
Demo: Stabilization Technique
in INTO-CPS

Cláudio Gomes2,4(B), Casper Thule1, Kenneth Lausdahl5,
Peter Gorm Larsen1, and Hans Vangheluwe2,3,4

1 DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
{casper.thule,pgl}@eng.au.dk

2 University of Antwerp, Antwerp, Belgium
{claudio.gomes,hans.vangheluwe}@uantwerp.be

3 McGill University, Montreal, Canada
4 Flanders Make, Lommel, Belgium

5 Mjølner Informatics A/S, Aarhus, Denmark
Kenneth@lausdahl.com

Abstract. Despite the large number of applications and growing inter-
est in the challenges that co-simulation poses, the field is fragmented into
multiple application domains, with limited sharing of knowledge.

This demo promotes a deeper understanding of a well known stabi-
lization feature in co-simulation, which is used in the INTO-CPS tool
chain.

We develop the techniques that explain the empirical results of insta-
bility of the double mass-spring-damper system, and how to the stabiliza-
tion feature improves the results. Moreover, we show how the restrictions
of the Functional Mock-up Interface Standard impacts stability.

Keywords: Stability · Simulation · Co-simulation

1 Introduction

INTO-CPS provides an entire tool chain [8] that enables combining different
tools and formalisms using co-simulation [6]. This demo provides the theoretical
rationale for the stabilization feature of the Co-simulation Orchestration Engine
from INTO-CPS called Maestro [12]. The feature will be illustrated with a small
case study that is documented online [10].

This demo assumes that the reader is familiar with the main concepts in
co-simulation (see, e.g., [7]).

This work was executed under the framework of the COST Action IC1404 – Multi-
Paradigm Modelling for Cyber-Physical Systems (MPM4CPS), and partially supported
by: Flanders Make vzw, the strategic research centre for the manufacturing industry;
and PhD fellowship grants from the Agency for Innovation by Science and Technology
in Flanders (IWT, dossier 151067).

c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 45–51, 2018.
https://doi.org/10.1007/978-3-030-04771-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04771-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-04771-9_4


46 C. Gomes et al.

In the next section, we describe the principles of stability analysis for lin-
ear Ordinary Differential Equations (ODEs), and linear discrete time systems.
Then, in Sect. 3, we apply these principles to analyse the numerical stability of
the commonly used Jacobi algorithm within the FMI context, and the stabi-
lization method used in INTO-CPS. While the master algorithms are applicable
outside the Functional Mockup Interface (FMI) context, the FMI version 2.0 has
constraints that makes the stability analysis not applicable to other contexts.

2 Stability of Linear Systems

This section is based on [7].

Notation. We denote vectors with bold face, and we use capital letters for
matrices and vector valued functions. Given a vector x, we denote its trans-
pose as xT . Furthermore, we denote the i-th element of vector x by xi, so that
x =

[
x1 x2 · · · xn

]T . Similarly, Fi(x) denotes the i-th element of the vector
returned by F (x).

A linear ODE has the following form:

ẋ = Ax, (1)

where x(t) is a vector function, and A is a constant matrix. When an initial
condition in the form x(0) = x0 is specified, we denote Eq. (1) as an Initial
Value Problem (IVP).

Example 1. The mass-spring-damper system, illustrated in Fig. 1a, is modelled
by the following second order ordinary differential equation:

ẍ =
1
m

(−cx − dẋ + fe(t)),

where x denotes the position of the mass, c > 0 is the stiffness coefficient of the
spring, d > 0 is the damping constant of the damper, t is time, and fe(t) denotes
an external force exerted on the mass.

The above equation can be put into the form of Eq. (1) by introducing a new
variable for velocity, v = ẋ, and letting the vector x =

[
x v

]T . Given an initial
position x0 and velocity v0, we obtain the following:

ẋ =
[
ẋ
v̇

]
= F (

[
x
v

]
, fe(t)) =

[
v

(1/m)(−cx − dv + fe(t))

]
, with x(0) =

[
x0

v0

]
.

Figure 1b shows the solution of the position component of the mass-spring-
damper IVP, introduced in Example 1, and will be explained below. The solution
to the velocity component is omitted.

We say that the system in Eq. (1) is asymptotically stable when all its solu-
tions tend to zero as time passes, regardless of the initial value specified. For-
mally,

lim
t→∞ ‖x(t)‖ = 0, for all x(t) satisfying Eq. (1). (2)



Demo: Stabilization Technique in INTO-CPS 47

(a) (b)

Fig. 1. Position (and its approximations) over time of the mass-spring-damper system.

Parameters are: h = 0.1,m = c = 1, d = 10−4, fe(t) = 0,x0 =
[
1 0

]T
.

An ODE in the form of Eq. (1) is asymptotically stable, i.e. it satisfies Eq. (2),
if the real part of all eigenvalues of A is strictly negative. Formally,

∀λ ∈ Eig(A), Re{λ} < 0. (3)

This condition can be computed easily in most programming languages.
To approximate the solution to the IVP in Example 1, one can use the forward

Euler method:

x(t + h) ≈ x(t) + Ax(t)h = (I + Ah)x(t), with x(0) = x0, (4)

where I is the identify matrix with the appropriate dimensions, and h > 0 is the
given simulation step size.

