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Abstract. Mobility data are of fundamental importance for under-
standing the patterns of human movements, developing analytical ser-
vices and modeling human dynamics. Unfortunately, mobility data also
contain individual sensitive information, making it necessary an accu-
rate privacy risk assessment for the individuals involved. In this paper,
we propose a methodology for assessing privacy risk in human mobility
data. Given a set of individual and collective mobility features, we define
the minimum data format necessary for the computation of each feature
and we define a set of possible attacks on these data formats. We per-
form experiments computing the empirical risk in a real-world mobility
dataset, and show how the distributions of the considered mobility fea-
tures are affected by the removal of individuals with different levels of
privacy risk.

1 Introduction

In the last years, human mobility analysis has attracted a growing interest due
to its importance in a wide range of applications, from urban management and
public health [13], to the discovery of quantitative patterns [12] and the predic-
tion of human future whereabouts [8]. The worrying side of this story is that
human mobility data are sensitive, because they may allow the re-identification
of individuals and lead to severe privacy issues if analyzed with malicious intent
[18]. In order to prevent these problems, researchers have developed methodolo-
gies, frameworks and algorithms to reduce the individual privacy risk associated
to the analysis of human mobility data [1]. Tools like the one presented in [15] try
to balance both the individuals’ privacy protection and the effectiveness of the
analytical results.1 Starting from [15], we study the empirical trade-off between
individual privacy risk and data quality w.r.t. a set of state-of-the-art individual
and collective mobility measures. We first introduce a set of mobility data struc-
tures, each with a different level of detail on an individual’s mobility history, and
then present a set of re-identification attacks based on these structures. In a sce-
nario where a data owner wants to share human mobility data with an external
1 In compliance with the new EU General Data Protection Regulation.
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entity (e.g., a data analyst), it can simulate the re-identification attacks to assess
the privacy risk of every individual in the dataset. Having this information, the
data owner can simply delete the individuals beyond a certain threshold of pri-
vacy risk or select the most suitable privacy-preserving technique (e.g., based on
k-anonymity, differential privacy) to mitigate individual privacy risk. We use a
real-world human mobility dataset to compute the distribution of privacy risk
for every re-identification attack. We then compare the distributions of the con-
sidered mobility features computed on the original data and on data obtained
removing high risk individuals. We show how these distributions vary much less
when computed on more aggregated structures.

2 Individual Mobility Features

The approach we present in this paper is tailored for human mobility data, i.e.,
data describing the movements of a set of individuals during a period of obser-
vation. The mobility dynamics of an individual can be described by a set of
measures widely used in literature. Some measures describe specific aspects of
an individual’s mobility; other measures describe an individual’s mobility in rela-
tion to collective mobility. The Maximum Distance is defined as the length of the
longest trip of an individual during the period of observation [24]. The Sum Of
Distances is the sum of all the trip lengths traveled by the individual during the
period of observation [24]. The Radius of Gyration is the characteristic distance
traveled by an individual during the period of observation, formally defined in
[12]; this measure represents one of the major components useful for describ-
ing human mobility. The Mobility Entropy is a measure of the predictability of
an individual’s trajectory; formally, it is defined as the Shannon entropy of an
individual’s movements [7]. We can also define some measures related to loca-
tions instead of individuals, like the Location Entropy, i.e., the predictability of
who visits the location. We also use Location Density, a measure of how many
individuals have that location as their most visited location, and the Flow of
a location defined as the number of trips that have that location as origin or
destination.

3 Data Definitions

Human mobility data is generally collected in an automatic way through elec-
tronic devices (e.g., mobile phones, GPS devices) in form of raw trajectory data.
A raw trajectory of an individual is a sequence of records identifying the move-
ments of that individual during the period of observation [26]. Every record
has the following fields: the identifier of the individual, a geographic location
expressed in coordinates (generally latitude and longitude), a timestamp indi-
cating when the individual stopped in or went through that location. Depending
on the specific application, a raw trajectory can be aggregated into different
mobility data structures introduced in the following.
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Definition 1 (Trajectory). The trajectory Tu of an individual u is a tem-
porally ordered sequence of tuples Tu = 〈(l1, t1), (l2, t2), . . . , (ln, tn)〉, where
li = (xi, yi) is a location, xi and yi are the coordinates of the geographic location,
and ti is the corresponding timestamp, ti < tj if i < j.

