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Abstract. Given a spatial dataset containing instances of a set of spa-
tial Boolean feature-types, the problem of spatial co-location pattern
mining aims to determine a subset of feature-types which are frequently
co-located in space. Spatial Co-location patterns have a wide range of
applications in the domains such as ecology, public health and public
safety. For instance, in an ecological dataset containing event instances
corresponding to different bird species and vegetation types, spatial co-
location patterns may revel that a particular species of birds prefer a
particular kind of trees for their nests. Similarly, in a crime dataset,
spatial co-location may revel a pattern that drunk-driving cases are co-
located with bar locations. This article presents a gentle introduction
to spatial co-location pattern mining. It introduces a well studied inter-
est measure called participation index for co-location mining and, then
discusses an algorithm to determine patterns having high participation
index in a spatial dataset.

1 Introduction

Widespread use of spatial computing technologies [10,19–21,24] has lead to
increasing interest in mining interesting and non-trivial patterns from spatial
data. Over the years several works have made progress towards this end (e.g.,
[5,7,9,11–13,15,22,23]) by exploring different aspects of the problem of finding
patterns from data which is embedded in geographic space.

One of influential results in the area of pattern mining for geographic space
includes the work done in the area of Spatial Co-Location pattern mining. Given
a spatial dataset containing feature-instances of spatial boolean feature-types,
the problem of spatial co-location pattern mining aims to determine a subset
of feature-types whose instances occur together frequently. Mining spatial co-
location patterns has a wide range of applications in domains such as ecology,
criminology and public health. Table 1 illustrates some sample patterns.

This article presents a gentle introduction to the problem of spatial co-
location pattern mining. Section 2 introduces some basic concepts and presents
the problem in a formal manner. In Sect. 3, we present a traditional algorithm for
mining co-location patterns. Section 4 formally establishes the anti-monotonicity
property of the participation index, a popular interest measure used in co-
location pattern mining. Finally in Sect. 5, we summarize some of the recent
results in the area and conclude in Sect. 6.
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Table 1. Sample spatial co-location patterns in various spatial datasets.

Sno Feature-type A Feature-type B Interpretation

1 Nile Crocodile location Egyptian Plover
bird location

Nile crocodile and the plover
birds have a symbiotic
relationship

2 Bar locations Reports of
Drunk-driving

This pattern may be observed
near the bar closing times [15].
Perhaps the bar customers
drive back after bar closing

3 Locations of patients
with respiratory
problems

High particulate
matter locations

Perhaps the air pollution
contributes to the respiratory
problems

2 Basic Concepts and Problem Definition

Fig. 1. A sample spatial dataset.

Definition 1. Spatial Boolean Feature (f i): comprises of those features which
can be precisely defined in boolean form (i.e., present or absent) for any given
location (x, y). Examples include, ecological features such as presence of bird nest,
a particular type of tree, a particular animal species, etc. Spatial boolean features
can also be used to define a particular type of spatial event. Examples of this
category include, incidence locations of events such as forest fires, a particular
disease, etc. In case one is interested in studying spatial aspect of diseases, the
event location is the spatial location (home or office) of the patient. Note that
in a dataset, each of the feature types f i’s would be associated a set of locations
Lfi where the particular feature type f i occurs.

Definition 2. Spatial Co-Location Pattern (Ci): Given a set of Spatial Boolean
feature-types F = {f1, f2, f3, . . . , f i}, a Spatial co-location Ci is defined as
a non-empty subset of given feature-types F , i.e., Ci = {f1, f2, . . . , fγ} and
Ci ⊆ F .
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Definition 3. Row instance of Spatial Co-location pattern Ci: Given a spatial1

Co-location pattern Ci = {f1, f2, . . . , fγ}, a row instance of Ci is defined a
particular collection of the instances (occurrences) of the feature types in Ci.
In other words, a row instance of Ci is a collection of some specific features-
instances of the feature-types in Ci. The key aspect to note is that, for any
particular collection of feature-instances G(Ci) = {Gf1 , Gf2 , . . . , Gfγ } to become
a valid row instance of Ci, each of the feature-instances in G(Ci) should be a
neighbor of all the other feature-instances in G(Ci). In other words, ∀ p and
q where Gfp ∈ G(Ci) and Gfq ∈ G(Ci), the feature-instance Gfp and Gfq are
spatial neighbors (as per a given relation R). Note that the notion of spatial
neighbor is formally defined along with the input of the problem. Typically, they
are defined using Euclidean, Geodetic or Network distance thresholds.

