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Abstract. Energy efficiency of a MapReduce system has become an essential
part of infrastructure management in the field of big data analytics. Here,
Hadoop scheduler plays a vital role in order to ensure the energy efficiency of
the system. A handful of MapReduce scheduling algorithms have been proposed
in the literature for slot-based Hadoop system (i.e., Hadoop 0.x and Hadoop 1.
x) to minimize the overall energy consumption. However, YARN-based Hadoop
schedulers have not been discussed much in the literature. In this paper, we
design a scheduling model for Hadoop YARN architecture and formulate the
energy efficient scheduling problem as an Integer Program. To solve the prob-
lem, we propose a Greedy scheduler which selects the best job with minimum
energy consumption in each iteration. We evaluate the performance of the
proposed algorithm against the FAIR and Capacity schedulers and find out that
our greedy scheduler shows better results for both CPU- and I/O intensive
workloads.
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1 Introduction

Hadoop MapReduce is the most prevalent distributed computing framework inspired
by Google’s MapReduce programming paradigm. The framework was initially used for
long batch processing of production jobs which are executed periodically in data
centers. Essentially Hadoop is an ecosystem and MapReduce is one of its core com-
ponents. The other components include HDFS [1], Pig [2], Hive [3], Mahout [4] and
ZooKeeper [5] etc. Four versions of Hadoop framework have been released since
inception, namely, Hadoop 0.x, Hadoop 1.x, Hadoop 2.x and Hadoop 3.x. The slot-
based resource management is used in Hadoop 0.x and Hadoop 1.x. On the other hand,
Hadoop 2.x and Hadoop 3.x use a fine-grained container based resource management
system known as YARN.

The performance of Hadoop is greatly influenced by its scheduler. Initially, the
main purpose of Hadoop to run large batch jobs such as web indexing and log mining.
Hence, users submit jobs to a queue, and the Hadoop execute the jobs in FIFO order.
However, the amount of data has increased substantially in Hadoop clusters that require
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various complex algorithms to be executed faster. In the view of this, a MapReduce
cluster is being shared among multiple users for a variety of workload. In a shared
environment, the scheduler first selects a user who generally submits multiple jobs of
different characteristics for execution. Hence, job selection is to be done next. Once the
job is selected, its map, reduce, or speculative tasks are scheduled for further execution.
It is not always true that a single scheduler schedules all three entities. At times, the
scheduler allocates resources to one or more entities depending upon the scheduling
policy being used. In July 2008, the scheduler in Hadoop became a pluggable com-
ponent and triggered the innovation in this domain.

A MapReduce scheduler has to cater various quality of service (QoS) requirements
of two stakeholders, namely, Hadoop user and Hadoop administrator. The QoS
parameter includes makespan, response time, availability, throughput, energy effi-
ciency, security and resource utilization etc. Here, energy efficiency is important for
Hadoop system administrator in today’s era of Green Computing. The U.S. Department
of Energy stated in its report that data centers consumed about 70 billion kilowatt-hours
of electricity in 2014 [6]. There is an increase in data center electricity consumption by
about 4% from 2010–2014, a large shift from the 24% percent increase estimated from
2005–2010 and the nearly 90% increase estimated from 2000–2005. The Hadoop
MapReduce framework is widely used in data centers to analyze the huge amount of
data. Thus, there is a need to consider the energy efficiency of MapReduce clusters by
designing energy-aware scheduling techniques to minimize energy consumption in a
Hadoop system.

In this paper, we formulate an energy efficient MapReduce scheduling problem for
YARN-based Hadoop framework as an Integer Program (IP). As the formulated
problem is NP-hard, we propose a greedy technique which allocates a task with
minimum energy consumption on a particular node. The rest of the paper is organized
as follows. Section 2 presents a short survey of related work in the area of energy
efficient scheduling in Hadoop framework. In Sect. 3 we prepare a scheduling model
for YARN architecture and formulated an energy efficient scheduling problem. We
then propose a greedy scheduler for the formulated problem in Sect. 4 and evaluate the
performance in Sect. 5. Lastly, Sect. 6 concludes the paper.

2 Related Work

Energy-efficient job scheduling techniques help to reduce the energy consumption in a
Hadoop system which can be further classified into two categories. In the first category,
the partial or whole cluster is usually kept on low power state whenever not in use in
order to reduce energy consumption. In the second category, map and reduce tasks are
placed on appropriate nodes to achieve better energy efficiency. Few of the techniques
[7, 8], that combine DVFS technique with task scheduling yields better results. A brief
discussion of energy efficient MapReduce scheduling techniques is as follows.

