
Towards Handling Latency in Interactive
Software

Sébastien Leriche(B), Stéphane Conversy, Celia Picard, Daniel Prun,
and Mathieu Magnaudet

ENAC, University of Toulouse, Toulouse, France
{Sebastien.Leriche,Stephane.Conversy,Celia.Picard,Daniel.Prun,

Mathieu.Magnaudet}@enac.fr

Abstract. Usability of an interactive software can be highly impacted
by the delays of propagation of data and events and by its variations,
i.e. latency and jitter. The problem is striking for applications involving
tactile interactions or augmented reality, where the shifts between inter-
action and representation can make the system unusable. For as much,
latency is often taken into account only during the validation phase of
the software by means of a value which constitutes an acceptable limit. In
this shor paper, we present and discuss an alternative approach: we want
to handle the latency at all phases of the life cycle of the interactive soft-
ware, from specification to runtime adaptation and formal validation for
certification purposes. We plan to integrate and validate these ideas into
Smala, our language dedicated to the development of highly interactive
and visual user interfaces.

1 Introduction

An interactive software is a computer application which reacts, throughout its
execution, to various sources of events. In particular, it produces a perceptible
representation of its internal state [1,2]. However, the usability of an interactive
application can be appreciably impacted by the delays of propagation of data and
events and by its variations, i.e. latency and jitter. The problem is striking for
applications involving tactile interactions or augmented reality, where the shifts
between interaction and representation can make the system unusable [3,4]. Yet,
while latency constraints are expressed at specification, they are often taken into
account only very late in the development processes, generally by experimental
a posteriori measurements, when the system is fully implemented. For instance,
in some air traffic control systems such as radar visualization or remote tower,
latency in the visualization of aircrafts position (and the shifts between their real
position) is evaluated during experiments. Instead of redesigning the software,
this may conduct to dimension the spacing limits between aircrafts [5], with
direct consequences on the capacities of air traffic management.

More generally, when focusing on aeronautical software systems, the pro-
cesses of certifications described in the DO-178C/ED-12C offer an important

c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 233–239, 2018.
https://doi.org/10.1007/978-3-030-04771-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04771-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-04771-9_18


234 S. Leriche et al.

place to formal checking. We want to take the opportunity to use formal tools
and techniques to handle latency in interactive software. We are particularly
interested in the Smala language, dedicated to interactive systems.

2 Djnn and Smala

Smala1 is a language that has been designed to effectively support the devel-
opment of reactive applications. Smala is built on the top of a set of C libraries
named Djnn2. Djnn provides a core library that implements the execution
engine allowing to run a tree of components [6].

Fig. 1. Tree of Djnn components for an interactive software

Once the tree is loaded and started, the core library starts an event loop that
fairly manages the events coming from the environment. On arrival, events are
dispatched to the tree components. The control structures contained in this tree
specify an activation graph through which the events are propagated Fig. 1.

Djnn provides libraries with various components, ranging from components
for arithmetic, logic, finite state machines to graphical shapes, style components,
and geometric transformations. Three rendering engines are available, one based
on the Qt toolkit, another one based on Cairo, and a third one based on OpenGL.

It is possible to build a tree of components by directly using these libraries
and the C language. However the task is akin to those of writing an abstract
syntax tree. Thus, we designed Smala so as to provide a dedicated syntax with
specific symbols that helps to visualize the interaction between components.
1 http://smala.io.
2 http://djnn.net.

http://smala.io
http://djnn.net


Towards Handling Latency in Interactive Software 235

Smala comes with a compiler that transforms the Smala program into a pro-
gram written in the C language.

2.1 Smala Applications

Here we describe a part of a demo we developed with Smala to show some
interesting points of the language. The objective was to implement a Naviga-
tion Display (ND), a standard navigation tool integrated in modern cockpits
of airplanes, enhanced with interaction capacities. The ND was designed to be
integrated within a full software simulator of an Airbus A320 (Prepar3D/A320
FMGS). In this paper, we will focus on the design of the interaction with a
waypoint to show the expressiveness of the smala language.

Fig. 2. Navigation Display Experiment and design of interaction with a waypoint

A flight plan mainly consists in a sequence of waypoints specifically selected
for a flight before the take off. During the flight, the pilot in command might
want to alter the flight plan (e.g. for meteorological reasons) and head the plane
directly to another waypoint. We implemented this action on the ND with a
touch command that triggers the flight management system to head to the
selected waypoint. A sketch of the interaction is shown in Fig. 2: after a touch
on a waypoint, a box appears with the text “DIRECT TO”, that will stay for
3 seconds. If the pilot touches this box, the command will be send to the flight
management system.