Definition 2 Frequency vector). The frequency vector Wu of an individual
u is a sequence of tuples Wu = 〈(l1, w1), (l2, w2), . . . , (ln, wn)〉 where li = (xi, yi)
is a location, wi is the frequency of the location, i.e., how many times location
li appears in the individual’s trajectory Tu, and wi > wj if i < j. A frequency
vector Wu is hence an aggregation of a trajectory Tu.

Definition 3 (Probability vector). The probability vector Pu of an individual
u is a sequence of tuples Pu = 〈(l1, p1), (l2, p2), . . . , (ln, pn)〉, where li = (xi, yi)
is a location, pi is the probability that location li appears in Wu, i.e., pi =

wi∑
li∈Wu

wi
, and pi > pj if i < j. A probability vector Pu is hence an aggregation

of a frequency vector Wu.

In the following, with the terms visit we refer indifferently to a tuple in a
trajectory or in a frequency or probability vector. In other words, a visit indi-
cates a pair consisting of a location and a supplementary information, e.g., the
timestamp or the frequency. We denote with D a mobility dataset, i.e., a set of a
one of the above data types (trajectory, frequency or probability vectors). Each
data structure allows the computation of some of the mobility features presented
in Sect. 2: with the trajectory, the most detailed of the three structures, we can
compute all the mobility features presented. With the vector structures we can
compute only Radius of Gyration, User Entropy, Location Entropy and Location
Density. Lowering the detail of the structure we can compute less features but
we expose less information about the individuals represented.

4 Privacy Risk Assessment Model

Several methodologies have been proposed in literature for privacy risk assess-
ment. In this paper we start from the framework proposed in [15], which allows
for the assessment of the privacy risk inherent to human mobility data. At the
core of this framework, there is the identification of the minimum data struc-
ture, the definition of a set of possible attacks that a malicious adversary might
conduct in order to re-identify her target and the simulation of the attacks. The
privacy risk of an individual is related to her probability of re-identification in
a mobility dataset w.r.t. a set of re-identification attacks. A re-identification
attack assumes that an adversary gains access to a mobility dataset, then, on
the basis of some background knowledge about an individual, i.e., the knowledge
of a subset of her mobility data, the adversary tries to re-identify all the records
in the dataset regarding the individual under attack. In this paper we use the
definition of privacy risk (or re-identification risk) introduced in [19].

There can be many background knowledge categories, every category may
have several background knowledge configurations, every configurations has
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many instances. A background knowledge category is a kind of information
known by the adversary about a specific set of dimensions of an individual’s
mobility data. Typical dimensions in mobility data are space, time, frequency of
visiting a location and probability of visiting a location. Examples of background
knowledge categories are a subset of the locations visited by an individual and
specific times an individual visited those locations. The number k of the ele-
ments of a category known by the adversary is called background knowledge
configuration: an example is the knowledge by the adversary of k = 3 locations
of an individual. Finally, an instance of background knowledge is the specific
knowledge of the adversary, such as a visit in a specific location. We formalize
these concepts as follows.

Definition 4 Background knowledge configuration. Given a background
knowledge category B, we denote with Bk ∈ B = {B1, B2, . . . , Bn} a specific
background knowledge configuration, where k represents the number of elements
in B known by the adversary. We define an element b ∈ Bk as an instance of
background knowledge configuration.

Let D be a database, D a mobility dataset extracted from D (e.g., a data
structure as defined in Sect. 3), and Du the set of records representing individual
u in D, we define the probability of re-identification as follows.

Definition 5 Probability of re-identification. The probability of re-identi-
fication PRD(d = u|b) of an individual u in a mobility dataset D is the probability
to associate a record d ∈ D to an individual u, given an instance of background
knowledge configuration b ∈ Bk.

Note that PRD(d=u|b) = 0 if the individual u is not represented in D.
Since each instance b ∈ Bk has its own probability of re-identification, we define
the risk of re-identification of an individual as the maximum probability of re-
identification over the set of instances of a background knowledge configuration.