Leverich et al. [9] identified that cluster nodes might remain idle for 20–38% of the
time and hence proposed a method for energy management of MapReduce jobs by
selectively powering down nodes with low utilization. Further, using idle and low
utilization periods of cluster nodes, Lang et al. [10] proposed workload energy aware
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All-in-Strategy (AIS). AIS use batching for consistently low utilization periods. It
powers down all nodes during low utilization periods, batches the jobs and powers on
all nodes, performs all jobs and again power down all when all jobs are completed.

Chen et al. [11] designed an energy-efficient Map-Reduce workload manager called
Berkeley Energy-Efficient MapReduce (BEEMR). In the scheme, the cluster is split
into two zones i.e., a small interactive zone and a larger batch zone, each having
different percentages of available capacity in terms of task slots, memory, disk and
network. The interactive zone is always in full power state, while the batch zone
oscillates between full and low power state. BEEMR segregates interactive and batch
workloads into separate sub-clusters to improve energy efficiency.

Yigitbasi et al. [12] proposed an energy-efficient algorithm for scheduling hetero-
geneous workload to the heterogeneous cluster consisting of high and low power
machines. This provides an opportunity to save energy by intelligently placing jobs on
its corresponding energy-efficient machine. In case the available node does not match
the energy efficiency threshold, fairness and data locality criteria are used to select a job
and its task respectively for scheduling.

Mashayekhy et al. [13] proposed a framework for improving the energy efficiency
of MapReduce applications over heterogeneous machines while satisfying the service
level agreement (SLA). The problem of energy-aware scheduling of a single
MapReduce job has been modeled as an Integer Program called Energy-aware
MapReduce Scheduling (EMRS-IP) with a deadline as a constraint. Two heuristic
algorithms have been proposed to solve the EMRS-IP, called energy-aware MapRe-
duce scheduling algorithms (EMRSA-I and EMRSA-II). Both of these heuristics take
the energy efficiency differences of different machines into account and use a metric
called energy consumption rate of the map and reduce slots that characterize the energy
consumption of each machine and induces an order relation among the machines.

Bampis et al. [8] proposed energy-efficient scheduling algorithms for two different
scenarios to minimize the weighted completion time of a set of n MapReduce job with
a constraint of the energy budget. In the first scenario, the authors formulated the
problem as a linear program assuming that the order of the job execution is not fixed.
A polynomial time constant-factor approximation algorithm was derived to solve the
formulated problem. In the second scenario, the scheduling problem has been formu-
lated as a convex program with the order of jobs is given.

Cai et al. [7] proposed a YARN scheduler to minimize the energy consumption
with a deadline as a constraint unlike [8]. The proposed scheduler works at both, job
level and task level. At the job level, the scheduler in highly inspired by ARIA [14] and
competes for the jobs within its deadline. At the task level, energy efficiency has been
targeted through the user-space DVFS governor. While scheduling at the task level,
energy consumption of tasks at a specific node has not been considered as in [13].

3 System Modeling and Problem Formulation

A MapReduce job comprises a specific number of map and reduce tasks that are
executed on a cluster composed of multiple machines. Cluster may consist of a different
generation of machines implying heterogeneous hardware. The execution of jobs
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consists of a map phase followed by a reduce phase. In YARN setting, a task (either
map or reduce) may request a fixed amount of different resources available at a
machine for its execution. Multiple types of resources on each machine are allocated to
tasks in the form container. Each task request in YARN cluster is usually represented
by a tuple <p, r, n, l, b>, where p represents the priority of a task, r gives the resource
requirement vector of a task, n is the total number of tasks which have the same
resource requirements r, l represents the location of a task’s input data split, and b is a
boolean value to indicate whether a task can be assigned to a NodeManager that does
not have its input data split locally.

