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Preface

This volume contains the technical papers presented at the eight workshops collocated
with the 2018 edition of the STAF (Software Technologies: Applications and
Foundations) federation of conferences on software technologies. The workshops took
place at ENSEEIHT (National Higher School of Engineering in Electrical Engineering,
Hydraulics, and Digital Sciences) in Toulouse, France, during June 25–29, 2018.
The STAF 2018 conferences and workshops brought together leading researchers and
practitioners from academia and industry to advance the state of the art in practical and
foundational advances in software technology. They address all aspects of software
technology, from object-oriented design, testing, mathematical approaches to mod-
elling and verification, transformation, model-driven engineering, aspect-oriented
techniques, and tools. The satellite workshops provided a highly interactive and
collaborative environment to discuss emerging areas of software engineering, software
technologies, model-driven engineering, and formal methods.

The eight workshops whose papers are included in this volume are (organizers are
indicated too):

– CoSim-CPS 2018 – Second International Workshop on Formal Co-Simulation of
Cyber-Physical Systems, June 26, 2018

• Cinzia Bernardeschi (University of Pisa, Italy)
• Peter Gorm Larsen (Aarhus University, Denmark)
• Paolo Masci (HASLab/INESC TEC and Universidade do Minho, Portugal)

– DataMod 2018 – 7th International Symposium “From Data to Models and Back,”
June 25–26, 2018

• Antonio Cerone (Nazarbayev University, Kazakhstan)
• Riccardo Guidotti (KDDLab, ISTI-CNR, Pisa, Italy)
• Oana Andrei (University of Glasgow, UK)

– FMIS 2018 – 7th International Workshop on Formal Methods for Interactive
Systems, June 25–26, 2018

• Yamine Aït Ameur (IRIT, Université de Toulouse, France)
• Philippe Palanque (IRIT, Université de Toulouse, France)

– FOCLASA 2018 – 16th International Workshop on Foundations of Coordination
Languages and Self-Adaptative Systems, June 26, 2018

• Jean-Marie Jacquet (University of Namur, Belgium)
• Jacopo Soldani (University of Pisa, Italy)

– GCM 2018 – 9th International Workshop on Graph Computation Models, June 27,
2018



• Hans-Jörg Kreowski (Universität Bremen, Germany)

– MDE@DeRun 2018 – Model-Driven Engineering for Design-Runtime Interaction
in Complex Systems, June 28, 2018

• Hugo Bruneliere (IMT Atlantique and LS2N, Nantes, France)
• Romina Eramo (University of L’Aquila, Italy)
• Abel Gomez (Universitat Oberta de Catalunya, Spain)

– MSE 2018 – Third International Workshop on Microservices: Science and Engi-
neering, June 25, 2018

• Antonio Bucchiarone (Fondazione Bruno Kessler, Trento, Italy)
• Sophie Ebersold (IRIT, Université de Toulouse, Toulouse, France)
• Florian Galinier (IRIT, Université de Toulouse, Toulouse, France).

– SecureMDE 2018 – First International Workshop on Security for and by
Model-Driven Engineering, June 25, 2018

• Salvador Martinez (CEA-LIST, LISE laboratory, Paris, France)
• Jordi Cabot (SOM Research Lab, ICREA-UOC, Barcelona, Spain)
• Domenico Bianculli (University of Luxembourg, Luxembourg).

We would like to thank each organizer of the eight workshops at STAF 2018 for the
interesting topics and resulting talks, as well as the respective Program Commitee
members and external reviewers who carried out thorough and careful reviews, created
the program of each workshop, and made the compilation of this high-quality volume
possible. We also thank the paper contributors and attendees of all workshops. We
would like to extend our thanks to all keynote speakers for their excellent presentations.
We also thank the developers and maintainers of the EasyChair conference
management system, which was of great help in handling the paper submission,
reviewing, and discussion for all workshops, and in the preparation of this volume.
Finally, we would like to thank the organizers of STAF 2018, Jean-Michel Bruel and
Marc Pantel, for their help during the organization of all workshops, as well as
ENSEEIHT and the IRIT laboratory that hosted the workshops.

October 2018 Manuel Mazzara
Iulian Ober

Gwen Salaün
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Testing Autonomous Robots in Virtual Worlds

Hélène Waeselynck

LAAS-CNRS, Université de Toulouse, 7 Av. du Colonel Roche,
31077 Toulouse, France

Helene.Waeselynck@laas.fr

Abstract. Autonomous robots have decisional capabilities allowing them to
accomplish missions in diverse and previously unknown environments. The
mission-level validation of such systems typically involves test campaigns in the
field, which are costly and potentially risky in case of misbehavior. In this talk, I
will discuss an alternative approach based on simulation: the robot is immersed
in virtual worlds, and can be tested in a wide variety of situations without
incurring damage. I will take the example of testing the autonomous navigation
of outdoor robots. I will share the insights and results gained from two case
studies: Mana, an academic rough-terrain robot developed at LAAS-CNRS, and
Oz, an agricultural robot for autonomous weeding developed by Naïo
Technologies.

Keywords: Autonomous systems � Software testing � Simulation



Data-Driven Analysis of User Interface
Software in Medical Devices

Paolo Masci

INESC TEC and Universidade do Minho, Portugal
paolo.masci@inesctec.pt

User interface software in medical devices is responsible for smooth and safe use of a
device. In advanced systems such as robotic-assisted surgery, user interface functions
can be highly sophisticated, e.g., involve the detection and translation of doctors’ hands
movements into micro-movements of robotic arms, allowing doctors to perform
complex surgeries that were not possible before.

Developing sophisticated software with zero defects is notoriously a hard problem.
In the medical domain the problem is particularly delicate, as software defects can
ultimately result in patient harm. Recent estimates on incidents with medical devices
indicate an escalating trend, with software defects being constantly one of the top
causes of incidents since 2016, and accounting for 22.8% of medical device recalls in
the first quarter of 20181. To date, several studies have been carried out providing an
aggregate view of software defects in medical devices. A detailed analysis of the nature
and impact of user interface software defects has not been performed yet. Such detailed
analysis would bring powerful insights that can be used by developers to better
understand latent software defects and identify them in advance, before incidents
happen.

In this talk, I will present a study conducted in collaboration with the US Food and
Drug Administration that aims to quantify and classify user interface software defects
in the current generation of medical devices. The study involved a systematic and
detailed analysis of nearly 8,000 medical devices recall records published by the FDA
from September 2012 to August 2015. A medical device recall is a corrective action
initiated by the manufacturer to fix critical defects in a device already in the market.
Each recall record includes a semi-structured description of the reason for the recall and
the corrective action performed by the manufacturer. I will discuss the analyzed dataset,
including analysis method, challenges faced while performing the analysis, obtained
results, and opportunities for improvement.

1 https://www.stericycleexpertsolutions.com/wp-content/uploads/2018/08/ExpertSolutions_
RecallIndex_Q22018.pdf.

https://www.stericycleexpertsolutions.com/wp-content/uploads/2018/08/ExpertSolutions_RecallIndex_Q22018.pdf
https://www.stericycleexpertsolutions.com/wp-content/uploads/2018/08/ExpertSolutions_RecallIndex_Q22018.pdf


Safe Composition of Software Services

Gwen Salaün

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG,
F-38000 Grenoble, France

Composition of software is a crucial topic in many different computer science areas
such as Software Architectures, Component-Based Software Engineering, Web ser-
vices, cloud computing, Internet of Things, etc. Composition is however a difficult task
for several reasons. There is a need first for models of the services and of the way these
services interact together. Several levels of expressiveness can be considered in this
model (signature, behaviour, semantics, quality of service). Each facet brings different
issues from a composition perspective. In this talk, we have a specific focus on
behavioural models for service composition. Once a model is properly defined, one can
design a composition by defining connections or bindings among the involved services.
Building such a composition is error-prone and several kinds of mismatch can arise.
Analysis techniques are thus required in order to validate the composition and ensure
that before the composition is deployed it works correctly. Beyond models and auto-
mated verification techniques for validating service composition, we also present in this
talk two different ways to develop composition of services, namely, top-down and
bottom-up development processes. Last but not least, we illustrate these techniques for
supporting the modelling and composition of services with a concrete approach
developed in the context of the Internet of Things.



Computational Oncology: From Biomedical
Data to Computational Models, and Back

Giulio Caravagna

Centre for Evolution and Cancer,
The Institute of Cancer Research, London, UK

Keynote Speaker of DataMod 2018

Cancer is a disease responsible for around 8 million deaths per year (around 13% of all
deaths in 2008), and whose worldwide impact is projected to continue rising, with an
estimated 13 million deaths in 2030 (as of an estimate by the World Health Organi-
sation). Finding a cure to cancer is definitely challenging, as there are as many different
types of cancer as human cells, and the progression of the disease is heterogenous
across individuals. Often, histologically identical tumours have few genetic features in
common, and thus reconciling heterogeneity across tumour types and patients is one
of the main areas of research in the community.

In the last years, thanks to the development of new high throughput sequencing
technologies that measure the genomic content of cancer cells at different resolutions,
the new field of Cancer Evolution has emerged. In this field, carcinogenesis is
described as an evolutionary process driven by the accumulation of genomic aberra-
tions, and complex methodologies are used to retrieve the life history of analysed
tumours. At a broad level, this opens up for the opportunity to create models that
recapitulate heterogeneity, and that elucidate how genomic events orchestrate diseases
initiation and progression. So doing, we can anticipate a cancer’s next step, and
eventually implement personalised treatment strategies that are tailored to each patient.

Computational modelling is one of the key methodologies used in Cancer Evolu-
tion. In this talk, I will give a brief introduction to the problems in the filed, from a
computer science perspective. I will overview some of the major computational
challenges, and the kind of data can be used to approach them. The talk will span from
(very basic) cell/cancer biology, to a discussion of what types of mathematical models
can be used to describe cancer growth/therapy, and what Data Science challenges we
have to face to implement successful strategies for cancer data analysis.



Microservices, Microservices, Microservices?

Antonio Brogi

Department of Computer Science
University of Pisa, Pisa, Italy
brogi@di.unipi.it

Abstract. In this talk, we first tried to critically discuss some of the motivations
and characteristics of microservices and some of the potentially huge advantages
offered by their adoption for managing enterprise applications.

One of the main motivations for adopting microservices is the need to
shorten the lead time for new features and updates, by accelerating rebuild and
redeployment and by reducing chords across functional silos. Another main
motivation for adopting microservices is the need to scale, quickly and effec-
tively.

Microservices architectures define applications as sets of services, each
running in its own container, communicating with lightweight mechanisms,
built around business capabilities, decentralizing data management, indepen-
dently deployable, horizontally scalable, and fault resilient.

In the second part of the talk, we showed how a simple formalization of the
main properties of microservices can be frutifully exploited to drive the refac-
toring of existing applications.

After introducing a simple modelling of microservices architectures as
graphs fromed by services, databases, and connectors, we discussed how some
distinguishing properties of microservices can be associated with antipatterns,
and how such antipatterns can be associated with refactoring patterns.

The last part of the talk was devoted to discuss how the complexity and
overhead introduced by microservices can make their adoption truly effective
only for a certain scale of applications and enterprises.
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Formal Co-Simulation of Cyber-Physical
Systems (CoSim-CPS)



2nd Workshop on Formal Co-Simulation
of Cyber-Physical Systems (CoSim-CPS-18)

The 2nd edition of the workshop on Formal Co-Simulation of Cyber-Physical Systems
(CoSim-CPS-18)1 was held in Toulouse, France, on June 26, 2018, as a satellite event
of STAF/SEFM-18.

The workshop focuses on the integrated application of formal methods and co-
simulation technologies in the development of software for Cyber-Physical Systems.
Co-simulation is an advanced simulation technique that allows developers to generate a
global simulation of a complex system by orchestrating and composing the concurrent
simulation of individual components or aspects of the system. Formal methods link
software specifications and program code to logic theories, providing developers with
means to analyse program behaviours in a way that is demonstrably exhaustive. These
two technologies complement each other. Using co-simulation, developers can create
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Abstract. Engineering modern systems is becoming increasingly diffi-
cult due to the heterogeneity between different subsystems. Modelling
and simulation techniques have traditionally been used to tackle com-
plexity, but with increasing heterogeneity of the subsystems, it becomes
impossible to find appropriate modelling languages and tools to specify
and analyse the system as a whole.

Co-simulation is a technique to combine multiple models and their
simulators in order to analyse the behaviour of the whole system over
time. Past research, however, has shown that the näıve combination of
simulators can easily lead to incorrect simulation results, especially when
co-simulating hybrid systems.

This paper shows: (i) how co-simulation of a family of hybrid systems
can fail to reproduce the order of events that should have occurred (event
ordering); (ii) how to prove that a co-simulation algorithm is correct
(w.r.t. event ordering), and if it is incorrect, how to obtain a counterex-
ample; and (iii) how to correct an incorrect co-simulation algorithm. We
apply the above method to two well known co-simulation algorithms used
with the FMI Standard, and we show that one of them is incorrect for
the family of hybrid systems under study, under the restrictions of the
standard. The conclusion is that either the standard needs to be revised,
or one of the algorithms should be avoided.
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1 Introduction

Engineered systems are becoming increasingly complex while market pressure
shortens the available development time [26]. There are many causes for the
increase in complexity, but to a large extent, it is caused by the number of
interacting subsystems and differences between their domains [33]. Thus, there
is a need for an improved development cycle with better tools, techniques,
and methodologies [34]. While modelling and simulation have been successfully
applied to reduce development costs, these fall short in fostering more integrated
development processes [5].

A promising concept for the simulation of systems consisting of coupled com-
ponents is collaborative simulation (co-simulation) [19,21,25], which is based on
the idea that interacting subsystems are best modelled and simulated by dedi-
cated tools and formalisms [35]. Each subsystem is then modelled by a specialised
team using mature tools, tailored to the domain of the allocated subsystem. Fur-
ther, each subsystem internally uses its own simulation engine, so that the most
appropriate approximation techniques can be employed. The behaviour of the
coupled system is computed by having the simulation tools communicate with
one another by exchanging their outputs over time.

In order to run a co-simulation, all that is required is that the participating
simulation tools consume the inputs and expose the outputs, of the allocated
subsystem, over time. A co-simulation engine then synchronises the interface
values of the different subsystems. This powerful approach eases the integration
of subsystems simulated by different tools, but also poses some difficulties. In
particular, subsystems are modelled and treated as black boxes, and it is dif-
ficult in some cases to understand how the coordination of the subsystems—a
functionality provided by the co-simulation engine—affects the behaviour of the
co-simulated system [20].

One might expect that the behaviour computed via co-simulation matches
the behaviour of the coupled system. In practice, however, this expectation turns
out overly optimistic, and significant deviations may become visible, which could,
for example, be caused by discretization or the timing in which the inputs are set.
This is not only due to the inherent limitations of approximate simulations [10],
but also due to the internals of the subsystem simulations. It is therefore impor-
tant to study how a faulty co-simulation can be identified. If a co-simulation
preserves specific properties of a system, we then say that the properties of the
system are preserved under co-simulation. To serve as a reference for correctness,
we consider the properties of the implemented system, i.e. with no co-simulation
effects.

This paper contributes to this line of research as follows:

– We identify a novel property called event ordering, which is often implicitly
required to be preserved by co-simulations of systems that combine software
with physical subsystems.

– We present a characterisation of the event ordering property as a model check-
ing problem [11] based on the Functional Mock-up Interface for co-simulation
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(FMI) standard [6]. Our method can be utilised to decide whether a given
co-simulation satisfies this property for a restricted class of coupled systems.

– We show how, exemplified using FMI, to adapt the co-simulation master
algorithm to preserve the event order, if the property is not preserved.

One of the strengths of our approach is that it yields a counterexample when
the property is violated. The counter example includes a co-simulation scenario
and an execution trace of the co-simulation, which provide valuable insight into
how the co-simulation violates the event ordering property. The Maestro [32]
master algorithm serves as a case study for our approach.

The remainder of this paper is structured as follows. First, Sect. 3 presents
a primer on co-simulation and co-simulation properties. Afterwards, in Sect. 4,
the event ordering property is demonstrated and described along with an encod-
ing of the problem as a model-checking instance. Finally, the paper presents a
discussion and perspective on future work in Sect. 5.

2 Background: Co-simulation

Fig. 1. Behaviour trace
example.

In this section, we present some background concepts
in an informal manner. We adopt the definitions and
nomenclature introduced in [20] and refer the reader
to it for a more rigorous exposition.

A co-simulation is the behaviour trace of a coupled
system, produced by the coordination of simulation
units. The behaviour trace is a function mapping val-
ues to time, representing the outputs generated from
each simulation unit and their timestamps. An exam-
ple behaviour trace is shown in the bottom of Fig. 1.

A simulation unit is an executable software entity
responsible for simulating a part of the system. To
communicate with other simulation units, each sim-
ulation unit implements a predefined interface. This
allows an orchestrator, described below, to communi-
cate with it.

One such communication interface is prescribed by
the Functional Mock-up Interface (FMI) standard [6].
A simulation unit implementing the FMI interface is
called a Functional Mock-up Unit (FMU). The main functionality of an FMU
concerns calculating outputs based on inputs and time. This is represented in
FMI as three C functions: a function to set inputs, a function to perform a step
with a given step size, and a function to get outputs.

In the FMI Standard, there is an important restriction [13, p. 104]:

Restriction 1. There is the additional restriction in “slaveInitialized” state
that it is not allowed to call fmi2GetXXX functions after fmi2SetXXX functions
without an fmi2DoStep call in between.
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As we show later, this restriction has important consequences on the co-
simulation of hybrid systems.

Fig. 2. Co-simulation
architecture.

An orchestrator is a software component that set-
s/gets inputs/outputs of each simulation unit, and
asks it to estimate the state of its allocated subsystem
at a future time. For example, in Fig. 1, the orches-
trator sets an input to the unit at time ti, and asks
the unit to compute the state at time ti + H. The
unit in turn might perform multiple micro-steps and
employ an input approximation scheme (this is unex-
posed to the orchestrator). Then, once the unit is at
time ti+H, the orchestrator requests an output, illus-
trated at the bottom of the figure.

The orchestrator follows the co-simulation sce-
nario to know the order in which to ask the simulation
unit to simulate and where to copy their outputs. A

co-simulation scenario is a description of how the subsystems are interconnected
and properties of the co-simulation, e.g. step size. For example, the orchestrator
box contains an illustration of how the subsystems are connected, in Fig. 2.

There are three main master algorithms: Jacobi, Gauss-Seidel, and Strong-
coupling [27]. We focus on the Jacobi and Gauss-Seidel, illustrated in Fig. 3a and
b. The Jacobi algorithm proceeds by asking all simulators to produce outputs,
then it computes and sets the inputs that all simulators need (illustrated by data
transfer arrows in Fig. 3a). Afterwards, it asks all simulators to simulate their
corresponding subsystem until the next communication time, after which the
process repeats. This is represented by simulation step arrows in Fig. 3a, where
the next communication time is ti + H.

The Gauss-Seidel algorithm assigns an order to each simulator, and, in that
order, computes the inputs of the simulator, then asks the same simulator to
simulate to the next time point, obtains its output, and uses that output to
compute the input to the next simulator. These steps are repeated until all
simulators have simulated until the next time point, and then the process starts
over again. See Fig. 3b.

3 Related Work: Property Preservation in Co-simulation

In this section, we introduce intuitively the notion of property preservation, and
cover examples from the state of the art, where it is studied.

Given a property P that is satisfied by a coupled system, we say that the
co-simulation (of the coupled system) preserves P if it also satisfies P . For exam-
ple, a coupled system representing chemical kinetics always has positive concen-
trations. Clearly, this property (every concentration variable must be positive)
should be preserved in co-simulations.

In general it is a challenge to ensure that any property of interest is preserved
by co-simulations. The following paragraphs provide other examples of property
preservation from the state of the art.
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Fig. 3. Coupling algorithms.

Stability. A coupled system is stable when it eventually comes to a rest. Since
many systems are engineered to be stable [3], it is important that this property is
preserved under co-simulation. The works in [1,9,17,24,30] study the conditions
under which the stability property is conserved for selected physical coupled sys-
tems. The same works also provide insight into how the co-simulation algorithm
can preserve this property.

Energy Conservation. Systems whose models account for the flow of energy fol-
low the principle of conservation of energy. That is, no energy is lost when flow-
ing between subsystems. This property is not preserved in näive co-simulation
algorithms because of the input approximations, and the non-negligible commu-
nication step size. The work in [4], extended in [29], demonstrates a co-simulation
algorithm that monitors the power flow between simulators and employs a correc-
tion scheme to account for the artificial energy introduced by the co-simulation.
The work in [28] complements the above work by showing how the energy resid-
ual can be used as an error indicator to control the communication step size.

Event Synchrony. A co-simulation preserves event synchrony when any event
happening at a specific time in the original hybrid system is also reproduced
by the co-simulation at the same time. A hybrid system is a system comprising
software and physical subsystems. This is one of the properties studied in [15],
in the context of co-simulations involving two simulation units: one responsi-
ble for the software subsystem, and the other for a continuous subsystem. In
order to enable an easier comparison of event timestamps, [12] proposes the
use of integers, instead of floating point numbers, to represent time. Accurately
detecting—and locating the time of—events is paramount to the preservation
of the energy and stability properties in a co-simulation. As such, the work in
[16] explores how the energy of a hybrid system can be increased when state
events are not accurately reproduced by the co-simulation. It presents a way to
find the maximum event detection delay so that the stability is preserved in the
co-simulation.
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4 Verification of Master Algorithms

The previous section introduced multiple properties that should be preserved in
a co-simulation. In particular, it introduced the event synchrony property.

The event synchrony property states that every event happening in a hybrid
system, happens at the exact same time in the corresponding co-simulation. An
event is a value in the co-simulation whose timestamp should be approximated
as closely as possible. For example, the time at which the output of a simulation
unit crosses the zero; of the time at which a state machine based FMU changes
its output because of a change in its internal discrete state.

In order to detect an event, because its exact time is often difficult to predict
without actually asking the units to compute, the master algorithm only detects
it after it occurs. Then, to find the exact time of the event, the orchestrator
restores the co-simulation to a prior state (where the event has not yet hap-
pened) and proceeds with more caution (that is, smaller communication step
size). This is repeated until the time of the event is known with sufficiently high
accuracy [36]. A consequence is that this property can only be preserved up to
some tolerance level, dictated by the precision required for the co-simulation
experiment.

4.1 Relaxing Event Synchrony: Event Ordering

The FMI Standard partially supports master algorithms that preserve the event
synchrony property. Each FMU is allowed to advance to a time prior to the one
requested by the orchestrator, and supports state saving/restoring functional-
ities. However, making use of these capabilities in practice may be impossible
due to lack of implementation (these are not mandatory), or simply due to the
performance degradation entailed by saving/restoring the state multiple times.

As such, the event synchrony property might be too strong. Instead, it might
be more useful to require that the sequence of events be preserved, even if
the timestamps do not coincide. For example, suppose that the real/correct
behaviour of a coupled system, comprised of a software and a physical compo-
nent, yields 3 events: (t1, e1), (t2, e2), and (t3, e3), with the timestamps satisfying
t1 < t2 < t3. The co-simulation satisfies the event ordering property if it exhibits
the events (t′1, e1), (t′2, e2), and (t′3, e3), with the timestamps satisfying the same
order, that is, t′1 < t′2 < t′3, but not necessarily equal to t1, t2, t3.

4.2 Problem Formulation

We focus on a restricted class of hybrid systems in order to study an essential
challenge related to preserving the event synchrony property. The system under
study is illustrated in Fig. 4. It consists of a software part, and a physical part.
The software part is represented as a Statechart [22], and the physical part is
represented by a differential equation.
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Fig. 4. Hybrid systems under study.

The software part is representative of a control system that has a timeout
mechanism, triggered whenever the physical part fails to react to some stimuli
(an event in this case). The details of the dynamics of the physical subsystem
are not important. What is important is that its output is a delayed function of
the input, so that any change in the input is reflected on the output, e.g., 0.01 s
later. This is a reasonable abstraction since most physical systems have some
sort of inertial reaction to inputs.

An execution of the software subsystem is plotted in Fig. 5. Immediately
after time 0.01 s, the event e1 is produced. This event affects the output of the
physical system (0.01 s later), which is picked up by the software unit, causing it
to change to, S2 and produce event e2. If the physical plant shows no reaction
within 0.04 s, then the software will change to state S3.

Fig. 5. Sample execution of the system in Fig. 4, with Open Modelica [14].
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Software FMU u

y

FMU 1 FMU 2 ... FMU N

Fig. 6. Co-simulation scenario.

For the purposes
of co-simulating the
above system using
the FMI Standard,
suppose that the phys-
ical subsystem is decom-
posed into N > 1
FMUs, connected sequentially, as shown in Fig. 6. The Software FMU imple-
ments the simulation of the software subsystem shown in Fig. 4. FMU 1 is
responsible for the dynamics of the physical subsystem in the same figure, which
introduces a 0.01s delay between input and output. The remaining FMUs are
identity functions and will be referred to as propagate FMUs. All the FMUs here
behave according to the FMI Standard 2.0, respecting Restriction 1. That is, no
event is detected when a new input is set.

Using the Jacobi algorithm to co-simulate the scenario in Fig. 6, with N = 3
and co-simulation step size H = 0.01, leads to the software execution trace
depicted in Fig. 7. The events produced in this trace are the same as the ones
in the correct execution in Fig. 5, but their timestamps are different. Event e1
is produced at time 0.02 s instead of 0.01 s because the event should happen
immediately after time 0.01 s, and not at 0.01 s. This means that it is only
observed at time 0.02 s. Furthermore, the reaction of the physical subsystem is
detected later at time 0.06 s, instead of 0.02 s.

Fig. 7. Co-simulation using the Jacobi algorithm of the scenario in Fig. 6. Parameters:
N = 3, H = 0.01. Produced with Maestro from INTO-CPS [32].

Naturally, the smaller the communication step size H, the smaller the delay
introduced by the propagate FMUs.

What this example illustrates is that, due to Restriction 1, the size of the
co-simulation scenario also plays a role in the delay introduced. By adding more
propagate FMUs to the example scenario, we get a qualitatively different event
sequence, as shown in Fig. 8, where the final state of the software subsystem
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is S3, instead of S2. The excessive delay, accidentally introduced by the Jacobi
algorithm, causes the software timeout to be triggered.

Fig. 8. Co-simulation using the Jacobi algorithm of the scenario in Fig. 6. Parameters:
N = 6, H = 0.01. Produced with Maestro from INTO-CPS [32].

In general one would like to have co-simulations that either do not introduce
artificial delays, or that, at least, introduce a delay that depend only on the
communication step size, so that it is easier to satisfy the event ordering property.
In the following subsections we use model checking to formally study the ordering
of this property for the hybrid system shown in Fig. 4, with a variable structure
co-simulation scenario illustrated in Fig. 6. In the experiments the co-simulation
step size is kept the same, although it is straightforward to take its variation
into account.

4.3 Model Checking the Jacobi Algorithm

We use the ProMeLa [23] notation to model the FMUs, and the master algorithm.
The Promela language uses a textual syntax to describe parallel and sequential
processes, communication channels, and non-determinism.

Listing 1.1. Channels

1 mtype:events = {e0, e1};
2 typedef channels {
3 chan in = [0] of {mtype:events};
4 chan out = [0] of {mtype:events};
5 chan step = [0] of {int};
6 }

The Promela model follows closely the co-simulation scenario sketched in
Fig. 6. The communication between the master algorithm and the FMUs is made
via three channels: one to set inputs, one to set outputs, and one to perform a
co-simulation step. These channels are detailed in Listing 1.1. The in and step
channels are read by the FMU, while the out channel is read by the master
algorithm.
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Listing 1.2. Statechart FMU

1 proctype stateFMU(channels chans) {
2 int t_time = 0;
3 mtype:events input;
4 do
5 :: chans.step ? t_time ->
6 if
7 /* if state is 0 and more than 1 time unit have passed, then change

↪→ the state to 1 and output an event. */
8 :: (state == 0) ->
9 if

10 :: (t_time > 1) ->
11 state=1;
12 chans.out ! e1; /* e1 is the output that we are

↪→ interested in receiving again */
13 :: else -> chans.out ! e0;
14 fi;
15 /* If the state is 1 and 4 additional time units have passed, then

↪→ change to state 3 */
16 :: (state == 1) ->
17 if
18 :: t_time > 5 & input != e1 -> state = 3;
19 :: input == e1 -> state = 2;
20 :: else -> skip;
21 fi;
22 chans.out ! e0;
23 :: (state == 2) -> chans.out ! e1;
24 :: else -> chans.out ! e0;
25 fi;
26 :: chans.in ? input
27 :: (terminate == 1) -> break;
28 od;
29 }

The FMU corresponding to the software subsystem is modelled in ProMeLa
by implementing the reaction to events received from the channels in and step.
When an event is present in channel in, it is stored in the intermediate variable
input, such that it can be accessed when an event is present in channel step.
When an event is present in channel step, the FMU follows the state machine
of the software subsystem, taking into account that the time is represented as
an integer and the communication step size is 0.01 s. Listing 1.2 presents this
model.

The other FMUs are propagate FMUs. As such, the FMU model shown in
Listing 1.3 just stores and outputs whatever input it receives.

Listing 1.3. Propagate FMU

1 proctype propFMU(channels chans){
2 mtype:events inp;
3 int t_time = 0;
4 do
5 :: chans.in ? inp
6 :: chans.step ? t_time -> chans.out ! inp;
7 :: (terminate == 1) -> break;
8 od;
9 }

The Jacobi master algorithm essentially sends events through the in channel
of each FMU, asks the FMU to step via the step channel, and stores the
output events at the out channels. The non-deterministic aspect of this model
is encoded in the choice of the number of propagate FMUs that can be added
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to the scenario. The number of FMUs (maxN) is limited to 10, as it is enough
to prove this property. The implementation is shown in Listing 1.4.

Listing 1.4. The Jacobi Master Algorithm in ProMeLa

1 proctype MAJacobi(){
2 int propagateCount;
3 select ( propagateCount : 1 .. (maxN-1) );
4 int FMUCount = propagateCount + 1;
5
6 channels fmuChannels[maxN];
7 mtype:events inputs[maxN];
8
9 smpid = run stateFMU(fmuChannels[0]);

10
11 int i;
12 for(i : 1 .. propagateCount){
13 run propFMU(fmuChannels[i]);
14 }
15
16 do
17 :: time < endTime ->
18 /* Step the FMUs */
19 for(i : 0 .. FMUCount-1){
20 fmuChannels[i].step ! time+1;
21 }
22
23 /* Retrieve the outputs */
24 for(i : 0 .. FMUCount-1){
25 fmuChannels[i].out ? inputs[(i + 1)
26 }
27
28 /* Set inputs */
29 for(i : 0 .. FMUCount-1){
30 fmuChannels[i].in ! inputs[i]
31 }
32
33 time++;
34 :: else ->
35 terminate = 1;
36 break;
37 od;
38 }

The event ordering property can be encoded in this model as a reachability
property: the Statechart FMU eventually reaches S2. This is shown in Listing 1.5.
The state variable is global, and is set as part of the execution of the FMU.

Listing 1.5. Eventually Correct LTL formula.

1 ltl eventuallyCorrect { <> (state == 2)}

Using SPIN [23] to carry out the verification of this property, applied to
Listing 1.4, quickly shows that it cannot be verified. The error trail provides a
counter example execution, by showing that S3 is reached when there are four
propagate FMUs. Informally, the error trail is the following: At step 2 (0.02 s), e1
is outputted from the Statechart FMU. At step 3 (0.03 s) it is outputted from the
following propagate FMU. At step 4 it is outputted from the second propagate
FMU, at step 5 it is outputted from the third propagate FMU. Finally, at step
6 it is outputted from the last propagate FMU but this is the same time as the
Software FMU transitions to S3. Therefore, the Statechart FMU never reaches
S2. This is consistent with the result in Fig. 8.
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4.4 Model Checking the Gauss-Seidel Algorithm

The Gauss-seidel algorithm is introduced in Sect. 2 and illustrated in Fig. 3b.
The main difference between this algorithm and the Jacobi is in the timestamp
of the outputs and inputs provided to the simulation units. From the perspective
of a simulation unit, the Gauss-Seidel algorithm provides future inputs to the
unit, before asking it to compute a co-simulation step. This allows the unit to
react to the inputs without any delay [18]. Its implementation is detailed in
Listing 1.6.

Listing 1.6. The Gauss-Seidel Master Algorithm in ProMeLa

1 proctype MAGauss(){
2 int propagateCount;
3 select ( propagateCount : 1 .. (maxN-1) );
4 int FMUCount = propagateCount + 1;
5
6 channels fmuChannels[maxN];
7 mtype:events inputs[maxN];
8
9 run stateFMU(fmuChannels[0]);

10
11 int i;
12 for(i : 1 .. FMUCount-1){
13 run propFMU(fmuChannels[i]);
14 }
15
16 do
17 :: time < endTime ->
18 for(i : 0 .. FMUCount-1){
19 /* Step the FMU */
20 fmuChannels[i].step ! time + 1;
21
22 /* Retrieve the output */
23 fmuChannels[i].out ? inputs[(i + 1)
24
25 /* Set the input */
26 fmuChannels[(i + 1)
27 }
28 time++;
29 :: else ->
30 terminate = 1;
31 break;
32 od;
33 }

Verifying Listing 1.6 with the LTL formula in Listing 1.5 shows that the
Gauss-seidel algorithm correctly preserves the execution sequence of the events.
This matches our intuition since the Gauss-Seidel algorithm allows each FMU to
perform computation while knowing the future input. Therefore, Restriction 1
does not affect the ability to propagate events instantaneously. The next section
discusses these results.



Towards the Verification of Hybrid Co-simulation Algorithms 17

5 Discussion and Future Work

In this paper we have shown how a co-simulation using the Jacobi algorithm, and
respecting the FMI Standard, can fail to preserve the event ordering property.
To this end, we picked a particular class of hybrid systems that are sensitive to
delays.

The correctness property we used is a weak form of event synchrony: the
order of events is preserved, but their timestamps can be different than the ones
happening in the correct behaviour of the coupled system. Under the restrictions
of the FMI Standard, two master algorithms have been used to study the prop-
erty: The Jacobi and the Gauss-Seidel. It is shown that the Jacobi algorithm
does not preserve it, in general making it unsuitable for general, hybrid FMI
based co-simulation.

Albeit a very simple example, the hybrid system used is meant to illus-
trate that, based on minimum information on the FMUs, we can prove if a
co-simulation algorithm is appropriate or not for a scenario. The proof is based
on an abstraction of the FMU in the form of timed automata and the definition
of properties to be respected by some FMUs. To extend this preliminary work,
we intend to explore how to deal with black box simulation units, so that a
conservative (and provably correct) abstraction can be built for them. It is also
important for an FMU to expose some of the properties that must be preserved
without revealing the internal details, keeping intellectual property safe.

To illustrate, in the previous example, if we expose the shortest timed reaction
of each software FMU, and the input-to-output propagation time of each FMU
then we can determine which communication step size can be used in order to
ensure the order of the event sequence with the Jacobi algorithm. To see how
the step size H can be computed, let T denote the smallest timeout used in
the software FMU, and P (H) denote the largest propagation time from any
output to itself, for the communication step size H. For the scenario in Fig. 6,
P (H) = H × (N + 1)1. Then the communication step size must be chosen so
that P (H) < T .

This example shows that the Jacobi algorithm is still suitable for black box
co-simulations, since exposing the shortest timed reaction and the propagation
time does not expose the Intellectual Property of the subsystems.

Providing abstract information from the FMU is common in research on black
box co-simulation (e.g., exposing the Jacobian [31], exposing the I/O feedthrough
[2], exposing the maximum allowed step size [7]). While this is usually carried
out to allow the setup of a co-simulation algorithm, we propose here to expose
the minimum, relevant information to have a correct co-simulation, i.e. to allow
verification such as model checking of the co-simulation.

The FMI webpage2 contains a list of tools capable of performing co-
simulation, and in order to be on this list, a tool must pass some tests. These
1 This formula assumes that the software FMU only outputs a timeout event after

the timeout (as it happens in Fig. 7), and not at the timeout. In the latter case, the
formula becomes P (H) = H ×N .

2 http://fmi-standard.org/.

http://fmi-standard.org/
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tests, however, are limited – for example they only concern simulation of a single
FMU, and not an actual co-simulation. In the long term, this research aims at
producing a set of benchmarks, for various correctness properties, that can be
used by the research community in the development of co-simulation tools. This
idea is inspired by the work of [8], which defined the building blocks of these
benchmarks.
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Abstract. This paper presents our on-going work on developing a flexi-
ble framework for formal co-simulation of human-centred cyber-physical
systems. The framework builds on and extends an existing prototyp-
ing toolkit, adding novel functionalities for automatic generation of user
interface prototypes equipped with a standard FMI-2 co-simulation inter-
face. The framework is developed in JavaScript, and uses a flexible
templating mechanism for converting stand-alone device prototypes into
Functional Mockup Units (FMUs) capable of exchanging commands and
data with any FMI-compliant co-simulation engine. Two concrete exam-
ples are presented to demonstrate the capabilities of the framework.

1 Introduction

Human-centered Cyber-Physical Systems (CPS) are complex systems that inte-
grate human operators, digital controllers, and the physical world. An example
is a self-driving car where an advanced driver assistance system automatically
adjusts the speed and navigation of the car based on inputs from sensors, and
the driver can take over control of the car at any point in time, e.g., by pressing
the brake or accelerator pedal.

Model-based simulation technologies applied at the early stages of system
design allow developers to gain additional confidence that the system behaves
as expected. To produce accurate results in model-based analysis of CPS, devel-
opers often need to use co-simulation techniques, i.e., integrated simulation of
different sub-systems, each modelled and simulated with the most appropriate
tool (e.g., logic-based models for digital controllers, and continuous models based
on differential equations for the physical part of the system).

To date, the research community has devoted most of its effort to the devel-
opment of tools for co-simulation of cyber and physical components of CPS. Rel-
atively little attention has been dedicated to developing tool support to assess
the design of the human-machine interface of CPS, even though human-CPS
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interaction is often a critical aspect of the system, e.g., see the recent acci-
dents involving self-driving cars [15,16], where the design of the car dashboard
exceeded the driver’s abilities and performance when the driver needed to take
over control of the car because of an emergency situation.

Contribution. We present a framework designed to support modelling and
co-simulation of the user interface of a CPS. The framework builds on and
extends PVSio-web [12], a prototyping toolkit for model-based analysis of
human-machine interfaces. We extend PVSio-web to introduce support of auto-
matic generation of user interface prototypes equipped with a standard FMI-2
co-simulation interface. Our framework is developed in JavaScript, and uses a
flexible templating mechanism to convert stand-alone device prototypes into
Functional Mockup Units (FMUs) capable of exchanging commands and data
with any FMI-compliant co-simulation engine. Two example co-simulations of
CPS are presented to illustrate the features and utility of the framework.

Structure. Section 2 illustrates background tools and concepts used in the work.
Section 3 presents the code for automatically generate an FMU implementing a
device prototype previously built with PVSio-web. Section 4 shows two differ-
ent example applications of our work. Section 5 presents related work on co-
simulation of CPS. Finally Sect. 6 concludes the paper.

2 Background

In this section we provide details on the two main technologies used in this
work, namely PVSio-web and Functional Mockup Interface (FMI). PVSio-web
because is a flexible tool for simulation of graphic user interfaces of CPS based
on an Higher Order Language (PVS) and FMI is an emerging standard for co-
simulation of CPS.

PVSio-web. PVSio-web [12] is a toolkit for prototyping and analysis of interac-
tive (human-centred) systems. An example prototype developed with PVSio-web
is shown in the upper part of Figs. 2 and 4. Each PVSio-web prototype consists
of two parts: a back-end defining the behaviour of the system; and a graphi-
cal front-end defining the visual appearance of the system. The behaviour of
the system is specified as an executable formal specification in PVS [17]. The
visual appearance of the system is an interactive picture of the real system.
Web technologies (HTML5 & JavaScript) are used to create hotspot areas over
the picture, and link input and output widgets to the PVS specification. Input
widgets translate user actions over buttons into PVS expressions to be evalu-
ated in PVSio [14], the animation component of PVS, to compute the system
response. Output widgets mirror the value of state attributes of the PVS model
using graphic elements reproducing the look & feel of the real system in the cor-
responding state. A library of widgets is provided by PVSio-web that includes
common interactive elements of a system (buttons, digital displays, gauges, etc.).

Functional Mockup Interface. The Functional Mockup Interface (FMI) [3] is
a tool-independent standard for co-simulation of dynamic models. Co-simulation
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is performed by a number of Functional Mockup Units (FMUs), each responsible
for simulating a single model in the native formalism and execution environment
of the tool used to create the model. An FMU may carry a whole simulation
environment, or just information needed by an FMI-compliant host environment
to simulate the model contained in the FMU. An FMI-compliant host environ-
ment provides a master program that communicates with other FMUs acting
as slaves. The APIs of each FMU include: initialisation functions; a function
fmi2DoStep that triggers one simulation step; and functions to exchange data,
including getter and setter functions fmi2Get<TYPE> and fmi2Set<TYPE>,
where <TYPE> is a concrete type name, e.g., Integer or Real.

3 Our Framework

Our framework allows developers to extend stand-alone PVSio-web prototypes
with an FMI-2 compliant co-simulation interface. That is, given a prototype
developed with PVSio-web, our framework generates an FMU that includes:

– The PVS model of the prototype specifying the behaviour of the prototype;
– The PVSio environment necessary for executing the PVS model;
– The XML description file used in FMI-based co-simulations to specify static

information of the model (such as the list of variables);
– C code implementing the APIs of the FMU necessary for exchanging data

and commands with other FMUs;
– C code implementing a web server necessary to communicate with the graph-

ical front-end of the PVSio-web prototype;
– An external module for executing the graphical front-end of the prototype in

a web browser.

The overall architecture of a co-simulation where one or more FMUs are PVSio-
web prototypes is shown in Fig. 1 (additional details will be provided further
below, in Subsect. 3.1).

3.1 Communication Between FMU and the Prototype Interface

FMUs encapsulating PVSio-web prototypes use a WebSocket to exchange data
and commands with the graphical front-end of the prototype (see Fig. 1). That is,
the graphical front-end communicates only with the FMU, and does not interact
directly with the co-simulation engine. This design choice promotes a modular
architecture of the FMU, and enables hot swapping of different look&feel of the
device without restarting the co-simulation — this is useful, e.g., when using
the prototypes for design exploration. In the following we briefly describe the
interaction between the FMU and the user interface of the prototype.

When the user performs an action on the graphical user interface of a PVSio-
web prototype, the JavaScript module sends a message to the FMU with informa-
tion about the action that has been performed (e.g., button x has been clicked).
Every time the co-simulation master invokes a simulation step, the FMU checks
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Fig. 1. FMI architecture including FMU generated from PVSio-web

if a new message has been received from the user interface (line 14 of List-
ing 1.4). If a message has been received, the FMU executes the user command
first, and then a simulation step. After the execution of the action received from
the user interface, the FMU replies to the user interface, via the same websocket
connection, sending the updated state of the system.

The graphical user interface of the PVSio-web prototype is detached from
the FMU. In case no user action is performed on the graphical user interface,
consistency between the state of the co-simulation and feedback of the user
interface is supported by an action refresh automatically sent by the front-end
at each co-simulation step.

3.2 The APIs of Our Framework

The APIs provided by our framework include functionalities for generating the
XML description file and the C code implementing the standard FMI functions
necessary to extend a PVSio-web prototype with an FMI interface. The APIs
are implemented in JavaScript, and the principal API function is create FMU.
An example use of the create FMU function is as follows:

1 fmi_module.create_FMU("line_following_robot", {
2 fmi: [ { name : "gear", type :"string", variability: "discrete",
3 scope:"local", value:"0" },
4 ... ],
5 init: "init_LFR",
6 tick: "tick"
7 });

The first argument (line following robot) is the name of the FMU. The sec-
ond argument is an object with three attributes:
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1 <?xml version ="1.0" encoding ="ISO -8859 -1"?>
2 <fmiModelDescription fmiVersion="2.0" modelName="{{ modelName }}" ...>
3 <CoSimulation modelIdentifier="{{ modelName }}"
4 canHandleVariableCommunicationStepSize ="false" ...>
5 </CoSimulation >
6 <LogCategories ><Category name="logAll" /> ... </LogCategories >
7 <ModelVariables >{{# each variables }}{{#if fmi}}
8 <ScalarVariable name="{{name}}"
9 valueReference="{{fmi.valueReference }}"

10 causality="{{fmi.causality }}"
11 variability="{{fmi.variability }}" >
12 <{{fmi.descriptor }} {{#if input}} start="{{value}}"{{/if}}
13 {{#if parameter }} start="{{value}}"{{/if}} />
14 </ScalarVariable >{{/if}}{{/ each}}
15 </ModelVariables >
16 <ModelStructure > ... </ModelStructure >
17 </fmiModelDescription >

Listing 1.1. Handlebars template for generating the XML description file.

– fmi: an array specifying the characteristics (name, type, variability, etc.) of
the co-simulation variables;

– init: the name of the function in the PVS model for initializing the PVSio-
web prototype;

– tick: the name of the function in the PVS model for advancing time.

The Handlebars1 engine is used for generating the source code of create FMU
and other functions. The engine supports semantic templates with parameters
and helper functions. Template parameters are instantiated at run time, using
information contained in JSON objects. Helper function enable conditional com-
pilation and iteration over arrays. The advantage of using semantic templates
is that the structure of the source code can be inspected in the template, e.g.,
to check the correctness of syntax and semantics of the code to be generated.
This makes it easier for developers to update the template when necessary, e.g.,
to adapt code generation to future versions of the FMI standard or to different
platforms. We used the same approach in [13] for generating MISRA-C code from
diagrams based on the state-charts notation. Details of the Handlebars templates
developed for XML and C code generation are in the following subsections.

3.3 Generation of the XML Description File

Relevant fragments of the Handlebars template for generating the XML descrip-
tion file of an FMU are shown in Listing 1.1. Template parameters are char-
acterised by unique identifiers and are adorned with curly braces. An exam-
ple parameter in Listing 1.1 is {{modelName}}, which represents the name of
the model described by the XML file. This and other template parameters are
instantiated by invoking the Handlebars compilation engine with a JSON object
whose attributes specify the actual values of those parameters. Helper functions
{{if}} and {{each}} are used in the Handlebars template to perform condi-
tional compilation (e.g., see lines 12–13 in Listing 1.1) and iteration over arrays
(e.g., see lines 7–14 in Listing 1.1).
1 https://handlebarsjs.com.

https://handlebarsjs.com
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1 <?xml version ="1.0" encoding ="ISO -8859 -1"?>
2 <fmiModelDescription fmiVersion="2.0" modelName="line_follower_robot"...>
3 <CoSimulation
4 modelIdentifier="line_follower_robot"
5 canHandleVariableCommunicationStepSize ="false"
6 ...>
7 </CoSimulation >
8 <LogCategories ><Category name="logAll" /> ... </LogCategories >
9 <ModelVariables >

10 <ScalarVariable name="gear" valueReference="1"
11 causality="local" variability="discrete">
12 <String /></ScalarVariable >
13 ...
14 <ScalarVariable name="lightSensors_right" valueReference="10"
15 causality="input" variability="continuous">
16 <Real start="0" /></ScalarVariable >
17 <ScalarVariable name="motorSpeed_left" valueReference="11"
18 causality="output" variability="discrete">
19 <Real /></ScalarVariable >
20 ...
21 </ModelVariables >
22 <ModelStructure > ... </ModelStructure >
23 </fmiModelDescription >

Listing 1.2. Example XML description file generated with our template.

An example XML file generated using the template is shown in Listing 1.2.
The first part of the file provides general information about the FMU (e.g., model
name, author, etc.) and information about co-simulation options supported by
the FMU (e.g., step-size). The main body of the file contains information about
variables used in the co-simulation, specified according to the format required
by the FMI standard:

– valueReference is the buffer index where the value of the variable is stored;
– causality defines if the variable is input (i.e., received from another FMU),

output (i.e., sent to another FMU), local (i.e., the variable is only used within
the FMU), or if it is a parameter of the FMU;

– variability defines how the variable changes over time (i.e., discrete time
or continuous time), or if the variable has a constant value.

3.4 Generation of the C Code Implementing the APIs of the FMU

The Handlebars template for generating the FMU of a PVSio-web prototype
includes the definition of the standard FMI functions for exchanging data
between FMUs (fmi2DoStep, fmi2Instantiate, etc.), and additional interface
functions necessary to enable communication between front-end and back-end
of the PVSio-web prototype. The graphical front-end is implemented in HTML5
& JavaScript, and executed in a web browser. The back-end is embedded in
the FMU and executed within a web server encapsulating the PVSio animation
environment. As an example, a snippet of the Handlebars template for gener-
ating function fmi2DoStep is shown in Listing 1.3. The function is used by a
co-simulation master to trigger the execution of a simulation step in the FMU.
It includes four arguments:
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1 fmi2Status fmi2DoStep(fmi2Component c,
2 fmi2Real currentCommunicationPoint ,
3 fmi2Real communicationStepSize ,
4 fmi2Boolean noSetFMUStatePriorToCurrentPoint) {
5 doStep();
6 return fmi2OK;
7 }

Listing 1.3. Snippet of Handlebars template for fmi2DoStep.

1 void doStep() {
2 // read input variables
3 {{# each variables }}{{#if fmi }}{{#if input}}
4 {{#if real}}
5 index_state = findVariable("{{name}}", state);
6 if (index_state != -1) { // -1 means variable not found
7 readInputVariableDouble(index_state ,{{fmi.valueReference }});
8 } {{/if}}
9 // ... code for updating other variable types omitted for brevity

10 {{/if }}{{/if}}
11 {{/ each}}
12

13 // handle user action
14 handleUserAction ();
15

16 // execute a simulation step
17 sendToPVSio("{{tick}}");
18 receiveFromPVSio ();
19

20 // update output variables
21 {{# each variables }}{{#if fmi }}{{#if output}}
22 {{#if real}}
23 index_state = findVariable("{{name}}", state);
24 if (index_state != -1){ // -1 means variable not found
25 writeOutputVariableDouble(index_state , {{fmi.valueReference }});
26 } {{/if}}
27 // ... code for updating other variable types omitted for brevity
28 {{/if }}{{/if}}
29 {{/ each}}
30 }

Listing 1.4. Snippet of the Handlebars template for function doStep.

– fmi2Component is the FMU;
– currentCommunicationPoint is the current simulation time;
– communicationStepSize is the simulation step;
– noSetFMUStatePriorToCurrentPoint is a boolean that specifies if the mas-

ter can revert the state of the FMU back to a prior simulationn time.

The return of the function is of type fmi2Status, which is the standard return
type of FMI 2.0 functions invoked by the master – possible return values are
fmi2OK (the function has been executed correctly) and fmi2Error (the function
produced an error). The body of the function invokes function doStep, which is
invoked by the master to trigger the execution of a simulation step, and then
returns a constant fmi2OK indicating that the step has been executed.

The template for function doStep is shown in Listing 1.4. It specifies the
four main operations performed by the function: reads input variables of the
FMU (lines 3–11); handles user input provided by the graphical front-end by
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Fig. 2. Co-simulation of line follower robot case study.

executing the corresponding action in the PVS model and updating the state
of the simulation (line 14); executes a step in the PVS model (lines 17–18);
receives the new state of the PVS model and updates the output variables of
the FMU (lines 20–29). The utility functions used in doStep are also specified
as Handlebars templates.

4 Demonstrative Examples

4.1 Co-Simulation of Discrete and Continuous Components

Our first case study is based on the Line Follower Robot example provided by
the INTO-CPS [10] project. In the original example, an autonomous robot has
the goal of following a line painted on the ground. The controller of the robot
receives the readings from two light sensors placed on the front of the robot
(one slightly moved to the left and one slightly moved to the right), and sends
commands to the left and right motors which are in charge of the rotation of the
left and right wheels, respectively. The INTO-CPS project provides the FMU
of the kinematics of the robot (created with the 20-sim [4] tool), the FMU of
the sensors (created with 20-sim or OpenModelica [7]), and the FMU of the
controller (created with the Overture [9] tool).
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(a) U-turn due to high speed. (b) Missed turn.

Fig. 3. Unexpected behaviours of the line follower robot.

In our previous work [20], we replaced the original controller of the robot
with a more advanced controller developed with PVSio-web. The new controller
allows a driver to override the automatic line following control of the robot, and
operate the robot manually, using controls on a dashboard. The sensors and the
mechanics of the robot are unaltered with respect to the original INTO-CPS
example.

The PVSio-web prototype (shown in Fig. 2) provides a navigation display
with the trajectory of the robot, two speedometer gauges to monitor the veloc-
ities of the wheels, a speedometer gauge to monitor the velocity of the robot,
and various control buttons to allow a driver to accelerate (up arrow) or brake
(down arrow), change direction of the robot (left and right arrows), and change
gear (buttons A, Y and B). There is also a control (button X ) to switch control
mode from manual back to automatic.

In our previous work the PVSio-web prototype was created by manually
developing the XML and C code necessary for the FMI interface. In this work we
re-created the same prototype automatically, using the APIs of our framework.
The new prototype was successfully used in co-simulation scenarios executed
using the INTO-CPS Co-simulation Orchestration Engine.

The FMU connected with the PVSio-web navigation display has been used to
analyse the robot behaviour when switching control mode from manual to auto-
matic and to expose possible faults of the robot. For example, many experiments
pointed out the need to perform a U-turn to get back on track when switching
from manual to automatic control and the robot was moving at high speed (see
Fig. 3a), and some experiments ended up with the robot going far away from the
line due to the fact that it reaches perpendicularly the line, decides not to turn
and moves on (see Fig. 3b).

4.2 Co-Simulation of Multiple Devices

Our second case study is based on an Integrated Clinical Environment (ICE). In
this case, the co-simulation integrates the concurrent execution of three models,
each representing a different device (see Fig. 4).

ICE is a prototype medical system for intensive care patients. The system
includes three devices: a pump infusing morphine; a monitor checking vital signs
of the patient; and a supervisor device implementing a safety interlock app that
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Fig. 4. Co-Simulation of ICE case study.

automatically stops the infusion when the patient monitor detects the onset of
respiratory depression.

The patient monitor records two vital signs: oxygen saturation level (SpO2),
and Respiration Rate (RRa). The current value of a vital sign is reported using
a numeric display. Additionally, a scan-bar trace display shows the temporal
evolution of the sign. Each monitored parameter has safe range limits. An alarm
is triggered if these limits are exceeded.

The front panel of the pump is used to enter the volume to be infused (V TBI)
and the rate of the infusion of morphine, as well as to start/stop the infusion.
During the infusion, the display of the pump shows the rate, the remaining
volume of morphine that needs to be infused, and the time to complete the
infusion.

The supervisor device has a user interface that can be used for remote moni-
toring of the pump state and patient monitor state. It is a portable device with a
display divided into two sections. The upper section replicates the pump display,
and the lower section replicates the patient monitor display.

Starting from the PVSio-web models of these devices, which were already
available in the PVSio-web distribution, we used our framework to generate three
FMUs, one for each device prototype. These three FMUs were integrated using
the INTO-CPS Co-simulation Orchestration Engine, according to the structure
shown in Fig. 4.

A similar co-simulation example for the ICE system was previously devel-
oped in [11] using a (non-standard) co-simulation engine integrated in PVSio-
web, which builds on the SAPERE [23] middleware. The migration to the FMI
framework did not require any substantial update to the PVSio-web prototypes,
as our framework allowed us to re-route and adapt the communication chan-
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nels used in the SAPERE-based co-simulation to the new FMI interface. The
main advantage of the FMI-based co-simulation with respect to that based on
SAPERE is that the co-simulation is not limited anymore to PVSio-web proto-
types, as other interactive prototypes and system elements developed with tools
other than PVSio-web can be integrated in the co-simulation. This is useful, e.g.,
to introduce patient models in the co-simulation, as tools other than PVS are
better suited to specify these models.

5 Related Work

Significant work has been done over the last few years to develop tool support
for co-simulation of CPSs. Some works use only one specification formalism for
both continuous and discrete systems, like HybridSim [22]. Others support het-
erogeneous co-simulation [8] with customised solutions, like ForSyDe [21] that
supports set of processes that may belong to a distinct Model of Computation, or
OpenICE [1], that allows the simulation of medical devices for an Integrated Clin-
ical Environment architectures, using a publish-subscribe middleware for com-
munications. In our previous work [2], we developed a CPS co-simulation frame-
work that integrates the Prototype Verification System (PVS) and Simulink.

Recent works use the Functional Mockup Interface (FMI) standard for sub-
systems synchronisation [19,20]. In [18] FMI co-simulation is used for modelling
and analysing intelligent power systems. Another example is [6], which models
the discrete aspects of the system in VDM-RT, the physical part in Modelica
and the communication aspects between components in Promela. None of these
framework, however, targets modelling and analysis of user interfaces of CPS.

Work on formalising models and proofs for FMI-based co-simulations has
been carried out in [24] using Isabelle/UTP and an industrial case study from
the railways sector. In [5], a proof-of-concept co-simulation is performed between
Ptolemy II and Rodin, using Event-B for formal verification in the aeronautic
field. None of these works, however, targets modelling and analysis of user inter-
faces of CPS.

6 Conclusion and Future Work

In this paper we present the process for transforming PVSio-web prototypes
into FMUs equipped with a standard FMI-2 co-simulation interface. This activ-
ity is part of our ongoing work on the development of a framework for formal
modelling, simulation and verification of human-centred CPS. In particular, the
generation of the FMU, extends our framework making it possible to co-simulate
our prototypes with any FMI-compliant co-simulation engine.

Our prototypes can be co-simulated with other prototypes modelled with
other tools. For example, in the ICE case, the pump could have been modelled
using a different formalism or a model of the patient could be included in the
co-simulation. Another advantages of the FMU generation process is that the
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original PVSio-web prototypes are unchanged, and properties already verified
for a prototype are still satisfied by the generated FMU.

Future work will focus on providing a more refined management of the simu-
lated time and a more efficient mechanism for updating the graphical front-end
of the prototype. For example, the current implementation has constraints on
when time is advanced in the PVSio-web prototype. Specifically, time in the
PVS model is advanced only in action tick by a discrete step equal to the co-
simulation step-size. User actions do not advance time, and they are executed
in lockstep with the simulation. The consequence is that only one user action
can be handled at each simulation step. Experience shows that co-simulation
steps lower than 250 ms allow for realistic simulations. We plan to remove this
constraint by introducing an event-based mechanism for handling user actions
continuously over time.
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Abstract. The advantage of co-simulation with respect to traditional
single-paradigm simulation lies mainly in the modeling flexibility it
affords in composing large models out of submodels, each expressed
in the most appropriate formalism. One aspect of this flexibility is the
modularity of the co-simulation framework, which allows developers to
replace each sub-model with a new version, possibly based on a different
formalism or a different simulator, without changing the rest of the co-
simulation. This paper reports on the replacement of a sub-model in a
co-simulation built on the INTO-CPS framework. Namely, an existing co-
simulation of a water tank, available in the INTO-CPS distribution, has
been modified by replacing the tank sub-model with a sub-model built as
a Stochastic Activity Network simulated on Möbius, a tool used to per-
form statistical analyses of systems with stochastic behavior. This work
discusses aspects of this redesign, including the necessary modifications
to the Möbius sub-model. In this still preliminary work, the Stochastic
Activity Network features related to stochastic models have not been
used, but a simple deterministic model has proved useful in indicating
an approach to the integration of Stochastic Activity Networks into a
co-simulation framework.

1 Introduction

Co-simulation is gaining interest and acceptance as an approach to modeling
and simulation of cyber-physical systems (CPS) [1,30], as it is based on the
concept of modeling each part of a large, heterogeneous system with the most
appropriate formalism, and simulating each part with a tool fit for the formalism.
This requires coordinating the execution of two or more simulators, which usually
have been designed as standalone tools, therefore the need arises of standards
for the exchange of data and control among different modeling and simulation
tools. One such standard is the Functional Mockup Interface (FMI), defining the
common interface and protocol that must be honored by the simulators involved
in a co-simulation.

The simulation of a set of heterogeneous models, called a multi-model, is coor-
dinated by a master algorithm. Implementing a master algorithm from scratch
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would be costly and inefficient, but co-simulation usually relies on a framework
providing the algorithm together with a user interface to configure and control
the co-simulation. An important feature of co-simulation frameworks is mod-
ularity: Developers should be able to add simulators and also to replace any
simulator with another one, which simulates the same subsystem but with a
different modeling technique, with a minimum effort and leaving the other sim-
ulators unchanged.

This paper is focused on (i) the development of an FMU for a modeling
and simulation tool not yet used in FMI-based co-simulations, and (ii) modify-
ing a previous multi-model by replacing one of its submodels with a new one,
expressed in a completely different formalism. These two points exemplify the
flexibility and modularity of the co-simulation approach. A further, longer-term
goal is investigating the integration of statistical simulation techniques and co-
simulation.

The simulation tool considered in this paper is Möbius, an environment for
the analysis and simulation of Stochastic Activity Networks (SAN). SANs are a
wide-ranging extension to Petri nets, oriented to the evaluation of performance
and dependability. The Möbius tool has been integrated in a co-simulation built
on the INTO-CPS framework. This co-simulation is a case study available in
the INTO-CPS distribution, concerning the control of a water tank. The tank
controller activates the tank’s exhaust valve depending on the water level and is
modeled in VDM, and the tank’s dynamics are modeled in Modelica. This latter
model has been replaced by a SAN and simulated with the Möbius tool.

2 Related Work

The co-simulation of a human heart modeled in Simulink and an implantable
pacemaker modeled in PVS [21] has been presented in [5], where the PVSio-
web [20] prototyping toolkit provided the communication infrastructure. A PVS
model of a controller was also used in the simulation of a semi-autonomous
vehicle [22] whose mechanical part was modeled with 20-SIM and OpenModelica,
in the INTO-CPS framework.

The Möbius [7,9,10] tool can be seen as oriented to co-simulation, as it
has been designed to build complex models by integrating submodels in dif-
ferent formalisms [24–26], but it requires the submodels to be developed with
tools built-in in the Möbius framework. Another multi-formalism framework is
SIMTHESys [14].

SAN models have been used in a large number of application fields, including
biology and medicine [28,29], integrated circuits [2,3], and railway systems [19].

From the literature on the integration of deterministic and non-deterministic
simulation, we may cite [16–18].
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3 Background

This section introduces basic information on the tools and standards referred to
in the paper, with an emphasis on Stochastic Activity Networks and the Möbius
tool.

3.1 Stochastic Activity Networks

Stochastic Activity Networks [27] are an extension of Petri Nets (PN). SANs are
directed graphs with four disjoint sets of nodes: places, input gates, output gates,
and activities. The latter are an extension of PN transitions. The allowed arcs
are from places to input gates, from input gates to activities, from activities to
output gates, and from output gates to places.

Each SAN activity may be either instantaneous or timed. Timed activities
represent actions with a duration affecting the performance of the modeled sys-
tem, e.g., message transmission time. The duration of each timed activity is
expressed via a time distribution function. An activity completes when its (pos-
sibly instantaneous) execution terminates.

Any instantaneous or timed activity may have mutually exclusive outcomes,
called cases, chosen probabilistically according to the case distribution of the
activity. Cases can be used to model probabilistic behaviors.

The state of a SAN is defined by its marking, i.e., a function that, at each step
of the net’s evolution, maps the places to non-negative integers. SANs enable the
user to specify any desired enabling condition and firing rule for each activity.
This is accomplished by associating an enabling (or input) predicate and an
input function to each input gate, and an output function to each output gate.
The enabling predicate is a Boolean function of the marking of the gate’s input
places. The input and output functions compute the next marking of the input
and output places, respectively, given their current marking. If these predicates
and functions are not specified for some activity, the standard PN rules are
assumed.

The evolution of a SAN, starting from a given marking µ, may be described as
follows: (i) The instantaneous activities enabled in µ complete in some unspeci-
fied order; (ii) if no instantaneous activities are enabled in µ, the enabled (timed)
activities become active; (iii) the completion times of each active (timed) activity
are computed stochastically, according to the respective time distributions; the
activity with the earliest completion time is selected for completion; (iv) when
an activity (timed or not) completes, one of its cases is selected according to the
case distribution, and the next marking µ′ is computed by evaluating the input
functions of the input gates and the output functions of the gates connected to
the selected case; (v) if an activity that was active in µ is no longer enabled in
µ′, it is removed from the set of active activities.

Graphically, places are drawn as circles, input (output) gates as left-pointing
(right-pointing) triangles, instantaneous activities as narrow vertical bars, and
timed activities as thick vertical bars. Cases are drawn as small circles on the
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right side of activities. Gates with default (standard PN) enabling predicates
and firing rules are not shown.

3.2 The Möbius Tool

Möbius [9,10] is a software tool that provides a comprehensive framework
for model-based evaluation of system dependability and performance. The
main features of the tool include support for multiple high-level modeling for-
malisms beyond SANs, such as, among others, PEPA fault trees [13] and the
ADVISE security model formalism [12], and statistical characterization of system
behavior.

The Möbius tool introduces two extensions to the SAN formalism: extended
places and global variables. Extended places are places whose marking is a numer-
ical value other than non-negative integers, or a complex data structure. Global
variables are (possibly complex) data structures that can be accessed by enabling
predicates and input and output functions, and can be shared among different
SANs.

Enabling predicates and input and output functions of the gates are specified
as C++ code.

A study model is a set of experiments, i.e., assignments to the global variables.
Study models enable developers to run simulations for different values of system
parameters. Variable assignments can be specified manually or generated by the
tool as sequences of values according to various patterns.

The tool generates a simulation solver, an executable file that can be run
from the Möbius user interface or launched from the command line.

3.3 The FMI Standard

The FMI standard [6] defines a set of C functions to support interaction among
heterogeneous simulators coordinated by a master algorithm. The interface
includes operations to initialize and configure the simulators, to exchange data
with setter and getter operations, and to orchestrate the co-simulation by issuing
doStep commands to the individual simulators.

A Functional Mockup Unit is a software artifact packaging all components
necessary to simulate a single model, including, if needed, a whole simulator
application. Some modeling tools can produce an FMU from their user interface,
or provide scripts to create it from the command line. Otherwise, a developer can
adapt those scripts to modeling tools that do not yet support the FMI standard.

3.4 The INTO-CPS Framework

INTO-CPS [15] is an integrated tool-chain to support model-based development
of CPSs using co-simulation according to the FMI standard. The top-level com-
ponent of the tool-chain is the INTO-CPS application, a graphical user interface
for the management of co-simulation projects. Developers create FMUs for their
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models using the respective tools, place them in the INTO-CPS project direc-
tory, and define their interconnections with the user interface. Simulations are
executed under control of the Co-Simulation Orchestration Engine (COE), the
core component of the tool-chain. The user interface also provides a graphical
output to plot selected quantities.

The reader is addressed to the literature [11] for other important features of
the tool-chain, such as design space exploration [8].

4 The SAN Water Tank Co-simulation

As anticipated in Sect. 1, the main motivations for the present work are the
development of an FMU for a new modeling tool and the replacement of a sub-
model into an existing multi-model, as described in this section.

4.1 The INTO-CPS Water Tank Example

The INTO-CPS application comes with a set of case studies [23] including a
water tank whose level is controlled by an exit valve with two states, fully open
or fully closed. The tank is fed at a constant flow and drained (when the valve
is open) at a flow rate depending on the instantaneous water level. The valve
tank controller reads the water level, then it opens the valve when the maximum
allowed level is exceeded and closes it when the water goes below the minimum
allowed level. Two models for the tank are available, one in Modelica and one
in 20-SIM, while the controller model is in VDM-RT.

4.2 The SAN Model

The tank sub-model has been replaced with a SAN developed on the Möbius
tool. In addition to the different modeling language, a different physical model
has been chosen, adapted from the one studied in [4], and the main differences
from the INTO-CPS case study are the following: (i) the intake flow is variable;
(ii) the valve is opened and closed gradually, so that its area varies linearly with
time; and (iii) the drain flow depends on the valve area, and not on the water
level. The valve actuator, however, accepts the same control inputs as in the
original model.

More precisely, the control signal takes the values 0 (close) or 1 (open) when
the lower or upper level limits, respectively, are reached. Otherwise, it maintains
the current value, as defined in the original INTO-CPS model. The area of the
valve increases when the control signal equals 1 and decreases when the control
signal is 0, unless one of the limit positions has been reached. In this case, the
valve remains open or closed until a reversing control signal is received. The
outgoing flow is proportional to the valve area, and the tank level is the integral
of the net flow.

Figure 1 shows the SAN model, where the lighter (orange) circles are extended
places, used to store quantities of interest. Let us ignore, for the moment, the step



Towards Stochastic FMI Co-simulations 39

place

extended placeoutput gate

activity

input gate

Fig. 1. SAN model of the tank (Color figure online)

Table 1. Gate functions

Gate Predicate Function

ig1 synch = 1

input Wait for input, then set valve control and reset synch.

timer Increase time; terminate if max time reached.

valve actr Set valve position; compute outflow.

feed fctn Compute inflow.

ig4 true

ig3 true

tank fctn Compute net flow and level; set synch.

activity, whose purpose is to synchronize the tank and the controller models. The
input gate predicates and output gate functions are summarized in Table 1. Note
that an explicit input gate is required between an extended place and an activity,
hence the always enabled gates ig3 and ig4. The control activity performs the
following actions:

1. it increments the simulation time in gate timer ;
2. it computes the valve area and the drain flow in gate valve actr ; and
3. it enables the next activity, feed, by marking place p1.

Gate timer increments the marking of place time by a fixed amount dt. This
is a global variable set by the user in the study model.

The valve area and the drain flow are computed by the output function of
valve actr, modeling the valve actuator. This function reads a global variable
containing the last command from the controller, it increases or decreases the
valve area accordingly, and computes the flow. The computed values are stored
as the markings of the extended places valve and outflow.

The feed activity models the water source and enables activity tank. Gate
feed fctn computes the intake flow as a function of time and stores its value in
place inflow. In this simulation, a sinusoidal function has been used.
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Finally, the output gate tank fctn of tank computes the net flow and the
updated level. The output function executes a simple integration step increasing
the current level by the product of the net flow and the time interval.

We may note that all computations are C++ fragments entered through the
user interface and inserted by the tool into the functions of the output gates.
However, such fragments may also call external user-defined code, for example
to implement a more accurate integration method.

4.3 The FMU

Replacing a sub-model in a co-simulation multi-model involves addressing three
main concerns: ensuring semantic coherence, complying with the multi-model
synchronization mechanism, and translating between different syntactic repre-
sentations. The third concern is not very important for the case at hand, since
the submodels only exchange control and synchronization signals, the only quan-
titative information being the water level. In fact, the multi-model is composed
only of a plant subsystem (the tank, water source, and valve) and a control sub-
system. The latter receives the water level from a sensor and returns a binary
signal.

The controller’s signal concerns the issue of semantic coherence. In the orig-
inal multi-model, its effect is to cause the valve to fully open or close, whereas
in the new model the valve opens or closes gradually. Further, there are other
differences between the physical behavior of the two models. However, the mean-
ing of the controller’s output remains the same, as in both cases it signals that
the water level is not within the allowed limits. Therefore the new multi-model
makes sense even if it simulates a system with different properties.

The synchronization mechanism is controlled by the master algorithm, which
periodically invokes a doStep operation on each FMU to trigger one execution
step. This requires the simulators to agree on a common time base and be able
to pause between each simulation step.

In the INTO-CPS multi-model, the simulation step is configurable from the
user interface, so the common time base is achieved by setting variable dt equal
to the simulation step.

Pausing the SAN simulator requires adding a simple synchronization mech-
anism to the model. The output function of gate input (Fig. 1) reads the control
signal from standard input, stores its value in a global variable, disables activ-
ity step by zeroing the marking of place synch, and enables the control activity
to start a simulation step. The step terminates when the output function of
tank fctn prints the water level to standard output and sets the marking of
place synch to re-enable activity step for the next step.

The final task is providing an FMI-compliant interface to the SAN executable.
This is done by a software component that implements the FMI interface, and in
particular the operations fmi2Instantiate and fmi2DoStep. The former spawns
the Möbius-generated executable and connects with it through Unix pipes on
which the executable’s standard input and output are redirected. The module is
compiled into a dynamic library that is then packed in the FMU component.
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The FMU described above was installed in the INTO-CPS multi-model with-
out changing the FMU for the controller, and simulated. Figure 2 is an example
of the output for one the simulations, where the darker (blue) line is the water
level and the lighter (brown) one is the controller output. This plot is consistent
with the one shown in the INTO-CPS case study [23], except for the different
waveform of the water level, due to the different incoming flow.

Fig. 2. Results of co-simulation

5 Conclusions

The present work shows, by means of a practical example, the “plug and play”
capability of the FMI standard of the co-simulation framework adopted. A pre-
existing and independently developed multi-model has been modified by replac-
ing a substantial part with a new version, differing from the original one in the
modeling formalism, in the simulation engine, and even in its physical behav-
ior. The replacement has been performed without any change to the rest of the
multi-model, and has required only the inclusion of an explicit synchronization
mechanism in the SAN model and the development of an FMI-compliant wrap-
per process to interface the model.

This simple procedure has been possible in spite of the fact that the new
model is expressed in a formalism quite different from such languages as Modelica
or Bond-Graphs. Making diverse modeling paradigms available gives developers
the possibility to explore more aspects of the systems being developed. Stochastic
Activity Networks, for example, make it easy to study probabilistic behaviors,
although this capability has not been exploited in the present work. In spite of
this limitation, this experience has proved useful in finding interesting aspects
of the integration of SAN models that will continue to be investigated in further
research. In particular, the synchronization with the master algorithm needs
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more study. In the present work, the straightforward solution of inserting an ad
hoc sub-network into the SAN model has been adopted, but more modular, less
invasive methods should be developed. A more fundamental issue for further
work is how to synchronize the co-simulation in presence of stochastic durations
of simulation steps. Finally, even if plugging the new model in the simulation
“by hand” was rather easy, it should be made easier by providing generic tools
that can produce FMUs for new simulator from a purely declarative description
of the required interface.

Acknowledgments. The authors wish to thank the anonymous referees for their
helpful suggestions.
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Abstract. Despite the large number of applications and growing inter-
est in the challenges that co-simulation poses, the field is fragmented into
multiple application domains, with limited sharing of knowledge.

This demo promotes a deeper understanding of a well known stabi-
lization feature in co-simulation, which is used in the INTO-CPS tool
chain.

We develop the techniques that explain the empirical results of insta-
bility of the double mass-spring-damper system, and how to the stabiliza-
tion feature improves the results. Moreover, we show how the restrictions
of the Functional Mock-up Interface Standard impacts stability.

Keywords: Stability · Simulation · Co-simulation

1 Introduction

INTO-CPS provides an entire tool chain [8] that enables combining different
tools and formalisms using co-simulation [6]. This demo provides the theoretical
rationale for the stabilization feature of the Co-simulation Orchestration Engine
from INTO-CPS called Maestro [12]. The feature will be illustrated with a small
case study that is documented online [10].

This demo assumes that the reader is familiar with the main concepts in
co-simulation (see, e.g., [7]).
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In the next section, we describe the principles of stability analysis for lin-
ear Ordinary Differential Equations (ODEs), and linear discrete time systems.
Then, in Sect. 3, we apply these principles to analyse the numerical stability of
the commonly used Jacobi algorithm within the FMI context, and the stabi-
lization method used in INTO-CPS. While the master algorithms are applicable
outside the Functional Mockup Interface (FMI) context, the FMI version 2.0 has
constraints that makes the stability analysis not applicable to other contexts.

2 Stability of Linear Systems

This section is based on [7].

Notation. We denote vectors with bold face, and we use capital letters for
matrices and vector valued functions. Given a vector x, we denote its trans-
pose as xT . Furthermore, we denote the i-th element of vector x by xi, so that
x =

[
x1 x2 · · · xn

]T . Similarly, Fi(x) denotes the i-th element of the vector
returned by F (x).

A linear ODE has the following form:

ẋ = Ax, (1)

where x(t) is a vector function, and A is a constant matrix. When an initial
condition in the form x(0) = x0 is specified, we denote Eq. (1) as an Initial
Value Problem (IVP).

Example 1. The mass-spring-damper system, illustrated in Fig. 1a, is modelled
by the following second order ordinary differential equation:

ẍ =
1
m

(−cx − dẋ + fe(t)),

where x denotes the position of the mass, c > 0 is the stiffness coefficient of the
spring, d > 0 is the damping constant of the damper, t is time, and fe(t) denotes
an external force exerted on the mass.

The above equation can be put into the form of Eq. (1) by introducing a new
variable for velocity, v = ẋ, and letting the vector x =

[
x v

]T . Given an initial
position x0 and velocity v0, we obtain the following:

ẋ =
[
ẋ
v̇

]
= F (

[
x
v

]
, fe(t)) =

[
v

(1/m)(−cx − dv + fe(t))

]
, with x(0) =

[
x0

v0

]
.

Figure 1b shows the solution of the position component of the mass-spring-
damper IVP, introduced in Example 1, and will be explained below. The solution
to the velocity component is omitted.

We say that the system in Eq. (1) is asymptotically stable when all its solu-
tions tend to zero as time passes, regardless of the initial value specified. For-
mally,

lim
t→∞ ‖x(t)‖ = 0, for all x(t) satisfying Eq. (1). (2)
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(a) (b)

Fig. 1. Position (and its approximations) over time of the mass-spring-damper system.

Parameters are: h = 0.1,m = c = 1, d = 10−4, fe(t) = 0,x0 =
[
1 0

]T
.

An ODE in the form of Eq. (1) is asymptotically stable, i.e. it satisfies Eq. (2),
if the real part of all eigenvalues of A is strictly negative. Formally,

∀λ ∈ Eig(A), Re{λ} < 0. (3)

This condition can be computed easily in most programming languages.
To approximate the solution to the IVP in Example 1, one can use the forward

Euler method:

x(t + h) ≈ x(t) + Ax(t)h = (I + Ah)x(t), with x(0) = x0, (4)

where I is the identify matrix with the appropriate dimensions, and h > 0 is the
given simulation step size.

In general, for a given matrix Ã, a system on the form

x(t + h) = Ãx(t), (5)

is stable if ρ(Ã) < 1, where ρ(Ã) is the spectral radius [9] of Ã.

3 Stability Analysis of FMI Orchestration Algorithms

Fig. 2. Double mass-spring-damper
with two subsystems: S1 and S2.

Our aim is to encode the co-simulation as
a system in the form of Eq. (5). We per-
form this for a two-simulator system using
two orchestration algorithms: the tradi-
tional Jacobi method, and the stabilization
method used by INTO-CPS. A two simula-
tor system introduced in [10] is illustrated
in Fig. 2. More details about this example
are given in [6, Sect. 4]. For more examples
of stability analysis in co-simulation, refer
to [2–5].
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3.1 Co-simulation Unit Modelling

In the context of co-simulation, time is discretized into a countable set T =
{t0, t1, t2, . . .} ⊂ R, where ti+1 = ti + Hi is the time at step i and Hi is the
communication step size at step i, with i = 0, 1, . . .

Simulators exchange outputs only at times t ∈ T .
In the interval t ∈ [ti, ti+1], each simulator Sj approximates the solution to

a linear ODE,
ẋj = Ajxj + Bjuj

yj = Cjxj + Djuj

(6)

where xj is the state vector, yj is the output vector, Aj , Bj , Cj ,Dj are matrices,
the initial state xj(ti) is computed in the most recent co-simulation step, and
j = 1, 2.

Since the simulators only exchange outputs at times ti, ti+1 ∈ T , the input
uj has to be extrapolated in the interval [ti, ti+1). In the simplest co-simulation
strategy1, this extrapolation is often implemented as a zero-order hold: ũj(t) =
uj(ti), for t ∈ [ti, ti+1). Then, Eq. (6) can be re-written to represent the unforced
system being integrated by each simulator:

[
ẋj

˙̃uj

]
=

[
Aj Bj

0 0

] [
xj

ũj

]
(7)

We can represent the multiple internal integration steps of Eq. (7), performed
by the simulator Sj in the interval t ∈ [ti, ti+1], as

[
x̃j(ti+1)
ũj(ti+1)

]
= Ã

kj

j

[
x̃j(ti)
ũj

]
(8)

where, e.g., Ãj = I + hj

[
Aj Bj

0 0

]
for the Forward Euler method, kj = (ti+1 −

ti)/hj is the number of internal steps, and 0 < hj ≤ Hi is the internal fixed step
size that divides Hi.

Therefore, each co-simulation unit can be modelled as a discrete time system:
[
x̃j(ti + H)
ũj(ti + H)

]
=

[
M1,xj

M1,uj

M2,xj
M2,uj

] [
x̃j(ti)
uj(ti)

]
(9)

with

Ã
kj

j =
[
M1,xj

M1,uj

M2,xj
M2,uj

]
.

1 The derivation presented can be applied to more sophisticated input extrapolation
techniques, see [1, Eq. (9)].
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3.2 FMI Jacobi Algorithm

We assume without loss of generality that the two simulators are coupled in a
feedback loop, that is,

u1 = y2 and u2 = y1. (10)

And, to avoid algebraic loops and keep the exposition short, we assume that
either D1 or D2 (recall Eq. (6)) is the zero matrix. Let D2 = 0.

The ideal Jacobi coupling would be described by:

u1(t) = y2(t) = C2x̃2(t)
u2(t) = y1(t) = C1x̃1(t) + D1u1(t)

(11)

However, due the FMI restrictions [11, Restriction 1], the actual coupling is:

u1(ti) = C2x̃2(ti)
u2(ti) = C1x̃1(ti) + D1ũ1(ti).

(12)

Applying Eq. (12) to ti+1 and using Eq. (9), yields:

x̃1(ti+1) = M1,x1 x̃1(ti) + M1,u1C2x̃2(ti)
ũ1(ti+1) = M2,x1 x̃1(ti) + M2,u1C2x̃2(ti)
x̃2(ti+1) = M1,u2C1x̃1(ti) + M1,u2D1ũ1(t) + M1,x2 x̃2(ti)
ũ2(ti+1) = M2,u2C1x̃1(ti) + M2,u2D1ũ1(t) + M2,x2 x̃2(ti)

(13)

which can be arranged to the form of Eq. (5):
⎡

⎢
⎢
⎣

x̃1(ti+1)
ũ1(ti+1)
x̃2(ti+1)
ũ2(ti+1)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

M1,x1 0 M1,u1C2 0
M2,x1 0 M2,u1C2 0

M1,u2C1 M1,u2D1 M1,x2 0
M2,u2C1 M2,u2D1 M2,x2 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x̃1(ti)
ũ1(ti)
x̃2(ti)
ũ2(ti)

⎤

⎥
⎥
⎦ (14)

3.3 INTO-CPS Method

The method used in INTO-CPS is a sucessive substitution fixed point iteration,
described by:

u1(ti+1) = C2x̃2(ti+1)
u2(ti+1) = C1x̃1(ti+1) + D1u1(ti+1)

(15)

The above equation can be expanded and simplified to:

x̃1(ti+1) = M1,x1 x̃1(ti) + M1,u1C2x̃2(ti+1)
u1(ti+1) = M2,x1 x̃1(ti) + M2,u1C2x̃2(ti+1)
x̃2(ti+1) = M1,x2 x̃2(ti) + M1,u2C1x̃1(ti+1) + M1,u2D1u1(ti+1)
u2(ti+1) = M2,x2 x̃2(ti) + M2,u2C1x̃1(ti+1) + M2,u2D1u1(ti+1)

(16)
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which can be put in matrix form:
⎡

⎢
⎢
⎣

x̃1(ti+1)
u1(ti+1)
x̃2(ti+1)
u2(ti+1)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

M1,x1 0 0 0
M2,x1 0 0 0

0 0 M1,x2 0
0 0 M2,x2 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x̃1(ti)
u1(ti)
x̃2(ti)
u2(ti)

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

0 0 M1,u1C2 0
0 0 M2,u1C2 0

M1,u2C1 M1,u2D1 0 0
M2,u2C1 M2,u2D1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x̃1(ti+1)
u1(ti+1)
x̃2(ti+1)
u2(ti+1)

⎤

⎥
⎥
⎦

(17)

Renaming the above equation to x̄i+1 = M̄ix̄i + M̄i+1x̄i+1, we get an equation
in the form of Eq. (5):

x̄i+1 = (I − M̄i+1)−1M̄ix̄i (18)

In most cases in practice, ρ((I − M̄i+1)−1M̄i) is smaller than the spectral
radius of the matrix in Eq. (14). The practical results of this analysis are shown
in the case study described in [10].

This can be generalized. However, in practice, one must be aware of the
internal details of each co-simulation unit, which is usually difficult. As such,
this analysis can be used to determine the best orchestration algorithm, without
providing guarantees.
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Abstract. This demo shows our ongoing work on the co-simulation of
co-operative Unmanned Aerial Vehicles (UAVs). The work is based on
the INTO-CPS co-simulation engine, which adopts the widely accepted
Functional Mockup Interface (FMI) standard for co-simulation, and the
PVSioweb prototyping tool, that extends a system simulator based on
the PVS logic language with a web-based graphical interface. Simple
scenarios of Quadcopters with assigned different tasks, such as rendez-
vous and space coverage, are shown. We assumed a linearized dynamic
model for Quadcopters formalized in OpenModelica, and a linearized set
of equations for the flight control module written in C language. The
co-ordination algorithm is modeled in PVS, while PVSio-web is used for
graphical rendering of the co-simulation.

1 Introduction

Nowadays, the deployment of multi-UAVs systems is rapidly increasing in many
different applications, ranging from precision farming to surveillance, search and
rescue, etc. (e.g. [1,4]). Given the recent introduction of a new co-simulation
standard, the Functional Mock-up Interface [2], and tool-kits to exploit such a
standard, such as INTO-CPS [5], we combined these technologies with tools for
formal modeling, such as PVS [8]. The result is a modular and flexible frame-
work that can be used to co-simulate UAV coordination algorithms dealing with
the heterogeneous nature of different UAV models. In this work, we will show an
example where the base elements of the FMI co-simulation, the FMUs (Func-
tional Mock-up Unit), are built using different tools (OpenModelica [3], PVSio-
web [6], and C code).

In the rest of this section, we provide basic background knowledge of quad-
copter representation and consensus algorithm used in the subsequent sections.

© Springer Nature Switzerland AG 2018
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1.1 Background on Quadcopters

A quadrotor aircraft, or quadcopter, schematically consists in a cross-shaped
chassis supporting one rotor at the end of each arm. The quadcopter’s movements
are determined by the resultant thrusts and torques of the rotors, which in turn
depend on their angular speeds ω1, ω2, ω3, ω4. The state of the quadcopter is
composed of 12 variables: (i) actual position (x, y, z); (ii) linear speeds (ẋ, ẏ, ż);
(iii) attitude, given by the 3 angles pitch, roll, and yaw (φ, θ, ψ respectively); (iv)
attitude angular speeds (φ̇, θ̇, ψ̇). The values of ω1, ω2, ω3, ω4 are computed by
the flight control module, which takes as input the desired target (xd, yd, zd) and
the actual state of the drone (actual position, linear speeds, attitude and attitude
angular speeds) and produces the angular speeds of the four rotors required to
reach the target. A simple black box schema of a quadcopter is shown in Fig. 1.

Fig. 1. Black box schema of a quadcopter

1.2 Background on the Consensus Algorithm

We have studied a well-known algorithm proposed in [7] for accomplishing the
task of rendez-vous, gathering the drones in a position given by the average of
their initial ones. The consensus algorithm can be expressed with the following
equation:

xk+1
d (i) = xk

d(i) + ε
∑

j∈Ni

(xk
d(j) − xk

d(i)) (1)

where xk
d(i) is the target position of the drone i at step k, ε ∈ (0, 1) is a parameter

of the algorithm, and Ni is the set of neighbors of drone i.
We will consider the case in which Ni is only composed of the preceding and

following drones, reducing (1) to

xk+1
d (i) = xk

d(i) + ε(xk
d(i − 1) − xk

d(i)) + ε(xk
d(i + 1) − xk

d(i)). (2)

2 Co-simulation Environment

In this section, we will provide details on the implementation of the FMI co-
simulation used to validate the co-ordination algorithm. We have modeled a
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system composed of many quadcopters, each represented by 3 different sub-
systems: (i) the physical part of the quadcopter; (ii) the flight control module;
(iii) the coordination algorithm.

The physical part of the quadcopter has been represented with a system
of linear differential equations for computing the acceleration, the speed, the
position and the attitude of the quadcopter based on the angular speed of the
four rotors. The system of equations has been written with OpenModelica, which
allows us the automatic generation of the FMU.

The flight control module implements a system of linear equations that com-
pute the angular speed of the rotors needed to move the quadcopter toward
a target point. The system of equations has been written in C language and
embedded in an FMU.

The coordination algorithm has been modeled in the PVS formal lan-
guage. The PVSio-web toolkit provides the simulation environment for the co-
ordination algorithm and the graphical animation of the interface. The PVS
model, along with the whole PVS package has been automatically embedded
in an FMU using the approach proposed in [9]. The communications between
quadcopters are completely abstracted by connecting the output of the coordi-
nation algorithm FMU not only with the flight control FMU of the same drone
but also with the coordination algorithm FMU of the other drones.

We have created a scenario to test our system with 5 drones and a fixed
co-simulation step-size of 0.05 s. The parameters of the scenario are shown in
Table 1 (Rendez-vous). More precisely, Fig. 2a and b, show the beginning and
the end of the simulation where the drones start from different locations and
converge to the same x-coordinate, reaching a vertical arrangement over the
final target position on the ground. We may note that the consensus algorithm
only controls the movement on the horizontal plane, independently of movements
in the vertical directions.

Table 1. Parameters of the scenarios

Scenario Parameters Values

Rendez-vous Duration 40 s

ε 1
4

Initial position {0,1,2,5,10}
Space coverage 1 Duration 20 s

ε 1
4

Initial position {0,1,2,3,10}
Space coverage 2 Duration 20 s

ε 3
4

Initial position {0,1,2,3,10}
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(a) Initial position of drones

(b) Final position of drones

Fig. 2. Rendez-vous

The co-simulation environment is flexible and other co-ordination protocols
can be easily analyzed. As an example we have applied the framework to a slight
variant of the consensus algorithm above, obtaining an algorithm that performs
the task of space coverage along a line segment. We introduced the assumption
that the leftmost drone and the rightmost drone do not change their position and
they are placed at the endpoints of the line segment. In the following formula,
N is the number of drones, min and max are the endpoints of the line segment,
xk
d(i) is the desired position of drone i at step k, and ε > 0 is the same parameter

of the original algorithm:
⎧
⎨

⎩

xk
d(1) = min,∀ k

xk
d(N) = max,∀ k

xk+1
d (i) = xk

d(i) + ε(xk
d(i − 1) − xk

d(i)) + ε(xk
d(i + 1) − xk

d(i)), i ∈ [2, N − 1]

In the following, we show the results of the co-simulation in two scenarios
whose parameters are shown in Table 1 (Space coverage). Figure 3a and b show
the beginning and termination of the co-simulation for the first scenario where
the three middle drones started close to each other and end up equally spaced
on the x-axis.
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(a) Initial position of drones.

(b) Final position of drones.

Fig. 3. Space coverage 1

Fig. 4. Space coverage 2: final position of drones

Figure 4 show the termination of the co-simulation for the second scenario
where two drones collided and fell to the ground.

The two scenarios show how the value of the parameter ε affects the behavior
of the drones, which otherwise have the same initial position and are controlled
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by the same algorithm in the two scenarios. From the simulation, we can see
that a large value of ε causes the drone coordination to fail. Conditions on the
admissible values of ε can be determined with the PVS theorem prover, which
is the object of further work.

Acknowledgments. The authors would like to thank Paolo Masci for the stimulating
discussion on visual interfacing for co-simulation.
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Abstract. Model Based System Engineering and early Validation &
Verification are now key enablers for the development of complex sys-
tems. However, the current state of the art is not sufficient to achieve a
seamless use in an Extended Enterprise (EE) context. Indeed, the various
stakeholders must protect their Intellectual Property (IP) while conduct-
ing system wide design exploration that relies on each part of the system.
Co-simulation standards such as Functional Mock-up Interface provide
technological assets to deal with IP management issues for an EE orga-
nization. However, this standard is not meant to provide reference pro-
cesses to support such organizations. We target the development of such
a common process based on both the system of interest design models
and the EE architecture. The purpose is to build a Simulation Reference
Model as a requirement model for the whole co-simulation, the derived
IP-protected co-simulation components and the co-simulation platform
architecture as well as the method for the validation of system mod-
els. We propose to extend the work done for the Model Identity Card
and rely on detailed domain specific engineering ontologies and quan-
titative quality properties for models to express the requirements for
the co-simulation components and to reduce the simulation quality loss
induced by the co-simulation technologies.

Keywords: MBSE · Extended Enterprise · (co-)simulation · Quality

1 Introduction

The increasing complexity of current products and their development in
Extended Enterprise (EE) requires advanced and efficient Systems Engineering
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(SE) activities to satisfy time to market and cost reduction constraints. Models
(Model-Based Systems Engineering (MBSE)) and early Validation & Verification
(V&V) activities relying on simulation were shown to be key enablers in such
processes as they provide quick feedback loops to system architects using simu-
lations of the global system. Such global simulations are built using simulation
components provided by the various product stakeholders from the EE. Many
constraints must be managed such as the protection of each stakeholder Intel-
lectual Property (IP), the distribution of simulation components and computa-
tional resources among stakeholders, the heterogeneity of models and a poten-
tially large amount of simulation components. As defined in [6], co-simulation
techniques allow to mitigate such constraints where simulation platforms have
to deal with EE constraints meaning distributed over companies and networks.

The Functional Mock-up Interface (FMI) Standard [2] for co-simulation offers
such capabilities and can connect heterogeneous models as black boxes to pre-
vent IP diffusion as illustrated in [4]. However, building an efficient co-simulation
platform with appropriate simulation components and architecture is currently
a difficult task as processes and methods are lacking to guide the involved stake-
holders on the use of the existing standards and tools. This contribution does not
target new tools for the co-simulation, but intends to fill the gap between SE lan-
guages and tools and co-simulation frameworks to enable a seamless transition.
Moreover, we intend to provide appropriate concepts to assess the compliance of
the co-simulation results (considering the potential simulation quality alteration
by the introduction of co-simulation time steps between Functional Mock-up
Units (FMUs)) with respect to system architecture requirements.

Our proposal is currently being defined for the validation phase of a Sys-
tem Architecture modelled with the Capella [10] language using the Arcadia
method [16] with our proposed extensions (with simulation quality elements)
thanks to co-simulation techniques. In fact, the Arcadia methodology focuses
on the identification of system architecture elements (system functions, system
modes & states, operational scenarios, . . . ). Our proposal develops additional
concepts for simulation architecture and simulation components quality require-
ments to ensure consistency of simulation according to system expectations. In
that purpose, it first integrates existing concepts from the following literature.

Sargent presents in [14] the modelling process starting from a Problem Entity
(Real System) analysis, followed by a Conceptual Model design and a Computer-
ized Model implementation. In Sargent’s paper, the author introduces validation
needs and techniques which can be used to perform model V&V. Sirin et al.
[15] have developed the Model Identity Card (MIC) ontology to make explicit
most of the available data regarding a given model. MIC is filled by all involved
model stakeholders to document important characteristics and properties of the
model including interface and general intentional properties (physical phenom-
ena, maturity, etc). However, to our knowledge and understanding, first MIC
proposed ontologies are very coarse and do not allow to provide precise elements
about the expected models of the physical phenomena; and second MIC cur-
rently only targets relative qualitative requirements (e.g. model quality is stated
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to be very low, low, medium, high or very high). These kind of requirements
are very difficult both to select and assess. We intend to extend MIC on these
two identified weaknesses relying on existing work like Sachidananda et al. [13]
that considers quality of simulation in order to understand the nature of the gap
between real world experiments and simulations.

We will give an overview of the proposed methodology with some key defini-
tions and then conclude with perspectives for our work.

2 Methodology Overview

Within a MBSE approach, models are exchanged between actors during the
whole life-cycle of a system. Here is proposed a basic scenario with three key
actors working in an EE context. In the following, the term actor refers to a
person who has an active role with the definition or with the V&V of a system.
We define three main actors:

– The System Architect (SyA) is in charge of defining, designing and providing
an architecture of a system of interest. The SyA designs a system as a model
in a MBSE tool such as Capella, where different views of a common model
are used to describe the system in terms of functional architecture, temporal
behavior, modes and physical elements (such as helixes, motors, rigid body,
electronic unit, . . . for a drone physical system) making explicit its interface
with its operational environment. They also express V&V objectives to the
Simulation Architect (SiA).

– The SiA is in charge of building a co-simulation platform for the system
design provided by the SyA. He designs a co-simulation application with a
Simulation Reference Model (SRM) within a MBSE tool.

– The Simulation Model Developer (SMD) is in charge of developing executable
models also called Simulation Components (SCs) in this contribution.

EE means here a set of companies and individuals associated for the implemen-
tation of one or several common projects.

A Reference Model (RM) represents an executable model defined without a
pragmatism [5], i.e. a model expressed without a tool and a methodology. In our
case, a SRM is a model of an idealized system simulation with decomposition
of a functional system into simulation components with abstraction of software
and hardware constraints. Functional exchanges are specified as simulation data
exchanges and simulation artifacts are added (such as logging mechanism, file-
system . . . ). The SiA defines also how system functions are allocated to sim-
ulation models and how they are grouped into different SC units (ex: FMU).
Several options are available:

– All functions are included into one SC.
– Each system function has its own associated SC.
– Each macro function is represented by a SC.
– System elements are regrouped into a SC with respect to their future physical

allocation (assuming the physical architecture is already known).
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– Some of the system blocks are already implemented in a SC (ex: FMU) and
can be re-used. This model can be an internal reuse from a previous design,
a Components Off The Shelf (COTS) model or provided by a supplier.

– SC can also regroup functions by physical phenomena (all electrical functions,
mechanical functions, etc) or by simulation technology or tool.

Fig. 1. Methodology overview

The roles of SiA and SyA in the methodology are illustrated in Fig. 1 making
explicit the added value of the SiA in this process and the role of potential tools
to support automated evaluation of architecture. The SyA designs the system
as a Capella-like model containing different viewpoints. This model becomes the
entry point for the SiA to create and manage the co-simulation platform. In this
process, the SiA has a key role to derive from the System Architecture Require-
ments (SARs) the expected Architecture Requirements (SARs) the expected for
the overall simulation and each individual SCs.

In order to validate some architectural choice, the SyA will provide quality
requirements to a proper specification of SC. These requirements are defined by
the SyA according to simulation goals and system definition maturity (Fig. 2).

Model Quality Requirements represent a qualification of SC which characterize
an aspect of the model. This contribution provides three first qualifications:

– Accuracy that represents, in experimental sciences, the closeness of a mea-
surement to the real value. In our case, it expresses the closeness of simulation
results to the model theoretical value. Errors are usually introduced by the
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Fig. 2. SC quality requirements example

discretization of continuous behavior, the approximate solving of differential
equations, the use of floating point computations, timing discrepancies due to
co-simulation time-step, etc. Our work currently relies on classical accuracy
models from experimental sciences.

– Representativeness express the gap between the real system and the math-
ematical models of the involved physical phenomena. It defines the degree
of simplification (or abstraction) introduced by the model. As initially pro-
posed by the MIC, we rely on ontologies for the various physical domain
involved in the system to express the kind of behavior that should be mod-
eled. These ontologies should describe precisely the various physical phenom-
ena that should be considered, the various mathematical models that exists
for these phenomena and their respective representativeness. The expected
representativeness for each model is a requirements for the SC.

– Stability represents the ability for a model to give nearby precise solutions
when inputs have a small perturbation. It is usually modeled in the frequency
domain but we prefer to rely on the state based Lyapunov theory [8].

The SiA creates a model of the co-simulation platform where functional com-
ponents are indicated but also how they are distributed into different clusters
or FMU. This model contains specific non-existing elements used only in the
context of a simulation (e.g. read/write from the file system, failures injection
. . . ).

Other constraints are specific to the co-simulation domain: such as depen-
dency graph related delays, numerical artifacts propagation and amplification, or
strong coupling boundaries. These elements must be anticipated and monitored
throughout the process. For this purpose, the methodology contains a specific
simulation model to co-simulation model transition.

Then, this model can be used to generate configuration files used by a sim-
ulation engine such as simulation model library distribution or co-simulation
master to prepare the simulation platform.
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Once quality criteria and the co-simulation platform definition are provided,
the Simulation Architect can express requirements for a simulation component
development or choose a COTS component or a supplier component.

3 Use Case

3.1 Context

The V&V of a system using a co-simulation platform model prerequisites have
been experimented via the IRT Saint Exupéry’s case study: Aircraft Inspection
by Drone Assistant (AIDA, [11]). Before take off, an operator conducts a visual
pre-flight inspection to detect potential external anomalies. AIDA relies on a
drone both to have a better view on the upper parts of the aircraft and to
conduct a faster inspection.

As a Remotely Piloted Aircraft System (RPAS), the quadcopter drone can
be piloted in automated or manual mode. In the manual mode, the pilot guides
the inspection of the aircraft by the drone. In the automated mode, the drone
follows a flight plan and records the video of the inspected zone. The scope of
this example will be limited to the automated flight case. This RPAS shows its
relevancy for such a study because enabling a division of numerous functions
involving different physics with a limited impact on the physical conservation
laws, making it relevant to use a loosely coupled scheme over a co-simulation
bus.

A system model of the drone has already been designed in Capella. This
model is the starting point for the definition of a co-simulation platform model.
Model quality will also be explored in order to create a co-simulation meta-
model with a definition of quality requirements. For this experiment, we intend
to develop heterogeneous simulation components from drone system functions
based on the Modelica language [1] to generate FMUs. The CosiMate middleware
will be used as distributed co-simulation infrastructure [9] to execute distributed
simulation components.

In this part will be demonstrated the key steps for the proposed methodology
before setting up the whole automated toolchain:

– Definition of the drone architecture from a Systems Architecture perspective
– Definition of a Simulation Architecture perspective
– Generation of the required files for a co-simulation configuration derived from

a Simulation Architecture
– An analysis of the results quality regarding a SRM depending on the chosen

Simulation Architecture, setting the focus on the number of SCs.

This first approach already shows the consequences of a collaborative process,
offering less accuracy when the number of stakeholders increases. Addressing the
models integration at the earliest becomes a need in an EE context.
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3.2 Application and Constraints

The prerequisites and limitations for this use case were:

– A System Architecture model (Fig. 3)

Fig. 3. Logical architecture of the AIDA main processor

The figure above presents the Co-Simulation Architecture directly derived
from the Logical Architecture of the drone.

– A derived SRM Both were based on a reference work [12]
– And a mission: the AIDA drone will perform its inspection along a predeter-

mined trajectory
– Only local co-simulations were performed
– Quality requirements are based only on a numerical analysis from the curves

with no physical behavior criticism, since there is no available prototype.

The quality and relevancy of the architectural choices will be assessed regarding
the accuracy of a dedicated architecture regarding an ideal trajectory setpoint.
A visualization of this setpoint can be shown on Fig. 4.

To consolidate in an automatic fashion the link between the Simulation Archi-
tecture and the Co-Simulation Architecture, a generator for master files has been
created.

In the first steps of this study, it had been foreseen to evaluate the relevancy
of the transient co-simulation results regarding different configurations regard-
ing the different co-simulation masters available (CosiMate [3], SimulationX [7]),
different time-steps configurations and SC compositions. However, in this case,
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Fig. 4. Sample setpoint for an automatic drone inspection

Fig. 5. Co-simulation architecture with highlighted dependencies

only the latter approach has given a sufficient discrepancy to require an analysis
of the obtained curves for converging configurations. The graphs below shows
an example of those results with the vertical trajectory tracking for the above-
mentioned sample setpoint. Three configurations are compared:

– A Reference Simulation Model
– A 3 SCs Co-Simulation platform
– A 14 SCs Co-Simulation platform Both those co-simulation configurations

have been deducted from the logical architecture of the drone implemented
earlier in the modeling life cycle. All the configurations are based on an inte-
gration and exchange time-step set at the same sample time of 1 ms (Fig. 5).
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3.3 Results

The results of those experiments are shown below (Fig. 6):

Fig. 6. Results comparison between a Reference Simulation model and two co-
simulation configurations differentiated by the SCs numbers

From this experiment, it has been noticed that the results were quite simi-
lar as for the dependency and time-step configuration ranges. The main conse-
quences of “coarsening” the problem by an increase of the number of models or
the exchange time-steps are larger amplitude oscillations around the Reference
Simulation Model values.

A cross-correlation and time delay has shown an approximate delay of 1 ms,
which is equivalent to the time-step. However, no conclusion about the link
between this time-step and the dependency graph can be given since the closed-
loop behavior will be competing with the dependency graph induced latency.

Since the order of magnitude of the oscillations compared to the consign
signal can appear as negligible in this case, one step further will be to enhance
the complexity of the model to be able to define a validity range for the co-
simulation without divergence.

4 Perspectives

This paper presents key concepts and an application to achieve earlier V&V
from a System Architecture definition, using simulation, from a defined tool set
(Capella/Arcadia and FMI). Beyond this proposal and basic application, the
next steps achieve a complete method implementation are:

– the simulation model enrichment through
• model complexity: the current AIDA model has shown its limitations

in terms of discrepancy regarding the different co-simulation parameters
(master, time-steps, SCs) to create automatic setup rules
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• model representativeness: the AIDA model will require a more accurate
contextual representation to achieve a validation regarding the purpose of
the system of interest. Such models as 3D environment models, including
cameras and localization devices, e.g. via GPS, will be added to the cur-
rent configuration. This will enable to assess a real-life scenario including
the visual and physical weather model (wind, light . . . ), or the unintended
presence of an obstacle or operator to explore the safety dimension of the
design.

– The complete automation of the toolchain including consistency checking for
connections, units and the relevance of the multiphysical coupling stiffnesses
(conservation laws)

– Support the study case in a EE networked context
– Apply the method and tools to a real-life case.
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Abstract. Self-adaptive predictive control (SAP) systems adjust their
behavior in response to the changing physical system in order to achieve
improved control. As such, models of self-adaptive control systems result
in time variance of parameters. This significantly increases the complex-
ity of model checking verification and reachability analysis techniques. In
this paper, we explore recent studies on co-simulation of SAP controllers
and propose a novel co-simulation platform that can be used to ana-
lyze the effectiveness of verification and reachability analysis techniques
developed for SAP controllers.

Keywords: Co-simulation · Safety verification · Hybrid automata
Reachability analysis

1 Introduction

Self-adaptive predictive (SAP) control is a promising approach to regulate
Cyber-Physical Systems (CPS) with changing conditions by adjusting the con-
trol parameters. In the medical domain, self-adaptive control theory has gained
increasing interest where emerging innovative medical devices adopt it to deliver
more accurate, personalized treatment to patients [2,4,6]. For example, recent
artificial pancreas (AP) control systems adjust insulin administration based on
prediction over patients’ blood glucose levels, where self-adaptation mechanisms
optimize control parameters based on feedback from patients to account for the
ever-changing characteristics of their glycemic regulatory system [7]. Simulation-
based modeling tools, such as Matlab/Simulink are often used to model and
evaluate the design of medical devices with self-adaptive predictive control.

In SAP, the controller responds not only to the dynamics of the physical sys-
tem but also to the subtle changes in the dynamics over time. This introduces
time variance in the models used for analysis and design of SAP controllers.

This work has been partly funded by NIH grant EB019202. Thanks to Yi Zhang from
CDRH, FDA for introducing the authors to the artificial pancreas model and regulatory
issues.
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Typically models deal with time variance of the parameters describing the phys-
ical system and a common method to model is through a system of differential
equations involving the parameters. Formal safety verification of SAP controllers
lies in verifying whether a certain unsafe set can be reached from a set of ini-
tial states. This verification is typically performed through a hybrid analysis of
the co-variation of the inputs and outputs of the controller following a discrete
control strategy and the time variation of the physical system parameters. As
such if the physical model is time invariant, the verification problem is often
intractable [18,19]. Techniques such as reachability analysis for the time invari-
ant case cannot provide exact solutions and instead approximations are used [11].
The time variance of the physical system models in SAP is an added complexity
which further exacerbates the problem. There has been very limited work on ver-
ification of SAP controllers assuming time variance of the physical models. Even
the simpler problem of co-simulation of SAP controllers and physical systems
has not been studied in extensive detail.

In this paper, we first focus on a survey of co-simulation techniques for SAP
controllers and then propose a co-simulation architecture that can be used for
future verification. This is the first step towards developing a complete verifica-
tion methodology for SAP controllers. In this paper, we define co-simulation as
the time synchronized simulation of the SAP controller discrete decision mak-
ing module, physical model update method, and physical system evolution. The
paper is organized as follows: Sect. 2 discusses different types of adaptive control
system, Sect. 3 presents related works towards solving the discussed problem,
Sect. 4 provides our proposed co-simulation framework for SAP systems, and
finally Sect. 5 concludes the paper.

2 Types of Adaptive Control

There are different types of adaptive control systems. Open-loop adaptive con-
trol, direct adaptive control or model reference adaptive systems, and self-tuning
regulators [9,20]. For self-tuning regulators, the controller automatically tunes
its parameters to obtain some desired properties of the closed loop system. If
the estimates of the process parameters change, then the controller parameters
are updated from the solution of the controller design problem using these esti-
mates. Plant parameters are estimated at every sampling time while controller
parameters are updated every n samples, where 1/n is update freq.

Example of Self-Adaptive Predictive Control Systems: Artificial Pan-
creas (AP) systems are safety critical cyber-physical systems and are used for
automated control of blood glucose level for Type 1 diabetic patients. The aim
is to maintain the prescribed level of blood glucose, and avoid hypoglycemic and
hyperglycemic events. These potentially dangerous events happen as a result of
an inaccurate infusion rate of insulin It, e.g. if the glucose concentration G goes
above 180 mg/dl, it can lead to hyperglycemia while low glucose level i.e. below
50 mg/dl can cause hypoglycemia. Self-adaptive predictive AP, shown in Fig. 1,
consists of a sensor that measures patient’s glucose concentration and predictive
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Fig. 1. Artificial pancreas: self adaptive predictive control system [6].

control algorithm which estimates the value of the patient’s blood glucose con-
centration and computes the insulin infusion rate to maintain until the next time
step. Different conditions including meal consumption and physical activity can
cause tremendous change in the parameters of the predictive model describing
blood glucose and insulin interaction. This model is non-linear in nature and is
used by the controller to predict the value of blood glucose 30 min ahead in time
and outputs the right amount of insulin infusion rate It for the infusion pump to
maintain until the next time step. Therefore, adjusting controller parameters in
response to disturbances or systemic changes is a promising approach to regulate
AP and to achieve improved control [6].

3 Related Work

Model checking is one of the techniques used to ensure the correctness of the
system by exploring all the possible environment states and ensuring that the
system behaves as required in every state. However, the system model employed
is not an accurate representation for time-invariant systems [1,21]. On the other
hand, reachability analysis over hybrid automata provides a higher level of safety
verification and has been extensively studied in the literature for time-invariant
systems [3]. However, exact computation of reachable sets is still considered a
difficult task and becomes even more complicated for time-varying systems [15].
Therefore, union of short-term simulations on a set of initial conditions has been
proposed as an approach to compute overapproximation of reachable sets for
time-varying systems [15].

Iftikhar and Weyns have proposed an approach to validate behavioral proper-
ties of decentralized self-adaptive systems [8]. This approach focuses on checking
that the implementation of the system behaves complying with the model. The
self-adaptive system is modeled with timed-automata and required properties
are specified using timed-computation tree logic. The model is then verified
using Uppaal [14]. Another formal verification approach of adaptive real-time
systems to verify tasks schedulability has been proposed by Hatvani [10]. Hat-
vani uses adaptive tasks automata to model adaptive real-time systems and
introduces schedulability predicates as part of the adaptive task automata to
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define the schedulibility of a task. Tasks can be described in the model as long
as their behavior can be modeled using task automata. The main contribution
of the authors lies in defining decidability to prevent missed task deadlines when
adjustments to the altered environmental conditions are performed.

The following are the main assumptions of the previously discussed
approaches: 1 - adaptation scenarios have to be predefined, 2 - an environment
model should be available since it specifies the failure events that have to be
tested, and 3 - proper test selection must be defined since exhaustive testing
of systems is not feasible. None of the discussed approaches can be utilized to
model and analyze SAP control systems since adaptation scenarios cannot be
predefined for SAP systems where configuration functions are linear combina-
tion between the parameters of the predictive model and the changing condi-
tions of the environment. In addition, an environmental model with changing
characteristics is not available for SAP control systems. Similarly, Tan has pre-
sented a model-based framework for developping self-adaptive systems [12]. Tan
introduced a configuration language to specify reconfiguration requirements and
events triggering the reconfiguration are specified in temporal logic while the
system behavior is depicted in the hybrid automata model of the system. How-
ever, the reconfiguration mechanism is limited to a constant function which can
not be applied to predictive self-adaptive control system, where the configura-
tion function is a linear combination between the parameters of the predictive
model and the changing conditions of the environment.

In this paper, we propose a co-simulation framework for designing and
formally verifying self-adaptive predictive (SAP) control systems using co-
simulation and reachability analysis. This co-simulation framework represents
the first step towards developing a complete verification methodology for SAP
controllers. It represents a time synchronized simulation of the SAP controller
discrete decision making, physical model update method, and physical system
evolution.

4 Approach to Solve the Problem: Co-simulation
Framework

The proposed approach depicted in Fig. 2 is an alternative modeling technique
for devices with self-adaptive predictive control. For ease of understanding, we
present the SAP co-simulation framework for the artificial pancreas self-adaptive
predictive system presented in Sect. 2. The following represent the main steps of
the co-simulation framework depicted in Fig. 2:

– A patient predictive model is used to estimate the value of blood glucose
30 min ahead in time and computes the insulin infusion rate to maintain
until the next time step. This model is represented by nonlinear Eqs. 1, 2
and 3, where Ẋ represents the rate of the variation in the interstitial insulin
concentration, Ġ is the rate of change of blood glucose concentration for
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Fig. 2. SAP co-simulation framework. Mathworks and SpaceEx are executing simulta-
neously.

the infused insulin concentration X, and İ is the variation in plasma insulin
concentration [16].

Ẋ = −k2X(t) + k3(I(t) − Ib), (1)
Ġ = −X(t)G(t) + k1(Gb −G(t)), (2)
İ = −k4I(t) + k5(G(t) − k6)t. (3)

This model contains parameters k1, ..., k6 that are likely to change and need
to be adapted for accuracy purposes. Some conditions including meal com-
sumption, exercise, and emotional changes can be the cause of these changes
[2]. We first derive an approximate linear system that matches closely with
the real AP system [17].

– The change detection and self-adaptation mechanism detects changes in the
behavior of the human body using recent blood glucose measurements. These
changes physically correpond to significant change in glucose levels [7]. The
change detection method compares the expected value of the model parame-
ters and the vector of unbiased parameter estimates computed. It then adapts
the predictive model accordingly by re-estimating the changing parameters
of the model using the more recent data only [17].

– The HA supervisor is in the form of a Python script and performs the
following steps:
1. Generates initial model file in SpaceEx’s XML format with initial patient

predictive model settings (k1, k2, ..., kn) [13].
2. Calls SpaceEx executable file to run the command line program that

takes a model file in XML format and a configuration file that specifies
the initial states, sampling time, and other options. The sampling time
can be adaptively computed by the reachability analysis support functions
or manually selected taking into consideration that a discrete transition
should not occur between two consecutive sampling times [5]. SpaceEx
analyzes the system and produces an output file O1.txt containing the
reachable states computed.

3. Once a change is detected, it generates a new patient predictive model
XML file with new parameter settings (k′

1, k
′
2, ..., k

′
n).

4. Calls SpaceEx executable file to run the command line program with the
new generated model file. SpaceEx analyzes the system and produces an
output file O2.txt containing the reachable states.
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5. This process continues until termination criterion is satisfied.
– The final reach set of the self-adaptive control system is a union of all reach-

able states obtained with all controller configurations generated at runtime.
Figure 3 shows an example of reach set computation for the artificial pancreas
self-adaptive predictive control system. At every iteration, a new controller
configuration is generated and the reach set is computed accordingly. The
final reach set is obtained by combining all the regions of the state space that
the system has visited, as shown in Fig. 3.

The proposed approach strives to:

– Support modeling of predictive control systems using hybrid automata, and
runtime self-adaption of hybrid automata based on new configurations from
other modeling tools such as Simulink.

– Provide an alternative modeling technique for devices with self-adaptive pre-
dictive control.

– Verify the safety of self-adaptive predictive control devices by checking
whether the sets of reachable states of the system intersects with the unsafe
set.
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Fig. 3. Reach set of the artificial pancreas self-adaptive predictive control system.

5 Conclusions and Future Work

In this paper, we have investigated the problem of safety verification of self-
adaptive control systems. We proposed a novel approach to model and verify
the safety of self-adaptive predictive control systems via reachability analysis
and co-simulation. Reachability analysis is performed taking into consideration
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the ever-changing characteristics of the system by updating the hybrid automata
model of the system every time a new controller configuration is needed. Since
we deal with systems where controller configurations are not predefined, the pro-
posed method is considered a run-time verification of the self-adaptive systems
using reachability analysis. Thus, one of the issues of the proposed approach
is the selection of an accurate termination criteria for the safety analysis. As a
future work, we plan to investigate the correctness of the computed reach set for
predictive self-adaptive systems.
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Abstract. The main goal of systems biology is to understand the
dynamical properties of biological systems by investigating the inter-
actions among the components of a biological system. In this work, we
focus on the robustness property, a behaviour observed in several biolog-
ical systems that allows them to preserve their functions despite external
and internal perturbations. We first propose a new formal definition of
robustness using the formalism of continuous Petri nets. In particular, we
focus on robustness against perturbations to the initial concentrations of
species. Then, we demonstrate the validity of our definition by applying
it to the models of three different robust biochemical networks.

Keywords: Robustness · Biochemical networks · Petri nets

1 Introduction

From the discovery of DNA structure, in 1953, there has been an increasing
interest in the morphological and functional organization of living cells. A cell
is a complex system. It consists of a huge number of components that interact
with each other through chemical reaction networks. The cell’s global behaviour,
both internal and with the environment, emerges from such an interaction.

Chemical reaction networks, also called pathways are often based on long
series of chemical reactions, also known as signalling cascades, activated by an
initial stimulus (a chemical in the environment or entering the cell), that is per-
ceived by a transductor (e.g. a receptor protein in the cell surface). The trans-
ductor causes the cascade of reactions to start, leading to the amplification and
the filtering of the stimulus (or input signal), in order to suitably regulate and
reconfigure cell activities as a response. Signalling pathways play a crucial role
for the cell functioning. Many severe diseases, such as cancer and diabetes, are
caused by the malfunctioning or the corruption of a crucial signalling pathway.

In this context, the main challenge is to explore how the components of the
cells interact with each other as a system in order to predict how perturbations
can influence the cell functioning. This is the aim of systems biology [1,21].

In this perspective, we focus on the definition of the robustness property, a
fundamental feature of complex evolving systems, for which the functionality
c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 81–97, 2018.
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of the system remains essentially intact despite the presence of internal and
external perturbations.

In nature, there are different mechanisms ensuring robustness, such as system
control, redundancy, modularity and structural stability [22]. System control is
based on negative and positive feedback which, together, amplify the pathway
input signals filtering out noise (other chemicals that may interfere). In this
context, the most popular example is the chemotaxis of E. Coli [1] because
it shows an evident robust adaptation to environmental changes. Redundancy
plays a key role in robustness: pathways often have different ways to produce
the same molecules, allowing them to tolerate problems such as the absence
of a specific reactant. Modularity ensures that, if there is a damage in one of
the parts of the system, this does not affect also the other parts. In this way,
it is possible to avoid a total collapse, due to a local error. Structural stability
is the quality according to which a system is able to adapt to changes even
in presence of different external perturbations. Some examples of this can be
found in gene regulatory circuits, that are stable for a broad range of stimuli
and genetic polymorphisms [21].

The robustness of a pathway can be tested by performing wet-lab (in vitro)
experiments, or through mathematical or computational (in silico) approaches
on a pathway model. Model-based approaches are usually based either on math-
ematical analysis methods, or on numerical and simulation methods. Unfortu-
nately, the applicability of these approaches is often hampered by the complexity
of the models to be analyzed (usually expressed as ODEs or Markov chains).

To avoid analyzing complex models, Shinar and Feinberg in [34,35] proposed
a sufficient condition that, in some particular cases, allows robustness to be
derived directly from a syntactical property of the pathway, without the need of
studying or simulating its dynamics. The sufficient condition states that a mass
action system can be considered robust if it admits a positive steady state, the
underlying reaction network has a deficiency (that is a measure of linear inde-
pendence among its reactions) equal to one and there are distinct non-terminal
complexes that differ only in a single species (see [16] for the details).

This approach has the great advantage to prove robustness without executing
the system. Indeed, verifying robustness would require, in general, to consider
all possible initial states of the system. In particular, regarding the signalling
pathways, it would be necessary to test the system behaviour by examining all
the possible combinations of initial concentrations of chemical species and, in
practice, this would require a huge number of simulations. On the other hand,
the sufficient condition proposed in [34,35] is not general: its syntactic constraint
makes it applicable only to a particular class of pathways.

A further step towards the formal study of robustness was made in [8], where
the concept of adaptability of a system is introducted. This consists in the capac-
ity of the system to adapt its behaviour to different initial concentrations of some
chemical species with, possibly, different degrees of robustness.

Both robustness and adaptability can be formally studied by applying the
methodology proposed by Rizk et al. in [32,33]. Such a methodology is based
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on the definition of robustness given by Kitano in [22] as the ability of a system
to maintain specific functionalities against perturbations. The robustness of a
system is measured as the distance of the system behaviour under perturbations
from its reference behaviour expressed as a temporal logic formula. The distance
is computed by using a notion of violation degree measuring how much the tem-
poral logic formula should be changed in order to match traces of perturbed
behaviours obtained, for instance, through simulations.

The approach proposed by Rizk et al. is very general, both in the description
of the reference behaviour and as regards perturbations. In this paper, instead,
we focus on concentration robustness, namely on the influence of the initial con-
centrations of species on what will be the steady state of the system. What we
propose is a notion of α-robustness, based on continuous Petri nets [17] and
interval markings, which extends the notion of absolute concentration robustness
considered in [34,35] with the notion of adaptability proposed in [8].

Our definition of robustness is simpler and much less general than the one
considered by Rizk et al. However, it is conceived with the aim of enabling further
studies on sufficient conditions that could allow robustness to be assesses by
avoiding (or significantly reducing) the number of simulations to be perfomed.
This could be obtained, for instance, by adapting conditions already considered
in the context of monotonicity analysis [3].

We validate our definition by modelling and simulating three different sys-
tems, two related to the Escherichia coli organism (the EnvZ/OmpR and bacte-
rial chemotaxis) and the last one dealing with enzyme activity at saturation. By
simulations, we verify the robustness of the system and, by varying the initial
parameters, we test the degree of the robustness.

We proceed by first introducing the continuous Petri nets formalism in
Sect. 2.1, which is the base of our new formal definition of robustness presented
in Sect. 2.2. In Sect. 3 we validate our definition using the three biochemical
examples. Finally, Sect. 4 contains some conclusions and future work.

2 Formal Definition of the Robustness Property

Many formalisms have been used to describe biological systems at different
abstraction levels, as for example Petri nets [19,31], P systems [28,29], reaction
systems [13], BioPepa [11] and Hybrid Automata [2,20,24,27]. These notations
allow systems to be modeled unambiguously and enable the application of for-
mal analysis techniques such as model checking [10,23], abstract interpretation
[12,15,18] and, in general, logic and symbolic reasoning approaches [4–7,14].

In this work, we formalize the robustness property, using the formalism of
continuous Petri nets [17]. Petri nets have many applications in different areas,
since they are able to model static and dynamic behavioural aspects. They are a
valid tool to study concurrent and parallel programs, communication protocols,
business processes as well as biological systems.
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2.1 Continuous Petri Nets

A continuous Petri net N can be defined as a quintuple 〈P, T, F,W,m0〉 where:

– P is the set of continuous places, conceptually one for each considered kind
of system resource;

– T is the set of continuous transitions that consume and produce resources;
– F ⊆ (P ×T )

⋃
(T ×P ) → R≥0 represents the set of arcs in terms of a function

giving the weight of the arc as result: a weight equal to 0 means that the arc
is not present;

– W : F → R≥0 is a function, which associates each transition with a rate;
– m0 is the initial marking, that is the initial distribution of tokens (representing

resource instances) among places. A marking is defined formally as m : P →
R≥0.

Tokens are movable objects, assigned to places, that are consumed by transitions
in the input places and produced in the output places. Graphically, a Petri net
is drawn as a graph with nodes representing places and transitions. Circles are
used for places and rectangles for transitions. Tokens are drawn as black dots
inside places. Graph edges represent arcs and are labeled with their weights.
For simplicity, the labels of arcs with weight 1 is omitted. To faithfully model
biochemical networks, the marking of a place is not an integer (the number of
tokens) but a positive real number (called token value representing the concentra-
tion of a chemical species. Each transition is associated with a kinetic constant,
that determines the rate of (continuous) flow of tokens from the input to the
output places of the transition.

k

k

Fig. 1. Example of Petri net. In this case, it shown how represent the chemical reaction:

2 H2 + O2
k

2 H2O. (A) and (B) represent two different markings for the same Petri
net. The marking in (B) is obtained from the one in (A) as the result of firing transition
with the rate k.

Figure 1 shows a simple example of continuous Petri net modeling the chem-
ical reaction 2 H2 + O2

k 2 H2O. In sub-figure (A), each place, H and O, has
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two tokens: the transition is enabled since it requires two tokens from H2 and
only one from O2. Sub-figure (B) shows the situation after the transition has
been fired: the tokens are moved (in a continuous way) to the output places.
Note that in (B) the transition is no longer enabled.

The dynamics of a Continuous Petri net can be expressed in terms of ODEs
(in agreement with the standard mass action kinetics of chemical reactions). Each
place corresponds to a continuous variable whose value corresponds the place’s
marking. The dynamics of the variable is expressed by a differential equation
consisting of a summation of terms corresponding to the transitions connected
to the place. Each term has a positive sign if the transition is connected to the
place by an outgoing arc. The sign is negative otherwise. Moreover, the term is
the product of the weight of the arc with the values of the variables corresponding
to all the places providing resources to the transition (i.e., having and outgoing
arc connecting them to the transition). Those variables have as exponent the
weight of the arc connecting them to the transition.

For example, considering the continuous Petri net in Fig. 1. The ODEs
describing the dynamics of the net are as follows:

dH2

dt
= −2kH2

2O2
dO2

dt
= −kH2

2O2
dH2O

dt
= +2kH2

2O2

An alternative (stochastic) dynamics can be given by using the terms of the
ODEs computed for each transition as rates of a Continuous Time Markov Chain
(CTMC). Both ODEs and CTMCs offer standard analytic ways to compute the
steady state of the system.

Hereinafter, we refer to continuous Petri nets simply as Petri nets and we
assume their dynamics to be expressed in terms of ODEs.

2.2 Formal Definition of Robustness

Given a biochemical network, the idea is to verify whether by varying the initial
concentrations of some input species, the output of the network (the concentra-
tion of a species of interest) remains either constant or bounded within a given
interval. We will assume the initial concentration of the input species to vary
within given intervals, and the initial concentrations of all the other molecules
to be fixed. Under these assumptions, we define the property of robustness of
the system and we formalize it by using Petri nets.

We introduce some auxiliaries definitions. First, we extend the concept of
marking. Recall that in Sect. 2.1 we defined the initial marking as an assignment
of a fixed value to each place p. Now, we generalize the idea of initial marking
by considering a marking as an assignment of a interval of values to each place
p of the Petri net.

We first define the domain of intervals.

Definition 1 (Intervals). We define the interval domain as

I = {[n,m] | n,m ∈ R≥0 ∪ {+∞} and n ≤ m}.
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An interval [n,m] ∈ I is trivial iff n = m. Moreover, we say that x ∈ [n,m] iff
n ≤ x ≤ m.

We now define interval markings.

Definition 2 (Interval marking). Given a set of places P , an interval mark-
ing is a function m[ ] : P → I. We call M[ ] the domain of all interval markings.

An interval marking in which at least one interval is non-trivial represents an infi-
nite set of markings, one for each possible combination of values of the non-trivial
intervals. Therefore, given an interval marking, we relate it with the markings
as in the original Petri nets formalism in the following way:

Given m ∈ M andm[ ] ∈ M[ ], m ∈ m[ ] iff ∀p ∈ P,m(p) ∈ m[ ](p).

Fig. 2. Example of Petri nets, in which A and B are marked as input of the system
(red dot-line) and E is marked as output (green dots). (Color figure online)

In a Petri net we assume that there exists at least one input place and exactly
one output place representing input and output species of the modeled biochem-
ical network, respectively. See Fig. 2 for an example. Under this assumption, we
can give our formal definition of robustness.

Definition 3. (α-Robustness). A Petri net N with output place O is α-robust
with respect to a given interval marking m[ ] iff ∃k ∈ R such that ∀m ∈ m[ ], the
marking m′ corresponding to the steady state reachable from m, is such that

m′(O) ∈ [k − α

2
, k +

α

2
] .

Note that the definition of α-robustness does not explicitly mention the input
places of the net. Actually, input places will be those having a non-trivial initial
in m[ ]. In other words, input places are those whose initial marking is not fixed.

Given the previous definition, it can be observed that:

– the wider are the intervals of the initial interval marking, the more robust is
the network, because it means that the system gives similar outputs regardless
the initial inputs;
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– the smaller is the value of α, the more robust is the network.

Here, we have given a general definition that can be modified in different ways.
For example, rather than considering the marking at the steady states, it could
be possible to consider the marking reached at a given time T , or when the
system terminates its execution (no transition is enabled).

It is worth noting that our definition is general enough to capture several
notions of robustness available in literature. For example, by considering the
initial intervals [1,∞] for the initial concentration of the input species and α = 0
we obtain a formal definition for the robustness notions considered in [8,34].

Fig. 3. Example of robust biochemical network, considering the species A as output of
the system.

A simple example of robust biochemical network is given by the following
two reactions:

A + B
k1 2 B B

k2 A

The Petri net representation of the network is shown in Fig. 3 (on the left with
the initial marking, on the right with the steady state marking). In this case,
the steady state is such that

A =
k2
k1

B = θ − k2
k1

where θ is the sum of initial concentrations of A and B. If A is the output of
the system, then its concentration in the steady state does not depend from
the initial quantity of the (input) chemical species A and B (0-robustness with
k = k2

k1
). If we consider [10, 20] as the initial interval for both A and B, we obtain

that θ will be in [20, 40]. So, for B as the output we obtain:

B ∈ [20 − k2
k1

, 40 − k2
k1

]
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Thus, for output B we have α-robustness with α = 20, suggesting that B is not
independent from the initial concentrations of A and B.

Moreover, in Fig. 4 we can see a network that is never robust neither consid-

ering A as output, nor B. Their chemical reactions are: A
k1 B, B

k2 A.
In this case, the concentrations of A and B at the steady state are both always
influenced by the input values. The reason of this behaviour is related to the
fact that in this case the chemical species are transformed, but not consumed.

Fig. 4. Example of non robust network. In this case we chose k1 = 2 and k2 = 3.

3 Validating the Definition of Robustness

To validate our definition of robustness, we consider three examples of biologi-
cal networks: the two component EnvZ/OmpR osmoregulatory signalling system
and the bacterial chemotaxis, which are related to E. coli, and a model of the
behaviour of the enzyme kinetics at saturation. The first example shows abso-
lute concentration robustness, corresponding to 0-robustness in our setting. The
other two examples show a concentration robustness that it is not absolute (α-
robustness with α greater than 0).

3.1 EnvZ/OmpR Osmoregulatory Signalling System in E. Coli

The EnvZ/OmpR system regulates the expression of two porins, OmpF and
OmpC, which are proteins having many roles in the cell, as for example nutrients
transportation, elimination of toxins and many others [9,35].

The regulatory system consists of two components. The first one is the histine
kinase EnvZ, a particular kind of protein having the role of adding and removing
a phosphate to an aspartame acid usually on the other component of the sig-
nalling pathway, the response regulator OmpR, which mediates a response of the
cell to changes in its environment. The role of EnvZ is bifunctional because it
phosphorylates and dephosphorylates OmpR: the model predicts that the steady
state level of OmpRP (the phosporylated form of OmpR) is insensitive to vari-
ations in the concentration of EnvZ and OmpR.
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Table 1. The initial concentrations, the rates and the chemical reactions of
EnvZ/OmpR system. The concentration of X and Y, marked by the symbol �, can
vary to prove the robustness in YP .

Initial concentrations Rates Chemical reactions

X = 25 � k1, k2, k3, k4 = 0.5 XD
k1
k2

X

Y = 150 � k5, k11 = 0.1 XT
k3
k4

X

XT = 0 k6, k9 = 0.02 XT
k5

XP

XP = 0 k7, k8, k10 = 0.5 XP + Y
k6
k7

XPY

XPY = 0 XPY
k8

X + YP

YP = 10 XD + YP

k9
XDYP

XDYP = 0 XDYP

k10
XD + YP

XD = 50 XDYP

k11
XD + Y

Modeling and Simulation of the EnvZ/OmpR System in E.coli. The
main components of this chemical network are EnvZ and OmpR, denoted in
Table 1 respectively as X and Y. EnvZ phosporylates OmpR (YP ) and itself
(XP ), by binding and breaking down ATP. In this sequence of chemical reactions,
in fact, ATP and ADP act as cofactors (denoted as T and D).

Fig. 5. The Petri nets model for the reaction network of the EnvZ/OmpR system. The
input of the network are X and Y (red dot-lines), the output is YP (green dots). (Color
figure online)

In order to check whether the system satisfies our definition of robustness we
build the Petri nets model shown in Fig. 5, where X and Y are the input and YP

is the output. To study the equilibrium configuration, we compute the steady
state by setting the time-derivatives to zero and solving the obtained equations.
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Fig. 6. Graphical results of the simulation of the EnvZ/OmpR system. We vary the
concentrations of X and Y to show robustness in YP . Note that in the third case the
curve of Y is out of the graph.

At the steady state, the concentration of YP does not depend from the input
chemical species, thus, the system satisfies 0-robustness (absolute concentration
robustness) for the widest intervals ([1,∞]) of initial concentrations.

To illustrate the robustness of this system we show some simulation results
obtained by using Dizzy [30]. Simulation results are in Fig. 6, where it is shown
that the concentration of YP is constant even varying the initial concentrations
of the input species X and Y .

Moreover, note that in this case, we can also apply the theorem in [34]:
the deficiency of the network is 1 and the sufficient conditions required by the
theorem to assure absolute concentration robustness in YP can be verified.

3.2 Bacterial Chemotaxis

In nature, one of the most important examples of robustness is in bacterial
chemotaxis. It is the process through which bacteria sense and move along con-
centration gradients of specific chemicals like sugars or amino acids (as serine
and aspartame) [1]. Despite their physical limitations, bacteria can detect con-
centration gradients to guide their motion, which consists in runs in which they
alternate keeping a constant direction with tumbles in which they randomly
change direction. The bacterium continuously compares the current attractant
concentration with its concentration in the past. If it detects an increment, it
reduces the tumbling frequency. After a while, if the concentration of the attrac-
tant remains constant, the bacterium increases the tumbling frequency back to
the original level. This phenomenon is an example of exact adaptation, because
the concentration of attractant does not influence the bacterium response to the
ambient change (it is the gradient that matters).

Modeling and Simulation of Chemotaxis of E. coli. A detailed description
of bacterial chemotaxis can be found in [1,8]. The E. coli senses the concentration
of an attractant L through receptors on its external membrane. Each receptor is
bound to a protein kinase, constituting a group denoted X. Rapidly, this group
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Table 2. The initial concentrations, the rates and the chemical reactions of chemotaxis
phenomenon of the E. coli. The concentration of the attractant L, marked by the symbol
�, can vary to prove the robustness in CheYP .

Initial concentration Rates Chemical reaction

X = 10 k1, k13 = 1.15 X
k1
k2

X*

X∗ = 10 k2, k12 = 0.25 X* + CheY
k3

CheYp + X

L = 0 � k3 = 0.1 CheYp + Z
k4

CheY + Z

CheY = 10 k4 = 10 CheYp
k5

CheY

Z = 1 k5 = 0.002 L + X* k6
L + XY

CheYp = 1 k6, k7, k11 = 1 CheBp
k7

CheB

XL = 0 k8 = 80 XY
k8

XL

X∗m = 1 k9 = 0.01 CheR + XL
k9

X*m + CheR

CheR = 1000 k10 = 0.2 X*m + CheB
k10

Bp + X*m

XY = 0 k14 = 0.18 X*m + CheBp
k11

X* + Bp

CheB = 2 X*m
k12
k13

Xm

CheBp = 0 X*m + CheY
k14

CheYp + Xm

Xm = 0

passes from inactive state X to an active state X*, and starts modifying the
state of a regulator protein, CheY, by adding a phosphate group to it (which
becomes CheYP ). The complex CheYP is the main responsible of tumbles: in
fact, the higher is its concentration, the higher is the tumbling frequency.

During this process, the binding of X with attractants reduces its probability
to reach the active state that, consequently, reduces also the probability to attach
a phospate group to CheY. As a consequence, the tumbling frequency is lowered.

Since the attractant (L) reduces the activity of X, there is the methylation
mechanism to switch on again the chemical group. An enzyme CheR adds at
constant rate a methyl group to the XL complex, which becomes Xm and restarts
behaving as X. The methyl group is removed by the enzyme CheB, which is
influenced by X that, adding a phosphoryl group to CheB, makes it more active,
constituting a negative feedback loop: the higher is the activity of X, the higher
is that of CheB, which, in turn, reduces the activity of X. Exact adaptation is
achieved because of the feedback circuit: the increased methylation of X precisely
balances the reduction in activity caused by the attractant.

In Table 2 we summarize the chemical reactions of the chemotaxis network,
together with rates and initial concentrations. The Petri net of the reaction
network is in Fig. 7. By computing the steady state for CheYP we find that it
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Fig. 7. The Petri nets model for the reaction network of the bacterial chemotaxis
network. The input of the network are L (red dot-line), the output is the concentration
of CheYp (green dots). (Color figure online)

does not depend on L. Thus, according to our definition, this system is 0-robust
on CheYP with respect to the variation of input L.

We simulated the chemical reactions network using again Dizzy [30]. Some
simulation results are shown in Fig. 8. The first sub-figure shows that the bac-
terium sense the initial concentration of L and reacts by reducing the concen-
tration of CheYP (and hence the frequency of tumbles). Since the concentration
of L does not change over time, the concentration of CheYP is brought back to
its original value. The second sub-figure shows that, as an effect of 0-robustness
with respect to the input L, the dynamics of CheYP is the same even with a
different concentration of L. The third sub-figure, instead, shows that by vary-
ing the concentration of the enzyme CheR, the concentration of CheYP does not
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Fig. 8. Graphical results of the simulation of the bacterial chemotaxis. To show how
robustness is preserved, we change the concentration of the attractant L, to study how
this influences CheYP .
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return exactly to the initial value, hence the system is α-robust with α = 0.3
when the species considered as input is CheR.

Note that the deficiency of this network is 3, hence the sufficient condition
of [34] cannot be applied.

3.3 Enzyme Activity at Saturation

The well-known Lotka-Volterra reactions [25,26] can be interpreted as abstract
chemical reactions and, in fact, they have been proposed to investigate the oscil-
latory dynamics of autocatalytic enzymes. Similarly, the logistic equation [36] is
a model of population growth that is commonly used also in the context of bio-
chemical reaction kinetics. It describes the growth of a population by taking the
amount of available environmental resources into account (the carrying capacity
of the environment) and it is used also to model enzyme dynamics at saturation.
In this section we consider an abstract model of enzyme activity inspired by the
Lotka-Volterra reactions and the logistic equation (Table 3).

Modeling and Simulation of Enzyme Activity at Saturation. We con-
sider an abstract chemical reaction network in which an enzyme R produces a
molecule X. To ensure mass conservation, we add to this idealized example the
species Z, which has the role to preserve the concentration of R (i.e. R is never
consumed nor produced, but transformed into Z and back).

Table 3. The initial concentrations, the rates and the chemical reactions of enzyme
activity at saturation model. The concentration of P, marked by the symbol �, can
vary to prove the robustness in X.

Initial concentrations Rates Chemical reactions

R = 1000 k1 = 100 R + X
k1

X + X + Z

X = 30 k2 = 10 X
k2

W

Z = 0 k3 = 0.5 Z
k3

R

P = 1 � k4 = 0.01 X + P
k4

P + P

C = 0 k5 = 0.5 P
k5

C

W = 10

As in Lotka-Volterra, the production of X is autocatalytic (the more X are
present, the higher is the production rate), but the concentration of enzymes R
is limited. Hence, the enzyme activity can easily reach saturation. This reaction
system is of the kind typically modeled by the logistic equation. It is expected to
reach a dynamic equilibrium in which the concentration of X does not depend
on its initial concentration, but only on the concentration of R. We add to
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this system a molecular species P acting as a “predator” for X (again, as in
Lotka-Volterra). Species X can be consumed and transformed into P , by another
autocatalytic reaction. In this model it can be interesting to investigate how the
initial concentration of P influences the steady state concentration of X.

Fig. 9. The Petri nets model for enzyme activity at saturation system. The input of
the network is P (red dot line), the output is X (green dots). (Color figure online)

The Petri nets model of the reactions network is shown in Fig. 9, with P as the
input and X as the output species. At the steady state, the concentration of X is
always constant and its value only loosely depends on the initial concentration
of P. We chose [1, 20000] as initial interval marking for P and we found, by
the means of simulations, that the concentration reached by X is in the range
[50, 47], (see Fig. 10). Therefore, the system is α-robust with α = 3 with respect
to input P and the considered initial interval marking.
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Fig. 10. Graphical results of the enzyme activity at saturation model. We change the
concentration of the P to test robustness in X.

4 Conclusions

We proposed the notion of α-robustness with extends the notion of absolute con-
centration robustness considered in [34,35] with the notion of adaptability [8] in
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a way that could capture a large class of pathways exhibiting robust behaviours.
We illustrated α-robustness with three examples of robust pathways.

