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Abstract. This paper studies the sound transmission loss across a finite
orthotropic rectangular composite plate in order to understand the sound-
insulating capacity at various frequencies. The plate is modeled with classic
thin-plate theory and is assumed to be clamped on all four sides mounted on an
infinite acoustic rigid baffle. The incident acoustic pressure is modeled as a
harmonic plane wave impinging on the plate at an arbitrary angle. The sound
transmission loss (STL) is calculated from the ratio of incident to transmitted
acoustic powers. The numerical results and existing experimental results of
sound transmission loss are compared. The influence of several key parameters
on the sound isolation capability of the symmetrically finite rectangular ortho-
tropic laminated composite plate is investigated and discussed.
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1 Introduction

Over the last 50 years, the sound transmission through an isotropic structure has
attracted extensive research attention in literature. Biot [1] presented the wave trans-
mission theory of elastic bodies. Brekhovskikh [2] also obtained a transmission matrix
for the relationship between the velocity and pressure in an elastic solid body. After
Biot, Allard et al. [3], Brouard et al. [4] determined how the transmission matrix relates
to different layered media, applying the elastic theory in many cases. A general method
of modeling sound propagation in layered media was also proposed. Ko [5] studied the
noise-decay behavior in an air-voided elastomer. This work proceeded with the
transmission matrix method. Ljunggren [6] studied a diffuse sound field for the case of
thick walls of typical building materials. An analytical expression valid for arbitrarily
thick plates was imposed on thin-plate solutions. Furthermore, Tadue et al. [7] also
studies sound transmission for isotropic layered media. In Tadue’s works, sound-
insulating capacities of a medium composed of isotropic layers, air, and water, were
analyzed.

Some research is focused on acoustic field theory in composite materials. In the
context of the transmission of airborne sound into aircraft and launchers, Koval [8]
established a general expression for transmission loss of an orthotropic shell excited by

© Springer Nature Switzerland AG 2019
H. Fujita et al. (Eds.): ICERA 2018, LNNS 63, pp. 589–600, 2019.
https://doi.org/10.1007/978-3-030-04792-4_76

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04792-4_76&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04792-4_76&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04792-4_76&amp;domain=pdf
https://doi.org/10.1007/978-3-030-04792-4_76


a plane wave with an angle of incidence. The variously circumferential parameters
were given in Koval’s study. Blaise et al. [9] initiated an extension of Koval’s studies
with two independent angles to calculate the diffuse field transmission coefficient.
Further, the case of orthotropic multi-layered infinite cylindrical shell was investigated
by Blaise and Lesueur [10]. Bosmans et al. [11] studied the prediction of structure-
borne sound transmission between orthotropic plates connected with a rigid junction.

In the work [12], the sound transmission based on elastic wave in an orthotropic
material was studied with a 2D model. However, the models are restricted to the special
composite which possess transverse isotropy in in-plane direction, such as Mat or Sheet
Molding Compound. This theory is not suitable for many kinds of orthotropic com-
posite materials. The work of Kuo et al. in [13] extended the 2D model of [12] to a 3D
model for analyzing sound transmission in an orthotropic laminated composite mate-
rial. The transfer matrix method was used.

The principal aim of this research is to study the vibroacoustic response of a finite
orthotropic laminated composite rectangular plate under a sound wave excitation by
analytical method. The plate is assumed to be clamped on all four sides mounted on an
infinite acoustic rigid baffle. The STL is calculated from the ratio of incident to
transmitted acoustic powers. The effect of incident angle, material anisotropies,
thickness of plate on STL is evaluated.

2 Theoretical Formulation

2.1 Plate Geometry and Assumptions

Consider a finite, rectangular laminated composite plate clamped in an infinite acoustic
rigid baffle, as shown in Figs. 1(a) and (b). The plate has length a along x-direction,
width b along y-direction and thickness h along z-direction, with h � a and
h � b assumed.

The plate divides the spatial region into two regimes, i.e., the incident field (z < 0)
and the transmitted field (z > 0). An oblique plane sound wave varying harmonically in

Fig. 1. Schematic of sound transmission through a clamped rectangular composite plate:
(a) overall view; (b) side view from the direction of arrow in (a).
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time is incident on the bottom side of the plate, with elevation angle u and azimuth
angle h, Fig. 1(a).

