
Short-Cut Rules
Sequential Composition of Rules
Avoiding Unnecessary Deletions

Lars Fritsche1(B) , Jens Kosiol2(B) , Andy Schürr1 ,
and Gabriele Taentzer2

1 TU Darmstadt, Darmstadt, Germany
{lars.fritsche,andy.schuerr}@es.tu-darmstadt.de
2 Philipps-Universität Marburg, Marburg, Germany
{kosiolje,taentzer}@mathematik.uni-marburg.de

Abstract. Sequences of rule applications in high-level replacement sys-
tems are difficult to adapt. Often, replacing a rule application at the
beginning of a sequence, i.e., reverting a rule and applying another one
instead, is prevented by structure created via rule applications later on
in the sequence. A trivial solution would be to roll back all applications
and reapply them in a proper way. This, however, has the disadvantage
of being computationally expensive and, furthermore, may cause the loss
of information in the process. Moreover, using existing constructions to
compose the reversal of a rule with the application of another one, in
particular the concurrent and amalgamated rule constructions, does not
prevent the loss of information in case that the first rule deletes ele-
ments being recreated by the second one. To cope with both problems,
we introduce a new kind of rule composition through ‘short-cut rules’.
We present our new kind of rule composition for monotonic rules in
adhesive HLR systems, as they provide a well-established generalization
of graph-based transformation systems, and motivate it on the example
of Triple Graph Grammars, a declarative and rule-based bidirectional
transformation approach.

Keywords: Rule composition · Amalgamated rule
E-concurrent rule · Triple graph grammars

1 Introduction

High-level replacement (HLR) systems [2,3] are a useful generalization for trans-
forming various kinds of high-level structures, such as graphs, in a rule-based
manner. Transformation processes consist of sequences of rule applications.
These sequences effectively de-/construct and modify structures, yet, they also
implicitly create dependency relationships: an earlier rule application may be
the precondition for a later one. Often, these relationships prevent rule applica-
tions at the beginning of a sequence to be replaced by another one, as reverting
c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 415–430, 2018.
https://doi.org/10.1007/978-3-030-04771-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04771-9_30&domain=pdf
http://orcid.org/0000-0003-4996-4639
http://orcid.org/0000-0003-4733-2777
http://orcid.org/0000-0001-8100-1109
http://orcid.org/0000-0002-3975-5238
https://doi.org/10.1007/978-3-030-04771-9_30


416 L. Fritsche et al.

the former would destruct preconditions used for transformations later in the
sequence. A trivial solution would be to roll back all applications that depend
on each other, until reaching the one that is to be replaced, and reapply them
in a proper way. However, rolling back and recreating these sequences has the
disadvantage of being computationally expensive and, furthermore, may cause
the loss of information in the process. Thus, it would be highly beneficial to
replace rule applications in a – preferably also rule-based – way that preserves
the remaining sequence. Existing approaches to rule composition, namely the
parallel, concurrent, and amalgamated rule constructions [1–3], are not apt to
deal with that kind of dependency.

Hence, we introduce a novel kind of rule composition through short-cut rules
whose applications serve as an alternative to possibly long chains of replacement
actions. A short-cut rule composes the reversal of a monotonic rule, i.e., of a rule
which only creates structure, with the application of a second one. Yet, doing
this, the short-cut rule identifies elements, deleted by reverting the first rule, with
elements, created by the second one, hereby preserving them. This preservation
allows for applications of short-cut rules even in situations where the reversal of
the first rule itself is impossible. We accomplish this by pair-wisely comparing
the rules of a given HLR system searching for common substructures. Conse-
quently, we exploit this information for creating short-cut rules that preserve
those common substructures. While the approach is formalized for monotonic
rules in HLR systems in general, we use Triple Graph Grammars (TGGs) [10]
as example for demonstration purposes. TGGs are an established formalism for
the declarative description of complex consistency relationships between two
modelling languages with graph-like representations. They are especially useful
for efficiently checking and restoring the consistency of a given pair of models
[9] or for generating possible combinations of consistent pairs of models; unfor-
tunately, they do not offer adequate means for the specification of arbitrarily
complex editing operations that directly transform one consistent pair of models
into another consistent pair of models. With our contribution we are able to solve
a common problem of TGGs by using our novel rule composition scheme to take
a set of TGG rules as input and produce a set of short-cut rules as output. The
rule composition scheme guarantees that any combination of inverse and normal
applications of TGG rules can be replaced by short-cut rules and may even be
executed in several situations where the inverse application is impossible. They
have the additional advantage of preserving some graph elements which other-
wise would be deleted by the corresponding inverse application of a TGG rule
and be recreated by the corresponding normal application of a TGG rule.

The main contributions of this paper are as follows: We illustrate the use of
short-cut rules in the context of TGGs (Sect. 2). We formalize the construction
of short-cut rules and prove the Short-Cut Theorem (Theorem 7), settling the
synthesizability of applications of monotonic rules into an application of a short-
cut rule and the analysability of applications of a short-cut rule into applications
of monotonic rules (Sect. 4). We formally compare our new kind of rule composi-
tion with existing ones (Sect. 5). Furthermore, in Sect. 3 we recall transformation



Short-Cut Rules 417

rules and HLR systems. Section 6 concludes the paper and points to some future
work. For most of the proofs we refer to a long version of this paper [4].