We consider a set of N MapReduce jobs J ¼ J1; J2; . . .. . .JNf g, which is submitted
to a YARN cluster S ¼ S1; S2; . . .. . .SMf g consisting of M machines. Each MapReduce
job Jj consists of two distinct sets of the map and reduce tasks and precisely defined as
Jj ¼ MTj [RTj, where MTj ¼ mj

1;m
j
2;m

j
3; . . .. . .m

j
m0

� �
is a set of m0 map tasks and

RTj ¼ r j1; r
j
2; r

j
3; . . .. . .r

j
r0

� �
is a set of r0 reduce tasks. The task mj

i represents the i
th map

task of jth job and similarly the task r ji represents the ith reduce task of jth job. Let the
execution start time and processing time of map task mj

i on kth machine is sm j
i and pmj

ik

respectively. Similarly, execution start time and processing time of reduce r ji on kth

machine is sr ji and pr jik respectively. It is to be noted that execution start time of a map
and reduce task is independent of machine on which it is scheduled.

Furthermore, we assume that K types of resources are available at each machine
represented by r1, r2, ……. rK. A two-dimensional matrix A of size M � K is used to
represent the current availability of resources at each node. A[i, j] indicates the total
amount of jth resource type rj available at i

th machine Si at a particular time instance Ø.
A matrix M of size N � K is also defined to store the amount of each resource type

rj required by map tasks of each job. The value M[i, j] indicates the amount of resource
type rj requested by map tasks of ith job for its execution. Similarly, a matrix R of size
N � K is also defined to store the amount of each resource type rj required by reduce
tasks of each job and value R[i, j] indicates the amount of resource type rj requested by
reduce tasks of an ith job for its execution.

The YARN scheduler can assign a map task of ith job to a worker node Sj for
execution as long as M i; p½ � �A j; p½ �; 8p 2 1;K½ �. Similarly, the scheduler can assign a
map task of ith job to a worker node Sj for execution as long as
M i; p½ � �A j; p½ �;8p 2 1;K½ �.

We consider that the machines are heterogeneous and em j
ik and er jik represents the

energy consumption of map task mj
i and reduce task r ji respectively at machine Sk

during the execution. We aim to minimize both, the energy consumption of whole
YARN cluster and the completion time of the execution of all n jobs (i.e., makespan).
We formulate the following energy-efficient MapReduce scheduling problem in YARN
cluster as an Integer Program (IP).

minimize
Xm0

i¼1

X
k2 1;M½ � em

j
ikX

j
ik þ

Xr0
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X
k2 1;M½ � er

j
ikY

j
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Xr0
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X
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j
i þ pr jikÞY j

ik; 8j 2 1; n½ �
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Subject to:

maxf sm j
i þ pmj

ik

� �
X j
ikg� sr ji0Y

j
i0k; 8j 2 1;N½ �; 8i 2 1;m0½ �; 8i0 2 1; r0½ �; 8k 2 1;M½ � ð1Þ

X
i;i02J [ð Þ M i; p½ �X j

ik þR i0; p½ �Y j
i0k �A j; p½ �; p 2 1;K½ �; j 2 1;M½ � ð2Þ

X j
ik ¼ 0; 1f g; 8j 2 1;N½ �; 8i 2 1;m0½ �; 8k 2 1;M½ � ð3Þ

Y j
ik ¼ 0; 1f g; 8j 2 1;N½ �; 8i 2 1; r0½ �; 8k 2 1;M½ � ð4Þ

sm j
i ; sr

j
i � 0 ð5Þ

where J(Ø) is a set of active jobs at particular time instance Ø.
In this formulation, there are two objective functions. First objective function

minimizes the energy consumption while executing the MapReduce application
whereas, the second objective minimizes the completion time of all jobs. Constraint (1)
ensures that for all MapReduce jobs, reduce tasks start only when all map tasks have
been completed. Constraint (2) requires that the resources consumed by all active tasks
at a particular worker node Sj cannot exceed its resource capacity. Constraints (3) and
(4) represents the integrality requirement for the decision variable. The decision vari-
able X j

ik takes the value 1 if map task mj
i is assigned to machine Sk and 0 otherwise.

Similarly Y j
ik takes the value 1 if reduce task r ji is assigned to machine Sk and 0

otherwise. Lastly, constraint (5) requires decision variables sm j
i and sr ji to be non-

negative.

4 Proposed Solution

The MapReduce scheduling problem formulated in the previous section is NP-hard
Integer Programming (IP) problem. There are mainly three approaches to solve NP-
hard IPs. First one is Heuristic approach which solves the IPs usually in polynomial
time with a sub-optimal result without any guarantee on the sub-optimality. The second
one is known as approximation algorithms which provides a sub-optimal result with an
assurance on the quality of the sub-optimal result. Finally, the third approach solves the
IPs optimally, however, takes exponential time e.g., Branch and Bound (B&B), Branch
and Cut, and cutting plane methods. We opt the first approach and use the energy
consumption of a task on a particular machine as a heuristic. We further use that
heuristic to greedily select a task to assign to a particular machine. The energy efficient
greedy approach minimizes the total energy consumption of the set of n jobs. We now
explain our proposed approach in detail.