Definition 6 Risk of re-identification or Privacy risk. The risk of re-
identification (or privacy risk) of an individual u given a background knowledge
configuration Bk is her maximum probability of re-identification Risk(u,D) =
max PRD(d=u|b) for b ∈ Bk. The risk of re-identification has the lower bound
|Du|
|D| (a random choice in D), and Risk(u,D) = 0 if u /∈ D.

4.1 Privacy Attacks on Mobility Data

In this section we describe the attacks we use in this paper.

Location. In a Location attack the adversary knows a certain number of loca-
tions visited by the individual but she does not know the temporal order of the
visits.This is similar to considering the locations as items of transactions [22]
with the difference that a transaction is a set of items and not a multiset (an
individual might visit the same location multiple times). Given an individual s,
we denote by L(Ts) the multiset of locations li ∈ Ts visited by s. The background
knowledge category of a Location attack is defined as follows.
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Definition 7 Location background knowledge. Let k be the number of
locations li of an individual s known by the adversary. The Location back-
ground knowledge is a set of configurations based on k locations, defined as
Bk = L(Ts)[k]. Here L(Ts)[k] denotes the set of all the possible k-combinations
of the elements in set L(Ts).

Given b ∈ Bk, we can give the definition for the set of users matching
the Location background knowledge, and consequently, the probability of re-
identification.

Definition 8 Location attack. Let b ∈ Bk be the adversary Location back-
ground knowledge. We define by R = {u ∈ U |b ⊆ L(Tu)} the candidate set of
users whose trajectory contains the instance b. The probability of re-identification
of the user u is 1

|R| .

Location Sequence. In a Location Sequence attack [9] the adversary knows a
subset of the locations and the temporal ordering of the visits. Given an indi-
vidual s, we denote by L(Ts) the sequence of locations li ∈ Ts visited by s. The
background knowledge category of a Location Sequence attack is the following.

Definition 9 Location Sequence background knowledge. Let k be the
number of locations li of a individual s known by the adversary. The Location
Sequence background knowledge is a set of configurations based on k locations,
defined as Bk = L(Ts)[k], where L(Ts)[k] denotes the set of all the possible k-
subsequences of the elements in set L(Ts).

The set of users matching this background knowledge is defined in the following
where we denote by a � b that a is a subsequence of b.

Definition 10 Location Sequence attack. Let b ∈ Bk be the Location
Sequence background knowledge. We define by R = {u ∈ U |b � L(Tu)} the can-
didate set of users whose trajectory contains the combination b. The probability
of re-identification of the user u is 1

|R| .

Visit. In a Visit attack [25] an adversary knows a subset of the locations visited
by the individual and the time the individual visited these locations.

Definition 11 Visit background knowledge. Let k be the number of visits
v of a individual s known by the adversary. The Visit background knowledge is a
set of configurations based on k visits, defined as Bk = T

[k]
s where T

[k]
s denotes

the set of all the possible k-subsequences of the elements in trajectory Ts.

We recall that in the case of trajectories we denote by visit v ∈ T the pair
(li, ti) composed by the location li and its timestamp ti. Formally, the set of all
trajectories supporting b from both a spatial and a temporal point of view is:

Definition 12 Visit attack. Let b ∈ Bk be the Visit background knowledge.
We define by R = {u ∈ U | ∀ (li, ti) ∈ b, ∃ (lui , tui ) ∈ Tu . li = lui ∧ ti ≤ tui }
the candidate set of users whose trajectories contain b. The probability of re-
identification of the user u is 1

|R| .
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Frequent Location, Frequent Location Sequence. We also introduce two
attacks based on the knowledge of the location applied to vectors. The Frequent
Location attack is similar to the Location attack but here a location can appear
only once, so it follows the same principle of [22]. In the Frequent Location
Sequence attack the adversary knows a subset of the locations visited by an
individual and the relative ordering w.r.t. the frequencies (from most frequent
to least frequent). This attack is similar to the Location Sequence attack, with
two differences: a location can appear only once and locations are ordered by
descending frequency. We omit the definitions of the background knowledge and
attacks because they are similar to the ones defined on trajectories.

Frequency. We introduce an attack where an adversary knows the locations vis-
ited by the individual, their reciprocal ordering of frequency, and the minimum
number of visits of the individual in the locations. This means that, when search-
ing for specific subsequences, the adversary must consider also subsequences con-
taining the known locations with a greater frequency. We recall that in the case
of frequency vectors we denote by visit v ∈ W the pair (li, wi) composed by the
frequent location li and its frequency wi. The background knowledge category
of a Frequency attack is defined as follows.