As future work, we plan to formulate and study α-robustness by applying
the more general methodology proposed by Rizk et al. in [32,33]. Moreover, we
will investigate new ways to verify our α-robustness property. For example, we
would like to find sufficient conditions under which the property could be verified
efficiently, without computing the steady state of the system and without per-
forming simulations in an exhaustive way. This could be obtained, for instance,
by adapting conditions already considered in the context of monotonicity anal-
ysis of chemical reaction networks [3].
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Abstract. Docker is on the rise in today’s enterprise IT. It permits
shipping applications inside portable containers, which run from so-
called Docker images. Docker images are distributed in public registries,
which also monitor their popularity. The popularity of an image directly
impacts on its usage, and hence on the potential revenues of its develop-
ers. In this paper, we present a frequent pattern mining-based approach
for understanding how to improve an image to increase its popularity.
The results in this work can provide valuable insights to Docker image
providers, helping them to design more competitive software products.

1 Introduction

Docker images are the de-facto standard for container-based virtualization in
enterprise IT [16]. The aim of container-based virtualization is to provide a
simple yet powerful solution for running software applications in isolated virtual
environments called containers [23]. Containers have faster start-up time and less
overhead than other existing visualization approaches, like virtual machines [12].
Docker permits building, shipping, and running applications inside portable con-
tainers. Docker containers run from Docker images, which are the read-only tem-
plates used to create them. A Docker image packages a software together with
all the dependencies needed to run it (e.g., binaries, libraries).

Docker also provides the ability to distribute and search images through so-
called Docker registries. Through Docker registries any developer can create and
distribute its own created images, so that other users have at their disposal
plentiful repositories of heterogeneous, ready-to-use images. In this scenario,
public registries as the official Docker Hub are playing a central role in the
distribution of Docker images.

DockerFinder [4] enhances the support for searching Docker images. Doc-
kerFinder allows to search for images based on multiple attributes. These
attributes include (but are not limited to) the name and size of an image, its
popularity within the Docker community (measured in terms of so-called pulls
and stars), the operating system distribution they are based on, and the software
distributions they support (e.g., java 1.8 or python 2.7). DockerFinder
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M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 98–113, 2018.
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automatically crawls all such information from the Docker Hub and by directly
inspecting the Docker containers that run from images. In this way, Docker-
Finder builds its own dataset of Docker images.

The popularity of an image directly impacts on its usage [15]. Understanding
the reputation and usage of an image is important as for every other kind of open-
source software. The higher is the usage and the endorsement of an open-source
software, the higher are the chances of revenue from related products/services,
the self-marketing and the peer recognition for its developers [10].

The main objective of this paper is to understand which are the rules charac-
terizing the patterns leading to popular images both in terms of registered pulls
and explicit endorsement from the users. With pattern we refer to the typical
image composition in terms of operating system distribution, installed softwares,
number of layers, size of the image, etc. In order to perform pattern analysis we
develop an accurate data-to-model transformation, which considers the possible
data types and distributions of variables. Finally, we extract itemsets and rules
using the well known FP-Growth algorithm [8].

The analysis of such rules and itemsets highlights that most of the Docker
images follow rules which are very common but that do not lead to a consistent
level of popularity, while some rules only used by a small portion of the images
are very stable and predictive of high level of popularity both in terms of pulls
and stars. Moreover, most of the rules leading to the highest success are satisfied
only by images officially supporting commercialized software distributions, and
as we proof in the experiments this does not happen by chance.

The rest of the paper is organized as follows. Section 2 provides background
on Docker. Section 3 formalizes the data type, the data transformation and the
popularity rules used to study Docker images. Section 4 presents a dataset of
Docker images and the analysis illustrating the main patterns hidden in the
data. Sections 5 and 6 discuss related work and draw some concluding remarks.

2 Background

Docker is a platform for running applications in isolated user-space instances,
called containers. Each Docker container packages the applications to run, along
with all the software support they need (e.g., libraries, binaries, etc.).

Containers are built by instantiating so-called Docker images, which can be
seen as read-only templates providing all instructions needed for creating and
configuring a container (e.g., software distributions to be installed, folders/files
to be created). A Docker image is made up of multiple file systems layered over
each other. A new Docker image can be created by loading an existing image
(called parent image), by performing updates to that image, and by committing
the updates. The commit will create a new image, made up of all the layers of
its parent image plus one, which stores the committed updates.

Existing Docker images are distributed through Docker registries, with the
Docker Hub (hub.docker.com) being the main registry for all Docker users. Inside
a registry, images are stored in repositories, and each repository can contain

http://hub.docker.com
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multiple Docker images. A repository is usually associated to a given software
(e.g., Java), and the Docker images contained in such repository are different ver-
sions of such software (e.g., jre7, jdk7, open-jdk8, etc.). Repositories are divided in
two main classes, namely official repositories (devoted to curated sets of images,
packaging trusted software releases—e.g., Java, NodeJS, Redis) and non-official
repositories, which contain software developed by Docker users.

The success and popularity of a repository in the Docker Hub can be mea-
sured twofold. The number of pulls associated to a repository provides informa-
tion on its actual usage. This is because whenever an image is downloaded from
the Docker Hub, the number of pulls of the corresponding repository is increased
by one. The number of stars associated to a repository instead provides signif-
icant information on how much the community likes it. Each user can indeed
“star” a repository, in the very same way as eBay buyers can “star” eBay sellers.

DockerFinder is a tool for searching for Docker images based on a larger set
of information with respect to the Docker Hub. DockerFinder automatically
builds the description of Docker images by retrieving the information available
in the Docker Hub, and by extracting additional information by inspecting the
Docker containers. The Docker image descriptions built by DockerFinder are
stored in a JSON format1, and can be retrieved through its GUI or HTTP API.

Among all information retrieved by DockerFinder, in this work we shall
consider the size of images, the operating system and software distributions they
support, the number of layers composing an image, and the number of pulls and
stars associated to images. A formalization of the data structures considered is
provided in the next section. Moreover, in the experimental section we will also
observe different results for official and non-official images.

3 Proposed Analytical Model

We hereafter provide a formal representation of Docker images, and we then
illustrate how to model docker patterns and popularity/endorsement rules.

A Docker image can be represented as a tuple indicating the operating system
it supports, the number of layers forming the image, its compressed and actual
size, and the set of software distributions it supports. For the sake of readability,
we shall denote with Uos the finite universe of existing operating system distri-
butions (e.g., “Alpine Linux v3.4”, “Ubuntu 16.04.1 LTS”), and with Usw

the finite universe of existing software distributions (e.g., “java”, “python”).

Definition 1 (Image). Let Uos be the finite universe of operating system dis-
tributions and Usw be the finite universe of software distributions. We define a
Docker image I as a tuple I = 〈os, layers, sized, sizea,S〉 where

– os ∈ Uos is the operating system distribution supported by the image I,
– layers ∈ N is the number of layers stacked to build the image I,

1 An example of raw Docker image data is available at https://goo.gl/hibue1.

https://goo.gl/hibue1
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– sized ∈ R is the download size2 of I,
– sizea ∈ R is the actual size3 of I, and
– S ⊆ Usw is the set of software distributions supported by the image I.

A concrete example of a Docker image I is the following
I = 〈Ubuntu 16.04 LTS, 6, 0.78, 1.23, {python,perl,curl,wget,tar}〉
A repository contains multiple Docker images, and it stores the amount of

pulls and stars associated to the images it contains. The pulls highlights the
popularity of a repository, while the stars its endorsement. The main difference
between pulls and stars is that stars are a direct appreciation of the users, while
pulls are an indirect appreciation because a repository can be downloaded but
not appreciated.

Definition 2 (Repository). Let UI be the universe of available Docker images.
We define a repository of images as a triple R = 〈p, s, I〉 where

– p ∈ R is the number (in millions) of pulls from the repository R,
– s ∈ N is the number of stars assigned to the repository R, and
– I ⊆ UI is the set of images contained in the repository R.

For each repository, the number of pulls and stars is not directly associated
with a specific image, but it refers to the overall repository. We hence define the
notion of imager, viz., an image that can be used as a “representative image”
for a repository. An imager essentially links the pulls and stars of a repository
with the characteristic of an image contained in such repository.

Definition 3 (Imager). Let R = 〈p, s, I〉 be a repository, and let I = 〈os,
layers, sized, sizea,S〉 ∈ I be one of the images contained in R. We define an
imager IR as a tuple directly associating the pulls and stars of R with I, viz.,

IR = 〈p, s, I〉 = 〈p, s, 〈os, layers, sized, sizea,S〉〉.

A concrete example of imager IR is the following: IR = 〈1.3, 1678, 〈Ubuntu
16.04 LTS, 6, 0.7, 1.2, {python,perl,curl,wget}〉〉. It is worth highlighting
that an imager can be formed by picking any image I contained in R, provided
that I can be considered a “medoid” [24] representing the set of images contained
in R.

In order to perform frequent pattern mining analysis on imagers, we must
“flatten” their representation and turn them into itemsets [1,24]. We hence pro-
vide a translation from the tuple representing an imager into a set of items,
taken from discrete domains. The latter also means that the numerical domains
of pulls, stars, layers and sizes have to be discretized into intervals, which will
be considered instead of the concrete numeric values. The notion of imagerset is
defined precisely to accomplish to this purpose.

2 As images are downloaded as compressed archives, their download size correspond
to their compressed size (in GBs).

3 The actual size of an image corresponds to its decompressed size (in GBs).
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Definition 4 (Imagerset). Let IR = 〈p, s, I〉 = 〈p, s, 〈os, layers, sized, sizea,
S〉〉 be an imager. Let also P, S, L, Sb, Sa be the discretizations of the numeric
domains of pulls, stars, layers, download sizes and compressed sizes, respectively.
The imagerset IR corresponding to IR is defined as follows: IR = {p}∪{s}∪{os }∪
{layers} ∪ {sized} ∪ {sizea} ∪ S where x denotes the interval corresponding to
the value x in its discretized domain (e.g., p denotes the class p in P).

According to this definition, and assuming a given discretization, the previous
imager IR taken as example becomes the following imagerset IR:

IR = {1.0 ≤ p < 3.0, 1200 ≤ s < 1800, Ubuntu 16.04 LTS,
5 ≤ layers < 10, 0.4 ≤ sized < 0.8, 1.0 ≤ sizea < 1.5,
python, perl, curl, wget}.

Imagersets can then be exploited to determine popularity patterns, expressed as
rules determining the popularity of an imager based on its technical contents.
Following [1,24], each rule is of type X → y, where X is an itemset containing an
operating system distribution, a class of layers, a compressed size, a download
size and/or a set of supported software distribution. y is instead the popularity
of an imager, expressed in terms of either pulls or stars.

Definition 5 (Popularity Rule). Let P, S, L, Sb, Sa be the discretizations
of the numeric domains of pulls, stars, layers, download sizes and compressed
sizes, respectively. A pulls popularity rule is a pattern X → y where

– X ⊆ Uos ∪ L ∪ Sb ∪ Sa ∪ Usw is an itemset, and
– y ∈ P is the popularity level expressed as pulls.

A stars popularity rule is defined analogously (with y ∈ S).

We will now exploit our modelling to analyse concrete data.

3.1 Implementing Models Transformation

In order to transform the continuous attributes sized, sizea, p, s into correspond-
ing, discretized intervals, it is important to consider their distributions. Indeed,
these attributes have a long tailed distribution with few imagers having a small
set of high values, while most of the imagers are characterized by a large and
various set of low values. A traditional natural binning [24] would result in a
discretization placing most of different low values in the long tail in a single bin.
This would annihilate any difference, hence resulting in a biased data model.

In order to overcome this issue we exploit the “knee method” [24] that first
sorts a variable x, then considers the curve described by the sorted x, and after
that it selects a threshold point pt on such curve. The latter is the point having
the maximum distance from the closest point on the straight line passing through
the minimum and the maximum values of x on the considered curve (examples
in Fig. 2). We can then apply the natural binning only on the values lower than
the threshold pt, as on these values the long tail distribution effect is less present
or not present at all. Finally, the set of obtained bins is extended by including
an additional bin containing all the values higher than the threshold pt.
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3.2 Implementing Pattern Extraction

The transformation described in the previous section allows us to turn a given
set of imagers I

{}
R = {IR1, ..., IRn} into a set of imagersets I

{}
R = {IR1, ..., IRn}.

This transformation enables the usage of common algorithms for frequent pat-
tern mining like Apriori, Eclat and FP-Growth [1,8,24]. All these approaches
extract the rules form the retrieved frequent itemsets. Since we are interested
in analyzing also the frequent itemsets besides the popularity rules we do not
considers algorithms able to directly extract rules that have a strong relationship
with a target attribute (i.e., the popularity in our case) such as algorithms for
subgroup discovery [11] and contrast sets detection [2].

Given as input a set of sets of items (viz., I
{}
R ), such algorithms can be

exploited to determine (i) the set of itemsets whose support σ is higher or equal
than a user defined threshold min sup, and (ii) the set of rules whose confidence
c is higher or equal than a user defined threshold min conf .

Given an itemset X, its support σ(X) with respect to a set of imagersets I
{}
R

is defined as the proportion of imagers that contain the itemset X [24], namely

σ(X) = |{IR∈I
{}
R | X⊆IR}|
|I{}R | . The confidence of a rule instead indicates how often such

rule is true. Given a rule X → y, its confidence c(X → y) with respect to a set of
imagersets I

{}
R is defined as the proportion of the imagers that contains X which

also contains y. We recall that, in this paper, we shall consider popularity rules,
i.e., y ∈ P ∪ S. c(X → y) = σ(X∪{y})

σ(X) . We also recall two indicators that can be
observed from the output of the above mentioned algorithms, viz., coverage and
lift. The rule coverage is the proportion of records that satisfy the antecedent X
of a rule: coverage(X → y) = σ(X). The lift is the ratio of the support to that
expected if X and y were independent: lift(X → y) = σ(X∪{y})

σ(X)·σ(y) . A lift equals to
1 implies that the probability of occurrence of the antecedent and that of the
consequent are independent of each other. A lift strictly higher than 1 indicates
the degree to which those two occurrences are dependent on one another, and
makes the rule potentially useful for predicting the popularity.

It is finally worth recalling the definition of two particular types of itemsets,
as they will be used in the following section. An itemset X is maximal if none
of its supersets has a support greater or equal than min sup, while it is closed
if all its supersets have a lower support than σ(X). We will not consider normal
frequent itemsets, because maximal and closed itemsets generalize and capture
variegate compositions while maintaining a better/higher level of support.

4 Experiments

4.1 Dataset and Experimental Setting

DockerFinder autonomously collects information on all the images available
in the Docker Hub that are contained in official repositories or in repositories
that have been starred by at least three different users. The datasets collected
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by DockerFinder4 ranges from January 2017 to March 2018 at irregular inter-
vals. If not differently specified in this work we refer to the most recent backup
where 132,724 images are available. Since performing frequent pattern mining
with the aim of understanding the rules leading to successful imagers requires a
notion of popularity, i.e., pulls or stars, from the available images we select 1,067
imagers considering for each repository the “latest” image. We leave as future
work the investigation of the effect of considering other extraction of imagers.
Some examples can be the smallest image, the one with more softwares, or a
medoid or centroid of each repository.

Table 1. Statistics of imagers: median x̃, mean μ and standard deviation σ.

sized sizea layers |S| pulls stars

x̃ 0.16 0.41 10.00 8.00 0.06 26.0

μ 0.27 0.64 12.67 7.82 6.70 134.46

σ 0.48 1.11 9.62 2.26 46.14 564.21

Fig. 1. Semilog distribution of sized, sizea, pulls and stars.

Statistical details of the imagers extracted from the principal dataset ana-
lyzed can be found in Table 1. As anticipated in the previous section, sized,
sizea, p and s follow a long tailed distribution highlighted by the large differ-
ence between the median x̃ and the mean μ in Table 1. The power-law effect is
stronger for pulls and stars (see Fig. 1). There is a robust Pearson correlation
between pulls and stars of 0.76 (p-value 1.5e−165). However, saying that a high
number of pulls implies a high number of stars (or vice versa) could be a tall
statement. For this reason we report experiments for both popularity measures.
There are no other relevant correlations. We highlight that there are 50 differ-
ent os and the most common ones are Debian GNU/Linux 8 (jessie), Ubuntu
14.04.5 LTS and Alpine Linux v3.4. The six most common software distri-
butions among the 28 available (without considering the version) are erl, tar,
bash, perl, wget, curl, and they appear in more than 55% of the imagers. In
order to avoid considering the obvious itemsets always containing such software
distributions, we remove them for the imagers.

Figure 2 highlights the long tail of the aforementioned variables and which
is the portion of data used for the bin containing the highest values (left of the
4 Publicly available at https://goo.gl/ggvKN3.

https://goo.gl/ggvKN3
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Fig. 2. Knee method effect. Numbers in parentheses indicate data used for the bin of
the highest values (left) and all the rest using equal width binning (right).

parentheses) and all the rest using equal width binning (right of the parentheses).
This operation removes the bias before the discretization that can be applied
with natural binning on more than 94% of the variables. On the other hand, the
number of layers and the number of softwares |S| do not suffer of this problem
and thus can be directly discretized (see Fig. 3).

Fig. 3. Distributions of the number of layers (left) and of that of softwares (right).

The imagers to imagerset transformation and the cleaning steps return an
imagerset I

{}
R with an average imagerset size |IR| of 19.05 ± 6.32. We underline

that the high variability of the imagersets is given by the softwares components
S as all the other characteristics are fixed. These imagersets I

{}
R are given in

input to a frequent pattern mining algorithm.
Since we do not focus on particular types of itemsets or rules, a “classic”

pattern mining algorithm is suitable for assessing this task. Even though perfor-
mance is not an issue in this application, among the existing frequent pattern
mining algorithms we selected FP-Growth as from the state-of-the-art it shown
to have the best performances [8]. Thus, it would be the best choice in presence
of larger datasets. Other pattern mining algorithms would have returned very
similar results. We leave the study of the impact of the selected frequent pat-
tern mining algorithm for future works. In particular, we used the FP-Growth
Python implementation of the pyfim library5. As threshold parameters we fixed
min sup = 0.05 and min conf = 0.1. We exploited such low values because we
are interested not only in unveiling the most common patterns and rules, but
especially those leading to the highest target values in terms of pulls and stars.

5 http://www.borgelt.net/pyfim.html.

http://www.borgelt.net/pyfim.html
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4.2 Pattern Mining Analysis

We hereby report on some of the most interesting results of the frequent pattern
mining analysis performed specifically for itemsets and popularity rules6.

Itemsets. FP-Growth with min sup = 0.05 retrieved 21 maximal itemsets and
45 closed itemsets having at least three components (i.e., |X| ≥ 3).

{0.0037 ≤ sizea < 0.0993, 0.0019 ≤ sized < 0.0419, httpd , ash , unzip} (0.1047)
{ping , git , python} (0.0956)
{pip , git , python} (0.0853)
{ping , unzip , python} (0.0751)
{npm , node , git , python} (0.0728)
{9 ≤ softwares < 10, Debian GNU/Linux 8 (jessie), git , python} (0.0660)
{java , Debian GNU/Linux 8 (jessie), unzip} (0.0648)
{Alpine Linux v3.4, httpd , ash , unzip} (0.0637)
{java , git , unzip , python} (0.0626)
{3 ≤ layers < 5, ash , unzip} (0.0569)

Fig. 4. Maximal itemsets top ten sorted by support.

{httpd , ash , unzip} (0.1695)
{0.0019 ≤ sized < 0.0419, ash , unzip} (0.1286)
{0.0037 ≤ sizea < 0.0993, ash , unzip} (0.1251)
{0.0037 ≤ sizea < 0.0993, 0.0019 ≤ sized < 0.0419, ash , unzip} (0.1229)
{git , unzip , python} (0.1229)
{Debian GNU/Linux 8 (jessie), git , python} (0.1149)
{0.0019 ≤ sized < 0.0419, httpd , ash , unzip} (0.1104)
{0.0037 ≤ sizea < 0.0993, httpd , ash , unzip} (0.1069)
{0.0037 ≤ sizea < 0.0993, 0.0019 <= size < 0.0419 , httpd , ash , unzip} (0.1047)
{9 < 10, git , python} (0.1035)

Fig. 5. Closed itemsets top ten sorted by support.

Figures 4 and 5 report the top ten of the extracted patterns sorted by decreas-
ing support σ (in parentheses, on the right). We underline that in these itemsets
we do not consider pulls and stars as they are accurately analyzed in the popular-
ity rules. We can notice that the closed itemset {httpd, ash, unzip} has a high
support and it is contained in the maximal itemsets. Thus, it is a very typical
and common pattern. Something similar happens for the pair {git, python}.

Some itemsets are also augmented with 9 ≤ |S| < 10, signaling that very
commonly there are nine softwares and among them, besides the very common
six filtered out, there are also git and python. Other common softwares combina-
tions can be read in Fig. 4. By looking at sizes, we find 0.0037 ≤ sizea < 0.0993,
0.0019 ≤ sized < 0.0419. This highlights that many Docker images are “light
images” with an average compression ratio of 0.4. Finally, we underline that the
maximal itemsets are more related to the software composition, while the closed

6 The python code and the list of all the itemsets and popularity rules extracted can
be found at https://github.com/di-unipi-socc/DockerImageMiner.

https://github.com/di-unipi-socc/DockerImageMiner
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itemsets to the Docker images size. Furthermore, java, one of the most common
programming language and tool is present only in two of reported and most
supported itemsets. The reason could be that a key feature of Docker images is
lightness that is generally not a prerogative of java.

Popularity Rules. Using FP-Growth with min sup = 0.05 and min conf = 0.1
and considering only rules having the antecedent part containing at least three
components (i.e., |X| ≥ 3), we extracted 9, 325 popularity rules where the target
is the number of pulls y ∈ P, and 12, 900 where the target is the number of stars
y ∈ S. In the following we analyze these rules with respect to the indicators
previously presented (confidence and lift) and also by focusing only the rules
predicting the highest values of popularity in terms of both pulls and stars.
Confidence and lift are reported in the parentheses following this order.

{0.00 ≤ p < 0.07} ← {8 ≤ |S| < 9, ping , unzip , python} (1.00, 1.94)
{0.00 ≤ p < 0.07} ← {10 ≤ |S| < 11, pip , git , unzip , python} (1.00, 1.94)
{0.00 ≤ p < 0.07} ← {Ubuntu 16.04.2 LTS , git , python} (1.00, 1.94)
{0.00 ≤ p < 0.07} ← {sized > 0.6419, java , git , unzip} (0.94, 1.83)
{0.00 p < 0.07} {sized > 0.6419, java , git , unzip , python} (0.93, 1.82)

Fig. 6. Pulls popularity rules top five sorted by confidence (first value in parentheses).

{13 ≤ s < 19} ← {0.2019 ≤ sized < 0.2419, ping , unzip} (0.77, 2.39)
{13 ≤ s < 19} ← {0.5774 ≤ sizea < 0.6730, 10 ≤ layers < 12} (0.72, 2.23)
{13 ≤ s < 19} ← {0.0819 ≤ sized < 0.1219, 5 ≤ |S| < 6, python} (0.71 , 2.19)
{13 ≤ s < 19} ← {10 ≤ |S| < 11, sized > 0.6419, unzip} (0.70, 2.15)
{13 s < 19} {0.9599 sizea < 1.0555, ping} (0.70, 2.15)

Fig. 7. Stars popularity rules top five sorted by confidence (first value in parentheses).

Figures 6 and 7 illustrate the five most interesting rules among the ten pop-
ularity rules with the highest confidence sorted by decreasing confidence7. We
recall that pulls are expressed in millions. The first thing we notice is that these
rules with high confidence predict low popularity levels. Thus, the most com-
mon Docker image building patterns among Docker images developers perhaps
do not lead to good results in terms of popularity. This confirms the idea that
many users design Docker images for private usage and they are not interested
in obtaining a public recognition. A second interesting aspect is that the pull
popularity rules have a higher confidence than the stars popularity rules and
in general (not only looking at these top fives), stars popularity rules involves
the image sizes (sizea, sized). Hence, pulls popularity rules are more common
than stars popularity rules and they are generated by different patterns of image
development. This observation is confirmed by the data because the intersection
of the imagersets covered by the stars popularity rules which are covered also by
the pull popularity rules is only 0.09. Moreover, since stars are given as a direct
endorsement it means that image size is a very relevant aspect for Docker users.
7 We discarded very similar rules in order to have a broader overview.
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Even though confidence highlights common rules, it does not provide an
indication of how much these rules are reliable. Indeed, all the rules reported in
Figs. 6 and 7 have a high confidence but a low positive lift. This indicates that
the imagerset composition suggested by the itemset X is not very predictive of
the outcome y. To overcome this limitation we analyze in Figs. 8 and 9 the five
most interesting rules among the ten popularity rules with the highest confidence
sorted by decreasing lift. This time we can observe rules with a markedly high
lift and a low confidence. By analyzing the target we notice that these rules
predict high values (not the maximum value) of both pulls and stars. Hence, the
rules, and consequently the patterns, which are predictors of a certain degree of
success, cover less imagerset but are strongly more stable than those covering
many imagerset with low popularity. The content of the itemsets of the reported
rules, both for pulls and stars, is mainly related to the software composition and
it is very common among the two sets of rules. The indication of these rules,
which are markedly different from the previous ones, is that assembling a Docker
image with these characteristics, i.e., Ubuntu 14.04.5 LTS, nginx, ping, unzip,
python, ruby and an actual size of about 500MB may provide a good level of
success in the community of Docker users.

{8.47 ≤ p < 8.55} ← {nginx , ping , unzip , python} (0.11, 97.66)
{8.47 ≤ p < 8.55} ← {Ubuntu 14.04.5 LTS , ping , git , unzip , python} (0.11, 97.66)
{8.47 ≤ p < 8.55} ← {0.5774 ≤ sizea < 0.6730, ping , git} (0.11, 97.66)
{8.47 ≤ p < 8.55} ← {ruby , ping , git , unzip , python} (0.11, 97.66)
{1.69 p < 1.77} {0.3862 sizea < 0.4818, 5 layers < 7} (0.11, 97.66)

Fig. 8. Pulls popularity rules top five sorted by lift (second value in parentheses).

{256 ≤ s < 263} ← {nginx , ping , unzip , python} (0.11, 97.66)
{256 ≤ s < 263} ← {Ubuntu 14.04.5 LTS , ping , git , unzip , python} (0.11, 97.66)
{256 ≤ s < 263} ← {0.5774 ≤ sizea < 0.6730, ping , git} (0.11 , 97.66)
{256 ≤ s < 263} ← {ruby , ping , unzip , python} (0.11, 97.66)
{256 ≤ s < 263} ← {ruby , ping , unzip} (0.11 , 97.66)

Fig. 9. Stars popularity rules top five sorted by lift (second value in parentheses).

Up to this point we filtered the popularity rules with respect to confidence
and lift, letting emerge the most common patterns. We now wish to understand
which are the itemsets leading to the highest values of pulls and stars. We report
in Figs. 10 and 11 the five rules with the highest lift returning the highest values
of pulls and stars, i.e., p > 16.72 and s > 283 respectively. Note that these
values are those retrieved by the knee method in the imageset to imagerset
transformation. First of all, we highlight that for the first time we have a high
presence of the number of layers and the number of softwares of component
of the itemsets. Therefore, these elements are becoming particularly interesting
in defining very popular and successful images. Secondly, we notice that these
rules have a confidence a bit higher than the previous set of rules observed, but
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also a lift coefficient markedly lower. Thus, the predictive power of these rules
leading to the maximum success is not as strong as the one of the rules with
the highest lift. This is because the consequence of such a success is not entirely
related to the image composition but rather depends on other external and not
observed factors. Something we can observe for the data we have is the fact that
an imagerset is generated from an image of an official or not official repository.
Examples of official images are alpine, ubuntu, mongo, postgres, openjdk, etc.

We underline that respecting the reported popularity rules does not auto-
matically imply a certain degree of popularity. In other words, it is not sufficient
to assemble a Docker image as described by the rules extracted to ensure suc-
cessful images, as there are some external factors that can undoubtedly affect
the popularity, e.g., whether a repository is official or not, or whether it uses
novel, upgraded software distributions.

{p > 16.72} ← {3 ≤ |S| < 4, 0.12 ≤ sized < 0.16} (0.4444 , 9.3016)
{p > 16.72} ← {0.1949 ≤ sizea < 0.2906, 0.0819 ≤ sized < 0.1219, ash , unzip} (0.33, 6.97)
{p > 16.72} ← {3 ≤ |S| < 4, 3 ≤ layers < 5} (0.33, 6.97)
{p > 16.72} ← {Debian GNU/Linux 9 (stretch), java , unzip} (0.33, 6.97)
{p > 16.72} {0.2906 sizea < 0.3862, 0.1219 sized < 0.1619, 7 layers < 10} (0.25, 5.23)

Fig. 10. Pulls popularity rules predicting the highest value of pulls.

{s > 283} ← {Debian GNU/Linux 9 (stretch), java , unzip} (0.44, 8.31)
{s > 283} ← {0.1949 ≤ sizea < 0.2906, 3 ≤ layers < 5} (0.33, 6.23)
{s > 283} ← {0.2419 ≤ sized < 0.2819, 8 ≤ |S| < 9, git , python} (0.33, 6.23)
{s > 283} ← {3 ≤ |S| < 4, 0.1219 ≤ sized < 0.1619} (0.33, 6.23)
{s > 283} ← {Alpine Linux v3.7, 0.0037 ≤ sizea < 0.0993, 0.0019 ≤ sized < 0.0419,

ash , unzip} (0.27, 5.10)

Fig. 11. Stars popularity rules predicting the highest value of stars.

In order to quantitatively assess this point we perform an experiment using
a null random model. We randomly select 1000 times 10 rules among all those
extracted, both for pulls and stars. Then we calculate the average coverage of
the selected rules among all the imagerset and among the imagerset referring
only to official repositories. Finally, we compare these numbers with the average
coverage of the ten rules with the highest lift returning the highest values of pulls
and stars. Results are reported in Table 2. Both for pulls and stars a random
selection of rules has a coverage considerably lower than the selection of the rules
leading to maximum popularity values for official repositories. On the other hand,
this phenomenon is not registered when all the repositories are considered. In
conclusion, we can state that official repositories follow the rules reported in
Figs. 10 and 11 not by chance and that in general they are less followed than
a random selection of rules. Hence, despite the low values of confidence and
rules, the rules reported in Figs. 10 and 11 are part of the reasons why official
repositories are more successful besides hidden and unobserved factors.
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Table 2. Comparison of average coverage (± standard deviation) between random
selection of rules and rule predicting the maximum popularity values for all the repos-
itories and for official repositories for pulls and stars.

Pulls Stars

All repositories Officials All repositories Officials

Random 0.18 ± 0.45 0.14 ± 0.38 0.17 ± 0.44 0.14 ± 0.37

Max popularity 0.11 ± 0.39 0.59 ± 0.79 0.12 ± 0.44 0.83 ± 1.15

5 Related Work

The estimation and analysis of popularity of Docker images resembles the anal-
ysis of success performed in various other domains.

A well-known domain is related to quantifying the changes in impact and
productivity throughout a research career in science. [26] defines a model for the
citation dynamics of scientific papers. The results uncover the basic mechanisms
that govern scientific impact, and they also offer reliable measures of influence
that may have potential policy implications. [20] points out that, besides depen-
dent variables, also contextual information (e.g., prestige of institutions, super-
visors, teaching and mentoring activities) should be considered. The latter holds
also in our context, where we can observe that official images behave differently
with respect to non-official images. Sinatra et al. [22] recently designed a stochas-
tic model that assigns an individual parameter to each scientist that accurately
predicts the evolution of her impact, from her h-index to cumulative citations,
and independent recognitions (e.g., prizes). The above mentioned approaches
analyze the success phenomena by assuming the existence of a mathematical
formulation that try to fit on the data. In our proposal, we are not looking for
just an indicator but for an explainable complex model that not only permits
analyzing a population, but also to reveal suggestions for improvements.

Another domain of research where the analysis of success is relevant is sport.
In [3] the level of competitive balance of the roles within the four major North
American professional sport leagues is investigated. The evidence in [3] suggests
that the significance of star power is uncovered only by multiplicative models
(rather than by the commonly employed linear ones). As shown by our experi-
ments, this holds also in our context, where we explain with multi typical items
the co-occurrences and interdependencies that lead to a certain level of popular-
ity or endorsement. In [5], Franck et al. provide further evidence on contextual
factors, by showing that the emergence of superstars in German soccer depends
not only on their investments in physical talent, but also on the cultivation of
their popularity. An analysis of impact of technical features on performances of
soccer teams is provided in [17]. The authors find that draws are difficult to pre-
dict, but they obtain good results in simulating (and consequently quantifying)
the overall championships. Instead, the authors of [18] try to understand which
are the features driving human evaluation with respect to performance in soccer.
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Another field of research where the study of success and popularity is quite
useful is that one of online social networks, like Facebook, Instagram, Twitter,
Youtube, etc. The authors of [14] propose a method to predict the popularity of
new hashtags on Twitter using standard classification models trained on content
features extracted from the hashtag and on context features extracted from the
social graph. The difference with our approach is that we try to extract pat-
terns to explain the reasons of a certain degree of popularity. For understanding
the ingredients of success of fashion models, the authors of [19] train machine
learning methods on Instagram images to predict new popular models. Instead,
in [25] a regression method to estimate the popularity of an online video (from
YouTube or Facebook) measured in terms of its number of views is presented.
Results show that, despite the visual content can be useful for popularity pre-
diction before content publication, the social context represents a much stronger
signal for predicting the popularity of a video.

Closer to our context, some forms of analytics have been recently applied to
GitHub repositories. The authors of [27] study GitHub software version evolution
by developers’ activities. They define four metrics to measure commit activity
and code evolution and then they adopt visualization techniques to analyze the
commit logs. The authors of [28] instead study popularity of GitHub developers
on a sociological basis. The study is based on follow-networks built according to
the follow behavior among developers in GitHub, which allows to the authors
of [28] to identify and present a set of typical patterns determining a growth
of developers’ popularity in social coding networks. The contextual dimension
given by the social network is considered in [28] find an explosive growth of the
users in GitHub and construct follow-networks according to the follow behaviors
among developers in GitHub. Using this network delineates four typical social
behavior patterns. Further domains where the analysis and prediction of success
is a challenging task are music [6,7,21], movies [13] and school performances [9].
However, to the best of our knowledge, our approach is the first that is based
on complex descriptions such as those of Docker images, and which tries to
understand the reasons of popularity and endorsement.

6 Conclusion

In this paper we have proposed a methodology based on frequent pattern mining
to retrieve the hidden patterns leading to the popularity of Docker images. In
particular, we developed an approach to use common frequent pattern mining
algorithms (such as FP-Growth), which discretizes continuous variables by tak-
ing into account their distributions. The main findings highlight that most of
the images follow rules which are very common but that do not lead the Docker
image to a relevant level of popularity. On the other hand, we have found some
rules satisfied only by a small portion of the images, which are however very
stable and predictive of a consistent level of popularity in terms of pulls and
stars. Finally, we have observed that the most successful rules are followed only
by so-called official Docker images.



112 R. Guidotti et al.

As future work, besides testing the proposed frequent pattern mining analyt-
ical framework on other domains, we would like to strengthen the experimental
section by means of a real validation which involve the usage of the rules we
observed in this paper. The idea is to release on DockerHub a set of images fol-
lowing the aforementioned rules, and to observe the level of popularity they will
be obtaining in a real case study, and how long it takes to reach the estimated val-
ues. Time is indeed another crucial component that was not considered because
the current version of DockerFinder is not updating the status of a reposi-
tory at constant time intervals. Another extension of this study involves to also
consider the temporal dimension and the evolution of the patterns. Moreover,
while in this paper we propose a reasonable analysis of Docker images using basic
existing approaches, as future work we would like to consider advanced multi-
instance learning techniques [29]. These methods allow to overtake the problem
of having multiple Docker images for a single repository as they takes as input a
set of labeled bags, each containing many instances. Finally, a natural extension
of this work is to build a predictor/regressor either from scratch or on top of the
popularity rules extracted and observe to which extent is possible to infer the
popularity of a Docker image.
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Abstract. Mobility data are of fundamental importance for under-
standing the patterns of human movements, developing analytical ser-
vices and modeling human dynamics. Unfortunately, mobility data also
contain individual sensitive information, making it necessary an accu-
rate privacy risk assessment for the individuals involved. In this paper,
we propose a methodology for assessing privacy risk in human mobility
data. Given a set of individual and collective mobility features, we define
the minimum data format necessary for the computation of each feature
and we define a set of possible attacks on these data formats. We per-
form experiments computing the empirical risk in a real-world mobility
dataset, and show how the distributions of the considered mobility fea-
tures are affected by the removal of individuals with different levels of
privacy risk.

1 Introduction

In the last years, human mobility analysis has attracted a growing interest due
to its importance in a wide range of applications, from urban management and
public health [13], to the discovery of quantitative patterns [12] and the predic-
tion of human future whereabouts [8]. The worrying side of this story is that
human mobility data are sensitive, because they may allow the re-identification
of individuals and lead to severe privacy issues if analyzed with malicious intent
[18]. In order to prevent these problems, researchers have developed methodolo-
gies, frameworks and algorithms to reduce the individual privacy risk associated
to the analysis of human mobility data [1]. Tools like the one presented in [15] try
to balance both the individuals’ privacy protection and the effectiveness of the
analytical results.1 Starting from [15], we study the empirical trade-off between
individual privacy risk and data quality w.r.t. a set of state-of-the-art individual
and collective mobility measures. We first introduce a set of mobility data struc-
tures, each with a different level of detail on an individual’s mobility history, and
then present a set of re-identification attacks based on these structures. In a sce-
nario where a data owner wants to share human mobility data with an external
1 In compliance with the new EU General Data Protection Regulation.
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entity (e.g., a data analyst), it can simulate the re-identification attacks to assess
the privacy risk of every individual in the dataset. Having this information, the
data owner can simply delete the individuals beyond a certain threshold of pri-
vacy risk or select the most suitable privacy-preserving technique (e.g., based on
k-anonymity, differential privacy) to mitigate individual privacy risk. We use a
real-world human mobility dataset to compute the distribution of privacy risk
for every re-identification attack. We then compare the distributions of the con-
sidered mobility features computed on the original data and on data obtained
removing high risk individuals. We show how these distributions vary much less
when computed on more aggregated structures.

2 Individual Mobility Features

The approach we present in this paper is tailored for human mobility data, i.e.,
data describing the movements of a set of individuals during a period of obser-
vation. The mobility dynamics of an individual can be described by a set of
measures widely used in literature. Some measures describe specific aspects of
an individual’s mobility; other measures describe an individual’s mobility in rela-
tion to collective mobility. The Maximum Distance is defined as the length of the
longest trip of an individual during the period of observation [24]. The Sum Of
Distances is the sum of all the trip lengths traveled by the individual during the
period of observation [24]. The Radius of Gyration is the characteristic distance
traveled by an individual during the period of observation, formally defined in
[12]; this measure represents one of the major components useful for describ-
ing human mobility. The Mobility Entropy is a measure of the predictability of
an individual’s trajectory; formally, it is defined as the Shannon entropy of an
individual’s movements [7]. We can also define some measures related to loca-
tions instead of individuals, like the Location Entropy, i.e., the predictability of
who visits the location. We also use Location Density, a measure of how many
individuals have that location as their most visited location, and the Flow of
a location defined as the number of trips that have that location as origin or
destination.

3 Data Definitions

Human mobility data is generally collected in an automatic way through elec-
tronic devices (e.g., mobile phones, GPS devices) in form of raw trajectory data.
A raw trajectory of an individual is a sequence of records identifying the move-
ments of that individual during the period of observation [26]. Every record
has the following fields: the identifier of the individual, a geographic location
expressed in coordinates (generally latitude and longitude), a timestamp indi-
cating when the individual stopped in or went through that location. Depending
on the specific application, a raw trajectory can be aggregated into different
mobility data structures introduced in the following.
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Definition 1 (Trajectory). The trajectory Tu of an individual u is a tem-
porally ordered sequence of tuples Tu = 〈(l1, t1), (l2, t2), . . . , (ln, tn)〉, where
li = (xi, yi) is a location, xi and yi are the coordinates of the geographic location,
and ti is the corresponding timestamp, ti < tj if i < j.

Definition 2 Frequency vector). The frequency vector Wu of an individual
u is a sequence of tuples Wu = 〈(l1, w1), (l2, w2), . . . , (ln, wn)〉 where li = (xi, yi)
is a location, wi is the frequency of the location, i.e., how many times location
li appears in the individual’s trajectory Tu, and wi > wj if i < j. A frequency
vector Wu is hence an aggregation of a trajectory Tu.

Definition 3 (Probability vector). The probability vector Pu of an individual
u is a sequence of tuples Pu = 〈(l1, p1), (l2, p2), . . . , (ln, pn)〉, where li = (xi, yi)
is a location, pi is the probability that location li appears in Wu, i.e., pi =

wi∑
li∈Wu

wi
, and pi > pj if i < j. A probability vector Pu is hence an aggregation

of a frequency vector Wu.

In the following, with the terms visit we refer indifferently to a tuple in a
trajectory or in a frequency or probability vector. In other words, a visit indi-
cates a pair consisting of a location and a supplementary information, e.g., the
timestamp or the frequency. We denote with D a mobility dataset, i.e., a set of a
one of the above data types (trajectory, frequency or probability vectors). Each
data structure allows the computation of some of the mobility features presented
in Sect. 2: with the trajectory, the most detailed of the three structures, we can
compute all the mobility features presented. With the vector structures we can
compute only Radius of Gyration, User Entropy, Location Entropy and Location
Density. Lowering the detail of the structure we can compute less features but
we expose less information about the individuals represented.

4 Privacy Risk Assessment Model

Several methodologies have been proposed in literature for privacy risk assess-
ment. In this paper we start from the framework proposed in [15], which allows
for the assessment of the privacy risk inherent to human mobility data. At the
core of this framework, there is the identification of the minimum data struc-
ture, the definition of a set of possible attacks that a malicious adversary might
conduct in order to re-identify her target and the simulation of the attacks. The
privacy risk of an individual is related to her probability of re-identification in
a mobility dataset w.r.t. a set of re-identification attacks. A re-identification
attack assumes that an adversary gains access to a mobility dataset, then, on
the basis of some background knowledge about an individual, i.e., the knowledge
of a subset of her mobility data, the adversary tries to re-identify all the records
in the dataset regarding the individual under attack. In this paper we use the
definition of privacy risk (or re-identification risk) introduced in [19].

There can be many background knowledge categories, every category may
have several background knowledge configurations, every configurations has
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many instances. A background knowledge category is a kind of information
known by the adversary about a specific set of dimensions of an individual’s
mobility data. Typical dimensions in mobility data are space, time, frequency of
visiting a location and probability of visiting a location. Examples of background
knowledge categories are a subset of the locations visited by an individual and
specific times an individual visited those locations. The number k of the ele-
ments of a category known by the adversary is called background knowledge
configuration: an example is the knowledge by the adversary of k = 3 locations
of an individual. Finally, an instance of background knowledge is the specific
knowledge of the adversary, such as a visit in a specific location. We formalize
these concepts as follows.

Definition 4 Background knowledge configuration. Given a background
knowledge category B, we denote with Bk ∈ B = {B1, B2, . . . , Bn} a specific
background knowledge configuration, where k represents the number of elements
in B known by the adversary. We define an element b ∈ Bk as an instance of
background knowledge configuration.

Let D be a database, D a mobility dataset extracted from D (e.g., a data
structure as defined in Sect. 3), and Du the set of records representing individual
u in D, we define the probability of re-identification as follows.

Definition 5 Probability of re-identification. The probability of re-identi-
fication PRD(d = u|b) of an individual u in a mobility dataset D is the probability
to associate a record d ∈ D to an individual u, given an instance of background
knowledge configuration b ∈ Bk.

Note that PRD(d=u|b) = 0 if the individual u is not represented in D.
Since each instance b ∈ Bk has its own probability of re-identification, we define
the risk of re-identification of an individual as the maximum probability of re-
identification over the set of instances of a background knowledge configuration.

Definition 6 Risk of re-identification or Privacy risk. The risk of re-
identification (or privacy risk) of an individual u given a background knowledge
configuration Bk is her maximum probability of re-identification Risk(u,D) =
max PRD(d=u|b) for b ∈ Bk. The risk of re-identification has the lower bound
|Du|
|D| (a random choice in D), and Risk(u,D) = 0 if u /∈ D.

4.1 Privacy Attacks on Mobility Data

In this section we describe the attacks we use in this paper.

Location. In a Location attack the adversary knows a certain number of loca-
tions visited by the individual but she does not know the temporal order of the
visits.This is similar to considering the locations as items of transactions [22]
with the difference that a transaction is a set of items and not a multiset (an
individual might visit the same location multiple times). Given an individual s,
we denote by L(Ts) the multiset of locations li ∈ Ts visited by s. The background
knowledge category of a Location attack is defined as follows.
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Definition 7 Location background knowledge. Let k be the number of
locations li of an individual s known by the adversary. The Location back-
ground knowledge is a set of configurations based on k locations, defined as
Bk = L(Ts)[k]. Here L(Ts)[k] denotes the set of all the possible k-combinations
of the elements in set L(Ts).

Given b ∈ Bk, we can give the definition for the set of users matching
the Location background knowledge, and consequently, the probability of re-
identification.

Definition 8 Location attack. Let b ∈ Bk be the adversary Location back-
ground knowledge. We define by R = {u ∈ U |b ⊆ L(Tu)} the candidate set of
users whose trajectory contains the instance b. The probability of re-identification
of the user u is 1

|R| .

Location Sequence. In a Location Sequence attack [9] the adversary knows a
subset of the locations and the temporal ordering of the visits. Given an indi-
vidual s, we denote by L(Ts) the sequence of locations li ∈ Ts visited by s. The
background knowledge category of a Location Sequence attack is the following.

Definition 9 Location Sequence background knowledge. Let k be the
number of locations li of a individual s known by the adversary. The Location
Sequence background knowledge is a set of configurations based on k locations,
defined as Bk = L(Ts)[k], where L(Ts)[k] denotes the set of all the possible k-
subsequences of the elements in set L(Ts).

The set of users matching this background knowledge is defined in the following
where we denote by a � b that a is a subsequence of b.

Definition 10 Location Sequence attack. Let b ∈ Bk be the Location
Sequence background knowledge. We define by R = {u ∈ U |b � L(Tu)} the can-
didate set of users whose trajectory contains the combination b. The probability
of re-identification of the user u is 1

|R| .

Visit. In a Visit attack [25] an adversary knows a subset of the locations visited
by the individual and the time the individual visited these locations.

Definition 11 Visit background knowledge. Let k be the number of visits
v of a individual s known by the adversary. The Visit background knowledge is a
set of configurations based on k visits, defined as Bk = T

[k]
s where T

[k]
s denotes

the set of all the possible k-subsequences of the elements in trajectory Ts.

We recall that in the case of trajectories we denote by visit v ∈ T the pair
(li, ti) composed by the location li and its timestamp ti. Formally, the set of all
trajectories supporting b from both a spatial and a temporal point of view is:

Definition 12 Visit attack. Let b ∈ Bk be the Visit background knowledge.
We define by R = {u ∈ U | ∀ (li, ti) ∈ b, ∃ (lui , tui ) ∈ Tu . li = lui ∧ ti ≤ tui }
the candidate set of users whose trajectories contain b. The probability of re-
identification of the user u is 1

|R| .
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Frequent Location, Frequent Location Sequence. We also introduce two
attacks based on the knowledge of the location applied to vectors. The Frequent
Location attack is similar to the Location attack but here a location can appear
only once, so it follows the same principle of [22]. In the Frequent Location
Sequence attack the adversary knows a subset of the locations visited by an
individual and the relative ordering w.r.t. the frequencies (from most frequent
to least frequent). This attack is similar to the Location Sequence attack, with
two differences: a location can appear only once and locations are ordered by
descending frequency. We omit the definitions of the background knowledge and
attacks because they are similar to the ones defined on trajectories.

Frequency. We introduce an attack where an adversary knows the locations vis-
ited by the individual, their reciprocal ordering of frequency, and the minimum
number of visits of the individual in the locations. This means that, when search-
ing for specific subsequences, the adversary must consider also subsequences con-
taining the known locations with a greater frequency. We recall that in the case
of frequency vectors we denote by visit v ∈ W the pair (li, wi) composed by the
frequent location li and its frequency wi. The background knowledge category
of a Frequency attack is defined as follows.

Definition 13 Frequency background knowledge. Let k be the number of
visits v of the frequency vector of individual s known by the adversary. The
Frequency background knowledge is a set of configurations based on k visits,
defined as Bk = W

[k]
s where W

[k]
s denotes the set of all possible k-combinations

of frequency vector Ws.

The set of users matching a single b ∈ Bk is defined as follows.

Definition 14 Frequency attack. Let b ∈ Bk be the Frequency background
knowledge. We define by R = {u ∈ U | ∀ (li, wi) ∈ b, ∃ (lui , wu

i ) ∈ Wu . li =
lui ∧ wi ≤ wu

i } the candidate set of users whose frequency vectors contain the
instance b. The probability of re-identification of the user u is 1

|R| .

Home & Work. In the Home & Work attack [27], the adversary knows the
two most frequent locations of an individual and their frequencies. This is the
only attack where the background knowledge configuration is just a single 2-
combination. Mechanically, this attack is identical to the Frequency attack.

Probability. In a Probability attack an adversary knows the locations visited
by an individual and the probability for that individual to visit each location.
This attack is similar to the one introduced by [28], but we cannot rely on
matching algorithms on bipartite graph because the length of the probability
vectors is not the same among the individuals and is greater than the length of
the background knowledge configuration instances. We recall that in the case of
probability vectors we denote by visit v ∈ P the pair (li, pi) composed by the
frequent location li and its probability pi. The background knowledge category
for this attack is defined as follows.
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Definition 15 Probability background knowledge. Let k be the number of
visits v of the probability vector of individual s known by the adversary. The
Probability background knowledge is a set of configurations based on k visits,
defined as Bk = P

[k]
s where P

[k]
s denotes the set of all possible k-combinations of

probability vector Ps.

Again, the set of users matching a single b ∈ Bk can be defined as follows.

Definition 16 Probability attack. Let b ∈ Bk be the Probability background
knowledge. We define by R = {u ∈ U | ∀ (li, pi) ∈ b, ∃ (lui , pui ) ∈ Pu . li =
lui ∧ pi ∈ [pui − δ, pui + δ]} the candidate set of users who in their frequency
vectors contain the instance b tolerating for the probability match a tolerance δ.
The probability of re-identification of the user u is 1

|R| .

Proportion. We introduce an attack assuming that an adversary knows a subset
of locations and the relative proportion between the number of visits to these
locations, i.e., between the frequency of the most frequent known location and
the frequency of the other known locations. Given a set of visits X ⊂ W we
denote by l1 the most frequent location of X and with w1 its frequency. We
also denote by pri the proportion between wi and w1 for each vi �= v1 ∈ X,
and denote by LR a set of frequent locations li with their respective pri. The
background knowledge category for this attack is defined as follows.

Definition 17 Proportion background knowledge. Let k be the number of
locations li of an individual s known by the adversary. The Proportion back-
ground knowledge is a set of configurations based on k locations, defined as
Bk = LR

[k]
s where LR

[k]
s denotes the set of all possible k-combinations of the

frequent locations li with associated pri.

The set of users matching a single b ∈ Bk is defined as follows.

Definition 18 Proportion attack. Let b ∈ Bk be the Proportion background
knowledge. We define by R = {u ∈ U | ∀ (li, pri) ∈ b, ∃ (lui , prui ) ∈ LRu . li =
lui ∧ pri ∈ [prui − δ, prui + δ]} the candidate set of users who in their frequency
vectors compatible with b. Note that δ is a tolerance factor for the matching of
proportions. The probability of re-identification of the user u is 1

|R| .

Note that each attack is associated with a specific data structure: Location, Loca-
tion Sequence and Visit require the trajectory data structure; Frequent Location,
Frequent Location Sequence and Frequency require the frequency vector; Home
& Work, Proportion and Probability require the probability vector.

5 Experiments

For all the attacks defined except the Home & Work attack we consider four sets
of background knowledge configuration Bk with k = 2, 3, 4, 5, while for the Home
& Work attack we have just one possible background knowledge configuration,
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where the adversary knows the two most frequent locations of an individual.
Note that for the Visit attack we considered only the day as time frame for
the granularity of the attack. We use a dataset provided by Octo Telematics2

storing the GPS tracks of 9,715 private vehicles traveling in Florence from 1st
May to 31st May 2011, corresponding to 179,318 trajectories. We assign each
origin and destination point of trajectories to the corresponding census cells [12]
provided by the Italian National Statistics Bureau. This allows us to describe
the mobility of every vehicle in terms of a trajectory as defined in Sect. 3. We
performed a simulation of the attacks computing the privacy risk values for all
individuals in the dataset and for all Bk.3 We then show the distribution of the
mobility features presented in Sect. 2 at varying levels of risk: we compare the
distribution of the features computed on the original dataset, i.e., the dataset
with the complete set of trajectories, with the distributions obtained using only
trajectories belonging to individuals below certain thresholds of privacy risk.

5.1 Privacy Risk Simulations

We simulated attacks using k = 2, 3, 4, 5: the cumulative distribution functions
for the trajectory attacks are depicted in Fig. 1, where we can see that the privacy
risk increase not only with increasing the amount of knowledge (from Fig. 1(a) to
(c)), but also with increasing k. This is more evident for the Location attack and
the Location Sequence attack (Fig. 1(a) and (b) respectively). It is interesting to
note that the greater gap is present, especially for the Location attack, varying
k from 2 to 3, i.e., the greatest increasing of risk of re-identification occurs when
the quantity of information known is lower. This implies that adding the same
absolute amount of information, i.e., one single location, has less influence if the
attacker already has a quite big knowledge. For the Visit attack (Fig. 1(c)), since
here the background knowledge is already enough detailed, we can see that the
increasing of k does not change so much the levels of privacy risk. The number
of individuals with maximum risk of re-identification, i.e., equals to 1, ranges
from 60% for the Location attack to more that 80% for the Visit attack, while
we do have an increase in the number of individuals with risk of re-identification
of 50% (or less) across the board.

Observing Fig. 2, regarding attacks on vectors, the levels of risk decrease
slightly from the attacks on trajectories. Moreover, it is clear how the the cumu-
lative distribution function of the risk of re-identification is quite stable varying
k or changing the category of knowledge. This can probably be due to the fact
that, with vectors, we are dealing with distinct locations for each individual,
thus, since many individuals have few distinct locations, the risk remains very
similar when increasing k. With Home & Work attack (2(f)) we have signifi-
cantly lower risk. Indeed, we can observe much lower levels of risk in general,
even if 50% of users still have maximum risk of re-identification.

2 https://www.octotelematics.com/.
3 The Python code for attacks simulation is available here: https://github.com/

pellungrobe/privacy-mobility-lib.

https://www.octotelematics.com/
https://github.com/pellungrobe/privacy-mobility-lib
https://github.com/pellungrobe/privacy-mobility-lib
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(a) Location (b) Location sequence (c) Visit (day)

Fig. 1. Cumulative distributions for trajectory attacks.

(a) Frequent Location (b) Freq. Loc. Sequence (c) Frequency (δ = 0.5)

(d) Probability (δ = 0.1) (e) Proportion (δ = 0.1) (f) Home&work

Fig. 2. Cumulative distributions for frequency vector attacks.

5.2 Correlations Between Measures and Privacy Risk

In this section we want to show the correlation between the mobility measures
introduced in Sect. 2 and the levels of risk calculated for each attack. The Pear-
son Correlation Coefficient is a measure of the linear dependence between two
variables, in this case a mobility measure and the risk assessed for each attack.
It ranges from −1 to +1 where −1 indicates total negative linear correlation,
0 indicates no linear correlation and +1 indicates total positive linear correla-
tion. Since in Sect. 5.1 we saw that, varying k, privacy risk does not change too
severely, we show the correlation only for a middle value, i.e. k = 3. We used
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Table 1. Correlation of measures and privacy risk

RadiusGyration UserEntropy MaxDistance SumDistances

Location 0.408326 0.654331 0.503459 0.352364

Location sequence 0.333477 0.668218 0.463041 0.367661

Visit (day) 0.219840 0.493934 0.320390 0.256473

Frequent location 0.359895 0.749976 0.501241 0.426581

Freq.Loc. sequence 0.352399 0.746065 0.490765 0.414132

Frequency 0.340739 0.733594 0.482271 0.410859

Probability 0.352399 0.746065 0.490765 0.414132

Proportion 0.359895 0.749976 0.501241 0.426581

only the features related to individuals and not the ones related to locations,
because the privacy risk level is computed for each individual and does not have
an association with locations. We show the results of correlation study in Table 1.
Analyzing the attacks on trajectories, there is really no strong correlation. An
interesting fact, which is compliant with the results showed in Sect. 5.1, is that
the correlation tends to decrease as the levels of risk increase, thus, for the Visit
attack, we observe a drop in the correlation coefficient. Another interesting result
is that, especially for the attacks related to frequency and probability vectors
the correlation between User Entropy and risk of re-identification is higher while
no other strong correlation can be found among the various measures. So overall
it seems that high levels of entropy correlate to high levels of risk.

5.3 Measure Distributions by Risk Levels

In this section we present an analysis on the distributions of mobility measures
on the datasets used in the experiment, w.r.t. the changing levels of risk. We
compare the distributions of the various measures and see how they vary with
the levels of risk. We removed from the dataset individuals above a certain
level of risk and then recomputed the measures. Thus, we obtained a set of
distributions for each measure, one for each level of risk and attack. However,
due to space limitations, we present the results only for two of them: the Visit
and Frequency attacks. These are the two most representative of the differences
between the attacks performed on different data structures, since they are two
of the most powerful. For both attacks we show how each measure behaves with
different levels of risk, comparing their distributions. For both datasets and for
all possible attacks we selected four thresholds of risk. Then, we systematically
eliminated from the original dataset users with a risk beyond the thresholds,
obtaining four different derived datasets: the original dataset D1 and D0.5, D0.33,
D0.25 obtained removing individuals with risk greater than 0.5, 0.33 and 0.25
respectively. Regarding the background knowledge configuration, we selected the
risk calculated with k = 2. This for several reasons: it is a reasonable number of
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locations that an attacker might know, it is the level of risk that shows the most
appreciable changes from one threshold of risk to the other in terms of users
excluded/included, and it is also the k value that yields the lower levels of risk.
In the following, we show the probability density functions (pdf) of the mobility
features for the different datasets.

(a) Radius of gyration (b) User Entropy

(c) Max Distance (d) Sum of Distances

Fig. 3. Pdf of user related measures changing levels of risk (Visit attack (day))

For the Visit attack with day precision for the time frame, Fig. 3 reports
results on users related measures. We observe some interesting results: User
Entropy (Fig. 3(b)) becomes 1 for almost all remaining users in D0.5, D0.33 and
D0.25. Observing the Radius of gyration (Fig. 3(a)) we note that the shape of
the distribution remains fairly similar but we find more individuals with high
Radius of gyration proportionally to the total number of remaining individuals.
For the Sum of Distances (Fig. 3(d)), we tend to lose the individuals who traveled
the longest distances total. For Max Distance (Fig. 3(c)) the distribution remain
substantially similar. Figure 4 shows that the distributions of location related
measures for both datasets suffer heavy modifications. For Location Entropy
(Fig. 4-left) we observe a loss of the middle values: we have a significantly higher
probability of locations with very low entropy (<0.2) and a slight peak of loca-
tions with very high entropy, with no relevant values in between. This is also
more evident the more we cut the data, i.e. for D0.25. For Location Density and
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Flow (Fig. 4-center and 4-right) we observe a loss of the higher values but the
overall shape of the distributions remains similar.

Fig. 4. Pdf of location related measures changing levels of risk (Visit attack (day))

Changing data structure from trajectory to frequency vector, we already
observed in Sect. 5.1 generally lower levels of risk, thus we can maintain more
individuals in the dataset cutting at the same thresholds. For this reason, we
expect more similar distributions w.r.t. the original dataset. However, since we
lose the information about the specific movements given by the trajectory struc-
ture, we cannot compute all the measures introduced in Sect. 2. The measures
that we cannot compute are: Max Distance, Sum of Distances and Flow. For the
frequency attack we show the results for individuals and locations related mea-
sures in Figs. 5 and 6 respectively. While User Entropy distribution (Fig. 5-right)
still exhibits some changes w.r.t. the original distribution at changing levels of
risk, we observe less dramatic differences in comparison to the distributions pre-
sented in Fig. 4-center regarding the Visit attack. For Location Entropy distri-
bution (Fig. 6-left) we still observe a peak of locations with very low entropy but
the overall shape of the distributions is closer to the original one, maintaining
similar peaks around higher values. Location Density (Fig. 6-right) and Radius
of gyration (Fig. 5-left) distributions appear to remain almost identical for all
thresholds of risk (D0.5, D0.33 and D0.25). Summarizing, the distributions pre-
sented above give an empirical demonstration to the intuition that less detailed
data structures, exposing less data about an individual, lead to generally lower
levels of re-identification risk. Thus, for the considered features, choosing the
minimum required data structure is fundamental to improve the quality of the
distributions of the mobility features we want to study when computing them
from sanitized datasets.

6 Related Work

To overcome privacy leaks, many techniques have been proposed in literature. A
widely used privacy-preserving model is k-anonymity [19], which requires that an
individual should not be identifiable from a group of size smaller than k based



126 R. Pellungrini et al.

Fig. 5. Pdf of user related measures changing levels of risk (Frequency attack)

Fig. 6. Pdf of location related measures changing levels of risk (Frequency attack)

on their quasi-identifiers (QIDs), i.e., a set of attributes that can be used to
uniquely identify individuals. Assuming that adversaries own disjoint parts of a
trajectory, [22] reduces privacy risk by relying on the suppression of the danger-
ous observations from each individual’s trajectory. In [25], authors propose the
attack-graphs method to defend against attacks, based on k-anonymity. Other
works are based on the differential privacy model [6]. [10] and [14] considers the
problem of privacy on aggregations of movement data. [4] proposes to publish a
contingency table of trajectory data, where each cell contains the number of indi-
viduals commuting from a source to a destination. One of the most important
work about privacy risk assessment is the Linddun methodology [5], a privacy-
aware framework, useful for modeling privacy threats in software-based systems.
In the last years, different techniques for risk management have been proposed,
such as NIST’s Special Publication 800-30 [21] and SEI’s OCTAVE [2]. Unfortu-
nately, many of these works simply include privacy considerations when assess-
ing the impact of threats. In [23], authors elaborate an entropy-based method
to evaluate the disclosure risk of personal data, trying to manage quantitatively
privacy risks. [11] studies the effect of co-location information on location pri-
vacy, considering an adversary such as a social network operator accessing to such
information. The unicity measure proposed in [20] evaluates the privacy risk as
the number of records which are uniquely identified. [3] proposes a risk-aware
framework for information disclosure in tabular data supporting runtime risk
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assessment, using adaptive anonymization as risk-mitigation method. Lastly, in
[15] authors introduced a privacy risk assessment framework specific for mobility
data. Although this framework suffers from a high computational complexity, it
is effective in many mobility scenarios. Other papers addressing the problem of
measuring privacy risk in mobility data are [16,17].

7 Conclusion

Human mobility data contain highly sensitive information that might lead to
serious violations of individual privacy. In this paper we explored a repertoire
of re-identification attacks that can be conducted on mobility data, analyzing
the empirical privacy risk of thousands of individuals in a real-world mobility
dataset. The considered attacks were designed for three common mobility data
formats: trajectories, frequency vectors and probability vectors. Through exper-
imentation on the real-world dataset, we observed on average high level of risk
across the different types of re-identification attack. We then characterize how
the distributions of state-of-the-art human mobility measures changes as indi-
viduals with high level of risk are deleted from the dataset, finding two main
results: (1) higher privacy risk is related to a higher distortion of the distribu-
tions of mobility measures; (2) selecting the minimum required data structure
can lead to significant improvements in the overall levels of privacy risk, while
guaranteeing distributions of mobility features closer to the distributions derived
from the original data. We observe that the methodology experimented in this
paper may be applied, without changing the attacks definitions to any dataset
of mobility and sequence data; clearly, in this last case instead of locations we
would have events. As future work, we plan to investigate how distributions of
mobility features can be further improved using privacy transformations more
sophisticated than the simple suppression of individuals with high privacy risk.

Acknowledgment. Funded by the European project SoBigData (Grant Agreement
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Abstract. Denial of service attacks are especially pertinent to the inter-
net of things as devices have less computing power, memory and security
mechanisms to defend against them. The task of mitigating these attacks
must therefore be redirected from the device onto a network monitor.
Network intrusion detection systems can be used as an effective and
efficient technique in internet of things systems to offload computation
from the devices and detect denial of service attacks before they can
cause harm. However the solution of implementing a network intrusion
detection system for internet of things networks is not without challenges
due to the variability of these systems and specifically the difficulty in
collecting data. We propose a model-hybrid approach to model the scale
of the internet of things system and effectively train network intrusion
detection systems. Through bespoke datasets generated by the model,
the IDS is able to predict a wide spectrum of real-world attacks, and as
demonstrated by an experiment construct more predictive datasets at a
fraction of the time of other more standard techniques.

1 Introduction

A Denial of Service (DoS) attack targets the availability of a device or net-
work [16], with the intent of disrupting system usability. The most common
method is referred to as Flooding DoS [16], and may be used as an attempt
to deplete the devices’ resources including memory, bandwidth and/or battery.
A DoS attack against an Internet of Things (IoT) network has the potential
to be significantly more detrimental than one against a standard network, this
increased vulnerability is due in part to the low computational power and battery
power characteristic of IoT devices [22].

The extant literature has delineated several potential approaches that may
be effective in the mitigation of a DoS attack [23]. They widely speaking fall into
two categories, host based (e.g. Client Puzzles) which puts the computational
effort on the device and network based (e.g. firewall) which offloads the com-
putational effort to a remote server or more powerful device within the system.
However many of these approaches may not scale well in the IoT as computa-
tional power, heterogeneity and the large scale of these systems are all limiting
c© Springer Nature Switzerland AG 2018
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factors that deplete the available choices. One approach that sidesteps many of
these standard detriments is a Intrusion Detection System (IDS) bespoke to the
IoT system to protect. An IDS is a monitor placed on the network that analyses
incoming messages to detect attacks and/or unwanted traffic. They are trained
using system behaviour data and use these patterns to make the detection.

Organizations and researchers alike have widely recognised the advantages
of adapting IDSs as the norm to monitor against DoS attacks on their sys-
tems [17]. Standard approaches used to train IDSs include using a database
of known attacks (misuse detection) and testing systems to create a “bench-
mark” behaviour and flag any anomaly as a potential attack (anomaly detec-
tion) [15]. Implementing an IDS within an IoT network however faces multiple
challenges: Firstly, it is usually challenging to establish a benchmark behaviour
in dynamic IoT systems as devices may constantly shift, new devices might join
and behaviours might change [10], which might prevent using anomaly detection;
Secondly, protocols can vary from one network to another, which necessitates
data collection to be bespoke to an individual system [11]; And thirdly, a misuse
detection can be time consuming to enforce, since collecting data unique to a
system and for each attack is time consuming [15] and some system changes can
require data (or part of the data) to be collected from scratch (e.g. interactive
smart homes where devices can change frequently).

To address the second and third challenges, we present a novel modelling
approach. In brief, our model is a Markov Decision Process (MDP), representing
the IoT network, the attackers, and some processes monitoring the security met-
rics under consideration. A trace of the model (corresponding to a sequence of
actions of the MDP) should match a trace of the actual system, and vice versa,
such that it becomes possible to train a IDS for the actual system on the traces of
the model. The main strengths of our approach is the ability to easily represent
various configurations for the IoT network as well as multiple types of attack-
ers. MDPs have some key advantages: they have substantial tool support such
as PRISM Model Checker [13], they rely on probabilities and non-determinism
to recreate systems and they provide the ability to find the optimum paths
through the system using the reward function. Through the reward function we
create traces of behaviour that mimic attacks on systems by assigning rewards
to successful (damaging) behaviour. Our results highlighted that through this
methodology we were able to consistently produce datasets that resulted in accu-
rate IDSs (detecting attacks on real world systems) and that could be trained
in a fraction of the time. The core contributions of this paper are (1) A model
of an IoT system that enables the generation of synthetic data sets of network
behaviour (2) Modelling of attack behaviour against a system to train a real
world IDS (3) A quantitative analysis and validation of this model against a real
world implementation of the same system to validate our methodology.

The paper is split into the following sections; In Sect. 2 we discuss the related
work; In Sect. 3 the problem overview is discussed; In Sect. 4 we introduce our
IoT system model and attacks model that generates the network behaviour;
In Sect. 5 we highlight our assessment methodology; In Sect. 6 we discuss the
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setup for the experiment; Sect. 7 provides an analysis of our results and Sect. 8
concludes and discusses future work.

2 Related Work

2.1 DoS Attacks on IoT Systems

DoS attacks have long been one of the most common and dangerous threats
in any internet system. These attacks become even more dangerous as the IoT
spreads across a vast amount of spectra and parts of life including safety critical
and potentially life endangering ones such as IoT Healthcare and Intelligent
Transportation Systems.

The extant literature highlights several new DoS attacks against IoT system
taking advantage of unique qualities and IoT infrastructures [8,14,19]. One such
attack, battery drain attack focuses on exhausting the devices battery power as
replacing it might be costly, difficult and lead to extensive periods of downtime.
These kinds of attack are very subtle as the behaviour of the attacker might not
necessarily mimic more common attacks such as pure flooding, they attempt
to find battery intensive operations (not necessarily malicious) and repeat them
until the device is out of power. This is only one specific example of the literature
cited above, however, what all of the above have in common is that they are
specialised in their intent of disrupting IoT devices and many of the current
detection systems do not account for them [19]. The literature highlights that
there is a constant evolution of attacks, as can be seen using resources such as
ExploitDB [21]. When filtering for IoT attacks we can observe that there is a
huge increase in the spectrum of attacks targeting these systems.

These upwards trends in combination with the expansion of the IoT across
various field makes a good argument for a simple way to observe the impact of
these attacks. A formalised model would allow for intuitive means to observe
and quantify these attacks as well as better defend these systems by generating
network behaviour bespoke to them.

2.2 Intrusion Detection Systems

The growing use of internet services in the past few years have facilitated an
increase in DoS attacks. Despite the best preventative measures, DoS attacks
have been successfully carried out against various companies and organizations
enforcing the need for better prevention/detection mechanisms. This is partially
due to the vast new avenues of attack (often unique to IoT) that signature
based schemes such as SNORT [18] struggle to detect. Further work attempts a
more scalable approach that models behaviour of a network (stationary or non-
stationary) and labels abnormal packets as a potential anomaly [6]. Limitations
of this approach are a large number of false positives as well as lack of informa-
tion regarding the attack (e.g. the specific vulnerability the attack relies on) as
opposed to a signature based IDS that is able to tell you exactly what rule is
broken.
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The approach suggested in this paper allows for a mixture of these approaches
tackling the limitations of both works. By modelling behaviour of a system, one
can detect any anomaly similar to the second approach and by modelling various
attacks it can also provide accurate data of the system behaviour whilst being
targeted, allowing for less false positives. To predict “unknown” attacks, the
modelling approach uses a stochastic attacker that attempts different behaviours
allowed by the system policy. Using this data it can create a wide range of attack
signatures and simulate an attacker probing the system.

2.3 Modelling IoT Systems

Several papers address modelling IoT, adopting various different approaches.
Fruth [9] examines various properties of a wireless network protocol namely con-
nectivity and energy power through PRISM, including quantifying the battery
drainage of certain randomized protocols. In previous work [4] we model basic
flooding DoS attacks through PRISM and look at the effectiveness of different
attack strains and mitigation techniques in defending systems of interconnected
IoT devices.

Our proposed method combines these approaches to recreate an accurate
representation of system behaviour and represent a wide range of DoS attacks.
PRISM has been widely used as a excellent method to evaluate and verify models
of IoT systems and protocols, combining these two models by adapting both the
system models and the attack models we successfully model the behaviour and
general properties of a bespoke IoT system. We then use the inbuilt verification
capabilities to ensure correctness relative to mimicking system behaviour by
establishing benchmarks and tests. PRISM and its inbuilt simulation capabilities
allows to simulate attacks against the verified model.

3 Formulation of Problem

An IDS is in essence an evaluator that can establish whether a set of network
packets entering the system is malicious or not, by using what it has “learned”
from previous data. In order to successfully train an IDS for a bespoke system,
a security professional needs to therefore collect large quantities of data. The
problem with this is that to gather this data there are several options each with
several drawbacks [15]: (1) make use of known attack datasets to train the IDS
(2) make use of existing IDS (e.g. Snort - Lightweight Intrusion Detection for
Networks [18]) or (3) make use of an exploit database and simulate attacks on
your own system as a pen testing approach. This latter approach is by far the
most precise [7,15] as it allows to search for bespoke attacks to the IoT network
and construct a dataset which is unique and effective for the specific system.

Whilst this approach produces the best suiting dataset it has some major
drawbacks. Firstly, one must find and implement the attacks, which is a difficult
process that might take a very long time [15]. Secondly, one would need to
cause major disruptions to one’s own network by running the attacks which
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might obstruct work and productivity. One of the many difficulties in detecting
attacks on systems through the use of IDS is that one cannot (easily) predict
potential attacker behaviour, or rather it is very difficult to classify an attack if
its behavior differs from known attacks.

We formulate the problem as the following: Firstly, is it possible to overcome
some of these difficulties and train an IDS for a specific IoT system making use
of a model? The model would need to be able to produce similar results of the
third approach, but would have the advantage that it could run parallel to the
real system without causing downtime (Fig. 1). Secondly, by making use of non-
determinism and probabilistic behavior could the modelling approach recreate
behavior that mimics that of an attacker probing and finding weaknesses in the
system?

Fig. 1. Running model along-side real system to generate further datasets

4 IoT System Model

The intent of the modelled system is in essence to produce traces of behavior
that correspond to the behaviour of real devices. A trace of a model under attack
should be a subset of the full (finite) model trace. The traces are however limited
by the drain of battery either by standard behavior or by attacker behavior, as
devices out of battery stop performing actions. This means that going from a set
of traces one can reconstruct a data file of what has taken place in the system.
The traces can be used by the IDS to observe patterns of behavior and set out
rules to use against real-world attackers.

We model the system as a synchronization of three core components: a set of
devices, a set of monitors (each assigned to a device) and an attacker. The other
aspect was measuring the impact of the actions on the system, specifically their
effect on the devices battery and ability to operate successfully. Whilst several
process calculi are available to represent traces of processes we customize the
trace semantics of standard process calculus, as there are several further features
we need to capture in order to be able to produce descriptive datasets. Several
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process calculi achieve the notion of communication however this achieves the
effect of two processes performing an action simultaneously, we wish to capture
the effect of a device sending an action and the other device receiving it. Looking
at common process algebras such as CSP by Hoare [12], the semantics of the
traces are a set of action of the processes. These kinds of traces allow for a human
reader to understand the way the system operates. However an IDS can draw
very little information from these traces and they fail to capture the concept of
messages through the network. Specifically we need to be able to capture the
intercommunication between devices at each transition within the trace (as per a
log in a real system). This meant that output needed to hold further information
rather than just the action taking place, the rules and the way the system was
constructed was built around making a descriptive dataset.

The system as a whole is a tuple Φ = (D,M, T ) where D = {D1, ..,Dn} is a
set of devices, M = {M1, ...,Mn} is a set of monitors calculating properties of
their corresponding device and T = {ti, ..., tn} is a set of times to calculate the
changes over time of the system as a consequence of actions being triggered. We
also introduce means to model an attacker as a malicious device.

4.1 Device Model

Given a global set of actions γ, a device D is a pair (A,P ), where A ⊆ γ × [0, 1]
is the set of active actions, where (a, p) ∈ A means the process chooses action a
with probability p, and such that

∑{p | (a, p) ∈ A} = 1; and P ⊆ γ is the set of
passive actions.

In order to recreate the full spectrum of potential system behaviours we model
the set of actions of the device as the full capabilities of the real world device.
This allows to capture the full set of abilities of its behavior and increases the
accuracy of the benchmarking. This also eases the addition of further devices as
they are simply modelled with the full send and receive action spectrum without
the need to alter the rest of the system. The behavior of a device is in the form
of a guarded communication, which in our model means that the communication
is reliant on a set of conditions being true in order to be triggered. An action
a in the device can only be triggered to begin a communication if it doesn’t
violate the capabilities of the system, such as remaining battery and time per
message. This allows for realistic device behaviour, mimicking the patterns and
constrictions of a real system.

4.2 Monitor Model

A monitor is the part of the system that enables its correct functioning as well as
monitoring dangerous behavior. It calculates the shifts in battery of the various
actions and synchronises with the devices to ensure correctness. A monitor M
controls value λ, where λ is the remaining battery of the device. Given a global
set of battery drains Ω the λ is measured as a quantity that is linearly drained
by a ωa where ωa ∈ Ω is a constant battery drain of an action, the monitor will
update its λ value to λ′ after each corresponding device action. The drain of
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each action is a fixed value calculated from the real world device, as such each
action is associated to a single device only.

Rule 1. Given two devices D1 = (A1, P1) and D2 = (A2, P2), a communication
initiated by device D1 on an active action a, triggering corresponding receive
action ā in D2, with an associated probability p takes the form:

(a, p) ∈ A1 ā ∈ P2 p > 0

(A1, P1)||(A2, P2)
(a,p)−−−→ (A1, P1)||(A2, P2)

Rule 2. Given monitors M1 and M2 holding battery values λ1 and λ2, devices
D1 and D2 are controlled by their respective monitors. The monitors calculate
the drain in battery caused by action a and ā from constant drain values ωa and
ωā in the form:

D1||D2
(a,p)−−−→ D1||D2 λ1 > ωa λ2 > ωā

λ1 � D1||λ2 � D2
(a,p)−−−→ (λ1 − ωa) � D1||(λ2 − ωā) � D2

These measurements can further aid the IDS in making informed decisions
regarding the impact of the various actions in the system and were used to quan-
tify the effectiveness of the attacker. Through this synthetic data the IDS will
get a wide range of attacker behaviour that will lead to system failure, including
potentially unknown attacker behaviour. Doing a similar approach without the
model would require attacking one’s own system and implementing an attack to
collect data as per a penetration test (these approaches were compared in the
experiments in Sect. 5).

4.3 Traces of the System

We differentiate each transition as a network packet running through the system,
checked by the monitor of the device. Therefore they must be unique and fit all
the possible behaviours of the device. As each action belongs to a single device
it enables the corresponding devices to be uniquely identified.

Rule 3. Given two devices controlled by their monitors in the form: M1 � D1

as CD1 and M2 � D2 as CD2, and taking the total set of devices X, then the
transition between CD1, CD2, taking system time t and being performed with
probability p takes the form:

CD1||CD2
(a,p)−−−→ CD′

1||CD′
2

(t, CD1||CD2||X)
(a,p,t)−−−−→ (t + (ta + tā), CD′

1||CD′
2||X)

In the computational view we compose a trace of the system inductively as
a set of transitions in between states, where prefix is the prior transitions and
the diagram describes a single transition in the form:
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prefix
︷︸︸︷
{}

state
︷︸︸︷•

transition
︷ ︸︸ ︷
[a, p, t′]

state’
︷︸︸︷•

↓ � ↓
M1 D1 T1

...
...

...
Mn Dn Tn

∃ Di � bi > ωa

∧ ∃ Dj � bj > ωā

∧ (a,p) ∈ Di ∧ ā ∈ Dj

M ′
1 T ′

1

...
...

M ′
n T ′

n

∀ k if k∈{Di,Dj}
λ′
k−= (ωa+ωā)

∧ t′ += (ta + tā)

if k 	∈{Di,Dj} M ′
k=Mk

The output of the system is a set of transitions following the semantics
described. By generating the outputs of the system as the full behavior spec-
trum, the model can describe everything that can take place in the system. By
updating the probabilities we can cater to the specifics of the underlying system
behavior and make use of this to find unusual or potentially malicious behavior.
The rules can expand to include a wide array of behaviours and specifics to regu-
late devices actions and when they can be activated. These can include complex
policies on whether actions can be activated at a specific time or whether some
actions have higher priority allowing for very specific behaviour to be modelled.

Running Example: We show an example composed of: devices Dx,Dy and
Dz, corresponding monitors Mx,My and Mz, and global time t. Each device has
different actions that are synchronized with some other devices. The monitors
have battery values for the devices and each device has a set Ωi ∈ Ω of action
drains. Transitions follow the described rules to construct the traces. Note that
they do not represent the full possible set of traces but rather two simulations
of the system until devices are drained.

Table 1. Example system model and its outputs

Devices: Dx = (Ax, Px) where

Ax = {(readxy, 0.3), (writexy, 0.5), (readxz, 0.2)} and Px = {readzx}
Dy = (Ay, Py) where

Ay = {(writeyz, 0.8), (readyz, 0.2)} and Py = {readxy, writexy, readzy}
Dz = (Az, Pz) where

Az = {(readzx, 0.1), (readzy, 0.9)} and Pz = {readxz, writeyz, readyz}
Monitors Mx � λx = 5 and Drainsx � ΩAx = (1, 3, 1) ∧ ΩPx = (1)

& drains: My � λy = 8 and Drainsy � ΩAy = (2, 4) ∧ ΩPy = (1, 2, 1)

Mz � λz = 2 and Drainsz � ΩAz = (1, 1) ∧ ΩPz = (1, 2, 1)

Trace 1: [writeyz, .8, 30] [writexy, .5, 50] [readxy, .3, 65]

Trace 2: [readxz, .2, 8] [readxz, .2, 16] [readxy, .3, 31] [readxy, .3, 46] [readxy, .3, 61]

4.4 Attacker Model

An attacker synchronizes with a subset of actions of the device. When an attacker
synchronizes on the device the monitor will synchronize on that action and calcu-
late the respective drainage. The monitor keeps track of all these measurements
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for its respective device. Implementing the model in a tool like PRISM allows
us to make use of Probabilistic Computation Tree Logic (PCTL) [5] to calculate
various conditions of pertinence to the system, to compute the optimal attack
path, and to simulate traces of the model.

An attacker’s intent is to behave in a manner that shortens the traces of
the system by draining the value of battery in the monitor in the most efficient
way possible. To model the attacker we made use of non-deterministic behavior
in order to allow for anything to take place at any point. The advantage of
non-determinism is that it allows for a system to arrive to an outcome using
various routes. This can be manipulated to find optimal routes through the
system and simulate varied behaviour. Unlike devices that are restricted by
time and batteries of the devices they model, we allow for the attacker to have
different levels of power to simulate various attacker strengths. An attacker, like
the devices, has a set of unique actions AA a, however unlike other devices does
not have a set of passive actions as it sits outside the connectivity of devices
and cannot receive messages. An Attacker may synchronise with any device in
the system, and the set of actions aAi

∈ AA each correspond to different types
of attacks in the real system. To expand further on the actions of the attacker,
these should be very flexible and we make allowance for any action that can take
place in the system (only restricted by the setup and protocols).

Each action label will correspond to an attack message from the real attacker
and can be converted for the log file. For our specific example, each action in
the attacker corresponds to the attacker in our experiment sending different
packets/targeting different parts of the system as per the attacker experiment in
Sect. 5. Beyond actions it is important for us to be able to monitor the behaviour
of attackers looking at how many actions an attacking device can perform at a
time T (whether by assuming a real attacker device or by simulating differ-
ent powers of attack). This is highlighted by measurements of the system we
implemented that were then modelled in the monitor of each device. The other
information to keep track of is: the choices the attacker makes to take down
the devices, as these are important behavioural patterns for the IDS to use
and can give us insight on potential vulnerabilities as well as unknown attacker
behaviours.

Unlike with the devices (whose intention is to cover the full spectrum of
possible behaviours with the attacker), we are particularly interested in tar-
geted behaviour. The attack actions therefore encompasses behaviours which
are particularly damaging to the system (e.g. causes large drain of battery to
the devices). As opposed to probabilistic behaviour we use non-determinism to
find paths of behaviour that are particularly rewarding in terms of time taken
to take down the system and in terms on lowering system usability (e.g. mes-
sage throughput). To model non-determinism we remove the probabilities from
the attacker action. This differs from probabilistic behavior because the non-
deterministic choice between process A and Dx is resolved at the moment the
first action takes place. Conversely in the case of a probabilistic choice is done
before the actions takes place [3], so if there is a conflict in the system where
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both probabilistic actions and non-deterministic actions exist the probabilistic
action is resolved first. By not associating a probability to an action we allow
for the strategy of the attacker device to vary depending on what we are looking
for in the system. Given a policy regulating the behaviour (corresponding to the
available attack types) we allow for any action to take place at any point. This
can be combined with a set of rules to find the trace of behaviour that allows to
follow all the rules and yet still drain the battery as quickly as possible within
these restrictions. Instead of a probability each action has an associated reward,
and one can use this to find the path of most reward (or the best strategy to
take down the system).

The non-determinism in combination with the reward structure time is used
to find the optimum attacker strategy, or the most rewarding trace through
the system. In PCTL it is written as R{“time”}min =?[ F power = 0 ] or the
minimum time for the variable power (referring to battery levels) to reach 0. The
value “time” is a variable calculated by the time for a single message to be sent
by the attacker and cumulated for each message sent before the power reaches
zero calculated in microseconds and the power drain is calculated by the formulas
in Sect. 5. These reward structures allow for simulated attack strategies that an
hypothetical attacker might make to take down the modelled IoT system. Not all
attacks rely on speed and intensity to take down the system, as highlighted by
the running example in Sect. 4.3 where the longer trace (Trace 2) is faster, so we
model different rewards and observe different attacker behaviours. We can find
generate traces of less detectable attack by associating an predictability score
to an action and therefore keeping the behavior varied and realistic whilst still
optimizing time. This can scale to several scenarios. We use these “optimized”
traces to create a large dataset that mimics different kinds of attackers.

5 Experiment Methodology

To evaluate the effectiveness of the models we tested and compared the modelled
system in Sect. 4.1 with the more standard approach described previously. Both
the approaches output was used to train an IDS. The IDSs were then used to
predict attack behavior. The verification was on the following basis: (1) Accuracy
on unknown attack detection; (2) Ability to mimic devices behavior and smart
attackers. The setup of the experiment was the following:

Experiment - Device Setup: We set up a small IoT network in the lab and
then modelled it to compare the results and to test out the effectiveness of our
model in creating synthetic dataset. For the sake of testing we kept the setup
simple to display the tool as the thing that needs to scale and not the system.
Once the simple model is created it is trivial to add more (similar) devices, whilst
implementing a new system in the real world can be very time consuming. We
implemented a sensor network consisting of two devices. Each device had the
following actions; they took sensor readings and then could send it to the other
device at any time; they could also request the sensor data from the other device
at any point. The devices used simple HTTP protocol for communication, and
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the behaviour was stored in Apache log format. To accurately represent the
devices and to create smart attackers, several measures needed to be obtained.
Both devices were equipped with a Mh3500 battery. We made a basic assumption
that the devices are on constantly. We argue this is a correct assumption as due to
our attack the device is constantly in log mode and therefore never in sleep mode.
Beyond this assumption we calculated time to send a message/log a message,
baseline battery usage, percentage increase in battery usage under different DoS
strains (taken this value and dividing it by messages processed for second) and
battery drain per message.

Experiment - Attacker: To validate the model we implemented a common
DoS attack both in the real world and in the model. Our attack of choice was
HULK, a DoS attacking tool which relies on several obfuscation techniques. In
order to not be spotted whilst still outputting intense strain enough to take down
systems very quickly [2]. The attack specifies it has the following properties: (1)
obfuscation of source client - this is achieved by using a list of known user agents,
and for every request that is constructed, the user agent is a random value out
of the known list, (2) reference forgery - the referrer that points at the request is
obfuscated and points into either the host itself or some major pre-listed websites,
(3) stickiness - using some standard Http command to try and ask the server to
maintain open connections by using Keep-Alive with variable time window and
(4) unique transformation of URL - to eliminate caching and other optimization
tools, they crafted custom parameter names and values and they are randomized
and attached to each request. The tool was able to take down a web server within
minutes from just a single host. Seeing as IoT devices will have less capabilities
than any web server we hypothesized that this would be a good attack to use as
its properties make for a good dataset that is not straightforward to detect. These
properties and obfuscations led to different combinations of message structure
that we used in the non-deterministic attacker.

To measure the time it takes per message we measure how many messages
can be sent within a time period. This helps evaluate the accuracy in respect to
the real world of our test attacker. In order to measure voltage usage across the
different IoT devices, we attached an extra component in between the battery
supply and the device to take the readings required. To measure battery drainage
we utilized IoT battery lifespan estimator tool by Farnell [1]. This was used in
combination with a variance we introduced on top of the calculator, to represent
attack intensity and change to current. Through this we were able to estimate
the different drains of the devices as an outcome of the actions they performed.
We created datasets utilising three approaches and compared each dataset in
two different experiments.

The first dataset (RWD) was constructed from data from the real system.
We implemented the system of devices and the real-world attack and moni-
tored the behavior of the system. The data was logged across a period of twelve
hours and used to train the first IDS. The second approach was a naive app-
roach, we constructed a synthetic dataset (ND) without attacking the system
but rather attempting random behavior. This gave a comparison of the model



Generating Synthetic Data for DoS Attack Detection 141

with a different synthetic dataset this will help evaluate the effectiveness of the
IDS predictions as they effectively should be random guesses. And finally, we
followed our proposed approach (MD) following Sect. 4.

5.1 Experiment 1

As our dataset relies on stochastic events and actions, we created three datasets
from the approach and evaluated each one to benchmark its effectiveness, a
mean score was taken. Whilst our model is able to recreate very large datasets
quickly we choose to keep the dataset size uniform across the initial experiment
to get a fair comparison against the other two datasets. The comparison was
based on accuracy of prediction against unknown attacks given IDSs trained
with each of the datasets. The unknown dataset consisted of real world data of
the systems behavior whilst being targeted by attacks that we had not modelled
nor contained in the RWD. To measure accuracy we made use of the F score.
The F score is a measure of a predictors accuracy, it is a measure of its precision
over recall (a measure which takes in consideration both false positives and false
negatives).

5.2 Experiment 2

The second experiment we ran was to test the effectiveness of the model in
creating large quantities of behavior and the ability to readjust in case of network
reconfiguration. We used deep learning classifiers catered to large datasets and
created a much more efficient IDS purely through synthetic data. One of the
core strengths of our approach is that once the model is setup the datasets are
very easy to generate and we wanted to test whether this, in combination with
our smart attackers, will lead to the ability to train better performing IDS.

6 Experiment Setup

To perform experiments described in Sect. 5 we implement a Python framework
that runs through the various steps required to test the IDSs: data generation,
data processing, standardization and setting up of the IDS’s classifiers. This
automatic framework prepares the datasets and trains the IDSs so that we may
perform Experiment 1 and 2. It is implemented using the scikit-learn machine
learning libraries.

6.1 Data Generation

Achieving a rich descriptive dataset was paramount in training an effective IDS.
Through the outputted model traces we were able to generate a dataset of dif-
ferent transitions through the modelled system. These traces were descriptive
enough for a machine learning algorithms to construct rules about negative
behavior through supervised learning. The traces of the model correspond to
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the real system behavior and each transition was labelled as either normal or
abnormal behavior, therefore they can be used to make informed decisions about
the system. For instance, if the model traces of the attacker continuously target
a device, the IDS can interpret this as a weak point and set a rule to limit this
behavior, as this could correspond to the behavior of a real world attacker.

6.2 Data Processing and Standardization

To allow for data to be interpreted by machine learning algorithms it needs
to go through a process of standardization. This is often due to categorical
non-numeric features or continuous features. The data provided by most if not
all internet protocols is categorical (e.g. agent names and method calls). As
such, in order to evaluate it we first needed to go through an initial phase
of pre-processing. The intent of pre-processing is to render the data machine
readable whilst preserving patterns. The process we adapted was the process of
binarisation. Binarisation allocates a numeric value to each unique feature for
example if dealing with HTTP codes GET would become 0001, POST 0010,
DELETE 0100 and PUT 1000. This allows for the features to maintain their
patterns and their predictive power and be used normally. This initial step was
applied to both the real world dataset and the naive synthetic dataset. This step
was however not required for the model dataset as it already produced numeric
features rather than categorical ones for efficiency.

6.3 Classifiers

The classifiers we implemented represented the IDSs. We choose to use two
separate classifiers to get a better evaluation of the results. Each dataset was
used to train two IDSs and then all the IDSs were tested against a new dataset
of attack to establish their predictive power and the strength of the datasets.

The first classifier we implemented was Multi Layer Perceptron (MLP) Neu-
ral Network. An MLP consists of at least three layers of nodes. Except for the
input nodes, each node is a neuron that uses a non-linear activation function [24].
MLP utilizes a supervised learning technique called back propagation for train-
ing. Its multiple layers and non-linear activation distinguish MLP from a linear
perceptron. A linear perceptron is a function that can decide whether an input,
represented by a vector of numbers, belongs to some specific class or not. Com-
bining several together in an MLP and adjusting the functions and weights you
build a statistically accurate classifier. The result is a non-linear perceptron that
is able to classify non-linear classes.

The second classifier used was a Decision Tree Classifier. A decision tree is
a decision support tool that uses a tree-like graph or model of decisions and
their possible consequences, including chance event outcomes, resource costs,
and utility. It is one way to display an algorithm that only contains conditional
control statements [20]. Decision tree learning uses a decision tree (as a predictive
model) to go from observations about an item (represented in the branches) to
conclusions about the item’s target value (represented in the leaves). The rules
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in the branches are automatically constructed from the training data which is
labelled. Using these rules it will be able to take in the test data and run it until
it reaches an end node corresponding to a class (either DoS attack or normal
behaviour).

7 Results

Following the evaluation criteria in Sect. 5 and recreating the model described in
Sect. 4, we generated and tested three model datasets against our benchmarks of
the naive dataset and the real world dataset. Beyond the accuracy of the results,
we make an argument for feasibility and re usability of our approach. The results
were acquired by initially training two classifiers for each dataset, these were
trained with 20,000 samples of which 10% were attacks. The classifiers were then
evaluated on an unknown and unlabelled real world dataset of 100,000 samples
of which 20% were attacks (of two different unknown types). The classifiers then
attempted to label the new dataset to predict which ones were attacks.

7.1 Experiment 1 - Results

The neural network trained on the real world dataset proved to be very accurate
with a 85.5% prediction accuracy. On the other hand the model dataset trained
predictor whilst still high, suffered from some degree of variance (79.7 ± 6.3%).
What was of most interest however was the predictions outputted by the naive
dataset of 0.9%. This combined with the relatively inconsistent results of the
synthetic dataset (±6.3%) make a case for over fitting. Over fitting is the scenario
in which a model is trained so specifically to the training data that it is no longer
classifying DoS attacks and normal behaviour of the system but rather focusing
solely on the training data and learning on patters unique to the dataset not
the system. This is quite common in Neural Networks as they perform best with
very large quantities of data [24], which for this part of the experiment we did
not have.

The results of the decision tree, contrasting to neural networks do not suf-
fer from the same inadequacy of over fitting and do not necessarily need large
amounts of data. This was mirrored by the results, as the model datasets all per-
formed to very similar standards and the added randomness traces which might
have disrupted the neural network made for a more ample rule set resulting in
near perfect predicting power in the model dataset (98.8 ± 0.6). The real world
data which did not look at the possibility of random behaviour only achieved
77% accuracy and the random dataset had a predictive power of near 50% as
expected.

7.2 Experiment 2 - Results

We observed that our approach of using non-determinism to recreate attack
traces was particularly effective for the rule based classifier however led to
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disruption during the back-propagation process of the neural network, as non-
standardized data can create uneven results. This time using the much larger
dataset of 100,000 transitions, the results were a lot more accurate (97.1%) than
previously, confirming our hypothesis.

As highlighted by this example our model has one key advantage over the tra-
ditional approach. Data generation is fast and efficient. If we wanted to improve
the training of the IDS used on the real world dataset to a similar level of accu-
racy, it would take several days of data collection and consumption of resources
(electricity, system downtime etc.). We argue that whilst the initial effort of
creating a model might be time consuming and perhaps not as intuitive for a
potential system administrator, the phase of dataset generation makes up for
this effort both for speed and predicting power of the IDS.

8 Conclusion and Future Work

Our case study and proposed methodology has shown very promising results. We
have shown that generating synthetic datasets of DoS attacks in IoT networks
through this tool is both effective and efficient. We believe that the ability for this
approach to scale easily to multiple devices and protocols in combination with its
strong predictive power makes a very good argument for its usage across various
IoT networks. Our argument for scalability of this approach is two fold, firstly it
scales well in terms of costs as you can make assessment prior to implementing
the system and secondly, we can bypass several of the downsides of verification (in
terms of state space) as we focus on simulation. Perhaps the most useful feature
of our proposed approach is that it allows for the construction of datasets to be
very efficient even if a device is added or the system is reconfigured. As this is a
prominent concern in dynamic IoT systems this advantage is quite significant.

In this paper we included a case study of a single attack which worked very
well. Our future work envisions the ability to model further attacks from a
database to create an extensive set of attacks to create a much more predictive
dataset. We envision that the ability to relatively easily plug and play any IoT
system in combination with implemented corpus of attacks, could turn into a
tool that generates synthetic datasets of attacks to train bespoke IDSs for any
IoT system.
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Abstract. There is an unquestionable need to improve healthcare pro-
cesses across all levels of care in order to optimise the use of resources
whilst guaranteeing high quality care to patients. However, healthcare
processes are generally very complex and have to be fully understood
before enhancement suggestions can be made. Modelling with widely
used notation such as BPMN (Business Process Modelling and Nota-
tion) can help gain a shared understanding of a process, but is not suf-
ficient to understand the needs and demands of resources. We propose
an approach to enrich BPMN models with structured annotations which
enables us to attach further information to individual elements within the
process model. We then use performance analysis (e.g., throughput and
utilisation) to reason about resources across a model and propose optimi-
sations. We show the usefulness of our approach for an A&E department
of a sizeable hospital in the south of Brazil and how different stakeholders
may profit from a richer annotated BPMN-based model.

Keywords: Process modelling · BPMN
Performance analysis · Optimisation · Healthcare

1 Introduction

Managers direct considerable efforts towards process modelling to understand
complex behaviours in their application domains. Models, by themselves, are
only useful if they enable the extraction of relevant and contextual information
that yields process improvements (e.g. task order rearrangements, enhanced allo-
cations, smart schedules, reduction of resources and so on). If not with optimi-
sation in mind, models are mainly used for documentation, describing abstract
representations of logical sequences of steps that must be executed in predeter-
mined order to reach specific outcomes. The combination of behavioural mod-
elling with performance evaluation (PE) has recently received interest to handle
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complex processes in many application domains. PE uses techniques such as
monitoring, analytical modelling or simulation to study systems and extract
performance indicators (e.g. utilisation or queue length). These techniques help
managers to fully understand processes and analyse performance metrics unveil-
ing bottlenecks and more fitting options for resource allocations. One domain
where findings can be particularly beneficial is the healthcare domain.

It is common practice today to use model notations such as Business Process
Modelling & Notation (BPMN) [18] to gain a better understanding of tasks and
assigned resources (both machinery and personnel) required for different pur-
poses across organisations. Although it is possible to apply performance evalua-
tion techniques on such models, this is often not done due to lack of information
on required resources for different tasks, inaccurate understanding of processes
or simply a lack of knowledge required to understand what is needed as input for
a comprehensive performance assessment. In the healthcare domain, the authors
in [2] discuss the occurrence of failures when dealing with complex processes due
to simple problems related to delivery of care by professionals. This could be
avoided if problems were thoroughly analysed for performance problems using
standardised notations. Resources (of any kind, e.g., supplies, machines, pro-
fessionals and so on) are a key issue for maintaining high quality requirements
to patients and so they must be addressed with utmost importance, not sim-
ply relying on process redesigns/reengineering approaches that permeate huge
organisations with unconvincing results. Lack of flexibility in modelling is also a
huge challenge for healthcare, since every hospital deals with different constraints
and requirements. There must be some degree of adaptability when modelling
and inferring performance [6]. However, simulation is sometimes viewed as an
intricate technique due to the technical skills required when modelling, executing
scenarios, interpreting outputs or making reliable suggestions to other managers
or stakeholders. A further source of concern when integrating healthcare domain
with performance assessment relates to a communication gap between clinical
staff and process analysts [13].

This paper aims to bridge the gap between business process modelling and
performance evaluation through task annotations for resource management. The
idea is to use text annotations objects in BPMN to automatically fill simu-
lation scenarios with interesting input data. BPMN with structured annota-
tions could be potentially applicable for the automatic generation of simulation
models (where analysts could benefit from quantitative evaluation of what-if
scenarios, e.g. those maximising throughput or resources utilisation), or even
analytical models (where analysts could infer state-based behaviours, perfor-
mance bottlenecks or possible deadlocks). We propose an easy-to-use structured
general-purpose notation format for annotating BPMN models with relevant
information for resource planning. In this paper, we apply the notation on a case
study describing a simplified healthcare scenario. The critical situation faced by
healthcare in Brazil justifies our focus on that domain [10], and hence our aim
to improve healthcare processes for hospital management. However, this work
can be applied more broadly to different settings and any kinds of processes and
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simulations. The main goal is a detailed analysis and comparison of resources
through simulation with the goal to be able to identify ways of improving pro-
cesses and reduce resources. In the processes used in hospitals, this can be to
reduce the number of staff required at different units at different times of the
day, on different days of the week or even to accommodate for needs at differ-
ent times of the year. High-level stakeholders or non-performance analysts can
thus benefit from this annotation structure to help guide performance analysts
towards strategic and profitable process configurations. Our case study is based
on real processes followed by a hospital located in the south of Brazil (HSB).
We have obtained the details of HSB’s A&E process through a series of staff
interviews and data from the underlying ERP (Enterprise Resource Planning)
system. Our approach, and the results of the analysis carried out on the scenar-
ios that can be automatically generated from our annotated BPMN models. In
this case, we used it to reflect on how to potentially achieve a saving in staff
resources required to still guarantee tolerable waiting times.

This paper is structured as follows: Sect. 2 describes general details concern-
ing BPMN modelling and expected performance indices. The work is described
in the context of related work in Sect. 3. Section 4 proposes a structured anno-
tation format for domain users to enhance their BPMN models for simulation.
Section 5 shows how the annotations can be used in an example of a process
followed by one department of hospital HSB. We discuss the scenarios generated
automatically from the annotated BPMN model, and the results of their simu-
lation as well as how they can be used for resource planning. Section 6 presents
final considerations and ideas for future work.

2 BPMN and Performance Modelling

Enriching models with text annotations for performance analysis is not new and
there is a myriad of proposed notations and extensions for coping with model
descriptions using Layered Queueing Networks (LQN), Stochastic Petri Nets
(SPN), Coloured Petri Nets (CPN), Performance Evaluation Process Algebra
(PEPA), Well Formed Networks (WFN), Stochastic Automata Networks (SAN)
and so on. Processes, on the other hand, may be modelled using BPMN, Work-
flows, or Unified Modelling Language/Activity Diagrams (UML/AD), among oth-
ers. The focus of our present research lies on adding simple textual attachments
to process elements with performance related data for later analysis (by simu-
lation or other technique), thus offering broader analysis possibilities for stake-
holders. The added annotations of BPMN processes may lead to a variety of
further possible analyses, where a general view is depicted in Fig. 1.

There is a need to bridge process models with performance models, however,
research is lacking on how to perform such integration. The main objective of
this work is to discuss how such integration may occur so analysts could use the
proposed notation in real world settings helping decisions on resource capacity
or other performance metric of interest or Key Performance Indicator (KPI)
according to the contextual domain of application [14,15].
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Fig. 1. Interplay between process models and performance models

Discrete Event Simulation (DES) is a well known performance evaluation
technique with broad use amidst researchers, modellers, analysts, decision mak-
ers and managers in general [12,19,22]. Its scope encompasses different applica-
tion domains and it is based on building a process model according to a system
under study, assign probability distributions to arrivals, tasks durations and
amount of needed resources and than execute the model throughout a replica-
tion length set up by the modeller. The idea is to compute the usual perfor-
mance indexes e.g. throughput, utilisation, queue length, waiting time per task
or resource and vary parameters for each scenario so comparisons may take place.
Simulation is used when available data does not respect restrictions imposed by
analytical modelling, for instance, exponential distributions, being more flexible
to model patterns of behaviours through the process model [19]. We bring the
benefits of this combination into a healthcare domain.

3 The Context and Related Work

Text annotations in business models are not a novel approach to provide more
unstructured detail for analysing processes. BPMN in itself uses modelling prim-
itives to convey process behaviours, acting as an effort to document operations
for different communities (e.g. managers, factory floor workers, company CEOs
and other stakeholders). However, whilst BPMN’s standardised notation allows
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for fast shared understanding among different roles, performance analysis at this
level is hampered by the simplicity of the models that can be captured.

Significant efforts towards the ability to blend performance parameters
into BPMN models were conducted throughout the years, with considerable
advances. For instance [2] has discussed one possible use of richer BPMN mod-
els for healthcare. It is a lightweight approach called PyBPMN (Performability-
enabled BPMN) that extends BPMN for simulation. This work is the closest to
the approach taken in this paper. The textual notation used in [2] to represent
performability (performance and reliability) is, however, rather unconventional.
By contrast, our approach uses a straightforward textual notation, easily under-
stood by managers but rich enough with important parameters for later sim-
ulation analysis. Another distinction is that the authors in [2] aimed a model
execution using an approach known as eBPMN execution (a domain specific
language that retains BPMN’s semantic properties) [7], whereas our work has
the potential to devise multiple simulation scenarios instead of merely process
simulation according to a BPMN model. Thus, our objective is to extend textual
annotations to derive simulation scenarios to enable us to understand the effect
of varying resources and expected delays and be able to do this dynamically. To
the best of our knowledge, this perspective was not discussed in other work.

Other approaches discuss how BPMN could be used to enhance analysis
improving automation and dealing with variability, a problem concerning clini-
cal pathways in hospitals [21] and directives on how to combine modelling and
simulation altogether [5]. The approach described in [21] discusses that Activity
Diagrams (ADs) or BPMN models do not appropriately capture specific clinical
requirements, being insufficient and inefficient when addressing performance. To
address this, the paper offers an annotation-based approach to deal with those
issues, but it presents an unstructured approach with textual data that may or
may not be used for further analysis. Conversely, [5] combines BPMN with Busi-
ness Process Simulation (BPS), a novel approach with considerable limitations.
By contrast, our approach uses BPMN to annotate models that can be used in
verified and validated simulation software tools such as Arena [19], AnyLogic,
ProModel, Simul8, JMT [4], queueing123 GNU/Octave package [17] and so on.

The approach taken by [9] also differs considerable from ours, because it
assumes the creation of an intermediary model that stands between the initial
AD and the load performance model at the back-end. In their approach, users
need to generate another model and fill it with load parameters for stress test-
ing or other quality measures. The model uses a notation similar to extensions
provided by UML.

Finally, work using simulation in a healthcare domain has been discussed
thoroughly by several authors [3,5,11,12,20]. In particular, Mandahawi [16] has
addressed the use of a continuous improvement technique (Six Sigma) and com-
bined it with DES for carrying out waiting time analysis in an A&E department
with interesting discussions.

As a standard notation, BPMN provides means to create so called extensions
with specific sets of descriptions in order to capture elements not anticipated
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in the original notation core. Our approach, however, does not rely on such
extensions because we would like to work with a more structured approach for
detailing specific resource related information. Our idea is to define a simple set
of elements - which we consider simpler than using extensions - suitable for a
broad range of multiple scenario DES analysis and usable by high-level managers
and stakeholders (i.e. domain experts) alike.

4 Structured Text Annotation Proposal for Process
Models

The key BPMN component used here is the annotation, e.g., a textual descrip-
tion allowed by the standard which can be associated to different model elements.
These texts are then processed by external tools and used to create a simulation
model allowing the composition of multi-parameter, i.e., what-if scenarios. Man-
agers could inspect each scenario outcome and adjust resource capacity or other
KPI of interest [15] according to the evaluation needs. Auxiliary tools are used to
process the BPMN model extracting useful data suited for DES, e.g., replication
length and number of replications, time schedules, mean service time for each
resource type, initial simulation conditions (e.g. work in progress), interarrival
times, total/maximum amount of entities performing model tasks and so on.

It is worth mentioning that expert opinions are crucial when modelling pro-
cesses (especially for later simulation prospects), since specific service time dis-
tributions should be employed for approximating real settings and yielding valid
results. The choice of a probability distribution could profoundly impact analy-
sis and completely change suggestions on resource management, schedules and
allocations. For example, using an exponential distribution (one parameter, i.e.,
average observed value) for inter-arrival times is completely different from using
a normal (where parameters are the average and the standard deviation) or a
triangular distribution (e.g., a distribution having a minimum value, a mode
and a maximum value) which are more suitable for situations characterised by
extreme lack of data [19]. This is usually neglected by process modellers, despite
being of vital importance for a sound and reliable analysis. The analyst should
consult domain experts for the provision of useful statistics that dictates appro-
priate probability distributions for tasks and events. These measurements are
present in ERP databases and logs, sometimes needing extra effort for validat-
ing, transforming and extracting relevant information within the vast amounts
of textual data that could be available.

Table 1 lists structured text annotations for use in BPMN by managers or
analysts, where they could adjust parameters and use diverse processing tools
or scripts for generating simulations or analytical models. We stress the fact
that our approach contains the least number of parameters for a comprehensive
simulation study. In this paper, the main elements for attaching structured anno-
tations are pool/swimlanes, start event, tasks (activities) and exclusive gateways
(decisions) according to a standard tag-based BPMN extension proposal. Our
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Table 1. Structured annotations for BPMN elements with examples

(a) Per swimlane SimulationName=<NAME>

SimulationNumberOfReplications=<VALUE>

SimulationReplicationLength=<VALUE>;<UNIT>

SimulationBaseTimeUnit= <UNIT>

<NAME>: string data

<VALUE>: integer value

<UNIT>: seconds|minutes|hours|days

(b) Per start event StartEventEntity=<NAME>

StartEventTimeBtwArrivals=<DTYPE>;<PARAMETERS>;<UNIT>

StartEventEntitiesPerArrivals=<VALUE>

StartEventMaxArrivals=<VALUE>

<NAME>: string data

<DTYPE>: triangular|normal|uniform|constant|other

<PARAMETERS>: depends on distribution

<UNIT>: seconds|minutes|hours|days

<VALUE>: integer value

(c) Per task event TaskType=<TYPE>

TaskDelayType=<DTYPE>;<PARAMETERS>;<UNIT>

TaskResourceData=<NAME>;<QUANTITY>;<CAPACITY>

<TYPE>: delay|resource-based

<DTYPE>: triangular|normal|uniform|constant|other

<PARAMETERS>: depends on distribution

<UNIT>: seconds|minutes|hours|days

<NAME>: string data

<QUANTITY>: integer value

<CAPACITY>: integer value

<VALUE>: integer value

(d) Per decision DecisionData=<TYPE>;<PERCENTAGES>|<CONDITIONS>

<TYPE>: probability|expression (equation)

<PERCENTAGES>: set of comma separated values

<CONDITIONS>: logical expression (equation)

set of annotations were inspired by the input parameters offered by the DES soft-
ware Arena [19]. The choice of this particular tool stems from the fact that it is
widely used by a large community of practitioners, researchers and modellers.

At this point, we are devising the simulation scenarios from the annotated
BPMN model and manually creating a process model in Arena. It is our aim, in
future research, to incorporate the ability of creating models completely auto-
matically. We have implemented a tool written in Java to support the scenario
creation by opening BPMN models (with the annotations mechanism explained
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here) and parsing its standard XML file. This solution helps stakeholders under-
stand which scenarios are possible as well as to visualise and select the best ones
for execution (according to their requirements), using Arena to manually create
the simulation model (though other DES could be used).

Table 1 defines the BPMN elements and the proposal of structured text anno-
tations as follows:

(a) The text annotations on pools (or specific swimlanes) specify global param-
eters related to simulation execution such as the NumberOfReplications
for confidence intervals, the simulation time characterised by Replication
Length and BaseTimeUnit. The later is an annotation to set the time unit
for the calculated results.

(b) The start event element of BPMN models may append text annotations
to specify the entities being analysed by their NAME (e.g., patients, clients,
items). In addition, the simulation execution and the TimeBtwArrivals
needs to be specified by its probability distribution type (i.e., triangular,
exponential, normal, constant, and other for different expressions defini-
tions, etc.) and its parameters (values for mean, standard deviation, mode
and so on, according to type definitions) along with respective time units
for the specified measures.

(c) Tasks are defined by their labels (i.e., NAME) and type (TYPE), whereby the
type can only be delay or resource-based. If a task is resource-based,
information about resources must be given in order to map the basic set of
parameters for collecting performance indices related to queueing statistics
and resource utilisation. A given resource has a label (i.e., an identification
name), the quantity needed to perform the specific task and its capacity for
the whole process execution (i.e., number of available resources with this
label for the process).

(d) Exclusive gateways in the BPMN model representing decisions for taking
specific flows can be more detailed using a structured annotation with its
TYPE (i.e., indicated as probability values or an expression with logical
conditions based on entity attributes, for example). For a probability type,
a list of 1..(N − 1) percentage values are needed for output flows of the
gateway (where N is the total number of output flows from a gateway).

Generic field names such as NAME are reserved for free text input, e.g., strings
explaining some specific necessity or commentary describing some important
task mention or desired behaviour. Fields containing a VALUE are composed
of integers depending on the element they are located (in a swimlane, a start
event or a task). The PARAMETERS found in StartEventTimeBtwArrivals and
TaskDelayType labels indicate the values estimated for the time between arrivals
and the average task duration, respectively, following the chosen probability
distribution given in the field DTYPE.

The proposed format is suitable for models where those explained elements
are present so modellers can use annotations to write proper simulation related
tags for analysis. These annotations may be inserted in a manual fashion, how-
ever, an automatic tool could be effortlessly implemented to help users annotate
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the elements in a model avoiding mistakes or typos within the tags. Such a tool
can save the annotations in the same model format (XML) to be opened and
edited later, without interfering with the model’s original set of elements and
flow. We show how our approach has been used on a case study in the next
section.

5 Case Study: Brazilian Hospital Setting

We apply our proposed annotated BPMN to a sizeable hospital HSB located
at the southern state of Brazil. It is a hospital with approximately 200,000
occurrences per month (statistics from 2015), with 250 beds and 900 employees.
It provides care to both public (under SUS - Brazilian universal public health
system) and private patients. The hospital is located in a city with a population
of around 160,000 with a further 100,000 living in the surroundings. The hospital
is a regional reference for secondary care.

5.1 An A&E Process

The A&E department is viewed by management as the current bottleneck, as
the resources are not evenly distributed, causing several delays and loss of rev-
enue, despite dissatisfaction with the service. We have modelled this department
using BPMN, and used our annotation mechanism to assign parameters to a
future simulation model, where scenarios are to be created to demonstrate to
management where the most critical deficiencies are. In addition, it serves as
a way to identify further actions that should be implemented to improve the
operation, reduce queues and waiting time for patients, as well as reduce costs
and resources (balancing the utilisation among different professionals) to aug-
ment satisfiability with the service and perhaps increase revenue altogether by
reducing unnecessary costs.

Figure 2 contains the initial model for the A&E department. In accordance
with our previously introduced annotations, the pool has some general simu-
lation parameters (shown at the top left-hand corner), the initial event (here
Patient arrivals) has specific annotations related to simulation start rule,
and all other tasks have annotations with resource related data. Non-critical
patients arrive at A&E and go through an admission registering procedure (note
that critical patients bypass this task and go straight to medical care/consulta-
tion). After registration, patients are classified according to their condition (Risk
assessment process), which is performed by a Manchester Triage System trained
nurse (with a given duration pattern according to the annotation). We stress the
fact that the A&E should be used only in critical cases, however, according to
data observations, only 10% are in fact immediate care patients. The hospital
management team recognises and is aware of this problem, but are unable to
address this since they are obliged to provide care to every patient that arrives
at the hospital. After classification patients go to the Medical consultation pro-
cedure, where a Clinical decision is made by the medical doctor to send the
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Fig. 2. Annotated BPMN model derived from HSB data for the A&E process.

patient to a Medication & Therapeutics procedure (with some routing proba-
bility, e.g. 50%) or to Requiring LabTests procedure for a deeper investigation.
Each possible flow from the exclusive gateway has its specific ending, i.e. patient
discharge or patient care.

Figure 2 also shows some desired scenarios envisaged by the analyst, making
it possible to understand the impact of having different numbers of resources
(such as the number of available medical doctors at a given moment in time)
on performance. We have labelled the figure from A to E, and we have mapped
some resource variations for our purposes, such as having one or two resources
for tasks C and D (here Medical Doctors – MDs).

As the annotations show, we are mapping resource durations and scenarios
for a simulation, as well as setting some important parameters that could be used
by another (discrete event) simulation tool. It is important to notice that we are
enriching a BPMN model, i.e., the resource-related data was not present in the
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original model given to us by hospital staff who are only able to describe the
process flow and activities related to patients that come to the A&E. Instead, we
are proposing a format where data is available for a comprehensive simulation
analysis where modellers are annotating tasks with probability distributions of
interest as well as assigning numbers of resources, task durations and so on, so
multiple scenarios can be automatically created with a reasonable amount of
effort. For the creation of more simulation scenarios, we propose that modellers
could use child annotations, e.g., annotations of annotations, as illustrated in
Fig. 3.

Fig. 3. Example of child annotations usage for deriving possible simulation scenarios.

Introducing yet another notation that modellers should be aware of is prob-
lematic and we are aware of this. However, we believe that an auxiliary user
friendly tool could aid modellers specify annotations properly for later process-
ing, as well as making it easier to check the consequences of changes to some
of these annotations. A further advantage is that such a tool can create the
intended set of scenarios for simulation automatically, and the DES tool of choice
can then execute several simulations automatically where performance indices
are calculated for posterior analysis. Going back to the original BPMN model,
making changes to some of the annotations and parameters and rerunning simu-
lations would give users a better understanding of their processes and the effects
of changing resources at different points. Our approach combines strengths of
BPMN and simulation, as it uses a straightforward mechanism to build simu-
lation scenarios using annotations, a simple mechanism already present in the
standard notation.
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5.2 Analysis Results

We have used the annotation artifact as source to devise multiple scenarios
for analysis. We have extracted the full annotations from the BPMN model by
implementing a software written in the programming language Java which used
XML APIs for parsing and working with models. The software identified BPMN
elements such as pools/swimlanes, start and end events, tasks, sequence flow
between tasks and exclusive gateways, and stored the full set of annotations
in internal data structures. Then, the annotations are parsed to compute the
amount of scenarios that would be created, using the textual variations and
other data present in the model. Ideally, the analyst would select just a few
scenarios to be executed from the potential high number of possible combinations
of options that could be yielded by the user choices. Also, automatically created
simulation models could be defined, where specific DES software could run in
batch mode, notifying when the process has finished. At the moment, we are
taking the scenarios generated by our software, selecting the most interesting
ones and then manually creating the simulation models.

According to Fig. 2, the following scenarios are possible to be derived from
the basic structured annotations:

– General simulation parameters (annotations at the pool element)
• Name (SimulationName): A&Esim
• NumberOfReplications: 30
• ReplicationLength: 48 h
• BaseTimeUnit (for reporting): minutes

– Start event element (annotations at the StartEvent element)
• EntityType: Patient
• TimeBtwArrivals: it follows an exponential distribution with parameter

equal to 10 min
• Further parameters are irrelevant for the present analysis

– Task elements include (annotations at Task elements)
• Admission registering (A), Risk assessment (B), Medical consultation

(C), Medication & Therapeutics (D), Requiring LabTests (E). Different
parameters are embedded within each annotation, with some variations
as to the number of needed resources per task

Looking at the possible scenario variations for this model according to the
annotations, we can see that the ResourceData parameter is different for some
tasks. This represents the amount of resources the manager envisioned to analyse,
i.e., the impact of these variations in the performance indices.

In this case, we have four scenarios, where the overall model follows the pat-
tern Patient Arrival -- Process -- Exit, where Patient Arrival has no
variations and Exit is just a sink (e.g. where all patients end). Note that we are
disregarding the exclusive gateway in this analysis because it has no annotations
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of type and exit percentages in this example. For simulation purposes we assume
50% chance in the exclusive flows.

The four selected scenarios are as follows (see Fig. 2 – MD stands for Medical
Doctor):

1. A (1 DeskClerk) – B (1 Nurse) – C (1 MD) – D (1 MD) – E (1 Technician)

2. A (1 DeskClerk) – B (1 Nurse) – C (2 MDs) – D (1 MD) – E (1 Technician)

3. A (1 DeskClerk) – B (1 Nurse) – C (1 MD) – D (2 MDs) – E (1 Technician)

4. A (1 DeskClerk) – B (1 Nurse) – C (2 MDs) – D (2 MDs) – E (1 Technician)

Due to observed arrival rates, for this particular analysis we consider Task
A to have no concerns, seeming well adjusted according to patient’s inflow. In
this analysis, we are concerned with investigating the influence on the number
of MDs on the performance indices, so our scenarios will vary the amount of
doctors at stations C and D. It is worth mentioning that if one resource becomes
idle, it may be shared for better performance – the DES software tool usually
implements this behaviour automatically, because in the model we are creating
resources of the same type, i.e., generic MDs.

It is noticeable that, depending on the choices made by the analyst while
defining the annotations, the number of scenarios could be very large. For exam-
ple, if one selects three distinct inter-arrival times, with a task with one resource
associated having two parameter variations and another task with three resource
quantities (1, 2 and 4), the number of total scenarios for this case is 3∗2∗3 = 18
scenarios, which is a significant amount for a comprehensive analysis. In these
cases, the analyst could manually reduce the selected parameter variations or
use the tool to generate the full set of scenarios and then select the ones he or
she wishes to study more thoroughly (only those would be executed).

Table 2 presents the simulation results for the generated scenarios using
Arena [1]. We have extracted the main performance indices for 30 replications,
with 48 h duration and interarrival time per patient consisting of 10 min. For
this BPMN model, the simulation model conversion was straightforward since
no particular Arena element was used. We have used service and arrival times
obtained from actual HSB data, with distribution fittings (using Arena’s internal
tool named InputAnalyzer). The tool has yielded the following parameters:

– Time between arrivals: 1 patient, on average, arrives every 10 min (we are
modelling the busiest hours, e.g., from 10.00 to 14.00 of a weekday);

– A: Service time −0.5+GAMM(0.563, 2.16) minutes;
– B: Service time −0.5+EXPO(1.01) minutes;
– C: Service time −0.001+EXPO(2.56) minutes;
– D: Service time TRIA(5, 12, 20) minutes;
– E: Service time TRIA(1, 10, 15) minutes.

Waiting Time (W) encompasses the time spent in queue plus the time under
service (in Arena, this is called Total Time). For this metric, we have computed
the average value for all replications.

Utilisation (U) considers the fraction of time that resources remain in Idle
state (instead of Busy, i.e. attending patients), and it is computed internally
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Table 2. Results for the simulation scenarios set by the analyst in the annotations.

Scenario Resource
Utilisation Waiting Time Population

U (%) W (minutes) N (patients)

1

DeskClerk–A 7.5

48.4 ≈2.5 (Consultation)

Nurse–B 6

Doctor–C 86.2

Doctor–D 62.6

Technician–E 12.4

2

DeskClerk–A 7.5

23.8 negligible

Nurse–B 7.5

Doctor–C 43.9

Doctor–D 62.7

Technician–E 13

3

DeskClerk–A 7.5

45.8 ≈4.1 (Consultation)

Nurse–B 7.4

Doctor–C 85.6

Doctor–D 30.7

Technician–E 12.2

4

DeskClerk–A 7.5

19.3 negligible

Nurse–B 7.6

Doctor–C 43.9

Doctor–D 31.1

Technician–E 13.2

Throughput: 284 patients (4-h shift) for each scenario (i.e. same interrarrival time)

by Arena. Adding resources would invariably impact performance indices pos-
itively (particularly utilisation). For managers, however, it implies additional
costs that sometimes are prohibitive, and instead other alternatives should be
taken into account (e.g. improving service times or addressing bottlenecks on
other stations).

It is worth noticing that Scenario 2 has interesting utilisation levels for the
medical doctor resources, i.e., 43.9% for doctor–C–D and 62.7% for doctor–E.
It was not clear that this scenario would yield this outcome before our analysis,
and it just required one additional resource given the workload required. Also,
the waiting time is affected by the number of resources, where Scenario 3 has
the worst, despite the increase in terms of medical doctors. For the population
metric, for Scenarios 2 and 4, no queueing took place, however, for Scenarios 1
and 3, for the Consultation task, queue lengths of ≈2.5 and ≈4.1 respectively
were calculated by the software, which is interesting, because Scenario 3 for
instance has had an increase in terms of resources and still has formed significant
patient queueing.
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Our approach described here allows managers to annotate models and assign
parameters for resources (and other measures) in a simple way, yielding per-
formance indices for analysis and scenario comparisons. It would be sufficiently
easy to derive parameters as needed, for the same model (e.g. we are considering
static models as of now). We chose not to use too many parameter variations
due to the number of potential scenarios that could be created. In future work,
we will explore how to devise a mechanism to help select a set of interesting
scenarios.

6 Final Considerations

Performance evaluation directly from BPMN models is not readily available for
analysts and stakeholders. At present, process models and performance models
are two distinct approaches with separate sets of primitives. This paper tackles
this problem by providing an alternative where process models are enriched with
textual annotations simple enough to be used by stakeholders with different
backgrounds, but still powerful enough to provide interesting information for
simulation. The structured annotations that can be attached to process elements
include performance data relevant for creating different parameter scenarios,
simulation execution, or analytical modelling. If some parameter is missing, our
compiler uses predefined values to guarantee an initial analysis. Our approach
has been used to tackle resource requirements within complex models to facilitate
the informed revision and optimisation of healthcare processes.

In future work, we aim to extend the notation to encompass other advanced
modelling and execution as well as devising a scenario report for users where
they are able to select scenarios of interest. We will also consider the integration
with a simulation package to automatically execute scenarios and generate a
graphical report with suggestions.

In another line of work, we are using BPMN to capture clinical guidelines
for the treatment of chronic conditions [8]. For patients with multiple ongo-
ing chronic conditions, aka multimorbidity, several guidelines have to be applied
simultaneously. We have used constraint solvers to automatically detect inconsis-
tencies between such guidelines and suggest alternatives in accordance to certain
parameters. If we can integrate the present BPMN annotations in our BPMN
models for clinical guidelines, we may be able to exploit the benefits of both
approaches. We will explore this combination in future work.
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3. Baril, C., Gascon, V., Miller, J., Côté, N.: Use of a discrete-event simulation in a
Kaizen event: a case study in healthcare. Eur. J. Oper. Res. 249, 327–339 (2016)

4. Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineering tools for system
modeling. ACM SIGMETRICS Perform. Eval. Rev. 36, 10–15 (2009)

5. Bisogno, S., Calabrese, A., Gastaldi, M., Ghiron, N.L.: Combining modelling and
simulation approaches: how to measure performance of business processes. Bus.
Process Manag. J. 22, 56–74 (2016)

6. Bocciarelli, P., D’Ambrogio, A., Giglio, A., Paglia, E., Gianni, D.A.: Transforma-
tion approach to enact the design-time simulation of BPMN models. In: IEEE 23rd
International WETICE Conference, pp. 199–204. IEEE Computer Society (2014)

7. Bocciarelli, P., D’Ambrogio, A., Paglia, E.: A language for enabling model-driven
analysis of business processes. In: 2nd International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), pp. 325–332. IEEE
Computer Society (2014)

8. Bowles, J., Caminati, M., Cha, S.: An integrated framework for verifying multiple
care pathways. In: Eleventh International Symposium on Theoretical Aspects of
Software Engineering (TASE). IEEE Computer Society (2017)

9. Costa, L.T., Czekster, R., de Oliveira, F.M., de M. Rodrigues, E., da Silveira,
M.B., Zorzo, A.F.: Generating performance test scripts and scenarios based on
abstract intermediate models. In: Proceedings of the 24th International Conference
on Software Engineering and Knowledge Engineering (SEKE 2012), pp. 112–117
(2012)

10. Doniec, K., Dall’Alba, R., King, L.: Brazil’s health catastrophe in the making.
Lancet 392, 731–732 (2018)

11. Forsberg, H.H., Aronsson, H., Keller, C., Lindblad, S.: Managing health care deci-
sions and improvement through simulation modeling. Qual. Manag. Health Care
20, 15–29 (2011)
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Abstract. In this paper we present a methodology that combines formal
methods and informal research methods to validate research hypotheses.
We use the CSP (Communicating Sequential Processes) process algebra
to model the system as well as some aspects of the user, and PAT (Pro-
cess Analysis Toolkit) to perform formal verification. We illustrate our
methodology on Duolingo, a very popular application for language learn-
ing. Two kinds of data are considered: a log of the interaction of the user
with the application and the assessment of the user’s level of proficiency
in the language to be learned (subject profile). The goal is to validate
research hypotheses that relate the subject profile to the user’s cogni-
tive approach during interaction (cognitive profile). To this purpose, two
CSP processes, one modelling the cognitive profile that is associated by
the considered research hypothesis to the subject profile and one mod-
elling the interaction log are composed in parallel with the system model.
Thus, for each user with the given learner profile and specific interaction
log, the verification of the functional correctness of the overall system
validates the correlation between cognitive profile and subject profile.

Keywords: Formal methods · CSP process algebra
Process Analysis Toolkit (PAT) · Multimodal interaction
Language learning application

1 Introduction

Almost all people are nowadays routinely running heaps of applications on their
mobile devices. There is a large variability of both users, e.g. in terms of age,
education and cultural background, and applications, which cover entertainment,
learning, personal monitoring, accounting, internet banking, booking and many
other domains. Because of this global variability it is essential to understand the
different cognitive approaches users may take while interacting with the appli-
cation and try to address them. However, in order to best adapt the application
interface to the user, it is also needed to understand how the user’s knowledge
and activity within the domain for which the application is created drive a spe-
cific cognitive approach.
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In this paper, we consider a language-learning application, which uses two
modalities to present exercises to the user, i.e. audio and printed text, and we
observe that the combination of the two modalities within the same exercise
may induce some users to make errors. In order to understand what drives the
observable user behaviour in interacting with the application, in the specific
learning context of our example, we distinguish between the cognitive profile,
characterising the way the user focuses on a specific presentation modality, and
the subject profile, characterising the level of proficiency of the user in the foreign
language.

We use formal methods, specifically the CSP process algebra [5], to model
the application and the cognitive profile and to formally represent the log of the
interaction of the user with the application [4,6]. The subject profile is instead
defined using social science research methods: tests, questionnaires, interviews,
etc. Our approach aims to consider a hypothesis on the relation between given
cognitive profile and subject profile and validate it by carrying out, for each
user with that subject profile, formal verification on the model of the systems
constrained by both the given cognitive profile and a formal representation of
the interaction log of the user. We use the model-checking capabilities of the
Process Analysis Toolkit (PAT) [2] to perform formal verification.

2 The Problem: Duolingo Application Case Study

Duolingo [1] is the most popular language learning platform. It includes a website
and mobile applications. It offers a large number of language courses for both
English and non-English speakers.

A lesson is structured as a sequence of exercises of different kinds. After the
user completes an exercise, the application provides an assessment as correct or
wrong before proceeding to the next exercise or completing the lesson. In this
paper we consider the three kinds of exercises illustrated in Fig. 1:

Fig. 1. Duolingo screenshots.
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(a) the user hears a sentence in the foreign language and has to type it;
(b) the user reads a sentence in the native language and has to translate it in

writing to the foreign language;
(c) the user reads and hears a sentence in the foreign language and has to

translate it in writing to the native language.

These three kinds of exercises are representative of the three possible situa-
tions in which audio and visual presentation modalities are used separately and
in combination.

We carried out some experiments using the Duolingo application and we
realised that a common error consists in giving the answer in the wrong lan-
guage. Typically, the user will tend to ignore the information on the goal of the
exercise (“Type what you hear” or “Translate this sentence”) and focus instead
on the content of the exercise. Furthermore, since the exercise may be proposed
using two modalities, audio and printed text, the user may focus on just one of
such modalities. For example, when the question involves a translation to the
native language, the sentence to translate is proposed in the foreign language
using both audio and print modalities. However, the user may actually focus on
just one modality. If the user consistently focuses on the audio modality, several
repetitions of this kind of exercise will create an automatism whereby the user
always tends to translate an audio perception to the foreign language. There-
fore, when the exercise requests to type what is heard, a user affected by such
acquired automatism would instead translate to the native language, thus giving
the wrong answer. We analyse this kind of error in Sects. 4 and 5.

3 CSP Model

In this section we use CSP to model the three kinds of exercises illustrated in
Fig. 1. In our abstract model, the only parameter used to discriminate between
correct and wrong answer is the language in which the answer is given: native
or foreign language. The model is presented in Fig. 2.

DuolingoExercise() = exercise -> ( typeWhatYouHear -> CheckTypeWhatYouHear() []
translateToForeign -> CheckTranslationToForeign() []
translateToNative -> CheckTranslationToNative() );

CheckTypeWhatYouHear() = foreignLang -> correct -> DuolingoExercise() []
nativeLang -> wrong -> DuolingoExercise();

CheckTranslationToForeign() = foreignLang -> correct -> DuolingoExercise() []
nativeLang -> wrong -> DuolingoExercise();

CheckTranslationToNative() = nativeLang -> correct -> DuolingoExercise() []
foreignLang -> wrong -> DuolingoExercise();

Fig. 2. System model: exercises and assessment

The DuolingoExercise process presents the three possible kinds of exercises:
typeWhatYouHear, translateToForeign and translateToNative. A request to
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type what is heard in the foreign language (typeWhatYouHear) is checked by the
CheckTypeWhatYouHear process, which returns correct if the answer is given
in the foreign language (foreignLang) and wrong if it is given in the native
language (nativeLang). The other kinds of exercises are checked analogously.

Processes DuolingoAudio and DuolingoPrint in Fig. 3 model the two output
modalities used by Duolingo. The requests to translate to the native language
(translateToNative) are presented using both audio and printed text, whereas
the other two requests are presented using just one modality, printed text for the
translation to foreign language (translateToForeign) and audio for request to
type what is heard in the foreign language (typeWhatYouHear).

DuolingoAudio() = exercise -> ( typeWhatYouHear -> audio -> DuolingoAudio() []
translateToNative -> audio -> DuolingoAudio() []
translateToForeign -> noAudio -> DuolingoAudio() );

DuolingoPrint() = exercise -> ( typeWhatYouHear -> noPrint -> DuolingoPrint() []
translateToNative -> printForeign -> DuolingoPrint() []
translateToForeign -> printNative -> DuolingoPrint() );

SessionSystem() = DuolingoExercise() || DuolingoAudio() || DuolingoPrint();

Fig. 3. System model: modalities.

UserData() = exercise -> typeWhatYouHear -> foreignLang ->
exercise -> translateToForeign -> foreignLang ->
exercise -> translateToNative -> nativeLang ->
exercise -> typeWhatYouHear -> nativeLang -> Stop();

SessionUserData() = SessionSystem() || UserData();

Fig. 4. Example of user data.

The overall system is given by process SessionSystem, which is the parallel
composition of the three components illustrated above.

Figure 4 shows an example of data (process UserData), consisting of a
sequence of four exercises proposed by Duolingo and the corresponding answers
given by the user. We can note that, in the last exercise, the user gives the wrong
answer by using the native language instead of the foreign language, that is, by
translating rather than just typing what is heard.

We may compose the overall system SessionSystem with this specific dataset
getting a system behaviour constrained by the data (process SessionUserData).
Note that for each exercise the user behaviour starts with an external choice
among perception of audio, perception of printing text and user’s decision to
answer in native or foreign language. In fact, nothing prevents the user from
deciding to answer in a language independently of the actual request by the
application.
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4 Formal Verification

In this section we present how to verify the functional correctness of the model
defined in Sect. 3, how to constrain the model with specific user profiles and how
to verify whether such user profiles are prone to incur in the error considered at
the end of Sect. 2. Functional correctness is characterised by the ability of the
system to provide the user with the proper assessment of the answer as correct
or wrong for each exercise. We may say that “always, if an exercise is presented
to the user, then any further exercise will not be presented to the user until the
user’s answer is assessed as correct or wrong”. This statement may be refined
towards a low-level temporal logical formula as:

“always, if there is an exercise, then, starting from the next state of the
system, there will not be any exercise until the user’s answer is assessed
as correct or wrong”.

The temporal logic counterpart of this statement is the formula of the first
assertion in Fig. 5. Using PAT we can see that this first assertion is verified as
valid. The second assertion, which states that the user gives a correct answer
to each exercise, is, instead, verified as invalid. This is obviously due to the fact
that, correctly, our model leaves the option that the user may give wrong answers
open. We can say that this second assertion formalises a usability property, since
it states that the user will not be induced by the system to provide a wrong
answer.

In order to analyse the error illustrated at the end of Sect. 2, we consider two
cognitive profiles: a user who always focuses on the print modality and a user who
always focuses on the audio modality. These two kinds of users, after repeatedly
using the application, will be driven towards two different forms of automatism.
Figure 6 shows the models for such profiles in terms of the acquired automatism.
A user who focuses on the print modality (process UserFocusPrint) realises
that:

– if the sentence is not printed, then the answer has to be in the foreign lan-
guage;

– if the sentence is printed in the native language, then the answer has to be
in the foreign language;

– if the sentence is printed in the foreign language, then the answer has to be
in the native language.

A user who focuses on the audio modality (process UserFocusAudio) realises
that:

– if the sentence is not heard, then the answer has to be in the foreign language.

Therefore the audio modality is less informative than the print modality and
gives space to two possible, conflicting forms of automatism. As we have dis-
cussed in Sect. 2, the user may interpret the audio either as a request to answer in
the foreign language or as request to answer in the native language. The usability
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property in the first two assertions in Fig. 6 is verified by PAT as valid on process
SessionFocusPrint (first assertion) and invalid on process SessionFocusAudio
(second assertion). This is consistent with the fact that the automatism devel-
oped by the user who focuses on the print modality always leads to the correct
answer, but this is not the case for the user who focuses on the audio modality.

#assert SessionSystem() |= [] ( exercise -> X (! exercise U ( correct || wrong)) );
#assert SessionSystem() |= [] ( exercise -> (! wrong U (correct)) );

Fig. 5. Assertions for functional and usability properties.

UserFocusPrint() = noPrint -> foreignLang -> UserFocusPrint() []
printNative -> foreignLang -> UserFocusPrint() []
printForeign -> nativeLang -> UserFocusPrint();

UserFocusAudio() = audio -> ( foreignLang -> UserFocusAudio() []
nativeLang -> UserFocusAudio() ) []

noAudio -> foreignLang -> UserFocusAudio();

SessionFocusPrint() = SessionSystem || UserFocusPrint();
SessionFocusAudio() = SessionSystem || UserFocusAudio();

#assert SessionFocusPrint() |= [] ( exercise -> X (! exercise U correct) );
#assert SessionFocusAudio() |= [] ( exercise -> X (! exercise U correct) );

#assert SessionUserData() |= [] ( exercise -> X (! exercise U ( correct || wrong)) );
#assert SessionUserData() |= [] ( exercise -> (! wrong U (correct)) );

Fig. 6. User profile model and analysis.

Finally, we may also verify properties of the system behaviour on a spe-
cific data set. For example, considering the last two assertions in Fig. 6 with the
dataset UserData in Fig. 4, which is consistent with focusing on the audio modal-
ity, as component of process SessionUserData, PAT verifies the first assertion
(functional property) as valid and the second assertion (usability property) as
invalid. Obviously, if we remove the last exercise from UserData, which is the
one causing the user error, then the usability property is verified as valid.

5 Hypothesis Formulation and Validation

We formulate two hypotheses to relate a cognitive profile, i.e. which modality
the user focus on, to a subject profile, i.e. which level of proficiency the user has
in the foreign language.

Hypothesis [H1] A learner at a beginner level in the foreign language always
focuses on the print modality.

Hypothesis [H2] A learner at an advanced level in the foreign language always
focuses on the audio modality.
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These two hypotheses are suggested by the observation that beginners have diffi-
culty in listening comprehension and need the support of a written text, whereas
advanced learners may be able to quickly go through the exercises reacting imme-
diately to the audio without reading the written text.

In order to validate these hypotheses, an extensive user experience evaluation
should be conducted at the following two levels:

1. the creation of a log of the interaction of the user with the application, through
either natural observation or by using an instrumented version of the appli-
cation;

2. the assessment of the user’s level of proficiency in the foreign language (learner
profile), through either a language test or a questionnaire or interviews.

Then, for each subject user, the log is converted into a UserData process to be
combined with the UserFocusPrint or UserFocusAudio process depending on
whether the user is assessed at the beginner or advanced level of proficiency,
respectively.

DataModelFocusPrint() = SessionUserData() || SessionFocusPrint();
DataModelFocusAudio() = SessionUserData() || SessionFocusAudio();

#assert DataModelFocusPrint() |= [] ( exercise -> X (! exercise U ( correct || wrong)) );
#assert DataModelFocusAudio() |= [] ( exercise -> X (! exercise U ( correct || wrong)) );

Fig. 7. Formal verification for hypothesis validation.

Formal verification is finally carried out as shown in Fig. 7. The two processes,
DataModelFocusPrint and DataModelFocusAudio, combine the data collection
at item 1 above, represented by process SessionUserData, with the user’s assess-
ment at item 2 above, which is associated by our research hypotheses with either
process SessionFocusPrint, if the user is assessed as a beginner ([H1]), or pro-
cess SessionFocusAudio, if the user is assessed as an advanced learner ([H2]).