4.1 Energy Efficient Greedy Approach

We propose a greedy approach without aiming makespan to schedule map and reduce
task over worker nodes. The scheduler is triggered whenever it receives the heartbeat
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message from any worker node N which is running the NodeManager demon. Upon
receiving the heartbeat message, scheduler groups all jobs in two sets: NodeLocal_Jobs
and RackLocal_Jobs. Jobs in the set NodeLocal_Jobs have a local copy of desired data
split at node N, whereas, jobs in RackLocal_Jobs have a copy of data split at a different
node which is in the same rack that of node N.

After grouping the jobs in two sets, the algorithm greedily selects a job first from
the set NodeLocal_Jobs. Precisely, it picks a job which has the least energy con-
sumption on node N and assigns as much map tasks as the available capacity of the
node. If no local job exists then, the algorithm searches the set RackLocal_Jobs and
greedily selects a job which has least energy consumption on node N. By this grouping
of jobs, the proposed scheduling algorithm gives preference to NodeLocal_Jobs to
achieve better data locality. This further improves energy efficiency because if a task
gets its data from the local node, it does not need to perform energy consuming
network I/O operation to move data split to its local node. The pseudo code of the
proposed greedy approach for map tasks is given in Algorithm 1.

In case of reduce tasks, the algorithm does not consider any data locality metric
while assigning tasks. Data locality for reduce tasks is hard to achieve because reduce
task receives the output of various map tasks running on many different nodes. For
assigning the reduce task, the algorithm considers the whole job set and pics the best
job which has the least energy consumption on the node from which heartbeat message
is received. The pseudo code of the proposed greedy approach for reduce task is given
in Algorithm 2.
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5 Experimental Results and Discussions

In this section, we will evaluate the performance of proposed energy efficient greedy
scheduler on the basis of total energy consumption and completion time and compare
the results with FAIR and Capacity schedulers. Before illustrating the final results, we
mention the cluster configurations, workload and energy model used in our
experiments.

5.1 Cluster Setup

We use a heterogeneous YARN cluster which is composed of four high-end machines.
We use three different configurations of the machine to build the cluster. Two of the
nodes have 12 cores of 2.6 GHz (Intel Xeon E5-2690 v3) with 32 GB of RAM and
1 TB of hard disk. The third node has 4 core of 3.5 GHz (Intel Xeon E3-1270 v3), with
16 GB RAM and 500 GB of HDD and the fourth one has 4 cores of 3.8 GHz (Intel
Xeon E3-1270 v6), with 8 GB RAM, and 500 GB of HDD. Energy consumption of
various components in these nodes are shown in Table 1.

Table 1. Energy consumption of various components in cluster nodes

Node type CPU power
CPU POWð Þ

Disk read/write power
DISK POWð Þ

NIC I/O power
NIC POWð Þ

Intel Xeon E5-
2690 v3

135 W 4.5 W 1.2 W

Intel Xeon E3-
1270 v3

80 W 3 W 1.2 W

Intel Xeon E3-
1270 v6

72 W 3 W 0.8 W

Upon receiving a heartbeat from node N: 
Let R_Jobs be set of jobs whose map tasks are 
finished 
Best_Job  SelectBestJob(R_Jobs, N) 
TaskAssignment(Best_Job, N) 
SelectBestJob(JobsList L, Node N) 

return argminj∈ L  
TaskAssignment(Job J, Node N)  
Assign as much map tasks of job J as the total 
remaining capacity of node N 

Algorithm 2: 
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5.2 Workload Mix Used

We use two different workloads; (i) CPU- intensive and (ii) I/O-intensive. For CPU-
intensive workload, we use WordCount job which counts the frequency of words in a
text file. Whereas, for I/O intensive workload we use TeraSort job which sorts the
terabytes of numbers.

5.3 Energy Model Used for Profiling

We assume that energy consumption of map/reduce tasks at every node in the cluster
are known to the proposed algorithm in advance that can be easily measured by energy
profiling. In order to profile WordCount and Terasort jobs, we run the single job on
every node multiple time and take mean of all recorded values. We note that certain
activity like CPU processing, Disk I/O and network I/O consumes energy during the
execution of any map and reduce task. In view of this, we devise the Eq. 6 for
calculating the energy consumption of a map task. Energy consumption of reduce task
can be measured in the same manner.

em j
ik ¼ C j

ik � CPU POWk þDj
ik � DISK POWk þN j

ik � NIC POWk ð6Þ

Where symbols have the following interpretations.