The code for the smala component “waypoint” is shown in Fig. 3. This com-
ponent has two states: when idle (default state) it is represented with a large
triangle, including a small square at its exact position and a text label giving its



236 S. Leriche et al.

name. When selected, its color must change to green and we add the box with
the text “DIRECT TO”. The basic graphical components of smala are used
(Rectangle, Polygon, Colors...) and a finite state machine (FSM) is explicitely
programmed to represent both states and the triggers that change the states.
Thus, the component will be selected when a press will be detected inside the tri-
angle (idle.pol.press). It will return to the idle state when either a timeout occurs
or if a press is detected inside the “DIRECT TO” box (selected.rdt.press). That
last action will trigger the sending of a specific message on the communication
bus that links the software to the simulator.

1 use core
2 use base
3 use gui
4
5 import TimeOut
6
7 d e f i n e
8 Waypoint ( s t r i n g name , double x , double y , Component view , Component frame , Component bus ) {
9 Component c l i c k

10
11 Rotation r (0 , x , y )
12 view . heading => r . a
13
14 Trans lat ion t ( x , y )
15 x aka t . tx
16 y aka t . ty
17
18 Outl ineColor oc (255 , 0 , 255)
19 NoFi l l nf
20 Rectangle p0 ( −1 , −1 ,1 ,1 ,0 ,0) // big p i x e l cente r
21 FSM fsm {
22 State i d l e {
23 Polygon pol {

,0(1ptnioP42 −20)
(2ptnioP52 −20 ,20)

)02,02(3ptnioP62
27 }
28 }
29 State s e l e c t e d {
30 F i l lCo l o r f cg (0 , 255 , 0) // green
31 Polygon pol {

,0(1ptnioP23 −20)
(2ptnioP33 −20 ,20)

)02,02(3ptnioP43
35 }
36
37 F i l lCo l o r f c (0 , 255 , 0)
38 Outl ineColor oc2 (255 , 0 , 0)
39 Line l (0 ,0 ,20 , −20)
40 Rectangle rdt (20 , −40 ,200 ,30 ,5 ,5)
41
42 F i l lCo l o r fcb (0 , 0 , 0)
43 Text tdt (30 ,−20 ,”DIRECT TO ”+name)
44 tdt . width + 20 => rdt . width
45
46 TimeOut to (3)
47 asBusOut = tdt . text =: bus . out : 1
48 }
49 id l e−>s e l e c t e d ( i d l e . pol . p r e s s )
50 s e l e c t ed−>i d l e ( s e l e c t e d . rdt . press , s e l e c t e d . asBusOut )
51 s e l e c t ed−>i d l e ( s e l e c t e d . to . sw . timeout )
52 }
53
54 F i l lCo l o r f c2 (255 , 0 , 255)
55 Text l a b e l (15 , 10 , name)
56 }

Fig. 3. Smala code for a waypoint

As a real-world example, we also completely developed the HMI of Volta, the
first conventional all-electric helicopter [7]. The HMI has been built concurrently
by a programmer and a graphic designer, demonstrating another powerful aspect
of our approach: the strict separation of concerns between the design of the
visualization and the implementation of interactions.



Towards Handling Latency in Interactive Software 237

3 Our Approach to Handle Latency

3.1 Formal Activities Around Djnn/Smala

Although Smala is still under development, we already could experiment for-
mal techniques for checking properties of Smala programs. For instance, we
exploited the characteristics of the graph of activation [8]. This graph, deduced
from the Smala code, provides all the possible activation relationships following
the occurrence of an event. Thus, we managed to formally check attainability
properties (i. e., an entry always ends up generating an expected exit or an alarm
is always turned off in a certain configuration) or causal activation relationships
(i. e., a displayed error message will never be covered by another).

In addition, with the experience gained from previous work on dedicated
language and formal validation [9], we experimented in [10] the transformation
of Smala code into Petri nets, with the idea to precisely define an operational
semantics for Smala and to benefit from the associated formal tools and tech-
niques. As a result, the semantics of Smala is currently under publication in a
dedicated paper.

Our medium-term prospects concern the prolongation of the previous studies
(based on the graph of activations) and the study of formal proof techniques
applied to Smala code (translation into Caml and use of COQ, translation into
Event-B).

3.2 Towards Handling Latency

We want to focus on software layers. Indeed, handling latency can be made at
the hardware level with specific tools [11]. However, the end-to-end approaches
existing today [12] do not allow to understand the specific issues related to
software architecture choices. They are only usable to measure the latency when
the system is in its validation phase.

