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This pioneering Population Genomics Series deals with the concepts and approaches
of population genomics and their applications in addressing fundamental and applied
topics in a wide variety of organisms. Population genomics is a fast emerging
discipline, which has created a paradigm shift in many fields of life and medical
sciences, including population biology, ecology, evolution, conservation, agricul-
ture, horticulture, forestry, fisheries, human health and medicine.

Population genomics has revolutionized various disciplines of biology including
population, evolutionary, ecological and conservation genetics, plant and animal
breeding, human health, genetic medicine, and pharmacology by allowing to address
novel and long-standing intractable questions with unprecedented power and accu-
racy. It employs large-scale or genome-wide genetic information across individuals
and populations and bioinformatics, and provides a comprehensive genome-wide
perspective and new insights that were not possible before.

Population genomics has provided novel conceptual approaches, and is tremen-
dously advancing our understanding the roles of evolutionary processes, such as
mutation, genetic drift, gene flow, and natural selection, in shaping up genetic
variation at individual loci and across the genome and populations, disentangling
the locus-specific effects from the genome-wide effects, detecting and localizing the
functional genomic elements, improving the assessment of population genetic
parameters or processes such as adaptive evolution, effective population size, gene
flow, admixture, inbreeding and outbreeding depression, demography and biogeog-
raphy, and resolving evolutionary histories and phylogenetic relationships of extant
and extinct species. Population genomics research is also providing key insights into
the genomic basis of fitness, local adaptation, ecological and climate acclimation and
adaptation, speciation, complex ecologically and economically important traits, and
disease and insect resistance in plants, animals and/or humans. In fact, population
genomics research has enabled the identification of genes and genetic variants
associated with many disease conditions in humans, and it is facilitating genetic
medicine and pharmacology. Furthermore, application of population genomics
concepts and approaches can facilitate plant and animal breeding, forensics, delin-
eation of conservation genetic units, understanding evolutionary and genetic impacts
of resource management practices and climate and environmental change, and
conservation and sustainable management of plant and animal genetic resources.

The volume editors in this Series have been carefully selected and topics written
by leading scholars from around the world.
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Preface

Genomics has revolutionized many fields of biology. For microbes, in particular, it
has revealed the enormous scope of diversity coexisting in most environments. Not
surprisingly, efforts in microbial genomics have, to a large extent, been directed
towards understanding the phylogenetic and functional diversity encompassed by
microbes. Although much of microbial diversity remains to be uncovered, there is
also a more recent focus on analysis of closely related genomes. This effort was, at
least initially, driven by the need to better understand the evolution and epidemiol-
ogy of pathogenic viruses and bacteria. The continuous decline in sequencing cost
has, however, enabled a broader focus on nonhuman pathogens, and environmental
and industrial microbes to better understand how microevolutionary processes create
variation within populations. Hence, the field of microbial population genomics has
come of age, and we believe, it is time for a book that summarizes current develop-
ments and future perspectives in this novel but important field.

Population genomics of microorganisms is most commonly understood to
encompass the analysis of entire genomes of intraspecific and interspecific closely
related individuals using phylogenetic and population genetics concepts and tools.
Population genomics, therefore, deals broadly with the analysis of evolutionary
forces that both create and remove variation among members of populations, and,
perhaps most importantly, lead to adaptation to environmental niches or hosts.
Simply put, population genomics is population genetics empowered by genomics.
This definition can, however, vary somewhat according to the organisms studied so
that many authors within this book provide their own, more nuanced definitions of
microbial population genomics. Moreover, availability of data varies greatly for
different types of organisms. Not surprisingly, the genomic analysis of human viral
and bacterial pathogens is most advanced and although other fields are catching up,
for many types of organisms, population genomics of microorganisms represents a
nascent field emerging from comparative genomics of closely related organisms.
The availability of large collections of closely related strains is, however, bound to
rapidly increase in the next few years since standard genetic characterization of
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isolates is increasingly done by whole genome rather than single-marker gene
sequencing.

In this book, we have tried to cover all major groups of microorganisms for which
at least some population genomics studies have been undertaken. The chapters, thus,
span the whole spectrum of diversity encompassed by microbes, including bacteria,
archaea, fungi, and viruses. And for pathogens, there is further subdivision
according to the hosts infected. The result is an in-depth analysis of microbial
population genomics that allows comparison among fields. Our hope is that this
structure will enable the reader to find commonalities and differences among organ-
isms, and that such comparison will outline a roadmap for new investigators in the
field of microorganism population genomics. Because crosstalk between fields is
always mediated by common methods, we have included a chapter that explicitly
deals with computational tools for microorganism population genomics. However,
many of the individual chapters cover additional methods, often developed for
specific purposes but often more broadly relevant. Finally, because many microbes
remain hard to culture and are only accessible by metagenomics, the book contains a
chapter that deals explicitly with the opportunities and challenges in applying
population genomics to uncultured organisms.

Talking about population genomics implies that we know how to define and
delineate populations. In many cases, we have good intuition of what a population
might be, such as in the analysis of highly clonal pathogens or sexually isolated
eukaryotes. How to demarcate population boundaries is, however, often not easy. In
particular, for bacteria and archaea, as well as for some viruses, the potential for
horizontal gene transfer and the vast coexisting genetic diversity exemplify this
difficulty. In fact, the term population is often used loosely in microbiology,
describing from cells in a culture tube to diverse microbes coexisting in environ-
mental samples. Several of the chapters, therefore, explicitly tackle the issue of how
to define populations and how populations split into distinct units in the process of
speciation. Based on the sophistication of the analysis, we predict that the next few
years will see tremendous advances in theory about how to define microbial
populations.

It is an exciting time for a book on microbial population genomics as the field
takes shape and is expanding into new areas of research. We thank all the distin-
guished authors who have taken the time to contribute to this effort and we hope that
all have been rewarded by the timeliness and quality of this book.

Cambridge, MA, USA Martin F. Polz
Fredericton, NB, Canada Om P. Rajora
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Part I
Concepts and Approaches



Computational Methods in Microbial
Population Genomics

Xavier Didelot

Abstract Whole genome sequencing is frequently applied to hundreds of samples

within a single microbial population study. The resulting datasets are large and need

to be analysed using computationally efficient methods, the development of which

is an active research field. Here we review the current state of the art in terms of

computation methods used in microbial population genomics. This includes soft-

ware for assembly and alignment of core genomic regions, which is usually a

pre-requirement for analysing the ancestry of the genomes, via phylogenetic on

non-phylogenetic methods. We also review additional techniques aimed at com-

bining genomic data with temporal, geographical or other types of metadata, as well

as pan-genome methods of analysis that go beyond the core genome.

Keywords Alignment • Assembly • Computation methods • Microbial population

genomics • Pan-genome analysis • Phylodynamics • Phylogenetics •

Phylogeography • Recombination

1 Introduction

With the advent of new genome sequencing technologies, the cost and time

required to sequence whole microbial genomes have decreased to such a point

that research studies are now able to include hundreds or even thousands of newly

sequenced genomes. Analysis of such large datasets requires the use of specific

computational methods, which are reviewed in this chapter, but are still the subject

of active development. Section 2 describes how to prepare genomic data for
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analysis, including identification of core and accessory genomic regions, assembly

and alignment. Section 3 summarises methods for analysing the ancestry of the

genomes, which can broadly be divided into phylogenetic and non-phylogenetic

approaches. Section 4 describes how temporal information about the sampling dates

of the genomes can be combined with the genomic data to paint a more complete

picture of the evolutionary process. Section 5 covers the use of the geographic

locations from which the genomes originate to describe the geographic structure of

the population. Section 6 describes how other types of metadata can be integrated

into a microbial population genomics study to investigate the distribution and

evolution of various properties of interest. Finally, Sect. 7 explains how analysis

of the pan-genome can be carried out.

2 Preparing Genomic Data for Analysis

2.1 Core and Accessory Genome

When comparing genomic data frommembers of a microbial population, it is useful

to identify the genomic regions that are present in all the genomes, and which

collectively are called the core genome. The remaining regions, which are found in

some but not all the genomes, are collectively called the accessory genome, while

the sum of core and accessory genome is often called the pan-genome. Analysis

of microbial population genomic data typically requires an alignment of the core

genomic regions, and this section describes how to prepare such an alignment. The

separation of core and accessory genome regions is especially relevant for bacterial

population genomics, because bacterial genomes within a population often exhibit

significant variation in genomic content, whereas this is not usually the case for

viral populations. In bacterial genomics, analysis of non-core regions can be

important too, and this subject is treated in Sect. 7.

2.2 Reference-Based Assembly

Sequencing data from current sequencing instruments (reviewed in Loman and

Pallen 2015; Goodwin et al. 2016) comes in the form of a large number of reads of

length 100–250 bp which are highly redundant, so that each individual genomic

position is covered by several reads. The average number of reads covering

genomic positions is called the coverage depth and is a good indication of how

accurate the final genome sequence will be, for example depth of 40� and above.

Assembly is the process whereby reads are put together to reconstruct the genome

sequence. There are broadly two forms of assembly: reference-based assembly and

de novo assembly, each with their specific strengths and weaknesses.
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Reference-based assembly requires that a whole genome from the population

(or at least species) under study has been previously sequenced, which is called the

reference genome. Each read is then aligned against the reference genome, and

popular algorithms to perform this include BWA (Li and Durbin 2009), SMALT

(http://www.sanger.ac.uk/science/tools/smalt-0), Stampy (Lunter and Goodson

2011) and Bowtie (Langmead et al. 2009). The next step is called variant calling,

which is often done using SamTools (Li et al. 2009), FreeBayes (Garrison and

Marth 2012) and/or GATK (McKenna et al. 2010). For each position along the

reference genome, the alignment of reads at that position is considered. If there are

enough aligned reads and they are in good agreement, the corresponding nucleotide

of the target genome is called, otherwise it is left undetermined. The latter happens

mostly for regions that are present in the reference genome but not in the target

genome and for regions that are repetitive, or if the sequencing quality is low.

Reference-based assembly has the advantage that each assembled genome is

aligned against the same reference and hence all aligned against each other and

directly comparable. Drawbacks include the need for a pre-sequenced reference

genome, and the fact that only regions found in the reference genome can be

assembled, which is sufficient to study the core genome but not the accessory

genome.

2.3 De Novo Assembly

The alternative to reference-based assembly is to assemble each genome de novo,

that is by directly comparing and aligning the reads against each other. Popular

softwares for de novo assembly include Velvet (Zerbino and Birney 2008), SPAdes

(Bankevich et al. 2012), IDBA (Peng et al. 2012) and A5 (Tritt et al. 2012). The

output is typically a set of long genomic regions called contigs, which occur along

the genome in an undetermined order. De novo assembled genomes need to be

aligned against each other before they can be compared. A first approach is to

perform a multiple alignment of the whole genome which accounts for possible

genomic rearrangements, but even the best software using this strategy such as

progressiveMauve (Darling et al. 2010) or MUGSY (Angiuoli and Salzberg 2010)

cannot deal with more than ~50 genomes. An alternative is to align each de novo

assembled genome against a single reference, for example using MUMmer (Kurtz

et al. 2004), but this shares the disadvantages of reference-based assembly

described above. A third approach to using de novo assembled data is to search

for previously defined genes throughout the contigs using for example BLAST

(Altschul et al. 1997), as implemented for example in the BIGSdb platform (Jolley

and Maiden 2010). Finally, instead of using predefined genes it is possible to

annotate each de novo assembled genome separately, using for example RAST

(Overbeek et al. 2014), Prokka (Seemann 2014) or Prodigal (Hyatt et al. 2010) and

to search for orthologs between the genomes using a pipeline involving BLAST to

compare the genes versus each other, for example OrthoMCL (Li et al. 2003),

Computational Methods in Microbial Population Genomics 5
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LS-BSR (Sahl et al. 2014) or Roary (Page et al. 2015). Once ortholog genes have

been found in all genomes, they can be aligned separately using for example Muscle

(Edgar 2004).

Reference-based and de novo assemblies are complementary approaches which

are often used side by side to compare results in ambiguous regions and exploit the

strengths of both strategies, especially the reconstruction of core-genome align-

ments that are directly analysable in reference-based assembly and the reconstruc-

tion of non-core regions in de novo assembly. After applying either or both

approaches, an alignment of the genomes is created which contains all core regions

(or core genes if a de novo gene-based approach was used). Such an alignment is

required as input for the analytical methods described in the next sections.

2.4 Simulation

Analysis of simulated microbial genomic data in parallel with real genomic data

can often be useful. This allows for example to test the fit of an evolutionary model

to the data, to build empirical distributions of expected quantities, or to estimate

evolutionary parameters informally by progressive tuning of the simulation param-

eters until it resembles the real data. A more formal use of simulated datasets is to

use Approximate Bayesian Computation techniques, also known as likelihood-free

methods since they do not require to calculate the probability of the data given

evolutionary parameters, but instead rely on simulation and comparison of the

simulated and real data on a set of summary statistics (Marin et al. 2012). Simula-

tion is also useful on its own (i.e. without combination with real data), to test the

accuracy of analytical methods on datasets for which the correct answer is known.

The most popular and powerful approaches to simulate microbial genomic data

are based on the coalescent model (Kingman 1982) under which it is possible to

simulate the evolutionary history of a sample of genomes without simulating the

evolution of the whole population. One of the first methods to be implemented

based on this principle was Hudson’s ms (Hudson 2002), and it remains popular to

date due to the wide range of scenarios that can be simulated using this software.

Extensions have also been released, for example msHOT (Hellenthal and Stephens

2007) which allows for the presence of mutational hotspots. Another popular

software is fastsimcoal (Excoffier and Foll 2011), which uses an efficient approx-

imation to simulate crossover recombination, allowing the simulation of longer

genomes from sexual populations. Clonal organisms such as bacteria undergo a

recombination process akin to gene conversion rather than crossover, which can be

simulated for example in ms but for which separate algorithms have been specif-

ically implemented. SimMLST (Didelot et al. 2009b) was aimed at simulating

multi-locus sequence typing data, where sequence is available for only a handful

of short (~400 bp) gene fragments (Maiden et al. 1998). It has recently been

superseded by SimBac (Brown et al. 2016) which is 100 times faster and therefore

much better suited to simulate whole genome sequence data.
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3 Description of Microbial Population Ancestry

3.1 Phylogenetics Ignoring Recombination

The most frequently used method to represent patterns of relationships between a

set of microbial genomes is to draw a phylogenetic tree (Fig. 1). Closely related

genomes should have fewer differences between them and be more closely clus-

tered together on the tree compared to more distantly related genomes. A tree

should always be read along the axis from root to leaves, bearing in mind that the

other axis is arbitrary so that two genomes can be next to each other and yet be

separated by a long branch (Baum et al. 2005). Phylogenetic methods are compu-

tational techniques that use as input an alignment of genomic data like the ones

described in the previous section, and produce in output a phylogenetic tree. Most

phylogenetic methods assume that no recombination happened, which is appropri-

ate for example to analyse data from bacterial pathogens do not recombine much,

e.g.Mycobacterium tuberculosis (Comas et al. 2013), or data in which recombinant

regions have been previously detected and filtered out (cf next section).

The simplest phylogenetic methods rely on first building a distance matrix

between all pairs of genomes, for example UPGMA, Neighbor-Joining (Saitou

and Nei 1987) and BIONJ (Gascuel 1997). These methods are not very popular

because they do not exploit the full data but only the distance matrix. They are

however very quick and therefore still frequently used to provide a starting point

for other methods. Parsimony methods are based on the whole genomic data and

attempt to reconstruct the tree that minimises the number of substitutions on

branches to produce the data (Fitch 1971). Parsimony methods are not currently
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frequently used to analyse microbial genomic data. Maximum likelihood tech-

niques are based on an explicit probabilistic model of how substitutions accumulate

on a tree, such that it is possible to define the likelihood, that is the probability of the

genetic data given a tree. An efficient algorithm for computing the likelihood is

the so-called pruning algorithm (Felsenstein 1981), which leaves the problem of

exploring the space of all possible trees to find the one that maximises the likeli-

hood. Powerful algorithms to do so have been developed that are implemented for

example in the popular software phyml (Guindon et al. 2010), RAxML (Stamatakis

2006) and FastTree (Price et al. 2009, 2010). For any dataset with more than a

handful of genomes, the number of possible trees is too large to allow a complete

exploration of all trees, so that the analysis relies on heuristics which are not

guaranteed to always return the best tree, but should still return one of the most

likely trees.

Bayesian phylogenetic methods are based on an explicit evolutionary model like

maximum likelihood but with two important differences. Firstly, the suitability of a

tree is not measured in terms of the likelihood but of the posterior probability,

which is the product of the likelihood and a prior probability. This term represents

how appropriate a tree is deemed to be, only based on a tree model without

reference to the genomic data. A prior tree model needs therefore to be specified,

for example using the coalescent model (Kingman 1982), and this prior model can

include parameters and be used to explore various evolutionary scenarios. Sec-

ondly, instead of finding a single maximising tree, the Bayesian approach returns a

sample of trees that may have generated the data, also known as a posterior sample

of trees. Comparisons between these trees can be performed to assess the statistical

confidence in the phylogenetic reconstruction. In non-Bayesian phylogenetic

techniques uncertainty measurement is usually achieved approximately and expen-

sively using bootstrapping (Felsenstein 1985), but Bayesian phylogenetics provides

a more natural way to do this. Popular software packages to perform Bayesian

phylogenetics include MrBayes (Ronquist et al. 2012), RevBayes (H€ohna et al.

2016), BEAST (Drummond and Rambaut 2007) and BEAST2 (Bouckaert et al.

2014).

3.2 Phylogenetics Accounting for Recombination

The phylogenetic techniques described in the previous section all assume that no

recombination affected the data, so that a single tree applies for all sites. However,

many microbes experience significant rates of recombination as they evolve. When

this is the case, applying a method that assumes no recombination can lead to

incorrect phylogenetic reconstructions (Schierup and Hein 2000; Hedge andWilson

2014). A first sign of the effect of recombination can be obtained by estimating

separate trees for different parts of the genome (for example, a tree for each gene).

If recombination had not occurred, we would expect all such trees to look very

similar, up to the randomness of the mutation process affecting each gene.
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In some microbes, recombination happens exclusively as a gene conversion

process, that is with a strong asymmetry between the two parents involved in

recombination: the recipient cell contributes the vast majority of the resulting

genome whereas the donor cell only contributes a short fragment. This is true of

all bacterial species for example, irrespective of whether recombination was caused

by conjugation, transduction or transformation (Didelot et al. 2010). In this case,

recombination can be integrated into the phylogenetic tree reconstruction process

by identifying the recombined fragments that happened on every branches of the

phylogeny called clonal genealogy (Fig. 2). This clonal genealogy represents the

ancestry process obtained by following the line of descent of the recipient at each

recombination event, that is the line followed by the majority of the genetic

material. A first software following this principle was ClonalFrame (Didelot and

Falush 2007), which was originally designed for multilocus sequence typing data

(Maiden et al. 1998) but can also work with limited (up to ~100) number of whole

genomes, as was demonstrated for example by applications to Escherichia coli
(Didelot et al. 2012b) and Chlamydia trachomatis (Joseph et al. 2011, 2012). For

larger whole genome datasets, a newer version has been released which uses

maximum likelihood optimisation techniques and is called ClonalFrameML

(Didelot and Wilson 2015). ClonalFrameML has been applied for example to

large genomic datasets of Neisseria gonorrhoeae (De Silva et al. 2016) and

Escherichia coli (Ingle et al. 2016). A similar tool is Gubbins (Croucher et al.

2015) which operates through an iterative process of building a phylogenetic tree

using standard recombination-unaware techniques, finding recombinant regions

that do not fit the tree and repeating. Examples of application of Gubbins

have been published on Streptococcus pneumoniae (Croucher et al. 2011) and

Chlamydia trachomatis (Harris et al. 2012).
Instead or in addition to this gene conversion process, some microbes undergo

recombination akin to crossing-over in higher organisms, that is where both parents

0 0.5 1 2 3 4
�105

1.5 2.5 3.5

Fig. 2 Example of a phylogenetic tree with recombination events shown as a matrix on the right.

To each terminal and internal branch of the tree corresponds a row of the matrix, with positions

along the genome alignment shown on the x-axis of the matrix. For any given branch,

unrecombined regions are shown in blue and recombined regions are shown in red
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contribute large amounts of DNA. In this case, it is not possible to identify a

recipient and donor for recombination events, and therefore there is not a defined

clonal genealogy as above that can be targeted for phylogenetic reconstruction.

This situation arises for many viruses, for example HIV. A solution is then to try

and identify the breakpoints along the alignment where significant recombination

events have occurred, and to reconstruct a separate phylogeny for each genomic

region between two consecutive breakpoints. Computational software exploiting

this idea include TOPALi (Milne et al. 2004, 2009), stepBrothers (Bloomquist et al.

2009), GARD (Pond et al. 2006) and RDP4 (Martin et al. 2015). A special

recombination scenario occurs in the evolution of the influenza virus. The genome

is made of eight segments, and recombination proceeds by replacement of whole

segments, also known as reassortment. Techniques have therefore been developed

to exploit this specific process, for example the GiRaF software (Nagarajan and

Kingsford 2011) which reconstructs trees for each segment separately and considers

the reassortment events that would be needed to reconcile them.

3.3 Non-phylogenetic Ancestry

A phylogeny is not always the best way to represent the ancestry of a sample of

individuals. This is especially true for microbes that recombine a lot, as for example

Helicobacter pylori in which 40% of genes can be affected by recombination within

3 years of within-host evolution (Kennemann et al. 2011). An alternative is to

consider that there is a number (K ) of underlying populations, with each individual

either belonging to a population, or being a genetic mixture of the different

populations (Fig. 3). One of the first algorithms to be based on this principle was

STRUCTURE (Pritchard et al. 2000) and the linkage option (Falush et al. 2003)

within it (as opposed to the non-admixture and admixture options) is especially

useful to analyse sequence data since it models the correlation in the ancestry of

sites near each other along the genome. For example, two sites next to each other

have a high probability of having the same ancestry, since otherwise the boundary

of a recombination event would have had to occur exactly between these two sites.

The computational cost of running STRUCTURE does not scale well with the

length and number of sequence being analysed though, and it is challenging to

determine the number (K ) of ancestral populations that should be considered in the

model. Consequently, its current use in microbiology is limited to very specific

situations, for example to quantify the admixture between the two bacterial species

Campylobacter jejuni and E. coli (Sheppard et al. 2013a). Other softwares based

on a similar population admixture principle include ADMIXTURE (Alexander

et al. 2009) and BAPS (Tang et al. 2009) which is popular to determine population

clusters amongst bacterial genomes, for example Streptococcus pneumoniae
(Chewapreecha et al. 2014). Another non-phylogenetic approach is BratNextGen

(Marttinen et al. 2012) which does not cluster individuals into populations as the

previously mentioned software, but instead identifies the genomic fragments that
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are likely to have come from sources external to the population under consideration.

BratNextGen is therefore usually applied to genomes from a single bacterial lineage

to identify recombination events coming from other lineages, for example Strepto-
coccus pneumoniae PMEN1 (Marttinen et al. 2012) or Staphylococcus aureus
ST239 (Castillo-Ramı́rez et al. 2012).

FineStructure (Lawson et al. 2012) is another non-phylogenetic method to

reconstruct the population structure. The algorithm proceeds in two steps. First

each genome is considered in turn and reconstructed as a mosaic of all other

genomes using a copying model (Li and Stephens 2003): each site is copied from

one of the genome and copying occurs in blocks so that two neighbouring sites are

likely to come from the same genome. The number of blocks copied by each

genome from each other genome is then counted and summarised in a so-called

co-ancestry matrix. A clustering method is then used to group together the individ-

uals with similar co-ancestry rows into populations. Thus FineStructure reveals

both the population of origin of each individual, and the fragments that have been

imported from elsewhere, making it comparable to the previously mentioned

linkage model of STRUCTURE (Falush et al. 2003). The computational cost of
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Fig. 3 Example of a barplot representation of population structure. The analysis includes 50 indi-

viduals shown on the x-axis and four populations have been detected, each of which corresponds to

a colour (red, blue, green, orange). For each individual, the proportion of genomic material

originating from each of the four populations is illustrated on the y-axis. The ordering of the

individuals on the x-axis is arbitrary and often chosen to group together the individuals with

similar profiles
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running FineStructure is however much lower than that of running STRUCTURE,

so that very large datasets can be analysed in a manner of hours. The problem of

estimating the number of ancestral populations (K ) is also resolved by the two-step

approach. FineStructure was originally designed for human genetics, but has

also proven useful in bacterial genomics, having been applied for example to

Helicobacter pylori (Yahara et al. 2013), Vibrio parahaemolyticus (Cui et al.