The plate vibration is induced by the incident sound and including the reflected
pressure wave pireflected and the transmitted pressure wave pitrasmitted in the transmitted
field. In the present study, it is assumed that the plate deforms out of plane (in the
z-direction), positive upward.

2.2 Laminated Composite Plate Dynamics

The dynamical displacement of an orthotropic symmetric laminated composite plate in
the air on both sides and subjected to uniform, plane sound wave varying harmonically
can be described by [14]:

D11
@4w x; y; tð Þ

@x4
þ 2 D12 þ 2D66ð Þ @

4w x; y; tð Þ
@x2@y2

þD22
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@y4
þm�@2wðx; y; tÞ

� jxq0 U1ðx; y; z; tÞ � U2ðx; y; z; tÞ½ � ¼ 0
ð1Þ

where Dij(ij = 11,12,66,22) is the flexural rigidity, m* is the surface density of the
plate, q0 is the air density, x is the angular frequency of the incident sound and
Uiði ¼ 1; 2Þ denote the velocity potentials for the acoustic fields in the proximity of the
plate, corresponding to the sound incidence and the structure radiating field,
respectively.

The flexural rigidity of laminated composite plate is determined by:

Dij ¼ 1
3

Xn
k¼1

Qk
ij z

3
kþ 1 � z3k

� � ð2Þ

where the reduced stiffnesses of the kth layer are defined as:
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and E1, E2, G12, m12 are the kth layer elastic constants.
The displacement of the composite plate induced by the incident sound can be

expressed as:

wðx; y; tÞ ¼ wo:e
�jðkxxþ kyy�xtÞ ð4Þ

The acoustic velocity potential in the incidence field (Fig. 1) is defined as:

U1ðx; y; z; tÞ ¼ I:e�jðkxxþ kyyþ kzz�xtÞ þ b:e�jðkxxþ kyy�kzz�xtÞ ð5Þ

where the first term represents the velocity potential of the incident acoustic wave and
the second term represents the velocity potential of the reflected acoustic waves, and
I and b are the amplitudes of the incident and the reflected waves, respectively.
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Similarly, in the transmitting field adjacent to the radiating upper plate, there exist no
reflected waves, and therefore the velocity potential in the transmitting waves, given as:

U2ðx; y; z; tÞ ¼ e:e�jðkxxþ kyyþ kzz�xtÞ ð6Þ

where e is the amplitude of the radiating (positive-going) wave.
These wave numbers are determined by the elevation angle u and azimuth angle h

of the incident sound wave as:

kx ¼ k0 sinu cos h; ky ¼ k0 sinu sin h; kz ¼ k0 cosu ð7Þ

where k0= x/c0 is the acoustic wave number in air and c0 is the acoustic speed in the air.
With the plate fully clamped onto a rigid baffle, the boundary conditions can be

expressed as:

x ¼ 0; a; w ¼ 0;
@w
@x

¼ 0; y ¼ 0; b, w ¼ 0;
@w
@y

¼ 0 ð8Þ

At the air-plate interface the normal velocity is continuous, yielding the corre-
sponding velocity compatibility condition equations:

z ¼ 0; � @U1

@z
¼ � @U2

@z
¼ jxw ; z ¼ h; � @U1

@z
¼ � @U2

@z
¼ jxw ð9Þ

For the convenience of describing the modal response of the composite plate, its
dynamical displacement can be rewritten by using the orthogonal plate eigenfunctions
and the generalized coordinates, as:

w x; y; tð Þ ¼
X1
m¼1

X1
n¼1
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ð10Þ

Similarly, the acoustical velocity potentials of Eqs. (5) and (6) are expressed as:

U1ðx; y; z; tÞ ¼
X1
m¼1

X1
n¼1

Imnumne
�jðkzz�xtÞ þ

X1
m¼1

X1
n¼1

bmnumne
�jð�kzz�xtÞ ð11Þ

U2ðx; y; z; tÞ ¼
X1
m¼1

X1
n¼1

emnumne
�jðkzz�xtÞ ð12Þ

The conversion relation between the general forms of Eqs. (4)–(6) and the gener-
alized forms (with modal functions) of Eqs. (10)–(12) can be obtained by utilizing the
Cosine Fourier transform, as:
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where the symbol v can be referred to any of the coefficients I, b, e and a.