In general, for a given matrix Ã, a system on the form

x(t + h) = Ãx(t), (5)

is stable if ρ(Ã) < 1, where ρ(Ã) is the spectral radius [9] of Ã.

3 Stability Analysis of FMI Orchestration Algorithms

Fig. 2. Double mass-spring-damper
with two subsystems: S1 and S2.

Our aim is to encode the co-simulation as
a system in the form of Eq. (5). We per-
form this for a two-simulator system using
two orchestration algorithms: the tradi-
tional Jacobi method, and the stabilization
method used by INTO-CPS. A two simula-
tor system introduced in [10] is illustrated
in Fig. 2. More details about this example
are given in [6, Sect. 4]. For more examples
of stability analysis in co-simulation, refer
to [2–5].



48 C. Gomes et al.

3.1 Co-simulation Unit Modelling

In the context of co-simulation, time is discretized into a countable set T =
{t0, t1, t2, . . .} ⊂ R, where ti+1 = ti + Hi is the time at step i and Hi is the
communication step size at step i, with i = 0, 1, . . .

Simulators exchange outputs only at times t ∈ T .
In the interval t ∈ [ti, ti+1], each simulator Sj approximates the solution to

a linear ODE,
ẋj = Ajxj + Bjuj

yj = Cjxj + Djuj

(6)

where xj is the state vector, yj is the output vector, Aj , Bj , Cj ,Dj are matrices,
the initial state xj(ti) is computed in the most recent co-simulation step, and
j = 1, 2.

Since the simulators only exchange outputs at times ti, ti+1 ∈ T , the input
uj has to be extrapolated in the interval [ti, ti+1). In the simplest co-simulation
strategy1, this extrapolation is often implemented as a zero-order hold: ũj(t) =
uj(ti), for t ∈ [ti, ti+1). Then, Eq. (6) can be re-written to represent the unforced
system being integrated by each simulator:

[
ẋj

˙̃uj

]
=

[
Aj Bj

0 0

] [
xj

ũj

]
(7)

We can represent the multiple internal integration steps of Eq. (7), performed
by the simulator Sj in the interval t ∈ [ti, ti+1], as

[
x̃j(ti+1)
ũj(ti+1)

]
= Ã

kj

j

[
x̃j(ti)
ũj

]
(8)

where, e.g., Ãj = I + hj

[
Aj Bj

0 0

]
for the Forward Euler method, kj = (ti+1 −

ti)/hj is the number of internal steps, and 0 < hj ≤ Hi is the internal fixed step
size that divides Hi.

Therefore, each co-simulation unit can be modelled as a discrete time system:
[
x̃j(ti + H)
ũj(ti + H)

]
=

[
M1,xj

M1,uj

M2,xj
M2,uj

] [
x̃j(ti)
uj(ti)

]
(9)

with

Ã
kj

j =
[
M1,xj

M1,uj

M2,xj
M2,uj

]
.

1 The derivation presented can be applied to more sophisticated input extrapolation
techniques, see [1, Eq. (9)].



Demo: Stabilization Technique in INTO-CPS 49

3.2 FMI Jacobi Algorithm

We assume without loss of generality that the two simulators are coupled in a
feedback loop, that is,

u1 = y2 and u2 = y1. (10)

And, to avoid algebraic loops and keep the exposition short, we assume that
either D1 or D2 (recall Eq. (6)) is the zero matrix. Let D2 = 0.

The ideal Jacobi coupling would be described by:

u1(t) = y2(t) = C2x̃2(t)
u2(t) = y1(t) = C1x̃1(t) + D1u1(t)

(11)

However, due the FMI restrictions [11, Restriction 1], the actual coupling is:

u1(ti) = C2x̃2(ti)
u2(ti) = C1x̃1(ti) + D1ũ1(ti).

(12)

Applying Eq. (12) to ti+1 and using Eq. (9), yields:

x̃1(ti+1) = M1,x1 x̃1(ti) + M1,u1C2x̃2(ti)
ũ1(ti+1) = M2,x1 x̃1(ti) + M2,u1C2x̃2(ti)
x̃2(ti+1) = M1,u2C1x̃1(ti) + M1,u2D1ũ1(t) + M1,x2 x̃2(ti)
ũ2(ti+1) = M2,u2C1x̃1(ti) + M2,u2D1ũ1(t) + M2,x2 x̃2(ti)

(13)

which can be arranged to the form of Eq. (5):
⎡

⎢
⎢
⎣

x̃1(ti+1)
ũ1(ti+1)
x̃2(ti+1)
ũ2(ti+1)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

M1,x1 0 M1,u1C2 0
M2,x1 0 M2,u1C2 0

M1,u2C1 M1,u2D1 M1,x2 0
M2,u2C1 M2,u2D1 M2,x2 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x̃1(ti)
ũ1(ti)
x̃2(ti)
ũ2(ti)

⎤

⎥
⎥
⎦ (14)