2015) and Myxococcus xanthus (Wielgoss et al. 2016). An extension called

orderedPainting has been developed specifically for detecting recombination

hotspots in bacterial genomes (Yahara et al. 2014).

4 Integrating Temporal Data

4.1 Temporal Data in Microbial Genomics

The dates on which the microbes have been isolated are usually known, and it can

often be interesting to integrate this information into the microbial genomic anal-

ysis. A first approach for doing so, which can be used in both phylogenetic and

non-phylogenetic frameworks, is to simply annotate the reconstructed population

ancestry with the dates, to see if some lineages or populations seem to have emerged

more recently than others (for example, see Haase et al. 2014, Fig. 2b, d). In a

phylogenetic framework, however, there is a more powerful approach available

which is to try and reconstruct a timed tree (Fig. 4). In a timed tree, branch lengths

are measured in a time unit (for example, days or years) rather than a genetic unit (for

example, number of substitutions per site). Each tip represents a microbial genome

and is aligned with its known date of isolate. Each internal node represents the most

2013 2014 2015 2016 2017

Fig. 4 Example of a timed

tree. The interpretation is

the same as for a standard

phylogenetic tree, except

that the time scale (x-axis)

is measured in years rather

than genetic distance. Each

genome is aligned on the

x-axis with its known date

of isolation. Each internal

node of the tree is aligned

on the x-axis with the

inferred date of existence of

the last common ancestor of

the genomes underneath
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recent common ancestor between the set of genomes descended from the node, and is

aligned with the date when it occurred, which is unknown but estimated by the

phylogenetic procedure. In particular, the root of the tree represents the most recent

common ancestor (MRCA) of the whole set of microbial genomes and it is aligned

with the time to the most recent common ancestor (TMRCA) of the whole set. A

timed tree therefore allows more natural interpretations to be drawn, especially when

the research questions of interest are of an epidemiological or ecological nature, since

the dating of all branches is included in the tree. Correctly reconstructing such a timed

tree from a set of microbial genomes and associated isolation dates is therefore an

important methodological concern.

4.2 Molecular Clock and Building a Timed Tree

Building a timed tree requires an estimate of the molecular clock rate, that is the rate

at which substitutions are accumulated over time on genomes and measured for

example in units of substitutions per year per site. Let us assume that there is such a

rate and that it is relatively constant over the evolutionary history considered. This

assumption is called the strict molecular clock assumption. Sometimes this rate has

been estimated by previous studies and can be used directly to build the timed tree.

For example, in a study of Clostridium difficile, genomes sampled longitudinally

from the same hosts were compared to estimate the evolutionary clock rate, which

was then used to produce timed trees (Didelot et al. 2012a). Otherwise, when the

clock rate is unknown, it needs to be estimated from the data at hand. A simple

approach for doing so is called root-to-tip method, where a non-timed phylogenetic

tree is estimated, and a scatter plot is formed with a dot for each genome, the x-axis

corresponding to the known isolation dates and the y-axis to the length of the path

from root to the genome in the phylogeny (Fig. 5). If the strict clock assumption

holds approximately, and that the range of sample dates is large enough relative to

the age of the root, then a linear correlation should be found in this scatter plot. The

slope of this linear regression is an estimate of the molecular clock rate, while the

value on the x-axis at which the linear regression crosses the x-axis is an estimate

of the age of the root of the phylogeny. This method was for example used in

Streptococcus pneumoniae and showed much better results when based on a

phylogeny that had been corrected for recombination compared to one that had

not (Croucher et al. 2011). This root-to-tip method is useful to establish whether the

temporal signal in the data is strong enough to consider applying the methods

described below for reconstructing a timed tree. An implementation of the root-to-

tip technique is provided by the software TempEst (Rambaut et al. 2016).

The most popular method to reconstruct a timed tree is that implemented in the

softwares BEAST (Drummond et al. 2012) and BEAST2 (Bouckaert et al. 2014),

relying on Bayesian statistics to jointly estimate the molecular clock, the timed tree

and uncertainties around them. Reconstructing timed trees using BEAST has been

especially popular for analysing viral genetic data, for example in influenza (Smith

et al. 2009), HIV (Worobey et al. 2008) and Ebola (Gire et al. 2014), but more
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recently has also gained in popularity for bacterial genomics (Biek et al. 2015), for

example in the study of Yersinia pestis (Cui et al. 2013), Shigella sonnei (Holt et al.
2012) and Escherichia coli (Stoesser et al. 2016). BEAST also implements options

to use instead of the strict molecular clock described so far, a relaxed molecular

clock where the rate of evolution is allowed to vary to some extent between the

different branches of the tree (Drummond et al. 2006; Drummond and Suchard

2010). An alternative to BEAST is LSD (To et al. 2016) which is faster and able to

deal with larger datasets as was demonstrated for example recently in an analysis of

thousands of simulated HIV genomes (Ratmann et al. 2017).

4.3 Phylodynamics

Past changes in population size affect what a timed genealogy is likely to look like

(Griffiths and Tavare 1994). For example, if the population size has been increasing

significantly, it will result in longer terminal branches and shorter internal branches

compared to a tree under a constant or declining population size. It is also possible

to turn this stochastic relationship around, meaning that a reconstructed timed

phylogeny is informative about past population size dynamics. Phylodynamics is
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Fig. 5 Example of

application of the root-to-tip

method. The top panel

shows the phylogenetic tree

reconstructed for the

genomes of interest. On the

bottom panel, there is a dot

for each of these genomes,

with the x-axis representing

the known date of isolation

of the genome and the

y-axis representing the

length of the path from root

to tip in the phylogenetic

tree. A linear regression can

then be attempted on the

scatter plot, which if

statistically well supported

can be used to estimate both

the molecular clock rate

(slope of the regression) and

the time of the most recent

common ancestor for the

whole set of genomes

(intersect of the linear

regression with the x-axis,

here 2008)
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the branch of phylogenetics that exploits this property. Following their implemen-

tation into the BEAST framework, starting with the Bayesian skyline plot (Drum-

mond et al. 2005), these techniques have become increasingly popular to analyse

microbial genomic data. The typical result is a plot with time on the x-axis and the

effective population size on the y-axis (often measured on a log scale), with a line

indicating the mean estimated population size variations and shading representing

the 95% credibility interval over time (Fig. 6). Phylodynamics is very popular to

investigate viral population size dynamics, for example in an analysis of rabies in

North American raccoons where the skyline plot is in good agreement with

epidemiological information about the spread of the disease (Biek et al. 2007). It

is also sometimes used in bacterial genomics, for example in a study of the

emergence of Staphylococcus aureus ST225 in Germany and the Czech Republic

(Nübel et al. 2010).

5 Integrating Spatial Data

5.1 Using a Descriptive Approach

When the spatial origin of the genomes is known and varied, using this information

in the context of a microbial population genomic analysis can help to reveal the
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Fig. 6 Example of a skyline plot. The black line indicates the estimated population size over time,

with the grey shading representing the 95% credibility interval. Here we see that the population

size was stable from 1900 until 1940, increased significantly up until 1965 after which it started to

decline back to its original level
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geographical structuring of the population and the potential occurrence of migra-

tions between locations. The spatial data used for such a phylogeographic analysis

can occur at any scale, including between patches of land separated by only a few

centimetres (Wielgoss et al. 2016), between different body parts within a single host

(Didelot et al. 2016), between different regions of a single country or between

different countries throughout the world (Croucher and Didelot 2015).

The simplest approach to investigate the geographical pattern of the origins of

the microbial genomes is to plot the geographical data side-by-side with the results

of the analysis of population ancestry. If a non-phylogenetic, clustering method was

used for the analysis of population ancestry, then the distributions of geographical

origins can be compared between inferred clusters. If a phylogenetic method was

used, the leaves of the tree can be annotated according to spatial origin, for example

by using a different colour for each location. For example, these two types of

annotations (non-phylogenetic and phylogenetic) were both used in a genomic

analysis of Streptococcus suis (Weinert et al. 2015) in Figs. 1c and 5, respectively.

This purely descriptive approach can already reveal interesting features and, in the

phylogenetic context, the extent to which genomes from each location form clusters

in the tree is noteworthy. Such clustering is indicative of the strength of the

geographical structure and exceptions where a genome falls into the “wrong”

cluster can represent recent migrations, as was shown for example in a global

genomic analysis in Staphylococcus aureus ST239 (Harris et al. 2010). Likewise,

when the aim is to investigate the source of an isolate, simply looking at the origins

of its nearest relatives can be highly suggestive, as was used for example to uncover

the South-East Asian origin of the 2010 Haiti cholera outbreak (Chin et al. 2011).

The Microreact web interface (Argimón et al. 2016) provides a user-friendly way of

studying side-by-side the origin of isolates on a map and their genomic relation-

ships, including the ability to interactively explore subsets of isolates defined by

geographical or genomic criteria.

5.2 Using an Inferential Approach

A natural next step beyond annotating the leaves of a tree with spatial sources is to

try to annotate the internal nodes or branches (Fig. 7). However, doing this requires

an algorithm to infer the ancestral locations since this is only known about the

leaves. The most widespread approach for doing so is to consider the location as a

discrete trait that evolves along the branches of the tree, with mutations of the

discrete trait corresponding to migrations from one location to another. Migrations

occur according to an unknown matrix of rates from any location to any other,

which may be constrained to reduce the number of parameters to estimate, for

example by considering that migration from location A to location B happen at the

same rate as from location B to location A, so that the migration rate matrix

becomes symmetric. Joint inference of the migration matrix and ancestral locations

can be performed under such a model using ancestral state reconstruction
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techniques (Joy et al. 2016). For example, the ancestral location of Shigella sonnei
lineages was reconstructed (Holt et al. 2012) by maximum likelihood estimation

using the ace command from the R package ape (Paradis et al. 2004). Once the

ancestral locations have been reconstructed, the full history of past migrations is

revealed since changes in location along a branch or from one branch to its

descendent branch can be interpreted as a migration from one location to another.

When combined with temporal information (see previous section), this approach

can reveal the spatio-temporal spread of a microbe, for example the global spread of

the current pandemic of cholera in three waves that all originated from South-East

Asia (Mutreja et al. 2011; Didelot et al. 2015).

Phylogeographic analysis can also be performed within the BEAST and

BEAST2 frameworks (Drummond et al. 2012; Bouckaert et al. 2014), either

using the discrete trait modelling approach described above (Lemey et al. 2009)

or a continuous space version (Lemey et al. 2010). The latter has the advantage to

analyse the ancestral locations at the same time as the phylogenetic space is being

2010 2011 2012 2013 2014 2015 2016

Fig. 7 Example of tree coloured by geographical location. A colour is assigned to each of the

locations (here for example three countries are shown in red, green and blue). The location of

origin of each genome is known and shown by colouring the corresponding terminal branch with

the appropriate colour. The location of ancestors is not known but can be inferred using algorithms

as described in the main text and this can then be shown by colouring internal branches of the tree

accordingly
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explored, so that phylogenetic uncertainty is accounted for in the phylogeographic

analysis. This technique was originally applied to Avian Influenza A H5N1 (Lemey

et al. 2009) and rabies (Lemey et al. 2010) and has since become very popular mostly

for viral phylogeography studies (Bloomquist et al. 2010) but also to investigate

bacterial phylogeography such as Mycobacterium tuberculosis (Comas et al. 2013)

and Clostridium difficile (He et al. 2013). Powerful interactive visualisation tech-

niques have also been developed to explore the ancestral reconstructions output by

these analytical methods (Bielejec et al. 2011, 2016). Within BEAST2 (Bouckaert

et al. 2014) a separate algorithm called BASTA has recently been developed which is

based on an approximation of the structured coalescent and can lead to more accurate

ancestral reconstructions, especially when sampling is highly biased between loca-

tions (De Maio et al. 2015).

6 Integrating Other Types of Data

6.1 Application of Ancestral State Reconstruction

Non-genomic metadata can be integrated with phylogeny to provide insight into

the evolutionary history of populations. When performing a microbial population

genomics study, there are often additional non-genomic metadata that it can be

interesting to integrate into the analysis to investigate their relationship with the

evolutionary history of the population. The last two sections described specifically

the case of temporal and spatial data, and this section discusses the use of other

types of data. Depending on the system under study, this metadata may include

virulence measurements, antimicrobial resistance profiles, host species of origin,

tissue of origin, conditions of isolation, results of in vitro experiments, etc.

Many of the methods described in the previous section for the analysis of spatial

data can be applied to other types of metadata, because they are based on models

of discrete or continuous trait evolution that are not specific to phylogeographic

analysis. The evolutionary history of traits of interest can thus be revealed in the

form of changes in the metadata value along branches of the tree (when working in

a phylogenetic framework), or significant differences between populations (when

working in a clustering framework). For example, maximum likelihood estimation

of ancestral state, as implemented for instance in the ace command of the R package

ape (Paradis et al. 2004), was used to reconstruct the evolutionary history of

pathogenicity in Clostridium difficile (Dingle et al. 2014). Likewise, even though

the discrete trait analysis methodology implemented in BEAST (Lemey et al. 2009)

was originally developed with phylogeography in mind, it has since been applied to

other non-spatial traits. In bacterial population genomics, examples include studies

of host species in Campylobacter jejuni (Dearlove et al. 2015) and host sexual

orientation in Neisseria gonorrhoeae (Grad et al. 2014). In viral population geno-

mics, examples include studies of host species in rabies (Faria et al. 2013) and

antigenic diversity in influenza (Zinder et al. 2013).

18 X. Didelot



6.2 Uncovering Populations and Associations

Beyond the reconstruction of ancestral trait evolution, metadata can also be used to

define units within the population, with the rationale that metadata is relatively

uniform within units and different between units. If the traits are markers of the

ecological environment in which the isolates were sampled, the units thus defined

may represent ecologically adapted lineages, otherwise known as ecotypes (Cohan

and Perry 2007). For example, AdaptML (Hunt et al. 2008) uses information

about the ecological metadata to define clusters on a phylogeny each of which

corresponds to a limited number of habitats. AdaptML was originally applied to

Vibrionaeceae (Hunt et al. 2008), and has more recently been used to investigate

ecological adaptation in Staphylococcus aureus (Shepheard et al. 2013) and

Escherichia coli (McNally et al. 2016). More generally, it is possible to consider

the evolution of a probabilistic distribution on a phenotype of interest, rather than

the phenotype itself, which is especially useful when the phenotype is not perfectly

inherited and depends on non-genetic factors (Visscher et al. 2008). Under such a

model, changes in the phenotype itself may happen just by chance but changes in

the phenotype distribution represent important evolutionary events, which can be

used to define units in the population. This approach was recently implemented in

TreeBreaker (Ansari and Didelot 2016).

Integrating non-genomic metadata with genomic data is also needed to perform

Genome-Wide Association Studies (GWAS) where the aim is to determine the

genetic causative basis for a phenotype of interest. GWAS has a long history of

being used in human population genetics but has also more recently become of

interest to microbial geneticists (Read and Massey 2014). One of the earliest

examples of successful microbial GWAS uncovered the role played by a vitamin

B5 biosynthesis island in adaptation of Campylobacter jejuni to infecting either

cattle or chicken (Sheppard et al. 2013b). A key challenge is to account for the

population structure, which if not correctly done can lead to spurious results

(Balding 2006). Because microbial populations are typically much more structured

than the human population, methods popular for human GWAS such as PLINK

(Purcell et al. 2007) may not be directly applicable to perform microbial GWAS.

New methods are starting to emerge specifically designed for microbial GWAS

including bugwas (Earle et al. 2016), SEER (Lees et al. 2016) and treeWAS

(Collins and Didelot 2017). These methods are specifically tailored to account in

the association analysis for the otherwise potentially confounding properties

of clonality, population structure and recombination that occur in microbial

populations.
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7 Pan-Genome Analysis

7.1 Description of Genomic Content Variations

All computational methods described so far have been focusing on the analysis of

the core genome, that is the set of genomic regions that is shared amongst all the

genomes under study. However, analysing non-core regions can be important too,

especially in bacterial genomics where even closely related isolates can differ in

their genomic content, with gain and loss of genes being an important evolutionary

force. The first step to analyse non-core regions is to reconstruct the pan-genome,

that is the set of regions shared by subsets of the genomes. As such, the size of the

pan genome is dependent on the set of genomes being used, and the boundaries of

the population from which these genomes are drawn. Following de novo assembly

of all the genomes, the pan-genome can be reconstructed either using genes as a unit

of content, for example using the Roary pipeline (Page et al. 2015), or purely based

on genomic sequences, for example using progressiveMauve (Darling et al. 2010),

see Sect. 2 for more details on these different approaches. The gene-based approach

can more easily deal with datasets of various diversity levels, whereas the com-

plexity of the gene-free approach increases when the genomes are not closely

related, since it becomes more difficult to accurately align the genomes. On the

other hand, a gene-free approach has the advantage to inform also about non-coding

regions such as promoters, and to exploit genome synteny to reconstruct homolo-

gous relationships, which is particularly useful to deal with shorter or highly

variable loci.

One of the first pan-genome analysis was conducted in Streptococcus agalactiae
(Tettelin et al. 2005) and this introduced many of the concepts that were used in

subsequent studies (Medini et al. 2005). In particular, it is useful to plot accumu-

lation curves of how many genes are found in the core and pan-genome as more and

more genomes are being considered. The accumulation curve for the core genome

decreases since genes found in previous genomes but not in a new genome are being

removed from the core, whereas the accumulation curve for the pan genome

increases as new genes not found in previous genomes are discovered in the

newly added genomes (Fig. 8). The core genome curve always decreases to a

plateau, which represents the set of genes that are vital for the survival of the

bacteria. The pan genome curve on the other hand can take two forms, depending on

whether a plateau will eventually be reached or not as new genomes are being

considered, leading to two types of pan genomes: closed if all genes would

eventually be characterised when enough genomes have been considered, or open

if new genes will always be discovered no matter how many genomes have already

been considered. Comparative analysis in nine bacterial species found five of them

had open pan-genomes and four had closed pan-genome (Tettelin et al. 2008).

Pan-genome analysis using accumulation curves has since become a popular

approach (Vernikos et al. 2015) and has also been applied at higher levels of

diversity, up to the whole bacterial kingdom (Lapierre and Gogarten 2009). A
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related measure is the genome fluidity index, which is equal to the average pairwise

gene content differences between strains (Kislyuk et al. 2011). For example, a

fluidity value of 0.2 indicates that on average any two strains within the population

under study share 80% of their genes.

7.2 Inference of Gains and Losses of Genomic Regions

If genes (or genomic regions) were gained and lost in a clock-like manner in the

same way as mutations arise along the genome, a UPGMA dendrogram based

on the presence/absence of genes should look similar to a phylogenetic tree

reconstructed from nucleotide polymorphism data, and these two trees are some-

times plotted next to each other to test this hypothesis (Didelot et al. 2012b;

Chaudhari et al. 2016). Similarly, pairwise distances between genomes can be

compared when measured in terms of gene content similarity versus homology of

the core genome (Wielgoss et al. 2016). To visualise how the presence of specific

genes relates to the ancestral relationships between genomes, it is common to plot a

matrix of gene presence/absence side-by-side with a phylogenetic tree (Croucher

et al. 2014). Beyond simple graphical representation, the presence/absence data can

be interpreted in terms of gain/loss of genes using the same discrete trait analysis
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Fig. 8 Example of accumulation curves for the core genome (red) and the pan-genome (blue).

The x-axis shows the number of genomes being considered, and the y-axis shows the length of the

genomic regions found in all (core, red) or at least one (pan, blue) of the genomes
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methods described in Sect. 5.2. This approach was used for example to investigate

gene content evolution in Escherichia coli (Touchon et al. 2009), and the gain and

loss of antibiotic resistance genes and virulence determinants in Staphylococcus
aureus (Ward et al. 2014). Since genes and genetic regions are often gained and lost

in groups, for example through the integration of phage in the genome, the gain of a

plasmid or integrative conjugational elements, it can be important to relax the

assumption of a fixed rate for the gain and loss events along the branches of the

phylogeny, and significant temporal and lineage-specific variations in these rates

have been demonstrated in Francisella turalensis, Streptococcus pyogenes and

Escherichia coli (Didelot et al. 2009a). The genetic elements known to be generally

gained and lost in one unit can also be treated as the unit of gain and loss along the

branches when performing the discrete trait analysis. This approach was used for

example to reconstruct the gain and loss events of bacteriophages, plasmids and

integrative conjugational elements in Salmonella enterica serovar Agona (Zhou

et al. 2013).

References

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated

individuals. Genome Res. 2009;19:1655–64. https://doi.org/10.1101/gr.094052.109.

Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole genomes.

Bioinformatics. 2010;27:334–42.

Ansari MA, Didelot X. Bayesian inference of the evolution of a phenotype distribution on a

phylogenetic tree. Genetics. 2016;204:89–98. https://doi.org/10.1101/040980.

Argimón S, Abudahab K, Goater RJE, et al. Microreact: visualizing and sharing data for genomic

epidemiology and phylogeography. Microb Genomics. 2016;2:e000093. https://doi.org/10.

1099/mgen.0.000093.

Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet.

2006;7:781–91. https://doi.org/10.1038/nrg1916.

Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.

1089/cmb.2012.0021.

Baum DA, Smith SD, Donovan SSS. The tree-thinking challenge. Science. 2005;310:979–80.

https://doi.org/10.1126/science.1117727.

Biek R, Henderson JC, Waller LA, et al. A high-resolution genetic signature of demographic and

spatial expansion in epizootic rabies virus. Proc Natl Acad Sci U S A. 2007;104:7993–8.

https://doi.org/10.1073/pnas.0700741104.

Biek R, Pybus OG, Lloyd-Smith JO, Didelot X. Measurably evolving pathogens in the genomic

era. Trends Ecol Evol. 2015;30:306–13. https://doi.org/10.1016/j.tree.2015.03.009.

Bielejec F, Rambaut A, Suchard MA, Lemey P. SPREAD: spatial phylogenetic reconstruction of

evolutionary dynamics. Bioinformatics. 2011;27:2910–2. https://doi.org/10.1093/bioinformat

ics/btr481.

Bielejec F, Baele G, Vrancken B, et al. SpreaD3: interactive visualization of spatiotemporal

history and trait evolutionary processes. Mol Biol Evol. 2016;33:2167–9. https://doi.org/10.

1093/molbev/msw082.

22 X. Didelot

https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1101/040980
https://doi.org/10.1099/mgen.0.000093
https://doi.org/10.1099/mgen.0.000093
https://doi.org/10.1038/nrg1916
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1126/science.1117727
https://doi.org/10.1073/pnas.0700741104
https://doi.org/10.1016/j.tree.2015.03.009
https://doi.org/10.1093/bioinformatics/btr481
https://doi.org/10.1093/bioinformatics/btr481
https://doi.org/10.1093/molbev/msw082
https://doi.org/10.1093/molbev/msw082


Bloomquist EWEEW, Dorman KSKSK, Suchard MA. StepBrothers: inferring partially shared

ancestries among recombinant viral sequences. Biostatistics. 2009;10:106–20. https://doi.org/

10.1093/biostatistics/kxn019.

Bloomquist EW, Lemey P, Suchard MA. Three roads diverged? Routes to phylogeographic

inference. Trends Ecol Evol. 2010;25:626–32. https://doi.org/10.1016/j.tree.2010.08.010.

Bouckaert R, Heled J, Kühnert D, et al. BEAST 2: a software platform for Bayesian evolutionary

analysis. PLoS Comput Biol. 2014;10:e1003537. https://doi.org/10.1371/journal.pcbi.1003537.

Brown T, Didelot X, Wilson DJ, De Maio N. SimBac: simulation of whole bacterial genomes with

homologous recombination. Microb Genomics. 2016;2. https://doi.org/10.1099/mgen.0.000044.