2 Introductory Example

The construction and use of short-cut rules is motivated at the example of consis-
tency between a simplified class diagram and a custom documentation structure.
It is an excerpt of, and based on the example provided by Leblebici et al. [8],
yet, in a simplistic form to show the basic idea of our approach. Thus, it con-
tains no (propagation of) attributes, which will be covered in future work. Our
example is an excerpt from a consistency specification between a class diagram
and a documentation structure using Triple Graph Grammars (TGGs). It thus
consists a Package structure containing Classes on the one side and a Folder
structure containing Doc-Files on the other.

TGGs [10] are a declarative, rule-based bidirectional transformation app-
roach proposed by Schürr. Given two input meta-models, a TGG specification
defines consistency between instances of both. To this end, it consists of a finite
set of graph grammar rules that define how consistent pairs of both models
co-evolve. In order to relate elements from both sides, TGGs introduce a third
meta-model, which is referred to as the correspondence meta-model. It is used
to connect elements of both sides such that they become correlated and thus
traceable.

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

f :
Folder

p :
Package

f : 
Folder

p : 
Package

doc : 
Doc-File

c : 
Class

doc : 
Doc-File

CreateRoot-Rule:

CreateSub-Rule:

CreateLeaf-Rule:

Fig. 1. A TGG to co-evolve class diagram and documentation structure

Figure 1 shows the rule set for our example consisting of three TGG rules. The
first rule depicts the base TGG rule of the given rule set. Since its left-hand side
(LHS) L is empty, and thus no precondition exists, it can always and arbitrarily
often create a root Package together with a root Folder and a correspondence
link between both. Given the context from the LHS, the second rule creates
a Package and Folder hierarchy where every sub-folder has a Doc-File that
may contain the documentation of the corresponding Package. Finally, the third



418 L. Fritsche et al.

rootF : 
Folder

rootP: 
Package

f : 
Folder

p : 
Package

d : 
Doc-File

subF : 
Folder

subP : 
Package

subD : 
Doc-File

cDoc : 
Doc-File

c : 
Class

rootF : 
Folder

rootP: 
Package

f : 
Folder

p : 
Package

subF : 
Folder

subP : 
Package

subD : 
Doc-File

cDoc : 
Doc-File

c : 
Class

Fig. 2. Two examples for consistent triples

rule creates a Class together with a corresponding Doc-File analogously to the
Package and Folder of the previous rule.

Given these rules, one can create consistent graph triples, such as those shown
in Fig. 2. The exemplary triple on the left consists of a hierarchy of three Pack-
ages on the left side which are correlated to a similar hierarchy of Folders via
correspondence links. However, the Folders f and subF additionally contain their
own Doc-File. Thus, the triple was created via four consecutive applications of
TGG rules by applying first CreateRoot-Rule, followed by CreateSub-Rule twice
and finally CreateLeaf-Rule.

An important point about this transformation sequence is that it creates
entities for both the class diagram and the documentation structure simulta-
neously, but the resulting model does not contain any information about the
contents of the created elements. This means that, in practical applications, the
user may add data manually which is not correlated to the other side, like lay-
out information for the class diagram or textual descriptions as the contents of
Doc-Files. Due to this lack of correlation, one has to be careful on how to change
models in order to avoid unnecessary data loss. Given the model on the left side
of Fig. 2, a reasonable example for such a change would be the separation of the
first two hierarchy levels making the former sub-elements p and f to be root ele-
ments by effectively deleting the connection to their former root elements (and
the superfluous Doc-File) as is depicted on the right side of Fig. 2. However, no
rule of the current grammar is able to perform such a change and to modify the
triple by hand is a tedious and error-prone task that can create triples which do
not longer comply with the TGG language. To solve this issue and to create a
triple graph which contains Package p and Folder f as additional roots (and is
unmodified otherwise) we have to proceed as follows: We have to roll back all
rule applications except the first one (CreateRoot-Rule) and recreate the deleted
parts of the graph triple from scratch again – despite the fact that the intended
modification affects only a small portion of the graph triple. Executing this strat-
egy with large hierarchies has two major disadvantages. First, it is tedious and
might be computationally expensive for complex models. Second, one may loose
a large amount of manually added data.



Short-Cut Rules 419

supP :
Package

f : 
Folder

p: 
Package

supF :
Folder

f : 
Folder

p: 
Package

supP :
Package

supF :
Folder

d : 
Doc

Root-To-Sub-
Short-Cut-Rule:

Sub-To-Root-
Short-Cut-Rule:

f : 
Folder

p: 
Package

supP :
Package

supF :
Folder

f : 
Folder

p: 
Package

supP :
Package

supF :
Folder

d : 
Doc

Fig. 3. Two examples for short-cut rules (interface K of rules given implicitly as L∩R)

However, when studying the TGG rules of Fig. 1 in detail, we see that
CreateRoot-Rule and CreateSub-Rule have common substructures, i.e., we can
find nodes and edges of the same type arranged in the same way in left- and
right-hand sides of both rules. In our example, such a common substructure of
their right-hand sides (RHS) R stems from the fact that both rules create a
Package and a Folder together with a correspondence link between those two
elements. It consists of the Folders f and Packages p but does not include the
Doc-File only contained by CreateSub-Rule.

