1 From Biodiversity to Network Diversity
	4.2 Least Attacking Effort-Based Network Diversity Metric

	5 Conclusion
	References

	Theoretical Foundations for Mobile Target Defense: Proactive Secret Sharing and Secure Multiparty Computation
	1 Introduction
	2 Current State of Proactively Secure Protocols
	3 Definitions and Preliminaries
	3.1 System and Network Model
	3.2 Adversary Model
	3.3 Definition of Proactive Secret Sharing (PSS)
	3.4 Batched Secret Sharing
	3.5 Homomorphic Commitments and Verifiable Secret Sharing

	4 Proactive Secret Sharing for a Dishonest Majority
	4.1 Notation and Preliminaries
	4.2 Intuition and Overview of Operation
	4.3 Sharing and Reconstruction for Dishonest Majorities
	4.4 Refreshing Shares with a Dishonest Majority
	4.5 Recovering Shares with a Dishonest Majority
	4.6 Security and Correctness of the PSS Scheme

	5 Conclusion and Open Questions
	References

	Author Index