Castillo-Ramı́rez S, Corander J, Marttinen P, et al. Phylogeographic variation in recombination

rates within a global clone of methicillin-resistant Staphylococcus aureus. Genome Biol.

2012;13:R126. https://doi.org/10.1186/gb-2012-13-12-r126.

Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep.

2016;6:24373. https://doi.org/10.1038/srep24373.

Chewapreecha C, Harris SR, Croucher NJ, et al. Dense genomic sampling identifies highways of

pneumococcal recombination. Nat Genet. 2014;46:305–9. https://doi.org/10.1038/ng.2895.

Chin CS, Sorenson J, Harris JB, et al. The origin of the Haitian cholera outbreak strain. N Engl J

Med. 2011;364:33–42.

Cohan FM, Perry EB. A systematics for discovering the fundamental units of bacterial diversity.

Curr Biol. 2007;17:R373–86. https://doi.org/10.1016/j.cub.2007.03.032.

Collins C, Didelot X. A phylogenetic method to perform genome-wide association studies in

microbes that accounts for population structure and recombination. bioRxiv. 2017. https://doi.

org/10.1101/140798.

Comas I, Coscolla M, Luo T, et al. Out-of-Africa migration and Neolithic coexpansion of

Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82. https://doi.

org/10.1038/ng.2744.

Croucher NJ, Didelot X. The application of genomics to tracing bacterial pathogen transmission.

Curr Opin Microbiol. 2015;23:62–7. https://doi.org/10.1016/j.mib.2014.11.004.

Croucher NJ, Harris SRR, Fraser C, et al. Rapid pneumococcal evolution in response to clinical

interventions. Science. 2011;331:430–4. https://doi.org/10.1126/science.1198545.

Croucher NJ, Coupland PG, Stevenson AE, et al. Diversification of bacterial genome content

through distinct mechanisms over different timescales. Nat Commun. 2014;5:5471. https://doi.

org/10.1038/ncomms6471.

Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of

recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:

e15. https://doi.org/10.1093/nar/gku1196.

Cui Y, Yu C, Yan Y, et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia

pestis. Proc Natl Acad Sci U S A. 2013;110:577–82. https://doi.org/10.1073/pnas.1205750110.

Cui Y, Yang X, Didelot X, et al. Epidemic clones, oceanic gene pools and eco-LD in the free living

marine pathogen Vibrio parahaemolyticus. Mol Biol Evol. 2015;32:1396–410. https://doi.org/

10.1093/molbev/msv009.

Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss

and rearrangement. PLoS One. 2010;5:e11147. https://doi.org/10.1371/journal.pone.0011147.

De Maio N, C-H W, O’Reilly KM, Wilson D. New routes to phylogeography: a Bayesian

structured coalescent approximation. PLoS Genet. 2015;11:e1005421. https://doi.org/10.

1371/journal.pgen.1005421.

De Silva D, Peters J, Cole K, et al. Whole-genome sequencing to determine transmission of

Neisseria gonorrhoeae: an observational study. Lancet Infect Dis. 2016;16:1295–303. https://

doi.org/10.1016/S1473-3099(16)30157-8.

Dearlove BL, Cody AJ, Pascoe B, et al. Rapid host switching in generalist Campylobacter strains

erodes the signal for tracing human infections. ISME J. 2015;10(3):721–9. https://doi.org/10.

1038/ismej.2015.149.

Computational Methods in Microbial Population Genomics 23

https://doi.org/10.1093/biostatistics/kxn019
https://doi.org/10.1093/biostatistics/kxn019
https://doi.org/10.1016/j.tree.2010.08.010
https://doi.org/10.1371/journal.pcbi.1003537
https://doi.org/10.1099/mgen.0.000044
https://doi.org/10.1186/gb-2012-13-12-r126
https://doi.org/10.1038/srep24373
https://doi.org/10.1038/ng.2895
https://doi.org/10.1016/j.cub.2007.03.032
https://doi.org/10.1101/140798
https://doi.org/10.1101/140798
https://doi.org/10.1038/ng.2744
https://doi.org/10.1038/ng.2744
https://doi.org/10.1016/j.mib.2014.11.004
https://doi.org/10.1126/science.1198545
https://doi.org/10.1038/ncomms6471
https://doi.org/10.1038/ncomms6471
https://doi.org/10.1093/nar/gku1196
https://doi.org/10.1073/pnas.1205750110
https://doi.org/10.1093/molbev/msv009
https://doi.org/10.1093/molbev/msv009
https://doi.org/10.1371/journal.pone.0011147
https://doi.org/10.1371/journal.pgen.1005421
https://doi.org/10.1371/journal.pgen.1005421
https://doi.org/10.1016/S1473-3099(16)30157-8
https://doi.org/10.1016/S1473-3099(16)30157-8
https://doi.org/10.1038/ismej.2015.149
https://doi.org/10.1038/ismej.2015.149


Didelot X, Falush D. Inference of bacterial microevolution using multilocus sequence data.

Genetics. 2007;175:1251–66. https://doi.org/10.1534/genetics.106.063305.

Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial

genomes. PLoS Comput Biol. 2015;11:e1004041. https://doi.org/10.1371/journal.pcbi.1004041.

Didelot X, Darling AE, Falush D. Inferring genomic flux in bacteria. Genome Res. 2009a;19:306–17.

https://doi.org/10.1101/gr.082263.108.clearly.

Didelot X, Lawson DJ, Falush D. SimMLST: simulation of multi-locus sequence typing data under a

neutral model. Bioinformatics. 2009b;25:1442–4. https://doi.org/10.1093/bioinformatics/btp145.

Didelot X, Lawson DJ, Darling AE, Falush D. Inference of homologous recombination in bacteria

using whole-genome sequences. Genetics. 2010;186:1435–49. https://doi.org/10.1534/genet

ics.110.120121.

Didelot X, Eyre DW, Cule M, et al. Microevolutionary analysis of Clostridium difficile genomes

to investigate transmission. Genome Biol. 2012a;13:R118. https://doi.org/10.1186/gb-2012-

13-12-r118.
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What Microbial Population Genomics Has
Taught Us About Speciation

B. Jesse Shapiro

Abstract Population genomics has emerged as a valuable tool to define and delimit
species and to understand the mechanisms that drive and maintain speciation. Species
and speciation have been notoriously difficult to study in microbes owing to their
asexual reproduction, promiscuous horizontal gene transfer, and obscure microscopic
niches. Over the past few years, whole-genome sequencing of closely related, locally
co-occurring populations of microbes, combined with simulations and modelling, has
revealed certain general features of microbial speciation: it is usually driven by
divergent natural selection between distinct ecological niches (a form of the ecolog-
ical species concept), and species distinctness is maintained by barriers to gene flow
(a form of the biological species concept). In some cases, gene-flow barriers may
come about as a natural consequence of ecological specialization. Although these
features appear to be quite general, there are exceptions. Trivially, barriers to gene
flow cannot be used to delimit clonal populations where there is negligible gene flow.
More interestingly, it is unclear whether other barriers to gene flow, such as genetic
incompatibilities or differences in phage-host range, are able to drive speciation in the
absence of other selective pressures. Here, I discuss the extent to which speciation is
driven by natural selection, gene-flow barriers, or a combination of the two, drawing
on recent examples from bacterial and archaeal population genomics, experimental
evolution, andmodelling. I then describe how population genomic data can be used to
define and delimit species boundaries, based upon nucleotide identity cutoffs or upon
discontinuities in gene flow. Despite important limitations and caveats, delimitation
methods provide a useful starting point for more detailed investigation into the genetic
and ecological basis of speciation.
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1 Introduction

Over 150 years since Darwin published On the origin of species, biologists and
philosophers are still debating what species are, how they form, and if they really
exist (Doolittle and Zhaxybayeva 2009; Doolittle 2012). I have previously argued that
species do exist and their origin (the process of speciation) is generally, if not always,
driven by natural selection for adaptation to distinct ecological niches (Shapiro et al.
2016). Here, I will critically re-evaluate this argument and discuss alternatives,
drawing on the most recent advances from population genomics. Most of the exam-
ples will be from bacteria, with some comparisons across other domains of life.
Building on the observation that genetically and ecologically coherent units do exist
(Caro-Quintero and Konstantinidis 2011; Shapiro and Polz 2014) even if their
boundaries may be “fuzzy” (Hanage et al. 2005; Hanage 2013), I will focus on the
mechanisms that give rise to these units and keep them distinct. In other words, this
chapter is mainly about speciation, not species. However, I will also discuss methods
to define and delimit species, which can provide a practical first step toward better
understanding of the mechanisms driving speciation.

2 Species Concepts and Definitions

To begin, let us briefly define population genomics and make the distinction between
species concepts and definitions. Species concepts require at least some notion of
mechanism, whereas species definitions can be completely operational and agnostic to
mechanism but can also be based on a particular species concept (Gevers et al. 2005). I
will focus on two popular types of species concepts. The ecological species concept
(ESC), favoured byDarwin, posits that speciation is driven by natural selection,with each
species adapted to a unique ecological niche (Schluter 2009). The biological species
concept (BSC) posits that speciation is driven by barriers to genetic exchange, which is
equivalent to reproductive isolation in sexual species (Dobzhansky 1935; Mayr 1942).
Strictly speaking, the BSCwill never apply to asexual organisms like bacteria.Moreover,
bacteria (and other domains of life, including plants and animals) can exchange genes
across species boundaries, so barriers to gene flow will always remain somewhat
permeable (Shapiro et al. 2016). Therefore, rather than the strict BSC, I will refer mainly
to a BSC-like concept in which rates of gene flow are higher within than between species,
but cross-species gene transfer can still occur. Other species concepts exist, but most are
effectively combinations of the ESC and the BSC. For example, the stable ecotypemodel
is essentially the ESC with relatively low rates of genetic exchange (Wiedenbeck and
Cohan 2011). Allopatric speciation is a special case of the BSC in which barriers to
genetic exchange are initially due to physical isolation, although they can later be
reinforced by genetic incompatibilities. Different species concepts predict different and
distinctive patterns of genetic variationwithin and between species (Krause andWhitaker
2015), which can in principle be harnessed to define species.
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Population genomics is a valuable tool—perhaps the most valuable tool avail-
able—to both inform our concept of species and to precisely define species. The
(relatively new) field of population genomics (see the Chapters in this volume on this
topic) uses whole-genome information to answer questions posed by the (more
mature) field of population genetics—the study of how mutation, selection, and
drift change allele frequencies within a population. Populations are generally defined
as sets of locally coexisting members of species. If we do not know what species are
in the first place, or how to define them, the task of defining species and populations
can become circular. Therefore, the application of population genomics to the study
of species and speciation usually requires some a priori notion of species or
population boundaries, which can then be critically evaluated based on the fit of
observed patterns of genomic variation with the predictions of competing species
concepts. In some cases, the prior information can include ecological hypotheses, for
example, that speciation in marine vibrios is driven by adaptation to either free-
living or particle-associated lifestyles (Shapiro et al. 2012). In other cases, a previ-
ously named species or genus might be sampled to test whether genome sequence
data fits a particular species concept and whether the sampled genomes constitute
one or many species (Cadillo-Quiroz et al. 2012; Bobay and Ochman 2017). In
general, population genomics requires complete or near-complete genome
sequences from several individuals, be they cultured isolated or single-cell genomes.
Metagenomic sequencing of bulk DNA from an environment is usually incapable of
linking particular genes or mutations back to a specific individual, making it more
difficult to test certain species concepts, particularly versions of the BSC that require
testing for differences in recombination rates within and between populations. These
shortcomings have not prevented researchers from defining “metagenomic species”,
although such definitions are purely operational and not clearly grounded in any
particular concept of species other than the prediction that members of the same
species should have correlated abundances over time or across samples (Caro-
Quintero and Konstantinidis 2011; Alneberg et al. 2014; Nielsen et al. 2014).
Nevertheless, metagenomics can help estimate valuable population genetic param-
eters such as the nucleotide diversity within a species.

3 Selection, Gene-Flow Barriers, or Both?

Both natural selection and barriers to gene flow can be important in the speciation
process, but which is usually the driver that initiates speciation? Certain forms of
gene flow, namely, homologous recombination, require a certain degree of sequence
identity between donor DNA and the recipient genome (although a few dozen base
pairs of identity can be sufficient to initiate the transfer of several kilobases of
completely nonhomologous DNA; Mell et al. 2011; Croucher et al. 2012). In
principle, the accumulation of mutations could gradually create barriers to homolo-
gous recombination, driving speciation in the absence of selection and yielding
genetically distinct species fitting the BSC. According to computational modelling,
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this is unlikely to occur, unless recombination rates decline unrealistically rapidly
with sequence divergence (Fraser et al. 2007). The model suggests that another
force—such as divergent natural selection between two niches—is required to drive
speciation. A further theoretical argument why selection is required to initiate
speciation is based on the competitive exclusion principle (Gause 1934; Tilman
1982). If two species are ecologically equivalent (meaning they are under identical
or near-identical regimes of selection), one will inevitably (after some period of
time) drive the other to extinction. Only if species are under divergent selection for
adaptation to distinct niches will speciation occur.

Beyond these theoretical considerations, what is the population genomic evi-
dence for selection driving speciation? Perhaps the most direct evidence comes from
laboratory evolution experiments, combined with whole-genome sequencing. In a
long-term evolution experiment starting with a single clone of E. coli, a lineage
evolved after ~31,000 generations with the ability to metabolize citrate, a previously
unused carbon source present in the growth medium (Blount et al. 2008). Sequenc-
ing of ancestral CIT- and derived CIT+ genomes revealed the genetic changes
required for citrate utilization (Blount et al. 2012). The two ecologically distinct
lineages continue to coexist in the experiment, consistent with the ESC. Despite
being a clear example of how ecological selection can drive speciation, it is not really
a fair test of whether gene-flow barriers can drive speciation because the E. coli in the
experiment are not competent and do not recombine DNA.

In another evolution experiment using bacteriophage capable of recombinationwithin
host cells, Meyer et al. (2016) showed that speciation readily occurred under both
allopatric and sympatric conditions, driven by divergent selection for phage to specialize
on one of two available bacterial hosts that differed only in their surface phage receptor. In
the allopatric experiment, phage were cultured in media containing only one host, and
specialization occurred rapidly. In the sympatric experiment, both bacterial hosts were
present in the culture media, but specialization still occurred because of the link between
ecological preference (one host or the other) and recombination,which only occurswithin
a host cell. These barriers to gene flow imposed by host preference are analogous to the
barriers imposed by particle preferencewithin themarinewater column,which appears to
be driving sympatric speciation in natural vibrio populations (discussed below). This
subtle spatial structure within seemingly homogeneous sympatric environments has been
referred to as “mosaic sympatry” (Mallet 2008; Shapiro and Polz 2014) and explains how
ecological selection can initiate speciation,which is later reinforcedbygene-flowbarriers.
By sequencing evolved and ancestral phage genomes,Meyer et al. (2016) further showed
that severalmutations in a single host-recognition gene in thephagegenome (J) explained
host specialization, with different mutations associated with different hosts. The obser-
vation of a single gene apparently responsible for speciation is consistent with theoretical
predictions that sympatric speciation proceedsmore readily when fewer loci are involved
in ecological differentiation or reproductive isolations (Kondrashov and Mina 1986;
Friedman et al. 2013). Further reducing gene flow between incipient phage species,
recombinant J alleles encoding combinations of mutations adapted to different hosts
were not viable. Therefore,Meyer et al. (2016) appear to have captured a very early stage
of sympatric speciation, driven by ecological differentiation andmaintained by gene-flow
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barriers. A population genomic study of sympatric marine cyanophages suggests the
same mechanisms may be at play in natural phage populations, although speciation may
be driven by ecological factors other than host identity (Gregory et al. 2016).

Similar patterns have also been observed in recombining natural bacterial populations.
For example, we compared the genomes of very closely related Vibrio cyclitrophicus
isolates (identical 16S and>99% amino acid identity) and concluded that speciation was
driven by differential selection for either free-living or particle-associated niches and
maintained by the emergence of barriers to gene flow (Shapiro et al. 2012). In other
words, the speciation process began with an ESC-like mechanism and was reinforced by
a BSC-like mechanism. However, it is difficult to be certain that ecological selection
preceded the establishment of gene-flow barriers. We found that gene-flow barriers
between incipient species are only evident among the most recent detectable recombi-
nation events, while older recombination events do not respect species boundaries
(Shapiro et al. 2012). I later used an adaptation of the McDonald-Kreitman (MK) test
(Vos 2011) to show that the divergence between incipient species involved an unex-
pected excess of nonsynonymous substitutions, suggesting positive selection driving
their divergence (Shapiro 2014). Still, although it is certainly consistent with the “selec-
tion first” hypothesis, this does not conclusively prove that ecological selection occurred
before the establishment of gene-flow boundaries. Further complicating things, the likely
targets of differential selection between free-living and particle-associated habitats—
three loci containing >80% of ecoSNPs (the single nucleotide polymorphisms fixed
between habitats) and several other genes present in one habitat but not the other—are
subject to frequent recombination andwere likely acquired fromdistantly related lineages
of Vibrio, making it difficult to date their acquisition with certainty. Nevertheless, it is
abundantly clear that the two incipient species are ecologically distinct (Yawata et al.
2014) and there is currently no evidence suggesting that gene-flow boundaries emerged
before differential selection.

Evidence from several other natural bacterial populations supports the idea that
ecological differentiation, due to selection on one or a few “niche-specifying” genes,
can occur before any apparent boundaries to gene flow. For example, a population
genomic study of Rhizobium leguminosarum found that they “form dynamic, diverse
populations that are unified by gene flow despite selection acting at one or more loci”
(Klinger et al. 2016). Specifically, they found that selection (artificially applied in a
22-year nitrogen fertilization experiment) favoured certain alleles of nitrogen fixation
genes, which rose to high frequency in the R. leguminosarum population without
affecting diversity elsewhere in the genome (Klinger et al. 2016). Such “gene-specific”
selective sweeps (Shapiro and Polz 2014) have also been documented in population
genomic studies of other bacteria, including Mesorhizobium (Porter et al. 2016) and
Streptococcus (Croucher et al. 2011; Bao et al. 2016). The apparent ease with which
natural selection can favour the increase of adaptive genes or alleles in recombining
microbial populations suggests that selection could at least plausibly drive speciation,
before the establishment of gene-flow boundaries.

Let us now consider the alternative hypothesis that gene-flow barriers directly drive
speciation without the need for ecological selection—a version of the BSC without any
trace of the ESC. As described above, it is unlikely that gradual mutation accumulation
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could cause barriers to homologous recombination. But what about other mechanisms of
recombination? Phage-mediated transduction requires the donor and recipient cells of a
recombination event to be infected by the same phage. Therefore barriers to phage
infection could limit gene flow. Consistent with this idea, a comparative analysis of
phage and bacterial genome sequences showed that phage-mediated recombination
events are mostly limited to closely related bacterial donors and recipients (Popa et al.
2016). This phage-host specificity could limit genetic exchange to close relatives,
providing a natural mechanism for the BSC and leading tomore genetic exchange within
than between species. In principle, a mutation or recombination event changing a phage
receptor could instantaneously create a barrier to geneflow (Rodriguez-Valera et al. 2009;
López-Pérez and Rodriguez-Valera 2016), but population genomic evidence of such a
BSC-like mechanism driving speciation is still lacking. Large-scale chromosomal
rearrangements can play an important role in creating reproductive isolation in yeast
(Charron et al. 2014; Leducq et al. 2016), but it is unclear which came first—barriers to
gene flow or ecological specialization—or whether both occurred more or less simulta-
neously to initiate speciation.

4 Models to Interpret Population Genomic Data

Population genomic data can be used to operationally define species and, more impor-
tantly, to test competing species concepts. An example of an operational species
definition based on genome sequence data is the proposed 95% average nucleotide
identity (ANI) threshold (Konstantinidis and Tiedje 2005; Konstantinidis et al. 2006).
Pairs of genomes that have below 95% ANI always come from distinct species,
according tomost species concepts or definitions. However, although a 95% threshold
mayworkwell formost species, somerecentlydivergedspeciesmight still share97,98,
or99%ANI(DoolittleandZhaxybayeva2009).Forexample, thenascentphage(Meyer
et al. 2016) and Vibrio (Shapiro et al. 2012) species described above would be lumped
into a single species using a 95% cutoff. ANImay also varywidely across the genome,
leading to “fragmented speciation” in which different parts of the genome effectively
speciate at different rates (Retchless and Lawrence 2010). Therefore, a universal
ANI-based species definition, while appealing in its simplicity, will likely fail to
distinguish “good” species, especially at early stages of speciation. ANI, like other
sequence-based thresholds (suchas97%identity in the16S rRNAgene), is still a useful
starting point for a more in-depth testing of species concepts. It has been argued that
97% is amuch too inclusive cutoff and that 99%16S identity or unique sequence types
better capture ecologically coherent bacterial species (Acinas et al. 2004; Eren et al.
2013;Koeppel andWu2014).Noonewould argue that genomes sharing less than95%
ANIarepartof the samespecies.However, genomessharingmore than95%ANImight
be divided into two, three, or several species, depending on the choice of species
concept.

Testing species concepts requires more than population genomic data. It also
requires a model describing the mechanism of speciation, which can then be fit to
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population genomic data. One of the first and most influential such models is the
stable ecotype model (SEM), which defines species as ecotypes, each inhabiting a
distinct ecological niche, such that selective sweeps and neutral drift affect diversity
within but not between species (Wiedenbeck and Cohan 2011). In other words,
selective sweeps or population bottlenecks that occur within one species (ecotype)
do not affect the genetic diversity of other species. Phylogenies based on marker
genes often fit well with the predictions of the SEM, namely, that monophyletic
groups of closely related bacteria tend to share the same ecological associations
(Hunt et al. 2008; Koeppel et al. 2008). However, applied to marker gene sequences
from natural populations of Bacillus, the SEM fits slightly worse than a neutral
model without ecological niches (Fraser et al. 2009), and patterns that appear
consistent with the SEM based on marker genes may be inconsistent when
genome-wide information is considered (Shapiro et al. 2012).

In the SEM, sweeps or bottlenecks purge genetic diversity genome-wide, because
recombination is not strong enough to decouple the evolutionary fates of loci across
the genome. Different versions of the SEM can accept increasing levels of recom-
bination (Majewski and Cohan 1999; Wiedenbeck and Cohan 2011), but the SEM
always emphasizes strong selection between ecological niches and relatively low
rates of gene flow, such that an adaptive allele will always spread by clonal
expansion rather than recombination. Such clonal expansions are expected to result
in genome-wide selective sweeps, purging genetic diversity across the genome.
Although such clonal expansions and genome-wide sweeps likely occur over rela-
tively short time scales [e.g. pathogen outbreaks; (Shapiro 2016)], they appear to be
rare in nature, at least among recombining aquatic and soil bacteria studied with
genome-wide surveys (Shapiro et al. 2012; Cui et al. 2015; Rosen et al. 2015;
Klinger et al. 2016; Porter et al. 2016). For example, of 30 bacterial populations
tracked using metagenomics in a lake over a 9-year period, only one appeared to
experience a genome-wide purge of diversity (Bendall et al. 2016), although it
remains unclear whether the purge was driven by selection or drift (Shapiro 2016).
To explain the apparent rarity of genome-wide sweeps in nature, recent models have
shown how combinations of negative frequency-dependent selection [e.g. to avoid
phage predation; (Takeuchi et al. 2015)] and migration between habitat patches
(Niehus et al. 2015) can allow recombination to outpace natural selection, resulting
in gene-specific rather than genome-wide selective sweeps. These models help
explain population genomic and metagenomic observations consistent with gene-
specific sweeps in nature (Coleman and Chisholm 2010; Shapiro et al. 2012; Shapiro
and Polz 2014; Klinger et al. 2016; Porter et al. 2016), but did not specifically
investigate the process of speciation.