Taking a closer look at our example in Fig. 2, one can see how this insight
propagates to the model level and that the only difference between a root-Folder
and a sub-Folder is that the latter one possesses an additional Doc-File and has
an incoming hierarchy edge. Hence, one might want to exploit this knowledge by
replacing a TGG rule application somewhere in a sequence of rule applications by
another similar rule application such that formerly created elements are possibly
preserved and the need to roll back sub-sequences does not arise. In the current
case this would mean to preserve all elements that are contained in the root
elements by changing the CreateSub-Rule-application to become a CreateRoot-
Rule-application. Therefore, we have to use the common parts of both rules to
create a new rule which directly transforms the left to the right graph triple
depicted in Fig. 2, which again is an element of the language of the TGG of
Fig. 1. Thus, the result of the application of such a ‘short-cut rule’ looks like the
composition of the effects of the reverse application of CreateSub-Rule followed
by the application of CreateRoot-Rule. Implicitly, the application of the short-
cut rule operates as a kind of meta-rule on sequences of TGG rule applications
as it replaces an occurrence of a rule with the occurrence of another rule in an
arbitrarily long sequence of rule applications. Figure 3 depicts two short-cut rules
that enable to replace CreateRoot-Rule with CreateSub-Rule and vice versa. In
our example, Sub-To-Root-Short-Cut-Rule replaces an occurrence of CreateSub-
Rule with an occurrence of CreateRoot-Rule as shown in Fig. 4. Note, however,
that short-cut rules extend the set of rules rather than replace it.

It, thus, preserves the consistency of the graph triple of Fig. 2 by selecting
the elements p and f as new root elements and by deleting the now superfluous



420 L. Fritsche et al.

Root-Rule 
Application

Root-Rule 
Application

Sub-Rule 
Application

Leaf-Rule 
Application

Sub-Rule 
Application

Sub-Rule 
Application

Leaf-Rule 
Application

Root-Rule 
Application

Sub-To-Root-
Short-Cut-Rule 

Application

Fig. 4. Example: application of short-cut rule

d element associated with f as well as the edges connecting rootP and rootF to
p and f, respectively. This singular application of one short-cut rule stands in
contrast to the deletion and recreation of the affected triple graph from scratch.

3 Preliminaries

Since adhesive categories [6] provide a suitable formal framework generalizing
many instances of rule-based rewriting of graph-like structures (including triple
graphs), we present our work in that setting. This section shortly recalls the
definition of rule-based transformation systems. For a short recapitulation of
adhesive categories and some of their properties and most of the proofs, we refer
to the long version of this paper [4].

Rules are a declarative way to define transformations of objects. They consist
of a left-hand side (LHS) L, a right-hand side (RHS) R, and a common subobject
K, the interface of the rule. In case of (typed) triple graphs, application of a rule
p to a graph G amounts to choosing an image of the rule’s LHS L in G, deleting
the image of L\K and adding a copy of R\K. This procedure can be formalized,
also in the more general setting of adhesive categories, by two pushouts. Rules
and their application semantics are defined as follows.

Definition 1 (Rules and adhesive HLR systems). Given an adhesive cate-
gory C, a rule (or production) p consists of three objects L,K, and R, called left-
hand side, interface (or gluing object), and right-hand side, and two monomor-

phisms l : K ↪→ L, r : K ↪→ R. Given a rule p = (L
l←−↩ K

r
↪−→ R), the inverse

rule p−1 is defined as p−1 = (R
r←−↩ K

l
↪−→ L). A rule p = (L

l←−↩ K
r

↪−→ R) is called
monotonic (or non-deleting) if l : K ↪→ L is an isomorphism. In that case we
just write r : L ↪→ R.

A subrule p′ of a rule p = (L
l←−↩ K

r
↪−→ R) is a

rule p′ = (L′ l′←−↩ K ′ r′
↪−→ R′) with monomorphisms

u : L′ ↪→ L, w : K ′ ↪→ K, v : R′ ↪→ R such that both
squares in the diagram to the right are pullbacks and
a pushout complement for u ◦ l′ exists.

L′ K ′ R′

L K R

l′ r′

wu v

l r

A common kernel rule p for rules p1 and p2 is a common subrule of both.
An adhesive high-level replacement system (or HLR system for short) con-

sists of an adhesive category C and a set of rules P in that category.



Short-Cut Rules 421

Figure 3 and 1 depict rules in the category of triple graphs. The first are
monotonic, the second set includes a general rule. Together they form an HLR
system.

For the construction of short-cut rules, we are mainly interested in common
kernel rules of monotonic rules, which we will denote by k : L∩ ↪→ R∩. They
are necessarily monotonic themselves. Note that, in adhesive categories with
strict initial object, i.e., with initial object ∅ where each morphism into ∅ is an
isomorphism, the trivial common kernel rule id∅ : ∅ ↪→ ∅ is a common kernel
rule for any two monotonic rules r1 and r2. Such strict initial objects exist, e.g.,
in the categories of sets, graphs, and triple graphs.