Definition 13 Frequency background knowledge. Let k be the number of
visits v of the frequency vector of individual s known by the adversary. The
Frequency background knowledge is a set of configurations based on k visits,
defined as Bk = W

[k]
s where W

[k]
s denotes the set of all possible k-combinations

of frequency vector Ws.

The set of users matching a single b ∈ Bk is defined as follows.

Definition 14 Frequency attack. Let b ∈ Bk be the Frequency background
knowledge. We define by R = {u ∈ U | ∀ (li, wi) ∈ b, ∃ (lui , wu

i ) ∈ Wu . li =
lui ∧ wi ≤ wu

i } the candidate set of users whose frequency vectors contain the
instance b. The probability of re-identification of the user u is 1

|R| .

Home & Work. In the Home & Work attack [27], the adversary knows the
two most frequent locations of an individual and their frequencies. This is the
only attack where the background knowledge configuration is just a single 2-
combination. Mechanically, this attack is identical to the Frequency attack.

Probability. In a Probability attack an adversary knows the locations visited
by an individual and the probability for that individual to visit each location.
This attack is similar to the one introduced by [28], but we cannot rely on
matching algorithms on bipartite graph because the length of the probability
vectors is not the same among the individuals and is greater than the length of
the background knowledge configuration instances. We recall that in the case of
probability vectors we denote by visit v ∈ P the pair (li, pi) composed by the
frequent location li and its probability pi. The background knowledge category
for this attack is defined as follows.
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Definition 15 Probability background knowledge. Let k be the number of
visits v of the probability vector of individual s known by the adversary. The
Probability background knowledge is a set of configurations based on k visits,
defined as Bk = P

[k]
s where P

[k]
s denotes the set of all possible k-combinations of

probability vector Ps.

Again, the set of users matching a single b ∈ Bk can be defined as follows.

Definition 16 Probability attack. Let b ∈ Bk be the Probability background
knowledge. We define by R = {u ∈ U | ∀ (li, pi) ∈ b, ∃ (lui , pui ) ∈ Pu . li =
lui ∧ pi ∈ [pui − δ, pui + δ]} the candidate set of users who in their frequency
vectors contain the instance b tolerating for the probability match a tolerance δ.
The probability of re-identification of the user u is 1

|R| .

Proportion. We introduce an attack assuming that an adversary knows a subset
of locations and the relative proportion between the number of visits to these
locations, i.e., between the frequency of the most frequent known location and
the frequency of the other known locations. Given a set of visits X ⊂ W we
denote by l1 the most frequent location of X and with w1 its frequency. We
also denote by pri the proportion between wi and w1 for each vi �= v1 ∈ X,
and denote by LR a set of frequent locations li with their respective pri. The
background knowledge category for this attack is defined as follows.

Definition 17 Proportion background knowledge. Let k be the number of
locations li of an individual s known by the adversary. The Proportion back-
ground knowledge is a set of configurations based on k locations, defined as
Bk = LR

[k]
s where LR

[k]
s denotes the set of all possible k-combinations of the

frequent locations li with associated pri.

The set of users matching a single b ∈ Bk is defined as follows.

Definition 18 Proportion attack. Let b ∈ Bk be the Proportion background
knowledge. We define by R = {u ∈ U | ∀ (li, pri) ∈ b, ∃ (lui , prui ) ∈ LRu . li =
lui ∧ pri ∈ [prui − δ, prui + δ]} the candidate set of users who in their frequency
vectors compatible with b. Note that δ is a tolerance factor for the matching of
proportions. The probability of re-identification of the user u is 1

|R| .

Note that each attack is associated with a specific data structure: Location, Loca-
tion Sequence and Visit require the trajectory data structure; Frequent Location,
Frequent Location Sequence and Frequency require the frequency vector; Home
& Work, Proportion and Probability require the probability vector.