The assertion corresponding to the cognitive profile that one of the research
hypotheses associates with the assessed subject profile of the considered user
is valid when the behaviour of process SessionUserData is consistent with the
process that models the cognitive profile, i.e. it does not invalidate the functional
correctness. In fact, a mismatch between the considered cognitive profile and the
real user data would cause a conflict in some answer assessment as correct or
wrong, with a resultant deadlock after the occurrence of exercise but before
either correct or wrong may occur, thus invalidating the functional correctness.
This is what happens if we verify the first assertion in Fig. 7 on the user data
given in Fig. 4, due to the mismatch between a user whose real data is the result
of a focus on the audio modality and a cognitive profile constraint modelling a
focus on the print modality. Therefore, a research hypothesis is satisfied by a
specific user when the assertion on functional correctness is valid. Finally, we
can conclude that a research hypothesis is validated when it is satisfied by a
statistically significant number of users with the appropriate subject profile.
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6 Conclusion and Future Work

The analysis carried out on the Duolingo case study shows that multimodal
interaction is not always effective and it is essential to take the user’s subject
profile into account while choosing whether and how to combine modalities. Fur-
thermore, if our research question is validated, then we may claim that although
the Duolingo application is appropriate for learners at the beginner level, in its
current state it is not equally effective for learners at the advanced level. In this
case, a possible improvement could be the introduction of a learner level, either
explicitly set by the user or inferred by the system in some intelligent way. The
learner level would then drive the choice of modalities to use for question presen-
tation: multimodality audio and print for a beginner learner and unimodality,
either audio or print, for an advanced user.

There are three directions for our future work. First, we would like to validate
our research hypotheses for the Duolingo case study on real data as discussed
in Sect. 5. Second, we are developing an instrumented language learning appli-
cation to present a large variety of exercise types, control the order in which
they are presented, monitor the interaction for the purpose of data collection
and automatically generate formal representations of datasets to be used for
hypothesis validation. Finally, we plan to apply our methodology to further,
more challenging case studies. In fact, the case study and abstraction level con-
sidered in this paper result in very straightforward cognitive profile and system
model, with human errors immediately visible on the data model. The purpose
of our choice was to test the feasibility of our methodology and easily illustrate
it. We now intend to combine this work with our work on cognitive errors [3]
and consider system models in which human errors are not easily observable on
the data model and emerge because of multiple cognitive causes.
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Abstract. Understanding human gaze behaviour in social context, as
along a face-to-face interaction, remains an open research issue which
is strictly related to personality traits. In the effort to bridge the gap
between available data and models, typical approaches focus on the anal-
ysis of spatial and temporal preferences of gaze deployment over specific
regions of the observed face, while adopting classic statistical methods.
In this note we propose a different analysis perspective based on novel
data-mining techniques and a probabilistic classification method that
relies on Gaussian Processes exploiting Automatic Relevance Determi-
nation (ARD) kernel. Preliminary results obtained on a publicly available
dataset are provided.

Keywords: Eye movement · Gaze · Social interaction
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Big five

1 Introduction

The Latins would say ‘oculus animi index’ to refer the amount of personal infor-
mation provided by a person’s eyes. The gaze, indeed, is an important component
of social interaction and a crucial non-verbal signal adopted as a basic form of
communication [30]. Humans profoundly entrust on gaze cues during social and
cooperative tasks with other conspecifics. This effect negatively emerges when
referring to persons with autistic-like traits that may have troubles in under-
standing signals coming from the eye region of the other’s face [1].

Eye movements are shown to be relevant and strictly related to the expression
and perception of emotional states [2,3,29], cognitive goals [7,13,48], personality
traits [12,28,36,41,44] and is known to play a key role in regulatory functions, as
conversational turn-taking [20]. In the course of a typical face-to-face interaction,
eye contact is an indicator of trustworthiness and attractiveness [6,33], although
a long direct gaze could be interpreted as a threat [34].

Neuroimaging studies of face perception confirms that direct eye contact
activates specific brain areas involved in human interaction and face processing,
c© Springer Nature Switzerland AG 2018
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namely the superior temporal sulcus (STS) [25]. In particular, the intraparietal
sulcus (IPS) appears to specifically support the recognition of another person’s
gaze direction [14,40]. These results confirm that person perception is increased
when gaze is directed toward the viewer.

Having said that, and without going deeper in neurobiological details, it looks
obvious that in order to realise effective and ‘empathic’ computational systems
that naturally interacts with humans (HCI) it is necessary to understand or,
at least, take into consideration the processes behind human gaze deployment.
These could eventually be involved to mediate the interaction with a virtual or
physical agent, in particular when dealing with humanoid robots that include
eyes (for synthesis) [9], or with ones that gauge the counterpart’s gaze (for recog-
nition) [49].

In this work we will focus on the involvement of personality traits as indicator
of specific gaze patterns. Personality is an information typically expressed by
adopting the Big Five personality traits [23], also known as the five factor model
(FFM). The five factors have been defined as agreeableness, conscientiousness,
extraversion, neuroticism and openness to experience. These are assessed via
standard psychological tests to the participants of an experiment.

Fig. 1. Investigating subject’s personality traits from gaze behaviour in face-to-face
interaction (time-varying face stimuli). Full arrows highlight the Data → Model road
to explanation and prediction; dashed arrows trace the feedback information to meet
the quest for suitable predictor variables, model revision and experimental design.
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Previous results suggest that personality influences visual information pro-
cessing and social gazing, but most of these approaches present some drawbacks,
such as small dataset size [12], focus on very specific personality traits [28], adop-
tion of non-natural stimulus [44] and in general, for the analysis, they all rely
on classical statistical methods applied to spatial and temporal gaze features
extracted from raw data.

As to the latter point, here we offer a different perspective. It has been
argued [21] that statistical rituals striving for an unthinking “search for statis-
tical significance” have led to “irrelevant theory, questionable conclusions, and
has kept statisticians from working on a large range of interesting current prob-
lems” [10]. Breiman, in particular has acknowledged that beyond classic data
analyses, algorithmic modeling has developed rapidly in realms outside statis-
tics (involving complex prediction problems such as speech recognition, image
recognition, nonlinear time series prediction), and it has gained currency since it
can be used both on large complex data sets and as a more accurate and infor-
mative alternative to data modelling on smaller data sets [10]. In this view the
classic data modelling approach starts with assuming a treatable model relating
predictor variables to response variables (e.g., a linear regression model) and
model validation is performed through classical tests (goodness-of-fit, residual
examination, etc). In contrast, machine learning-based modelling relies upon an
algorithm that operates on input data (usually in the form of a feature vector)
to predict the responses; here, model validation is in terms of measured predic-
tive accuracy. However, these two “cultures” [10] need not be mutually exclusive
options. After all statistics starts with data and builds models (cfr. Fig. 1) in
order to be able to: (i) forecast what the responses are going to be to future
input variables (prediction level); (ii) to derive information about how nature is
associating the response variables to the input variables (explanation level). The
roots of statistics, as in science, lie in working with data and checking theory
against data [10]. If focus is brought back on actually solving the problem, then
in many complex and concrete cases this attitude is likely to lead to the adoption
of a hybrid methodology. It is worth mentioning that, though algorithmic models
can give better predictive accuracy than data models, it is often objected that
an emphasis on predictive accuracy leads to complex, uninterpretable models
that generalise poorly and offer little explanatory insight. However, the trade-
off between predictive accuracy and interpretability is less grievous than deemed
[26]. Indeed, it has been shown in the machine learning field that by searching for
parsimonious versions of the adopted model (in the Occam’s sense), it is possi-
ble to achieve predictive performance close to optimal, while gaining explanatory
insights into the relevant mechanisms of the phenomenon under consideration
[26].

Such a synergistic perspective is the methodological rationale behind the
work presented here and it is summarised at a glance in Fig. 1. Techniques coming
from different research areas will be adopted, both for feature extraction and clas-
sification. In particular, we show how the Automatic Relevance Determination
(ARD) approach, which has been originally conceived in the Bayesian machine-
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learning framework as an effective tool for pruning large numbers of irrelevant
features [37], is suitable to lead to a sparse subset of predictor variables. These
bear explanatory value, while avoiding cumbersome classic statistical procedures
for selecting features, or even more complex machine learning-based approaches
(e.g., [5], for the specific case of gaze analysis).

Results obtained on a public dataset [19] acquired during a face-to-face exper-
iment will provide additional levels of explanation of gaze behaviours adopting
a probabilistic approach. An overview of the method is given in Sect. 2, while
Sect. 3 presents the simulation results, and a conclusive discussion is given in
Sect. 4.

2 Method

Gaze shifts are the result of two main oculomotor actions (as shown in Fig. 2):
fixations and saccades. The former are concerned with bringing onto the fovea
salient objects of a scene, while the latter are rapid transitions of the eye that
permit to jump from spotting one location of the viewed scene to another. It is
worth noting that the saliency of an object is in principle strictly related to a
given task [47]. The study presented here relies on eye-tracking data collected
from subjects along a free-viewing (no external task) experiment. Though this
choice might be questionable in general [47], in our case the free-viewing condi-
tion is suitable for dynamically inferring the history of their “internal” selection
goals and motivation, and thus their personal idiosyncrasies, as captured by the
resulting attentive behaviour.

Beyond fixations and saccades, in the presence of moving objects (that are
likely to occur in dynamic scenes) an additional action arises, called smooth
pursuit. This is typically associated with fixations since the focus remain on the
same stimulus, but in this case a movement of the eyes is required.

Recent research has shown that the pupil signal from video-based eye trackers
contains an additional event, namely post-saccadic oscillations (PSOs). These are
very important for a precise temporal classification of the events. PSOs in fact,
have shown to influence fixation and saccade durations by at least 20 ms [35].

In the following we will refer to a visual scan path as the result of a stochastic
process; namely a time series defined as {(r1, t1), (ri, ti), · · · }, where ri = (xi, yi)
identifies a specific gaze location at time ti in presence of a natural scene I.

I �→ {(r1, t1), (ri, ti), · · · } (1)

A classification step [39] is eventually required to distinguish between the four
oculomotor actions presented above. This allows to parse the raw data time series
into a higher level representation of events: fixations f = (r, ts, te), saccades s =
(rs, re, ts, te), smooth pursuits p = (rs, re, ts, te) and PSO o = (rs, re, ts, te). In
the case of saccades, smooth pursuits and PSO, rs and re represent respectively
the start and end gaze location. Likewise ts and te stand for start and end time
of the event.
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2.1 Feature Extraction

Considering a given scan path W = {(fi, si,pi,oi)}N
i=1, with N the number

of events, we derive features related to the spatial and temporal properties of
specific events. Given the stochastic nature of eye movements, these too can be
seen as random variables (RVs) generated by an underlying random process.
Such properties include fixation duration, saccade amplitude, saccade direction
and event frequency.

Saccade amplitudes and directions are important because lie at the heart of
systematic tendencies or “biases” in oculomotor behaviour. These can be thought
of as regularities that are common across all instances of, and manipulations to,
behavioural tasks [45,46]. One remarkable example is the amplitude distribution
of saccades and that typically exhibit a positively skewed, long-tailed shape [45–
47]. Other paradigmatic examples of systematic tendencies in scene viewing are:
initiating saccades in the horizontal and vertical directions more frequently than
in oblique directions; small amplitude saccades tending to be followed by long
amplitude ones and vice versa [45,46]. Indeed, biases affecting the manner in
which we explore scenes with our eyes are well known in the psychological liter-
ature (see [31] for a thorough review), and have been exploited in computational
models of eye guidance [4,17,32] providing powerful new insights for unvealing
covert strategies about where to look in complex scenes.

As an additional property we also take into consideration the pupil dilation.
This information is typically adopted for emotion-related tasks, in particular to
assess the level of arousal [8]. To the best of our knowledge, this is the first time
pupillometric data are adopted to study personality traits.

di

Fixation i

Fixation i-1

Fixation i+1

li
Saccade i

Saccade i+1

ai

Fig. 2. (Left) visualisation of a typical visual scan path record. (Right) sequence of
three fixations with indication of extracted features: fixation duration (di), saccade
amplitude (li) and saccade direction (ai).

Fixation Duration. The duration of the i-th occurrence of the identified fixations
measures the time spent spotting a specific location and it is obtained as di =
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tei − tsi . These durations D = {di}N
i=1 can be seen as gamma-distributed random

variables D ∼ Γ (a, b), whose probability density function (pdf) is defined as

f(d | a, b) =
1

baΓ (a)
da−1 exp

(−d

b

)
(2)

Here Γ (·) is the gamma function; the parameters of shape Da = a, that closely
approximates a normal distribution when large, and scale Db = b are fitted via
maximum likelihood estimation (MLE).

Saccade Amplitude. For what concern saccades, one of the properties taken in
consideration is their amplitude. This measure the absolute length of the eye
movement and is obtained as the Euclidean distance between the start and end
locations of each saccade, li =

√
(xs

i − xe
i )2 + (ys

i − ye
i )2 where rs

i = (xs
i , y

s
i ),

re
i = (xe

i , y
e
i ) and (re

i , r
s
i ) ∈ si. In this case, the amplitudes L = {li}N

i=1 are
assumed to be sampled from an α-stable distribution L ∼ f(ξ;α, β, γ, δ). These
form a four-parameter family of continuous probability densities [22], where the
parameters are the skewness β (measure of asymmetry), the scale γ (width of
the distribution), the location δ and the characteristic exponent α, or index
of the distribution that specifies the asymptotic behavior of the distribution
as l−1−α. Thus, relatively long gaze shifts are more likely when α is small.
For α ≥ 2 the usual random walk (Brownian motion) occurs; if α < 2, the
distribution of lengths is “broad” and the so called Lev́y flights take place. Such
distributions have been shown to suitably capture the statistical behaviour of
gaze shift amplitudes [4,11], and, more generally, brain activities occurring in
the attention network [18]. There is no closed-form formula for f , which is often
described by its characteristic function E [exp(itx)] =

∫
R

exp(itx)dF (x), F being
the cumulative distribution function (cdf). Explicitly,

E [exp(itx)] =

{
exp(−|γt|α(1 − iβ t

|t| ) tan(πα
2 ) + iδt)

exp(−|γt|(1 + iβ 2
π

t
|t| ln |t|) + iδt)

the first expression holding if α �= 1, the second if α = 1. Special cases of
stable distributions whose pdf can be written analytically, are given for α =
2, the normal distribution f(x; 2, 0, γ, δ), for α = 1, the Cauchy distribution
f(x; 1, 0, γ, δ), and for α = 0.5, the Lévy distribution f(x; 0.5, 1, γ, δ); for all other
cases, only the characteristic function is available in closed form, and numerical
approximation techniques must be adopted for parameter estimation, e.g., [15],
which will be used here.

Saccade Direction. The second property obtained from saccades, and usually
overlooked, is the direction of successive eye movements. This property, called
saccade direction, measures the angular direction between the start and end loca-
tion of a saccade. Recalling that a saccade is represented as si = (rs

i , r
e
i , t

s
i , t

e
i ),

we define its angular direction as ai = arctan2(ye
i −ys

i , x
e
i −xs

i ), where arctan2
is a function that extends the definition of arctan(y/x) to the four quadrants
(−π, π], taking in consideration the sign combinations of y and x.
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The saccade directions are typically non-uniformly distributed, with most
saccades in the horizontal and vertical directions than in oblique [45]. This cir-
cular data can be modelled by adopting a von Mises distribution, whose pdf is
symmetric and unimodal, and is given by

f(a | μ, κ) =
exp(κ cos(a − μ))

2πI0(κ)
, (3)

where I0(·) is the zero-th order modified Bessel function. Its parameters are the
mean direction μ and the dispersion, captured by a concentration parameter κ.
For large values of κ, the distribution is concentrated around the μ direction,
while for κ = 0 the pdf is a uniform distribution.

For heterogeneous data, as in the case of saccade directions, a single von
Mises distribution does not provide an adequate fit, so it will be discarded in
favour of a mixture of two von Mises distributions. Its parameters Aμ = [μ1, μ2]
and Aκ = [κ1, κ2] are estimated using an Expectation-Maximization scheme [27].

Event Frequency. An additional information about the gaze patterns is provided
by the frequency of each of the four classified events. These are normalised
adopting a classical softmax approach, so that Ej = ej

(e1+···+e4)
, with j = 1, . . . , 4.

Pupil Dilation. For what concerns pupil dilation, we consider its absolute per-
centage variation vi with respect to the average size in an initial window of
250ms. In this case V = {vi}N

i=1 is assumed to be sampled from an half-normal
distribution, whose pdf is given by

f(v | σ) =
√

2
σ
√

π
exp

(
− v2

2σ2

)
(4)

and its unique parameter Vσ = σ estimated via MLE.
Eventually, the gaze behavior of each subject in the dataset is represented by

a feature vector,, namely the random vector X = [Da,Db,Lγ ,Lδ,Aμ,Aκ,E,Vσ]
(cfr. Fig. 3). A realisation X = xi, summarising the gaze behaviour of subject i
on the observed facial stimuli, will represent the observed input of a probabilistic
classifier presented below.

2.2 Personality Trait Classification

The classification stage aims at finding a possible nonlinear mapping between a
subset of salient features contained in X and the levels of personality traits Y
acquired in the dataset (the response variables). In the binary case, as the one
described in Sect. 3, the model is defined as

p(yi | X = xi) = Φ(yif(xi)), (5)

where xi represents the realisation of the random vector X for the i-th subject,
and the yi ∈ {−1, 1} is the result of a probit regression approach that maps
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Fig. 3. Fitting of the features extracted from a sample of raw gaze data. (Top) His-
togram of fixations durations, fitted via Gamma distribution and saccades amplitudes
via the α-stable distribution. (Bottom) Saccade directions fitted with a mixture of
von Mises distributions and histogram of pupil dilations overlaid with the half-normal
distribution fit.

the output of a regression model into a class probability, namely the cumulative
density function of a standard normal distribution Φ(z) =

∫ z

−∞ N (x | 0, 1)dx.
The function f in Eq. 5 is sampled from a Gaussian Process,

f ∼ GP(· | 0, k) (6)

that assumes prior probability over functions p(f(X)) = p(f(x1), . . . , f(xN )) to
be jointly Gaussian with mean function μ(x) = 0 and covariance matrix K. The
latter is usually chosen as a positive definite kernel function Kij = k(xi,xj ; θ),
θ being the hyperparameters of the kernel function. Such function constrains
similar inputs (xi,xj) to have similar output values (but refer to Rasmussen
and Williams [43] for an in-depth and wide introduction).

Often, in going from data to models, there are many possible inputs that
might be relevant to predicting a particular output. Thus, we need algorithms
that automatically decide which inputs are relevant. In the framework of Gaus-
sian Processes one such tool is naturally provided by automatic relevance deter-
mination (ARD) kernels [37].
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The adopted ARD kernel is a more general form of the squared exponential
kernel for multi-dimensional inputs, that can be defined as

k(x,x′; θ) = σ2 exp

[
−1

2

D∑
d=1

(
xd − xd′

wd

)2
]

, (7)

with hyperparameters θ = {σ2, w1 · · · wD}. Here σ2 is a scale parameter that
determines the variation of function values from their mean. Most important, a
different weight wd, namely the length scale of the function along input dimen-
sion d, is assumed for each value xd of the d-th feature in X . This controls the
horizontal length scale over which the function varies. In other terms, wd deter-
mines the relevancy of input feature d to the classification problem: xd is not
relevant if 1/wd is small.

The ARD formulation is usually exploited at the training stage, in terms
of an automatic Occam’s razor, in order to prune irrelevant dimensions, thus
helping towards automatically finding the structure of complex models. In our
scenario this will help us identifying predictive features for a specific personality
trait.

3 Data Analysis and Results

Analysis has been conducted on a large public available dataset [19]. This
includes gaze recordings from 403 participants (202 males, 201 females) watch-
ing videos of another person, initially gazing toward the bottom, then gazing up
at the participant. A 10-item personality questionnaire based on the Big Five
personality inventory [42] has been submitted to each participant, to define val-
ues for each of the five classes: agreeableness, conscientiousness, extraversion,
neuroticism and openness to experience. They have been assessed through two
items, going from 5 to 1, so that the lowest score (p = 2) is high in that trait,
while highest score (p = 10) is low in that trait. It is worth mentioning that
to the best of our knowledge this is the only public dataset the provides gaze
recordings and personality traits values.

In order to highlight the behavioural differences of each personality trait, a
binary classification approach with k-fold cross-validation was adopted (k = 10).
The classes were formed by separating the highest (C1 = {2 ≤ p ≤ 5}) and the
lowest (C2 = {7 ≤ p ≤ 10}) levels of each trait. The neutral value (p = 6) has
been excluded because considered not relevant.

This partitioning led, in some cases, to unbalanced classes that were treated
using the ADASYN oversampling technique [24] inside each fold of the cross-
validation, in order to avoid possible overfitting problems. ADASYN is a novel
extension of SMOTE [16] method that aims at creating, via linear interpolation,
new examples from the minority class next to the bound with the majority one.

Classification results, shown in Fig. 4, include a comparison with a linear
discriminant analysis (LDA) and a support vector machine (SVM) with radial
basis function kernel. It shows how the GP classifier outperforms, in general,
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the other two methods and is able to correctly guess the personality class, apart
from neuroticism, for the ≥ 73% of cases (chance level is 50%). To provide an
overall quantitative evaluation, the mean value of the accuracy and the values
of other three metrics for each personality trait, over 10 cross-validation folds of
GP classification, are provided in Table 1.

Fig. 4. (Left) heatmap visualisation of fixations recorded from a subject during the
experiment. (Right) mean classification accuracy (and standard dev.) for each person-
ality trait obtained with GP classification, SVM with Gaussian kernel and LDA.

Table 1. Mean value (and standard dev.) of the accuracy, precision, recall and F-
measure for each personality trait obtained with Gaussian process classifier.

Personality trait Accuracy Precision Recall F-measure

Agreeableness 0.77 ± 0.08 0.79 0.96 0.87 GP

0.74 ± 0.06 0.78 0.93 0.85 SVM

0.52 ± 0.06 0.78 0.54 0.64 LDA

Conscientiousness 0.82 ± 0.06 0.86 0.94 0.90 GP

0.82 ± 0.06 0.86 0.94 0.90 SVM

0.52 ± 0.06 0.86 0.53 0.65 LDA

Extraversion 0.73 ± 0.05 0.74 0.96 0.84 GP

0.71 ± 0.03 0.75 0.92 0.82 SVM

0.50 ± 0.06 0.71 0.54 0.62 LDA

Neuroticism 0.58 ± 0.07 0.48 0.44 0.45 GP

0.58 ± 0.07 0.45 0.14 0.22 SVM

0.55 ± 0.07 0.45 0.53 0.49 LDA

Openness 0.78 ± 0.09 0.82 0.95 0.88 GP

0.78 ± 0.08 0.82 0.93 0.87 SVM

0.49 ± 0.10 0.78 0.53 0.63 LDA
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For what concerns the ARD weights learned during the GP training, these
have been aggregated adopting a ‘winner-takes-all’ approach. In other terms, for
each fold have been considered only the most prominent feature with respect to
each personality trait. Final results are shown in Fig. 5.

Fig. 5. The ARD weights resulting after training the GP classifiers. The x-axis indicates
each of the extracted features X = [Vσ,Da,Db,Lγ ,Lδ,Aμ,Aκ,E], while y-axis reports
the number of ‘wins’ in the cross-validation.

Beyond the predictive accuracy gained by the model, it is remarkable to note
how ARD weights, automatically derived along the training procedure, provide
insights with respect to the most relevant features that characterise, according
to this analysis, the different personality traits. For example, extraversion and
openness to experience are best described in terms of saccade directions; con-
scientiousness is mostly accounted for by the number of saccades and fixation
duration, while the latter is prevalent in explaining agreeablenes. The neuroti-
cism trait, though more difficult to predict than others, is however clearly related
to exploratory behaviour represented by saccade amplitude.

4 Discussion

We presented a novel approach for the analysis of gaze patterns in relation
to personality traits. We adopted a probabilistic classifier based on Gaussian
processes that achieves good results in the recognition of levels of personality
traits. In particular, the adoption of an ARD kernel that considers different
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weights for each feature, allows to automatically detect the most prominent ones
in relation to each trait. Indeed, the motivating rationale behind this study was
not only to attain predictive performance in terms of classification accuracy, but
also to show how machine learning-based modelling could be used for gaining
explanatory insights into relevant mechanisms of the studied phenomenon. This
explanatory gain could be further exploited in subsequent and more focused
refinements of experimental design. For instance, as shown in Fig. 5, it results
that the saccades directions, a typically overlooked feature, are a discriminating
factor between subject with high and low levels of openness and extraversion.

As a final specific remark, the reasons behind the low accuracy of the neu-
roticism trait are probably to be found in the nature of the experiment and
in the definition of neuroticism. It is not known, in fact, whether the subjects
present clinical conditions. This could result into an overlapping between mea-
sures of neuroticism addressed via the self-report questionnaire and symptoms
of common mental disorders. Moreover, as pointed in [38], does exist a lack of
consensus on the optimal conceptualization of neuroticism and they suggest to
see it as a mutable score that reflects a person’s level of negative affect during a
particular period.

Finally, as a general remark, must be kept in mind that, as noted in [19]:
many aspects of the experimental design might have influenced the results [. . . ]
The actors we used were all Caucasian between 20 and 40 years old with a neutral
expression and did not speak - all factors that could have influenced observers’
strategies.
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Abstract. Refinement mining has been inspired by process mining tech-
niques and aims to refine an abstract non-deterministic model by sifting
it using event logs as a sieve until a reasonably concise model is achieved.
FormalMiner is a formal framework that implements model mining using
Maude, a modelling language based on rewriting logic. Once the final for-
mal model is attained, it can be used, within the same rewriting-logic
framework, to predict the future evolution of the behaviour through sim-
ulation, to carry out further validation or to analyse properties through
model checking. In this paper we focus on the refinement mining capabil-
ity of FormalMiner and we illustrate it using a case study from ecology.

Keywords: Formal methods · Model-driven approaches
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1 Introduction

The use of large repositories to collect data in various domains of social sciences,
physical sciences and life sciences offers great opportunities for systematic anal-
ysis. Data mining aims to extract meaningful information from data and exploit
it to describe and understand the processes that have generated such data.

More recently, the scope of data mining enlarged from the description of
properties of the data organisation, such as clustering and classification, to the
description of the actual process that led to the creation and organisation of the
data. Process mining, which emerged in the field of business process manage-
ment (BPM), has been used to extract information from event logs consisting
of activities and then produce a graphical representation of the process control
flow, detect relations between components involved in the process and infer data
dependencies between process activities [20]. This is achieved through either the
discovery of an a posteriori process model or the extension of a pre-existing a
priori model, or the comparison of the a priori model with the event logs using
a technique called conformance analysis [15]. However, these three approaches
cannot be automatically integrated, but require the analyst to compare them
manually [13]. Therefore, process mining is used for descriptive purposes, aim-
ing at the discovery of some aspects of the past behaviour, that is, the dynamics
that produced the event log.
c© Springer Nature Switzerland AG 2018
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Although there are a number of works in the areas of synthesis of programs
[10,17,18] and synthesis of biological and probabilistic systems from data [7,11,
14], to our knowledge, the only attempt to integrate process mining and formal
verification is a work by van der Aalst, de Beer and van Dongen’s, which aims at
verifying whether an event log satisfies a property expressed in linear temporal
logic (LTL) [19]. However, such an approach still has a descriptive purpose: the
formal characterisation of properties of the event logs from past behaviour. The
construction of a formal model within a framework equipped with automatic
verification tools, instead, enable prediction of future behaviour.

In our previous work [5] we have taken a step forward and exploited real
data in a constructive rather than descriptive way by integrating techniques
from the realm of process mining with modelling approaches. The technique we
developed, which we called model mining, supports the synthesis of a formal
model from a dataset and enables the formal analysis of such a model in order
to predict the future behaviour and characterise its properties. The synthesised
model is not a mere representation of the unfolded behaviour, but comprises,
instead, a set of formal transition rules for generating the system behaviour,
thus supporting powerful predictive capabilities. The set of transition rules can
be either inferred directly from the events logs (constructive mining) [5] or refined
by sifting a plausible a priori model using the event logs as a sieve until a
reasonably concise model is achieved (refinement mining) [4,5]. To this purpose,
events are partitioned into two classes, environmental events, which allow us to
update the system state, and target events, which are used in refinement mining
to sift a non-deterministic model by possibly invalidating one of its deterministic
instances.

We use equational logic [9] to define the Model Mining Formal Framework
(MMFF) [4,5], which provides a formal description of the events, the system
state and the transition rules that change the system state accoding to the event
occurrences. Rewriting logic [12] is then used to manipulate the data struc-
tures defined in MMFF in order to implement the constructive mining algo-
rithm, which exploits a list of events to build a set of transition rules, and the
refinement mining algorithm, which exploits a list of events to refine an a priori
model consisting of sets of alternative transition rules by reducing the possible
alternatives (thus reducing non-determinism) [5].

In this tool paper we introduce FormalMiner, which implements MMFF and
the two model mining algorithms using the Maude rewrite system [8]. Maude is
a high-performance modelling and analysis system based on a reflexive language
that supports both equational and rewriting logic.

The focus of this paper is the use of FormalMiner in performing refinement
mining. Section 2 introduces rewriting logic and Maude and briefly overviews the
Maude syntax to enable the reader to understand the examples in this paper and
refer them to the Maude code that implements FormalMiner. FormalMiner 1.1,
on which this paper is based, and the case study can be downloaded at

https://cs-sst.github.io/faculty/cerone/modellingfromdata.

https://cs-sst.github.io/faculty/cerone/modellingfromdata
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Sect. 3 presents the architecture of FormalMiner and illustrates the data struc-
tures of MMFF and the general functions for manipulating them. Section 4
describes how refinement mining is carried out and introduces the sifting met-
ric, which is used to evaluate the validity of alternative instances of the model.
Finally, Sect. 5 discusses strategies for carrying out model mining as well as
future work.

2 Rewriting Logic and the Maude System

Rewriting logic [12] is based on rewite rules of the form t =⇒ t′, with t and t′

expressions in a given language. A rewrite rule can be interpreted both computa-
tionally, as a local transition in a concurrent system, and logically, as an inference
rule. Therefore, rewriting logic can be considered both a computational theory
and a logical theory.

Maude [8] is a modelling language based on rewriting logic. It also provides
model-checking capabilities, thus supporting the analysis of the modelled system.
In this work we only use Core Maude, whose syntax we briefly overview in this
section. There are two types of modules in Core Maude, functional modules,
which are restricted to equational logic and support declaration of sorts (with
keyword sort for one sort, or sorts for many), operations (with keyword op
or ops) on them and the definition of such operation using equations (with
keyword eq, or ceq in case of conditional equations), and system modules, which
also support rewriting logic, by additionally including the definition of rewrite
rules (with keyword rl, or crl in case of conditional rewrite rules). A number of
flags can be used while defining an operation. For example flag ctor designates
the operation as a constructor.

A sort A is specified as a subsort of a sort B by ‘subsort A < B’. Keyword
subsorts is used in case of multiple subsorts. Variables denote indefinite values
for sorts to be used within equations or rewrite rules. They are declared with
keyword var or vars. Constants are basically operations with no arguments
and are defined through equations. Maude has several predefined sorts for basic
values, including the obvious sorts Bool, Nat, Int, Rat, and a sort Qid for quoted
identifiers, which are sequences of characters starting with the character ‘’’. All
constructs of the Maude language, apart from the toplevel module construct,
end with a space followed by a dot (‘.’).

3 FormalMiner Core: Events, States and Evolution

In order to be successfully processed with the purpose of extracting process
control flow information, event logs have first to be semantically interpreted
according to the purpose of the model we aim to devise, so that such inter-
pretation can drive their structuring and clustering. Structural and semantical
organisation can be attained by applying text mining techniques, in particular
semantic indexing, in combination with an appropriate ontology from the given
application domain. This approach is commonly used in process mining, which
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Fig. 1. Architecture of the FormalMiner tool in terms of Maude modules.

is thus applied to a set of pre-processed event logs. For the purpose of model
mining we assume to have already pre-processed events organised as a sequence
of structured entities, which are ordered based on their occurrence times.

In this section we show the basic data structures that make up MMFF and
how they are implemented in FormalMiner. For this purpose we refer to the
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FormalMiner architecture described in Fig. 1, where squared boxes represent
functional modules and oval boxes represent the system modules. An arrow
between module M1 and module M2 denotes that M2 imports all declarations and
definitions in M1. The FormalMiner Core implements MMFF data structures
and the general functions to manipulate them. It consists of three functional
modules: EVENT, STATE and EVOLUTION. System module ENGINE, which comprises
the rewrite rules that implement the model mining algorithms, and functional
module CONTROL, which control FormalMiner output, are also part of the MMFF
implementation.

Outside the FormalMiner Core, modules VALUE and TIME contain declarations
of generic sorts, whereas constructors and operation declaration and definition
are depending on the value and time domains considered for the specific applica-
tion. Thus, although the structure of these two modules is standard and includes
generic sorts Value, Time and Age, such sorts need to be instantiated for each
specific application.

Also outside the FormalMiner core, functional module APPL-DATA and sys-
tem module APPL-MODEL are application specific. Module APPL-DATA contains
the dataset, in the form of a defined timed list of events. Module APPL-MODEL
contains the definition of the initial configuration, which includes the initial state
of the system and the plausible model to refine. The names for these two mod-
ules provided here and in Fig. 1 are just placeholders and can be changed to best
describe the application. This is consistent with the fact that these two modules
are not imported by any other module.

Our goal is to model how environmental events affect a target event. Envi-
ronmental events act on the system by changing its state and such changes are
normally visible through target events. Since the system consists of several com-
ponents, which we call domains, we need to define a local notion of state for
each of such domains. We denote such a notion of local state as domain state.

3.1 Environmental and Target Events

Environmental and target events are modelled in the EVENT module. An event
is defined as a triple consisting of

– the time at which the event occurs;
– the event name;
– a concrete value represented as a set {t1(vV1

1 ), . . . , tn(vVn
n )} of typed basic

values, with ti being the type name and vVi
i belonging to value domain Vi,

for i = 1. . . . , n.

Sorts BasicEvent, EnvEvent (environmental events) and TargetEvent (tar-
get events), as well as Event, which comprises the last two as subsorts, and
EventList (sequences of events), are declared in Maude together with the defi-
nitions of their operations as follows:

sorts BasicEvent Event EnvEvent TargetEvent EventList .

subsorts EnvEvent TargetEvent < Event < EventList .
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op [|_,_:_|] : Time Qid ConcreteValue -> BasicEvent [ctor prec 30] .

op env_ : BasicEvent -> EnvEvent [ctor prec 31] .

op target_ : BasicEvent -> TargetEvent [ctor prec 31] .

op noEvents : -> EventList [ctor] .

op _&>_ : EventList EventList

-> EventList [ctor assoc prec 32 id: noEvents] .

Constructors env and target denote environmental and target events respec-
tively. Constructor &> sequentialises events.

In previous work [1] we modelled the dynamic of a population of Aedes
albopictus, a mosquito species known as “tiger mosquito”, which is endemic in
Asian regions, where it is a carrier of dengue fever, and now widespread also in
Europe. The model developed in that work is based on biological aspects of the
mosquito and considers the impact of changes in the environmental conditions
on such biological aspects to simulate the population dynamics. Among rele-
vant environmental conditions are average temperature and rain amount. The
simulation made use of data on the size of the mosquito population collected
during May–November 2009 in the province of Massa-Carrara (Tuscany, Italy)
using CO2 mosquito traps. We will use this case study throughout the paper to
illustrate FormalMiner.

eq May = env[| time(1) , ’Temp : ’avg(val(18)) |] --- 8 May
&> target[| time(1) , ’Aedes : ’adult(val(4)) |]
&> env[| time(2) , ’Temp : ’avg(val(19)) |] --- 9 May

...
&> env[| time(22) , ’Temp : ’avg(val(20)) |] --- 29 May
&> env[| time(23) , ’Temp : ’avg(val(20)) |] --- 30 May
&> env[| time(24) , ’Temp : ’avg(val(22)) |] . --- 31 May

...
eq August = env[| time(96) , ’Temp : ’avg(val(28)) |] --- 1 August

&> env[| time(97) , ’Temp : ’avg(val(31)) |] --- 2 August
&> env[| time(98) , ’Temp : ’avg(val(31)) |] --- 3 August
&> env[| time(99) , ’Temp : ’avg(val(34)) |] --- 4 August
&> env[| time(100) , ’Temp : ’avg(val(33)) |] . --- 5 August

eq Data = May &> June &> July &> August .

Fig. 2. Sequence of events describing changes of temperature and sampling of the
mosquito population.

Figure 2 shows fragments of a sequence of events over a period of 100 days
from 8 May to 5 August 2009. There are only one kind of environmental event,
named Temp and describing daily temperature changes, and one kind of target
event, named Aedes and describing the sampling of the mosquito population on
a specific day. In both kinds of events the concrete value is a singleton describing
the average value for temperature changes and the values for the sampling of
the mosquito adult population. A richer concrete value for temperature would
have also values for minimum and maximum temperature, for example:

env[| time(1), ’Temp: ’min(val(13)) ’avg(val(18)) ’max(val(20)) |]
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3.2 Domain State and Global State

Differently from events, which are concrete entities that accurately represent
the reality, states, modelled in module STATE, refer to the model rather than the
reality. They are thus abstract entities, whose values are abstract values.

A domain state is defined as a quadruple consisting of

– the domain name;
– the set of specifiers for the domain;
– the abstract value that refers to the domain and its specifiers;
– the state age, i.e. the amount of time that the state has persisted with

unchanged abstract value.

Similarly to events, states may be environmental and target. Environmental
states are changed by the occurrence of environmental events (i.e. by the data
as event occurrences), whereas target states are changed according to the model
(i.e. by the model execution) and will be then validated against the target events.
The global state of the system we are modelling consists of the current time and a
set of environmental and target states. The Maude syntax for sorts DomainState,
StateSet and GlobalState is

op <|_,_,_,_|> : Qid Specifiers AbstractValue Age -> DomainState [...] .

op __ : StateSet StateSet -> StateSet [...] .

op _at_ : StateSet Time -> GlobalState [...] .

For example, we may consider four possible abstract values for the size of the
adult Aedes population: low for low, med for medium, high for high and extr
for extreme and the first three also for average temperatures. Then

env<| ’Temp,’avg,’med,age(2) |> target<| ’Aedes,’adult,’med,age(5) |>

at time(0)

is the global state describing the initial day (time(0)) in which the average
temperature has a medium value (med) that persisted for 2 days (age(2)) and
the adult mosquito population has a medium value (med) that persisted for 5
days (age(5)).

3.3 Environment-Driven Evolution

In this section we describe how concrete values of environmental events are
mapped to abstract values, which then determine the evolution of environmental
states.

Although in our example we have used the same name for corresponding
events and states, in general events may be defined with no explicit reference
to the affected domains. The evolution of environmental states is described by
an impact relation, which is implemented by sort Impact, whose elements are
sets of impact associations of sort Association. These sorts are declared in
module EVOLUTION, where Association < Impact denotes that Association is
a subsort of Impact, and defined by the equations in application-specific system
module APPL-MODEL.
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An impact association defines, under a given condition on the concrete value
of the environmental event, which environmental state is affected by the occur-
rence of the event and how it is affected. The syntax of an impact association

{ 〈EventName〉 , 〈CondLabel〉 | 〈FuncLabel〉 | 〈StateName〉 , 〈Specifiers〉 }

defines that an event named 〈EventName〉
– is associated with a state named 〈StateName〉 and having 〈Specifiers〉 as set

of specifiers, and
– determines a state transition defined by label 〈FuncLabel〉, which represents

an evolution function (not a Maude function!),

when the condition labelled as 〈CondLabel〉 is true.
The impact relation for our case study consists of the following three impact

associations

{ ’Temp , ’lowTempCond | ’lowTemp | ’Temp , ’avg }

{ ’Temp , ’medTempCond | ’medTemp | ’Temp , ’avg }

{ ’Temp , ’highTempCond | ’highTemp | ’Temp , ’avg }

Actual conditions and model functions are defined by Maude functions eval and
applyFunc in module APPL-MODEL. For example, in our case study

eq eval(’lowTempCond , V) = 0 <= V and V < 20 .

defines that condition labelled as lowTempCond is true when average temperature
is less than 20◦, and

eq applyFunc(’lowTemp , AV ) = ’low .

defines that the function represented by label lowTemp is the constant function
low, independently of the previous abstract value AV of the average temperature.
Actual conditions and evolution functions of the impact relation for our case
study are given in Table 1.

Table 1. Conditions and evolution functions of the impact relation for the mosquito
case study

State Condition Condition Function Evolution Event Concrete

Name Label Value Label for any Name Value

CL eval(CL,V) CL AV applyFunc(CL, AV)

lowTempCond 0 ≤ V < 20 lowCond constant low

Temp medTempCond 20 ≤ V < 25 medCond constant med Temp avg(V)

highTempCond 25 ≤ V < 36 highCond constant high

Although this approach may seem cumbersome for the simple case study we
consider in this paper, it supports a general form of modelling. For example,
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{ ’Rainfall , ’low2medCond | ’low2med | ’Water , ’moisture }

eq eval(’low2medCond , amount(A) intensity(I)) = A*K/I>=2 and A*K/I<10 .

eq applyFunc(’low2med , ’low ) = ’med .

describes the impact of the rain on a soil with permeability characterised by
parameter K: a rainfall with amount A in millimetres and intensity I determines
an increase of soil moisture from low to medium if 2 ≤ A*K/I < 10. The fact
that the higher the intensity of the rainfall the faster water tends to flow and the
less it is absorbed, thus resulting in a lower level of soil moisture, is described
by A*K/I. Obviously, an environmental event for this example needs two types
of basic value, amount and intensity to make a concrete value, for example

env[| time(5), ’Rainfall: ’amount(val(13)) ’intensity(val(2)) |]

3.4 Model-Driven Evolution

In this section we describe how the plausible model determines the transition
of target states. The mapping from concrete values of target events to abstract
values of target states is defined by function abstraction declared in functional
module EVOLUTION and defined by the equations given in functional module
APPL-DATA. For example, the abstraction for our case study, given in Table 2 is
defined by

Table 2. Abstract relation for the mosquito case study

Event Name Typed Basic Value Condition on Concrete Value V Abstract Value

0 ≤ V < 100 low

Aedes adult(V) 100 ≤ V < 250 med

250 ≤ V < 500 high

V > 500 extr

eq abstraction(’Aedes , ’adult , V) =

if 0 <= V and V < 100 then ’low else

if 100 <= V and V < 250 then ’med else

if 250 <= V and V < 500 then ’high else ’extr fi fi fi .

The transition of target states is modelled by transition rules whose compo-
nents are declared in module EVOLUTION. The rule precondition is defined by
sort RulePre, which is a set of preconditions of sort Precondition, where each
precondition states the existence in the global state of an environmental state
of given domain and set of specifier such that the age of the abstract value has
a given relation with a given threshold. For example

( ’Temp , ’avg , ’med | >= age(10) >>)

denotes that a medium abstract value of the average temperature has persisted
(relation >= between age and threshold) for at least 10 days (threshold expressed
by age(10)). The rule postcondition is defined by sort RulePost. For example
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(<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>)

denotes an increase of the mosquito adult population from low to medium. Given
an appropriate abstraction of concrete values, it may be obvious that the per-
sistence of a medium temperature for a certain number of days results in an
increase of the adult mosquito population from low to medium. However, it is
not clear how many days are needed for such an increase. Therefore, we nor-
mally need to have, within the same model, distinct transition rules with the
same postcondition but preconditions which are not mutually exclusive. A good
strategy is to initially include two rules corresponding to what we expect to be
reasonable lower and upper bound limits. In our specific case, we may expect
the population increase to occur on the same day as the temperature increase
or within up to 10 days:

( ’Temp , ’avg , ’med | >= age(0) >>)

=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>)

( ’Temp , ’avg , ’med | >= age(10) >>)

=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>)

We might even not be sure that the population size can change within these 10
days. Then we also add transition rules

( ’Temp , ’avg , ’med | >= age(0) >>)

=> (<< ’Aedes , ’adult | ’low -- ’stable -> ’low >>)

( ’Temp , ’avg , ’med | >= age(10) >>)

=> (<< ’Aedes , ’adult | ’low -- ’stable -> ’low >>)

These four rules are grouped together in a set called option set, which
describes a form of non-determinism, called option-related non-determinism,
which we expect to be reduced by sifting out those transition rules that are inval-
idated by the data. Therefore, refinement mining exploits data, in the form of
event logs consisting of target events, to reduce option-related non-determinism.

However, not all determinism may be reduced using refinement mining. For
example, in ecology, there might be alternative forms of behaviour of individuals
which are dictated by their free will. Such alternatives must be modelled by
transition rules of distinct option sets. This form of non-determinism, which
we call model-related non-determinism is intrinsic to the model and cannot be
reduced using refinement mining. Finally, the impact of environmental events on
environmental states may depend on unknown or only partially known factors.
Or it may depend on known factors, which, however, we may have chosen not
to model or we cannot model because they depend, in turn, on factors which
are either unknown or too complex to include in the model. For example, soil
moisture may also depend on desiccation, which, however, we may have chosen
not to model or we may not be sure how to model. We call this third form
of non-determinism impact-related non-determinism and we model it by impact
associations whose conditions are not mutually exclusive.

We can thus define a plausible model as a set of option sets. The plausi-
ble model for our case study is given in Fig. 3. It consists of 10 option sets,
numbered 1 to 10. Option set 4 consists of the 4 alternative transition rules
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[1] < { 1 | ( ’Temp , ’avg , ’low | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’extr -- ’decrease -> ’med >>) } >

[2] < { 1 | ( ’Temp , ’avg , ’low | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’high -- ’decrease -> ’low >>) } >

[3] < { 1 | ( ’Temp , ’avg , ’low | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’med -- ’decrease -> ’low >>) } >

[4] < { 1 | ( ’Temp , ’avg , ’med | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>) }

{ 2 | ( ’Temp , ’avg , ’med | >= age(10) >>)
=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>) }

{ 3 | ( ’Temp , ’avg , ’med | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’low -- ’stable -> ’low >>) }

{ 4 | ( ’Temp , ’avg , ’med | >= age(10) >>)
=> (<< ’Aedes , ’adult | ’low -- ’stable -> ’low >>) } >

[5] < { 1 | ( ’Temp , ’avg , ’med | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’high -- ’decrease -> ’med >>) }

{ 2 | ( ’Temp , ’avg , ’med | >= age(4) >>)
=> (<< ’Aedes , ’adult | ’high -- ’decrease -> ’med >>) } >

[6] < { 1 | ( ’Temp , ’avg , ’med | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’extr -- ’decrease -> ’high >>) } >

[7] < { 1 | ( ’Temp , ’avg , ’high | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>) }

{ 2 | ( ’Temp , ’avg , ’high | >= age(4) >>)
=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>) } >

[8] < { 1 | ( ’Temp , ’avg , ’high | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’med -- ’increase -> ’high >>) }

{ 2 | ( ’Temp , ’avg , ’high | >= age(4) >>) $\!\!\!\!\!\!\!$
=> (<< ’Aedes , ’adult | ’med -- ’increase -> ’high >>) } >

[9] < { 1 | ( ’Temp , ’avg , ’high | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’med -- ’increase -> ’extr >>) }

{ 1 | ( ’Temp , ’avg , ’high | >= age(16) >>)
=> (<< ’Aedes , ’adult | ’med -- ’increase -> ’extr >>) } >

[10] < { 1 | ( ’Temp , ’avg , ’high | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’high -- ’increase -> ’extr >>) }

{ 2 | ( ’Temp , ’avg , ’high | >= age(2) >>)
=> (<< ’Aedes , ’adult | ’high -- ’increase -> ’extr >>) } >

Fig. 3. Plausible model for the mosquito case study.

illustrated above. Some option sets consist of just one transition rules. This is
the case for option sets 1–3, due to the belief that a low temperature will always
cause a decrease of the adult mosquito population to low on the same day, inde-
pendently of the size of the initial population. Similar beliefs are that a medium
temperature will always cause a decrease of the adult mosquito population from
extreme to high on the same day (option set 6). The other option sets (5 and
7–10) consist of two rules corresponding to the same day as the lower bound and
what we expect to be a reasonable upper bound.

4 Plausible Model Refinement

In order to check which transition rules are invalidated by the data, each transi-
tion rule of an option set has to be consistently checked against the entire dataset.
To this purpose, the plausible model is decomposed in all possible option-free
models, that is, models without option-related non-determinism; each model is
then used to perform a simulation, during which the results of simulation steps
are compared with the target events. For each option-free model, the model
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refinement engine records the number of times the model is invalidated by a
target event and, for each transition rule used within that model, it also records
the number of times the rule is applied through simulation. Finally, the recorded
information on the number of times the model is invalidated and its rules are
applied is combined into a sifting metric that is associated with that specific
model in order to provide a measure of model validation.

For each option-free model considered, the refinement mining returns a set
Ψ of option references representing the selected transition rule for each option
set and providing the number of times such a rule is applied. These references
are formally defined as follows.

Definition 1. An option reference is defined as a Maude term [k : i(j)]
where

– k is a reference to the option set whose identification number is k;
– i is a reference to the transition rule whose identification number is i within

the option set identified by k;
– j is the number of times the referred transition rule has been applied during

the current simulation.

For example, in the following list of option references represented as a Maude
term

[1 : 1(0)] [&> [2 : 1(0)] [&> [3 : 1(1)] [&>

[4 : 2(1)] [&> [5 : 1(0)] [&> [6 : 1(2)] [&>

[7 : 1(0)] [&> [8 : 1(1)] [&> [9 : 2(0)] [&> [10 : 1(3)] (1)

rule 1 of option set 3, rule 2 of option set 4 and rule 1 of option set 8 are applied
once, rule 1 of option set 6 is applied twice and rule 1 of option set 10 is applied
three times, whereas all other selected rules are never applied.

4.1 Sifting Metric

Definition 2. A model reference is defined as a Maude term { μ, ω | Ψ },
where

– Ψ = [1 : i1(j1)] [&> . . . [&> [n : in(jn)] is a list of n option references,
one for each option set;

– ω is the number of times the model is invalidated by a target event;
– μ is the measure of model validation, which is calculated using the following

sifting metric

μ =
(1 − c · ω

η ) · ∑n
k=1 jk

σ

in which
• η is the number of target events against which the model is checked during
simulation;

• c ≤ η is a positive constant that assigns a fixed weight to all invalidations;
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• σ is the number of environmental state changes due to the occurrences of
environmental events.

For example, the model reference corresponding to the list of option references
represented as Maude term (1) above is

{ 8/17 , 0 | [1 : 1( 0)][&> [2 : 1(0)][&> [3 : 1(1)] [&>

[4 : 2(1)][&> [5 : 1(0)][&> [6 : 1(2)] [&>

[7 : 1(0)][&> [8 : 1(1)][&> [9 : 2(0)][&> [10 : 1(3)] }

where μ = 8/17 � 0.47 is the value provided by the sifting metric and ω = 0
denotes that the model was never invalidated.

Definition 3. A refinement is a set of model references { μ, ω | Ψ }, such
that μ > 0.

The probability that the model is invalidated by a target event is given by ω
η .

Thus, for c = 1, term 1 − c · ω
η gives the probability that the model is not

invalidated by a target event. The higher such a value, the more accurate the
model. The role of constant c is to take noise into account. We choose c < η in
situations in which noise may invalidate correct models. In this case the higher
the noise, the smaller should c be chosen. Unfortunately, the sifting metric cannot
help in situations in which noise may validate incorrect models. In the absence
of noise we could choose c = η, which includes in the refinement only the models
that are never invalidated, but would exclude possible models invalidated by
noise. In our previous work [4] we sifted out a model at the first invalidation.
This can be reproduced in our more general framework by choosing c = η.

Term (
∑n

k=1 jk) gives the total number of transition rules applications. Since
transition rules are only applied after an environmental state changes due to the
occurrence of an environmental event, term (

∑n
k=1 jk)/σ gives the probability

of application of transition rules after an environmental change. This provides
a measure of how frequently the model evolves in response to environmental
changes. Therefore metric μ combines the fact that the model is validated by
the target events (term 1 − c · ω

η ) with the responsiveness of the model to envi-
ronmental events (term (

∑n
k=1 jk)/σ).

Table 3 shows the results of applying refinement mining to our case study.
In absence of noise, for c = η = 10, the refinement comprises 32 out of 128
option-free models, i.e. all option-free models that are not invalidated (ω = 0).
However, for c = 9 < η, the number of option-free models in the refinement
increases to 96 and, for c = 1 < η, the refinement actually comprises all 128
option-free models, with some models with 1 invalidation (ω = 1) being better
(μ = 9/17 � 0.529) than all models with 0 invalidations (ω = 0, μ = 8/17 �
0.471). In fact, the negative effect of ω on metric μ is directly proportional to
constant c and inversely proportional to the number η of target events. Thus,
in our case study, the small number of target events η = 10 makes the effect of
ω decrease quickly when c decreases: a small η cannot effectively validate the
model against noise.
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Table 3. Results from applying refinement mining to the plausible model in Fig. 3
(128 option-free models, η = 10 and σ = 17).

refinement no. models μ ω
∑n

k=1 jk

32 32 8/17 � 0.471 0 8

models for 64 0 1 8 or 10

c = 10 = η 32 −10/17 � −0.588 2 10

96 32 8/17 � 0.471 0 8

models for 32 1/17 � 0.059 1 10

c = 9 < η 32 4/85 � 0.047 1 8

32 −8/17 � −0.471 2 10

128 32 9/17 � 0.529 1 10

models for 32 8/17 � 0.471 0 8

c = 1 < η 32 8/17 � 0.471 2 10

32 36/85 � 0.424 1 8

5 Conclusion and Future Work

In this tool paper we have presented the architecture of FormalMiner and
described how refinement mining is carried out on a real case study from
ecology. With respect to our previous work [4,5], we emphasised on practical
aspects such as the sifting metric, which is used to evaluate the validity of alter-
native option-free instances of the model. In particular, the sifting metric was
simplified by removing the dependency from the number of option sets. The def-
inition of refinement was also simplified by removing the notion of a threshold.
These simplifications led to a more informative output of FormalMiner, which
allows us to improve the refinement mining strategy as discussed below.

In our previous work [5] we discussed the complexity of model mining and
presented the results of timing testing. In term of complexity, we observed that
the number of transition rule applications grows linearly with respect to the size
of the dataset. Moreover, the complexity of the refinement mining algorithm is
subquadratic with respect to both the size of the dataset and the number of
option-free models.

The main problem is that the total number of option-free models grows expo-
nentially with the number of options per option set. In this sense the complexity
is exponential with respect to the level of option-related non-determinism. It is
therefore a good strategy to apply refinement mining repeatedly on plausible
models which contain only a small number of options per option set. In this way,
we may get some ideas on which combinations of transition rules are incompat-
ible and then test them in separate runs of the refinement mining algorithm. In
particular, in Sect. 3.4, we suggested to initially include two rules corresponding
to what we expect to be reasonable lower and upper bound limits for the per-
sistence of a domain state. In this way, after running refinement mining once,
we can select the models that are part of the refinement (those for which μ > 0)
and then combine them in a new plausible model such that
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1. when only one of the two rules of a pair with lower and upper bound limits
was excluded from the refinement, while the other rule was applied at least
once, a modified version of the former rule with limit closer to the bound of
the latter rule may be introduced;

2. when both rules of a pair with lower and upper bound limits were included
in the refinement, the more stringent rule may be eliminated;

3. when both rules of a pair with lower and upper bound limits were excluded
from the refinement, either their bound limits may be relaxed or both rules
may be eliminated, depending on whether or not we find these two rules
consistent with the rest of the plausible model.

Obviously pairs of rules that are included in the refinement but are never applied
require further data in order to be validated.

For example, let us consider the option-free model defined by the list of
option references reppresented by Maude term (1) in Sect. 4, which is part of the
refinement for any choice of constant c. Since rule 2 was included in and rule
1 was excluded from option set 4 in the refinement, following item 1 above, we
may make the lower bound closer to the upper bound and run the refinement
mining again, thus finding out that for lower bounds between 6 and 9 also rule 1
is included in the refinement. This means that we can replace the two rules of the
pairs with just one rule with a persistence of 6 days as a condition. Since both
rules 1 and 2 of option set 8 were included in the refinement and applied once,
following item 2 above, we may eliminate rule 2, which requires a persistence of
4 days and is therefore more stringent than rule 1. Rules 3 and 4 of option set 4
were both excluded from the refinement. Following item 3 above, they may be
eliminated due to their inconsistency with rules 1 and 2 of option set 4. Finally,
rules in option sets 5, 7 and 9, which are never applied, require further target
events in order to be validated.

In our future work, we intend to automate the combination of option-free
models that are comprised by the refinement into a new plausible model. More-
over, we are planning to apply refinement mining to other case studies from
ecology and from other areas [2], such as human-computer interaction [3,6] and
emergency management [16].
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1 Introduction and Content

Reducing the likelihood of faults and failures in the development and in the use of
interactive systems becomes a more and more inescapable necessity. Indeed the use of
such systems is becoming widespread in applications that demand high dependability
due to usability, safety or, security requirements while taking into account additional
considerations such as User Experience or Learnability. Interactive systems make use
of more and more sophisticated electronic devices and are made up by multiple
hardware and software components. These systems are in fact large artifacts that are
also becoming increasingly ubiquitous and being used in new and more complex
situations.

Consequently, the use of formal methods in providing some assurance on the
dependability of interactive systems should take into account the wider socio-technical
system. The aim of this workshop is to bring together researchers in computer science,
human factors, and other areas of HCI, from both academia and industry, who are
interested in both formal methods and interactive system design and development.

FMIS 2018 solicited papers that address issues of how formal methods can be
applied to interactive system design. It also welcomed papers with a focus on theory
provided a link to interactive systems is made explicit. Application areas considered
included but were not limited to: mobile devices, embedded systems, safety-critical
systems, high-reliability systems, shared control systems, digital libraries, eGovern-
ment, pervasive systems, ubiquitous computing, and computer security applications.



2 Background on FMIS Workshop Series

FMIS workshop organized within STAF 2018 in Toulouse was the seventh of a serie
that started in 2016 and was organized as a satellite event of ICFEM 2006. The
proceedings of the workshop were published in Electronic Notes of Theoretical
Computer Science, Volume 153 [1]. FMIS 2007 was organized immediately after
FMIS 2006 and located in Lancaster, UK [2].

After that, FMIS workshops were organized in different places of the world most of
the time in conjunction with other main conferences in the are of Software Engineering,
Formal Methods or Human-Computer Interaction as for instance FMIS 2012 in con-
junction with the international conference of Application and Theory of Command and
Control Systems [3].

3 Content of FMIS 2018 Alongside STAF

3.1 Keynote and Papers

FMIS 20181 program presented one keynote and a set of 4 long and 2 short papers. The
keynote was given by Professor Dominique Mery from Telecom-Nancy, France. The
topic was “Abstraction and Refinement for Managing Features Interactions” starting
the day with deep content and provocative thoughts about the complexity of modeling
and verification activities highlighting, in places, the challenges raised by interactive
systems.

3.2 Organizers

As FMIS run within STAF 2018, the organizers received extremely useful support
from STAF organization committee. In addition, David Chemouil, ONERA, Toulouse,
France and Neeraj Kumar Singh, INPT-IRIT, Toulouse, France managed the organi-
zational aspects of the workshop.

The scientific committee was led by Yamine Aït-Ameur, and Philippe Palanque and
was composed of the following members:

Matthew Bolton, University at Buffalo, New York, USA
Judy Bowen, University of Waikato, Hamilton, New Zealand
Jose Campos, University of Minho, Braga, Portugal
Antonio Cerone, Nazarbayev University, Astana, Kazakhstan
Horatiu Cirstea, University of Lorraine, Nancy, France
David Chemouil, ONERA, Toulouse, France
Paul Curzon, University of London, UK
Bruno d’Ausbourg, ONERA, Toulouse, France
Michael Harrison, Newcastle University, Newcastle, UK
Kris Luyten, Hasselt University, Hasselt, Belgium
Atif Mashkoor, SCCH, Hagenberg, Austria

1 https://fmis2018.sciencesconf.org/.
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Mieke Massink, Institute of Information Science and Technology, Pisa, Italy
Dominique Mery, University of Lorraine, Nancy, France
Charles Pecheur, Université Catholique de Louvain, Louvain, Belgium
Steve Reeves, University of Waikato, Hamilton, New Zealand
Neeraj Kumar Singh, INPT-IRIT, Toulouse, France
Benjamin Weyers, RWTH Aachen University, Aachen, Germany

That committee reviewed and selected the submissions. In addition to the scientific
presentations two interactive discussion sessions was organized to exchange ideas and
experience on:

• The evolution of interaction techniques and Formal Methods and how can formal
approaches for Interactive Systems deal with the rapid evolution of the interaction
techniques.

• Properties verification for interactive systems trying to provide answers to the
questions “Are we progressing on the verification of properties for interactive
systems? Can we define an agenda of items to consider as a priority for future
research”.

4 Future Events and Perspective

The attendees of the workshop agreed that the topic is worth studying and that there is
no other venue that is addressing the topic. ACM SIGCHI conference on Engineering
Interactive Computing System (EICS2) was mentioned but detailed analysis of pub-
lished content over the last few years demonstrated that formal aspects of interactive
systems is not a subject published there.

It was thus decided to renew the experience in the near future and try to advertise
widely the need for more FMIS-related contributions in order to provide users with
dependable and usable interactive systems.
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Abstract. As formal methods become increasingly practical, there is a
need to explore their use in a variety of domains. Wearable sensing is a
rapidly developing area in which formal methods can provide tangible
benefits to end users, facilitating the advance of cutting-edge technology
where consumer trust is critical. The INSPEX project aims to develop
a miniaturized spatial exploration system incorporating multiple sensors
and state of the art processing, initially focused on a navigation tool for
visually impaired people. It is thus a useful test-case for formal methods
in this domain. Applying formal methods in the INSPEX development
process entailed adapting to realistic external pressures. The impact of
these on the modelling process is described, attending in particular to
the relationship between human and tool-supported reasoning.

1 Introduction

The industrial application of formal methods is becoming increasingly common.
In safety-critical domains such as aerospace, train systems, and nuclear reactors,
it is more and more the case that one can reasonably expect their use [1,3,7,14].
For the design of CPUs, where the financial cost of failures is extreme, formal
methods have become standard [22]. This is starting to extend to other types of
widely used infrastructure such as operating system components and compilers
[16], and famously, in the back-end operations of large web-based companies.1

These fields, of course, do not exhaust the range of potential applications.
Indeed, a time may come when most software is developed using rigorous tech-
niques, but this future is at present rather remote. Instead, the frontier consists
of complex systems whose cost of failure is high, if not quite catastrophic. The
development of systems with these characteristics presents an ideal opportunity

1 We have in mind the use by Facebook [11] of behind-the-scenes verification tools,
described in [32], and as predicted almost a decade earlier by Meyer in [20].
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for formal methods researchers and software engineers to engage with each other
to make rigorous development more applicable and ubiquitous.

The area of medical devices is evidently one in which the consequences of
errors may be permanently debilitating or fatal, and there, system construction
is governed by numerous standards, e.g. [17] for software. Adjacent to life-critical
devices, there is an expanding area of medical accessories, attempting to enhance
the lives of their users in significant if non-critical ways. Among the many specific
kinds of device in this category we mention ‘assistive technologies’ which aim
to support users with specific needs to navigate a world principally designed
without those needs in mind. If the device functions as it should, the benefit is
an increased ability to live independently.

In this paper, we examine the INSPEX system [18], one example of a naviga-
tion aid for visually impaired people. Such navigation aids, if they are successful,
may help the user to carry out more complex journeys than they would usually
feel comfortable undertaking, and with less reliance on others to help them. From
this benefit there arises a concomitant cost: if the system should fail, the user
may be left stranded in an unfamiliar area which they would otherwise have
avoided, perhaps even having to wait for assistance from friends, strangers or
emergency services. While such an event would clearly undermine the increased
independence which the device should bring, it is not the occurrence but the
plausible probability of this kind of problem which is a threat to the system’s
usefulness: unless users can be reassured that failure is a remote possibility, they
can not rely on the technology.

While the most classical navigation aid for visually impaired people, the white
cane, is a simple and robust physical tool, the decreasing cost of sensors and
increasing ubiquity of portable or wearable computing provides new possibilities
to imagine assistive technologies. However, given the high reliability required and
the complexity of the technology involved, the issue of correctness presents a bar-
rier to entry for anyone wishing to provide such a product. Indeed, in some juris-
dictions, devices of this type are highly regulated, underscoring the challenge to
be met.

For these reasons, the development of assistive technologies represents a key
area in which the industrial use of formal methods may expand. However, projects
in this area are likely to be conducted under significant time pressure, and to be led
to a great extent by technology and hardware development. Software components
may be re-purposed from previous development efforts which are unlikely to have
employed a rigorous methodology. These factors together eliminate two classical
approaches for integrating formal methods into a project. A top-down approach
becomes impractical, because the desire to leverage new technologies in a timely
manner necessitates the use of existing components where possible. On the other
hand, an incremental use of static techniques to analyse a system in deployment,
as might be used for back-end technologies, is not practical for stand-alone devices
which must be highly reliable from the outset.

In this paper, we describe the effects of these constraints on the formal mod-
elling process, based on our experience working on the INSPEX project. In Sect. 2
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the INSPEX project is described in more detail. Our experiences with different
strategies for modelling under the constraints of the project are discussed in
Sect. 3, and the extent to which we have been able to support this activity with
existing tools is reported in Sect. 4. Concluding remarks are made in Sect. 5.

2 The INSPEX Project

The INSPEX project [18] aims to construct a wearable spatial exploration sys-
tem, providing obstacle-detection and warning capabilities. Such systems in
themselves are not new, and indeed the traditional white cane used by some
visually impaired or blind people constitutes an example. Recently, advances in
sensor technologies have made it possible for consumer applications to utilize
advanced electronics for this purpose. This leads to enhanced white canes which
incorporate range sensors such as ultrasound or LiDAR. While the cane sweeps
to detect ground-level obstacles, the sensor can scan a head or body height, and
the system can provide a warning beep or buzz if there is an obstacle in its path.
A selection of existing or projected systems based around the advanced sensor
idea includes Smartcane [28], Ultracane [31], Bawa [5] and Rango [25].

INSPEX will design a small, light device, suitable, in the first instance, to
be mounted on a white cane to assist the blind and visually impaired. Further
use cases include other low-visibility domains such as fire-fighting in smoke filled
environments, or the operation of small airborne drones. INSPEX advances the
state of the art for such systems in two ways.

First, incorporating ideas currently used for automotive applications,
INSPEX combines readings from multiple sensors into a single statistical model
of the environment [15,19,21,27,30]. Specifically, it makes use of a short range
LiDAR, a long range LiDAR, an ultra wide-band RADAR, and a MEMS ultra-
sound sensor. This is a significant improvement over a single-sensor system
because each sensor has different characteristics and each performs best under
different circumstances. Factors such as light level, fog, rain, snow, reflectivity
of the target or its distance and size, impact the accuracy of data from differ-
ent sensing methods in different ways. Combining these diverse measurements
can lead to greater accuracy, and discrepancies between them can reveal proper-
ties of environmental objects, such as translucency, which are not possible with
one type of reading alone. As part of the INSPEX project, the sensors them-
selves have to be miniaturized and adapted to function in close proximity to
each other. This work is carried out in parallel by the Swiss Center for Electron-
ics and Microtechnology, the French Alternative Energies and Atomic Energy
Commission, the Tyndall National Institute Cork, and SensL Technologies.

Second, the INSPEX device integrates a significant amount of processing, so
that its output, rather than simple range readings, can consist of more mean-
ingful data such as a depth-map of the scanned environment, or the location
of salient obstacles. This saves the data consumer the effort of processing raw
readings into a meaningful form. This is significant in human-oriented applica-
tions, as traditionally the presence of, or distance to, an obstacle in a particular
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direction is presented to the user rather directly, in the form of sound or tactile
feedback, leaving the user’s brain the task of extracting a model of the envi-
ronment. This will be a familiar experience to those readers who have had to
translate the more or less frequent beep of a car reversing sensor into sensible
manoeuvres, especially in the presence of small unexpected obstacles. Relieving
this cognitive load for users who must make constant use of the data from the
sensors is significant, and the processing performed by the INSPEX sensing unit
allows a smartphone application, developed with the French startup GoSense,
to render the environment in a 3D ‘sound picture’, presented to the user via
binaural headphones.

The system consists of many heterogeneous modules. There is the headset,
the smartphone and the environment sensing system. Within the sensing system,
which is where the focus of the technological development work is concentrated,
the individual sensors are provided by autonomous submodules (capable of being
deployed individually in other applications), whose readings are combined using
a software processing subsystem for the digital information garnered.

These features make the INSPEX project an ideal test case for the appli-
cation of formal methods to the class of problems described in the previous
section. The success of the device crucially relies on its dependability, making
formal methods attractive. However, time constraints, fundamental technologi-
cal challenges, and the necessary re-use of existing components where possible
mean that a pragmatic approach to the formal modelling and verification pro-
cess must be taken. In what follows, we outline lessons learned from this project
about how formal modelling can be incorporated in a development process with
these characteristics.

3 Modelling Approaches for INSPEX

As outlined above, when modelling the class of systems of interest in this paper,
one must frequently deal with bodies of existing code which have been modified
so as to be suitable for the project at hand. In contrast to the ideal application
of formal methods, in which formal modelling would be used to derive code
from requirements, adding clarity and detail progressively, a more ‘bottom up’
approach is clearly needed which relates to the existing code as it is, and which
acknowledges that requirements are somewhat obscure, encoded implicitly in
implementation details and engineers’ minds.

In beginning such a modelling exercise, we have found that there are two
tempting mistakes which must be avoided. The first is to take ‘bottom up’ too
literally, and attempt to model the low-level of the code in complete detail. Under
any plausible constraints on time and personnel, an unmodified interpretation of
this is clearly impossible: in a system of any reasonable complexity, there are sim-
ply too many low-level events to lead to the extraction of a sensible formal model.

At the level where the functioning of the operating system and libraries is
considered to be correct—perhaps leveraging existing work [10,13]—the task
has a semblance of achievability, but this quickly turns into a mirage. It rapidly
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becomes clear that while such a model may be constructible in the time available,
there will be little time for anything else. Given that the constructed model
would be almost a copy of the code as it is, little value would be added in
terms of perception of the intended purpose of the system, at the cost of great
effort. Discrepancies would be hard to detect because of the low-level focus, and,
since the model would not be independent from the program, they would be
vastly more likely to originate in modeller error than to be genuine defects in
the system. While existing formalizations of operating system functionality are
valuable tools for modellers of higher level systems, the insights contained in
them must be more carefully deployed.

It must not be thought that these problems could be overcome by automated
means. While models could in principle be extracted from code, ameliorating
the issue of the quantity of work, the more fundamental problem of obtaining a
copy of the existing low-level artefact would remain. In a system like INSPEX, it
would be difficult to analyse such a model, even automatically, for problems more
interesting than null pointer dereferences or buffer overruns. For example, the
main correctness property we care about for the INSPEX system is liveness: we
don’t want the system to stop producing output unexpectedly or unreasonably.
However, it is clear that there are lots of circumstances under which output is
impossible.

In order to perform its analysis, the system requires sufficiently diverse input
with sufficient frequency. What exactly is meant by ‘sufficiently diverse’ and
‘with sufficient frequency’ is not clear from a high-level point of view with-
out considerable human insight. It crucially depends on implementation details,
essentially corresponding to the way memory is managed. Even to understand
that the problem can be stated in this form, reducing the number of properties of
the implementation to be determined to just two frequencies, a high-level under-
standing of the code is needed. For the foreseeable future, extracting this kind
of conceptual information from a computer program remains an unavoidably
human task.

If the desire to start with the details as they exist is problematic, the opposite
tendency is equally dangerous. Given that the salient aspects of the code are only
visible in the light of a high-level understanding, it is tempting to try to run a
traditional formal development, from requirements, through specifications, cul-
minating in implementation-level models. These would then be compared with
the existing code for discrepancies. Of course, the likelihood that low level models
obtained in this way would match the real code would be remote. Furthermore,
it would be a grave mistake to replace the real-world code with something gener-
ated by the model, since the real code embodies a wealth of practical experience
about the efficient and robust implementation of the system which a modeller
is unlikely to be able to replicate, particularly in little time. For this reason, the
modeller must keep one eye on the code, though this starts to risk the same
problem as the approach above: the specification is no good if it just amounts to
saying that the abstract model does whatever the code does and thus the code
is correct with respect to the abstract model by default!
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A more formidable obstacle is the scale of the problem of going from low-level
code to high-level properties suitable for a specification. As described above,
coming to understand the precise requirements that the system places on its
inputs in order to function properly depends on a detailed understanding of
the code. It would be hubristic to imagine that a lengthy cogitation on the
details would produce the required perspective for a system of any reasonable
complexity.

Both options considered above share the defect that a lot of time and effort
is consumed before any actual model results. This is a poor use of resources,
as a widely drawn lesson in applied formal methods is that much of their value
is derived from the human understanding of the system gained by producing
models [4,14]. These models (or from questions driven by constructing them)
can be discussed with engineers, revealing points of tension which may imply
the presence of inadequate understanding by any of the parties, or of bugs. This
interactive process works best if comprehensible models can be produced early
in the whole design and implementation activity as it is well known that the cost
of fixing defects is roughly exponential in how far along the development route
they are discovered [8,23,29].

The resolution of these dilemmas has two aspects. The first is that engineers
will already have a conceptual understanding of the code they have produced,
which is likely to be at an intermediate level of abstraction. They will be able
to provide a description of the functioning of the system at the level of data
structures rather than low-level manipulations. A model of this description has
the advantage of being at the level engineers already think about the system,
facilitating discussion and helping to resolve ambiguities in natural language
descriptions. Data structures are likely to be motivated by non-functional con-
siderations such as memory constraints or hardware requirements. In some sense,
a description of the system at this level is likely to describe the practical objec-
tives met by the code at a level which abstracts from detailed manipulations, but
leave the ultimate purpose of the system’s actions implicit. Therefore, in addition
to making explicit how this description connects to the implementation details,
the modeller must also extract a specification of correctness with a reasonable
degree of independence.

Once this mid-level model is in place, the task of producing high and low
level models is dramatically simplified. In a very idealized description, one might
imagine working recursively, always attempting to make half-steps in the direc-
tions of specification and implementation simultaneously, and filling in the gaps
between existing models. The distinctive property of this process of modelling is
that refinement relations between models become formalizable all at once, as the
end of the process of interpolation is approached. This delays the construction of
a formal proof that the system behaves as it should, and prioritizes maximizing
the amount of communication with the development team.

In reality, the situation is likely to be a little worse than what has just been
stated. Producing models of the entire system, suitable to stand in relations of
refinement to each other, becomes increasingly difficult as low-level features are
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incorporated and get in the way of clean abstraction. Instead, it is advisable to
model whatever aspects of the system seem amenable to modelling.

For example, in the INSPEX system, the incoming sensor readings are pre-
processed in various ways before being sent to the statistical algorithm which
computes a representation of the user’s environment. In the course of this pro-
cessing, they spend time in various internal buffers. In a high-level approximation
to the system, one imagines that the message contents themselves move around
in these data structures, but in reality only references are manipulated. This gen-
erates some subtle requirements. When an abstract object simply disappears, its
reference can not disappear: instead it must be used to deallocate the resource
referenced. More interestingly, when a piece of abstract data passes from one
buffer to another, in reality these buffers may be stored on separate subsystems.
In that case, the reference must not be sent. Instead, the data itself must be
sent, and the abstract value represented by a new reference to the copy.

In principle, these sorts of details are well captured by refinement, but in
practice if the algorithm at an abstract level is already complex, a model incor-
porating the lower level details can become extremely unwieldy and in particular
difficult to discuss with engineers. Instead, the processes implementing individ-
ual steps of the low-level memory management procedures can be modelled. The
resulting set of models, then, will stand in a variety of relations to each other
and to the code, focussing on select aspects of the system chosen by human
judgement.

4 Tool Support

Most of the modelling work for INSPEX has been done using Event-B [2] and
the Rodin tool [26]. The Event-B style of formal development constructs sys-
tem models by building state machines, with state spaces (not by any means
restricted to finite cardinalities) defined statically, and with the transitions
between states defined by guarded events written in a guarded command lan-
guage. The Rodin tool reasons about the consistency or otherwise of the model
defined, by comparing the definition of the model’s dynamics against the invari-
ants and other properties that are included in the model’s definition.

The choice of Event-B and Rodin was made principally on modelling grounds.
We found that Rodin, together with its recently incorporated SAT solving plu-
gins [9] doing the heavy lifting on the proving side, was very convenient for
modelling timing-related properties of systems. It performed better for our appli-
cation, and could be more useful, than tools which focus specifically on time.
The reason is that systems such as ours do not fit well the perspective on time
that those alternative tools take. By contrast, in many respects Rodin fits very
well with the modelling process described here.

Of course, the ability to animate models using the ProB plug-in of Rodin
[24] is very useful for communicating the meaning of models to non-specialists.
In addition, the semi-interactive style of proof is well-suited to a modelling style
in which much of the issue of correctness is left to human discretion. Indeed, we
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often find that arguments about data structures are often reducible by a com-
bination of human and automated effort into an intuitively obvious statement.
This can be marked as ‘reviewed’ in Rodin, allowing a record of the interplay of
human and automated verification.

One might also think that some of the relationships between models alluded
to above which do not amount to refinement may be covered by some of the many
plug-ins available. Of the plug-ins available, those on model decomposition, and
particularly atomicity decomposition [12], seem most likely to be relevant. At
present, however, use of these tools presents the problem that one particular
formalism out of many possibilities for decomposition must be chosen to repre-
sent a relationship between subsystems which is intuitively understood, but may
correspond to each of the possibilities only imperfectly. This work only seems
justifiable if it is reasonably clear that it would form part of a formal proof of
correctness. We may return to this point in future work.

In addition to the relationships between different abstract models, there is
also the question of the relationship between these models and the code. For
detailed enough models, this relationship can be checked for plausibility by a
human being, but this may lead to low-level problems being overlooked. In the
INSPEX project, we have made use of the BLAST tool [6] to confirm aspects
of our understanding of the code. BLAST was selected as an initial tool to
investigate for this purpose because of the availability of tutorial material, and
crucially because of its specification language which is conceptually close to the
idea of guarded events.

For example, suppose that at a relatively high level of abstraction, we model
a sensor process which first allocates slot from a buffer, then fills this slot with
a reading from the sensor hardware, and goes back to waiting for free space
to be available in the buffer. Schematically, a standard way to model a simple
state machine of that kind would be to use a variable for the current state, an
abstraction of the control state of the real program. To check that the real code
corresponds to the model at this level of abstraction, one might write a BLAST
specification in the following way. First, a new variable must be inserted into the
code to model the state of the abstract system. To do this the BLAST specifica-
tion might begin with global int wait for buffer = 1;. Next, events in the
Event-B model are linked to the code by using BLAST events. In the Event-B
model, the sensor being allocated space in the buffer would correspond to an
event like the following.

GetBufferSlot
WHEN state = wait for buffer

available slots ≥ 1
THEN state := wait for reading

available slots := available slots − 1

In the C code, the event might correspond to calling a function
allocateSlot(), and the condition that there are available slots in the buffer
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might be indicated by a pointer, next slot being non-null. Supposing that we
are confident that the function allocateSlot() does reduce the number of free
slots as required, and we only want to check that the control state machine is
accurate, we might write a BLAST event as follows.

event {
pattern { buffer_slot = allocateSlot();}
guard { wait_for_buffer == 1 &&

next_slot != NULL }
action { wait_for_buffer == 0; }

}

BLAST will check that whenever the ‘pattern’ in the above specification
occurs, the ‘guard’ is true, and add the ‘action’ to the code to update the
abstract state. This is somewhat like checking a refinement relation between
the C code and the Event-B model. However, it relies on assumptions made by
the modeller that the functions used behave as expected, and that there are
no sources of control flow changes, such as failure to obtain a sensor reading or
pre-emption by other threads, which have been ignored. Once these assumptions
have been documented, they can be discussed with engineers, or used to guide
the development of more detailed refinements of the Event-B models.

5 Conclusions

In this paper, we discussed the lessons learned from our formal modelling work
on the INSPEX project about the way in which formal methods can be expanded
into domains for which the usual accounts seem difficult to apply.

In particular, by treating formal tools as a way to explicitly represent human
intuitions about the system, approximating the process of refinement by describ-
ing salient levels of abstraction, as much value can be drawn out of the mod-
elling process as possible in limited time. The drawbacks of this approach are
that the partial models constructed can stand in various relationships to each
other, which may reduce the applicability of tools and delay the construction
of proofs of correctness. In addition, describing the assumptions linking formal
models with the real system can become complex. Nevertheless, formal methods
can bring tangible benefits to projects where high reliability is important, but
practical needs make a process structured around the use of formal methods
unworkable.
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Abstract. In this paper we propose a cognitive architecture for the
modelling of automatic and deliberate human behaviour as it occurs and
evolves in a living environment or in interaction with machine inter-
faces. Such a cognitive architecture supports the timed modelling of an
environment featuring a spatial topology and consisting of an arbitrary
number of systems, interfaces and human components. Alternative mod-
els of short-term memory can be considered and explored, and long-term
memory evolves throughout the time by exploiting experiences and mim-
icking the creation of expectations as part of mental modelling.
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1 Introduction

A Cognitive architecture has to be intended as a comprehensive model of the
human mind, with a computational power that supports the insilico replica-
tion of experiments carried out in cognitive psychology as well as some form of
prediction and analysis. A cognitive architecture is based on and implements a
theory of cognition, which conceptualises the structure of mind in terms of its
processing and storage components and the way such components work together
to produce human thinking and behaviour [2].

A number of cognitive architectures have been proposed since the 1970s [13],
following three approaches: symbolic architectures, such as ACT-R [2] and Soar
[9], which are based on a set of predefined general rules, connectionist architec-
tures, which count on emergent properties of connected processing components
(e.g. nodes of a neural network), such as ANNABELL [8], and hybrid archi-
tectures, such as CLARION [14], which combine the two previous approaches.
Although cognitive architectures can mimic many aspects of human behaviour
and learning, they never really managed to be easily incorporated in the system
and software verification process.
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In previous work, we have defined a cognitive framework [5], based on the
Maude rewrite system [7,11], that provides an approach for the analysis of an
abstract overall system consisting of just one machine component and one human
component, with a very simple, fixed short-term memory model, which incorpo-
rates a minimalist approach to closure but does not address decay and chunking,
and a static model of long-term memory, which can statically describe user expec-
tations but does not support the mimicking of learning processes. The cognitive
notation defined in such previous work has been used by other researchers in ad
hoc extensions for modelling human multitasking [3,4].

In this paper we propose a cognitive architecture for the modelling of auto-
matic and deliberate human behaviour as it occurs and evolves in a living envi-
ronment as well as in interaction with machine interfaces. Our aims are to provide
a tool to be used both in human behaviour analysis and system verification, and
to overcome the limitations of the cognitive framework presented in our previous
work [5].

Section 2 introduces the underlying cognitive model, inspired by the informa-
tion processing approach, and presents the Human Task Description Language
(HTDL), which generalises and enriches the cognitive notation defined in our pre-
vious work [5]. Three distinct examples, including a classical Automatic Teller
Machine (ATM) case study [5,12,15], are used to illustrate the generality of
HTDL. Section 3 describes a rich environment that incorporates models of spa-
tial topology and time scheduling of events, thus supporting the realistic time
modelling of a multi-to-multi human-machine interaction. It also provides the
semantics of the cognitive description language through a considerable exten-
sion of the interaction framework proposed by Abowd and Beale [1], and briefly
illustrates the implementation of our cognitive architecture. Section 4 explores
the use of the cognitive architecture for modelling learning processes. It illus-
trates how skill acquisition can be modelled through a transformation of the
HTDL terms and how expectations can be built from the models of episodic
memory and semantic memory. Finally, Sect. 5 discusses the use of our cognitive
architecture and our plans for future work.

2 Cognitive Model and Description Language

Following the information processing approach normally used in cognitive psy-
chology, we model human cognitive processes as processing activities that make
use of input-output channels, to interact with the external environment, and
three main kinds of memory, to store information: sensory memory, short-term
memory (STM) and long-term memory (LTM). LTM is divided into declarative
memory, which refers to our knowledge of the world (“knowing what”) and con-
sists of the events, experiences (episodic memory) and facts (semantic memory)
that can be consciously recalled, and procedural memory, which refers to our skills
(“knowing how”) and consists of rules and procedures that we unconsciously use
to do things, particularly at the motor level.
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Input and output occur in humans through senses. We represent input chan-
nels in term of perceptions, which may be intended in an abstract way, inde-
pendently of the senses that capture them, or associated with a specific sensory
channel. We represent output channels in term of actions. Actions are performed
in response to perceptions.

Perceptions are briefly stored in the sensory memory and only relevant per-
ceptions are transferred, possibly after some kind of processing, to the STM
using attention, a selective processing activity that aims to focus on one aspect
of the environment while ignoring others. Selective attention may be explicit,
if it is focussed on goal-relevant stimuli in the environment, or implicit, if it is
grabbed by sudden stimuli that are associated with the current mental state or
carry emotional significance. Inspired by Norman and Shallice [10], we consider
two levels of cognitive control:

automatic control
fast processing activity that requires only implicit attention and is carried
out outside awareness with no conscious effort implicitly, using rules and
procedures stored in the procedural memory;

deliberate control
processing activity triggered and focussed by explicit attention, driven by
a goal and carried out under the intentional control of the individual, who
makes explicit use of facts and experiences stored in the declarative memory
and is aware and conscious of the effort required in doing so.

A human task consists of basic activities which are performed under these two
levels of controls. It is modelled in HTDL as task(tn, ts, as), where tn is the task
name, ts is the set of types of entities which the human acts on or interacts with
and as is a set of basic activities. We represent in bold HTDL data structure
constructors. Note that basic activities were called basic task in our previous
work [5]. In Sects. 2.1, 2.2 and 2.3 we introduce HTDL and shows its generality
using three different examples.

2.1 Modelling Automatic Control

Automatic control is essential in many every-day tasks, such as driving a car.
The driver is aware of the high-level tasks that are carried out, but is not aware of
low-level activities such as changing gear, using the indicator and reacting to the
presence of a traffic light or a zebra crossing, which are performed automatically
as a direct response to perceptions, with no involvement of thinking activities.
For example, when we see a zebra crossing while driving, this visual perception is
transferred from sensory memory to STM through implicit attention and mod-
ifies the mental state to be ready to automatically react to pedestrian walking
across the road. In order to describe automatic behaviour, it is then necessary
to consider a perception, the information in STM that characterise the current
mental state, the action to perform and the information to store in STM.
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Let Π be a set of perceptions, Σ be a set of actions, Δ a set of pieces of
information, with 2Π∪Σ ⊆ Δ and Δ closed under set union. We model a basic
activity under automatic control as

info1 ↑ perc
d=⇒ act ↓ info2

where

– perc ∈ Π is a perception;
– info1 ∈ Δ is the information retrieved from the STM;
– info2 ∈ Δ is the information stored in the STM;
– act is a human action;
– d is the delay due to mental processing.

An action act is defined by the operation op and the types st of the systems
on which the operation is performed, and is represented as act(op, st). Delay d
only involves the retrieval of information from and storing of information in the
STM, but does not concern the physical performance of actions, whose duration
depends on the environment with which the human interacts.

The basic activity is enabled when info1 is in STM and perc is available in
the environment. Its execution results in the removal of info1 from STM, the
storage of info2 in STM and the performance of action act.

Information stored in STM includes the perceptions in Π that are selected
through attention and the action in Σ whose future execution must be reminded.
Cognitive information, represented using constructor cogn, may also be stored
in STM to describe the current mental state. We formally denote by none when
an entity of a basic activity is absent (information, perception or action). If the
perception is present and the action is not (act = none) then the basic activity
models implicit attention. As a shorthand, a singleton of Δ is written as its
single element without curly brackets.

The task of driving through a zebra crossing can be thus described by
task(tn, {car, ped}, as) where as is the following set of basic activities

cogn(isMov) ↑ perc(zebra)
d1=⇒ none ↓ {cogn(isMov),perc(zebra)} (1)

{cogn(isMov),perc(zebra)} ↑ perc(ped)
d2=⇒

act(stop, car) ↓ {cogn(isSta),perc(ped)} (2)

{cogn(isSta),perc(ped)} ↑ perc(ped)
d3=⇒ act(go, car) ↓ cogn(isMov) (3)

The mental state during driving is described by cogn(isMov) when the car
is moving and by cogn(isSta) when the car is static, perc and perc denote
respectively the presence and the absence of a perception (zebra for zebra cross-
ing and ped for crossing pedestrians), and act(stop, car) and act(go, car) denote
respectively that car car is stopping and going again.

Note that the operation of an action may be described by a mere name,
such as stop in act(stop, car), or by a more complex term. For example, we may
describe a rotation of the steering wheel by 30 degree anticlockwise (to the left)
by act(turn(−30), car).
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2.2 Modelling Deliberate Control

Deliberate control is normally driven by a goal, which needs to be achieved by
performing the task. A task goal is formally modelled as goal(info), where info ∈
Δ contains the perception and/or the action and/or the cognitive information
characterising the achievement of the goal (obviously info �= ∅).

Thus we model a basic activity under deliberate control as

goal(info) : info1 ↑ perc
d=⇒ act ↓ info2

The basic activity is enabled when goal(info) and info1 are in STM and perc
is available in the environment. Its execution results in the removal of info1
from STM, the storage of info2 in STM and the performance of action act.
Goal goal(info) is removed from STM only when it is achieved, namely when
info ⊆ {perc, act}∪ info2. When info1 = none, the basic activity representation
may be shortened as

goal(info) ↑ perc
d=⇒ act ↓ info2

If the perception is present and the action is not (act = none) then the basic
activity models explicit attention.

Suppose that we need to move a box from one point of a room to another.
The box is full of items. If the box is light enough then we just move it, otherwise
we have first to empty it, then move it and finally fill in it again. Our explicit
attention, driven by the goal of moving the box, will focus on perceiving whether
the box is heavy or light. We can abstractly model these two explicit perceptions
as perc(heavy) and perc(light) independently of the specific senses involved in
the perception process. Such explicit attentional activities, which would normally
require the same mental processing time d1, are modeled as

goal(cogn(movedFull)) ↑ perc(light)
d1=⇒ none ↓ perc(light) (4)

goal(cogn(movedFull)) ↑ perc(heavy)
d1=⇒ none ↓ perc(heavy) (5)

If the box is light, we can immediately move it using the following basic activity:

goal(cogn(movedFull)) : perc(light) ↑ none
d2=⇒

act(move, box) ↓ cogn(movedFull) (6)

Note that the action of moving the box is a decision based on an already inter-
nalised perception (the perception that the box is light transferred from sensory
memory to STM by basic activity 4). As a result the perception part of the basic
activity model is empty.

If the box is heavy, we need to empty it before moving it. Therefore, we need
to create the subgoal goal(cogn(empty)) of emptying the box:

goal(cogn(movedFull)) : heavy ↑ none
d3=⇒ none ↓ goal(cogn(empty)) (7)

This subgoal can be achieved by emptying the box

goal(cogn(empty)) ↑ none
d4=⇒ act(empty, box) ↓ cogn(empty) (8)
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We can now move the box and then fill in it as follows

goal(cogn(movedFull)) : cogn(empty) ↑ none
d5=⇒

act(move, box) ↓ cogn(moved) (9)

goal(cogn(movedFull)) : cogn(moved) ↑ none
d6=⇒

act(fill, box) ↓ cogn(movedFull) (10)

thus achieving the goal.

2.3 Short-Term Memory (STM) and Closure

We model STM as a set of timed information, namely a timestamp is associated
with each piece of stored information. The limited capacity of the STM requires
the presence of a mechanism to empty it when the stored information is no longer
needed. When a goal is achieved, it is removed from the STM and the informa-
tion used to achieve it may also be removed from the STM, since it is no longer
needed. This subconscious removal of information from STM occurs through a
process called closure. In the example in Sect. 2.2, closure occurs first when sub-
goal goal(cogn(empty)) is achieved by reaching cognitive state cogn(empty) in
basic activity 8, then when goal goal(cogn(movedFull)) is achieved by reaching
cognitive state cogn(movedFull) in basic activity 10.

It is not fully understood how closure works. We can definitely say that once
the goal is achieved, it is removed from the STM. However, it is not clear what
happens to the information that was stored in STM in order to achieve the goal.
If we consider a user of an Automatic Teller Machine (ATM) whose goal is to
withdraw cash, we can say that the goal is achieved when the user collects the
cash from the ATM. However, old ATM interfaces (some still in activity) deliver
the cash before returning the card to the user. There is then the possibility that
the user collects the cash and, feeling the goal achieved, leaves forgetting to
collect the card. This could be explained by assuming that when the user inserts
the card in the ATM (act(insert, card)), some information is stored in STM, as
a reminder to collect the card at a later stage (act(collect, card)), as follows:

cogn(useAtm) ↑ perc(cardR)
d1=⇒ act(insert, card) ↓ act(collect, card) (11)

where cogn(useAtm) is the mental state occurring when using the ATM and
perc(cardR) the perception of the request to insert the card, which is shown
on the ATM screen. Note that here the action to be performed in the future
(act(collect, card)) is stored in STM under automatic control; this is different
from adding a goal under deliberate control, as we have seen in the example in
Sect. 2.2. Collecting the card is not needed to accomplish the goal of withdrawing
cash, thus this reminder cannot be added as a subgoal.

When the cash is collected (act(collect, cash)), both goal(act(collect, cash))
and act(collect, card) may be removed from the STM, thus disabling the basic
activity

cogn(useAtm) : act(collect, card) ↑ perc(cardO)
d2=⇒

act(collect, card) ↓ cogn(useAtm) (12)



222 A. Cerone

where perc(cardO) is the perception of the returned card. However, not always
cards are forgotten in old ATMs. This means that when closure occurs the STM
may not be completely emptied. Our cognitive architecture supports the defi-
nition of alternative models of the closure process. If all pieces of information
younger than the removed goal (which is in STM since the beginning of the task
performance) were also removed, because they are likely to be the no longer
needed information used to achieve the goal, then in the old ATM example the
card would always be forgotten. But we know that this is not the case. It is
instead reasonable to believe that the amount of information removed depends
on the load of the STM: the higher the load the more the amount of removed
information, in order to reach a minimum of free STM. This explains the fact
that when the user’s cognitive load is high the likelihood to forget the card is also
high. We might actually either assume that the youngest information is removed,
since it is likely to be the information used to achieve the goal, or, alternatively,
that the oldest information is removed, since it has not been used for a long
time. These and many other alternatives may be explored using our cognitive
architecture on the same set of real-life examples in order to understand which
one appears to best match real data.

Our cognitive architecture also models the decay of STM: we can define at
which “age” information disappears from STM. This means that a goal may be
removed from the STM before being achieved. In our previous work [5], based on
an untimed model of STM, thus with no decay, we proved using model-checking
that the user may forgot the card using the old ATM interface (postcompletion
error) but will not forget it using the more modern interfaces, in which the
card is returned before delivering the cash. Using our new cognitive architecture,
however, we identified problems also in the modern ATM interfaces. The removal
of the goal (for instance goal(act(collect, cash))) before it is achieved, due to the
STM decay, may create confusion to the user when requested to select between
different transaction, such as cash withdrawal and statement printing.

3 Environment, Interaction and Communication

The examples presented in Sects. 2.1, 2.2 and 2.3 model tasks whose sets of entity
types are not empty. Thus they make sense when the cognitive model describes a
human interacting with an environment, either directly or indirectly. In particu-
lar, humans interact with systems via interfaces. The direct interaction involves
humans and interfaces, and occurs through human perceptions and actions. Per-
ceptions may be produced by interfaces (e.g. through messages on the screen)
or be the results of the spatial distribution of entities in the environment (e.g.
seeing cars or other humans). Human actions are articulated for the specific
interface, which converts them to inputs to the system, thus affecting (through
indirect interaction) the system evolution. Furthermore, humans may indirectly
interact with remote systems through a network, which support communication
among systems.

The observable environment is the set of entities that can be directly observed
by the human and consists of two parts:
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– the spatial distribution of a population of entities of four kinds: humans,
interfaces, systems and layout components, the last two kinds with associated
types;

– a set of events which may include timed perceptions, event generators and a
special event halt(t), which terminates the evolution of the overall system at
time t;

The systems with which the human indirectly interacts, via the interface and
the observable environment, is characterised by the current global state. The
system environment consists of

– the inputs produced by the interfaces;
– the system communications carried out through the network.

The two parts of the observable environment are described in Sects. 3.1 and 3.3,
respectively. The interaction and the role of the global state are described in
Sect. 3.2.

3.1 Spatial Distributions of Entities

Spatial distribution is described by associating a location with each individual
entity. The location of a human or a physical system may be given as an absolute
space occupation or be relative to another entity. For example we can say that
the location of a car is given by the set of spatial coordinates it occupies while
the location of the human driving that car is given by the car itself. For the
driving example illustrated in Sect. 2.1 we can consider the spatial distribution
of the population { sys(car, C, locA),hum(D,C, T ), sys(ped, P, locB) }, where
the car C of type car is in locA, the driver D is a human inside car C, who may
perform the tasks whose names are in set T , and the pedestrians P of type ped
are in locB. For the ATM example illustrated in Sect. 2.3 we can consider the
spatial distribution of the population

{ sys(atm,A, locA),hum(U, locA, T ), sys(card, CD,U),

sys(cash,CH,A), int(Old,A), lay(screen, SC,Old, locB, ioscreen),

lay(keyboard,K,Old, locC, iokeyboard), lay(cdS,CDS,Old, locD, iocdS),

lay(chS,CHS,Old, locE, iochS) },

where both the system A of type atm and the user U are in locA, the user
may perform any task whose name is in T and has card CD of type card, the
cash CH of type cash is in the ATM A, Old is the interface of A and layout
components K of type keyboard (keybord) in location locB, SC of type screen
(screen) in location locC, CDS of type cdS (card slot) in location locD and CHS
of type chS (cash slot) in location locE describe the interface layout. For each
layout component l, set iol contains the perceptions and actions associated with
l. Locations of layout components of the interface define their absolute space
occupation, which is essential to model the time taken by the user in switching
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action from one component to the other of the interface, for example using Fitts’
law.

As we did for HTDL, we represent in bold also the data structure constructors
used in defining the environment. This allows us to distinguish the constructors
from the functions that manipulate data structures to model the environment
evolution.

3.2 Model of the Interaction

The global state of the system is a set of states, each represented as state(sn, n),
where sn is a system name and n is the state name. The model of the interaction,
which is based on the interaction framework proposed by Abowd and Beale [1]
is illustrated in Fig. 1, where values and function arguments are represented in
terms of their constructors.
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Fig. 1. Model of interaction through an interface with name i. Functions and enabling
constructors are represented by arrows with the function/constructor name above and
its parameters (if relevant) below. Current time is t̂ and scheduling time is t̄.
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Function articulate takes a human action act(op, st), an interface name i on
which the action is performed and an observational environment env as param-
eters. It returns the set of all possible inputs input(op, st, lcn, stn, t) for the
interface and environment, where stn is a name of a system with interface i,
layout component lcn is associated with interface i and t is the time required
by a human to perform the action via layout component lcn. Therefore, t may
be defined as a function f(lcn, env) of the location of the layout component lcn,
which encodes both its position and its size in terms of its spatial distribution,
and the location of the acting human component (e.g. this provides distance and
size of the target as arguments of Fitts’ law). In the ATM example, we model
the articulation of the action of inserting a card in the card slot of the ATM
using the card slot of the old interface as follows:

articulate(act(insert, card), Old, env) = {input(insert, CD,CDS,A, f(CDS, env))}

where CD is the card of type card controlled (specifically “owned”) by a human
in the environment, CDS is the card slot of interface Old and t is the time the
user needs to physically insert the card in the card slot. Inputs for the system
may also be autonomously defined by the interface, e.g. independently from the
human actions, as we will see below. Once the inputs have been defined, they
are scheduled as schIn(op, st, lcn, stn, t̄), in order to be performed by system stn
at time t̄ = t̂ + t, where t̂ is the current time and t is the time required by the
human to perform the action via the interface. This scheduled input becomes
available in the system environment.

At time t̄ the scheduled input will be performed by the system determining a
transition of the system state. Performance is defined by function perform, which
takes the current state of the system and the appropriate input as parameters
and returns a new state. In the ATM example, if the card has not been inserted
yet (state(A,noCard)), then, after the card is inserted (as for the input), it is
detected by the ATM (state(A, cardDetected)):

perform(state(A,noCard), input(insert, CD,CDS,A, t)) = state(A, cardDetected)

The time needed for the system to perform the input is given by function pt,
which takes the current state and the appropriate input for the interface as
parameters and returns the time needed for the transition to the new state.

Function present takes a state state(sn, n) and returns an observable state
obs(sn, n), if the state has to be observable by the user, a temporary state
temp(sn, n), if the state may be changed by the interface, or a special value
noPres otherwise (in this case state(sn, n) is an internal state of the system).

Function observe takes the current time, an observable state, an observable
environment and, a mapping map(i) from pairs consisting of a system type and
a state name to the perception observed by the user for a given interface name
i, and returns a new observable environment. For example, the old interface of
the ATM has mapping
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map(Old) = (atm, noCard) −→ perc(cardRequest)

(atm, cardRead) −→ perc(pinRequest)

(atm, cardRead) −→ 60

(atm, pinRead) −→ perc(selectTransaction)

...

so that, if obs(A, cardRead) (A is a system of type atm) is one of the observable
states presented by A to int(Old,A), the observable environment returned by
observe will contain a timed version of perception perc(pinRequest) that is
labelled with its origin (as a location or direction or interface component) and its
specific attributes (e.g. intensity). Function expire allows the interface to exploits
temporary state temp(sn, n) and the duration of time d (defined by interface
i) within which the state must change to define input(timeout, stn, cn, i, d).
For example, in the ATM example above, the mapping gives to temporary state
temp(A, cardRead) a maximum duration of 60 seconds, within which the user
must input the pin to avoid the interaction to be terminated prematurely.

Finally, functions sysMov and humMov determine changes in the spatial
distribution of individuals depending respectively on the state of the system
and the goal of the human. Obviously the movement is propagated from the
carrier to the carried. Thus, for example, the movement of a car is propagated
to the humans carried in it and the movement of an ATM user carrying a card
is propagated to the card.

3.3 Events and Event Generators

A perception generated by the interface appears in the environment with a times-
tamp showing the time when it is generated together with a persistence time,
which defines for how long the perception is available in the environment, an
origin and specific attributes. For example, for an audio menu, the persistence
time of the perception of each item in the menu is very short, whereas for a visual
menu it is normally unlimited. Thus persistence time may be used to limit the
time span during which the system state should be observable.

In general, we do not want to be forced to have, for each possible perception,
a system that generates it. In the driving example in Sect. 2.1 we do not want
to model a system that generates perceptions of pedestrians walking across the
zebra crossing. Instead, we want to define, in the initial configuration of the
overall system, events having future times as timestamps. Possible events are
not only perceptions but also goals associated with specific humans. Such events
are ignored until the times shown by their timestamps are reached. This is also
the case for the special event halt(t), which terminates the evolution of the
overall system at time t.

Event generators are special events that generate perceptions. Event gener-
ator iter(perc, t, d, n) generates perception perc with persistence time d repeat-
edly every n time units starting from time t. Generated events may also include
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the autonomous movement of individuals. Further kinds of event generators may
generate random events according to various probabilistic distributions.

Finally, perceptions may be the results of the spatial distribution of individ-
uals in the environment. These spatial perceptions may involve any sense.

3.4 Implementation Using the Maude System

Our cognitive architecture is implemented using the Maude system [7,11]. In this
work we only use Core Maude, which comprises two types of modules: functional
modules, which are restricted to equational logic, which support the declaration
of sorts and operations on them and the definition of such operation using equa-
tions, and system modules, which also support rewriting logic, by additionally
including the definition of rewrite rules.

We use the equational logic capabilities of Maude to implement the global
state changes as a function of the input produced by the interface and the sched-
uled communications, and rewrite logic to implement the evolution of observable
environment, system environment, STM and the learning processes that modify
tasks and knowledge stored in LTM. The implementation of HTDL is immedi-
ate, whereas the other parts of the cognitive architecture and its environment
require the definition of a several data structure and functions to manipulate
them, as illustrated in Sect. 3.1 and 3.2. Rewrite rules are the engine of the
cognitive architecture. Furthermore, the model-checking capabilities of Maude
support the formal verification of the modelled system.

4 Modelling Human Learning

Human learning is a very complex process, normally evolving over a long time,
which can be roughly divided into three phases: (1) understanding, internalis-
ing and connecting concepts and notions (learning the theory), (2) practising
(putting the theory into practice); (3) experiencing (modifying and expanding
the theoretical knowledge). Learning the theory can occur through studying, by
observing the reality and abstracting from it or by generalising what is learned
in other contexts, but it is not always the most relevant phase. In fact, the
importance and duration of these three phases varies from task to task.

For example, in learning to drive a car all three phases are highly important:
there is a considerable amount of theory to study and a lot of practice is required
but, in the end, only a few people can drive confidently immediately after passing
the driving test; most people need to acquire a big deal of experience through the
exposure to a large varieties of driving situations and will exploit such experience
to improve their driving behaviour (in term of performance, not adherence to
the road code), thus achieving full confidence. In learning to bike, instead, the
main issue is to acquire balance, which can only be achieved by practicing; there
is basically no theory to learn and, once balance is fully acquired, experience
will not change our biking behaviour very much. Learning to use an ATM is
mainly a matter of acquiring experience with one or more specific interfaces;
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the task itself can be easily internalised and does not require much practice.
Finally, learning to move a box is for an adult just a matter of applying a
few known concepts: it is possible to move only light objects, filled objects can
be emptied and emptied objects can be filled in. Children, instead, have to go
through all three phases, learning concepts about human physical limitation and
object manipulation in various contexts, then putting such concepts into practice
by emptying and filling in boxes, and finally exploiting their own experiences of
pain to lower the threshold of “heaviness”.

In this section we focus on the last two phases: practising makes human
behaviour evolve from deliberate to automatic control (skill acquisition); experi-
encing leads to the acquisition of new knowledge about the way the system works
(mental modelling) and its consequent exploitation to improve the interaction.

4.1 Skill Acquisition

The effect of skill acquisition on tasks is illustrated below and represents the
basis for a possible implementation of this form of learning. Following Anderson’s
ACT ∗ model [2], skill acquisition involves two mechanisms:

proceduralisation determined, as an extension of the ACT ∗ model, by
goal internalisation which creates a mental state associated with a specific

goal and changes attention from explicit to implicit;
automatisation which makes action directly triggered by perception by

combining a set of activities under deliberate control, whereby at most
one activity of the set has the action specified (the other activities are
either attentional or pure mental processing), into a single activity under
automatic control;

generalisation which combines several mental states into a general one.

For example if we consider the task of moving a box illustrated in Sect. 2.2, goal
internalisation associates a new mental state cogn(movingBox) with the goal
goal(cogn(movedFull)), creates the new basic activity

goal(cogn(movedFull)) ↑ none
d

=⇒ none ↓ cogn(movingBox) (13)

and change basic activities 4, 5, 6, 7, 9 and 10 respectively to

cogn(movingBox) ↑ perc(light)
d1=⇒ none ↓ {cogn(movingBox),perc(light)} (14)

cogn(movingBox) ↑ perc(heavy)
d1=⇒ none ↓ {cogn(movingBox),perc(heavy)} (15)

{cogn(movingBox),perc(light)} ↑ none
d2=⇒ act(move, box) ↓ cogn(movedFull) (16)

{cogn(movingBox),perc(heavy)} ↑ none
d3=⇒

none ↓ {cogn(movingBox),goal(cogn(empty))} (17)

{cogn(movingBox), cogn(empty)} ↑ none
d5=⇒

act(move, box) ↓ {cogn(movingBox), cogn(moved)} (18)
{cogn(movingBox), cogn(moved)} ↑ none

n6=⇒ act(fill, box) ↓ cogn(movedFull) (19)
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thus changing attention from explicit to implicit.
Automatisation combines basic activities 14 and 16 into

cogn(movingBox) ↑ perc(light)
d7=⇒ act(move, box) ↓ cogn(movedFull) (20)

and basic activities 15 and 17 into

cogn(movingBox) ↑ perc(heavy)
d8=⇒

none ↓ {cogn(movingBox),goal(cogn(empty))} (21)

with d7 < d1 + d2 and d8 < d1 + d3.
Finally, basic activity 20 (and similarly basic activity 21) can be gener-

alised to other objects for which there exist similar basic activities, for exam-
ple to bags of type bag that can be moved. The mental state changes from
cogn(movingBox) to cogn(moving) and the basic activity becomes

cogn(moving) ↑ perc(light)
d8=⇒ act(move, s) ↓ cogn(movedFull) (22)

where s = {box, bag}.

4.2 Mental Modelling: Building Expectations

Humans tend to build mental models of the systems they use. This is an impor-
tant capability since it allows the human to optimise the interaction and speed
up the task execution, when expectations are met, or to avoid failures after
observing system responses that are inconsistent with expectations. However,
mental models are not always correct and, when the actual system operation
differs from the user’s expectations, human errors are likely to occur. In order
to prevent such human errors to occur, it is important to be able to understand
how expectations are build and how they affect human behaviour.

In our cognitive architecture, an expectation is a defined as

exp(task, g, i, act, perc, ass)

where for a given task task, goal g, interface i, action act and perception perc,
the assessment ass of the expectation equals

success if the goal g is expected to be achieved,
failure if the goal g is not expected to be achieved,
neutral if there is no clear expectation about the achievement of goal g,

when the system response to action act is perceived as perception perc, and

novelty when the system response to action act is not expected to be perceived
as perception perc.

We model the expectation building by using a representation of the episodic
memory as a mapping that associates each pair consisting of an action and a
perception with a set of pairs, where each pair (t, o) has the time t when the
perception occurred as a response to the action as the first component and the



230 A. Cerone

boolean outcome o in terms of achievement of goal g while interacting with
interface i as the second component. We can represent built expectations as
information stored in semantic memory as a result of an unconscious analysis
of the episodic memory. We can formalise this building process as a function
buildExp that, given the representation of the episodic memory, a task, a goal,
an interface, an action and a perception, returns an expectation.

How to define function buildExp is a matter of cognitive psychology the-
ory. Our cognitive architecture aims to provide the infrastructure for exploring
alternative theories, as in the case of the alternative closure theories discussed
in Sect. 2.3. To illustrate this point we provide below an example of a reasonable
buildExp definition.

Given action act, perception perc and an episodic memory sm such that
sm(act, perc) = {(t1, o1), (t2, o2), . . . , (tn, on)}, where we assume that tj < tj+1

for each j = 1, . . . , n − 1, and defined

j̄(ass) = min{j | ∀k > j. k < n → tk − tk−1 ≤ δ ∧ ok−1 = on = ass},

buildExp(sm, task, goal, i, act, perc) returns

– exp(task, goal, i, act, perc, success), if there exists j̄(success) such that
n − j̄(success) ≥ η − 1;

– exp(task, goal, i, act, perc, failure), if there exists j̄(failure) such that
n − j̄(failure) ≥ η − 1;

– exp(task, goal, i, act, perc,novelty), if j̄(success) and j̄(failure) do not
exist;

– exp(task, goal, i, act, perc,neutral), otherwise.

This definition of buildExp models the building of an expectation assessed as
a success or failure, when the pair action-perception has always led to the
same task outcome (respectively in terms of goal achievement or failure) during
the last η experiences and the time span between two consecutive of these η
experiences does not exceed δ. Obviously the values for δ and η have to be
determined empirically for the specific task.

5 Conclusion and Future Work

A partial implementation of the cognitive architecture presented in this paper
can be downloaded at

https://cs-sst.github.io/faculty/cerone/formalhci.

Some parts of the cognitive architecture are implemented using different func-
tions with respect to what presented in this paper, due to implementation con-
straints or optimisations. Timing, spatial distribution and learning processes are
currently under implementation.

Our cognitive architecture can be used for modelling and analysing interac-
tive systems. The model-checking capabilities of Maude support the verification

https://cs-sst.github.io/faculty/cerone/formalhci
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of interactive systems for a large range of properties formalised in temporal logic,
as shown in our previous work [5]. Moreover, with respect to the simple episodic
system model used in our previous work, the final architecture will consider a
global system state as a set of local states. This opens the way to high level
system modelling using concurrency and communication. As part of our future
work we plan to implement such system communication and define translations
for directly importing formal models of systems in various formal modelling lan-
guages, such as process algebras and Petri nets.

Furthermore, our cognitive architecture aims to be used for exploring alter-
native cognitive theories, such as different models of the closure phenomenon,
using the same set of real-life examples in order to understand which cognitive
theory appears to best match real data. Real data can be scheduled as future
events, such as goals and perceptions, in the observable environment, so that
a simulation can be run and its outcome may be compared with the outcome
occurred in the reality. This approach also expands the scope of formal verifica-
tion to system validation and even to the validation of research hypotheses on
cognition [6].

Finally, we remark that our proposed cognitive architecture aims to support
modelling at various levels of abstractions. This involves the level of details in
perceptions, for which the sensory channel may or may not be specified, actions,
in which operations may be defined by abstract names or more accurately spec-
ified by enriching the constructor with parameters, and information, which may
be structured using a chunking. Furthermore, the topology may vary from one
single location to a tridimensional coordinate system and we might wish to create
ad hoc topologies or, instead, fully abstract from time.
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Abstract. Usability of an interactive software can be highly impacted
by the delays of propagation of data and events and by its variations,
i.e. latency and jitter. The problem is striking for applications involving
tactile interactions or augmented reality, where the shifts between inter-
action and representation can make the system unusable. For as much,
latency is often taken into account only during the validation phase of
the software by means of a value which constitutes an acceptable limit. In
this shor paper, we present and discuss an alternative approach: we want
to handle the latency at all phases of the life cycle of the interactive soft-
ware, from specification to runtime adaptation and formal validation for
certification purposes. We plan to integrate and validate these ideas into
Smala, our language dedicated to the development of highly interactive
and visual user interfaces.

1 Introduction

An interactive software is a computer application which reacts, throughout its
execution, to various sources of events. In particular, it produces a perceptible
representation of its internal state [1,2]. However, the usability of an interactive
application can be appreciably impacted by the delays of propagation of data and
events and by its variations, i.e. latency and jitter. The problem is striking for
applications involving tactile interactions or augmented reality, where the shifts
between interaction and representation can make the system unusable [3,4]. Yet,
while latency constraints are expressed at specification, they are often taken into
account only very late in the development processes, generally by experimental
a posteriori measurements, when the system is fully implemented. For instance,
in some air traffic control systems such as radar visualization or remote tower,
latency in the visualization of aircrafts position (and the shifts between their real
position) is evaluated during experiments. Instead of redesigning the software,
this may conduct to dimension the spacing limits between aircrafts [5], with
direct consequences on the capacities of air traffic management.

More generally, when focusing on aeronautical software systems, the pro-
cesses of certifications described in the DO-178C/ED-12C offer an important

c© Springer Nature Switzerland AG 2018
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place to formal checking. We want to take the opportunity to use formal tools
and techniques to handle latency in interactive software. We are particularly
interested in the Smala language, dedicated to interactive systems.

2 Djnn and Smala

Smala1 is a language that has been designed to effectively support the devel-
opment of reactive applications. Smala is built on the top of a set of C libraries
named Djnn2. Djnn provides a core library that implements the execution
engine allowing to run a tree of components [6].

Fig. 1. Tree of Djnn components for an interactive software

Once the tree is loaded and started, the core library starts an event loop that
fairly manages the events coming from the environment. On arrival, events are
dispatched to the tree components. The control structures contained in this tree
specify an activation graph through which the events are propagated Fig. 1.

Djnn provides libraries with various components, ranging from components
for arithmetic, logic, finite state machines to graphical shapes, style components,
and geometric transformations. Three rendering engines are available, one based
on the Qt toolkit, another one based on Cairo, and a third one based on OpenGL.

It is possible to build a tree of components by directly using these libraries
and the C language. However the task is akin to those of writing an abstract
syntax tree. Thus, we designed Smala so as to provide a dedicated syntax with
specific symbols that helps to visualize the interaction between components.
1 http://smala.io.
2 http://djnn.net.

http://smala.io
http://djnn.net
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Smala comes with a compiler that transforms the Smala program into a pro-
gram written in the C language.

2.1 Smala Applications

Here we describe a part of a demo we developed with Smala to show some
interesting points of the language. The objective was to implement a Naviga-
tion Display (ND), a standard navigation tool integrated in modern cockpits
of airplanes, enhanced with interaction capacities. The ND was designed to be
integrated within a full software simulator of an Airbus A320 (Prepar3D/A320
FMGS). In this paper, we will focus on the design of the interaction with a
waypoint to show the expressiveness of the smala language.

Fig. 2. Navigation Display Experiment and design of interaction with a waypoint

A flight plan mainly consists in a sequence of waypoints specifically selected
for a flight before the take off. During the flight, the pilot in command might
want to alter the flight plan (e.g. for meteorological reasons) and head the plane
directly to another waypoint. We implemented this action on the ND with a
touch command that triggers the flight management system to head to the
selected waypoint. A sketch of the interaction is shown in Fig. 2: after a touch
on a waypoint, a box appears with the text “DIRECT TO”, that will stay for
3 seconds. If the pilot touches this box, the command will be send to the flight
management system.

The code for the smala component “waypoint” is shown in Fig. 3. This com-
ponent has two states: when idle (default state) it is represented with a large
triangle, including a small square at its exact position and a text label giving its
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name. When selected, its color must change to green and we add the box with
the text “DIRECT TO”. The basic graphical components of smala are used
(Rectangle, Polygon, Colors...) and a finite state machine (FSM) is explicitely
programmed to represent both states and the triggers that change the states.
Thus, the component will be selected when a press will be detected inside the tri-
angle (idle.pol.press). It will return to the idle state when either a timeout occurs
or if a press is detected inside the “DIRECT TO” box (selected.rdt.press). That
last action will trigger the sending of a specific message on the communication
bus that links the software to the simulator.

1 use core
2 use base
3 use gui
4
5 import TimeOut
6
7 d e f i n e
8 Waypoint ( s t r i n g name , double x , double y , Component view , Component frame , Component bus ) {
9 Component c l i c k

10
11 Rotation r (0 , x , y )
12 view . heading => r . a
13
14 Trans lat ion t ( x , y )
15 x aka t . tx
16 y aka t . ty
17
18 Outl ineColor oc (255 , 0 , 255)
19 NoFi l l nf
20 Rectangle p0 ( −1 , −1 ,1 ,1 ,0 ,0) // big p i x e l cente r
21 FSM fsm {
22 State i d l e {
23 Polygon pol {

,0(1ptnioP42 −20)
(2ptnioP52 −20 ,20)

)02,02(3ptnioP62
27 }
28 }
29 State s e l e c t e d {
30 F i l lCo l o r f cg (0 , 255 , 0) // green
31 Polygon pol {

,0(1ptnioP23 −20)
(2ptnioP33 −20 ,20)

)02,02(3ptnioP43
35 }
36
37 F i l lCo l o r f c (0 , 255 , 0)
38 Outl ineColor oc2 (255 , 0 , 0)
39 Line l (0 ,0 ,20 , −20)
40 Rectangle rdt (20 , −40 ,200 ,30 ,5 ,5)
41
42 F i l lCo l o r fcb (0 , 0 , 0)
43 Text tdt (30 ,−20 ,”DIRECT TO ”+name)
44 tdt . width + 20 => rdt . width
45
46 TimeOut to (3)
47 asBusOut = tdt . text =: bus . out : 1
48 }
49 id l e−>s e l e c t e d ( i d l e . pol . p r e s s )
50 s e l e c t ed−>i d l e ( s e l e c t e d . rdt . press , s e l e c t e d . asBusOut )
51 s e l e c t ed−>i d l e ( s e l e c t e d . to . sw . timeout )
52 }
53
54 F i l lCo l o r f c2 (255 , 0 , 255)
55 Text l a b e l (15 , 10 , name)
56 }

Fig. 3. Smala code for a waypoint

As a real-world example, we also completely developed the HMI of Volta, the
first conventional all-electric helicopter [7]. The HMI has been built concurrently
by a programmer and a graphic designer, demonstrating another powerful aspect
of our approach: the strict separation of concerns between the design of the
visualization and the implementation of interactions.
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3 Our Approach to Handle Latency

3.1 Formal Activities Around Djnn/Smala

Although Smala is still under development, we already could experiment for-
mal techniques for checking properties of Smala programs. For instance, we
exploited the characteristics of the graph of activation [8]. This graph, deduced
from the Smala code, provides all the possible activation relationships following
the occurrence of an event. Thus, we managed to formally check attainability
properties (i. e., an entry always ends up generating an expected exit or an alarm
is always turned off in a certain configuration) or causal activation relationships
(i. e., a displayed error message will never be covered by another).

In addition, with the experience gained from previous work on dedicated
language and formal validation [9], we experimented in [10] the transformation
of Smala code into Petri nets, with the idea to precisely define an operational
semantics for Smala and to benefit from the associated formal tools and tech-
niques. As a result, the semantics of Smala is currently under publication in a
dedicated paper.

Our medium-term prospects concern the prolongation of the previous studies
(based on the graph of activations) and the study of formal proof techniques
applied to Smala code (translation into Caml and use of COQ, translation into
Event-B).

3.2 Towards Handling Latency

We want to focus on software layers. Indeed, handling latency can be made at
the hardware level with specific tools [11]. However, the end-to-end approaches
existing today [12] do not allow to understand the specific issues related to
software architecture choices. They are only usable to measure the latency when
the system is in its validation phase.

The classical formal approach to handle latency in software systems is to
consider their Worst-Case Execution-Time (WCET) [13]. WCET tools and tech-
niques allow to verify timing properties. They are primarily made for real-time
systems, and Smala programs are not. Nevertheless, since the control flow of
Smala programs can be described as a tree, tree-based techniques for computing
WCET could be applied. Moreover, the execution engine is being rewritten to
comply with the last version of the operational semantics which is a good level
to address latency issues [14].

Relying on the operational semantics, we plan to add into Smala the reifi-
cation of latency properties. This should allow the programmer to add runtime
adaptations (e.g. simplification/enhancement of the visualization to comply with
latency constraints) and to optimize the redrawing of the graphical scene.

At last, to limit the known impacts of the operating system on latency, we
are experimenting some specific versions of Djnn that can be run on OS-less
(’bare’) systems. This approach should result in an autonomous and complete
software platform to handle latency.
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4 Future Work

To achieve these goals, we aim at allowing the developer of interactive software
to handle latency as a whole, during each phases of the software life cycle. Thus,
this implies the conception of software tools for the measurement, visualiza-
tion, specification, and formal checking of the different properties. These tools
will make possible, during the design time, the objective evaluation of various
software architecture solutions. At last, a methodology for designing interactive
systems with latency constraints, based on these tools, should be designed.
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Abstract. Human factors have been considered as the most common causes of
accidents, particularly for interacting with complex critical systems related to
avionics, railway, nuclear and medical domains. Mostly, a human-machine inter-
face (HMI) is developed independently and the correctness of possible interac-
tions is heavily dependent on testing, which cannot guarantee the absence of run-
time errors. The use of formal methods in HMI development may assure such
guarantee. This paper presents a methodology for developing an HMI using a
correct by construction approach, which allows us to introduce the HMI compo-
nents, functional behaviour and the required safety properties progressively. The
proposed methodology, generic refinement strategy, supports a development of
themodel-view-controller (MVC) architecture. The whole approach is formalized
using Event-B and relies on the Rodin tools to check the internal consistency with
respect to the given safety properties, invariants and events. Finally, an industrial
case study is used to illustrate the effectiveness of our proposed approach for
developing an HMI.

Keywords: Human-machine interface (HMI) · Formal methods
Model-view-controller (MVC) · Refinement and proofs · Event-B
Verification · Validation

1 Introduction

The complexity of critical systems constantly increases and it is important to handle
such complexity by addressing several aspects, such as system and user interface, of
the system development to reduce the rate of system failure. Note that to design a safe
interface that enables a user to interact with system unambiguously may help to reduce
the rate of system failure. Developing a human-machine interface (HMI) is a difficult
and time-consuming task due to complex system characteristics and user requirements,
which allows anticipating human behaviour, system components and operational envi-
ronment. An interactive system is composed of two main components: functional core
and interface. An interface enables a user to communicate with a system.
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Our work is focused on the development of HMI for checking the correctness of
possible HMI behaviours. There are two main HMI concepts: user-oriented concepts
and designer-oriented concepts [11]. Here, in our work, we use the designer-oriented
concepts. In this work, our main objective is to investigate the formal development of
HMI using a correct-by-construction approach in Event-B, particularly for the MVC
architecture. As far as, we know that there is no MVC model in the field of HMI, which
is formally developed using a correct-by-construction approach.

In this paper, we propose a generic development of HMI based on the MVC archi-
tecture in order to design and implement complex HMI progressively and then derive a
set of patterns of design and proof that can be used in the HMI development. Here, we
begin by formalizing the interaction behaviour and possible modes of an HMI. Then,
we formalize the notion of controller and manipulation functions, and finally, we finish
by adding the elements of the view component. All these modelling steps are applied
progressively through satisfying the required safety properties. Moreover, this devel-
opment also reflects modelling concepts for handling the problem of communication
between HMI components. An incremental development of the MVC architecture for
HMI preserves the required behaviour in an abstract model as well as in the refined
models. The Event-B language is supported by the Rodin [5] platform, which provides
a set of tools for developing, proving and managing the formal specifications. We use
the ProB model checker tool [26] to analyse and validate the developed models of HMI.

The remainder of this paper is organized as follows. Section 2 presents the required
background. In Sect. 3, we propose a methodology for developing a formal model of
HMI based on the MVC architecture. Section 4 presents an overview on the selected
case study. In Sect. 5, we present a formal development of the case study in Event-B. In
Sect. 6, we discuss the results of our work and Sect. 7 presents the related work. Finally,
Sect. 8 concludes the paper with future work.

2 Background

2.1 HMI Architecture

Seeheim and ARCH. Initially, this model was appeared in 1983 [25]. Seeheim archi-
tecture is a model with four components depicted in Fig. 2. These four components
are: (1) Presentation - this component handles in/out data from a system; (2) Dialog
control - this component creates a link between the presentation and interface, and a
controller translates a set of interactions of a user in machine instructions; (3) Interface
- this component allows operations on the data of an application; and (4) Switch - this
component allows a feedback of that actions which are meaningless for an application.

In 1991, the Seeheim architecture was extended to develop the ARCH architec-
ture [25]. For developing the ARCH architecture (see Fig. 1), two new components
are introduced in the Seeheim architecture. These two new components make a link
between the three existing components from Seeheim architecture, and the switch
is removed in this model. The component presentation logic avoids contradictions
between the presentation and dialog controller. The functional core is fully indepen-
dent of the interface. It makes a link to the machine part of HMI (see Fig. 1). The
main advantage of the ARCH model as compared to Seeheim is the improvement of
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the decoupling between components thanks to adapter layers [25]. The adapters enable
more flexibility during the evolution of a system, while the other expresses an existence
of the functional core for an application.
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Dialog
Controler

Domain
Adaptater

Functionnal
Core

User Machine

Interaction object

Inputs/Outputs

Presentation
Object

Adaptated
domain object

Domain
Objects

Machine inputs/ Machine outputs

Fig. 1. ARCH architecture [1]
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Fig. 2. Seeheim architecture [1]
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Fig. 3.MVC architecture

MVC. MVC architecture, proposed in 1979, is the most used architecture in the
HMI development (see Fig. 3) [34]. There are three main components of this architec-
ture that are described as follows: (1) Model - this is the central component of the MVC
architecture that allows the management of data, logic and rules of an application; (2)
View - this component allows the management of an interface display, and the used data
is provided by the model; and (3) Controller - this component allows the management
of data during an input activity from an interface (such as keyboard, mouse, voice...).
In our work, we use this architecture to design an HMI.

2.2 HMI Properties

Usability Principles. According to Dix et al. [20], there are three main categories:
Learnability-the easy with which new can begin effective interaction and achieve max-
imal performance; Flexibility-the multiplicity of ways the user and system exchange
information; and Robustness-the level of support provided to the user in determin-
ing successful achievement and assessment of goal-directed behaviour. Learnability
covers the properties of predictability, synthesizability, familiarity, generalizability,
and consistency of possible interactions. Flexibility focuses on the dialog initiative,
multi-threading, task migratability, substitutivity, customizability. Finally, Robustness
addresses the properties of observability, recoverability, responsiveness and task con-
formance.
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CARE. It is a simple framework for reasoning about the multimodal interaction of HMI
from both the system and user perspectives [19,29]. A modality is a way of commu-
nication that is used by an interface. For example, an interactive map uses the display
modality to communicate information with users. The main four properties are: Com-
plementarity - a set of modalities must be used in a complementary way to realize a
goal; Assignation - there is a unique modality to realize a goal; Redundancy - a set of
modalities is used redundantly if all the modalities have same expressiveness to real-
ize a goal; and Equivalence - a set of modalities is equivalent if anyone modality is
sufficient to realize a goal.

2.3 Event-B

The Event-B modelling language is developed by Abrial [4,37], in which most of the
constructs are borrowed from the B-method [3]. This modelling language is based on
the first-order logic and set theory. The goal of this language is to design a complex sys-
tem using a correct-by-construction approach. The correct-by-construction approach
allows us to introduce different system behaviours and properties in successive refine-
ments. The development begins with a very high level of abstraction. The refinement
enables us to introduce more detailed behaviour and the required safety properties by
transforming an abstract model to a concrete version. The final concrete model can be
used to produce the source code in any programming language. Note that the refinement
always preserves a relation between an abstract model and its corresponding concrete
model. The newly generated proof obligations related to refinement ensures that the
given abstract model is correctly refined by its concrete version.

There are two main components of Event-B: context and machine. A context is
composed of several elements, such as set, constant, and axiom. The set and constant
elements are defined to state the type definitions and constant definitions to describe
the system behaviour. The axioms are some logical propositions that cannot be proved
but these axioms are used as the base of mathematical reasoning. A context may be an
extension of another context. Note that all the elements of the extended context exist
in a new context without being declared. A context may also contain some theorems in
form of logical properties that can be deducted from the existing axioms.

An Event-B model is characterized by a list of state variables that are modified by
a list of events to model the changing behaviour of a system with respect to the given
conditions. In general, an event can be described in the following form:

e � any var where grd then act end

where var is a list of local variables, grd is a set of guards in form of the conjunction
of predicates, and act is a set of parallel actions. Any event can be enabled if the given
guards are true. If more than one event enables simultaneously then any event can be
selected for execution non-deterministically, and if none of the events becomes enabled
then the system becomes deadlocked. An event can be always enabled if the event is
not guarded. In general, a set of actions of an event is a composition of assignments
that execute simultaneously, in which a variable assignment can be either deterministic
or non-deterministic. The deterministic assignment can be denoted as x := expr(var),
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where x is a state variable and expr(var) is an expression over the state variable var.
The non-deterministic assignment can be denoted as x :∈ S or x : |P (var, x′), where
S is a set of values and P (var, x′) is a predicate. In x :∈ S, x can obtain any value
from S and in x : |P (var, x′), x can obtain any value that can be satisfied by the
predicate P (var, x′). Invariants of a machine define the type definition of variables
and the required safety properties that must be satisfied during the system execution. In
Event-B, there are three type of events: ordinary event, convergent event and anticipated
event. The ordinary event has not any constraints. By default, all the events are ordinary
events. The convergent event always associates with a variant that models the converg-
ing behaviour of a system. An anticipated event is a new event which is not convergent
yet but should become convergent in the subsequent refinement.

The foundational semantic of the Event-B language is grounded on before-after
predicates [4]. The before-after predicate shows a relation between the system states
before and after execution of an event. To verify the correctness of an Event-B model,
we need to show that the initialization and events preserve the defined invariants. It can
be expressed as follows:

A(s, c), I(s, c, x), Ge(t, s, c, x), BAe(t, s, c, x, x
′) � I(s, c, x′)

A(s, c), BAinit(s, c, x
′) � I(s, c, x′)

Event-B proof obligations (POs) also allow verifying the event feasibility to show
that whenever an event is enabled then there is always a reachable state after the event
activation. It can be defined as follows:

A(s, c), I(s, c, x), Ge(t, s, c, x) � ∃x′.BAe(t, s, c, x, x
′)

In the above formulas, A(s, c) is a set of axioms, I(s, c, x) is a set of invariants,
Ge(t, s, c, x) is a set of guards and BAe(t, s, c, x, x′) is set of before-after predicates
for an event and BAinit(s, c, x′) is a before-after predicate for the initial event using
constants c, carrier sets s and variables x.

To verify the correctness of a refinement step, we need to discharge the generated
proof obligations for a refined model. There are several POs, which are detailed in [4].
An abstract model AM with state variable x and invariant I(x) is refined by a concrete
model CM with variable y and gluing invariant J(x, y). e and f are events of the
abstract model AM and the concrete model CM , respectively, where event f refines
event e.BAe(t, s, c, x, x′) andBAf (t, s, c, y, y′) are before-after predicates of events e
and f , respectively. The simulation PO (SIM) shows that the new modified action in the
refined event is not contradictory to the abstract action and the concrete event simulates
the corresponding abstract event. This SIM PO can be defined as follows:

A(s, c), I(s, c, x), J(s, c, x, y), Gf (s, c, x, y), BAf (t, s, c, y, y
′) � BAe(t, s, c, x, x

′)

Similarly, in the refined events, we can strengthen the abstract guards to specify
more concrete conditions. The generated POs ensure that if a concrete event is enabled
then the corresponding abstract event will also be enabled. This PO is defined as fol-
lows:
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A(s, c), I(s, c, x), J(s, c, x, y), Gf (s, c, x, y) � Ge(s, c, x)

Rodin [5] is an open source tool based on the Eclipse framework for developing
a formal model in the Event-B language. This is the collection of different tools that
includes the project management, model development, refinement and proof assistance,
model checking and code generation.

3 Methodology

For developing an HMI based on the MVC architecture using a correct by construction
approach, we propose a generic development depicted in Fig. 4. On the upper part of
the figure, we show the classical scheme of MVC with possible interaction protocol.

ViewControllerModel

Updates

Manipulates

Renders

Send Request

Abstract
Model

Rk
Rk+1

Rm
Rm+1

Rn
Rn+1

Concrete
Model

Fig. 4.MVC based refinement strategy

On the bottom part of the
figure, we sketch the pos-
sible refinement strategy.
In this refinement strategy,
each triangle corresponds
to the formal development
of the MVC components,
such as model, controller
and view. Note that these
triangles are overlapped with
each other due to some
shared variables and func-
tional behaviours.

According to the proposed refinement strategy, first, we formalize the model com-
ponents, which describe a very high level of abstraction of HMI in form of system
modality. Note that this abstract model can be used in different refinement layers to
introduce the complete modality of HMI, and we can also introduce the required safety
properties in each refinement level to guarantee the correctness of the modes transitions
of HMI. The next step of the development is to introduce the controller components
and the required controller behaviour. In this phase of the development, we introduce
the controller components and their static and dynamic properties. The static properties
related to the controller can be defined by extending the context of the model, while
the controller components and dynamic properties can be defined by introducing a set
of new events and by refining the abstract events. For modelling the controller, we can
also use different refinements to reduce the complexity of the controller modelling. All
the required safety properties must be introduced in these refinements. The last com-
ponent of the MVC architecture is view, which should be integrated in the previously
developed models. In this last phase of the development, we introduce the components
and the required properties of the view. The view can also be defined as similar to our
previous development in several layers of refinements. By adding the view components,
we can prove the correctness of the request functions and responses of the controller.
In this step of the development, we implement the behaviours of different elements of
HMI. When all the elements are designed and integrated, we introduce the interaction
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properties for each component to check the correctness of the interaction behaviour of
the developing HMI. Note that the formal development related to the view is complex,
and we need to add several guards in different events to meet the desired properties of
interaction behaviour for each view component of the HMI.

4 Case Study

In this section, we describe an industrial case study of HMI to understand the modelling
and designing concepts, and interaction behaviour of different components. Figure 5
depicts a simple HMI that contains a set of graphical components in form of widgets. In
this HMI, we have three modes stop mode, limit mode and control mode. These modes
always appear on the top left corner of the HMI that shows an actual modality of the
physical system. The stop mode indicates that the physical system connected with HMI
is stopped, the limit mode represents that the speed of the physical system is limited, and
the control mode indicates that the speed of the physical system is controlled. The HMI
shows the selected speed, current speed and current mode. The speed of the vehicle is
bounded (selected speed and current speed). The selected speed can be modified using
widget components like slider and buttons (‘+’ and ‘−’).

Fig. 5. Graphical view of the case study

A set of informal requirements of HMI
is defined as: R1: the selected speed
is bounded; R2: the current speed is
bounded; R3: only one button can be
pressed at a time; R4: the slider can be
moved only if no button is pressed; R5:
the default mode of HMI is stopped; R6:
the limit mode and control mode can be active.

5 Formalization of HMI

To develop a formal model of the selected case study, we use the Event-B modelling
language [4] that supports an incremental refinement to design a complete system in
several layers (i.e. model, controller and view), from an abstract to a concrete specifi-
cation. Firstly, the initial model captures the basic behaviour of the HMI in an abstract
way. Then subsequent refinements are used to formalize the concrete behaviour for the
resulting HMI that covers the different elements of the HMI. Note that, in this develop-
ment, we follow the HMI development similar to our proposed methodology.
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5.1 Abstract Model: Model

To model the HMI case study,
Power O
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Fig. 6. Automata of an abstract model

we choose the MVC architec-
ture. An abstract behaviour of the
HMI is depicted in Fig. 6. This
figure shows an automaton that
models the changing states of
the controller. When the system
is in the stop mode then it can
switch either in the limit mode
or in the control mode. There
are several possible interactions
defined in this abstract automata
to describe the model of HMI. In
the context of the initial model,
we define three enumerated sets:
MODES - a set of different con-
troller modes; POWERED - on
and off power states; and STATUS - driving status and suspended status.

axm1 : partition(MODES, {STOPPED}, {CONTROL}, {LIMIT})
axm2 : partition(POWERED, {ON}, {OFF})
axm3 : partition(STATUS, {DRIV ING}, {SUSPENDED})

An abstract model is used to show the operating modes by observing the sys-
tem interaction. The machine model formalizes the dynamic behaviour of the HMI.
To define the dynamic properties, we introduce three variables selectedmode, powered
and status. The variable selectedmode represents the current state of the HMI, the next
variable powered represents the power status of the HMI and the last variable status
indicates the current status of the system. Four interesting safety properties are defined
using safety invariants (saf1-saf4). The first safety invariant (saf1) expresses that the
currently selected mode is not in the stopped mode then the power is on. The next safety
property (saf2) states that if the current mode is stopped then the status is suspended.
The next safety property (saf3) states that when the system is in driving state then the
selected mode is either in the control mode or in the limit mode. The last safety property
(saf4) states that when the system is off then the system must be in the stopped mode.

inv1 : selectedmode ∈ MODES
inv2 : powered ∈ POWERED
inv3 : status ∈ STATUS
saf1 : selectedmode �= STOPPED ⇒ powered = ON
saf2 : selectedmode = STOPPED⇒

status = SUSPENDED
saf3 : status = DRIV ING ⇒ selectedmode =

CONTROL ∨ selectedmode = LIMIT
saf4 : powered = OFF ⇒ selectedmode = STOPPED

EVENT powering
WHEN
grd1 : powered = OFF

THEN
act1 : powered := ON

END

In this abstract model, we introduce seven events: powering - to present the power
status of the HMI; shutdown - to indicate the shutdown status of the HMI; selectStop
- to select the stop mode; selectControl - to select the control mode; selectLimit - to
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select the limit mode; drivingstatus - to show the driving status; and suspendedstatus -
to show the suspended status. The event powering specifies the power on behaviour of
the system. The guard of this event shows that the current power status is OFF and the
action of this event sets the current power status as ON .

The next event selectControl is used to set the control mode and driving status, when
system power is ON and the currently selected mode is not in the CONTROL mode.
Similarly, the last event drivingstatus is also used to set the driving status, when the
system power is ON , the currently selected mode is not stopped and the system is in
suspended status. Rest of the events are modelled in a similar way, and all these events
behave similar to the given abstract level automata (see Fig. 6).

EVENT selectControl
WHEN
grd1 : powered = ON
grd2 : selectedmode �= CONTROL

THEN
act1 : selectedmode := CONTROL
act2 : status := DRIV ING

END

EVENT drivingstatus
WHEN
grd1 : powered = ON
grd2 : selectedmode �= STOPPED
grd2 : status = SUSPENDED

THEN
act1 : status := DRIV ING

END

5.2 First and Second Refinements: Controller

There two different successive refinements for introducing the controller components.
In both refinements, we introduce the controller behaviour according to the MVC archi-
tecture. In order to design the controller, we introduce the initial speed (vinit), maxi-
mum speed (vmax), and bounded speed (SPEED) using axioms (axm1 - axm4) in
the first refinement. Note that the axiom axm3 states that the maximum speed must be
greater than the initial speed.

In the first refinement, we only introduce a new variable SelectedSpeed, which is
defined as SelectedSpeed ∈ SPEED. In this refinement, we introduce a new event
ChangeSpeed for modifying the selected speed non-deterministically. This event will be
refined in the next refinement to add more precise controller behaviour of the system.

axm1 : vinit ∈ N

axm2 : vmax ∈ N

axm3 : vmax ≥ vinit
axm4 : SPEED = 0..vmax

EVENT ChangeSpeed
WHEN
grd1 : powered = ON

THEN
act1 : SelectedSpeed :∈ SPEED

END

In the second refinement, we introduce a new constant STEP defined as STEP ∈
N. This constant is used in the refined model to change the selected speed through inter-
acting several HMI components, such as buttons and sliders. In this second refinement,
we introduce two new events, IncreaseSpeed - to increase a value of the selected speed;
and DecreaseSpeed - to decrease a value of the selected speed, which are the refine-
ments of the abstract event ChangeSpeed. The guards of the IncreaseSpeed state that
the system power is ON , the choice of step value (x) is either 1 or default STEP, and
the sum of the selected speed and the choice of step value (x) must be less than or equal
to the maximum speed (vmax). The action of this event states that the selected speed
increases by the step value (x).
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EVENT IncreaseSpeed REFINES ChangeSpeed
ANY x
WHEN
grd1 : powered = ON
grd2 : x = 1 ∨ x = STEP
grd3 : SelectedSpeed + x ≤ vmax

THEN
act1 : SelectedSpeed := SelectedSpeed + x

END

EVENT DecreaseSpeed REFINES ChangeSpeed
ANY x
WHEN
grd1 : powered = ON
grd2 : x = 1 ∨ x = STEP
grd3 : SelectedSpeed − x ≥ vmax

THEN
act1 : SelectedSpeed := SelectedSpeed − x

END

The eventDecreaseSpeed is also formalised similar to the event IncreaseSpeed. The
guards of theDecreaseSpeed state that the system power isON , the choice of step value
(x) is either 1 or default STEP, and the subtraction of the choice of step value (x) from
the selected speed must be greater than or equal to the maximum speed (vmax). The
action of this event states that the selected speed decreases by the step value (x).