Fraser et al. (2007) used a computational model to investigate the role of homol-
ogous recombination in speciation. They confirmed the prediction of the SEM that, in
the absence of distinct ecological niches and in the absence of recombination,
genetically distinct clusters of bacteria continuously formed and went extinct. Thus,
stable species cannot bemaintained in a neutral model with only one niche. Theywent
on to show that recombination homogenized the clusters, resulting in a single, stable
“cloud” of genetic diversity. When recombination rates declined with genetic
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divergence, distinct and stable clusters (reminiscent of species biological species)
were maintained—but only using an unrealistically steep rate of decline. In contrast to
any parameterization of the Fraser et al. model, real sequence data from the genus
Streptococcus fall into distinct clusters, despite high rates of recombination. This
suggests that a neutral model with or without recombination is not sufficient to explain
the formation of stable genetic clusters. For speciation to occur, another ingredient is
missing. The missing ingredient could be divergent natural selection between eco-
logical niches or, in special cases of geographic isolation, physical barriers to recom-
bination (Krause and Whitaker 2015).

In the sympatric simulation (symsim) model of divergent selection between eco-
logical niches, we found that recombination accelerated the initial rate of niche
adaptation but later eroded the distinctness of incipient species, particularly when
several (>5) loci are involved in adaptation (Friedman et al. 2013). The model is fully
sympatric, meaning that incipient species freely exchange genes despite having
completely distinct niches, as might perhaps occur for species inhabiting a well-
mixed aquatic environment but specializing on different dissolved nutrients. Quali-
tatively, the model fit well with the observation of relatively few niche-specifying
genes (~3–10) involved in the ecological differentiation of marine vibrios (Shapiro
et al. 2012) and suggested that barriers to gene flow (either ecological or physical)
might be required to maintain the separateness of species, especially when niche
adaptation involves many genes.

Marttinen and Hanage took the next logical step by modelling evolution in two
ecological niches with an adjustable level of overlap (Marttinen and Hanage 2017). In
thisOverlappingHabitatModel (OHM), individuals exchangegenes and compete only in
their overlapping region of multidimensional niche space (Fig. 1). Unlike symsim, which
explicitly models the niche-specifying genes, the OHM assumes that niche adaptation is
caused by very many loci, such that the recombination of just a few of these loci does not
affect niche preference. Using this model, Marttinen and Hanage were able to investigate
the rates of genetic divergence under different levels of niche overlap and recombination.
Intuitively, with low levels of niche overlap (~20% or less), speciation occurs rapidly due
to (implicit) divergent selection between niches and reduced opportunity for genetic
exchange (which can only occur in the region of niche overlap). With high niche overlap
(~60%), speciation is slow and genetic distances within and between subpopulations
(nascent species) continue to overlap significantly, making species difficult to distinguish
(as in the case ofV. cyclitrophicus). Fitting theOHMto real population genomic data, two
putative subpopulations of S. pneumoniae are predicted to have 41% niche overlap and
two putative subpopulations ofC. jejuni to have 24% overlap. Themodel further predicts
that with fast divergence (no niche overlap), all genes across the genome rapidly
accumulate ecoSNPs, similar to the genome-wide divergence predicted by the SEM.
With higher niche overlap, ecoSNPs are predicted to accumulate in just a few genes, with
most genes containing zero or very few ecoSNPs. This pattern of few dense ecoSNP
clusters was observed in both S. pneumoniae and C. jejuni genomes, suggesting their
gradual divergence in the presence of gene flow in partially overlapping niches (Fig. 1).
Qualitatively, this also resembles the three dense patches of ecoSNPs inV. cyclitrophicus
described above, suggesting that the OHM could capture speciation processes in a range
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of natural bacteria. Because the OHM does not model niche-specifying genes (the genes
under divergent selection between niches), it follows that clusters of ecoSNPs in the
genome can arise even when these ecoSNPs are not the direct targets of selection. As a
consequence, ecoSNP clusters can be either drivers or passengers of the speciation
process.

The OHM is appealing for its seamless combination of the ESC and the BSC. Ecology
and divergent selection are implicit in the overlap of abstract multidimensional niches.
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Fig. 1 Population genomic signatures of speciation under the Overlapping Habitat Model (OHM).
The first (top) row illustrates the extent of habitat overlap between two populations. Populations can
live and recombine in their respective habitat or in the region of overlap. Habitats exist in
multidimensional niche space. The second row illustrates the genetic distances within and between
populations, as predicted by the OHM. When there is little habitat overlap, the two populations
diverge rapidly, but as overlap increases, distinct populations become difficult to distinguish from
within-species genetic variation. The third row illustrates the predicted distribution of ecoSNPs
(fixed single nucleotide differences between the two populations) per gene. The fourth row shows
the estimated median homoplasy/mutation (h:m) ratio as increasingly large subsamples of genomes
are taken from the populations. With ~0% habitat overlap, no recombination is expected between
populations; thus the h:m ratio will be close to zero, and species are undefinable by the BSC-based
method of Bobay and Ochman. In the example of C. jejuni (~20% overlap), a discontinuity is
observed in the h:m ratio, suggesting the existence of two distinct species. The top three panels
qualitatively summarize Figs. 2, 4, and 5 from Marttinen and Hanage (2017). Note that the OHM
was fit to C. jejuni and S. pneumoniae datasets, but not V. cyclitrophicus. The panels marked with an
asterisk are therefore hypothetical, based on the results of Shapiro et al. (2012). The bottom panel
qualitatively summarizes portions of Supplementary Fig. 1 from Bobay and Ochman (2017)
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Barriers to geneflowoccur as a consequenceof nonoverlapping (orminimally overlapping)
niches. The percentage of overlap in multidimensional niche space is a rather abstract
concept but provides a point of entry for researchers to determine the main drivers of niche
overlap (e.g. physical separation, host preference, nutrient utilization, growth rates, or some
combination of these).

5 Species Delimitation Using Population Genomic Data

As discussed above, operational species definitions (such as a 95% ANI threshold)
can easily be used to delimit species using population genomic data in the absence of
any particular species concept. A more profound use of population genomic data is
to detect signals predicted by a specific species concept and define species based on
this concept. For example, the BSC predicts higher levels of gene flow within than
between species. (Strictly, the BSC predicts zero gene flow between species, a
criterion that will never realistically be met in recombining bacteria and archaea;
hence only BSC-like concepts are amenable to most microbes and possibly most
macrobes; Mallet et al. 2015; Shapiro et al. 2016.) Based on mounting population
genomic evidence of higher rates of recombination within than between species or
suspected species (Cadillo-Quiroz et al. 2012; Shapiro et al. 2012; Krause and
Whitaker 2015; David et al. 2017), a BSC-like concept could plausibly apply to a
large variety of microbes. In this BSC-like concept, barriers to gene flow provide a
signature of speciation, but the drivers of speciation are not specified.

Bobay and Ochman (2017) recently proposed a way to apply a BSC-like concept
to define species based on population genomic data. The method begins with a set of
aligned genomes from a putative species (e.g. named species downloaded from
NCBI GenBank) and identifies SNPs in the alignment. SNPs are then divided into
those that can be placed parsimoniously on the phylogenetic tree, attributed to point
mutation, and those that cannot: homoplasies, attributed to recombination. These
two classes of SNPs are used to estimate the ratio of recombination to mutation rates
(r:m) from the ratio of homoplasies to parsimonious mutations (h:m). If the align-
ment includes genomes sampled from just one species, sampling additional genomes
will allow the SNP calling procedure to converge on a stable h:m ratio. However, if a
“contaminant” genome from a second species is added to the alignment, this will
cause an abrupt drop in the estimate of h:m, because under a BSC-like model, most
mutations occurring between species are due to mutation, not recombination. The
method therefore accepts “good” species as those that converge on a stable h:m
estimate and proposes to split species containing “contamination” from other spe-
cies. Importantly, Bobay and Ochman’s method also identifies species that are too
clonal (i.e. species with a very low h:m) and therefore cannot be classified based on a
BSC-like concept.

Studying 105 named species from NCBI GenBank, Bobay and Ochman found
that just over half constitute “good” species, about a quarter should be split, and
about a quarter are too clonal or lack sufficient numbers of informative SNPs to be
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defined (e.g. Mycobacterium tuberculosis and Bacillus anthracis). Encouragingly,
the method identifies a species boundary between familiar animal species such as
humans and chimpanzees. The two named species analysed with the OHM model,
S. pneumoniae and C. jejuni, were also included in Bobay and Ochman’s analysis,
providing an opportunity for comparison (although not exactly the same set of
genomes were used). In the C. jejuni genomes, a clear discontinuity was identified
by Bobay and Ochman (Fig. 1), suggesting that this species should be split in two
according to the BSC-like concept. In contrast, S. pneumoniae behaves as a single
cohesive species (Fig. 1). At face value, this contradicts the OHM model, which
predicts that S. pneumoniae contains two gradually diverging subpopulations that
might be considered distinct species. However, the divergent S. pneumoniae sub-
population (SC12) identified by the OHM was not represented in Bobay and
Ochman’s dataset, highlighting the importance of sampling for any population
genomic study of speciation or species delimitation. The two nascent species of
V. cyclitrophicus (Shapiro et al. 2012) were not identified as distinct species based on
the BSC-like criterion, likely because divergence was too recent and barriers to gene
flow do not yet extend across the genome. Therefore, very early stages of speciation
may be difficult to detect based on a genome-wide gene-flow criterion.

Bobay and Ochman’s method is attractive for two main reasons. First, it is not
based on any arbitrary threshold of genetic similarity, but rather upon a discontinuity
in inferred rates of gene flow. As a result, even if some very early stages of speciation
may be missed, the method can delimit species across a range of genetic divergences.
Second, it is based on genome sequences, meaning it can be readily and reproducibly
applied across a range of different species (including bacteria, archaea, eukaryotes, or
even viruses) without “expert” knowledge or complicated phenotypic tests. It also
comeswith some caveats. For practical reasons, themethod tests the coherence of an a
priori hypothesized species; it does not define species de novo from a database of all
sequenced genomes. More importantly, the method depends strongly on sample size
and in fact relies on unbalanced sampling between species for discontinuities in gene
flow to be identified. As such, the method is optimized to detect single “contaminant”
genomes but will fail to distinguish two species sampled in roughly equal proportions.
Like any comparative genomic method, it only measures realized (rather than poten-
tial) genetic exchange. Under the strict BSC, individuals that can exchange genes are
members of the same species, even if in practice they do not (e.g. due to geographic
separation and the population structure that results). Determining the potential for
genetic exchange requires experiments. All that can be reasonably asked of a com-
parative genomic method is to assess the realized rates and boundaries of recombi-
nation. Therefore, themethod provides a useful starting point for further investigation.
If a species is split, researchers must go on to ask, was the split due to population
structure or ecological differentiation? If the latter, what are the relevant ecological
niches?
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6 Conclusions

Here I have described how speciation can be initiated by ecological differentiation
(an ESC-like species concept) and be maintained by barriers to gene flow (a BSC-like
species concept). Population genomic evidence from several groups of bacteria
support this “ESC+BSC” paradigm, but there are sure to be exceptions. In effectively
nonrecombining bacteria, the BSC does not apply. In some groups of bacteria or
archaea, speciation could be driven entirely by barriers to gene flow, but strong
examples are still lacking. Even in cases where gene-flow barriers appear to maintain
species, it is not clear whether these barriers initiated speciation (Cadillo-Quiroz et al.
2012; Krause and Whitaker 2015). Moreover, the distinction between ESC and BSC
may be somewhat artificial, because ecological differentiation can create barriers to
gene flow, for example, when incipient species favour different hosts or particles
(Shapiro et al. 2012; Meyer et al. 2016). This combination of the ESC and BSC is
elegantly modelled in the OverlappingHabitatModel, in which gene flow occurs only
in the region of niche overlap (Marttinen and Hanage 2017). In many instances,
ecological specialization and barriers to gene flow may occur effectively simulta-
neously, whichwould explainwhy the two potential drivers of speciation have proven
so difficult to disentangle.

Population genomic and, in some cases, metagenomic data have the potential to
delimit species in a standard, reproducible way. For example, genomes that differ at
more than 5% of nucleotide sites tend to belong to different species (Konstantinidis and
Tiedje 2005; Konstantinidis et al. 2006). While this simple cutoff-based species delim-
itation may work well in many cases, there are exceptions that are better resolved using
concept-based delimitation. For example, Prochlorococcus marinus includes genomes
that share only 72% average nucleotide identity, but this group still behaves as a coherent
gene-flow unit according to a BSC-based species delimitation (Bobay and Ochman
2017). On the other hand, it is well established that there are several, if not hundreds,
of genetically and ecologically distinct subclusters withinProchlorococcuswhich appear
to stably coexist in the ocean (Rocap et al. 2003; Johnson et al. 2006;Kashtan et al. 2014).
It may notmatter if there are 1000, 100, or only one species ofProchlorococcus—but it is
useful to note that Prochlorococcus appears to be a relatively homogeneous unit of gene
flow, which may contain finer-scale units that go undetected by certain methods (Bobay
andOchman 2017). Similarly, S. pneumoniae shows finer genetic substructurewithin the
twomajor subpopulations, suggestingfine-scale niche partitioning (Marttinen et al. 2015;
Marttinen and Hanage 2017). Therefore, although species delimitation methods (Bobay
and Ochman 2017) and speciation models (Marttinen and Hanage 2017) can provide
impressive fits to the major features of population genomic datasets, these methods and
models generally provide only a starting point—a very useful starting point—for more
detailed investigations into the ecology, phenotypes, and genetics of the organisms in
question.

With the possible exception of experimental evolution experiments, it is effec-
tively impossible to follow a speciation event from start to finish in real time.
However, if speciation is indeed common—and it must be if all organisms can be

42 B. J. Shapiro



placed somewhere along a speciation spectrum (Mallet 2008; Shapiro and Polz
2014)—studying diverse microbes at different stages of speciation will allow us to
more fully appreciate the order of events driving and maintaining speciation, the
general mechanisms involved, and the inevitable exceptional cases.
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Glossary

Niche A specific set of ecological parameters (environments, resources, physical
and chemical characteristics, biotic interactions, etc.) to which an organism is
adapted. This does not necessarily imply (but does not exclude) physical separa-
tion between niches. For the purposes of this chapter, “niche” and “habitat” are
used more or less interchangeably, although “habitat” has a more spatial conno-
tation, while niches can be temporal, behavioural, physiological, etc.

Ecological species concept (ESC) A species concept in which speciation is driven
by adaptation to distinct habitats or ecological niches, with each species inhabiting
a distinct niche.

Biological species concept (BSC) A species concept based on reproductive isola-
tion (in the strict sense) or to barriers to gene flow, resulting in more gene flow
within than between species, even if some between-species gene flow still occurs.

Allopatric speciation Speciation driven by physical barriers to gene flow between
incipient species, such that speciation may occur in the absence of natural
selection.

Sympatric speciation Speciation that occurs in the absence of physical barriers to
gene flow, such that speciation must be driven by some combination of natural
selection and/or genetic barriers to gene flow.

Mosaic sympatry An intermediate between sympatry and allopatric, in which
organisms inhabit different niches (e.g. particles or hosts) within an otherwise
well-mixed environment.

Gene flow Ageneral term for exchange ofDNAbetween chromosomes, including both
homologous and nonhomologous DNA. In sexual organisms, gene flow occurs
during meiosis. In microbes, gene flow can occur by phage-mediated transduction,
plasmid-mediated conjugation, or natural competence (uptake of free DNA) followed
by homologous or nonhomologous recombination.

Gene-specific selective sweep The process in which an adaptive gene or allele
spreads in a population by recombination faster than by clonal expansion. The
result is that the adaptive variant is present in more than a single clonal back-
ground and that diversity is not purged genome-wide.

Genome-wide selective sweep The process in which an adaptive gene or allele
spreads in a population by clonal expansion of the genome that first acquired
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it. The result is that diversity is purged genome-wide and that the adaptive variant
is linked in the same clonal frame as the rest of the genome.

ecoSNP An ecologically associated single nucleotide polymorphism (SNP) with
different nucleotides fixed between two different habitats (e.g. an A allele in
habitat 1 and a T allele in habitat 2). Genes under divergent natural selection
between niches or habitats (“niche-specifying genes”) are expected to contain a
large number of ecoSNPs.
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Peering into the Genetic Makeup
of Natural Microbial Populations
Using Metagenomics

Vincent J. Denef

Abstract This chapter focuses on how metagenomic data are applied to examine
the genomic heterogeneity of natural microbial populations. It highlights the oppor-
tunities and challenges inherent to the approach and describes recently developed
methods to maximally leverage the potential of these datasets while tackling some of
the challenges. We describe how performing population genomic analyses using
metagenomic data allows (1) resolution of ecologically and genetically cohesive
populations in the environment, (2) tracking of evolutionary processes within them,
and (3) application of metatranscriptomic and metaproteomic analyses to determine
the in situ physiology of distinct populations. While challenges remain that are
inherent to the approach, the current wave of new bioinformatic tools is starting to
realize the theoretical potential of metagenomics to peer into the spatiotemporal
dynamics of the genetic structure of natural populations.

Keywords Bacteria · Bioinformatics · Gene content variation · Metagenomics ·
Natural populations · Recombination · Selection · Sequence variation ·
Strain-resolved

1 Introduction

1.1 Scope of This Chapter

This chapter explores the advances that have been made in the area of population
genomics through studies that make use of metagenomic data. It covers methodo-
logical advances and challenges and biological insights that have been gathered.
Metagenomics [also called environmental or community genomics (Handelsman
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2004; Tyson et al. 2004)] is the analysis of data produced through randomly
sequencing fragments from a DNA pool extracted from environmental samples
(Fig. 1). In general, metagenomics finds its application in the study of the compo-
sition and functional potential of microbial communities in their native environment.
However, a growing number of studies are leveraging these datasets to gain unprec-
edented insights into the genetic composition of natural populations, i.e., groups of
individuals belonging to the same species that co-occur in space and time. In the
context of metagenomics, the term population genomics was initially—and con-
tinues to be—used as a synonym for metagenomics, a possible cause of confusion.
This has been particularly the case when referring to the reconstruction of a consen-
sus genome of a population through curated assembly of metagenomic data (DeLong
2004, 2005; Handelsman 2004; Tyson et al. 2004). In the context of this book
chapter, the strictest definition of metagenomic-based population genomics refers to
the analysis of genome-wide heterogeneity existing between individuals belonging
to the same species/ecotype (Whitaker and Banfield 2006).

Community DNA sample Metagenomic data Read recruitment

Population-resolved
in situ physiology

Tracking population-level
evolutionary processes

Resolving ecologically and genetically
cohesive populations

Reference genomes
- Cultured isolates
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Fig. 1 Overview of applications of metagenomic-based population genomics discussed in this
chapter. After extracting, fragmenting, and generating sequencing reads to create a metagenomic
dataset, reads are typically aligned to a reference sequence, obtained from microbial isolates, single
cells (SAGs), or assembled from metagenomic data (MAGs). These data can be used to (left)
resolve ecologically distinct populations by identifying genetically similar reads originating from
distinct strains, (middle) determine in situ gene expression (using metatranscriptomic or
metaproteomic data), or (right) track evolutionary processes, for example, by identifying polymor-
phic sites where specific nucleotides rise to fixation over time
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While more theoretically motivated definition of populations is the focus of
another chapter in this book (Shapiro 2017), it is important to highlight how
population genomics using metagenomic data has contributed to our efforts to
recognize and delineate ecologically and evolutionary cohesive populations. Most
prominent is the demonstration of sequence-discrete populations in environmental
samples [Fig. 2; sensu (Caro-Quintero and Konstantinidis 2012)]. Conceptually, a
sequence-discrete population was defined by Caro-Quintero and Konstantinidis as
“the natural entity present in a community/sample that comprises genotypes, which
are clearly distinguishable from their closest co-occurring relatives (if any) based on
their high genetic relatedness and comparable relative abundance in situ.” Techni-
cally, such genotypic clusters are identified by comparing the nucleotide identity of
the short reads gathered in a metagenomic survey to a reference genome by means of
a process called read recruitment. Whereas similar observations of sequence-discrete
populations based on a single or multiple marker genes sequenced from bacterial
isolates had been made before (Hanage et al. 2006; Hunt et al. 2008; Rocap et al.
2003), the advent of metagenomic methodology allowed for a genome-wide assess-
ment of genetic relatedness of randomly sampled cells present in environmental
samples. These insights from isolate and metagenomic studies have helped move
forward the discussion regarding the existence of microbial species and specifically
how to define a microbial population. While genotypic variation within a defined
species can be large at a regional or global scale, thus complicating our ability to
define clear species boundaries, it is important to stress the inherent property of a
population to contain only individuals that are occurring in the same place at the
same time, i.e., that they are sympatric (Shapiro and Polz 2014; Cordero and Polz

Fig. 2 Identification of populations using metagenomic data. Comparisons of sequences generated
from community DNA samples from two lakes to a reference genome of a bacterial isolate from one
of these two lakes. If discrete populations would not exist, the patterns on the left could be obtained,
while if ecologically and evolutionary cohesive populations that are distinct from the reference
population exist, the pattern on the right would be expected. The patterns on the right are the most
commonly observed [e.g., (Bendall et al. 2016, Caro-Quintero and Konstantinidis 2012)]
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2014). While implied by the definition of a population, early challenges to the idea
that discrete populations exist based on sequenced isolates from disparate locations
did not respect this condition of sympatry [e.g., (Welch et al. 2002)]. Further
discussion of insights into the microbial species concept derived from bacterial
population genomics is covered in other chapters (Shapiro and Polz 2015;
Shapiro 2017) and will not be discussed in detail here.

1.2 Approaches Included in This Chapter

Examining population-level variability within natural populations requires the avail-
ability of a reference sequence in most metagenomic approaches to population
genomics. There are multiple ways to obtain reference genomes: (1) from isolates,
preferably originating from the same environment/sample the metagenomic data are
derived from; (2) from genomes assembled from metagenomic data (metagenomic
assembled genome, MAG), which tends to be a composite sequence not represen-
tative of a single cell in the population; or (3) from a single cell genomic dataset
(single amplified genome, SAG). While our ability to generate MAGs was initially
limited to low complexity communities (Tyson et al. 2004), we can now reconstruct
100 s to 1000 s of genomes from metagenomic datasets. Few of these MAGs are
complete, and although contamination from other populations cannot be completely
excluded, obtaining >90% completeness with limited (<5%) contamination is
commonly achieved (Anantharaman et al. 2016; Delmont et al. 2017; Parks et al.
2017). Tools to refine sequence bins and estimate their completeness and purity are
continuously being developed (Broeksema et al. 2017; Eren et al. 2015; Parks et al.
2015) and will continue to improve genome reconstruction and bin refinement, so as
to provide a sounder basis for downstream population genomic analyses. More
uncertainty will remain in genomes assembled from metagenomes compared to
those from isolates.

Independent of the approach used to generate the reference genome, the central
tenet of the analysis is the comparison of randomly sampled and sequenced DNA
fragments with this reference genome to assess sequence content and compositional
variation of populations within and between environmental samples. A variety of
approaches to generate metagenomic DNA fragments can be applied. Most straight-
forward is to randomly generate sequences from DNA extracted from environmental
samples. Other approaches first reduce the diversity of the community, e.g., by
passing the sample through a series of filters with decreasing pore sizes (Baker
et al. 2010) or through (in situ) enrichments (Delmont et al. 2015). This allows for
the enrichment of specific populations of interest, therefore increasing sequencing
depth for population genomic analyses. Finally, instead of focusing on the entire
genome, one can target a series of sites across the genome. An approach recently
implemented, which may see much broader application, is to extract multi-locus
sequencing typing (MLST) genes from complex metagenomic datasets using refer-
ence sequences (Berry et al. 2017; Zolfo et al. 2017).
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Although the work discussed in this chapter relates to studies that use random
sequencing of DNA extracted from complex natural communities, occasionally
single cell genomics is categorized as a metagenomic approach. Single cell sequenc-
ing approaches sort a single cell from an environmental sample using dilution, flow
cytometry, or microfluidic approaches and subsequently perform DNA amplification
and genome sequencing (Blainey 2013). Genome sequencing analyses of single cells
representing the same naturally occurring population is similar to metagenomics, as
both eliminate culturing biases. Other than that aspect, population genomics based
on single cell sequencing [e.g., (Kashtan et al. 2017; Malmstrom et al. 2013;
Zaremba-Niedzwiedzka et al. 2013)] is conceptually and methodologically similar
to the analysis of representative isolate genomes from natural populations [e.g.,
(Hunt et al. 2008)], discussed elsewhere in this book. Testament to the power of
this approach, Kashtan and colleagues used single cell genomic data of
Prochlorococcus cells from ocean water to demonstrate the existence of hundreds
of co-occurring populations. These populations were shown to differ from each other
in terms of genome content, such as the presence of small genomic islands that most
likely conferred predation resistance and phage recognition), as well as genome-
wide sequence composition (Kashtan et al. 2014). These insights were gained by
characterizing>1,000 cells by sequencing of the rRNA ITS region, while a subset of
69 cells was sequenced to >70% estimated genome completeness. As mentioned
above, single cell genome sequencing is also commonly used to generate a reference
sequence, after which sequencing reads from metagenomic surveys from the same or
different environments can be aligned to this genome to evaluate population-level
heterogeneity, which is of relevance to this chapter [e.g., (Thrash et al. 2014)].