Symbol Meaning

C j
ik

CPU time in ms

CPU POWk CPU power in watt

Dj
ik

Total disk input/output in bytes

DISK POWk Disk power consumption/byte read or written

N j
ik

Number of shuffle bytes

NIC POWk NIC power consumption/byte sent or received

5.4 Parameters Used for Evaluation

We use total energy consumption and completion time of all jobs (i.e., makespan) for
comparing the greedy scheduler with FAIR and Capacity schedulers. We use both
workloads for each of these evaluation parameters. During the experiments, we
gradually increase the workload size for 5 jobs to 15 jobs. For each job, the input file
size is kept 4 GB and block size at HDFS layer is kept 128 MB with a replication
factor of 3. This creates 32 map tasks for each job and no of reducers explicitly set as 4.

5.5 Results

We perform two sets of experiments: one for measuring energy efficiency and another
for measuring completion time. For energy efficiency experiments we perform a test on
both workloads separately.
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Energy Efficiency
We first evaluate the performance of the proposed scheme on the basis of total energy
consumed during the execution of a set of jobs. We perform three sets of experiments
with 5, 10 and 15 jobs individually for WordCount and TeraSort jobs. These experi-
ments show (Figs. 1 and 2) that proposed Greedy scheme performs 15% and 17%
better on average in comparison to FAIR and Capacity scheduling algorithm respec-
tively for I/O intensive workload. In the case of CPU intensive workload, the proposed
scheme performs up to 16% and 20% better in comparison to FAIR and Capacity
algorithm respectively.

Completion Time
We further evaluate the performance of the proposed algorithm on the basis of com-
pletion time of all jobs. Here, in Figs. 3 and 4, we see that for both CPU- and I/O
intensive workload, the greedy scheduler does not achieve better completion time than
FAIR and Capacity scheduler. The reason for this degradation is due to consideration
of only energy fitness metric during task assignment by the proposed greedy scheme.
Hence we conclude that our greedy approach achieves better energy efficiency at the
cost of job completion time. This motivates us to include the time parameter in our
heuristic besides energy consumption.

11

19
.3 24

.5

7.
5

16
.4 20

.8

7.
9

16
.2 21

.4

5 1 0 1 5

CO
M
PL
ET
IO
N
TI
M
E
(S
)

NO. OF JOBS

WORDCOUNT
Greedy FAIR Capacity

Fig. 3. Completion time of all jobs for I/O-
intensive workload

8.
2 12

.4 19
.4

6.
5 9.
2

16
.2

6.
9 9.
3

16
.1

5 1 0 1 5

CO
M
PL
ET
IO
N
TI
M
E
(S
)

NO. OF JOBS

TERASORT
Greedy FAIR Capacity

Fig. 4. Completion time of all jobs for I/O-
intensive workload

83
2 15
40 24
50

99
0 17
80 28
00

10
20 18
80 27
50

5 1 0 1 5

EN
ER

GY
CO

N
SU

M
PT

IO
N
(J)

NO. OF JOBS

WORDCOUNT
Greedy FAIR Capacity

Fig. 1. Energy consumption of jobs for
CPU-intensive workload

52
0 10
20 14
50

65
0 11
20 16
70

69
0 12
30 16
20

5 1 0 1 5

EN
ER

G
Y
CO

N
SU

M
PT

IO
N
(J)

NO. OF JOBS

TERASORT
Greedy FAIR Capacity

Fig. 2. Energy consumption of jobs for I/O-
intensive workload

290 V. Pandey and P. Saini



6 Conclusion

Energy efficient scheduler in YARN system is a critical component in the era of Green
Computing. In this paper, we presented a scheduling model for YARN architecture and
formulated an energy efficient scheduling problem as an Integer Program at task level
of scheduling hierarchy. We proposed a greedy scheduler which selects the best job in
terms of energy efficiency upon receiving the heartbeat message. Experimental results
show better energy consumption performance of the proposed scheme in comparison to
both FAIR and Capacity scheduler. In future work, we aim to develop a scheduler
which minimizes the energy consumption and completion time of the last job.
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