The next definition determines the semantics of the application of a rule.

Definition 2 (Transformation).
In an adhesive category C, given a rule p =

(L
l←−↩ K

r
↪−→ R), an object G, and a monomor-

phism m : L ↪→ G, called match, a (direct)
transformation G ⇒p,m H from G to H via p
at match m is given by the diagram to the right
where both squares are pushouts.

L K R

G D H

l r

m n

A rule p is called applicable at match m if the first pushout square above
exists, i.e., if m ◦ l has a pushout complement. When applying a rule p to an
object G, the arising object D is called the context object of the transformation.

4 Construction Process

In this section, we formalize the construction of short-cut rules. As explained in
Sect. 2, a short-cut rule is a composition of a monotonic rule r2 with the inverse
rule r−1

1 of a monotonic rule r1. The composition is done in such a way that
the short-cut rule may preserve certain elements which an inverse application of
r1 would delete and an application of r2 would recreate. The extent to which
preservation of elements takes place is flexible, depending on a chosen common
kernel rule of the two rules. In the following, we first present the construction of a
short-cut rule given a common kernel rule. Afterwards, we prove the correctness
of the construction and discuss its merits.

We use common kernel rules to construct short-cut rules. Given a common
kernel rule k of monotonic rules r1 and r2, their short-cut rule r−1

1 �k r2 arises
by gluing r−1

1 and r2 along k. The LHS of k contains the information how to
glue r−1

1 and r2 to receive the LHS L and the RHS R of the short-cut rule
r−1
1 �k r2. I.e., r−1

1 �k r2 is constructed in such a way, that a match for it
consists of matches for r−1

1 and r2 which intersect in the LHS of k. The RHS
of k contains the information how to construct the interface K of the short-cut
rule r−1

1 �k r2. In case of (triple) graphs, elements of R∩ \ L∩ are included in
K, i.e., R∩ \ L∩ specifies exactly those elements that would have been deleted
by r−1

1 and recreated by r2. Hence, they are to be preserved when applying the
short-cut rule.



422 L. Fritsche et al.

Definition 3 (Short-cut rule). In an adhesive category C, given two mono-
tonic rules ri : Li ↪→ Ri, i = 1, 2, and a common kernel rule k : L∩ ↪→ R∩ for

them, the short-cut rule r−1
1 �k r2 := (L

l←−↩ K
r

↪−→ R) is computed by executing
the following steps:

1. The union L∪ of L1 and L2 along L∩ is computed as pushout (2) in Fig. 5.
2. The LHS L of the short-cut rule r−1

1 �k r2 is constructed as pushout (3a) in
Fig. 5.

3. The RHS R of the short-cut rule r−1
1 �k r2 is constructed as pushout (3b) in

Fig. 5.
4. The interface K of the short-cut rule r−1

1 �k r2 is constructed as pushout (4)
in Fig. 6.

5. Morphisms l : K → L and r : K → R are obtained by the universal property
of K.

Fig. 5. Construction of LHS and RHS of
short-cut rule r−1

1 �k r2

Fig. 6. Construction of interface K of
r−1
1 �k r2

Example 4. We illustrate the construction of short-cut rules with a detailed
example. First, CreateRoot-Rule is a (non-trivial) common kernel rule for
CreateSub-Rule and itself, as depicted in Fig. 7. Here, and in the following fig-
ures, morphisms are indicated by the names of the nodes; the mapping of edges
follows unambiguously. Hence, CreateRoot-Rule is embedded into itself via the
identity morphism and its RHS is mapped to nodes p of type Package and f of
type Folder in the RHS of CreateSub-Rule; the morphism between the LHSs is
the unique empty map.

Next, computation of L∪ and the LHS and RHS of the short-cut rule is done
by computing the three pushouts as depicted in Fig. 8. It is a concrete instanti-
ation of the lower part of the diagram depicted in Fig. 5. The two pushouts to
the left and in the middle are pushouts along the empty triple graph, i.e., the
respective objects are just copied next to each other. The pushout to the right
is a pushout along an isomorphism, hence the resulting morphism to the very
right is an isomorphism as well.



Short-Cut Rules 423

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

doc : 
Doc-File

f : 
Folder

p : 
Package

f : 
Folder

p : 
Package

Fig. 7. CreateRoot-Rule as common kernel rule for CreateSub-Rule and itself

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

doc : 
Doc-File

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

doc : 
Doc-File

Fig. 8. Construction of LHS and RHS of a short-cut rule for CreateRoot-Rule and
CreateSub-Rule

Lastly, the interface of the short-cut rule is calculated as pushout as depicted
in Fig. 9. It is a concrete instantiation of the diagram depicted in Fig. 6. As
pushout along the empty triple graph, again, the resulting triple graph consists
of copies of the two triples at the lower left and the upper right. The monomor-
phisms from the interface into the LHS and RHS computed above, are, again,
indicated by the names of the nodes. Thus, the resulting short-cut rule is Root-
To-Sub-Short-Cut-Rule as displayed in Fig. 3 or in the upper part of Fig. 12.