2 Opportunities and Challenges

2.1 Opportunities

The advantage of metagenomic approaches compared to single isolate approaches is
the ability to sample a very high number of individuals without culturing bias. While
the number of individual cells that can be analyzed is rapidly increasing for single
cell approaches, the number of cells sampled and typical reconstructed genome
completeness remains higher in metagenomic approaches. This offers the unprece-
dented ability to peer deeply into the genetic structure of natural populations and has
revealed the extraordinary genetic diversity that exists among groups of closely
related microbes. The extent of this diversity and the correlation between the
abundance of genetic subclusters with distinct environmental conditions can result
in the division of previously named taxonomic units into ecologically distinct
populations (Bhaya et al. 2007; Denef et al. 2010a). A hallmark of such newly
defined populations is extensive diversity in gene content and sequence composition
(Denef et al. 2010a; Simmons et al. 2008). Initially, there were doubts that environ-
ments beyond reduced complexity systems such as the acid mine drainage system, in
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which pioneering studies of population genomics using metagenomics were
conducted, could be tackled (Denef et al. 2010b). However, recent work has
expanded the approach to systems ranging from the human microbiome to aquatic
environments (Bendall et al. 2016; Nayfach et al. 2016; Olm et al. 2017). Impor-
tantly, the use of metagenomic approaches allows us to access 10 s–1000 s of
populations at the same time (Anantharaman et al. 2016; Parks et al. 2017). The
tremendous growth of publicly available metagenomic datasets, as well as reference
genomes from microbial isolates or single cell genomics projects, is another major
opportunity to tackle new population genomic questions without additional sequenc-
ing efforts. This was demonstrated in recent studies that have leveraged thousands of
human microbiome metagenomic datasets to uncover strain-level dynamics and
infer mode of transmission and biogeographical patterns among hundreds of bacte-
rial populations simultaneously (Nayfach et al. 2016; Truong et al. 2017).

2.2 Challenges

However, many challenges remain (Table 1). The first and possibly most important
major challenge is the lack of linkage between variant sites (nucleotide substitutions,
insertions and deletions, rearrangements), i.e., using metagenomic data we are
unable to determine which alleles across the genome are present in one lineage
versus another. As a consequence, most environmental population genomic
approaches have relied on isolate or single cell-derived sequences (Kashtan et al.
2014; Krause and Whitaker 2015; Shapiro and Polz 2014). Multiple factors can be
responsible for lack of linkage in metagenomic data: (1) the number of variant loci
across the genome is typically too low compared to sequencing read length (gener-
ally 100–150 nucleotides) or sequencing library fragment size (up to several hundred
nt) to enable linkage across more than a few hundred nucleotides, and (2) in
metagenomic datasets, each sequencing read typically originates from a different
individual. As a result, we are limited to identifying which sites are polymorphic in
the population or which sites are divergent between coexisting closely related
populations. Determining which mutations occur across the genomes of a single
lineage remains possible only by using isolate or single cell genomic data unless
population structure is very simple (Denef and Banfield 2012), although new
approaches based on statistical inferences may change this (e.g., DESMAN, see
below). Considering these challenges due to read length of the most commonly used
next-generation sequencing platforms, it is thus not surprising that some of the most
thorough metagenomic population genomic work has been carried out using longer
sequences, such as those obtained by Sanger sequencing. These studies were largely
successful because long sequence reads and library insert size enable linkage across
several kilobases at a time (Allen et al. 2007; Eppley et al. 2007; Konstantinidis and
DeLong 2008; Simmons et al. 2008). Technological innovation is ongoing, and
newer sequencing platforms (e.g., PacBio, Oxford Nanopore) may resolve the read
length issues, as long as they continue to offer high sampling depth and limited
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sequencing errors (see below), which is typically not yet the case [but see (Sharon
et al. 2015)]. Alternatively, methods that use cross-linking of DNA within the cell
may allow the connection of physically linked variants (Marbouty et al. 2014), but
this method has not been applied to population genomic studies.

The second major challenge is the issue of sequencing error, which results in false
positive polymorphic sites. These errors usually occur as low-frequency “mutations”
that are often observed only once (Schirmer et al. 2016). As several population
genetic parameters require knowledge of all polymorphic sites, including those
occurring at low frequency, errors will bias their metagenomics-based estimates.
Case in point is Watterson’s theta (Watterson 1975), which estimates the genetic
diversity present in a population based on which we can estimate mutation rates
and/or effective population sizes and which requires even the knowledge of the
frequency of singleton variant sites. As new sequencing platforms have emerged,

Table 1 Fundamental challenges for metagenomic-based population genomic analyses

Challenge
Approaches to
address challenge Remaining issues Example studies

Linking SNPs
co-occurring in
the same
individual

Link by relative
abundance

Only works for low
within-population genetic
diversity or requires high
number of samples

Denef and Banfield
(2012); Quince et al.
(2017)

Focus on overall pat-
terns of polymor-
phisms across
genome

Limited to broad interpre-
tations regarding genome-
wide vs gene-specific
selective sweeps

Bendall et al. (2016)

Long-read sequenc-
ing technologies

High error rates, or lower
sequence coverage, or not
broadly available

Sharon et al. (2015)

Differentiating
SNPs vs errors

Tool for identifying
true sequence variants
from sequencing error
(Varcap)

Only helps resolve SNPs
present in >2% of
population

Zojer et al. (2017)

Tools for removing
error-based bias in
population genetic
parameter
calculations

Platform-specific, unclear
if it removes sequence-
library-dependent bias

Johnson and Slatkin
(2006); Johnson and
Slatkin (2008); Johnson
and Slatkin (2009);
Nielsen et al. (2011)

Obtaining suf-
ficient
sequence
coverage

Physical- or affinity-
based enrichment of
target populations

Affinity-based methods
often technically chal-
lenging, physical methods
restricted to populations
with outlier cell size

Baker et al. (2006);
Hatzenpichler et al.
(2016); Pernthaler et al.
(2008)

Tracking gene
gain/loss

Reference-free
sequencing read
dataset comparisons

Untested for population
genomic analyses

Nijkamp et al. (2013)

Sample-by-sample
genome
reconstruction

Restricted to populations
that are abundant across
time series

Bendall et al. (2016)
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each with their specific error spectrum, a variety of tools have been developed to
differentiate between true variants and sequencing errors. Some tools assign confi-
dence levels to observed variants, with the goal of reducing false positive variants
[e.g., VarCap (Zojer et al. 2017)] focuses on improving reliability of identifying
variants >2% of the population), or to remove bias in population genetic parameter
estimates (Johnson and Slatkin 2006, 2008, 2009; Nielsen et al. 2011). In addition to
sequencing platform-specific error profiles (Schirmer et al. 2016), a complication
arises from the observation that errors can be sequencing library preparation protocol
dependent. This issue was highlighted recently in a reanalysis of the preterm fecal
microbiome metagenomic data that is frequently used as a benchmark dataset for
new bioinformatic tools (Sharon et al. 2013). It could be shown that the day-by-day
alternation between two SNP patterns in a bacterial population was caused by
different library preparation methods used on even and odd days [http://merenlab.
org/2016/12/14/coverage-variation/ comment on (Eren et al. 2015) based on data
from (Sharon et al. 2013)].

The third challenge is obtaining sufficient sampling depth, which is the number of
sequences that cover a particular region of the genome. Sufficient sequence coverage
is needed to accurately estimate allele frequencies, and as such most analyses are
currently limited to the most abundant populations in environmental samples. Yet,
we have progressed far beyond what the research community envisioned just a few
years ago with respect to the number of near-complete genomes that we can
reconstruct from environmental samples. Such genomes can subsequently be used
to examine the genetic structure of the corresponding populations. In part, this is due
to the development of physical (e.g., size-selective filtration)- or affinity (e.g., based
on use of fluorescent in situ hybridization and cell sorting)-based methods (Baker
et al. 2006; Hatzenpichler et al. 2016; Pernthaler et al. 2008) through which
populations of interest (e.g., based on taxonomic identity or metabolic activity)
can be enriched, facilitating population genomic analysis from the corresponding
metagenomic data (Deng et al. 2014).

Finally, the identification of gene content differences within a population can be
challenging when using metagenomic data. Unless extensive manual curation of an
assembly is performed [e.g., (Simmons et al. 2008)], genomic regions (islands)
carried only by low-abundance subpopulations (i.e., part of a population’s “flexible
genome”) will generally not be binned in the consensus genome of the population of
interest (i.e., the “core genome”). This is because these genomic regions (a) diverge
in their k-mer (specific stretches of nucleotides, e.g., tetramers ATGC, AATG, etc.)
composition [used in most binning applications that seek to group fragments of
contiguous sequence (contigs) originating from the same genome such as VizBin
(Laczny et al. 2015), CONCOCT (Alneberg et al. 2014), and TETRA-ESOM (Dick
et al. 2009)] compared to core genome contigs, (b) have differential coverage
patterns that diverge from the core genome of the population [also commonly used
in binning applications (e.g., CONCOCT (Alneberg et al. 2014), GroopM (Imelfort
et al. 2014), metagenome (Albertsen et al. 2013))], and/or (c) will often fail to
assemble into large enough contigs to allow accurate binning due to the low
abundance of the subpopulations they derive from. Similarly, when using
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metagenomic sequences to identify variants across datasets by mapping sequence
reads to reference genomes, we can only track changes in frequency among regions
shared by these populations and cannot identify the addition of new genomic regions
due to horizontal gene transfer [see (DeLong 2012) in commentary on (Denef and
Banfield 2012)]. Yet, we know that such differences constitute a significant fraction
of population-level genomic heterogeneity. Evidence regarding the physiological
importance of these unique regions is mixed (Denef et al. 2010a; Frias-Lopez et al.
2008; Gogarten and Townsend 2005; Kuo and Ochman 2009; Thompson et al. 2011;
Hehemann et al. 2016). Nonetheless, it is important to try to include these regions in
metagenomic-enabled population genomic analyses as gene frequencies at either
intermediate or low levels result from frequency-dependent selective pressures by
social and ecological interactions and thus suggests adaptive roles for flexible
genome content (Coleman et al. 2006; Cordero et al. 2012; Cordero and Polz
2014; Kashtan et al. 2014; Rodriguez-Valera et al. 2016).

3 Current Applications

We present a series of recently developed tools to facilitate population genomic
analyses using metagenomic data and explore three types of applications of these
methods (Fig. 1; Table 2). First, we provide an overview of how these methods are
being used to resolve ecologically and genetically distinct populations that would
previously have been considered as a single operational taxonomic unit (OTU). Most
commonly OTUs are defined based on 16S rRNA gene sequence identity, but these
can similarly be defined based on multiple housekeeping genes or complete
genomes. Second, we show how these approaches can be used to infer the physiol-
ogy of distinct populations. Third, we summarize applications of these methods to
gather insights into evolutionary processes occurring in natural microbial
populations.

3.1 Methods

Read mapping to a reference sequence is a key step in most population genomic
approaches. Over time a wide array of read alignment tools have become available,
each with their own user-specified tunable parameters. Naturally, this flexibility may
affect our ability to accurately perform population genomic analyses. In a recent
comparative analysis, popular tools such as bwa (Li and Durbin 2010) and bowtie2
(Langmead and Salzberg 2012) resulted in similar and more accurate results than
some other tools when all were run using default parameter settings (http://merenlab.
org/2015/06/23/comparing-different-mapping-software/). In more recent years,
reference-free methods have been developed that avoid some drawbacks of the
reference-based approach, particularly the inability to detect parts of the population’s
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Table 2 Goals, approaches, and challenges for metagenomic-based population genomic analyses

Goal Approaches Challenges Example studies

Resolving eco-
logically and
genetically cohe-
sive populations

Identifying
sequence-
discrete
populations

Read recruitment
(e.g., bowtie2,
bwa) + custom
scripts for data
plotting

Determine relevant
sampling scales to
capture sympatric
individuals (e.g.,
bulk water vs size-
fractionated
samples)

Caro-Quintero and
Konstantinidis
(2012)

Distinguish
diverging
within-species
ecological
dynamics

Growing suite of
automated tools
such as Constrains,
MetaMLST,
MIDAS, PanPhlAn,
StrainPhlAn,
DESMAN, and
LSA

Database depen-
dency of many
tools limits us to
species with exten-
sive reference
genome availability

Luo et al. (2015);
Zolfo et al. (2017);
Nayfach et al.
(2016); Asnicar
et al. (2017); Ward
et al. (2016);
Quince et al.
(2017); Cleary
et al. (2015)

Identify strain-
specific gene
content and
SNPs

Most approaches
need a large num-
ber of samples to
be effective

Determining
physiology of
ecologically and
genetically cohe-
sive populations

Identify in situ
differences in
gene expres-
sion between
co-occurring
strains

Custom scripts/
manual as well as
automated tools to
resolve
metatranscriptomic
or metaproteomic
data (e.g.,
PanPhlAn)

Relationship
between expression
levels and process
rates rarely known

Wilmes et al.
(2008); Denef
et al. (2010a);
Brooks et al.
(2015); Asnicar
et al. (2017)

Estimate in
situ growth
rates

iRep, based on
metagenomic cov-
erage patterns

Not benchmarked
against measured
growth rates thus
far

Olm et al. (2017)

Tracking evolu-
tionary processes
within ecologi-
cally and geneti-
cally cohesive
populations

Homologous
recombination
vs mutation

Manual tools (e.g.,
Strainer) to visually
identify and quan-
tify recombination
sites or automated
tools to determine
recombination vs
mutation rates

Manual work is low
throughput

Eppley et al.
(2007); Johnson
and Slatkin (2009)

Gene gain/loss Custom scripts to
determine gene
content differences
between MAGs
representing same
population across
time series samples

Can we discrimi-
nate gene gain/loss
in population vs
strain replacement?

Bendall et al.
(2016)

Natural
selection

Custom scripts/
manual approach to
determine mutation
rates and/or gene-
specific vs genome-
wide selective
sweeps

Challenging in
“open” systems

Denef and
Banfield (2012);
Roux et al. (2014);
Bendall et al.
(2016)
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flexible genome. One such tool is able to detect gene frequency patterns across
samples of regions of the genome that are not represented in reference sequences
[e.g., MARYGOLD (Nijkamp et al. 2013)]. Historically, population genomic anal-
ysis of metagenomic data relied on manual analysis, either through existing assem-
bly visualization/curation software (Morowitz et al. 2011; Simmons et al. 2008),
through generic graphing software (e.g., excel, R) to visualize the distribution of
sequence similarities among reads mapping to a population’s contigs (Fig. 2;
[Bendall et al. 2016; Caro-Quintero and Konstantinidis 2012; Oh et al. 2011)], or
through software developed specifically for the resolution of bacterial strains in
metagenomic data [e.g., Strainer (Eppley et al. 2007)]. While these approaches
worked, a drawback of these methods is the labor-intensiveness and difficulty to
reproduce similar results by independent users with different levels of expertise.

More recently, a variety of tools have been developed to (1) remove bias due to
sequencing error [VarCap (Zojer et al. 2017)], (2) extract population genomic
metrics (e.g., Watterson’s theta) from next-generation sequencing data (Haubold
et al. 2010; Johnson and Slatkin 2006), (3) visualize SNP patterns across sample
series in assembled contigs [e.g., using Anvi’o (Eren et al. 2015)], and (4) resolve
closely related strains from metagenomic datasets [e.g., ConStrains (Luo et al. 2015),
MIDAS (Nayfach et al. 2016), DESMAN (Quince et al. 2017), StrainPhlAn (Truong
et al. 2017), PanPhlAn (Scholz et al. 2016), and LSA (Cleary et al. 2015)]. The
development of the latter set of tools is particularly exciting, as it promises to greatly
facilitate the resolution of strain dynamics and the coupling of gene content and
sequence composition data with dynamics in population abundance across environ-
mental or temporal gradients as has been performed manually previously (Denef
et al. 2010a; Morowitz et al. 2011).

Most of the strain resolution tools rely heavily on whole genome reference
databases, which are reasonably representative for some microbial systems such as
the human microbiome, but much less so for other systems such as terrestrial and
aquatic biomes. The reliance on reference genomes limits the ability for strain
resolution in these other environments at this point (Nayfach et al. 2016). All of
the reference-based tools are able to analyze thousands of metagenomic datasets at
the same time while extracting strain dynamics for many species at the same time,
e.g., 135 in the case of the study by Truong et al. (2017). Based on their own
benchmark study, StrainPhlAn appears to reduce the per-nucleotide nucleotide
variant identification error to less than 0.1%, granting more accurate strain identifi-
cation than tools such as MIDAS and ConStrains. PanPhlAn is similar in approach to
StrainPhlAn, but is focused on identifying strain-specific gene content, rather than
nucleotide substitutions (Scholz et al. 2016).

In contrast, strain resolution tools such as DESMAN and LSA take reference
sequence-independent approaches and, in the case of LSA, even an assembly-
independent approach. DESMAN identifies strains, including both genotype-
specific nucleotide substitutions and gene content variation, from metagenomic
data generated from a sample collection. After validating their approach with a
mock dataset, they applied their method to examine abundance patterns of different
strains within a large set of ocean metagenomic data (TARA Oceans). While
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DESMAN allows the identification of novel strains, it is highly dependent on the
quality of the assembly and binning steps and requires a relatively large number of
samples to be effective (Quince et al. 2017). Many researchers currently rely on
automatic binning approaches to generate their metagenomic sequence bins, but
these can be highly inaccurate, depending on community composition including the
extent of co-occurring closely related populations and the extent of community
turnover in the temporal or spatial sample series. While DESMAN has the ability
to further resolve multi-strain bins, careful manual curation, aided by tools such as
Anvi’o (Delmont et al. 2017) or ICoVeR (Broeksema et al. 2017), may be necessary
for downstream population genomic analyses. The second assembly-independent
approach discussed here, latent genome analysis (LSA; Cleary et al. 2015), separates
sequencing reads prior to assembly by calculating unobserved variables call
“eigengenomes” that reflect covariance in k-mer abundances across a sample series.
This method allowed for the separation and downstream assembly of specific
genomic regions of strains sharing less than 99.5% average nucleotide identity,
while regions of the genome highly conserved between strains were grouped
together as sequencing reads from which conserved core genome could be
assembled.

Beyond whole genome approaches, several approaches have been developed to
extract population-specific sequences for a set of core genes. The concept of multi-
locus sequence typing (MLST) (Maiden et al. 1998) used for population genetic
analysis of isolates has been implemented in metagenomic data analysis either
through a series of custom bioinformatic scripts (Berry et al. 2017) or through
more streamlined packages such as MetaMLST (Zolfo et al. 2017), ConStrains
(Luo et al. 2015), and MetaPhlAn2 (Truong et al. 2015). Finally, to resolve true
sequence variants from sequencing errors, tools such as oligotyping (Eren et al.
2013) can be applied to sequence reads covering marker genes, though we are not
aware of applications to metagenomic data thus far.

3.2 Resolving Ecologically and Genetically Cohesive
Populations

The motivation to develop these new metagenomic tools originated from the reali-
zation that studies using single marker genes clustered at a fixed identity level (i.e.,
OTUs) likely miss key community dynamics since multiple ecologically distinct
populations were clustered together in a single OTU (Acinas et al. 2004; Denef et al.
2010a; Eckburg et al. 2005; Fraser et al. 2009; Fuhrman and Campbell 1998;
Giovannoni et al. 1990; Hahn et al. 2016; Hunt et al. 2008; Larkin and Martiny
2017; Morowitz et al. 2011; Rocap et al. 2003; Shapiro et al. 2012; Shapiro and Polz
2014; Sharon et al. 2013; Wilmes et al. 2008). The ability to resolve strain-level

60 V. J. Denef



differences in microbial communities and detect the dynamics of highly related
genotypes will likely lead to rapid advances in our ability to study microbial ecology
at the appropriate resolution. We present here some of the most recent examples of
how streamlined strain-resolved analyses are leading to previously unrecognized
ecological patterns.

Using MIDAS, researchers were able to identify strains in metagenomic datasets
and this revealed dynamics that could not be observed at a higher taxonomic level
(e.g., species) (Nayfach et al. 2016). Conceptually, the finding that important
ecological dynamics are masked by clustering distinct populations into higher
taxonomic levels is similar to previous findings. Particularly, a study by
Rodriguez-Brito and coauthors showed that hidden underneath the observed stability
at coarser genetic resolution (“species” level) were strongly fluctuating abundances
of ecologically distinct “strains” grouped at the species level (Rodriguez-Brito et al.
2010). The study by Nayfach and coauthors revealed that mothers pass on a large
percentage of bacterial allele variants to their children in the early days after birth. In
the subsequent postnatal months, even as the number of species shared between
mother and child increases, the strain composition gradually diverges (Fig. 3a, b),
indicating increasing importance of colonization from other sources (Nayfach et al.
2016). These findings were confirmed in a similar study using PanPhlAn and
StrainPhlAn (Asnicar et al. 2017). At a larger spatial scale, links between geographic
distance and strain correspondence have been found in human populations using
StrainPhlAn as well and indicate limited overlap in strains between geographically
distinct populations (Truong et al. 2017).

Several of the recently developed methods allow us to pinpoint the specific gene
content and SNP variation that differentiates closely related but ecologically distinct
populations from each other to attempt to explain their distinct population dynamics.
For example, resolution of strains and identifying strain-specific gene content has
allowed for the identification of specific strains involved in diseases where tradi-
tional approaches failed to do so. Using PanPhlAn, Ward and coauthors identified
strain-specific gene content of Escherichia coli using 166 infant microbiomes and
identified strains associated with infant risk for necrotizing enterocolitis to be
enriched in genes involved in iron acquisition and specific energy and amino acid
metabolism functions (Ward et al. 2016). In another study, an analysis of regional
strain-level variability identified regionally distinct horizontally transferred genes, in
large part glycosyl transferase family proteins likely reflecting dietary differences at
both large and small spatial scales (Brito et al. 2016) (Fig. 3c). While these studies
did not aim to resolve co-occurring closely related populations, the same approach
could be applied to identify genes differentiating sympatric populations.

The field of epidemiology is also embracing metagenomic tools to better under-
stand disease outbreaks. As MLST is a common method used in epidemiological
studies using isolates, tools adapted to metagenomic data, such as MetaMLST, have
been used to identify strains in disease outbreaks (Zolfo et al. 2017). In addition, the
large number of reference sequences available for pathogenic bacteria in
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Fig. 3 Examples of the automated resolution of strains in metagenomic data. (a, b) Comparison of
metagenomic data in mother-infant pairs using MIDAS indicated that while the number of shared
species increases with time after birth (a), vertical transmission of strains is particularly important
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combination with automated tools greatly facilitates the use of metagenomic data to
perform epidemiological studies. This allows us to expand on the studies that were
thus far limited to isolate sequence data and enables insights into strain transmission,
retention, and tissue specificity within the human body in the absence of any
culturing bias (Donati et al. 2016).

Outside of the human microbiome, we are currently limited to analyzing a
handful of lineages that have an adequate representation in the databases, although
the generation of novel genomes reconstructed from metagenomic data and single
cell genomics is rapidly increasing the number and taxonomic coverage of available
references. For two well-represented taxa, the marine Pelagibacter and
Prochlorococcus, MIDAS has been used to determine differences between
populations in different oceanic regions by evaluating gene content overlap
(Nayfach et al. 2016). Conventional approaches failed to detect these phenomena
(Sunagawa et al. 2015). Whether these patterns were due to dispersal limitation or
due to environmental selection according to conditions that differ between oceanic
regions and that correlated with distance could not be resolved.