5 Experiments

For all the attacks defined except the Home & Work attack we consider four sets
of background knowledge configuration Bk with k = 2, 3, 4, 5, while for the Home
& Work attack we have just one possible background knowledge configuration,
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where the adversary knows the two most frequent locations of an individual.
Note that for the Visit attack we considered only the day as time frame for
the granularity of the attack. We use a dataset provided by Octo Telematics2

storing the GPS tracks of 9,715 private vehicles traveling in Florence from 1st
May to 31st May 2011, corresponding to 179,318 trajectories. We assign each
origin and destination point of trajectories to the corresponding census cells [12]
provided by the Italian National Statistics Bureau. This allows us to describe
the mobility of every vehicle in terms of a trajectory as defined in Sect. 3. We
performed a simulation of the attacks computing the privacy risk values for all
individuals in the dataset and for all Bk.3 We then show the distribution of the
mobility features presented in Sect. 2 at varying levels of risk: we compare the
distribution of the features computed on the original dataset, i.e., the dataset
with the complete set of trajectories, with the distributions obtained using only
trajectories belonging to individuals below certain thresholds of privacy risk.

5.1 Privacy Risk Simulations

We simulated attacks using k = 2, 3, 4, 5: the cumulative distribution functions
for the trajectory attacks are depicted in Fig. 1, where we can see that the privacy
risk increase not only with increasing the amount of knowledge (from Fig. 1(a) to
(c)), but also with increasing k. This is more evident for the Location attack and
the Location Sequence attack (Fig. 1(a) and (b) respectively). It is interesting to
note that the greater gap is present, especially for the Location attack, varying
k from 2 to 3, i.e., the greatest increasing of risk of re-identification occurs when
the quantity of information known is lower. This implies that adding the same
absolute amount of information, i.e., one single location, has less influence if the
attacker already has a quite big knowledge. For the Visit attack (Fig. 1(c)), since
here the background knowledge is already enough detailed, we can see that the
increasing of k does not change so much the levels of privacy risk. The number
of individuals with maximum risk of re-identification, i.e., equals to 1, ranges
from 60% for the Location attack to more that 80% for the Visit attack, while
we do have an increase in the number of individuals with risk of re-identification
of 50% (or less) across the board.

Observing Fig. 2, regarding attacks on vectors, the levels of risk decrease
slightly from the attacks on trajectories. Moreover, it is clear how the the cumu-
lative distribution function of the risk of re-identification is quite stable varying
k or changing the category of knowledge. This can probably be due to the fact
that, with vectors, we are dealing with distinct locations for each individual,
thus, since many individuals have few distinct locations, the risk remains very
similar when increasing k. With Home & Work attack (2(f)) we have signifi-
cantly lower risk. Indeed, we can observe much lower levels of risk in general,
even if 50% of users still have maximum risk of re-identification.

2 https://www.octotelematics.com/.
3 The Python code for attacks simulation is available here: https://github.com/

pellungrobe/privacy-mobility-lib.

https://www.octotelematics.com/
https://github.com/pellungrobe/privacy-mobility-lib
https://github.com/pellungrobe/privacy-mobility-lib
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(a) Location (b) Location sequence (c) Visit (day)

Fig. 1. Cumulative distributions for trajectory attacks.

(a) Frequent Location (b) Freq. Loc. Sequence (c) Frequency (δ = 0.5)

(d) Probability (δ = 0.1) (e) Proportion (δ = 0.1) (f) Home&work

Fig. 2. Cumulative distributions for frequency vector attacks.

5.2 Correlations Between Measures and Privacy Risk

In this section we want to show the correlation between the mobility measures
introduced in Sect. 2 and the levels of risk calculated for each attack. The Pear-
son Correlation Coefficient is a measure of the linear dependence between two
variables, in this case a mobility measure and the risk assessed for each attack.
It ranges from −1 to +1 where −1 indicates total negative linear correlation,
0 indicates no linear correlation and +1 indicates total positive linear correla-
tion. Since in Sect. 5.1 we saw that, varying k, privacy risk does not change too
severely, we show the correlation only for a middle value, i.e. k = 3. We used
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Table 1. Correlation of measures and privacy risk