The following lemma ensures that short-cut rules are rules in the sense of
Definition 1, i.e., that the morphisms from the interface to the LHS and RHS
are monomorphisms. (Such rules are also called linear rules.)

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

Fig. 9. Construction of the interface of a short-cut rule



424 L. Fritsche et al.

Lemma 5 (Linearity of short-cut rule). In an adhesive category C, given
two monotonic rules ri : Li ↪→ Ri, i = 1, 2, and a common kernel rule k : L∩ ↪→
R∩ for them, the induced morphisms l : K → L and r : K → R in the short-cut
rule r−1

1 �k r2 are monomorphisms.

The next definition relates common kernel rules for rules r1, r2 with sequences
of applications of r−1

1 and r2.

Definition 6 (Compatibility).
Given a sequence G1 ⇒r−1

1 ,m1

G ⇒r2,m2 G2 of rule applications,
where rules r1 and r2 are mono-
tonic, and a common kernel rule k :
L∩ ↪→ R∩ for these rules, then k is
called compatible with the applica-
tion sequence if the resulting square
(5) in the diagram to the right is a
pullback.

L∩

R1 L1 (5) L2 R2

G1 G G2

uL2uL1

r1

n1

r2

m2m1 n2

Compatibility as defined above ensures the existence of a unique morphism
h : L∪ ↪→ G such that n1 = h ◦ jL1 and m2 = h ◦ jL2 (compare pushout
square (2) in Fig. 5). Moreover, in adhesive categories h is a monomorphism.
Note that, given a sequence of rule applications, a compatible common kernel
rule can always be obtained by computing L∩ and the corresponding embeddings
into L1, L2 as pullback and setting R∩ = L∩ (with the embedding being the
identity).

The following Short-cut Theorem is our main result. Its synthesis part states
that an inverse application of a monotonic rule followed by an application of a
monotonic rule may indeed be replaced by an application of a short-cut rule. Its
analysis part states that the application of a short-cut rule may be split into the
reverse application of a monotonic rule followed by the application of a second
one if the reverse application of the first rule is possible at all. Its proof makes use
of a technical lemma, stating the equivalence of the existence of certain pushout
complements, whose statement we postpone towards the end of this section. If
analysis is possible then synthesis and analysis are inverse to each other.

Theorem 7 (Short-cut Theorem). In an adhesive category C, let ri : Li ↪→
Ri, i = 1, 2, be two monotonic rules, k : L∩ ↪→ R∩ a common kernel rule for
them, and r−1

1 �k r2 the corresponding short-cut rule. Then the following holds:

1. Synthesis: For each transformation sequence G1 ⇒r−1
1 ,m1

G ⇒r2,m2 G2

compatible with k there exists a direct transformation G1 ⇒r−1
1 �kr2,m′

1
G2

with context object G′ and a monomorphism g : G ↪→ G′, s. t. m′
1 ◦ jR1 = m1.

2. Conditional Analysis: Given a direct transformation G1 ⇒r−1
1 �kr2,m′

1
G2

with context object G′ such that a pushout complement for m1 ◦ r1 : L1 ↪→ G1

exists, where m1 = m′
1 ◦ jR1 , then there exists a transformation sequence

G1 ⇒r−1
1 ,m1

G ⇒r2,m2 G2 compatible with k. Moreover, a monomorphism
g : G ↪→ G′ exists.



Short-Cut Rules 425

3. Correspondence: In those cases, where the pushout complement necessary
for the analysis construction exists, the synthesis and analysis constructions
are inverse to each other (up to isomorphism).

Proof. 1. Let a transformation G1 ⇒r−1
1 ,m1

G ⇒r2,m2 G2 be given. The outer
square in Fig. 10 is the pushout given by the application of r−1

1 with match m1

and (3a) is the pushout used to define L. Since the transformation sequence
is compatible with k, a unique monomorphism h : L∪ ↪→ G with n1 = h ◦ jL1

exists. Since (3a) is a pushout, m′
1 : L ↪→ G1 exists. In an adhesive category,

it is a monomorphism since G ↪→ G1 and m1 : R1 ↪→ G1 are monomorphisms.
By pushout decomposition, the resulting square (6)+(7a) is a pushout. Define
(6) again by taking the pushout. Like above, the resulting map G′ ↪→ G1 is a
monomorphism and square (7a) is a pushout by pushout decomposition.
Thus, rule r−1

1 �k r2 is applicable at G1 with match m′
1 and G′ is the con-

text object of the resulting transformation. Moreover, G embeds into G′ by
g : G ↪→ G′.
Comparing Fig. 11, an analogous argument shows that G2 is the pushout of
r : K ↪→ R and n′

1 : K ↪→ G′. Altogether, the resulting transformation,
applying r−1

1 �k r2 at match m′
1, consists of (7a) and (7b).