Expanding population-resolved analyses beyond taxa currently well represented
in genomic databases, Garcia and coauthors generated their own system-specific (in
casu, a specific lake) database of 33 reference genomes using single cell genomics
and did read recruitment using metagenomic data from a 5-year sample time series
from the same lake. They revealed distinct patterns for several abundant lineages.
Some lineages could be resolved into distinct genotypes with clearly distinguished
ecological dynamics that likely represented separate populations (e.g.,
Actinobacteria acI lineages). Other lineages (e.g., Alphaproteobacteria LD12, the
freshwater sister group to marine Pelagibacter) did not have sequence-discrete nor
ecologically distinct within-group dynamics (Garcia et al. 2016); thus distinct
populations could not be resolved, or all sampled cells belonged to a single popu-
lation. The availability of more nonhuman microbiome reference sequences, in
combination with the recently developed automated tools to deconvolute strain
patterns and identify alleles and gene content differences associated with these
strains, is promising.

⁄�

Fig. 3 (continued) early in life and decreases as time goes on, based on the % of shared alleles in
core genome marker genes (b). (c) Resolution of strain-specific differences due to divergence in
mobile element gene content showed that the type and abundance of specific glycoside hydrolase
gene families diverged significantly between a cohort from Fiji (FijiCOMP) and North America
(HMP). Prevalence indicates the % of fecal samples in the cohort that the protein family was
identified in. Abundance, expressed in fragments per kilobase of protein coding sequence per
million mapped reads (FPKM), presents the relative abundance spectrum across all samples in
each cohort. Asterisks indicate significant differences in prevalence and abundance. Figure adapted
from Nayfach et al. (2016) Fig. 3 and Brito et al. (2016) Fig. 1
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3.3 Determining Physiology of Ecologically and Genetically
Cohesive Populations

In contrast to tracking population dynamics of closely related genotypes, only
limited exploration of their physiological similarities and differences in the environ-
ment has been performed. When cultured isolates are available, it has been shown
that closely related strains can adopt widely divergent physiologies, e.g., based on
light spectrum preferences (Moore and Chisholm 1999) or temperature (Yung et al.
2015). Similar to metagenomics, a culture-independent approach can be taken to
determine physiology of strains directly in the environment. This could theoretically
be done by a combination of in situ hybridization [e.g., targeting genes sufficiently
divergent to enable strain-specific hybridization using fluorescent in situ hybridiza-
tion (Barrero-Canosa et al. 2017)] with assays gathering insights on physiology such
as Raman spectrometry (Huang et al. 2007) or nano-SIMS (Behrens et al. 2008) that
determine the ability for specific substrate uptake and/or metabolism.

Thus far, however, inferences about physiological differences between closely
related but ecologically/genetically distinct populations have been made primarily
by determining differences in transcript or protein abundances using
metatranscriptomic and metaproteomic approaches. While translating gene expres-
sion to process rates remains challenging, recent studies integrating in situ expres-
sion and process measurements indicate the possibility to use gene expression data
for process rate predictions (Wilson et al. 2017). Resolving expression patterns
between closely related populations is particularly insightful when they are sympat-
ric as these data can provide clues to the genetic differences that underlie ecological
differences between these populations. Examples include the use of strain-resolved
proteomics to show strain-level differences in biological phosphorus removal bio-
reactor communities (Wilmes et al. 2008), to identify pathways underpinning r- vs
K-strategy ecotypes in biofilm development (Denef et al. 2010a), and to show
physiological differences in chemotaxis and motility between closely related strains
with distinct successional dynamics during preterm infant gut colonization (Brooks
et al. 2015). All of these studies relied on a relatively labor-intensive manual effort to
resolve strain-specific protein abundance levels and typically are focused on a single
“species”-level group. More recently, automated strain-resolved metagenomic
methods have also been used at a metatranscriptomic level [PanPhlAn; (Scholz
et al. 2016)]. The method has been focused mostly on confirming activity of
organisms in situ at strain-level resolution, for example, to show that strains verti-
cally transmitted from mother to child were active in both the mother and child’s gut
environments (Asnicar et al. 2017).

Innovative tools have also been developed to gain insights into in situ growth
rates of natural populations. When recruiting sequencing reads to assembled contigs
from metagenomic data, it becomes apparent that replicating bacterial populations
generate distinct coverage trends during bidirectional genome replication. Coverage
is higher at the origin of replication and decreases toward the terminus. iRep is a tool
that exploits this pattern to estimate an index of replication, which can be interpreted
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as the fraction of the population that is actively making one genome copy at the time
of sampling (Brown et al. 2016). The iRep estimate is a population-average value,
and the existence of multiple replication forks during genome replication can bias
this index (i.e., values >2 can be achieved). Olm and coauthors used iRep to track
growth rates of strains across different body sites of preterm infants. First, they
determined that identical strains could be found on multiple body parts. However,
using iRep, they found that the replication rates of each strain differed depending on
body site (Olm et al. 2017).

3.4 Tracking Evolutionary Processes Within Ecologically
and Genetically Cohesive Populations

As stated at the start of the chapter, the analysis of metagenomic data allows us to
resolve the genetic structure of natural populations. We discuss here findings related
to the role of homologous recombination relative to mutation, variability in the
flexible genome, and using metagenomic data to study natural selection.

Metagenomic analyses of the genetic structure of natural populations have led to
new insights regarding the importance of homologous recombination within and
between natural populations. Manual inspection of some of the first genomic
datasets reconstructed from metagenomic data from an acid mine drainage system
revealed the coexistence of multiple Ferroplasma populations that were inferred to
be mosaic genomes originating from homologous recombination between at least
three parent populations (Tyson et al. 2004). These findings were confirmed when
comparing environmental metagenomic data to the genome of an isolate of the same
species (Allen et al. 2007). A more quantitative approach was applied by Eppley and
coauthors who found that the recombination rate within a Ferroplasma population
was higher than the recombination rate between Ferroplasma populations. This
suggested the presence of a species boundary based on genetic distance and
within-species genetic cohesion mediated by homologous recombination (Eppley
et al. 2007). Nonetheless, recombination still occurred between the two Ferroplasma
populations, at rates proportional to varying sequence similarity across the genome.
The continuation of homologous recombination in more conserved regions of the
genome, while more divergent regions being already genetically more isolated, is in
line with the model of temporally fragmented speciation proposed by Retchless and
Lawrence (2007).

While all the studies mentioned in the previous paragraph focused on the same
populations in acid mine drainage systems, they inspired new research on the
importance of recombination in other systems and the development of automated
methods to estimate recombination rates while controlling for sequencing errors
(Johnson and Slatkin 2009). Subsequent studies found recombination to be common
in marine populations, though at rates roughly four times lower than those observed
in the acid mine drainage system archaeal populations (Konstantinidis and DeLong
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2008). In thermophilic cyanobacteria, recombination rates have been shown to be
similar to mutation rates observed through comparing metagenomic data with isolate
genome sequence data (Rosen et al. 2015). In contrast, very low recombination rates
relative to mutation rates were observed when comparing single cell genomes of
LD12, the freshwater sister lineage of the abundant marine group Pelagibacter
(Zaremba-Niedzwiedzka et al. 2013). These results indicate that recombination
rates can be highly population-specific, and no generalization regarding the impor-
tance of recombination relative to mutation should be made. At the same time, it has
to be noted that these rate comparisons generally do not control explicitly for
differences in genetic distance between the sequences (and corresponding strains)
considered.

Metagenomic data has also been used to study recombination within viral
populations. A particular focus has been put on the CRISPR locus, which primarily
functions as an adaptive defense system against viruses and is composed of an array
of repeats interspersed with unique DNA segments called spacers. These CRISPR
spacers most likely originate from the DNA of viruses infecting the microbial host
that carries the CRISPR array in its DNA. Sequence reads that contained a sequence
identical to a spacer sequence but no CRISPR repeats were identified as belonging to
the targeted viruses and subsequently used to reconstruct viral genomic datasets.
These reconstructions indicated the ability of some viruses to escape the microbial
host’s CRISPR viral defense system by homologous recombination. Erosion of
linkage between viral genome variant positions at sequence lengths similar to the
size of the CRISPR spacers leads to evasion of the CRISPR defense system by the
viruses (Andersson and Banfield 2008). Similarly, by introducing multiple phage
genotypes in a phage-bacterial coevolution experiment, recombination was shown to
be an important mechanism to overcome CRISPR-based immunity (Paez-Espino
et al. 2015).

Gene content differences between and within ecologically cohesive populations
are observed commonly in studies using isolates. The analysis of metagenomic data
has made it abundantly clear that genomic heterogeneity at the level of gene content
is a hallmark of natural populations due to rapid gene gain and loss (Wilmes et al.
2009). The benefit of metagenomic data is that is has allowed for a quantitative
assessment of the differential abundance of particular genomic islands between
divergent environments (Coleman and Chisholm 2010) and over time (Bendall
et al. 2016). The evolutionary origin of these gene content differences has been
hypothesized to lie in a variety of ecological interactions (Cordero and Polz 2014)
including viral predation (Rodriguez-Valera et al. 2009). From the enrichment of
nutrient uptake genes under nutrient limitation (Coleman and Chisholm 2010), to the
extensive gene flux in the mobile gene pool within and across species boundaries
(Boucher et al. 2011), gene content differences are commonly observed to differen-
tiate populations across space or time, despite overall cohesion of the rest of the
genome.

Finally, efforts have been focused on identifying the effects of selection, which
has been reviewed previously (Wilmes et al. 2009). Since that review, deep sampling
of natural populations with metagenomic data generated from time series from a
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relatively closed system (acid mine drainage) has been used to determine nucleotide
fixation rates in the environment (Denef and Banfield 2012). The estimated rate was
similar to findings in laboratory experimental evolution experiments (Barrick et al.
2009). Also, the loci affected by fixed non-synonymous mutations were biased
toward regulatory genes in both the laboratory and environmental studies (Barrick
et al. 2009), pointing to the importance of gene expression evolution in the early
stages of evolutionary and ecological differentiation.

Despite challenges posed by dispersal in more open systems, a recent application
of time-series metagenomics in a freshwater lake was able to show that both gene-
specific and genome-wide selective sweeps occur in natural populations (Bendall
et al. 2016) (Fig. 4). Other studies using isolates have indicated the possibility of
gene-specific selective sweeps as well (Shapiro et al. 2012), and a previous
metagenomic study has shown that orthologous regions differentiating coexisting
organisms based on nucleotide substitutions did not show evidence of positive
selection, contrary to predictions from the ecotype model (Simmons et al. 2008).
Thus, population genomic studies using metagenomic data have added support for
the importance of both gene-specific selective sweeps and genome-wide selective
sweeps. The latter are in support of the ecotype model, i.e., that all diversity in an
ecologically and evolutionary cohesive cluster of cells is regularly purged by
selection of one specific adaptive genotype within the cluster, while the former
indicates that recombination rates can be sufficiently high to undo the effects of
selection. As argued by Shapiro and Polz (2015), there likely is no single model of
speciation, but rather a spectrum determined by the contributions from gene flow and
selection.

Time series metagenomic analyses have also suggested genome-wide selective
sweeps in viral populations (Roux et al. 2014). Moreover, the dynamic interplay
between viral and bacterial evolution has attracted the attention of researchers
applying metagenomic tools, with a particular focus on dynamic changes occurring
as a result of selection at CRISPR viral defense system loci. These analyses have
given us insight into individual cell lineages’ exposure history to viruses and have
shown that CRISPR loci can be a population genome’s most highly diverse loci
(Tyson and Banfield 2008). Time series analyses of CRISPR sites have been used to
(1) determine the retention of spacers and changes occurring in both CRISPR
spacers and targeted viral genome loci (Sun et al. 2016), (2) model the evolutionary
benefits of conservation of trailer-end (i.e., older) CRISPR spacers (Weinberger et al.
2012), and (3) identify molecular mechanisms such as incomplete immunity based
on a single CRISPR spacer that may explain coevolutionary dynamics that deviate
from those predicted by basic CRISPR immunity phage-bacteria population models
(Levin et al. 2013). Similar datasets could be used to test recently proposed models
of the dynamic coevolution between hosts and viruses based on CRISPR immunity
(Childs et al. 2012).
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4 Outlook

Despite tremendous insights into natural population genomic heterogeneity gained
from metagenomic approaches, some of the key limitations of metagenomic data
have kept metagenomics from replacing isolate or single cell genomic approaches to
perform population genomic analyses. This is particularly true for the estimation of

Fig. 4 Identifying selection events using metagenomic-based population genomic analyses. (a)
Read recruitment of metagenomic data generated from samples collected from the same lake over
an 8-year period to a MAG of Chlorobium-111 indicated gradual purging of diversity at all
polymorphic sites, i.e., a genome-wide selective sweep. The “reference base” is the base most
commonly observed in the final sample in 2013. Data from samples from each year were combined
for read recruitment. (b) Comparison of distribution SNPs (blue bars) detected in the metagenomic
data across the MAGs of Chlorobium-111 and Polynucleobacter-238. Contigs breaks are indicated
by red lines. The Polynucleobacter genome shows a 21 kbp region with no SNPs (black arrow),
which the authors interpreted as evidence of a gene-specific selective sweep preceding the first
sample time point. Adapted from Bendall et al. (2016) Fig. 4 and Supplementary Figure S5
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key population genetic parameters. While future advances in read length and base
calling accuracies may facilitate the use of metagenomic data for population geno-
mic analyses sensu stricto (Koren and Phillippy 2015), recently developed tools
discussed in this chapter are allowing us to mine current metagenomic data to
identify and track strains across space and time (Asnicar et al. 2017; Nayfach et al.
2016; Quince et al. 2017). As discussed above, such approaches are most powerful
in the context of extensive reference genomic databases, making them currently most
useful in human microbiome research. Yet, the ability to readily obtain (partial)
genomic sequences from 100 s to 1000 s of single cells per sample (Kashtan et al.
2014, 2017) or directly from metagenomic data (Anantharaman et al. 2016; Delmont
et al. 2017) is opening avenues to apply these tools to all microbial systems. We will
likely also see further integration of population genomic analyses with
metatranscriptomic or metaproteomic data or even high-throughput measurements
of phenotypic features (Props et al. 2016) to gain insights into both the role of within-
and between-population genomic heterogeneity and phenotypic plasticity. Improv-
ing our ability to see changes in population genetic structure of microbial
populations across space and time will improve our understanding of both the
evolutionary and the ecological processes that shape microbial populations (Cohan
2016; Dudaniec and Tesson 2016; Shapiro and Polz 2015). These insights are
paramount in our efforts to understand how microbial populations and the commu-
nities they are part of change in composition and functioning in light of change,
particularly disturbances caused by human activities.
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A Reverse Ecology Framework for Bacteria
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Abstract Advances in sequencing technologies have led to a rapid increase in
available bacterial and archaeal genome information, but for much of this diversity,
little ecological information is available. Reverse ecology provides a potential path
forward by using genomic information to gain insight into the ecological associa-
tions and niche spaces of organisms. A crucial first step is to predict population
structure, which provides the basis for analyzing genomes for evidence of ecological
differentiation. Although delineation of bacterial and archaeal populations remains
difficult, we outline how gene flow information can be used to identify populations
as genetic units, which also are ecological units because adaptations can spread
through them in a specific manner. This approach is particularly powerful when
closely related populations are analyzed for signatures of differential selection
that indicate recent ecological differentiation. Genome-wide association studies
can also help identify mutations and genes underlying ecologically relevant traits.
Albeit still in their infancy, reverse ecology approaches have the potential to order
microbial diversity into genetically and ecologically cohesive units and hence
provide the opportunity to test hypotheses about the evolutionary mechanisms
creating and maintaining diversity within and between populations.
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1 Introduction

The rapid growth in research in microbial ecology in the past few years has been
spurred by the recognition of the critical role microbes play in global environmental
processes and in human health. Progress has, to a large extent, been enabled by
the increasingly low cost of sequencing, which was critical in overcoming the
formidable challenge of characterizing the vast co-existing genetic diversity in
most of the Earth’s habitats (Goodwin et al. 2016). The growth in available microbial
genomes and metagenomes has helped finding associations of microbial groups
with environmental variables, other organisms, or disease states (Balding 2006;
Hughes-Martiny et al. 2006; Knight et al. 2012). Yet it is also true that the rapid
generation of genomic sequence data has outpaced our ability to gain specific
knowledge about the ecology of microbes, certainly at the level of detail required
to understand the creation and maintenance of genomic diversity in the wild.

Linking ecology to genomic diversity is not a trivial enterprise due to several
problems of both theoretical and practical nature. Most importantly, it has remained
difficult to define the appropriate units of diversity at which to measure microbial
associations, and sampling happens, more often than not, on far too large spatial
and temporal scale to directly measure microbial interactions (Polz et al. 2006).
For sexually reproducing eukaryotes, which form reproductive or gene-flow units
(Coyne and Orr 2004; Mayr 1942), ecologically relevant units of diversity are locally
co-existing members of species (populations). This congruence arises because
adaptive mutations can spread within populations in an exclusive manner. It is
therefore at least theoretically straightforward to analyze how physiological, behav-
ioral, or metabolic adaptations differentiate one population from another and how
selection and demography affect genetic diversity. Bacteria and archaea, however,
engage in promiscuous recombination, which can, in principle, lead to the incorpo-
ration of genetic material from any other organism (Babteste and Boucher 2008;
Doolittle and Papke 2006; Doolittle and Zhaxybayeva 2009). This insight has
contributed to the continued largely operational (and arbitrary) definition of species
(Thompson et al. 2015). However, recent work suggests that in spite of the lack of
formal species definitions in the microbial world, microbial diversity is clustered and
that, if appropriately chosen, sequence clusters represent ecologically distinct units
(Polz et al. 2013; Shapiro and Polz 2014). This development provides hope that a
biologically informed species concept will be possible in the future.

These advances in identifying ecological distinct units among microbes are
exciting as they also suggest the possibility of a reverse ecology approach in
which genomic features can be used to infer the ecology of a group of organisms
(Fig. 1). The term reverse ecology was originally introduced in the context of
eukaryotic population genomics to identify genome regions under divergent selec-
tion as evidence of recent ecological differentiation of two populations (Li et al.
2018). More recently, reverse ecology has also been used to describe an approach
where systems biological modeling of metabolic features of a microbe is used to
refine understanding of ecological interactions (Levy and Borenstein 2012). While
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the latter is, strictly speaking, not dependent on defining population structure, it still
benefits from it. In the following, we first review the application of reverse ecology
in the context of population genomics of eukaryotes and then outline how reverse
ecology can be applied to bacteria and archaea without requiring a formal species
definition. We do this by discussing how, in spite of problematic species definitions
for bacteria and archaea, progress has been made toward identifying genetic and
ecological units and how these can be used for reverse ecology approaches.

2 Reverse Ecology in Eukaryotes

One of the first studies that used whole-genome sequences in a reverse ecology
framework examined genomic regions under selection in two morphologically
identical populations of the mosquito Anopheles gambiae (Lawniczak et al. 2010).
These populations have overlapping geographical distributions with differences in
their preferred larval environment, but no other significant behavioral or phenotypic
differences are evident. There is, however, evidence that gene flow is restricted
between the two populations (della Torre et al. 2005). By identifying genomic
regions with low intrapopulation divergence, Lawniczak and colleagues inferred
soft sweeps and hence differential positive selection. These included regions
containing genes related to insecticide resistance, suggesting that anthropogenic
influences may be a key driver of population differentiation. Interestingly, the
researchers also discovered that these two populations were further advanced in
the speciation process than previously thought and posited that this may have limited
their ability to detect genes that are “instrumental” as opposed to “incidental” to

Closely related, co-occurring
isolates or single cell genomes

Population-specific and core 
genes under differential selection

Units of cohesive gene flow 
(populations)

Environmental dynamics 
and associations Physiological properties Environmental selection

Cluster genomes based on patterns of gene flow 

Identify genes that support the distinction between populations

Test hypotheses about drivers of differentiation based 
on known ecology and genes under selection

Fig. 1 Schematic of potential workflow in reverse ecology approaches
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population differentiation (Lawniczak et al. 2010). In other words, factors important
in initiating population differentiation are most easily observed in recently diverged
populations.

The population structure of organisms of interest is, however, not always
known a priori. In these cases, a robust conceptual understanding of eukaryotic
speciation allows the prediction of populations from genomic data alone. This was
the approach taken by Ellison and colleagues in studying the cosmopolitan yeast
species Neurospora crassa (Ellison et al. 2011). Phylogenetic analyses as well as
models of admixture and demographic history supported the existence of two
distinct N. crassa populations, which were geographically separated (localized to
Louisiana and the Caribbean, respectively) but not differentiated in any other
obvious manner. Two genomic regions undergoing differential selection were
identified by measuring three different metrics of nucleotide diversity and linkage
disequilibrium in transcriptomic data from globally collected isolates. These regions
contained genes related to temperature adaptation and circadian regulation. Impor-
tantly, this led to a specific ecological hypothesis: because the Louisiana population
experiences colder winters than the Caribbean population, the Louisiana population
would be better adapted to cold stress. Direct testing of growth rates at different
temperatures confirmed this hypothesis, demonstrating the potential of reverse
ecology to inform a targeted experimental approach.

Insights into population-specific adaptation have also been gained using
reverse ecology in several other fungal groups including Penicillium molds used in
the manufacturing of blue cheeses (Ropars et al. 2017) and the North American
mushroom species Suillus brevipes (Branco et al. 2017). While climatic factors
were found to structure S. brevipes populations similarly to N. crassa, an antifungal
growth inhibition gene appears to play a key role in the differentiation of Penicillium
populations (Ropars et al. 2015). The genomic region containing this gene was
confirmed to inhibit the growth of other Penicillium strains when grown on a cheese-
based medium, highlighting that reverse ecology can identify both abiotic and biotic
determinants of population structure.

Taken together, these examples from eukaryotic species provide a broad outline
for how reverse ecology can successfully be applied (Fig. 1). First, recently diverged
populations differentiated by unknown factors must be identified. Next, whole-
genome-based methods can be used to identify candidate genes under differential
selection in the identified populations. Finally, the predicted function of these
candidate genes can be used to form specific hypotheses about differentiation,
which can be tested using experimental or observational methods.

3 The Bacterial and Archaeal Species Problem

If reverse ecology has been successful in eukaryotic systems for which genomic
data are difficult to obtain, the dearth of such studies in bacteria and archaea
may seem surprising given the relative abundance of available genomic sequences
(as of July 2018, there are ~24 times more prokaryotic genomes than eukaryotic
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genomes available on GenBank). However, the lack of a coherent microbial species
definition represents an impediment to a reverse ecology approach because patterns
of selection can only be interpreted in the context of population structure.
While many attempts have been made at organizing the diversity of microbial
life (Achtman and Wagner 2008; Bobay and Ochman 2017; Cohan 2002; Fraser
et al. 2009; Vos 2011, #4446; Gevers et al. 2005; Konstantinidis et al. 2006;
Konstantinidis and Tiedje 2005; Rosselló-Mora and Amann 2001), there is still
debate how to best incorporate ecological information. Is it possible to delineate
cohesive evolutionary and ecological units? The following section will give a
brief overview of these attempts and their limitations.

Systematically organizing the diversity of microbial life has been a contentious
task from its beginning. Early attempts took their inspiration from traditional
classification schemes and categorized microbes according to a suite of phenotypic
and morphological characteristics including motility, cell wall composition, and
resource usage (Thompson et al. 2015; Vandamme et al. 1996). With the develop-
ment of more complex methods in molecular biology, genetic measures such as
DNA-DNA hybridization (Wayne et al. 1987) and restriction fragment length
polymorphism (RFLP) analysis (Lee et al. 1998) were quickly added to the
growing list of relevant traits, ushering in the age of so-called polyphasic taxonomy
(Vandamme et al. 1996). This is essentially a “more is better” approach to taxonomy
and holds that all available information is potentially relevant for classification,
without an overarching theoretical framework (Gevers et al. 2005; Vandamme
et al. 1996).

Within the last two decades, however, the limitations of such a system have
become apparent (Thompson et al. 2015). In a polyphasic system, divisions are
driven by what human observers are able to measure or have a particular interest
in, regardless of the relevance of such measures to the ecology and evolution of
microbes themselves. Without an a priori theory-based concept of what a population
is, how can we ensure that a polyphasic system delineates ecologically and evolu-
tionarily cohesive units?