5.3 Third and Fourth Refinements: View

This is the last phase of our development according to our proposed methodology,
which allows us introducing the view components of the MVC architecture using sev-
eral refinements. In the third refinement, we introduce a set of HMI elements, such
as buttons and slider, and possible interactions between HMI components, for exam-
ple, click and dblclick operations of buttons, and moving and sliding operations of
slider. In order to design the selected case study, we introduce a slider and two but-
tons (‘+’ and ‘−’) to modify the selected speed. In this development, we also introduce
a set of buttons to represent the Toggle, Lim, Ctrl, Curr and Off buttons. We introduce
three enumerated sets SLIDERMODE, SLIDERDIRECTION and PRESSED in axioms
(axm1 – axm3). A set of axioms (axm4 – axm5) is defined to represent the possible
slider positions according to the changing speed of the system. An additional axiom
(axm6) is defined to state that the maximum speed is equivalent to the maximum value
of the slider position. It means that whenever the speed changes, the slider position also
updates accordingly.

axm1 : partition(SLIDERMODE, {Y ES}, {NO})
axm2 : partition(SLIDERDIRECTION, {NONE}, {INCR}, {DECR})
axm3 : partition(PRESSED, {NOTPRESS}, {Y ESPRESS})
axm4 : POSITION = 0 .. xmax
axm5 : speed ∈ POSITION → SPEED ∧ speed = id
axm6 : xmax ∈ N ∧ vmax = speed(xmax)

In this refinement, we introduce ten new variables using invariants (inv1 – inv5).
All these variables represent the different states of the HMI components in form of
PRESSED, SLIDERMODE or SLIDERDIRECTION .

inv1 : pressedP lus ∈ PRESSED ∧ pressedMinus ∈ PRESSED
inv2 : pressedCur ∈ PRESSED ∧ pressedToggle ∈ PRESSED
inv3 : pressedOff ∈ PRESSED ∧ pressedLim ∈ PRESSED
inv4 : pressedCtrl ∈ PRESSED ∧ slidermode ∈ SLIDERMODE
inv5 : sliderdirection ∈ SLIDERDIRECTION ∧ sliderposition ∈ POSITION

Several new safety properties (saf1–saf10) are introduced in this development.
The first safety property (saf1) states that when the button (‘+’) is pressed then the rest



250 R. Geniet and N. K. Singh

of the buttons are not pressed. Similar to the first safety property, next eight safety prop-
erties (saf2 – saf9) are introduced, which always guarantee that if the selected button
is pressed then the other buttons are not pressed. The next safety property (saf10) states
that when the slider direction is NONE then the sliding mode is active. The last safety
property is a gluing invariant to establish a relation between abstract variable selected-
speed and concrete speed function speed.

saf1 : pressedP lus = Y ESPRESS ⇒ (pressedLess = NOTPRESS∧
pressedToggle = NOTPRESS ∧ pressedOff = NOTPRESS∧
pressedLim = NOTPRESS ∧ pressedCtrl = NOTPRESS)

saf2 : ...
...
...
saf9 : ...
saf10 : sliderdirection �= NONE ⇒ slidermode = Y ES
glu1 : ∀p·p ∈ POSITION ∧ p = sliderposition) ⇒ selectedspeed = speed(p)

In this development, we introduce 14 new events to describe the functional
behaviour of the different HMI components. A new event pressPlus is defined to show
the functional behaviour of the button (‘+’). The guards of this event state that the
power is ON , slider mode is not active, current button pressedP lus is not pressed and
the other remaining buttons are also not pressed. If all the given guards are true then
the action states that the current button can be pressed. The next event unpressPlus is
defined to model the button (‘+’) when this button is no more active to press. The guards
of this event state that the power is on, the button is in the press state and the slider posi-
tion is greater than the maximum speed. The action of this event states that the button
will be switched in theNOTPRESS mode. The other events are used in similar fash-
ion to model the rest of the HMI components. Note that we have also introduced extra
guards in other events to model the desired behaviour of the HMI.

EVENT pressPlus
WHEN
grd1 : powered = ON ∧ slidermode = NO ∧ pressedP lus = NOTPRESS
grd2 : pressedMinus = NOTPRESS ∧ pressedCur = NOTPRESS∧

pressedToggle = NOTPRESS ∧ pressedOff = NOTPRESS∧
pressedLim = NOTPRESS ∧ pressedCtrl = NOTPRESS

THEN
act1 : pressedP lus := Y ESPRESS

END

The fourth refinement is also the part of view component according to the MVC
architecture. In this refinement, we introduce the current speed of the system which
is produced by the physical system and its application. The development of the main
physical system is beyond the scope of this work because we are mainly interested to
design an HMI using a correct by construction technique. However, we introduce a
new variable currentspeed as currentspeed ∈ SPEED and a new event to model
an interface between the HMI and physical system. The current speed is defined as
similar to the selected speed. The new event updatecurrentspeed is defined to capture
the current actual speed of the system.
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EVENT unpressPlus
WHEN
grd1 : powered = ON
grd3 : pressedP lus = Y ESPRESS
grd4 : sliderposition + STEP > vmax∨

sliderposition + 1 > vmax
THEN
act1 : pressedP lus := NOTPRESS

END

EVENT updatecurrentspeed
ANY v
WHEN
grd1 : v ∈ SPEED
grd2 : v �= currentspeed
grd3 : powered = ON

THEN
act1 : currentspeed := v

END

A complete formal development of the HMI case study is available on our website1.

5.4 Model Validation and Analysis

This section summarises the proof statistics of the generated proof obligations in each
refinement. The Event-B supports mainly consistency checking andmodel analysis. The
consistency checking shows that all the events always preserve the defined safety prop-
erties, and the refinement checking checks the correctness of the refinement process.

Table 1. Proof statistics

Model Total number
of POs

Automatic
proof

Interactive
proof

Abstract model 25 25(100%) 0(0%)

First refinement 5 5(100%) 0(0%)

Second refinement 3 3(100%) 0(0%)

Third refinement 233 219(94%) 14(6%)

Fourth refinement 31 25(81%) 6(19%)

Total 297 277(94%) 20(6%)

The model analysis is performed
using ProB [26] model checker,
which can be used to explore
traces of Event-B models. The ProB
tool supports automated consistency
checking, constraint-based checking
and it can also detect the possible
deadlocks. Table 1 summarises the
generated proof obligations for each
refinement steps.

The stepwise development results in 297(100%) proof obligations, in which
277(94%) are proved automatically, and the remaining 20(6%) are proved interactively
using the different Rodin provers, such as SMT solvers and standard B prover. Note that
the third refinement has the highest number of proof obligations because, in this devel-
opment, we introduce all the HMI components with required functional behaviour. To
validate the developed HMI model, we use the ProB tool for animating the models. This
validation approach refers to gaining confidence that the developed models are consis-
tent with requirements. The ProB animation helps to identify the desired behaviour of
the HMI model in different scenarios. In particular, this tool assists us in finding poten-
tial problems, and to improve the guard predicates of events. Moreover, we have also
used the ProB tool as a model checker to prove the absence of errors (no counterex-
ample exists) and deadlock-free. It should be noted that the ProB uses all the described
safety properties during the model checking process to report any violation of safety
properties against the formalized system behaviour.

In this development, the main derived properties from the usability principles, such
as consistency, observability and task conformance, are considered. A set of invariants
in form of safety properties is introduced equivalent to the subset of the HMI usabil-
ity principles. Note that these properties are also validated using ProB model checker
through animation. For example, in the abstract model, we check the behaviour of the

1 http://singh.perso.enseeiht.fr/Conference/FMIS2018/HMI Models.zip.

http://singh.perso.enseeiht.fr/Conference/FMIS2018/HMI_Models.zip
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model components; in the second and third refinements, we check the behaviour of
the controller components; and in the last third and fourth refinements, we check the
behaviour of the view components.

6 Discussion

Stepwise refinement played an important role in our work for developing the HMI pro-
gressively. A stepwise refinement is a suggestive approach from a long time in order to
design a complex system. As we have mentioned before that the refinement is a core
concept in Event-B development. It is crucial, how to decide on what to introduce in a
new refinement level. There may be no universally ‘correct’ pattern to follow. However,
building on experience in HMI development we identified the order of: (1) Introduce
the model components of MVC (possible modes of HMI); (2) Introduce the controller
components of MVC; (3) Introduce the view components of MVC.

Note that the adopted notion of MVC allows us to build a complex HMI model
systematically and this approach also allows us to do reasoning steps systematically
considering usability principles. Due to the complex nature of HMI, we do not claim
that the proposed modelling approach (see Fig. 4) can be a standard approach for han-
dling any HMI. In fact, our results showed that the proposed modelling approach can be
used to model most of the HMI models. To demonstrate the practicality of the identified
modelling pattern based on the MVC (see Fig. 4), we have developed the selected HMI
case study using a correct by construction approach. We described the system require-
ments using set-theoretical notations abstractly, that can be further refined incremen-
tally to reach a concrete level similar to code. Event-B has a very good tool support that
allows us to prove the given properties (mostly) automatically. Other formal modelling
tools like VDM, Z, Alloy can be used in place of the Event-B modelling language.

As far as we know, there is no work related to the formal development of HMI based
on the MVC architecture using progressive refinement. We used informal descriptions
of the MVC architecture as a basis for this work. We also identified a list of safety
properties in the refinement process to verify the correctness of overall formalized sys-
tem behaviour, including newly introduced features. These safety properties guarantee
that all possible executions of the system are safe if the generated proof obligations are
successfully discharged – and if our list of safety properties is correct and complete.
We have considered only the main safety properties related to modes and interaction of
the view components. These properties are derived from the usability principles, such
as learnability, flexibility and robustness. We can introduce the additional HMI prop-
erties in form of safety properties in different refinements to meet the goal of usability
principles. Note that the presented case study does not cover the whole set of usabil-
ity principles. In particular, the current work is focused on consistency, observability
and task conformance. In addition, the use of the model checker allows us the validate
the developed model with respect to the given safety properties. In summary, we can
conclude that the some of the interesting critical properties of the HMI are proved and
checked but other remaining properties can be checked during the testing process.
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7 Related Work

There are several works related to the formal development of HMI, but most of them
use different methods such as Petri net [31], process algebra [22] and model check-
ing [2]. Bowen et al. [15] present a refinement approach for designing UI, and [14]
describes models and techniques to incorporate the design artefacts into a formal devel-
opment process of HMI to specify the system behaviour. [35] describes a refinement
process to demonstrate that the given requirements of a device must be satisfied by the
specification. Compos et al. [16] propose a framework for checking the HMI system
for a given set of generic properties using model checkers. Combefis et al. [18] present
a formal approach based on bisimulation to analyse the HMI mechanism. Navarre et
al. [30] propose a framework for analysing the interactive systems, particularly for
the combined behaviour of user task models and system models to check whether a
user task is supported by the system model. [27] describes an approach for generat-
ing formal designs of HMI behaviour from task-analysis models and then the results
are demonstrated through different case studies. [17] presents the use of formal tech-
niques for the analysis of human-machine interactions. Michael et al. [23] present a
formal approach and methodology for the analysis and generation of user interfaces.
Palanque et al. [32,33] propose the development of HMI using Interactive Cooperative
Objects (ICO) formalism, in which the object-oriented framework and possible func-
tional behaviour are described with high-level Petri-nets. Bolton et al. [12,13] propose
a framework to analyse human errors and system failures by integrating the task mod-
els and erroneous human behaviour with formal techniques to check the required safety
properties.

Ameur et al. [8,9] propose an incremental development of an interactive system
using Bmethods. The proposed approach targets the important problems of HMI related
to reachability, observability and reliability. A global development approach for devel-
oping a software for human-computer interaction is proposed in [6,7] that can be used
from the abstract model to the code generation. Silva et al. [36] propose an approach to
generate user interface software, particularly in Java, from a declarative description in
the Teallach MB-UIDE. CARE properties are defined using the first order logic in [10].
A new tool-supported approach from specification to the implementation is proposed
in [24]. This approach is based on CAV architecture, which is a hybrid model of the
MVC and PAC models. The Event-B language is also used for developing the multi-
model interactive system using a correct by construction approach in [10]. The ARCH
architecture [29] is used during the development of the multi-model interactive system.
In addition, several safety properties are introduced to verify the required multi-model
interactive behaviour.

In this paper, our approach is different from existing works. The proposed approach
allows us to develop a formal model of an HMI based on the MVC architecture using
a correct by construction approach by analysing the system requirements, modes and
interaction mechanism. The use of refinement approach helps to introduce several prop-
erties in a progressive way and to verify the correctness of the HMI model under the
given safety properties, which can be derived from the usability principles. Moreover,
we can use progressive reasoning step in a complex model to cover the different HMI
properties. In addition, the progressively developed model can be used for validating
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the specified system requirements using the model checker and animation. Note that
the final concrete model of the HMI can be used to generate source code in many pro-
gramming languages using EB2ALL [21,28] in a prototype development or simulating
a user interface.

8 Conclusion

This paper presents a generic methodology for developing a formal model of HMI using
incremental refinement. In particular, the proposed methodology focused on the MVC
architecture of HMI to analyze an interactive behaviour of a system under the given
safety properties. We used the Event-B modelling language, together with its associated
tools, to develop the proof-based formal model of HMI using a correct by construction
approach. Our incremental development of HMI based on the MVC architecture reflects
the complexity and modelling challenges in the area of HMI.

The proposed methodology is a generic solution of the HMI development that can
help to certify the HMI software. Our goal is to integrate formal models in the develop-
ment of HMI for verifying the desired behaviour under the relevant safety properties and
be able to guarantee the correctness of the functional behaviour. The proposed generic
methodology is used to develop the HMI case study for designing a safe interface pro-
gressively and checking the correctness of interactive behaviour.

Our future work intends on the proof of specification and their logical translation
in order to create templates to conceive and prove the development of HMI in Event-
B. Note that the current work does not cover the several HMI properties and CARE
properties, so we plan to include these properties in the process of HMI development.
Another important goal of this work is to validate the possible interaction using an
interface. Thus, our new challenges in the future will be to develop a set of patterns like
Dwyer’s pattern in order to validate the model through animation and tests. Moreover,
we plan to develop a set of libraries of HMI components in Event-B using ontology
relations, so that it can be used later in the development of HMI.
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Abstract. Interaction sequences can be used as an abstraction of an
interactive system. We can use such models to consider or verify prop-
erties of a system for testing purposes. However, interaction sequences
have the potential to become unfeasibly long, leading to models which
are intractable. We propose a method of reducing the state space of
such sequences using the self-containment property. This allows us to
hide (and subsequently expand) some of the model describing parts of
the system not currently under consideration. Interaction sequences and
their models can therefore be used to control the state space size of the
models we create as an abstraction of an interactive system.

Keywords: Interaction sequences · Interactive system testing
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1 Introduction

As part of a sound software engineering development process, interactive systems
should be tested thoroughly to ensure behaviour is as expected. In the process of
developing and maintaining safety-critical interactive systems (systems in which
failure can lead to serious injury or even fatalities [12,15]) this is particularly
important. Models and model-based testing are useful techniques to employ when
testing interactive systems as they focus on different aspects of the system, the
functionality or the usability, which provides flexibility when designing tests.

In order to model the system behaviour, interaction sequences can be used
as a simple abstraction. An interaction sequence is the series of steps a user
can take to perform a certain task or arbitrarily explore an interactive system.
We can derive these sequences at different points in the development life-cycle,
for example from formal specifications, system prototypes or from implemen-
tations. Interaction sequences can take many different forms depending on the
specific technique being used and the required level of abstraction. In our work
we describe the sequences in terms of system states, widgets of the user interface
(UI), user tasks, or combinations of these. We formalise these sequences using
Presentation Models (PM) (see [4]) and Finite State Automata (FSA).
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Regardless of how the sequences are formalised, conceptually we can think of
them as never-ending and they can also be combined in an inexhaustible number
of ways. This is reflected in the models of sequences as an increased number of
states which can lead to intractably large models—the state explosion problem.
The main contribution of this paper is an approach using abstraction of parts of
a sequence to address this problem. We define the property of self-containment
and use this to abstract parts of the model into an abstract state, consequently
reducing the state space. By abstracting sequences using this property we are
able to hide certain parts of the model, however we can also retrieve this infor-
mation if required by expanding the abstract state without loss of information.
Therefore, we may be able to reduce and expand the state space using the self-
containment property, providing the ability to constrain the size of the model.

2 Background and Related Work

In this research, our focus is on modelling interaction sequences, specifically
task-widget based sequences (we will discuss different types of sequences in
more depth later). Several approaches to modelling interaction sequences in the
domain of interactive system testing exist. A common theme between different
approaches is how to constrain or limit the models so that they remain tractable.
We discuss the most relevant techniques to our work here.

The use of directed graphs is a popular visualisation for many of the tech-
niques we will discuss here, such as Event Flow Graphs (EFG) [10], FSA (used
here interchangeably with Finite State Machines (FSM)) [1,7,8,13,16,18,19],
and hierarchical Task Models [2,5,11]. Directed graphs establish specific paths
through a graph which allow us to traverse specific orderings. They allow us to
view and easily understand how we can generate sequences of varying lengths.

There are different ways in which state explosion in directed graphs can
be managed. One approach is to limit by sequence length, which is utilised by
Nguyen et al. in the creation of their testing tool GUITAR [10]. They utilise
interaction sequences to describe systems using EFGs. All sequences of a given
length (such as two) are then generated and they systematically explore these
sequences. Constraining sequences to a defined length gives control over the
state space size, however, it does also potentially hide behaviours that could be
exposed by longer sequences, or combinations of longer sequences.

Finite state automata, or more specifically Mealy machines, are used to model
systems for testing purposes by making certain assumptions about the System
Under Test (SUT), and modelling the system based on input/output pairs [18].
To address the state explosion problem an extended finite state machine (EFSM)
is used which has variables to store important information. For example, a time-
out counter variable can be used instead of three duplicated timeout states. This
reduces the number of states required to model the SUT and restricts the length
of the sequences. It is possible to have lengthy sequences with no duplication
and using an EFSM does not guarantee constraining models to a tractable size.
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Interaction sequences are also used in some testing approaches where well-
known traversal algorithms, or variations of these, are used to explore their mod-
els. This is another approach which focuses on restricting the sequence length to
those generated by specific traversal algorithms. For example, Salem presents an
approach where an FSA is converted so they can be explored using the UPPAAL
model checker, this method allows them to avoid direct state-explosion [13]. In
[7] Huang et al. use weight based methods to calculate paths of a specified
length to traverse through the models. Essentially these approaches, and others
like them, allow the traversal algorithm to “trim” the model. For example, a
weighted strategy only traverses sequences which are more likely to occur based
on probability metrics. This type of strategy only works under certain condi-
tions for specific types of software (such as GUI-based applications as in [7]) and
further abstraction is often required to reduce the model’s complexity.

The symmetry property is introduced in [8] by Ip and Dill, which can be
applied to directed graphs to simplify them. They argue if a series of states
results in the same output, it does not matter which path is taken, as the result
is the same. This use of symmetry could, “help to reduce even infinitely long
graphs”, and as a consequence reduce the overall sequence length. However, we
found that symmetry is not common in interaction sequences. Complete Inter-
action Sequences (CIS) are a way to model the responsibilities (what the system
should allow the user to perform) of an interface rather than the user actions [19].
Using FSA to model these responsibilities still results in the state explosion prob-
lem. In order to reduce the number of states, strongly connected components, or
symmetric components, are identified and abstracted into a ‘super’ state. This
gives a significant reduction in the number of sequences, as well as their length.
While these interaction sequences differ from those we present (they consider
sequences at a higher level of abstraction) the identification of specific compo-
nents as the basis for abstraction is relevant to our work and has informed our
approach.

Another way of constraining interaction sequences is to focus on specific
tasks. This allows us to consider only sequences aimed at satisfying specific
goals (although many different sequences may satisfy the same task). Since the
sequences used are based on tasks and widgets, the extensive literature on task
modelling is relevant. Particularly those based around tools for modelling inter-
active systems such as CTT [11] and HAMSTERS [2]. These task models focus
on the set of steps a user takes to complete a certain task, and in this respect
form the basis for own approach. The main point of difference from the modelling
perspective is that while task models typically view the system relationships at
a higher level and hierarchically decompose tasks into smaller and smaller steps,
we use the task as a mechanism for composing user actions into specific group-
ings, which enables us to limit interaction sequence length (combining the two
methods of length and tasks). We link these task definitions to system actions
specifically via the widget descriptions.
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3 Interaction Sequences

We have identified three perspectives which can be used as the basis for interac-
tion sequences, these are state-based; task-based; and widget-based. We can use
these individually, or in combination with each other to build sequences.

State-based sequences are created by identifying the different states (which
may relate to composite states, windows, dialogs or modes) available in a system
and how the user is able to transition between these states. Task-based sequences
are created by taking a goal (as a task description) the user wishes to achieve, and
then listing the interactions (or set of interactions) it takes to achieve that goal.
Lastly, widget-based sequences are created by identifying the different widgets
that are available in the system and the actions associated with those widgets.

Our larger goal for modelling interaction sequences is to adapt them for
interactive system testing purposes. This leads to the following requirements for
our sequences (we discuss each of these requirements next):

1. We must be able to automatically generate sequences of varying lengths so
that the testing process is faster.

2. We must be able to constrain the sequence length in order to avoid the state
explosion problem.

3. The sequences must allow us to clearly identify why the system did not behave
as expected, for example by producing counter-examples.

3.1 Automatic Generation

We can already automatically generate interaction sequences of varying lengths
using the Presentation Models (PM) of the SUT. PMs provide us with an
abstract view of the interactive component of an interactive system with
widgets described as triples of the form: “((WidgetName,WidgetCategory,
(Behaviour(s))”. To build sequences we begin by modelling the PMs of the
SUT, taking into account the widgets and their related actions, for example
“Button1” has the action “Press”. In order to be able to build these models and
their respective sequences, we must have a thorough understanding of the sys-
tem. It is expected in a good engineering design process this knowledge is readily
available from task models, user-centred design artefacts, specifications etc. We
make assumptions about the sequence based on internal values of the system (for
example, we may want to generate a sequence where a counter variable is 10) and
generate steps of the form: “<action><widget><number of interactions>”.
Once we have a generated sequence we can then model this as an FSA.

We use FSA to model the sequences due to their simplicity and the advantage
of being able to draw on existing, well-defined, theory (other approaches have
used FSA to model interaction systems see [1,5,16] for similar advantages). This
enables us to manipulate FSA using standard techniques, such as removal of non-
determinism or minimisation. We can easily combine multiple FSA by making
use of task ordering knowledge and techniques, such as union or concatenation.
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We can generate subsequences of any given sequence by traversing its FSA
via different traversal algorithms. When sequences are adapted for testing this is
a useful characteristic of the sequence models, as it allows us to explore variations
of particular tasks and exploring such variations is more likely to expose errors.
This also mimics users’ behaviour, in that they typically do not always follow a
pre-defined sequence for a particular task if there are several alternatives.

It is typical in interaction sequences to focus mainly on either direct (see
[3,17]) or response (see [9,14]) actions. Direct actions are the literal actions
performed by the user, for example “Press Ok 1”. Response actions are the
actions that the user will perform in response to a change in the system, for
example “Observe Display”. In this work we use both direct and response actions
to create a complete set of actions for our sequences.

3.2 Constraining Sequence Length

The focus of this paper is to address this second requirement, that is to lessen the
state explosion problem by constraining sequence length. When we first began
using interaction sequences for larger and more complex interactive systems
we found that using existing theory, such as removal of non-determinism and
minimisation, was not enough alone to ensure tractability. Using these techniques
resulted in a loss of information in the models, and thus the meaning of the
behaviour of the sequence changed. Therefore, we needed a technique which
would allow us to hide information, or rather abstract it.

Our first attempt to solve this was to focus solely on task-widget based
sequences. Widgets allow us to divide the sequence into steps based on the
interactions with those widgets, this allow us to describe sequences consistently.
The simplest way to constrain a sequence which “never ends” is to limit the
length of that sequence, tasks allow us to do this as every task has a defined
“end point” or “goal”. From experimentation with different types of models and
sequences we found this did not provide a solution. The reason for this being
that it resulted in a loss of information about the interaction sequence and its
behaviour. The use of FSA to model task-widget based sequences reduces the
sequence length further, as it constrains us to subsets of sequences for specific
tasks, but it is still not enough to fully solve the state explosion problem. The
contribution of this paper is, therefore, a method to address this.

3.3 Using Interaction Sequences for Testing

This requirement further influenced the choice of sequences to task-widget based.
The task-based sequences on their own were too “restrictive” in the sense that
they did not allow for easy generation while the widget-based sequences were too
“free” (allowing for never ending sequences), hence the need for the combination.
The state-based sequences have the potential to unintentionally hide widgets of
the system which do not have an observable effect on state, resulting in poor
coverage of the system behaviour, and for this reason would not be appropriate
to use either alone or in combination with the other types. Requirement three
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will be addressed in future work and we do not discuss this further beyond the
implications it has for the work we describe.

4 Definitions

In this research FSA are used to model interaction sequences. Our purpose
is to make these models more tractable and therefore we introduce ‘the self-
containment property’. In what follows we define: the machines as a varia-
tion of traditional FSA (Definition 1); the self-containment property (Defini-
tion 4); abstraction (Definition 7); and expansion of these machines (Definition 8)
also supporting definitions for: paths (Definition 2); connectedness (Definition 3);
alphabet function (Definition 5); override function (Definition 6). We follow this
in the next section with lemmas (and their proofs) to show that these definitions
have the useful properties we expect and that they have captured the properties
necessary to address the state explosion problem.

Definition 1. A finite state automaton (FSA) is of the form M
def
=

(Q,Σ, δ, S, F ) where:

1. Q is a finite set of states,
2. Σ is a finite set of symbols, the alphabet accepted by M ,
3. δ is a finite set of triples which defines the transitions of machine M , i.e. given

states q, q′ ∈ Q, input x ∈ Σ, we can denote each transition as (q, x, q′),
4. S is the set of start states and S ⊆ Q,
5. F is the set of final (accepting) states and F ⊆ Q.

Definition 2. Given a finite state automaton M = (Q,Σ, δ, S, F ), a path ρ
from q ∈ Q to q′ ∈ Q is a sequence of transitions from δ such that ρ is the empty
sequence < >, or ρ has first element (q, x, q′′) ∈ δ and the remainder of ρ is a
path from q′′ to q′.

If a path exists between two states q, q′ ∈ Q we say that q′ is reachable from
q.

Definition 3. A FSA is connected iff every state is reachable from a start state.

Definition 4. Given machine M = (Q,Σ, δ, S, F ) we define a machine Ms
def
=

(Qs, Σs, δs, Ss, Fs) which is self-contained with respect to M iff:

1. Qs ⊆ Q, Σs ⊆ Σ, δs ⊆ δ,
2. Ms is closed with respect to M , which means that if any transition in δ starts

and ends in Qs then it is in δs too: δs = {(qs, x, q′
s)|(qs, x, q′

s) ∈ δ ∧ qs, q
′
s ∈

Qs},
3. The only transitions of M that start outside Ms and end inside Ms are those

that end in start states of Ms: for all (q, x, q′) ∈ δ, if q ∈ Q \ Qs and q′ ∈ Qs

then q′ ∈ Ss,
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4. The only transitions of M that start inside Ms and end outside Ms are those
that start in final states of Ms: for all (q, x, q′) ∈ δ, if q ∈ Qs and q′ ∈ Q \Qs

then q ∈ Fs.

Definition 5. There is an alphabet function such that, for any machine M =
(Q,Σ, δ, S, F ) we have α(δ)

def
= {x|(q, x, q′) ∈ δ}.

Definition 6. For any machine M = (Q,Σ, δ, S, F ) we can override its set of
transitions δ as follows with the override function:

P
p′δ

Q
q′

def
=

{
(p′x, r′), if r ∈ P
(r, x, r′), otherwise

| (r, x, r′) ∈ δ′
}

where

δ′ def
=

{
(r, x, q′), if r′ ∈ Q
(r, x, r′), otherwise

| (r, x, r′) ∈ δ

}

Note: In what follows, we are dealing specifically with interaction sequences,
thus a FSA will always be connected, however, the proofs do not rely on this.
We also assume that a FSA’s alphabet is exactly the set of symbols that label
its transitions, i.e. for all FSAs (Q,Σ, δ, S, F ) we have α(δ)

def
= Σ. End note.

Definition 7. Given machine M = (Q,Σ, δ, S, F ) where S �= ∅ and F �= ∅ (we
call M the machine abstracted on), machine Ms = (Qs, Σs, δs, Ss, Fs) where Ms

is self-contained with respect to M , and an abstract state x where x /∈ Q,Qs then
an abstract machine Ma

def
= (Qa, Σa, δa, Sa, Fa) where:

1. Qa = (Q\Qs) ∪ {x},
2. Σa ⊆ Σ,
3. δa = F

x (δ \ δs)Sx ,
4. (S ∩ Qs = ∅ =⇒ Sa = S) ∧ (S ∩ Qs �= ∅ =⇒ Sa = {x}),
5. (F ∩ Qs = ∅ =⇒ Fa = F ) ∧ (F ∩ Qs �= ∅ =⇒ Fa = {x}).

The abstract machine is essentially the original machine we started with
except with the removal of the self-contained machine. However, this would
result in a machine which is not connected, indicating a non-connected inter-
action sequence. This would be a confusing model of a sequence as it would be
unclear how to process a path through the states which were originally connected
to the self-contained machine. Therefore, we introduce the abstract state to indi-
cate that an abstraction has taken place and at which point this occurred. The
transitions that originally finished and started in the the self-contained machine
start and final states are then overridden to reflect this change.

Definition 8. Given abstract machine Ma = (Qa, Σa, δa, Sa, Fa) with abstract
state x ∈ Qa and any machine M = (Q,Σ, δ, S, F ) with x /∈ Q, there is a

machine Mb, which we call the expansion of Ma with respect to M , and Mb
def
=

(Qb, Σb, δb, Sb, Fb) where:
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1. Σb = Σa ∪ Σ,
2. Qb = (Qa\{x}) ∪ Q,
3. δb = δ

⋃
s∈S,f∈F ({x}

f (δa)
{x}
s ), which is to say x as a “from” state in a tran-

sition is replaced by the final states of M , and x as the “to” state in any
transition is replaced by the start states of M ,

4. If Sa contains only x then Sb contains only s. Otherwise Sb = Sa,
5. If Fa contains only x then Fb contains only f . Otherwise Fb = Fa.

At some point we may wish to explore the sequence in the self-contained
machine, therefore we needed a way to expand the abstract state. Definition 8
shows how we can correctly expand this state, allowing us to reconstruct our
original machine. As a result we can reduce and expand the state space.

5 Results

In this section we will prove some results that give some evidence that our
definitions correctly capture our intuitions.

Lemma 1. For any machine M = (Q,Σ, δ, S, F ) with s, f /∈ Q, there is an

equivalent machine Mc
def
= (Qc, Σc, δc, Sc, Fc) where:

1. S is not a singleton set and
(a) Qc = Q ∪ {s},
(b) Σc = Σ ∪ {ε} where ε is the blank symbol,
(c) δc = δ and for all (q, x, q′) ∈ δc, if q ∈ S then δc = δc ∪ (s, ε, q),
(d) Sc = {s},
(e) Fc = F .

2. F is not a singleton set and
(a) Qc = Q ∪ {f},
(b) Σc = Σ ∪ {ε},
(c) δc = δ and for all (q, x, q′) ∈ δc, if q′ ∈ F then δc = δc ∪ (q′, ε, f),
(d) Sc = S,
(e) Fc = {f}.

Proof: Section 2.2 [6, p. 26] states that a string w with εs (ε representing the
blank symbol) in is equivalent to w. Therefore, by Theorem 3.8 from [6, p. 65]
the new machine is equivalent to M as it accepts the same language. �

Task-widget based interaction sequences have a defined single start and end
point to the sequence due to the nature of tasks, and thus have singleton start
and final state sets. However, we could have machines which do not. Lemma 1
shows that for any machine there is an equivalent machine with singleton start
and final state sets, thus we do not have to include this as a restriction.

Lemma 2. Given a machine M = (Q,Σ, δ, S, F ), M is self-contained with
respect to itself.
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Proof:

1. Immediate.
2. Immediate.
3. There are no states of M outside M, therefore implication is true (since false

implies anything, ex falso quod libet).
4. Similarly to 3.

�
Lemma 2 proves that for any given machine it is self-contained with respect

to itself. This addresses the state explosion problem in the most extreme case as
we can now take any machine and reduce the state space to exactly one state,
the abstract state. However, this also results in loss of all information for that
machine as it is hidden inside this abstract state. While this solves the state
explosion problem, it is not particularly useful or interesting, especially not in
consideration of adapting the sequences and their consequent models for testing.

Our main result is that, under certain circumstances, we can take a machine
M , abstract it with respect to machine Ms (where Ms is self-contained with
respect to M) to get abstract machine Ma, and then expand Ma with respect
to Ms to get machine M again. While we have all of the component parts in
the definitions above, there is still a crucial relationship amongst the various
machines that we are missing, and this is that we have, of course, to be able
to re-connect the start and final states as originally intended when expanding
the abstract machine. The definitions so far, while allowing re-connection, lose
crucial information about start and final states. The property that we require
for our main result ensures that this information can be recovered. The property
is that if any state of the self-contained machine Ms is also a start state of the
machine M it is self-contained with respect to, then the start states of the self-
contained machine must be the start states of the original machine. Essentially
we need this as we use the start and final states as “markers” to show how the
various machines fit together properly when we do the expansion. It turns out
that this also requires that all the machines involved have singleton start and
final state sets, but we already know (by Lemma 1) that this is not a restriction.

All this leads to needing the following:

Definition 9. Given machine M = (Q,Σ, δ, S, F ) and machine Ms =
(Qs, Σs, δs, Ss, Fs) which is self-contained with respect to M , then M and Ms

have the SF property iff: if any state of Ms is also a start state M , then the
start states of Ms must be the start states of M , i.e.

Qs ∩ S �= ∅ =⇒ Ss = S

and similarly for final states

Qs ∩ F �= ∅ =⇒ Fs = F

Note that in our case where we can assume all machines have singleton start
and final state sets, these conditions simplify to

s ∈ Qs =⇒ ss = s
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and
f ∈ Qs =⇒ fs = f

because S = {s}, F = {f}, Ss = {ss} and Fs = {fs}.
Lemma 3. Let M = (Q,Σ, δ, {s}, {f}) be any machine for modelling inter-
action sequences and Ms = (Qs, Σs, δs, {ss}, {fs}) be a self-contained machine
with respect to M . We are assuming without loss of generality that machines M
and Ms have singleton start and final sets, by Lemma 1. We require that M and
Ms have the SF property (Definition 9). Further, let Ma = (Qa, Σa, δa, Sa, Fa)
be an abstract machine with abstract state x /∈ Q,Qs, where Ms is the machine
abstracted on. Finally, we assume a machine Mb = (Qb, Σb, δb, Sb, Fb) which is
the expansion of Ma with respect to Ms. Then our result is that machine Mb is
equivalent to machine M .

Proof
We have

δa = {fs}
x (δ \ δs){ss}

x from Definition 7 (1)

and

δb = δs ∪ {x}
fs

(δa){x}
ss from Definition 8 (2)

= δs ∪ {x}
fs

( {fs}
x (δ \ δs){ss}

x ){x}
ss substituting from 1 (3)

= δs ∪ (δ \ δs) over-riding and then reversing (4)
= δ δs ⊆ δ from Definition 4 and set theory

(5)

So also

Σ = α(δ) by our Note above (6)
= α(δb) by substitution and (2)-(5) (7)
= Σb by our Note above (8)

Then

Qb = (Qa \ {x}) ∪ Qs by Definition 8 (9)
= (((Q \ Qs) ∪ {x}) \ {x}) ∪ Qs by Definition 7Qa = (Q \ Qs) ∪ {x}

(10)

= (Q \ Qs) ∪ Qs by Definition 7x /∈ Q,Qs (11)
= Q Qs ⊆ Q from Definition 4 and set theory

(12)

Turning to the start states, recall from Definition 8 if Sa contains only x then
Sb contains only ss. Otherwise Sb = Sa. Within those cases each has to consider
whether or not s ∈ Qs. We proceed by nested cases.

Assume Sa contains only x, so Sa = {x}. (13a)
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Now we have further cases depending on s ∈ Qs.

Assumes ∈ Qs (13ba)
{s} = {ss} by Definition of 9 and 13ba (13bb)

= Sb by consequence of 13a and Definition 8 (13bc)

Assumes /∈ Qs (13ca)
{s} = Sa by Definition 7, since 13ca means S ∩ Qs = ∅ (13cb)

= {x} by 13a (13cc)
contradiction Definition 7 requiresx /∈ Qbuts ∈ Q (13cd)

Assume Sa �= {x} (13d)

Now we have further cases depending on s ∈ Qs

Assume s ∈ Qs (13ea)
Sa = {x} by Definition 7 and 13ea (13eb)

contradiction by 13d (13ec)

Assume s /∈ Qs (13fa)
{s} = Sa by 13fa and Definition 7 (13fb)

= Sb by 13d and Definition 8 (13fc)

By cases (twice) we conclude that Sb = {s} (13g)

Finally to the final states, recall that Definition 8 gives if Fa contains only x then
Fb contains only fs. Otherwise Fb = Fa. Within those cases each has to consider
whether or not f ∈ Qs. We proceed by nested cases.

Assume Fa contains onlyx, so Fa = {x}. (13h)

Now we have further cases depending on f ∈ Qs.

Assume f ∈ Qs (13ia)
{f} = {fs} by Definition of 9 and 13ia (13ib)

= Fb by consequence of 13 h and Definition 8 (13ic)

Assume f /∈ Qs (13ja)
{f} = Fa by Definition 7, since 13ja means F ∩ Qs = ∅ (13jb)

= {x} by 13h (13jc)
contradiction Definition 7 requiresx /∈ Q,butf ∈ Q (13jd)
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Assume Fa �= {x} (13k)

Now we have further cases depending on f ∈ Qs

Assume f ∈ Qs (13la)
Fa = {x} by Definition 7 and 13la (13lb)

contradiction by 13k (13lc)

Assume f /∈ Qs (13ma)
{f} = Fa by 13ma and Definition 7 (13mb)

= Fb by 13k and Definition 8 (13mc)

By cases (twice) we conclude that Fb = {f} (13n)

We have, in 2–5, 6–8, 9–12, 13g and 13n, that M = Mb as required. �

6 Infusion Pump Example

In this example we illustrate our main result as proven in Lemma3 specifically
for interaction sequences, in this case for a simplified infusion pump, created in
reference to the Alaris GP Volumetric Pump (see Fig. 1). This simplified version
has the functionality to set up an infusion based on duration, time and pump
type; start, pause or stop an infusion; and view settings and check the battery
life. In total it has six widgets which allow the user to perform different actions,
these are the Up, Down, YesStart, NoStop, OnOff buttons, and Display.

Fig. 1. Wireframe of: simplified medical infusion pump

We create a task-widget-based sequence for this device. The tasks are: setting
up an infusion; starting the infusion; checking the settings; pausing and then
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stopping the infusion. Note that a task-based sequence does not need to be
based on a single task, as in practice it is common to combine tasks to create
more meaningful sequences. To generate the interaction sequence we must make
a few assumptions, this is to ensure that the sequence is reproducible and has
no ambiguity. In this example we assume that all initial values are set to 0; we
begin in the initial state of the system; volume is set to 4ml and duration is set
to 2 hours. Using the PM for this example we generate the following sequence.

1. Click YesStart 1.
2. Observe Display 1.
3. Click Up 4.
4. Observe Display 1.
5. Click YesStart 1.
6. Click Up 2.

7. Observe Display 1.
8. Click YesStart 1.
9. Observe Display 1.

10. Click YesStart 1.
11. Observe Display 1.
12. Click YesStart 1.

13. Observe Display 1.
14. Click YesStart 1.
15. Observe Display 1.
16. Click YesStart 1.
17. Observe Display 1.
18. Click NoStop 2.

We can now convert this sequence to an FSA. This involves using Defini-
tion 1 to construct a well-formed machine M = {Q,Σ, δ, S, F}. For machine M ,
Q is the set of widgets used in the sequence and Σ is the set of interactions.
δ represents the transitions of the machine in the form (q, x, q′) where q is the
widget from the previous step, x is the interaction of the current step, and q′
is the widget from the current step. If a widget is interacted with more than
once, for example “Click Up 4”, then this step also has the transition (q′, x, q′).
The start set S is a singleton set comprising of the state “Initialise” which is a
“place holder” to ensure that we have included the initial action performed on
the YesStart as a triple in δ. The final set F is a singleton set including the final
widget of the final step. Therefore, machine M is as follows:

Q = {Initialise, Display, NoStop, Y esStart, Up}
Σ = {Click, Observe}
δ = {(Initialise, Click, Y esStart), (Display, Click, NoStop), (Display, Click,

Y esStart), (Display, Click, Up), (NoStop, Click, NoStop), (Y esStart, Click, Up),

(Y esStart, Observe, Display), (Up, Click, Up), (Up, Observe, Display)}
S = {Initialise}
F = {NoStop}

Note that in FSA M we assume that the device is already switched on prior
to any interaction. The FSA allows us to generate sequences of varying lengths
for a specific task based on the assumptions. This has helped in reducing the
number of sequences we explore due to the use of the task to constrain the
sequence and consequently the model, in other words the FSA of the sequence.

We now apply the definition of self-containment (Definition 4) to this machine
to construct machine Ms = {Qs, Σs, δs, Ss, Fs}:

Qs = {Display, Y esStart, Up}
Σs = {Click, Observe}
δs = {(Display, Click, Y esStart), (Display, Click, Up), (Y esStart, Click, Up), (Y es

Start, Observe, Display), (Up, Click, Up), (Up, Observe, Display)}
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Ss = {Y esStart}
Fs = {Display}

Ms is not the only self-contained machine we can construct using Definition 4.
As proven in Lemma 2 every machine is self-contained with respect to itself and
in fact each single state could be a self-contained machine, however as stated
previously this would not be particularly useful in terms of the state explosion
problem. If we inspect Ms it contains all the widgets associated with setting up
and starting the infusion. We are left with a sequence which we assume sets up
and begins an infusion correctly, then explicitly pauses and stops that infusion.

To perform the abstraction we create a new FSA Ma = {Qa, Σa, δa, Sa, Fa}
as per Definition 7:

Qa = {Initialise, Ω0, NoStop}
Σa = {Click}
δa = {(Initialise, Click, Ω0), (Ω0, Click, NoStop), (NoStop, Click, NoStop)}
Sa = {Initialise}
Fa = {NoStop}

In this machine we have added an abstract state “Ω0” representing Ms. In
Lemma 3 the machine we are abstracting must have singleton start and final
states in order to preserve equivalence, in this case Ms satisfies this condition.
If required, we could apply Lemma1 to Ms to ensure that this is true.

The abstract sequence for the same task is reduced from 18 steps to two. It
is important to remember that this reduction comes from being able to not only
contain the other 16 steps in a self-contained machine, but also from specifying
a focus for later testing purposes. If we wish to test the setup and start of the
infusion we could focus on the self-contained machine Ms, ignoring the last two
steps of the original sequence, however the reduction here is significantly smaller.

Using Definition 8 we can reconstruct our original machine M by expanding
the abstract state. The input transitions to the abstract state are re-directed to
the start state of the sub-machine, and the output transitions are now output
transitions of the final state of the sub-machine.

The new machine Mb = {Qb, Σb, δb, Sb, Fb} as per Definition 8:

Qb = {Initialise, Display, NoStop, Y esStart, Up}
Σb = {Click, Observe}
δb = {(Initialise, Click, Y esStart), (Display, Click, NoStop), (Display, Click, Y es

Start), (Display, Click, Up), (NoStop, Click, NoStop), (Y esStart, Click, Up),

(Y esStart, Observe, Display), (Up, Click, Up), (Up, Observe, Display)}
Sb = {Initialise}
Fb = {NoStop}

As expected from Lemma 3 M and Mb are equivalent machines. This result
illustrates that even in a small example we can significantly reduce the number
of states in a machine of the form in Definition 1, thus addressing the state
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explosion problem. Furthermore, should we wish to revisit the original machine
we are able to expand the abstract state, this allows us to hide, rather than
lose, information, which may become important when adapting the sequences
for testing purposes. More importantly, this gives control over the size of the
state space to reduce and expand as required.

To demonstrate the use of our technique, in this example we show machine
M and then build the corresponding abstract machine. However, in practical
use we envision that machines will be constructed with abstract states to hide
certain parts of an interactive system, which can be modelled later (or not at
all). For example, in a safety-critical interactive system we may wish to focus
specifically on the safety-critical aspects of that system, we may construct an
abstract machine which hides the non-safety-critical aspects in abstract states.
We will then be able to use this technique to expand the abstract state if required.

7 Future Work and Conclusions

In this paper we have introduced a new technique for abstracting and expanding
states in an FSA representing interaction sequences to provide more control over
the state space. We described how we use tasks and widgets to describe inter-
action sequences and how we formalise them using PMs and FSA. We discussed
sequence length and tasks to constrain sequences to avoid intractable models.
We also highlighted how this in combination with existing techniques such as
FSA minimisation was not enough to address the state explosion problem.

This led to further investigation into abstraction within models to address
this problem. The main contribution of this paper was to define the self-
containment property and how this is used to further abstract and constrain
sequences. Furthermore, we showed how we could expand the abstract state to
include the hidden information, allowing us to reduce and expand the state space
as required. This not only addressed the state explosion problem but also pro-
vided us with greater control over the state space and results in more tractable
models.

Our modelling approach is not without limitations, the major concern being
we could have a model which contains no self-contained sub-models (beyond the
trivial case of abstracting to a single state). In this instance we are not be able
to abstract the model further using this method. It is possible that this could
occur in a highly inter-connected system and further investigation is required.

Furthermore, while we can use the self-containment property to construct
the abstract machine automatically, we cannot know if this abstraction will be
useful or not (in terms of adapting the sequences for testing purposes). Keeping
in mind that we can abstract an entire machine to a single abstract state, we
leave it to human reasoning to determine if abstracting a self-contained machine
provides benefits or not from a testing perspective. Future work will involve
investigations into adapting this approach for testing and the implications of
the abstraction in the testing environment.
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Abstract. User centred design approaches typically focus understand-
ing on context and producing sketch designs. These sketches are often
non functional (e.g., paper) prototypes. They provide a means of explor-
ing candidate design possibilities using techniques such as cooperative
evaluation. This paper describes a further step in the process using for-
mal analysis techniques. The sketch design of a device is enhanced into a
specification that is then analysed using formal techniques, thus provid-
ing a systematic approach to checking plausibility and consistency during
early design stages. Once analysed, a further prototype is constructed
using an executable form of the specification, providing the next can-
didate for evaluation with potential users. The technique is illustrated
through an example based on a pill dispenser.

1 Introduction

User centred design approaches are designed to satisfy Gould and Lewis’s guid-
ing principles [7]: (i) to focus on user tasks early and throughout the design
process; (ii) to measure usability empirically; (iii) to design and test iteratively.
These approaches are important where devices can be used in a variety of dif-
ferent contexts by different users with different backgrounds and where the con-
sequences of misuse can compromise safety. A variety of techniques exist that
satisfy these principles to a greater or lesser extent. Contextual design [1] and
scenario based design [5] are examples. Contextual design aims to understand
the context through observation to identify what would help improve the situa-
tion in which the proposed design is to be used. This process involves focussing
on user needs and tasks, asking questions of the following type (taking a medical
example): “Who enters patient, medicine and prescription details in the medi-
cal device, and where do these activities happen? How and where are reminders
produced and how does the patient access the dose?”. Contextual design and sce-
nario based design techniques use scenarios that capture typical or exceptional
situations in which a possible design would be used.
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The sketch designs developed as a result of this process are often initially non-
functional (for example it could be a simple PowerPoint presentation or a paper
storyboard). They are developed and evaluated by letting end users interact with
the sketch design in selected scenarios of use. Think aloud techniques such as
cooperative evaluation [13] are typically used to collect feedback that is useful to
improve the design and judge whether a further iteration would be appropriate.

The focus of this paper is the nature of the sketch design and the process of
development of the final design. This paper briefly explores integration of the
informal, though structured, approach typical of contextual design and scenario
based design with formal techniques. An example based on an automated pill
box for dispensing drugs to patients at specific times is used throughout the
paper to present the approach.

In the following sections, first we describe how the initial sketch design was
developed (Sect. 3.1). Then, an enhanced design is presented that fills vari-
ous gaps observed of the initial design (Sect. 3.2). This design is checked for
plausibility (Sect. 4) and against use-related requirements. The first use-related
requirements are designed to check the consistency of the actions offered by
the enhanced design (Sect. 5.1). Requirements also consider the reversibility
of scrolling behaviour (Sect. 5.2). The iteration of the design (Sect. 6) is then
described with a discussion of comparable approaches and further work (Sect. 7).

Contributions of the paper are: (1) an illustration and discussion of how exist-
ing formal tools could be used as part of a user centred design process; (2) a
case study using a pill dispenser design as focus.

2 The Approach

The aim is to integrate the formal modelling process with user centred design.
We do this through five steps.

Step 1: An initial interactive sketch design is created that demonstrates the
different screens of the system, either as a storyboard or a non functional
prototype. This provides the first candidate for evaluation with potential end
users.

Step 2: Once evaluated, a revised design is created based on a formal model
developed from the prototype. This initial formal specification includes details
of modes, actions, and fields of each screen. This model is assessed for plau-
sibility. The specification is plausible if it correctly reflects the designer’s
intention. This can be demonstrated through exploration of the executable
form of the specification and also achieved by demonstrating that the design
exhibits intended functional properties.

Step 3: The formal specification is iterated as a result of the assessment of step
2. The new version of the specification is analysed using formal verification
technologies to explore inconsistencies and gaps in the proposed design.

Step 4: An executable formal specification, developed as a result of the analysis
of step 3, provides the next candidate for evaluation with potential users.
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Step 5: The process (steps 2–4) is repeated.

The steps of the method use the following tools provided by the PVSio-web
toolkit: PVS [16] to develop and analyse the model; PVSio [15] to check its plau-
sibility; the PVSio-web Storyboard Editor [18] to develop the initial sketch; the
PVSio-web Prototype Builder [12] to produce an interactive prototype based on
the PVS model. PVSio-web is a web-based environment that enables the creation
of interactive prototypes based on executable PVS specifications. The toolkit
supports the creation of both storyboard-based prototypes using mockup pictures
of different screens of the system under development, and high-fidelity prototypes
that can closely resemble the visual appearance and behaviour of a final product.
The interactive prototype, so constructed, can be evaluated with end-users. The
PVS language builds on higher-order logic, and provides an extensive library of
constructs for representing complex system behaviours and datatypes. PVSio is
a tool that extracts Common Lisp code from PVS executable specifications. This
makes it possible to test the functionality of PVS specifications by evaluating
ground expressions representing user actions performed on the system state.

3 Designing a Pill Dispenser

A pill dispenser is a medical device that provides doses of drugs to patients at
specified times. While such devices are often designed for individual use, the
considered example was designed to be used by groups of patients, perhaps in a
care home common room or a hospital ward. The proposed initial design suggests
a device that caters for the multiple and complex requirements of patients. While
this service was initially sketched by engineers, it would be expected that, as
part of a user centred approach, the initial design would have been informed by
developing an understanding of the context in which the design is to be situated.
The device as envisaged in early sketches alerts the patient when medicine is due
and the patient responds and obtains their dose using a thumb print to ensure
they are receiving the medication intended for them. The device maintains a
database of patients who have been subscribed to the system as well as a database
of medicines. The pill dispenser supports “columns” of pills from which the
patient can obtain their required dose.

3.1 The Starting Point: The Sketch Design

A video was provided to the authors of an early prototype of the device.
A storyboard was produced from this video (see Fig. 1). The display designs
were sketched and transitions between displays indicated. The initial proto-
type was the sketch design. A state transition diagram described the transitions
between displays (see Fig. 2). PVSio-web uses a graphical state transition lan-
guage (emucharts a simplified version of Statecharts [9]) to describe the flow of
the storyboards. The sketch screens are linked to nodes of the emuchart which
can be translated automatically into PVS as illustrated in Listing 1.1. Figure 3
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indicates a phase of the creation of the interactive storyboard in PVSio-web.
Green areas on the left hand side of the sketch design represent interactive but-
tons that can be used to navigate to a different screen. The full list of screens
used to develop the sketch design is shown at the bottom-left corner of the figure.

(a) Password screen (b) Patient list screen (c) Patient details screen

Fig. 1. Example display images produced for the initial prototype.

Fig. 2. The initial sketch: state transition diagram

The initial sketch design, as represented in the video, illustrated three user
pathways. The first pathway allows entry, or modification, of patient details.
This requires use of a password and involves the nurse or carer responsible for
setting up patient details. New patient information can be entered, including
the patient’s thumb print for validation purposes, or a list of existing patients
in the database is displayed which can be scrolled up or down to allow access to
all patients for selection. Details of the patients can be changed. Each patient
has up to five prescriptions (in this version of the prototype). A prescription
can be added or removed and includes details of time and frequency of each
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drug prescribed. The second pathway, also protected by password, allows access
by carers or nurses or doctors who are able to enter details of medicines. This
pathway allows entry or editing of medicines. In a similar way the medicine
pathway allows medicines to be listed or displayed and modified.

pill_dispenser: THEORY BEGIN
%-- operating modes
Mode: TYPE = { initial_screen , password_screen , patients_list_screen , ...}
%-- state attributes
State: TYPE = [# mode: Mode #]
%-- init function
init: State = (# mode := initial_screen #)
%-- transition functions
per_password_screen(st: State): bool = (mode(st) = initial_screen)

OR (mode(st) = pill_dispensed_screen)
OR (mode(st) = database_password_screen)

password_screen(st: (per_password_screen)): State =
COND
mode(st) = initial_screen
-> LET st = leave(initial_screen)(st)

IN enter(password_screen)(st),
mode(st) = pill_dispensed_screen
-> LET st = leave(pill_dispensed_screen)(st)

IN enter(password_screen)(st),
mode(st) = database_password_screen
-> LET st = leave(database_password_screen)(st)

IN enter(password_screen)(st)
ENDCOND

%-- ... more transition functions omitted
END pill_dispenser

Listing 1.1. PVS specification generated from the emuchart

The third pathway was not provided in the video and further information would
be required to complete it. As is common in design approaches of this kind the
current version of the design is partial. Further iteration will flesh out the details
of the design. This pathway identifies and alerts the patient who is required to
take their medicine. The patient’s thumbprint is required to access the dose. The
paper focuses on the two pathways that were illustrated in the original video.

3.2 The Enhanced Model

Additional details about modes, actions and field types present in each screen
are now added to the initial model and the model is restructured. The full
specification of the illustrated case study may be found at our repository1. This
model of the design is based on actions that are invoked when the user presses a
control that is visible on the display. The revised model provides more detail of
the interaction: which actions are available; which fields must be entered before
an action can be completed. Actions of selecting and entering fields are included
as well as, in some cases, concrete examples of information in the pillbox (e.g.,
patient names, content of prescription charts, and so on). The pill dispenser
screen is assumed to be a touch screen but for present purposes the details of how
the pressing takes place is not a concern. These actions cause transitions between
modes. Further transitions are caused by selecting fields and entering values.
1 http://hcispecs.di.uminho.pt/m/8.

http://hcispecs.di.uminho.pt/m/8
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Fig. 3. Phase of the creation of the initial sketch design using PVSio-web.

These transitions do not change mode. They add to the set of fields that have
been entered and also add the values entered to temporary records of patients,
their prescriptions or medicines (depending on mode). Modes, actions and fields
are represented using mode type (lines 1–2 of Listing 1.2), actions type (line
3) and fields type (line 5).The availability or visibility of actions and fields
is made explicit using boolean functions, for example (in the case of actions)
available actions type (line 4). The state of the device is represented by a
type state, a fragment of the definition is illustrated in line 7–12.

1 mode_type: TYPE = { initial , pwd , db_pwd , db_menu , patient_list ,
2 db_med_list , new_patient_details , ... }
3 actions_type : TYPE = { key1 , key2 , key3 , confirm , create , ... }
4 available_actions_type : TYPE = [ actions_type -> boolean ]
5 fields_type : TYPE = { password , dob , dosage , id_card , mob , carer , ... }
6 fields_set: TYPE = [ fields_type -> boolean ]
7 state: TYPE = [# mode: mode_type ,
8 vis_field: fields_set ,
9 sel_field: fields_set ,

10 ent_field: fields_set ,
11 action: available_actions_type ,
12 ... #]

Listing 1.2. Types used in the model of the first sketch

A PVS function is now illustrated that specifies the behaviour of the pill
dispenser when the operator enters new patient details (Listing 1.3). The spec-
ification of the function includes identification of the actions that are visible
(lines 5–7), the fields that are visible (lines 16–18), the fields that are selected
(none in this case, see line 19) and the field that is entered (line 20). Within
the mode, specified by the mode attribute of state, fields can be entered (as
discussed below, and see definition of enter in Listing 1.5). In the initial state
of this mode, described here, only one field is represented as entered, namely
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the patient name. For reasons of simplicity the name is taken to be generated
automatically in this initial model (see definition of np in line 2).

Each time a field is entered the temporary patient record (temp patient) is
updated. In the initial transition (new patient details screen) all fields are
empty since this is a new patient except for the patient name. The temporary
patient record (temp patient, lines 8–11) is also set with the patient name
(p name, line 8) set to np, and the rest of the patient record set to null. Further
temporary elements are set to null: temp script (which identifies prescriptions
associated with the patient) and temp med (which is used when setting up the
record for a medicine).

1 new_patient_details_screen(st: state): state =
2 LET np = next_pid(st `p_max)
3 IN clear_screen(st) WITH
4 [ mode := new_patient_details ,
5 action := LAMBDA(x: actions_type):
6 (x = key1) OR (x = key2) OR (x = key3) OR
7 (x = confirm) OR (x = quit),
8 temp_patient := (# p_name := np,
9 p_fields := LAMBDA(x: fields_type): FALSE ,

10 scripts_index := s_null ,
11 scripts := LAMBDA (s: s_index): nil_script #),
12 temp_script := nil_script ,
13 temp_med := nil_med ,
14 m_current := m_null ,
15 p_current := np,
16 vis_field := LAMBDA(x: fields_type):
17 (x = name) OR (x = dob) OR (x = id_card) OR
18 (x = carer) OR (x = mob),
19 sel_field := LAMBDA(x: fields_type): FALSE ,
20 ent_field := LAMBDA(x: fields_type): x = name ]

Listing 1.3. The specification of the new patient details screen

The patient database (Listing 1.4), is specified by type patient db type. This
type describes a list of patient records. Patient records include fields associated
with date of birth, carer and so on as well as the prescriptions that are associ-
ated with them (scripts). There is a limit to the number of scripts that can be
associated with a patient as defined by type s index.

1 list_script_type: TYPE = [s_index -> script_type]
2 patient_type: TYPE = [# p_name : p_index ,
3 p_fields : fields_set ,
4 scripts_index: s_index ,
5 scripts: list_script_type #]
6 patient_db_type: TYPE = list[patient_type]

Listing 1.4. Patient database types

Patient fields can be entered in mode new patient details. Entry of a field
requires two pre-conditions. The field must be visible. Hence in Listing 1.3 (lines
16–18), name, dob, id card, carer and mob are fields that are visible. A field
must also be selected (only one field is selected at a time and selection is lost
when the field is entered). Hence in line 19, no fields are selected. Two actions
select and enter specify selection and entry of fields. Selection also specifies
selection of actions. The function enter is illustrated in Listing 1.5. Entering
a field first checks that the field is selected (line 2). It then updates temporary
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database fields. These are: temp script (lines 4–6), temp patient (lines 7–9)
and temp med (lines 10–12). These updates depend on whether the mode relates
to entry of values to these temporary records. In all cases the entered field is
added to the set of entered fields (line 13), and the selection of the field necessary
prior to entry is set to false (line 14).

1 enter(f: fields_type , st: state): state =
2 IF sel_field(st)(f)
3 THEN st WITH [
4 temp_script := IF per_enter_patient_script(f, st)
5 THEN enter_script_field(f, st `temp_script)
6 ELSE st `temp_script ENDIF ,
7 temp_patient := IF per_enter_patient_field(f,st)
8 THEN enter_patient_field(f, st `temp_patient)
9 ELSE st `temp_patient ENDIF ,

10 temp_med := IF per_enter_med_field(f, st)
11 THEN enter_med_field(f, st `temp_med)
12 ELSE st `temp_med ENDIF ,
13 ent_field := LAMBDA(x: fields_type): x = f OR st `ent_field(x),
14 sel_field := LAMBDA(x: fields_type): FALSE ]
15 ELSE st ENDIF

Listing 1.5. Entering a field

4 Plausibility

Once the specification has been developed, and before further analysis of the
implications of the design, it is clearly necessary to be assured that the model is
a plausible reflection of the envisaged design. This checking process is iterative.
The design is developed by fleshing out interaction detail and adding functional-
ity. It is not conventional formal refinement because at each step the design is in
flux, open to change as a result of evaluation and discussion with potential users.
The plausibility of the specification of the design is explored in two ways. Firstly,
PVSio is used to explore grounded versions of the specified functions. This allows
a form of direct interaction with the model to exercise the available actions and
observe their effect on the state of the system. It makes it possible to explore
some situations in which actions do not have the expected behaviour. Inevitably
using PVSio does not allow exhaustive analysis in the sense that model checking
(see for example [2]) does. The goal at this stage however is to establish a first
impression about the model and flush out any obvious problems, before more
exhaustive analysis is carried out. Secondly, PVS theorems are constructed to
demonstrate that actions change state as expected. Here the aim is to demon-
strate that for all states (not just the states generated through execution of the
ground functions), the behaviour of actions is as expected. The use of PVSio, to
explore plausibility is now considered in more detail.

4.1 Using PVSio to Check plausibility

PVSio [15] makes it possible to test the model. Although the model is of a half-
formed sketch design, testing can be sufficient to check that the model meets the
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designer’s intentions. An example of how PVSio can be used to check plausibility
now follows. The following shows the last steps of a sequence that builds a
database of patients. The sequence shows the last few actions of a much longer
sequence including selecting (i.e., pressing) key2, selecting the password field,
entering the password, and then pressing confirm. The sequence that produces
the state editmdpnp2 constructs the elements of the database. In fact the analysis
of the specification involved checking that each step of the sequence had the
desired effect.

susdmdnp2minus: state = LET st = editmdnp2 ,
st = select(key2 , st),
st = select(password , st),
st = enter(password , st)

IN act(confirm , st)

PVSio shows the effect of this long sequence on the state of the pill dispenser
(see Listing 1.6). There is only space to show a small part of the state that is
produced. At the end of the action sequence the mode is patient list (line
1 in Listing 1.6). This mode shows a list of up to five (five is the limit for
the screen) patients. There are no visible fields associated with this mode, but
there are visible actions: key1, key2, key3 and create (line 3). The state attribute
patient id line shows the list of patients (identified by p name) that are visible
in the list (line 4). The listing also shows one element of the patient database
(patients db) with p name equal to 1 (lines 5–24). This patient entry shows that
fields dob, id card, mob and carer have been entered as well as the prescriptions
that have been entered. The patient entry allows for five prescriptions. Only
elements l(0) and l(1) have been entered.

1 (# mode := patient_list ,
2 vis_field := { }, sel_field := { }, ent_field := { },
3 action := { key1 , key2 , key3 , create },
4 patient_id_line := { l(4):=5, l(3):=4, l(2):=3, l(1):=2, l(0):=1 },
5 patients_db := (:
6 (# p_name := 1,
7 p_fields := { dob id_card mob carer }, scripts_index := 2,
8 scripts := { l(4) := (# med_name := 0, s_fields := { },
9 s_period := period_null ,

10 quant := 0, t1 := 0, t2 := 0 #)
11 l(3) := (# med_name := 0, s_fields := { },
12 s_period := period_null ,
13 quant := 0, t1 := 0, t2 := 0 #)
14 l(2) := (# med_name := 0, s_fields := { },
15 s_period := period_null ,
16 quant := 0, t1 := 0, t2 := 0 #)
17 l(1) := (# med_name := 2,
18 s_fields := { dosage prescription },
19 s_period := daily ,
20 quant := 5, t1 := 7, t2 := 0 #)
21 l(0) := (# med_name := 1,
22 s_fields := { dosage prescription },
23 s_period := bidaily ,
24 quant := 3, t1 := 3, t2 := 5 #) } #),
25 (# p_name := 2, %... details omitted #) } #),
26 %-- ... further entries and structures omitted #)

Listing 1.6. Displaying the effect of a sequence
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The information provided by PVSio therefore makes it possible to check the effect
of sequences of actions. It is possible to use sequences of this kind to demon-
strate that in a particular context, as defined in a sequence of ground functions,
an action (or sequence of actions) will have a desired effect. An example that was
explored demonstrates that, after the execution of a sequence for creating more
than five patients in the database (five is the limit of patients that can be dis-
played at a time), scrolling down the patient list in the relevant mode, followed
by scrolling it up, produced the same display as before the scrolling actions were
taken. Listing 1.7 shows the sequence that was explored. The context for the
exploration is the state susdmdnp2minus produced by the sequence mentioned
above. The sequence of actions considered is Listing 1.7. The result of performing
the sequence is shown in Listing 1.6. The patient id line is unchanged and
the line indexed by 0 points to p name = 1.

PVSio therefore makes it possible to test the model to check that the
behaviour coincides with the expected behaviour insofar as it is represented
in the sketch model. In Sect. 5 we consider template properties [10] that are
designed to check use-related properties of the emerging design. In Sect. 5.2 we
prove that the patient list scrolling actions are inverses of each other.

scrolldscrollu: state = LET st = susdmdnp2minus ,
st = scroll_down_patient_list(st)

IN scroll_up_patient_list(st)

Listing 1.7. Adding scroll down followed by scroll up

4.2 From Plausibility Checks to Plausibility Theorems

PVS theorems can be used to demonstrate that the model has consistent and
desirable behaviour thus providing confidence in its plausibility. An example
illustrates the process. Consider for example the mode that allows the entry of
patient details. Based on our understanding, actions key1, key3, confirm, pre-
scriptions and quit are visible inviting the user to take one of these actions. The
PVS theorem (see Listing 1.8) aims to prove that these actions have the desired
effect, producing the relevant mode displays and updating the patient database
appropriately. Thus it can be demonstrated that one step behaviours are consis-
tent with those suggested of the sketch design for all states of the pill dispenser.
As an example, consider quit. The sketch indicates that the action takes the pill
dispenser to a mode where a list of patients, taken from the patient database, is
shown (see line 26) and takes no further action.

On the other hand pressing confirm also updates the patient database (if any
changes have been made in the patient details screen) and produces the patient
list screen (see lines 7–18). Furthermore the sketch indicates that the confirm
action is only permitted if all the relevant fields have been selected and entered.
In this case the patient database is updated with the temporary patient record
(st2’temp patient) using the function p insert which inserts the patient into
the database (lines 16–18). The database is ordered and the insertion either
replaces an existing record or inserts the record in the right place in the list.
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In the case of prescriptions the database is updated with the temporary patient
and a transition is made to the current list of prescriptions for that patient. A
collection of PVS theorems like check212 demonstrates that expected transitions
take place and have been verified using the PVS theorem proving assistant.

1 check212: THEOREM FORALL (st: state):
2 (( p_current(st) < p_max(st)) AND (p_max(st) < plimit))
3 IMPLIES
4 LET st1 = patient_details_screen(st)
5 IN (( select(key1 , st1) = init_screen(st)) AND
6 (select(key3 , st1) = db_menu_screen(st)) AND
7 %-- set up the state for the confirm action
8 (LET st2 = enter(name , select(name , st1)) IN
9 (LET st2 = enter(dob , select(dob , st2)) IN

10 (LET st2 = enter(id_card , select(id_card , st2)) IN
11 (LET st2 = enter(carer , select(carer , st2)) IN
12 (LET st2 = enter(mob , select(mob , st2)) IN
13 %-- the effect of the confirm action
14 (select(confirm , st2) =
15 patient_list_screen(st2 WITH [
16 patients_db := p_insert(st2 `p_current ,
17 st2 `temp_patient ,
18 st2 `patients_db) ]))))))) AND
19 %-- the effect of the prescriptions action (sets up scripts list)
20 (select(prescriptions , st1) =
21 LET tp = p_find(st `p_current , st `patients_db),
22 stx = st WITH [ patients_db := p_insert(st `p_current , tp,
23 st `patients_db),
24 temp_patient := tp ]
25 IN script_list_screen(stx)) AND
26 (select(quit , st1) = patient_list_screen(st)))

Listing 1.8. Plausible actions from the patient details screen

5 Proving Properties

Once a plausible model has been developed it is possible to do further explo-
ration. This includes user evaluation of a realistic prototype, but it also makes
it possible to analyse the behaviour of the modelled prototype against use-
centred requirements [10]. These requirements may include safety requirements
that are used in the software safety analysis required by the regulatory author-
ities. This step therefore enables a more exhaustive analysis of the emerging
design than would be possible with the functional prototype typically used in
use-centred design. It also supports software engineering of the system using
a spiral model, and the mapping of a requirements specification including use-
centred requirements [17]. The approach is demonstrated by considering two
use-centred requirements: consistency and reversibility.
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5.1 Consistency

Action Consistency

∀a ∈ Act , s ∈ S ,m ∈ MS :
guard(s,m)∧
pre filter(s,m) ϕ post filter(a(s),m) (1)

The action consistency property is formulated as a property of either a single
action, or of a group of actions (we will refer to them as Act) which may exhibit
similar behaviours. A relation ϕ : C × C connects a filtered state, before an
action occurs (captured by pre filter : S ×MS → C), with a filtered state after
the action (captured by post filter : S × MS → C).

There are many properties of the model of the sketch design that relate to its
consistency. It is relatively common that actions are inconsistent in some detail.
Consider, for example quit as represented in the storyboard. A first consideration
of prototype material indicates that quit consistently changes mode without
changes to either the patient or meds database. The action consistency template
can be instantiated to a theorem that makes this assumption. The theorem
fails to be true because there is a special case during the patient’s thumb print
registration sequence when quit is used to exit the sequence and the patient
database is changed. The consistency template instantiation is reformulated to
include a guard that excludes this feature. The formulation of the theorem is
as follows: it uses a simple guard (mode(st) /= creation success), and the
filters extract the attributes that specify the patient database and the medicine
database:

quit_consistency_thm: THEOREM FORALL (st: state):
mode(st) /= creation_success

IMPLIES
LET st1 = select(quit , st)
IN (st `meds_db = st1 `meds_db AND st `patients_db = st1 `patients_db)

5.2 Reversibility

When testing plausibility using PVSio we considered the reversibility of scroll
actions. The testing that was done inevitably considered only specific states of
the patient database that generated the patient listing (see Sect. 4.1). A general
reversibility property, which proves this requirement for all states, is identified
in the reversibility template as follows. This template is formulated for a group
of actions Act ⊂ S → S using guard : S → B, and a filter : S → C relevant to
the entry mode. For each a ∈ Act , there corresponds a b ∈ Act such that:

Reversibility

∀s ∈ S : guard(s) =⇒
filter(b(a(s)) = filter(s)) (2)

This template can be used to prove that scrolling actions have required character-
istics. Consider two actions scroll up patient list and scroll up med list
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and their inverses scroll down patient list and scroll down med list. The
guards require that respective list screens are visible. The theorem is expressed
using a function that instantiates the template and is proved using structural
induction. Structural induction assumes that the property is true of an initial
state and then proves that as a consequence it is true of any state that can be
reached by the actions supported of the device. The verification of the theorem
as formulated succeeds, i.e., the formulated property is true of the design.

%-- reversibility of scroll actions
confirm_ud_scroll_fn(st: state): boolean =
(mode(st) = patient_list

IMPLIES scroll_down_patient_list(scroll_up_patient_list(st)) = st)
AND (mode(st) = db_med_list

IMPLIES scroll_down_med_list(scroll_up_med_list(st)) = st)
%-- reversibility theorem , formulated using structural induction
confirm_ud_scroll_thm: THEOREM

FORALL (pre , post: state):
init?(pre) IMPLIES confirm_ud_scroll_fn(pre)

AND (state_transitions(pre , post) AND
confirm_ud_scroll_fn(pre) IMPLIES confirm_ud_scroll_fn(post))

6 Iterating the Prototype

Once properties are proved of this version of the PVS model, a further proto-
type can be developed for co-operative evaluation with end users. The visual
appearance of the prototype is based on a concept design image created, for
example, using a photo-editing tool. PVSio-web is then used to create hotspot
areas over the picture and link them to the PVS model. Hotspots over buttons
represent input widgets of the prototype, and they are linked to transition func-
tions defined in the PVS model. Hotspot areas over display elements are used to
render the value of state variables so that the visual appearance of the prototype
closely resembles that of the real system in the corresponding states.

Figure 4 shows a screenshot of the developed prototype. It uses 17 widgets to
model different elements in the various screens of the pillbox. Listing 1.9 shows
a snippet of JavaScript code necessary for creating the home button of the pro-
totype. TouchscreenButton is the widget constructor. The new operator is used
to create a new object of type TouchscreenButton. The created widget is stored
in a variable key1. The first argument of the constructor is a string defining the
widget identifier. The PVSio-web toolkit uses this string as a basis for deriving
the name of the transition function in the PVS model to be linked to the widget.
The full name of the transition function is constructed by concatenating the user
action that activates the widget with the widget identifier.

For example, when the user clicks on the button, the transition function that
will be evaluated is act(key1, st). The second argument is a structure defining
the coordinates and size of the widget. This is necessary to create an interactive
overlay area of the correct size for the image used as a basis for the visual
appearance of the prototype, and to position the interactive area in the correct
place, that is the left side of the screen. The third argument provides information
about the callback function to be invoked for refreshing the visual appearance
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Fig. 4. Pillbox prototype based on concept design image.

of the prototype when the evaluation of the transition function associated with
the button generates a new system state, as well as information on the visual
appearance of the touchscreen button (label, colour, font).

The visual aspect of all widgets is refreshed each time the PVS specification
is evaluated in PVSio. The evaluation of the specification occurs either when the
user interacts with an input widget (e.g., presses a button), or periodically (if
the device has internal timers that are ticking).
var key1 = new TouchscreenButton(" key1", {

top: 216, left: 230, height: 64, width: 64
}, {

softLabel: "home",
backgroundColor: "green",
fontsize: 16,
callback: render

});

Listing 1.9. Creation of a touchscreen button using PVSio-web.

This enhanced version of the prototype benefits from improved look and feel.
The results of the evaluation with end users is then used to iterate the design
process.

7 Related Work and Conclusions

While there is relatively little literature concerned with development techniques
that combine informal representations of design with formal models, there are
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many activities that combine different formal descriptions of visual, functional
and task elements. Bowen and Reeves [4] explore the relation between display
and functional models. Their work also focuses on specifications of sketch designs
and aims to enable analysis of these designs. We are not, however, aware of devel-
opment of executable versions of their models. Haesen and others [8] integrate
models and informal design knowledge. Their focus is also the role of formal task
models and abstract user interfaces in user centred design. They use personas,
scenarios and related task models in their models. Graphical models of story-
boards are produced along with constraints on these models. Bolton and others
[3], Paterno and others [14] and Fields [6] combine task and functional models.
Palanque and others [11] combine visual, functional and task elements.

An important challenge in developing the approach described in this paper
was not to reduce the value of user centred design. A criticism often levelled
at formal techniques is that they can have the effect of limiting the scope of
the analysis, ignoring important broader issues. We believe that our analysis,
as an adjunct to the techniques and approaches of user centred centred design,
responds to these criticisms. A further concern is that the effort and knowl-
edge involved in producing the models and performing the analysis are not cost
effective. It is true that these are techniques that are not typically found in the
toolkit of a development team, particularly the small teams that often design
and implement medical devices. However the safety of medical devices, in par-
ticular, is crucial and a thorough analysis of usability issues is a key contribution
ensuring safety.

An important future dimension of our work, currently under development,
is to simplify and automate some of these processes. Tools for presenting and
instantiating property templates are being developed. Heuristics are being devel-
oped to automate the proof of PVS theorems. We are also simplifying the process
of using PVSio-web to construct prototypes from models. The aim is to make
these techniques accessible to a wider group of developers.
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Being distributed, concurrent and mobile, modern information systems often involve
the composition of heterogeneous components as well as standalone services. Theo-
retical models, languages and tools for coordinating, composing and adapting services
are required. They can indeed simplify the development of complex distributed service-
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by three independent referees. The review process included an in-depth discussion
phase during which the merits of all the papers were discussed. Based on quality,
originality, clarity and relevance criteria, the PC finally selected six contributions. The
program was further enhanced by two invited talks given by Stefano Mariani from the
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Abstract. The issue of coordination in Socio-Technical Systems (STS)
mostly stems from “humans-in-the-loop”: besides software-software we
have software-human interactions to handle, too. Also, a number of pecu-
liarities and related engineering challenges make a socio-technical gap
easy to rise, in the form of a gap between what the computational plat-
form provides, and what the users are expecting to have. In this paper
we try to shed some light on the issue of engineering coordination mech-
anisms and policies in STS. Accordingly, we highlight the main chal-
lenges, the opportunities we have to deal with them, and a few selected
approaches for specific STS application domains.

Keywords: Coordination · Socio-technical systems · MoK
Speaking objects · ArgoR ec · Self-organisation · BIC · Argumentation

1 Introduction

Modern society is a growing interconnection of (sub)systems, such as healthcare,
transportation networks, supply chain, etc. Its complexity thus stems from both
the inherent complexity of each subsystem, and the added complexity of interac-
tions amongst subsystems. The same can be said for modern IT systems, where
managing interactions among components is at least as complex as designing the
computational function of each component itself.

Furthermore, IT systems and the society rarely are isolated systems: rather,
the latter relies on the former for many vital services and functionalities, giving
birth to the so-called Socio-technical Systems (STS). There, “humans-in-the-
loop” [20] are the norm rather than the exception, thus management of inter-
actions further complicates: besides software-software, we now have software-
human interactions to account for, too.

STS, in fact, arise when cognitive and social interaction is mediated by infor-
mation technology rather than by the natural world (alone) [52]. As such, STS
include people, processes, etc., which are inherent parts of the system. An exam-
ple of STS is a Smart City, a social network, a Computer Supported Collabora-
tive Work platform, any Internet of Things (IoT) deployment featuring human
users—i.e. assisted living, smart homes, retail applications, etc.
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STS are technically difficult to design, mostly because social activity is flexi-
ble and multi-faceted [1]. Also, a number of peculiarities and related engineering
challenges have been highlighted by various research works [1,12,25]. Failing to
recognise any one of the above facets, therefore missing to deal with the related
issue, leads to a socio-technical gap in the STS, that is, a gap between what the
computational platform provides, and what its users are expecting to have.

In this paper we try to shed some light on the issue of engineering coordina-
tion mechanisms and policies in STS. Accordingly, Sect. 2 highlights the main
challenges to be faced in the process, Sect. 3 discusses promising approaches deal-
ing with each of them, and Sect. 4 describes a few research contributions putting
these approaches in practice in specific STS application domains.

2 Socio-Technical Systems: Challenges

Unsurprisingly, the challenges to be faced when engineering STS are twofold:
technical, and socio-cognitive ones. Among the former, we can put any issue
concerned with how to design the STS so that it serves at best its users’ needs.
Among the latter, we can include issues related to how users interact with the
STS as well as to how they perceive it—in psychological terms. The remainder of
this section somewhat follows this distinction, first by focussing on STS technical
requirements such as self-organisation and adaptation, then by analysing the
mindset humans have when dealing with STS, and finally by discussing how
they perceive their computational (“algorithmic”) part. Please, notice that the
latter two issues pose their own technical requirements, too.

2.1 Emergence, Adaptation, Awareness

In [1] the distinguishing properties of STS are discussed. Among the many, the
following are particularly interesting in the context of this paper:

– STS have emergent properties, which therefore cannot be attributed to indi-
vidual parts of the system, but rather stem from the dependencies between
system components. Given this complexity, these properties can be evaluated
only once the system has been tested and deployed, not at design time

– awareness, that is, knowing who is present, and peripheral awareness, that is,
monitoring of others’ activity, are fundamental in STS [21], because visibility
of information flow – thus observability of dependencies – enables learning
and improves efficiency [22]

– people adapt to the systems they use, but also strive to adapt those systems
to best meet their needs [35,37]

Emergent properties of a STS may be modelled and analysed, for instance by
exploiting agent-based modelling and simulation frameworks [34]. Nevertheless,
actual deployment of the STS inevitably has differences w.r.t. the “synthetic”
version – i.e. unpredictability of human behaviour vs. predictability of software
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agents – thus cannot exactly predict the actual STS dynamics. Supporting aware-
ness may seem more feasible, but enabling observability of actions, interactions,
and dependencies among activities – namely, anything that can happen in a
STS – poses serious scalability and privacy issues which have no silver bul-
let available, yet—just look at the Cambridge Analytica scandal [40]. Adap-
tation received a lot of attention from computer scientists, there included the
FOCLASA community—i.e. see [48]. What is most challenging here, unsurpris-
ingly, is taking into account unpredictability of human behaviour: adaptations
may solicit unexpected reactions in users, which may begin “fighting” against
the system, possibly because they ignore the reason for adaptation and/or the
expected benefits.

Dealing with each of the facets above is challenging on its own, let alone
conceiving and designing a system successfully tackling all of them.

2.2 Goals and Assertions vs. Actions and Perceptions

In [24] further considerations about peculiarities of STS are made, in the specific
context of a novel approach to engineering Social Internet of Things applications,
that is, applications in which IoT devices and software must have social inter-
actions to achieve the goals of the system, between both themselves and human
users [3]. The proposed Speaking Objects approach puts emphasis on two traits
of human interaction which sharply contrast with device-to-device interaction:

– humans better reason in terms of goals to be achieved, rather than by directly
thinking at the actions needed to achieve them. Accordingly, they usually
interact by expressing their own goals, not by explicitly commanding others
what to do

– humans also better reason in terms of complex situations, state of affairs hold-
ing in the past, at present, or desired for the future, rather than by thinking
at all the specific perceptions of their surroundings which make up a situa-
tion. Accordingly, they usually interact by exchanging assertions about those
situations and their properties, not by debating over specific measurements
of them

This is quite the opposite of what sensors and actuators do: they simply provide
perceptions, which are then composed by someone else (usually, ad-hoc machine
learning algorithms), and react to explicit commands for undertaking specific
actions. Thus, their interaction is a mere exchange of measurements, sampling
a specific facet of a complex situation, and commands about what to do (not
what to achieve).

It is therefore quite difficult for humans and devices to fruitfully communicate
and interact unless either humans learn “the language of devices”, or devices
learn to think more like humans, in terms of goals and assertions—instead of
actions and perceptions.
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2.3 Algocracy and Trust

As clearly witnessed by statements such as the ACM “Statement on Algorithmic
Transparency and Accountability” [2] we are living in an algocracy, that is, in
a society in which increasingly pervasive, complex, and delicate aspects of our
everyday lives are decided, or at least influenced, by computer algorithms [12].
A typical example is the filter bubble effect [38], caused, i.e., by the ranking
algorithms running behind the news feed of social networks such as Facebook, or
by more subtle ones, which are ultimately everywhere—for instance, algorithms
regulate stock-trading, access to healthcare and insurance, employment chances,
and much more [31,33].

While living in an algocracy does not necessarily represent an issue on its
own, the lack of transparency and accountability does: if users of a STS have
no clue of what is going on “behind the scenes”, and who is to blame when
something goes wrong, they are likely to lose trust of the system—to eventually
stop using it. The path toward making algorithms accountable and transparent
is full of challenges and open issues, and often heavily depends on the specific
scenario where the STS is deployed [14,18].

3 Coordination: Opportunities

As for Sect. 2, the approaches to coordination in STS may focus more on the
technical side or on the socio-cognitive one. In the remainder of this section
we discuss both: we start with the latter, by summarising the evolution from
stigmergic to observation-based coordination, then proceed with the technical
side by analysing how self-organisation can be engineered, and finally go back
to the socio-cognitive facet of STS by briefly discussing how argumentation may
alleviate the issue of trust and the fear of algocracy.

3.1 Observation-Based Coordination

Observation-based coordination captures the idea of coordinating an ensemble
of agents by enabling them to observe each other’s actions, or the traces that
those actions leave in the environment where they happen [41].

The most well known example of observation-based coordination is stigmergy.
The term has been originally introduced to define the coordination approach of a
specific species of termites in collectively building their nest, communicating and
synchronising their activities through the environment rather than by directly
communicating [19]. Then, throughout the years, it undergone many generali-
sations/specialisations/extensions [36,39,43]. Here, we refer to a generic set of
coordination mechanisms mediated by the environment. Accordingly, stigmergic
coordination requires that:

– agents act on the environment leaving some traces, or markers, which can
then be locally perceived by others—and, possibly, affect their behaviour



Coordination of Complex Socio-Technical Systems 299

– all interactions among agents are mediated by the environment, through
traces—like ants’ pheromones

– emission of traces is generative, namely, once they are produced their lifecycle
is independent of their producer’s one

– evolution of traces over time (and in space) may depend on the environment—
as in the case of pheromone diffusion, aggregation, and evaporation in ant
colonies

The interplay between these requirements produces self-organisation: whereas
actions occur on a local basis – i.e. termites assemble soil locally, and ants sort
broods locally – their effect is global in terms of the structures and behaviours
they originate system-wide, by emergence [45]—as in the case of termites’ nests,
or ants’ brood sorting.

Stigmergy is not confined to the world of insects: research in cognitive sciences
emphasises the fundamental role that stigmergy plays also within human soci-
eties [44,47]—hence in STS, too. There, stigmergy provides novel opportunities,
because traces become amenable of human interpretation within a conventional
system of signs, thus may be exploited by the cognitive abilities of the inter-
acting agents to better coordinate. Along this line, [43] introduces the notion of
cognitive stigmergy as the evolution of stigmergic coordination in those contexts
where agents are capable of symbolic reasoning, as in the case of humans.

As such, cognitive stigmergy is a key enabler of awareness: through traces,
in fact, agents may perceive what others are doing, and if traces are amenable of
symbolic interpretation, they may even try to infer their intentions and goals. In
turn, awareness is a pre-condition for adaptation: in order to plan actions aimed
at improving the current situation, one must know what the current situation
is, there including what others are doing. Then, emergent behaviours are likely
to arise from the interplay between adaptation and awareness [6].

Both stigmergy and cognitive stigmergy are mostly concerned with traces of
actions left in a shared environment, rather than on actions themselves. Also,
they do not consider the effect that awareness of observability of actions and
their traces have on the acting agent: if an agent knows that its actions could be
observed, it may decide to act in a given way just to communicate something.
This is where Behavioural Implicit Communication (BIC) [11] enters the picture,
as a further generalisation of cognitive stigmergy embracing actions in their own
right, too.

BIC is a cognitive theory of communication fostering the idea that practi-
cal behaviour can be used as a means for communicating, even without any
additional specialised signal. On the contrary, communication actions are nor-
mally carried on by specialised behaviours (e.g., speech acts). BIC has been
already taken as a reference for observation-based coordination, mostly based
on a list of “tacit messages” that practical behaviours may convey. For instance,
the “presence” tacit message communicates that “agent A is here”, by the fact
that whichever is the action that A made, it is evident now for who observed it
that A exists. Or tacit message “intention”, which communicates that “A plans
to do action β”, by the fact that actions may (partially) reveal the plan behind
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them, such as in the case where agents follow a pre-determined workflow there-
fore observing action α may reveal at which point of the workflow A is—thus the
next action it has to commit to. The complete list of tacit messages and many
illustrative examples can be found in [10].

BIC clearly represents a step forward on the path laid by stigmergy and cog-
nitive stigmergy, enabling further forms of observation-based coordination based
on practical behaviour rather than on dedicated communication acts, and on a
process of signification of the intentions, conditions, and opportunities behind
actions [9].

It is worth emphasising that existence of a suitable environment, where
actions take place and their traces are recorded, is a necessary pre-condition
for BIC, because it is the environment that enables and constrains observation
of actions and their traces—in a computational world, in the physical one, and
in the mixed world of STS. Also, it should be noted that BIC is a key enabler
in raising the abstraction level within a STS, by allowing designers to think in
terms of intentions and goals behind actions, and agents as well as interaction
mechanisms to be designed accordingly.

3.2 Self-organisation

Given the importance of awareness and observability as witnessed by stigmergy
and BIC, one could be tempted to adopt a centralised approach to coordination
in STS, where a single component (the coordinator) has complete knowledge
of the state of the system, and accordingly schedules others’ actions globally
so as to guarantee absence of unwanted interference and efficient collaboration.
Nevertheless, decentralisation is one of the keys enabling self-organisation, which
is a sort of holy grail for coordination models and languages: the ability of
a system as a whole to autonomously (re-)configure itself in face of change,
without any global supervision but rather relying on locally available information
solely [17]. Besides self-* properties, decentralisation enables greater scalability,
efficiency, and fault-tolerance w.r.t. centralised approaches, usually at the price
of the complexity of implementation.

Awareness is apparently in contrast with decentralisation, since the latter
explicitly avoids gathering of complete information by any component of the
STS. Nevertheless, decentralisation often implies that computations depend on
the context local to the executing component, that is, on what the component
locally perceives about the state of the system, and on how it can act on its local
portion of the computational environment to carry out its duties. Awareness is
thus conveniently re-defined on a local basis in place of a global one, not lost. And
there, situatedness plays a crucial role, as the property of actions (computation)
and interactions (coordination) of being deeply intertwined with the environment
they are immersed in [46]: on the one hand, they are affected by it, as it enables
and constrains what agents can and cannot do, can and cannot perceive (thus, be
aware of); on the other hand, they can affect it in turn, by changing its properties
and structure (thus, possibly, also the admissible actions and perceptions).
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Fig. 1. Design patterns according to [16]. (Dashed) Arrows indicate (optional) compo-
sition.

Decentralised approaches to self-organisation have been widely studied, as
regards both computation [4,32] and coordination [13,16], and already proved
to be effective in dealing with the many issues of distributed computing in general
[53]. In [16], for instance, the authors surveyed the literature regarding nature-
inspired self-organising mechanisms, with the goal of compiling a catalogue of
design patterns to promote reusability—pretty much like object-oriented design
patterns do. As a result, the patterns depicted in Fig. 1 are detected, and related
to each other in a compositional hierarchy consisting of three layers:

Basic Patterns – can be used to form more complex patterns, but cannot
be further decomposed into smaller ones
Composed Patterns – obtainable as a composition of some basic mecha-
nisms, and which in turn can serve as building blocks for higher level ones
High Level Patterns – patterns directly supporting complex self-organising
emergent behaviours, showcasing how to exploit basic and composed patterns

For instance, gradients compose spreading and aggregation (optionally evapora-
tion, too) to dynamically build routing paths inspired by force fields in physics
[26], whereas flocking exploits repulsion as birds and schools of fishes do to main-
tain a given structure despite disruption.

All of the patterns may be implemented in a decentralised way, and leverage
situatedness of interacting components to achieve self-organisation.

3.3 Argumentation

As just discussed, self-organisation is undoubtedly a desirable property to have
for any given system, also because it alleviates the developers’ burden of explic-
itly intervene on the system to manually adapt its functionalities and behaviour
upon need. Nevertheless, self-organisation comes at a price: for instance, it
makes it more difficult to deterministically guarantee what the configuration
or behaviour of the system would be in any given situation, due to the lack of
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a global supervisor or strict design-time rules [20]. Although many approaches
have been proposed to help engineers correctly design self-organisation, either
through model-checking of desired safety and liveness properties [23], run-time
verification of expected behaviour [7], or by construction [51], an important
issue is still open: understanding what exactly went wrong in case of abnormal
behaviour. The reason being that self-organisation is by definition a (partially)
opaque process, where it is not always clear how to attribute a given global
behaviour to the locally programmed rules—the so-called “local-to-global” issue
[27].

Here, an intriguing opportunity is represented by argumentation, as the inter-
disciplinary research field studying dialogues and debates to understand their
dynamics and the corresponding reasoning process [49]. In particular, computa-
tional argumentation exploits computational techniques to automatically analyse
and build arguments and their relationships, there including generating explana-
tions and justifications of decision making [8]. For instance, argumentation-based
negotiation applies argumentation principles to negotiation-based coordination
in multi-agent systems [42]. There, in fact, negotiation mechanisms are usually
blind with respect to the strategy adopted by the agents participating in the
protocol, that is, to their motivations in performing bids. By adding argumenta-
tion, instead, agents can disclose the reason why they are taking a given stance,
thus improving the odds of reaching an agreement by collectively reasoning on
conflicting goals and motivations. In the case of self-organisation, having com-
ponents being able to explain why they performed a given action is a potentially
effective way of promoting accountability, that is, exactly the practice of identi-
fying someone or something as the cause of an effect.

Argumentation has therefore the great advantage of promoting trustability
in a STS: if users can get justifications about the decision making undergoing
“behind the scenes”, they are likely to increase their confidence in the capa-
bilities of the system. In this respect, it is worth emphasising that striving to
provide trustability and accountability is an increasingly hot topic well beyond
coordination in STS, but in many fields of AI – from big data [33] to algorithms
in general [31] – as witnessed by the recent “transparency initiative” endorsed
by many organisations worldwide1.

4 Selected Applications and Proposed Approaches

With the aim of showing how the research works described in Sect. 3 can be
actually exploited in the real-world to tackle the challenges discussed in Sect. 2,
the remainder of this section reports on three promising yet novel proposals
each integrating some of the approaches in its own unique way: the M olecules of
K nowledge model blends self-organisation with BIC, the Speaking Objects vision
focusses on giving to users the right level of abstraction when interacting with
technical systems while leveraging situatedness and argumentation, ArgoR ec is

1 http://www.transparency-initiative.org/.

http://www.transparency-initiative.org/
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mostly concerned with promoting trust and fighting algocracy through argumen-
tation and awareness.

4.1 Self-organising Knowledge Management with MoK

The M olecules of K nowledge model [29] (MoK ) fosters a novel way to engineer
computational platforms supporting knowledge management in STS, according
to which the software exploits users’ interactions to continuously and sponta-
neously (self-)organise information. MoK is built around the integration of a
biochemical metaphor [50] and BIC [11]: the former defines how to carry out
computations, while the latter how to manage interactions.

Accordingly, a MoK system is a network of compartments (representing
information repositories), where seeds (sources of information) continuously and
spontaneously inject atoms (atomic information), which may then aggregate into
molecules (composite information), diffuse to other compartments, gain/lose rel-
evance, and so on. These processes are enacted by MoK reactions (the coordi-
nation laws dictating how the system evolves) executing within compartments,
and influenced by enzymes (the reification of agents’ actions) and traces (their
side effects). Both enzymes and traces are left within compartments by catalysts
(the agents) while performing their activities.

Reactions leverage decentralisation and situatedness to promote self-
organisation: first, they rely only on information local to their compartment
and can only affect neighbours, at most; second, they are scheduled according
to dynamic rate expressions inspired by natural chemical reactions, which are
sensitive to the contextual information (possibly) affecting their own outcomes.
Enzymes and traces instead fully exploit the BIC theory for enabling awareness
and observation-based coordination: by reifying actions themselves as well as
their traces, in fact, they make agents aware of what others are doing, and thus
enable their coordination. For a description of each reaction, enzyme, and trace,
as well as their relationships, the interested reader is referred to [28].

In [30], a citizen journalism scenario is taken as a case study: there, users share
a MoK -coordinated IT platform for retrieving, assembling, and publishing news
stories. They use the MoK middleware for a number of actions such as searching
for relevant information and working on these information to shape their own
news stories. While they carry out their activities, users release enzymes and
traces within their working space (a compartment), which ends up attracting
similar information from other compartments through MoK reactions. Namely,
the MoK middleware exploits users’ (local) interactions to improve the (global)
spatial organisation of information (Fig. 2): whenever users implicitly manifest
interest in information, MoK interprets their intention of exploiting informa-
tion, and the opportunity for others to exploit it as well, by attracting similar
information toward the compartment where the action took place.
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Fig. 2. Clusters of similar information appearing in MoK by emergence, as a result of
users’ interactions (image from [30]).

4.2 Traffic Control with Speaking Objects

In [25] the novel concept of Speaking Objects is presented as a brand new way to
conceive and design distributed systems in general, with a particular emphasis
on the Internet of Things vision. There, the core idea is that in a few years
sensor and actuator devices will no longer simply provide measurements of pre-
defined metrics and react to simple commands for affecting the state of the local
environment. Rather, they will become able to assert complex situations about
the state of the world and to autonomously pursue goals ascribed to users or
explicitly designed for the system itself. Essentially, this amounts at transitioning
from actions and perceptions to goals and assertions. Key enabler of such a
paradigm shift is the increasing computational power that can be embedded
in everyday objects, along with advancements in machine learning techniques,
which, for instance, are making it possible to analyse data locally [5].

In such a setting, coordination becomes the capability of argumenting about
the current “state of affairs”, and of triggering conversations to collectively
decide how to act in order to achieve the desired future ones. Besides support-
ing decentralised coordination by leveraging opportunities for negotiation [53],
argumentation also embraces humans-in-the-loop by enabling users to interact
in natural language [8], and deals with the issues of trust and algocracy by mak-
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ing explanations and justifications of decision making available and amenable of
inspection and interpretation by human supervisors.

In [24], a traffic control scenario is taken as a case study. There, vehicles
approaching an intersection are supposed to be equipped with an array of speak-
ing and hearing objects, as the intersection itself—i.e., cameras, traffic lights, etc.
As they get closer to the intersection, vehicles start argumenting with the traf-
fic light about who has the right of way and who should instead stop and wait
(Fig. 3). After a negotiation phase where vehicles try to persuade the traffic light
to decide in their favour, the dispute is settled when the argumentation process
finds a solution for which no vehicle has to stop.

A
B

Ci Cj

T

Fig. 3. Argumentation-based intersection management (image from [24]).

4.3 Personalised Medicine with ArgoR ec

In [15] another example of fighting the fear of algocracy by promoting trust and
interpretability with argumentation can be found. There, a recommender system
named ArgoR ec is introduced, whose distinctive feature is to rely on argumen-
tation to provide justifiable and personalised recommendations. In fact, on the
one hand argumentation empowers ArgoR ec with explanatory power regarding
why and how recommendations are provided, while, on the other hand, argu-
mentation improves the user experience of patients thanks to natural language
generation.

In particular, ArgoR ec adopts a simple framework for structured
argumentation—depicted in Fig. 4 as an argumentation graph: arguments
(shaded boxes) are made up of claims (darker nodes) and their premises (lighter
ones), and put together by attack (solid arrows) and support relations (dashed
arrows). Attacks may be rebuttals (darker arrows) or undercuts (lighter ones),
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Fig. 4. Example of argumentation graph exploited by ArgoR ec [15].

that is, contradictory claims or premises, respectively. All relations have a
strength represented by a numeric weight (thickness of the line).

In ArgoR ec, recommendations are interpreted as arguments composed by a
claim and its supporting premises: the former is, for instance, the suggestion to
keep going with the current activities, while the latter could be the fact that the
patient has a good compliance with the prescriptions assigned by the medical
staff. Attack relations are the consequence of the fact that patients’ compliance
is monitored through automated tools – such as wearable devices – which pro-
vide raw measurements, which are unaware of the goal behind the prescription,
nor of the history of the patient, nor of any other contextual information. The
argumentation process enacted by ArgoR ec, instead, is aware of all the differ-
ent measurements available, as well as of the status and history of the patient,
thus exploits this awareness to both produce justifiable and personalised rec-
ommendations: the former by tracking the argumentation graph, the latter by
generating sentences tailored to the patient (i.e. calling him/her by name, recall-
ing the time left to complete a prescription, informing him/her on the current
compliance, etc.).

For instance, in Fig. 4 recommendation “keep going” is the strongest argu-
ment: although comparison of latest event (fulfillment i,t) with previous one
(fulfillment i,t−1) suggests to warn the patient (recommendation “must improve”)
since her/his adherence to prescriptions is worsening, the fact that there is still
time left to complete prescription (prescriptioni) makes recommendation “keep
going” win the dispute.

5 Conclusion and Outlook

Engineering socio-technical systems is a complex task, and this comes at no sur-
prise: the technical perspective is usually quite different from the socio-cognitive
one, thus adopting either standpoint easily leads to a socio-technical gap. Nev-
ertheless, there exist approaches attempting to integrate these two facets, by
carefully linking socio-cognitive theories with technical solutions, as in the case
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of the three research proposals described in Sect. 4. There, for instance, MoK
attempts to integrate decentralised computations with stigmergic coordination
in the same framework, so as to achieve a sort of user-driven self-organisation—as
happens with the clustering emergent phenomenon depicted in Fig. 2. Speaking
Objects, instead, focuses on integrating goal-orientation with argumentation-
based negotiation, so as to provide more flexible coordination schemes in dis-
tributed scenarios, while also increasing the abstraction level. All of this with
the ultimate goal of shrinking the socio-technical gap arising when engineering
STS as much as possible.

It is thus apparent that integration is the key here: as scientists and engineers,
we need to find a way to include socio-cognitive aspects in our technical solutions
since the very beginning of the design phase by using proper models and theories,
not as an orthogonal dimension to be added later on, or dealt with in an ad-hoc
way.

Accordingly, the three approaches discussed in Sect. 4 are not to be seen as
mutually-exclusive solutions to the same problem, but rather as complementary
one to each other as focussed on a different layer or perspective of the STS
at hand. For instance, MoK is perfectly suited at working as the information
handling layer in a Smart City deployment adopting the Speaking Objects vision.
Just think of a Smart City as a large-scale STS: speaking and hearing objects
are scattered throughout the city to compose the IT infrastructure with which
human users constantly and seamlessly interact in their everyday activities. All
the information recorded in this urban STS continuously and spontaneously
evolves according to the MoK vision, and is made available to speaking and
hearing objects as they need premises to either support or attack each other
arguments. There, even ArgoR ec could be added to the picture, for instance as
an approach to build personal digital assistants offering guidance and assistance
regarding. i.e., public transportation services, touristic attractions, interaction
with the local administration, etc.

In this paper, we tried to shed some light on the possible paths to follow
in order to make such an integration happen, with the aim of providing fertile
ground for further discussion and research on the matter.

Acknowledgement. This work has been partially supported by the CONNECARE
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Abstract. The novel field of quantum technology is being promoted by
academia, governments and industry. Quantum technologies offer new
means for carrying out fast computation as well as secure communi-
cation, using primitives that exploit peculiar characteristics of quantum
physics. While building quantum computing devices remains a challenge,
the area of quantum communication and cryptography has been success-
ful in reaching industrial applications. In particular, recently, plans for
building quantum internet have been put into action and expected to
be launched by 2020 in the Netherlands. Quantum internet uses quan-
tum communication as well as quantum entanglement along with clas-
sical communication. This makes design of software platform for quan-
tum networks very challenging and a daunting task. Seamless design and
testing of platforms for quantum software, thus, becomes a necessity to
develop complex simulators for this kind of networks. In this short paper,
we argue that using coordination models such as Reo can significantly
simplify the development of software applications for quantum internet.
Moreover, formal verification of such quantum software becomes possible,
thanks to the separation of concerns, compositionality, and reusability
of Reo models. This paper introduces an extension of a recently devel-
oped simulator for quantum internet (SimulaQron) by incorporating Reo
models extended with quantum data and operations, along with classical
data. We explain the main concepts and our plan for implementing this
extension as a new tool: SimulaQ(reo)n.
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1 Introduction

As quantum technologies emerge rapidly, designing reliable hardware and soft-
ware for hybrid quantum/classical systems poses significant challenges both the-
oretically and experimentally. Nevertheless, specific quantum networks have been
built in various cities around the world and already a satellite has been launched
to provide secure quantum communication. Using such networks demands rigor-
ous analysis and verification before they can be trusted in safety- and security-
critical applications. One way to achieve this goal is to develop a dedicated sim-
ulation toolset before actual quantum devices get deployed. SimulaQron [2] is
an example of such a tool that is able to model the behaviour of local simulators
or even actual quantum devices in a hybrid quantum/classical network which
is called quantum internet [4]. The tool itself can be thought of as a platform
for developing software applications for quantum internet, and is designed to
offer ease-of-use and clarity in that regard. However, simulating complex inter-
actions in quantum networks needs incorporation of coordination models for
the same reasons as in the case of classical networks (e.g., compositionality and
reusability), even more strongly so, because in quantum networks, primitives
with non-local (entanglement) effects play a critical role. Currently, the major-
ity of research in quantum programming focuses on sequential programs and
efficient simulation of sequential quantum algorithms (e.g., see [10]).

In this short paper we pursue two objectives: first, to bring the problem of
coordination in quantum internet to the attention of the computer science com-
munity, especially those active in the field of coordination models [15]. Second,
we explain the principles of extending Reo [3,13,14] coordination model and lan-
guage to support modeling of the behaviour of quantum networks. One milestone
toward our second objective consists of automatic generation of executable code
for protocols over quantum internet. To this end, the current Reo compiler has to
be modified in order to support quantum data types, operations and primitives,
as we explain later in this paper. To our knowledge this paper presents the first
work on coordination of quantum software components.

The rest of this paper is organized as follows. In Sect. 2, we present the
necessary background on quantum information processing. In Sect. 3, we review
the Reo coordination concepts. We describe the SimulaQron tool in Sect. 4. In
Sect. 5, we present the principles of extension of Reo to support coordination in
the quantum setting, particularly in connection with SimulaQron. Finally, we
conclude the paper in Sect. 6 with plans for future work.

2 Quantum Information

This section provides a concise introduction to quantum information processing
(QIP). For more details, we refer to [1]. The basic unit of quantum information is
a qubit (quantum bit). A qubit can be in a basis state, represented by |0〉 or |1〉.
These basis states correspond to the classical states 0 and 1. However, a qubit
may be in a superposition of states, described by α|0〉 + β|1〉, with |α|2 + |β|2 =
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1 where α and β are complex numbers called amplitudes. More generally, we
consider a state of n qubits, whose general form is |ψ〉 = α0|00 . . . 0〉 + . . . +
α2n−1|11 . . . 1〉 with Σi|αi|2 = 1.

The state of a single qubit is an element of a two-dimensional complex vector
space, called Hilbert space. Multi-qubit state spaces can be constructed by tensor
products, e.g., |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 defines an n-qubit basis state |00 . . . 0〉.

There are two kinds of operations on quantum states: unitary operations
and measurements. A unitary transformation is an invertible linear operation on
the Hilbert space. In a two dimensional Hilbert space, measurement randomly
projects the state onto one of a pair of orthogonal subspaces, with a probability
determined by the amplitudes. A measurement, thus, produces classical informa-
tion as a result. For example, if the state α|0〉+β|1〉 is measured in the standard
basis, then the classical result is 0 with probability |α|2 or 1 with probability |β|2.
Moreover, measurement of a quantum state (in the standard basis) permanently
changes it to |0〉 or |1〉, respectively.

An important phenomenon in quantum physics is entanglement. A multi-
qubit state is entangled if it cannot be decomposed as a tensor product of simpler
states. An example is the two-qubit state 1√

2
(|00〉 + |11〉), which is known as an

EPR pair. This pair is one of a set of four important two-qubit entangled states,
termed Bell states. In this state, if the first qubit is measured in the standard
basis, then the overall state collapses to either |00〉 or |11〉, which also determines
the state of the second qubit. Therefore, there is a correlation between the two
entangled qubits even when they are separated by a distance.

3 Reo Coordination Model

Reo [3] is a language for exogenous coordination of software components, wherein
protocols are defined as graphs of primitives called channels. In Reo, graphs of
channels, called connectors, are defined compositionally. Recently, a new textual
syntax together with a versatile compiler for this syntax have been added to the
set of Reo tools [9]. The simplest form of connectors are channels that connect
two ends by defining a relation on the observable data exchanged at those ends.
This relation imposes a constraint on the flow of data between those end points.
Channels constitute the edges of Reo connector graphs on whose nodes channel
ends coincide. Reo allows arbitrary user-defined channel types, but only two
types of channel ends can exist: a source end through which data enters into a
channel, and a sink end through which data leaves a channel. Compositions of
these two types of channel ends yields only three types of nodes: source, sink,
and mixed. A source node consists of one or more source channel ends; a sink
node consists of one or more sink channel ends; and a mixed node consists of one
or more source and one or more sink channel ends. Components can perform I/O
operations on only source and sink (but not mixed) nodes of a connector. A data
item written to a source node gets replicated to every source channel end of the
node, only when all of them are able to accept; a source node, thus, performs a
form of synchronous broadcast of its incoming data-flow stream onto its outgoing
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data-flow streams. A take operation on a sink node non-deterministically selects
a data item available at one of the sink channel ends of the node and leaves
the others intact; a sink node, thus, performs a non-deterministic merge of its
incoming data-flow streams onto its outgoing data-flow stream. A mixed node
repeatedly performs an atomic operation that combines the behaviour of a sink
and a source node: in each iteration, it non-deterministically selects a data item
from one of its sink channel ends and replicates it onto all of its source channel
ends, all in one atomic operation.

We now informally explain the behaviour of some of the channels in terms
of constraints that they impose on data-flow. For formal definition of constraint
automata as operational semantics of Reo language, see [3]. The Sync(a, b) chan-
nel, gets data items trough its end a and synchronously (i.e., atomically) outputs
them through its end b. Similarly, the LossySync(a, b), accepts data through its
end a and atomically, either loses the data or outputs them through its end b.
A FIFO(a, b) channel synchronously accepts a data item, d, through its channel
end a and stores it in its internal buffer, which has the capacity to hold a single
data item. The channel then offers the data item in its buffer through its chan-
nel end b and clears its buffer when b dispenses the data item. A Filter [P ](a, b)
channel behaves almost exactly as a Sync(a, b) channel, except that it passes
only those data items from a to b that match its pattern parameter, P . The
channel accepts any data item that it receives through a, and either loses the
data item if it does not match P , or passes it through b if it does match P . A
Transformer [f ](a, b) channel behaves like a Sync channel, except that it applies
the unary function f to every data item that it passes from a to b. The channel
silently loses all data items taken from a that are not in the domain of f .

We use two specific variants of the Transformer channel to express quantum
computing protocols, where instead of the function f we use either a unitary
operation Uf that operates on qubits, or a projective measurement operator.
In the latter case, we get a classical bit as an outcome, and a distorted qubit
(depending on the outcome). Thus, evaluating a function by a unitary operator
is a reversible action, whereas measuring qubits, is irreversible.

4 SimulaQron

Motivated by the plan to establish a prototype for quantum internet, researchers
have proposed SimulaQron [2] as a platform for developing quantum internet
software. With SimulaQron it is possible to simulate the behaviour of a quantum
network, where each node may have a share of a quantum entanglement as well
as the ability to perform quantum operations on qubits. The back-end of the
SimulaQron at each node of the network consists of two main entities: a virtual
node and a CQC (classical and quantum combiner) interface. The virtualization
of nodes allows us to use different quantum simulators on the network. A virtual
node a quantum register, simulated qubits and virtual qubits. A quantum register
interacts with the local simulator. Simulated qubits are objects that enable us to
manipulate qubits without interacting with quantum registers directly. Finally,
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virtual qubits are objects with pointers to simulated qubits, some of which may
be owned by other virtual nodes, i.e., their pointers may refer to simulated qubits
in other virtual nodes. To model entanglement, which excludes the possibility to
simulate qubits separately, SimulaQron allows merging virtual nodes in such a
way as to place all simulated qubits that are entangled together, in one virtual
node. The quantum registers of the merged virtual nodes must be merged as
well.

The CQC back-end is an interface for specification of interaction with a
quantum network. It enables simulation of sending and receiving qubits to/from
a quantum network, command type messages, and information for entanglement
management. Figure 1, illustrates the position of the CQC interface in the overall
architecture of SimulaQron. For more details see reference [2].

Fig. 1. CQC interface

5 Extension: SimulaQ(reo)n

Since quantum entanglement cannot be simulated locally, interdependence of
qubits becomes implicit in current models and languages used to express quan-
tum computing. Reo connectors can serve as a middleware that explicitly
expresses entanglement, quantum and classical communications, and the pro-
tocol for their coordination, all in one structure. Extending Reo with quantum
computing primitives can offer a high-level tool for simulating complex interac-
tions among nodes in the quantum networks introduced in the previous section.

In this work we propose the design of a special coordination layer for quantum
components, which relates Reo type connectors with the CQC back-end. To
realize this coordination layer, we must extend Reo to support quantum data and
operations. However, quantum extension seems incompatible with the semantics
of some primitives in classical Reo. For example, Fig. 2 shows two instances of
a simple Reo connector, called replicator. A replicator consists of three Sync
channels and its behaviour in the classical data domain is to replicate data that
arrive on node C atomically through nodes A and B. However, the no-cloning
theorem [1] in quantum mechanics states that no physical process can duplicate
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a quantum state. Therefore, when qubits arrive at C, two cases need carefull
consideration.

Consider a replicator with a fan-out of 2, (similar to the replicators in Fig. 2),
we describe the behaviour of this replicator in terms of a quantum operation
that is called controlled-NOT (CNOT ).1 For d ∈ {0, 1}, when a qubit in the
state |d〉 arrives at the source node of this replicator, the replicator creates a
qubit in the initial state |0〉, and subsequently performs the controlled-NOT
operation CNOT (|d〉|0 〉). This results in a two qubit system in the state |dd〉,
which is a separable state. Thus, each of the channel ends A and B in the
Fig. 2(a), receives a qubit in the state |d〉, which allows the local “downstream”
simulators to manipulate their corresponding qubits separately. On the other
hand, if the incoming qubit is in a superposition state, e.g., |d〉 = 1√

2
(|0〉 ± |1〉),

the CNOT operation creates an entangled state, e.g., the EPR state 1√
2
(|00〉 ±

|11〉). Entangled states are not separable, meaning that we cannot assign local
states to the qubits arriving at channel ends A and B, in Fig. 2(b). Instead, if
at later stage, one measures either of the qubits coming out of nodes A and
B, the observed outcome of either |00〉 or |11〉 will be the same (correlated) at
both ends. This instance of replication demonstrates that local “downstream”
quantum simulators cannot always operate on quantum states in a distributed
manner: such cases require an entanglement/virtualization management layer.

The idea of using the CNOT operation is taken from the work of
Altenkirch [5] in quantum functional programming. To implement the replicator
of Fig. 2 in Reo, we place a filter channel before every source node in order to dis-
tinguish between classical and quantum data. For every quantum data item, we
create a qubit in the initial state |0〉 and add a transformer channel to perform
the CNOT .

(a) replicator producing
separable states

(b) replicator producing
entangled states

Fig. 2. Replicator connector

Quantum Key Distribution (QKD) is an example of an industrialized quan-
tum protocol, which can be integrated into a classical network. We now analyze
a version, introduced by Ekert [11], where Alice and Bob share classical keys

1 This two qubits operation consists of a control and a target qubit. If the control
gate is set in the state |1〉, a quantum flip operation (also known as the Pauli X) is
applied to target qubit. [1].
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using entanglement. In this protocol Alice and Bob share pairs of entangled
qubits. Then each party randomly decides on applying quantum measurement
in standard basis (S) or X basis (where bases are entangled EPR states) on
its share. For those bases that both parties agree, measurement outcomes are in
fact shared keys. We illustrate this protocol using Reo connectors in Fig. 3. These
connectors use quantum channels (depicted as double line arrows) to produce
entangled pairs. The symbol

⊗
represents Reo’s standard exclusive router. Two

kinds of transformers, X and S represent quantum measurements in different
bases. If we are interested only in sharing keys without external observation,
Fig. 3(a), specifies the necessary interaction between parties. However, we often
need to know the statistics of cases of agreement between Alice and Bob. To
obtain this information, we compose the connector in Fig. 3(a) with a simple
circuit that “taps” the flow of data in the protocol circuit and diverts it to a
monitor, as in Fig. 3(b). Here

⊕
represents a component that merely monitors

the number of agreements between Alice and Bob. This composition of an exter-
nal monitor is a desirable feature in the sense that components (Alice and Bob)
do not need to be modified while exogenously, we are able to count the number
of times they agree on their choices of quantum measurement.

(a) QKD (b) QKD with monitor

Fig. 3. Connectors in Reo

It is also possible to consider local quantum simulations as web services pro-
vided to the network, by adopting Reo based orchestration techniques introduced
in [6], in the quantum setting. Here the goal would be to develop and implement
proxies between Reo connectors (e.g., Fig. 3(b)) and network nodes (e.g., CQC
back-end).

Similar to classical Reo, the formal semantics of quantum primitives may
be described by (an extension of) constraint automata, where the data domain
is extended to include a quantum data type (qubits). The set of states in this
case, may include description of quantum states. This is in particular important
in the case of FIFO channels. The constraint on the data-flow in this channel
type is specified by the value in its memory, which may be a quantum state.
However, in the generalization of this channel, e.g., FIFOn , where the memory
has n cells, we may have both quantum and classical data types. We leave the
exact definition of quantum constraint automata and its composition for future
work.
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There are several case studies at the frontline of implementation of a dis-
tributed quantum networks such as quantum leader election, quantum byzan-
tine agreement, and quantum dining philosophers. These are examples where
quantum solutions are often faster and simpler (e.g., deterministic) compared
with their classical counterparts. For instance, dining philosophers (DP) is a
classic problem in distributed system [8] where the effectiveness of exogenous
coordination can be neatly demonstrated (see Sect. 7 of [7]). In the quantum
version of the DP problem [12], an entangled state |0n〉 + |1n〉 gets distributed
among n parties (this can be done by each philosopher sending an EPR pair
to its neighbours). Then each party needs to do internal quantum operations
and measurements to (I) run a fair leader election, and (II) form two groups
for breaking symmetry. We envisage that adding a Reo connector to generate a
coordination layer, separating it from internal actions of each party, simplifies
the implementation of quantum DP on quantum internet infrastructure.

6 Future Work and Conclusion

In this short paper we argued that using a coordination model to implement
quantum internet software can play an important role in realizing such tech-
nology in near future. We explained how Reo coordination concepts can be
extended to the setting of the so-called quantum internet. The main line for
future work is to formally define the coordination layers for quantum compo-
nents, and to express its (operational) semantics in an extended version of con-
straint automata. This must be followed by automatic code generation using an
extension of the current Reo compiler [9] to generate executable code for the
CQC back-end of the SimulaQron tool. Generating code for this back-end raises
the question of existence of specific optimization methods for the Reo compiler,
given the non-locality of quantum primitives in a distributed system.

It is also crucial to collaborate with experimental teams to accurately incor-
porate their requirements and levels of abstractions needed for coordination of
quantum software components.

Using formal verification schemes developed for coordination formalisms such
as Reo in distributed quantum programming presents an important line for
future work. Full implementation of quantum algorithms for dining philosophers
and Byzantine agreement on SimulaQron using the extension presented in this
paper is an interesting line of future work.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

2. Dahlberg, A., Wehner, S.: SimulaQron - A simulator for developing quantum inter-
net software. Quantum Sci. Technol. 4(1) (2019). https://doi.org/10.1088/2058-
9565/aad56e

3. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

https://doi.org/10.1088/2058-9565/aad56e
https://doi.org/10.1088/2058-9565/aad56e


Reo Coordination Model for Simulation of Quantum Internet Software 319

4. Castelvecchi, D.: The entangled web. Nature 554, 289–292 (2018)
5. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:

20th Annual IEEE Symposium on Logic in Computer Science, LICS 2005, pp.
249–258 (2005)

6. Jongmans, S.-S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.:
Automatic code generation for the orchestration of web services with Reo. In:
De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592,
pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33427-
6 1

7. Arbab, F.: Composition of interacting computations. In: Goldin, D., Smolka, S.A.,
Wegner, P. (eds.) Interactive Computation, pp. 277–321. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-34874-3 12

8. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica 1,
115–138 (1971)

9. ReoLanguage GitHub repository. https://github.com/ReoLanguage/Reo.
Accessed 23 Mar 2018

10. Microsoft Quantum Dev Kit (2018). https://www.microsoft.com/en-us/quantum/
11. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67,

661–663 (1991)
12. Aharonov, D., Ganz, M., Magnin, L.: Dining Philosophers, Leader Election and

Ring Size problems, in the quantum setting. arXiv: 1707.01187 (2017)
13. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)

Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24933-
4 9
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Abstract. A business process is a combination of structured and related
activities that aim at fulfilling a specific organizational goal for a cus-
tomer or market. An important measure when developing a business
process is the degree of parallelism, namely, the maximum number of
tasks that are executable in parallel at any given time in a process. This
measure determines the peak demand on tasks and thus can provide
valuable insight on the problem of resource allocation in business pro-
cesses. This paper considers timed business processes modeled in BPMN,
a workflow-based graphical notation for processes, where execution times
can be associated to several BPMN constructs such as tasks and flows.
An encoding of timed business processes into Maude’s rewriting logic sys-
tem is presented, enabling the automatic computation of timed degrees
of parallelism for business processes. The approach is illustrated with a
simple yet realistic case study in which the degree of parallelism is used to
improve the business process design with the ultimate goal of optimizing
resources and, therefore, with the potential for reducing operating costs.

1 Introduction

A business process is a collection of structured activities or tasks that produce
a specific product and fulfill a specific organizational goal for a customer or
market. A process aims at modelling activities, and their causal and temporal
relationships by defining specific business rules that process executions have
to comply with. The Business Process Model and Notation (BPMN) [10] is
a graphical modeling language for specifying business processes. BPMN was
published as an ISO standard in 2013 and has become the common notation for
designing business processes.

Business process optimization is a strategic activity in organizations because
of its potential to increase profit margins and reduce operating costs. Resource
allocation is one of the main challenges in order to maximize resource usage,
improve sharing, and detect bottlenecks with the final goal of optimizing pro-
cesses. An important metric when modelling and developing a business process is
its degree of parallelism, which is defined as the maximum number of tasks that
are executable in parallel in the process. The degree of parallelism determines the
c© Springer Nature Switzerland AG 2018
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peak demand on tasks and provides a valuable guide for the problem of resource
allocation in business processes [20]. Examples of such resources include physical
objects, goods, robots, and employees.

This paper presents a solution for computing the degree of parallelism of busi-
ness processes modeled in the BPMN notation. The focus here is on a subset of
the BPMN notation that supports the main constructs of the language, including
start/end events, sequence flows, tasks, and gateways. This subset also takes time
features into account, making possible the association of timing attributes (e.g.,
duration) to sequence flows and tasks. A formal specification of this BPMN sub-
set is provided in Maude’s rewriting logic infrastructure [3], resulting in a formal
timed semantics of the language under consideration. The automatic computa-
tion of the parallelism degree is achieved by using tools available from the Maude
formal environment itself. A given BPMN process is encoded into Maude and
all reachable states are automatically traversed to find the states with the maxi-
mum number of tokens: a token is the usual mechanisms employed for identifying
a specific execution instance in the BPMN semantics. This approach has been
applied to several real-world processes for validation purposes. In this paper,
it is illustrated with a case study in which the degree of parallelism is used to
optimize a process.

The organization of the rest of the paper is as follows. Section 2 introduces
the BPMN notation with time features. Section 3 overviews the Maude rewriting
logic framework. Section 4 presents the encoding of the BPMN subset considered
in this work into Maude’s rewriting logic. Section 5 focuses on the computation
of the parallelism degree. Section 6 introduces a case study and shows how the
approach can be used to optimize a BPMN process. Section 7 surveys related
work and Sect. 8 concludes the paper.

2 BPMN with Time

This section explains the subset of BPMN considered in this paper, which focuses
on behavioral aspects (start/end events, tasks, flows, gateways) enriched with
time. The timed extension of BPMN was originally presented in [7].

A BPMN process is a directed graph with nodes as vertices and sequence
flows as directed edges. A node is a start or end event, a task, or a gateway.
Start and end events are used to initialize and terminate processes, respectively.
A task represents an atomic activity, and has exactly one incoming and one out-
going flow. A gateway is used to control the split patterns (i.e., flow divergence)
and merge patterns (i.e., flow convergence) of execution in a process. In this
paper, a process is considered to have exactly one start event and at least one
end event. The three main gateways available in BPMN are considered, namely,
exclusive, parallel, and inclusive gateways. An exclusive gateway chooses one
out of a set of mutually exclusive alternative incoming or outgoing branches. A
parallel gateway creates concurrent flows for all its outgoing branches or syn-
chronizes concurrent flows for all its incoming branches. In an inclusive gateway,
any number of branches among all its incoming or outgoing branches may be
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taken. Looping behaviors and unbalanced structure of the process (no strict
correspondence between split and merge gateways) are supported in this work.

In addition to these classic BPMN constructs, time can be associated to tasks
and flows. In this paper, time is interpreted as a duration of a task or a flow.
When a flow has a duration d greater than zero, it means that the destination
node is triggered after d units of time. If the duration is zero, that node is
immediately triggered. Similarly, a task triggers its outgoing flow at once for a
duration equal to zero and waits for d units of time when a duration d greater
than zero is associated to that task.

Figure 1 summarizes the syntax of BPMN supported in this work, includ-
ing examples of the timing constructs. In this paper, we assume that BPMN
processes are syntactically correct. This can be enforced using existing works,
e.g., [8], or using a BPMN engine, e.g., the Activiti BPM platform, Bonita BPM,
or the Eclipse BPMN Designer.

Fig. 1. BPMN syntax with time features

The informal semantics of BPMN is described in official documents [10,18]
and some attempts have been made to formalize it (e.g., [5,16,19,21]). The exe-
cution semantics of BPMN is usually given by means of tokens representing how
the execution of the process evolves over time. At the beginning of the process
execution, there is exactly one token at the start event. A token can move along
sequence flows. A token can also enter and leave a task by following the flow asso-
ciated to that task. When a token arrives at a gateway, the execution behaves
differently depending on the kind of gateway encountered. When a token arrives
at a parallel split gateway, the token is consumed and one token is generated for
every outgoing flow of the split gateway. When a token is consumed at an exclu-
sive split gateway, only one token is created and assigned to one of its outgoing
flows. In the case of an inclusive split gateway, when a token is consumed, some
new tokens are generated and assigned to the outgoing flows. For the inclusive
split gateway, the choice of outgoing branches to be activated depends on data-
based conditions (e.g., “x > 50” is associated to one outgoing flow and “x ≤ 50”
is associated to the other flow) that can be evaluated to true or false. In this
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work, we preferred to abstract away those data conditions and consider that
all branches can be executed (we enumerate all possible combinations). Merge
gateways usually act as synchronization points and can be triggered when all
expected tokens have arrived. A process finishes its execution when all tokens
have reached an end event.

3 Maude in a Nutshell

Rewriting logic [15] is a semantic framework that unifies a wide range of models
of concurrency. Specifications in rewriting logic are called rewrite theories and
they can be executed in Maude [3]. A rewrite logic theory is a tuple (Σ,E∪A,R),
where (Σ,E∪A) is a membership equational logic [2] theory with Σ its signature,
E a set of conditional equations, A a set of equational axioms (e.g., associativity,
commutativity and identity) so that rewriting is performed modulo A, and R is
a set of labeled conditional rules.

In rewriting logic, a distributed system is axiomatized by an equational the-
ory describing the set of states as an algebraic data type and a collection of
conditional rewrite rules specifying the concurrent transitions. Rewrite rules are
written as crl [l]: t => t′ if C, with l a label, t and t′ terms, and C a guard
or condition. Rules describe the local, concurrent transitions that are possible
in the system, i.e., when a part of the system state fits the pattern t, then it
can be replaced by the corresponding instantiation of t′. The guard C acts as a
blocking precondition in the sense that a conditional rule can only be fired if its
condition is satisfied. Rules may be given without label or condition. Unlabelled
and unconditional rules may be written as rl t => t′.

Conditions are either a Boolean expression or a conjunction of equalities
ui = vi, membership axioms ui:si or matching equations of the form pi :=ui,
where ui and vi are terms, pi are pattern terms (irreducible terms with variables),
and si are sorts. In its simplest form, pattern terms are just variables, with a
functionality equivalent to where statements in typical functional programs.

In the Maude language, object-oriented systems can be specified by object-
oriented modules in which classes and subclasses are declared. A class is declared
with syntax class C | a1 : S1, . . . , an : Sn, where C is the name of the class, ai

are attribute identifiers, and Si are the sorts of the corresponding attributes.
The objects of a class C are then record-like structures of the form <O : C | a1 :
v1, . . . , an : vn>, where O is the name of the object and vi are the current values
of its attributes. An object-oriented system, such as the one presented in this
paper, evolves as the result of applying the rewrite rules on collections of objects
in the system states.

4 Encoding into Rewriting Logic

In this section, the encoding of the subset of BPMN with time information is
presented as a Real-Time Maude [17] specification. This Maude specification
consists of two parts: the encoding of the process structure and the description
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of the semantics of our BPMN subset using rewrite rules. In this section, the two
parts of the encoding are surveyed. The interested reader is referred to [7] for a
more in-depth presentation of this encoding and to [1] for the complete Maude
specification, which includes all the rules and examples of BPMN processes.

As we will see in the rest of this section, the declarative style of Maude
allowed us to encode BPMN execution semantics in a quite simple and elegant
way. Moreover, Maude’s formal environment is equipped with a large variety of
analysis tools. The computation of the timed degree of parallelism relies on some
of them as we will see in Sect. 5.

4.1 Process Encoding

Each BPMN process is translated into Maude for its analysis. This transfor-
mation is automated by applying a Python script we implemented as plugin of
the VBPMN platform [12]. A BPMN process is represented in Maude as a set
of flows and a set of nodes. A flow is represented as a term flow(sfi, t), with sfi
an identifier and t a duration (zero if there is no delay associated to that flow).
There are different kinds of nodes: start, end, task, split, and merge. A start (end,
resp.) node consists of an identifier and an output (input, resp.) flow identifier.
A task node involves an identifier, a task description, two flow identifiers (input
and output), and a duration (zero if no duration is associated to this task). A
split node includes a node identifier, a gateway type (exclusive, parallel, or inclu-
sive), an input flow identifier, and a set of output flow identifiers. A merge node
includes a node identifier, a gateway type, a set of input flow identifiers, and an
output flow identifier.

4.2 Execution Semantics

The execution semantics of BPMN constructs is usually described using tokens,
which are associated to tasks and flows. The tokens circulate along those flows
and tasks, and this evolution of tokens specifies the way a process executes.
This token-based semantics is represented in rewriting logic using rewrite rules.
We define one or several rewrite rules for each BPMN construct introduced in
Sect. 2, modelling the different actions that may occur in the system, e.g., a
token enters a task, a token moves along a flow, a token goes throw a gateway,
etc. The rewrite rules are encoded once and for all and do not depend on the
process specification.

Each rewrite rule applies on systems composed of a process object and a
simulation object. The process object represents the BPMN process, and it does
not change. The simulation object keeps information on the execution of the
process: a set of tokens and a global time described using a natural number
(discrete time). Each token is defined by the identifier of the flow or task it
is associated to as well as a time corresponding to a duration. The simulation
object may consist of several tokens at some point because parallel or inclusive
split patterns generate several tokens as output given one token as input.
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class Process | nodes : Set{ Node } , flows : Set{ Flow} .
class Simulation | tokens : Set{ Token } , gtime : Time .

A tick rule is used to simulate the time evolution. This rule increases the
global time and decreases all tokens’ timers. The timing semantics forces the
execution of actions by moving tokens in the process to a scheduler. The time
cannot elapse when timers have reached zero time units, meaning that actions
need to be triggered in the process.

We give now an informal introduction to the rewrite rules axiomatizing the
process transitions for the BPMN subset considered in this work. As far as
start/end events are concerned, it is assumed that the simulation object includes
an initial token. The start rule (Fig. 2) is triggered when this token is available
(node identifier NId, line 6). When the startProc rule is applied, the initial token
is consumed and another one is added to the set of current tokens (note lines 6
and 13), which indicates that the flow outgoing from the start event has been
activated (FId). The time assigned to this new token is the duration of the flow
FId (line 11).

1 r l [ startProc ] :
2 < PId : Process |
3 nodes : ( start ( NId , FId ) , Nodes ) ,
4 flows : ( flow ( FId , T ) , Flows ) >
5 < SId : Simulation |
6 tokens : ( token ( NId , 0 ) , Tks ) , --- init token available
7 Atts >
8 =>
9 < PId : Process |

10 nodes : ( start ( NId , FId ) , Nodes ) ,
11 flows : ( flow ( FId , T ) , Flows ) >
12 < SId : Simulation |
13 tokens : ( token ( FId , T ) , Tks ) , --- token for FId with duration
14 Atts > .

Fig. 2. Start event rule

The end event rule is triggered when there is a token for the incoming flow
with zero time duration. This token is consumed, terminating this flow’s execu-
tion.

A task execution is encoded with two rules expressing the possibility that a
task may take time if a duration is associated to it. An initiation rule activates
the task when a token representing the incoming flow is available. In this case, a
new token with the task identifier and the task duration is generated. A second
rule is used for representing the task completion. This rule is triggered when there
is a token for that task with time zero. In that case, this token is consumed and
a new one is generated for the outgoing flow.

As far as gateways are concerned, the rewrite rules are different depending
on the gateway. The exclusive and parallel gateways used in Sect. 6 for the case
study are presented below (refer to [7] for details about inclusive gateways).

The semantics of exclusive gateways is encoded with two rules. The rule for
the exclusive split gateway executes when a token with time zero is available in
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the input flow and non-deterministically generates a token for one of the output
branches. The exclusive merge gateway executes when there is one token for
one of the incoming flows. In this case, the token is consumed and a token is
generated for the merge outgoing flow.

The parallel split gateway rule is triggered when a token corresponding to the
input flow is available. If so, the token is consumed and one token is added for
each outgoing flow. The merge rule for the parallel gateway (Fig. 3) is executed
when there is a token for each incoming branch (function allTokensParallel in Fig. 3,
line 12). In that case, these tokens are removed (function removeTokensParallel, line
11) and a new token is generated for the outgoing flow.

1 cr l [ mergeParallelGateway ] :
2 < PId : Process |
3 nodes : ( merge ( NId , parallel , FIds , FId ) , Nodes ) ,
4 flows : ( flow ( FId , T ) , Flows ) >
5 < SId : Simulation | tokens : Tks , Atts >
6 =>
7 < PId : Process |
8 nodes : ( merge ( NId , parallel , FIds , FId ) , Nodes ) ,
9 flows : ( flow ( FId , T ) , Flows ) >

10 < SId : Simulation |
11 tokens : ( token ( FId , T ) , removeTokensParallel ( FIds , Tks ) ) , Atts >
12 i f allTokensParallel ( FIds , Tks ) . --- - all incoming flows activated

Fig. 3. Parallel merge gateway rule

5 Computing the Parallelism Degree with Maude

The encoding of the BPMN semantics in Maude can be used to simulate pro-
cess executions. By using Maude’s meta-programming capabilities, an interesting
repertory of different measures related to the degree of parallelism of a process
can be offered. The reader is referred to [3] for details on Maude and its reflective
capabilities.

For the computation of the degree of parallelism, there is special interest in
the search command: the process of searching for a term satisfying some condi-
tions starting from an initial term is metarepresented by the built-in function
metaSearch. This function takes as arguments the metarepresentation of a module,
the metarepresentation of the starting term for search, the metarepresentation
of the pattern to search for, the metarepresentation of a condition to be satisfied,
the metarepresentation of the kind of search to carry on (the quoted identifier
’* for a search involving zero or more rewrites), a bound value (maximum depth
of the search), and a natural number indicating the solution of interest. In order
to explore all possible reachable states, an algorithm has been implemented in
Maude for iterating over all possible values of this solution number until the
metasearch function fails to find any more states.
op metaSearch :

Module Term Term Condition Qid Bound Nat ˜> ResultTriple ?
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The parDegree function in Fig. 4 computes the number of states and the
(timed) degree of parallelism. Specifically, given a module M with the repre-
sentation of the BPMN process to analyze, an initial state given by a term T,
and a bound B, parDegree(M, T, B) will return a pair (N, PD) where N is the
number of (different) reachable states up to the specified depth, and PD is the
maximum degree of parallelism for that process.

Notice that given the representation of process states, in the presence of a
loop there is the issue of nontermination. Therefore, the analysis is bounded
up to some given depth, so that termination is always guaranteed. Theoretically,
this bound may have an impact on the result because by missing executions an
erroneous degree of parallelism could be computed. In practice, a large bound is
chosen (100 for instance for the example presented in Sect. 6) in order to avoid
such faulty results.

The parDegree function is implemented using an homonym function with three
additional arguments: the target term (a variable of sort Configuration, so that any
reachable state is considered), an index with the solution number to consider,
and the provisional maximum degree of parallelism (zero at the beginning and
updated every time a greater value is found). For each solution number N, the
metaSearch operation is invoked. If the operation returns failure, the pair (N,

PD) is returned with PD the maximum degree of parallelism. Notice the use of
the getTerm operation to obtain the term component of the tuple returned by
metaSearch and metaReduce, and the use of metaReduce to evaluate the auxiliary
function getNumberOfTokens on the metaterm obtained as result of the search
operation.

1 op parDegree : Module Term Bound −> Tuple {Nat , Nat} .
2 op parDegree : Module Term Term Bound Nat Nat −> Tuple {Nat , Nat} .
3

4 eq parDegree ( M , T , B ) = parDegree ( M , T , ’ St : Configuration , B , 0 , 0) .
5 ceq parDegree ( M , T , T ’ , B , N , N1 )
6 = i f RT == failure
7 then ( N , N1 )
8 else parDegree ( M , T , T ’ , s N ,
9 max ( N1 , downTerm (

10 getTerm (
11 metaReduce ( M ,
12 ’ getNumberOFTokens [ getTerm ( RT ) ] ) ) , INF ) ) )
13 fi
14 i f RT := metaSearch ( M , T , T ’ , nil , ’∗ , B , N ) .

Fig. 4. Degree of parallelism: the parDegree function

Complementarily to the maximum degree of parallelism, the minimum degree
can be computed. Both values may help in scheduling the minimum and max-
imum amount of resources required for the execution of the process over time.
To do so, the parDegreeTrace function in Fig. 5 computes a map associating to
each moment of time a pair (min, max) with the minimum and the maximum
number of tokens seen at that time. The function is similar to the above parDe-

gree function. The main difference is that in this case the function produces a
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mapping that assigns a pair (min, max) to each instance of time, collecting the
minimum and maximum numbers of tokens in each of the visited states with
that time as current time. Pairs (min, max) are represented as elements of sort
Tuple{Nat, Nat}, defined with constructor (_,_) and projection operations p1

and p2 . Maude’s built-in maps are defined as a set of pairs, with empty as empty
mapping, and operations _[_] and insert to, respectively, consult and update val-
ues. Given a variable TMMM of sort Map{Time, Tuple{Nat, Nat}}, we can consult
the value associated to some time G with TMMM[G]. If the map TMMM does not
associate a value to a given key G, TMMM[G] will return the value undefined.

1 op parDegreeTrace : Module Term Term Bound −> Map{Time , Tuple {Nat , Nat }} .
2 op parDegreeTrace : Module Term Term Bound Nat Map{Time , Tuple {Nat , Nat }}
3 −> Map{Time , Tuple {Nat , Nat }} .
4 op parDegreeTrace : Module Term Term Bound Nat Map{Time , Tuple {Nat , Nat }}
5 Term −> Map{Time , Tuple {Nat , Nat }} .
6

7 eq parDegreeTrace ( M , T , T ’ , B ) = parDegreeTrace ( M , T , T ’ , B , 0 , empty ) .
8 ceq parDegreeTrace ( M , T , T ’ , B , N , TMMM )
9 = i f RT : ResultTriple ? == failure

10 then TMMM
11 else parDegreeTrace ( M , T , T ’ , B , N , TMMM , getTerm ( RT : ResultTriple ? ) )
12 fi
13 i f RT : ResultTriple ? := metaSearch ( M , T , T ’ , nil , ’∗ , B , N ) .
14 ceq parDegreeTrace ( M , T , T ’ , N , TMMM , T ’ ’ )
15 = parDegreeTrace ( M , T , T ’ , s N ,
16 i f TMMM [ G ] == undefined
17 then insert ( G , ( D , D ) , TMMM )
18 else i f D < p1 ( TMMM [ G ] )
19 then insert ( G , ( D , p2 ( TMMM [ G ] ) ) , TMMM )
20 else i f D > p2 ( TMMM [ G ] )
21 then insert ( G , ( p1 ( TMMM [ G ] ) , D ) , TMMM )
22 else TMMM
23 fi
24 fi
25 fi )
26 i f D := downTerm ( getTerm ( metaReduce ( M , ’ getNumberOFTokens [ T ’ ’ ] ) ) , INF )
27 /\ G := downTerm ( getTerm ( metaReduce ( M , ’ getTime [ T ’ ’ ] ) ) , INF ) .

Fig. 5. Degree of parallelism along execution: the parDegreeTrace function

6 Case Study

Figure 6 presents the case study used in this paper to illustrate the proposed
approach. It is a simplified version of an employee hiring process in a company.
This process focuses on the different tasks to be carried out once the employee
has successfully passed the interview. The process thus starts by some paper-
work that has to be accomplished by the employee. (S)He has to see the doctor
for medical check-up. If the employee needs visa, (s)he should also apply for
working visa. If all the submitted documents are not satisfactory, the company
may ask for them again. If everything is fine, all documents are accepted as
is. In some cases, the company can validate the files but asks the employee to
provide additional documents or information. The employee is then added to
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the personnel database and, in parallel, Human Resources (HR) anticipate wage
payment while an assistant prepares the welcome kit (office, badge, keys, etc.).
Finally, all provided documents are archived properly by HR.

It is worth noting that this process exhibits different kinds of gateways (exclu-
sive and parallel), looping behaviors, and time associated to tasks. The rest of
this section focuses on the timed degree of parallelism by analyzing how this
measure can be used to optimize the workflow in terms of execution time.