2. Let a direct transformation G1 ⇒r−1
1 �kr2,m′

1
G2 with context object G′ be

given. Defining m1 = m′
1 ◦ jR1 gives a match for r−1

1 in G1. By assump-
tion, the rule r−1

1 is applicable at that match, i.e., a pushout complement
for m1 ◦ r1 : L1 ↪→ G1 exists (compare again Fig. 10). Lemma 9 states that
the existence of such a pushout complement is equivalent to the existence of
a pushout complement for n′

1 ◦ zL∪ : L∪ ↪→ G′ (with arising objects being
isomorphic). Therefore, application of r−1

1 at match m1 results in an object
G with morphism g : G → G′ to the context object of the transformation
G1 ⇒r−1

1 �kr2,m′
1

G2. The morphism g is a monomorphism, since pushout (6)
is a pushout along the monomorphism zL∪ .
Define m2 := h ◦ jL2 : L2 ↪→ G as match for r2 in G (compare again Fig. 11).
Then, since (3b), (6), and (7b) are pushouts, the outer square is also a pushout,
and hence G2 is the result of applying r2 with match m2 at G. Moreover, by
definition of m2, the resulting transformation sequence is compatible to k.

3. If the analysis construction is possible, the synthesis and analysis constructions
are inverse to each other because pushout complements along monomorphisms
and pushouts are unique (up to isomorphism) in adhesive categories. ��
The following lemma states that, generally, the monomorphism g : G ↪→ G′,

arising in both the synthesis and the analysis construction above, is not an
isomorphism. Thus, in case of (triple) graphs, applying a short-cut rule instead
of the original rules actually preserves elements, namely the elements of G′ \ G.

Lemma 8 (Preservation). In an adhesive category C, let ri : Li ↪→ Ri, i =
1, 2, be two monotonic rules and k : L∩ ↪→ R∩ a common kernel rule for them.
Let g : G ↪→ G′ be a monomorphism arising by synthesis of a transforma-
tion sequence G1 ⇒r−1

1 ,m1
G ⇒r2,m2 G2 or by analysis of a transformation



426 L. Fritsche et al.

Fig. 10. Synthesis and analysis: forma-
tion of context object G′

Fig. 11. Synthesis and analysis: result
of rule application

G1 ⇒r−1
1 �kr2,m′

1
G2 (compare Theorem 7, especially Figs. 10 and 11). Then g is

an isomorphism iff k is.

Before concluding this section with a discussion of the value of short-cut
rules, we state the lemma used in the proof of Theorem 7.

Lemma 9 (Characterization of PO-complements). In any adhesive cate-
gory with initial pushouts, given a commutative diagram like Fig. 10 where (3a)
and (7a) are pushouts, a pushout complement object G for m1 ◦ r1 : L1 ↪→ G1 is
a pushout complement object for n′

1◦zL∪ : L∪ ↪→ G′ and vice versa. Particularly,
a pushout complement for m1 ◦ r1 : L1 ↪→ G1 exists iff a pushout complement
for n′

1 ◦ zL∪ : L∪ ↪→ G′ exists.

Benefits and Limitations of Short-Cut Rules. We motivated the use of short-cut
rules twofold. (1) That the application of short-cut rules generally preserves ele-
ments instead of deleting and recreating them, as stated in Lemma 8. (2) That
the application of a short-cut rule may actually amount to a ‘short-cut’ which
is due to the asymmetry of synthesis and analysis in the Short-Cut Theorem.
Applications of the short-cut rules Sub-To-Root-Short-Cut-Rule and Root-To-
Sub-Short-Cut-Rule (Fig. 3) with the obvious matches transform between the
two consistent triples depicted in Fig. 2. But in either case, dangling edges pre-
vent the analysis of the short-cut rule’s application into a sequence of two rule
applications. Thus, the subsequent applications of rules in the upper transforma-
tion chain in Fig. 4 would need to be revoked first, before a reverse application
of the respective second rule application is possible in the first place.

However, not every application of a short-cut rule, that may not be analyzed,
is a ‘short-cut’. For example, applying the short-cut rule Root-To-Sub-Short-Cut-
Rule to the left instance in Fig. 2, but with nodes rootP and subP of type Package
and rootF and subF of type Folder as match instead, creates additional container
edges for nodes subP and subF and a second Doc-File inside of node subF. This
instance is not an element of the language defined by the original TGG (Fig. 1).
This stems from the fact that the short-cut rule Root-To-Sub-Short-Cut-Rule
revokes an application of the rule CreateRoot, while the elements chosen to be
revoked by the match have actually been created using the rule CreateSub.



Short-Cut Rules 427

A first possible strategy to resolve that issue is the development of application
conditions [5] for short-cut rules ensuring that a short-cut rule is only applica-
ble at matches on which it revokes the proper rule. For example, the short-cut
rule Root-To-Sub-Short-Cut-Rule could be equipped with an application condi-
tion forbidding the existence of incoming edges to nodes p and f, respectively.
Another possible strategy is the use of marked TGGs and trace information [7]
to the same end, i.e., to only allow those matches for a short-cut rule where the
rule that was actually used to create the structure is revoked. We plan to further
elaborate and compare between both strategies as future work. Our aim is to
arrive at short-cut rules whose application does not divert from the language
defined by the HLR system from which the short-cut rules were derived.