RadiusGyration UserEntropy MaxDistance SumDistances

Location 0.408326 0.654331 0.503459 0.352364

Location sequence 0.333477 0.668218 0.463041 0.367661

Visit (day) 0.219840 0.493934 0.320390 0.256473

Frequent location 0.359895 0.749976 0.501241 0.426581

Freq.Loc. sequence 0.352399 0.746065 0.490765 0.414132

Frequency 0.340739 0.733594 0.482271 0.410859

Probability 0.352399 0.746065 0.490765 0.414132

Proportion 0.359895 0.749976 0.501241 0.426581

only the features related to individuals and not the ones related to locations,
because the privacy risk level is computed for each individual and does not have
an association with locations. We show the results of correlation study in Table 1.
Analyzing the attacks on trajectories, there is really no strong correlation. An
interesting fact, which is compliant with the results showed in Sect. 5.1, is that
the correlation tends to decrease as the levels of risk increase, thus, for the Visit
attack, we observe a drop in the correlation coefficient. Another interesting result
is that, especially for the attacks related to frequency and probability vectors
the correlation between User Entropy and risk of re-identification is higher while
no other strong correlation can be found among the various measures. So overall
it seems that high levels of entropy correlate to high levels of risk.

5.3 Measure Distributions by Risk Levels

In this section we present an analysis on the distributions of mobility measures
on the datasets used in the experiment, w.r.t. the changing levels of risk. We
compare the distributions of the various measures and see how they vary with
the levels of risk. We removed from the dataset individuals above a certain
level of risk and then recomputed the measures. Thus, we obtained a set of
distributions for each measure, one for each level of risk and attack. However,
due to space limitations, we present the results only for two of them: the Visit
and Frequency attacks. These are the two most representative of the differences
between the attacks performed on different data structures, since they are two
of the most powerful. For both attacks we show how each measure behaves with
different levels of risk, comparing their distributions. For both datasets and for
all possible attacks we selected four thresholds of risk. Then, we systematically
eliminated from the original dataset users with a risk beyond the thresholds,
obtaining four different derived datasets: the original dataset D1 and D0.5, D0.33,
D0.25 obtained removing individuals with risk greater than 0.5, 0.33 and 0.25
respectively. Regarding the background knowledge configuration, we selected the
risk calculated with k = 2. This for several reasons: it is a reasonable number of
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locations that an attacker might know, it is the level of risk that shows the most
appreciable changes from one threshold of risk to the other in terms of users
excluded/included, and it is also the k value that yields the lower levels of risk.
In the following, we show the probability density functions (pdf) of the mobility
features for the different datasets.

(a) Radius of gyration (b) User Entropy

(c) Max Distance (d) Sum of Distances

Fig. 3. Pdf of user related measures changing levels of risk (Visit attack (day))

For the Visit attack with day precision for the time frame, Fig. 3 reports
results on users related measures. We observe some interesting results: User
Entropy (Fig. 3(b)) becomes 1 for almost all remaining users in D0.5, D0.33 and
D0.25. Observing the Radius of gyration (Fig. 3(a)) we note that the shape of
the distribution remains fairly similar but we find more individuals with high
Radius of gyration proportionally to the total number of remaining individuals.
For the Sum of Distances (Fig. 3(d)), we tend to lose the individuals who traveled
the longest distances total. For Max Distance (Fig. 3(c)) the distribution remain
substantially similar. Figure 4 shows that the distributions of location related
measures for both datasets suffer heavy modifications. For Location Entropy
(Fig. 4-left) we observe a loss of the middle values: we have a significantly higher
probability of locations with very low entropy (<0.2) and a slight peak of loca-
tions with very high entropy, with no relevant values in between. This is also
more evident the more we cut the data, i.e. for D0.25. For Location Density and
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Flow (Fig. 4-center and 4-right) we observe a loss of the higher values but the
overall shape of the distributions remains similar.