Fig. 6. BPMN process for employee hiring

The degree of parallelism for this example, obtained by using the approach
presented in the previous sections, is 2.
reduce parDegree ( upModule ( ’ VERIF , false ) ,

’ initSystem . Configuration , ’ St : Configuration , 100) .
result Tuple {Nat , Nat } : (1710 ,2)

This comes from the final part of the process where a parallel split/merge is
used. If a closer look is taken at this part of the process, it can be seen that it
takes 5 days to compute the final four activities. However, these tasks involve
different people: the assistant is in charge of preparing the welcome kit, the
technical staff updates the DB, and HR are in charge of the two other activities
(anticipate wages, archive all documents). So this final part of the process could
be organized differently. The employee information can be stored in the DB
(prerequisite to other tasks), and then “anticipate wages” and “prepare welcome
kit” tasks are performed in parallel. Archiving all documents is independent and
could be achieved in another parallel branch. A second version of the process is
given in Fig. 7.

When applying the computation of the timed degree of parallelism to the
second version of this process, the degree is 3. This is because, although archiving
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all documents are completed before the internal parallel split is triggered, that
token waits at the parallel merge level for the other branch to complete.

Related to that, the two tasks carried out by HR (anticipate wages and
archive all documents) do not overlap and the execution time of this part of the
workflow is reduced by one day (going from 5 days in the original version of the
process to 4 days in this new version). It is worth observing that execution times
can be automatically computed with the approach proposed in this paper too.

Fig. 7. BPMN process for employee hiring (V2)

In the initial part of the workflow, the first three activities involve the
employee. These tasks are quite time-consuming because of the appointment
with a doctor (3 days in average in our model) and the visa application (2 weeks
in average). However, most of the time the employee is available, (s)he is just
waiting due to external constraints. Therefore, those 3 activities could be exe-
cuted in parallel as shown in Fig. 8. In this case, the degree of parallelism for
that part of the process jumps to 3 and the execution time goes from 19 days to
14 days. More generally, the degree of parallelism of this third version (Fig. 8) is
3 for the top part and 3 for the bottom part.

One can wonder whether the bottom part could be improved a little bit
more by increasing the degree of that part if the used resources allows it. This
is actually the case, because the “ask additional documents” task is achieved by
the employee and is independent of the rest of this part of the process. In its
current form, this task even delays the execution of the final part of the workflow.
A possible optimization is to execute this task in parallel with the rest of the
final activities. This makes the degree of parallelism, in this part of the workflow,
increase to 4, resulting in saving 3 days with respect to the former version of
the process. Figure 9 gives the resulting process after the three optimizations.
Assuming that the documents are not rejected, note that the overall maximum
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Fig. 8. BPMN process for employee hiring (V3)

Fig. 9. BPMN process for employee hiring (V4)
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execution time was of 28 days in the original version of the process and drops to
19 days in the final version.

The variation of the minimum and maximum degree of parallelism is also
worth looking at in order to better allocate required resources over time. By using
the parDegreeTrace function, a sequence of these values can be computed for each
execution time (discrete time). Figure 10 shows the graphical representation for
the last version of the running example (the process depicted in Fig. 9). In this
process, it can be observed how the maximum degree of parallelism fluctuates
between 3 and 4, whilst the minimum degree varies from 0 to 3.

Fig. 10. Max-Min degree for the employee hiring process (V4)

Last but not least, we made experiments to see how our approach scales.
The main factor of explosion regarding the computation time is not the number
of tasks in the process but the number of gateways, which increases the paral-
lelism of the process and thus the number of possible executions that need to be
explored. We applied our approach to large examples consisting of more than 20
gateways, including multiple nested parallel and inclusive gateways. For those
examples, it took several minutes to compute the degree of parallelism. It is
worth saying that we built these examples for evaluation purposes, but we have
never seen a real-world process with so many nested gateways.

7 Related Work

Two categories of related work are surveyed: (i) those proposing solutions for
computing the degree of parallelism of BPMN processes, and (ii) those using
rewriting logic and Maude for specification and verification of BPMN processes.

The degree of parallelism for BPMN can be computed by reasoning on Petri
net models and determining the bound of a Petri net, which is the maximum
number of tokens in a marking of the net. However, to do so, the reachability
graph for the net should be constructed entirely. The reachability problem for
some specific Petri nets, such as conflict-free Petri nets and 1 safe live free-choice
nets [9], is NP-complete. Note that for arbitrary Petri nets, this problem is much
harder [14]. This is probably the reason why, to the best of authors’ knowledge,
there is no work on degree computation with Petri nets in the literature.
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In [20] several algorithms are proposed for directly calculating the degree
of parallelism of a BPMN process without transforming it to another model.
In this work, a duration constraint is associated to each task, i.e., a task is
required to be completed within a certain time frame. Furthermore, a task must
begin immediately after the completion of its precedent task. Without consid-
ering inclusive gateways, they deal with three special cases of BPMN processes:
with only one type of gateways; without split exclusive gateway nor cycles; with
only two types of gateways. Each case is treated with a different algorithm. The
solution proposed in this paper focuses on BPMN processes with time too, and
allows for the automatic computation of the degree of parallelism for complex
BPMN structures, i.e., combining different gateways and cycles, without impos-
ing restrictions on the structure of processes.

In [13], the authors propose an approach to automatically measure the degree
of parallelism for BPMN processes. They rely on a formal model for BPMN
processes defined in terms of Labelled Transition Systems, obtained through
process algebra encodings. The degree of parallelism is then computed by using
model checking techniques and dichotomic search. The main difference with
respect to the approach presented in this work is that the subset of BPMN
considered in [13] does not support timing features.

Several research contributions have used rewriting logic and Maude to form-
alyze and analyze BPMN processes. El-Saber and Boronat [8] propose a trans-
lation of BPMN into rewriting logic with a special focus on data-based decision
gateways. They provide mechanisms to avoid structural issues in workflows such
as flow divergence by introducing the notion of “well-formed” BPMN process.
Kheldoun et al. [11] propose high-level Petri nets and to use Maude’s LTL model
checker for, respectively, specifying BPMN processes and analyzing behavioral
properties. Both works do not support time features. Corradini et al. [4] present
BProVe, a tool for the verification of business processes modeled in BPMN. The
tool accepts BPMN processes in standard notation and can perform checks of
soundness and safeness on them, as defined in [22] and [5], respectively, using
Maude’s LTL model checker.

In a previous work [7], the idea of specifying BPMN with time using Maude’s
rewriting logic was introduced by some of the authors of the present paper.
However, little attention was paid to the degree of parallelism. This is the focus
of the current paper, which presents how the parallelism degree of timed BPMN
processes can be automatically computed, and how it can be used as a measure to
improve and optimize a process in practice. In the present paper, it is also shown
how to compute the variation between the minimum and maximum degree of
parallelism of timed BPMN processes. More recently, the authors have developed
a rewriting logic executable specification of BPMN with time and probabilities
supporting the automatic analysis of stochastic properties via statistical model
checking [6].
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8 Concluding Remarks

This paper contributed a mechanical approach to the key question of business
process optimization. Business processes are described using a subset of BPMN
supporting the main behavioral constructs (including, start/end events, flows,
tasks, gateways) and time features. This BPMN subset was formalized using
rewriting logic, resulting in a formal and executable semantics of the language. In
a second step, the timed degree of parallelism has been computed. This measure
can be useful for better understanding a business process and for improving the
execution time of a process. The parallelism degree is computed automatically
using Maude’s metaprogramming capabilities. A realistic case study has been
used to illustrate the approach, which can in general guide process refactoring
tasks with optimization purposes in mind.

As far as future work is concerned, a first perspective is to integrate an
explicit description of the resources (e.g., HR, assistant, and employee in the
case study in Sect. 6) at the BPMN model level. To enable the automatic com-
putation of new metrics, such as resource occupancy and average execution time,
the verification framework would need to be extended for considering multiple
concurrent executions of a process. A second perspective could focus on the thor-
ough automation of the approach presented here. It is true that in its current
form, the refactoring task is guided by the parallelism degree results, but it is
ultimately manually applied. Measuring the degree of parallelism could be part
of a more general methodology where other measures and additional information
(e.g., regarding the resources) would drive the entire automated refactoring of
the process for optimization purposes.
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Abstract. Connectors describe how to combine independent compo-
nents by restricting the possible interactions between their interfaces.
In this work, connectors are specified using an existing calculus of con-
nectors for Reo connectors. Currently there are no tools to automati-
cally analyse these connectors, other than a type-checker for a embedded
domain specific language. A collection of tools for different variations of
Reo connectors exists, but most use a heavy Eclipse-based framework
that is not actively supported.

We propose a set of web-based tools for analysing connectors—named
ReoLive—requiring only an offline Internet browser with JavaScript sup-
port, which also supports a client-server architecture for more complex
operations. We also show that the analysis included in ReoLive are cor-
rect, by formalising the encoding of the connector calculus into Port
Automata and into mCRL2 programs. We include extensions that gen-
erate such automata, mCRL2 processes, and graphical representations of
instances of connectors, developed in the Scala language and compiled
into JavaScript. The resulting framework is publicly available, and can
be easily experimented without any installation or a running server.

1 Introduction

Proença and Clarke [9] investigated how one can specify and combine connec-
tor families, and how to check if the interfaces of these families match. Their
core calculus is a monoidal category, where connectors are morphisms composed
sequentially with the morphism composition ‘;’, and in parallel with the tensor
operator ‘⊕’. This calculus was formalized with a tile semantics that describes
the behaviour of a connector, and how to combine tiles between two connectors.

We pursue this work by building tools to analyse and verify a calculus of
Reo connectors, focusing on its subset without variability. More concretely, we
build a framework—ReoLive—that draws instances of connectors, and encodes
connectors into automata and into a process algebra used by the mCRL2 model
checker. This paper formally shows the correctness of these encodings, closely
following the encoding of Reo connectors (seen as Constraint Automata) into
mCRL2 by Kokash et al. [7].
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Consider the connector in Fig. 1, known in the literature as the exclusive
router. The left side presents its usual graphical representation, while the right
side uses its representation in the calculus of connectors used in this paper,
c.f. [9]. Intuitively, each basic element of the calculus is a primitive connector
with a fixed sequence of source and sink ports, composed sequentially with ‘;’
and composed in parallel with ⊕. More details on this calculus will be given in
the next section.

The key challenges of this paper consist of presenting a framework to analyse
connectors specified in this calculus, providing a set of different widgets that help
the developer understand the graphical structure and its semantics. More specif-
ically, the ReoLive framework receives algebraic specifications of connectors and
(1) calculates and depicts a graphical representation with a easy-to-understand
layout, (2) calculates and depicts an automata representing its semantics, based
on constraint automata [2] without data constraints, and (3) produces a mCRL2
specification [5] that can be used for model checking with external tools. While
the first contribution is less scientific and mainly technical, the other two contri-
butions include correctness proofs, based on the formalisation of the encodings
into automata and mCRL2.

Δ; Δ ⊕ id;
(lossy; Δ) ⊕ (lossy; Δ) ⊕ id;
id ⊕ ∇ ⊕ id ⊕ id;
id ⊕ id ⊕ γ1,1;
id ⊕ drain ⊕ id

Fig. 1. The exclusive router connector: its graphical representation (left) and its alge-
braic representation using the calculus of Reo connectors (right).

Section 2 formalises Reo connectors using this calculus of connector. Section 3
translates the calculus into port automata, and Sect. 4 into mCRL2, following
the work by Kokash et al. [7]. Section 5 describes the ReoLive framework for our
calculus of connector, and Sect. 6 concludes and discusses future work.

2 Calculus of Reo Connector (CRC)

The input of our ReoLive framework are Reo connectors [1] specified using a
calculus of connectors, following Proença and Clarke [9]. We start by describing
this calculus, disregarding the notion of families presented originally, and will
later show that they are indeed equivalent to two other existing semantic models:
Port Automata (Sect. 3) and mCRL2 programs (Sect. 4).

2.1 Syntax

The syntax of a core connector is given by the grammar in Fig. 2. We use a
simplified version from our previous publication [9] by using natural numbers
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for the input and output interfaces, where the tensor is the sum. This makes
the category of our connectors more specific—a Prop category with traces [8].
This simplification has been made also in our previous work, when describing
the implementation of a type-inference algorithm.

Figure 3 depicts some examples of connectors. Each box contains (1) a con-
nector on top, (2) its interfaces in the middle, and (3) its visual representation
below depicting inputs on the left and outputs on the right. Intuitively, each
connector has a sequence of input ports and a sequence of output ports, which
we number incrementally from 1. Composing two connectors sequentially c1; c2
means connecting the i-th sink port c1 to the i-th source port of c2, for every sink
port of c1 and source port of c2; composing connectors in parallel c1 ⊕ c2 means
combining all source and sink ports of both c1 and c2; wrapping a connector c
by a trace over n means connecting the last n sink ports of c to its last n source
ports. The semantics of Reo connectors, written using this calculus, uses the Tile
Model [4], following the original publication of this calculus [9].

The sintax and semantics of the calculus of connector families is not intro-
duced in this document, as it is not refered throughout the document (except in
Sect. 5). In [9] we can find a more detailed description of this calculus.

c ::= idn identities
| γn,m symmetries
| p ∈ P primitive connectors
| c1 ; c2 sequential composition
| c1 ⊕ c2 parallel composition
| Trn(c) traces (feedback loops)

p ∈ P ::= Δn duplicator into n ports
| ∇n merger of n inputs
| drain synchronous drain
| fifo buffer
| . . . user-defined connectors

Fig. 2. Grammar for core connectors, where n,m ∈ N.

id1 ; fifo :
1 → 1

drain :
2 → 0

γ2,1 :
3 → 3

(id1 ⊕ fifo) ; ∇2 :
2 → 1

Tr1(γ1,1) :
2 → 1id1 ; fifo :

1 → 1

drain :
2 → 0

γ2,1 :
3 → 3

(id1 ⊕ fifo) ; ∇2 :
2 → 1

Tr1(γ1,1) :
2 → 1

Fig. 3. Connectors, their interfaces, and their visualisation.

2.2 Tile Semantics

Each connector in the Tile Model consists of a set of tiles, one for each pos-
sible behaviour, as defined in Fig. 4. Each of these tiles contains at most 4
morphisms between shared objects, belonging to two different categories over
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the same objects: natural numbers, which we call H for the a horizontal cate-
gory and V for a vertical category. The horizontal category H is the category of
connectors used for the our connector calculus—with a tensor, symmetries, and
traces. The vertical category V is a new category with the same objects N, and
with only the morphisms fl : 1 → 1 and nofl : 1 → 1, also with a tensor product,
where nofl acts as the identity and the composition is represented by ‘◦’.

Fig. 4. Behaviour of primitive connectors using tiles.

Composing Tiles. Tiles can be composed in three ways: in parallel with ‘⊕’,
horizontally with ‘;’, and vertically with ‘◦’.

c1
v1−→
v

c2 ; c′
1

v−→
v2

c′
2 = (c1; c′

1)
v1−→
v2

(c2; c′
2) (horizontal)

c1
v1−→
v2

c ◦ c
v′
1−→

v′
2

c2 = c1
v′
1◦v1−→

v′
2◦v2

c2 (vertical)

c1
v1−→
v2

c2 ⊕ c′
1

v′
1−→

v′
2

c′
2 = c1 ⊕ c2

v1⊕v′
1−→

v2⊕v′
2

c′
1 ⊕ c′

2 (parallel)

For example, the tiles tl = lossy
fl−→
fl

lossy and tf = fifo
fl−→

nofl
fifofull can be com-

posed horizontally producing the new tile tl; tf = (lossy; fifo) fl−→
nofl

(lossy; fifofull).

This new tile captures data going through the lossy and into the fifo. Similarly,
tl can be composed vertically with the tile t′l = lossy

fl−→
nofl

lossy yielding the new

tile tl ◦ t′l = lossy
fl◦fl−→

fl◦nofl
lossy, which captures two steps of the same lossy: first

by having data flowing from its source to its sink, and later by having dataflow
only on its source end.
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3 Connectors as Port Automata

The semantics of the calculus of Reo connectors (CRC) is given by a set of tiles.
This section encodes the tile semantics of CRC as Port Automata [6], which can
be regarded as data-agnostic Constraint Automata [2], showing this encoding is
correct.

Fig. 5. Port Automata of primitive connectors.

3.1 Port Automata (PA)

Following Koehler and Clarke [6], composing two automata is done by the prod-
uct operation ��, forcing shared ports to occur together, while hiding ports from
a connector removes them from the transitions, disallowing further communica-
tions. We define port substitution of a by b in an automaton A as the automaton

A{a �→b} = (Q,N{a �→b} , ���, q0), where qi

X{a�→b}
��� qj iff qi

X−→ qj , and X{a �→b}
denotes the set X replacing a by b.

For simplicity, we write qi
N−→ qj to denote → (qi, N, qj). Figure 5 depicts

examples of a set of primitive automata commonly found in the literature, includ-
ing also the corresponding notation in our calculus.

3.2 Encoding CRC into Port Automata

The semantics of CRC is given by the Tiles Model, where a tile c1
src−→
snk

c2 means

that the connector c1 can evolve to a new state given by the connector c2, by
firing its source ports based on src and its sink ports based on snk . Here src and
snk are morphisms built by composing simpler morphisms fl and nofl, indicating
which ports have flow and no-flow.

The encoding of a connector c into a PA is written as PA(c), defined below.
Each port is a pair (n, s) where n ∈ N is the order number of its source or sink
node, and s ∈ {sr, sk,mx} is a constant that marks it as being a source (sr) or a
sink (sk) port, or temporarily marking it as a mixed port during composition.
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Definition 1 (Tiles of a connector). Given a core connector c, we write T (c)
to represent all tiles for c and for the reachable states from c. Formally, T (c) is

the smallest set such that, for every tile t =
(

c
sr−→
sk

c′
)

we have that t ∈ T (c)

and T (c′) ⊆ T (c).

Definition 2 (Reachable connectors). Given a connector c, we write
Reach(c) to represent all reachable connectors from c, i.e., Reach(c) is the
smallest set such that c ∈ Reach(c), and for every tile c

sr−→
sk

c′ we have that

Reach(c′) ⊆ Reach(c).

Definition 3 (Encoding PA(c)). Let c be a connector from n to m. Its port
automaton PA(c) is (Q,N,→, q0) where

– Q = Reach(c)
– N = {(i, sr) | i ∈ {1 . . . n}} ∪ {(j, sk) | j ∈ {1 . . . m}}
– q

Xsr∪Xsk−−−−−→ q′ ⇔ ∃t ∈ T (c) : t = c1
src−→
snk

c2 ∧
Xsr = {(i, sr) | src = v1 ⊕ · · · ⊕ vn, i ∈ {1 . . . n}, vi = fl}
Xsk = {(i, sk) | snk = v1 ⊕ · · · ⊕ vm, j ∈ {1 . . . m}, vj = fl}

For example, the fifo channel can be encoded as PA(fifo) = ({fifo, fifofull},
{(1, sr), (1, sk)},→, fifo), where

fifo
(1,sr)−−−→ fifofull fifofull

(1,sk)−−−→ fifo fifo
∅−→ fifo fifofull

∅−→ fifofull.

3.3 Correctness of PA(·)
We defined how to encode any connector c into a PA PA(c). We say this encoding
is correct with respect to an automaton A if PA(c) is strongly bisimilar to A,
written PA(c) ≈ A. I.e., there exists a bisimulation relation R between states
such that any transition from PA(c) can be matched by a transition in A leading
to states in R (and its dual for transitions from A). For simplicity, we ignore
all reflexive transitions with empty sets as labels in PA(c), which must exist for
all primitive connectors – because the Port Automata semantics assumes that
connectors can decide not to have dataflow and remain in the same state.

We show that this definition is correct using an inductive argument. We show
that (1) the encodings of primitive channels from Sect. 2 are correct with respect
to the automata from Sect. 3, and (2) the encoding of a connector built with the
sequential, parallel, or trace operators is correct with respect to the automata
of their parts after composing the appropriate ports. Note that γ and idn are
regarded here as primitive connectors.

Lemma 1 (Correctness of primitive’s encodings). Any primitive from
Fig. 4 is correct w.r.t. its corresponding automaton from Fig. 5, after renaming
ports in the latter to follow the same convention as in the encoding (e.g., (1, sr)
instead of a).
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Proof. We will only show that this lemma holds for one of the connectors, the
fifo, because the other connectors can be shown in a similar way. Recall that
after Definition 3 we defined PA(fifo) as an example. The resulting automaton
has 4 transitions, and after ignoring the reflexive and empty transitions only
two remain. Recall also the port automaton of the fifo in Fig. 5. It is enough to
observe that R = {〈fifo, q0〉, 〈fifofull, q1〉} is a strong bisimulation between the
two automata, after replacing a by (1, sr) and b by (1, sk).

Lemma 2 (Correctness of PA(c1; c2)). If PA(c1) and PA(c2) are correct
with respect to A1 and A2, respectively, and c1; c2 is well-typed, then PA(c1; c2)
is correct with respect to (A1σ1 �� A2σ2)\X, where σ1, σ2 and X define port
renamings and hiding of ports that mimic the connecting of ports from c1 to c2:

σ1 = {(i, sk) �→(i,mx) | (i, sk) ∈ N1}
σ2 = {(i, sr) �→(i,mx) | (i, sr) ∈ N2} X = {(i,mx) | (i, sk) ∈ N1}

Proof. We provide only a sketch of the proof. This proof follows in two phases.
First, by considering a transition (p, q) K−→ (p′, q′) in (A1σ1 �� A2σ2)\X, one

can conclude by performing a case analysis that ∃(p; q) K′
−−→ (p′; q′) in PA(c1; c2).

Second, by verifying that the dual also holds.

Lemma 3 (Correctness of PA(c1 ⊕ c2)). If, for i ∈ {1, 2}, PA(ci) is correct
with respect to Ai = (Qi, Ni,→i, q0,i), ci : ni → mi, and c1 ⊕ c2 is well-typed,
then PA(c1 ⊕ c2) is correct with respect to A1 �� (A2σ), where σ defines port
renamings:

σ = {(i, sr) �→(i + n1, sr) | (i, sr) ∈ N2}
∪ {(j, sk) �→(j + m1, sr) | (j, sk) ∈ N2}

Proof. We provide only a sketch of the proof. This proof follows the same strat-
egy as the proof for the sequential composition. Start by considering a transition
(p, q) K−→ (p′, q′) in (A1 �� A2)σ. By analysing the possible cases, it is possible to

conclude that ∃(p ⊕ q) K′
−−→ (p′ ⊕ q′) in PA(c1 ⊕ c2) that mimics this transition.

A similar argument for its dual can also be made.

Theorem 1 (Correctness of PA). Given a well-typed connector c, PA(c) is
correct with respect to some port automaton A built by composing the automata
of the primitive connectors within c.

Proof. This result follows by induction on the structure of connectors, whereas
the base case is captured by Lemma 1, and the inductive steps are captured by
Lemmas 2 and 3, and by the fact that the trace operation can also be shown
correct with respect to some port automaton – due to space restrictions, and
because the proof follows similar steps to Lemma 2, we omit here that proof.
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4 Connectors as mCRL2 Specifications

The mCRL2 toolset consists of a collection of tools to analyse systems specified
in a dedicated process algebra of communicating processes. In a given mCRL2
model, the atomic element of processes are actions. By defining and combining
actions we create processes. We describe the core subset of the mCRL2 specifi-
cation language, focusing on the relevant constructs to understand the encoding
of our calculus to mCRL2. A process can be one of the following.

– a1| . . . |an . P – atomic execution of n actions (a1 until an), where n ≥ 1,
followed by the execution of P ;

– P + Q – non-deterministic choice between two processes P and Q;
– P ‖ Q – parallel execution of a process P and a process Q (interleaved or at

the same time);
– δH(P ) – encapsulation, blocking the actions in H when executing P ;
– ΓC(P ) – communication of ports, where C is a mapping from groups of atomic

actions a1| . . . |an to another action b (with n ≥ 2), replacing all groups of
actions a1| . . . |an by b in the execution of P .

– Reference to a process name P defined in the scope of the process.

An mCRL2 program consists of a pair (P, π) with a process P and a mapping π
from process names to process definitions (with possibly recursive definitions),
as described above.

The full language is rich enough to capture aspects such as data types and
parametrised actions, which we do not explore here. Given a specification in
mCRL2 one can, for example, compile and visualise its corresponding labelled
transition system, and can verify properties in a dedicated dynamic calculus
with fix points.

4.1 Encoding CRC into mCRL2 Programs

We adapt the translation by Kokash et al. [7]. Although the authors encode
different connector semantics into mCRL2 programs, we focus on their encoding
into constraint automata, for which they have a correctness proof (which ignores
data constraints, similarly to CRC).

Table 1 presents the mCRL2 process definitions for the primitives used in
Fig. 5. These can be combined in parallel to produce more complex connectors,
as exemplified below.

Table 1. mCRL2 processes of primitives, for some actions a, b, c.
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Example 1. Consider the connector c = id1;Δ2; (fifo ⊕ lossy). Each channel in
the connector maps to the following processes:

Id1 = (a|b) . Id1 Fifo = f . g . Fifo
Dupl = c|d|e . Dupl Lossy = (h + h|i) . Lossy

Let πc be the set of definitions above. A program for c can be built by
placing these definitions in parallel, by imposing communication with Γ , and
by encapsulating internal ports with δ. For example, the program (Pc, πc), with
Pc defined below, provides a (naive) encoding of the behaviour of c, which only
exposes the ports a, g, and i.

Pc = δ{b,c,d,e,f,h}
(Γ{b|c→bc,d|f→df ,e|h→eh}(Sync ‖ Dupl ‖ Fifo ‖ Lossy))

This naive approach to combine connectors leads to an exponential increase of
combinations of actions as the connector grows, which quickly becomes untreat-
able by the mCRL2 tools. This problem is addressed by performing communi-
cation and encapsulation as soon as possible, i.e., everytime a new primitive is
connected to a connector [7]. Our encoding follows the same ideas, performing
encapsulation as soon as possible.

Definition 4 (Encoding MC). The encoding MC follows a similar approach
to PA, where actions follow the pattern (n, sr)�, (n, sk)�, or (n,mx)� to indicate
that n-th source, sink, or mixed port, using the unique identifier 
 to distinguish
between actions from different basic automata. We start by defining auxiliary
functions Block, Hide, and Com, used to describe ports that are blocked, are
hidden, and communicate. Ni,� is the name we give to processes denoting nodes
that connect pairs of ports.

Block(n, 
1, 
2) =
⋃

1≤i≤n

{(i, sk)�1 , (i, sr)�2} Hide(n, 
1) =
⋃

1≤i≤n

{(i,mx)�1}

Com(n, 
1, 
2, 
) =
⋃

1≤i≤n

{(i, sk)�1 |(i, sr)�2 → (i,mx)�}

Given a connector c and a unique identifier 
, MC(c)� is defined below.

MC(p)� = (P�, {P� = Primitive(p, 
)})
where Primitive(p, 
) is the process of primitive p (c.f. Table 1),

using the proposed notation for actions marked by 
.

MC(c1; c2)� = (P�, {P� = τHide(n,�)(∂Block(n,�1,�2)(ΓCom(n,�1,�2,�)

(P1‖P2)))} ∪ π1 ∪ π2)
where c1 : n1 → n c2 : n → n2

(P1, π1) = MC(c1)�1 (
1 is fresh)
(P2, π2) = MC(c2)�2 (
2 is fresh)
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MC(c1 ⊕ c2)� = (P� , {P� = (P1 ‖ P2)} ∪ π1 ∪ π′
2)

where c1 : n1 → m1 c2 : n2 → m2

(P1, π1) = MC(c1)�

(P2, π2) = MC(c2)�2 (
2 is fresh)
π′
2 = π2 {(i, sr)�2 �→ (i + n1, sr)� | 1 ≤ i ≤ n2}∪

{(j, sk)�2 �→ (j + m1, sk)� | 1 ≤ j ≤ m2}

The definition of MC(Trn(c))� is omitted here, and follows a similar structure
to the encoding of MC(c1; c2)�.

We illustrate this encoding using a simplified version of Example 1.

Example 2. Let x = Δ2; (fifo ⊕ lossy) and a, b, c, d, e be unique identifier:

MC(fifo ⊕ lossy)a = (Pa, πa)
πa = {Pa = Fifoa ‖ Lossya

,Fifoa = (1, sr)a|(1, sk)a . Fifoa

,Lossya = ((2, sr)a + (2, sr)a|(2, sk)a) . Lossya}
MC(x)b = (Pb, πb)

πb = {Pb = τ{(1,mx)b,(2,mx)b}(δ{(1,sk)c,(1,sr)a,(2,sk)c,(2,sr)a}
(Γ{(1,sk)c|(1,sr)a→(1,mx)b,(2,sk)c|(2,sr)a→(2,mx)b)}

(Δ2,c‖Pa)))
, Δ2,c = (1, sr)c|(1, sk)c|(2, sk)c . Δ2,c} ∪ πa

4.2 Correctness of MC�(·)
Kokash et al. [7] have shown the correctness of a similar encoding from Port
Automata (which they call data-agnostic Constraint Automata) to mCRL2. We
claim that the correctness of our encoding follows from the correctness of CRC
with respect to Port Automata, and from the correctness by Kokash et al. regard-
ing mCRL2 specifications, as depicted in Fig. 6. We defined the encoding MC
from CRC—and not from the PA model—to preserve the parallel structure of
the communicating components, which would be lost if our starting point would
be the (flatten) tile semantics followed by the PA encoding.

Figure 6 highlights the two correctness results, via bisimulations, between
the connector calculus, the PA semantcs, and mCRL2 programs. Note that we
do not formally show that our encoding matches precisely the encoding from
Kokash et al. [7], and only explain that our encoding follows the same ideas as
the previous encoding to mCRL2.
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Calculus of Reo Connectors

Port Automata mCRL2≈
(c.f. [7])

≈
(c.f. Section 3) PA

MC

Fig. 6. Relation between CRC, PA, and mCRL2.

5 ReoLive Framework

The ReoLive framework combines tools that analyse connectors and families of
connectors under a single web-based front-end. The project and a compiled snap-
shot can be found online in https://github.com/ReoLanguage/ReoLive. This
section focuses on what the framework currently offers, and gives less how to
extend it with new plug-ins. More concretely, it describes how to specify con-
nectors and how to visualise it and analyse it using the Port Automata and the
mCRL2 encodings.

5.1 Architecture

This project combines software artefacts in more than one programming lan-
guages. The core tools to parse and analyse connectors are implemented in Scala
by the Preo project,1 which is either compiled into JavaScript, using the Scala.js
compiler,2 or into a client-server pair of programs. In the latter, the client is
compiled also into JavaScript and the server is based on the Play framework,3

and is compiled into Java binaries. Furthermore, both JavaScript programs use
the D3 JavaScript libraries4 to produce the graph layouts, which manipulate
SVG-based diagrams.

Fig. 7. Architecture of the ReoLive implementation.

The overall architecture is summarised in Fig. 7. The code can be compiled
in two different ways: by producing a standalone JavaScript library (bottom

1 https://github.com/ReoLanguage/Preo.
2 https://www.scala-js.org.
3 https://www.playframework.com.
4 https://d3js.org.

https://github.com/ReoLanguage/ReoLive
https://github.com/ReoLanguage/Preo
https://www.scala-js.org
https://www.playframework.com
https://d3js.org
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right rectangle), or by producing a client-server architecture (top right rectan-
gle). The former has the advantage of being easier to distribute (a snapshot of
our implementation can be found online), while the latter has the advantage
of being more powerful and complete (currently using an SMT solver for more
complex families of connectors, but the server has to be compiled and executed
locally). The ReoLive project website keeps a snapshot of a recent version of
the standalone version, depicted in Fig. 8. This web front-end is subdivided into
different containers we call widgets: (1) where the user specifies connectors, (2)
displays the connector’s type, (3) displays a concrete instance and its type, (4)
presents example connectors to help knowing the syntax, (5) depicts graphi-
cally the instance from 3, (6) depicts the Port Automata of that instance (c.f.
Sect. 3), and (7) outputs the mCRL2 program (c.f. Sect. 4), ready to be analysed
by mCRL2 tools.

Fig. 8. Screenshot of the standalone version of ReoLive’s website.

5.2 The Preo Language

The Preo language is a concrete language for the calculus described in [9], given
by the grammar below.

c = p ∈ P | id | sym(n1, n2) | c;c′ | c*c′ | Tr(n)(c) | c^n | ...

The rest of the syntax, corresponding to the ellipsis, concern families of connec-
tors, i.e., how to define and restrict parameters that, once instantiated, lead to
different connectors of a same family. This is out of the scope of this paper. Fur-
thermore, the language includes the reader and writer constructs, describing
Reo reader and writer components, and supports the definition of named sub-
connectors. The set of primitives P include mergers, duplicators, fifo channels,
lossy channels, and synchronous drains, but others can be easily included. The
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complete list of primitives can be found by exploring the examples in widget (4)
from Fig. 8. Our running example in widget (1) “dupl;fifo*lossy” corresponds
to the connector Δ2; (fifo ⊕ lossy), also used in Example 2.

5.3 Interconnecting Widgets

The content of the website is subdivided into widgets, as highlighted in Fig. 8.
Internally a widget is a statefull object that can interact with the user, and
produces a value when fired, possibly using values produced by other widgets.
Each widget defines its own firing behaviour: the Type widget (2) produces a
typed connector and its type from the value of the Input widget (1); the Instance
widget (3) calculates a concrete instance con based on the connector from the
Type widget; the Circuit widget (5) calculates and depicts a graph structure of
con in the Instance widget; the Automaton widget (6) calculates and depicts
a Port Automaton of con, as described in Sect. 3; and the mCRL2 widget (7)
calculates and displays the mCRL2 program of con, as described in Sect. 4.

A special event may trigger a sequence of firings—in our case, pressing shift-
enter triggers the firing of all widgets in order except widget (4). More complex
orchestration mechanisms of widgets, based on the concept of reactive program-
ming, are left for future work. Furthermore, widgets can be active or inactive;
to toggle between these one only needs to press the header of the widget, and
when inactive the content of the widget is not displayed. Only active widgets
are fired, and when a widget is fired when it becomes active. In the client-server
architecture widgets can further possess a callback function with a dedicated
firing behaviour triggered by the server.

Example 3. We use the example in Fig. 8 to guide a more detailed explanation
of each widget. The user starts by specifying the connector “dupl;fifo*lossy”
in the Input widget. When pressing Shift-Enter, the Input Widget stores the
string internally, so that other widgets can access it. The Type widget accesses
this string, parses it, produces the connector Δ2; fifo ⊕ lossy, and type checks
it. The resulting type 1 �→ 2 is depicted, and the connector is stored and made
available to other widgets.

The Instance widget simplifies this connector, removing some syntactic sugar
– if the connector had parameters, not addressed in this paper, it would search for
valid assignments for this parameters, replacing them by the assignment found.
This widget then stores and displays the simplified connector alongside its type.
In the client-server architecture the Type and Instance widgets are combined:
the server receives the string from the Input widget, producing both a type and
an instance and sending this information to the corresponding widget.

All the 3 right widgets access the connector stored in the Instance widget. The
Circuit widget generates a graph containing a Reo representation of this connec-
tor. Some simplifications from the original connector are made, e.g., removing
redundant Sync channels, or combining nested mergers into a single merger.
The Automaton widget depicts the associated port automaton, using the rules
explained in Sect. 3 to generate the automaton. This widget uses an abstraction
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of the names for readability, using only the name of the primitives they refer to
enhanced with a downward arrow depicting the entry of data into the primitive,
an upward arrow depicting data leaving the primitive, and a double arrow to
depict both cases. Finally, the mCRL2 widget contains the mCRL2 model of
the connector, following the encoding from Sect. 4. In this model each action is
identified by the name and a unique identifier of the primitive it refers to, as
well as information about the type of port. For example, the action fifo2in1
refers to the first source (input) port of the fifo, and 2 is the unique identifier of
that fifo primitive connector.

5.4 Towards Verification of Connector Families

The Preo language, as well as the full version of the connector calculus from
Proença and Clarke [9], describe families of connectors. In this paper we did
not consider the families aspect, although the existing tools to type-check Preo
connectors are included in ReoLive.

We experimented on how to verify the full calculus of connector families using
the mCRL2 toolset, following the ideas from Beek and de Vink [3]. Unfortunately,
mCRL2 requires the number of processes running in parallel to be fixed and
known upfront, limiting the analysis to only a bounded set of families. The latest
experiments consist of generating a small number of instances of a connector and
include them in a single mCRL2 model, which can be used for model checking.
However, we did not find a satisfactory approach to either select an interesting
set of candidates for instances, or to give some control over the instances being
selected. Furthermore, modelling families of connectors can easily produce a
state explosion that is hard to control. Hence we left these experiments out of
the existing framework, although they can be found in experimental branches
on our GitHub project. Future work will involve providing some control over
the instances that could be of interest when analysing families of connectors,
and investigating a suitable (modal) logic to describe properties over families of
connectors.

6 Conclusion and Future Work

This paper describes a semantic model for the connector calculus using the port
automata. Based on this model we encode our connector calculus into mCRL2,
following Kokash et al. [7]. These two encodings are included in the ReoLive
framework, animating our calculus with our web framework which implements
the calculus, the port automata semantics, and the mCRL2 of each connector.

Our future work is many-fold. We expect to extend the portfolio of available
modules; for example, add support for a dedicated modal logic to verify connec-
tors, analyse different semantics of Reo connectors other than Port Automata
(incorporation of the IFTA tools is planned soon),5 and add support for the Treo
language to specify connectors.6

5 https://github.com/haslab/ifta.
6 https://github.com/ReoLanguage/Reo.

https://github.com/haslab/ifta
https://github.com/ReoLanguage/Reo
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Orthogonally, we also plan to improve the client-server version of ReoLive,
by taking advantage of the server capabilities. For example, we plan on auto-
matically processing the mCRL2 model encoded, which the user may download,
or use to verify the dedicated modal logic for connectors.
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Abstract. We introduce a simple language for multi-agent systems that
lends itself to intuitive design of local specifications. Agents operate on
(parts of) a decentralized data structure, the stigmergy, that contains
their (partial) knowledge. Such knowledge is asynchronously propagated
across local stigmergies. In this way, local changes may influence global
behaviour. The main novelty is in that our interaction mechanism com-
bines stigmergic interaction with attribute-based communication. Spe-
cific conditions for interaction can be expressed in the form of predicates
over exposed features of the agents. Additionally, agents may access a
global environment. After presenting the language, we show its expres-
siveness on some illustrative case studies. We also include some prelimi-
nary results towards automated verification by relying on a mechanizable
symbolic encoding that allows to exploit verification tools for mainstream
languages.

1 Introduction

Multi-agent systems are collections of autonomous agents that operate according
to local rules and limited mutual awareness. They are a convenient formalism for
representing several classes of complex systems, and can help reasoning about
them. A fundamental demand that frequently arises when considering multi-
agent systems is to determine whether a global property of interest emerges
from the combination of the local behaviours of multiple agents. Being inher-
ently distributed and asynchronous, multi-agent systems are characterized by
considerably large state spaces. Therefore, techniques for automated verification
that complement simulation-based approaches should be considered essential.

In this paper, we introduce a simple language for multi-agent systems that
lends itself to intuitive design of local specifications. The language is simple
yet versatile enough to model several interesting classes of systems. It combines
stigmergic interaction [15,18] with attribute-based communication [1]. A key
concept of the language is the stigmergy, a distributed data structure that models
the global knowledge of the system. Each agent operates only on its own local
copy of the stigmergy, that stores his own (partial) knowledge of the system.
Knowledge is asynchronously propagated across local stigmergies. Thus, changes
by an agent may indirectly affect the behaviour of another.
c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 351–366, 2018.
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In the originally proposed version of the stigmergy, agents are concrete enti-
ties having their own position in space, and the propagation of the information
is restricted to neighbours. To increase expressiveness, we generalise stigmergic
interaction to arbitrary predicates over exposed features, referred to as attributes,
of the agents. In fact, our language has no explicit concept of position, and thus
of neighbours, for agents. An agent can have instead local attributes, and predi-
cates over these attributes can express the conditions for two components to be
allowed to exchange knowledge. Movement is no longer seen as a specific action;
components may update the attribute that encodes their position by performing
a standard action.

The above generalisation of stigmergic interaction makes the language more
flexible and allows us to model a wider class of systems. However, it is still
insufficiently rich to model several other classes of multi-agent systems where
the global environment plays a crucial role [9]. To address this shortcoming, we
extend our language with tailored primitives to explicitly model the actions of
the agents on the environment.

The rest of the paper is organized as follows. In Sect. 2 we present the formal
semantics of the core language, allowing us to define systems where agents inter-
act indirectly through a virtual stigmergy. In Sect. 3 we present the environment-
oriented primitives of the richer language and their semantics. In Sect. 4 we
demonstrate the features of the language by modeling a selection of simple case
studies. As part of the discussion on the case studies, we include some prelim-
inary results towards automated verification of one of the presented systems,
by means of a mechanizable symbolic encoding that allows to re-use general-
purpose verification tools for mainstream languages. Finally, in Sect. 5, we draw
conclusions and discuss related and future work.

2 The LAbS language

In this section we introduce LAbS (Language with Attribute-based Stigmergy), a
language for multi-agent systems. LAbS is inspired by a specific form of stigmer-
gic interaction originally proposed with the Buzz language [15] and generalises
it to attribute-based communication [1].

A key concept in our language is the virtual stigmergy, a distributed data
structure that models the global knowledge of the system. Each agent maintains
a local copy of (part of) this data structure, that contains his own (partial)
knowledge of the system. We call these copies local stigmergies. An agent reads
from and writes to his local stigmergy only. Silently, knowledge is then asyn-
chronously propagated across local stigmergies. This way, indirect agent interac-
tion is achieved. Formally, local stigmergies L ∈ L are partial functions that map
keys to timestamped values: L = K ↪→ V ×N, where K,V are the sets of allowed
keys and values, respectively. We use natural numbers to represent timestamps.
If (x, v, t) ∈ L, we say that v is the value of x and that t is its timestamp in the
local stigmergy L. We refer to these as value(L, x) and time(L, x), respectively.
We write L(x) = ⊥ whenever ∀v.∀t.(x, v, t) �∈ L.
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The operations on the stigmergy and the propagation mechanism are the
following. When an agent writes a key-value pair into its local stigmergy, a
timestamp is retrieved from a global clock and bound to the pair. If the local
stigmergy contains an entry with the same key, it is substituted by the new one.
The new data is then automatically (though asynchronously) propagated to its
neighbours. For agents in the neighbourhood that already have a value bound to
the same key but with a newer timestamp, the propagation has no effect; all the
others update their local stigmergy, and in turn propagate the new value. This
process allows information to be spread throughout the whole system, eventually.
Conversely, each time an agent reads from its local stigmergy, a key confirmation
request is sent to the neighbourhood to confirm whether the data just accessed
was up-to-date. This will in turn cause any more recent information from other
local stigmergies nearby to be propagated, or older entries to be updated, and
then propagated as well.

Insertion of a tuple in a local stigmergy is a function ⊕ : L×(K×V×N) −→ L
defined as the smallest relation that satisfies the rules in Table 1, where we
denoted by L[x �→ (v, t)] the partial function L′ such that L′(x) = (v, t) and
L′(x′) = L(x′) ∀x′ �= x. Note that by defining the insertion in such a way, only
new tuples are considered. A tuple is new if its key is missing from the local
stigmergy, or if it has a more recent timestamp than the existing one.

Table 1. Operations on the virtual stigmergy.

L(x) = ⊥
L ⊕ (x, v, t) = L[x �→ (v, t)]

(ADD)
t > time(L, x)

L ⊕ (x, v, t) = L[x �→ (v, t)]
(UPDATE)

t ≤ time(L, x)
L ⊕ (x, v, t) = L

(DISCARD)

An example of stigmergic interaction is shown in Fig. 1. Here, agents intend
to move following the direction stored in the virtual stigmergy. Initially (a),
two agents, c1 and c2, are moving in opposite directions. When c1 moves (b), it
accesses the stigmergy to read its own direction: therefore, it asks its neighbours
if a newer direction is available (c), and receives a more up-to-date value from
c2 (d). Note the dashed circle that represents the communication range of c1,
which has radius δ (b); the dotted arrows indicate stigmergic communication.
We should stress that these protocols are transparent to the designer of the
individual behaviour, who only needs to specify read and write operations on
the agent’s local copy of the data structure.

The above description slightly deviates from the Buzz language in a few
points. First, while Buzz agents can communicate through multiple stigmergies,
in our language there is a unique stigmergy. Multiple stigmergies however can
be replicated by adding different prefixes to each stigmergy key. Moreover, Buzz
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(a) (b) (c) (d)

Fig. 1. A possible evolution of a system in the presence of stigmergic interaction.

stigmergies are based on Lamport timestamps [11] and rely on unique component
identifiers to break ties, which may occur when the same timestamp is used
multiple times; this cannot happen in our language, since we assume the existence
of a global clock. Finally, differently from Buzz, in our core language there is no
explicit message passing between components. Components can only interact via
the stigmergy or the environment. We introduced the above assumptions for the
sake of simplicity and homogeneity. We might reconsider them in future version
of our language, if demanded by applications.

However, our calculus generalises some of the concepts related to the virtual
stigmergies of Buzz. Most importantly, in our language the ability of exchanging
information through the stigmergy is not directly constrained by spatial vicinity.
In fact, there is no explicit concept of an agent’s position at all. Rather, we
rely upon local properties of the agents to define when they are allowed to
communicate.

The syntax of LAbS is described in Table 2. When introducing expressions,
we assume that v ∈ V, x ∈ K; and that 	 stands for a binary operator over V,
such as (+,−,×. . . ). When introducing guards, �� denotes comparison relations
over V ∪ {⊥}, namely (=, <,>).

Table 2. LAbS syntax. Assume K to be taken from a set of named processes.

P ::= 0 | √ | α | P ;P | P + P | b → P | P |P | K process
α ::= I (x ) := e | L(x ) := e elementary actions
e ::= v | L(x ) | I (x ) | e � e expression
b ::= true | e �� e | ¬b | b ∧ b guard
c ::= 〈I , L, P, Zc, Zp〉 component
S ::= c | S‖S system

A system is the parallel composition of a number of components; while a
component is a 5-ple 〈I , L, P, Zc, Zp〉 where:
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– I : K ↪→ V (interface) contains key-value pairs (attributes); the set of all
interfaces is denoted by I.

– L ∈ L is the component’s local stigmergy.
– P is a process describing the component’s behaviour.
– Zc is the set of keys that the component has to confirm.
– Zp is the set of keys that the component must propagate.

Thus, each component is equipped with a local stigmergy and an interface,
which is a dynamic set of key-value pairs (attributes). Attributes can be speci-
fied at initialization and modified at runtime and represent either a variable in
the component’s memory, or a physical property of the agent (for instance, its
position). Similarly, events that change those physical properties are not seen
as a different kind of action. For instance, a component may move by updating
the attribute that encodes its position. In addition, attributes are used to deter-
mine whether two agents are able to communicate. Namely, it is assumed that
the user of the language can specify a custom, attribute-based predicate that,
given two interfaces, determines whether the corresponding components are able
to communicate. This is an important source of flexibility, as attributes can be
used to model different means of communication available to each agent. The
ability of components to change their own attributes at any time means that
connections among components can be dynamically established or removed.

2.1 Processes and Expressions

A process within a component models the behaviour of the component. The
elementary processes are the idle or deadlocked process 0, the successfully ter-
minated process

√
, and those denoted by α:

– the update of one of the attributes of the component with the result of the
evaluation of an expression,

– the update of a stigmergy key with the result of the evaluation of an expres-
sion.

The sequential composition of two processes, P ;Q, is the process that behaves
as P until it terminates and behaves as Q afterwards. On the other hand, the
nondeterministic choice P +Q can behave either as P or Q. The guarded process
b → P can only continue as P if the guard b is satisfied. The parallel composition
of processes is a process P | Q where the executions of P and Q are interleaved.
Nondeterministic choice and parallel composition are both commutative opera-
tors. Recursion is modeled through named process invocations: we assume there
is a set of process constants K � P , where P is a process expression that follows
the syntax of Table 2 and may contain references to K itself and to other process
constants.

Expressions may contain constants, refer to the value of local attributes or
stigmergy keys, or binary operators involving sub-expressions. A guard may
either be the true predicate, which is always satisfied, or a comparison between
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Table 3. Semantics of processes. λ denotes a generic transition label (either an α or√
).

√ √
→−� 0

(TICK)
α

α→−� √ (ACT)
P

λ→−� P ′

P + Q
λ→−� P ′

(CHOICE-L)
Q

λ→−� Q′

P + Q
λ→−� Q′

(CHOICE-R)

P
α→−� P ′

P ;Q α→−� P ′;Q
(SEQ1)

P
√
→−� P ′ Q

λ→−� Q′

P ;Q λ→−� Q′
(SEQ2) P

λ→−� P ′ K � P

K
λ→−� P ′

(CON)

P
α→−� P ′

P | Q
α→−� P ′ | Q

(PAR1)
P

√
→−� P ′ Q

λ→−� Q′

P | Q
λ→−� Q′

(PAR2)
P1 | P2

λ→−� P ′

P2 | P1
λ→−� P ′

(PARCOMM)

two expressions. Guards can also be negated (¬b) or composed through the
conjunction operator, ∧. The semantics of processes and expressions is reported
in Tables 3 and 4, respectively. We also provide a function K�·� to compute the
set of stigmergy keys that have to be read in order to evaluate an expression. This
function is instrumental to formalize the mechanisms of virtual stigmergies. We
allow the semantic function of expressions E�·� to return the undefined value ⊥,
for instance when the expression reads an undefined value or applies an operator
to incompatible values (e.g. adding a number to a string).

Table 4. Semantics of expressions.

The satisfaction of a guard b is formalized as a relation I, L |= b (Table 5). A
necessary condition for satisfaction is that b must be well-defined with respect
to interface I and stigmergy L, i.e. all the sub-expressions of b must only refer
to defined attributes and stigmergy keys (defined as � in Table 6). Notice that
⊥ belongs only to exactly one �� relation, namely ⊥ = ⊥. In both tables, it is
assumed that v ∈ V, x ∈ K; 	 and �� are the same as for Table 2.

2.2 Link Predicates

Our semantics is parametric to a link predicate ϕ that, given two interfaces,
holds if the corresponding components are able to communicate. This predicate
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Table 5. Satisfaction of guards.

Table 6. Well-definedness of expressions and guards.

generally depends on the scenario one wants to describe. We say that two agents
are neighbours if they satisfy such predicate. This is useful, for instance, in the
case of multi-robot systems, where more complex predicates allow to effectively
model different sensors and capabilities for each robot. The syntax is identical
to that of guards, but sub-expressions η are defined over two interfaces.

ϕ ::= true | η �� η | ¬ϕ | ϕ ∧ ϕ predicate
η ::= v | I1(x) | I2(x) | η 	 η expression

We use H�·� to denote the semantic function of expressions η. We omit a formal
definition, as it is nearly identical to the function E�·� described in Table 3. The
only difference is that H�·� maps an expression to a function of two interfaces,
rather than an interface and a local stigmergy. Similarly, we assume the defini-
tions of satisfaction (I1, I2 |= ϕ) and well-definedness (I1, I2 � ϕ) closely follow
the ones introduced for guards. The ability of combining link predicates offers an
intuitive way to model different communication modes for agents. For instance,
the predicate below, where ‖ · ‖ denotes the Euclidean norm, states that two
agents can communicate if their positions are closer than a constant δ or if they
both possess a long-range networking device.

‖I1(pos) − I2(pos)‖ ≤ δ ∨ (I1(LongRange) = “true” ∧ I2(LongRange) = “true”)

2.3 Components and Systems

Component-level transitions define what happens when a component performs
an execution step; they are modelled in Table 7, there it is assumed that v =
value(L, x), t = time(L, x), and l = I (loc). For instance we have that, when a
component performs an attribute update I (x ) := e, the result of expression e is
bound to attribute x, and the stigmergy keys used to evaluate e are added to
the set of keys to be confirmed.

Stigmergy updates are defined in rule (lstig) and result in the insertion of
a tuple in the local stigmergy of the component. Here we use now() to represent
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the timestamp, obtained from a global clock, which is assigned to the new tuple.
Since the newly inserted tuple must be propagated, its key is added to Zp; Zc

may also be updated, like for the attribute update case. Rule (await) specifies
that a guarded process b → P can only proceed if the guard b is satisfied. λ
denotes a generic transition label. The above transitions are labelled ε to denote
they are internal to each components, i.e. they are invisible from the point of
view of the system.

Table 7. Semantics of components.

On the other hand, system-level transitions formalize the management of
the shared knowledge inside the virtual stigmergy (Table 8). Rule (par) simply
states that parallel subsystems interleave their internal actions. The symmetri-
cal rule to (par) has been omitted. Rules (comm) and (assoc) describe that
parallel composition is commutative and associative. Rule (propagate) states
that a component can always propagate the tuple corresponding to a key in its
own Zp set. When this happens, the key of the propagated tuple is removed from
the set. Rule (confirm) specifies that the same can happen with Zc keys. The
different nature of the messages is reflected by different transition labels (put
for propagation; qry for confirmation). The (put) rule allows tuples to spread
to other components. When a subsystem performs a put (I ′, x, v, t) transition,
a neighbouring component (that is, one with an interface I that satisfies the
predicate ϕ) with an outdated value will update its local stigmergy and add x
to the keys to propagate. Notice that x is also removed from Zc, as it is assumed
that the new value does not need to be confirmed anymore. Notice that a com-
posite system evolves by emitting the same transition label as its subsystem.
This means that the rule is recursively applied until all neighbours perform their
stigmergy update.

The rules for confirmation messages are quite similar, but the action of
components depend on the current state of their local stigmergy. Rule (qry1)
says that a component with an older entry will react to a query transition
qry (I ′, x, v, t) by updating its own stigmergy and propagating the value after-
wards. On the other hand, a component that has a more up-to-date value will
just update Zp to propagate it, while discarding the received entry (rule qry2).

Please, notice that component-level rules (attr) and (lstig) are also
guarded by the condition Zc = Zp = ∅. This means that system-level rules
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have a higher priority: components have to propagate or confirm all pending
keys before they are able to continue their execution.

Table 8. Semantics of systems. Assume λ to be a generic transition label.

3 Modeling the Environment

Many real-world scenarios rely on the interaction between agents and the phys-
ical environment they are operating in [21,22]. This kind of interaction enjoys
some specific features that are difficult to express with the constructs introduced
in Sect. 2.

We define an environment to be a partial function from keys to values, like
interfaces. A situated system is a pair (E,S) where E is an environment and S
is a LAbS system.

Components can now perform two new basic actions that we call situated
actions to differentiate those interacting with the environment from those inter-
acting with components. Situated actions can write the result of an expression
into the environment - E(x) := e, or can store an environmental value into an
attribute - I(y) := E(x) (Table 9). We therefore introduce additional transition
rules and labels to the semantics of components: v � x denotes the willingness of
a component to update the environmental key x to value v, while y � x denotes
the intention of retrieving the value of E (x ) and binding it to attribute y.

The semantics of the new actions is defined in Table 10. To define the seman-
tics of situated systems, in Table 11 we introduce an unlabeled transition relation
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(�); there the rule symmetrical of (ParE) is omitted. Rule (Read) states that
the action I (y) := E (x ) results in assigning the value E(x) to attribute y of
the component. In the rules we use c[I ′/I] to refer to a component that is iden-
tical to c except for the interface, which is instead I ′. Due to the condition
E(x) �= ⊥, a situated read action may block a process when the requested key
is undefined. Rule (Write) states that the write action induces a change in the
environment. Rule (Lstig) simply states that the actions related to stigmergic
communications only affect the system and leave the environment unchanged.
Finally, rule (ParE), which is commutative, states that the parallel composition
of two systems affects the environment in an interleaved fashion.

Table 9. Basic processes in situated systems.

Table 10. Semantics of situated actions.

Table 11. Semantics of situated systems (μ ∈ {qry, put}). Assume c to be a component
〈I , L, P, Zc, Zp〉.

4 Case Studies

In this section we introduce a selection of LAbS systems that model popular
scenarios in the multi-robot and multi-agent literature.

4.1 Flocking

A system of mobile agents exhibits flocking behaviour when its agents start from
a state of incoherent motion (i.e. in different directions or at different velocities)
but eventually manage to move coherently in a single direction. This behaviour
is thought to emerge from simple individual mechanisms, such as remaining close
to one’s neighbours (while avoiding collisions) and matching their velocity [17].
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We model a flocking system as follows. Our swarm is a group of N robots
distributed on a square grid (arena) of size G×G. We store the position of each
robot as a local attribute pos, and its direction in its local stigmergy. To model
the limited range of the sensor, we define a link predicate that is true if and only
if the distance between the two robots is less than or equal to a constant δ:

ϕ ≡ ‖I1(pos) − I2(pos)‖ ≤ δ

where by ‖·‖ we denote the Euclidean norm. The movement process is defined
as

Move � I (pos) := I (pos) + L(dir) mod G;Move

Here we use the mod G notation to describe what happens when a robot
reaches the borders of the arena. For the sake of simplicity we have assumed
that our arena represents a torus: so, for instance, a component at position
(x,G − 1), by moving in direction (0, 1), will reach (x, 0).

Assume that D is the set of allowed directions. Then the process executed
by each robot is just

Flock �
∑

(i,j)∈D

L(dir) := (i, j);Move

where the generalized choice construct
∑

x∈{x1,x2,...,xn} P (x) denotes the process
P [x1/x] + P [x2/x] + . . . + P [xn/x]. This means that each robot chooses an
arbitrary direction from D and assigns it to the stigmergy key dir; it then moves
in that direction by calling the recursive process Move. When two robots are
close enough to satisfy ϕ, they will agree on the direction with the most recent
timestamp.

For this specific case study, we experimented with automated verification of
LAbS programs. We translated the specifications into a C program. We then
instrumented the program for symbolic execution by introducing nondetermin-
istic variables to model the system’s initial configuration and the process inter-
leaving. By restricting the nondeterminism of these variables, we encoded fair-
ness guarantees in the translation, so that each robot executes a transition in a
round-robin fashion. Interleaving of stigmergy transitions was also partially con-
strained, by compressing the propagation of the messages to all neighbours into
a single execution step. Eventually, we used a general-purpose bounded model
checking tool [7] to automatically analyse the instrumented program. Note that
our translation consists in a direct encoding of the SOS rules presented in Sect. 2
and is therefore straightforwardly mechanizable. Once automated, the transla-
tion would be totally transparent to the user of the language.

By following the above procedure, we verified whether a swarm of N robots
could reach a consensus on the direction after a finite number B of execution
steps. For our analysis we considered swarms of 3,4,6, and 8 agents in a 16 ×
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16 arena. The experimental results and verification times are summarized in
Table 12. In particular, we proved that, for any possible initial position of the
agents on the arena, for a sensor range δ = 21 the system reaches the consensus
within 12 steps. We also proved that with smaller sensor range, or larger swarms,
there exist some initial configuration for which the same number of steps is no
longer sufficient for the agent to agree on the same direction.

Table 12. Verification results for the flocking case study.

N B δ Result Time (s)

3 12 20 Fail 74

3 12 21 Pass 388

4 12 21 Fail 213

6 12 21 Fail 352

8 12 21 Fail 112

4.2 Opinion Formation

In opinion formation protocols, each agent starts with a certain opinion taken
from a set of possible options, and dynamically changes it if certain conditions are
met. The voter model is an elementary example of opinion formation: each agent
can inspect the opinion of a random neighbour and copy it [12]. Stigmergies are
not suitable in this scenario, as opinions would only propagate according to their
attached timestamps. Opinion formation protocols, on the other hand, might
have additional goals, such as encouraging the spread of the option initially held
by a majority of agents.

What follows is a LAbS encoding of a voter model supported by the environ-
ment primitives introduced in Sect. 3. Each agent can either “talk”, by writing
its opinion to the environment, or listen to the opinion of another agent and
copy it.

Listen � I (opinion) := E (opinion);Listen
Talk � E (opinion) := I (opinion);Talk

Voter � Talk | Listen

We could similarly model more complex protocols, such as the k-unanimity
rule. In this case, an agent only changes its opinion to some option if it perceives
that k other agents agree on that option [19]. We can use k environment keys
to store opinions. We use a generalized choice to describe that, whenever an
agent “talks”, it writes its own opinion into one of the k environment keys.
Guarded processes and nondeterministic choice can be combined to recreate an
“if-then-else” construct.
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unanimity ≡ ∧k
i=2 I (1 ) = I (i)

Listenk � I (1 ) := E (1 ); I (2 ) := E (2 ); . . . ; I (k) := E (k);
(unanimity → I (opinion) := I (1 )) + (¬unanimity → √

);
Listenk

Talkk �
∑k

i=1 E (i) := I (opinion);Talkk

Voterk � Talkk | Listenk

In these examples, each agent can talk and listen to any other agent. This
is not the case in most research on opinion formation, where agents can only
communicate with a set of neighbours. However, we can model these scenarios by
adding more environment keys and letting agents interact with different subsets
of said keys.

4.3 Foraging

Foraging is a popular case study in distributed robotics, as it can model many
other scenarios, such as waste retrieval and search and rescue [6]. In this scenario,
a swarm of robots explores the arena with the goal of finding and collecting items.
We can store these items in the environment and interact with them through
the primitives introduced in Sect. 3. First, let us assume that robots perform a
random walk to explore the arena. Like in the flocking case study, we assume
the arena is a torus and that D is the set of directions a robot can take. A step
in a random walk can be modeled by the following process:

Step �
∑

(i,j)∈D

I (pos) := I (pos) + (i, j)

Now suppose that there are m items, and that the environment key E (i) stores
the position of the i-th item. If the item has been collected, E (i) instead contains
the string “taken”.

Then a robot can check if it has found the i-th item, and possibly collect it,
by executing the process Checki:

Checki � I (i) := E (i);
(I (pos) = I (i) → E (i) := “taken”) + (¬I (pos) = I (i) → √

)

If we denote by
∏

xi∈X P (x) the parallel composition of all processes in the form
P [xi/x], then the behaviour that checks for the presence of a generic item is a
composition of one Checki processes for each item. Thus, the foraging behaviour
is just a recursive sequence of movements and checks.

Forager � Step;
∏m

i=1 Checki;Forager

This model has some limitations. Since the environmental operations can be
fully interleaved, two robots would be able to reach the position of a given food
item and collect it twice (by writing “taken” into the environment). Introducing
atomic operations on the environment, such as compare-and-set, could be a way
to overcome this drawback.
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5 Conclusion, and Related and Future Work

We have introduced LAbS, a core language for multi-agent systems which relies
on a shared data structure for all inter-component communication. This data
structure is based on the concept of virtual stigmergies. Agents can only directly
access their local copy of the stigmergy; however, changes are transparently
propagated through the system, leading to indirect agent interaction. Rather
than restricting the exchange of messages to physical neighbours, our represen-
tation comes with a flexible mechanism of communication based on components
attributes, and is well suited to describe and reason about swarms of robots
and other kinds of distributed systems. In the case of multi-robot systems, our
language can naturally model different kinds of robots equipped with multiple
sensors. We have then extended LAbS with an external environment, acting as a
shared memory for components. Our design choices were driven by the analysis
of different languages available in the multi-robot and multi-agent literature [9].
Finally, we have modelled with LAbS frequently used case studies to highlight
the main features of the language and its expressive power.

In the near future we plan to investigate the need of additional primitives
to describe more complex individual behaviour. Examples include alternative
communication models between components and atomic interaction with the
environment. Future research might also include the study of logical formalisms
to conveniently describe key properties of LAbS systems, and the implemen-
tation of mechanized translations from LAbS to other formalisms to facilitate
automated verification of such properties.

Related Work. Most works in both swarm robotics and multi-agent systems
research follow a bottom-up approach, also known as behaviour-based design [6]:
designers iteratively alter the behaviour of individual agents and verify if the
desired properties emerge on a global level. In addition, most of the swarm
robotics literature provides ad-hoc solutions to specific tasks, which can be clas-
sified in a few broad categories such as robot aggregation; flocking; object for-
aging; construction; and swarm deployment (e.g. for surveillance, distributed
sensing, or signal relaying) [5].

Swarm-oriented languages could help research in the field by providing ade-
quate primitives that can be combined to solve many of the tasks described
above. For instance, Buzz [15] follows object-oriented principles and is based
upon communication between neighbors, team management, and consensus
achievement; another example is Proto/Protoswarm [3,4], a functional lan-
guage where individual agents are seen as part of a virtual spatial computer.
Higher-level formalisms can also ease the design process by expressing individ-
ual behaviour in an intuitive way while avoiding ambiguity [16]. Languages that
provide a notion of an environment as part of their semantics include ISPL [13]
and the PALPS process calculus [14]. Languages equipped with a formal seman-
tics could allow for a more general and automated approach to system verifica-
tion. Efforts in this direction include both formalizations of existing languages,
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such as a calculus based on Proto [8], as well as calculi that are given a formal
specification at the design stage, such as SCEL [10].

Verification of multi-robot systems has offered general results for a sim-
ple model where robots have identical behaviour and repeatedly perform three
actions: store the position of other robots in their local memory (Look); decide
if and where it should move (Compute); and finally apply the decision (Move).
Depending on the synchronicity of these steps and on the shape of the arena,
possibility or impossibility results have been proved for tasks related to pattern
formation [20] or consensus achievement in the presence of Byzantine robots [2].
However, the requirements on the behaviour of robots mean that these results
cannot be automatically extended to heterogeneous systems.
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Abstract. Verification methods have limitations rooted in their
methodological approach. Different methods can be more appropriate
in verifying some type of properties than others. We propose a “Hybrid
Verification” scheme that verifies different properties using different ver-
ification methods and supports a unified specification interface, based on
a suitable coordination model. Identifying appropriate verification meth-
ods for each property to be verified is a necessary prerequisite for this
approach. This work introduces a categorization of properties to be ver-
ified and a corresponding mapping to suitable verification methods in
accordance with and discussing existing literature. A unified modeling
methodology for various assertions based on a coordination model is pre-
sented. A generic use cases from the railway domain is used to show the
applicability of the proposed Hybrid Verification scheme.

Keywords: System verification · Hybrid verification scheme
Distributed systems · Coordination

1 Introduction

Formal models incorporated in the design process lead to more robust systems.
The verified models ensure the correctness of the system under design in the
early design stages. A broad range of modeling and verification tools is investi-
gated in research aiming for higher confidence in the system functionality. The
verification process is mainly to explore a model investigating the correctness
of functional requirements expressed as formal properties. However, there is no
general solution that can be used to verify all desired properties of a model
since all verification methods have limitations rooted in their methodological
approach. Varying methods can be more appropriate in verifying some type of
properties than others. Our thesis is that a “Hybrid Verification” approach can
allow developers to get more confidence in their models through the possibility
to apply different formal methods to the same model. In order to achieve a uni-
fied modeling methodology, we propose to use a unified modeling tool, in our
case we use a coordination modeling tool termed the Peer Model [32,35]. The
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modeling tool provides an assertion notation [37]. It serves as the interface for
developers, and behind it – beyond its built-in runtime assertion mechanism –
several different formal methods can be integrated.

In this work, a categorization of properties to be verified and a mapping
of them to suitable verification methods is presented. While the categories and
mappings are not new, as they are (implicitly) used in literature, they pose
the foundation of the proposed approach and their collection and discussion
is a major stepping stone towards the development of the Hybrid Verification
method. The development and evaluation of the proposed Hybrid Verification
idea is carried out based on examples and experiences of the authors with the
railway domain1; however, the approach is applicable to all kinds of coordination
problems, as the Peer Model is an extensible coordination model that has proved
useful in different domains. The use case selected for the evaluation is a generic
pattern, where messages are sent via an unreliable wireless communication link,
and where this link is supervised by controller components in order to allow its
integration into a safety-critical system.

All properties to be verified are modeled with the Peer Model. Based on the
classification, the assertions can be verified with different formal methods and
tools. So far, Event-B [1] has been integrated into the Peer Model [36]; in future
work we plan to underpin the proposed Hybrid Verification approach with other
formal methods, following the proposed idea.

The paper is structured as follows: Sect. 2 discusses limitations of important
verification methods used in the railway domain. Section 3 presents the Hybrid
Verification approach starting with a proposed classification for properties to be
verified, followed by a mapping to the most appropriate verification methods for
each class, and finally explaining the verification scheme. Section 4 describes a
generic use case from the railway domain and uses it to define a list of relevant
system properties to be verified, which are classified according to the proposed
classes. Section 5 shows how the proposed approach can be integrated into the
Peer Model and evaluates the feasibility of the unified modeling tool by means
of the use case from Sect. 4. Section 6 summarizes the new ideas and gives an
outlook to future work.

2 Related Work

Verification of railway systems is a well explored task and therefore will be used
as motivation and explanation of the proposed approach. A variety of scientific
work explores the specification and verification of e.g., signaling and interlocking
or ERTMS/ETCS2. The most striking limitation of such approaches is that of
the formal method and specification language used. It limits the type of system
properties that can be specified and verified directly through language limitations
or indirectly by infeasibility, leading to partial or multiple system models. Two
of the most powerful formal methods – Model Checking and the B Method – are
1 http://www.loponode.org, funded by the Austrian Federal Railways (ÖBB Infra).
2 http://www.era.europa.eu/core-activities/ertm.
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discussed by way of examples from the railway domain to show the limitations
of single formal methods.

Model Checking [13] approaches are powerful, as they can be used to verify
temporal logic formulas, but face the problems of indeterministic state transi-
tions without timing information, and state explosion (even with symbolic model
checking). Different approaches deal with state explosion in various ways: E.g.,
[26] manage the state explosion by keeping to the limited language of ladder
diagrams using only boolean variables and by using slicing and SAT-Solving.
In [47], the authors propose to work on a minimal model of the system. [11]
note problems with larger systems and hints at trying to solve them by changing
the system representation. The common weakness of these and similar strate-
gies is that they are highly application and representation dependent, leading to
abstract models of the system either in a given development or conceptualiza-
tion stage. In [19], the authors even claim that general purpose model checkers
(SPIN and NuSMV) cannot be used for large interlocking systems. To tackle the
problem of timing information, there are combined tools such as Verus [9,10],
which provides a syntax and verification kit for real-time systems.

Other approaches (e.g., using UPPAAL [30]) rely on Timed Automata instead
of Finite State Machines as a representation of the system, which are also very
restricted in their expressiveness and lead to large systems.

The B Method [2], a specification and verification technique for the entire
development cycle, has been shown to be useful in train application development
[5,8]. However, natively, the approach only supports invariant and variant proofs.
Proofs of temporal logic properties or real-time property specification is not
supported. The ProB model checker [38] is an attempt to provide the B Method
with Model Checking, but due to the different representation of states and state
space, different optimization problems arise than in classical Model Checking.

Due to these limitations, a major challenge lies in bridging the gap between
complex systems and various properties to be verified and the different limited
verification techniques and methods. Relevant approaches combine an appropri-
ate modeling interface or front-end and different verification techniques.

For example [24] extends Model Checking verification through combining
symbolic trajectory evaluation with either Symbolic Model Checking or SAT-
based Model Checking; while [6] presents an approach for the verification of
embedded software with hardware dependencies using a mixed bottom-up/top-
down algorithm with optimized static parameter assignment (SPA). These algo-
rithms and methodologies like SPA and counterexample guided simulation are
used to combine simulation-based and formal verification in a new way. SPA
offers a way to interact between dynamic and static verification approaches based
on an automated ranking heuristics of possible function parameters according
to the impact on the model size.

The hybrid verification method presented in [4] is based on numerical static
analysis and verification condition generation. The method aims to preserve the
proof obligations of source codes to be evident on compiled programs.
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The Statemate Verification Environment (STVE) [7] is an extension to the
STATEMATE industrial specification and verification tool based on state charts
[23]. It allows refinement based modeling and provides code generation, simu-
lation and formal verification using Symbolic Model Checking. E.g. [15] suc-
cessfully model and verify properties of a case study proposed by the Ger-
man Railway Company. State charts are widely used as a modeling language
in safety related development but lack the framework of a well-defined coordi-
nation model.

[25] propose the OnTrack verification toolset to model and verify railway
applications. Their approach is similar to ours in such that it provides one front-
end (also with graphical representation) and multiple verification tools behind
it. The toolset is enhanceable. The approach is specifically tailored to railway
systems, which has the advantage that specific train and railway related problems
can be explicitly modeled and verified, but the disadvantage is that it cannot be
used in other domains without major adaptations. Using a coordination language
that is enhanceable and not restricted one domain overcomes this disadvantage.

3 Proposed Approach

3.1 Classification of Properties to Be Verified

Properties to be verified are the essential system requirements obligatory for
proper system operation. The choice of model together with verification method
determines whether or not a certain property can be expressed and verified. In
this paper we investigate limitations of widely used verification methods, made
evident by system properties that cannot be verified with enough confidence
using the method. Researches investigating verification methods are concerned
with a certain set of properties that are the most critical for the application.
Types of properties that are highly concerned were chosen so that the clas-
sification is aligned with literature, however it can be refined in future work.
The classification is a prerequisite for our Hybrid Verification method that aims
to provide researchers with suitable methods for respective property classes. We
classify system properties into 5 categories: Safety, Reliability, Availability, Tim-
ing and Security. Some properties are classifiable into more than one category.
Choice and fine-tuning of classification is up to the user and poses one of the
inputs for future machine learning to better classify properties and recommend
suitable formal methods for their verification.

Safety. Safety requirements are essential for most systems, as they define how
to avoid system hazards. The work in [43] provides a specification and formal
verification of safety properties in point automation for railway system. In this
research safety properties are defined as a list of requirements that leads to
a safe train journey. In [12] the authors formally define the safety properties
as a particular variable p that is supposed to be always true for all possible
scenarios. For a given combinational circuit C, a safety property p is valid,
if s(p) = 1, for all solutions s of C. For a sequential circuit (C, D), a safety
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property p is valid, if for all k, for all solution paths (s1, . . ., sk) of (C, D),
and for all 1 ≤ i ≤ k, si(p) = 1. [29] considers safety properties to be those
that when incorrectly specified or violated lead to considerable property damage
and/or human casualties. Accordingly, in this paper we define safety properties
as system requirements that are essential to prevent hazards.

Reliability. Reliability is known as a measure of the probability that a system
or system components will function as intended for a specified interval under
certain conditions. [39] adds the Scale domain to the Hyperball abstraction to
increase the accuracy in verifying reliability properties and increase the system
failure vulnerability. The challenging problem of how to ensure the high relia-
bility of electrical devices and software that may fail randomly in The Flight
Control Systems is investigated in [46]. [18] analyzes the complex properties of
the Chinese high-speed rail networks. The work simulates the performance of
network vulnerability when the stations fail. The survivability and rationality of
three networks are compared to study the dynamic change of network vulnera-
bility. We define reliability properties as requirements for failure vulnerability.

Availability. Availability is the probability that a system or a system com-
ponent will be operational at any random time and can be measured as:
Uptime/(Uptime + Downtime). The framework proposed in [17] verifies the
availability of services by injecting faults into different components of Open-
Stack. Beside injection service indicators such as downtime are monitored. The
requirements are verified by comparing the monitored metrics against the pro-
vided service level agreement. [28] presents a prediction for the trend in radio
resource availability in cognitive radio. We define the set of availability properties
as those requirements measuring the time in which the system is running.

Timing. Timing information is important in many systems. Verifying timing
requirements is heavily investigated in literature. In [44] a temporal logic frame-
work is proposed for modeling and verification of timing properties. Timing
properties are expressed as axioms controlling temporal variables that are either
true or false over a certain time interval. [16] analyzes timing properties of real
time prototypes which consist of timing constraints that must be satisfied at
any given time and time-series constraints that must be satisfied over a period
of time are verified through proposed scheme. MARTE (Modeling and Analysis
of Real-Time and Embedded Systems) [42] is an industrial standard built to align
with UML 2.0, offering a range of capabilities needed to model RT/ES including
discrete/dense and chronometric/logical time. Since it deals with quantitative
time information, timing mechanisms (clocks, timers) and services, it is used to
describe events in time (timed events), instants and duration, timed elements,
time values, observation (of time passing) and a form of timing constraints. [45]
applies it to verify security and timing properties in UML Models. We define
timing properties as relative and/or absolute timing constraints.

Security. Security policies including authenticity, authorization, secrecy,
integrity, freshness and fair exchange [45] are enforced within a system when
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security must be verified. UMLsec [27] is a comprehensive profile for develop-
ing secured software applications offering recurring security requirements, such
as secrecy, integrity, and authenticity as specification elements. [40] introduces
a verification method of security-critical systems based on cryptographic pro-
tocols. Standard security properties such as secrecy or authenticity are investi-
gated beside application-specific security properties to give better guarantees.
We define security properties as all aspects related to the confidentiality of sys-
tem data.

3.2 Mapping of Verification Methods

This section explores the strengths and limitations of verification methods and
suggests which methods are suitable for a class and which are not. The mapping
is done according to the definitions of property classes given in the previous
section. It is not a 1:1 mapping between verification method and property classes,
but is a discussion of the applicability and suitability of formal methods and
concepts to the property classes identified. It is a summary of well known facts
and poses a starting point for a recommendation system to support users in the
choice of appropriate methods to verify certain system properties.

Model Checking (MC) tools unroll the state space of the system model to ver-
ify that none of the reachable states violates the properties. Verification using
MC is simple, always terminates with a clear result of yes or no, and is widely
used in both software and hardware systems, but suffers from the so-called state
space explosion problem that is when the number of states is so large in a way
that its creation and exploration take exponential time. MC is not suitable for
verifying real time systems in general because of the state explosion problem.
However MC greatly fits verification problems of safety properties. Safety prop-
erties are critical and must be verified in a clear deterministic way, accordingly
MC can be well applied to safety properties as it provides a decisive way with
clear termination of the problem and counterexamples.

Finite State Machines (FSM) describe purely discrete systems (i.e. systems
without real time properties) that can be checked using MC. They are widely
used in industrial development and most tool suites rely on them as a modeling
tool, but for complex systems models tend to become large (even with modular-
ization and edge synchronization) and there are no intrinsic mechanisms (other
than edge synchronization) to describe distributed and concurrent systems. Since
FSM describe purely discrete systems, they can not be used for verifying timing
properties. FSM are the most suitable for security properties, as they describe
discrete features of a system.

Hybrid Automata (HA) describe discrete systems in continuous environments
but they are undecidable in general and models tend to become large. Verification
tools based on HA are limited to (efficiently) decidable sub-sets or give only
a confidence measurement for truth values, so they are the most suitable for
reliability properties.

Timed Automata (TA) are a decidable sub-set of hybrid automata, providing
timing information. They are restricted in their expressiveness. In some imple-
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mentations, transitions are allowed, supporting stochastic models. Since TA are
restricted in their expressiveness, they are not appropriate for safety properties.
However they are the most suitable for timing properties class.

B Method (B) is an approach not only for verifying but also for modeling
and developing a system from scratch. It is based on the formal method theorem
proving and was selected in this survey as one representative of such methods
that has been useful in industrial development. It is refinement based and pro-
vides a methodology and tool set for all stages of the development cycle from
specification of coarse properties to an implementation level description to be
translated into code. One disadvantage of B is the state-transition style system
specification. While it is more concise than the definition of FSM and allows for
invariant proofs instead of MC to verify safety properties, the expressiveness is
the same. B is suitable for more than one class of properties. It can be used for
availability properties as the requirements are automatically deduced from the
model in a way that give high confidence needed to check these properties. B is
also appropriate for reliability class of properties. But due to the lack of efficient
real time representation it is not suitable for timing properties.

3.3 Proposed Hybrid Verification Approach

Formal verification is a part of the design process to ensure the correctness of
a system in the early design stages. Correctness of a system is identified by
satisfying a set of properties. Verification approaches are evaluated through the
applicability to formal models and the level of confidence in verification results.
We propose to use different methods to verify properties of systems. The moti-
vation is to keep each method pure and lean and use it to verify the most
suited set of properties, in contrast with other approaches based on extending or
customizing a method for a certain application or domain. Excessive extension
means to add features to the formal method that are driven by ad-hoc use case
requirements and/or to technically integrate two conceptually different formal
techniques – which would also add unnecessary complexity. We propose to sup-
port the verification methods Model Checking, Finite State Machines, Hybrid
Automata, Timed Automata, and B Method (to start with) in a single tool that
can match the most suitable verification method to property type. The idea is to
use a powerful model as an interface for developers and to allow the generation
of formal models for each method based on the system specification they pro-
vide. All classes of properties can be proved with the most appropriate method
and the approach can be applied to any application domain. Further verification
methods can be included without impeding the existing ones and the goal is to
build on the mentioned classification and keep refining it to best provide a good
verification scheme for all properties.
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4 Use Case Based Analysis of Verification Requirements

In this section we describe the properties to be verified for the selected generic use
case pattern, where two controllers communicate through an unreliable linking
channel (cf. the “Black Channel” principle [22]). The range and diversity of
the properties makes the need of our Hybrid Verification approach evident. The
System (see Fig. 1) consists of Controller A, unreliable Radio Frequency based
Communication Link (RFCL), and Controller B. The System is integrated into
a Host A and Host B. There are many concrete use cases where this pattern
occurs, e.g., in ERTMS/ECTS for the communication between on-board unit
and track-side; e.g. for the communication between a train detection sensor and a
level crossing (see Sect. 5.1). The System general setup can be defined as follows:

– Host A must always know the status of Host B; i.e. the actual status infor-
mation of Host B must be transmitted correctly and timely to Host A.

– The system is not symmetric.
– Photo Voltaic (PV) modules are used for energy harvesting.
– The RFCL is a Wireless Sensor Network (WSN) consisting of 2 or more motes;

i.e. 2 end motes and 0, 1, 2, . . . forwarder motes.
– The end motes are connected with the respective controllers via cable.
– System consists of hardware and of software controlling hardware operation.

Fig. 1. System to be verified.

The use case requirements classified according to Sect. 3.1 are:

Safety Properties

1. Status messages sent via RFCL from Host B to Host A must be correct
2. If Host A does not receive a status messages from Host B at least every K1 ms

by using the RFCL, it must put Host A into a safe state. K1 depends on the
concrete use case; e.g. in the level crossing use case (see Sect. 5.1) on speed
of train and distance of sensor from level crossing.

3. A failure in the transmission medium must be detected after maximum K2 ms.
K2 depends on the concrete use case; e.g. for level crossing use case: K2 = 2
IMT (Inter Message Time) + WCEDT (Worst Case Event Detection Time)
≤1 s.
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Reliability Properties

1. Battery must support mote operation for at least K3 days without charging
2. Condensed water must not build up inside the casing, as it may damage the

hardware. Therefore, the mote casing must not be airtight.
3. High reliability of connection ≥ K4% success rate for transmission using

RFCL; K4 depends on the number of motes.
4. Allowed number of failures: less than K5 failures per year for RFCL.

Availability Properties

1. The PV modules must be protected from mechanical damages. Resilient
materials must be used resisting hailstones with a diameter of up to 15 mm.

2. The surface of the PV module must be protected against buildup of dirt and
snow via suitable coatings that do not reduce transparency of the surface.

3. The PV modules must provide more power than consumed by the Printed
Circuit Board (PCB) for its regular operation in order to enable charging of
the battery.

4. The solar cells have to be oriented in a way that provides extended periods
of direct sunlight. Multiple solar cells in several directions, which cover at
least 180◦, shall be used.

5. The tilt angle of the PV modules shall be adapted to the altitude of the sun,
around 60◦.

6. Motes must support harsh weather conditions (low/high temperatures,
snow/ rain/hail etc.).

7. Hardware (incl. all components) must support temperature range from −40
up to +85 ◦C.

8. Hardware must survive at least for 5 years.
9. Motes must be able to power themselves for any relevant location.

10. Due to possibly curved tracks, a rather wide angle for the antennas beam is
envisaged, i.e. about 45◦ to the left and right of the main direction.

11. The casing design must consider the radio characteristics of the motes.
12. Continuous transmission of data from Controller B to Controller A.

Timing Properties

1. Receive messages from the sensor (= Controller B) every 500 ms.
2. Messages are forwarded from mote to the next through every K6 ms.
3. Message is sent 2 times on 2 different channels (frequencies) to avoid losing

messages.
4. Status messages are sent from Controller B to the Controller A every K7 ms.
5. The clocks of the single motes must not drift more than K6 ms, i.e. a syn-

chronization to compensate for drifting clocks is needed.
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Security Properties

1. Received message at Host A must be from Host B.
2. Fake messages must be recognized and ignored.
3. Messages cannot be read and decoded by external observers of the system.

The kind of property that can be proved within a system model strongly
depends on the choice of modeling perspective and tool.

5 Integration and Evaluation

In this section, the proposed Hybrid Verification approach is evaluated by inte-
grating it into a concrete modeling tool, and by applying it to a concrete use case.
The Peer Model has been chosen for the integration because it is a coordination
model that has been applied already to several use cases. AppendixA contains
an explanation of the Peer Model concepts and terminology used to understand
the use case. Its focus is to simplify the development of complex distributed
systems and to improve the reusability by abstracting the coordination parts in
form of patterns [32,35]. The reason for the choice of a coordination model is
that the coordination problem is a complex one that exhibits all/most of the
analyzed classes of properties. Also the Hybrid Verification approach needs a
unified powerful notation that can map different methods and express assertions
in the same notation so that users do not need to go through different formal
notations. The Peer Model was developed by our group and provides a language
for the specification of assertions. It is capable of representing diverse properties
of systems, allows for a user defined line of separation between application and
coordination logic. So far, the Event-B method has been integrated with the Peer
Model [36]. In this case, the properties of the Peer Model in general are provided
as an abstract model and the concrete model is generated as a refinement from
the meta model of the system specification, leaving only the proof obligations
of use case specific properties to be tackled at runtime. This way Peer Model
based models can be verified with the Event-B tools. A similar approach will be
pursued for other formal methods relying on the respective offered mechanisms.

5.1 Evaluation by Means of the Level Crossing Use Case

We investigate the feasibility of using the Peer Model as a facade for the Hybrid
Verification approach by means of the level crossing use case (see Fig. 2). We
define concrete values for the Ki-parameters in the generic pattern, and select
software properties to be verified from Sect. 4. The Proof-of-Concept foresees to
present a formal model by means of the Peer Model and to specify the properties
as assertions. Figure 4 shows the time-triggered communication protocol of the
RFCL; in the example four motes (M1, . . ., M4) are used. M1 is the end mote
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that is connected to Controller A (which is integrated into Host A) via RS232,
M4 is the end mote that is connected to Controller B (which is integrated into
Host B) via RS232, and M2 and M3 are forwarder motes. We use 8 time slots. RX
stands for receiving and TX for sending. The time-triggered wiring mechanism
of the Peer Model is used to specify the RFCL. It includes also a piggy-backed
clock synchronization protocol.

Fig. 2. Concrete use case: Level Crossing (LC).

The Model: The most relevant part of the model in graphical Peer Model nota-
tion can be found in AppendixB. All motes, the operator and both controllers
are modeled as peers. The up-stream messages are represented by entries of
type “getStatus”, and the down-stream messages by entries of type “status”.
The latter have the following property fields: “txT” (time when the entry was
sent), “rxT” (time when the entry was received). Controller A regularly sends
getStatus via M1 to M4 (up-stream), sets a local watchdog and waits for a sta-
tus message to be received from Controller B (down-stream) within the required
960 ms. If the status message says train is coming, it closes the LC. If it does not
receive a valid status message within this time period, it sends a failure entry
to the Operator, and enters a fail safe state by closing and shutting down the
LC. Controller B signs all messages it sends with its private key. More precisely,
it sets a property termed “sig” in the status entry it sends back as response
to a getStatus message, where sig is the signature of the fid (flow identifier, a
system-defined property [32] used to correlated messages) of getStatus. Within a
TX slot, a mote sends each message on 2 different radio channels to other motes.
It reports in entries of type “sentDown” resp. ”sentUp” on which channel a mes-
sage was sent. The end mote at site A keeps a local “report” entry counting the
ok and not ok message rounds.

In order to be able to check a property, a respective entry (with needed
properties) must be modeled and written to a container in the model, because
the entries in containers reflect the entire system state, to which assertions refer.

Properties. The following list summarizes software related properties to be
verified (cf. Sect. 4) and gives concrete values for all parameters. Host A is a
Level Crossing System (LC), Host B is a Train Detection Sensor.
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SAF-1: Status messages received by Controller A must be correct.
SAF-2: If Contr. A receives no status message for 960 ms, shut down Host A.
REL-1: 99% success rate for RFCL transmission.
REL-2: Less than 2 RFCL failures per year.
AVA-1: Continuous transmission of sensor data to Controller A.
TIM-1: ControllerA must receive status message every 960 ms.
TIM-2: Mote to mote latency ≤100 ms.
TIM-3: Redundancy through sending on 2 different channels (within one slot).
TIM-4: Clock drift between motes must be ≤10 ms.
SEC-1: Status message received by Controller A must be from Controller B.
SEC-2: Fake status messages must be recognized and ignored.

Assertions. All selected assertions could be represented by the Peer Model
assertion language. Their informal description is:

SAF-1 is modeled by SEC-1.
SAF-2 specifies that if there is at least one peer of type ControllerA, in which

HIC a sendStatus entry can be found, but for which no response (i.e. status
entry) was received after max. 960 ms, then in the PIC of the Operator peer
there must exist at least one failure entry.

REL-1 specifies that for all peers of type EndMoteA there must be a report
entry indicating that the success rate of the RFCL is at least 99%.

REL-2 specifies that for all peers of type ControllerA it must hold that the
Operator peer at most 2 entries of type failure must exist, and which are
not older than 1 year, and which are from the same Controller A. Note that
failure entries are never cleared, so the PIC can be used instead of the HIC.

AVA-2 specifies that for all peers of type ControllerA within 960 ms eventually
at least one status message is received in its PIC.

TIM-1 specifies that for all peers of type ControllerA it must hold that if a
getStatus entry existed, then within max. 960 ms there must be a status
entry (response to getStatus) be received in its PIC.

TIM-2a–d specify for the different mote types (FwdMote, EndMoteA, End-
MoteB) that time drift of status/getStatus messages is less than 100 ms.

TIM-3a specifies that for all peers of type EndMoteA, if they have sent a message
down (reflected by sentDown entry), then after max. 60 ms there must be yet
another sentDown entry which has another channel set.

TIM-3b1–2 specify the same for the forwarder motes (in both directions).
SEC-1 specifies for all ControllerA peers, if a status entry is in the PIC then its

“sig” is a valid signature of Controller B. I.e. if decoded with the public key
of site B, the result is the original flow id (fid) of the status entry.

SEC-2 is subsumed by SEC-1.

The formal representation of the assertions is:
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The assertions can be verified by means of the built-in runtime assertions
mechanism (except of those using the future container). Beyond that, depend-
ing on their category (Safety, Reliability, Availability, Timing or Security) and
according to the proposed Hybrid Verification approach, they can be verified by
all formal methods integrated into the Peer Model.

6 Conclusion and Future Work

There is no “silver bullet” that can be used to verify all desired properties of a
system. Our thesis is that a Hybrid Verification approach can allow users to get
more confidence in their models through application of different formal meth-
ods. In addition, we have presented a systematic classification of properties to
be verified which is the prerequisite for selecting suitable formal methods for a
given set of properties to be verified. In order to achieve an integrated modeling
methodology, we propose to use a unified modeling tool, in our case a coordina-
tion modeling tool termed the Peer Model, as the front end for developers. This
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modeling tool provides an assertion notation. Behind this usable interface for
developers, a built-in runtime assertion mechanism and several different formal
methods can be used. The evaluation was carried out as a proof-of-concept with
a railway use case. All properties of all categories were modeled with the Peer
Model, showing that it can successfully be used as user interface.

The next steps of our future work comprise: Based on the classification, the
assertions shall be verified with respective formal methods tools. We plan to
underpin the proposed Hybrid Verification approach with many other suited
formal methods beyond Event-B by means of automatic translations from exist-
ing Peer Model specifications. A recommendation system shall be implemented
based on the mapping of properties to formal methods and tools. Application
of the Hybrid Verification approach to other (coordination) modeling languages
and tools will also be investigated.

Appendix A: Peer Model/Graphical Notation in a
Nutshell

The following is a brief overview – assembled from [31,33,37] – of the features of
the Peer Model needed for the use case presented in this paper. The Peer Model
is a coordination model that relies on known foundations like shared tuple spaces
[20,21,34], Actor Model [3], and Petri Nets [41]. It separates coordination logic
from business logic and is intended to model reusable coordination solutions. A
peer relates to an actor in the Actor Model [3]. It is an autonomous worker with
a name; it receives entries (representing messages, events etc.) in an incoming
mailbox termed “peer input container” (PIC). Optionally it also possesses a “peer
output container” (POC). A container is a tuple space that stores entries that are
written, read, or taken (i.e., read and removed) in local transactions. Entries
are the units of information passed between peers. An entry has system- and
application-defined properties. The coordination behavior of a peer is explicitly
modeled with wirings, which have some similarity with Petri Net transitions [41].
A wiring has guards that retrieve entries from containers, and actions that write
entries to containers or send them to other peers. In addition, a wiring may call
a service which encapsulates application logic. All wirings run concurrently. The
arrival of entries in containers triggers the execution of wirings.
Property prop = (label, val). label is a name, and val denotes a value. The
property is named after its label.
Entry e = Eprop. Eprop is a set of properties {prop1, prop2, . . . , propn}.
Container c = (cid,E,Coord,Cprop). A container stores entries. cid is a unique
name, E a set of entries, Coord a set of coordinators (see Query below), and
Cprop a set of system properties. A container relates to an XVSM container [34].
We differentiate between space containers and internal containers. The former
ones support transactions and blocking behavior. Entries are retrieved by a query
that necessarily requires the coordination type of the entry.
Query q = (type, cnt,Sel). type is an entry coordination type. cnt is a number,
a range, or the keyword ALL or NONE, determining the amount of entries to
be selected; default is 1. Sel is a sequence of AND/OR connected selectors. A
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selector is lent from the XVSM query mechanism [14]. It refers to a container
coordinator (e.g. fifo, key, label, any) or is a selection expression involving
entry properties, variables and system functions.
Link l = (c1, c2, op, q,Expr,Lprop). c1 refers to a source and c2 to a target
container. op possibilities are3: create (creates new entries and writes them to
c2), read (reads entries from c1 and writes them to c2), take (reads and deletes
entries from c1 and writes them to c2), delete (reads and deletes entries from
c1), and test (checks entries in c1). All operations must fulfill the query q, if it
is not empty, on c1. Expr is a sequence of expressions that set or get properties
of selected entries and/or of variables. Lprop is a set of system properties, like
e.g. using flow correlation.
Wiring w = (wid,G,S,A, wic,Wprop). wid is a unique name, G is a sequence of
guard links, S is a sequence of service links to external services, A is a sequence
of action links, wic is the id of an internal container, and Wprop is a set of
system properties. All links are numbered, specifying an execution order which
has impact on concurrency and performance. Entries selected by guards are
written into wic. Then w calls the services in the specified sequence. Finally, the
wiring executes the action links. c2 of a guard and c1 of an action link is wic.
There is one dedicated wiring in a peer termed init wiring with its first guard
having the identifier “*”; it is fulfilled exactly once, namely when the peer is
activated.
Service s = (sid, app). sid is the name of the service and app a reference to the
implementation of its application logic (method). A service gets entries from its
wiring’s wic as input and emits result entries there (via service links).
Peer p = (pid, pic, poc,Wid,Spid,Pprop). pid is a unique name, pic and poc are
the ids of incoming and outgoing space containers where p receives and delivers
entries, Wid is a set of wiring ids, Spid is a set of ids of sub-peers, and Pprop is
a set of system properties.
Peer Model PM = (P,W,C). P is the set of all peers including sub-peers, W
is the set of all wirings, and C is the set of all containers in the system.

Runtime Assertion Mechanism: In [37], invariant assertions for the Peer
Model have been introduced. They are statements about container states. They
consist of intra-peer assertions connected to a logic formula by NOT, AND, OR and
→. Intra-peer assertions contain a context and a statement part. The context
defines number, type and properties of peers for which the statement must be
fulfilled. The statement is a logic formula of container assertions connected by
NOT, AND, OR and →. Container assertions refer to a container where they must
hold and a container statement. The container can be the PIC or the POC. The
container statement basically is a query on the respective container which may
involve local variables (written with a starting $ character). Clearly, due to
the nature of runtime assertions, it cannot be guaranteed that all failures are
detected. If a strict verification is need, a so-called “history container” HIC can be
involved which remembers all events. The mechanism allows for asynchronous
distributed runtime reasoning about distributed states with small messaging
3 read is also denoted as copy, and take as move.
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overhead. The Peer Model supports also the specification of timing properties,
but the assertions as presented in [37] cannot yet define constraints on them.

The here proposed Hybrid Verification approach relies on this assertion lan-
guage to formulate properties and to verify them with respective integrated
verification methods. For this, we extend the assertion language by a “future
container”, which is a similar concept like the history container. The difference
is that assertions using the future container refer to future system states. It is
denoted by PIC[t1;t2]. This way assertions can refer to entries in the PIC between
current time plus t1 and current time plus t2. The implementation of future
runtime assertion checking for assertions is part of our future work.

Real-Time Wirings: The Peer Model supports the combination of event- and
time-triggered coordination. For the latter, time-triggered wirings and real-time
exceptions are defined (see [31] for more details). Time triggered wirings are
activated at a specified absolute time (tt.start), and have a defined period
(tt.period) and duration(tt.duration).

Graphical Notation: The graphical representation of the Peer Model is shown
in Fig. 3, outlining one peer with one wiring that has two links and calls one ser-
vice (the depiction of service links is skipped in Fig. 3). The guard link connects
the peer’s pic with the wirings’s wic, and the action link connects the wiring’s
wic with the peer’s poc. Note that the source space container of a guard can
also be the peer’s poc or the poc of a sub-peer. Analogously the target space
container of an action link can also be the peer’s pic or the pic of a sub-peer. A
wiring can have many links that are numbered with G1, . . ., Gk, S1, . . ., Sm, A1,
. . ., An (the link ids are not depicted in Fig. 3). A peer can have many wirings.

Sub-wirings that are called as synchronous sub-transactions [33] are denoted
with dashed lines.

Fig. 3. Example peer [33].

Fig. 4. Time triggered protocol in general.
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Appendix B: Excerpt from Railway Use Case Model

(See Fig. 5).

Fig. 5. EndMoteA M1 (left) and FwdMote M2 (right) models (see Fig. 4).
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32. Kühn, E.: Reusable coordination components: reliable development of cooperative

information systems. Int. J. Coop. Inf. Syst. (IJCIS) 25(4) (2016)
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Abstract. The growth of scale and complexity of software as well as the
complex environment with high dynamic lead to the uncertainties in self-
adaptive software’s decision making at run time. Self-adaptive software needs
the ability to avoid negative effects of uncertainties to the quality attributes of
the software. However, existing planning methods cannot handle the two types
of runtime uncertainties caused by complexity of system and running environ-
ment. This paper proposes a planning method to handle these two types of
runtime uncertainties based on reinforcement learning. To handle the uncertainty
from the system, the proposed method can exchange ineffective self-adaptive
strategies to effective ones according to the iterations of execution effects at run
time. It can plan dynamically to handle uncertainty from environment by
learning knowledge of relationship between system states and actions. This
method can also generate new strategies to deal with unknown situations.
Finally, we use a complex distributed e-commerce system, Bookstore, to vali-
date the ability of proposed method.

Keywords: Self-adaptive software � Runtime uncertainty
Reinforcement learning � Self-adaptive planning method

1 Introduction

The growth of software scale increases the costs of the operation and maintenance for
software. This has driven the development of self-adaptive software (SAS). SAS can
automatically adjust its attributes or artifacts by self-adaptive (SA) strategies in order to
adapt to changes and improve the quality attributes (QAs) of software [1]. The process
that selects suitable strategies called self-adaptive planning. However, the increase of
software complexities brings challenges to the SA planning, which is mainly reflected
in the following two aspects: First, the complex internal structure and components
relationship of software make it difficult to know the execution effects of the strategies.
Second, the running environment of software gradually tends to open, dynamic and
complex such as Internet environment. Software changes occur frequently so that it is
difficult to define SA strategies for each change. These uncontrollable and unpre-
dictable factors may cause the result that SAS fail to adapt to software changes at run
time. Therefore, SAS needs to handle the runtime uncertainties in the planning process
to better ensure the QAs of the software.
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We discuss the uncertainties caused by two aspects mentioned above. On one hand,
the uncertainty caused by the complexity of the system leads to the difference of the
actual execution effects and expected effects of the strategies. For example, developers
define a strategy to improve the response time of a web page in the system, but it does
not achieve desired effect. The planning method needs to adjust decision making at run
time to handle this situation. On the other hand, open, dynamic and complex running
environments also make it difficult for developers to consider all possible changes. This
will cause the result that system can only deal with the predefined changes. The system
does not have the ability to handle unknown situations.

Scholars have tried many methods to handle runtime uncertainties in SAS,
including modeling uncertainties and machine learning, etc. However, most methods
cannot solve the uncertainties from both two aspects. Rainbow framework [2] calcu-
lates the average of observations to simply deal with the uncertainty from environment.
POISED [3] models uncertainties and adjust by refactoring components. However, it
can only deal with the defined uncertain situations. FUSION [4] and Mao’s team [5]
handle uncertainties through machine learning. FUSION adjusts strategies online
through a learning loop with a learning model. So it need to train the model before
system runs and cannot deal with the unknowns. Mao’s team use reinforcement
learning (RL) to plan dynamically. This method can solve a part of unknowns through
existing strategies. But it ignored that existing strategies cannot solve all the unknown
situations.

This paper proposes a planning method to handle runtime uncertainties from two
aspects in SAS, using RL. RL [6] will learn the relationship between system states and
actions. It will give the feedback on the execution effects of SA strategies and adjust
decision making through the feedback when strategies are ineffective. So it can plan at
run time and work in changeable environment. This can handle the uncertainty caused
by complex internal structure and component relationship. And the proposed method
can select strategies for unknown situations through learning knowledge. Meanwhile, it
can also generate strategies to solve unknowns that existing strategies can’t solve. In
addition, in order to improve the efficiency of the algorithm, this paper adds heuristic
information into feedback.

2 Proposed Method

We use an agent to implement a learning unit. It can interact with the environment to
get system states and plan according to the current state. The proposed method records
the feedback on execution effects of strategies as rewards and add heuristic information
into it. This method selects suitable strategies by learning knowledge and generates
new strategies by strategy combinations for unknowns.

2.1 Learning Unit

We use Event-Condition-Action rules to model SA strategies. Events represent soft-
ware changes. Condition is a part of the system state that strategies need to meet when
executing. Action is one or a set of adjustments on system defined as follows.
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Action ¼ Aid; AName; AObject; AOperationf g ð1Þ

Aid and AName is denote the identification and the name of this action. AObject
denotes the specific object of adjustment in this action. AOperation is the specific
opration of adjustment. A strategy is the dynamic mapping among them.

We implement a learner with an agent including a sensor, a planning maker and an
executor (see Fig. 1).

The sensor interacts with the environment to get system states and tells if system
needs SA adjustments. Then the planning maker selects strategies according to the
planning method and sends it to the executor. After this strategy was executed, the state
changes. Next, the agent gets the feedback of strategies by the change of states. This
can help SAS to handle the uncertainty from the complex system. We use a value
called reward to express the feedback of strategies and define a function to calculate it.
Planning method will put rewards into Q-table as the basis of planning. It can also
generate new strategies to handle unknowns through these learning knowledge.

2.2 Reward with Heuristic Information

We calculate rewards to evaluate effects of strategies. It will be positive if the system
state becomes better after a strategy was executed. Compared to common reward
definition in RL, we add heuristic information into it. The heuristic information can add
prior knowledge in planning. We use the change of QAs to express effects of strategies.
Besides, we consider the overhead of them. Therefore, we consider above two as
heuristic information. And we defined a function as follows to calculate its values.

Ht ¼
Xn

i¼0

Qi Stþ 1ð Þ � Qi Stð Þð Þ þ q ð2Þ

Qi Stð Þ is the value of the ith QA in current system state St; St+1 is the next state after
the strategies are executed. q represents the inverse of the overhead.

environment

sensor

executor
strategy

1.Get state

2.Send state 
information

agent

4.Execute 
action

Planning maker

strategy

Search 
strategy

2.3 Planning method
3.Selection stra tegy

2.2 Reward with Heuristic Information
5.Calcula te reward Strategy 

store

reward

Q-
table

r

r

Fig. 1. The structure of a learner realized by an agent.
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2.3 Detailed Planning Method

RL records the feedback of effects of SA strategies in Q-table. This method plans
according to actual effects of strategies. RL has the ability to plan at run time, it can
make decisions while learn. So it can adjust decision making to handle uncertain
execution effects from the complex system in changeable environment. To handle
uncertainty from complex environment, the proposed method learns the relationship
between system states and actions. Proposed method make decisions depend on a semi-
random algorithm. When agents do not have enough learning experience, it will try
some new strategies. Otherwise, it will exploit the strategy with high rewards. Agents
will select effective strategies based on learning knowledge to deal with the unknown
situations. If existing strategies cannot solve the unknown situations, proposed method
will generate new strategies by strategy combinations and add it into SA strategy
library. Detailed algorithm shows as follows:

Algorithm 1 Runtime uncertainties handling method based on reinforcement learning 
For each item in Q-table, initialize Q (s, a) 0 

Repeat 

If current state St is a new state 

 Get executable actions of St and initialize Q-value 

End If 

Repeat 

 Take action at with strategy selection method 

 Execute action at and add action at into action sequence a 

Get next state St+1, reward r and update Q-table 

Current state St St+1

Until St is a normal state 

If action sequence a is a new action for S0

 Add action sequence a into the set of executable actions and update Q-table; 

End If 

Until Q-table is convergent 

at expresses the selected action in current decision-making process. Software
change occurs at the initial state S0 and planning maker starts to select strategies. A SA
process starts from the initial state until the system is back to normal. During each
planning process, proposed method will tell if the sequence of actions executed is
contained in the action space. Then it will add the new action sequences into action
space as new strategies. When the accumulations of rewards tend to be stable, algo-
rithm is convergent. Agents can get optimal strategy through learning knowledge.
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3 Experiment

To validate our method, we use an e-commerce system selling books called Bookstore
as the case study. It has high demands for QAs but it runs in an open, dynamic network
environment. We design SA scenarios for it to test our method.

Bookstore system has a complex distributed architecture. It has four mainly
function modules, including the commodity module, the shopping module, the rec-
ommendation module and the user module. And it has four pages related to the four
function modules, including a homepage, a search page, a books page and a details
page (see Fig. 2).

We deploy the four function modules of Bookstore distributed. Each module has
several servers and Bookstore supports to adjust the number of servers. In addition, it
provides different display modes and numbers of books. And Bookstore can dynam-
ically adjust these modes and methods to adapt to changes.

Due to a huge amount of requests on Bookstore, the response time of four pages
frequently times out. Bookstore will periodically record the average response time of
each page and tell if it is timeout. And we use the response time (RT) of four pages as
the system state, shown as follows:

Homepage RT ; Search page RT ; Books page RT ; Details page RTf g ð3Þ

We express response time of pages by number 0 to 5. The RT difference between
every two numbers is one second. The Bookstore can dynamically adjust the display
mode of books, the number of books, servers and advertisement, etc. These adjust-
ments can help Bookstore system to improve performance. We defined several
strategies for timeout. They have different overhead and effects. Table 1 gives a part of
SA strategies of timeout scenarios.

Apache HTTP Server

Homepage Search Page Books Page Details Page

Redis Cache

Database Servers

User 
Module

Commodity Module

Homepage Service

Category browsing
Service

Book Search Service

Details display
Service

Recommendation Module

Regist
Service

Login
Service

Shopping Module

Orders service

Payment service

Shopping cart Advertising Recommendation

Commodity recommendation

Shop Recommendation

Fig. 2. The structure of Bookstore system.
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Table 2 describes the detailed definitions of actions in Table 1.

We use Apache JMeter to simulate http requests. We use 60 threads to send 60 http
requests per second. When sensor perceives the response timeout of four pages, it will
trigger adaptive adjustment. This method will select decisions to adapt to the change of
software. The algorithm iterates the feedback information in the Q-value and record
information of the feedback shown in Table 3. It reflects the actual effects of strategies.

According to the Q-value of these strategies, the action 003 and the action 006
performs best in the book display page timeout event. In addition, there are some new
strategies generated by strategy combinations. When existing strategies cannot deal
with software changes, the proposed method will continue planning until system back
to normal. Table 1 shows an undefined event. Its state is 2121 which means the
response time of the homepage and the commodity display page are both time out. The
proposed method combines actions in both two timeout events to solve the undefined
timeout event. Then it will try these action sequences to find the best strategies. And the
action 011 which action sequence is 003,005 performs better in this event.

Table 1. The self-adaptive strategies of timeout scenarios.

State Event Condition Action

S2111 Homepage timeout Has free server 001 Turn on homepage server
Display mode > 0 002 Reduce display mode
Ad number > 0 003 Reduce ad number
Ad display mode > 0 004 Reduce ad display mode

S1121 Books page time out Display mode > 0 005 Reduce display mode
Display number > 5 006 Reduce display number

Table 2. The detailed definitions of actions.

Aid AName AObject AOperation

001 Turn on homepage
server

The server of homepage Turn on one

002 Reduce display mode The display mode of books in
homepage

Reduce one
level

003 Reduce number of ad The number of ad in homepage Reduce one
level

004 Reduce display mode
of ad

The display mode of ad in homepage Reduce one
level

005 Reduce display mode The display mode of books in books
page

Reduce one
level

006 Reduce display number The number of books displayed in
books page

Reduce one
level
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4 Conclusion and Future Work

This paper discusses two types of runtime uncertainties from the complex environment
and system in SAS. We propose a method to handle them based on RL. But with the
increase of software scale, more knowledge is needed to learn. In the future, we will try
to storage the feedback with a non-table form to accelerate learning. Meanwhile, we
will consider the influence of other agents in SAS and have a try on credit assignment.
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Table 3. Adjustment information and Q-table

State Event Action Q-value

S2111 Homepage timeout 001 Turn on homepage server 5.3882
002 Reduce display mode 4.8248
003 Reduce ad number 7.8719
004 Reduce ad display mode 7.0198

S1121 Books page time out 005 Reduce display mode 7.9375
006 Reduce display number 7.9847

S2121 Undefined event 011 Combine 003 and 005 9.8787
012 Combine 005 and 004 8.541
013 Combine 001 and 006 6.63
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Objectives and Scope

Graphs are common mathematical structures that are visual and intuitive. They con-
stitute a natural and seamless way for system modeling in science, engineering and
beyond, including computer science, biology, business process modeling, etc. Graph
computation models constitute a class of very high-level models where graphs are first-
class citizens. They generalize classical computation models based on strings (e.g.,
Chomsky grammars) or on trees (e.g., term rewrite systems). Their mathematical
foundation, in addition to their visual nature, facilitates the specification, validation and
analysis of complex systems. A variety of computation models have been developed
using graphs and rule-based graph transformation. These models include features of
programming languages and systems, paradigms for software development, concurrent
calculi, local computations and distributed algorithms, as well as biological or chemical
computations. Thus, GCM aims at foundational research and applications of state-of-
the-art graph computation models, especially to the areas of modeling and software
engineering. GCM solicits papers in all areas of graph computation models including
but not limited to the following topics of interest.

Foundations: Models of graph transformation; Parallel, concurrent, and distributed
graph transformation; Term graph rewriting; Formal graph modeling; Logics on
graphs and graph transformation; Formal graph languages; Analysis and verification
of graph transformation systems; Foundations of specification and programming
languages.
Applications: Software architecture; Software validation; Software evolution;
Visual programming; Security models; Implementation of specification and pro-
gramming languages; Rule-based systems; Workflow and business processes;
Model-driven engineering; Service-oriented applications; Bioinformatics and sys-
tem biology; Social network analysis; Case studies.



The aim of the series of the International Workshops on Graph Computation
Models (GCM) is to bring together researchers interested in all aspects of computation
models based on graphs and graph transformation. It promotes the cross-fertilizing
exchange of ideas and experiences among senior and young researchers from the
different communities interested in the foundations, applications, and implementations
of graph computation models and related areas. Previous editions of the GCM series
were held in Natal, Brazil (GCM 2006), in Leicester, UK (GCM 2008), in Enschede,
The Netherlands (GCM 2010), in Bremen, Germany (GCM 2012), in York, UK (GCM
2014), in L’Aquila, Italy (GCM 2015), in Wien, Austria (GCM 2016), and in Marburg,
Germany (GCM 2017).

The GCM workshop series is closely related to the International Conferences on
Graph Transformation (ICGT) being part of the STAF conferences for some years. In
previous years, authors of selected papers were invited to submit revised and extended
versions after the workshop. Until GCM 2015, accepted selected contributions were
published in special issues of the international journal Electronic Communications of
the EASST. Previous issues of ECEASST dedicated to GCM include Volume 39
(2011), Volume 61 (2013), Volume 71 (2015), and Volume 73 (2016). Since 2016,
GCM has joined other STAF workshops in collecting the final versions of the best
papers in a joint volume.

Short Report on GCM 2018

GCM 2018 was a full-day event on 27 June 2018 after the two days of ICGT 2018. In
all three sessions, about 20 participants took part in the lively discussions. The program
consisted of nine presentations that are documented on the workshop website https://
www.gcm2018.uni-bremen.de. Six of them were proposed for the joint STAF 2018
post-proceedings.

I would like to thank the members of the Program Committee I had the pleasure to
chair for their competent and deeply committed work: Andrea Corradini (University of
Pisa, Italy), Rachid Echahed (LIG Lab., Grenoble, France), Stefan Gruner (University
of Pretoria, South Africa), Annegret Habel (University of Oldenburg, Germany), Dirk
Janssens (University of Antwerp, Belgium), Barbara König (University of Duisburg-
Essen, Germany), Mohamed Mosbah (University of Bordeaux, France), Detlef Plump
(University of York, UK), and Leila Ribeiro (Universidade Federal do Rio Grande do
Sul, Brazil). I am also very grateful to Timothy Atkinson, Aaron Lye, Christoph
Peuser, and Christian Sandmann who served as subreviewers.

From my point of view, GCM 2018 worked very well and provided interesting and
excellent talks. Therefore, it proved to be another link of the successful workshop series
GCM.
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Abstract. Graph databases such as neo4j are designed to handle and
integrate big data from heterogeneous sources. For flexibility and perfor-
mance they do not ensure data quality through schemata but leave it to
the application level. In this paper, we present a model-driven approach
for data integration through graph databases with data sources in rela-
tional databases. We model query and update operations in neo4j by
triple graph grammars and map these to Gremlin code for execution. In
this way we provide a model-based approach to data integration that is
both visual and formal while providing the data quality assurances of a
schema-based solution.

Keywords: Data integration · Graph databases
Model-based development · Triple graph grammars

1 Introduction

Data integration is the process of combining data from heterogeneous sources
in a unified and consistent way [12]. In changing market conditions businesses
have to be flexible, able to merge, cooperate with or acquire other businesses
[10]. To work together effectively, such newly related businesses will have to
integrate at least some of their data. As with application integration in general,
approaches to data integration should support flexibility of future evolution and
allow to share data while retaining ownership. For example, two businesses may
agree to share their customer, product and supplier data but keep their internal
processes separate. In such scenarios, data integration should be loose and partial
to guarantee sustainability in the face of changing business goals [23].

Business data is often high in volume and velocity of change [12]. Data sources
may be too large to replicate or merge fully and both data and data models may
undergo changes at different rates. Keeping data loosely coupled or linked, it is
easier to maintain integration [32]. Unfortunately, legacy data integration con-
cepts do not address these requirements. Graph databases (GDB) such as neo4j
[28] provide a scalable semi-structured data store based on a simple and flexible
c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 399–414, 2018.
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graph data model. They are able to store large data sets [22] and query them
efficiently using navigational query languages such as Cypher and Gremlin [15].
Triple graph grammars (TGG) are a declarative language to relate heteroge-
neous data through a relational structure. They support uni- and bidirectional
transformations as well as linking existing data [26]. TGGs have originally been
developed for model transformation, integration and synchronisation [11,18].

In this paper, we present an approach using TGG as data integration lan-
guage on top of a GDBs. This is supported by the generation of code from TGG
rules for GDB query and update operations. The overall architecture is shown
in Fig. 1. Data integration is specified at a model layer, describing sources using
UML models and the links to be created between them using TGG rules. This
also allows to maintain the consistency of links and to update them when the
source data changes. To implement the data integration, TGG rules are trans-
lated to the agnostic GDB query language Gremlin [25]. Then, the relevant data
is imported to the GDB through source adapters, such that the Gremlin code
can be executed.

Advantages of this approach are (i) the level of abstraction is increased due
to the use of model-driven technology, (ii) the use of a GDB to maintain the
link structure supports scalability, (iii) schema safety is maintained due to the
use of typed TGG rules at model level and their correct translation to Gremlin,
(iv) the visual nature of the model will allow business experts to understand and
support the development of the integration.

In particular, correctness and scalability will be evaluated experimentally.

Fig. 1. Presenting TGG and UML models for data integration in graph databases.

The remainder of the paper is organised as follows: Sect. 2 motivates the
problem by an integration scenario. Section 3 introduces the overall approach.
Model-level data integration using TGGs is discussed in Sect. 4. Section 5 defines
the mapping from TGGs to Gremlin while Sects. 6 and 7 present the evaluation
of the approach and related work respectively. Section 8 concludes the paper and
discusses future work.
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2 Application Scenario

The domain of business data provision is used as a running example throughout
paper. CompaniesHouse (CH) and CompanyCheck (CC) are two well-known
UK business data providers. Both are responsible for filing data of all limited
companies in the UK providing data on four million companies to be accessed
online or downloaded [1]. However, the data provided by both sources is generally
not consistent, differing in what data is provided per company but also in the
semantics of apparently shared fields. In general, data can be incomplete or
missing.

To mitigate these problems and benefit from the full extent of the data
provided, we would like to link corresponding records in both databases and
support mutual updates in both directions. More precisely, the requirements for
integration are as follows:

1 Bidirectional Integration: In this scenario data may be moved from CH to
CC or vice versa. In case either side are missing data, they should be updated
accordingly while retaining independent ownership.
2 Scalability: Data is provided for millions of companies, so scalability of the
integration process is important.
3 Visual Integration: Business data integration requires input by domain
experts. This should be supported by visualising the integration components
and rules.
4 Agile Integration: To be able to evolve our understanding of the integration
incrementally, we have to support partial integration and existing rules and
models should be easy to modify [16].
5 Heterogeneity: Both domains structure their data differently. Data repre-
senting the same objects are described using different names. Thus integration
should be able to map heterogeneous representations into a shared consolidated
structure.

3 Model Driven Approach to Data Integration

Our approach is based on data modelling and model transformation rules to be
compiled into GDB code for execution. The two levels are briefly discuss below.

3.1 Model Level

This layer describes the integration at a high level of abstraction by represent-
ing source data models using UML class diagrams. This provides a platform-
independent in terms of common modelling features such as classes, attributes,
associations, etc. Relations between source data models are described using TGG
rules, which can be used to link, synchronise and map data between the different
models [13,19]. TGG rules are created by Eclipse Modelling Framework (EMF)
and eMoflon [2,27]. In particular, eMoflon is a metamodelling tool for creating
and executing TGG rules.
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TGGs are used to create and maintain relations between source and target
elements [13,20]. Such relations can be used to update their constituents incre-
mentally thus supporting data evolution. Therefore, despite their origins in meta
modelling, TGGs can be used as a data integration and mapping language at the
application level. Model transformation using TGGs to support data integration
in GDBs has been suggested for these reasons. First, TGGs provide a solution to
link heterogeneous components, establishing correspondences between elements
that describe or share similar information, hence supporting requirement 5 .
They can copy and update such data if needed, e.g., to react incrementally to
changes on either side in the integration, supporting requirement 4 . Second,
TGGs are a visual query language for GDBs, meeting requirement 3 . Third,
TGGs support bidirectional transformations, meeting requirement 1 .

3.2 Implementation Level

UML models and TGG rules are mapped into noe4j property graphs and
Gremlin queries. This allows us to leave the execution to the GDB. UML mod-
els are mapped to neo4j using the NeoEMF framework [4]. The mapping from
TGGs to Gremlin is implemented using the Acceleo tool [24]. Data sources are
imported via CSV files, loaded to neo4j using the neo4j-shell commands [17].
Such commands are modified based on the model mapping using NeoEMF.

Due to the scalability of neo4j, its use together with Gremlin to execute
the integration helps us meet requirement 2 . In addition to the incremental
development of TGG rules, the flexibility of schemaless data in the GDB also
supports requirement 4 .

4 Model-Level Data Integration Using TGGs

Declarative TGG rules describe how two models are related, however, these
relations can be translated to perform batch transformation. The derived rules
are needed to copy data back and forth between sources. In addition, translation
of TGG can also be used to relate elements at different sources which describe
the same phenomena without moving data across. Such different translations
depend on the same TGG specification between the sources [13]. Therefore, we
derive three types of which are forward, backward, and consistency checking
rules (see [13]). However, due to lack of space we will only show an example of
forward transformation in Sect. 5.

Figure 2 shows the class diagrams for both domains, CompaniesHouse (CH)
in Fig. 2(a) and CompanyCheck (CC) in 2(b). CH contains the main Company
class as well as information such as the registered address (RegAddress) of the
company, Account, Managers, and Trading classes. In the CC domain most infor-
mation is similar in content but differently structured and named. This mismatch
needs to be resolved conceptually, using the declarative TGG rules to relate cor-
responding concepts, as well as operationally by deriving the relevant TGG data
transformation rules.
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Fig. 2. (a) CompaniesHouse model and (b) CompanyCheck model

Figure 3 presents six TGG rules. Rules are created using the TGG tool in
eMoflon. Rule 3(a) creates a pair of classes, CH and CC, without any precondi-
tions (i.e., an empty left-hand side). This type of rule refers to as an axiom, and
it is applicable before and independently of any other rule. Rule 3(b) relates the
Company and LimitedCompany classes. It requires the pattern created by 3(a)
as precondition (left-hand side). This is denoted by black elements while the
elements newly generated are shown in green. Rules 3(c), (d) and (f) are used to
create consistent pairs of Trading with Profile, RegAddress with Location, and
Manager with Director classes. They can all be applied independently since they
do not depend on each other but only on Rule 3(b).

In rule 3(e), the Account class is created and linked to the Profile class from
rule 3(d). The left-hand side includes the precondition pattern of 3(d) and the
class Profile. The right-hand side only adds the Account class from the source
domain and the AccountToProfile class from the correspondence domain. This
rule presents a good example of how backward transformation can be derived
from a TGG specification, E.g., a new element is created in one domain that
relates to an existing elements of the other domain.

5 Mapping TGGs to Graph Databases

GDBs are based on a simple graph model known as property graph. It is defined
by sets of nodes N and relationships R, attributed by key-value pairs known
as properties. The NeoEMF framework [4] has been used to map EMF objects
manipulated by TGG rules to corresponding neo4j nodes and edges.

We only map a subset of TGGs, which does not include all features such as
negative application conditions. Mapping derives directed (operational) TGG
rules for forward, backward and consistency transformation from the same
declarative TGG rules. The left-hand side of a TGG operational rule is imple-
mented using the pattern matching capability of Gremlin. If the Gremlin query
is successful, the graph will be updated according to mutation statements derived
from the right-hand side. Nodes and edges of a specific domain are created based
on the type of the operational rule from given context elements.
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Fig. 3. TGG rules of running example

The concepts of Gremlin and TGGs can be aligned to demonstrate the map-
ping of rules into queries. TGG concepts are categorised based on the types of
elements used in the transformation and their binding type, for instance objects
and links. There are three types of bindings of TGG elements within rules: (1)
check, (2) create, and (3) destroy [29]. The check type states a precondition of
the TGG rule, requiring objects and/or links to be present to apply the rule. The
create type is instructing objects or links to be created. In our mapping, we only
consider check and create bindings. According to each binding type, elements
and nodes are translated into the logic of Gremlin statements. Table 1 presents
the mapping of concepts between TGGs and Gremlin based on the binding types
of links and objects.

For illustration of the mapping, we focus on a forward transformation rule
derived from TGG rule depicted in 3(b) of Fig. 3. In such a rule, correspondence
and target elements are created from given source and context elements. Figure 4
shows the forward rule, whose left-hand side is denoted by black elements and
the new elements in the right-hand side are denoted by green elements. Our
mapping example only uses directed rules for forward and backward translation.
However, as discussed previously, from the same symmetric TGG productions
we can generate consistency checking translation rules.

We implemented the mapping using Acceleo, a general EMF-based tool to
generate text from models [24]. In our translation, we rely on the TGG meta-
model defined by eMoflon [29]. The metamodel is fed to the Acceleo genera-



Data Integration in Graph Databases: Model Based Approach 405

Table 1. Mapping of TGG rules to Gremlin

TGG
elements

GDB
elements

Semantics

TGG Gremlin expression

TGG
object

Neo4j
Vertex

Check only binding
(LHS)

- graph.v(VertexName) for single
vertex matching

- graph .V(VertexName).as(‘x’).out
(EdgeLabel).as(‘y’)

- graph .V(VertexName).outE
(EdgeLabel). inV(VertexName)

For multi-vertices matching

Create binding (RHS) graph.AddVertex(Properties)

TGG
link

Neo4j
Edge

Check only binding
(LHS)

- graph.e(EdgeId) For single edge
matching

- graph.v(VertexName).bothE

For multi-edges matching of a
specific vertex

Create binding (RHS) - graph.AddEdge(Properties)

Fig. 4. Compact representation of forward transformation rule derived from Fig. 3(b)
in Fig. 3

tor which uses metamodel elements based on designated templates to generate
Gremlin code.

Pattern Matching (LHS). This phase involves matching entities of the left-
hand side pattern graph with corresponding elements in the property graph.
That means, the pattern is interpreted as a query. Pattern matching is the most
expensive part of executing graph transformations [5]. One of the features of
Gremlin is to provide efficient techniques for complex pattern matching regard-
less of the size of the graph. Therefore, we use Gremlin to implement pattern
matching. For example, the left-hand side of the rule in Fig. 4 is encoded by the
Gremlin query in Listing 1.1, showing how context elements are retrieved and
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matched using out and as steps, and how the result is stored and returned in
the form of a table.

Listing 1.1. Gremlin query for LHS of forward rule in Fig. 4

t= new Table ( )
g . v ( ’ name ’ , chToCc ) . as ( ’ x ’ ) .

out ( t a r g e t ) . as ( ’ y ’ ) . t ab l e ( t ) . loop ( ’ x ’ )
=> [ x : v (5 ) , y : v ( 8 ) ]
g . v ( ’ name ’ , chToCc ) . as ( ’ x ’ ) .

out ( source ) . as ( ’ y ’ ) . t ab l e ( t ) . loop ( ’ x ’ )
=> [ x : v (5 ) , y : v ( 6 ) ]
g . v (name , c )
=> v (7 )

In the above Gremlin code we first find all target nodes of the outgoing target
and source edges from the chToCc node. The table step selects the 1st and 2nd
edge of the all paths that reach the nodes and inserts them into the table t as
rows. The loop step is used for recursive matching, i.e., if there are any multiply
connected nodes with the same link label. Finally, the query returns the node of
the source model c of type Company.

Graph Manipulation (RHS). This phase executes the creation and dele-
tion of nodes and edges of the target graph. We implement these operations
using Gremlin methods and statements. Data methods to update the graph are
implemented within a transactional block to ensure that each transformation
step is atomic [31]. Methods include graph.addVertex() and graph.addEdge()
for node and edge creation and graph.removeVertex, graph.removeEdge()
for node and edge deletion. However, for operational rules derived from TGGs,
deletion operations are not needed. Referring to our forward rule in Fig. 4, its
righ-hand side is implemented using the following Gremlin code using the query
defined in Listing 1.1.

Listing 1.2. Gremlin code for RHS of forward rule in Fig 4

1 graph . tx ( ) . onReadWrite ( Transact ion )
2 g . addVertex ( ’ name ’ , cToLc )
3 g . addVertex ( ’ name ’ , l c )
4 g . addEdge ( cToLc , c , source )
5 g . addEdge ( cToLc , l c , t a r g e t )
6 g . addEdge ( cc , l c , limitedCompanys )
7 graph . tx ( ) . commit ( )

The above code creates nodes cToLc in Line 2 and lc in line 3. Edges of
type source, target from correspondence to source and target nodes are created
in Lines 4 and 5. Line 6 shows the creation of a limitedCompanys edge required
for conformance to the CC class diagram.
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6 Experimental Evaluation

The queries generated by Acceleo from TGG rules in eMoflon are evaluated for
correctness and performance.

6.1 Correctness

To evaluate correctness of our approach, we need to ensure that the generated
Gremlin queries implement the same behaviour of TGGs. We generate test cases
based on the TGG specification, and map them to neo4j using the NeoEMF frame-
work [4]. Then, Gremlin queries are applied using the blueprint interface. TGG
transformations result in consistent pairs of source and target models. Based
on the direction of transformation, source or target model serves as test inputs
and transformation implemented by Gramlin is System Under Test (SUT). The
target model of the TGG transformation represents the expected output [34].
The test generator [34] is implemented in eMoflon and uses TGG specification
to generate valid and adequate test suits (pairs of test models and valid outputs
based on TGG rules). The tool automatically generates test cases either for all
TGG rules (large test cases) or individual TGG rules (small test cases). It is
based on a grammar-based generation approach and uses auxiliary functions to
support traversal strategy and stop criterion. It also passes the generated tests
to a component that evaluates the quality of test cases based on gathered cover-
age data from the TGG metamodel and applicable rules and produces a quality
report accordingly.

The generated test suit of each rule consists of five test cases. The stop
criterion is based on the size of the sample model. The minimum size of tests is
20 elements, and the maximum size is 7,000 elements. They cover the structural
features of the source model, as well as its classes, attributes and associations
w.r.t applicable TGG rules. The number of objects in each test case and the
selection of TGG rules are manually encoded before the generation. Then, we
generate the test cases for the complete transformation. The traversal strategy of
the applicable rules is parameterised based on the interdependency of the rules
to meet a certain application sequence, i.e. in our running example, we have
six rules (r(a), r(b), * r(c) * r(d) * r(e) * r(f)), such that r(a) is the axiom or
initial rule, and r(b) depends on the application of r(a). The * means that the
remaining rules can be randomly applied. We limited the number of applications
of the axiom rule to one to ensure that we have one root element for every test
graph. Each generated EMF object graph (test case) is mapped into a neo4j
graph [4].

Table 2 presents a summary of the generated test cases and the applications
of the rules (the elements of each rule). It is presented to demonstrate the quality
of generated test cases. Each test case is bounded in size, as shown in the first
row (numbers within brackets). The number of generated elements for each rule
out of the defined upper bound is presented for each test case. Note that the
test cases also cover the edges required by the TGG rules.
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Table 2. Summary of applications for each rule of generated test cases

Rules #Test1(20) #Test2(200) #Test3(1000) #Test4(3000) #Test5(7000)

r(a) 1/20 1/200 1/1000 1/3000 1/7000

r(b) 5/20 43/200 205/1000 602/3000 1358/7000

r(c) 4/20 42/200 189/1000 580/3000 1426/7000

r(d) 2/20 31/200 201/1000 611/3000 1398/7000

r(e) 4/20 42/200 197/1000 539/3000 1382/7000

r(f) 4/20 41/200 207/1000 613/3000 1435/7000

To compare the result of the execution of the queries with the expected
output based on the TGG specification we have to establish a graph isomorphism
between output graphs Gneo generated by Gremlin in neo4j with EMF graphs
Gemf generated by the original TGG rules in eMoflon.

In the initial mapping to the GDB, we maintain consistency of identifiers of
input model elements. This is ensured by running EMFCompare [30], a tool for
comparing two EMF models, to match corresponding elements, creating a partial
isomorphism that covers all elements retained from the given object graph. How-
ever, the newly created elements by Gremlin are not known to NeoEMF resource
which makes it impossible to use EMFCompare to complete the test.

In addition to manual testing for small test cases via visualising the graphs
using Gephi [3], a graph visualisation tool, we implemented the isomorphism
test after each transformation step using the igraph package, employing a stan-
dard graph isomorphism algorithm [6]. Igraph implements the VF2 isomorphism
algorithm in Python. The VF2 algorithm is a simple isomorphism check based
on tree search and backtracking [21].

This is done incrementally after each application of a query. A TGG model
transformation Gemf

∗−→ Gemf ′ breaks down into individual steps Gemf =
Gemf0

r1−→ . . .
rn−→ Gemfn = Gemf ′ with rules r1, . . . , rn.

The same structure can be identified in the neo4j transformation Gneo
∗−→

Gneo′ as Gneo = Gneo0
q1−→ . . .

qn−→ Gneon = Gneo′ with queries q1, . . . , qn derived
from the rules above.

In order to be correct, the execution should result in isomorphic graphs
Gneo′ ∼= Gemf ′. Based on the NeoEMF mapping we can assume Gneo

∼= Gemf .
Then, the isomorphism of Gemfi+1 and Gneoi+1 is obtained by the correspon-
dence of ri+1 and qi+1 from isomorphic graphs Gemfi and Gneoi . By induction
this ensures Gneo′ ∼= Gemf ′.

We follow an iterative process to update Acceleo templates for preserving the
behaviour of the TGG rules. We manually mutate the mapped inputs for some
of the test cases (e.g. by inverting the directions of some edges or by changing
the names of nodes) before the application of Gremlin, in which the application
fails during the matching pattern phase for respective queries posed against
the modified structure; therefore, no updates were made as we instructed our
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implemented GDB application. The reason for the mutation step is to ensure that
the modified graphs cannot be executed by the generated Gremlin. Therefore,
we produce invalid graphs as a part of the testing because the tool only generates
valid pairs of source and target models.

Both Gneo′ and Gemf ′ are incrementally sent to the igraph function, which
returns the isomorphism of the valid generated graphs (after attempts of cor-
rections) and the non-isomorphism for mutated graphs. To correct the errors
in the Acceleo, we relied on small test cases to visualise the graphs and com-
pare them manually because the igraph does not manifest the differences for the
given graphs. Most of the errors were Gremlin based, hence scripts were updated
without changing the main mapping rules. We run the function after each cor-
rection attempt until we ensured that the given (valid) graphs are isomorphic.
We complete our test by successfully covering all generated test cases.

6.2 Performance

We conducted an experiment to compare execution times of TGGs using eMoflon
and of the translated Gremlin queries using neo4j. Results show that the GDB
engine provides a highly scalable platform, executing our queries on large graphs.
Using the six rules discussed in Sect. 4 we execute a complete forward transfor-
mation from CH to CC. Source models of various size have been automatically
generated using model generators based on the TGG rules. These provide the
input EMF graphs Gemf which are mapped to neo4j using NeoEMF into property
graphs Gneo. Then, TGG rules are applied using eMoflon and Gremlin queries
are applied using neo4j and the times for both executions are measured. The
experiment has been conducted on Macintosh machine with a 2.5 GHz Intel Core
i7 processor and 16 GB 1600 MHz DDR3 RAM memory. The results show that
neo4j outperforms the execution using eMoflon, especially with larger graphs
of more than 100,000 elements. Figure 5 plots execution times in seconds.

In our application scenario discussed in Section 2, information of 200,000
companies requires one million data objects which have been executed in 180 s
which was the largest information that can be transformed using eMoflon using
our example.

CompaniesHouse provides data of approximately four million companies. For
this purpose, we execute the Gremlin queries alone to evaluate the scalability of
the approach w.r.t real-world examples. Memory configurations of neo4j were
modified to set the parameters of the heap size that is responsible for query
execution and caching transactions as per neo4j recommendations. Based on
the same hardware specification, the result shown in Fig. 6 indicates that the
approach scales up to transform information of 1.5 million companies, and can
be executed in 1388 s. Due to memory overhead on the virtual machine, an error
was thrown when transforming graphs consist of more than 8 million nodes.

To recap, the evaluation shows unsurprisingly that our approach achieves
better performance than current implementation of eMoflon due to the use of
GDB as the underlying storage and engine. Also, the approach can scale to large
data, beyond the ability of the current EMF-based transformation tools.
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Fig. 5. Execution times of eMoflon and Neo4j

Fig. 6. Stand alone execution of Neo4j

6.3 Threats to Validity

There are some features that might threaten the validity of experimental eval-
uation. We discuss them briefly as follows: The limited number of TGG rules
makes it difficult to generalise the conclusion. Only six TGG rules of a single
transformation are tested. There is no firm conclusion on the effect of TGG com-
plexity on execution time. e.g. there are other scenarios which require transfor-
mations where the individual rules may be large and complex. Although we only
demonstrated an example of forward transformation, this threat is mitigated via
maintaining non-functionality through code generation of backward transforma-
tion from the same specification. Thus, we rely on bidirectional behaviour of
TGGs in general rather than reducing complexity of the TGG design. We also
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rely on the fact of existence of similar integration examples especially in small
and medium size businesses.

7 Related Work

We distinguish between the use of non-relational databases as scalable solutions
for the implementation of MDE tools and as a scalable persistence layer for
data-driven applications.

In [9], the authors propose mappings of UML models to GDBs in two stages.
First, a model transformation is defined between the UML metamodel and the
graph metamodel. Second, a framework is designed to generate Java code that
can access the GDB. Our approach shares with this framework the concept
mapping from class diagrams to the property graph model. However, we define
a new mapping of TGG rules to native GDB code rather than access it by Java.

Mogwai [8] presents a lightweight model query language using the Object
Constraint Language (OCL), extending the NeoEMF [4] mapping. They trans-
lates OCL into Gremlin expressions and compute queries on GDB representa-
tions of models. The approach uses model-to-model transformation from OCL
to Gremlin. Instead, our approach uses model-to-text transformations based on
Acceleo and supports side effects arising from update operations of translated
TGG rules. Such implementation of Acceleo produces valid Gremlin queries
w.r.t TGG rule without the need to establish a complex metamodel for Gremlin
language.

In the second category, BXE2E [14] is a bidirectional approach to support
import and export of electronic medical records. The study focusses on defining
a mapping between the OSAR and E2E medical record systems based on embed-
ding TGG rules that relate both data models. The implementation of BXE2E
is based on Java code to support native operations of data transformation. To
reduce execution costs, the design of the TGG rules does not use pattern match-
ing, but encapsulates complex queries with lenses operations. Although this app-
roach exploits TGGs for data-driven applications, it works with a restricted
form of TGG rules which does not permit to use the full power of TGGs as a
declarative language. Moreover, TGG rules do not describe bidirectional data
integration for data-driven, schema-less applications.

Recent work [7] describes a model transformation engine based on NoSQL
databases. The essence of the approach is based on mappings of ATL transforma-
tion rules into the Gremlin query language via M2M transformations. The app-
roach defines mappings from the ATL metamodel into a subset of the Gremlin
domain metamodel, called Gremlin Traversal. Since the approach considers ATL
rules to accomplish the transformation, the approach is unidirectional. Moreover,
the approach does not directly contribute to building data-driven solutions or
data integration systems.

GRAPE [33] presents as scalable graph transformation engine based on
neo4j. It employs Coljure as domain-specific language for the textual syntax
of rewriting rules and GraphViz for rule visualisation. Unidirectional rule oper-
ations such as addition, deletion and matching operations are compiled into the
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Cypher query language. This compilation utilises the pattern matching capabil-
ity of Cypher on neo4j graphs. The engine provides persistence backtracking
facilities based on the property graph model and transaction features of neo4j.
Despite the fact that the transformation engine is built on top of neo4j, imper-
ative and unidirectional transformations are compiled into Cypher and do not
avoid vendor lock-in since Cypher runs only on neo4j.

In our approach, TGGs are formally translated to an agnostic GDB query
language to execute data operations for scalable performance. We compare our
approach with aforementioned related work in terms of the requirements in
Sect. 2. Agility is compared based on incremental development of TGGs to sup-
port evolving requirements. We also refer to the use of GDBs as a persistence
and computation engine. Table 3 shows a summary of the comparison.

Table 3. General comparison of relevant approaches based on discussed requirement
in Sect. 2

Approach Bidirectional GDB
support

Agility Visual
query

Heterogeneity
support

Mogwai ✗ ✓ ✗ ✗ ✗

UMLtoGraphDB ✗ ✓ ✗ ✓ ✗

Grape ✗ ✓ ✗ ✓ ✗

BXE2E ✓ ✗ ✓ ✓ ✗

ATL2Gremlin ✗ ✓ ✗ ✗ ✗

TGG2Gremlin ✓ ✓ ✓ ✓ ✓

8 Conclusion and Future Work

In this paper, we show a how graph databases and model-driven development
tools can work together to build data integration solutions. Concepts and tech-
niques of both technologies can lead to advantages at both design and execution
level. As future work, we plan to enhance our mapping to cover most features
and useful extensions of TGG such as negative application conditions in order to
provide more options for data integration designers. Multi-data sources integra-
tion will be investigated. This task involves extending the current specification
of TGGs to cope with multi-models. The bidirectionality of the approach is to be
extended to cover incremental and synchronisation features of TGGs. eMoflon
has already implemented parsing strategies that are built in its execution model.
We plan to study the mapping of these parsing strategies into neo4j to perform
the synchronisation.
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Abstract. Sequences of rule applications in high-level replacement sys-
tems are difficult to adapt. Often, replacing a rule application at the
beginning of a sequence, i.e., reverting a rule and applying another one
instead, is prevented by structure created via rule applications later on
in the sequence. A trivial solution would be to roll back all applications
and reapply them in a proper way. This, however, has the disadvantage
of being computationally expensive and, furthermore, may cause the loss
of information in the process. Moreover, using existing constructions to
compose the reversal of a rule with the application of another one, in
particular the concurrent and amalgamated rule constructions, does not
prevent the loss of information in case that the first rule deletes ele-
ments being recreated by the second one. To cope with both problems,
we introduce a new kind of rule composition through ‘short-cut rules’.
We present our new kind of rule composition for monotonic rules in
adhesive HLR systems, as they provide a well-established generalization
of graph-based transformation systems, and motivate it on the example
of Triple Graph Grammars, a declarative and rule-based bidirectional
transformation approach.