5 Related Work: Comparison to Other Formalisms
of Rule Composition

In the literature, there exist several formalisms for composition of rules, most
importantly parallel, concurrent, and amalgamated rules [1–3]. We relate our
construction of short-cut rules to these other formalisms. A common difference
to short-cut rules is that the parallel, concurrent, and amalgamated rule con-
structions are defined for general rules, whereas our construction of short-cut
rules is restricted to the case of monotonic rules for now. Therefore, in this
section, we first recall the relevant constructions generally and then relate these
to our construction of short-cut rules in the special case of monotonic rules.

The parallel rule of two rules combines their respective actions into one rule.
Two independent direct transformations arising by applications of these rules
may alternatively be replaced by an application of their parallel rule [2].

Definition 10 (Parallel rule). Given an adhesive category C with binary

coproducts, the parallel rule p1 +p2 of two rules pi = (Li
li←−↩ Ki

ri
↪−→ Ri), i = 1, 2,

is defined by p1+p2 = (L1+L2
l1+l2←−−−↩ K1+K2

r1+r2
↪−−−→ R1+R2), where + denotes

the coproduct or the induced morphism, respectively.

In categories with strict initial object (explained in Sect. 3) short-cut rules along
the trivial common kernel rule are the same as parallel rules. This is, e.g., the
case in the category of (triple) graphs, where the empty (triple) graph is the
(only) strict initial object.

Proposition 11 (Relation to parallel rule). Let two monotonic rules ri :
Li ↪→ Ri, i = 1, 2, in an adhesive category C with strict initial object ∅ be given.
Then, for the trivial common kernel rule id∅ : ∅ ↪→ ∅, the short-cut and the
parallel rule coincide, i.e., r−1

1 + r2 = r−1
1 �id∅ r2.

Like the parallel rule, a so-called E-concurrent rule combines the action of
two rule applications into the application of one rule. But here, the rule applica-
tions may be sequentially dependent [2]. An E-dependency relation encodes this
possible dependency. The definition of E-dependency relations and E-concurrent
rules assumes a given class E of pairs of morphisms with the same codomain.



428 L. Fritsche et al.

Definition 12 (E-dependency relation and E-concurrent rule). Given
two rules pi = (Li

li←− Ki
ri−→ Ri), i = 1, 2, an object E with morphisms

e1 : R1 → E and e2 : L2 → E is an E-dependency relation for p1 and p2 if
(e1, e2) ∈ E and the pushout complements (8a) and (8a) over K1

r1−→ R1
e1−→ E

and K2
l2−→ L2

e2−→ E as depicted below exist.
Given an E-dependency relation (e1, e2) ∈ E for rules p1, p2, the E-

concurrent rule p1 ∗E p2 is defined by p1 ∗E p2 := (L l◦k1←−−− K
r◦k2−−−→ R) as

shown below, where (9a) and (9b) are pushouts and (10) is a pullback.

L1 K1 R1 L2 K2 R2

(9a) (8a) (8b) (9a)

L C1 E C2 R

(10)

K

l1 r1

e1 e2

l2 r2

l r

k1 k2

The amalgamated rule combines the actions of two, maybe parallel depen-
dent, rule applications into one rule [1,3].

Definition 13 (Amalgamated rule).

Given a common subrule p = (L
l←−↩

K
r

↪−→ R) of rules pi = (Li
li←−↩ Ki

ri
↪−→

Ri), i = 1, 2, the amalgamated rule

p1 ⊕p p2 = (L′ l′←−↩ K ′ r′
↪−→ R′) is

constructed by taking the three pushouts
depicted to the right, where morphisms
l′, r′ are given by the universal property
of pushout object K ′.

L K R

L1 K1 R1

L2 K2 R2

L′ K ′ R′

l r

l2 r2

l1 r1

l′ r′

We now relate short-cut rules to E-concurrent and amalgamated rules of
rules, where the first rule only deletes and the second rule only creates. Further,
we take E to be the class of pairs of morphisms which are jointly epimorphic
and where both morphisms are monomorphisms, i.e., the following statements
for concurrent rules hold under that assumption. To begin, both concurrent and
amalgamated rules “degenerate” in that setting. They are merely constructed
as sums over constant rules.

Lemma 14 (Degeneration). Let two monotonic rules ri : Li ↪→
Ri, i = 1, 2, in an adhesive category C be given. Then the classes of E-
concurrent rules and amalgamated rules for r−1

1 and r2 coincide. In par-
ticular, they both coincide with C :=

{
r−1
1 ⊕p r2 | p = (X1

x1←−↩ X
x2

↪−→
X2), x1, x2 isomorphisms, and p common subrule of r1, r2

}
, i.e., the class of

rules amalgamated along a common constant subrule of r−1
1 and r2.



Short-Cut Rules 429

As a consequence of the above lemma, in our context every E-concurrent
or amalgamated rule can be constructed as a short-cut rule. On the contrary,
concrete examples show that short-cut rules exist which cannot be constructed
as E-concurrent or amalgamated rule (and hence neither as parallel rule).