With the rapid increase in the amount of available sequence data, comparison
of similarity of genes initially seemed to provide a way to add rigor to taxonomy
by defining species based on sequence identity cutoffs (Gevers et al. 2005; Keswani
and Whitman 2001; Konstantinidis and Tiedje 2005; Stackebrandt and Goebel
1994). This meant that microbes could be separated into discrete, unambiguous
units. Perhaps the most widely used method for delineating microbial groups centers
around an operational taxonomic unit (OTU) that defines bacterial and archaeal
species as groups of individuals that are >97% similar in their 16S ribosomal RNA
sequence. This figure was based primarily on the observation that DNA-DNA
hybridization values of 70% correspond with previously defined bacterial species
and in turn that 97% rRNA identity roughly corresponded with this 70% cutoff
(Stackebrandt and Goebel 1994) but was later revised to 99% rRNA identity cutoff
(Keswani and Whitman 2001). However, OTUs do not group microbes into genet-
ically or ecologically cohesive units. Close examination of groups of organisms
clustered in this way reveals that significant substructure exists within these clusters
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(Jaspers and Overmann 2004; Koeppel and Wu 2013). Nor is there a reason to
assume that a uniform sequence cutoff reflects the evolutionary process of differen-
tiation across highly diverse organisms. Indeed, even organisms with identical 16S
rRNA have been found to inhabit different ecological niches (e.g., Hunt et al. 2008;
Jaspers and Overmann 2004; Kashtan et al. 2014), highlighting that OTUs based
on single-gene identity lack resolution to detect fine-scale ecological differentiation.

The problem of low resolution could potentially be solved by incorporating
more genetic information, either by considering multiple genes or the entire genome.
This idea guides the delineation of microbial units based on phylogenetic multi-
locus sequence analysis (MLSA) (Gevers et al. 2005) and genome-wide average
nucleotide identity (ANI) (Goris et al. 2007; Varghese et al. 2015). In MLSA-based
approaches, phylogenetic clusters are often observed, but where to draw the line
delineating clusters is unclear. Indeed, such clusters among bacteria and archaea
can appear “fuzzy,” without a clear boundary separating them (Hanage et al. 2005;
Papke et al. 2007). Similarly, the problem of arbitrary boundaries limits ANI
analyses. Since identity cutoffs are based on pre-existing, taxonomic species
definitions, units delineated by ANI may not correspond to ecologically cohesive
populations.

4 The Nature of Gene Flow in Bacteria and Archaea

In addressing whether we can identify genetically and ecologically congruent units,
we need to first consider how bacteria and archaea differ in their mode of evolution
from eukaryotes. Firstly, incorporation of new genetic material is always unidirec-
tional and leads either to gene conversion by homologous recombination or gene
addition by nonhomologous recombination. While a small fraction of taxa follows a
highly clonal mode of evolution (~15%), most engage in recombination (Bobay and
Ochman 2017; Vos and Didelot 2009). The rates of homologous recombination can,
however, differ by several orders of magnitude (Vos and Didelot 2009), and the rates
of nonhomologous recombination remain poorly constrained, but there is some
evidence that there are two classes of genes that differ in their turnover rate
(Baumdicker 2014; Baumdicker et al. 2012). In fact, there is mounting evidence
that gene addition and loss frequently happen by homologous recombination of the
flanking regions so that these may turn over with similar rates to gene conversion
(Cordero and Polz 2014; Cordero et al. 2012; Croucher et al. 2016). The difficulties
these different modes of gene flow represent for bacterial and archaeal population
genetics have recently been reviewed (Rocha 2018); what is of concern here is their
effect on genotypic integrity and ecological adaptation.

In particular, horizontal gene transfer (HGT) among distantly related organisms
can create genotypes that vary in properties of ecological relevance by acquiring
functions, such as antibiotic resistance or nitrogen fixation, that distinguish
them from otherwise closely related genotypes (Doolittle and Papke 2006; Syvanen
2012). At the same time, the recipient genotype has also become ecologically
similar, in at least one niche dimension, to the organism from which it acquired
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the novel pathway. In fact, such functional differentiation is observed among closely
related environmental isolates (e.g., Hahn and Pockl 2005; Hehemann et al. 2016)
and, in combination with high gene turnover, has been taken as evidence that gene
acquisition and loss is so high as to quickly erode any niche association of lineages
(Doolittle and Papke 2006). By extension, the very notion of a lineage has been
questioned on the same grounds – with the consequence that nearly each genotype
might represent its own independent ecological unit (Doolittle and Zhaxybayeva
2009) that can only be recognized by the functional genes it carries (Wiedenbeck and
Cohan 2011). The idea that genotypic clusters should be rapidly eroded by HGT
might in part be an artifact of early comparative studies of quite anciently diverged
genomes. In these, only a fraction of genes in the core genome showed phylogenetic
congruence, and the flexible genome seemed to be completely unrelated (Doolittle
and Papke 2006; Welch et al. 2002).

In contrast to this radical view of uncoupling of lineage and function, analysis of
environmental isolates and metagenomes has demonstrated that microbial commu-
nities consist of genotypic clusters of closely related organisms despite also showing
evidence for extensive gene flow (e.g., Bendall et al. 2016; Bobay and Ochman
2017; Denef et al. 2010; Gevers et al. 2005; Hanage et al. 2005; Konstantinidis
and DeLong 2008; Luo et al. 2011; Oh et al. 2011). Moreover, cohesive ecological
dynamics and associations have been demonstrated for a growing number of
cases, including for vibrios (Hunt et al. 2008) and cyanobacteria (Kashtan et al.
2014), as well as for organisms represented in several marine, freshwater, and acid-
mine drainage community metagenomes (Bendall et al. 2016; Caro-Quintero and
Konstantinidis 2012; Denef et al. 2010; Konstantinidis and DeLong 2008; Whitaker
and Banfield 2006). These observations suggest congruence of genotypic and
ecological units and are, in principle, consistent with the notion of populations as
locally co-existing members of a species. The challenge is then to develop an
understanding of how genotypic clusters originate and are maintained and whether
they are selectively optimized to occupy sufficiently different niches to co-exist with
other clusters. Importantly, any such attempt needs to take into account the consid-
erable genotypic diversity encountered in environmental populations, which often
consist of genomes differing by a considerable fraction of their gene content and
displaying large allelic diversity even if most of their genes suggest close relation-
ships (Cordero and Polz 2014).

5 Evolution of Genetic and Ecological Units

Ecological units, in the most basic sense, denote groups of organisms with common
ecological functions. It is obvious that this definition represents an abstraction by the
observer and is hence subject to individual preferences of how finely one wishes to
demarcate units (Jax 2006). For example, does the acquisition of an antibiotic-
resistant gene generate a new ecological unit or simply a variant within an existing
unit? Do all sulfate-reducing bacteria represent one ecological unit since they all
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carry out a common, highly relevant environmental function? In other words, is an
ecotype (defined here as ecologically completely equivalent genotypes) the right
unit, or should we define ecological units more broadly, and is it possible to define
them based on natural processes?

To address the problem of defining natural ecological units, we return to the
observation that genetic information is clustered within communities and focuses on
the mechanisms capable of clustering genetic diversity, namely, migration, muta-
tion, recombination, and selection. Although one principal way of clustering is
genetic differentiation due to allopatric speciation (Denef et al. 2010; Konstantinidis
and Tiedje 2005; Nemergut et al. 2011; Whitaker 2006), sympatric speciation is
thought to be more common in microbial populations (Vos 2011). For sympatric
speciation, the key questions are whether selection is required for cluster formation
and, once clusters are formed, whether they act as genetic units within which
adaptive mutations can spread. If so, clusters can be regarded as selectionally
optimized, natural ecological units akin (but not identical) to populations in sexually
reproducing eukaryotes.

There is, in fact, mounting evidence from modeling and empirical studies that
formation of genotypic clusters (speciation) requires selection. We refer the reader
for a detailed description to the chapter by Shapiro (2018); here, we focus on the
information required to identify clusters and carry out reverse ecology studies and
describe only briefly how the interplay of recombination and selection can have
two possible outcomes. The first outcome, popularized by Frederic Cohan’s ecotype
model (Cohan 2002; Koeppel et al. 2008), is that under low recombination regimes,
adaptive alleles or genes may spread by genome-wide selective sweeps. However,
when recombination is high enough, a different outcome may result: genes or
genomic regions may sweep within a population independent of the rest of the
genome (Polz et al. 2013). Such gene-specific sweeps are most likely possible
because both ecological (Boucher et al. 2011; Smillie et al. 2011) and genetic
similarity (Fraser et al. 2007; Majewski 2001) allow for greater gene flow, so that
taken together genotypically and ecologically similar populations have higher
probability of both gene transfer and recombination (Shapiro and Polz 2014). In
both outcomes, adaptive mutations may thus spread within a cluster, but speciation
may lead to formation of new clusters if the adaptive mutation triggers to spatial
or temporal niche or habitat separation (Polz et al. 2013). In order for such separation
to arise, the adaptation must be accompanied with a trade-off so that the nascent
population possesses a disadvantage in the ancestral but an advantage in the new
niche or habitat (Wiedenbeck and Cohan 2011).

Finally, clustering is a natural consequence of speciation for both outcomes
of selective sweeps (Fig. 2). Because of the high linkage, during genome-wide
selective sweeps, the genotype carrying the fitness-conferring mutation expands
within the niche, outcompeting all other genotypes, effectively setting diversity
within the population to zero (Cohan 2002). Diversification of the winner genotype
leads to formation of a cluster, which can be reinforced by recurrent sweeps (periodic
selection). However, clusters can also arise under the second speciation scenario
involving gene-specific sweeps (Polz et al. 2013). Because the sister populations will
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occupy a different habitat than the ancestral population due to the requirement of a
trade-off outlined above, gene flow between the two populations will be initially
depressed because of lower encounter rates. Subsequently, the combined action of
population-specific accumulation of mutation and recombination will further genet-
ically isolate the nascent from the ancestral population, eventually leading to the
formation of a distinct cluster (Polz et al. 2013).

There are examples for both genome-wide and gene-specific sweeps in environ-
mental bacteria and archaea (Bao et al. 2016; Bendall et al. 2016; Cadillo-Quiroz
et al. 2012; Dutilh et al. 2014; Rosen et al. 2015; Shapiro et al. 2012; Toro et al.
2017), although there is only a single well-documented case of the first. This
genome-wide sweep was revealed by metagenomics of a 9-year time series analyz-
ing bacterioplankton in a small lake where a population of green sulfur bacteria
showed a purge of nearly all single-nucleotide polymorphism over the observation
period (Bendall et al. 2016). In contrast, several other populations co-existing in
the same lake showed evidence for gene-specific sweeps, i.e., progressively reduced
diversity in specific genome regions, while the rest of the genome remained diverse.
The first evidence for gene-specific sweeps was revealed by analysis of 20 Vibrio
cyclitrophicus genomes with identical 16S rRNA genes and >99% amino acid
identity genome wide (Shapiro et al. 2012). Despite being so genetically similar,
two separate groups with distinct ecological preferences were hypothesized based
on differential distribution in ocean water: while some isolates were obtained from
organic particles, others occurred free-living (Hunt et al. 2008). These distinct
lifestyles are made possible by the patchy distribution of resources in the ocean
(Polz et al. 2006), which might promote a form of mosaic sympatry. Nearly at the
same time, a second investigation targeted 12 genomes of the archaeon Sulfolobus
islandicus from a hot spring in Kamchatka, Russia (Cadillo-Quiroz et al. 2012).
These studies were similar in that both sampled closely related isolates from the
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Fig. 2 The two outcomes of selective sweeps in microbial populations under high- and
low-frequency recombination regimes. Under low-recombination regimes, selective sweeps will
reduce overall genome-wide diversity within a population essentially to zero. Under high recom-
bination, alleles become unlinked, and selection can operate on individual loci without affecting the
diversity of alleles across the rest of the genome
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same geographic location, without apparent barriers to genetic exchange (either a
single hot spring or a single bucket of seawater), and from groups of bacteria or
archaea with relatively high rates of recombination (Vos and Didelot 2009; Whitaker
et al. 2005). The studies differed in that the first study showed clear evidence
for gene-specific sweeps, while the Cadillo-Quiroz et al. study detected continents
of differentiation, perhaps indicating that the speciation process was further
advanced. Moreover, while the Vibrio study had an a priori notion of ecological
association for the two populations due to the sequencing of a gene under potential
environmental selection (Shapiro et al. 2012), the Sulfolobus study took a purer
reverse ecology approach, identifying two populations based on overall genomic
similarity, then investigating recombination rates within and between groups, and
characterizing phenotypic differences between them.

6 Gene Content Variation and Population Structure

One vexing issue in bacterial and archaeal population genetics is the observation that
even very closely related genomes can vary considerably in gene content, leading to
the categorization of the core (shared by all) and flexible (unique or shared by few)
genome. How to interpret the flexible genome, the sum of which is often called the
pan-genome, remains a particularly difficult problem since it is unclear how genes
occurring at low frequency within populations affect the ecology of the organisms.

Part of the issue undoubtedly stems from the fact that it is very difficult to identify
correct population boundaries (Rocha 2018). Because of the species issue discussed
above, the unit of comparison is almost always too broad so that genes judged to
be part of the flexible genome may actually be part of the core genome of more
narrowly defined populations. Moreover, this issue is exacerbated by sparse sam-
pling of closely related genomes that represent the diversity within populations.
For example, in the marine cyanobacterium Prochlorococcus, populations in the
Atlantic contain genes responsible for efficient phosphorus acquisition that are
absent from populations in the Pacific, consistent with prevailing environmental
concentrations of this essential nutrient (Coleman and Chisholm 2010). Hence
these genes are part of the core genome of Atlantic populations but would be judged
flexible genes if closely related isolates were compared from both ocean regions.
The recent discovery of even finer population differentiation in sympatry by large-
scale sampling of closely related genomes suggests that an even higher portion
of previously flexible genes should be recategorized as core (Kashtan et al. 2014,
2017). Another example is Campylobacter jejuni strains that were isolated from both
cattle and chickens, but the genome-wide phylogeny provided little evidence for host
preference (Sheppard et al. 2013). In other words, host switching is relatively rapid,
and long-term host preferences have not been established. However, a gene cluster
involved in vitamin B5 biosynthesis is universally present in cattle isolates but
mostly absent in chicken isolates. This gene cluster appears to provide a selective
advantage in B5-depleted environments, which might include the cattle gut
(Sheppard et al. 2013). This example stresses the importance of defining populations
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in order to be able to interpret which genes are part of the core genome and hence
likely essential for survival of the population.

But even if population boundaries are narrowly defined, the flexible genome
remains substantial enough that cohesive populations may nevertheless contain
high levels of genotypic (and to some extent, phenotypic) diversity within them.
How can this be explained? First, as discussed earlier, niche-specifying variants
(genes or alleles) may come with a fitness trade-off, such that they are adaptive
in one niche but not in another. In a genetically cohesive population that spans
two niches, different niche-specifying variants will be maintained in each niche,
leading to variation at the level of the entire population (Marttinen and Hanage 2017;
Niehus et al. 2015). Second, frequency-dependent selection might maintain diversity
in a subset of genes involved in niche complementarity, social interactions, vaccine
resistance, and predator-prey interactions (Cordero and Polz 2014; Corander et al.
2017). A relatively high proportion of genes in the flexible genome may be involved
in such interactions. It has been argued previously that many genes occurring at
intermediate to low frequency within genomes are involved in predation evasion by
varying surface antigenicity (Cordero and Polz 2014; Rodriguez-Valera et al. 2009).
Moreover, intermediate-frequency genes may be involved in frequency-dependent
interactions such as public good production and cheating as well as niche-
complementation (Cordero and Polz 2014). This may also explain some phenotypic
variation frequently observed among closely related genotypes. For example, any
secreted compound, such as enzymes, antibiotics, or signaling molecules, can
become a public good that may invite cheating given sufficiently stable population
structure. Indeed, broadcast exoenzymes involved in polysaccharide degradation
as well as secreted siderophores for iron acquisition have been shown to occur at
relatively low frequency within populations, and there is evidence that cheater
populations have evolved (Cordero et al. 2012; Hehemann et al. 2016). Lastly, we
should not forget that many genes, typically localized in genomic islands of high
variation, appear to have such high turnover within populations that a high fraction
might be (nearly) neutral to bacterial fitness (Baumdicker 2014; Baumdicker et al.
2012; Berg and Kurland 2002; Haegeman and Weitz 2012; Thompson et al. 2005).
Similarly, if genome-wide selective sweeps do not periodically reduce diversity,
substantial allelic diversity will be preserved through speciation. In other words,
allelic diversity will be much older than the population itself (Castillo-Ramirez et al.
2011). Importantly, interpretation of such microevolutionary changes in the context
of selection and population dynamics requires that sympatric genomes (i.e., from the
same population) are sampled.

7 Toward Reverse Ecology in Bacteria and Archaea

As suggested above, the analysis of speciation processes can be instrumental in
building hypotheses of ecological differentiation (see also Shapiro and Polz 2014).
We stress that such exercise is most informative when very closely related genomes
are analyzed (e.g., identical or nearly identical in 16S rRNA marker genes) since
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detection of ecological differentiation becomes increasingly trivial if more divergent
genomes are compared. Two kinds of hypotheses can be formed in the context of
reverse ecology studies. First, the identification of nascent clusters can provide
general hypotheses of genetically differentiated units that can then be investigated
broadly for genetic, ecological, or physiological differentiation. This was the case
in the Sulfolobus example mentioned above where gene flow analysis suggested
recently diverged populations and screening of representative isolates from the
two populations revealed growth differences in standard media (Cadillo-Quiroz
et al. 2012). In general, hypothesizing population structure followed by searches
for ecological or physiological differences is the only possible analysis in this
speciation scenario if genome-wide selective sweeps occur since the high linkage
erases signatures of selection by resetting diversity to low levels across the entire
genome. In contrast, gene-specific sweeps afford building of more nuanced hypoth-
eses of how selection has differentially affected two diverging populations by
looking for genes and genome regions that show reduced nucleotide diversity
(Fig. 2). This was the case in V. cyclitrophicus, which represents, to our knowledge,
the most direct reverse ecology analysis in bacteria to date and which we describe
in some detail below before outlining a general approach.

The hypothesis of two recently diverged populations originally arose from a study
assessing to what extent bacteria of the family Vibrionaceae co-occurring in the
same seawater samples are partitioned into ecologically differentiated populations.
Over 1,000 isolates were obtained from size-fractionated water representing differ-
ent potential lifestyles such as free-living or attachment to various organic particles
or larger organisms (Hunt et al. 2008). Fine-scale phylogenetic relationships were
subsequently assessed using multilocus sequencing, and hypotheses of population
structure were generated using a mathematical model (AdaptML) that establishes the
evolutionary history of ecological differentiation, which in this case is differential
association with the various size fractions. Importantly, this analysis revealed several
genotypic clusters that appeared nearly identical in multilocus genes but nonetheless
differentially associated. The most closely related cluster containing two predicted
populations, representing the aforementioned V. cyclitrophicus, was subsequently
chosen for genomic analysis to gain further insights into the processes involved in
evolution of differential association (Shapiro et al. 2012).

The analysis of genomes sampled from the two populations revealed that in spite
of very close relationships (average amino acid identity across the genome ~99%)
and a history of extensive recombination, there was evidence for population-specific
sweeps of genome regions (Shapiro et al. 2012). Moreover, the most recent homol-
ogous recombination was population specific, and flexible gene content showed
clustering consistent with population prediction, indicating that the gene pools
had begun to separate. Importantly, annotation of sweep regions provided specific
hypotheses of functional differentiation among the populations. Several genes in
particular pointed to a differential adaptation for free-living and attached lifestyles.
These comprised the sypC and sypG genes, which are important in biofilm formation
and were the only locus affected by a sweep in both populations and the genes
encoding the MSHA pilus, which is important in surface attachment and was present
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in all genomes from the attached but absent from the free-living population (Shapiro
et al. 2012). Based on these findings, a series of experiments were designed to
test the prediction of behavioral underpinnings of the differential association
(Yawata et al. 2014).

Detailed microfluidic experiments testing a variety of behavioral properties of
members of the two nascent V. cyclitrophicus populations revealed that the observed
habitat separation appears to be associated with an ecological trade-off, known from
macroecology as competition-dispersal trade-off (Yawata et al. 2014). While one
population specializes in organic particle exploitation through strong attachment
and growth in biofilms, the other population only rarely attaches yet is specialized
for dispersal by rapidly detecting and swimming toward new resources, implying
that it can better exploit short-lived nutrient patches consisting of locally available
dissolved organic matter (Yawata et al. 2014). Hence the experiments indicated that
the evolution of fine-scale behavioral adaptations may have been responsible for the
onset of ecological differentiation between strains of the ancestral population. This is
because differential specialization for particulate and dissolved resources is associ-
ated with decreased encounter rates and hence may serve to initiate the gene pool
separation required for speciation as discussed above.

8 Guidelines for Reverse Ecology Approaches in Bacteria
and Archaea

Based on the findings outlined above, it is possible to propose a more general reverse
ecology approach for bacteria and archaea (Shapiro and Polz 2014). We reiterate that
the goal is to determine whether a sample of closely related, sympatric genome
sequences constitute one or more genotypic units and to test how these units might
differ in their ecology either by mapping of these clusters onto environmental
gradients or patches or by laboratory tests.

In most cases, some notion of the ecology, metabolism, or phylogenetic related-
ness of the target group will exist and can influence the sampling scheme. For
example, a collection of closely related isolates could be chosen from two or more
hypothesized niches (or microhabitats) or phenotypic groups in order to test whether
these groups behave as separate genotypic units and to uncover the genes or
mutations that might contribute to their ecological differences. Isolates should,
however, be sampled from the same geographic location in order to reduce the
effects of allopatric divergence and focus on the effects of local selection and
recombination. Some a priori information – perhaps from a previous phylogenetic
or metagenomic survey – may also be required in order to select a subset of closely
related populations from the community.

It is possible to either choose a genomic or metagenomic approach to assess the
diversity within populations. Whole-genome sequencing of cultured isolates or
isolated (but uncultured) single cells is preferable because it reveals information
about how genes and mutations are linked within genomes, facilitating inferences
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about recombination events among genomes. Metagenomic sequencing has the
advantage of sampling more individuals within an environment than are generally
possible to isolate, but linkage information will be limited by the sequencing read
length and quality of the assembly (Denaf 2018). Most importantly, unbiased
metagenomic sequencing will only provide an appropriate population genomic
dataset for populations that are relatively abundant in the sampled environment.
The power of metagenomic data can be boosted significantly if they are gathered as
a time series. Although such datasets are currently rare and potentially challenging
to collect, they can follow the speciation process in real time and potentially catch
selective sweeps and niche-specifying events in action (Bendall et al. 2016). Fine-
grained time series or highly resolved spatial sampling might also follow shifting
ecological conditions over time and space, revealing independent behaviors of
different clusters (Martin-Platero et al. 2018).

Assembly and alignment of genomes follow general methods (reviewed in Denaf
2018; Didelot 2017) and are only briefly outlined here. Complete genome sequences
are more readily assembled from isolates, but assembly can also be attempted on
metagenomic data, taking care to guard against or account for different individuals
being co-assembled into a single genome. The main goal of alignment of genomes is
to define core and flexible components. Here, particular care must be taken to only
define these categories for organisms that co-occur and hence have the potential to be
connected by contemporary gene flow and be subjected to consistent environmental
selection.

The next step is to evaluate phylogenetic signals in SNPs found in the core
genome. Standard phylogenetic methods can be used to build a core genome-
wide phylogeny, and the average impact of recombination can be measured by
assessing linkage disequilibrium between SNPs. Specific recombination events
and breakpoints can then be identified using methods such as BratNextGen
(Marttinen et al. 2012), ClonalFrame/ClonalOrigin (Didelot et al. 2010), and
STARRInIGHTS (Shapiro et al. 2012), which are also reviewed in Didelot (2017).
These analyses will reveal the number of major genotypic units (well-supported
monophyletic groups) and whether these units are supported genome wide (consis-
tent with mostly clonal evolution) or in “islands” or “continents” of the genome
(Cadillo-Quiroz et al. 2012; Shapiro et al. 2012). Importantly, linkage can be high,
depending on the frequency of recombination and size of incorporated DNA, so
that considerable hitchhiking with mutations under selection may occur (Rocha
2018).