Keywords: Rule composition · Amalgamated rule
E-concurrent rule · Triple graph grammars

1 Introduction

High-level replacement (HLR) systems [2,3] are a useful generalization for trans-
forming various kinds of high-level structures, such as graphs, in a rule-based
manner. Transformation processes consist of sequences of rule applications.
These sequences effectively de-/construct and modify structures, yet, they also
implicitly create dependency relationships: an earlier rule application may be
the precondition for a later one. Often, these relationships prevent rule applica-
tions at the beginning of a sequence to be replaced by another one, as reverting
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the former would destruct preconditions used for transformations later in the
sequence. A trivial solution would be to roll back all applications that depend
on each other, until reaching the one that is to be replaced, and reapply them
in a proper way. However, rolling back and recreating these sequences has the
disadvantage of being computationally expensive and, furthermore, may cause
the loss of information in the process. Thus, it would be highly beneficial to
replace rule applications in a – preferably also rule-based – way that preserves
the remaining sequence. Existing approaches to rule composition, namely the
parallel, concurrent, and amalgamated rule constructions [1–3], are not apt to
deal with that kind of dependency.

Hence, we introduce a novel kind of rule composition through short-cut rules
whose applications serve as an alternative to possibly long chains of replacement
actions. A short-cut rule composes the reversal of a monotonic rule, i.e., of a rule
which only creates structure, with the application of a second one. Yet, doing
this, the short-cut rule identifies elements, deleted by reverting the first rule, with
elements, created by the second one, hereby preserving them. This preservation
allows for applications of short-cut rules even in situations where the reversal of
the first rule itself is impossible. We accomplish this by pair-wisely comparing
the rules of a given HLR system searching for common substructures. Conse-
quently, we exploit this information for creating short-cut rules that preserve
those common substructures. While the approach is formalized for monotonic
rules in HLR systems in general, we use Triple Graph Grammars (TGGs) [10]
as example for demonstration purposes. TGGs are an established formalism for
the declarative description of complex consistency relationships between two
modelling languages with graph-like representations. They are especially useful
for efficiently checking and restoring the consistency of a given pair of models
[9] or for generating possible combinations of consistent pairs of models; unfor-
tunately, they do not offer adequate means for the specification of arbitrarily
complex editing operations that directly transform one consistent pair of models
into another consistent pair of models. With our contribution we are able to solve
a common problem of TGGs by using our novel rule composition scheme to take
a set of TGG rules as input and produce a set of short-cut rules as output. The
rule composition scheme guarantees that any combination of inverse and normal
applications of TGG rules can be replaced by short-cut rules and may even be
executed in several situations where the inverse application is impossible. They
have the additional advantage of preserving some graph elements which other-
wise would be deleted by the corresponding inverse application of a TGG rule
and be recreated by the corresponding normal application of a TGG rule.

The main contributions of this paper are as follows: We illustrate the use of
short-cut rules in the context of TGGs (Sect. 2). We formalize the construction
of short-cut rules and prove the Short-Cut Theorem (Theorem 7), settling the
synthesizability of applications of monotonic rules into an application of a short-
cut rule and the analysability of applications of a short-cut rule into applications
of monotonic rules (Sect. 4). We formally compare our new kind of rule composi-
tion with existing ones (Sect. 5). Furthermore, in Sect. 3 we recall transformation
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rules and HLR systems. Section 6 concludes the paper and points to some future
work. For most of the proofs we refer to a long version of this paper [4].

2 Introductory Example

The construction and use of short-cut rules is motivated at the example of consis-
tency between a simplified class diagram and a custom documentation structure.
It is an excerpt of, and based on the example provided by Leblebici et al. [8],
yet, in a simplistic form to show the basic idea of our approach. Thus, it con-
tains no (propagation of) attributes, which will be covered in future work. Our
example is an excerpt from a consistency specification between a class diagram
and a documentation structure using Triple Graph Grammars (TGGs). It thus
consists a Package structure containing Classes on the one side and a Folder
structure containing Doc-Files on the other.

TGGs [10] are a declarative, rule-based bidirectional transformation app-
roach proposed by Schürr. Given two input meta-models, a TGG specification
defines consistency between instances of both. To this end, it consists of a finite
set of graph grammar rules that define how consistent pairs of both models
co-evolve. In order to relate elements from both sides, TGGs introduce a third
meta-model, which is referred to as the correspondence meta-model. It is used
to connect elements of both sides such that they become correlated and thus
traceable.

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

f :
Folder

p :
Package

f : 
Folder

p : 
Package

doc : 
Doc-File

c : 
Class

doc : 
Doc-File

CreateRoot-Rule:

CreateSub-Rule:

CreateLeaf-Rule:

Fig. 1. A TGG to co-evolve class diagram and documentation structure

Figure 1 shows the rule set for our example consisting of three TGG rules. The
first rule depicts the base TGG rule of the given rule set. Since its left-hand side
(LHS) L is empty, and thus no precondition exists, it can always and arbitrarily
often create a root Package together with a root Folder and a correspondence
link between both. Given the context from the LHS, the second rule creates
a Package and Folder hierarchy where every sub-folder has a Doc-File that
may contain the documentation of the corresponding Package. Finally, the third
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rootF : 
Folder

rootP: 
Package

f : 
Folder

p : 
Package

d : 
Doc-File

subF : 
Folder

subP : 
Package

subD : 
Doc-File

cDoc : 
Doc-File

c : 
Class

rootF : 
Folder

rootP: 
Package

f : 
Folder

p : 
Package

subF : 
Folder

subP : 
Package

subD : 
Doc-File

cDoc : 
Doc-File

c : 
Class

Fig. 2. Two examples for consistent triples

rule creates a Class together with a corresponding Doc-File analogously to the
Package and Folder of the previous rule.

Given these rules, one can create consistent graph triples, such as those shown
in Fig. 2. The exemplary triple on the left consists of a hierarchy of three Pack-
ages on the left side which are correlated to a similar hierarchy of Folders via
correspondence links. However, the Folders f and subF additionally contain their
own Doc-File. Thus, the triple was created via four consecutive applications of
TGG rules by applying first CreateRoot-Rule, followed by CreateSub-Rule twice
and finally CreateLeaf-Rule.

An important point about this transformation sequence is that it creates
entities for both the class diagram and the documentation structure simulta-
neously, but the resulting model does not contain any information about the
contents of the created elements. This means that, in practical applications, the
user may add data manually which is not correlated to the other side, like lay-
out information for the class diagram or textual descriptions as the contents of
Doc-Files. Due to this lack of correlation, one has to be careful on how to change
models in order to avoid unnecessary data loss. Given the model on the left side
of Fig. 2, a reasonable example for such a change would be the separation of the
first two hierarchy levels making the former sub-elements p and f to be root ele-
ments by effectively deleting the connection to their former root elements (and
the superfluous Doc-File) as is depicted on the right side of Fig. 2. However, no
rule of the current grammar is able to perform such a change and to modify the
triple by hand is a tedious and error-prone task that can create triples which do
not longer comply with the TGG language. To solve this issue and to create a
triple graph which contains Package p and Folder f as additional roots (and is
unmodified otherwise) we have to proceed as follows: We have to roll back all
rule applications except the first one (CreateRoot-Rule) and recreate the deleted
parts of the graph triple from scratch again – despite the fact that the intended
modification affects only a small portion of the graph triple. Executing this strat-
egy with large hierarchies has two major disadvantages. First, it is tedious and
might be computationally expensive for complex models. Second, one may loose
a large amount of manually added data.
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supP :
Package

f : 
Folder

p: 
Package

supF :
Folder

f : 
Folder

p: 
Package

supP :
Package

supF :
Folder

d : 
Doc

Root-To-Sub-
Short-Cut-Rule:

Sub-To-Root-
Short-Cut-Rule:

f : 
Folder

p: 
Package

supP :
Package

supF :
Folder

f : 
Folder

p: 
Package

supP :
Package

supF :
Folder

d : 
Doc

Fig. 3. Two examples for short-cut rules (interface K of rules given implicitly as L∩R)

However, when studying the TGG rules of Fig. 1 in detail, we see that
CreateRoot-Rule and CreateSub-Rule have common substructures, i.e., we can
find nodes and edges of the same type arranged in the same way in left- and
right-hand sides of both rules. In our example, such a common substructure of
their right-hand sides (RHS) R stems from the fact that both rules create a
Package and a Folder together with a correspondence link between those two
elements. It consists of the Folders f and Packages p but does not include the
Doc-File only contained by CreateSub-Rule.

Taking a closer look at our example in Fig. 2, one can see how this insight
propagates to the model level and that the only difference between a root-Folder
and a sub-Folder is that the latter one possesses an additional Doc-File and has
an incoming hierarchy edge. Hence, one might want to exploit this knowledge by
replacing a TGG rule application somewhere in a sequence of rule applications by
another similar rule application such that formerly created elements are possibly
preserved and the need to roll back sub-sequences does not arise. In the current
case this would mean to preserve all elements that are contained in the root
elements by changing the CreateSub-Rule-application to become a CreateRoot-
Rule-application. Therefore, we have to use the common parts of both rules to
create a new rule which directly transforms the left to the right graph triple
depicted in Fig. 2, which again is an element of the language of the TGG of
Fig. 1. Thus, the result of the application of such a ‘short-cut rule’ looks like the
composition of the effects of the reverse application of CreateSub-Rule followed
by the application of CreateRoot-Rule. Implicitly, the application of the short-
cut rule operates as a kind of meta-rule on sequences of TGG rule applications
as it replaces an occurrence of a rule with the occurrence of another rule in an
arbitrarily long sequence of rule applications. Figure 3 depicts two short-cut rules
that enable to replace CreateRoot-Rule with CreateSub-Rule and vice versa. In
our example, Sub-To-Root-Short-Cut-Rule replaces an occurrence of CreateSub-
Rule with an occurrence of CreateRoot-Rule as shown in Fig. 4. Note, however,
that short-cut rules extend the set of rules rather than replace it.

It, thus, preserves the consistency of the graph triple of Fig. 2 by selecting
the elements p and f as new root elements and by deleting the now superfluous
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Root-Rule 
Application

Root-Rule 
Application

Sub-Rule 
Application

Leaf-Rule 
Application

Sub-Rule 
Application

Sub-Rule 
Application

Leaf-Rule 
Application

Root-Rule 
Application

Sub-To-Root-
Short-Cut-Rule 

Application

Fig. 4. Example: application of short-cut rule

d element associated with f as well as the edges connecting rootP and rootF to
p and f, respectively. This singular application of one short-cut rule stands in
contrast to the deletion and recreation of the affected triple graph from scratch.

3 Preliminaries

Since adhesive categories [6] provide a suitable formal framework generalizing
many instances of rule-based rewriting of graph-like structures (including triple
graphs), we present our work in that setting. This section shortly recalls the
definition of rule-based transformation systems. For a short recapitulation of
adhesive categories and some of their properties and most of the proofs, we refer
to the long version of this paper [4].

Rules are a declarative way to define transformations of objects. They consist
of a left-hand side (LHS) L, a right-hand side (RHS) R, and a common subobject
K, the interface of the rule. In case of (typed) triple graphs, application of a rule
p to a graph G amounts to choosing an image of the rule’s LHS L in G, deleting
the image of L\K and adding a copy of R\K. This procedure can be formalized,
also in the more general setting of adhesive categories, by two pushouts. Rules
and their application semantics are defined as follows.

Definition 1 (Rules and adhesive HLR systems). Given an adhesive cate-
gory C, a rule (or production) p consists of three objects L,K, and R, called left-
hand side, interface (or gluing object), and right-hand side, and two monomor-

phisms l : K ↪→ L, r : K ↪→ R. Given a rule p = (L
l←−↩ K

r
↪−→ R), the inverse

rule p−1 is defined as p−1 = (R
r←−↩ K

l
↪−→ L). A rule p = (L

l←−↩ K
r

↪−→ R) is called
monotonic (or non-deleting) if l : K ↪→ L is an isomorphism. In that case we
just write r : L ↪→ R.

A subrule p′ of a rule p = (L
l←−↩ K

r
↪−→ R) is a

rule p′ = (L′ l′←−↩ K ′ r′
↪−→ R′) with monomorphisms

u : L′ ↪→ L, w : K ′ ↪→ K, v : R′ ↪→ R such that both
squares in the diagram to the right are pullbacks and
a pushout complement for u ◦ l′ exists.

L′ K ′ R′

L K R

l′ r′

wu v

l r

A common kernel rule p for rules p1 and p2 is a common subrule of both.
An adhesive high-level replacement system (or HLR system for short) con-

sists of an adhesive category C and a set of rules P in that category.
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Figure 3 and 1 depict rules in the category of triple graphs. The first are
monotonic, the second set includes a general rule. Together they form an HLR
system.

For the construction of short-cut rules, we are mainly interested in common
kernel rules of monotonic rules, which we will denote by k : L∩ ↪→ R∩. They
are necessarily monotonic themselves. Note that, in adhesive categories with
strict initial object, i.e., with initial object ∅ where each morphism into ∅ is an
isomorphism, the trivial common kernel rule id∅ : ∅ ↪→ ∅ is a common kernel
rule for any two monotonic rules r1 and r2. Such strict initial objects exist, e.g.,
in the categories of sets, graphs, and triple graphs.

The next definition determines the semantics of the application of a rule.

Definition 2 (Transformation).
In an adhesive category C, given a rule p =

(L
l←−↩ K

r
↪−→ R), an object G, and a monomor-

phism m : L ↪→ G, called match, a (direct)
transformation G ⇒p,m H from G to H via p
at match m is given by the diagram to the right
where both squares are pushouts.

L K R

G D H

l r

m n

A rule p is called applicable at match m if the first pushout square above
exists, i.e., if m ◦ l has a pushout complement. When applying a rule p to an
object G, the arising object D is called the context object of the transformation.

4 Construction Process

In this section, we formalize the construction of short-cut rules. As explained in
Sect. 2, a short-cut rule is a composition of a monotonic rule r2 with the inverse
rule r−1

1 of a monotonic rule r1. The composition is done in such a way that
the short-cut rule may preserve certain elements which an inverse application of
r1 would delete and an application of r2 would recreate. The extent to which
preservation of elements takes place is flexible, depending on a chosen common
kernel rule of the two rules. In the following, we first present the construction of a
short-cut rule given a common kernel rule. Afterwards, we prove the correctness
of the construction and discuss its merits.

We use common kernel rules to construct short-cut rules. Given a common
kernel rule k of monotonic rules r1 and r2, their short-cut rule r−1

1 �k r2 arises
by gluing r−1

1 and r2 along k. The LHS of k contains the information how to
glue r−1

1 and r2 to receive the LHS L and the RHS R of the short-cut rule
r−1
1 �k r2. I.e., r−1

1 �k r2 is constructed in such a way, that a match for it
consists of matches for r−1

1 and r2 which intersect in the LHS of k. The RHS
of k contains the information how to construct the interface K of the short-cut
rule r−1

1 �k r2. In case of (triple) graphs, elements of R∩ \ L∩ are included in
K, i.e., R∩ \ L∩ specifies exactly those elements that would have been deleted
by r−1

1 and recreated by r2. Hence, they are to be preserved when applying the
short-cut rule.



422 L. Fritsche et al.

Definition 3 (Short-cut rule). In an adhesive category C, given two mono-
tonic rules ri : Li ↪→ Ri, i = 1, 2, and a common kernel rule k : L∩ ↪→ R∩ for

them, the short-cut rule r−1
1 �k r2 := (L

l←−↩ K
r

↪−→ R) is computed by executing
the following steps:

1. The union L∪ of L1 and L2 along L∩ is computed as pushout (2) in Fig. 5.
2. The LHS L of the short-cut rule r−1

1 �k r2 is constructed as pushout (3a) in
Fig. 5.

3. The RHS R of the short-cut rule r−1
1 �k r2 is constructed as pushout (3b) in

Fig. 5.
4. The interface K of the short-cut rule r−1

1 �k r2 is constructed as pushout (4)
in Fig. 6.

5. Morphisms l : K → L and r : K → R are obtained by the universal property
of K.

Fig. 5. Construction of LHS and RHS of
short-cut rule r−1

1 �k r2

Fig. 6. Construction of interface K of
r−1
1 �k r2

Example 4. We illustrate the construction of short-cut rules with a detailed
example. First, CreateRoot-Rule is a (non-trivial) common kernel rule for
CreateSub-Rule and itself, as depicted in Fig. 7. Here, and in the following fig-
ures, morphisms are indicated by the names of the nodes; the mapping of edges
follows unambiguously. Hence, CreateRoot-Rule is embedded into itself via the
identity morphism and its RHS is mapped to nodes p of type Package and f of
type Folder in the RHS of CreateSub-Rule; the morphism between the LHSs is
the unique empty map.

Next, computation of L∪ and the LHS and RHS of the short-cut rule is done
by computing the three pushouts as depicted in Fig. 8. It is a concrete instanti-
ation of the lower part of the diagram depicted in Fig. 5. The two pushouts to
the left and in the middle are pushouts along the empty triple graph, i.e., the
respective objects are just copied next to each other. The pushout to the right
is a pushout along an isomorphism, hence the resulting morphism to the very
right is an isomorphism as well.
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supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

doc : 
Doc-File
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p : 
Package

f : 
Folder

p : 
Package

Fig. 7. CreateRoot-Rule as common kernel rule for CreateSub-Rule and itself
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f : 
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p : 
Package

doc : 
Doc-File

f : 
Folder

p : 
Package

supF : 
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Package
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supP : 
Package

f : 
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p : 
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supF : 
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supP : 
Package

f : 
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p : 
Package
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Doc-File

Fig. 8. Construction of LHS and RHS of a short-cut rule for CreateRoot-Rule and
CreateSub-Rule

Lastly, the interface of the short-cut rule is calculated as pushout as depicted
in Fig. 9. It is a concrete instantiation of the diagram depicted in Fig. 6. As
pushout along the empty triple graph, again, the resulting triple graph consists
of copies of the two triples at the lower left and the upper right. The monomor-
phisms from the interface into the LHS and RHS computed above, are, again,
indicated by the names of the nodes. Thus, the resulting short-cut rule is Root-
To-Sub-Short-Cut-Rule as displayed in Fig. 3 or in the upper part of Fig. 12.

The following lemma ensures that short-cut rules are rules in the sense of
Definition 1, i.e., that the morphisms from the interface to the LHS and RHS
are monomorphisms. (Such rules are also called linear rules.)

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

Fig. 9. Construction of the interface of a short-cut rule
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Lemma 5 (Linearity of short-cut rule). In an adhesive category C, given
two monotonic rules ri : Li ↪→ Ri, i = 1, 2, and a common kernel rule k : L∩ ↪→
R∩ for them, the induced morphisms l : K → L and r : K → R in the short-cut
rule r−1

1 �k r2 are monomorphisms.

The next definition relates common kernel rules for rules r1, r2 with sequences
of applications of r−1

1 and r2.

Definition 6 (Compatibility).
Given a sequence G1 ⇒r−1

1 ,m1

G ⇒r2,m2 G2 of rule applications,
where rules r1 and r2 are mono-
tonic, and a common kernel rule k :
L∩ ↪→ R∩ for these rules, then k is
called compatible with the applica-
tion sequence if the resulting square
(5) in the diagram to the right is a
pullback.

L∩

R1 L1 (5) L2 R2

G1 G G2

uL2uL1

r1

n1

r2

m2m1 n2

Compatibility as defined above ensures the existence of a unique morphism
h : L∪ ↪→ G such that n1 = h ◦ jL1 and m2 = h ◦ jL2 (compare pushout
square (2) in Fig. 5). Moreover, in adhesive categories h is a monomorphism.
Note that, given a sequence of rule applications, a compatible common kernel
rule can always be obtained by computing L∩ and the corresponding embeddings
into L1, L2 as pullback and setting R∩ = L∩ (with the embedding being the
identity).

The following Short-cut Theorem is our main result. Its synthesis part states
that an inverse application of a monotonic rule followed by an application of a
monotonic rule may indeed be replaced by an application of a short-cut rule. Its
analysis part states that the application of a short-cut rule may be split into the
reverse application of a monotonic rule followed by the application of a second
one if the reverse application of the first rule is possible at all. Its proof makes use
of a technical lemma, stating the equivalence of the existence of certain pushout
complements, whose statement we postpone towards the end of this section. If
analysis is possible then synthesis and analysis are inverse to each other.

Theorem 7 (Short-cut Theorem). In an adhesive category C, let ri : Li ↪→
Ri, i = 1, 2, be two monotonic rules, k : L∩ ↪→ R∩ a common kernel rule for
them, and r−1

1 �k r2 the corresponding short-cut rule. Then the following holds:

1. Synthesis: For each transformation sequence G1 ⇒r−1
1 ,m1

G ⇒r2,m2 G2

compatible with k there exists a direct transformation G1 ⇒r−1
1 �kr2,m′

1
G2

with context object G′ and a monomorphism g : G ↪→ G′, s. t. m′
1 ◦ jR1 = m1.

2. Conditional Analysis: Given a direct transformation G1 ⇒r−1
1 �kr2,m′

1
G2

with context object G′ such that a pushout complement for m1 ◦ r1 : L1 ↪→ G1

exists, where m1 = m′
1 ◦ jR1 , then there exists a transformation sequence

G1 ⇒r−1
1 ,m1

G ⇒r2,m2 G2 compatible with k. Moreover, a monomorphism
g : G ↪→ G′ exists.
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3. Correspondence: In those cases, where the pushout complement necessary
for the analysis construction exists, the synthesis and analysis constructions
are inverse to each other (up to isomorphism).

Proof. 1. Let a transformation G1 ⇒r−1
1 ,m1

G ⇒r2,m2 G2 be given. The outer
square in Fig. 10 is the pushout given by the application of r−1

1 with match m1

and (3a) is the pushout used to define L. Since the transformation sequence
is compatible with k, a unique monomorphism h : L∪ ↪→ G with n1 = h ◦ jL1

exists. Since (3a) is a pushout, m′
1 : L ↪→ G1 exists. In an adhesive category,

it is a monomorphism since G ↪→ G1 and m1 : R1 ↪→ G1 are monomorphisms.
By pushout decomposition, the resulting square (6)+(7a) is a pushout. Define
(6) again by taking the pushout. Like above, the resulting map G′ ↪→ G1 is a
monomorphism and square (7a) is a pushout by pushout decomposition.
Thus, rule r−1

1 �k r2 is applicable at G1 with match m′
1 and G′ is the con-

text object of the resulting transformation. Moreover, G embeds into G′ by
g : G ↪→ G′.
Comparing Fig. 11, an analogous argument shows that G2 is the pushout of
r : K ↪→ R and n′

1 : K ↪→ G′. Altogether, the resulting transformation,
applying r−1

1 �k r2 at match m′
1, consists of (7a) and (7b).

2. Let a direct transformation G1 ⇒r−1
1 �kr2,m′

1
G2 with context object G′ be

given. Defining m1 = m′
1 ◦ jR1 gives a match for r−1

1 in G1. By assump-
tion, the rule r−1

1 is applicable at that match, i.e., a pushout complement
for m1 ◦ r1 : L1 ↪→ G1 exists (compare again Fig. 10). Lemma 9 states that
the existence of such a pushout complement is equivalent to the existence of
a pushout complement for n′

1 ◦ zL∪ : L∪ ↪→ G′ (with arising objects being
isomorphic). Therefore, application of r−1

1 at match m1 results in an object
G with morphism g : G → G′ to the context object of the transformation
G1 ⇒r−1

1 �kr2,m′
1

G2. The morphism g is a monomorphism, since pushout (6)
is a pushout along the monomorphism zL∪ .
Define m2 := h ◦ jL2 : L2 ↪→ G as match for r2 in G (compare again Fig. 11).
Then, since (3b), (6), and (7b) are pushouts, the outer square is also a pushout,
and hence G2 is the result of applying r2 with match m2 at G. Moreover, by
definition of m2, the resulting transformation sequence is compatible to k.

3. If the analysis construction is possible, the synthesis and analysis constructions
are inverse to each other because pushout complements along monomorphisms
and pushouts are unique (up to isomorphism) in adhesive categories. ��
The following lemma states that, generally, the monomorphism g : G ↪→ G′,

arising in both the synthesis and the analysis construction above, is not an
isomorphism. Thus, in case of (triple) graphs, applying a short-cut rule instead
of the original rules actually preserves elements, namely the elements of G′ \ G.

Lemma 8 (Preservation). In an adhesive category C, let ri : Li ↪→ Ri, i =
1, 2, be two monotonic rules and k : L∩ ↪→ R∩ a common kernel rule for them.
Let g : G ↪→ G′ be a monomorphism arising by synthesis of a transforma-
tion sequence G1 ⇒r−1

1 ,m1
G ⇒r2,m2 G2 or by analysis of a transformation
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Fig. 10. Synthesis and analysis: forma-
tion of context object G′

Fig. 11. Synthesis and analysis: result
of rule application

G1 ⇒r−1
1 �kr2,m′

1
G2 (compare Theorem 7, especially Figs. 10 and 11). Then g is

an isomorphism iff k is.

Before concluding this section with a discussion of the value of short-cut
rules, we state the lemma used in the proof of Theorem 7.

Lemma 9 (Characterization of PO-complements). In any adhesive cate-
gory with initial pushouts, given a commutative diagram like Fig. 10 where (3a)
and (7a) are pushouts, a pushout complement object G for m1 ◦ r1 : L1 ↪→ G1 is
a pushout complement object for n′

1◦zL∪ : L∪ ↪→ G′ and vice versa. Particularly,
a pushout complement for m1 ◦ r1 : L1 ↪→ G1 exists iff a pushout complement
for n′

1 ◦ zL∪ : L∪ ↪→ G′ exists.

Benefits and Limitations of Short-Cut Rules. We motivated the use of short-cut
rules twofold. (1) That the application of short-cut rules generally preserves ele-
ments instead of deleting and recreating them, as stated in Lemma 8. (2) That
the application of a short-cut rule may actually amount to a ‘short-cut’ which
is due to the asymmetry of synthesis and analysis in the Short-Cut Theorem.
Applications of the short-cut rules Sub-To-Root-Short-Cut-Rule and Root-To-
Sub-Short-Cut-Rule (Fig. 3) with the obvious matches transform between the
two consistent triples depicted in Fig. 2. But in either case, dangling edges pre-
vent the analysis of the short-cut rule’s application into a sequence of two rule
applications. Thus, the subsequent applications of rules in the upper transforma-
tion chain in Fig. 4 would need to be revoked first, before a reverse application
of the respective second rule application is possible in the first place.

However, not every application of a short-cut rule, that may not be analyzed,
is a ‘short-cut’. For example, applying the short-cut rule Root-To-Sub-Short-Cut-
Rule to the left instance in Fig. 2, but with nodes rootP and subP of type Package
and rootF and subF of type Folder as match instead, creates additional container
edges for nodes subP and subF and a second Doc-File inside of node subF. This
instance is not an element of the language defined by the original TGG (Fig. 1).
This stems from the fact that the short-cut rule Root-To-Sub-Short-Cut-Rule
revokes an application of the rule CreateRoot, while the elements chosen to be
revoked by the match have actually been created using the rule CreateSub.
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A first possible strategy to resolve that issue is the development of application
conditions [5] for short-cut rules ensuring that a short-cut rule is only applica-
ble at matches on which it revokes the proper rule. For example, the short-cut
rule Root-To-Sub-Short-Cut-Rule could be equipped with an application condi-
tion forbidding the existence of incoming edges to nodes p and f, respectively.
Another possible strategy is the use of marked TGGs and trace information [7]
to the same end, i.e., to only allow those matches for a short-cut rule where the
rule that was actually used to create the structure is revoked. We plan to further
elaborate and compare between both strategies as future work. Our aim is to
arrive at short-cut rules whose application does not divert from the language
defined by the HLR system from which the short-cut rules were derived.

5 Related Work: Comparison to Other Formalisms
of Rule Composition

In the literature, there exist several formalisms for composition of rules, most
importantly parallel, concurrent, and amalgamated rules [1–3]. We relate our
construction of short-cut rules to these other formalisms. A common difference
to short-cut rules is that the parallel, concurrent, and amalgamated rule con-
structions are defined for general rules, whereas our construction of short-cut
rules is restricted to the case of monotonic rules for now. Therefore, in this
section, we first recall the relevant constructions generally and then relate these
to our construction of short-cut rules in the special case of monotonic rules.

The parallel rule of two rules combines their respective actions into one rule.
Two independent direct transformations arising by applications of these rules
may alternatively be replaced by an application of their parallel rule [2].

Definition 10 (Parallel rule). Given an adhesive category C with binary

coproducts, the parallel rule p1 +p2 of two rules pi = (Li
li←−↩ Ki

ri
↪−→ Ri), i = 1, 2,

is defined by p1+p2 = (L1+L2
l1+l2←−−−↩ K1+K2

r1+r2
↪−−−→ R1+R2), where + denotes

the coproduct or the induced morphism, respectively.

In categories with strict initial object (explained in Sect. 3) short-cut rules along
the trivial common kernel rule are the same as parallel rules. This is, e.g., the
case in the category of (triple) graphs, where the empty (triple) graph is the
(only) strict initial object.

Proposition 11 (Relation to parallel rule). Let two monotonic rules ri :
Li ↪→ Ri, i = 1, 2, in an adhesive category C with strict initial object ∅ be given.
Then, for the trivial common kernel rule id∅ : ∅ ↪→ ∅, the short-cut and the
parallel rule coincide, i.e., r−1

1 + r2 = r−1
1 �id∅ r2.

Like the parallel rule, a so-called E-concurrent rule combines the action of
two rule applications into the application of one rule. But here, the rule applica-
tions may be sequentially dependent [2]. An E-dependency relation encodes this
possible dependency. The definition of E-dependency relations and E-concurrent
rules assumes a given class E of pairs of morphisms with the same codomain.
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Definition 12 (E-dependency relation and E-concurrent rule). Given
two rules pi = (Li

li←− Ki
ri−→ Ri), i = 1, 2, an object E with morphisms

e1 : R1 → E and e2 : L2 → E is an E-dependency relation for p1 and p2 if
(e1, e2) ∈ E and the pushout complements (8a) and (8a) over K1

r1−→ R1
e1−→ E

and K2
l2−→ L2

e2−→ E as depicted below exist.
Given an E-dependency relation (e1, e2) ∈ E for rules p1, p2, the E-

concurrent rule p1 ∗E p2 is defined by p1 ∗E p2 := (L l◦k1←−−− K
r◦k2−−−→ R) as

shown below, where (9a) and (9b) are pushouts and (10) is a pullback.

L1 K1 R1 L2 K2 R2

(9a) (8a) (8b) (9a)

L C1 E C2 R

(10)

K

l1 r1

e1 e2

l2 r2

l r

k1 k2

The amalgamated rule combines the actions of two, maybe parallel depen-
dent, rule applications into one rule [1,3].

Definition 13 (Amalgamated rule).

Given a common subrule p = (L
l←−↩

K
r

↪−→ R) of rules pi = (Li
li←−↩ Ki

ri
↪−→

Ri), i = 1, 2, the amalgamated rule

p1 ⊕p p2 = (L′ l′←−↩ K ′ r′
↪−→ R′) is

constructed by taking the three pushouts
depicted to the right, where morphisms
l′, r′ are given by the universal property
of pushout object K ′.

L K R

L1 K1 R1

L2 K2 R2

L′ K ′ R′

l r

l2 r2

l1 r1

l′ r′

We now relate short-cut rules to E-concurrent and amalgamated rules of
rules, where the first rule only deletes and the second rule only creates. Further,
we take E to be the class of pairs of morphisms which are jointly epimorphic
and where both morphisms are monomorphisms, i.e., the following statements
for concurrent rules hold under that assumption. To begin, both concurrent and
amalgamated rules “degenerate” in that setting. They are merely constructed
as sums over constant rules.

Lemma 14 (Degeneration). Let two monotonic rules ri : Li ↪→
Ri, i = 1, 2, in an adhesive category C be given. Then the classes of E-
concurrent rules and amalgamated rules for r−1

1 and r2 coincide. In par-
ticular, they both coincide with C :=

{
r−1
1 ⊕p r2 | p = (X1

x1←−↩ X
x2

↪−→
X2), x1, x2 isomorphisms, and p common subrule of r1, r2

}
, i.e., the class of

rules amalgamated along a common constant subrule of r−1
1 and r2.
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As a consequence of the above lemma, in our context every E-concurrent
or amalgamated rule can be constructed as a short-cut rule. On the contrary,
concrete examples show that short-cut rules exist which cannot be constructed
as E-concurrent or amalgamated rule (and hence neither as parallel rule).

Proposition 15 (Subsumption). Let two monotonic rules ri : Li ↪→ Ri, i =
1, 2, in an adhesive category C be given. Then every E-concurrent or amalga-
mated rule for r−1

1 and r2 coincides with a short-cut rule for them, but generally
not the other way around, i.e., generally the class C of E-concurrent and amal-
gamated rules for r−1

1 and r2 (Lemma 14) is properly contained in the class
C ′ := {r−1

1 �k r2 | k : L∩ ↪→ R∩ is a common kernel rule for r1, r2} of short-cut
rules for r−1

1 and r2.

→ →Root-To-Sub-
Short-Cut-Rule:

Parallel Rule:
E-Concurrent Rule:
Amalgamted Rule:

f : 
Folder

p: 
Package

supP :
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supF :
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d : 
Doc

f : 
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p : 
Package

supP :
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supF :
Folder

→ → f* : 
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p* : 
Package

supP :
Package

supF :
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d : 
Doc

f : 
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p : 
Package

supP :
Package

supF :
Folder

f : 
Folder

p : 
Package

supP :
Package

supF :
Folder

supP :
Package

supF :
Folder

Fig. 12. Relating short-cut rule to other formalisms of rule composition

Idea of Proof. To show the containment relationship, it suffices to check that
r−1
1 ⊕p r2 = r−1

1 �p r2 for a common constant subrule p of r−1
1 and r2 (in

particular, p is a common kernel rule for r1 and r2).

As stated in Example 4, Root-To-Sub-Short-Cut-Rule is the short-cut rule
for the inverse rule of CreateRoot-Rule and CreateSub-Rule along CreateRoot-
Rule as common kernel rule. Their parallel rule and the only possibility for an
amalgamated or E-concurrent rule is the second rule depicted in Fig. 12, which
differs from the short-cut rule in its interface graph. ��

6 Conclusion

In this paper, we formally introduced short-cut rules for monotonic rules in
adhesive HLR systems, a novel kind of rule composition. We proved that short-
cut rules preserve information instead of deleting elements and recreating them
again, when revoking a transformation and applying another one instead. Addi-
tionally, we gave examples using a TGG where applying short-cut rules spares us
rolling back whole chains of transformations, thus providing ‘short-cuts’ when
revising those. Moreover, we proved short-cut rules to differ from the already
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established formalizations for composition of rules, i.e., the parallel, concurrent,
and amalgamated rules.

Besides developing language-preserving short-cut rules (as already discussed
at the end of Sect. 4), we plan to develop a construction of short-cut rules for
general rules, also, and advance the theory of short-cut rules by respecting pos-
sible application conditions of the involved rules. On the practical side, we plan
to operationalize short-cut rules stemming from TGGs to enhance model syn-
chronization.

Acknowledgments. This work was partially funded by the German Research Foun-
dation (DFG), project “Triple Graph Grammars (TGG) 2.0”.
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8. Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-amalgamated triple
graph grammars: formal foundation and application to visual language translation.
J. Vis. Lang. Comput. 42, 99–121 (2017). https://doi.org/10.1016/j.jvlc.2016.03.
001
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Abstract. Model repair is an essential topic in model-driven engineer-
ing. We consider the problem of graph repair: Given a graph constraint,
we try to construct a graph program, such that the application to any
graph yields a graph satisfying the graph constraint. We show the exis-
tence of terminating repair programs for a number of satisfiable con-
straints.

1 Introduction

In model-driven software engineering the primary artifacts are models, which
have to be consistent wrt. a set of constraints (see e.g. [EEGH15]). To increase
the productivity of software development, it is necessary to automatically detect
and resolve inconsistencies arising during the development process, called model
repair (see, e.g. [NEF03,MGC13,NKR17]). Since models can be represented as
graph-like structures [BET12], in this paper, we consider the problem of graph
repair : Given a graph constraint, we try to construct a graph program, called
repair program, such that the application to any graph yields a graph satisfying
the graph constraint.

Repair problem

Given: A graph constraint d.
Task: Find a graph program P : ∀G ⇒P H. H |= d.

constraint d program
construction

program P
∀G ⇒P H.H |= d

More specifically, we look for repair programs that are terminating and maxi-
mally preserving, meaning that an input graph is preserved as long as there is
no requirement for non-existence of items.

Our general aim is to construct repair programs for all satisfiable condi-
tions. In this paper, we show that there are terminating repair programs for a
large class of satisfiable conditions (without conjunctions and disjunctions), for

This work is partly supported by the German Research Foundation (DFG), Grants
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conjunctions d1 ∧ d2 provided that there are terminating repair programs for
the subconditions and one program preserves the other constraint, and for dis-
junctions d1 ∨ d2 provided that there are terminating repair program for some
subcondition.

The structure of the paper is as follows. In Sect. 2, we review the definitions
of graphs, graph conditions, and graph programs. In Sect. 3, we present repair
programs for “proper” conditions, i.e., conditions with alternating quantifiers
ending with true or of the form ∃ (A, � C), without conjunctions and disjunc-
tions. In Sect. 4, we collect some results for the conjunction and disjunction of
constraints. In Sect. 5, we present some related concepts. In Sect. 6, we give a
conclusion and mention some further work.

2 Preliminaries

In the following, we recall the definitions of directed, labelled graphs, graph
conditions, rules, and graph programs [EEPT06,HP09].

A directed, labelled graph consists of a set of nodes and a set of edges where
each edge is equipped with a source and a target node and where each node and
edge is equipped with a label.

Definition 1 (graphs & morphisms). A (directed, labelled) graph (over a
label alphabet L) is a system G = (VG,EG, sG, tG, lV,G, lE,G) where VG and
EG are finite sets of nodes (or vertices) and edges, sG, tG : EG → VG are
total functions assigning source and target to each edge, and lV,G : VG → L,
lE,G : EG → L are labeling functions. If VG = ∅, then G is the empty graph,
denoted by ∅. A graph is unlabelled if the label alphabet is a singleton. Given
graphs G and H, a (graph) morphism g : G → H consists of total functions
gV : VG → VH and gE : EG → EH that preserve sources, targets, and labels, that
is, gV ◦ sG = sH ◦ gE, gV ◦ tG = tH ◦ gE, lV,G = lV,H ◦ gV, lE,G = lE,H ◦ gE.
The morphism g is injective (surjective) if gV and gE are injective (surjective),
and an isomorphism if it is injective and surjective. In the latter case, G and H
are isomorphic, which is denoted by G ∼= H. An injective morphism g : G ↪→ H
is an inclusion morphism if gV(v) = v and gE(e) = e for all v ∈ VG and all
e ∈ EG.

Graph conditions are nested constructs, which can be represented as trees of
morphisms equipped with quantifiers and Boolean connectives. Graph conditions
and first-order graph formulas are expressively equivalent [HP09].

Definition 2 (graph conditions). A (graph) condition over a graph P is of
the form (a) true or (b) ∃(a, c) where a : P ↪→ C is a proper inclusion morphism1

and c is a condition over C. For conditions c, ci (i ∈ I for some finite index set I)
over P , ¬c and ∧i∈Ici are conditions over P . Conditions over the empty graph ∅
are called constraints. In the context of rules, conditions are called application
conditions.
1 Without loss of generality, we may assume that the conditions are proper, i.e., for

all inclusion morphisms a : P ↪→ C in the condition, P is a proper subgraph of C.
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Graph conditions may be written in a more compact form: ∃ a abbrevi-
ates ∃ (a, true), false abbreviates ¬true and ∀(a, c) abbreviates � (a,¬c). The
expressions ∨i∈Ici and c ⇒ c′ are defined as usual. For an inclusion morphism
a : P ↪→ C in a condition, we just depict the codomain C, if the domain P can
be unambiguously inferred. Conditions of the form ∃ C and � C are positive and
negative, respectively. Conditions of the form ∀(A,∃ C) are ∀∃ -conditions.

Definition 3 (semantics). Any injective morphism p : P ↪→ G satisfies true.
P

G

C,a

p q
=

c

|=
)∃ (An injective morphism p satisfies ∃ (a, c) with

a : P ↪→ C if there exists an injective morphism
q : C ↪→ G such that q ◦ a = p and q satisfies
c.

An injective morphism p satisfies ¬c if p does not satisfy c, and p satisfies
∧i∈Ici if p satisfies each ci (i ∈ I). We write p |= c if p satisfies the condition c
(over P ). A graph G satisfies a constraint c, G |= c, if the morphism p : ∅ ↪→ G
satisfies c. �c� denotes the class of all graphs satisfying c. A constraint c is
satisfiable if there is a graph G that satisfies c.

Two conditions c and c′ over P are equivalent, denoted by c ≡ c′, if for all
graphs G and all injective morphisms p : P ↪→ G, p |= c iff p |= c′. A condition
c implies a condition c′, denoted by c ⇒ c′, if for all graphs and all injective
morphisms p : P ↪→ G, p |= c implies p |= c′.

Definition 4 (conditions with alternating quantifiers). Conditions of the
form Q(A1,Q(A2,Q(A3, . . .))) with Q ∈ {∀,∃ }, ∀ = ∃ , ∃ = ∀ ending with true
or false are conditions with alternating quantifiers. A condition with alternating
quantifiers ending with true is pure and proper if it is pure or of the form
∃ (A, � C).

Fact 1 (alternating quantifiers). For every condition (without conjunctions
and disjunctions), an equivalent condition with alternating quantifiers can be
constructed.

Proof. Given a condition d, by a normal form result, an equivalent condition
d′ in normal form can be constructed. Applying the rule � (a,¬c) ≡ ∀(a,∃ c)
as long as possible to d′, yields an equivalent condition with alternating
quantifiers. �
Fact 2. Proper conditions are satisfiable.

Proof. A proper condition is true, ends with a condition of the form
∃ (x, true) ≡ ∃x or ∀(x, true) ≡ true, or is of the form ∃ (A, � C). Thus, it
is satisfiable. �
Rules are specified by a pair of inclusion morphisms. For restricting the appli-
cability of rules, the rules are equipped with a left application condition. Such
a rule is applicable with respect to an injective “match” morphism from the
left-hand side of the rule to a graph, if, and only if, the underlying plain rule is
applicable and the match morphism satisfies the left application condition.
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Definition 5 (rules and transformations). A rule � = 〈p, ac〉 consists of a
L K R

DG H

g d h(1) (2)

ac

=|plain rule p = 〈L ←↩ K ↪→ R〉 with inclusion
morphisms K ↪→ L and K ↪→ R and an
application condition ac over L. It is increasing
if L ∼= K and decreasing or deleting if L ⊃ K. A rule
〈p, true〉 is abbreviated by p.

A direct transformation from a graph G to a graph H applying rule � at
an injective morphism g consists of two pushouts2 (1) and (2) as below where
g |= ac.

Notation. A rule 〈L ←↩ K ↪→ R〉 sometimes is denoted by L ⇒ R where
indexes in L and R refer to the corresponding nodes.

Graph programs are made of sets of rules with application conditions, sequential
composition, the if-then-else statement, and as-long-as possible iteration. The
presentation is based on [PP12].

Definition 6 (graph programs). (Graph) Programs are defined inductively:
Every finite rule set R is a program. Given a condition c and programs P and
Q, then 〈P ;Q〉, P ↓, and if c then P else Q are programs. The construct Skip
denotes the rule set with empty rule 〈∅ ←↩ ∅ ↪→ ∅〉, � abbreviates the rule set
{�}, and if c then P abbreviates if c then P else Skip.

The semantics is given in the style of structural operational semantics. Inference
rules inductively define a small-step transition relation → on configurations.

Definition 7 (semantics). A configuration is a tuple 〈P,G〉 of a program P
and a graph G (unfinished computation) or a graph H (finished computation).
The figure below shows the inference rule for the core constructs3.

[Call1]
G ⇒R H

〈R, G〉 → H
[Call2]

G �⇒R
〈R, G〉 → fail

[Seq1]
〈P,G〉 → 〈P ′,H〉

〈〈P ;Q〉, G〉 → 〈〈P ′;Q〉,H〉 [Seq2]
〈P,G〉 → H

〈〈P ;Q〉, G〉 → 〈Q, H〉

[Seq3]
〈P,G〉 → fail

〈〈P ;Q〉, G〉 → fail

[If1]
〈c,G〉 → G

〈if c then P else Q,G〉→〈P,G 〉 [If2]
c finitely fails on G

〈if c then P else Q,G〉→〈Q,G 〉

[Alap1]
〈P,G〉 →+ H

〈P↓, G〉 → 〈P↓,H〉 [Alap2]
P finitely fails on G

〈P↓, G〉 → G

A command sequence P finitely fails on a graph G if (1) there does not
exist an infinite sequence 〈P,G〉 → 〈P1, G1〉 → . . . and (2) for each terminal4

2 For definition & existence of pushouts in the category of graphs see e.g. [EEPT06].
3 c stands for the empty rule with the application condition c. →+denotes the transi-

tive closure of →.
4 A configuration γ is terminal if there is no configuration δ such that γ → δ.
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configuration γ such that 〈P,G〉 ⇒∗ γ, γ = fail. For 〈P,G〉 →∗ H, we also
write G ⇒P H. Two programs P, P ′ are equivalent, denoted P ≡ P ′, if for all
transformations G ⇒P H, there is a transformation G ⇒P ′ H and vice versa.
A program P is terminating if the relation → is terminating.

Conditions can be “shifted” over morphisms and rules.

Lemma 1 (Shift, Left, Pres). There are constructions Shift, Left, and Pres such
that the following holds. For each condition d over P and injective morphisms
b : P ↪→ R,n : R ↪→ H, n ◦ b |= d ⇐⇒ n |= Shift(b, d). For each rule p =
〈L ←↩ K ↪→ R〉 and each condition ac over R, for each G ⇒p,g,h H, g |=
Left(p, ac) ⇐⇒ h |= ac. For each rule � and each constraint c, a condition
ac = Pres(�, c) can be constructed such that for all G ⇒〈�,ac〉 H, G |= c implies
H |= c.

Construction 1. The Construction is as follows5,6.

P

C

R

R′
a a′(0)

b

b′

c

Shift(b, true) := true.
Shift(b,∃ (a, d)) :=

∨
(a′,b′)∈F ∃ (a′,Shift(b′, d)) where

F = {(a′, b′) | b′ ◦ a = a′ ◦ b, a′, b′ inj, (a′, b′) jointly surjective}
Shift(b,¬d) := ¬Shift(b, d), Shift(b,∧i∈Idi) := ∧i∈IShift(b, di).

R K L

K ′R′ L′
a a′(1) (2)

ac

Left(p, true) := true.
Left(p,∃ (a, ac)) := ∃ (a′,Left(p′, ac)) if p−1 is applicable
w.r.t. the morphism a, p′ := 〈L′ ←↩ K ′ ↪→ R′〉 is the derived
rule, and false, otherwise.
Left(p,¬ac) := ¬Left(p, ac), Left(p,∧i∈Iaci) :=
∧i∈ILeft(p, aci).

Pres(�, c) := Shift(∅ ↪→ L, c) ⇒ Left(�,Shift(∅ ↪→ R, c).

3 From Graph Conditions to Repair Programs

In this section, we construct terminating repair programs for proper conditions
with alternating quantifiers.

A repair program for a constraint is a graph program with the property that
any application to a graph yields a graph satisfying the constraint. More specific,
we look for maximally preserving repair programs where items are preserved
whenever possible (A formal definition can be found in [HS18]).

5 A pair (a′, b′) is jointly surjective if for each x ∈ R′ there is a preimage y ∈ R with
a′(y) = x or z ∈ C with b′(z) = x.

6 For a rule p = 〈L ←↩ K ↪→ R〉, p−1 = 〈R ←↩ K ↪→ L〉 denotes the inverse rule. For
L′ ⇒p R′ with intermediate graph K′, 〈L′ ←↩ K′ ↪→ R′〉 is the derived rule.
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Definition 8 (repair programs). A repair program for a constraint d is a
graph program P such that, for all transformations G ⇒P H, H |= d. A repair
program for a condition ac over A is a graph program P such that, for all
transformations GA ⇒PA

HA, HA |= acA.

The construction of the repair programs is based on the construction for the basic
conditions ∃ (A ↪→ C) and � (A ↪→ C). Given an inclusion morphism a : A ↪→ C,
we construct rule sets Ra, and Sa. The rules in Ra are increasing and of the
form B ⇒ C where A ⊆ B ⊂ C and an application condition requiring that
no larger subgraph B′ of C occurs and the shifted condition � a is satisfied. By
the application condition, each rule can only be applied iff the constraint is not
satisfied and no other rule whose left-hand side includes B and is larger can be
applied. The rules in Sa are decreasing and of the form C ⇒ B where A ⊆ B ⊂ C
such that, if the number of edges in C is larger than the one in A, they delete
one edge and no node, and delete a node, otherwise. By B ⊂ C, both rule sets
do not contain identical rules.

Construction 2. For a proper inclusion morphism a : A ↪→ C, let

Ra = {〈B ⇒ C, ac ∧ acB〉 | A ⊆ B ⊂ C}
Sa = {〈C ⇒ B〉 | C ⊃ B ⊇ A and (*)}

where ac = Shift(A ↪→ B, � a), acB =
∧

B′ � B′,
∧

B′ ranges over B′ with B ⊂
B′ ⊆ C, and (*) if |EC | > |EB | then |VC | = |VB |, |EC | = |EB | + 1 else |VC | =
|VB | + 1.

Example 1. Consider the constraint ∃ a with a : ◦
1

↪→ ◦
1

◦ . The rule set Ra

is as follows:

Ra =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1 = 〈 ◦
1

⇒ ◦
1

◦ , � ◦ ◦ 〉
�2 = 〈 ◦

1
◦
2

⇒ ◦
1

◦
2

, � ◦
1

◦
2

∧ � ◦
1

◦
2

∧ � ◦
1

◦ ◦
2

〉
�3 = 〈 ◦

1
◦
2

⇒ ◦
1

◦
2

, � ◦
1

◦
2

∧ � ◦ ◦
1

◦
2

〉
�4 = 〈 ◦

1
◦
2

⇒ ◦
1

◦
2

, � ◦
1

◦
2

∧ � ◦
1

◦
2

◦ 〉
The first rule requires a node and attaches a 2-cycle, i.e., two edges in opposite
direction, provided that there do not exist two nodes. The second rule requires
two nodes and attaches a 2-cycle provided there is no edge from the image of
node 1 to the image of node 2, no edge from the image of 2 to the image of 1,
no 2-cycle at the image of node 1. The third and forth rule are similar. The rule
set Ra is used, e.g., for the repair program of the constraint ∀( ◦ ,∃ ◦ ◦ ) (see
Construction 3).

Example 2. For the condition � a with a : ◦ ↪→ ◦ ◦ , Sa = { ◦
1

◦
2

⇒
◦
1

◦
2

}. For the constraint � a′ with a′ = ∅ ↪→ ◦ ◦ , Sa = { ◦
1

◦ ⇒ ◦
1

}.

For existential constraints ∃ (A, c), we have the idea of marking: we select
or mark an occurrence of A, apply the marked program for the subcondition c,
and, finally, unmark the occurrence.
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Definition 9 (marked version). Let G be a graph and g : A ↪→ G be an
injective morphism. Then GA denotes the A-marked version of G, i.e., the graph
in which all items in the subgraph g(A) ⊆ G are additionally labelled by the
name of the item. For an injective morphism A ↪→ K and a rule � = 〈L ←↩
K ↪→ R, ac〉, �A = 〈LA ←↩ KA ↪→ RA, acA〉 is the marked rule where acA

denotes the marked application condition where the subgraph A is marked in
all components. For a rule set R and a graph A, RA = {�A | � ∈ R}. For
programs P,Q, conditions c, and a graph A, 〈P ;Q〉A = 〈PA;QA〉, P ↓A= PA↓,
and (if c then P else Q)A = if cA then PA else QA.

Theorem 1 (Repair). For proper conditions, a terminating repair program
can be constructed.

Construction 3. For a proper condition d over A, the program Pd for d is
constructed inductively as follows.

(1) For d = true, Pd = Skip.
(2) For d = ∃ a, Pd = if � a then Ra (Ra as in Construction 2).
(3) For d = � a, Pd = S ′

a ↓ (Sa as in Construction 2).
(4) For d = ∃ (a, c), Pd = 〈P∃ a; SelectC ; (Pc)C ; UnselectC〉.
(5) For d = ∀(a, c), Pd = 〈SelectVioC ; (Pc)C ; UnselectC〉 ↓
where a : A ↪→ C and c is a condition over C, SelectC = 〈CA ⇒ CC〉,
SelectVioC = 〈SelectC ,¬ cA〉, Pc is a repair program for the condition c,
and UnselectC is the inverse of SelectC . S ′

a = {�dg | � ∈ Sa} (see below).

Remark. In the double-pushout approach, the dangling condition for a rule
� = 〈L ⇒ R〉 and an injective morphism g : L ↪→ G requires: “No edge in G−g(L)
is incident to a node in g(L−K)”. The dangling condition can be expressed as
negative application condition dg =

∧
L′∈L � L′ where L denotes the set of all

graphs obtained from the graph L by adding an outgoing edge, an incoming
edge or a loop. The program �dg = 〈SelectL; Prog(dg); �; UnselectR〉 selects
an occurrence of L, removes the dangling edges by the repair program of dg,
applies the rule �, and unselects R. In this way, one can simulate the single-
pushout approach [Löw93] for rules with injective matching.

Fact 3. For edge-increasing morphisms7 a, Sa ≡ S ′
a.

Example 3. For the condition d = ∃ a with a : ◦
1

↪→ ◦
1

◦ , Pd =
if � a then Ra is a repair program with Ra as in Example 1. For d = � a with
a : ∅ ↪→ ◦ ◦ , Pd = S ′

a ↓ with Sa = { ◦
1

◦ ⇒ ◦
1

} is a repair program for d. The
program selects an occurrence, deletes the dangling edges, and applies the rule
of Sa, as long as possible. For the constraint d = ∃ ( ◦

1
, � ◦

1
◦ ) meaning there

exists a node without 2-cycle, Pd = if � a then Ra; 〈SelectC ;S ′
c↓; UnselectC〉

where a : ∅ ↪→ ◦
1

, c = � ◦
1

↪→ ◦
1

◦ , C = ◦ and Sc = { ◦
1

◦
2

⇒ ◦
1

◦
2

}.

7 A morphism a : A ↪→ C is edge-increasing, if |EC | > |EA|.
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The program checks whether there exists a node, and if not, it creates one. It
selects a node and, if there are two edges in opposite directions, it deletes one.
The check of existence is done one time, the deletion as long as possible. For
the constraint d = ∀( ◦

1
,∃ ◦

1
◦ ), meaning that, for every node, there exists

a 2-cycle, Pd = 〈SelectVioC ; (Pc)C ; UnselectC〉 ↓ is a repair program for d,
Pc = if � a then Ra the repair program for c = ∃ ◦

1
↪→ ◦

1
◦ , and Ra is as

in Example 1. The repair program selects a node without 2-cycle, e.g. the third
node from left (see below), applies the rule �4, and unselects the selected part.
Afterwards all nodes possess a 2-cycle.

◦ ◦ ◦ ⇒
SelectVioC

◦ ◦ • ⇒
�4

◦ ◦ • ⇒
UnselectC

◦ ◦ ◦

For the pure constraint d = ∃ ( ◦ ,∀( ◦ ◦ ,∃ ◦ ◦ ) with inclusion morphism
a : ∅ ↪→ ◦ and subcondition c, we obtain the following repair program:

Pd = 〈P∃ a; SelectC ; (Pc)C ; UnselectC〉 with C = ◦
Pc = 〈SelectVioD; (Ra)D; UnselectD〉 ↓ with D = ◦ ◦
Ra = {〈 ◦

1
◦
2

⇒ ◦
1

◦
2

, � ◦
1

◦
2

〉}
For an input graph G, we check the condition � a and repair it, select a node
(C), apply Pc on the selected node, i.e., we select an outgoing edge (D) for which
there is no loop at the target, and repair it (add one), unselect the outgoing edge.
This is done as long as possible. Finally, we unselect the selected node (C).

Fact 4 (repair).
1. (Pc)A ≡ 〈SelectC , (Pc)C , UnselectC〉.
2. If Pc is a repair program for c, then (Pc)A is a repair program for cA.
3. 〈P∃ A; (Pc)A〉 is a repair program for ∃ (a, c).

Fact 5 (termination).
1. Finite rule sets are terminating.
2. If P is terminating, then PA is terminating.
3. If programs P,Q are terminating, then 〈P ;Q〉 is terminating.
4. If a rule set S is deleting, then S↓ is terminating.

Proof (of Theorem 1).
Pd is correct: By induction on the structure of d.
Let d be a proper condition and Pd the program as in Construction 3.

(1) Let d = true and Pd = Skip. By the semantics of Skip, for every transfor-
mation G ⇒Skip H ∼= G |= true, i.e., Skip is a repair program for d.

(2) Let d = ∃ a and Pd = if � a then Ra with Ra as in Construction 2. If
G |= � a, then, for every transformation G ⇒Ra

H, there is a rule B ⇒ C
in Ra and an injective morphism h : B ↪→ H for which the application
condition ac = Shift(b, � a) is violated, i.e., Shift(b,∃ a) is satisfied. By the
Shift Lemma 1, there is an injective morphism p = h ◦ b : A ↪→ H (see the
figure below), satisfying the application condition ∃ a.
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∃h : B ↪→ H.h � |= Shift(b, � a)
⇔ ∃h : B ↪→ H.h |= Shift(b,∃ a)
⇔ ∃ p : A ↪→ H.p |= ∃ a

A

B C

H

ab

c
p

h

==

If G |= ∃ a, then, by the semantics of if-then-, G ⇒ H ∼= G |= ∃ a. (3) Let
d = � a and G ⇒S′

a↓ H. By the semantics of ↓, the program S ′
a is not applicable

to H. Then, for every injective morphism h : A ↪→ H and every rule 〈C ⇒ B〉
in Sa, there is no injective morphism q : C ↪→ H, such that q ◦ a = h, i.e.,
h |= � a. Thus, H |= � a. (4) Let d = ∃ (a, c) and G ⇒Pd

H. By (2), P∃ a

is a repair program for ∃ a. By induction hypothesis, Pc is a repair program
for c, by Fact 4, the program (Pc)A = 〈SelectC ; (Pc)C ; UnselectC〉 is a repair
program for cA, and Pd = 〈P∃ a; (Pc)A〉 is a repair program for ∃ (a, c). (5) Let
d = ∀(a, c) and G ⇒Pd

H. By definition of Pd, the transformation is of the form
G ⇒SelectVioA GA ⇒(Pc)A HA ⇒UnselectA H. By induction hypothesis, Pc is a
repair program for c, and, by Fact 4, (Pc)A is a repair program for cA. By the
semantics of ↓, no rule is applicable to HA resp. H, thus H |= � (a,¬c) ≡ ∀(a, c).
Pd is terminating: By induction on the structure of Pd.
For simplicity, we prove the statement for unlabelled graphs. (For labelled graphs
it is similar.) Let d be a proper condition, Pd be the corresponding program,
G ⇒Pd

H, n = max(m, |VG|) is the maximal number of nodes in d, m the
number of nodes of the largest graph of d, and k is the maximal number of
parallel edges in d. Let Kk

n denote the complete graph with n nodes and, for each
pair of nodes 〈v1, v2〉, there are k parallel edges from v1 to v2. We show: H � Kk

n

(i.e., there is an injective morphism from H into Kk
n.) From this immediately it

follows that Pd is terminating.

(1) For d = true, Pd = Skip, and H ∼= G � Kk
n.

(2) For d = ∃ a, Ra is a rule set, Pd = if � a then Ra, and H � Kk
n. This

may be seen as follows: Let G ⇒� H be a direct transformation through the
rule � = 〈B ⇒ C, acB ∧ ac〉 in Ra. If |VG| < |VC |, then |VB | = |VG| and,
by the application condition acB (there is no larger B′ with B ⊂ B′ � C),
|VH | = |VC |. If |VG| ≥ |VC |, then |VB | ≤ |VC | and |VH | = |VG|. Thus
|VH | = max(m, |VG|) = n. Moreover, by the application condition acB,
|EH | ≤ k · |VH | × |VH | where k is the maximal k parallel edges in Ra.

(3) For d = � a, Sa is deleting, Pd = S ′
a↓, and H � Kk

n.
(4) For d = ∃ (a, c). Then, for all transformations G ⇒P∃ a

G′, G′ � Kk
n. By

induction hypothesis, for all transformations G′ ⇒Pc
H � Kk

n. Thus, by
Fact 4, P ′

c = 〈SelectA; (Pc)A; UnselectA〉 is terminating and, for all trans-
formations G ⇒Pd

H � Kk
n.

(5) For d = ∀(a, c). By induction hypothesis Pc is terminating, by Fact 5, P ′
c =

〈SelectVioA; (Pc)A; UnselectA〉 is terminating and for all transformations
Gi ⇒P ′

c
Gi+1 ⇒P ′

c
. . . ⇒P ′

c
H � Kk

n. By pureness, the condition d ends with
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true and the program Pd is increasing. Suppose → is not terminating. Then,
there must be a graph with infinite number of nodes or edges. Contradiction
to H ⊆ Kk

n. By SelectVioA, it is not possible to apply at a repaired position.
Consequently, Pd is terminating. �

Remark. For proper conditions, we have shown that there are terminating
repair programs. Our aim is to construct repair programs for satisfiable con-
ditions. The condition ∀( ◦

1
,∃ ◦

1
◦
2

, � ◦
1

◦
2

◦ ) is satisfiable, but, up to now,
we have no repair program for it.

4 Conjunctive and Disjunctive Constraints

In this section, we consider constraints with conjunctions and disjunctions. Our
approach is based on the divide and conquer method: Given a constraint, trans-
form it into a normal form and test it on satisfiability, construct repair programs
for the subconstraints, and compose the repair programs for the subconstraints
to a repair program for the more complex constraint.

4.1 Conjunctive Constraints

First, we recall the definition of constraint preservation [HP09] and show that
repair programs P1, P2 for constraints d1, d2 can be sequentially composed to a
repair program 〈P1;P2〉 for d1 ∧ d2 provided that the program P2 preserves the
constraint d1. Beyond this general result, we present a result for the case where
the repair program of one constraint does not preserve the other constraint.

Definition 10 (preservation). For a constraint d, a program P is d-preserving
if for every transformation G ⇒P H, G |= d implies H |= d.

Lemma 2 (Repair). If Pi is a repair program for di (i = 1, 2) and P2 is d1-
preserving, then 〈P1;P2〉 is a repair program for d1 ∧ d2. If Pi is terminating,
then 〈P1;P2〉 is terminating.

Proof. Let 〈P1;P2〉 and d = d1∧d2. Since Pi is a repair program for di (i = 1, 2)
and P2 is d1-preserving, for every transformation G ⇒P1 H ⇒P2 M , H |= d1
and M |= d1 ∧ d2, i.e., 〈P1;P2〉 is a repair program for d1 ∧ d2. By termination
of P1 and P2, 〈P1;P2〉 is terminating. �
Example 4. Consider the constraints d1 = � ◦ ◦ ◦ and d2 =
∀( ◦ ,∃ ◦ ◦ ). The repair programs R1 ↓,R2 ↓ are based on R1 =

{〈 ◦
1

◦
2

◦
3

⇒ ◦
1

◦
2

◦
3

〉} and R2 = Ra in Example 1. By Lemma 2, neither
〈R1 ↓;R2 ↓〉 nor 〈R2 ↓;R1↓〉 is a repair program for d1 ∧ d2. On the other hand,
the constraint d1 ∧ d2 is satisfiable by graphs of the form Kn

2 (n ≥ 0) where Kn
2

denotes the n-fold disjoint union of the complete graph with two nodes (K2):

◦ ◦ , ◦ ◦ ◦ ◦ , ◦ ◦ ◦ ◦ ◦ ◦ , . . . .
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In the following, we try to handle Example 4 and similar examples. The
investigations are based on the idea of constraint preservation and the repair
of conditions. In [HP09], it is shown that, for every rule � and every constraint
d1, an application condition Pres(�, d1) can be constructed such that the rule
together with the application condition is d1-preserving. The set of d1-preserving
rules preserves the constraint d1, but, in general, the corresponding program is no
longer a repair program for d2. The reason for this is that the applicability of the
rules is restricted. By Theorem 1, for every rule � and every satisfiable application
condition ac, effectively a repair program Prog(ac) can be constructed. The
application of the program modifies the input graph in such a way that, at a
selected occurrence of the left-hand side of the rule, the application condition
ac = Pres(�, d1) becomes satisfied.

Assumption. Let d1, d2 be constraints with repair programs R1↓,R2↓.

Theorem 2 (Repair). For constraints d1,d2 with satisfiable conjunction d, a
repair program for d can be constructed provided that

1. d1 is positive and d2 pure,
2. d1, d2 are negative,
3. d1 = ∃ C1, d2 = � C2 with C1 ⊂ C2,
4. d1 is negative and d2 = ∀(A,∃ C) with A �= ∅8.
Construction 4. A repair program Pd for d is constructed as follows.

1. For positive d1 and pure d2, and
2. For negative d1, d2, Pd = 〈R1↓;R2↓〉.
3. For d1 = ∃C1, d2 = � C2 with C1 ⊂ C2, Pd = 〈R1↓; Pres(R2, d1)↓〉.
4. For a negative d1 and d2 = ∀(A,∃ C) with A �= ∅,

Pd = 〈R1↓;Rd1
2 ↓;D↓〉

where Rd1
2 = {�d1 | � ∈ R2}, D = 〈SelectVioA; (P� A)A〉, and P� A is the

repair program for � A. For � = 〈B ⇒ C, ac0〉 ∈ R2 and a constraint d1,
�d1 = 〈SelectVioA;P (�); UnselectA〉 where

P (�) = 〈SelectVioB ; Prog(ac)B ; 〈�, ac〉B ; UnselectB〉

where a : A ↪→ C, SelectVioA = 〈A ⇒ AA, � a〉, SelectVioB = 〈BA ⇒
BB,Shift(A ↪→ B, � a)〉. Prog(ac) is the repair program for the condition
ac = Pres(�, d1) if ac is satisfiable and Skip, otherwise. 〈�, ac〉 is the d1-
preserving rule. UnselectB and UnselectA are the inverse rules of SelectB

and SelectA, respectively.

8 The requirement A �= ∅ in Theorem 2 cannot be deleted: for the unsatisfiable con-
straint � C ∧ ∃ C, there is no repair program.
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Remark. The first idea is to construct for every rule � ∈ R2
9 and the constraint

d1, the d1-preserving rule � with application condition ac = Pres(�, d1) [HP09].
The second idea is to construct - if possible - for each application condition
ac, the repair program Prog(ac). This allows to modify the input graph such
that the d1-preserving rule 〈�, ac〉 becomes applicable. This is done as long as
possible. Afterwards, if the condition is violated, we use the repair program P�A

to delete the remaining occurrences of A violating ∃ a.

Example 5. We continue with Example 4. By construction, R1↓ is a repair pro-
gram for d1. By Construction 1, for every rule � ∈ R2, the application condition
Pres(�, d1) can be constructed.

Pres(�1, d1) = � ◦ ◦
1

Pres(�2, d1) = � ◦ ◦
1

◦
2

∧ � ◦
1

◦
2

◦
Pres(�3, d1) = � ◦ ◦

1
◦
2

∧ � ◦
1

◦
2

◦
Pres(�4, d1) = � ◦ ◦

1
◦
2

∧ � ◦
1

◦
2

◦

Unfortunately, the d1-preserving program {〈�,Pres(�, d1)〉 | � ∈ R2} ↓ is not a
repair program for d2: The normal form ◦ ◦ ◦ does not satisfy d2.
Then, we construct the repair programs for aci = Pres(�i, d1), given below.

Prog(ac1) = 〈 ◦
1

•
2

⇒ ◦
1

•
2

〉 ↓
Prog(ac2) = {〈 ◦

1
•
2

•
3

⇒ ◦
1

•
2

•
3

〉, 〈 •
1

•
2

◦
3

⇒ •
1

•
2

◦
3

〉} ↓
Prog(ac3) = {〈 ◦

1
•
2

•
3

⇒ ◦
1

•
2

•
3

〉, 〈 •
1

•
2

◦
3

⇒〉 •
1

•
2

◦
3

} ↓
Prog(ac4) = {〈 ◦

1
•
2

•
3

⇒ ◦
1

•
2

•
3

〉, 〈 •
1

•
2

◦
3

⇒ •
1

•
2

◦
3

〉} ↓

The SelectVioB rules are as follows.

SelectVioB1 = 〈 ◦
1

⇒ •
1

, � ◦ ◦ 〉
SelectVioB2 = 〈 ◦

1
◦
2

⇒ •
1

•
2

, � ◦
1

◦
2

∧ � ◦
1

◦
2

∧ � ◦
1

◦ ◦
2

〉
SelectVioB3 = 〈 ◦

1
◦
2

⇒ •
1

•
2

, � ◦
1

◦
2

∧ � ◦ ◦
1

◦
2

〉
SelectVioB4 = 〈 ◦

1
◦
2

⇒ •
1

•
2

, � ◦
1

◦
2

∧ � ◦ ◦
1

◦
2

〉

After the application of R1↓, Rd1
2 ↓ works as follows: By SelectVioB, we select an

occurrence of B, where Shift(A ↪→ B,∃ a) is violated. For the (left) graph below,
the only edge, where SelectVioB3 is applicable, is the rightmost. Prog(ac3)
deletes the incoming edge, the d1-preserving rule 〈�3, ac3〉 becomes applicable
and is applied, finally, we unmark B. In this way, we obtain a graph satisfying
the constraint d1 ∧ d2.

9 For a rule � = 〈L ⇒ R, ac0〉, 〈�, ac〉 denotes the rule 〈p, ac0 ∧ ac〉.
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◦ ◦ ◦ ◦ ⇒SelectVioB3
◦ ◦ • • ⇒Prog(ac3) ◦ ◦ • •

⇒〈�3,ac3〉 ◦ ◦ • • ⇒UnselectB ◦ ◦ ◦ ◦

However, there are examples, where Prog(ac) is not applicable, without violating
∃ a. This is reflected by SelectVioB . Consider, for example, the graph below.
The first two nodes have a 2-cycle. By Shift(A ↪→ B,∃ a), the third node cannot
be selected either, thus, Rd1

2 is not applicable. Since d2 is violated (the third
node does not have a 2-cycle), with (P� A)A we delete this node.

◦ ◦ ◦ �⇒Rd1
2

⇒SelectVioA ◦ ◦ • ⇒(P� A)A
◦ ◦

Lemma 3. Let R1↓,R2↓ be repair programs for a negative d1, d2 = ∀(A,∃ C).

1. Rd1
2 ≡ R2 provided that R2 is d1-preserving.

2. Rd1
2 is a repair program for ∃ a and d1-preserving.

3. D is a repair program for d2 and d1-preserving.

Proof. 1. Let R2 be d1-preserving. Then, for all transformations H ⇒R2↓ M ,
H |= d1 implies M |= d1. For all rules � ∈ R2, ac = Pres(�, d1) ≡ true,
Prog(ac) = Skip, and Rd1

2 ≡ R2. 2. By construction, the rules 〈�, ac〉 are d1-
preserving. By d1 = � C1, the programs Prog(ac) and D are deleting, and, thus,
d1-preserving. Let �d1 be as in Construction 4. Given an occurrence of A such
that � a is satisfied and an extension B of A such that Shift(A ↪→ B, � a) is sat-
isfied, then Prog(ac) is ∃ a-preserving and, by Theorem1, 〈�, ac〉 is a repair pro-
gram for ∃ a. 3. By D, one occurrence of A, violating the condition ∃ a is selected
and repaired. Thus, for a step H ⇒D M , the number of violated occurrences of
A decreases, i.e. vio(A)H > vio(A)M . By the semantics of ↓, SelectVioA is not
applicable, thus for all occurrences of A, ∃ a is satisfied, i.e. M |= d2. Since D
is deleting, it is d1-preserving. Consequently, M |= d1 ∧ d2. �
Proof (of Theorem 2). 1. For a pure constraint d2, R2 is increasing and, thus,
d1-preserving. By Lemma 2, Pd is a repair program for d. 2. For negative con-
straints d1, d2, R2 is d1-preserving, and, by Lemma 2, Pd is a repair program
for d. 3. For d1 = ∃ C1 and d2 = � C2 with C1 ⊂ C2, the program Pres(R2, d1)
is d1-preserving, by C1 ⊂ C2, Pres(R2, d1) is a repair program for d2, and, by
Lemma 2, Pd is a repair program for d. 4. Let d1 negative, d2 = ∀(A,∃ C) with
A �= ∅ and G ⇒Pd

M . By definition of Pd, G ⇒R1↓ H ⇒Rd1
2 ↓ M ⇒D N . Since

R1↓ is a repair program for d1, H |= d1. By Lemma 3, Rd1
2 is a repair program

for ∃ a and d1-preserving, i.e., H |= d1. By Lemma 3, D is a repair program for
d2 and d1-preserving. Thus, the program Pd repairs d1, repairs as many as pos-
sible occurrences of A in a d1-preserving way, and finally, removes all remaining
occurrences of A violating ∃A. Since D is deleting, it is d1-preserving. Thus,
N |= d1 ∧ d2. �
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4.2 Disjunctive Constraints

Every repair program for a conjunctive constraint is also a repair program for
the corresponding disjunctive constraint.

Lemma 4 (Repair)

1. If P is a repair program for d and d ⇒ d′, then P is a repair program for d′.
2. Every repair program for d1 is repair program for d1 ∨ d2.

Proof. 1. If P is a repair program for d and d ⇒ d′, then for every transforma-
tion G ⇒P H, H |= d ⇒ d′, i.e., P is a repair program for d′. 2. By d1 ⇒ d1∨d2
and statement 1, P1 is a repair program for d1 ∨ d2. �

5 Related Concepts

In this section, we present some related concepts of rule-based programs gen-
erated from a constraint. We compare proven correctness, completeness, in the
sense that for all first-order constraints a program can be automatically gener-
ated, and termination of the program for all cases.

In Pennemann [Pen09], an algorithm is given that generates for each graph
condition c a non-deterministic program SeekSat(c), which will find a valid
graph for every satisfiable condition. Starting from the empty graph, the algo-
rithm adds items, progressing to a valid graph which satisfies the constraint.
Since negative conditions are refuted, the program needs backtracking. The algo-
rithm is correct and complete, but it is not guaranteed to terminate in general.
For the non-nested fragment of conditions, SeekSat is guaranteed to terminate.

In Nassar et al. [NKR17], a rule-based approach to support a modeler in
automatically trimming and completing EMF models and thereby resolving their
cardinality violations is proposed. For that, repair rules are automatically gen-
erated from multiplicity constraints imposed by a given meta-model.

The control flow of the algorithm consists of two main phases:

(1) Model trimming eliminates supernumerous model elements.
(2) Model completion adds required model elements.

It is shown that both of the algorithms are correct, and, for fully finitely instan-
tiable type graphs, the model completion algorithm terminates. The rules are
designed to respect EMF constraints, which are in general not expressible with
nested conditions.

In Nentwich et al. [NEF03] a repair framework for inconsistent distributed
UML documents is presented. Given a first order formula, the algorithm auto-
matically creates a set of repair actions from which the user can choose, when
an inconsistency occurs. These repair actions can either delete, add or change a
model document. It can be shown, that the repair actions are correct and com-
plete. The problem of repair cycles is left for future work. Since, in general, it is
undecidable, if a constraint is satisfiable, the algorithm may not terminate.
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In Puissant et al. [PSM15], a regression planner is used to automatically
generate sequences of repair actions that transform a model with inconsistencies
to a valid model. The initial state of the planner is the invalid model, represented
as logical formula, the accepting state is a condition specifying the absence of
inconsistencies. Then, a recursive best-first search is used to find the best suitable
plan for resolving the inconsistencies. The correctness of the algorithm is not
proven, but the approach is evaluated through tests on different UML models.

The semantics of graph programs is a simplified version of the one by Poskitt
and Plump [PP13]. One may get fail whenever the program is of the form
. . . ;R; . . .. In our programs, we cannot get fail because our programs are of
the forms R ↓ or if − then .

In this paper, we focus on the repair, not on the satisfaction of constraints. For
the satisfaction of constraints, the constraint solver of Schneider et al. [SLO18]
can be used.

6 Conclusion

In this paper, we have focused on arbitrary constraints and have presented ter-
minating repair programs

(1) for proper conditions (Theorem1).
(2) for conjunctions d1 ∧d2 provided that there are terminating repair programs

for di (i = 1, 2) and one program preserves the other condition (Lemma2) as
well as specific constraints without the requirement of constraint preservation
(Theorem 2).

(3) for disjunctions d1 ∨ d2 provided that there is a terminating repair program
for some di (Lemma 4).

Further topics are

(1) Repair programs for all satisfiable conditions.
(2) Repair programs for typed attributed graphs.
(3) Repair programs for EMF-models. (EMF-models are typed, attributed

graphs satisfying some constraints, e.g., no containment cycles [NKR17].)
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Abstract. Double-pushout rewriting (DPO) is the most popular alge-
braic approach to graph transformation. Most of its theory has been
developed for linear rules, which allow deletion, preservation, and addi-
tion of vertices and edges only. Deletion takes place in a careful and
circumspect way: a double pushout derivation does never delete vertices
or edges which are not in the image of the applied match. Due to these
restrictions, every DPO-rewrite is invertible. In this paper, we extend
the DPO-approach to non-linear and still invertible rules. Some model
transformation examples show that the extension is worthwhile from the
practical point of view. And there is a good chance for the extension of
the existing theory. In this paper, we investigate parallel independence.

1 Introduction

Double-pushout rewriting (DPO) is the most popular algebraic approach to
graph and model transformation [3,4]. It can be formulated on a purely cate-
gorical level.

Definition 1 (DPO-rewriting). A rule � = (l : K � L, r : K � R) is a span
of monomorphisms. A match m : L → G for rule � in an object G is a morphism
from �’s left-hand side to G. Rule � can be applied at match m, if there are two
pushout diagrams as depicted in Fig. 1, i.e., (m, g) and (p, h) are pushouts of
(l, n) and (r, n) resp. The two pushouts constitute a direct derivation.

L K R

G D H

m (PO) n

l r

p(PO)

g h

Fig. 1. Double-pushout rewrite

By definition, every direct derivation is reversible in the following sense: If
�−1 = (r, l) denotes the inverse rule for a rule � = (r, l), we obtain for every
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direct derivation from G to H using rule �, that there is a direct derivation
using �−1 from H to G.

Furthermore, the pushout complement object D constructed as the inter-
mediate object in a direct derivation is unique (up to isomorphism) in suitable
categories.1 This uniqueness property is lost, if the rule’s left-hand sides are
not restricted to monomorphisms, i.e., if we allow so-called non-linear left-hand
sides. An example in the category of graphs is depicted in Fig. 2. The morphism
l : K → L is a rule’s left-hand side which is not monic and splits a vertex into
two particles. The depicted match m : L → G allows 8 different pushout comple-
ments and 3 pairwise non-isomorphic variants.2 The concrete distribution of the
adjacent edges of the split vertex is not specified by the rule and can be chosen
arbitrarily by the direct derivation. Thus, the effect of the rule is underspecified.

Fig. 2. Indeterministic double-pushout rewrite

For a deterministic effect of such rules, we have to specify how the context
(adjacent objects) of split items shall be handled. We can do this, if we address
the context explicitly in the rule itself and specify exactly where the context shall
be attached to. Two of such specifications for the example of Fig. 2 are depicted
in Fig. 3. In the left part of Fig. 3, the context specification in K and L (thick grey
arrows without source or target vertex) states that all incoming and all outgoing
context edges shall be attached to the split-particle “1”. Thus, the corresponding
direct derivation picks D1 (compare Fig. 2) from the choice of possible pushout
complements. In the right part of Fig. 3, the context specification in K’ and L
(again thick grey arrows) states that all incoming context edges shall be attached
to split-particle “2” whereas all outgoing context edges shall be attached to the
split-particle “1”. Thus, the corresponding direct derivation picks D4 (compare
Fig. 2) from the choice of possible pushout complements.

1 Adhesive categories, details see below.
2 The pushout complements D2 and D3 as well D6 and D7 produce isomorphic objects

but differ in the assignments of edges to G, i.e., g2 �= g3 and g6 �= g7. The complement
pairs D1 and D8, D4 and D5, as well as D2/3 and D6/7 are isomorphic and can only
be distinguished if we fix the embedding of K.
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The context handling we introduced on the intuitive level in Fig. 3 cannot
single out each derivation (all the possible pushout complements) of Fig. 2, since
all incoming context edges as well as all outgoing context edges of a split vertex
are handled in an uniform way. For the sample situation of Fig. 2, we can only
distinguish rewrites picking the complements D1, D4, D5, and D8. As we will
see in the sample Sect. 4, this is not a major drawback wrt. applicability.

Fig. 3. Handling of context

The context specification cannot copy context items or distribute them inde-
terministically. If we specified in the example that all outgoing edges shall be
attached to particle “1” and all incoming edges shall be attached to both parti-
cles “1” and “2”, there are two possible interpretations: (1) incoming edges shall
be ‘copied’ to both particles or (2) incoming edges can be attached arbitrarily. In
the first case, there is no suitable pushout complement (compare possibilities D1

– D8 in Fig. 2); in the second case, the rewrite is underspecified again, since D1

and D4 are non-isomorphic pushout complements satisfying the specification.
But not only non-linear left-hand sides of rewrite rules cause problems in the

double-pushout approach. We obtain some indeterminism as well, if we admit
non-linear right-hand sides, i.e., if we do not restrict the rules’ right-hand sides
to monomorphisms. These problems are not concerned with the rewrite itself,
since pushouts are uniquely determined (up to isomorphism) for arbitrary pairs
of morphisms. The inverse rule (r, l) for a rule (l, r) with non-monic r, however,
has a non-linear left-hand side and produces the sort of indeterminism which we
observed above for example in Fig. 2.

For a rewrite example with a non-linear right-hand side see Fig. 4: the vertices
“1” and “2” are mapped to the same vertex by the rule’s right-hand side r :
K → R. A direct derivation with that rule merges the two matched vertices and
connects all edges (incoming and outgoing) of these vertices (“1” and “2” in D1)
to the merged result vertex in H, compare morphism h1 : D1 → H in Fig. 4.

If we apply the inverse rule (r, l) at the induced co-match p : R → H, we
again obtain several different pushout complements as in Fig. 2. Among these
pushout complements is the “original” one, namely D1, that was used in the
derivation that lead to the co-match p. But if we forgot the derivation structure
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and remembered the resulting co-match only, we are not able to choose the
correct inverse derivation (among the 8 possible choices). This means that the
information about the merging that took place in the derivation step is stored
in the direct derivation only. Knowing the rule and the induced co-match is not
sufficient to construct the compensating inverse derivation.

Fig. 4. Indeterministic inverse rewrite

Again, an explicit specification of context handling can help making rules and
their inverse rules deterministic. The information about the merging that took
place in Fig. 4 can be stored in the rule itself, if we use the context specification
of K in the left part of Fig. 3. With this ‘context decoration’, the rule and the
induced co-match carry enough information to uniquely determine D1 as the
intermediate object for the compensating inverse derivation.

In this paper, we formalise the sort of context specification which we infor-
mally introduced above in Fig. 3. For this purpose, we borrow and specialise
constructions and mechanisms from AGREE-rewriting [1] and from rewriting in
span categories [12] in Sect. 2. In Sect. 3, we show that the new rewrite construc-
tion is a conservative extension of double-pushout rewriting with left- and right-
linear rules. Section 4 demonstrates the applicability of the introduced rewrite
mechanism in the field of model transformation. Section 5 provides first the-
oretical results wrt. parallel independence which demonstrates that theoretical
results for the DPO-approach are very likely to carry over to the extended rewrite
mechanism. Finally, the conclusion provides a preview of future research.

2 DPO-Rewriting in Context

The theory for double-pushout rewriting has been formulated in adhesive cate-
gories [3,11]. We adopt this basic requirement for the constructions and results
presented below for double-pushout rewriting in context, which we call DPO-C.

Definition 2 (Adhesive category). A category is adhesive if

1. it has all pullbacks and
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2. it has pushouts along monomorphisms which are all van-Kampen squares.

A pushout (f ′ : B → D, g′ : C → D) of a span (g : A → B, f : A → C)
is a van-Kampen square, if, for every commutative diagram as depicted in the
left part of Fig. 5 in which sub-diagrams (2) and (3) are pullbacks, the following
compatibility of pushouts and pullbacks is satisfied: the pair (f ′

h, g′
h) is pushout

of the span (gh, fh), if and only if sub-diagrams (4) and (5) are pullbacks.

B′ A′

B A A• X

D C A D

D′ C′

(4)

(2)

f ′
h

hB

(3) fh

gh

hA

(1)f ′ f

g

(PB)

(m,f)•

(5)

g′
ηA

f

m

hD hC

g′
h

Fig. 5. Adhesivity, hereditariness, and partial arrow classifier

As we said in the introduction, DPO-C borrows major ingredients from
AGREE-rewriting. A central issue is the existence of partial arrow classifiers.

Definition 3 (Partial arrow classifiers). A category has partial arrow clas-
sifiers, if there is monic ηA : A � A• for every object A satisfying: For every
pair (m : D � X, f : D → A) of morphisms with monic m, there is a unique
morphism (m, f)• : X → A• such that (m,f) is the pullback of (ηA, (m, f)•),
compare right part of Fig. 5. In the following, the unique morphism (m, f)• is
also called totalisation of (m, f). We abbreviate (m, idA)• by m• and obtain for
this special case where m : A � X is monic and f = idA : A → A: m• ◦m = ηA.

Fact 4 (Classifier). There are well-known facts for partial arrow classifiers:

1. If f : D � A is monic, (ηD, f)• is monic.
2. If c : C � B, b : B → A, and a : C � A are morphisms with monic c and a,

then (c, idC) is pullback of (a, b) and b ◦ c = a, if and only if c• = a• ◦ b.
3. All pushouts are hereditary:3 Pushout (f ′, g′) of (g, f) in sub-diagram (1) of

Fig. 5 is hereditary, if all commutative situations as in the left part of Fig. 5
where sub-diagrams (2) and (3) are pullbacks and hB and hC are monic
satisfy: (f ′

h, g′
h) is pushout of (gh, fh), if and only if sub-diagrams (4) and (5)

are pullbacks and hD is monic.

Almost all categories which are used in graph transformation are adhesive
and possess partial arrow classifiers. Examples are graphs, i.e., algebras and
homomorphisms wrt. the signature G depicted in Fig. 6, and the simplified object-
oriented class models, i.e., algebras and homomorphisms wrt. the signature M
depicted in Fig. 6, which we use for the sample transformations in Sect. 4.
3 Compare [10].
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Fig. 6. Graphs and simple object-oriented models

Figure 7 depicts three sample partial arrow classifiers in G: (1) for a single
vertex, (2) for a discrete graph with two vertices, and (3) for a graph with
two vertices, a loop, and an edge between the vertices. The graph A that is
classified is painted black, the grey parts are added by the classifier A•, and the
classifying monomorphism is the inclusion. The classifier provides the additional
structure that is needed to uniquely map the objects that are not in the image
of m in arbitrarily given pair (m : D � X, f : D → A). Note that the additional
structure that the classifier adds to a classified graph does not differ, if we change
the number of edges only, compare (2) and (3) in Fig. 7.

Fig. 7. Sample partial arrow classifiers in the category G

Figure 8 shows two sample classifiers in M: (S) for a model with a single type
C and (P) for a model with a pair of types C and C’.4 Again, the classified models
are painted black, the structure added by the classifier is painted grey, and the
classifier is the inclusion homomorphism. (Arrows with two heads abbreviate
two arrows, namely one in each direction.)

According to Definition 3, the classifying M-homomorphism ηS : S � S• in
Fig. 8 can be interpreted as follows: For any M-algebra A and an assignment f
for a subset T of the types in A to the classified type C in S, i.e., f : T → S and
⊆T : T ↪→ A, there is a unique way to extend this assignment to a homomor-
phism f• : A → S•, namely by mapping all types outside T to the ‘grey’ type
and all inheritance relations and association to the uniquely available suitable

4 Inheritance relations and associations in the classified model do not change the
structure that is added by the classifier. The classifier structure depends on the
(number of) types only.
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Fig. 8. Sample partial arrow classifiers in the category M

‘grey’ relations in S. Therefore, S provides the sufficient and necessary structure
to map the context of T to S. And this extension of f to f• [ or more precisely
to (⊆T , f)• ] has the property that the pair (⊆T , f) is pullback of (ηS, f•). This
additional property/requirement of partial arrow classifiers is essential. It pre-
vents that, for the special case that T = ∅ and f is the empty mapping, some
type in A is mapped to the type C in S by (∅, ∅)•.

The partial arrow classifier for given M-algebra A is constructed as follows:
(1) Add a Type-element ⊥. (2) For every pair (t, t′) of T-elements, add a I-element
I⊥t

t′ with t′ = c(I⊥t
t′) and t = p(I⊥t

t′) and A-element A⊥t
t′ with t′ = o(A⊥t

t′) and
t = t(A⊥t

t′). The added type ⊥ is called the undefined type and the I- and A-loop
added on this type are called completely undefined I- and A-edge respectively.

Assumption 5 (Basic category). For the rest of the paper, we assume an
adhesive category with partial arrow classifiers.

For this sort of categories, we know the following facts [11]:

Fact 6 (Properties of the underlying category).

1. Pushouts along monomorphisms are pullbacks.
2. Pushouts preserve monomorphisms.
3. Pushout of intersection is union: If (x : X � Z, y : Y � Z) is a co-

span of monomorphisms, (x′ : I � Y, y′ : I � X) its pullback span, and
(x∗ : X � U, y∗ : Y � U) the pushout of (x′, y′), then the unique morphism
u : U � Z with u ◦ x∗ = x and u ◦ y∗ = y is monic, compare Fig. 9.

Z U X

Y I

u

x

(PO)

x∗

y

y∗

x′

y′

Fig. 9. Union of intersection
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Partial arrow classifier constructions have been successfully applied in
AGREE-rewriting [1] in order to control the deletion and copy process of con-
text items in a rewrite which can be stipulated by non-linear left-hand sides of
rules. For a double-pushout semantics, we need to restrict the AGREE-rewriting
mechanism: context items must not be copied nor deleted, they can only be dis-
tributed to split particles, compare motivating examples in the introduction.

Definition 7 (DPO-C-rule). A rule (l : K → L, c : K � C, r : K → R) is a
triple of morphisms such that the context specification c is monic and, given the
pushouts (cl : L � LC , lc : C → LC) and (cr : R � RC , rc : C → RC) of (l, c)
and (r, c) respectively, the morphisms c•

l and c•
r are monic, compare Fig. 10.5

L• R•

LC C RC

L K R

c•
l

(PO) (PO)

lc rc

c•
r

ηL

cl

l

c

r

ηR

cr

Fig. 10. DPO-C rule

DPO-C rules are special AGREE-rules. The special rule format makes sure
that items in LC which are not in L, have a ‘unique preimage’ under lc. In the
category G of graphs for example, we cannot choose C = K• and c = ηK , if there
are vertices v1 �= v2 with l(v1) = l(v2). In this case, the pushout of l and ηK

results in a graph with at least 4 context loops on l(v1) and this graph is not a
sub-graph of L•, which has a one loop only, compare (1) and (2) in Fig. 7. The
symmetric restriction of the right side will ensure reversibility of rewrites.

Definition 8 (DPO-C-match and -derivation). Given rule σ = (l : K →
L, c : K � C, r : K → R), a monomorphism m : L � G is a match, if
the following match condition is satisfied: The morphism m• : G → L• factors
through LC , i.e., there is m′ : G → LC such that c•

l ◦ m′ = m•.
A derivation with rule σ at match m is constructed as follows, compare

Fig. 11:

1. Construct pullback (g : D → G,n′ : D → C) of (m′ : G → LC , lc : C → LC).
2. Let n : K � D be the unique mediating morphism for this pullback for

(m ◦ l, c). By pullback decomposition and Fact 6(1) for pushout (lc, cl), (l, n)
is pullback of (g,m). Since pullbacks preserve monomorphisms, n is monic.

3. Construct pushout (h : D → H, p : R � H) of (n : K � D, r : K → R). The
morphism p is monic by Fact 6(2).

5 The pushout morphisms cl and cr are monic by Fact 6(2).
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L• R•

LC C RC

L K R

G D H

c•
l

(c,l)•

lc rc

c•
r

m

ηL

cl

(PO)n

l

c

r

p

ηR

cr

m•
m′

g h

n′ p′

Fig. 11. DPO-C match and derivation

Remarks. Note that we restrict matches to monomorphisms.6 The morphism m′

which satisfies the matching condition is unique, if it exists, since c•
l is monic.

The morphism n can be constructed in Step 2 of Definition 8, since c•
l ◦m′ ◦m =

m• ◦ m = ηL = c•
l ◦ cl implies m′ ◦ m = cl due to c•

l being monic.

The match condition in Definition 8 formulates a negative application condi-
tion as in [8]. Especially the dangling condition of double pushout rewriting in
the category G of graphs [9] is reformulated this way: if the rule’s left-hand side
l : K → L is not epic on vertices, there is vertex v without pre-image under l.
Since LC is pushout, this means that cl(v) can only have adjacent edges that
have pre-images under cl. If there is an edge adjacent to m(v) without pre-image
under m, this edge ‘is’ not in L and not in LC , it is dangling, and it cannot be
mapped by m′ to any edge in LC in order to satisfy the match condition.

The rewrite mechanism in Definition 8 is a special case of AGREE-rewriting:
If (g, h) is DPO-C trace of DPO-C rule (l, c, r) at match m, then it is also
AGREE trace of AGREE rule (l, c, r) at m.7 The rule restriction of Definition 7
and the match condition of Definition 8, however, tame the ‘AGREE-tiger’ such
that (1) items outside the match cannot be deleted nor copied and (2) irreversible
merging is avoided.

3 Analysis of DPO-C Derivations

In this section, we analyse the properties of DPO-C-derivations. Especially,
we investigate reversibility and show that the DPO-C-approach is a conserva-
tive extension of the DPO-approach with left- and right-linear rules at monic
matches.

6 Therefore, the identification condition for rule applicability [9] does not matter here.
7 Since (idL, cl) and (c, l) are pullbacks of (ηL, c•

l ) resp. (lc, cl) by Fact 6(1) and, there-
fore, (l, c) is pullback of (c•

l ◦ lc, ηL), we have that c•
l ◦ lc = (c, l)•. Since c•

l is monic,
(idG, m′) is pullback of (c•

l , m
•) and (n′, g) is pullback of (m•, c•

l ◦ lc).
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Proposition 9 (Determinism). DPO-C-rewrites are deterministic.

Proof. The pullback and pushout constructed in Step 1 resp. 3 of Definition 8 are
unique up to isomorphism. So given two trace and co-match pairs ((g1, h1), p1)
and ((g2, h2), p2) for two derivations with rule σ at the same match m, there are
isomorphisms ig and ih such that ig ◦ g1 = g2, ih ◦ h1 = h2 ◦ ig, and ih ◦ p1 = p2.

This result justifies the following notation:

Notation 10 (Deterministic rewrite). In a derivation with rule σ at match
m as in Definition 8, the result H is denoted by σ@m, the span (g, h) is called the
trace, written σ 〈m〉, and morphism p constitutes the co-match, written m 〈σ〉.

Proposition 11 (Rewrite properties). Consider a derivation with rule σ =
(l, c, r) at match m : L � G as depicted in Fig. 11. The participating sub-
diagrams have the following properties:

1. (m, idL) and (n, idK) are pullback of (m′, cl) and (n′, c) respectively.
2. (m, g) and (m′, lc) are pushouts of (l, n) and (g, n′) respectively.
3. If p′ : H → RC is the unique morphism for pushout (p, h) providing p′◦p = cr

and p′ ◦ h = rc ◦ n′, then
(a) (h, n′) and (p, idR) are pullbacks of (rc, p

′) and (p′, cr) respectively and
(b) (rc, p

′) is pushout of (n′, h).

Proof. (1) We know that (m, idL) is pullback of (m•, ηL) and, since c•
l is monic,

that (m′, idG) is pullback of (m•, c•
l ). Since c•

l ◦ cl = ηL and m′ ◦ m = cl,
pullback decomposition provides (m, idL) as pullback of (m′, cl). Now (m, idL)
is pullback of (m′, cl) and we always have that (idK , l) is pullback of (idL, l).
Thus, pullback composition provides (idK ,m ◦ l) as pullback of (m′, cl ◦ l). Since
cl ◦ l = lc ◦ c and m ◦ l = g ◦ n, (idK , g ◦ n) is pullback of (m′, lc ◦ c). Since (g, n′)
has been constructed as pullback of (m′, lc), pullback decomposition guarantees
that (n, idK) is pullback of (n′, c).

(2) Adhesivity (compare Definition 2 van-Kampen property if-part) guaran-
tees that (g,m) is pushout of (l, n), since the pushout (lc, cl) of (l, c) is a pushout
along monomorphism c and surrounded by 4 pullbacks, namely (i) (idK , n) of
(n′, c), (ii) (idK , l) of (idL, l), (iii) (idL,m) of (m′, cl), and (iv) (n′, g) of (m′, lc).
Now, pushout decomposition provides (m′, lc) as pushout of (g, n′).

(3a) Adhesivity (compare Definition 2 van-Kampen property only-if-part)
guarantees the desired pullback properties, since (rc, cr) is pushout of (r, c) along
monic c, (p, h) is pushout of (r, n) by the construction of the derivation, (idK , n)
is pullback of (n′, c) by (1) above, and (idK , r) is trivially pullback of (idR, r).

(3b) Pushout decomposition provides that (rc, p
′) is pushout of (n′, h).

Thus, every square in Fig. 11 is pushout and pullback. Therefore, DPO-C-
rewriting could also be called triple double-pushout transformation.

Corollary 12 (Reversibility). Every DPO-C-rewrite is reversible: if (g, h) is
trace and p co-match of the application of rule (l, c, r) at match m, then (h, g)
is the trace and m the co-match of applying the inverse rule (r, c, l) at match p.
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Proof. Consider the derivation in Fig. 11. We are done, if the pair (p, p′) is match
for the inverse rule, since, by Proposition 11, (n′, h) is pullback of (rc, p

′) and
(g,m) is pushout of (l, n). Thus, it remains to show that c•

r ◦ p′ = p•, i.e., that
(idR, p) is pullback of (ηR, c•

r ◦ p′). We know by Proposition 11 (3a) that (p, idR) is
pullback of (p′, cr) and, since c•

r is monic, that (p′, idH) is pullback of (c•
r ◦p′, c•

r).
Since c•

r ◦ cr = ηR, pullback composition provides the desired result.

We close this section by showing that standard DPO-rewriting with left- and
right-linear rules is a special case of DPO-C-derivations.

Definition 13 (DPO-simulation). The DPO-C-simulation of left- and right-
linear DPO-rule � = (l : K � L, r : K � R) is the triple σ� = (l, ηK , r).

Proposition 14 (DPO-simulation). DPO-C-simulations are DPO-C-rules.

Proof. We have to show the conditions of Definition 7. For this purpose, consider
Fig. 12, where ul and ur are the unique morphisms providing (i)ul ◦ cl = ηL,
(ii) ul ◦ lc = (ηk, l)•, (iii) ur ◦ cr = ηR, and (iv)ur ◦ rc = (ηk, r)•. By Fact 4(1),
(ηk, l)• and (ηk, r)• are monic and, by Fact 6(3), ul and ur are monic. Equations
(i) and (iii) and ul and ur being monic implies that (cl, idL) and (cr, idR) are
pullbacks of (ul, ηL) and (ur, ηR) respectively. Thus, ul = c•

l and ur = c•
r .

L• R•

LC K• RC

L K R

G D H

ul

(ηK ,l)• (ηK ,r)•

lc rc

ur

(PO)m

ηL

cl

(PO)n

l

ηK

r

p

ηR

cr

m•
m′

g h

n• p′

Fig. 12. DPO-rule simulation

Theorem 15 (DPO-extension). If � 〈m〉 and m 〈�〉 are trace and co-match
of a DPO-derivation with linear rule �, then σ�〈m〉 = � 〈m〉 and m 〈σ�〉 = m 〈�〉.

Proof. Consider Fig. 12 where the two bottom pushouts constitute a DPO-
derivation with left- and right-linear rule (l, r). Then there is n• : D → K•

such that (n, idK) is pullback of (n•, ηK) and especially n• ◦ n = ηK . Since
(m, g) is pushout, we obtain morphism m′ : G → LC making the diagram
commutative. Given pullbacks (n, idK) of (n•, ηK) and (l, idK) of (idL, l) and
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the given pushouts (m, g) and (lc, cl) together with the van-Kampen property of
Definition 2, guarantee that (g, n•) is pullback of (m′, lc) and (m, idL) is pullback
of (m′, cl). This last pullback property and ul being monic such that (m′, idG)
is pullback of (ul, ul ◦ m′) implies that ul ◦ m′ = m• by pullback composition
and uniqueness of totalisations. Since (n•, g) is pullback of (m′, lc) and (h, p) is
pushout of (r, n), σ�〈m〉 = � 〈m〉 and m 〈σ�〉 = m 〈�〉.

4 Model Refactorisation - Some Sample Rules

In this section, we demonstrate the applicability of double-pushout rewriting in
context by some sample rules for object-oriented system refactoring [7]. To keep
the examples simple, we use the simplified meta-model M for object-oriented
models defined in Fig. 6.

Figure 13 depicts two first sample rules. The mapping of the morphisms is
indicated by number correspondence. For easy notation, we identify the unde-
fined type of each partial arrow classifier (grey boxes in Fig. 8) with the framing
box which surrounds the respective graphical visualisation of the algebra. We
also implicitly assume that the two (completely undefined) loops on the unde-
fined type are contained in and preserved by the context specification of all rules.
An edge which connects a type inside a picture with the frame is some context
inheritance relation or association, i.e., belongs to LC , C, or RC .

Fig. 13. Extracting abstract type

Figure 13 depicts variants for extracting an abstract type out of a given type.
The first variant on the left refines the inheritance hierarchy by splitting the
matched type “1/2” into an abstract particle “1” and a concrete particle “2”
in the intermediate structure K. The context relations of the split type are
distributed as follows: All target-roles of associations and child-roles of inheri-
tance relations are attached to the abstract particle, all other roles are connected
with the concrete particle. Note the explicit handling of association loops which
also follows this rule wrt. owner- and target-roles. Finally, the rule’s right-hand
side R adds the needed inheritance relation between the two particles. The dif-
ference of the second variant is that the new abstract type is not integrated into
the existent inheritance hierarchy.

Note that both rules formulate a negative application condition, namely that
there are no Inheritance-loops on the refactored type. This shall be true in all
reasonable object-oriented models where the inheritance relation is hierarchical.
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The rules in Fig. 13 read from right to left specify the elimination of super-
fluous types. For these elimination rules to work correctly, the type “1” shall be
abstract. This is a feature that must be added to the model signature in Fig. 6.
We do not describe the details here due to space limitations.

Fig. 14. Introducing proxy

Figure 14 depicts a rule that puts indirection into an object-oriented model by
introducing some proxy-objects [6]. Again the context is distributed as in Fig. 13,
the refactored type, however, is split into three particles, namely “1” which
further manages the resources of the type, “2” which provides abstract access to
‘objects’ of type “1”, and “3” which can be interpreted as an approximation of
the original type. The rule’s right-hand side adds the needed inheritance relations
and the association which allows ‘proxy’ objects to delegate to ‘real’ objects.

Fig. 15. Pulling-up association

Figure 15 describes the shift of the owner-role of an association to a more
abstract type.8 This rule is neither left- nor right-linear. The standard DPO-
solution for this purpose is a linear rule that deletes the association on the
left-hand side and adds a new association on the right-hand side. This rule has
the same effect on the model level. But if there were instanceOf-relations from
the object level to the model level that point to this association,9 the rule in
Fig. 15 preserves all these links while the linear rule deletes them and introduces
a new ‘empty’ association without any links. For details compare also [13].
8 Double-headed context arrows represent a pair of arrows one in each direction.
9 This feature needs to be added in the model signature in Fig. 6.
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Fig. 16. Preserving inheritance hierarchy

Figure 16 demonstrates a useful application of the application conditions
which are built-in in DPO-C-rewriting. These two rules add inheritance rela-
tions carefully, i.e., they keep the inheritance hierarchy cycle-free: A type “2”
can only become new sub-type of type “1” if it has no sub-types itself and a type
“3” can only become new super-type of type “4” if it has no super-types itself.
Since the association context is not important here and the rules are linear, the
asterisk-notation we used in Fig. 16 indicates complete association contexts.10

These examples demonstrate the DPO-C-rewriting can be useful in practical
applications and that it is worthwhile to elaborate more complex case studies.

5 Parallel Independence

In this section, we show that DPO-C-rewriting is not only useful from the prac-
tical point of view. Also from the theoretical perspective, it is promising, since
most results for the DPO-approach [3] are very likely to carry over to DPO-C.
We start here by providing first results wrt. parallel independence.

Parallel independence analysis investigates the conditions under which two
rewrites of the same object can be performed in either order and produce the
same result. Essential for the theory is the notion of residual match: Under which
conditions are two matches mG : L � G and mH : L � H for a rule’s left-hand
side L the same match, if there is a trace (g : D → G,h : D → H)? The DPO-
answer is: mG and mH are the same, if there is mD : L � D with g ◦mD = mG

and h ◦ mD = mH , compare [9]. This answer is not sufficient for DPO-C, since
we need to take the context matches into account as well, i.e., m•

G, m•
D, and m•

H

shall classify the ‘same objects’ the same way. This means that we must require
m•

G ◦ g = m•
D and m•

H ◦ h = m•
D which, by Fact 4(2), is equivalent to requiring

that (idL,mD) is pullback of (mG, g) and (mH , h).11,12

Definition 16 (Residual). Let (g : D → G,h : D → H) be a trace of a direct
derivation and m match for rule σ in G. A match mgh for σ in H is the residual
of m for trace (g, h), if there is morphism mD from the left-hand side L of σ to
D such that (idL,mD) is pullback of (m, g) and (mgh, h), compare Fig. 17.
10 Complete association contexts means e.g., for type “1” in Fig. 16 that there ‘are’ 2

adjacent association pairs from and to type “2” and from and to the undefined type.
11 This condition is identical to the one in [2].
12 In case of a monic trace (g and h are monic), g ◦ mD = mG and h ◦ mD = mH

implies that (idL, mD) is pullback of (mG, g) and (mH , h).
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L L L

G D H

m (PB) (PB)mD

idL idL

mgh

g h

Fig. 17. Residual

The pullback properties uniquely determine the residual, if it exists. Two
derivations of the same object are called independent, if they have mutual resid-
uals.

Definition 17 (Parallel independence). Two direct derivations with rules
σ1 and σ2 at matches m1 and m2 resp. rewriting the same object are parallel
independent, if m1 has a residual for σ2 〈m2〉 and m2 has a residual for σ1 〈m1〉.

The following theorem shows that parallel independent derivations with rules
σ1 and σ2 commute in the following sense: First applying σ1 at its match and
then applying σ2 at the residual results in the same trace as first applying σ2 at
its match and then applying σ1 at the residual.

Theorem 18 (Confluence). If derivations with rules σ1 and σ2 at matches m1

and m2 are parallel independent, then the derivations with the mutual residuals
m

σ2〈m2〉
1 and m

σ1〈m1〉
2 produce the same result, i.e., σ1@m

σ2〈m2〉
1 ≈ σ2@m

σ1〈m1〉
2 ,

and the same trace, i.e., σ2

〈
m

σ1〈m1〉
2

〉
◦ σ1 〈m1〉 = σ1

〈
m

σ2〈m2〉
1

〉
◦ σ2 〈m2〉.13

6 Conclusion

We introduced a conservative extension of linear DPO-rewriting which we call
DPO-C. The “C” indicates that the extension allows explicit handling of the
context of a match. The context specification allows non-linear rules with deter-
ministic and reversible rewrites: Given a match m : L → G for rule σ with
left-hand side L and right-hand side R, the rewrite with σ at m produces a
uniquely determined result H and provides a co-match p : R → H such that the
rewrite with the inverse rule σ−1 at p results in an object isomorphic to G.

The deterministic and reversible behaviour of DPO-C allows to extend well-
known theoretical results. We started the analysis of parallel independence in
this paper. And the explicit handling of context improves the applicability of
the rewrite approach in situations where ‘unknown context’ must be checked
(by some negative application conditions), distributed, or merged. We demon-
strated this mechanism by some examples from system refactoring. Thus, a fur-
ther development of DPO-C seems worthwhile from the practical and theoretical
point of view. Future research can address the following issues:

– Characterising conditions for parallel independence.
13 For a detailed proof, see [14].
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– Extension of the theory for example with respect to sequential independence,
concurrency, critical pair analysis, parallelism, and amalgamation.

– Comparison of the DPO-C-built-in negative application conditions to the
well-known negative application conditions from the literature, e.g., [8].

– Comparison of DPO-C to other reversible approaches e.g., [2].
– Development of a clear and handy visual notation for the rules especially for

the context specification.
– Elaboration of bigger case studies e.g., in the field of model transformation.
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From Hyperedge Replacement Grammars
to Decidable Hyperedge
Replacement Games
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Abstract. We consider correctness of hyperedge replacement grammars
under adverse conditions. In contrast to existing approaches, the influ-
ence of an adverse environment is considered in addition to system
behaviour. To this end, we construct a hyperedge replacement game
where rules represent the moves available to players and a temporal
condition specifies the desired properties of the system. In particular,
the construction of parity pushdown games from hyperedge replacement
grammars results in a decidable class of games.

Keywords: Context-free graph grammars · Game theory
Hyperedge replacement grammars · Pushdown games · Parity games

1 Introduction

Graph transformation systems and graph grammars [5] offer a graphical, yet
precise formalism for modeling a system. The system state is a graph and
state changes are modeled by graph transformations. There are a number of
approaches to proving the correctness of a graph transformation system relative
to conditions, e.g. for nested conditions [8,14] or the μ-calculus [3].

We consider system correctness under adverse conditions, such as interference
from the environment. Once we consider actions of the system and environment
seperately, we require more control over the relative frequency with which system
or environment may act. By modeling system and environment as players of a
game, we limit the number of moves a player is allowed to make.

Games are a natural model for processes under the influence of an adverse
environment and there are many results for solving these games, see e.g. [6]. In
particular, solutions to parity games cover a variety of interesting properties and
can be solved both in the case of finite state spaces and for some infinite state
spaces, such as those that can be represented by a pushdown process [16], i.e. a
pushdown automaton without acceptance features.
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Graph grammars have an infinite state space in general and games defined
over infinite state spaces are not generally decidable.

In this paper, we restrict ourselves to context-free hypergraph grammars, or
more specifically hyperedge replacement (HR) grammars, and construct hyper-
edge replacement (HR) games to use the decidability result for parity pushdown
games from Walukiewicz [16].

Transform

Convert

Synchronize Combine
HR-grammar

player order

temp. cond.

partition

pushdown
process

prioritiesparity

automaton
HR-game

Fig. 1. Construction of a HR game

This process is illustrated in Fig. 1: Given an “ordered” HR-grammar, a tem-
poral graph condition and a player order, we construct a HR-game as follows:

1. Transform the ordered HR-grammar and the temporal graph condition to a
pushdown process, such that the states of the pushdown process are labelled
with the atomic conditions of the temporal graph condition.

2. Convert the temporal graph condition into a parity automaton.
3. Synchronize the pushdown process with the player order and the parity

automaton.
4. Combine the resulting pushdown process, partition function and priority

function to form a HR-game.

The system is said to be correct, if there is a winning strategy for the system
player. By the results of Walukiewicz [16], we can find such a strategy, if the
HR-game is a parity pushdown game.

The remainder of the paper is structured as follows: Sect. 2 introduces ordered
hyperedge replacement grammars and temporal graph conditions. Section 3 pro-
vides a definition for pushdown processes and parity pushdown games. Section 4
presents the transformation of an ordered hyperedge replacement grammar and a
temporal graph condition to a pushdown process. In Sect. 5 a hyperedge replace-
ment game is constructed from the pushdown process by integrating the player
order and generating a priority function from the temporal graph condition.
Moreover the main result is presented: HR-games are decidable. Section 6 covers
related work and the paper is concluded in Sect. 7.

Due to space limitations, the proof for Theorem 2 has been omitted. It can
be found in [12].
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2 HR-Grammars and Temporal Graph Conditions

In this section, we define hyperedge replacement grammars [4,7] and introduce
temporal graph conditions, i.e. graph conditions [8] equipped with temporal
operators. The basis are hypergraphs and hypergraph morphisms. Hypergraphs
are a generalization of graphs where hyperedges are allowed to have a number
of tentacles instead of one source and one target.

Assumption. Let Σ be a finite, ranked alphabet and N ⊆ Σ be a subset of
nonterminal symbols where rank : Σ → N

1 assigns to each symbol a ∈ Σ its
rank rank(a).

Definition 1 (Hypergraph & Hypergraph Morphism). A hypergraph over
Σ is a tuple G = (V,E, att , lab, ext), consisting of a set of nodes V , a set
of hyperedges E, an attachment function att : E → V ∗2, a labelling func-
tion lab : E → Σ and a (possibly empty) sequence ext ∈ V ∗ of pairwise dis-
joint external nodes. For e ∈ E, we set rank(e) = rank(lab(e)) and require
|att(e)| = rank(e)3. A hypergraph is finite if the sets of nodes and edges
are finite. We denote the empty graph as ∅. The components of a hyper-
graph G are denoted as VG , EG , attG , labG , extG , respectively. Furthermore,
EN

G = {e|e ∈ EG : lab(e) ∈ N} denotes the set of nonterminal hyperedges
of G, i.e. hyperedges labelled with nonterminal symbols.

Given two hypergraphs G ,H , a hypergraph morphism f : G → H consists of
functions fV : VG → VH and fE : EG → EH , such that f∗

V (att(e)) = att(fE(e))4

and lab(e) = lab(fE(e)), i.e., morphisms preserve attachments and labels. A mor-
phism is injective, surjective or an isomorphism, if fV and fE are, respectively,
injective, surjective or both.

We use hypergraphs to define rules which replace a hyperedge by a hyper-
graph and connect them along the nodes connected to the hyperedge and the
external nodes of the hypergraph.

Definition 2 (Hyperedge Replacement). A hyperedge replacement rule
r : X::= R consists of a nonterminal label X ∈ N and a hypergraph R over
Σ where rank(X) = |extR|.

Let G,H be hypergraphs, r : X::= R a rule and e ∈ EG a nonterminal
hyperedge with rank(e) = |extR| and lab(e) = X. A derivation or hyperedge
replacement from G to H by the rule r applied to e, written G ⇒r,e H or
G ⇒r H, is the substitution H = G[R/e] of a hyperedge e ∈ EG by R, i.e.,

– VH = VG � (VR \ [extR])5

1
N is the set of all natural numbers, including 0.

2 V ∗ is the collection of all finite sequences over V , including the empty sequence ε.
3 |att(e)| denotes the length of a sequence att(e).
4 For a function f : A → B, the free symbolwise extension f∗ : A∗ → B∗ is defined by

f∗(a1...an) = f(a1)...f(an).
5 � denotes the disjoint union, \ the difference of sets and [extR] denotes the set of

elements of extR.
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– EH = (EG \ {e}) � ER)
– attH = attG|(EG \ {e}) ∪ attR;mod6

– labH = (labG|(EG \ {e})) ∪ labR

– extH = extG

where mod matches external nodes of R to the attachments of e, i.e. mod =
idVH

∪ {[extR(1) → attG(e)(1), ..., extR(rank(e)) → attG(e)(rank(e))}.

Definition 3 (Hyperedge Replacement Grammar). A hyperedge replace-
ment (HR-)grammar is a tuple G = (G0,R) where G0 is the start hypergraph
and R is a finite set of rules.

We extend hyperedge replacement grammars to ordered ones to obtain an
analogue of left-most derivations [9]. For this purpose, we consider ordered hyper-
graphs in which the set of nonterminal hyperedges is ordered.

Definition 4 (Ordered Hyperedge Replacement Grammar). An ordered
hyperedge replacement grammar is a hyperedge replacement grammar with an
ordered start graph and a set of ordered rules.

An ordered hypergraph (G, o) consists of a hypergraph G together with a
bijective function o : EN

G → [1, n]7 (or equivalently a sequence o = e1, e2, ..., en)
where EN

G denotes nonterminal hyperedges in G and n = |EN
G | is the number of

elements in the set.
An ordered hypergraph morphism from (G, oG) to (H, oH) is a hypergraph

morphism f : G → H that respects the order, i.e., for all e, e′ ∈ EG, oG(e) <
oG(e′) implies oH(f(e)) < oH(f(e′)).

A rule r : X::= (R, o) is ordered, if (R, o) is an ordered hypergraph.
An ordered derivation from an ordered hypergraph (G, oG) to an ordered

hypergraph (H, oH) by an ordered rule r : X::= (R, oR) is a derivation from
G to H in which the first nonterminal hyperedge in the order is replaced. The
order of the resulting hypergraph H is obtained by substituting the hyperedge
e1 in the order oG by the order oR.

Notation. For an ordered hypergraph G with o = e1e2...en and a natural number
i ≤ n, by the hyperedge ei we refer to the edge at position i in o and str(G)
produces the sequence of nonterminal labels in the graph in the reverse order of
its hyperedges, i.e. str(G) = XnXn−1...X1 where Xi = lab(ei).

In the following we write graph, edge, rule and grammar instead of ordered
hypergraph, hyperedge, ordered rule and ordered hyperedge replacement gram-
mar and G,H,R are always ordered hypergraphs.

Example 1 (Ordered Hyperedge Replacement Grammar). Consider the grammar
G = (G0,R) with the start graph G0 and rules R = {extend ,wait , switch, delete,

6 The function f |S is the restriction of f to a set S. The symbol ; denotes forward
composition of functions, i.e. f ; g(x) = f(g(x)).

7 [1, n] denotes the set of natural numbers from 1 to n.
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fix} as shown below. The position of a hyperedge in the respective order is
marked by a label 〈i〉 with i ∈ N. Unless otherwise specified, we assume both
the attachment function and the order of hyperedges proceed left to right.

G0: X extend: X Y

〈2〉
X

〈1〉
::=

delete: Y ::=

f ix: Y ::= switch: X ::=

wait: X X::=

Definition 5 (Temporal Graph Condition). A positive condition is of the
form ∃(a : ∅ ↪→ C), where a : ∅ ↪→ C is a morphism into a graph C, short ∃(C).
A positive condition c is satisfied by a graph G, written G |= c, if there exists an
injective morphism q, such that for the morphism iG : ∅ ↪→ G, we have a; q = iG.

Temporal graph conditions are propositional LTL-formulas [13] where positive
conditions are the atomic conditions. We use the usual abbreviations of always
(�) and eventually (♦) operators. For a temporal graph condition φ, the set of
all atomic conditions is At(φ).

For the definition of the semantics of temporal graph conditions, we define
labelled transition systems in the sense of [11] and graph transition systems
analogously to [3].

A labelled transition system over some alphabet consists of a, potentially
infinite, labelled graph with a designated start node and edges labelled over the
alphabet. We refer to the nodes of a transition system as states and the edges as
transitions. A run over a transition system is a sequence σ = σ0σ1σ2... of states
along transitions of the transition system beginning with the start node that is
either infinite or must end in a state without outgoing transitions.

Definition 6 (Graph Transition System). The graph transition system T =
(T, s0) of a grammar G = (G0,R) is a labelled transition system where T is a
tree8 with root node s0 and lab(s0) = G0 where every state s ∈ VT is labelled
with a graph, every transition t ∈ ET is labelled with a rule, and there exists a
transition s

r−→ s′ for states s, s′ ∈ ET and r ∈ R, if lab(s) ⇒r lab(s′).

Notation. Where it is clear from context, we speak of transition systems, rather
than labelled transition systems or graph transition systems.

Satisfaction of temporal graph conditions is defined over graph transition
systems, where atomic conditions are evaluated over state labels.

Example 2 (Temporal Graph Condition). In the following, we use the temporal
graph condition φ = �¬c with the atomic condition c = ∃( ).

8 A tree is a connected, cycle free graph with a designated root node.
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3 Parity Pushdown Games

In this section, we recall the definition of parity pushdown games [16]. We con-
sider two player games, in which one player sys represents actions of a system
and the other player env represents interference from the environment. Push-
down games are defined over pushdown processes, i.e. pushdown automata with-
out acceptence features. We label the transitions of pushdown processes with
rules and define transition systems of pushdown processes as counterparts to
graph transition systems.

Definition 7 (Pushdown Process). Let R be a set of hyperedge replacement
rules. A pushdown process over R is a tuple P = (Q,Γ, q0, winit , δ), where Q is a
finite set of states, Γ is a finite stack alphabet, q0 is the start state, winit ∈ Γ+9

is the initial stack content, and δ ⊆ Q×Γ ×R×Q×Γ ∗ is the transition relation.
A configuration is a pair (q, s), where q ∈ Q is a state and s ∈ Γ+ is the word
called the stack content. The initial configuration is (q0, winit ).

The transition system T (P) = (T, s0) of a pushdown process P is a labelled
transition system where T is a tree with root s0, lab(s0) = (q0, winit ) and there
exists an edge (qi, s · X, r) e−→ (qj , s · w)10 with lab(e) = (r,X,w), qi, qj ∈ ET ,
if there is a corresponding transition (q, r,X) → (q′, w) with q, q′ ∈ Q in the
pushdown process P.

A pushdown transducer PT is a pushdown process with additional input and
output alphabets Σi, Σo and a partial output function λ : Q → Σo.

Notation. We order elements on the stack from left to right, such that the right-
most element is at the top of the stack.

Lemma 1 (Pushdown Store Languages are Regular [2]). Given a push-
down process with a set of final states, the pushdown store language, i.e. the
language of words over Γ on the stack in a final state, is regular.

Given a pushdown process, every priority function induces a parity condition.

Definition 8 (Parity Condition). Given a pushdown process P with state set
Q and a priority function pri : Q → N, the condition Par(pri), with Par(pri) |=
σ if and only if the least priority pri(σi) occurring infinitely often is even for a
run σ = σ0σ1σ2... over T (P), is called parity condition.

A pushdown process along with a partition of its states and a priority function
constitute a parity pushdown game.

Definition 9 (Parity Pushdown Game [16]). A parity pushdown game G =
(P, part , pri) consists of a pushdown process P along with a partition function
part : Q → {sys, env} and a priority function pri : Q → N. A run over the
transition system of P is won by player sys if it satisfies the parity condition
and is won by player env otherwise. A finite run is won by player sys if it ends
in a state of env and there is no applicable move for env and vice versa.
9 Γ+ denotes the set of nonempty sequences over Γ .

10 The symbol · denotes string concatenation.
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A strategy sets the next move for a player; to do so for the infinite state
spaces of pushdown games we use a pushdown transducer.

Definition 10 (Strategy). A strategy for player sys is a pushdown transducer,
which reads moves of env to produce the next move for sys. A winning strategy
is a strategy such that a run σ = σ0σ1σ2... is won by sys, if for each σi where
part(σi) = sys the output function λ produces a move to the state σi+1.

Theorem 1 (Parity Pushdown Games are Decidable [16]). Finding a win-
ning strategy for a parity pushdown game is decidable.

4 From HR-Grammar to Pushdown Process

In this section, we construct a pushdown process from an ordered hyperedge
replacement grammar and a temporal graph condition.

4.1 Simulating a HR-Grammar by a Pushdown Process

To construct a parity pushdown game from a grammar, we first need to con-
struct a pushdown process. Any run over the transition system of the grammar
has a corresponding run using the same rules over the transition system of the
pushdown process. Additionally, the states of the pushdown process are sets of
the atomic conditions of the winning condition which must be satisfied by the
corresponding graphs generated by the grammar.

Definition 11 (Simulation). Let G be a HR-grammar, φ be a temporal graph
condition and P a pushdown process with sets of conditions over At(φ) as states.
P simulates G with respect to φ, if

(iso) there exists an isomorphism iso : Tu(G) → Tu(P) between their unla-
belled transition systems,

(rules) for every transition e in T (G), the transition iso(e) in T (P) is labelled
with the same rule as the edge e in addition to any stack changes, and

(sat) for every state v in T (G) labelled with a graph G and the state iso(v) =
(q, s) in T (P), if G |= c with c ∈ At(φ) then ∃c′ ∈ q : c′ ⇒ c and if c ∈ q then
G |= c.

T (G)

v0

vi

T (P)

(q0, ...)

(qi, s)

iso
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4.2 Partial Conditions

To be able to conclude which atomic conditions hold in a state of the pushdown
process, we track which fragments of the condition are satisfied. We refer to
these fragments as subconditions.

Definition 12 (Subcondition). For a condition ∃(C), the condition ∃(C ′)
with C ′ ⊆ C is called a subcondition of ∃(C). The set of all subconditions
of a condition c is denoted by Sub(c). We write cs  c for cs ∈ Sub(c).

If a condition is satisfied, its subconditions are also satisfied.

Lemma 2 (Subconditions preserve Satisfaction). For a graph G and a
condition c = ∃(C), G |= c implies G |= cs for all cs ∈ Sub(c).

Proof. If G |= c, then there exists an injective morphism q : C ↪→ G. Since cs

is a subcondition of c, Cs ⊆ C and then there exists a morphism a+
s : Cs → C,

such that a+
s ; q is a morphism, implying G |= cs. ��

Subconditions with additional nonterminal hyperedges enable the application
of rules to conditions, we call these partial conditions.

Definition 13 (Partial Condition). Let c = ∃(C) be an atomic condition,
and cs = ∃(Cs) a subcondition of c. A partial condition cp = ∃(Cp) with respect
to c, is a condition with Cs ⊆ Cp, such that there exists a derivation Cp ⇒R′ C+

to C+ ⊇ C by some set of rules R′ where the number of hyperedges in Cp \ Cs

is at most the number of items in C \ Cs. For a condition c, Part(c) is the set
of all partial conditions of c.

∃(∅ C)

Cs

Cp C+
R′

Lemma 3 (Finiteness of Partial Conditions). The set of partial conditions
for a given condition c is finite.

Proof. Follows directly from the finiteness of c and the limit on the additional
hyperedges. ��

4.3 Construction of the Pushdown Process

To create a pushdown process we construct states as sets of partial conditions
with respect to the atomic conditions of φ and use the rules of G to construct
transitions between such states.

Let c = ∃(C) be a partial condition, r : X:: = R a rule, and C ⇒r,e C ′

a derivation. Then c′ = ∃(C ′) is the derived condition. We write c ⇒r,e c′ or
c ⇒r c′.
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∃(∅ C)

C ′

a

a′ r

If a condition is satisfied by a graph, deriving a new condition will also allow
the derivation of a graph that satisfies this condition. For ordered hyperedge
replacement, this is only true if we replace the first nonterminal in the respective
orders.

Lemma 4 (Satisfaction of Derived Conditions). Let G be an ordered
hypergraph and c = ∃(C) a partial condition, such that G |= c by a morphism
q. If q(e1) = e′

1 where e1 ∈ C and e′
1 ∈ G, a derivation c ⇒r,e1 c′ implies a

derivation G ⇒r,e′
1

G′, such that G′ |= c′.

Proof. Satisfaction of c implies the existence of a morphism sat : C ↪→ G. Assum-
ing r replaces an edge e in C, we derive G′ by applying r to sat(e). We can
construct a morphism sat ′ : C ′ → G′ by restricting sat to C \ e and expanding
it to include R ⊆ C ′ → R ⊆ G′. The existence of sat ′ implies that G′ |= c′. ��

In general derived conditions will not be partial conditions. We split derived
conditions by collecting all of their subconditions that are partial conditions
with respect to atomic conditions. Since there are only finitely many partial
conditions, we can use split to ensure that the construction generates a finite
state set. The pushdown process is constructed by repeated application of rules
to partial conditions, such that each rule application mirrors a rule application
to a corresponding graph in the grammars transition system. Therefore, we also
need to ensure that the conditions produced by split have no “gaps” with respect
to the corresponding graphs.

Definition 14 (Split). The condition c = ∃(C) split according to the atomic
condition ct = ∃(Ct), results in the set

Split(c, ct) = {∃(Cu) | ∃(Cp) ∈ Part(ct) ∩ Sub(c) : Cp  Cu  C,

the order oCu
is the smallest uninterrupted subsequence of oC}

For an index i, Split i(c, ct) = {∃(Cu) ∈ Split(c, ct)|edge ei in oC is e1 in oCu
}

and for sets S, St of conditions, Split i(S, St) =
⋃

ct∈St

⋃
c∈S Split i(c, ct).

Example 3 (Split). Let c′ = ∃( Y X ) be a partial condition of the
atomic condition c = ∃( ). A condition c′′ = ∃( Y Y X )
can be derived by applying the rule extend from Example 1 to c′. c′′

however, is not a partial condition, since there are more hyperedges than
there are items missing from c. We collect subcondition cs  c′′ which
are also partial conditions with respect to c, such that Split(c′, c) =
{∃( Y X ),∃( Y Y ),∃( Y ),∃( X )}.
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To determine which conditions correspond to modifiable parts of the graph,
we need to differentiate between conditions that have a satisfying morphism
that matches their first nonterminal to the first nonterminal of the graph and
conditions that do not.

Definition 15 (Accessibly Satisfied). A partial condition c is accessibly sat-
isfied (a-satisfied) with respect to a morphism q : C ↪→ G, if q(e1) = e′

1 where
e1 and e′

1 are the first nonterminals in the order of C and G, respectively, and
is inaccessibly satisfied (i-satisfied) with respect to q, if q(e1) �= e′

1. A partial
condition is a-satisfied (i-satisfied) with respect to a graph G, if the condition
is a-satisfied (i-satisfied) with respect to some morphism C ↪→ G.

The pushdown process is constructed from states consisting of three sets,
a-satisfied conditions A, i-satisfied conditions I, and conditions with multiple
i-satisfying morphism M . Additional states A′, I ′,M ′ are constructed by appli-
cation of rules only to the a-satisfying conditions A. There are two cases:

Rule Creates New Nonterminal Hyperedges. In the first case, the rule creates new
nonterminal hyperedges. The new a-satisfying conditions A′ are the conditions
derived from A which contain the first nonterminal of the right-hand side of the
rule. Additionally, new i-satisfying conditions might be created which must be
added to I ′, as well as potentially be added to M ′ in case they already exist
in I. The new stack content w contains the newly created nonterminals. The
i-th nonterminal is paired with conditions in I ′ that contain the nonterminal at
i − 1 in the order as their first. Additionally, the nonterminals are paired with
conditions in M ′ whenever a new condition was added to M ′. These are the sets
α and μ, respectively.

Rule Creates Terminal Items Only. In the second case, we only produce terminal
items. This will lead to previously i-satisfying conditions becoming a-satisfying,
thus they must be added to A′ in addition to the conditions derived from A.
These conditions were previously recorded in the set α on the stack. Conditions
in α have to be removed from I ′ unless there are multiple i-satisfying morphisms,
i.e. they also occur in M . Lastly, conditions may have to be removed from M if
this has previously been recorded on the stack in the set μ.

Construction 1 (Transition). Let q = (A, I,M) consisting of three sets of
partial conditions be a state of a pushdown process, (X,α, μ) ∈ Γ be a triple
consisting of a nonterminal X and two sets of partial conditions α, μ and r :
X:: = R be a rule.

We construct a new state q′ = (A′, I ′,M ′) and new stack content w from
the set of derived conditions D = {c | a ∈ A : a ⇒r c}. There are two cases for
filtering the conditions D:

(1) str(R) = YnYn−1...Y1

A′ = Split1(D,At(φ))
I ′ = I ∪

⋃n
i=2 Split i(D,At(φ))

M ′ = M ∪
⋃n

i=2(Ii ∩ Split i(D,At(φ)))
w = (Yn, α, μ)(Yn−1, αn−1, μn−1)...(Y2, α2, μ2)(Y1, α1, μ1)
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where αi = Split i+1(D,At(φ)), μi = Ii+1 ∩ Split i+1(D,At(φ)) \ Mi+1, Ij =
I ∪

⋃n
i=j+1 Split i(D,At(φ)) and Mj = M ∪

⋃n
i=j+1(Ii ∩ Split i(D,At(φ)))

(2) str(R) = ε
A′ = {C1

p |Cp  C1
p  C,∃(C) ∈ D,∃(Cp) ∈ Split(D,At(φ))

C1
p contains the first nonterminal in the order oC ,

oC1
p

is the smallest uninterrupted subsequence of oC} ∪ α

I ′ = I \ (α \ M)
M ′ = M \ μ
w = ε

The resulting transition is (q, (X,α, μ), r, w, q′) ∈ δ.

Construction 2 (Pushdown Process P(G, φ)). Given a hyperedge replace-
ment grammar G = (G0,R) and a temporal graph condition φ, P(G, φ) =
(Q,Γ, q0, winit , δ) is the pushdown process where the set of states Q, the stack
alphabet Γ , initial state q0, initial stack content winit ∈ Γ+ and the transition
relation δ are constructed as follows:

States are triples of sets of partial conditions. Let qaux = (∅, ∅, ∅) be a helper
state that is not part of Q and a let (X, ∅, ∅) ∈ Γ . The start state q0 and initial
stack content winit are constructed from qaux according to Construction 1, except
that we assume D = {∃(G0)}. The generated state is q0 and winit = ⊥ · w.

All other states and transitions are constructed by application of Construc-
tion 1 for as long as new states or transitions are generated.

By Lemma 1, we can determine the pushdown store language for each state
by treating that state as the final state of the pushdown process, including
the triples (X,α, μ) that may occupy the top of the stack, which allows us to
construct additional states and transitions.

Notation. States q = (A, I,M) of pushdown processes are represented as shown
on the left below. The upper part of the node contains the set A, while the lower
part contains I and M . Conditions c in the lower part are marked c+ when they
are present in both I and M . We abbreviate the partial conditions and triples
(X,α, μ) ∈ Γ as shown on the tables below.

name condition
c ∃( )
cx ∃( X )
cy ∃( Y )
cyx ∃( Y X )
cyy ∃( Y Y )
cy→ ∃( Y )

name stack symbol
X∅,∅ (X, ∅, ∅)
Xy,∅ (X, {cy}, ∅)
Xyy,∅ (X, {cyy, cy}, ∅)
Xyy,y (X, {cyy, cy}, {cy})
Xyy,yy (X, {cyy, cy}, {cyy})

{cyx, cx}
{cyy, c+y }

To make use of these pushdown processes for solving HR-games, we first need
to show that they simulate the grammars they are constructed from.

Theorem 2 (Simulation). The pushdown process P(G, φ) is finite and sim-
ulates G with respect to φ.
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Proof. By induction over a run γ over T (G) and Lemmas 2 and 4. P(G, φ) is
finite: By Lemma 3 the number of partial conditions is finite and their uninter-
rupted versions are finite, since we have a finite set of rules. ��

Example 4 (Pushdown Process with Partial Conditions). We take the grammar
from Example 1 and the temporal graph condition from Example 2 to construct
the pushdown process partially shown in Fig. 2.

{cx}
∅

{cyx, cx}
{cy}

{cyx, cx}
{cyy, c+y }

∅
∅

{cy}
∅

{cyy, cy}
{cy}

· · ·

{cyx, cx}
{c+yy, c+y }

· · ·

· · ·X∅,∅
w

X∅,∅

X∅,∅
e

Xy,∅Y∅,∅

X∅,∅
s
ε

Xy,∅
w

Xy,∅

Xy,∅
e

Xyy,yYy,∅

Xy,∅
s
ε

Xyy,y
w

Xyy,y

Xyy,y
s
ε

Xyy,y
e

Xyy,yyYyy,y

Y∅,∅
d
ε

Y∅,∅
f
ε

Yy,∅
d
ε

Yy,∅
f
ε

Xyy,∅
w

Xyy,∅

Xyy,yy
w

Xyy,yy

Xyy,∅
e

Xyy,∅Yyy,∅

Xyy,yy
e

Xyy,∅Yyy,yy

Xyy,∅
s
ε

Xyy,yy
s
ε

Fig. 2. Pushdown process with partial conditions

5 Construction of Hyperedge Replacement Games

The pushdown process from the previous section must be modified to gener-
ate a partition of its states and priority function to form a game. To generate
a partition, we need to modify the pushdown process P(G, φ) such that any
state assigned to a player by the partition only has outgoing transitions that
correspond to rules that belong to that player.

Example 5 (Player Order & Division of Rules). We specify the order in which
players may make their moves with a transition system with states labelled
over {sys, env}. In addition we set R(sys) = {extend , delete} and R(env) =
{wait , switch,fix} for the rules introduced in Example 1.

The following transition system ord specifies alternating turns for the players
sys and env:

sys env
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Construction 3 (Restriction). Let P = (Q,Γ, q0,⊥, δ) be a pushdown pro-
cess over R, ord = (T, s0) a labelled transition system over {sys, env}.

The restriction of P by ord is constructed by synchronizing P and ord such
that transitions (qi, (X,α, μ), r, w, qj) ∈ δP are synchronized with edges in ord
that start at a state labelled with sys, if r ∈ R(sys) (analogously for env). The
labels sys, env of states of ord induce a partition part : Q → {sys, env} over the
states of of the modified pushdown process.

∅
∅0

{cx}
∅

0

{cyx, cx}
{cy}

0

{cyx, cx}
{cy}

0

{cyx, cx}
{cyy, c+y }

0

{cyx, cx}
{cyy, c+y }

0

· · · · · ·

{cy}
∅

0

{cy}
∅

0

{cyy, cy}
{cy}

0

· · ·

⊥
-

⊥X∅,∅

X∅,∅
e

Xy,∅Y∅,∅

Xy,∅
w

Xy,∅

Xy,∅
s
ε

Xy,∅
e

Xyy,yYy,∅

Xyy,y
w

Xyy,y

Xyy,y
s
ε

Xyy,y
e

Xyy,yyYyy,y

Y∅,∅
d
ε

Y∅,∅
f
ε

Yy,∅
d
ε

Fig. 3. Final pushdown process

We are left to integrate the temporal graph condition φ, which we translate
into a priority function over the pushdown process.

Note. The result of Walukiewicz [16] assumes a pushdown process with an empty
stack at the start. We can easily modify the pushdown process P(G, φ) by rein-
troducing the auxiliary state qaux used during construction as the new start
state connected to q0 by a transition that creates the initial stack. We set
part(qaux ) = env.

Lemma 5 (Temporal Graph Condition to Parity Condition). There is
a transformation from a pushdown process P and a temporal graph condition φ
to a priority function pri over P, such that an infinite run σ over T (P) satisfies
the parity condition Par(pri) iff the run satisfies φ.

Construction 4 (pri). Given a pushdown process P and a temporal graph
condition φ, we modify P and construct a priority function pri over P.

Convert φ to a Büchi-automaton Aφ [15] and interpret Aφ as a parity automa-
ton where all accepting states have priority 0 and all other states have priority
1. To integrate the priorities into P we synchronize P with Aφ by treating a
transition (qi, (X,α, μ), r, w, qj) ∈ δP with qj = (A, I,M) as if it is labelled c, if
∃c′ ∈ A ∪ I : c  c′ and ¬c otherwise for all c ∈ At(φ). We set pri(qaux ) = 0 and
determine pri for other states by the component from Aφ.
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Proof. [15] establishes this equality for φ and Aφ. The construction moves from
a sequence of transitions in Aφ to a sequences of states in T (P), the additional
state qaux has no influence on the satisfaction of Par(pri). ��
Example 6 (Final Pushdown Process). The final pushdown process for the gram-
mar from Example 1, the temporal graph condition from Example 2 and the
player order from Example 5 is shown in Fig. 3. The partition function part is
indicated by rectangles for env and rounded corners for sys. Additionally, the
priority function pri is shown by a label at the bottom left corner of each state.

With these results, we define hyperedge replacement games.

Definition 16 (HR-Game). Let G be an ordered hyperedge replacement
grammar, ord a transition system with states labelled over {sys, env} and
φ a temporal graph condition. A hyperedge replacement (HR) game G =
(P, part , pri) consists of the pushdown process P(G, φ) derived by Construc-
tion 2 and modified according to ord by Construction 3 and φ by Construction 4.
part and pri are the partition function and the priority function induced by the
latter two constructions.

Theorem 3 (HR-Games). Finding a winning strategy for HR-games is decid-
able.

Proof. Follows directly from the Theorems 1 and 2 and Lemma 5. ��
For the example game we have constructed throughout the paper, we cannot

construct a winning strategy for sys. While there is no state in the restricted
pushdown process that satisfies c, there is a strategy for the environment player
env that forces the game to end in a state in which sys has no available moves.

Remark. (Rules with Application Conditions). The construction can be extended
to rules with application conditions, by adding the application conditions to the
set of atomic conditions. The applicability of these rules is then determined
by checking for a-satisfaction of these conditions and transitions are omitted if
application conditions are not satisfied.

6 Related Work

The combination of graph transformation and games has also been considered
by Kaiser [10], referred to as structure rewriting games. In contrast to our app-
roach rules are applied to all possible matches simultaneously. In addition, the
approach uses a restricted class of graph transformation, called separated han-
dle rewriting. The combination of restricted rewriting rules and simultaneous
application to all matches also leads to decidable games.

Graph Transformation Games have independently been considered by Alab-
dullatif and Heckel [1], in the context of negotiation games. In contrast to our
graph transformation games, players in the negotiation game play with the goal
of minimizing costs rather than a binary win/loss. Consequently the solutions
to these games are not winning strategies for either player, but an equilibrium
for both players.



From HR Grammars to Decidable HR Games 477

7 Conclusion and Future Work

In this paper we have proposed an approach to the verification of the correct-
ness of graph grammars under adverse conditions, i.e. under the influence of an
adverse environment. A hyperedge replacement game, consisting of an ordered
hyperedge replacement grammar, a labelled transition system defining a player
order and a temporal graph condition is introduced as a model for this purpose.
We establish decidability of these games by showing that they can be reduced
to parity pushdown games.

The main contributions of the paper are (1) a new notion of graph trans-
formation games for modeling correctness under adverse conditions and (2) the
identification of a decidable fragment of graph transformation games via a reduc-
tion to parity pushdown games.