2.3 Displacement Continuity Condition at Air-Panel Interfaces

Let n1 and n2 represent the acoustic particle displacement in the incident and trans-
mitted air medium, respectively. The air particle displacement and the acoustic pressure
are related by the air momentum equation, as:
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where the acoustic pressure can be expressed by the acoustical velocity potentials
through Bernoulli’s equation, as:

pi ¼ q0
@Ui

@t

� �
i ¼ 1; 2ð Þ ð15Þ

The displacements of the air particle adjacent to the plate can be expressed as:

n1 ¼ n10e
�jðkxxþ kyy�xtÞ ; n2 ¼ n20e

�jðkxxþ kyy�xtÞ ð16Þ

Substituting (14)–(16) into (11) and (12), and applying the acoustical velocity
potentials of (5) and (6), one can obtain:

n10 ¼
X1
m¼1

X1
n¼1

Imnumn �
X1
m¼1

X1
n¼1

bmnumn

 !
kz
x
ejðkxxþ kyyÞ ð17Þ

n20 ¼
X1
m¼1

X1
n¼1

emnumn
kz
x
ejðkxxþ kyyÞ ð18Þ

The factual case that the composite plate immersed in an air medium requires that
the displacements of the air particles adjacent to the plate should be the same as those
of the attached plate particles. Accordingly, the displacement continuity condition can
be written as:

n10 ¼ w0 ; n20 ¼ w0 ð19Þ

Together with (4) and (17), (18), meanwhile utilizing the following relation
between coefficients amn and w0:

Vibroacoustic Response of a Finite Clamped Laminated Composite Plate 593



amn ¼
4w0abk2x k

2
y 1� e�jkxa
� �

1� e�jkyb
� �

4m2p2 � k2x a
2

� �
4n2p2 � k2yb

2
	 
 ð20Þ

One can express the coefficients in the acoustical velocity potentials by the plate
displacement coefficients, as:

bmn ¼ Imn � x
kz
amn ; emn ¼ x

kz
amn ð21Þ

Substituting (11) and (12) into (1) and applying the orthogonality of the modal
functions, one gets:
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where the natural frequencies of clamped orthotropic rectangular laminated composite
plate are determined by:
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where: m� ¼ Pn
k¼1

q kð Þ
0 hkþ 1 � hkð Þ. Therefore, the coefficient amn is defined by:
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Once the panel displacement coefficients amn are known, the acoustical velocity
potentials will be known, given by:

U1ðx; y; 0Þ ¼ 2Ie�jðkxx�kyyÞ �
X1
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n¼1

x
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amnumnðx; yÞ ð25Þ
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3 Definition of Sound Transmission Loss

The power of incident sound is defined by:

P1 ¼ 1
2
Re
ZZ

A
p1v

�
1dA ð27Þ

where the asterisk symbol denotes complex conjugate, v�1 ¼ p1= q0c0ð Þ is the local
acoustic velocity, and

p1 ¼ jq0xU1 x; y; 0ð Þ ¼ jq0x 2Ie�j kxxþ kyyð Þ �
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" #
ð28Þ

is the sound pressure in the incident field. Substitution p1 and v�1 into (27) yields:
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In a similar manner, the transmitted sound power can be defined as:

P1 ¼ 1
2
Re
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�
1dA ð30Þ

where v�2 ¼ p2= q0c0ð Þ is the local acoustic velocity and
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X1
m¼1

X1
n¼1

amn/mnðx; yÞ ð31Þ

is the sound pressure in the transmitted field. Combination of Eqs. (30) and (31) and
the expression of v�2 results in:
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The power transmission coefficient can be obtained as:

s0 u; h; fð Þ ¼ P1

P2
ð33Þ
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Then the sound transmission loss (STL) across the composite plate is defined by:

STL ¼ 10 log10
1
s0

� �
ð34Þ

4 Numerical Results and Discussion

4.1 Sound Transmission Loss of Orthotropic Laminated Composite Plates

In this subsection, numerical calculations based on the theoretical formulations presented
above are performed to explore the vibroacoustic behavior of two typical orthotropic
laminated composite plates [13]: [UD]7 and [Rovin]7. Each of two plates comprises seven
layers of glass fiber composite. The mechanical properties of [UD]7 are: E11 = 37.8 GPa,
E22 = 13.1 GPa, G12 = 8 GPa, t12 = 0.25, q = 1633 kg/m3 and the ply thickness is
0.503 mm. The mechanical properties of [Rovin]7 are: E11 = 24 GPa, E22 = 24 GPa,
G12 = 9 GPa, t12 = 0.25, q = 1531 kg/m3 and the ply thickness is 0.429 mm. The finite-
size plate is 120 cm by 120 cm. The air speed of sound, c = 343 m/s, initial amplitude,
I0 = 1 m2/s. The comparison between present numerical results and results of [13] for two
laminated composite plates is illustrated in Figs. 2 and 3.

The numerical results of Kuo et al. [13] are based on the infinite plates, while their
experimental investigation and our present results are limited to a finite plate. In Figs. 2

Fig. 2. Comparison between present numerical calculation and results of [13]. Transmission
loss of [UD]7 plate.
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and 3, the present numerical and experimental results are in acceptable agreement; the
systematic errors are seen at the low frequency range between our results and numerical
results of [13] (due to the finite size of the plates) for two typical orthotropic laminated
composite plates. The comparisons indicate that the present numerical calculation can
simulate the real phenomenon of STL across orthotropic plates.

4.2 Effect of Incident Angle on STL

The influence of sound incident angles (elevation angle and azimuth angle) on STL of a
finite [Rovin]7 plate is shown in Figs. 4 and 5.

Fig. 3. Comparison between present numerical calculation and results of [13]. Transmission
loss of [Rovin]7 plate.

Fig. 4. Effect of incident elevation angle on STL across [Rovin]7 plate.
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Figure 4 demonstrates considerable influence of the incident elevation angle u
(with azimuth angle fixed at h = 30°) on the STL of the clamped cross-ply composite
plate. The STL values decrease with increasing elevation angle.

Therefore, from Fig. 5, it may be concluded that the incident azimuth angle h (with
elevation angle fixed at u = 0°) has small influence on the transmission loss of studied
composite plate.

4.3 Effect of Material Anisotropies on STL

This section analyzes and discusses the effect of the material anisotropy on STL.
Figure 6 plots the transmission loss of this plate with different values of E11/E, set to 1,
5, 10 and 15. Other values of material properties in all calculations were E22 =
E33 = E=10 GPa; m12 = m13 = m23 = 0.3; G12 = G13 = G23 = G=5 GPa; q = 1590
kg/m3 and thickness h = 1.02 mm. E11/E = 1, implies an isotropic material. This
case suits the fiber orientations for the 8-ply plate were balanced symmetric layups of
[0/90/0/90]s.

Fig. 6. Effect of anisotropy on STL of a clamped orthotropic composite plate for various values
of E11/E.

Fig. 5. Effect of azimuth angle on STL across [Rovin]7 plate.
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4.4 Effect of Plate Thickness on STL

In this subsection, the mechanical properties of the specially orthotropic layer are same
as that of the isotropic layer except E11 the fiber orientations for the 8-ply plate were
balanced symmetric layups of [0/90/0/90]s, E11/E = 5. The thickness of the plate is
h1 = 1.02 mm, h2 = 5.10 mm and h3 = 10.20 mm. It demonstrates the thickness effect
on STL. Figure 7 shows that the STL will increase as the plate thickness increases.

5 Conclusions

In this study, an analytical model on sound transmission through finite clamped
orthotropic rectangular composite plates has been derived. Based on the results of this
study, the following is concluded:

• An explicit formula, basing on the ratio of incident to transmitted acoustic powers
for calculation of STL across the finite clamped orthotropic rectangular laminated
composite plate is constructed. Overall, a good agreement is achieved between the
theoretical calculations and existing experimental results.

• The acoustical properties of an orthotropic material differ from those of an isotropic
material, even though their surface densities are the same. The incident angles
influence considerably on the STL of clamped orthotropic laminated composite
plates. The STL values drastically increase as the composite plate thickness is
increased.

These results are very useful for evaluating the sound insulating capability of a
finite composite plate.
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Technology Development (NAFOSTED) under grant number: 107.02-2018.07.

Fig. 7. Influence of plate thickness on STL across an orthotropic finite composite plate.
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