3.3 INTO-CPS Method

The method used in INTO-CPS is a sucessive substitution fixed point iteration,
described by:

u1(ti+1) = C2x̃2(ti+1)
u2(ti+1) = C1x̃1(ti+1) + D1u1(ti+1)

(15)

The above equation can be expanded and simplified to:

x̃1(ti+1) = M1,x1 x̃1(ti) + M1,u1C2x̃2(ti+1)
u1(ti+1) = M2,x1 x̃1(ti) + M2,u1C2x̃2(ti+1)
x̃2(ti+1) = M1,x2 x̃2(ti) + M1,u2C1x̃1(ti+1) + M1,u2D1u1(ti+1)
u2(ti+1) = M2,x2 x̃2(ti) + M2,u2C1x̃1(ti+1) + M2,u2D1u1(ti+1)

(16)



50 C. Gomes et al.

which can be put in matrix form:
⎡

⎢
⎢
⎣

x̃1(ti+1)
u1(ti+1)
x̃2(ti+1)
u2(ti+1)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

M1,x1 0 0 0
M2,x1 0 0 0

0 0 M1,x2 0
0 0 M2,x2 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x̃1(ti)
u1(ti)
x̃2(ti)
u2(ti)

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

0 0 M1,u1C2 0
0 0 M2,u1C2 0

M1,u2C1 M1,u2D1 0 0
M2,u2C1 M2,u2D1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x̃1(ti+1)
u1(ti+1)
x̃2(ti+1)
u2(ti+1)

⎤

⎥
⎥
⎦

(17)

Renaming the above equation to x̄i+1 = M̄ix̄i + M̄i+1x̄i+1, we get an equation
in the form of Eq. (5):

x̄i+1 = (I − M̄i+1)−1M̄ix̄i (18)

In most cases in practice, ρ((I − M̄i+1)−1M̄i) is smaller than the spectral
radius of the matrix in Eq. (14). The practical results of this analysis are shown
in the case study described in [10].

This can be generalized. However, in practice, one must be aware of the
internal details of each co-simulation unit, which is usually difficult. As such,
this analysis can be used to determine the best orchestration algorithm, without
providing guarantees.

References

1. Busch, M.: Continuous approximation techniques for co-simulation methods: anal-
ysis of numerical stability and local error. J. Appl. Math. Mech. 96(9), 1061–1081
(2016)

2. Gomes, C., Jungers, R., Legat, B., Vangheluwe, H.: Minimally constrained
stable switched systems and application to co-simulation. Technical report.
arXiv:1809.02648 (2018), http://arxiv.org/abs/1809.02648

3. Gomes, C., Legat, B., Jungers, R., Vangheluwe, H.: Minimally constrained sta-
ble switched systems and application to co-simulation. In: IEEE Conference on
Decision and Control, Miami Beach, FL, USA (2018). To be published

4. Gomes, C., Legat, B., Jungers, R.M., Vangheluwe, H.: Stable adaptive co-
simulation: a switched systems approach. In: IUTAM Symposium on Co-Simulation
and Solver Coupling, Darmstadt, Germany (2017). To appear

5. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
state of the art. Technical report, February 2017. http://arxiv.org/abs/1702.00686

6. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. 51(3) (2018). Article 49

7. Gomes, C., Thule, C., Larsen, P.G., Denil, J., Vangheluwe, H.: Co-simulation
of continuous systems: a tutorial. arXiv:1809.08463 [cs, math], September 2018.
http://arxiv.org/abs/1809.08463

8. Larsen, P.G., Fitzgerald, J., Woodcock, J., Gamble, C., Payne, R., Pierce, K.:
Features of integrated model-based co-modelling and co-simulation technology. In:
Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 377–390. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 26

http://arxiv.org/abs/1809.02648
http://arxiv.org/abs/1809.02648
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1809.08463
http://arxiv.org/abs/1809.08463
https://doi.org/10.1007/978-3-319-74781-1_26


Demo: Stabilization Technique in INTO-CPS 51

9. Strang, G.: Introduction to Linear Algebra, vol. vol, p. 3. Wellesley-Cambridge
Press, Wellesley (1993)

10. Thule, C.: Mass-spring-damper Case Study (2018). https://github.com/INTO-
CPS-Association/example-mass spring damper

11. Thule, C., Gomes, C., Deantoni, J., Larsen, P.G., Brauer, J., Vangheluwe, H.:
Towards verification of hybrid co-simulation algorithms. In: 2nd Workshop on For-
mal Co-Simulation of Cyber-Physical Systems, Toulouse, France. Springer, Cham
(2018). To be published

12. Thule, C., Lausdahl, K., Larsen, P.G., Meisl, G.: Maestro: The INTO-CPSCo-
simulation orchestration engine (2018). Submitted to Simulation Modelling Prac-
tice and Theory

https://github.com/INTO-CPS-Association/example-mass_spring_damper
https://github.com/INTO-CPS-Association/example-mass_spring_damper

	Demo: Stabilization Technique in INTO-CPS
	1 Introduction
	2 Stability of Linear Systems
	3 Stability Analysis of FMI Orchestration Algorithms
	3.1 Co-simulation Unit Modelling
	3.2 FMI Jacobi Algorithm
	3.3 INTO-CPS Method

	References