It should be possible to extend the construction in such a way that win-
ning conditions can be temporal conditions over any nested condition, since it
should still suffice to consider a collection of finite subgraphs of a state. The main
restriction of the translation to a pushdown process is the necessity for ordered
hypergraph grammars. Dropping this restriction should still allow the construc-
tion of a Petri net, rather than a pushdown process, that similarly simulates a
grammar. Unlike for pushdown games, however, we do not have a corresponding
solution for finding winning strategies for transition systems generated by Petri
nets.

Acknowledgements. We would like to thank Annegret Habel, Reiko Heckel,
Berthold Hoffmann and Mark Minas for helpful feedback on earlier versions of this
paper.
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Abstract. Cheney’s copying garbage collector is regarded as a chal-
lenging test case for formal approaches to the verification of imperative
programs with pointers. The algorithm works for possibly cyclic data
structures with unrestricted sharing which cannot be handled by stan-
dard separation logics. In addition, the algorithm relocates data and
requires establishing an isomorphism between the initial and the final
data structure of a program run.

We present an implementation of Cheney’s garbage collector in the
graph programming language GP 2 and a proof that it is totally cor-
rect. Our proof is shorter and less complicated than comparable proofs
in the literature. This is partly due to the fact that the GP 2 program
abstracts from details of memory management such as address arith-
metic. We use sound proof rules previously employed in the verification
of GP 2 programs but treat assertions semantically because current asser-
tion languages for graph transformation cannot express the existence of
an isomorphism between initial and final graphs.

1 Introduction

Poskitt and Plump developed Hoare-style proof systems for verifying the partial
and total correctness of graph programs and showed that their proof calculi
are sound with respect to the operational semantics of graph programs in the
language GP 2 [12,13]. In these calculi, pre- and postconditions of programs are
so-called E-conditions which extend nested graph conditions with support for
expressions. E-conditions are limited to specify first-order graph properties and
cannot express non-local properties such as connectedness or the existence of
arbitrary-length paths. M-conditions [15] overcome this limitation in that they
express monadic second-order properties of graphs.

In this paper, we present the verification of a graph program that cannot be
proved correct by using E- or M-conditions because its correctness requires to
establish a certain isomorphism between input and output graphs. We implement
Cheney’s copying garbage collector [3] in the graph programming language GP 2
and prove that it is totally correct. Cheney’s algorithm is regarded as a challenge
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for formal approaches to verifying pointer programs. This is because it works
for possibly cyclic data structures with unrestricted sharing which cannot be
handled by standard separation logics [5,16]. In addition, the algorithm relocates
data which requires establishing an isomorphism between the initial and the final
data structure of a program run.

While cycles and unrestricted sharing are not a problem for formal assertions
based on nested graph conditions, the existence of an isomorphism between
initial and final graphs of program runs cannot be expressed with such assertions.
Therefore we treat assertions semantically, without a formal language, but use
sound proof rules that were previously employed in GP 2 verification.

The remainder of this paper is structured is follows: Sect. 2 briefly describes
the graph programming language GP 2, followed by Sect. 3, where we intro-
duce the basic notions of graph program verification. In Sect. 4, we present an
implementation of Cheney’s copying garbage collector in GP 2. In Sect. 5, we
precisely specify the garbage collector by pre- and postconditions. In Sect. 6, we
prove that our implementation is partially correct, will terminate and cannot
fail. In Sect. 7, we argue that our proof of partial correctness is shorter and less
complicated than comparable proofs in the literature. Finally, we conclude and
give some topics for future work in Sect. 8.

2 Graph Programs

We briefly describe a subset of the graph programming language GP 2 that
is sufficient for our case study. A full definition of GP 2, including a formal
operational semantics, can be found in [11]. The language is implemented by a
compiler generating C code [1].

The principal programming constructs in GP 2 are graph-transformation
rules labelled with expressions. For example, the program cheney in Fig. 4 con-
tains the declarations of five rules. Rules operate on host graphs whose nodes
and edges are labelled with heterogeneous lists of integers and character strings.
Variables in rules are typed, where list is the most general type. In particular,
integers and strings are considered as lists of length one. By abuse of terminology,
we call items unlabelled if they are labelled with the empty list.

Besides a list label, nodes and edges may carry a mark which is one of the
values green, blue, grey and dashed (where grey and dashed are reserved
for nodes and edges, respectively). Marks are convenient to highlight items in
input or output graphs, and to record which items have been visited during a
graph traversal. For convenience, we sometimes refer to unmarked nodes as white
nodes.

Moreover, nodes in rules and host graphs may be distinguished as roots. For
example, in the rule copy root of Fig. 4, nodes with a thick black border are
roots. While roots are normally used to restrict the set of rule matches [1], we
use them in this paper to specify reachable subgraphs.

The grammar in Fig. 1 gives the abstract syntax of graph programs in our
subset (without the syntax of rule declarations). A program consists of a number
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of rule declarations and exactly one declaration of a main command sequence.
The category RuleId refers to declarations of rules in RuleDecl. The call of a
rule set {r1, . . . , rn} non-deterministically applies one of the rules whose left-
hand graph matches a subgraph of the host graph. Rule matching is injective
and involves instantiating the variables in rules with host graph labels. The
call fails if none of the rules is applicable to the host graph. A loop command
R! applies the rule set R repeatedly until it fails. When this is the case, R!
terminates with the graph resulting from the last successful application of R.

Prog ::= Decl {Decl}
Decl ::= RuleDecl | MainDecl
MainDecl ::= Main ‘=’ ComSeq
ComSeq ::= Com {‘;’ Com}
Com ::= RuleSetCall [‘!’]
RuleSetCall ::= RuleId | ‘{’ RuleId {‘,’ RuleId} ‘}’

Fig. 1. Abstract syntax of a subset of GP 2 programs

The semantics of graph programs is given in the style of structural operational
semantics [9]. The meaning of a graph program P is the function �P � mapping
an input graph G to the set �P �G of all possible outcomes of executing P on G.
Possible outcomes include the value fail which indicates a failed program run,
and the value ⊥ which indicates divergence. We say that program P can diverge
from graph G if there exists an infinite program run starting from G.

Writing G⊕ for the set of all host graphs extended with the values fail and
⊥, the semantic function � � : ComSeq → (G → 2G⊕

) is defined by

�P �G = {X ∈ (G ∪ {fail}) | 〈P, G〉 +→X} ∪ {⊥ | P can diverge from G}

where → is a small-step transition relation on configurations which is inductively
defined by inference rules. In our setting, a configuration is either a command
sequence together with a host graph, just a host graph or the special element
fail: → ⊆ (ComSeq × G) × ((ComSeq × G) ∪ G ∪ {fail}).

Configurations in ComSeq × G, given by a rest program and a host graph,
represent states of unfinished computations while graphs in G are final states or
results of computations.

Figure 2 shows the inference rules for the GP 2 commands used in this paper.
The rules contain meta-variables for command sequences and graphs, where R
stands for a call in category RuleSetCall (as defined by the grammar in Fig. 1),
P and Q stand for command sequences in category ComSeq, and G,H stand for
graphs in G. The transitive closure of → is denoted by →+. We write G ⇒R H
if H results from host graph G by applying the rule set R, while G 
⇒R means
that there is no graph H such that G ⇒R H (application of R fails).
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[call1] G ⇒R H
〈R, G〉 → H

[call2]
G �⇒R

〈R, G〉 → fail [seq1]
〈P, G〉 → 〈P ′, H〉

〈P ;Q, G〉 → 〈P ′;Q, H〉
[seq2]

〈P, G〉 → H
〈P ;Q, G〉 → 〈Q, H〉 [seq3]

〈P, G〉 → fail
〈P ;Q, G〉 → fail [alap1]

〈P, G〉 →+ H
〈P !, G〉 → 〈P !, H〉

[alap2]
〈P, G〉 →+ fail
〈P !, G〉 → G

Fig. 2. Semantic inference rules

[ruleapp]
|= {c} r {d}
{c} r {d} [ruleset]

{c} r {d} for all r ∈ R
{c} R {d}

[alap]
{inv} R {inv}

{inv} R! {¬App(R) ∧ inv} [comp]
{c} P {d} {d} Q {e}

{c} P ;Q {e}

[cons]
c ⇒ c′ {c′} P {d′} d′ ⇒ d

{c} P {d}

Fig. 3. Proof rules for graph program verification

3 Verification of Graph Programs

As mentioned in the Introduction, we treat assertions semantically and express
pre- and postconditions in ordinary mathematical language (similar to [10]). As
is usual in Hoare logic, we use triples {c} P {d} to state that program P is
partially correct with respect to precondition c and postcondition d. Intuitively,
this means that for every graph G satisfying c, any graph H resulting from
executing P on G will satisfy d.

Given a graph G and some assertion c, we write G |= c if G satisfies c. If, in
addition to partial correctness, P cannot diverge or fail from graphs satisfying
c, the program is totally correct.

Definition 1 (Partial and total correctness [14]). A graph program P is
partially correct with respect to a precondition c and a postcondition d, if for
every host graph G and every graph H in �P �G, G |= c implies H |= d.

P is totally correct with respect c and d if it is partially correct and for every
host graph G such that G |= c, �P �G ∩ {⊥, fail} = ∅.

We write |= {c} P {d} if P is partially correct with respect to c and d.
In Hoare logic, proof rules in the form of axioms and inference rules are used
to construct proof trees decorated with Hoare triples. Proof trees are defined
in Definition 2. The rules we use in this paper are shown in Fig. 3; they are
taken from [12,13,15] except for [rule app], which replaces an axiom involving
the weakest liberal precondition. As our semantic assertions do not come with
an algorithm for calculating the weakest liberal precondition, determining and
proving this condition would unnecessarily inflate our proofs.
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Definition 2 (Proof tree [12]). If {c} P {d} is an instance of an axiom X
then (a) is a proof tree. If {c} P {d} can be instantiated from the conclusion of
an inference rule X, and there are proof trees T1, · · · , Tn with conclusions that
are instances of the n premises of X, then (b) is a proof tree.

(a) X {c} P {d} (b) X
T1 · · · Tn

{c} P {d}
Property App(R) in rule [alap] expresses that the rule set R is applicable. By
the semantics of the as-long-as-possible command, R is not applicable to any
graph resulting from the loop R!

Definition 3 (App(R)). Let R be a set of rules. A graph G satisfies App(R)
if and only if there exists a graph H such that G ⇒R H.

The proof rules we use in this paper are known to be sound with respect to
GP 2’s operational semantics.

Theorem 1 (Soundness of proof rules [12]). Given a program P and asser-
tions c and d,  {c} P {d} implies |= {c} P {d}.

Here  {c} P {d} means that there exists a proof tree with root {c} P {d}.

4 Cheney’s Copying Garbage Collector in GP 2

Cheney’s garbage collector assumes two disjoint, equally large regions of memory
where the first region holds the data structure to be garbage collected and the
second region consists of free cells. The structure that is reachable from the root
cell in the first area is copied to the second region. Subsequently, the complete
first region can be freed by the memory management system. Adopting this
technique, we construct the graph program cheney in Fig. 4 to garbage collect
an input graph. We model the free cells assumed by Cheney’s method as unla-
belled isolated nodes. This is similar to the store model used by [6] for pointer
verification.

As input, our program assumes a graph that can be partitioned into two
subgraphs: the graph to be garbage collected, and the graph that models a region
of free memory cells. We differentiate the two regions by colours. White and grey
nodes are used for the first region while green and blue nodes are used for the
second region. The root cell in the first region is a unique root node. Hence,
garbage collection involves identifying the subgraph reachable from the root
node and copying it to the unlabelled subgraph. In Fig. 5, we give an example
of the execution of cheney.

As in [5,16], we do not model the subsequent freeing of cells in the first
region. This would be easy to achieve by a few rules which change all white and
grey nodes into unlabelled green nodes and delete all edges between these nodes.
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Main = copy root; copy items!; {copy edge, copy loop}!; disconnect!

copy root(x:list)
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Fig. 4. Graph program cheney (Color figure online)
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Fig. 5. A graph before and after the execution of cheney (Color figure online)

5 Case Study: Specification

We assume that the input graph of the program cheney can be partitioned into
two subgraphs as described above. This partition will persist during program
execution. Given an input graph G, we use OldG and NewG to refer to these
subgraphs, where OldG is to be garbage collected.

Definition 4 (OldG and NewG). Given a graph G, we denote by OldG the
subgraph consisting of all unmarked and grey nodes and all edges between them.
Also, NewG denotes the subgraph consisting of all green and blue nodes and all
edges between them.
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The aim of program cheney is to copy to NewG the subgraph of OldG con-
sisting of all nodes and edges that are reachable from the root. We denote this
subgraph by Reach(OldG).

Definition 5 (Reach(G)). Given a graph G with a unique root node v, we
denote by Reach(G) the subgraph of G consisting all nodes and edges reachable
from v by directed paths.

As the garbage collector copies a subgraph of OldG to NewG, its formal spec-
ification by pre- and postcondition needs to require an isomorphism between
Reach(Old) in the input graph and Reach(New) in the result graph. However,
program cheney uses marks to distinguish Old and New and reachable sub-
graphs. Therefore, we introduce graph morphisms that preserve labels, sources,
targets, and roots, but ignore marks.

Definition 6 (Liberal graph morphism). Given graphs G and H, a lib-
eral graph morphism f : G → H is a pair of mappings f = 〈fV : VG →
VH , fE : EG → EH〉 that preserve sources, targets, labels and roots.

Then, an isomorphism is a bijective liberal morphism that reflects root nodes.

Definition 7 (Isomorphism). A liberal graph morphism f : G → H is an iso-
morphism if fV and fE are bijective and if for each node v in G, v is a root if
and only if fV (v) is a root.

Given an input graph Start, program cheney has to produce a graph Result
such that Reach(OldStart) is isomorphic to Reach(NewResult). We specify the pre-
and postcondition of cheney as follows.

Precondition. Each node in Start is either unmarked or green, and the num-
ber of unmarked and green nodes is the same. All edges are unmarked. All
green nodes are isolated and unlabelled. There is a unique root node which is
unmarked.

Postcondition. Each node in Result is either in OldResult or NewResult, and
the number of nodes in OldResult and NewResult is the same. There are no edges
connecting NewResult and OldResult. There is a unique grey root node in OldResult

and a unique blue root node in NewResult. In Reach(OldResult), the nodes are
grey and the edges are dashed, while other items in OldResult are unmarked.
In Reach(NewResult), the nodes are blue and the edges are unmarked, while all
other nodes in NewResult are isolated green nodes which are unlabelled. Moreover,
Reach(OldStart) and Reach(NewResult) are isomorphic.

6 Case Study: Proof

6.1 Partial Correctness

To prove that program cheney is correct with respect to its pre- and postcon-
dition, we consider an arbitrary execution of cheney that transforms an input
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graph Start satisfying the precondition into a result graph Result. Our proof
rests on a property invStart, defined in Definition 8, which holds for Start and
is an invariant for all five rules of cheney (shown in Lemma 2). Thus invStart
holds for each graph in the execution sequence Start ⇒∗ Result.

In particular, for each graph G such that Start ⇒∗ G ⇒∗ Result, invStart
asserts the existence of two isomorphisms: one between OldStart and OldG and
another one between GreyG and BlueG. Here GreyG is the subgraph of G consist-
ing all grey nodes and all dashed edges between them, and BlueG is the subgraph
of G consisting all blue nodes and all edges between them. We then establish that
GreyResult equals Reach(OldResult) while BlueResult equals Reach(NewResult).

Roughly, OldStart and OldG are isomorphic because (1) no rule deletes or
creates nodes, (2) no rule deletes, creates or relabels edges within Old (any edge
created or deleted is incident to a blue node), (3) no rule can change the colour
or label of a grey node, and (4) rules can change unmarked nodes only by turning
them grey (while preserving the label).

Moreover, GreyG and BlueG are isomorphic because (1) GreyStart = ∅ =
BlueStart, (2) copy root creates one-node in graphs Grey and Blue whose nodes
are roots with the same label, and an unlabelled edge connecting Grey and
Blue, called an isomorphism edge, which represents the node mapping of the
isomorphism, (3) copy items extends both Grey and Blue by one edge and its
target node, where the edges have the same label and sources connected by an
isomorphism edge, and creates an isomorphism edge between the target nodes,
(4) copy edge extends Grey and Blue by one edge each, where the edges have
the same label and have their sources resp. targets connected by an isomorphism
edge, (5) copy loop works similar to copy edge except that the new edges are
loops, and (6) disconnect removes an isomorphism edge and hence does not
alter Grey or Blue.

We use these isomorphisms to show that Reach(OldStart), Reach(OldResult)
and Reach(NewResult) are all isomorphic, thus establishing the correctness of
the garbage collector. We remark that verifying the existence of an isomorphism
between (subgraphs of) the start graph and the result graph of a graph program
execution is not possible with the approach of [12–15].

A proof tree for the partial correctness for cheney is provided in Fig. 6.
The assertions in the tree are defined in Definition 8. One of these assertions is
invStart which acts as an invariant of cheney (see Lemma 2). We then give argu-
ments about leaves in the proof tree in Lemma3. The proof tree contains some
applications of the proof rule [cons] whose validity is obvious by propositional
logic, such as c ∧ d ⇒ c. We do not justify such applications, but we prove in
Lemma 4 implications that are not obvious.

Definition 8. Let G be a graph. We define the following assertions:

reachOldGrey : in Reach(OldG), all nodes are grey
reachOldDashed : in Reach(OldG), all edges are dashed
reachNewBlue : in Reach(NewG), all nodes are blue
nogreynode : there is no grey node
nobluenode : there is no blue node
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nodashededge : there is no dashed edge
noconnect : there are no edges between OldG and NewG

invStart : :
(a) every node in G is either in OldG or NewG, where OldG and NewG

have the same number of nodes
(b) there is a unique root node in OldG and at most one root node in

NewG

(c) each edge in G is either unmarked or dashed
(d) all grey nodes are in Reach(OldG)
(e) all dashed edges are in Reach(OldG)
(f) all blue nodes are in Reach(NewG)
(g) all green nodes are isolated unlabelled nodes
(h) there exists an isomorphism f : GreyG → BlueG where GreyG is the

subgraph of G consisting all grey nodes and all dashed edges between
them while BlueG is the subgraph of G consisting all blue nodes and
all edges between them

(k) each edge e connecting OldG and NewG is an isomorphism edge, that
is, an unlabelled and unmarked edge satisfying fV (sG(e)) = tG(e)

(l) OldG is isomorphic to OldStart

connect : if fV (v1) = v2 then there exists an edge from v1 to v2
rootOldUnmark : there exists a unique unmarked root node in OldG

rootOldGrey : there exists a unique grey root node in OldG

norootNew : there is no root node in NewG

rootNewBlue : there exists a unique blue root node in NewG

From now on we denote the pre- and postcondition stated in Sect. 5 by
precondition and postcondition, respectively.

Lemma 1 (Pre- and postcondition). Using the assertions of Definition 8,
the following holds:
precondition ⇔ invStart(a, b, c, g) ∧ nogreynode ∧ nobluenode ∧ nodashededge

∧ rootOldUnmark ∧ norootNew

postcondition ⇔ invStart(a, b, d, e, f, g, h, l) ∧ noconnect ∧ reachOldGrey

∧ reachOldDashed ∧ reachNewBlue

Proof. The first sentence of precondition is equivalent to invStart(a)∧nogrey-
node ∧nobluenode, while the second sentence equivalent to invStart(c)∧no-
dashededge. Then, the next sentence is equivalent to invStart(g), and the last
sentence is equivalent to invStart(b) ∧ rootOldUnmark ∧ norootNew.

For postcondition, note that we write the result graph as Result. The
first sentence in postcondition is equivalent to invStart(a), while the second
sentence is equivalent to noconnect. Then, the next sentence is equivalent to
invStart(b) ∧ rootOldGrey ∧ rootNewBlue. With the support of invStart(a), the
fourth sentence is equivalent to reachOldGrey ∧ reachOldDashed ∧ invStart(d)
∧invstart(e), and the fifth sentences is equivalent to reachNewBlue ∧ invStart(f)
∧invStart(g). The last sentence then equivalent to invStart(h) ∧ invStart(l) ∧
ReachOldGrey ∧ ReachOldDashed ∧ ReachNewBlue. ��



488 G. S. Wulandari and D. Plump

su
b
tree

I
su

b
tree

II
[com

p
]

{X
1 }

c
o
p
y
r
o
o
t
;

c
o
p
y
i
t
e
m
!
;

{
c
o
p
y
e
d
g
e
,

c
o
p
y
l
o
o
p}

!
;

d
i
s
c
o
n
n
e
c
t
!

{Y
1 }

[con
s]

{
p
r
e
c
o
n
d
i
t
i
o
n}

M
a
i
n

{
p
o
s
t
c
o
n
d
i
t
i
o
n}

w
h
ere

X
1
=

i
n
v
S
t
a
r
t ∧

r
o
o
t
O
l
d
U
n
m
a
r
k∧

n
o
r
o
o
t
N
e
w ∧

n
o
g
r
e
y
n
o
d
e ∧

n
o
d
a
s
h
e
d
e
d
g
e ∧

n
o
b
l
u
e
n
o
d
e∧

n
o
c
o
n
n
e
c
t,

Y
1
=

i
n
v
S
t
a
r
t ∧

r
o
o
t
O
l
d
G
r
e
y∧

r
o
o
t
N
e
w
B
l
u
e ∧

r
e
a
c
h
O
l
d
G
r
e
y ∧

r
e
a
c
h
O
l
d
D
a
s
h
e
d ∧

r
e
a
c
h
N
e
w
B
l
u
e∧

n
o
c
o
n
n
e
c
t,

su
b
tree

I
is:

[ru
leap

p
]

{ X
2 }

c
o
p
y
r
o
o
t{X

3}
[con

s]
{X

1}
c
o
p
y
r
o
o
t{X

3}

[ru
leap

p
]

{X
4}

c
o
p
y
i
t
e
m
s{ X

4}
[alap

]
{X

4}
c
o
p
y
i
t
e
m
s
!{X

4
∧

¬
A
p
p
(copy

item
s) }

[con
s]

{X
3}

c
o
p
y
i
t
e
m
s
!{ X

5}
[com

p
]

{X
1 }

c
o
p
y
r
o
o
t
;

c
o
p
y
i
t
e
m
s
! {X

5}

w
h
ere

X
2
=

i
n
v
S
t
a
r
t ∧

r
o
o
t
O
l
d
U
n
m
a
r
k∧

n
o
r
o
o
t
N
e
w∧

n
o
d
a
s
h
e
d
e
d
g
e∧

n
o
c
o
n
n
e
c
t,

X
3
=

i
n
v
S
t
a
r
t ∧

r
o
o
t
O
l
d
G
r
e
y∧

r
o
o
t
N
e
w
B
l
u
e∧

r
e
a
c
h
N
e
w
B
l
u
e∧

n
o
d
a
s
h
e
d
e
d
g
e∧

c
o
n
n
e
c
t,

X
4
=

i
n
v
S
t
a
r
t ∧

r
o
o
t
O
l
d
G
r
e
y∧

r
o
o
t
N
e
w
B
l
u
e∧

r
e
a
c
h
N
e
w
B
l
u
e∧

c
o
n
n
e
c
t,

X
5
=

X
4

∧
r
e
a
c
h
O
l
d
G
r
e
y,

an
d

su
b
tree

II
is:[ru

leap
p
]

{X
5}

c
o
p
y
e
d
g
e{X

5}
[ru

leap
p
]

{X
5}

c
o
p
y
l
o
o
p {X

5}
[ru

leset]
{X

5}{
c
o
p
y
e
d
g
e
,
c
o
p
y
l
o
o
p}{ X

5}
[alap

]
{X

5}{
c
o
p
y
e
d
g
e
,
c
o
p
y
l
o
o
p }

!{X
5∧¬

A
p
p
( {

c
o
p
y
e
d
g
e
,
c
o
p
y
l
o
o
p})}

[con
s]

{X
5}{

c
o
p
y
e
d
g
e
,
c
o
p
y
l
o
o
p}

! {X
6}

[ru
leap

p
]

{ X
7}

d
i
s
c
o
n
n
e
c
t{X

7 }
[alap

]
{X

7}
d
i
s
c
o
n
n
e
c
t
! {X

7∧¬
A
p
p
(d
i
s
c
o
n
n
e
c
t )}

[con
s]

{X
6}

d
i
s
c
o
n
n
e
c
t
!{ Y

1}
[com

p
]

{ X
5}{

c
o
p
y
e
d
g
e
,
c
o
p
y
l
o
o
p}

!
;

d
i
s
c
o
n
n
e
c
t
!{Y

1}

w
h
ere

X
6
=

X
5

∧
r
e
a
c
h
O
l
d
D
a
s
h
e
d,

X
7
=

i
n
v
S
t
a
r
t ∧

r
o
o
t
O
l
d
G
r
e
y∧

r
o
o
t
N
e
w
B
l
u
e ∧

r
e
a
c
h
N
e
w
B
l
u
e ∧

r
e
a
c
h
O
l
d
G
r
e
y ∧

r
e
a
c
h
0
l
d
D
a
s
h
e
d ,

Fig. 6. Proof tree for partial correctness of cheney



Verifying a Copying Garbage Collector in GP 2 489

Lemma 2 (invStart is invariant for all rules). The following holds:

|= {invStart} copy items {invStart} |= {invStart} copy loop {invStart}
|= {invStart} copy edge {invStart} |= {invStart} disconnect {invStart}
|= {invStart ∧ norootNew} copy root {invStart}

Proof. We proof the lemma by checking each point of invStart.

(a) The application of any rule in cheney does not add or remove any node. It
may change the colour of a node from unmarked to grey or from green to
blue, which does not change the number of vertices in OldG and NewG.

(b) Changes in root node only shown in copy root, which change unmarked
root node to grey root node and add a blue root node. This means the
number of root nodes in OldG never changes after any rule application,
while the number of root nodes in NewG can increase from zero (because of
norootNew) to one after the application of (copy root), but never changes
after the application of other rules.

(c) Every edge in each rule in the lemma is either unmarked or dashed. There-
fore, for all rules in the lemma, since there is no other marks for edges exists
before a rule application, they must not exist after the rule application.

(d) We only give the proof for copy items and copy root as the other rules do
not change grey nodes and the triples must hold. For copy root, the rule
change an unmarked root node to a grey root node. From (b) we know that
there is only one root node in OldG, which implies there is no other root
node than this new grey root node. The new grey root node is reachable
from itself. Then for copy items, the rule change an unmarked node, which
is reachable from a grey node, to grey. Note that the existing grey node is
reachable from the root node because invStart holds before rule application.
This means the new grey node is reachable from the root node as well.

(e) We can see that in every rule in the lemma, if there exists a dashed edge
then its source and target must be grey. Since grey nodes are in Reach(G),
dashed edges must also be in Reach(OldG).

(f) Similar to the proof for (d).
(g) There is no rule in the lemma transform an isolated unlabelled green node

into a green node that incident to an edge or not unlabelled.
(h) In every rule in the lemma, a production of a new grey node is always

accompanied with a production of a new blue node of the same label. A
new dashed edge also accompanied with a production of a new edge between
blue nodes, and the label of their source node (or target node) is always the
same. Then, the new grey node can map to the new blue node, and the new
dashed edge can map to the new edge as an addition to the morphism f .
The mappings are isomorphism as they preserve sources, targets, labels, and
root.

(k) The edge between Old and New can be inserted only by rules copy root and
copy items. This means that the edge must be an isomorphism edge.

(l) Every rule in the lemma does not add or delete any unmarked or grey
nodes, or edges between them. Modification of these elements exists, where
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unmarked nodes can transform into grey nodes and unmarked edges can
transform into dashed edges while labels are still preserved. However, the
marks indicate no changes in area (New or Old) membership, and there are
no changes in adjacency. Hence, sources, targets, and labels are preserved. ��

Lemma 3. For assertions X2, X3, X4, X5, X7 as defined in Fig. 6, the following
holds:

(1) |= {X2} copy root {X3} (4) |= {X5} copy loop {X5}
(2) |= {X4} copy items {X4} (5) |= {X7} disconnect {X7}
(3) |= {X5} copy edge {X5}

Proof. Recall that by Lemma 2, each rule preserves invStart.

(1) We can see that the application of copy root preserves the satisfiability of
nodashededge. The assertion rootOldUnmark in the precondition guarantees
rootOldGrey by the construction of copy root. Then because the rule cre-
ates a new rooted node in the New subgraph, norootNew yields rootNewBlue
after the rule application. connect must holds because the new edge must
be the only one connecting the two areas as noconnect holds in the precon-
dition. It also guarantees reachNewBlue because in New subgraph, the new
blue root node is an isolated node, so it is the only node that is reachable
from the root node.

(2) We can see that copy items does not change any root, grey, or blue node,
so it preserves rootOldGrey ∧ rootNewBlue as well. Then, connect asserts
there exists an edge between v1 and v2 for all v1 and v2 such that fv(v1) =
v2. From invStart, we know that v1 is a grey node and v2 is a blue node.
copy items yields a new grey and blue node with the same label and there
is an edge between them. Hence, the new edge must be an isomorphism edge
so that connect is preserved. The rule copy items also changes the number
of blue node, so we will need to see how it affects reachNewBlue. Follows
from point (f) of invStart, the blue node in the left-hand side of copy items
must be in Reach(NewG). Therefore, the new blue node in the right-hand side
is in Reach(NewG) because the new blue node is reachable from the existing
blue node, so that reachNewBlue still holds.

(3) Because there are no changes in nodes, copy edge preserves rootOldGrey
∧ rootNewBlue. The adjacency between two grey nodes and between a grey
and a blue node are not changed by copy edge, so connect ∧ reachOldGrey
still holds. copy edge adds new edge between two blue nodes. However, since
the two are initially are in Reach(NewG) so that it does not change the
condition of ReachNewBlue.

(4) The rule does not add or remove any node, also any edge between two
nodes, so it preserves rootOldGrey ∧ rootNewBlue ∧ reachNewBlue ∧
reachOldGrey ∧ connect.

(5) Because disconnect does not change any node, also any edge between same-
coloured nodes, it preserves rootOldGrey∧rootNewBlue∧reachNewBlue∧
reachOldGrey∧reachOldDashed. ��
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Lemma 4 (Validity of implications). For assertions X1, X4, X5, X6, X7,
Y1 as defined in Fig. 6, the following holds:

(1) precondition ⇒ X1 (4) X5 ∧ ¬App(copy loop) ⇒ X6
(2) Y1 ⇒ postcondition (5) X4 ∧ ¬App(copy items) ⇒ X5
(3) X5 ∧ ¬App(copy edge) ⇒ X6 (6) X7 ∧ ¬App(disconnect) ⇒ Y1

Proof. (1) We will show that precondition in Lemma 1 implies X1. In X1, we
have additional conjunction point (d), (e), (f), (h), (k), and (l) of invStart. Point
(l) is clearly satisfied as G is Start. Then the other points must hold because
nogreynode ∧ nobluenode ∧ nodashedge implies the nodes or edges that must
satisfies certain requirement do not exist so nothing negate those points. Then,
noconnect holds because New area only consists of isolated nodes.

(2) By simplification, it is clear that Y1 implies postcondition.
(3, 4) Similar as above, the non-applicability of copy edge and copy loop

implies that there is no unmarked edges (including loops) where its source and
target is a grey node. Therefore, reachOldGrey implies all nodes in Reach(OldG)
are grey and the non-applicability implies that edges between these nodes are not
unmarked, i.e. all edges between these nodes are dashed so that reachOldDashed
holds. Hence, X6 holds.

(5) connect and isomorphism in invStart(h) assert that each grey node is a
source for an edge where a blue node with the same label as the grey node is
the target. rootOldGrey implies the existence of grey node. invStart also implies
that if there exists an unmarked node, then there must exist an isolated node, as
the number of grey and unmarked nodes equal to the number of blue and isolated
green nodes while there is a bijective function from grey nodes to blue nodes.
Therefore non-applicability of copy items implies that there is no edge from a
grey node to an unmarked node, which means unmarked nodes are not reachable
from grey nodes. Then because invStart asserts grey nodes are reachable from
the start node in Old area, the unmarked nodes must not reachable from the
start node so that reachOldGrey holds. Hence, X5 holds.

(6) Non-applicability of disconnect implies there are no edges between any
grey nodes and any blue nodes. invStart implies that edges connecting OldG

and NewG are only edges incident to grey and blue nodes. Therefore, the non-
applicability implies OldG and NewG are not connected which means noconnect
holds so that Y1 holds. ��

6.2 Total Correctness

A graph program P is totally correct with respect to a precondition c if the
graph program is partially correct, also will not fail or diverge, with respect to
c [14]. We have shown that the program cheney is partially correct, so we only
need to show that cheney cannot fail or diverge.

Let us recall cheney at Fig. 4. The command sequence in the program consists
of one rule set call and four loop commands. Precondition clearly stated the
existence of an unmarked root node. Then, because precondition guarantees
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the same number of unmarked and green nodes, there must exists at least one
green node as we have an unmarked root node. Therefore, the match of the left-
hand side of copy root is guaranteed by precondition so it will not fail. By
the semantic of loop command, the other commands in the sequence will not fail
either so that the absence of failure in the execution of cheney is guaranteed.

The rule copy root is only applied once, so it will not diverge. For loop com-
mands, elimination of an element is clearly can guarantee the absence of diver-
gence. The rule copy items, copy edge, copy loop, and disconnect elimi-
nate unmarked nodes, unmarked edges between two grey nodes, unmarked loops
on grey nodes, and edges between grey and blue nodes respectively.

7 Related Work

In this study, we implement Cheney’s copying garbage collector [3] in GP 2 and
reason about it. Several works in verification of Cheney’s algorithm stated the
difficulties in verifying the algorithm, such as in reasoning about reachability in
graphs [8] and verifying programs involving cyclic data structures.

Torp-Smith et al. [16] is the extended version of [2]. In the study, they extend
standard separation logic so that it can be used in cyclic data structures. Some
remarks are stated to show the advantage in using local reasoning for the ver-
ification, such as ensuring an assignment is not affecting some assertions. The
isomorphism between data structures from two different points in time; before
and after a program execution; is also introduced in the study. Again, separating
conjunction is used to reason about isomorphism as the update of bijective func-
tion can be seen in local reasoning. However, we think their proof is complicated
as there are so many rules involved yet the validity of the rules is not provided.
Moreover, there are 57 pages in the journal paper to discuss the verification of
Cheney’s garbage collector. They use about 48 triples in the proof, but reasoning
about each step takes a lot of work as well.

In McCreight’s PhD thesis [7], they use the definition of a morphism from
[16] and study about mechanised verification of Cheney’s algorithm. They also
use separation logic for their verification. Their proof is detailed as they see all
possible cases to mechanise the verification, but they use various lemmas, and it
is not clear how the lemmas are proved. The proof is separated into five parts.
The verification of each part requires between one and seven pages. However,
to fully understand the verification, we need to understand the specification of
each part which is not more concise than the verification itself. In total, there
are about 50 pages of the thesis that deal with Cheney’s algorithm.

This may result from the level difference in the language, as they use low-
level programming and we use a programming language that abstracts from
details of memory management such as address arithmetic. The other studies
use separation logic for local reasoning in the verification. However, because
sharing mostly exists in graph problems including garbage collector, they need
to extend separation logic so that it can be used in the verification of Cheney’s
algorithm. The extension itself is not easy, and proofs following this extension
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is complex. In contrast, there is no need for us to extend the existing proof
calculus for reasoning about our graph program. By using the existing proof
calculus, which is sound in the sense of partial correctness, we are able to show
verification of cheney in a simple way with clear justification for each step of
verification.

Another extension of separation logic for the verification of Cheney’s garbage
collector can be found in [5]. The paper introduces the notion of sharing in sepa-
ration logic, which is called ramification. This allows local reasoning while global
effects are still accounted for when they are required, enabling reasoning about
programs that manipulate data structures with unrestricted sharing. Different
from [2,16], the paper uses inductive graph predicates and does the reasoning
on the level of mathematical graphs. It is claimed that the verification is more
concise than in other work. This is indeed the case as there are only about two
pages to discuss Cheney’s garbage collector and its verification. However, we find
it difficult to see the reasoning about implications given in the proof. In addition,
one needs to understand the intricate theory about ramification and its use in
verification.

8 Conclusion and Future Work

We have implemented Cheney’s copying garbage collector in GP 2 and veri-
fied the program using Hoare logic. To be compared to the previous work we
described in the previous section, they use local reasoning and argue that this
helps them so that their reasoning is less complicated [16]. To be compared with
our work, the use of marks in our program implicitly helps us in separating prop-
erties that are not affected as we can focus on structures with specific marks.
Similarly, the update of bijective function in our case can be seen with the use
of marks.

We show a proof tree for the partial correctness of the program, and only
from this, we argue that the proof is more straightforward than other proofs
that have been done for the Cheney’s algorithm. Moreover, in our work we use
proof rules that are proven to be sound to connect one triple to another. But
in other literature about verification of Cheney’s algorithm, they do not have
a clear reasoning about soundness of proof rules they use. Moreover, from the
proof sketch, we only use 22 triples while the proof sketch in [16] has about 48
triples. This shows how concise our proof if we compare to theirs.

Our proof is more concise than others partly because we still use arbitrary
mathematical language for the assertions, unlike others that have defined formal
assertions for this. Although there are E-conditions [12] that can be used to
express properties of graphs in graph programs, we still need to extend this. We
need an assertion that can describe a condition between two graphs that exist at
a different point in time, but E-condition we have now only expressed the graph
that exists at one point in time. Moreover, E-condition that based on first-order
logic is not enough to represent properties we need, e.g. the existence of two area
Old and New. M-condition [15] can cover this, but the formal definition of this is
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yet to be defined. However, none of these can be used to express the isomorphism
between two graphs that exist in different time. In the future, we plan to look
the transduction in monadic second-order logic [4] and have assertion language
that can express isomorphism between two structures.
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Abstract. Model-based testing (MBT) is the process of generating test
cases from specification models representing system requirements and
the desired functionality. The generated test cases are then executed on
the system under test in an attempt to obtain a pass or fail verdict.
While different MBT techniques have been developed, only a few target
the real-world industrial embedded system domain and show evidence on
its applicability. As a consequence, there is a serious need to investigate
the use of MBT and the evidence on how modeling and test generation
can improve the current way of manually creating test cases based on
natural language requirements. In this paper, we describe an on-going
investigation being carried out to improve the current testing processes
by using the MBT approach within an industrial context. Our results
suggest that activity and structure diagrams, developed under MBT,
are useful for describing the test specification of an accelerator pedal
control function. The use of MBT results in less number of test cases
compared to manual testing performed by industrial engineers.

Keywords: MBT · Systems engineering · Test cases · Modeling

1 Introduction

Model-based testing (MBT) is an approach of automatically designing test cases
based on behavioral models of system requirements [3]. These models represent
the expected behaviour of the system under test (SUT). The testing process
mainly consists of three high-level steps namely, creation, execution and evalu-
ation of a test case. The test case creation is the most important part of this
process as it involves the design of the preconditions, test steps and the expected
output. The test case creation is a challenging activity and it has a direct impact
on the ability to find faults and the quality of the resulting product. MBT auto-
mates the test creation by using abstract models developed at an earlier stage
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of the development process and promises to be a more efficient and effective
method than manual testing [1,2].

In this study we present the results of an investigation at VCE (Volvo CE1),
the stakeholder’s requirements, needs, and concerns written in natural language.
Manual test cases are manually created using these requirements based on the
test engineer’s domain knowledge and experience. In Fig. 1, we illustrate the
overview of how MBT differs in its high-level process to manual testing.

Fig. 1. Overview of MBT test case creation method and the current manual testing
practice (NL stands for natural language).

We describe the modelling and test generation process using Conformiq Cre-
ator as well as an exploratory comparison between manual testing and MBT in
terms of number of test cases and test goal categories. The goal is to facilitate
the use of automated test case creation using models of the system specification
and show its applicability. We demonstrate how the MBT process is used (as
described in Fig. 1) for modeling a realistic function controlling the ‘Accelerator
Pedal’ using activity diagrams (i.e, to specify the actions) and structure diagrams
(i.e, to visualize the possible set of input and output parameters used). These
diagrams are used by the MBT tool (Conformiq Creator2) to automatically gen-
erate test cases. Based on our initial investigations, we report our findings as
well as point to future work.

2 Background

The study evaluates MBT use in an industrial scenario using a system provided
by VCE. In this company, a management solution for systems engineering and
1 Volvo Construction Equipment AB, Sweden.
2 https://www.conformiq.com/.

https://www.conformiq.com/
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software development (simply referred as the SE-Tool) is used as an adaption
of the commercial tool Systemweaver3. This solution is a generic system mod-
elling solution that supports the use of models (e.g., EAST-ADL4 standard for
automotive domain) and is a collaborative environment with support for sys-
tem development. In this study we focus on the Complete Analysis Function
(CAF) implemented in the SE-Tool framework and representing the functional
architecture (i.e., the analysis level) of the Electrical and Electronic (E2E) con-
trol system w.r.to corresponding machine feature.

The CAF acts as a container for a collection of Analysis Functions (AF)
and Function Devices (FD). An analysis function specifies a required function
(within the E2E system) as a black-box mapping of inputs to outputs and a
functional device (FD) that specifies the interface to other sub-systems, sensors
or actuators. The HMI functional device is a special kind of functional device
that is intended to be used for the operator interface; it defines components
such as levers, switches and buttons for the operator interface. The SE-tool also
provides the graphical overview of a CAF by showing all inputs and outputs as
well as the interface with other subsystems.

Fig. 2. View of Complete Analysis Function (CAF) for Accelerator Pedal function

The CAF function for the ‘Accelerator Pedal ’ is shown in Fig. 2. The purpose
of this function is to evaluate pedal position requested from the operator (per-
son who operates a machine through an appropriate interface). The inputs and
outputs specified for the function are described, in terms of interface, as follows:

3 http://systemweaver.se/.
4 We refer the reader to the standard for further details: http://www.east-adl.info/.

http://systemweaver.se/
http://www.east-adl.info/
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– Input Parameters: Accelerator Pedal Primary Position, Accelerator Pedal
Secondary Position, Machine Speed Limitation Control, and AutoDig Request.
The values of both Accelerator Pedal Positions, primary and secondary, are
obtained form the two sensors attached to the “Acceleration Pedal”. On the
other hand, the Machine Speed Limitation function provides Machine Speed
Limitation Control values and the AutoDig function provides the AutoDi-
gRequest values.

– Output Parameters: Accelerator Pedal Primary Position, Evaluated Accel-
erator Pedal Position Unlimited, Evaluated Accelerator Pedal Position, and
Malfunctioning Accelerator Pedal value. In a nutshell, the “Accelerator Pedal”
function translates the accelerator request from the operator into the corre-
sponding“propulsion force request” which is passed on to and finally actuated
by the Drive-Line System (DLS).

Fig. 3. An activity diagram showing the Double Erroneous Accelerator Pedal behavior.

3 The Modeling Approach

As shown in Fig. 1, in this paper, we describe a modeling approach to develop
test models that enables automatic test case generation. The first step of the
approach is to create, albeit manually (in future to be partly automated based on
requirement models) a model from the CAF-based function specifications. Essen-
tially, two types of models are created, namely, activity diagrams (i.e., represent-
ing behavioral models) and structure diagrams (i.e., representing a combinatorial
model). We note here, that the structure diagram is limited to the input and
output specifications. These diagrams created for the Accelerator Pedal function
are described as follows:
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– Activity diagrams: The activity diagram shown in Fig. 3 specifies the sys-
tem behavior corresponding to the “Double Erroneous Accelerator Pedal”
state of Accelerator Pedal. In the first activity node all input values are ini-
tialized and saved in the corresponding data objects. The value of AutoDi-
gRequest is checked if its value falls out of range. In case this is true, the
variable is reset in the next state. Similarly, Machine Speed Limitation Con-
trol value is adjusted. In addition, the Accelerator Pedal Primary Position
and Accelerator Pedal Secondary Position are checked. If both values are out
of range the output is set accordingly.

– Structure Diagram: The structure diagram as shown in Fig. 4, is created
based on the Accelerator Pedal CAF for defining the interfaces available for
testing. Firstly, the inputs and outputs of the function are identified. The
Accelerator Pedal Input Signal interface contains several message objects and
each message object corresponds to a specific input of a function. The message
objects in the Accelerator Pedal Output Signal interface specifies the function
outputs.

Fig. 4. Structure diagram for Accelerator Pedal

In the next section, we describe the main results obtained using the modelled
diagrams in the context of generating test cases as well as a comparison between
MBT and manual test cases.

4 Preliminary Results

The model of the Accelerator Pedal function is created manually and we val-
idated the models by performing informal interviews with VCE test engineers
responsible for testing the function under test to ensure model correctness and
consistency. As a next step, the model is used as input to the Conformiq Creator
tool to automatically generate test cases covering the created activity diagrams.
Typically, the representation of a manually created test case in the SE-Tool is
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performed in the test instruction language version 2 (TIL-2)5 format to facilitate
the use of an automated test execution and evaluation environment. The test
cases derived from the proposed MBT approach are exported to a compatible
format (i.e., TIL-2). An example of a generated test case is shown in Table 1.

Table 1. Example of the test case derived in the TIL2 format compatible with the
VCE test environment

S.No. Action Expected result

1 Accelerator Pedal Primary Position = 101;

Accelerator Pedal Secondary Position =

−1; AutoDig Request = −1; Machine

Speed; Limitation Control = -1

Accelerator Pedal Primary Alarm =

ALARM; Accelerator Pedal Secondary

Alarm = ALARM; Malfunctioning

Acceleration Pedal = MALFUNCTION;

Evaluated Accelerator Pedal Position = Do

not Care; Evaluated Accelerator Pedal

Position Unlimited = −1; Diff Alarm

Accelerator Pedal = NORMAL

In order to contribute to the state-of-art, we compared MBT test cases with
manual test cases created by industrial engineers. We conducted a preliminary
empirical investigation in terms of covering different test goals and number of test
cases. Together with several test engineers from VCE we defined six categories
of test goals used when performing rigorous manual testing. These six categories
are shown in Table 2 and cover a set of realistic testing goals for the function
under test. Our results suggest that tests derived using the MBT approach are
similar in nature and can be used to cover all test goal categories at a lower
cost in terms of number of test cases created per each category; just for one of
these categories (i.e., Erroneous Detectors (Single and double)) the number of
test cases between the two techniques is similar. Overall, the total number of
test cases created using MBT (i.e., 8 TCs) is significantly lower than for manual
testing (i.e., 77 TCs). We have also found that these 8 TCs belong to multiple
categories. A more detailed efficiency and effectiveness measurement would be
needed to obtain more confidence in the results obtained in this study.

Table 2. Test goal category and number of test cases (TCs) comparison between
manually created test cases by industrial engineers and MBT-based test cases.

Test goal category Manual TCs MBT-based TCs

Normal operation 13 3

Differing detectors 6 1

Pedal position output 8 2

Erroneous detectors (single and double) 5 3

Erroneous autodig request and machine limitation control 22 3

All input erroneous combination 23 4

Total 77 8

5 ISO/IEC/IEEE 29119-3:2013; Software and systems engineering – Software testing
– Part 3: Test documentation.
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5 Conclusions and Future Work

In this paper, we present an investigation into the use of model-based testing in
the embedded system context. We use the Conformiq Creator tool to model the
behavior and structure of a function controlling the accelerator pedal provided
by Volvo CE. We automatically create test cases covering the model and compare
these test cases in terms of test goal coverage and number of test cases to assess
the applicability of MBT in this context. The approach has shown encouraging
results. As future work, we plan to also investigate the efficiency and effectiveness
of MBT test-case generation. We plan to semi-automatically generate diagrams
out of CAF specifications to reduce the effort of creating test models. In addition,
we need to investigate the use of complex data types and timing aspects into
the test model, since Conformiq Creator does not support decimal numbers or
how to directly represent timing requirements.

Acknowledgments. This work is partially funded from the Electronic Component
Systems for European Leadership Joint Undertaking under grant agreement No. 737494
and The Swedish Innovation Agency, Vinnova (MegaM@Rt2). We would like to thank
Kimmo Nupponen and the Conformiq team for their support.
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Abstract. Computer-aided development of complex cyber-physical sys-
tems usually takes place in engineering teams with several different
expert roles using a range of various software tools. This results in numer-
ous artifacts created during this process. However, these artifacts com-
monly contain plenty of overlapping information. Therefore, the edit-
ing of one model by a developer may lead to inconsistencies with other
models. Keeping these artifacts manually consistent is time-consuming
and error-prone. In this paper, we present an automated strategy to
ensure consistency between two widely used categories of software tools
in electrical engineering: an electronic design automation application for
designing printed circuit boards (PCBs) and an electronic circuit simu-
lator tool to predict system behavior at runtime.

Coupling these two types of tools provides the developers with the
ability of efficiently testing and optimizing the behavior of the electric cir-
cuit during the PCB design process. For the proper preservation of con-
sistency, assigning the model elements correctly between different tools
is required. To avoid the disadvantages of ambiguous heuristic matching
methods, we present a strategy based on annotated identifiers in order
to ensure a reliable assignment of these model elements. We have imple-
mented the described approach by using Eagle CAD as PCB software and
Matlab/Simulink with the Simscape extension as the simulation tool.

Keywords: Cyber-Physical Systems (CPSs)
Consistency management · Electronics development

1 Introduction

Cyber-physical systems (CPSs) consist of a variety of mechanical, electronic
and software components with increasing complexity. For example, more than
100 control units (ECUs) are installed in modern vehicles. The total number of
lines of code in such systems can be up to 100 million, while now several thou-
sand software-based functions are realized in premium cars [2]. This complexity,
together with the cross-domain property of CPSs, poses a particular challenge
for the development process.
c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 506–511, 2018.
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Consequently, a whole range of different software tools are used for the devel-
opment of such systems. A common programming environment for the design of
mechatronic systems is, for example, Matlab/Simulink. For the creation of elec-
tronic circuit boards, tools such as Eagle, Altium or OrCad have proven them-
selves. Program packages for mechanical CAD designs are Catia, SolidWorks or
AutoCAD. Furthermore, there are established tools for software development,
multi-body simulations, thermal analysis, flow simulations and many more. It
should be noted that a large part of the tools used for the development of CPSs
are proprietary closed-source programs. The models created with such programs
usually have overlapping information. For example, the description of a specific
electrical circuit is used several times in different tools. It is crucial that the
shared information of these models is consistent, otherwise, there may be delays
during development or errors in later operation. Manual consistency manage-
ment is very time-consuming and prone to error with an increasing number of
complex models. Therefore, the use of automated methods is necessary, which
reliably ensure the consistency and are easily applicable by the developer.

The contribution of this paper is an approach to couple existing modeling
tools as black-boxes into the Vitruvius-Approach to couple metamodels for auto-
mated consistency support. More specifically, this paper deals with the problem,
that practical consistency support should work in fine grained delta changes
while black-box tools most often don’t offer delta logging of changes. We bridge
this with an approach presented in this paper by extracting these delta changes
from two consecutive model states by using annotated identifiers.

The coupling of the model of a PCB program for the creation of electronic
circuit boards with the model of a simulation tool offers the developer the oppor-
tunity to test the run-time-behavior of the circuit during the design phase. This
means that errors can be detected at an early stage and optimizations can be
made on the circuit. In comparison to similar solutions like [7], we are not pre-
senting a new modeling language. Instead, we are coupling the models of existing
software tools. Therefore, the developer can work with the usual tools without
the effort of learning a new modeling environment.

2 The Vitruvius Approach

The Vitruvius framework is a model-driven approach for view-based develop-
ment; it was originally designed for software development. Vitruvius is influenced
by the Orthographic Software Modeling (OSM), which uses a Single Underlying
Metamodel (SUMM) [1]. The Single Underlying Model (SUM) contains all infor-
mation without redundancies to inherently avoid inconsistencies. The user only
gets access to the SUM via the views. The disadvantage of this approach is that
the creation of a SUMM is complex and subsequent adjustments are difficult.

Vitruvius avoids this disadvantage by using a Virtual Single Underlying
Metamodel (V-SUMM). In contrast to the SUMM, this V-SUMM consists of
several metamodels, which are coupled with each other via consistency relation-
ships. To simplify the definition of consistency relationships between metamod-
els, domain-specific languages have been developed [5]. Also with the Vitruvius
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approach, model changes can only be made via views. For the developer, the
V-SUM behaves outwardly like the SUM proposed by Atkinson. The definition
of consistency relationships is not made by the developer, but by the so-called
methodologist.

Vitruvius follows a change-driven approach, meaning that the atomic model
changes must be passed to the V-SUM. Each of these atomic changes is then
gradually propagated through participating models based on the defined con-
sistency rules [3]. However, this procedure requires the ability to track atomic
changes during model editing by the developer.

3 Vitruvius for Closed-Source Tools

As already mentioned, the development of CPSs predominantly uses propri-
etary closed-source tools. Access to internal resources of such programs, e.g. via
plug-ins, is usually not possible. However, it is possible to read and edit saved
models. Some of the development tools use text-based file formats for persis-
tence, some manufacturers rely on XML for example. From such files, models
can be reconstructed and then edited. However, this approach only allows to
view model states. There is no direct possibility to track the developer’s atomic
changes required by Vitruvius. These changes must first be extracted from two
chronologically consecutive model states.

The basis for such a change extraction is the correct assignment of model
elements, there are different matching algorithms (i.e. SiDiff, EMF Compare,
Epsilon Comparison Language) [8,9]. However, an unambiguous mapping of
model elements is only possible if universally unique identifiers (UUIDs) are
present [4]. Heuristic methods can be used to resolve the ambiguities that are
arising during the development process in the absence of UUIDs. These map the
corresponding model elements based on structure and attributes [6]. However,
since such procedures are faulty, they must be observed and controlled by the
developer during execution, which in turn means more effort. In addition, incor-
rect element mappings cannot be ruled out by heuristic methods, even with the
support of a developer.

When working with development tools, copying a model element is a common
processing step. In the specific case of an electrical circuit, these may be com-
ponents such as resistors, capacitors or transistors. During the copying process,
the question is how to handle attributes of the copied element from other tools.
For example, consider copying a resistor in a circuit simulation tool. We denote
R1 with the element to be copied and R2 with the copy of R1. After copying,
both elements R1 and R2 have the same simulation attributes, including, for
example, stray capacitances or inductances. Since the model of the simulation
tool is coupled with that of the PCB program via the V-SUMM, R1 implicitly
also has attributes which occur exclusively in the PCB program, for example,
information about packages of the components. Such information is not visible in
the simulation tool. Now the question arises, which of the attributes, which are
exclusively present in the PCB program, should have the element R2 after the
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copying process. In our view, it is necessary for good usability that R2 obtains
all such attributes from R1. The element R2 should therefore also receive all
the corresponding attributes from other tools after the copying process in the
simulation tool. In this case, R2 should have the same package as R1.

In order for the consistency-keeping method to be able to fulfill this require-
ment when a model file is read, it must be recognized whether a newly added ele-
ment originates from a copying process or not. This is indistinguishable without
the presence of identifiers, and even when using UUIDs. To meet this require-
ment, we suggest annotating model elements with identifiers. During copying,
this annotated identifier is adopted, meaning the original element and the copy
have the same identifier. When reading a model file, copied elements can be
recognized and attributes from other tools are correctly transferred to those ele-
ments. The identifiers are then dissolved into UUIDs, meaning that each element
has a unique identifier once the consistency-keeping process has been completed.
The annotated identifiers are manipulated only through the algorithm, whereas
the developer should not make any changes to these identifiers.

4 Validation Case Study

A coupling between the PCB design program Eagle and the Simscape circuit
simulation tool was implemented and tested on various circuits (Fig. 1). Simscape
is an extension of Matlab/Simulink for the simulation of physical systems.

Fig. 1. Coupling between Eagle and Simscape
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Fig. 2. Annotation of identifiers through adding attributes to the Eagle file and block
comments to the Simscape file

The annotation is done in Simscape by entering identifiers in the block com-
ments, in Eagle this is done by adding component attributes (Fig. 2). Even
though in both tools the identifiers are visible to the developer during model
editing, in our opinion these adjustments are hardly disturbing. The developer
only may not change or remove the identifiers.

Eagle uses an XML format for persistence, so an ordinary XML parser is used
to read out the Eagle file. In Matlab/Simulink, on the other hand, the .mdl-files
use a text-based format, which is not XML-compliant. To parse these files, we
use XText and have defined corresponding grammar rules.

The prototype allows to build circuits in Simscape and couple them with
Eagle. Thus, it is possible for the designer to control and adjust the runtime
behavior of the electrical circuit during the design process. In contrast to existing
import/export functionalities, the presented approach enables seamless bidirec-
tional work with both tools.
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5 Conclusion and Future Work

The viability and applicability of coupling a simulation tool to a PCB program
using annotated identifiers were tested on a prototype using Eagle and Sim-
scape. In addition to electrical systems, metamodels of other domains, such as
mechanical and other software systems will be integrated to the V-SUMM using
annotated identifiers in the future and the advantages of the development process
will be analyzed.
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Abstract. This paper presents a SysML-based approach to enhance
functional and software development process within an industrial con-
text. The recent changes in technology such as electromobility and
increased automation in heavy construction machinery lead to increased
complexity for embedded software. Hence there emerges a need for new
development methodologies to address flexible functional development,
enhance communication among development teams, and maintain trace-
ability from design concepts to software artifacts. The discussed app-
roach has experimented in the context of developing a new transmission
system (partially electrified) and its functionality. While the modeling
approach is a work-in-progress, some initial success, as well as existing
gaps pointing to future works are highlighted.

Keywords: Modeling · SysML · Systems engineering

1 Introduction

In recent times, there has been a significant paradigm shift within construction
equipment industry in terms of introducing new technologies such as electro-
mobility and increased automation. For instance, electrification (i.e. battery-
powered parts) is being introduced into products, hydraulic motors are being
replaced with electric versions, new versions of drive-line system (DLS) where
electrified hub motors (instead of torque power from the engine) are introduced
into wheels.

The advanced technological changes in large complex products causes enor-
mous challenges for existing software development teams. While the functionality
remains largely unchanged in comparison with legacy systems and software, the
new design concepts lead to major changes in hardware and software. Hence the
traditional function development techniques largely based on small incremental
changes to existing software is no longer valid and may lead to quality issues
as well as maintainability and traceability problems. Model-based methodolo-
gies such as Model-based Systems Engineering (MBSE) and Model-based Design
c© Springer Nature Switzerland AG 2018
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(MBD) are industry-wide considered as effective solutions in addressing, above
described development challenges [1,2]. While traditionally MBD methodologies
are associated with only Simulink-based development techniques, currently these
techniques are being extended using SysML/UML-based modeling approaches.
In this paper, we present the SysML-based modeling approach considered within
the project for development of a new transmission system (partially electrified)
and its software.

In this paper, we describe a modeling approach developed within VCE (Volvo
CE1). The approach is presented using the ‘Brake’ functionality to capture the
transmission system behavior, in response to brake requests from the opera-
tor/machine. The modeling approach captures the functional behavior from both
problem (as seen externally) and solution domain (albeit implementation inde-
pendent) perspectives. Later, the SysML-based solution models can be further
refined into hardware and software views explicitly reflecting the overall design
concept(s), paving the way for traceable software architecture(s) which in turn
implemented using traditional Simulink-based techniques.

2 Background

Software Engineering Framework at VCE referred to as SE-Tool, is a customiza-
tion of the commercial tool Systemweaver. It is influenced by EAST-ADL2 frame-
work, to support complete software development processes at VCE. It is primar-
ily used to develop the complete Electrical and Electronic (E2E) System in
software as well as hardware i.e., ECUs, Sensors, and Actuators.

MathWorks Simulink3 is a graphical development tool used to run simula-
tions, generate code, and test and verify embedded systems. All functionalities in
the Simulink represented by the blocks. The Simulink connects different blocks
and signals to simulation models that can be executed. Also, the block in a
Simulink work similarly to functions in a C/C++ program. Blocks are divided
into pre-defined MATLAB libraries4 based on their functionality. These libraries
include Logic and Bit Operations (e.g., blocks like Relational Operator and Log-
ical Operator) and Math Operations (e.g., blocks like Product, Divide, Add,
Subtract are included).

While both SE-Tool and Simulink-based frameworks satisfactorily cover the
development processes within Software domain, currently there are huge gaps
related to systems engineering domain like maintainability, traceability, incor-
porating new design concepts etc. Hence, there is a need for the “Model-based
System” approach compared to traditional function development approach.

1 Volvo Construction Equipment AB, Sweden.
2 We refer the reader to the standard for further details: http://www.east-adl.info/.
3 https://se.mathworks.com/products/simulink.html.
4 https://se.mathworks.com/help/simulink/block-libraries.html.

http://www.east-adl.info/
https://se.mathworks.com/products/simulink.html
https://se.mathworks.com/help/simulink/block-libraries.html
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3 Braking Functionality: An Example

The drive-line system consists of a clutch, a transmission, a drive shaft, and an
axle connecting the engine and the drive wheels. To describe the system modeling
approach, we model the ‘Brake’ functionality, based on the logical distribution of
the system behavior in terms of the system components described above. Please
note, to simplify the presentation of this paper both scope and all the figures
and illustrations are limited to the behavior of the ‘Brake’ functionality.

Corresponding to required “Brake behavior”, the DLS system “implements”
corresponding “Braking” behavior within its scope, e.g., to create a tractive force
on the machine and gives the machine the capability to move. Additional sub-
systems and components (besides described below) may be required to increase
the quality of the movement, but they are skipped in this paper, to keep the
presentation simple. In order to perform braking, mainly following subsystems
and external entities are involved:

– Operator represents a person who operates a machine by sending a “braking
request” through appropriate interface.

– Powertrain is a subsystem that includes following subsystems: Engine, Driv-
etrain and Wheels (#4).

– Requester represents the braking pedal of the physical machine.

4 SysML-Based Modeling Approach

The overall modeling methodology, as shown in Fig. 1, is primarily based on a
reverse-engineering approach, i.e., capturing functionality from legacy concepts
and corresponding implementations in the hardware and software (e.g., simulink-
based environment). The modeling has been done using IBM Rhapsody tool5.
However, in this paper, for illustration purpose, the models have been re-drawn
using other tool.

The overall system modeling approach is divided into three stages.

4.1 Functional Modeling (Structure)

The first phase of the modeling activity (refer to Fig. 1), is based on the product
breakdown structure. Thus the modeling focuses on “structural aspects” using
SysML BDD (Block Definition Diagram) and IBD (Internal Block Definition)
Diagrams (as illustrated in Figs. 2 and 3 respectively). Besides modeling the
physical architecture of the system-of-interest, the function behavior in logical
terms (i.e. implementation independent manner) is captured too. The “braking
behavior” is described below.

The Operator sends the signals to Requester, the ‘braking request’ is created.
Requester represents the braking pedal. It creates a “propulsion torque event”,
with return value of braking torque. The ‘braking request’ is then forwarded to
5 https://www.ibm.com/se-en/marketplace/rational-rhapsody.

https://www.ibm.com/se-en/marketplace/rational-rhapsody
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Fig. 1. Overview of the SysML-based modeling approach

Fig. 2. BDD for Powertrain subsystem: description of the Brake function

Powertrain which communicates with Wheels, Engine and Drivetrain. Power-
train forwards the ‘braking request’ to the Drivetrain, where braking happens in
actual. It is consisted of three subsystems: Generator, Dclink and four Hub Units.
The Drivetrain transform, transmit and modulate mechanical input torque to
actualize requested mechanical torques at wheel interfaces. After receiving the
‘braking request’, engine requests how much power needs to be generated and
sends that to Generator through the Drivetrain. Generator transfers mechanical
energy to electrical and forwards it to DcLink, and then DcLink transmits that
energy and forwards it to four hub units which modulate it and send to Wheels.

The operations and signals identified to realize (logically) the “braking behav-
ior” is represented in a block diagram as shown in Fig. 3 (the color scheme to
be explained later). It can be noted that the model elements (structure) illus-
trated are named with prefix “Brake” to indicate the modeling is focused only



516 S. Tiwari et al.

Fig. 3. BrakeDrivetrain IBD representing Operations and Signals (Color figure online)

on “analyzing” and capturing the “Braking” behavior in isolation. The struc-
ture indicates the logical decomposition or “allocation” of the function w.r.to
the overall product breakdown structure. This is an important phase for both
requirement and system engineers, and enhance communications within devel-
opment teams. The results of this phase are also reviewed with the stakeholders.

4.2 System Modeling (Behavior)

It is the next level of modeling activity using SysML Statemachine diagrams to
capture the functional behavior of the structural “parts” (w.r.to the system-of-
interest). While in this paper, we restrict the behavior specification to that of
“Braking”, this specification is “incrementally” developed by considering each
of the machine functions separately and eventually “combined” (manually). For
instance, in Fig. 4, the behavior of the HubUnit part of BrakeDrivetrain is pre-
sented. It can be noted the granularity of the (behavior) modeling effort is not
arbitrary, but carefully chosen to cover the “new” parts, in this case the HubUnit
(electrically steering the wheels).

As result of the modeling activity described in previous subsection, it can be
noted, there will be multiple state machines for the HubUnit (in other words,
multiple HubUnits each pre-fixed with the individual function names). These
state machines are “combined” to create a single state machine, at suitable
granularity, that serves as the System Specification (for the DLS). Thus, this
modeling phase also contributes to the overall system design decisions. For ex-
ample, as shown in Fig. 4, the color scheme indicates the design decision to imple-
ment the corresponding operation in Software or Hardware (further explained
in subsection below).
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4.3 Modeling System Design (S/W and H/W Views)

This is the final phase of the SysML-modeling activity and concerns the detailed
design modeling. As described in the previous subsection, the “software” and
“hardware” parts are identified during behavior modeling phase, as part of
the system specification. This phase further requires extensive domain exper-
tise (both system and software level), for the technical trade-offs to be made
regarding whether a certain SysML Operation is to be implemented in software
or hardware (e.g. sensor). For instance, as shown in Fig. 4, the blue color repre-
sents the design decision that the corresponding operation has been allocated to
the software modules and red color operations allocated to the hardware com-
ponents for realization of the overall system. Based on these, allocation views
are modeled in SysML (skipped in this paper due to lack of space).

Fig. 4. State machine of BrakeHubUnit subsystem (Color figure online)

5 Conclusions

The SysML-based modeling approach presented in this paper is primarily a
reverse-engineering effort in capturing functionality from legacy implementa-
tions in the hardware and software. However, the approach is generic enough to
be extended into a useful modeling approach complimentary to existing software
development approaches.

Acknowledgments. This work is partially funded from the Electronic Component
Systems for European Leadership Joint Undertaking under grant agreement No. 737494
and The Swedish Innovation Agency, Vinnova (MegaM@Rt2).
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Abstract. The number and complexity of embedded systems is rising.
Consequently, their development requires increased productivity as well
as means to ensure quality. Model-based techniques can help achieve
both. With classical model-driven development techniques, developers
start by building design models before producing actual code. Although
various approaches can be used to validate models and code separately,
models and code are however separated by a semantic gap. This gap
typically makes it hard to link runtime measures (e.g., execution traces)
to design models. The approach presented in this paper avoids this
semantic gap by making it possible to execute UML design models
directly on embedded microcontrollers. Therefore, any runtime measure
is directly expressed in terms of the design model. The paper introduces
our UML bare-metal (i.e., not requiring an operating system) interpreter.
Its use is illustrated on a motivating example, which can be simulated,
or debugged, and for which message sequence charts can be generated.

Keywords: UML execution · Model interpretation
Embedded systems

1 Introduction

Embedded systems become more and more complex due to the emergence of new
needs and applications (e.g., Internet of Things, autonomous cars, smart cities).
This increasing complexity renders software programs more difficult to design,
maintain, and evolve. One of the main consequence is that bugs and design faults
are more difficult to detect and fix. To validate the system behavior, it becomes
necessary to execute the system during early design phases, and to link design
and runtime concepts together to ease the system analysis.

With model-driven engineering, a classical approach consists in simulating
a model of the system under study on a desktop computer. Then, the appli-
cation code is produced using code generation and executed on an embedded
c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 519–528, 2018.
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target. However, code generation creates a semantic gap between design models
and executable code that makes it more complicated to link design models to
execution concepts. Therefore, diagnosis activities (e.g., simulation, debugging)
and runtime measures analysis (e.g., execution traces) can become complex. It
is even more challenging to visualize the execution of a system running on an
embedded target and to interact with its design model at runtime.

To partially address these issues, we introduce a model interpreter that can
be used to execute UML models. This tool has been presented in [2] but in this
paper, we will focus on interactions between design and runtime, which have not
been presented yet. In our approach, the design model is directly loaded in our
model interpreter for being executed. This technique avoids the semantic gap
created by code generation and ensures that the same concepts (here UML con-
cepts) are used between design and runtime. Indeed, the model execution can be
directly visualized in terms of UML concepts through two kinds of interactions.
Online interactions used during simulation and debugging can be employed to
interact with the model during its execution. Offline interactions are also avail-
able to visualize the model execution through the generation of message sequence
charts (MSC) from execution traces. These MSC are directly expressed in terms
of the design model elements. This approach is a first step towards the goal of
executing design models for complex embedded systems. This work shows that
it is possible to do it on bare-metal for small embedded devices (e.g., Internet of
Things) but this approach can be generalized to use operating systems for more
complex embedded systems applications.

Our UML model interpreter shows encouraging results towards feasibility. It
can be used to execute UML models on desktop computers and embedded micro-
controllers using model interpretation. This interpreter can be connected to a
simulator for simulating and visualizing the system execution using a dedicated
communication protocol. It is also possible to print execution traces into a for-
malism for generating MSC diagrams from these traces. Experiments have been
made on a level crossing system to illustrate these features. These improvements
contribute to reinforce the link between design and runtime as well as reducing
time-to-market and increasing both productivity and quality.

The remainder of this paper is structured as follows. Section 2 introduces
our model interpreter and the technique used to interpret a UML model on a
bare-metal target. Then, we describe multiple interactions modes between design
and runtime in Sect. 3. In Sect. 4, we discuss advantages of this approach before
reviewing some related work in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Interpretation of Executable UML Design Models

To link design and runtime concepts, our approach is based on a model inter-
preter that can execute the model of the system produced during the design
phase. In this section, we will present the process used to serialize a design
model into source code before being loaded in and executed with our prototype.

The first step consists in designing a model of the system under study in
UML. This activity can be performed with either graphical editors (e.g., Papyrus
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[11]) or textual editors (e.g., tUML tool [9,10]). Using these tools, the design
model can then be exported into the XML metadata interchange (XMI) format.
To be executable, this model must specify explicitly the system behavior. In our
case, the behavior of active classes is specified using state machines composed of
states and transitions. Each transition can have a guard and an effect encoded
respectively in an opaque expression and an opaque behavior. To write these
guards and effects, we use an action language based on the C programming lan-
guage but with specific syntactic extensions to simplify access to UML instances
(i.e., instances of UML classes). These extensions can be used to send events,
get and set values of attributes, and access content of event pools in a relatively
simple way. With this syntactic sugar, users do not need to know the internal
structure of the interpreter to use the action language.

Fig. 1. Overview of the model generation process.

Once the executable model has been saved into XMI, it can be serialized
into C source code using a transliteration, as shown in Fig. 1. This serialization
can be seen as the way to load the model into our interpreter. In fact, it only
adapts the syntax of the model to C programming language without performing
any semantics change. The serializer is used to generate a C struct initializer for
each UML element needed for model interpretation. With struct initializers the
C compiler constructs the binary representation of the model in the initialized
data section of the memory. This can be seen as compile-time model loading.
Hence, this technique differs from classical code generation that generates both
data and program required to execute the system. We only generate data that
represents the static part of the model. The only exception concerns transition
guards and effects that are serialized as C functions to which the C representa-
tion of transitions point (using function pointers). In fact, in UML with opaque
expression guards and opaque behavior effects, the code of guards and effects is
represented as strings stored into a body property. These C functions provide
executable behaviors for these bodies without requiring to parse these strings
or to perform expensive operations directly on the target. Apart from transition
effects and guards, no code is generated from the UML model, only data. More-
over, this data is no more than an in-memory representation of a loaded UML
model, similar to the result of EMF XMI loading.
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Then, a C compiler is used to compile both the UML model in C language
and the source code of the interpreter, which are then linked together into exe-
cutable code. This executable code includes the runtime model composed of
both the static and the dynamic part of the model. At this point, the reference
model is the runtime model because this is the model really executed on the
target. The design model is only a view of it. The resulting executable may be
executed either on a desktop computer or on a microcontroller-based embed-
ded system. The execution results in interpretation of the model using both the
UML model of design (data) and the operational semantics implemented into
the model interpreter (program). The implemented semantics tends towards the
precise semantics for UML state machines (PSSM [13]) based on fUML [14].

3 Interactions with Design Tools

To reinforce the link between design and runtime, our approach is able to deal
with two kinds of interactions between the runtime model and design tools. On
the one hand, online interactions enable to interact with model execution for
simulation or debugging purposes. On the other hand, our model interpreter is
also able to generate traces at runtime that can be analyzed after execution.
These interactions are supported by a choice of three possible interaction modes
that are typical of embedded systems development process: simulation, debug-
ging, and execution. The interpreter may be compiled with any of these features
except the debugging loop which has not been implemented yet. In order to be
deployed on the actual embedded system, the interpreter is compiled only with
the execution loop. Therefore, interactions for simulation or debugging loops are
not provided in the final product in order to avoid leaving a potential attack
vector open.

3.1 Simulation

To interact with the model at design time, it is possible to use a simulator. The
simulation mode enables making online interactions to explore the model and
visualize its execution. Using our approach, model execution can be controlled
through the interpreter running locally on a desktop computer or remotely on
an embedded microcontroller. This second possibility can be employed to make
hardware in the loop simulation directly on the board that will be used on
the actual embedded system. To control model execution, our model interpreter
provides the following application layer protocol:

Get configuration collects the current memory state of the interpreter.
Set configuration loads a configuration as the memory state of the inter-
preter.
Get fireable transitions collects transitions that can be fired on the next
step.
Fire transition fires a transition of an active object’s state machine.
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Reset interpreter restarts the interpreter from the initial state of the model.

In this communication protocol, the memory state of the interpreter is called
configuration and represents the dynamic part of the executed model. The con-
figuration is composed of current states of state machines, contents of event
pools (i.e., all events received by UML instances of active classes), and values
of attributes. To get and set the configuration, we prefer the use of two global
commands rather than multiple small and complex commands. This simplifies
the protocol and gives the possibility to have an overview of the whole config-
uration at each simulation step. To improve performance, it is possible to use
a diff mode that enables exchanging only bytes that are different between the
current configuration and the previous one. For instance, if one wants to change
the value of only one attribute, only the value of this attribute and its position
into the configuration will be transmitted rather than the whole configuration.
Virtual peripherals communicate with the model by directly reading or writing
into event pools, which can also be performed in diff mode. With this simula-
tion loop, execution flow is entirely controlled by the simulator. Therefore, it
is possible to implement an execution loop in this tool to run model execution.
Figure 2 presents the user interface of our simulator applied to a level-crossing
model [2]. This interface shows the list of fireable transitions available in the
selected configuration, the content of this configuration, and the part of the
model state-space discovered since the beginning of the simulation.

Fig. 2. User interface of the simulator.

3.2 Debugging

Debugging is another kind of online interactions. It can be used to control model
execution in the same way than previously introduced simulation purpose, or to
automatically execute the model with the actual embedded system. For this rea-
son, it is a mix between both simulation and execution modes. The debugging
loop can be used to control model execution using the communication protocol



524 V. Besnard et al.

and to observe the configuration of the model. This protocol enables injecting
an event, changing the value of an attribute, or changing the value of the cur-
rent state of a state machine using the Set configuration request. The diff mode
can be used to reduce the cost and optimize communication performance. This
communication protocol can also be used to make omniscient debugging [3,5,8]
to go back-in-time. Indeed, received configurations can be stored and reloaded
at any time as the current memory state of the interpreter. In debugging mode,
it is also possible to execute the system using the execution loop implemented in
the interpreter. The only difference with the execution mode is that it will check
if there is a command (sent by the debugger) to process, so the runtime cost is
small. In our prototype of model interpreter, these debugging interactions have
some limitations. The first one is that execution of opaque behaviors and evalu-
ation of opaque expressions cannot be debugged because they are implemented
as C functions. It would become possible if we used UML activities to specify
their behaviors, which we might explore in the future. The second limitation is
that we do not support breakpoints for the moment. Hence, it is not possible to
stop the execution automatically when reaching a given state of a state machine.
This is the main feature that lacks in our interpreter for supporting this mode.

3.3 Execution

The execution mode is the main loop actually used on the deployed system. For
offline interactions, we add the possibility to generate execution traces and to
display them using messages sequence charts (MSC). MSC are a kind of diagram
that captures interactions between active objects of the system. It is similar to
a sequence diagram but enhanced with states of state machines, such that it is
possible to know the current state of each active object at any time. MSC give
an overview of a scenario and enable to visualize interactions between active
objects (i.e., exchange of events) and their state machine progression. In our
model interpreter, we have also added an optional feature to display attribute
values changes.

In practice, we instrumented the code of our interpreter with C macros that
are called each time an event is sent, a state machine updates its current state,
or an attribute has its value updated. At compile time, the user can choose the
MSC formalism to use for displaying the trace. This will replace C macros by
calls to appropriate functions in charge of displaying the trace. If no trace is
required, (e.g., on the deployed embedded system), these macros are replaced
by no instruction to have no impact on execution performance of the actual
system. At runtime, the trace will be printed either on the standard output
stream (e.g., a serial port of the embedded target) or directly in a text file when
running on a desktop computer. Afterwards, the trace can be loaded into a tool
in order to generate a graphical diagram that gives a better visualization of it.
In the current version of our model interpreter, we have chosen to display traces
using the PlantUML1 formalism. Traces are then converted into diagrams using

1 http://plantuml.com/.

http://plantuml.com/
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Fig. 3. Message sequence chart of a level crossing model.

the PlantUML tool. However, additional transformations towards different MSC
formalisms can be easily added to our tool. Figure 3 shows an example of MSC
diagrams obtained with our model interpreter. This example represents a trace
of a level crossing model example introduced in [2].

4 Discussion

Our approach based on a model interpreter tackles issues to link design and run-
time concepts. It thus should contribute to reduce time-to-market and increase
both quality and productivity.

The first advantage of our approach is that our model interpreter can be
deployed either on desktop computers or on embedded targets. Indeed, our pro-
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totype is adapted to be deployed on bare-metal microcontrollers without inter-
mediate software layers like an operating system. This means that this model
interpreter can run on embedded microcontrollers with relatively small memory
size and relatively slow CPU. This possibility can be used to make simulation or
debugging at the model level directly on embedded targets. For instance, this can
be useful to detect some bugs linked to the hardware by making hardware in the
loop simulation. In most of the classical approaches, the design model is specified
and validated on desktop computers before being transformed into executable
code through code generation, and executed on microcontrollers. In this case,
the link between design and runtime is difficult to set up. With our approach,
this link is easier to establish thanks to the possible interactions between design
and runtime that it offers, and because we use the same model all along the
development process. Indeed, our approach provides a continuum from design
to runtime by applying simulation, debugging, and trace generation either on
desktop computers or embedded microcontrollers.

The second point is that a single semantics implementation is used for execu-
tion and simulation. Indeed, the execution semantics used to interpret UML mod-
els is implemented in our model interpreter. In most of the classical approaches,
the code generation step is a transformation that creates a semantic gap between
design and runtime that may not ensure that simulation results are still valid at
runtime. With our model interpreter, there is no problem of equivalence between
the design model and the model used at runtime because all activities (execu-
tion, simulation, and debugging) are made through the interpreter. Hence, only
one implementation of the semantics is used. This contributes to increase the
development quality of the system.

The last key point deals with traces analysis as well as simulation and debug-
ging results. In our approach, the design model is directly used for execution
through a model serialization into C programming language. Therefore, the
mapping between design and runtime concepts is straightforward. Simulation
and debugging techniques can be used to simulate the model directly in terms of
design concepts. This also facilitates execution traces analysis to inject feedbacks
in the design model and fix design faults. As a result, we expect that this will
increase productivity and reduce time-to-market.

5 Related Work

Other works have shown abilities to execute models and establish links between
design tools and runtime measures through various kinds of interactions.

Multiple implementations of fUML [14] or PSSM [13] have been realized to
execute models conforming to these executable UML standards. Moka [1] and
Moliz [12] are two of these implementations that are able to support execution,
simulation, and debugging of UML models. GEMOC Studio [4,7] is another
tool that contains a modeling workbench to design models conforming to any
domain-specific languages. This tool has four different execution engines and sev-
eral add-ons can be used to perform simulation, debugging, and trace generation.
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All these tools are well-integrated into modeling development environments. For
instance, Moka has an Eclipse-based user interface and can be used with the
Papyrus [11] editor to simulate UML models with graphical feedbacks over dia-
grams. The main drawback of all these tools is that they are not adapted to
execute models on embedded targets. Indeed, these tools use too much mem-
ory for being executed on a small microcontroller. The generic approach used to
build these tools also induces a lack of performance because they are not adapted
for embedded systems execution.

In comparison to these works, some approaches aim at executing models
on embedded targets with small memory footprints and good execution per-
formance. UML virtual machine (UVM) [15] defines a runtime environment to
execute bytecode in the binary UVM format generated from models and includes
extensions for fine grained concurrency and precise timing. In the same way, a
front-end, called GUML [6], has been defined for GCC to compile directly UML
models into optimized binary code. Both tools have similarities to our model
interpreter but they cannot be remotely controlled by diagnosis tools to analyze
model execution in terms of design concepts.

6 Conclusion

To bridge the gap between design and runtime, this paper has presented our
approach based on a UML model interpreter. This interpreter uses the same
model for design and runtime to offer a direct link between design and runtime
concepts. To take advantage of this link, we have put in place online and offline
interactions between design and runtime. Simulation and debugging activities
can be applied directly in terms of UML concepts. This eases the integration
of simulation feedbacks and the correction of bugs into the design model. To
facilitate the visualization of model execution, our approach also relies on exe-
cution traces generated at runtime to produce MSC diagrams with PlantUML.
We expect that these improvements should help engineers to analyze model exe-
cution and fix design faults in the design model. In fact, this should reduce
time-to-market and increase productivity because the model analysis will be
easier.

Another significant key point of our approach is that this technique remains
valid for embedded systems. Indeed, the same model interpreter can be used
to execute models on bare-metal targets equipped with small embedded micro-
controllers. For simulation, the interpreter can be remotely controlled through a
communication protocol that is sufficient to get/set dynamic data of the runtime
model, and control model execution by firing state machine transitions. Hence,
the boundary between design and runtime virtually disappears and the transi-
tion from one to the other can be realized in a continuous way using multiple
activities (e.g., simulation, debugging, execution).

To reinforce the link between design and runtime, we are currently inves-
tigating other possibilities offered by our approach. Indeed, the protocol used
for simulation can also be reused to connect other diagnosis tools, such as a
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model-checker. This should offer a new kind of online interactions to make the
verification of formal properties on models.
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Abstract. The paper sketches a UML- and OCL-based technique for
the coherent description of design time and run time aspects of models.
The basic idea is to connect a design model and a run time model with a
correspondence model. We show two simple examples, one for structural
modeling and one for behavioral modeling, that explain the underlying
principles. As all three models are formulated in the same language, UML
and OCL, one can reason about the single models and their relationships
in a comprehensive way.

1 Introduction

In recent years, design time (DT) and run time (RT) models of software as
well as their interplay have become a major topic in research and development.
Often, it is said that the advantage of using a model instead of code lies in its
power to abstract away unnecessary technical details. But up to now, a common
agreement about the distinguishing characteristics of DT and RT models and
their relationship is still open. This paper proposes to formulate an explicit DT
and an explicit RT model and to formally link both.

For expressing these models, we use a mainstream language, the UML (Uni-
fied Modeling Language) [7], which includes the OCL (Object Constraint Lan-
guage) [9]. Our approach is explained with examples that are worked out in our
tool USE (Uml-based Specification Environment)1.

As said, to catch DT and RT modeling aspects, we propose to introduce
three connected models as sketched in Fig. 1: (i) a design time model, (ii) a run
time model, and (iii) a correspondence model that connects and constrains the
first two models. All three models can be full models containing, e.g., classes,
associations, and constraints, but a model may also consist of associations (as
first-class citizens) and constraints only. The correspondence model depends on
and imports the other two models. All interactions and dependencies between
design time and run time are modeled here. Figure 1 displays in the upper part

1 https://sourceforge.net/projects/useocl/.

c© Springer Nature Switzerland AG 2018
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the three contributing models. In order to be more concrete, an example is given
in the lower part with classes, associations and constraints for the structural
modeling example to be discussed in detail further down.

Fig. 1. Design time, run time and correspondence model.

The research contribution of this paper lies in the proposal for the distinction
of the three different models and in the proof-of-concept that it is possible to
realize this structure in a software design tool. We are not aware of another
proposal for a correspondence model. The advantage that we see in such an
explicit model lies in the option to analyze the relationship between DT and RT
model, e.g., to check RT errors and to trace and to identify the ‘guilty’ parts
either in the DT model or in the RT model or in both models.

The rest of this contribution is structured as follows. Section 2 introduces the
structural example model. Section 3 focuses on the behavioral example model.
Both examples show a RT error in form of an invariant violation, and both are
implemented in USE [3,4]. Section 4 discusses some related approaches. Section 5
ends the paper with concluding remarks and future work.

2 Structural Modeling Example

The class model in Fig. 2a shows a tiny SQL subset: (i) in the DT model on the
left, we see that a relational schema (class RelSchema) has attributes and that
an attribute is typed through a data type; (ii) in the RT model on the right, a
relational schema is populated with rows in which each attribute gets a value by
means of attribute map objects; (iii) the correspondence model consists of three
typing associations that allow to connect the RT objects with a unique type.

In Fig. 2b, further rules are shown in the form of invariants that restrict the
possible object models. We informally explain the constraint purpose in the order
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(a) DT, RT model. (b) Restriction rules.

(c) Usage scenario.

Fig. 2. DT, RT and correspondence elements for a relational database.

in which the invariants appear: (i) the set of key attributes of each relational
schema has to be non-empty, (ii) the attributes names have to be unique within
the relational schema, (iii) each row must have an attribute value for each of its
attributes, and (iv) each row must have unique key attribute values.

In Fig. 2c, we see a usage scenario in concrete SQL syntax. One table (rela-
tional schema) is added with a create command, populated by two SQL insert
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commands and finally modified with an additional SQL update command. This
usage scenario is represented in the form of an evolving object model. The figure
shows only the last object model after the SQL update has been executed:
(i) after the create command only the four left-most objects (rs1, a1, a2,
dt1) are present; (ii) after the first insert command the five middle objects
(r1, am1, v1, am2, v2) appear, however we will have v1.content=‘Ada’; (iii)
after the second insert the five right-most objects (r2, am3, v3, am4, v4)
will appear; up to this point all four invariants evaluate to true; (iv) after the
update command the content value of v1 changes (v1.content=‘Bob’) and
the evaluation of the invariant keyMapUnique turns to false. This constraint
violation corresponds to a RT error that is indicated to the developer and that
can be analyzed further with our tool so that the Value object v1 is identified
as being ‘guilty’ for the RT error. In this example, the correspondence model
consists of associations and invariants only, but one could think of more com-
plicated situations with RT objects introduced at different points in time and
having different DT types (e.g., ada:Student and ada:Employee). This could
be reflected by a correspondence class and appropriate objects.

3 Behavioral Modeling Example

Figure 3a shows a DT and RT model for simple protocol state machines. In
the class model on the left side, we have the class State and the associa-
tion class Transition making up the DT model. On the right side, TraceNode
and TraceEdge constitute the RT model. The association between State and
TraceNode establishes the correspondence model.

The class model is illustrated by an object model (Fig. 3c) that instantiates
in particular the DT and RT classes. The object model pictures an automatically
generated [4] fitness example. It shows in the middle a protocol state machine
with states named BOILING, FREEZING, and COLD as well as transitions labeled
jog, run and stretch. This instantiates the DT model. In the left and in the
right of the class model, two examples traces, i.e., executions of the protocol
state machine, instantiate the RT model: the actual event sequences are in the
first execution on the left {stretch; run} and in the second execution on right
the sequence {jog; run; stretch} and through links belonging to the corre-
spondence model, the TraceNode objects are connected to State objects.

In Fig. 3b the names of needed OCL invariants are presented: (i) the OCL
invariants for the DT part require deterministic transitions, each state to lie
between the initial and the final state, unique state names, and the existence of
a single initial and a single final state; (ii) the OCL invariants for the RT part
require each trace to be a cycle-free string of pearls; (iii) the invariants for the
correspondence part demand each trace to be connected to the initial state and
the traces to show events corresponding to transition events.

The invariants in particular check that the sequence of events from the two
traces is correct traces from the specified protocol state machine. In this case, the
right event sequence {jog; run; stretch} is an acceptable sequence, however
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(a) DT, RT model. (b) Restriction rules.

(c) Usage scenario.

Fig. 3. DT, RT and correspondence elements for a protocol state machine.

the left event sequence {stretch; run} is not a sequence allowed by the protocol
state machine. This leads to the observation that the invariant TraceEdge::
eventTraceEdge EQ eventTransition evaluates to false: the link between TN6
and TN4 violates the determined protocol. Our tool USE offers options in terms
of a so-called evaluation browser to analyze the object model and to identify the
source for invariant violation: in the example the TraceNode objects TN6 and
TN4 could be brought into the foreground.

4 Related Work

In [2], the authors propose an approach for improving user interaction modeling
by adopting a design uncertainty model into an IFML model. Uncertainty is then
solved by integrating the results of a run time log analysis. The approach in [1]
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discusses the Requirements Modeling Languages (RML) and proposes a concep-
tual distinction between design time and run time requirements models. Run
time models extend design time models with additional information about exe-
cution of system tasks. In [6], the authors introduce an aspect-oriented modeling
approach to enhance software adaptation by unifying design time and run time
adaptation. [5] gives an overview on run time verification specification languages.
[8] discusses through a controlled experiment whether it helps for comprehension
of run time phenomena when corresponding design time models are provided.

5 Conclusion

The problem discussed in this contribution has been to formulate the connection
between a design time and a run time model in a coherent way. We have shown
by two examples how to use a software design tool to represent a connecting
correspondence model. Future work includes finding a general way to set up
the structure of the correspondence model. One may also introduce schematic,
template-based correspondence models that establish unique typing connections
from the RT model to the DT model. Tool support must be extended in order
to formally distinguish between the different models. Last but not least, larger
case studies and examples should check the applicability and usefulness of the
proposed technique.
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1 Introduction

Complex systems are now predominant in several domains such as automo-
tive, health-care, aerospace, industrial control and automation [2]. Such sys-
tems call for modern practices, such as Model-Driven Engineering (MDE), to
tackle advances in productivity and quality of these Cyber-Physical Systems
(CPSs) [4]. However, the proposed solutions need to be further developed to
scale up for real-life industrial projects and to provide significant benefits at
execution time. To this intent, one of the major challenges is to work on achiev-
ing a more efficient integration between the design and runtime aspects of the
concerned systems: the system behavior at runtime has to be better matched
with the original system design in order to be able to understand critical sit-
uations that may occur, as well as corresponding potential failures in design.
Methods and tools already exist for monitoring system execution and perform-
ing measurements of runtime properties. However, many of them do not rely on
models and, usually, do not allow a relevant integration with (and/or a traceabil-
ity back to) design models. Such a feedback loop from runtime is highly relevant
at design time, the most suitable level for system engineers to analyze and take
impactful decisions accordingly. It might also be useful to let the final users have
some sort of control and manipulation possibilities over elements they would not
be able to access otherwise. This last benefit implies that the models at run-
time might be quite different from those at design time, especially in terms of
programming/engineering background.

MDE@DeRun 20181 has been planned as a meeting point where both
researchers and practitioners on model-driven and model-based techniques and
architectures for complex systems can share their experiences and thoughts on
this area of work. Its main goal was to disseminate and exchange related ideas
or challenges, identify current and future key issues as well as explore possible
solutions. The potentially relevant topics concern traceability between design
time and runtime models, as well as related runtime information. They notably
include (but not only):

– Model-based techniques, methods and tools allowing any interaction between
design time and runtime, possibly resulting from heterogeneous engineering
practices.

– Model-based techniques, methods and tools for inferring design deviations
and identifying affected elements over a possibly large spectrum of runtime
system configurations or conditions.

– Methods and techniques allowing to practically integrate, possibly in different
ways, any feedback collected at runtime into design level models.

– Integrated model-based methods and techniques for runtime analysis and
design artifacts input collection, e.g. based on probes injection to some run-
time artifacts.

1 https://megamart2-ecsel.eu/mde-derun-2018/.

https://megamart2-ecsel.eu/mde-derun-2018/
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– Validation and verification mechanisms for linking results of runtime analy-
sis, e.g. from execution traces, with design models expressing systems’ both
functional and non-functional requirements.

– (Industrial) case studies, experience reports, literature reviews or visionary
positions related to any of the previously mentioned topics.

The remainder of this paper is structured as follows. Section 2 briefly introduces
the different papers accepted and presented during the workshop. Possible future
challenges on design/runtime interactions in the MDE context are then discussed
in Sect. 3, before we finally conclude this paper in Sect. 4.

2 Contribution Summary

In what follows, we list the 5 papers (4 short papers and 1 long paper) that have
finally been accepted and presented during the workshop. A short summary is
provided for each one of them.

Aliya Hussain, Saurabh Tiwari, Jagadish Suryadevara and Eduard
Enoiu: From Modeling to Test Case Generation in the Industrial
Embedded System Domain — This short paper presents an on-going inves-
tigation being carried out at Volvo CE2 to improve testing processes by using
a Model-based testing (MBT) approach. The goal has been to investigate
the use of MBT and the evidence on how modeling and test generation can
improve the current way of manually creating test cases based on natural lan-
guage requirements. The authors used the Conformiq Creator tool to model
the behavior and structure of a function controlling the accelerator pedal
provided by Volvo CE. The authors automatically created test cases covering
the model, and compare these test cases in terms of test goal coverage and
number of test cases to assess the applicability of MBT in this context. The
approach has shown encouraging results.

Saurabh Tiwari, Emina Smajlovic, Amina Krekic and Jagadish Surya-
devara: A System Modeling Approach to Enhance Functional and
Software Development — This short paper presents a SysML-based mod-
eling approach to enhance functional and software development process within
Volvo CE. The increased complexity of embedded software demands for
new development methodologies to address flexible functional development,
enhance communication among development teams, and maintain traceabil-
ity from design concepts to software artifacts. The discussed approach has
been experimented in the context of developing a new transmission system
(partially electrified) and its features. While the underlying modeling app-
roach is still work-in-progress, both initial success and existing gaps have
been highlighted.

2 Volvo Construction Equipment AB, Sweden.
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Daniel Zimmermann: Automated Consistency Preservation in Elec-
tronics Development of Cyber-Physical System — This short paper
presents an automated strategy to ensure consistency between two widely
used categories of software tools in electrical engineering: an Electronic Design
Automation application (EDA) for designing Printed Circuit Boards (PCBs)
and an electronic circuit simulator tool to predict system behavior at runtime.
Coupling these two types of tools provides the developers with the ability of
efficiently testing and optimizing the behavior of the electric circuit during
the PCB design process; to avoid the disadvantages of ambiguous heuristic
matching methods, a strategy ensuring a reliable assignment of these model
elements is needed. The approach has been implemented by using Eagle CAD
as the PCB software and Matlab/Simulink with the Simscape extension as
the simulation tool.

Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov
and Philippe Dhaussy: Embedded UML Model Execution to Bridge
the Gap Between Design and Runtime — This long paper proposes a
solution to bridge the gap between design and runtime aspects in model-based
software development. In fact, with classical model-driven development tech-
niques, developers start by building design models before producing actual
code. Although various approaches can be used to validate models and code
separately, models and code are however separated by a semantic gap. This
gap typically makes it hard to link runtime measures (e.g., execution traces)
to design models. The approach presented in this paper avoids this semantic
gap by making it possible to execute UML design models directly on embed-
ded microcontrollers. Therefore, any runtime measure is directly expressed in
terms of the design model.

Andreas Kästner, Martin Gogolla, Khanh-Hoang Doan and Nisha
Desai: Sketching a Model-Based Technique for Integrated Design
and RunTime Description — This short paper sketches a UML- and
OCL-based technique for the coherent description of design time and run-
time aspects of models. The basic idea is to connect a design model and a
runtime model with a correspondence model. The authors show two simple
examples, one for structural modeling and one for behavioral modeling, that
introduce the underlying principles. As all three models are formulated in the
same languages—UML and OCL—one can reason about the single models
and their relationships in a comprehensive way.

3 Discussion: Challenges and Roadmap

After the paper presentation sessions (as summarized in previous Sect. 2), we
then had a discussion panel in which we identified common challenges and a
high-level research roadmap related to the topics of the workshop. The result of
this collaborative work is described in what follows.

Although many contributions could be achieved in the last decade in the
MDE community, there are still several open challenges towards a complete and
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relevant integration between runtime and design aspects in complex systems.
Firstly, explicit correspondences and/or traceability links are needed between
runtime and design molidels. Secondly, a better understanding of the nature of
the available runtime information (and its possible impacts on the design infor-
mation) is required. Thirdly, the objectives and benefits of leveraging such cor-
respondences and information need to be defined. We foresee a set of challenges
that can be used as a research roadmap.

Correspondences/traceability between runtime and design models —
The aim to match the system behavior at runtime with the original system
design can be achieved in several ways. This is mainly related to the concept
of traceability. As widely treated in the literature, traceability relationships
may help designers to understand the associations and dependencies that
exist among heterogeneous models and their correspondences [5,6].
In MDE, a trace link is a relationship between one or more source model
elements and one or more target model elements, whereas a trace model is a
structured set of trace links, e.g., between source and target models. Trace
links may be defined between entire artifacts (e.g., a requirements document
and a design model) or between parts of artifacts.
The correspondence between runtime and design models might also take
advantage of the MDE capabilities. For instance, in the case of (automated)
model transformations, the traceability links are not only obvious but also
allow some syntactic adaptation (e.g., different levels of abstraction) as well
as some semantic adaptation (e.g., different viewpoints) on the way.
In order to integrate runtime and design aspects of the system several aspects
need to be considered.
1. Types of correspondences—Correspondences between models could be

defined through the following means: (a) traceability link, (b) consis-
tency specification, (c) (bidirectional) model transformation, (d) model
viewpoints and views. (e) megamodeling.

2. Approaches—Correspondences between models can be defined by means
of the following approaches: (a) by integrating correspondences inside
models, that implies a modification of the original models, or (b) by defin-
ing external correspondences between models, in this case the consistency
of the original models is preserved (no modifications).

3. How correspondences are produced—Correspondences can be defined both
in a manual manner, requiring engineers and domain experts, or automat-
ically, starting from executable correspondence specifications. There can
also exist mixed approaches where correspondences are automatically ini-
tiated/proposed and refined manually.

4. When correspondences are produced—Correspondences can be produced
(a) at design-time (e.g., when creating the design model), between design-
time and runtime phases (e.g., by applying some processes/transfor-
mations on the design model), (b) at system initialization (e.g., by creat-
ing all traceability links), or (c) on the fly at runtime (e.g., by creating a
new trace link for each new runtime object created/used).
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Runtime information — Runtime information can be considered as any soft-
ware, architectural information or model of the runtime system that can be
obtained during the system execution. For instance, through observation and
instrumentation, logs and metrics (that can be also considered as kinds of
runtime traces), runtime information can be collected to enable comprehen-
sion of the inner workings of already deployed software system [3].
Such models containing runtime information should not be confused with
models@run.time [1] that, in general, aims at applying model-driven tech-
niques for adapting and evolving software behavior while it is executing. On
the contrary, we are interested in exploiting information collected only at run-
time. This information can then be used offline to improve the initial system
design through trial and error, eventually with the help of verification and
validation tools (for instance).
In the following, we describe several aspects we believe important to consider.
1. Types of runtime information—Runtime information can be of different

types, such as simulation models, executable models, model representing
logs/traces, model representing states or configurations of the system,
models expressing dynamic information or runtime measures on design
models, test models.

2. How they are obtained—Runtime information can be collected by means
of various mechanisms, such as simulation, monitoring, execution, debug-
ging, profiling, verification.

3. How they are represented—Runtime information can be represented by:
(a) specific models representing runtime information (i.e., using a com-
mon and/or a general metamodel); or (b) measures that are directly
expressed in terms of the design model.

4. How are they visualized— Runtime information can be visualized over
sequence diagrams, graphical diagrams of the design model (e.g., with
particular tools like Papyrus), state-space graphs, or various textual rep-
resentations (using some DSLs). These models give either a snapshot of
the system execution, a representation of the current execution trace, or
a representation of the whole execution history (i.e., a part of the system
state-space corresponding to all explored execution traces).

5. Who uses runtime information—Runtime information should take into
account the users; e.g., end-users, architects, designers, developers of the
system, and also “test engineers” in charge of verifying and validating
the system. This will have a strong impact on the type of chosen runtime
models.

6. Viewpoints—A same runtime information can take on different roles
depending on the context/perspective from which it is analyzed (e.g.,
business, system, technology). In the same vein, some software artifacts
(or parts of them) can be considered as design time or runtime ones
depending on the specific viewpoint from which they are observed.

Objectives — The vision underlying the integration of design and runtime
models is to create awareness of problems in design or critical situations that
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may occur. The understanding of this class of problems can be exploited for
different purposes.
1. Using/Analyzing correspondences—Correspondences (i.e., traceability

relationships) between elements in models can be exploited to perform
operations on models. Some of the key operations are: (a) match, that
takes two models and returns a mapping between them; (b) compose, that
composes a pair of correspondences; (c) merge, that uses correspondences
between two models to create a new model that is the merge of them;
and (d) set operations on models, such as union, intersection, difference.
Such correspondences can also be used to build views combining together
several models that can possibly conform to different metamodels. This
can be realized according to corresponding viewpoints specifying the
nature/type of these correspondences at metamodel-level.
Furthermore, correspondences can be used to feed both functional (e.g.,
consistency, requirement traceability) and non-functional analysis (e.g.,
performance, reliability, availability, security).

2. Inference capabilities—Correspondence between design and runtime
information can be used to achieve inference capabilities, discovering the
system properties deviations and affected design components based on
trace analysis. For instance, inference methods offer a control loop across
the whole design chain between runtime and design time of the system,
including non-functional aspects. This way, additional information from
runtime models can be used to enhance system/design models.

3. Requirements—Correspondences can be used to reconcile the require-
ments and the system’s runtime behavior in case of system deviations
from the initial requirement specification.

4. Reverse engineering—Going backwards through the development cycle,
correspondences can be used in reverse engineering guiding the specifica-
tion of the system design from the runtime behavior.

4 Conclusion

Achieving an efficient integration between the design and runtime aspects of
complex systems proved to be an interesting challenge for MDE methods and
tools. The industrial relevance of this research area has also been confirmed by
the participation of some companies to the workshop, such as Volvo Construction
Equipment that submitted and presented a couple of papers during the event.

The first International Workshop on Model-Driven Engineering for Design-
Runtime Interaction in Complex Systems (MDE@DeRun 2018) aims at provid-
ing a place for the community to share ideas and results in this research area we
believe important. This paper summarized the main objectives and contributions
of this first edition. Furthermore, it discussed and proposed some first directions
for further research in this area, which we plan to explore in the future in our
respective works. We hope to be able to capitalize on the success of this initial
edition of the MDE@DeRun workshop in order to organize a second edition of
this event next year.
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Abstract. The MSE (“Microservices: Science and Engineering”) Workshop
constitutes a forum for scientists and engineers in academia and industry to
present and discuss their latest ongoing research as well as radical new research
directions that represent challenging innovations, which can advance the status
quo and the understanding in the microservices area and its applications, where
the scaling in the small approach is of major importance. The goal of this paper
is to report the outcomes of the one-day workshop held in Toulouse, France in
June 25, 2018.

1 Motivation and Objectives

After the previous edition of the Workshop at SEFM 2017 in Trento2, in 2018 the same
workshop is held in Toulouse, France, under the STAF 2018 umbrella3. This workshop
aims at bringing together contributions by scientists and practitioners to shed light on
the development of scientific concepts, technologies, engineering techniques and tools
for a service-based society. In particular, the focus is on Microservices, i.e., the use of
services beyond the traditional cross-organizational B2B approach and the imple-
mentation of the model inside of applications, scaling in the small the concepts pre-
viously seen in the large. In Microservices, each component of a software is a service
with the related issues of scalability and distribution of responsibility. Topics of interest
include:

– Design and implementation of Service-oriented Architectures and Microservices
– Software engineering techniques for Microservices
– Requirements Engineering for Microservices
– Model-Driven Engineering for Microservices
– Security in Microservices
– Formal models and analyses of Microservice systems

1 https://mse-staf18.fbk.eu/.
2 https://mse-sefm17.fbk.eu/.
3 http://www.staf2018.fr/.

https://mse-staf18.fbk.eu/
https://mse-sefm17.fbk.eu/
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– Validation and Verification techniques for Microservices
– Coordination models for Microservices
– Empirical studies on services and Microservices
– Programming languages for Microservices
– Static analysis of Microservices
– Testing of Microservice systems
– Migration to Microservices
– Adaptation and Evolution of Microservices

2 Accepted Papers

Five papers were accepted and presented in two sessions, each characterized by a
theme. The first session was about Model-Driven Engineering for Microservices while
the second was about Resilience and Security in Microservices. All the papers accepted
to MSE 2018 explored key issues and uses of microservice-based engineering
approaches, in both abstract and applied settings.

In the following, details on the papers presented are given.

2.1 Model-Driven Engineering for Microservices

– Chair: Vaidas Giedrimas – Department of Computer Science, Siauliai
University, Lithuania.

– Paper 1. Jonas Sorgalla, Florian Rademacher, Sabine Sachweh and Albert Zündorf.
On Collaborative Model-driven Development of Microservices. Presenter:
Jonas Sorgalla – University of Applied Sciences and Arts Dortmund.

– Paper 2. Maroun Koussaifi, Sylvie Trouilhet, Jean-Paul Arcangeli and Jean-Michel
Bruel. Ambient Intelligence Users in the Loop: Towards a Model-Driven Approach.
Presenter: Jean-Michel Bruel – University of Toulouse CNRS/IRIT Laboratory.

– Paper 3. Philip Wizenty, Florian Rademacher, Jonas Sorgalla and Sabine Sachweh.
Design and Implementation of a Remote Care Application Based on Microservice
Architecture. Presenter: Philip Wizenty – University of Applied Sciences and Arts
Dortmund.

2.2 Resilience and Security in Microservices

– Chair: Jean-Michel Bruel – University of Toulouse CNRS/IRIT Laboratory.
– Paper 4. Vaidas Giedrimas, Samir Omanovic and Dino Alic. The Aspect of Resi-

lience in Microservices-based Software Design. Presenter: Vaidas Giedrimas –

Department of Computer Science, Siauliai University, Lithuania.
– Paper 5. Mohsen Ahmadvand, Alexander Pretschner, Keith Ball and Daniel Eyr-

ing. Integrity Protection Against Insiders in Microservices: From Threats to a
Security Framework. Presenter: Mohsen Ahmadvand, Technical University of
Munich.
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Abstract. Microservice Architecture (MSA) is an architectural style
for service-based software systems. MSA puts a strong emphasis on high
cohesion and loose coupling of the services that provide systems’ func-
tionalities. As a result of this, MSA-based software architectures exhibit
increased scalability and extensibility, and facilitate the application of
continuous integration techniques. This paper presents a case study of
an MSA-based Remote Care Application (RCA) that allows caregivers
to remotely access smart home devices. The goal of the RCA is to assist
persons being cared in Activities of Daily Living. Employing MSA for
the realization of the RCA yielded several lessons learned, e.g., (i) direct
transferability of domain models based on Domain-driven Design; (ii)
more efficient integration of features; (iii) speedup of feature delivery
due to MSA facilitating automated deployment.

Keywords: Microservice Architecture · Smart home · Remote Care

1 Introduction

In the upcoming years, the number of people aged 60 and older will steadily
increase and is predicted to worldwide grow from 901 million in 2015 to approx-
imately more than 1.4 billions in 2030 [13]. This will result in an increasing
demand for caregivers which can not be covered by the labor market [10]. Hence,
new solutions are needed to cope with the resulting care gap. The IT sector is one
of the central domains from which such solutions are expected. That is, because
it is perceived of being able to provide additional support for both persons being
cared and caregivers by developing new supportive technologies [3,10]. Next to
mainly hardware-based solutions like wearables, Internet of Things based dis-
tributed software systems could aid in coping with the broadening care gap [3].

This research is partially funded by the German Federal Ministry of Education and
Research in the project “QuartiersNETZ” (grant number 02K12B061.).

c© Springer Nature Switzerland AG 2018
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In this paper we present a distributed software system that addresses the
domain of ambulant care. More specifically, the system denotes a Remote Care
Application (RCA) [8], which leverages Microservice Architecture (MSA) [5] as
its underlying architectural style. Its main purpose is to provide a platform for
professional caregivers and nursing relatives to remotely interact with smart
home devices in households of persons being cared and hence support them
in their Activities of Daily Living (ADL) [9], e.g., housekeeping, multimedia,
taking medicine, or personal hygiene. We present the RCA in the form of a case
study with the following objectives in mind: (i) provide MSA researchers with
a practice-related, well-documented research object; (ii) present our experiences
in MSA development; and (iii) elucidate our lessons learned in practical MSA
development. Therefore, we describe the design, implementation and deployment
of the RCA with a strong focus on architectural challenges and requirements.

The remainder of the paper is organized as follows. Section 2 identifies func-
tional and non-functional requirements for the RCA. Section 3 describes the
RCA’s design and implementation based on the requirement elicitation. Section 4
discusses the realized MSA solution for the RCA and the lessons learned during
its implementation. Section 5 concludes the paper.

2 Functional and and Non-functional Requirements of
the Remote Care Application

This section describes the identified functional and non-functional requirements
of the RCA. The requirements elicitation process was part of a holistic, iter-
ative participatory design methodology, which we developed and proved within
the research project of which the RCA was one result [12]. Among others, the
methodology comprises application-specific phases for stakeholder identification,
as well as selection and application of the requirements elicitation process model
being most appropriate for the stakeholders and the application to develop par-
ticipatory. Employing the methodology resulted in (i) persons being cared, pro-
fessional caregivers and nursing relatives being the relevant RCA stakeholders;
(ii) the future workshop method [11] in combination with goal-oriented require-
ments elicitation [4] being the most sensible process model for requirements elic-
itation. Tables 1 and 2 show the functional and non-functional requirement goals
resulting from applying the process model. However, due to space constraints, we
only list the tier1- and tier2-top-level goals and omit more fine-grained sub-goals.

The goals T1-FG-1 and T1-FG-2 in Table 1 describe the general purpose
of the RCA. Accordingly, the RCA provides means to remotely assist house-
hold residents in human-technology interaction scenarios, e.g., programming the
washing machine. Additionally, the RCA enables ambulant caregivers to dynam-
ically prepare for their service remotely, e.g., heating up the bathroom in advance
of their arrival. Based on tier 1, tier 2 Goal T2-FG-1 addresses the need to read
data from smart home devices with the RCA to, e.g., display current and his-
torical device states. Next to basic read access, selected stakeholders may have
to control devices, as expressed in Goals T2-FG-2 and T2-FG-3.
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Table 1. Tier 1 and tier 2 functional requirement goals of the Remote Care Application

ID Goal Description

T1-FG-1 Remote support The RCA must enable caregivers to remotely
assist persons being cared in human-technology
interaction scenarios

T1-FG-2 Preparing household The RCA must enable caregivers to remotely
prepare a household in advance of an ambulant
care visit

T2-FG-1 Smart home The RCA must be connected with various smart
homes and be able to read device states

T2-FG-2 Remote control Devices in connected smart homes must be
controllable

T2-FG-3 Access rights Device control must be explicitly granted by
admins

Table 2. Non-functional requirement goals of the Remote Care Application

ID Goal Description

NG-1 Scalability The RCA must be able to handle thousands of
households

NG-2 Security Security must be high due to personal data being
involved

NG-3 Availability High availability on the basis of increased resilience,
robustness and functional independence

NG-4 Extensibility New functionalities need to be flexibly integrable
and providable

Table 2 shows non-functional requirement goals related to the RCA. They
were actually the main drivers for implementing the RCA on the basis of MSA
(cf. Subsect. 3.1). Goal NG-1 expresses the need for high scalability of the RCA
being particularly relevant for professional caregivers having a potential customer
base of thousands of households. Additionally, because of the high sensitivity of
data related to the persons being cared and in case of misuse the potential of
burglary, data and communication security must follow a high state of prac-
tice (goal NG-2). The RCA must also exhibit a high degree of availability to
enable quick reaction by professional caregivers and nursing relatives in cases of
emergency (goal NG-3). Another relevant concern is extensibility (goal NG-4)
to allow flexible integration of new smart home technologies and devices as well
as new functionalities, e.g., means for data analysis, at runtime.
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3 Design and Implementation of the Remote Care
Application

This section describes the design and implementation of the RCA according to
the identified requirements (cf. Sect. 2). First, Subsect. 3.1 elucidates our decision
to apply MSA to the RCA w.r.t the requirements. Next, Subsect. 3.2 presents the
application design. Finally, Subsect. 3.3 describes the RCA’s implementation.

3.1 Motivation for Microservice Architecture

We chose MSA as the RCA’s underlying architectural style mainly because of
the high requirements for scalability, availability and extensibility, i.e., goals NG-
1, NG-3 and NG-4 in Table 2. The scalability requirement is satisfied because
microservices are scalable independently due to functional isolation and techni-
cal self-containment [5]. Availability can be achieved because MSA fosters the
definition of well-defined, functional service boundaries. Eventually, compared to
monolithic applications, this results in an increased resilience as the faulty service
(i) fails instead of the whole application; (ii) can be identified more effectively
than in tightly coupled monoliths [5]. Extensibility is an inherent characteristic
of service-based architectural styles [1] and comes with well-partitioned service
boundaries, which is one central characteristic of MSA [5].

3.2 Model-Based Design of the Application

The RCA’s design process employed various types of models applicable to MSA
for different design-specific concerns, i.e., capturing of domain concepts and
microservice identification, interface modeling, and deployment modeling [7].

We applied the Domain-driven Design (DDD) methodology [2] to iteratively
capture relevant domain concepts and their relationships. This resulted in the
domain model shown in Fig. 1, which we created in collaboration with domain
experts, i.e., representatives of the RCA stakeholders (cf. Sect. 1). Its notation
and elements’ semantics rely on a UML profile for DDD-based domain models [6],
to prospectively enable semi-automatic model validation and code generation.
Due to lack of space, however, we only present the result of the model creation
process’s final iteration. That is, a domain model with some technical information
relevant to the RCA’s implementation (cf. Subsect. 3.3).

RCA Domain Model

«Bounded Context»
RemoteControlContext

«BoundedContext»
AccessControlContext

«Bounded Context»
HistoryContext

 *

«use»

«use»
«use»

                            «use»

«Service»
RemoteControlService

sendCommandToSmartHome(
    Command, String)

«ValueObject»
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value
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«Service»
HistoryService

getSmartHomeByName(String)
getSmartHomeById(String)
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*
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Fig. 1. Domain model of the Remote Care Application
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The domain model is decomposed into three Bounded Contexts, of which each
denotes a candidate for a functional microservice [5,7]. The HistoryContext
bundles domain-specific concepts that model data of connected smart homes,
devices’ components (called items) and states. This corresponds to requirement
goal T2-FG-1 (cf. Table 1), whereby the current state of a given DeviceItem
is the DeviceState with the highest timestamp. A concrete SmartHome
instance may then, for instance, contain a DeviceItem “ParlorLight Color” with
DeviceState value “(210,0.25,1)”, which corresponds to light blue in the HSV
color model. Furthermore, the context encapsulates a DDD Repository that mod-
els storage and retrieval of SmartHome instances and a Service to retrieve smart
home and their device instances. The RemoteControlContext expresses charac-
teristics for remote control of devices (cf. T2-FG-2). The stakeholders regarded
smart home devices as objects that may receive descriptive Commands like “switch
off palor light”. Therefore, the context’s technical Service realizes communication
of commands to a concrete smart home. The AccessControlContext models reg-
ulation of access rights (cf. T2-FG-3). Within the collaborative domain modeling
process we discussed several remote care control scenarios, that were identified in
the future workshop with the stakeholders (see Sect. 2). Together with the repre-
sentative domain experts, we came to the conclusion that simple read and write
access rules are sufficient. Central to the context is the AccessControlService,
which is used by the other contexts and deals with checking the access rights of
a given user. Hence, they are organized in AccessItems to subsume concrete,
regulated domain concepts like Command or DeviceItem.

«Service»«Service»

«Request»
~AccessControl

«Request»
~AccessControl

Deduced Microservices and their Interfaces

Comand
smartHome : String
deviceItem : String
value : String
commandType : String

«Interface»
SendCommand

sendCommand(
    smartHome : String,
    command : Command)

SendCommand

Access
Control

«Interface»
AccessControl

checkReadAccess(user : String, smartHome : String, deviceItem : String) : Boolean
checkWriteAccess(user : String, smartHome : String, deviceItem : String) : Boolean
addReadAccess(user : String, smartHome : String, deviceItem : String)
addWriteAccess(user : String, smartHome : String, deviceItem : String)

I t emSta te
value : String
timestamp : String

GetItemStates

«Interface»
Get I temStates

getAllSmartHomes() : String[]
getItems(smartHome : String) : String[]
getHistoricItemStates(deviceItem : String) 
    : ItemState[]

«Microservice»
RemoteControl

Service

«Microservice»
AccessControl

Service

«Microservice»
HistoryService

«Service»

Fig. 2. Interface model of the Remote Care Application in MSA-adapted notation [7]

From the domain model, the interface model [7] depicted in Fig. 2 was
deduced by mapping each Bounded Context in Fig. 1 to a microservice. As the
interface model represents the technical implementation of the microservices,
it needs to exhibit concrete technical information not present in the domain
model, i.e., (i) interfaces with methods (deduced from the Bounded Contexts’
Services of the domain model); (ii) types for exchanged data structures, e.g.,
Command, and their fields, e.g., value; (iii) service interaction relationships, e.g.,
the HistoryService consumes the AccessControlService (deduced from the
use relationships in the domain model); (iv) additional elements necessary for
the implementation, e.g., additional add methods in the AccessControl inter-
face.
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3.3 Implementation

Based on the interface model, we started to implement the RCA. Applied an
MSA-specific, technically motivated Architectural Design (MSA-AD) [14]. Next
to the functional microservices as business-related components, it comprises com-
mon infrastructure components of MSA.

Load Balancer and Circuit Breaker denote service-specific infrastructure
components [14]. Load Balancers may cope with increased amounts of requests
by measuring incoming network traffic and distributing requests to different
service instances. Circuit Breakers on the other hand increase the resilience of
microservices by blocking requests that continuously result in errors or commu-
nication faults. Satisfying requirement goals NG-1 and NG-3 (see Table 2), both
infrastructure components contribute to the RCA’s scalability and availability.
Another key infrastructure component of the MSA-AD relevant to the RCA is
the Discovery Service [14]. It allows functional and infrastructure microservices
to expose their own interfaces, discover exposed interfaces of other services and
establish a communication relationship with those services. The Discovery Ser-
vices addresses requirement goal NG-4 (cf. Table 2) as it facilitates the flexible
integration of new functionalities provided by microservices. The demand for
security related to the RCA (goal NG-2 in Table 2) is satisfied by a dedicated
Security Service [14]. It acts as an identity provider for client authorization and
authentication. The services employ token-based security by populating each
request’s data with an access token. The necessary user data is managed by
the User Management Service. Hence, the caller can be clearly identified, even
when the request is transitively delegated from service to service. In combination
with an additional API Gateway Service, the Security Service realizes a Single
Sign-On Gateway, i.e., a central point for authentication. Besides that, the API
Gateway Service denotes the entry point to the RCA for external callers.

The implementation of the RCA is based on Spring Cloud1. Consequently,
each microservice is a standalone Java archive built with Spring Boot. The Dis-
covery and API Gateway Service employ Eureka and Zuul, respectively. For
architecture-internal communication synchronous RESTful HTTP is used. Fur-
thermore, the API Gateway Service provides a REST endpoint for external
requests. However, to increase the RCA’s scalability (goal NG-1 in Table 2), asyn-
chronous message-based communication via MQTT is applied with HiveMQ2 as
message broker for receiving data from connected smart homes. Eventually, the
Security Service was based on OAuth23.

Figure 3 presents the deployment overview of the RCA and connected soft-
ware components. The RCA communicates with various external clients. Admin-
istrators can configure access rights and control a connected smart home with the
ManagementPlatform (cf. Subsect. 3.2). It is mainly used on the office computers
of professional caregivers. The RemoteAssistanceApp is the counterpart of the
platform for mobile devices. Both control applications, i.e., platform and app,
1 http://projects.spring.io/spring-cloud.
2 https://www.hivemq.com.
3 https://oauth.net/2.

http://projects.spring.io/spring-cloud
https://www.hivemq.com
https://oauth.net/2
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Fig. 3. Deployment model of the RCA in MSA-adapted notation [7]. It not otherwise
stated, RESTful HTTP is used for communication purposes.

enable device control independent of a certain vendor. Additionally, the RCA
acts as a mediator between smart homes and the control applications. Therefore,
each SmartHome needs to execute an instance of Eclipse Smart Home4, because
both HistoryConnector and ControlConnector are based on this framework
to abstract from vendor-specific protocols. While the HistoryConnector trans-
mits status changes to the RCA, the ControlConnector receives and executes
remote control commands (cf. Subsect. 3.2).

To provide MSA researchers with an operating case study, whose creation
was mainly driven by practical requirements, we made the RCA’s code available
as open source on GitHub5.

4 Discussion

This section discusses challenges we had to cope with in the RCA development.
First, we spent significantly more time with the engineering of infrastructure

than functional microservices. The realization of the Security and API Gateway
Service took the most time. The reasons for this are (i) a lack of documentation
of the respective frameworks and (ii) the comparatively small business logic,
i.e., while the RCA exhibits high degrees of scalability and extensibility its core
functional capabilities are limited to a small number of microservices.

Second, the configuration of the development environment was partially cum-
bersome. By applying MSA, the application is decomposed into several small and
autonomous services. This results in the physical development environment need
to cope with a high amount of parallel processes, both functional and infras-
tructural. In our case this led to the regular development computers running
out of resources when starting the RCA locally as a whole. Our solution was
two-tiered. First we limited every microservices’ available resources using JVM
parameters. While thereby we were able to cope with the resource issue, this
approach naturally reduced the application’s performance and the opportunity

4 https://www.eclipse.org/smarthome.
5 https://github.com/SeelabFhdo/RemoteCareApplication.

https://www.eclipse.org/smarthome
https://github.com/SeelabFhdo/RemoteCareApplication
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to test scalability. Secondly, we distributed working services to a second devel-
opment machine. Based on our experience we recommend to use a cloud server
or multiple local machines directly in an early development stage.

Third, we recognized that the functional microservices contained a lot of
boilerplate code. Therefore, we developed a functional service template [5], i.e.,
a stub implementation that comprised all boilerplate code and needed to be filled
only with the business logic. To be able to adapt this template to subsequent
MSA projects in other domains, we developed a corresponding reusable build
management tool that generates and embeds functional service stubs as well as
stubs for infrastructure components [14].

Fourth, the model-based design process (cf. Subsect. 3.2) eased the imple-
mentation of the RCA. However, it also introduced an additional amount of
effort as we deduced the interface and deployment model manually from the
domain model [7]. We expect that this extra work may be reduced by (semi-)
automatically transforming the domain model into MSA-specific design models.

5 Conclusion

In this paper, we presented a case study on how to apply MSA in the remote care
domain. We identified requirements for the RCA leveraging participatory design
techniques and employed DDD to create an appropriate domain model. From
this, we deduced further design models which enabled us to derive the RCA’s
implementation consisting of several functional and infrastructure microservices.
Hence, the case study may not only shed light on MSA’s applicability for remote
care, but also on how model-based design may aid in microservice development.

References

1. Erl, T.: Service-Oriented Architecture (SOA) Concepts, Technology and Design.
Prentice Hall, Upper Saddle River (2005)

2. Evans, E.: Domain-Driven Design. Addison-Wesley, Boston (2004)
3. Islam, S.M.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.S.: The internet of

things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)
4. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:

Proceedings of the Fifth International Symposium on Requirements Engineering,
pp. 249–262 (2001)

5. Newmann, S.: Building Microservices. O’Reilly Media, Sebastopol (2016)
6. Rademacher, F., Sachweh, S., Zündorf, A.: Towards a UML profile for domain-

driven design of microservice architectures. In: Cerone, A., Roveri, M. (eds.) SEFM
2017. LNCS, vol. 10729, pp. 230–245. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-74781-1 17

7. Rademacher, F., Sorgalla, J., Sachweh, S.: Challenges of domain-driven microser-
vice design: a model-driven perspective. IEEE Softw. (2018, in press)

8. Rashid Bashshur, G.S.: History of telemedicine: evolution, context, and transfor-
mation, New Rochelle (2009)

9. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older
adults. IEEE J. Biomed. Health Inf. 17(3), 579–590 (2013)

https://doi.org/10.1007/978-3-319-74781-1_17
https://doi.org/10.1007/978-3-319-74781-1_17


Design and Implementation of a Remote Care Application Based on MSA 557

10. Redfoot, D., Feinberg, L., Houser, A.: The Aging of the Baby Boom and the Grow-
ing Care Gap: A Look at Future Declines in the Availability of Family Caregivers.
AARP Public Policy Institute, Columbia (2013)

11. Robert Jungk, N.M.: Future Workshops: How to Create Desirable Futures. Insti-
tute for Social Inventions (1996)

12. Sorgalla, J., Schabsky, P., Sachweh, S., Grates, M., Heite, E.: Improving representa-
tiveness in participatory design processes with elderly. In: Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors in Computing Systems,
pp. 2107–2114. ACM (2017)

13. United Nations: World Population Ageing 2015. No. ST/ESA/SER.A/390 (2015)
14. Wizenty, P., Sorgalla, J., Rademacher, F., Sachweh, S.: Magma: build management-

based generation of microservice infrastructures. In: Proceedings of the 11th Euro-
pean Conference on Software Architecture (ECSA), pp. 61–65. ACM (2017)



Ambient Intelligence Users in the Loop:
Towards a Model-Driven Approach

Maroun Koussaifi(B), Sylvie Trouilhet, Jean-Paul Arcangeli,
and Jean-Michel Bruel

Institut de Recherche en Informatique de Toulouse, University of Toulouse,
Toulouse, France

maroun.koussaifi@irit.fr

Abstract. Ambient and mobile systems consist of networked devices
and software components surrounding human users and providing ser-
vices. From the services present in the environment, other services can
be composed opportunistically and automatically by an intelligent sys-
tem, then proposed to the user. The latter must not only to be aware
of existing services but also be kept in the loop in order to both control
actively the services and influence the automated decisions.

This paper first explores the requirements for placing the user in
the ambient intelligence loop. Then it describes our approach aimed
at answering the requirements, which originality sets in the use of the
model-driven engineering paradigm. It reports on the prototype that has
been developed, and analyzes the current status of our work towards the
different research questions that we have identified.
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1 Introduction

Ambient and mobile systems consist of fixed or mobile devices connected by
one or several communication networks. These devices host services specified by
interfaces and implemented by independently developed, installed, and activated
software components. Components therefore provide services and, in turn, may
require other services. They are blocks that can be assembled to build more
complex services. For example, hardware or software interaction components
(e.g., buttons, sliders, screens) and functional components like a Polling Station
and a Report Generator can be assembled if their interfaces match and provide
a complete distributed “voting service”.

Due to the high mobility of current devices and users, the environment is
open and highly unstable: devices and software components, which are indepen-
dently managed, may appear and disappear without this dynamics necessarily
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being foreseen. Human users are plunged into these dynamic systems and can
use the services at their disposal. Ambient intelligence aims at offering them
a personalized environment, adapted to the current situation, anticipating their
needs and providing them the right services at the right time, with as little effort
as possible.

We are currently developing a solution in which services (in fact, microser-
vices) are dynamically and automatically composed in order to build composite
services and so customize the environment at runtime. Here, unlike the tradi-
tional “top-down mode” for building applications, services are built on the fly
in “bottom-up mode” from the components that are present and available at
runtime. This is supported by an assembly engine in line with the principles of
autonomic computing and the MAPE-K model [11]: it senses the existing com-
ponents, decides of the connections (it may connect a required service and a
provided one if their interfaces are compatible) without using a pre-established
plan (or not necessarily), and commands them. The heart of this engine is a
distributed multi-agent system where agents, close to the software components,
cooperate and decide on the connections between their services. Composite ser-
vices (realized by assemblies of components) continuously emerge from the envi-
ronment, taking advantage of opportunities as they arise. And to make the right
decisions and offer the relevant services, the engine (i.e., the agents) learns at
runtime by reinforcement. The main advantages are proactivity and runtime
adaptation in the context of openness, dynamics and unpredictability [15].

The user is at the core of ambient or cyber-physical systems. Here, unlike
the traditional SOA paradigm, she/he does not necessarily demand or search for
services (in “pull mode”); on the contrary, services adapted to the context and
operational are supplied in “push mode”. In this context of automation based on
artificial intelligence, the sharing of decision-making responsibilities between the
assembly engine and the user is in question. Anyway she/he must be kept “in
the loop”. On the one hand, it is essential to assist the user in the appropriation
and control of the pushed services: she/he must be informed but also must keep
some control over her/his ambient environment, or possibly be able to contribute
herself/himself to the construction of personalized services. On the other hand,
to make the right decisions, the assembly engine must rely on a model of the
user in her/his environment. This model, which is unknown a priori, must be
built at runtime and evolve dynamically.

Keeping the user in the loop therefore demands a number of requirements
to be met. The objective of this work is to experiment and evaluate a solution
based on model-driven engineering and model transformations in order to put
the user in the control loop. The purpose of this paper is to explain and justify
the interest of such an approach, to describe the main architectural principles,
and to report on the development of a prototype solution (the design of the smart
engine itself is out of the scope of this paper). The conducted experimentation
allows us to conclude positively on the advantages of such an approach.

The paper is organized as follows. Section 2 describes in more details the
problem through a use case. The concrete issues raised by the specifics of the
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domain, listed as requirements. Section 3 analyses the current state of the art and
concludes that there is no current solution that fully addresses the requirements.
Section 4 presents our initial ideas to address the research questions identified.
Section 5 presents the prototype we have developed and experimented in order
to validate our approach. Finally, a conclusion is given in Sect. 6 as well as the
perspectives of this work.

2 Use Case and Requirements

2.1 Use Case

In order to illustrate the problem and motivate the requirements, we propose
the following use case, divided into two phases: the first one describes an oppor-
tunistic adaptive service composition and the second one the emergence of an
unanticipated service.

MissJane is a student at the university. This morning, she has a formative
assessment: the teacher asks some questions and the students answer using a
Remote Control device lent by the university for the year. The answers are
collected by the teacher who makes comments in return. For that, the teacher
activates a Quiz service implemented by three software components: a Polling
Station available on the university network, a Report Generator and a Remote
Control installed on his laptop. Then, the services provided by the students’
remote controls connect with the required service of the Polling Station com-
ponent. Unfortunately, MissJane has forgotten her remote control at home and
is unable to answer. However, the ICE (Interactive Control Environment) inter-
face which is at her disposal in order to control her smart environment suggests
the use of a vertical slider currently available on her smartphone instead of the
remote control. Even though it was not originally designed to be used with the
Quiz service but as it matches the required service of the Polling Station, Miss-
Jane can use it, at least if she agrees, and therefore answer. In fact, the ICE inter-
face could have suggested several other compatible interaction components (as
an horizontal slider or a dimmer switch) also available in the environment. Then,
MissJane would have chosen her favorite one.

Here, several available components have opportunistically been assembled by
the smart engine. Then the resulting Quiz service that is adapted to the context
has been presented to MissJane, who used it after acceptance. The corresponding
assembly is depicted on the right side of Fig. 1 (we voluntarily use an informal
notation of components and connections). Note that, in this example, we do not
consider how the quiz questions are displayed to the students.

The course in now terminated. MissJane frequently goes to her favorite pub
in the afternoon. To book a table and order drinks, she uses an Order ser-
vice (see the left side of Fig. 1) implemented by three components (Customer
Input Interface, Menu Presentation, Order Generator) provided by the pub and
installed on her smartphone. As today it’s her birthday, she would like to invite
the other students to have a drink. But she doesn’t want to enter all of the orders
manually. Thus, she deactivates her Customer Input Interface. Then, in such a
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Fig. 1. Emerging composite services

context, the assembly engine proposes to bind the Order Generator component
with the Polling Station still available in the environment, instead of the Cus-
tomer Input Interface. Now, the new Pub4.0 service allows each student to order
her/his own drink with her/his remote control, and sends the global order to the
pub. This service really emerges from the ambient environment as it was not
designed beforehand and it is built from non-dedicated components provided by
different authorities. The Pub4.0 service is in the dotted frame of Fig. 1.

2.2 Requirements

Our goal in this project is to put the user in the loop. To achieve this goal,
we have identified several requirements listed below. In a general way, the user
must be aware of the emergence of new services that are pushed by the assembly
engine, have the privilege to control this emergence, and be able to appropriate
the services. On the other side, to improve its decisions, the intelligent assembly
engine needs to learn from the user’s actions and reactions to the situation and
the proposals of services. We have organized the requirements in main concerns.

Presentation: An emerging service must be presented to the user. As
unanticipated services may appear, the user must be informed of their avail-
ability. For example, in our use case, MissJane would receive a notification on
her smartphone that she can use the vertical slider as a voting device. This
implies that she has accepted to receive such a notification. This also raises
some requirements related to acceptability and intelligibility. As a result, the
research questions we are interested in are:

PRE 1. How to present an emerging service to a human user in an intelligible
and personalized way?
PRE 2. When and how often must the emerging services be presented?
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Acceptation: The user must accept or reject an emerging service. After
it passes the presentation phase, user acceptation determines if the proposed ser-
vice is relevant and has to be deployed or not. In our use case, MissJane would
accept the use of the proposed vertical slider. This raises usability requirements:
it demands an easy way for the user to accept or reject the emerging service
(e.g., MissJane would simply click on the accept button attached to the notifi-
cation). Some related research questions are:

ACC 1. How the user must be notified that acceptation is required?
ACC 2. How the user could accept or reject an emerging service?

Modification: An emerging service should be modifiable by the user.
The user should be able to remove or replace any component in the proposed ser-
vice, more widely to modify the emerging service. For example, MissJane should
be able to change from a vertical slider to an horizontal one. So, the user must
have the necessary tools and services to modify the emerging service: alternative
components and/or assemblies should be presented, editing should be easy and
the user assisted in this task. This concerns the usability and ergonomics of the
editing tools. In addition, the permission to use and bind a component,i.e., secu-
rity concerns, might be considered. Some related research questions are:

MOD 1. How the user can be assisted and tools be helpful?
MOD 2. How to insure, on the spot, that the modified service is still correct?
MOD 3. Which components of the ambient environment should be usable and
presented to the user and how?

Creation: A composite service can be created by the user. Like the
engine but without using its proposals, the user should be able to create her/his
own composite service i.e., an assembly from scratch, out of available compo-
nents. For example, MissJane should be able to build by herself the Pub4.0
service instead of the engine. To do this, the user must visualize the available
components and be able to bind the ones she/he selects. Besides usability, user
assistance, service correctness and relevance, another problem -partly related to
scalability- concerns the identification of the available and useful components.
This part of the requirements does not bring any new particular research ques-
tion in addition to those related to the modification concern.

Feedback generation: The assembly engine must receive feedback from
the user’s actions. When a service is created, modified, accepted or rejected,
positive or negative feedback must be generated for the engine, that could help
to increase the quality of its decisions and fit to the user’s behavior, practices
and preferences (this means that a user profile is implicitly built). For instance,
breaking a connection between services could trigger negative feedback for the
engine in order to decrease the estimated value of the binding. In the same
way, setting up a new connection could generate a positive feedback increasing
consequently the estimated value of the binding. Thus, for example, after several
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times MissJane has modified an emerging service by choosing the horizontal
slider, the engine would have finally learned her preference and proposed the
service with the horizontal slider as a priority. In addition, when using a graphical
editor, the user’s actions such as swipe or pinch-spread may give information for
the assembly engine. This way, the swipe of a service could mean that this one is
interesting, and reinforce the interest of the component which implements this
service. Concerning feedback and learning, some research questions are:

FBK 1. How to capture user’s intentions from her/his manipulations?
FBK 2. How to translate the observed actions into useful information for the
engine?

3 State of the Art

According to [9], as self-adaptive systems (e.g., implementing the MAPE-K
model) can behave in unexpected ways, humans must be involved in the adap-
tation process: they can help in conflict resolution and improve the adaptation
strategy by giving feedback, even when they have limited attention or cogni-
tion. Transparency, intelligibility, trust to users, controlability, and management
of user attention are major requirements. In [8], authors propose a solution to
integrate the user in the self-adaptation loop, while usability and preference
modeling are the main requirements. Adaptation relies on variability models
built at design-time and user-level preferences. In addition, for acceptability and
to avoid user trouble, “user focus” components (i.e., components that are in the
actual user focus, in opposition to “background” components) are kept out of
dynamic adaptation. User contribution can be more or less explicit: she/he can
select and adjust an application, accept or reject an application, change her/his
preference, or even put off the adaptive behavior.

In order to succeed, putting the user in the loop must meet usability require-
ments. For that, End-User Development (EUD) aims to enable non-specialists in
software development to create or modify applications. Common approaches con-
sists in providing software elements to be customized and composed. According
to [13], which reviews different projects in particular concerning mobile appli-
cations, a motivation is that “regular development cycles are too slow to meet
the users’ fast changing requirements”. In [6], authors propose an EUD envi-
ronment designed for home control as an alternative to artificial intelligence.
Additionally, they report on their “lived-with” experiences with EUD at home.
They conclude that if EUD and machine learning are competing approaches, “it
should be possible to augment EUD with machine learning”.

In [10], the emphasis is put on feedback and machine learning in adaptive
smart homes. Authors argue that user preferences and profile can be learned
(by semi-supervised reinforcement learning algorithms), associated to activity
recognition that transforms raw data into sharp information about the user
situation.
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In the domain of human-computer interaction, several solutions for interface
plasticity (i.e., dynamic adaptation to changing environments) rely on compo-
nent or service dynamic composition [7]: automation is demanded to overcome
complexity (in number, dynamics, composability. . . ), but keeping the user in
the loop is imperative both to observe and to control the interactive ambient
environment. The concept of Meta-UI (User Interface) [5] has been introduced
as “the set of functions that are necessary and sufficient to control and evaluate
the state of interactive ambient spaces”. In [7], we have proposed the Meta-UI
to present emerging user interfaces and allow for user’s choice in the context of
ambient systems.

Regarding the requirements analyzed in Sect. 2.2, the existing solutions are
only partially satisfactory. They are ad hoc (EUD environments or Meta-UI), and
none of them can support the description and edition of unanticipated emerging
services. The next section introduces the principles of our approach, and Sect. 5
overviews our solution and details the prototype we have realized as a proof of
concept.

4 Our Approach

From the previous section we can conclude that the problem we address requires
to match and master links between concepts. It can be between a service and
an assembly of components, between an intent and a set of model manipula-
tions, etc. The key concerns here are: (i) the presentation/manipulation of ser-
vices, which implies some form of editor, and (ii) the navigation/transformation
between concepts. We have hence naturally explored the use of the recent Model-
Driven Engineering (MDE) approaches to help in this concern.

Our team has a long experience in providing modeling and language engineer-
ing tools and approaches [4]. One of the most recent activity addresses the ben-
efit of having, in the context of Cyber-Physical Systems (CPS) models directly
manipulable by the final user in order to pilot and adapt their behavior [3]. Such
manipulations are now possible thanks to the progress of language engineering
environments such as GEMOC1 that allow the definition of Domain-Specific
Modeling Languages (DSML) and the automated generation of the language
workbench that goes with it (graphical and textual editors, transformation lan-
guages, etc.).

In order for a human to manipulate concretely a model, a set of elements
are required: (i) some tooling (viewers, editors, debuggers, interpreters, . . . );
(ii) some representations (concrete and abstract syntax, . . . ); (iii) some inter-
pretations and rules (semantics, grammar, . . . ). This is the purpose of MDE
approaches to provide such environments (see Fig. 2). In our context, we have to
extract information from an ambient systems technical world (made of compo-
nents, bindings, services, etc.) and present them from a user point of view (made
of goals, expectations, required services, etc.). MDE will help to make the con-
nections between the two domains by providing: (i) a detailed organization of
1 http://gemoc.org/.

http://gemoc.org/
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the concepts of each domain (called metamodels), (ii) a mapping between those
concepts, (iii) the required environment to manipulate and navigate between
those concepts. The detailed use of MDE to help solving the research questions
we have listed in Sect. 2.2 will be given in Sect. 5.1.

Fig. 2. Model-Driven Engineering in action (taken from [4])

Apart from our own efforts (e.g., [1,3]) towards putting the final user in the
loop of the monitoring and management of his/her own applications, we can cite
several other approaches. In [14], the authors use MDE to control user interface
adaptation according to explicit usability criteria. They focus on the generation
of those interfaces and hence address more the variability concerns that the
user interactions themselves. Let us also mention the work from [2], where the
authors apply knowledge (inferred from large volumes of information, artificial
intelligence or collective intelligence) to boost the performance and impact of a
process. They nevertheless do not focus in user interaction. The following section
provides details on the way we have implemented MDE techniques to answer the
requirements identified in Sect. 2.

5 Proof of Concept

In order to experiment the base ideas of our approach, we have developed a
solution that consists of a specialized model editor for user manipulations and
tools to link the models with (an emulated version of) the ambient system.
The full source code of our prototype can be found on Github2. The first tool
generates the model of a service from the output of the assembly engine. The
second tool allows the models that are created, modified, or accepted by the user
to be deployed in the ambient environment.
2 https://github.com/marounkoussaifi/MDE Prototype User In The Loop.

https://github.com/marounkoussaifi/MDE_Prototype_User_In_The_Loop
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Several technologies and frameworks support the implementation. They are
used to define a metamodel from which models can be edited using a graphical
editing framework, and to transform models by model-to-text transformation
into codes that realize the deployment. In practice, we have used the Eclipse
Modeling Framework (EMF3) which is a basic plugin for metamodeling on
Eclipse, Ecore to define and create the metamodel, Sirius (See footnote 3) to
define the editor’s resources, and Acceleo (See footnote 3) which is a model-to-
text transformation tool, to generate deployment code.