Proposition 15 (Subsumption). Let two monotonic rules ri : Li ↪→ Ri, i =
1, 2, in an adhesive category C be given. Then every E-concurrent or amalga-
mated rule for r−1

1 and r2 coincides with a short-cut rule for them, but generally
not the other way around, i.e., generally the class C of E-concurrent and amal-
gamated rules for r−1

1 and r2 (Lemma 14) is properly contained in the class
C ′ := {r−1

1 �k r2 | k : L∩ ↪→ R∩ is a common kernel rule for r1, r2} of short-cut
rules for r−1

1 and r2.

→ →Root-To-Sub-
Short-Cut-Rule:

Parallel Rule:
E-Concurrent Rule:
Amalgamted Rule:

f : 
Folder

p: 
Package

supP :
Package

supF :
Folder

d : 
Doc

f : 
Folder

p : 
Package

supP :
Package

supF :
Folder

→ → f* : 
Folder

p* : 
Package

supP :
Package

supF :
Folder

d : 
Doc

f : 
Folder

p : 
Package

supP :
Package

supF :
Folder

f : 
Folder

p : 
Package

supP :
Package

supF :
Folder

supP :
Package

supF :
Folder

Fig. 12. Relating short-cut rule to other formalisms of rule composition

Idea of Proof. To show the containment relationship, it suffices to check that
r−1
1 ⊕p r2 = r−1

1 �p r2 for a common constant subrule p of r−1
1 and r2 (in

particular, p is a common kernel rule for r1 and r2).

As stated in Example 4, Root-To-Sub-Short-Cut-Rule is the short-cut rule
for the inverse rule of CreateRoot-Rule and CreateSub-Rule along CreateRoot-
Rule as common kernel rule. Their parallel rule and the only possibility for an
amalgamated or E-concurrent rule is the second rule depicted in Fig. 12, which
differs from the short-cut rule in its interface graph. ��

6 Conclusion

In this paper, we formally introduced short-cut rules for monotonic rules in
adhesive HLR systems, a novel kind of rule composition. We proved that short-
cut rules preserve information instead of deleting elements and recreating them
again, when revoking a transformation and applying another one instead. Addi-
tionally, we gave examples using a TGG where applying short-cut rules spares us
rolling back whole chains of transformations, thus providing ‘short-cuts’ when
revising those. Moreover, we proved short-cut rules to differ from the already



430 L. Fritsche et al.

established formalizations for composition of rules, i.e., the parallel, concurrent,
and amalgamated rules.

Besides developing language-preserving short-cut rules (as already discussed
at the end of Sect. 4), we plan to develop a construction of short-cut rules for
general rules, also, and advance the theory of short-cut rules by respecting pos-
sible application conditions of the involved rules. On the practical side, we plan
to operationalize short-cut rules stemming from TGGs to enhance model syn-
chronization.

Acknowledgments. This work was partially funded by the German Research Foun-
dation (DFG), project “Triple Graph Grammars (TGG) 2.0”.

References

1. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations. A
synchronization mechanism. J. Comput. Syst. Sci. 34(2), 377–408 (1987). https://
doi.org/10.1016/0022-0000(87)90030-4

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-31188-2

3. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transforma-
tion systems with nested application conditions. Part 1: parallelism, concurrency
and amalgamation. Math. Struct. Comput. Sci. 24(4), 240406 (2014). https://doi.
org/10.1017/S0960129512000357

4. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Short-cut rules. Sequential
composition of rules avoiding unnecessary deletions: extended version. Technical
report, Philipps-Universität Marburg (2018). https://www.uni-marburg.de/fb12/
arbeitsgruppen/swt/forschung/publikationen/2018/FKST18-TR.pdf

5. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009).
https://doi.org/10.1017/S0960129508007202

6. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theor. Inf. Appl.
39(3), 511–545 (2005). https://doi.org/10.1051/ita:2005028

7. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging incre-
mental pattern matching techniques for model synchronisation. In: de Lara, J.,
Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 179–195. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61470-0 11

8. Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-amalgamated triple
graph grammars: formal foundation and application to visual language translation.
J. Vis. Lang. Comput. 42, 99–121 (2017). https://doi.org/10.1016/j.jvlc.2016.03.
001

9. Leblebici, E., Anjorin, A., Schürr, A.: Inter-model consistency checking using triple
graph grammars and linear optimization techniques. In: Huisman, M., Rubin, J.
(eds.) FASE 2017. LNCS, vol. 10202, pp. 191–207. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54494-5 11

10. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

https://doi.org/10.1016/0022-0000(87)90030-4
https://doi.org/10.1016/0022-0000(87)90030-4
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1017/S0960129512000357
https://doi.org/10.1017/S0960129512000357
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2018/FKST18-TR.pdf
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2018/FKST18-TR.pdf
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1016/j.jvlc.2016.03.001
https://doi.org/10.1016/j.jvlc.2016.03.001
https://doi.org/10.1007/978-3-662-54494-5_11
https://doi.org/10.1007/3-540-59071-4_45

	Short-Cut Rules
	1 Introduction
	2 Introductory Example
	3 Preliminaries
	4 Construction Process
	5 Related Work: Comparison to Other Formalisms of Rule Composition
	6 Conclusion
	References