Fig. 4. Pdf of location related measures changing levels of risk (Visit attack (day))

Changing data structure from trajectory to frequency vector, we already
observed in Sect. 5.1 generally lower levels of risk, thus we can maintain more
individuals in the dataset cutting at the same thresholds. For this reason, we
expect more similar distributions w.r.t. the original dataset. However, since we
lose the information about the specific movements given by the trajectory struc-
ture, we cannot compute all the measures introduced in Sect. 2. The measures
that we cannot compute are: Max Distance, Sum of Distances and Flow. For the
frequency attack we show the results for individuals and locations related mea-
sures in Figs. 5 and 6 respectively. While User Entropy distribution (Fig. 5-right)
still exhibits some changes w.r.t. the original distribution at changing levels of
risk, we observe less dramatic differences in comparison to the distributions pre-
sented in Fig. 4-center regarding the Visit attack. For Location Entropy distri-
bution (Fig. 6-left) we still observe a peak of locations with very low entropy but
the overall shape of the distributions is closer to the original one, maintaining
similar peaks around higher values. Location Density (Fig. 6-right) and Radius
of gyration (Fig. 5-left) distributions appear to remain almost identical for all
thresholds of risk (D0.5, D0.33 and D0.25). Summarizing, the distributions pre-
sented above give an empirical demonstration to the intuition that less detailed
data structures, exposing less data about an individual, lead to generally lower
levels of re-identification risk. Thus, for the considered features, choosing the
minimum required data structure is fundamental to improve the quality of the
distributions of the mobility features we want to study when computing them
from sanitized datasets.

6 Related Work

To overcome privacy leaks, many techniques have been proposed in literature. A
widely used privacy-preserving model is k-anonymity [19], which requires that an
individual should not be identifiable from a group of size smaller than k based
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Fig. 5. Pdf of user related measures changing levels of risk (Frequency attack)

Fig. 6. Pdf of location related measures changing levels of risk (Frequency attack)

on their quasi-identifiers (QIDs), i.e., a set of attributes that can be used to
uniquely identify individuals. Assuming that adversaries own disjoint parts of a
trajectory, [22] reduces privacy risk by relying on the suppression of the danger-
ous observations from each individual’s trajectory. In [25], authors propose the
attack-graphs method to defend against attacks, based on k-anonymity. Other
works are based on the differential privacy model [6]. [10] and [14] considers the
problem of privacy on aggregations of movement data. [4] proposes to publish a
contingency table of trajectory data, where each cell contains the number of indi-
viduals commuting from a source to a destination. One of the most important
work about privacy risk assessment is the Linddun methodology [5], a privacy-
aware framework, useful for modeling privacy threats in software-based systems.
In the last years, different techniques for risk management have been proposed,
such as NIST’s Special Publication 800-30 [21] and SEI’s OCTAVE [2]. Unfortu-
nately, many of these works simply include privacy considerations when assess-
ing the impact of threats. In [23], authors elaborate an entropy-based method
to evaluate the disclosure risk of personal data, trying to manage quantitatively
privacy risks. [11] studies the effect of co-location information on location pri-
vacy, considering an adversary such as a social network operator accessing to such
information. The unicity measure proposed in [20] evaluates the privacy risk as
the number of records which are uniquely identified. [3] proposes a risk-aware
framework for information disclosure in tabular data supporting runtime risk
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assessment, using adaptive anonymization as risk-mitigation method. Lastly, in
[15] authors introduced a privacy risk assessment framework specific for mobility
data. Although this framework suffers from a high computational complexity, it
is effective in many mobility scenarios. Other papers addressing the problem of
measuring privacy risk in mobility data are [16,17].

7 Conclusion

Human mobility data contain highly sensitive information that might lead to
serious violations of individual privacy. In this paper we explored a repertoire
of re-identification attacks that can be conducted on mobility data, analyzing
the empirical privacy risk of thousands of individuals in a real-world mobility
dataset. The considered attacks were designed for three common mobility data
formats: trajectories, frequency vectors and probability vectors. Through exper-
imentation on the real-world dataset, we observed on average high level of risk
across the different types of re-identification attack. We then characterize how
the distributions of state-of-the-art human mobility measures changes as indi-
viduals with high level of risk are deleted from the dataset, finding two main
results: (1) higher privacy risk is related to a higher distortion of the distribu-
tions of mobility measures; (2) selecting the minimum required data structure
can lead to significant improvements in the overall levels of privacy risk, while
guaranteeing distributions of mobility features closer to the distributions derived
from the original data. We observe that the methodology experimented in this
paper may be applied, without changing the attacks definitions to any dataset
of mobility and sequence data; clearly, in this last case instead of locations we
would have events. As future work, we plan to investigate how distributions of
mobility features can be further improved using privacy transformations more
sophisticated than the simple suppression of individuals with high privacy risk.
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