Definition 4. Table instance of Co-location pattern Ci: A collection of all the
valid row instances of a Co-location pattern Ci are called as a table instance
of Ci.

Definition 5. Participation ratio Pr(fα, Ci) of a feature type fα in a Co-
location pattern Ci is the fraction of instances of the feature-type fα which par-
ticipate in any row instance of the spatial Co-location pattern Ci. More formally,
Pr(fα, Ci) is represented by the following equation:

Pr(fα, Ci) = # distinct instances of fα participating in Ci

# instances of fα

Definition 6. Participation index of a Co-location Ci = {f1, f2, . . . , fγ} (Ci ⊆
F) is defined as minfj∈Ci

{Pr(f j , Ci)}. In other words, participation index of a
Co-location pattern Ci is the minimum of all participation ratios’ of its compo-
nent feature-types.

2.1 Problem Definition

The problem of spatial co-location pattern mining is defined as follows:
Input:

1. A set of N Spatial Boolean feature-type F = {f1, f2, f3, . . . , fN}.
2. A set of M feature-instances P = {p1, p2, . . . , pM}. Each pi ∈ P is a tuple

<instance-id, spatial feature-type fθ, location l>. Here, the feature-type fθ ∈
F .

3. A neighbor relation R. Given any two feature-instances p and q, the neighbor
relation outputs “1” or“0” depending on whether p and q are deemed to be
spatial neighbors or not. R is symmetric and reflexive.

4. Minimum prevalence threshold θ of the participation index.

Output:

1. Co-locations patterns whose participation index value is greater than θ.

1 Whenever the context is clear, we drop the keyword “Spatial” from“Spatial Co-
location” to maintain clarity of text.
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3 Co-location Miner Algorithm

This section describes an elemental algorithm for determining spatial co-
locations which internally uses spatial join operations. In its most basic form
spatial co-location miner is quite similar to the traditional Apriori algorithm
[2,3]. It generates candidate patterns in increasing size and at each stage, it uses
patterns of size k − 1 to generate patterns of size k. Algorithm 1 illustrates a
pseudo-code of the algorithm.

Algorithm 1. Spatial Co-Location Miner
1: P ← Prevalent size-1 co-location set along with their table instances.
2: Generate size-2 co-location rules
3: for size k co-location pattern kin{3, 4, . . . , N} do
4: Generate candidate prevalent patterns of size k from the candidate patterns of

size k − 1.
5: Generate table instances and prune based on neighborhood.
6: Prune based on participation index threshold.
7: end for
8: Output the maximal sized co-location patterns.

In the first step (refer Algorithm 1), the algorithm generates spatial co-
location patterns of size-1. These would be trivially be all the feature-types
(singleton) present in the input dataset. For instance, consider the sample spa-
tial dataset illustrated in Fig. 1. For this input dataset, the size-1 co-location
patterns would simply be all the individual feature-types, A, B and C. Figure 2
illustrates the table instances of these trivial co-location patterns.

Fig. 2. Table instances of size-1 co-
locations patterns.

Following this, in the second step
(refer Algorithm 1), the algorithm gen-
erates size-2 candidate patterns. Table
instances of these size-2 candidate pat-
terns are generated by computing the spa-
tial inner join of all the instances of all
spatial features. The output of the spatial
inner join procedure would be the pairs of
feature-instances which satisfy the neigh-
bor relation R (given in the input). In
other words, it returns all the pairs of
feature-instances which are deemed to be

“neighbors” according to the neighbor relation R. For this step, one may use
sweeping based spatial join algorithms such as the one proposed in [4]. Figure 3
illustrates a sample result of the spatial join algorithm on the dataset shown in
Fig. 1. Figure 4 shows the result in a tabular form along with the table instances
of all the size-2 patterns (< A,B >, < B,C >, < A,C >). At this stage, the
algorithm computes the participation indices of all each of candidate size-2 pat-
terns. Figure 4 reports these indices at the bottom. Following this, any size-2
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pattern whose participation index is less than the given threshold θ is pruned
out.

Fig. 3. Size-2 co-locations pattern instances.

Following the generation of size-2 candidate patterns, the algorithm enters a
loop (line 3 Algorithm 1). In each iteration of the loop, at step-4, the algorithm
generates candidate patterns of size k (k = 3, 4, . . . , N) using the patterns of
size k −1. This procedure is explained next through our example size-2 patterns
shown in Figs. 3 and 4.