In the following, we present an overview of the implemented approach, and
provide some more technical details.

5.1 Overview of the Prototype Solution

Figure 3 shows an overview of our prototype solution that is structured in three
parts: an editor, a service presenter, and a service deployer.

Fig. 3. Implementation of the complete loop

At first, the engine monitors the ambient environment to detect the available
components and produces composite services in the form of scripts, i.e., text
files defining executable bindings of components. Figure 4 shows an example of
such a script in Java, where the comments have been added by hand for a better
understanding.

Then the service presenter transforms the script into an editable model of the
emerging service to be presented to the user. This model conforms to the meta-
model we have defined for this purpose (see Sect. 5.2). Via the editor, the service
model can be manipulated either in the form of a text (for example for experi-
mented users) or in a graphical form (possibly for non-specialists). Actually, this
form can be adapted to the user thanks to the separation between the model
and its representation, i.e., the model can be represented in a domain-specific
language (DSL). Figure 5 shows the graphical representation by the editor of
the emerging Pub4.0 service proposed by the engine (see Sect. 2.1). It consists
of different components connected together. The students’ remote controls are
3 https://www.eclipse.org/[modeling/emf|sirius|acceleo].
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Fig. 4. Script for the assembly of Pub4.0 service

connected to the Polling Station by binding the Vote services together. Also,
MissJane’s Vertical Slider is used as the master remote control of Pub4.0 : it’s
connected to the Polling Station by binding the Master Control service to the
Value service. The Value service represents a generic type of service which is
compatible with different other types, such as the Master Control service. In the
same way, the Polling Station is connected to the Order Generator by binding
the Report service to the Order service. Additionally, the editor may display
several non-connected components which are available for connection if neces-
sary. Once the emerging service is uploaded in the editor, the user can accept or
reject it. She/he can also modify it, that is to say remove or change any bind-
ing between the components and use available components if one exists, or even
define a new service by creating a new assembly.

Fig. 5. Presentation of the Pub4.0 service

When editing, in order to generate feedback for the engine to enrich the
agents’ learning process, user’s actions on bindings (in general on the interactive
interface) are captured. The engine knowledge hence increases and therefore the
engine future decisions will be more in line with the user expectations and profile.
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At last, the emergent4 service is transformed by the service deployer into a
script to be executed in the ambient environment.

5.2 Service Edition

The graphical editor is the core element of the answer to the identified require-
ments listed in Sect. 2.2. It realizes the ICE interface introduced in Sect. 2.1:
basically, it allows for visualization of emerging service models, service accepta-
tion, and modification, deletion or creation of links between services. In addition,
as a graphical editor, it enables to drag and drop any displayed component.

The editor relies on a metamodel that frames the definition of component
assemblies as a service. The metamodel is classically defined by a class diagram
relating together the metamodeling concepts (see Fig. 6). The figure was auto-
matically generated by the Sirius Ecore Editor, a tool that allows the graphical
representation and edition of an Ecore model (metamodel). It consists of three
main classes. The Service abstract class is extended by two child classes, the Pro-
videdService and the RequiredService classes. The ambient environment (ambi-
entEnv class) is composed of components (Component class). Components are
composed themselves of at least one service (Service class). Bindings between
component services are made to build the emerging service. Additionally, we
have implemented Object Constraint Language (OCL) [16] rules to constrain
the service models (e.g., to control that a service does not exceed a maximal
number of connections).

Fig. 6. Our service metamodel

To develop the editor, we have used the GEMOC Studio, and more pre-
cisely Sirius, a technology for designing customized graphic modeling tools. Sir-
ius allows to define editors in a completely graphical way, without having to
4 We deliberately use emerging to qualify services that are dynamically appearing. We

reserve the use of emergent for emerging services that have been accepted by the
user.
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write any code. This is where the use of an MDE approach takes all its sense.
Indeed, with such a strong coupling between the tool and the concepts, it is
important that we take into account, in advance, the future evolutions of our
metamodel. As the editor is completely automated from the metamodel itself,
the metamodel evolutions have no impact on the editor from a workload point
of view. At this point of our work, feedback generation has not yet been imple-
mented. The GEMOC monitoring capabilities will be used in order to generate
feedback for the learning process of the engine.

The editor should be integrated into the whole system and the ambient envi-
ronment for example to present a short list of available components that are
not connected but relevant for use (e.g., an horizontal slider). At this stage, our
editor is not fully integrated. Nevertheless, in order to test our prototype and
simulate the arrival of new components, we have added to the editor a side panel
that allows the user to design any component with its services.

5.3 Service Presentation

The service presenter is the element of our solution that transforms an emerging
service into an editable model (which in turn will be presented to the user via
the editor, as described in the previous section). Unlike the editor, the service
presenter is not a user-manipulated tool.

The service presenter relies on the same metamodel as the editor to generate
the model of the emerging service. Nevertheless, unlike for the editor but for fast
prototyping concerns, we have not yet used an MDE approach to implement the
service presenter . For the moment, we have developed a Java program that
records all the bindings between different components, then generates the XML
source of the graphical model while respecting the editor metamodel concepts.
Whenever the metamodel changes, the service presenter must be rebuilt in order
to become compatible with these changes. Using a MDE approach will be one
of the major evolution of our future work.

However, in its current form, the service presenter is fully operational and is
able to generate the model of an emerging service in the form of an assembly of
components.

5.4 Service Deployment

The service deployer is the element of our solution that generates the bindings
commands to be executed for the actual deployment of an emergent service in
the ambient environment. It is also a non-user manipulated tool.

Likewise the editor, the service deployer must rely on the same metamodel
while executing model-to-text transformation in order to properly generate the
binding script. At this stage, this part suffers from the same limitation than the
presenter described previously.

The service deployer consists of an Acceleo program that performs model-to-
text transformation. Acceleo is an open source code generator from the Eclipse
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foundation. It allows the design of code generation modules that can generate
outputs in a language chosen by the developer from one or more models as inputs.
Currently, the service deployer performs model-to-Java code transformation.

At this stage of our work, the generated Java code implements the emergent
service model to be injected in the ambient environment. This is enough for
rapid prototyping and test.

6 Conclusion and Future Work

Infrastructure automation, commonly based on continuous integration, auto-
mated testing and deployment, helps in microservices management [12]. Our
project aims to go a step further in this direction by automating the assembly
of services that are available in the environment and operational. In such a con-
text, the user must nevertheless be put into the loop to be informed of emerging
services, to be able to edit, modify, validate them, and to give implicit feedback
to the automatic system.

In this paper, we have proposed an MDE-based approach intended to answer
the requirements to place the user in the ambient loop. The solution consists
of an editor that enables the user to visualize an emerging service provided
by a service presenter . Also, it enables her/him to accept or edit the service,
before deployment by a service deployer . In such a way, the user is a full actor
in the ambient system, especially as her/his actions may produce feedback for
the intelligent system. At this stage of our work, tools for service presentation
(service presenter) and deployment (service deployer) are working but should
be consolidated via a full MDE-based development.

In the following, we discuss the current status of our solution towards the nine
research questions we have identified. This discussion is summarized in Table 1
where the status regarding research questions are rated from none to three +.

Table 1. Current status of our solution towards the identified research questions

Research question Current status

PRE 1 (How to present) +

PRE 2 (When to present) +

ACC 1 (How to notify user)

ACC 2 (How the user accept) ++

MOD 1 (Help in manipulation) ++

MOD 2 (Correctness) + + +

MOD 3 (What to present) +

FBK 1 (How to capture intentions) +

FBK 2 (Feedback for the engine)
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The first group of research questions is directly related to the MDE-based
approach we adopted in order to put the user in the loop: PRE 1, MOD 2, FBK 2.
The experience presented in this paper shows that MDE meets the requirements
of service presentation and editing, whereas the services are correct by construc-
tion since they conform to the metamodel. In addition, as the concrete service
representation is separated from the service model itself, any dedicated language
that is familiar to the user can be used (DSL). So, we do not expect any par-
ticular service manipulation abilities from the user; in the contrary we consider
that it is up to ICE to adapt to the user. On the other hand, the view is cur-
rently only structural but does not present the function of the emerging service
(neither of the components). Likewise, if a certain number of user actions can be
observed, they still need to be interpreted in a way that is useful for learning.
These points are fundamental, so we aim for a +++ level of response. To meet
this objective, and fulfill intelligibility requirements both for the user and the
engine, important work remains to be done concerning the enhancement of the
metamodel and the transformation rules.

A second group of research questions concerns problems related to Human-
Computer Interactions (HCI): PRE 2, ACC 1, ACC 2. They mainly concern
acceptability, usability, and ergonomics. For the moment, the ambient environ-
ment and its changes are sensed periodically; at the same frequency, new emerg-
ing services are presented if there exist. We still have to deal with problems
related to environment instability, awareness of user preferences, obtrusiveness
or ergonomics in order to reach a solution rated between + and ++. Our pro-
posal will rely on solutions elaborated in the HCI domain, and we do not really
aim for a major contribution to the state of the art.

The last questions are strongly related to Artificial Intelligence issues:
MOD 1, MOD 3, FBK 2. Currently, the editor supports the presentation of
emergent services proposed by the intelligent system. We should go further in
the choice of relevant services and components to present according to the con-
text (user profile, situation. . . ), and in the assistance to the user. Another chal-
lenge sets in the translation of user actions into learning knowledge useful to the
engine. As these aspects are essential, we aim for a level response rated from ++
to +++. The further development of the engine’s intelligence and its coupling
with ICE will provide answers.
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Abstract. Building microservices involves continuous modifications at
design, deployment, and run times. The DevOps notion together with the
“you built it, you run it” paradigm often result in a much larger number
of developers with direct access to the production pipeline than in the
case of monolithic systems. Reproducible builds and continuous delivery
entail practices that further worsen this situation as they grant insid-
ers with indirect accesses (scripted processes) to production machines.
Moreover, managing microservices is heavily aided by governance tools
(such as Kubernetes) that are configured and controlled by insiders. In
this setting, accounting for malicious insiders quickly becomes a major
concern. In this paper, we identify representative integrity threats to
microservice-based systems in the broader context of a development pro-
cess by analyzing real-world microservice-based systems. We show that
even end-to-end encryption may fall short without adequate integrity
protections. From the identified threats, we then derive a set of security
requirements for holistic protection. Finally, we propose a framework
that serves as a blueprint for insider-resistant integrity protection in
microservices.

1 Introduction

Microservice-based architectures are a relatively new paradigm for developing
highly scalable distributed systems. In this paradigm, systems are decomposed
into a set of independent subsystems (microservices) communicating over the
network and collaborating with each other. In contrast to monolithic systems,
microservices can be independently developed, deployed, executed and repli-
cated, which yields shortened release cycles and vertically scalable systems [1].

This architecture paradigm, however, entails significant changes in the
organization processes that were implemented for monolithic systems [16]. In
microservice-based development, multiple disjointed teams are responsible for
the entire lifecycle of their services. Each team has full knowledge about their
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services and, often enough, limited knowledge about others (normally only API
interfaces). As the system grows, bootstrapping services and handling their
dependencies become a challenge.

To effectively address these issues, teams leverage container-based virtualiza-
tion, e.g., Docker (https://docker.com), to bundle their services. Containers pro-
vide isolation and, more importantly, guarantee seamless portability of services
from development to production. Developers are fully responsible for creating
containers for their services utilizing Docker files and configurations.

Governing system containers, e.g., maintenance, orchestration, fault han-
dling, load balancing, etc., is another complex procedure for which the state-of-
practice suggests Kubernetes (https://kubernetes.io) or comparable tools [16].
Kubernetes honors developers’ specified management policies in the form of con-
figurations. Moreover, it provides a cockpit (kubectl) for system monitoring and
management.

To resolve runtime problems, developers can, via kubectl, connect to running
instances in the system to closely inspect or potentially even alter services. This
effectively supports the “you built it, you run it” [12] paradigm, which aims at
reducing the management complexity of such systems.

This new practice introduces a set of challenges with respect to protection
of system integrity which we address:

1. Reproducible builds: To cope with the increased complexity, developers must
ensure that their services run as expected in production. This entails a major
change in the role of developers, known as DevOps, in setting up production
services, be it preparing containers or scripting configurations. Consequently,
production artifacts, including potentially sensitive data, are created and thus
known by a larger number of insiders, which used to be restricted to only the
operations team in monolithic systems. This extensive access by many parties
increases the risk of user misbehaviors, which are very difficult to identify.

2. Quis custodiet ipsos custodes: The governance tools often allow for dynamic
adaptation, e.g., spinning up new services in response to an increased load.
They can potentially harm system assets if compromised. Insiders monitor the
system and make necessary changes via their provided interface (Kubectl).
However, if these insiders turn rogue, they can use the very same tool to
harm the system or its users, known as Man-In-The-Cloud attacks [18]. In
this setting, authenticating changes made through the tools is challenging.

3. Continuous delivery: Unlike monolithic systems in which the entire produc-
tion system is updated at once, microservices and their settings change more
frequently in a completely independent manner. This further complicates the
authentication of changes in the system.

4. Non-repudiation: In contrast to monolithic systems, microservices split the
internals of a system into disjoint subsystems. Each of them independently
implements a specific part of a business goal upon request. In this setting,
ensuring that sensitive operations are executed only by genuine requests is
hard. That is, adversaries can potentially forge processes by issuing malicious

https://docker.com
https://kubernetes.io
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requests to services. Even signing requests fail to mitigate the risk because
certificates/signing keys will usually reside inside the system nonetheless.

1.1 Problem Statement

These challenges are neither completely new nor exclusive to microservices. How-
ever, they impose a vastly increased risk to them. The induced complexity, the
involvement of multiple parties in system configurations, the increased access
to running services via governance tools and the expanded exposure of system
artifacts altogether significantly increase the risk. In light of these emerging chal-
lenges, guaranteeing system and data integrity is problematic.

1.2 Gap

Section 7 will survey related work. In summary, to the best of our knowledge,
we see the following gaps:

– Threats to integrity and their implications in microservice-based systems were
not previously studied in a systematic and comprehensive way;

– Security requirements for a holistic integrity protection (expanding over build,
deployment and execution processes) were not systematically analyzed;

– More importantly, there exists no solution for end-to-end integrity protection
in microservice-based systems.

1.3 Contributions

We base our analysis on our experience with the security analysis of real-world
microservice-based systems that were designed for security-sensitive contexts.
For IP reasons, we cannot discuss these concrete systems themselves and will
hence reflect on most parts of these systems in an abstract fictional state-of-the-
art system (SystemX ) as a case study. We consider our contributions to be the
following:

– Carry out a comprehensive security analysis of SystemX to identify a set of
integrity threats. We believe that this set of threats is representative for many
microservice-based architectures;

– Derive a set of integrity protection requirements based on the threats; and
– Propose a security framework conforming to the requirements, which serves

as a blueprint for holistic integrity protection in microservice-based systems.

2 Attacker Model: Rogue Insiders

In this paper, we assume that some of the organizational staff, developers, oper-
ations, etc. can go rogue. Such insiders may target arbitrary end users to steal
their sensitive data, plant generic backdoors or (generally) perform any act of
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sabotage in the system. We, however, presume the organization itself is trust-
worthy. That is, a majority of insiders aim for protecting both the system and
its users.

As a consequence, we assume that system artifacts can be trusted when they
are collectively approved by a subset of insiders upon commits to the source
code control system (SCCS). This can be aimed at by reviews on the grounds of
the four-eyes principle or other mechanisms. Our inside attacker of interest can,
however, attempt to violate the integrity of system artifacts after creation (at
various stages) or attack production machines.

3 Context

3.1 SystemX ’s Architecture

SystemX is a structured four-tier architecture: (a) the client tier which delivers
system functionalities to users, (b) the API tier which includes microservices
that serve client requests, (c) the internal tier where system-level microser-
vices reside, and (d) the data tier which contains the underlying distributed
persistence services, e.g., an Apache Cassandra (cassandra.apache.org/) NoSQL
database and a Ceph (ceph.com) distributed file system.

API services mediate requests to underlying internal services as necessitated
by user requests. That is, internal services are not directly accessible from the
outside world but through API services. Similarly, the persistence layer is reach-
able strictly by internal services only. We refer to this access policy as access
zones throughout the paper.

API services utilize two interaction models, request-response and fire-and-
forget. The former enables direct communication between API and internal ser-
vices while the latter queues requests in a message broker to be served by respec-
tive services.

API services sign all requests with inter-service-authentication keys, which
are stored as part of the Kubernetes secret storage. Similarly, the data layer
APIs sign sensitive data before persisting them, so illegitimate data alterations,
for instance by DB admins, can be detected. All signing keys are stored in a key
management service (KMS).

SystemX uses end-to-end encryption for data exchange with users. Clients
generate a key pair and subsequently register their public keys at the server.
Consequently, all user data on the server will be encrypted.

The system utilizes various logs to track insiders’ activities (e.g., inside
kubectl). All these logs are signed and persisted in the data layer.

3.2 Organizational Processes

Development. There are three identical environments, viz. development, stag-
ing, and production. To avoid surprises, both staging and production in terms
of service configurations exactly mirror the development environment, which

http://cassandra.apache.org/
http://ceph.com
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in turn yields effortless releases. Therefore, system-wide configurations (often
including initial secrets) are checked into (internal) SCCS. Note that a manage-
ment tool for sensitive data, e.g., Vault https://www.vaultproject.io/, could be
used to move secrets away from configurations to protect their confidentiality. A
vault can be configured to disclose secrets only after authenticating services’ cre-
dentials. In this setting, microservices, however, need to be bootstrapped with
valid credentials, which have to be hard-coded into services, fed into them at
runtime, or reside in their configurations. All of the above are nonetheless sus-
ceptible to extraction attacks in the presence of malicious insiders.

Consequently, all secrets, whether they require credentials or not, includ-
ing service and infrastructure credentials, signing certificates, KMS passphrases
for key derivations, Kubernetes’ secrets, inter-service authentication keys, and
kubectls’ admin certificates, are accessible to insiders. The same holds true for
sensitive configurations, viz. Kubernetes’ configuration, access control policies,
continuous integration settings and build scripts.

Build. The continuous integration (CI) tool compiles and ships microservices in
accordance with CI scripts (also checked into SCCS). Normally, each microser-
vice is shipped in a separate Docker container. Build machines maintain a copy
of the base docker images; if unavailable, they can fetch them from an image
(e.g., DockerHub) repository. Both compiled binaries and prepared images are
accessible to insiders and thus susceptible to manipulation attacks.

Deployment. The continuous delivery service (CD) automatically pushes
newly compiled services to the development, staging and production environ-
ments. For manual updates, authorized developers (with access certificates) use
kubectl. These certificates, however, are persisted in the same way as system
secrets; and they are hence accessible to engineers.

Execution and Maintenance. For maintenance and monitoring purposes,
developers can create a direct SSH tunnel to the production services (pods) via
kubectl. Monitoring the data layer is a bit trickier, as access zones only allow
API services to reach to this layer. However, this access policy is not a problem
for insiders, as they can inject a container (via kubectl) to act as a proxy. It is
noteworthy to mention that insiders’ activity logs are recorded in the very same
persistence layer.

To find other services running in the system, microservices consult Kuber-
netes’ service discovery. That is, all services need to announce their addresses
and identifiers to the service discovery.

3.3 Assets with Integrity Requirements

We identify two classes of integrity assets in SystemX.

https://www.vaultproject.io/
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Data. These assets include any sensitive information that is fed to, produced or
processed by services or processes. In addition to user data, we specifically con-
sider configuration files, system secrets (as listed before), and evidence (activity
logs) in the database as data assets in SystemX.

Tampering with or accessing one or multiple of the above-mentioned data
assets may violate system integrity. We will elaborate on this in Sect. 4.

Behavior. These assets include those functionalities of the services with which
any tampering attacks put the system security at stake, e.g., access control
mechanisms. We further classify such assets into two categories: intra-service
and inter-service. Intra-service assets are concerned with the integrity of Docker
images, microservices’ logic (e.g., KMS), governance tools (e.g., Kubernetes’
service registry/discovery and audit/logging system). We consider process non-
repudiation (authenticating services on sensitive requests) and access control
mechanisms (ensuring that only genuine services get access to system secrets)
inter-service integrity assets.

4 Security Analysis

Utilizing microservices entails a new set of practices (see Sect. 3.2), which
imposes some threats to the security of systems. In this section, we carry out
a security analysis to identify such security threats targeting system integrity
assets. We collected a comprehensive set of representative threats on data (Fig. 1)
and behavior assets (Fig. 2). Each concrete attack (leaf) node is labeled with the
organizational processes in which the threat can materialize - D for development,
B for build, P for deployment and E for execution and maintenance. The labels
are assigned by determining whether insiders have access to assets of interest in
a particular stage or not (accesses were discussed in Sect. 3.2).

Fig. 1. Representative insider threats to data assets in microservice-based systems.
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Fig. 2. Representative insider threats to behavior assets in microservice-based systems.

4.1 Threats to Data Integrity

Manipulate Users’ Sensitive Data. End-to-end encryption schemes com-
monly boil down to the security of the 1.1. users’ public key. That is, if adver-
saries manage to forge them, e.g. temporarily exchange them with their own
keys, they can mount an active MitM attack. Even if clients naively monitor
key changes, e.g. by binding to users’ first-seen key, they remain incapable of
distinguishing a malicious key change from a legitimate one (e.g. due to a device
change).

To maliciously rotate users’ public keys, adversaries can 1.1.1. bypass access
zones at runtime and persist the forged key, or 1.1.2. tamper with the identity
service that supplies keys to requesters (clients).

Forge Evidence. SystemX fails to effectively protect the integrity of system
logs. Therefore, adversaries can potentially 2.1. tamper with logs given that they
can 2.1.1. obtain signing keys and subsequently 2.1.2. modify/insert arbitrary
logs. Worse yet, they can 2.2. delete (all) collected evidence by bypassing data
access zones, for instance, by 2.2.1. injecting a malicious container.

Downgrade System Security. As the configuration files (3.1. service configs
and 3.2. governance configs) are accessible to users at all stages (D, B, P, E),
malicious insiders can, for instance, add their certificate as one of the kubectl
admins.

4.2 Threats to Behavior Integrity

Expose Sensitive Data. Sensitive data in the system suffers from deficient
access control mechanisms. That is, attackers can obtain sensitive data at all
stages.
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Adversaries can 1.1. extract sensitive data in the system by finding access
credentials (e.g., in case of Vault usage), dumping the memory region containing
sensitive data at runtime, or scanning configuration files. Similarly, attackers
can trick services holding sensitive data to expose them, for instance, by 1.2.
replaying authorized access calls. Finally, they can 1.3. tamper with access control
mechanisms (e.g. their policy files) to circumvent protections.

Disrupt Sensitive Operations. There are two means for attackers to disrupt
system operations - 2.1. tamper with the infrastructure, and 2.2. tamper with
services.

To tamper with operations at the infrastructure level, adversaries can manip-
ulate 2.1.1. docker images or underlying 2.1.2. OS/drivers/libraries or the hard-
ware level.

At the service level (2.2. tamper with services) adversaries can tamper with
governing tools or scripts, i.e. labeled as 2.2.1. Manipulate governance routines,
2.2.2. tamper with service binaries (e.g. by static patching attacks), or 2.2.3.
tamper with the runtime, i.e. dynamic attacks. For dynamic attacks, attackers
from within can 2.2.3.1. abuse kubectl, granting them admin access. Other means
of runtime attacks are 2.2.3.2. in-memory patching and 2.2.3.3. tampering with
the execution. Perpetrators can tamper with a service’s process memory once it
is loaded into memory, without modifying the underlying binary file, or disrupt
its execution, for instance, bypass authentication mechanisms by flipping bits in
CPU registers. Furthermore, malware can also be seen as another threat to the
integrity of services. They may get loaded into the system by insiders or remote
attackers (after a compromise).

Violate Non-repudiation. The setup of SystemX allows insiders to violate
non-repudiation by two means - 3.1. deploy counterfeit services and 3.2. forge
requests.

In order to deploy forged services, insiders need to first 3.1.1. obtain certifi-
cates, which follows the same steps as extracting secrets. Then they can 3.1.2.
abuse kubectl’s admin privilege to deploy any forged microservices to clusters.

Despite the signature-based authentication, perpetrators can forge requests
and thus violate non-repudiation. The signing measure can be readily bypassed
by 3.2.1. obtaining inter-service authentication key and then using it to sign
3.2.2. arbitrary malicious requests.

5 Requirements

Based on the security evaluation, we define six integrity requirements for an
integrity-preserving system. Although these requirements are addressing Sys-
temX’s security problems, we believe they are a representative set of reoccurring
problems in microservice-based systems as long as the organizational processes
are similar to those that we discussed earlier (in Sect. 3.2).
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5.1 Enable Authentication/Tracing of Sensitive Data Changes by
End Users

As shown in Sect. 4.1, despite the utilization of end-to-end encryption, users’
sensitive data is at risk of tampering attacks. Such tampering occurs in a covert
manner, and thus users may never (or very late) become aware of them. A
secure system must enable its users to track and authenticate any changes to
their sensitive data.

5.2 Protect Confidentiality of System Secrets in All Processes

One of the root causes of the identified threats (Sects. 4.1 to 4.2) is insider-
irresistible access control mechanisms and thus exposure of system secrets in var-
ious stages, even when a secure key management service (e.g., Vault) is employed.

Therefore, adequate secret management is crucial for microservices. All the
production secrets shall be generated securely with no disclosure to insiders.
However, the secret manager should enable developers to obtain secrets in the
development environment for debugging purposes.

5.3 Collect Unforgeable Evidence of Insiders’ Activities

Direct access to the production machines through kubectl enables rogue insiders
to harm system assets without being held accountable, given that they can forge
activity logs. Consequently, they can tamper with binaries at rest and runtime
(Sect. 4.2), tamper with the infrastructure, or even submit counterfeit services
to production (Sect. 4.2). Therefore, it is crucial to log all the insiders’ actions
in tamper-resistant storage securely.

5.4 Detect Tampering with Static Artifacts Such as Config, Script
Files and Binaries

There exists no strong link between artifact origin (where system settings are
defined as configurations) and destination (where they are being used). Conse-
quently, attackers can modify sensitive settings (Sect. 4.1) without being noticed.
Thus, it is necessary to authenticate configuration changes.

5.5 Raise the Bar Against Program Tampering Attack
(Intra-Service Integrity Protection)

In the course of our security analysis, we identified several threats that target
services’ integrity both as binary and at runtime. Due to the high severity and
likelihood of such attacks, it is of major importance to mitigate them, or at very
least raise the bar against them.
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5.6 Enable Services to Attest to the Integrity of Their Recipients
and Senders (Inter-service Integrity Protection)

As seen above, the signature-based non-repudiation enforcement is ineffective.
The risk primarily materializes when services need to serve other services’
requests, without being able to verify whether requests are indeed originated
from genuine services. The defeated access control on secrets is, in fact, a by-
product of lacking integrity attestation.

6 A Framework for Integrity Protection

The extended access of insiders to system assets in the organizational pro-
cesses, which microservice-based systems rely on, imposes numerous threats (see
Sect. 4) to the system integrity. The combination of the extended access and
the distributed nature of the systems introduce challenges in guaranteeing non-
repudiation (see Sect. 4.2). Previously, we derived a set of requirements from
those threats. In this section, we propose a framework depicted in Fig. 3 which
satisfies our security requirements. As some of the identified threats are recurring
problems (not exclusively specific to microservices), we suggest using existing
solutions in the literature (see Sect. 7) that tackle similar problems as building
blocks of our framework.

Fig. 3. Framework for microservice integrity protection
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The proposed framework aims at holistic protection of a system (including
governance tools) and its artifacts. It is comprised of integrity ground truth, mon-
itor, check, unforgeable evidence storage, response, remote attester, and operation
guard components. Some of these components could be implemented within one
component in practice, however, for the sake of understandability, we keep them
logically separated. In the following, we discuss these components, their inter-
relations and their contribution to the fulfillment of our security requirements.

6.1 Integrity Ground Truth

To evaluate integrity, the properties that distinguish a genuine system from
a forged one shall be identified, which we refer to as the integrity ground truth
component. It collects and maintains integrity properties of a system throughout
its lifecycle, from development to execution. Depending on the nature of an
artifact different properties may need to be extracted. Thus, this component
is composed of four subcomponents, viz. collective variant collector, invariant
collector, integrity policies and response policies.

Artifacts with frequent changes (e.g., configuration files and scripts) can be
fed into the ground truth by utilizing a secure voting scheme, provided by the
collective variants collector component. In this model, trusted people in the
organization collectively accept or reject changes made to sensitive files. Invari-
ant properties of services in development, e.g., their hashes, are automatically
calculated and collected by the invariant collector.

A set of rules indicating which properties of the system at which point in time
need to be evaluated are also fed into the integrity ground truth component via
the integrity policies component. Similarly, a set of rule-based policies defining
what shall be done after an inconsistency is detected in the system are fed into
the response policies component. Based on the collected data, the system ground
truth and artifacts ground truth are established.

It is crucial that the ground truth itself is protected from potential tampering
attacks, possibly using tamper-resistant hardware. This component provides a
baseline for the satisfaction of our integrity requirements.

6.2 Monitor, Check, Response and Unforgeable Evidence

The monitor component is tightly coupled with the system to inspect the
integrity state of the artifacts as well as services. In practice, depending on
which properties of the system are to be inspected, the monitor component is
hooked on various representations of the assets in the system, throughout their
entire lifecycle.

The check component later verifies the collected samples by the monitor.
It bases its verification on the previously gathered system or artifacts ground
truth. At verification time the check component treats any inconsistencies (mis-
matches) between the expected (available in the ground truth) and the inspected
values (provided by the monitor) by triggering the response component, which
effectively addresses requirements Sects. 5.4 and 5.5. What actions the response
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mechanism will take is dictated by the response policies (also in the ground
truth). Consequently, the response reacts to a compromise according to the spec-
ified policies, e.g., a compromised service can be treated with an access blockage
to the data layer.

All the three components (monitor, check, and response) unanimously reflect
their actions into the unforgeable evidence storage. This is done to enable users
to detect potential attacks on the integrity protection components themselves.
This way, all the decisions made by the critical components are securely stored,
so, for instance, a postmortem analysis could reveal from which point onward
which integrity services were compromised.

Moreover, the unforgeable evidence storage enables the check component to
function without direct interaction with the monitor component. In this model,
the check component reads measurements (read by the monitor) from the storage
and acts accordingly. The evidence storage plays a vital role in the fulfillment of
requirement Sect. 5.3.

6.3 Remote Attester and Operation Guard

The operation guard mediates accesses to both the sensitive operation handler
and the resistant secret manager components. To benefit from the guard, users
need to move their system’s sensitive operations (refactoring) into the sensitive
operation handler. Consequently, such operations can only be reached through
the operation guard.

In addition, all system secrets in production need to be handled entirely
by the resistant secret manager. This component will attest to the integrity
of services, in addition to their credentials, upon secret access requests. This,
together with service integrity protection, prevents data exposure to insiders,
which partially addresses requirement Sect. 5.2.

The secret manager comes in two variations: development mode and pro-
duction mode. The former enables developers to obtain secrets for debugging
purposes, while the latter only discloses secrets to authorized services. However,
to avoid catastrophic events, e.g., a complete data loss due to hardware failures,
we can securely back up production secrets, for instance, using secret sharing
mechanisms [3].

To verify the authenticity of services requesting to either execute sensitive
operations or access secrets, the operation guard consults the remote attester.
The attester bases its judgment on the stored measurements in the unforgeable
evidence storage. This component plays a crucial role in addressing requirements
Sects. 5.2 and 5.6.

End users can also track their sensitive data changes via the remote attester
(as per requirement Sect. 5.1). This will effectively detect attacks such as the
malicious public key rotation presented in Sect. 5.6.
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7 Related Work

7.1 Malicious Insider

The risk of insiders were analyzed in several papers. Callegati et al. [8] studied
insider threats to federated mobility as a service provider. By means of a survey,
Salem et al. [22] classified insiders into two groups of traitors and masquer-
ades, and subsequently reviewed user behavior profiling and network sensors
techniques for mitigation of risks of such. Kandias et al. [17] further mapped
the problem of insiders to cloud-as-an-infrastructure model and thereby clas-
sified inside attackers to two subcategories, viz. malicious cloud provider and
users in the organization who misuse their access to the cloud dashboard. The
core assumption of the reviewed papers is the fact that insiders need access to
system’s sensitive assets to fulfill their duties. Therefore, their focus is on formu-
lating the inside attacker problem as a behavioral intrusion detection problem
at runtime. In contrast to these works, we identify a set of generic integrity
assets in microservice-based systems throughout the entire development lifecy-
cle (not only the runtime), which our insiders of interest need not access (e.g.,
system secrets). More importantly, we pin point a set of sensitive artifacts (e.g.
service binaries and system configurations) whose authenticity shall be guaran-
teed throughout the development lifecycle, viz. build, deployment and execution.
Finally, we propose a catalog of protection measures to secure those assets.

7.2 Technical Framework for Integrity Protection

To the best of our knowledge, in the literature there exists no solution that
completely addresses our security requirements (see [2] for a survey of integrity
protection techniques). In the following, we state some of the most relevant
approaches to integrity protection that can serve as building blocks for imple-
menting our integrity protection framework.

1. Tracing sensitive data changes:
Neisse et al. in [21] proposed a hardware-aided scheme that captures sensi-
tive configuration changes made by insiders and subsequently report them to
a third-party verifier, which in turn enables a continuous authentication of
changes.

2. Protect system secrets from compromised services:
Dewan et al. [11] proposed a technique for authenticating programs’ integrity
on the sensitive data access according to an integrity manifest. That is, only
processes whose invariants at runtime conforms with the requirements are
granted access, and thus sensitive data are never exposed to compromised
services.

3. Collect unforgeable evidence:
To maintain unforgeable evidence/logs in adversarial environments, Schneier
and Kelsey [24] proposed efficient schemes that preserve logs’ integrity using
hash chains. Zawoad et al. in [27] extended this by providing log confidential-
ity along with interfaces for cloud-based forensics.
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4. Protect (static) artifacts integrity:
Garfinkel et al. [13] and Santos et al. [23] proposed techniques based on the
construction of a chain of trust. In their schemes, lower level programs hash
and subsequently sign upper ones constituting a bottom-up verification mech-
anism. The starting point is a secure boot process that is aided by trusted
hardware. Docker notary (docker.com/notary) is another tool that enables
container integrity verification.

5. Protect (dynamic) software integrity:
Software-based. Collberg et al. [9] defined tamper-proofing (integrity pro-
tection) as a technique, comprised of check and respond functions, that
ensures a software system behaves as it should even in hostile environments.
Banescu et al. [5] proposed a technique that authenticates control flows lead-
ing to sensitive operations. Sutter et al. [26] developed a protection tool-
chain to compose a wide range of protection techniques.
Hardware-based. Intel SGX [10] is a trusted computing module that is
capable of guaranteeing a tamper-free execution of desired (sensitive) regions
in programs, which are referred to as trusted regions. SGX protects the trusted
parts via CPU-level encryption and a signature-based mandatory access con-
trol so-called enclaves. Baumann et al. [6], Arnautov et al. [4] and Lind et al.
[19] utilized SGX to protect integrity of services at different level of granular-
ity of trusted regions. The very same tool was employed by Liang et al. [18]
to protect cloud users’ credentials from insiders. By the same token, Brenner
et al. [7] proposed a secure Java-based middleware (powered by SGX) for
protecting microservices’ (sensitive) runtime data.

6. Integrity attestation:
Some trusted hardware (e.g. SGX) natively support remote attestations [10].
For a software-based attestation, timing-based [14] and challenge-based [20,25]
techniques were proposed in the literature. Furthermore, Jin and Lots-
piech [15] developed a scheme in which a remote server detects integrity
violations by analyzing collected (unforgeable) logs.

8 Conclusions

Adopting microservices entails new practices that are more susceptible to insider
manipulations. In this work, we presented emerging integrity challenges and car-
ried out a thorough security evaluation on a case study (based on real-world sys-
tems) to identify representative integrity threats. These threats capture the asso-
ciated risk in such infrastructures, where practitioners may consciously accept,
decline or seek measures to mitigate. In pursuit of protections, we then pro-
posed a set of security requirements upon which we built a security framework
for insider-resistant integrity protections. Our framework serves as a blueprint
for integrity protection in microservice-based systems.

As for future work, we are planning to develop a prototype of our framework
and carry out further evaluations, also concerning the expected trade-off between
performance and security.

http://docker.com/notary
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Abstract. This paper discusses two approaches in microservices-based soft-
ware design, from the perspective of failure possibility. The first approach
accepts the fact that complex distributed software systems with many commu-
nicating components, such as microservices-based software, could fail (it is not
important when), and is focused on the resilient software design. Resilient
software design provides strategies and mechanisms for dealing with failures.
While robust system just continues functioning in the presence of a failure,
resilient system is prepared to adapt yourself while continuing functioning.
Second approach is to try to build ideal software that will never fail. Lot of
theory behind behavioral type systems is devoted to this – choreographic pro-
gramming for example. Choreographic programming relies on choreographies
as global descriptions of system implementations – behavior of all entities (e.g.
microservices) in a system - are given in a single program. The first approach is
in more tight relation with real software systems, while the second one has more
theoretic background. In this paper authors discuss on the pros and cons of
aforementioned methods and presents the ideas for its fusion (e.g. to use patterns
for microservices).

Keywords: Microservices � Failure � Software resilience

1 Introduction

The concept of microservices is not extremely new, but nowadays the number of its
applications is increasing rapidly. Thus, it is very important to have in mind as many as
possible different aspects of microservices-based software systems design. Microser-
vices as components are small and systems are composed of many components. That
increases complexity and probability of failure. Software systems are influencing
humanity more and more each day (from software in small embedded devices to social
networks, intelligent agents, etc.), and software is a most frequently changed part of
any system. That is the reason why a term software-intensive system is used to
emphasize that software development and/or integration are dominant considerations.
That means in general that we need reliable software. But in the context of
microservices, having in mind complexity of such systems, this is yet more important.
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Different approaches to microservices-based software design emerged as a response
to aforementioned context. It is possible to classify them in different ways. One of most
important perspectives is a failure possibility. From that point of view it is possible to
talk about two approaches. The first approach accepts the fact that complex, distributed,
communication-intensive software systems based on many components, such as
microservices-based software is, could fail (it is not important when), and it is focused
on the resilient software design. The second approach is to try to build ideal software
that will never fail, which is harder to achieve.

The aim of this paper is to expose two major approaches for software quality
assurance and to begin a discussion about the balance of aspects of the resilience and
correctness by construction in microservice-based systems.

Next sections of the paper present these two approaches with their characteristics so
that it is possible to capture main benefits from both approaches and synergistically
apply them on microservices-based software design.

2 Resilient Design

Resilient software design provides strategies and mechanisms for dealing with failures
on an adaptive way. Robustness [3], resilience [3, 4] and antifragility [5] are used in
this context and it is necessary to explain the difference between them. Robust systems
are resisting to failures and they continue functioning in the presence of a failure. So,
robust systems are not affected by volatility. Resilient systems are prepared to adapt
yourself while continuing functioning, i.e. they can recover from the failure. They have
prepared mechanisms for reacting on volatilities and they can to recover from failures.
Very precise definition of resilience is given in [4], where is stated that it encompasses
avoidance of hostile acts or adverse conditions, robustness, reconstitution, and
recovery, and that it is the ability to support the functions necessary for mission success
in spite of hostile action or adverse conditions. Antifragility is beyond the resilience
[5]. Antifragile design accepts volatility and system evolves to be able to respond in
any situation, known or unknown in design-time.

At this moment, in the context of microservices-based software design from the
failure possibility point of view, resilient design is more interesting than antifragile
design, because it is trying to identify all possible failures and their characteristics so
that adequate reactions can be prepared. If focus is on adapting to unknown failures,
then system can evolve to something that we do not want. In other words, we need to
try to stay, as much as possible, in known space, and only after that space is deeply
investigated, from the resilience point of view, it is possible to go further and apply
antifragility.

2.1 Aspects of Resilience

Microservices are small, highly independent components. From the resilience point of
view this is good because it is aligned with one of the main principles of resilience –

isolation, loose coupling, etc. However, this should be carefully observed when system
includes a lot of microservices. Increased complexity and probability of failure must be

590 V. Giedrimas et al.



taken in consideration also. So, let’s list important aspects of resilience [1, 2, 4, 6–8]
and observe the key point of that aspect in the context of microservices.

Isolation. This means that the system should be divided into smaller entities that are
self-contained and not able to influence each other by propagating failures. To be able
to prevent failure propagation it is important to identify failure units and use bulkheads
to separate these units. For that, it is also important to have validation of all parameters
to prevent malicious calls or bad responses. Good practice is to avoid general purpose
data types and complicated validations. Properly designed microservices are well
separated with validation of all parameters and failure is not propagated, which is one
of the main advantages of microservices-based design. The separation also enables
better scalability and redundancy – more than one service can perform some operation.
By applying these principles we actually put some constraints on systems’ behavior. It
is very important to note this for connecting with a priori correct design approach that is
elaborated later.

Loose Coupling. If isolation is achieved then one segment of loose coupling is also
achieved. Second important thing is to avoid unnecessary waiting for responses. That
can be done by using asynchronous communication so that sender sends request and
does not wait for the response from the receiver. This also helps in preventing failure
propagation. In this context is good to implement idempotency [23], i.e. that sender can
send same request (identified by unique ID) multiple times and that receiver responds
to the same request only once. This increases network traffic but makes nods more
loosely coupled. To decrease dependency between sender and receiver, the sender does
not need to know the exact location of the receiver (transparency). For this is possible
to use dispatchers/mappers. This also isolates user from knowing that failure happened
– when some service fails, another service can respond, if redundancy is applied.
Event-driven design is aligned with loose coupling, but it is good practice to use some
broker between sender and receiver to achieve transparency. Another good practice that
supports loose coupling is to have stateless units to avoid recovery of the state if failure
happens. Also, if possible, apply less strict rules related to consistency and use eventual
consistency. In many situations is possible to relay on data that is not so “fresh”
(cached responses or similar) which again supports loose coupling. All previously
stated principles that support loose coupling can easily be applied on microservices-
based software systems design. Again, all this adds some new rules and constraints
related to systems’ behavior.

Latency Control. It is very important to detect any latency and to prevent its prop-
agation to other components involved. One mechanism that supports latency control is
usage of timeouts for responds. Each respond should be given in the predefined timeout
to avoid latency. In the case of breaking timeout, it is possible to apply alternative
actions like: repeating request, sending request to replacement service, send alarms, etc.
Beside timeouts, it is possible to use circuit breakers to switch off units that are failing
repeatedly certain number of times. For latency control is important every aspect of
time including time of failure. If failure happens it is important to fail fast is possible
and recover fast is possible. Response time is important, but it is related to load. If
system design allows, it is possible to apply quickest response. That means that one
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request is passed to several instances of a service and response from quickest one is
returned while response from other instances were ignored. This spends resources and
should be used only when necessary. Often it happens that service is cluttered with
requests (normal or malicious). This should be prevented by limiting size of request
queues and rejecting requests when queue is full. By doing this, senders that receive
rejections can perform some alternative actions, and waiting in a queue doesn’t
influence total response time much. Not only size of request queues should be limited,
but any resource overloading should be prevented by adding guards. All this can be
applied on microservices-based software systems design and again, all this adds some
new rules and constraints related to systems’ behavior.

Supervision. Supervision aspect of microservices-based software systems should
enable management of the failures on a higher level of abstraction – outside the failure
unit. This mechanism ensures detection of failures of complete units in the system and
alarming of problems. In that sense, each unit of the failure can be monitored by some
monitor that will detect failure of that unit only. On the higher level of the abstraction
(outside of the failure unit) is also possible to analyze causes of failure using infor-
mation which is not available for failure handling within failure unit. So, the failure
analysis can be on several levels of the abstraction and if one of levels is not capable to
solve issue then problem is escalated to higher level.

3 A-Priori Correct Design

Another approach for ensuring software quality is the software development based on
formal methods. Usually the specification of the software is made using some for-
malism (e.g. intuitionistic propositional logic [12], higher order logic [11, 16], process
algebra, session types [10] or even some visual notation [12], etc.). Then the calcu-
lations are made using the same formalism, and the result (the derived formula, the
prove of some theorem) is made. Because the elements of the formalism have one-to-
one relation with software artefacts, the result shows how they should be connected or
in what protocol they should communicate to achieve result software artefact (e.g.
compound component or service). Because the derivation of result is proved formally,
the result software is treated as a-priori correct and does not require (or do require much
less) testing. For this reason, we refer this approach as a-priori correct design (or
correctness by construction) approach.

During the decades different names of it has been used, such as proofs-as-programs
structural synthesis etc. [12–14]. The black-box software artefacts which are used, also
varies from functions to software services [12, 14, 16, 17]. However, as Wadler drew
attention in [15], all similar approaches converge, because all they are based on uni-
versal theory. So, the Curry-Howard isomorphism is almost not depended on particular
software developing paradigm. The achievements in this field could be adapted to new
programing (or in more general case - software developing) paradigms, including
microservice-based development. One of the “manuals” of such adoption is given by
Poernomo et al. [13]. As the microservices could be considered as “black-boxes”, the
prerequisites of Curry-Howard protocol implementation are met. However, because the
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paradigm of microservices-based development differs from e.g. component-based
development (e.g. by the scale), we need new forms of programming, e.g. choreo-
graphic programming.

3.1 Choreographic Programming

Choreographic programming relies on choreographies as global descriptions of system
implementations – behavior of all entities (e.g. microservices) in a system - are given in
a single program. In contrast to classical service-oriented architecture (SOA), compliant
implementations are generated by compiler automatically [18]. This yields correctness-
by-construction methodology, what helps to avoid deadlocks, communication errors
etc.

One of disadvantages of this emerging paradigms could be small number of sup-
ported languages. However, the set of Jolie [19, 20], Chor [21] and AIOCJ [13] looks
very promising. Existing applications of choreographic programming using microser-
vices (e.g. [19, 20]) could be named as examples of good practice of adoption.

4 Use of Design Patterns and/or Choreographies?

A basic definition of software design patterns states that they are general, reusable
solution for a common problem within a given context. In the microservices-based
software design, the main focus is on the communication behavior between
microservices as nodes and this paper is especially focused on failure possibility per-
spective. The main goal of any pattern is to specify preferred behavior which is further
propagated in the real implementation. Similarly, choreography has a goal to specify
preferred communication behavior as a global description that is further applied in
choreography projections (real implementation). So, the choreography can be observed
as one large specific pattern for communication behavior of the involved nodes. The
main advantage of choreography is that produced software is guaranteed to be correct
by construction, which means that failure should not happen. That is possible because
choreography specifies the whole communication scenario (big picture of the system)
while simple patterns target only one aspect (one part of the puzzle). On the other hand,
creating choreographies for complex systems is not easy while using simple patterns is
much easier.

The best practice should be somewhere in between, in the form of choreography
patterns which are composed of hierarchy of smaller patterns. That way is possible to
have several layers of abstractions (layered choreography) and achieve correctness by
construction on each level of abstraction while lowest level contains simple patterns
that are easy for implementation. Besides that, there is no need to be so strict about
correctness by construction if resilience aspects are included. So, usage of design
patterns that increase software resilience, decreases possibility of irresolvable failure
and decreases need to formally prove correctness by construction. On the other hand,
designing the software from high level of abstraction (through levels of choreogra-
phies) with resilience mechanisms included warranties (not necessary formally) that
everything is covered.
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There are design patterns dedicated for microservices-based software design like
[9]: ambassador, anti-corruption layer, backends for frontends, bulkhead, gateway
aggregation, gateway offloading, gateway routing, etc. These patterns and their
application in a microservices-based software design support resilient design. For
example, bulkhead isolates critical resources (CPU, memory, etc.) so that a single
microservice can’t consume all of the resources and starve the others. It also prevents
cascading failures caused by some microservice. It is important to understand that the
application of one pattern does not solve all the problems, but only one (or one group).
Creating sets of complementary patterns organized in choreography layers so that they
act as one whole should be a path to create truly resilient microservices-based software.

5 Conclusions and Future Work

Previous sections depict two approaches in microservices-based software design, from
the perspective of failure possibility. Their main advantages and disadvantages where
described. It is obvious that somehow these two approaches should meet. Thus, it is
necessary to make some kind of compromise approach that this paper proposes. That
compromise approach could be described in the following way:

• Choreography for the whole system should be defined in a layered manner starting
with the highest level of abstraction. This ensures that all resilience aspects were
covered and that they will act synergistically.

• Resilience aspects and patterns that support them should be included in the
choreography levels so that choreography projections have resilience mechanisms.
Use of listed resilience aspects and patterns that support them insures the quality of
covering all resilience aspects.

• In one hand, there is no need to have formal correctness by construction since
resilience mechanisms compensate lack of that. However, if the algorithm of
resilience will be implemented not correctly, we still have potentially unsafe
microservices-based software. Thus, it is reasonable to have hybrid approach with
resilient design implemented using the elements of correctness by construction.

Our future work includes (but not limits to) following research actions:

• To propose the model for balance aspects of resilience and correctness by con-
struction for choreographic microservices-based programming;

• To examine proposed model on all possible types of microservices according to
well-known taxonomies (e.g. [22]).
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Abstract. Microservice Architecture (MSA) denotes an emerging archi-
tectural style for distributed and service-based systems whereby each
microservice is highly cohesive and implements a single business capabil-
ity. A microservice system consists of multiple, loosely coupled microser-
vices. It provides complex capabilities through services interacting in
choreographies. A single dedicated team, typically practicing DevOps,
is responsible for each microservice, i.e., it “owns” the service. How-
ever, while systems relying on MSA have several architectural advan-
tages especially for cloud applications, their realization is characterized
by an increased accidental complexity due to redundant handcrafting
of implementation, e.g., to make each service standalone runnable. A
promising way to cope with such complexity is the usage of Model-driven
Development (MDD) whereby models are used as first-class entities in
the software development process. Although there are already first steps
taken on how MDD could be applied by a single team to implement its
microservices, the question of how MDD can be adapted to MSA’s devel-
opment distribution across multiple teams remains an issue. In this paper
we envision the application of Collaborative Model-driven Software Engi-
neering (CMDSE) to MDD of MSA by surveying relevant characteristics
of CMDSE and identifying challenges for its application to MSA. The
present paper takes a first step towards enabling holistic MDD of MSA
across microservice teams.

Keywords: Microservice architecture · Model-driven development
Collaborative model-driven software engineering
Model-driven microservice development

c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 596–603, 2018.
https://doi.org/10.1007/978-3-030-04771-9_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04771-9_45&domain=pdf
http://orcid.org/0000-0002-7532-7767
http://orcid.org/0000-0003-0784-9245
https://doi.org/10.1007/978-3-030-04771-9_45


On Collaborative Model-Driven Development of Microservices 597

1 Introduction and Background

Microservice Architecture (MSA) denotes an emerging architectural style for dis-
tributed and service-based systems [9]. As such, MSA relies on the service con-
cept as the fundamental architectural building block for a system’s architecture.
Each microservice is highly cohesive and represents a single business capability.
Technically, a microservice is realized as an independent process that can be
managed, i.e., designed, developed, deployed, and operated, autonomously. To
realize complex business capabilities, multiple of these services can collaborate in
service choreographies through interfaces [16]. Hereby, the service interaction is
generally stateless and uses protocols like HTTP or AMQP1 [15]. Furthermore,
each microservice is organizationally aligned to exactly one service team which
usually practices DevOps [11]. Resulting applications relying on MSA are, among
other characteristics, vertical as well as horizontal scalable, flexibly extensible
and have short release cycles which makes them especially suitable for cloud
applications like Spotify or Netflix [15].

However, the advantages of MSA in terms of increased scalability, resilience
and technology heterogeneity [15] come at the cost of an increased accidental
complexity regarding the overall system development [16]. One reason for this
increased complexity is that microservice architectures, compared to monolithic
applications, are distributed by nature [8]. Resulting from this distribution, the
realization of multiple services involves extensive and redundant handcrafting of
implementation, e.g., to make each service independently runnable, or to provide
and consume the necessary interfaces for complex operations [24].

An approach to cope with the accidental complexity of complex, distributed
software systems such as MSA is Model-driven Development (MDD) [8]. MDD
denotes the usage of models as first-class entities in the software development
process. Applied to MSA, developers would use a modeling language to design
services and use a Model-to-Code (M2C) transformation to (semi-)automatically
derive service code [18]. In such a model-centric development scenario, modeling
does not completely replace programming. Instead, the usage of models aims to
ease accidental complexity by helping to avoid redundant programming, but does
not replace the manual realization of essential complexity, e.g., programming
service-specific, business-related behavior [20].

Although there are first approaches, e.g., [7] or [21], which address such an
MDD for MSA (MSA-MDD), they currently only enable the generation of a
microservice landscape from a centralized architectural perspective. Hence, we
argue that a holistic approach to MSA-MDD needs to take MSAs organizational
characteristics into account. That is, like the code-centric development process,
a model-centric development process of MSA would need to consider Conway’s
Law in the context of MSA [15] and support a collaborative development spread
across multiple teams [22].

In this paper, we present our vision of a collaborative modeling approach for
MSA. For this purpose, we rely on methods and techniques from the research

1 https://www.amqp.org.

https://www.amqp.org
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area of Collaborative Model-driven Software Engineering (CMDSE) [6]. It defines
approaches where multiple stakeholders use a set of shared models to collaborate.

The remainder of this paper is organized as follows. In Sect. 2 we elaborate
on the collaborative aspects of microservice development and deduce challenges
for a corresponding holistic MSA-MDD approach. Building on this, in Sect. 3
we describe our vision of a collaborative MSA-MDD approach by applying con-
cepts from the area of CMDSE. Finally, Sect. 4 concludes the paper and Sect. 5
describes future work.

2 Challenges for Collaborative Model-Driven
Microservice Development

In this section we identify and discuss major challenges for collaborative model-
ing in the context of MSA to enable holistic MSA-MDD. CMDSE is itself part
of the broader research area of Collaborative Software Engineering (CoSE) [13],
which investigates means for enhancing collaboration, communication and coor-
dination (3C) among software engineers and project stakeholders. In the context
of CoSE, the organizational structure of microservices can be separated into two
hierarchical scopes of collaboration. In the team-internal scope, team members
collaborate to manage one or more services. In the team-external scope, teams
themselves collaborate with each other, e.g., by using an interface of another
team’s service for their service’s realization. Furthermore, the act of assembling
the overall system through autonomous services in its own right represents a
form of team-external collaboration.

A holistic MSA-MDD may then be enabled by applying CMDSE to both team
scopes. Based on 3C, full-fledged CMDSE approaches comprise the three main
complementary dimensions model management, collaboration means, and com-
munication means [10]. Each of the following subsections identifies and discusses
challenges for collaborative MSA-MDD by analyzing the team-internal scope (cf.
Subsect. 2.1) and the team-external scope (cf. Subsect. 2.2) with respect to these
three dimensions of CMDSE.

2.1 Team-Internal Model-Driven Microservice Development

A team, which is responsible for one or more microservices, follows a share-
nothing philosophy to foster agility and autonomy [9]. Therefore, each team is
independent from other teams and services in their choices related to services’
implementation regarding, e.g., programming languages, databases or employed
tools. For example, this autonomy enables a single team to adopt an MDD
approach for their services even if other teams do not use MDD [18].

However, in practice the team’s technology stack and development process
model is often influenced by an organization’s culture [14], e.g., if the usage
of GitLab2 for managing the software lifecycle has proven successful in exist-
ing teams, a new team is highly likely to adopt GitLab, too. In certain cases,
2 https://www.gitlab.com.

https://www.gitlab.com
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choices can be predetermined by the overall organization in order to maintain
compatibility, e.g., with an existing deployment pipeline [1].

At this level, the possible application of MSA-MDD only differentiates itself
from a traditional model-driven development process through the different roles
within the team [2]. To utilize collaboration across team members, existing solu-
tions, e.g., emfCollab3 or the Eclipse Dawn Project4 can be applied. Such solu-
tions already realize means for the CMDSE dimensions model management and
collaboration [10]. Depending on the tool, separate communication means like
an instant messenger could be added to the collaboration tool stack. However,
while these tools provide good means for collaboration, they still need an under-
lying modeling language for the microservice domain [17]. This motivates the
first challenge for a collaborative MSA-MDD approach:

(C1) Support for Role-specific Team Tasks. For a model-centric development,
this modeling language needs to support the different tasks and roles inside a
DevOps-based MSA development team, i.e., the complete management process
of a microservice.

2.2 Team-External Model-Driven Microservice Development

While the team-internal collaborative modeling scope can be covered leveraging
existing CMDSE approaches (cf. Subsect. 2.1), especially for the application of
collaborative MSA-MDD with regards to the team-external scope MSA-specific
challenges arise which we discuss in the following.

With the distribution and loose coupling of functionality and service teams,
MSA might not exhibit a central architecture viewpoint or entity, e.g., a team of
dedicated software architects, for the overall microservice landscape. However,
we expect that such a viewpoint or entity can be of great benefit in the context of
MSA. First, it may be aware of the overall team structure and foster communica-
tion [17]. Second, it may document and comprehend the overall static structure
and service interactions of a microservice architecture. Models are predestined
to represent such structures and interaction relations [4]. Therefore, the second
challenge for a collaborative MSA-MDD approach arise:

(C2) System Model Assembly Across Autonomous Microservices. How can such
a holistic and model-based overview of an MSA be assembled from the involved
services and interactions in a loosely coupled way, i.e., without contradicting
MSA’s paradigm of autonomous services.

Another aspect regarding the team-external scope results from Conway’s
Law. Due to the loose coupling of microservices, the responsible teams also
collaborate more loosely preserving their autonomy [14]. Although there are
mechanics to provide knowledge exchange across teams, e.g., Spotify joins per-
sons with a similar skill set from different teams to horizontal organization

3 http://qgears.com/products/emfcollab.
4 https://wiki.eclipse.org/Dawn.

http://qgears.com/products/emfcollab
https://wiki.eclipse.org/Dawn
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structures called guilds [12], knowledge exchanges generally happen on a non-
technical and informal level [23]. However, next to provided interfaces of other
teams’ services, teams may also access the source code of microservices, e.g.,
through company-wide available code repositories or verbal requests [14]. This
agile opportunities also need consideration in a collaborative MSA-MDD app-
roach:

(C3) Collaboration Means for Teams. Like source-code, the models of a team
need to be accessible and usable for other teams, e.g., to copy domain concepts
[17] or retrieve interface descriptions, without contradicting the loose coupling
characteristic of services and teams.

3 A Collaborative Modeling Approach for Model-Driven
Microservice Development

Starting from the identified challenges and their discussion in Sect. 2, we derived
a conceptual model for the prospective application of CMDSE to MSA. It is
depicted in Fig. 1 as a UML class diagram enriched by indirect use relations.

Fig. 1. Conceptual model of collaborative MSA-MDD

The overall microservice System is composed of many Microservices. For
each of these services, a single Team which consists of multiple Team Members is
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considered responsible. For a model-centric development, our approach comprises
a dedicated Microservice Model. Next to its services, each team is thus also
responsible the defining models [17]. For the model-centric development inside a
team, we suggest the usage of a separate model repository for each microservice
model as means of management and a web- or eclipse-based workbench which
works with a local model version repository.

With regard to the role-specific development tasks (cf. C1 in Subsect. 2.1), we
propose the usage of such a model repository in combination with a set of inte-
grable domain-specific modeling languages (DSMLs), which each addresses a spe-
cialized viewpoint for microservice development [19]. The common metamodel of
the DSMLs defines three viewpoints. First, the Data Viewpoint holds concepts
to specify a microservice?s information model. Second, the Service Viewpoint
provides means to model interfaces and dependencies to other teams’ services.
Third, the Operation Viewpoint enables team members to model the informa-
tion for deployment and operation of a service.

To compose an overall System Model (C2), our conceptual model involves
a central Model Registry and an additional step in the continuous delivery
pipeline, when a team releases a microservice. In this step, a copy of the cor-
responding service model is sent to the central model registry every time a
microservice gets released. Thus, the registry is able to assemble the system
model by weaving the microservice models according to their interface depen-
dencies with other services. To ensure a successful composition of the system
model, each microservice model is tested at each release for its integrability. A
model which integration test fails, e.g., because an external service refers to a
data object that is no longer published through the service’s interface, is there-
fore marked as a conflict and has to be revised by the respective team.

As a result, our presented approach is able to provide teams with the ability
to consult other teams’ models through the assembled system model (C3). For
realization, we envision the extension of the team-internal modeling workbench
with the ability to access the system model and import other microservice models
as dependencies inside the teams own model. While dependency information gets
pushed to the model repository in the next release, the system model can also
be consulted regarding change impact and conflict analysis [3], and perform
appropriate measures, e.g., automatically protection of deprecated microservice
releases because of other services’ dependencies.

4 Conclusion

The usage of MDD for designing MSA is a promising way to cope with MSA’s
inherent accidental complexity. While there already exist approaches for MSA-
MDD which support the development from a central architectural point of view,
MSA’s organizational characteristic of aligning services to teams is currently
underrepresented.

Hence, we identified three major challenges for the realization of a holistic
MSA-MDD across microservice teams by examining team-internal and team-
external collaboration processes in microservice development (cf. Sect. 2).
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As a result, we presented our vision of a collaborative MSA-MDD approach
which foresees individual microservice models as model fragments of the overall
system (cf. Sect. 3). Leveraging a model registry, such models get automatically
woven to a system model which in the following can be used to provide team
collaboration means, e.g., partial imports or dependencies of other microservice
models across teams.

5 Future Work

For future work we are going to evaluate existing CDMSE approaches like
Mondo5 or Eclipse Dawn6 for their applicability towards team-internal collab-
oration and extendability concerning our envisioned approach. In the following
we plan to adapt our central modeling approach described in [19] to support a
distributed modeling and implement a prototype for the model registry mecha-
nism.

Beyond the realization of a model-centric development process at design time,
we would like to further investigate the possibilities of runtime models [8] in
the MSA software life cycle. Another interesting research direction we would
like to further investigate comprises the usage of microservices as containers for
language components in the context of globalizing modeling languages [5].
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There are at least two ways in which MDE and Security might be beneficially com-
bined: using MDE to support the development of secure systems and, integrating
security techniques in MDE to give support to new development scenarios such as
collaborative and distributed modeling. Indeed, MDE has succeeded to play a key role
in many critical tasks related to Information and Communications Technology
(ICT) security. However, new domains such as Internet of Things, Cyber-physical
systems, and Blockchain-based technologies stress the limitations of previous work and
pose new challenges to current model-driven security techniques. Moreover, the
increased adoption of MDE in collaborative scenarios highlights the need for security
for MDE itself in order to deal with requirements such as confidentiality and integrity.

The goal of SecureMDE 2018 was to provide a forum for presenting and discussing
new challenges and results related to this interplay between MDE and Security.

SecureMDE 2018 received four paper submissions, all selected for presentation at
the workshop. Each paper was reviewed by at least three PC members. The workshop
had two sessions, each section including two article presentations followed by a dis-
cussion time. In the first session, papers related to the specification of security aspects
on system models (privacy and information flows) were presented. The two articles in
the second session explored the security of communication between complex system
components. Long and interesting discussions followed up each of the paper presen-
tations, confirming the interest of these topics for the STAF attendees.

The organizers would like to thank the authors and presenters of submitted papers,
the PC members, and the audience for the contribution to the success of the workshop.

September 2018 Salvador Martínez
Domenico Bianculli

Jordi Cabot
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Abstract. Nowadays most software applications have to deal with per-
sonal data, specially with the emergence of Web-based applications,
where user profile information has become one of their main assets. Due
to regulation laws and to protect the privacy of users, customers and
companies; most of this information is considered private, and therefore
convenient ways to gather, process and store them have to be proposed.
A common problem when modeling software systems is the lack of sup-
port to specify how to enforce privacy concerns in data models. Cur-
rent approaches for modeling privacy cover high-level privacy aspects to
describe what should be done with the data (e.g., elements to be private)
instead of how to do it (e.g., which privacy enhancing technology to use);
or propose access control policies, which may cover privacy only partially.
In this paper we propose a profile to define and enforce privacy concerns
in UML class diagrams. Models annotated with our profile can be used
in model-driven methodologies to generate privacy-aware applications.

Keywords: UML · UML-profile · Privacy

1 Introduction

In the last years, specially with the emergence of the Web, personal informa-
tion has become one of the main assets of software applications. This kind of
data usually includes information about users (e.g., email addresses or passport
identifiers), personal information (e.g., geolocations, pictures or videos) or even
composite information that can be discovered by mining the previous information
(e.g., route to go to work or places to pass the night). Most of this information
may be considered private, and therefore convenient ways to gather, process and
store it have to be proposed to comply with existing regulations and to promote
participation by providing accountability and transparency to data subjects.

Model-Driven Engineering (MDE) is a methodology focusing on using models
to raise the level of abstraction and automation in software development. MDE
relies on models and model transformations for the specification and generation
of software applications, thus hiding the complexity of the target technology.

A common problem when modeling software systems is the lack of support to
specify how to enforce privacy concerns in data models, that is, the mechanisms

c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 609–616, 2018.
https://doi.org/10.1007/978-3-030-04771-9_46
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(e.g., hashing or ciphering) that have to be applied to meet privacy requirements.
Current approaches cover high-level privacy aspects [3,6,10] which address pri-
vacy concerns regarding to what elements are private but neglecting how to
enforce privacy. The work by Basso et al. [5] proposes a UML profile for privacy-
aware applications, however, it is mainly focused on defining privacy and user
preferences. Other works (e.g., [1,2,4]) propose methodological approaches to
address privacy but they do not focus on enforcement mechanisms. There are
also approaches like XACML [12], PRBAC [11], UMLsec [9] or Ponder [7] propos-
ing languages adapted to the definition of access control policies, which can be
used to partially manage privacy concerns but they do not target enforcement.

In this paper we propose a profile to model privacy concerns in UML class
diagrams with the aim of enabling privacy enforcement. Models are annotated
by privacy experts, thus enabling developers (and model-driven tools) to under-
stand how privacy has to be applied to the artifacts involved in model-based
methodologies. We believe that our proposal promotes a better documentation
of the models and could be easily adapted to existing methodologies to enable
the generation of privacy-aware software applications.

The rest of the paper is organized as follows. Section 2 motivates the work and
presents a running example. Section 3 describes the profile and Sect. 4 concludes
the paper and presents the further work.

2 Motivation

Sharing and processing data has many benefits, but it also has risks to individ-
ual privacy: it can reveal information about individuals that would otherwise
not be public knowledge. Privacy is a fundamental human right and it is com-
monly agreed it should be enforced by law. Moreover, developing privacy-aware
software systems will also bring the benefits of increasing public engagement by
promoting the participation and dissemination, and providing transparency and
accountability on the data processing methodologies.

As suggested by the privacy by design concept [8], privacy should be pro-
tected throughout the whole process of any technological development, from the
conception of a technology to its realization. Dealing with privacy at each stage
of the data lifecycle (i.e., collection, maintenance, release, and deletion) will be
enhanced by specific support when modeling software artifacts, thus enabling
developers to easily define how data privacy has to be treated.

Along this paper we will use a running example to illustrate our approach.
Let’s imagine a public organization willing to publish some data regarding its
employees (e.g., for statistical purposes). Figure 1 shows a UML class diagram
model to represent companies, employees and positions. A company, which has
a name and a tax number, is composed of employees, which have names, ages
and passport numbers; and offers a set of positions, with a name and a salary.

Even with this small model, several concerns can be identified when publish-
ing data conforming to this model. For instance, name and passport information
uniquely identifies an employee and should be removed, encrypted or replaced;
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 + employee  + position*

 + position
 + employee

+ name: String [1]
Company

+ taxNumber: String [1] + passport: String [1]

Employee
+ name: String [1]

+ age: Integer [1]
+ salary: Real [1]

Position
+ name: String [1]

*

*
1

Fig. 1. Running example.

age information can be leveraged to uniquely re-identify an employee and should
be treated (e.g., removing outliers to decrease its uniqueness); and salary infor-
mation is generally considered sensitive information and could be masked by
applying generalization (i.e., released using ranges of salaries).

It should be noted that there is no one-fits-all solution for providing privacy.
Along with the possible benefits of releasing data there are some risks to individ-
ual privacy, this trade-off between the utility vs. privacy should be considered
(i.e., performing the minimal number of privacy enforcement modifications to
the data to preserve privacy). There are several methods for data protection,
each one with its own strengths and weaknesses, and different trade-offs. An
extensive analysis should be done to choose a method over others, however, by
knowing the characteristics of each of them, a developer may provide certain
guarantees of privacy by design to end-users.

In this paper we propose a UML profile to annotate class models with infor-
mation regarding privacy concerns in order to enable their enforcement.

3 A Profile for Privacy Enforcement

Privacy enforcement covers the set of mechanisms deployed to protect private
data [14]. To enforce privacy in UML we defined a profile following the standard
recommendations [13]. The profile annotates UML classes and their properties.
Class associations require special treatment, as we will show. Next we describe
the main elements of the profile1.

UML Property Privacy Type. UML properties can be classified according
to a specific privacy type. This information is required for every property in the
class model and classifies its sensitiveness, which is later used by the privacy
type applied to the owning class, as we describe below. We identify four privacy
types: non-sensitive, for non-confidential properties; sensitive, for confidential
properties; identifier, for those properties that can unambiguously identify the
owner of the property; and quasi-identifier, for properties that uniquely combined
can be used to re-identify the owner of the property.

In the profile, the privacy type of a property is specified by the PrivacyType
stereotype, which extends the Property metaclass. The actual values of privacy
types are defined in the PropertyPrivacyType.
1 The profile implementation and example are available at http://hdl.handle.net/20.
500.12004/1/A/UMLPP/001.

http://hdl.handle.net/20.500.12004/1/A/UMLPP/001
http://hdl.handle.net/20.500.12004/1/A/UMLPP/001
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UML Property Anonymization. UML properties can optionally be
anonymized following a specific method. The anonymization of a property pro-
tects its values and can be used to configure how to store them. These methods
are based on reducing the amount or precision of the data and follow two main
principles: (1) masking the data and (2) using synthetic values instead of real
ones. Masking the data can be divided in two categories: non-perturbative and
perturbative.

Non-perturbative masking reduces the level of details without distorting it.
Some well-known non-perturbative masking methods are: (1) generalization,
which coarses a property by combining several (or a range) of values to a more
general one; (2) top/bottom coding, which sets values above/below a given thresh-
old into a single category; and (3) suppression, which removes outliers values of
individual property values in order to decrease the uniqueness of the elements.

Perturbative masking includes (1) noise addition, which is applied to numer-
ical properties and consists of adding a noise vector (most commonly) drawn
from a N(0, αΣ), where Σ is the covariance matrix of the original data values;
(2) data/rank swapping, which exchanges categorical property values in such a
way that marginals are maintained; (3) post-randomization, where property val-
ues are changed according to a Markov matrix; and (4) microaggregation, which
partitions the property values into groups containing each at least a specific
amount of records and publishing the average record of each group.

In the profile, the anonymization method of a property is specified by the
PrivateMethod stereotype, which extends the Property metaclass. The actual
methods are defined in the AnonymizationMethod.

UML Class Privacy Type. UML classes can be annotated to indicate the
privacy protection mechanism that has to be enforced. Annotating a class with
this kind of information protects the way class instances are queried. Thus any
instance of a class including this annotation will not provide information regard-
ing its identifier properties and will protect nonsensitive, sensitive and quasi-
identifier properties. The two main models for privacy protection, from which
many others have been developed, are k -anonymity and ε-differential privacy
(see KAnonymity and DifferentialPrivacy stereotypes in our profile).

The concept of k -anonymity was defined to release personal data while safe-
guarding the identities of the individuals to whom the data refer [15]. A dataset is
k -anonymous if each record is indistinguishable from at least other k−1 records
within the dataset, when considering the values of its quasi-identifiers. This
model therefore aims to protect from attacks to obtain sensitive property values
relying on quasi-identifiers. Applied to a UML class, this mechanism guarantees
that individual instances of a UML class are indistinguishable from at least other
k − 1 instances.

To protect from inferences due to the low variability of sensitive properties
in a k -group, �-diversity and t-closeness models were proposed. A k -anonymous
set of instances is said to be �-diverse if, for each group of instances sharing
quasi-identifier values, there are at least � well-represented values for the sensi-
tive property. A k -anonymous set of instances is said to have t-closeness if, for
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each group of instances sharing quasi-identifier values, the distance between the
distribution of each sensitive property within the group and the distribution of
the property in the whole set is no more than a threshold t.

The ε-differential privacy applied to UML classes establishes that the removal
or addition of a single element to the set of class instances does not (considerably)
change the results on an analysis. Therefore, the presence or absence of any
individual element is not revealed by the computation (up to exp(ε)) (Fig. 2).

«DataType»
KOperation

 + type: Masking [1]
 + property: Property [1]

«Stereotype»
PrivacyMethod

 + method: AnonymizationMethod [1]

«Stereotype»
PrivacyType

 + type: PropertyPrivacyType [1]

«Stereotype»
KAnonymity

 + k: Integer [1]
 + operations: KOperation [*]

«Stereotype»
DifferentialPrivacy

 + epsilon: Integer [1]

«Enumeration»
PropertyPrivacyType

NONSENSITIVE
SENSITIVE
IDENTIFIER
QUASIIDENTIFIER

«Metaclass»
Property

«Metaclass»
Class

«Enumeration»
NonPerturbative

GENERALIZATION
CODING
SUPRESSION

«Enumeration»
Perturbative

NOISEADDITION
RANKSWAPPING
POSTRANDOMIZATION
MICROAGGREGATION

«Enumeration»
SyntheticValue

HASH
RANDOM

«Enumeration»
Masking

«Enumeration»
AnonymizationMethod

«Stereotype»
LDiversity

 + l: Integer [1]

«Stereotype»
TCloseness

 + t: Integer [1]

Fig. 2. Proposed UML profile to model privacy enforcement.

Privacy for UML Associations. In our approach, class associations obtain
the privacy enforcement declared for the association endpoint. Although this
solution could cover the privacy enforcement at UML class model level, it may
become a challenging task when these models are transformed to low-level ones
used to generate a software system. For instance, UML class models annotated
with our profile can be used to generate a database schema, where resolving asso-
ciations could involve the composition of different database tables. This compo-
sition is not trivial, specially if source/target tables corresponds to UML classes
annotated with different privacy types. While it would be feasible to compose
information of tables coming from UML classes annotated with ε-differential
privacy, such composition would be challenging for k -anonymity (composability
has been mentioned as open research question for Big Data privacy [16,17]).

Example. Figure 3 shows the running example described before annotated with
our profile. As can be seen, the name properties of the Company and Position
classes have been annotated as NONSENSITIVE as they not involve any privacy
risk. The taxNumber property of the Company class, and the name and passport
properties of the Employee class have been annotated as IDENTIFIER, as they can
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be used to uniquely identify the company and the employee, respectively (i.e.,
they will be removed in any query to the instances of such classes). The age and
salary properties of the Employee and Position classes have been annotated as
QUASIIDENTIFIER and SENSITIVE, as they store data that has to be protected.
Additionally, for illustration purposes we use different anonymization methods
for these properties, for instance, employees’ names and passport information
are protected using HASH and RANDOM mechanisms, respectively.

In the example we also indicate privacy protection mechanisms for Employee
and Position classes, which apply k -anonymity. The k -anonymity for Employee
class indicates a k value of 4 and applies the SUPRESSION method when retrieving
the age property, thus decreasing the uniqueness of the class instances. On the
other hand, the k -anonymity for Position class also indicates a k value of 4 and
applies the GENERALIZATION method when retrieving the Salary property, thus
the values of such property are expressed as ranges of values.

«KAnonymity»
Position

«PrivacyType» {type=NONSENSITIVE} + name: String [1]
«PrivacyType» {type=SENSITIVE}  + salary: Real [1]

«KAnonymity»
Employee

«PrivacyType, PrivacyMethod» {type=IDENTIFIER, method=HASH}  + name: String [1]
«PrivacyType, PrivacyMethod» {type=IDENTIFIER, method=RANDOM}  + passport: String [1]

 + employee

*

 + position

Company
«PrivacyType» {type=NONSENSITIVE}  + name: String [1]
«PrivacyType» {type=IDENTIFIER}  + taxNumber: String [1]

*

1

 + position

*  + employee

«KAnonymity»
k = 4
operations = [
  {type=SUPRESSION, property=Employee::age}
]

«KAnonymity»
k = 4
operations = [
  {type=GENERALIZATION, property=Position::Salary}
]

«PrivacyType, PrivacyMethod» {type=QUASIIDENTIFIER}  + age: Integer [1]

Fig. 3. Privacy enforcement profile applied to the running example.

This UML Class model annotated with our profile provides detailed infor-
mation to enforce privacy when dealing with its instances. This information can
later be used in model-driven methodologies to generate the needed artifacts in
a privacy-aware software application. For instance, profile information can be
used to customize the generation and configuration of the database schema, and
to tune the behavior of queries in the data.

4 Conclusion and Further Work

In this paper we have presented a UML profile to model and enforce privacy con-
cerns in UML class diagrams. We believe our approach paves the way to use mod-
els annotated with privacy enforcement information in model-based approaches
to enable the validation and generation of privacy-aware applications.
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As further work, we are interested in applying our approach to specific fields,
such as Big Data and Web Engineering, where it is common to deal with sensitive
information. We also plan to explore how privacy information could promote the
Open Data movement, currently mainly lead by public organizations. We believe
that offering better mechanisms to enforce privacy in Open Data datasets could
encourage more organizations (even private companies) to join the movement.
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Abstract. Model-based systems engineering provides a multi-discipli-
nary approach to developing cyber-physical systems. Due to their high
degree of interconnection, security is a key factor for cyber-physical sys-
tems and needs to be front-loaded to the beginning of the development.
However, there is a lack of model-based systems engineering approaches
that enable the early specification of security policies. As a consequence,
security requirements frequently remain unspecified and therefore are
hard to satisfy in the downstream development phases. In this paper,
we propose to integrate model-based systems engineering with the the-
ory of information flow security. We extend systems engineering models
to information flow policies, enabling systems engineers to specify the
information flow security requirements of a system under development.
On refinement of the resulting models, our approach allows to derive
security requirements for individual software components. We illustrate
our approach using a model-based design of an autonomous car.

Keywords: Information flow · Security policies · Systems engineering

1 Introduction

Cyber-physical systems emerge from an interdisciplinary engineering that
requires software engineers to work in close collaboration with control engi-
neers, mechanical engineers, or electrical engineers. Model-driven engineering
is widely accepted to bridge these different disciplines, using abstract models
to integrate the heterogeneous landscape of discipline-specific artifacts. This
discipline-spanning approach is known as model-based systems engineering [32].

Nowadays, a key quality factor for cyber-physical systems is security [6,14].
Thus, security properties such as confidentiality and integrity need to be front-
loaded to the beginning of the engineering to make systems secure by design.

The theory of information flow security [25] allows to identify leaks in the
information processing of software systems, and therefore enables reasoning
about security at early development stages. Information flow security character-
izes information leaks as non-authorized flows of information, thereby providing
a security policy that the downstream stages of development must satisfy.
c© Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 617–632, 2018.
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The problem we address in this paper is the missing support for the specifica-
tion of security policies in model-based systems engineering. Thereby, the secu-
rity requirements of a system under development are likely to remain unspecified
at the early, discipline-spanning development stages. Instead, the need for secu-
rity is implicitly deferred to the downstream, discipline-specific development
phases, turning security into an afterthought [36]. This late handling of secu-
rity requirements often forces engineers to revoke earlier design decisions. In the
worst case, crucial security requirements might even go unrecognized. For cyber-
physical systems, such zero-day vulnerabilities might escalate into serious safety
hazards that need to be prevented by design.

Existing model-based systems engineering approaches like SysML [30] allow
to design information flow as a crucial form of interaction between systems or
subsystems. However, these approaches do not enable the specification of non-
authorized flows and, therefore, fail to define full-fledged security policies. In
contrast, the theory of information flow security provides so-called flow poli-
cies that enable engineers to specify confidentiality or integrity requirements of
systems [23]. Nevertheless, this theoretical approach lacks an integration with
model-based techniques used in systems engineering practice.

In this paper, we build upon our previous results [10–12] and propose a novel
integration of model-based systems engineering and information flow security. To
that end, we enrich structural systems engineering models with a specification
technique to express non-authorized information flow that needs to be prevented.
Thereby, we turn systems engineering models into full-fledged flow policies. As a
benefit, the specified policies can be refined during the structural decomposition
of models, allowing engineers to identify more fine-grained security requirements
at the subsystem level. Finally, we describe how a refined security policy can
be translated from the discipline-spanning systems engineering into discipline-
specific software engineering models. Thereby, we obtain security requirements
for individual software components that are amenable to formal verification. In
summary, we enable systems engineers to front-load security requirements to the
discipline-spanning development stage, and provide verifiable security policies for
the downstream software engineering.

We illustrate our approach using an autonomous car that interacts with its
environment both physically and digitally. Thus, the car must meet high security
requirements to avoid leakage or manipulation of information.

In summary, this paper makes the following contributions:

– We enrich model-based systems engineering with a specification technique for
information flow security policies of a system under development.

– We enable the refinement of the specified policies to derive fine-grained secu-
rity requirements at the subsystem level.

– We describe a translation of refined policies into verifiable security require-
ments for individual software components.

Paper Organization: We give background information in Sect. 2, and integrate
model-based systems engineering with information flow security in Sect. 3. In
Sect. 4, we discuss related work, before concluding in Sect. 5.



Specification of Information Flow Security Policies in MBSE 619

2 Background

In this part, we describe our underlying model-based systems engineering app-
roach in Sect. 2.1, and introduce information flow security in Sect. 2.2.

2.1 Model-Based Systems Engineering

Model-based systems engineering [32] promotes the usage of abstract, discipline-
spanning models for the initial design of a system. Our proposed approach is
based on Consens [7], a specification technique for the model-based systems
engineering of intelligent technical systems. Consens provides systems engi-
neers with various types of abstract, semi-formal models, each one representing
a specific view on a system under development. One of these views is given by an
environment model that describes dependencies between the system and envi-
ronmental elements. Dependencies are categorized as energy flow, information
flow, or material flow. As an example, Fig. 1 depicts an environment model of an
Autonomous Car. Information flow dependencies represent the data communica-
tion between the car and environmental elements, including a Passenger, a service
for Predictive Maintenance, a Cloud Storage, and a Traffic Service. Furthermore, the
propulsion is represented by an energy flow from the car to the Passenger.

System under 
Development

Environmental 
Element

Information Flow

Energy Flow
Predictive

Maintenance

Cloud
Storage

Traffic 
Service

I/O Data storage / retrieval

Traffic informationDiagnostic data

Propulsion

Autonomous 
Car

Passenger
Legend

Fig. 1. Environment model of an autonomous car

In the remainder of this paper, we restrict ourselves to information flow
dependencies which are the most relevant type of flow with respect to security
requirements. In the scope of our example, the following two security require-
ments must be met by the Autonomous Car. First, no personal information about
the Passenger must be stored by the Cloud Storage, representing a confidential-
ity requirement. Second, it must not be possible for the Predictive Maintenance

to manipulate the information that the car gives to a Passenger, expressing an
integrity requirement. By considering only information flows, hidden information
leaks through energy or material flows are beyond the current scope of our work.
Nevertheless, since such flows might make cyber-physical systems vulnerable to
side-channel attacks, they need to be considered in future work as well.
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In the scope of Consens, an environment model is further decomposed into
internal system elements and their interdependencies at the subsystem level. The
model resulting from this decomposition is referred to as active structure [7] and
provides a structural view on the system under development. The decomposition
is an iterative procedure, i.e., any internal system element might be decomposed
into subsystems itself until a desired level of granularity has been reached.

Finally, the active structure also enables the transition from systems engi-
neering to model-driven software engineering by deriving a software component
model [9]. In contrast to the semi-formal models of Consens, this component
model is equipped with formal semantics that are used to implement the infor-
mation processing of each component.

2.2 Information Flow Security

The theory of information flow security [25] allows to detect information leaks in
the information processing of a software system. To characterize an information
leak, the information processed by a system is categorized according to different
security domains [23]. Information flow security restricts the information pro-
cessing such that no critical information from a certain domain must flow to
particular other domains.

To specify concrete requirements for the information flow between domains,
so-called flow policies have been introduced [23]. A flow policy interrelates the
security domains using three different relations:

→ is an interference relation representing authorized information flow through
direct communication. It states that the information in one domain is directly
visible to another domain.
↝ is a neutral relation which states that there is no direct communication, but
allows for indirect information flow. Thus, information from one domain is
not directly visible to another domain, but is allowed to be deduced through
indirect communication of other visible information.
↝̸ is a noninterference relation that represents non-authorized information
flow. It not only excludes direct communication between domains, but also
forbids one domain to deduce any information from another domain through
indirect communication.

To represent the security requirements of systems, a flow policy corresponds
to a complete graph that interrelates any two security domains by exactly one
of the above relations. In particular, information flow within a single domain
is always authorized. Therefore, every domain interferes with itself, i.e., → is a
reflexive relation. Formally, flow policies are defined as follows:

Definition 1 (Flow policy). A flow policy [23] is a tuple (D,→,↝,↝̸) with a
set D of security domains and relations →, ↝, ↝̸ ⊆ D × D forming a partition
of D × D. The relation → is reflexive, i.e., d → d holds for all d ∈ D.
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3 Specification and Refinement of Security Policies

In this section, we integrate Consens with information flow security concepts
to enable the specification and refinement of security requirements in model-
based systems engineering. In Sect. 3.1, we introduce our underlying engineering
process. Next, in Sect. 3.2, we describe our extension of environment models to
flow policies, before addressing the refinement of such policies at the level of
active structures in Sect. 3.3. Finally, in Sect. 3.4, we describe the transition of
security policies to the level of software components.

3.1 Engineering Process

Figure 2 illustrates our proposed engineering process that spans both systems
engineering and the transition to software engineering. For a more general per-
spective on the integration of security measures into the engineering process, we
refer the reader to our previous work [10]. In the initial activity named Analyze

Environment, systems engineers produce an environment model as described in
Sect. 2.1. The purpose of the next activity is to Specify Information Flow Require-

ments such as confidentiality or integrity. To that end, we propose to extend the
environment model to a flow policy as defined in Sect. 2.2.

Next, in the activity Decompose System, the active structure (cf. Sect. 2.1)
arises from the decomposition of the environment model. Alongside, we propose
to refine the flow policy in the activity Refine Information Flow Requirements. During
the activity Validate Refinement, we propose to automatically check the validity of
the refined flow policy. In case of an invalid refinement, systems engineers need to
revise the information flow requirements. Otherwise, an iterative decomposition
of the active structure leads to recursive refinements of the flow policy.

Systems Engineering Software Engineering
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Requirements

Decompose 
System 

Refine 
Information Flow 

Requirements

Derive
Security Policies
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Component Model
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Flow Policy
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no

yes no

Derivation 
valid?

yes
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Fig. 2. Engineering process for the specification and refinement of security policies
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Once no further decomposition is required, a software component model is
automatically derived from the active structure in the activity Derive Component

Model. Alongside, in the activity Derive Security Policies, software engineers derive
corresponding component security policies that specify information flow require-
ments for individual software components. Finally, the validity of the derivation
is automatically checked in the activity Validate Refinement. Beyond the scope of
this paper, the resulting component security policies give rise to further refine-
ments along with the decomposition of components into subcomponents.

3.2 Specification of Information Flow Security Requirements

Our approach is based on the observation that model-based systems engineering
practices (e.g., Consens or SysML) and the theory of information flow security
share a common notion of information flow between elements or domains, respec-
tively. Thus, we integrate environment models with flow policies to specify infor-
mation flow security requirements. In particular, we interpret each element of an
environment model as an individual security domain, and regard the informa-
tion flows between elements as interferences between the corresponding domains.
Furthermore, we expand the models with additional flow relations known from
flow policies. In particular, we add a noninterference relation that represents
non-authorized information flow.

For example, in Fig. 3, we illustrate the extension of an environment model to
a flow policy. The interference relation corresponds to the set of information flows
known from Fig. 1. In addition, two noninterferences represent non-authorized
information flow, thereby expressing the security requirements of the Autonomous

Car described in Sect. 2.1. First, a noninterference between the Passenger and
the Cloud Storage specifies the confidentiality requirement that no personal data
should be stored in the cloud. Second, another noninterference is used to specify
the integrity requirement that the information given to a Passenger must not be
manipulated by the Predictive Maintenance.

System under 
Development

Environmental 
Element

Information Flow

Non-Authorized 
Information Flow

Predictive
Maintenance

Cloud
Storage

Traffic 
Service

Autonomous 
Car

Passenger
Legend

Fig. 3. Environment model of an autonomous car extended to a flow policy
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Since a noninterference forbids information to be indirectly deducible through
authorized communication, it represents a security requirement for the system
under development. Thus, engineers need to ensure that the system’s internal
information processing does not leak information indirectly, and thereby vio-
lates one of the specified noninterference relations. For example, although the
Autonomous Car communicates directly with both Passenger and Cloud Storage, the
internal information processing of the car needs to ensure that no information
is leaked indirectly from the passenger to the cloud.

To reduce the visual complexity of the resulting security policies, we leave
the neutral relation between elements implicit. Thus, we assume neutral relations
between any two elements that are related neither by an interference nor by a
noninterference. For example, Fig. 1 includes implicit neutral relations from the
Traffic Service to each of the other three environmental elements. Furthermore,
we also leave the reflexivity of the interference relation implicit, i.e., we omit all
self-loops from the visual representation.

3.3 Refining Security Policies at the Level of Active Structures

In the scope of Consens, the active structure results from the structural decom-
position of an environment model, and describes internal interdependencies
between nested elements of the system under development. In our approach,
we adopt this refinement step and apply it to security policies as well. Thereby,
we obtain refined security requirements that are specified at the level of the
nested elements. In Fig. 4, we show an active structure that decomposes the
Autonomous Car into a User Interface, a Storage Gateway, an Engine Control, and a
Navigation System. Information flows between these nested elements represent the
internal communication of the car. To refine the security policy that has been
specified along with the environment model, we enrich the active structure with
fine-grained noninterferences at the level of nested system elements. For exam-
ple, Fig. 4 introduces two noninterference relations between Predictive Maintenance

and User Interface, as well as between User Interface and Storage Gateway.

System 
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Environmental 
Element

Information Flow

Non-Authorized 
Information Flow

User 
Interface

Engine 
Control

Storage 
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Navigation 
System

Predictive
Maintenance

Passenger Cloud
Storage

Traffic 
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System

Legend

Fig. 4. Security policy refined during the decomposition into an active structure
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The objective of our approach is to ensure validity of these refinements.
To formalize validity, we relate the two flow policies by means of a graph
homomorphism. In particular, we require a homomorphism (with respect to the
interference relation) that maps every element of the active structure to the
corresponding element inside the environment model. For example, in Fig. 4,
all the nested elements are mapped to the Autonomous Car as the system under
development, whereas the external elements are mapped to their corresponding
identical elements inside the environment model. Furthermore, the homomor-
phism requires the active structure to include only such information flows that
correspond to legitimate flows inside the environment model. Thus, if there is an
interference between two elements of the active structure, the two corresponding
elements inside the environment model must interfere as well. For example, in
Fig. 4, all the internal information flows between the nested elements correspond
to the interference of the Autonomous Car with itself.

Finally, in addition to the homomorphism, we also require every noninter-
ference inside the environment model to be refined by appropriate fine-grained
noninterferences at the level of the active structure. These fine-grained nonin-
terferences ensure that every possible communication path between two nonin-
terfering environmental elements is properly illegalized at the level of the active
structure. We formalize these conditions as follows:

Definition 2 (Refinement). A flow policy Pola = (Da,→a,↝a,↝̸a) is refined
by a flow policy Polb = (Db,→b,↝b,↝̸b), if and only if

– there is a graph homomorphism f from the graph (Db,→b) to the graph
(Da,→a), i.e., there is a function f : Db → Da where d1 →b d2 implies
that f(d1) →a f(d2), and

– for every noninterference ds ↝̸a dt, a flow from each d′
s ∈ f−1(ds) to each

d′
t ∈ f−1(dt) is illegalized by Polb.

Definition 3 (Illegalization). A flow policy (D,→,↝,↝̸) illegalizes a flow
from d1 ∈ D to dn ∈ D, if and only if for every path (d1 → . . . → dn) ∈ →� there
is a noninterference di ↝̸ dj where 1 ≤ i < j ≤ n.

Thus, to validate the refinement of an individual noninterference, we analyze
each path of information flows between the corresponding environmental ele-
ments, and check if any two elements on the path are related by a fine-grained
noninterference. If so, this fine-grained noninterference represents an illegaliza-
tion of the information flow across the path, and fulfills the security requirement
expressed by the original noninterference inside the environment model.

In our example, an information flow from the Predictive Maintenance to the
Passenger is non-authorized according to the environment model. A communi-
cation path between these elements exists by traversing the Engine Control, the
Navigation System, and the User Interface. However, the path is correctly illegal-
ized by a noninterference between Predictive Maintenance and User Interface. Since
an illegalization exists for all possible paths between Predictive Maintenance and
Passenger, the initial noninterference has been correctly refined.
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By checking each noninterference for appropriate illegalizations, the validity
of a refinement is analyzable at the level of the active structure. Since the system
elements inside the active structure may be recursively decomposed into more
fine-grained system elements, the proposed approach can be iteratively applied
to check the validity of lower-level refinements. Thus, during the decomposition
of a system model, our approach enables systems engineers to iteratively check
the validity of their refined security policies at each step of the refinement.

3.4 Transition from Systems Engineering to Software Engineering

In the scope of the Consens approach, the active structure of a system under
development is systematically translated into a component-based software archi-
tecture [9]. In Fig. 5, we illustrate a component architecture that results from
the active structure of the autonomous car. Each element of the active struc-
ture corresponds to a software component, whereas authorized information flows
have been translated into connectors between ports of the corresponding com-
ponents. Components communicate over these connectors by message passing.
The information processing of a component drives its communication with other
components, and is implemented by means of a stateful real-time behavior with
formal semantics rooted in the theory of timed automata [2].

Car
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cloud

naviga onengine

storage

User Interface

Naviga on System

passenger

interface

naviga on

traffic

storage

naviga on engine

Legend

Port

Component

Visible

Secret

Fig. 5. Software component model including component security policies

We propose to refine security policies along with the translation from the
active structure into a component model, thereby deriving verifiable security
policies for individual components. Such a component security policy is specified
by labelling the ports of the respective component according to their security-
sensitivity, whereas possible sensitivity labels are secret and visible. A compo-
nent security policy is fulfilled if the information processing of the component
avoids an information flow from secret to visible ports. Figure 5 shows a set of
component security policies that have been specified to refine the noninterfer-
ence between Predictive Maintenance and User Interface. For the refinement of an
individual noninterference, we propose the following validity conditions:
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1. Ports that correspond to the source of the noninterference need to be labelled
as secret. By treating the information processed by such a port as secret,
we state that no such information must flow to other ports labelled as vis-
ible. Accordingly, in Fig. 5, the outer maintenance port is secret because it
corresponds to the source of the refined noninterference.

2. Ports that correspond to the target of the noninterference need to be labelled
as visible. By regarding the information processed by such a port as visible,
we state that no flow of secret information to this port must be possible. For
example, in Fig. 5, this applies to the navigation port of the User Interface as
the target of the noninterference to be refined.

3. Every two ports that are connected by means of a connector must share
identical sensitivities, i.e., must be either both secret or both visible. Thereby,
we ensure that components agree on the sensitivity of information, preventing
ports from upgrading or downgrading labels. Accordingly, in Fig. 5, the inner
maintenance port of the Engine Control is also secret, whereas the interface port
of the Navigation System needs to be visible.

The labels of other ports may be freely chosen, as long as they meet the above
conditions. This degree of freedom enables software engineers to align the spec-
ified security requirements with the functional requirements of each component.
Figure 5 illustrates a labelling that reduces the noninterference between Predic-

tive Maintenance and User Interface to two effective component security policies.
First, the information processing of the Engine Control needs to ensure that no
information is flowing from its maintenance or storage ports to the navigation port.
Second, an information flow from the engine port to the navigation port needs
to be avoided by the information processing of the Storage Gateway. Since both
User Interface and Navigation System comprise visible ports only, their component
security policies are trivially fulfilled by definition. In combination, the set of
local component security policies enforces the desired noninterference between
Predictive Maintenance and User Interface.

Please note that, in general, refining multiple noninterferences at once might
lead to conflicting sensitivity labels. Therefore, in our approach, each individ-
ual noninterference is refined separately, and may result in an individual set
of component security policies. However, in order to refine a flow policy in its
entirety, the information processing behavior of the components must fulfill all
the resulting sets of component security policies at the same time.

The formal semantics of the information processing enables automated verifi-
cation of the component security policies using our previous work [13]. However,
a remaining problem to be addressed is that information flow security of individ-
ual components is not necessarily preserved on composition [24]. For example, in
Fig. 5, even if both Engine Control and Storage Gateway fulfill their component secu-
rity policies, an information flow between Predictive Maintenance and User Interface

might nevertheless be present. Therefore, the goal of our current research [12]
is to ensure that a composition of components fully preserves their security,
and thereby satisfies the information flow requirements specified at the systems
engineering level.
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4 Related Work

Model-driven techniques are frequently applied to the engineering of secure soft-
ware [29,31,40]. However, security also demands specific requirements engineer-
ing approaches surveyed in [8,26,34,37]. As shown by a recent study [27], such
requirements-oriented approaches are still underrepresented among those works
that emphasize security within the software development lifecycle. In this section,
we focus on the intersection of model-driven and security requirements engineer-
ing. In particular, we are concerned with approaches addressing information flow
security or systems engineering, as we do in this paper.

Model-Driven Engineering of Information Flow Security. FlowUML [1]
validates UML sequence diagrams against logic-based security policies. Thereby,
the approach enables reasoning about flow requirements at an early stage of the
engineering process, similar to our work. Hoisl et al. [18] enable the specification
of secure object flows in UML-based business process models. However, unlike
our work, both aforementioned approaches do not address the refinement of
security policies along with the engineering process.

RIFL [4] is a tool-independent specification language that explicitly targets
information flow requirements. Thus, it naturally supports the specification of
flow policies in terms of relations between security domains, similar to this paper.
Due to its generality, RIFL is not restricted to a particular application domain.
However, the approach has not yet been applied to the domain of model-based
systems engineering, which is the goal of our work in this paper.

The STAIRS approach [35] enables reasoning about information flow prop-
erties of system specifications given in terms of UML sequence diagrams. The
authors address the preservation of information flow properties under refinement
of system specifications. This form of refinement is different from our work, which
refines a security policy itself along with the engineering process. Furthermore,
by using sequence diagrams as a notation for policy specification, the approach
differs substantially from our work based on flow policies.

The most prominent approach towards model-driven design of secure systems
is UMLsec [20]. Similar to our work, the approach integrates concepts from the
field of information flow security to ensure confidentiality properties. Further-
more, the approach has been successfully integrated with security requirements
engineering techniques [17,19]. Thereby, similar to our paper, UMLsec addresses
a systematic transition from security requirements to a secure software design.
IFlow [21] also supports the specification of information flow requirements in
the scope of UML. To that end, the authors enable the specification of security
policies that are conceptually similar to the flow policies used in this paper.

However, in summary, none of the above approaches is applicable to inter-
disciplinary models that are tailored to systems engineering. Instead, the
approaches mainly focus on software engineering using UML. Thus, whereas
information flow security has been frequently integrated into model-driven engi-
neering, the transition from systems to software engineering is beyond the scope
of the existing works.
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Security in Model-Based Systems Engineering. Tropos is a model-based
development methodology that has been extended to consider security require-
ments across the entire systems engineering process [28]. Due to its generality,
the approach also enables engineers to specify and refine information flow restric-
tions. However, in contrast to our work, specific formal methods from the area
of information flow security are no integral part of the methodology. ISSEP [33]
is another systems engineering process that seamlessly integrates security prac-
tices. The authors use models as an interface to incorporate security solutions
into the engineering process. However, compared to our work, information flow
security is not among the incorporated solutions.

Another process that bridges security expertise and systems engineering is
SEED [41]. Based on a separation between system and attack models, the authors
enable risk analysis with respect to the confidentiality and integrity of data
assets. Grunske and Joyce [15] propose another method for security risk analysis
in SysML models. Similar to this paper, they take into account component-based
architectures. However, whereas the authors of both these risk-centric works
focus on quantitative security analysis, we take a more constructive approach by
refining security policies along with the system specification.

SysML-Sec [3] is another approach that integrates security with model-based
systems engineering based on SysML. The authors cover all phases of the engi-
neering process. Thus, like our paper, they cover the transition from security
requirements to the software design. To that end, SysML-Sec addresses a system-
atic refinement of software components along with the process. However, unlike
our approach, information flow security and the refinement of corresponding
information flow requirements are not considered.

Belloir et al. [5] support the elicitation of security requirements in model-
based engineering of highly distributed systems of systems. The authors propose
a process to translate such requirements into design models based on SysML.
Thus, similar to our paper, they focus on the transition between requirements
and design. SoSSec [16] is another method towards secure systems of systems.
The authors provide a model-based description language for system architec-
tures, and use simulative analysis to identify circumstances under which vulner-
abilities might be exploited. In contrast to our work, none of the two approaches
takes information flow requirements into account.

Lemaire et al. [22] analyze data flows in cyber-physical systems based on
SysML. Thereby, similar to our paper, they seek to prevent violations of prede-
fined security policies. However, unlike our work, the authors focus on hardware
components as building blocks of systems. Thus, they do not provide a transition
to the discipline of software engineering.

In summary, security has gained increased attention from the area of model-
based systems engineering, especially in the context of SysML. However, existing
approaches either provide security analyses based on full-fledged design models,
or focus on the construction of specific security solutions. In contrast, none of
the reviewed approaches takes the constructive refinement of information flow
security policies into account, as we proposed in this paper.
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5 Conclusions and Future Work

In this paper, we proposed a novel integration of model-based systems engineer-
ing and information flow security. We extended structural systems engineering
models to flow policies. Thereby, we enabled the specification of security require-
ments in terms of non-authorized information flows that need to be prevented.
On structural decomposition of these models, we described how the specified
flow policies can be refined into more fine-grained security requirements. Finally,
on the transition from systems engineering to software engineering, we demon-
strated how to translate refined flow policies into security requirements for indi-
vidual software components.

Our approach provides systems engineers with a specification technique for
information flow security policies, allowing them to front-load the security of
a system under development to an early development stage. Thereby, secu-
rity requirements are made explicit, and are less likely to be deferred to an
afterthought or even escalate into unrecognized zero-day vulnerabilities. In the
downstream software engineering, our derivation of component security policies
allows engineers to effectively derive verifiable security requirements that are
amenable to verification using our previous work.

This work is part of our ongoing research on tracing information flow secu-
rity in cyber-physical systems engineering [11]. In future work, we intend to
extend our scope from information flows towards energy and material flows,
enabling the detection of side-channel attacks. Furthermore, we are working on
a compositional verification approach for security requirements at the level of
component-based software architectures [12]. Thereby, we focus on the compo-
sitionality problem of information flow security [24]. Finally, whereas our work
currently addresses the transition from security goals to a secure design, a seam-
less approach would need to take security threats into account as well [39]. Thus,
in future work, we would like to enhance our approach with a threat analysis [38].
Thereby, we seek to enable engineers not only to specify security requirements,
but also to identify these requirements systematically and thoroughly.
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32. Ramos, A.L., Ferreira, J.V., Barceló, J.: Model-based systems engineering: an
emerging approach for modern systems. IEEE Trans. Syst. Man Cybern. 42(1),
101–111 (2012)

33. Ruiz, J.F., Maña, A., Rudolph, C.: An integrated security and systems engineering
process and modelling framework. Comput. J. 58(10), 2328–2350 (2015)

34. Salini, P., Kanmani, S.: Survey and analysis on security requirements engineering.
Comput. Electr. Eng. 38(6), 1785–1797 (2012)

35. Seehusen, F., Solhaug, B., Stølen, K.: Adherence preserving refinement of trace-
set properties in STAIRS: exemplified for information flow properties and policies.
Softw. Syst. Model. 8(1), 45–65 (2009)

36. Steward, C., et al.: Software security: The dangerous afterthought. In: ITNG 2012,
pp. 815–818. IEEE Computer Society (2012)

37. Tøndel, I.A., Jaatun, M.G., Meland, P.H.: Security requirements for the rest of us:
a survey. IEEE Softw. 25(1), 20–27 (2008)

38. Tuma, K., Calikli, G., Scandariato, R.: Threat analysis of software systems: a
systematic literature review. J. Syst. Softw. 144, 275–294 (2018)

39. Türpe, S.: The trouble with security requirements. In: RE 2017, pp. 122–133. IEEE
Computer Society (2017)

https://doi.org/10.1007/978-3-319-65127-9_4
https://doi.org/10.1007/978-3-319-65127-9_4
https://doi.org/10.1007/3-540-45251-6_9
https://doi.org/10.1007/3-540-45017-3_7
https://www.omg.org/spec/SysML
https://www.omg.org/spec/SysML


632 C. Gerking

40. Uzunov, A.V., Fernández, E.B., Falkner, K.: Engineering security into distributed
systems: a survey of methodologies. J. Univers. Comput. Sci. 18(20), 2920–3006
(2012)

41. Vasilevskaya, M., Nadjm-Tehrani, S.: Quantifying risks to data assets using formal
metrics in embedded system design. In: Koornneef, F., van Gulijk, C. (eds.) SAFE-
COMP 2015. LNCS, vol. 9337, pp. 347–361. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24255-2 25

https://doi.org/10.1007/978-3-319-24255-2_25
https://doi.org/10.1007/978-3-319-24255-2_25


Towards Scenario-Based Security
Requirements Engineering
for Cyber-Physical Systems

Thorsten Koch(B)

Software Engineering and IT Security, Fraunhofer IEM, Paderborn, Germany
thorsten.koch@iem.fraunhofer.de

Abstract. Cyber-physical systems are characterized among others by
strong interconnection with each other, but also with their environ-
ment. This interconnection enables on the one hand new functionality
with a high complexity and leads on the other hand to a high demand
on the security of the systems. Both aspects require tailored devel-
opment processes with a rigorous requirements engineering. However,
current requirements engineering approaches focus either on the func-
tional or on the security aspects but lack an integrated view on mod-
eling and analysing both aspects. Therefore, we present in this paper
ongoing research for a formal, model- and scenario-based requirements
engineering approach for cyber-physical systems. Our approach enables
the requirements engineer in an early stage of the development whether
the modeled security requirements are sufficient to mitigate attacks and
whether the security requirements influence the functional behavior. We
illustrate the approach by means of an advanced driver assistance system
from the automotive domain.

1 Introduction

Cyber-physical systems (CPS) [5] are characterized by complex functionality
and a strong interconnection between each other and their environment. They
exchange digital information to coordinate themselves and to perform complex
tasks in a collaborative manner. Since most cyber-physical systems also inter-
act with people in their environment, cyber-physical systems are highly safety-
critical and require a rigorous requirements engineering (RE). Scenario-based
RE formalisms like Modal Sequence Diagrams [12] enable an intuitive specifica-
tion and the simulative validation of functional requirements on the behaviour
of cyber-physical systems.

However, the interconnected nature of cyber-physical systems raises the pos-
sibility of cyber-attacks significantly and security has become a major quality
attribute in the development. Thus, development processes and especially the
requirements engineering need to address security requirements from the begin-
ning in order to prevent vulnerabilities in the final system by design (e.g. by
means of threat modeling) [2].
c© Springer Nature Switzerland AG 2018
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In secure software engineering, many approaches for the security requirements
engineering exist. However, these approaches either lack in their modeling and
analysis capabilities for functional and security requirements or they are not
tailored to the characteristics of cyber-physical systems such as the discipline-
spanning development [22] or the limited computing power of dedicated com-
puting platforms [1].

Therefore, in this paper, we present ongoing research on the extension of our
formal, model- and scenario-based requirements engineering approach based on
Modal Sequence Diagrams (MSDs) with approaches from security engineering.
Thereby, we conceive an RE approach for secure cyber-physical systems that
covers the modeling of functional and security requirements in an integrated
and intuitive manner. Furthermore, our RE approach enables the analysis of
functional requirements, security requirements and their interplay. Thereby, the
requirements engineer is able to determine in an early phase of the development,
whether the modeled security requirements are sufficient to avoid the threats
found in a threat analysis and whether the security requirements influence the
functional behavior of the system in a negative way. In addition, we discuss the
integration of our RE approach in the model-driven development process for
secure cyber-physical systems proposed by Geismann et al [6]. The integration
enables the automatic refinement of existing high-level information, e.g. from
a threat model, and, thereby, reduces the manual effort of the requirements
engineers for remodeling the information.

We illustrate our approach by means of an advanced driver assistance system
taken from the automotive domain as depicted in Fig. 1. The purpose of the
ADAS is to reduce the risk of rear-end collisions in case of appearing obstacles
in front of a vehicle. Therefore, each vehicle is equipped with radar sensors to
detect obstacles in front and a car-to-car communication systems to coordinate
the reaction to dangerous situations with other vehicles. Besides the functional
requirements on ADAS, there are further requirements concerning the security.
For example, it should not be possible that an attacker is able to spoof a vehicle
and cause the dangerous situations for the road users.

The remainder of the paper is as follows: The following section introduces
related work. Section 3 presents the requirements engineering methodology for
secure cyber-physical. Finally, Sect. 4 summarizes this paper and provides an
outlook on future work.

2 Related Work

In secure software engineering, different stakeholder identify potential threats of
the system and analyze their potential risk. If the stakeholders decide to mitigate
a certain threat, they have to specify security requirements and mechanism. As
in functional requirements engineering, use-case and scenarios help to elicit, doc-
ument and analyze requirements. Hence, for secure software engineering, many
approaches exist that specify misuse cases [19] or abuse cases [17] as negative
scenarios to specify what is not allowed to happen during the execution of the
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Car-to-Car 
Communication

Emergency Brake

EmergencyBrake 
Warning

Fig. 1. Purpose of the advanced driver assistance system

system. Furthermore, there are several other approaches that worked on the
elicitation and specification of security requirements, for example security use
cases [3,4]; UMLsec [13,14], a framework for security requirements engineering
[9]; SQUARE [16]; security requirements methods based on i* framework [15];
Secure Tropos [7].

However, all mentioned approaches mainly work on the elicitation and docu-
mentation of threats and security requirements only for software systems and do
not cover characteristics of cyber-physical systems, for example security threats
induced by the interplay of different engineering disciplines. Furthermore, they
do not provide any integration into existing functional requirements engineer-
ing methodologies or development processes. In addition, they do not provide
sufficient analysis techniques to validate & verify whether the specified security
requirements are fulfilled and that a potential attacker is not able to execute the
specified attack.

To overcome the issues with informal and non-analyzable misuse-cases, Whit-
tle et al. [21] develop an approach to formalize by means of extended inter-
action overview diagrams (EIODs) and execute misuse-cases against scenario-
specification. However, in contrast to our scenario-based RE approach, EIODs
require a lot of meaningful pre- and post-conditions to be specified. Since these
conditions are not fully available during the early design of a cyber-physical sys-
tem, the approach of EIODs is not well suited for the development of a cyber-
physical system.

To summarize this section, the scenario-based requirements engineering is
well suited to support the textual requirements engineering of cyber-physical
systems. However, the current challenges in the requirements engineering of
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interconnected cyber-physical system and the resulting requirements on the
security of those systems is not covered by state of the art approaches. Hence,
it is necessary to extend the existing approaches to conceive a systematic for-
mal, model- and scenario-based requirements engineering methodology for secure
cyber-physical system.

3 Secure Scenario-Based Requirements Engineering

In this section, we introduce our formal, model- and scenario-based requirements
engineering methodology for cyber-physical systems. The RE methodology is
based on previous work [12], in which we conceived a RE methodology for the
functional behavior of cyber-physical systems based on Modal Sequence Dia-
grams. The main purpose of our new RE approach is to requirements engineer
is able to determine in an early phase of the development, whether the modeled
security requirements are sufficient to avoid the threats found in a threat anal-
ysis and whether the security requirements influence the functional behavior of
the system in a negative way.

Therefore, we extend the functional RE methodology in three parts: First,
we extend the modeling capabilities to enable the modeling of security proper-
ties within MSDs (cf. C1 in Fig. 2). Furthermore, we introduce attack-scenario
as a formalization of misuse-case to model the behavior of a potential attacker.
Second, we extend the analysis capabilities to validate whether security prop-
erties in MSDs influence the functional requirements in a negative way (cf. C2
in Fig. 2). In addition, we introduce an analysis to validate whether is able to
finish an attack-scenario successfully on the designed system. If this is the case,
the requirements engineer founds a vulnerability and has to add further secu-
rity properties. Third, we provide the integration of our RE approach in the
model-driven development process for secure cyber-physical systems proposed
by Geismann et al [6] (cf. C3 in Fig. 2).

In the following sections, we introduce our methodology in further details.
In Sect. 3.1 we introduce the integration of our approach in the model-driven
development process for secure cyber-physical systems proposed by Geismann
et al [6]. In Sect. 3.2, we introduce the modeling capabilities of our methodology.
Finally, Sect. 3.3 describes the simulative validation of our specification.

3.1 Development Process for Secure CPS

The development of cyber-physical systems requires the symbiotic interaction of
different engineering disciplines like mechanical engineering, electrical engineer-
ing, control and software engineering. This symbiotic interaction is called systems
engineering and requires discipline spanning development processes. In [6], Geis-
mann et al. stated that existing development processes for CPS (e.g. [18,20])
only focus on the functional but lack the security characteristics of the system
under development. Hence, they presented ongoing research on the integration
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of secure software engineering practices into discipline-spanning engineering pro-
cesses.

Figure 2 depicts an excerpt of the discipline-spanning engineering process.
The development usually starts with the two-discipline spanning system-level
phases systems requirements analysis and systems architectural design. After-
wards, the development continues in discipline-specific sub-processes for the
involved engineering disciplines. For example, in the software engineering phases,
the artifacts from the discipline-spanning phases are first refined to derive soft-
ware requirements and then the software design and implementation are executed
based on the derived software requirements. To keep the project time and costs
under control, it is very important that artifacts of previous process phases are
reused in a certain way to reduce manual and error-prone work for the specifi-
cation of already known information.

Therefore, Holtmann et al. [11] developed a systematic transition from sys-
tems engineering models to model-based software requirements engineering. By
automating several steps of this transition, they could avoid error-prone and
time-consuming tasks.

In [6], Geismann et al. introduced concepts from secure software engineer-
ing for the specification of security characteristics throughout the development
for cyber-physical systems. In the discipline-spanning development phases (sys-
tems requirements analysis and systems architectural design), they propose the
integration of a threat analysis “ ‘to support the identification of valuable assets
and potential attack vectors of the system under development.” ’ We plan to
extend the systematic transition of Holtmann et al. [11] to include the security
relevant information. Thereby, we enable the automatic refinement of threats to
attack-scenarios (cf. C3 in Fig. 2).

3.2 Functional Requirements

In this section, we introduce basic concepts for the modeling of functional
requirements by means of Modal Sequence Diagrams as described in [12]. An
MSD requirements specification consists of a UML class diagram and a set of
MSDs. The UML class diagram is used to define the structure of the system
under development and its environment. Furthermore, it specifies the possible
messages each system can receive by operations of the defined classes.

Our running example consists of the two classes Vehicle and Environment
depicted in Fig. 3. The Vehicle is the system under development and realizes the
advanced driver assistance system as described in the following. The ADAS is
supposed to reduce the risk of rear-end collisions in case of appearing obstacles
in front of the vehicle.

The purpose of our running example is as depicted in Fig. 1. The vehicles
are driving in a platoon with a constant velocity on a two-lane motorway. As
mentioned in Sect. 1, each vehicle is equipped with radar sensors to detect obsta-
cles in front and a car-to-car communication system. If an obstacle is detected
in front of the vehicle, the advanced driver assistance system takes over control
and communicates with the rear-end cars to negotiate a reaction of the situation.
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Fig. 2. Overview of our formal, model- and scenario based requirements engineering
methodology for secure cyber-physical systems.

Therefore, the leading vehicle sends a warning message to the ego vehicle. After
receiving the message, ego has to decide how to react. This situation is, on the
one hand, based on its own distance to leading vehicle and whether it is possible
to brake safely. On the other hand, the decision is based on the situation in the
back.

The scenario of the advanced driver assistance system is specified in the MSDs
in Fig. 4. An MSD basically consists of lifelines and messages. Lifelines refer to
structural entities defined in a UML class diagram. The MSD depicted in Fig. 4
encompasses the three lifelines env:Environemnt and leading:Vehicle. Messages,
depicted by arrows between lifelines, define requirements on the communication
between objects. A concrete message exchange between two objects (send and
receive) is called message event.

Messages have a temperature and an execution kind. The temperature of a
message can be cold (c) or hot (h) visualized by blue and red arrows in Fig. 4.
A cold message may be sent/received after any preceding and before any subse-
quent message of the same MSD, but it is not required to occur (e.g., obstaccle
depicted in Fig. 4). If any other message of the same MSD occurs when a cold
message is expected, the MSD is terminated/discarded (but the requirement is
not violated). A hot message, on the contrary, has to strictly occur in the order
as specified in the MSD (e.g., emcyBrakeWarning depicted in Fig. 4). If any other
message of the same MSD occurs when the hot message is expected, the MSD is
violated (i.e., the requirement is not fulfilled). The execution kind of a message
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cd AdvancedDriverAssistanceSystem

+ obstacle() 
+ standstill()
+ emcyBrakeWarning()
+ isEmcyBrakePossible(Boolean)

Vehicle

+ emcyBraking()

Environment

Fig. 3. System context of the advanced driver assistance system.

msd EmcyBrakeTriggering

obstacle

emcyBrakeWarning

emcyBraking

(c/m)

(h/e)

(c/m)

(h/e)

«Environment»
env: Environment ego: Vehicleleading: Vehicle

msdObstacleDetectedEmcyBrkDecision

leading: Vehicle ego: Vehicle

emcyBrakeWarning

isEmcyBrakePossible
(emcyBrakePossible)

(c/m)

(h/e)

Fig. 4. Exemplary MSDs specifying the functional requirements of our running exam-
ple. (Color figure online)
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can either be executed (e) or monitored (m) depicted by solid and dashed arrows
in Fig. 4, respectively. A monitored message can be observed during the execu-
tion of the MSD but its occurrence is not required. An executed message, on
the contrary, is required to occur during the execution of an MSD. If it is not
sent/received, the MSD is violated.

Furthermore, MSDs can contain assignments and conditions. Graphically,
assignments are represented by rectangular boxes that cover one or multiple life-
lines and contain a textual expression in the form <var> = <expr> where <var>
is a variable name and <expr> is an OCL expression. The variable <var> can
be any variable of an object bound to one of the lifelines covered by the assign-
ment. Conditions enable requirements engineers to specify that an MSD may
only advance under certain conditions specified by a Boolean formula. Graphi-
cally, conditions are depicted by convex hexagons with parallel opposing edges.
The MSD may only advance past the condition if it is fulfilled. If the Boolean
formula of a cold condition evaluates to false, the MSD is terminated/discarded.
On the contrary, if the Boolean formula of a hot condition evaluates to false, the
MSD only advances if the formula evaluates to true. However, if the Boolean
formula can never be fulfilled the MSD is violated.

The consistency and correctness of the MSD specification is validated by
means of the play-out algorithm [10]. The play-out algorithms is able to simulate
selected paths of the overall state space to validate the requirements. Further-
more, it is possible to check for the consistency of the overall MSD specification
by synthesizing a global controller implementing the requirements. If it is possi-
ble to synthesize such a controller, the MSD specification is consistent [8].

3.3 Security Requirements

In this section, we introduce our ongoing research on modeling and analysis
security requirements by means of MSDs- In the current stage of our work,
the modeling of security requirements encompasses two extensions. First, we
enable the requirements engineer to express security properties of messages as
depicted in Fig. 5. Therefore, we introduce new stereotypes in the Modal profile
to specify that a message is signed (e.g. emcyBrakeWarning in Fig. 5), encrypted
or both. Furthermore, we use conditions to model the validation of the security
properties. For example, the condition “isSignatureValid?” checks whether the
previous received message is correctly signed. If it is not correctly signed, the
condition evaluates to false and a cold violation occurs.

Second, we introduce a new kind of scenarios so-called attack scenario for the
specification of actions an attacker can perform. We assume that the attacker is
part of the environment of the system under development and that the system
has to operate correctly under the assumed behavior of the attacker. Therefore,
an attack-scenario is a special kind of environment assumptions. In general, the
attack scenario formalizes the idea of misuse-cases as proposed by Sindre and
Opdahl [19] to enable the automatic validation of the specification.

In the future, we plan to extend the modeling capabilities to enable the
specification of different attack models describing the capabilities and knowledge
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msd ObstacleDetectedEmcyBrkDecision

«signed»
emcyBrakeWarning

isEmcyBrakePossible
(emcyBrakePossible)

(c/m)

(h/e)

isSignatureValid? (c)

leading: Vehicle ego: Vehicle

Fig. 5. Exemplary MSDs specifying the security requirements of our running example.

of the attack. Furthermore, we have to investigate on the modeling of different
cryptographic keys and their management.

As described in Sect. 2, most approaches for secure requirements engineering
lack in supporting analysis techniques to validate & verify whether the specified
security requirements are fulfilled and that a potential attacker is not able to
execute the specified misuse cases. Hence, we enhance the play-out algorithm
to support the extensions to the Modal profile, especially the “attack scenario”.
Thereby, the software requirements engineer is able to analyze in an iterative
process whether the software requirements are vulnerable to the “attack scenar-
ios” and whether the “attack scenario” are able to prevent the potential attacks.
The integrated analysis of functional and security requirements enables the soft-
ware requirements engineer to detect conflicts between functional and security
requirements.

4 Conclusion and Future Work

The development of highly interconnected cyber-physical systems, like advanced
driver assistance systems from the automotive domain, requires development
processes that cover the interdisciplinary nature of these systems and the emer-
gent need of safety and security. Especially, in the requirements engineering
phase, it is important to consider functional and security requirements as well
as their mutual influence. For example, it is not sufficient to use always the
strongest cryptographic algorithms since cyber-physical systems are built upon
embedded devices with limited computing power. Hence, it might be possible
that the embedded device is not able to handle the encryption of all messages;
instead, the engineers have to decide which messages must be encrypted. While
existing requirements engineering approaches either focus on functional or on
security requirements, we presented in this paper ongoing research for conceiv-
ing a formal, model- and scenario-based requirements engineering methodology
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for secure cyber-physical systems integrated in the model-driven development
process proposed by Geismann et al. [6].

In our approach, we extend previous work to enable the modeling and anal-
ysis of security requirements by means of Modal Sequence Diagrams. Therefore,
we enable the specification of security properties for messages (e.g. signature and
encryption) and the specification of attack-scenarios describing potential actions
an attacker is able to perform. However, in the current stage of our work, there
is no possibility to specify which keys are used in the system and its environment
to sign and encrypt message or to further describe the capabilities of an attacker
(e.g. knowledge of keys). In addition, we showed how the new modeling capabili-
ties could be simulative validated by means of the Play-Out algorithm. Thereby,
the requirements engineer is able to determine in an early stage of the develop-
ment whether the functional behavior of the system successfully mitigates the
specified attacks and whether the security properties influence in a negative way.
Finally, we described the integration of our approach in a model-driven develop-
ment process. The integration enables the refinement of development artefacts on
a higher abstraction-level by means of (semi-) automatic model-transformations.
This reduces manual effort of the requirements engineer.

In future work, we plan to develop the open parts of our requirements
engineering methodology as well as extending the existing tool-suite Scenari-
oTools to fully support the new concepts. After completing the implementation
of our tool-suite, we plan to empirically evaluate our work and its benefits in
terms security.
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Abstract. Most of existing Model-Driven Engineering (MDE)
approaches for the Internet of Things (IoT) focus on means of modeling
the behavior of end devices. Little attention has been paid to network-
related abstractions and communication control. The paper introduces
an approach towards enabling model-based communication control in a
network of things. First, we suggest a Domain Specific Language (DSL)
to abstract basic network features. Second, we propose a policy language
to control the communications within the network. Finally, as a proof-of-
concept, we present a code generation process to enforce the expressed
policy at runtime.

Keywords: Internet of Things · Model-Driven Engineering
Networking · Publish/subscribe · Communication control

1 Introduction

The IoT is reshaping our society’s relationship with information and technol-
ogy. Gartner reports that more than 8 billion connected devices are in use, and
forecasts that this number will grow to 20.4 billion by 2020 [9]. Communication
is the backbone of the IoT, which consists of connecting various computational
platforms ranging from tiny and resource-constrained sensors and actuators to
smartphones and computers.

In the light of recent large-scale network attacks such as Mirai and Per-
sirai [13,25,27] targeting numerous devices, the need of new security approaches
with respect to communication has resurfaced. As a matter of fact, existing engi-
neering models for the IoT have shown their limits w.r.t security [23]. Indeed,
according to the SANS Institute, almost 90% of security professionals affirm that
changes to security controls are required when it comes to the IoT [20].

Most of these approaches are rather time-consuming and require learning
platform specificity in detail as well as expertise in order to build efficient and
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secure IoT applications. Because of these difficulties, buggy and insecure IoT
applications may easily be delivered [23].

MDE is an emerging and promising paradigm having the potential to over-
come such issues (e.g., platforms heterogeneity, inconsistent security specifica-
tion). All the more so that recently MDE has successfully been applied to adap-
tive and distributed systems, by the model@runtime approach [3] as well as in
model-driven security [2,16]. MDE can help in designing correct communica-
tions and secure systems by abstracting network and security features. Then, by
means of code generation tools, guarantee that properties are enforced at run-
time. Furthermore, it also allows for reasoning formally on models for various
purposes such as security analysis and threat assessment [17], to name just a
few. However, although the ongoing work on abstracting device heterogeneity is
rather significant [8,11], modeling then enforcing security policies in the IoT is
understudied.

This paper represents a first step towards a MDE approach focusing on com-
munication control in a network of distributed things. Our approach relies on the
abstract description of the network configuration and its access control policy
as well as a code generation process for enforcement at runtime.

The paper is structured as follows. Section 2 presents a running example of
IoT system. Section 3 gives an overview of the existing works. Section 4 provides
our concrete solution based on a DSL and a code generation procedure. Finally,
Sect. 5 presents the conclusion and future work.

2 Running Case

Figure 1 depicts an overall view of a small running case, including the used
material as well as the possible interactions. We consider two rooms, each one
containing the following things: a Temperature Sensor (TS) and a Smart Air
Conditioner (SAC). A user monitors the temperature in both rooms, using a
mobile interface. From a technical perspective, we use Arduino boards for the
sensors and actuators in the network.

As customary in IoT, communication between things is ensured by a Publish
and Subscribe (PubSub) channel. A thing publishes its data to a topic, then
another thing can consume this data by subscribing to this topic. On the one
hand, the TSs collect the current temperature in the room and publish it to a
given topic in the broker. On the other hand, each SAC subscribes to the tem-
perature measurements of the room it is located in, in order to decide how to
behave. The monitor receives data from all devices and shows it on its screen and
commands remotely the SACs. Concretely, Message Queuing Telemetry Trans-
port (MQTT) is used as a PubSub communication channel and Mosquitto [14]
as a PubSub broker. MQTT is a popular communication protocol [15] to build
applications where things need to collaborate towards a common goal.

Figure 2 depicts the internal behavior of the Ts and SAC using statecharts.
In particular, the TS statechart’s state SendTemperature executes the action
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Fig. 2. Behavior of things in the running case

of sending measurements through a channel. On the other side, the SAC state-
chart’s state WaitTemperature waits for the temperature measurements from
the channel to adjust its behavior.

State-of-art MDE tools for IoT allow developers to define such statecharts
and generate code from them. In particular, ThingML [11] is a DSL used to
model the things behavior as communicating event-based statecharts, typically
encapsulating platform-specific code (e.g., C code on Arduino).

To ensure secure interactions among things we need to control the commu-
nications using a network policy. A policy is a flexible means to secure a net-
work, through various control points. Controls can be enforced in the channel or
directly in the devices. In particular, things cannot communicate between each
other unless they are authorized to do so. For example, we have to ensure that
the SAC from room 1 can only access the temperature data of room 1, and is
denied access to data of room 2. Moreover, to avoid an unexpected behavior in
the SAC, we use the policy to allow for communication between the SAC and
the sensors only when the temperature is within a given range. For example the
SAC can receive temperature measurements only when it is between −20 ◦C and
50 ◦C.
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Existing MDE approaches like ThingML do not include a model of the net-
work, thus hampering global reasoning on the network behavior, and lack mech-
anisms to model and enforce security measures.

3 Related Work

ThingML [11] proposes a methodology for the IoT using established MDE tech-
niques [19]. The language has shown its efficiency at abstracting hardware and
programming languages [18,26]. The approach provides a DSL to design the
things’ internal behavior using statecharts and an extensible multi-platform code
generation framework. The latter also provides a plug-in system to add a network
client to things. However, abstractions w.r.t communication are rather minimal
in the DSL, simply consisting in declaring the used protocol and its attributes.
In other words, the proposed language does not offer abstractions capturing net-
work aspects such the communication channel that can be used between things.
Our approach aims at studying these communication abstractions.

Eclipse Vorto [8] provides a solution to abstract the device capabilities into
functions. A function consists of a set of attributes and a set of operations using
the attributes. The functions are grouped inside a model to describe the behavior
of the device. Code generators for various platforms permit to produce code from
this model. The solution also offers a repository to share and reuse models and
code generators. Compared to ThingML, modeling the device behavior is limited,
only few operations are achievable. Communication is not modeled.

SensIDL [22] provides a MDE approach to tackle the data format hetero-
geneity among IoT devices. Indeed, a developer describes a platform-agnostic
representation of the data generated by devices. Then, a multi-platform code
generator produces the communication interfaces as well as the mechanisms to
encode and decode this data on every device. Abstraction w.r.t to the network
as well as security are not covered. In addition, contrary to ThingML, modeling
of the device behavior is not included in the process.

Most of the existing MDE approaches that address network-related modeling,
target Wireless Sensor and Actuators Networks (WSAN). For instance in [7], the
authors map the Specification and Description Language (SDL) with TinyOS
component models to enable a formal description of communication protocols.
Then, a general scheme for creating code from these models is proposed.

From a model-driven security perspective, Basin et al. [2] present a com-
prehensive overview of model-driven security approaches. The considered works
allow for modeling security requirements along with the system design, and gen-
erate security mechanisms at runtime. The authors show, using a concrete exam-
ple, how a security policy is transformed by a code generation tool to control the
behavior of a Graphical User Interface (GUI) at runtime. However, distributed
systems such as the IoT and platform heterogeneity are not considered.

In [17], Mavropoulos et al. suggest a metamodel to describe IoT systems
along with their security aspects. In this respect, a DSL is used to abstract
hardware, software, social and security concepts. The approach is not meant for
code generation, but rather for security analysis and visualization.



648 I. Berrouyne et al.

The OASIS consortium provides a framework to express and enforce commu-
nication policies. It defines a language called eXtensible Access Control Markup
Language (XACML) to express an Access Control (AC) policy in Extensible
Markup Language (XML) format [4]. It relies on a request-response model, AC
decisions are taken dynamically. It also defines the mechanisms to process this
policy. The security framework needs systematically a centralized Policy Deci-
sion Point (PDP) to evaluate access requests vis-a-vis the policy, while we are
interested in distributing the enforcement of the security policy.

Mart́ınez et al. [16] propose an approach to obtain a Platform-Independent
Model (PIM) of the global AC policy in a network. The approach uses the
firewalls configuration files in the system to extract all AC rules. Those rules are
transformed into PIMs for each firewall then merged into a global AC model. A
XACML policy can be easily generated from this model. We plan to provide an
integrated modeling language for the IoT, including device behavior and network
structure, and a policy language on top of those.

Alshehri et al. [1] introduce an approach to control communication between
things using their virtual representation in the cloud. The approach separates
the operational part from the administrative one. Existing AC models (e.g,
Attribute-Based Access Control (ABAC), Role-Based Access Control (RBAC),
Access Control List (ACL)) are used, when possible, in both parts to express the
policy. The approach covers only controls on topics and does not allow modeling
a network of things along with its policy.

Fadhel et al. [10] presents a comprehensive taxonomy of the RBAC concepts
existing in the literature. The authors also provide a generalized RBAC frame-
work encompassing all these concepts. In our approach, we cover few of them
such as role assignment. Other concepts introduced in their paper will be subject
to future work.

4 Approach

Our objective is providing a model-based methodology to control communica-
tions in a network of heterogeneous, distributed and connected devices. In this
paper we design the main components of this methodology: a DSL to model
IoT networks (Sect. 4.1), a policy language to control the network communica-
tions (Sect. 4.2), and a code generation process to enforce the expressed policy
at various points of the architecture (Sect. 4.3). Our proposal is built on top of
ThingML, from which we reuse the models of the thing behavior and the multi-
platform code generator. The language development is open, and source code
can be accessed online1.

Throughout the paper, we use the running case to illustrate different facets
of the methodology. For the sake of simplicity, we use a basic authentication
mechanism, identifying things by a username and a password. Moreover, consid-
erations on trust are beyond the scope of the paper.

1 https://github.com/atlanmod/CyprIoT.

https://github.com/atlanmod/CyprIoT
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4.1 DSL for Network Modeling

To express the features of the network we define a textual language whose meta-
model is depicted in Fig. 3. The latter shows the concepts introduced in this
paper (Dark gray classes) and brings to light the reused concepts of ThingML
(White classes). We use Xtext2 to define the grammar of the concrete textual
syntax.

Introduced by ThingML New metaclasses Future extensions

Fig. 3. Metamodel of the DSL

A thing’s internal behavior is described by importing a ThingML model.
Listing 1.1 depicts the declaration of the things in the example. For instance,
import Temperature ‘ ‘ t empe ra tu r e . th i ngml ’ ’ imports the model (i.e.,
statechart) of the TS.

Network communication is abstracted by a concept of channel . The current
language supports only one type of channels, channel : pubsub. We plan to
include other types of channel, such as request-reply (e.g., HTTP, CoAP). As it

2 https://www.eclipse.org/Xtext/.

https://www.eclipse.org/Xtext/
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1 import Temperature ”temperature.thingml” assigned sensor // assigned role
sensor

2 import AirConditionner ”airconditionner.thingml” assigned actuator
3 import Monitor ”monitor.thingml” assigned actuator

Listing 1.1. Import of ThingML files

1 channel:pubsub MQTTChannel {
2 topic room1 // One topic per room
3 topic room2
4 topic temperatureData1 subtopicOf room1
5 topic commands1 subtopicOf room1
6 topic temperatureData2 subtopicOf room2
7 topic commands2 subtopicOf room2
8 }

Listing 1.2. Definition of channels

can be seen in Listing 1.2, a PubSub channel may contain multiple topics. The
keyword subtopicOf provides a basic hierarchical structure for the topics.

The networkConfig section describes the global network topology. For
instance, it defines which instances of things and channels are available in the net-
work, then it binds a things’ ports to channels to create a communication scheme.
Listing 1.3 provides a configuration of the running case. A networkConfig has
a domain, that is unique and serves as a global identifier for the network [21].
For instance, in our running case we use the domain in the topic structure as
the root topic of the channel. A bind declaration connects a thing’s port to a
PubSub channel, by subscribing or publishing to its topics.

A networkConfig can also enforce a policy in the network. Multiple policies
can be enforced. For instance, in Listing 1.3, both r o l eB a s e dPo l i c y as well as
a t t r i b u t eB a s e dP o l i c y are enforced. Control strategies are discussed further
in the next section.

4.2 Policy Language

A policy contains a set of rules. We define a rule as the composition of a subject
(Thing, InstanceThing, Port or Role), a permission (allow or deny), an action
(send or receive) and an object (Thing, InstanceThing, Port, Message or Topic).
At this stage we only cover few mechanisms of the RBAC [5] and ABAC [12]
models. You can find examples of the policy language in Listings 1.4 and 1.5.

As an illustration we apply these control strategies in our running case. The
main goal is to avoid any unexpected behavior from the network.

RBAC. This is a coarse-grained strategy consisting of defining roles then assign-
ing them to things. All the permissions given to a role will be applied to all things



Towards Model-Based Communication Control for the Internet of Things 651

1 networkConfig smarthomeConfiguration {
2 domain ”fr.naomod.smarthome”
3 enforce roleBasedPolicy, attributeBasedPolicy
4 ....// Instances declaration
5 bind instanceTS1.temperaturePort => MQTTChannel{temperatureData1}
6 bind instanceTS2.temperaturePort => MQTTChannel{temperatureData2}
7 bind instanceSAC1.temperaturePort <= MQTTChannel{temperatureData1}
8 bind instanceSAC2.temperaturePort <= MQTTChannel{temperatureData2}
9 bind instanceSAC1.commandsPort <= MQTTChannel{commands1}

10 bind instanceSAC2.commandsPort2 <= MQTTChannel{commands2}
11 bind instanceMonitor.temperaturePort <= MQTTChannel{temperatureData1,

temperatureData2}
12 bind instanceMonitor.commandsPort => MQTTChannel{commands1}
13 bind instanceMonitor.commandsPort2 => MQTTChannel{commands2}
14 }

Listing 1.3. Network configuration (=> publish, <= subscribe)

with that role. This allows to decouple permissions from the concrete develop-
ment of things.

In our running case we define two roles: one for sensors and one for actuators.
The first role gives only send permission to all topics while the second one gives
only receive permission from all topics. We assign the sensor role to the TS, the
actuator role to the SAC, and both roles to the monitor as it needs to receive
the temperature and to send commands. Listing 1.4 shows how this is defined.

ABAC. A more fine-grained strategy consists on dynamically deciding to allow
the communication, based on contextual attributes. As a proof-of-concept we
provide basic ABAC mechanisms.

For instance, in Listing 1.5, the rule in line 2 allows communication based
on the source and destination ports (Temperature . t empe ra tu r ePo r t and
Monitor . t empe ra tu r ePo r t ). Lines 4–5 specify that only temperature mes-
sages whose value is in a certain range, can be communicated. Being able to
decide based on the content of the communication, provides a fine granularity
for access control.

1 policy roleBasedPolicy {
2 rule role:sensor allow:send topic:room1,room2
3 rule role:actuator allow:receive topic:room1,room2
4 }

Listing 1.4. Role-Based policy



652 I. Berrouyne et al.

1 policy attributeBasedPolicy {
2 rule Temperature.temperaturePort allow:send port:Monitor.temperaturePort
3 rule Temperature.temperaturePort allow:send thing:AirConditionner
4 rule Monitor allow:receive message:temperatureMessage.currentTemperature

< 50 and temperatureMessage.currentTemperature > −20
5 rule Temperature allow:send message:temperatureMessage.

currentTemperature < 100
6 }

Listing 1.5. Attribute-Based policy

4.3 Code Generation Process

Our code generation process is depicted in Fig. 4. The code generator takes
as input a file containing the networkConfig . It performs two main functions:
first it transforms ThingML models to bind them with specific network channels,
second it enforces the policy at various enforcement points.
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ThingML models
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Fig. 4. Code generation procedure

As depicted in Fig. 5, controls are enforced at various points of the network
architecture: (1) in the broker, by controlling the access to topics, or (2) in the
thing by changing its internal behavior in the model.
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1 if (currentTemperature<100) { // Added control
2 temperaturePort!temperatureMessage(currentTemperature)
3 }

Listing 1.6. Control on send in ThingML

For our previous RBAC example, controls are applied only in the broker. In
particular, our current generator is able to produce Access Control Rules (ACR)
for the Mosquitto, specifying which MQTT topics can be accessed by each thing.

Content-based policies, like in Lines 4–5 of Listing 1.5, cannot usually be
implemented in the broker because, for performance reasons, only few brokers
provide content-based PubSub [24]. In this case, the control will be performed
in the things rather than the broker, during the operations of send and receive.
Distributed content-based PubSub has also the advantage to be more scalable
and flexible. It avoids the “single point of failure” risk associated with control
on the broker. This also contributes to a better security by design [6] as well as
to reduce the attack surface of the thing.

In our language we can decide to control communication on the send or
receive. As shown in Fig. 2, the TS sends its data in the SendTemperature

state. To implement the rule in Line 5 of Listing 1.5 the generator adds an
i f condition before performing the send in the SendTemperature state, as
shown in Listing 1.6. Temperature measurement is sent only when it is lower
than 100. Likewise, Fig. 2 also shows that the SAC can receive this data at
the WaitTemperature state. To control the temperature received by the SAC
according to the rule in Line 4 of Listing 1.5, the generator adds a guard to the
incoming event, as shown in Listing 1.7. Temperature is accepted only when it
is between −20 and 50.

Controlling communication on receive requires checking whether the message
satisfies the control conditions before reception. The message can still be inter-
cepted, and demands superfluous processing for a message, that probably will
not be used. When communication is controlled on send, the message remains
until it satisfies the control conditions, this is more secure as the thing keep
control over the message. However a malicious developer could easily remove a
control on send, with the objective of controlling another connected device.
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1 internal event receivedTemperature : temperaturePort?temperatureMessage
2 guard receivedTemperature.currentTemperature < 50
3 and receivedTemperature.currentTemperature > −20 // Added control
4 action do
5 ... // Actions
6 end

Listing 1.7. Control on receive in ThingML

5 Conclusion

We extended the current work on MDE for the IoT with a model-based commu-
nication control approach. In this respect, we proposed a DSL to tackle the lack
of network modeling.

Network-related abstractions are proposed. The study focuses on PubSub
communication channels and permit to model a network of things. Communica-
tion control is achieved using rule-based policies. The policy language permits to
describe basic concepts of established security models such RBAC and ABAC.

A code generation process enforces the policy at various points of the network
architecture. In this respect, AC rules are generated to be deployed in the broker
and things’ internal behavior may be modified.

In future work, we will enrich this first approach with more network-related
abstractions. Then, we will formalize the model transformations of ThingML
models using the AtlanMod Transformation Language (ATL). Finally, we plan
to improve the security mechanisms already in place with smarter controls dis-
tribution throughout the enforcement points.
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