The classical formal approach to handle latency in software systems is to
consider their Worst-Case Execution-Time (WCET) [13]. WCET tools and tech-
niques allow to verify timing properties. They are primarily made for real-time
systems, and Smala programs are not. Nevertheless, since the control flow of
Smala programs can be described as a tree, tree-based techniques for computing
WCET could be applied. Moreover, the execution engine is being rewritten to
comply with the last version of the operational semantics which is a good level
to address latency issues [14].

Relying on the operational semantics, we plan to add into Smala the reifi-
cation of latency properties. This should allow the programmer to add runtime
adaptations (e.g. simplification/enhancement of the visualization to comply with
latency constraints) and to optimize the redrawing of the graphical scene.

At last, to limit the known impacts of the operating system on latency, we
are experimenting some specific versions of Djnn that can be run on OS-less
(’bare’) systems. This approach should result in an autonomous and complete
software platform to handle latency.



238 S. Leriche et al.

4 Future Work

To achieve these goals, we aim at allowing the developer of interactive software
to handle latency as a whole, during each phases of the software life cycle. Thus,
this implies the conception of software tools for the measurement, visualiza-
tion, specification, and formal checking of the different properties. These tools
will make possible, during the design time, the objective evaluation of various
software architecture solutions. At last, a methodology for designing interactive
systems with latency constraints, based on these tools, should be designed.

References

1. Beaudouin-Lafon, M.: Designing interaction, not interfaces. In: Proceedings of the
Working Conference on Advanced Visual Interfaces, New York, NY, USA, pp.
15–22 . ACM (2004)

2. Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, New York,
NY, USA, pp. 195–202 . ACM (1992)

3. MacKenzie, I.S., Ware, C.: Lag as a determinant of human performance in interac-
tive systems. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on
Human Factors in Computing Systems, New York, NY, USA, pp. 488–493. ACM
(1993)

4. Ware, C., Balakrishnan, R.: Reaching for objects in VR displays: lag and frame
rate. ACM Trans. Comput.-Hum. Interact. 1(4), 331–356 (1994)

5. Cordeil, M., Dwyer, T., Hurter, C.: Immersive solutions for future air traffic control
and management. In: Proceedings of the 2016 ACM Companion on Interactive
Surfaces and Spaces, New York, NY, USA, pp. 25–31. ACM (2016)

6. Chatty, S., Magnaudet, M., Prun, D., Conversy, S., Rey, S., Poirier, M.: Designing,
developing and verifying interactive components iteratively with djnn. In: proceed-
ings of ERTS 2016, TOULOUSE, France, January 2016

7. Antoine, P., Conversy, S.: Volta: the first all-electric conventional helicopter. In:
MEA 2017, More Electric Aircraft, Bordeaux, France, February 2017

8. Chatty, S., Magnaudet, M., Prun, D.: Verification of properties of interactive com-
ponents from their executable code. In: Proc of EICS 2015, New York, NY, USA,
pp. 276–285. ACM (2015)

9. Matougui, M.E.A., Leriche, S.: Validation of COSMOS DSL programs. The 2010
International Conference on Computer Engineering & Systems, pp. 307–313 (2010)

10. Prun, D., Magnaudet, M., Chatty, S.: Towards support for verification of adapta-
tive systems with djnn. Proc. Cogn. (03 2015), 191–194 (2015)

11. Zabolotny, W.M.: Automatic latency balancing in VHDL-implemented complex
pipelined systems. CoRR abs/1509.08111 (2015)

12. Casiez, G., Pietrzak, T., Marchal, D., Poulmane, S., Falce, M., Roussel, N.: Charac-
terizing latency in touch and button-equipped interactive systems. In: Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology,
New York, NY, USA, pp. 29–39. ACM (2017)



Towards Handling Latency in Interactive Software 239

13. Puschner, P., Burns, A.: Guest editorial: a review of worst-case execution-time
analysis. Real-Time Syst. 18, 115–128 (2000)

14. Asavoae, M., Maiza, C., Raymond, P.: Program semantics in model-based WCET
analysis: a state of the art perspective. In: Maiza, C. (ed.) 13th International
Workshop on Worst-Case Execution Time Analysis, vol. 30, pp. 32–41. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, Germany (2013)


	Towards Handling Latency in Interactive Software
	1 Introduction
	2 Djnn and Smala
	2.1 Smala Applications

	3 Our Approach to Handle Latency
	3.1 Formal Activities Around Djnn/Smala
	3.2 Towards Handling Latency

	4 Future Work
	References