Fig. 4. Table instances of size-2 co-
locations patterns.

Consider our size-2 patterns illustrated
in Fig. 4. As can be noted, we have three
size-2 patterns, viz., < A,B >, < B,C >,
< A,C >. The algorithm takes pairs
of size-2 patterns which have a common
feature-type to create size-3 patterns. In
our example, it would take < A,B > and
< B,C > (or {< A,B > < A,C >}
or {< B,C > < A,C >}). Note that in
any particular iteration of the loop, step-4
would take two size k − 1 patterns p and
q having k − 2 common features. Following
this the algorithm creates a size k pattern
comprising of the following: (a) k − 2 fea-

tures common to both p and q, (b) k − 1th feature of p, (c) k − 1th feature of q.
While creating a pattern of size k, it verifies whether all of its subsets of size k−1
have participation index greater than θ (minimum prevalence threshold) or not.
For instance, in our example, while creating the pattern < A,B,C >, it checks
if all size-2 subsets of < A,B,C >, i.e., < A,B >, < B,C >, < A,C >, have
participation index greater θ. In case any of the subsets does pass the threshold,
then the pattern < A,B,C > would have been pruned. In our example, θ is set
to 0.20.
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After generating size k patterns from size k − 1 patterns, the algorithm com-
putes (at step-5) the table instances of all size k patterns. In our example, we
have only one size k pattern, viz., < A,B,C >. For creating the table instances
of size k patterns, the algorithms joins the table instances of size k − 1 pat-
terns. For our pattern < A,B,C >, these would be the table instances of the
< A,B > and < B,C > (any two table instances can be joined). The row
instances of < A,B > and < B,C > are processed in the followed way. Assume
a row instance < Ax, By > of < A,B > and a row instance < By, Cz > of
< B,C >. These row instances would be joined on the value on the common
attribute B to form a row instance of < A,B,C >. However, before accepting
< Ax, By, Cz > as a valid row instance of < A,B,C >, the algorithm tests if
Ax and Cz adhere to the definition of spatial neighbor R. If not, then the row
instance < Ax, By, Cz > is discarded. Figure 5 illustrates the size-3 pattern and
its table instance for our example. In our example, the row instances < A3, B4 >
and < B4, C1 > joined to form the row instance < A3, B4, C1 > of < A.B,C >.
Note that the join of row instances < A2, B4 > and < B4, C1 > would not be
accepted as the A2 and C1 are not spatial neighbors (refer Fig. 3).

Fig. 5. Size-3 co-locations pattern instances.

Following the computation of the table instances of size k patterns, the algo-
rithm determines its participation index. Any pattern with a participation index
less that θ is pruned out. The loop on line 3 of Algorithm 1 iterates until the size
of the pattern reaches the maximum possible of N (i.e., the number of feature-
types in the dataset). In our example shown in Fig. 1, the maximum possible
size of co-location pattern can be 3 (< A,B,C).

4 Theoretical Analysis

Lemma 1. Participation index of a Co-location pattern Ci = {f1, f2, . . . , fγ}
is anti-monotonic in number of features.

Proof. Consider a spatial Co-location pattern Ci = {f1, f2, . . . , fγ}. Participa-
tion ratio Pr(fk, Ci) of a feature type fk in the Co-location pattern Ci is given
by the following equation:

Pr(fk, Ci) = # distinct instances of fk participating in Ci

# instances of fk
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Participation index of Ci is defined as minfj∈Ci
{Pr(f j , Ci)}. In other words,

participation index of the Co-location pattern Ci is the lowest participation ratio
among all its component feature-types. For establishing anti-monotonicity, we
need to prove that participation index of another pattern Cj = {f1, f2, . . . , fγ ,
fβ} which contains one additional feature-type fβ (in addition to f1, f2, . . . , fγ)
is less than (or equal to) the participation index of Ci.

Without loss of generality, consider any feature type fα in Ci. Now, a new
feature-type fβ is being included in Ci (to create Cj). Consequently, the partic-
ipation ratio of fα would either decrease further or remain the same (at best).
This happens because numerator in the participation ratio is likely to decrease
or (at best) remain the same. Basically, now for a feature-instance of fα to be
included in a row instance of Cj it would have to be a spatial neighbor of one
additional feature-type fβ (in addition to features f1, f2, . . . , fγ). So the num-
ber of distinct feature-instances of fα in the numerator can either remain same
or decrease. In other words, Pr(fα, Cj) ≤ Pr(fα, Ci). Using a similar argument,
one can also show ∀f j ∈ Ci Pr(f j , Cj) ≤ Pr(f j , Ci).

Now, consider the newly added feature-type fβ . We have the following two
possibilities: (i) Pr(fβ , Cj) < Pr(f j , Cj)∀f j ∈ Ci or, (ii) there exists some
f j ∈ Ci such that Pr(fβ , Cj) > Pr(f j , Cj). In the first case, clearly the partici-
pation index of Cj would be less than (or equal to) that of Ci. This is because
Pr(f j , Cj) ≤ Pr(f j , Ci) ∀f j ∈ Ci. In the second case, the minimum of the par-
ticipation ratios would now come from one of the features originally present in
Ci. However, as we know Pr(f j , Cj) ≤ Pr(f j , Ci) ∀f j ∈ Ci,the participation
index of Cj would again be less than (or equal to) that of Ci.

5 Other Works in Spatial Co-Location Pattern Mining

Spatial Co-locations were originally proposed in [22,25,26]. Over the years, sev-
eral researchers have extended the traditional definition of co-location patterns
along multiple aspects. Following is brief summary of some of those works.

[8,9,14,15] brought in the notion of time into co-location patterns. In these
works, feature-instances have both spatial and temporal co-ordinates. [14,15]
defined the co-location patterns as partially ordered sets. More specifically, the
event instances participating in the co-location pattern were now related using a
spatio-temporal neighbor relation. On the other hand, [8,9] explored co-location
patterns in the domain of moving objects. Here, the input to the problem was a
series of snapshots of locations of feature-types over a time window. Each snap-
shot was a collection of feature-instances at a particular time point. Given such
a dataset, the goal was to determine co-location patterns which appear persis-
tently over a set of time frames (but not necessarily in consecutive snapshots).
In other words, for a set of feature-types to be considered as a valid pattern,
they must form a valid co-location pattern (as per a certain threshold on par-
ticipation index) at-least a certain number (given as threshold) of snapshots in
a given time-window.
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[5,6] explored the statistical significance aspect of co-location pattern dis-
covery. The notion of statistical significance is of particular importance in co-
location pattern mining. For instance consider the following scenario. We have
two features α and β in the dataset which are independent of each other but
abundant in quantity. In such a case, feature instances of α and β are likely
to fall next to each other and the co-location pattern mining algorithm would
return {α, β} as a valid pattern. Such spurious patterns can also arise if the
feature-types α and β are auto-correlated (i.e., feature instances have a natu-
ral tendency to cluster). In such a case, if clusters of two independent features
happen to overlap with each other, the participation index of the pattern {α, β}
would increase dramatically. To this end, [5,6] proposed a novel Null model
design where they take the underlying data-distribution characteristics of fea-
tures to create a random dataset. Following this they compare (using p-values)
the participation index of the pattern obtained in the real dataset against the
random dataset to check if the obtained pattern was statistically significant.
Basically, their approach creates several random datasets (having the same data
distribution as the original real dataset), and counts the number random datasets
which had a higher participation index for the pattern Ci generated by the algo-
rithm on the real dataset. The higher the number, the greater is the chance that
Ci was a random pattern.

[1] explored use of cross-k function [16] as an interest measure (instead of
participation index) in co-location pattern mining. They extended the tradi-
tional co-location pattern mining by attempting to determine the sub-region of
the given study region where the given two feature-types are associated to the
maximum extent. The primary challenge addressed in this paper was the non-
monotonic nature the cross-k function, whereby a larger area may have a smaller
value of the interest measure but its subset (a smaller area inside the large area)
may have a larger value of the interest measure.

[17,18] proposed algorithms which exploited high performance computing
(GPUs) for determining spatial co-location patterns.

6 Conclusion

Spatial Co-location pattern mining delves into the problem of determining fre-
quently co-occurring spatial feature-types in spatial dataset. These patterns
are fundamentally different from the traditional association rules defined for
transactions databases. Spatial co-locations have use-cases in several applica-
tion domains such as ecology, public health and public safety. Several works
explored this problem from multiple aspects. Participation index was one of the
popular interest measures used in co-location pattern mining.
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