If populations were hypothesized a priori based on an ecological axis of interest,
as in the V. cyclitrophicus example above, it is possible to assess whether these
presumed populations correspond to genotypic clusters or not. If genome-wide
diversity is clustered according to ecology, this suggests that stable clusters have
formed, i.e., the speciation process is further advanced. If there is a preference for
recombination within rather than between ecological groups, the single population
might be on a trajectory toward speciation. If there is little or no phylogenetic
clustering according to ecology, the hypothesized populations likely constitute a
single, phenotypically diverse population. In this case, certain (flexible) genes or
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(core) mutations that associate with ecology might be identified by genome-wide
association study (GWAS) for which a number of techniques are now available that
are robust toward the modes of bacterial and archaeal evolution (Chen and Shapiro
2015; Falush and Bowden 2006; Sheppard et al. 2013; Yahara et al. 2017).

If populations were not hypothesized a priori (a “purer” reverse ecology
approach), a first step is to assess how many phylogenetic groups were identified.
If phylogenetic groupings are supported genome wide, this suggests stable differen-
tiation, the ecological basis of which remains unknown but can be tested by
phenotypically characterizing representative isolates from each group and/or map-
ping genotypic clusters onto environmental samples. If groupings are not supported
genome wide, genomic regions containing the bulk of the phylogenetic signal, or
signals of positive selection (Shapiro 2014; Shapiro et al. 2009), frequent recombi-
nation, or dense polymorphism can be functionally annotated to generate hypotheses
about their possible ecological roles.

9 Future Perspectives

Reverse ecology is in its infancy, but the potential for revolutionizing our under-
standing of how microbial diversity is organized in the environment is clear. It is
already evident from the handful of studies that have looked at ecological
partitioning of closely related groups that ecological differentiation can happen on
very fine scales of genotypic relatedness, certainly below the resolution afforded by
16S rRNA marker genes. Importantly, when genotypic clusters can be detected,
they should be ecologically differentiated from other such clusters. Although this
does not preclude some level of ecological diversity within these clusters due to the
potential of acquisition of novel, niche-specifying genes, such diversity should be
relatively minor because selection can only maintain a limited number of ecologi-
cally divergent loci within the same, genetically mixed population (Friedman et al.
2013). Hence a reverse ecology strategy, in which genotypic clusters among
co-existing microbes are identified as a first step toward identifying ecologically
cohesive populations, is potentially easier than the forward approach, which is to
map marker genes onto many environmental samples in the hopes of finding
significant ecological associations.

As genome sequencing becomes more and more broadly accessible because of
decreased cost and increased throughput, it will become feasible to sequence suffi-
cient numbers of closely related genomes from the same environmental samples,
either in the form of isolates or single-cell genomes. Moreover, improved coverage
and assembly techniques will also allow increased identification of genotypic clus-
ters from metagenomic samples. Once these genomes are available, they can serve
two purposes. First, they can be used to delineate clusters, and second, they can help
build hypotheses of environmental differentiation by searching for genes of potential
ecological relevance. In that way, some guess as to the population’s niche can be
made before engaging in the exercise of mapping the cluster onto environmental
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samples and identifying correlations with biotic and abiotic environmental metadata.
We stress that this exercise must consider the fine structure of the environment since
microbial habitats and interactions often occur at small spatial (micro- to millime-
ters) and temporal scales (minute to days) (David et al. 2014; Martin-Platero et al.
2018; Polz et al. 2006). Given sufficient environmental and genomic sampling,
GWAS can provide valuable further insights as to the causes of allele and gene
diversity within and between populations. Enabled by our still-evolving knowledge
of microbial diversity, the combined toolkits of population genomics, reverse
ecology, and GWAS will no doubt continue to enrich and expand our understanding
as we move from descriptive to more mechanistic models of the ecological and
genetic structure of microbes in the wild.

References

Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev
Microbiol. 2008;6:431–40.

Babteste E, Boucher Y. Lateral gene transfer challenges principles of microbial systematics. Trends
Microbiol. 2008;16:200–2007.

Balding D. A tutorial on statistical methods for population association studies. Nat Rev Genet.
2006;7:781–91.

Bao YJ, Shapiro BJ, Lee SW, Ploplis VA, Castellino FJ. Phenotypic differentiation of
Streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps.
Sci Rep. 2016;6:36644.

Baumdicker F. The site frequency spectrum of dispensable genes. Theor Popul Biol.
2014;100C:13–25.

Baumdicker F, Hess WR, Pfaffelhuber P. The infinitely many genes model for the distributed
genome of bacteria. Genome Biol Evol. 2012;4:443–56.

Bendall ML, Stevens SL, Chan LK, Malfatti S, Schwientek P, Tremblay J, Schackwitz W, Martin J,
Pati A, Bushnell B, et al. Genome-wide selective sweeps and gene-specific sweeps in natural
bacterial populations. ISME J. 2016;10:1589–601.

Berg OG, Kurland CG. Evolution of microbial genomes: sequence acquisition and loss. Mol Biol
Evol. 2002;19:2265–76.

Bobay LM, Ochman H. Biological species are universal across life’s domains. Genome Biol Evol.
2017; https://doi.org/10.1093/gbe/evx026.

Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL,
Polz MF. Local mobile gene pools rapidly cross species boundaries to create endemicity within
global Vibrio cholerae populations. MBio. 2011;2:e00335–10.

Branco S, Bi K, Liao HL, Gladieux P, Badouin H, Ellison CE, Nguyen NH, Vilgalys R, Peay KG,
Taylor JW, et al. Continental-level population differentiation and environmental adaptation in
the mushroom Suillus brevipes. Mol Ecol. 2017;26:2063–76.

Cadillo-Quiroz H, Didelot X, Heid NL, Herrara A, Darling A, Reno ML, Krause DJ,
Whitaker RJ. Patterns of gene flow define species of thermophilic Archaea. PLoS Biol.
2012;10:e1001265.

Caro-Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ
Microbiol. 2012;14:347–55.

Castillo-Ramirez S, Harris SR, Holden MT, He M, Parkhill J, Bentley SD, Feil EJ. The
impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog.
2011;7:e1002129.

Chen PE, Shapiro BJ. The advent of genome-wide association studies for bacteria. Curr Opin
Microbiol. 2015;25:17–24.

92 P. Arevalo et al.

https://doi.org/10.1093/gbe/evx026


Cohan FM. What are bacterial species. Annu Rev Microbiol. 2002;56:457–87.
Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative

population genomics. Proc Natl Acad Sci U S A. 2010;107:18634–9.
Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP, Bentley SD, Lipsitch M, Croucher NJ.

Frequency-dependent selection in vaccine-associated pneumococcal population dynamics.
Nat Ecol Evol. 2017;1:1950–60.

Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology.
Nat Rev Microbiol. 2014;12:263–73.

Cordero OX, Ventouras LA, Delong EF, Polz MF. Public good dynamics drive evolution of
iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci U S A.
2012;109:20059–64.

Coyne JA, Orr HA. Speciation. Sunderland: Sinauer Associates; 2004.
Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA transfer

mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 2016;14:e1002394.
David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, Erdman SE,

Alm EJ. Host lifestyle affects human microbiota on daily timescales. Genome Biol.
2014;15:R89.

della Torre A, Tu Z, Petrarca V. On the distribution and genetic differentiation of Anopheles
gambiae s.s. molecular forms. Insect Biochem Mol Biol. 2005;35:755–69.

Denef VJ. Peering into the genetic makeup of natural microbial populations using metagenomics.
In: Population genomics. Cham: Springer; 2018. https://doi.org/10.1007/13836_2018_14.

Denef VJ, Mueller RS, Banfield JF. AMD biofilms: using model communities to study microbial
evolution and ecological complexity in nature. ISME J. 2010;4:599–610.

Didelot X. Computational methods in microbial population genomics. In: Population genomics.
Cham: Springer; 2017. https://doi.org/10.1007/13836_2017_3.

Didelot X, Lawson D, Darling A, Falush D. Inference of homologous recombination in bacteria
using whole-genome sequences. Genetics. 2010;186:1435–49.

Doolittle WF, Papke RT. Genomics and the bacterial species problem. Genome Biol. 2006;7:116.
Doolittle WF, Zhaxybayeva O. On the origin of prokaryotic species. Genome Res. 2009;19:744–56.
Dutilh BE, Thompson CC, Vicente AC, Marin MA, Lee C, Silva GG, Schmieder R, Andrade BG,

Chimetto L, Cuevas D, et al. Comparative genomics of 274 Vibrio cholerae genomes reveals
mobile functions structuring three niche dimensions. BMC Genomics. 2014;15:654.

Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW. Population genomics
and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci.
2011;108:2831–6.

Falush D, Bowden R. Genome-wide association mapping in bacteria? Trends Microbiol.
2006;14:353–5.

Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science.
2007;315:476–80.

Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. The bacterial species challenge: making sense
of genetic and ecological diversity. Science. 2009;232:741–6.

Friedman J, Alm EJ, Shapiro BJ. Sympatric speciation: when is it possible in bacteria? PLoS One.
2013;8:e53539.

Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, de Peer YV,
Vandamme P, Thompson FL, et al. Re-evaluating prokaryotic species. Nat Rev Microbiol.
2005;3:733–9.

Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequenc-
ing technologies. Nat Rev Genet. 2016;17:333–51.

Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA
hybridization values and their relationship to whole-genome sequence similarities. Int J Syst
Evol Microbiol. 2007;57:81–91.

Haegeman B, Weitz JS. A neutral theory of genome evolution and the frequency distribution of
genes. BMC Genomics. 2012;13:196.

A Reverse Ecology Framework for Bacteria and Archaea 93



Hahn MW, Pockl M. Ecotypes of planktonic actinobacteria with identical 16S rRNA genes adapted
to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ
Microbiol. 2005;71:766–73.

Hanage WP, Fraser C, Spratt BG. Fuzzy species among recombinogenic bacteria. BMC Biol.
2005;3:6. https://doi.org/10.1186/1741-7007-1183-1186.

Hehemann JH, Arevalo P, Datta MS, Yu X, Corzett CH, Henschel A, Preheim SP, Timberlake S,
Alm EJ, Polz MF. Adaptive radiation by waves of gene transfer leads to fine-scale resource
partitioning in marine microbes. Nat Commun. 2016;7:12860.

Hughes-Martiny JB, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL,
Horner-Divine MC, Kane M, Krumins JA, Kuske CR, et al. Microbial biogeography: putting
microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.

Hunt DE, David LD, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric
differentiation among closely related bacterioplankton. Science. 2008;320:1081–5.

Jaspers E, Overmann J. Ecological significance of microdiversity: identical 16S rRNA
gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies.
Appl Environ Microbiol. 2004;70:4831–9.

Jax K. Ecological units: definitions and application. Q Rev Biol. 2006;81:237–58.
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P,

Malmstrom RR, Stocker R, et al. Single-cell genomics reveals hundreds of coexisting sub-
populations in wild Prochlorococcus. Science. 2014;344:416–20.

Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R,
Chisholm SW. Fundamental differences in diversity and genomic population structure between
Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.

Keswani J, Whitman WB. Relationship of 16S rRNA sequence similarity to DNA hybridization
in prokaryotes. Int J Syst Evol Microbiol. 2001;51:667–78.

Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van der Lelie D,
Meyer F, Stevens R, et al. Unlocking the potential of metagenomics through replicated
experimental design. Nat Biotechnol. 2012;30:513–20.

Koeppel AF, Wu M. Surprisingly extensive mixed phylogenetic and ecological signals among
bacterial Operational Taxonomic Units. Nucleic Acids Res. 2013;41:5175–88.

Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP, Brambilla E,
Connor N, Ratcliff RM, et al. Identifying the fundamental units of bacterial diversity: a
paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A.
2008;105:2504–9.

Konstantinidis KT, DeLong EF. Genomic patterns of recombination, clonal divergence and envi-
ronment in marine microbial populations. ISME J. 2008;10:1052–65.

Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokary-
otes. Proc Natl Acad Sci U S A. 2005;102:2567–72.

Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomics area.
Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1929–40.

Lawniczak MKN, Emrich SJ, Holloway AK, Regier AP, Olson M, White B, Redmond S, Fulton L,
Appelbaum E, Godfrey J, et al. Widespread divergence between incipient Anopheles gambiae
species revealed by whole genome sequences. Science. 2010;330:512–4.

Lee IM, Gundersen-Rindal DE, Davis RE, Bartoszyk IM. Revised classification scheme of
phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences.
Int J Syst Bacteriol. 1998;48:1153–69.

Levy R, Borenstein E. Reverse ecology: from systems to environments and back. Adv Exp Med
Biol. 2012;751:329–45.

Li QL, Yi SC, Li DZ, Nie XP, Li SQ, Wang MQ, Zhou AM. Optimization of reverse chemical
ecology method: false positive binding of Aenasius bambawalei odorant binding protein
1 caused by uncertain binding mechanism. Insect Mol Biol. 2018;27:305–18.

94 P. Arevalo et al.

https://doi.org/10.1186/1741-7007-1183-1186


Luo CW, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT. Genome sequenc-
ing of environmental Escherichia coli expands understanding of the ecology and speciation of
the model bacterial species. Proc Natl Acad Sci U S A. 2011;108:7200–5.

Majewski J. Sexual isolation in bacteria. FEMS Microbiol Lett. 2001;199:161–9.
Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy DJ, Alm EJ, Polz MF.

High resolution time series reveals cohesive but short-lived communities in coastal plankton.
Nat Commun. 2018;9:266.

Marttinen P, Hanage WP. Speciation trajectories in recombining bacterial species. PLoS Comput
Biol. 2017;13:e1005640.

Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR, Bentley SD, Corander J. Detection
of recombination events in bacterial genomes from large population samples. Nucleic Acids
Res. 2012;40:e6.

Mayr E. Systematics and the origin of species. New York: Columbia University Press; 1942.
Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, Townsend

AR, Cleveland CC, Stanish L, et al. Global patterns in the biogeography of bacterial taxa.
Environ Microbiol. 2011;13:135–44.

Niehus R, Mitri S, Fletcher AG, Foster KR. Migration and horizontal gene transfer divide microbial
genomes into multiple niches. Nat Commun. 2015;6:8924.

Oh S, Caro-Quintero A, Tsementzi D, DeLeon-Rodriguez N, Luo C, Poretsky R,
Konstantinidis KT. Metagenomic insights into the evolution, function, and complexity of
the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. Appl
Environ Microbiol. 2011;77:6000–11.

Papke RT, Zhaxybayeva O, Feil EJ, Sommerfeld K, Muise D, Doolittle WF. Searching for species
in haloarchaea. Proc Natl Acad Sci U S A. 2007;104:14092–7.

Polz MF, Hunt DE, Preheim SP, Weinreich DM. Patterns and mechanisms of genetic and pheno-
typic differentiation in marine microbes. Philos Trans R Soc Lond B. 2006;361:2009–21.

Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of bacterial and archaeal
population structure. Trends Genet. 2013;29:170–5.

Rocha EPC. Neutral theory, microbial practice: challenges in bacterial population genetics.
Mol Biol Evol. 2018;35:1338–47.

Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F,
Mira A. Explaining microbial population genomics through phage predation. Nat Rev
Microbiol. 2009;7:828–36.

Ropars J, Rodríguez de la Vega RC, López-Villavicencio M, Gouzy J, Sallet E, Dumas É,
Lacoste S, Debuchy R, Dupont J, Branca A, et al. Adaptive horizontal gene transfers between
multiple cheese-associated fungi. Curr Biol. 2015;25:2562–9.

Ropars J, López-Villavicencio M, Snirc A, Lacoste S, Giraud T. Blue cheese-making has shaped the
population genetic structure of the mould Penicillium roqueforti. PLoS One. 2017;12:e0171387.

Rosen MJ, Davison M, Bhaya D, Fisher DS. Microbial diversity. Fine-scale diversity and extensive
recombination in a quasisexual bacterial population occupying a broad niche. Science.
2015;348:1019–23.

Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev.
2001;25:39–67.

Shapiro BJ. Signatures of natural selection and ecological differentiation in microbial genomes.
Adv Exp Med Biol. 2014;781:339–59.

Shapiro BJ. What microbial population genomics has taught us about speciation. In: Population
genomics. Cham: Springer; 2018. https://doi.org/10.1007/13836_2018_10.

Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units.
Trends Microbiol. 2014;22:235–47.

Shapiro BJ, David LA, Friedman J, Alm EJ. Looking for Darwin’s footprints in the microbial
world. Trends Microbiol. 2009;17:196–204.

Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, Polz MF,
Alm EJ. Population genomics of early events in the ecological differentiation of bacteria.
Science. 2012;336:48–51.

A Reverse Ecology Framework for Bacteria and Archaea 95



Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA, Kelly DJ, Bentley SD, Maiden MC,
Parkhill J, Falush D. Genome-wide association study identifies vitamin B5 biosynthesis as a
host specificity factor in Campylobacter. Proc Natl Acad Sci U S A. 2013;110:11923–7.

Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global
network of gene exchange connecting the human microbiome. Nature. 2011;480:241–4.

Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation kinetics
and sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol.
1994;44:846–9.

Syvanen M. Evolutionary implications of horizontal gene transfer. Annu Rev Genet.
2012;46:341–58.

Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R,
Distel DL, Polz MF. Genotypic diversity within a natural coastal bacterioplankton population.
Science. 2005;307:1311–3.

Thompson CC, Amaral GR, Campeao M, Edwards RA, Polz MF, Dutilh BE, Ussery DW,
Sawabe T, Swings J, Thompson FL. Microbial taxonomy in the post-genomic era: rebuilding
from scratch? Arch Microbiol. 2015;197:359–70.

Toro N, Villadas PJ, Molina-Sanchez MD, Navarro-Gomez P, Vinardell JM, Cuesta-Berrio L,
Rodriguez-Carvajal MA. The underlying process of early ecological and genetic differentiation
in a facultative mutualistic Sinorhizobium meliloti population. Sci Rep. 2017;7:675.

Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus
approach to bacterial systematics. Microbiol Rev. 1996;60:407–38.

Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC,
Pati A. Microbial species delineation using whole genome sequences. Nucleic Acids Res.
2015;43:6761–71.

Vos M. A species concept for bacteria based on adaptive divergence. Trends Microbiol.
2011;19:1–7.

Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea.
ISME J. 2009;3:199–208.

Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH,
Moore WEC, Murray RGE, Stackebrandt E, et al. Report of the Ad Hoc committee on
reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol. 1987;37:463–4.

Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou S-R,
Boutin A, Hackett J, et al. Extensive mosaic structure revealed by the complete genome
sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A. 2002;99:17020–4.

Whitaker RJ. Allopatric origins of microbial species. Philos Trans R Soc Lond Ser B Biol Sci.
2006;361:1975–84.

Whitaker RJ, Banfield JF. Population genomics in natural microbial communities. Trends Ecol
Evol. 2006;21:508–16.

Whitaker RJ, Grogan DW, Taylor JW. Recombination shapes the natural population structure of the
hyperthermophilic archaeon Sulfolobus islandicus. Mol Biol Evol. 2005;22:2354–61.

Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and
adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.

Yahara K, Meric G, Taylor AJ, de Vries SP, Murray S, Pascoe B, Mageiros L, Torralbo A, Vidal A,
Ridley A, et al. Genome-wide association of functional traits linked with Campylobacter jejuni
survival from farm to fork. Environ Microbiol. 2017;19:361–80.

Yawata Y, Cordero OX, Menolascina F, Hehemann JH, Polz MF, Stocker R. Competition-dispersal
tradeoff ecologically differentiates recently speciated marine bacterioplankton populations.
Proc Natl Acad Sci U S A. 2014;111:5622–7.

96 P. Arevalo et al.



Part II
Population Genomics of Bacteria

and Archaea



What Is a Pseudomonas syringae
Population?

David A. Baltrus

Abstract Although they are often best known as causative agents of agricultural
disease, many phytopathogen lineages, like Pseudomonas syringae, have been
sampled across a wide range of environmental contexts. These may be frequently
isolated as epiphytes on disease-free plants as well as from sources associated with
the water cycle like rivers, lakes, rain, snow, and clouds. The ability of these bacteria
to persist across such diverse environments poses a great challenge for understand-
ing population dynamics because adaptation likely occurs across numerous distinct
niches and evolutionary parameters and will likely differ widely depending on
specific contexts. Within the literature, there is an intrinsic tendency to treat all
strains within these lineages the same, but such a treatment likely obscures interest-
ing and important nuances between isolates. In this chapter, I will focus on
P. syringae and explore what is known about the evolutionary dynamics of this
group at the levels of genomes, phylogroups, and (broadly defined) species. I will
highlight many ways in which populations could differ and will touch upon what is
known and has been learned from numerous genome sequencing efforts, which
hopefully shine a light toward a path forward to resolve numerous nomenclatural
challenges. I will point toward the generality of what is known about P. syringae and
how this may apply to other environmental systems. While there remains much to
learn, the ever-increasing rate of accumulation of genomic data from diverse sources
has certainly helped our ability to at least frame the evolutionarily important
questions. Building from these, an impending wave of future data promises to be a
powerful tool for resolving some of these discussions.
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1 Introduction

Step outdoors and there is a reasonable chance you’ll find bacteria that fall under the
taxonomic umbrella of Pseudomonas syringae. Although nomenclature can be a bit
muddled (Baltrus 2016), lineages belonging to the P. syringae species complex are
best known as important phytopathogens of numerous crops around the world and as
a model system for understanding the molecular basis of plant pathogenicity (Hirano
and Upper 2000; Baltrus et al. 2017; O’Brien et al. 2011; Mansfield et al. 2012; Xin
and He 2013). However, close relatives of these pathogenic strains (and in some
cases even known pathogens) can readily be found as epiphytes of plants, in leaf
litter, and from a variety of sources that constitute important parts of the water cycle
such as rivers, lakes, rainwater, snow, and clouds (Morris et al. 2008, 2013). Strains
of P. syringae are even capable of being vectored by insects, albeit under laboratory
conditions, and are considered potential entomopathogens (Stavrinides et al. 2009;
Hendry et al. 2014). In reality, the P. syringae species complex represents a
geographically and environmentally ubiquitous group of bacteria, and these very
characteristics create a variety of problems for discussing evolutionary dynamics
within their populations. Diversity of roles and environments breeds tension across
ecological and evolutionary descriptions for this group, as well as many other
environmentally ubiquitous taxa, because the lineages don’t occupy a simple niche
that can easily be classified. This chapter will not come close to resolving any of
these challenges, but I will build on previous treatments of this topic (Vinatzer and
Monteil 2014; Vinatzer et al. 2014; Baltrus et al. 2017) to bridge the gaps between
how P. syringae is seen from the perspective of ecological, evolutionary, and
phytopathogenic viewpoints and highlight different ways to think about this bacte-
rium at the population level.

Since this discussion relies heavily on how to interpret evolutionary trends and
diversity throughout P. syringae, it will inherently broach questions concerning how
to define the term “population.” It is my hope that these discussions will provide a
foothold to organize thoughts concerning P. syringae because, although specific
conditions and transmission capabilities could be vastly divergent across strains,
questions concerning the structures of interactions are relevant regardless. My intent
is that this discussion can be viewed broadly beyond a focus on just one type of
bacteria and that that same lines of thought could apply across other systems
involving phytopathogens or symbionts found widely throughout the environment
(like Erwinia, Burkholderia, and Streptomyces). In the end, evolutionary dynamics
are governed by a core set of parameters, and with sufficient understanding of these
parameters, we should be able to gauge how strains evolve. The problem with many
phytopathogens is that we lack basic data about these parameters, and thus a first step
is to identify, as famously coined in a different context, the known and unknown
“unknowns.”
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2 Pseudomonas syringae: A Model Phytopathogen

The P. syringae species complex is perhaps best described as a ragtag group of
misfits, with fairly broad metabolic capabilities and the ability to survive across a
variety of environments (Baltrus 2016; Hirano and Upper 2000; Morris et al. 2013).
P. syringae doesn’t quite get the attention of its human pathogenic cousin,
P. aeruginosa, and appears to be slightly more uniform than other species, such as
the well-known physiological powerhouse P. putida, and plant growth promoters
like P. fluorescens. Crop diseases caused by strains of P. syringae can manifest as
blights, spots, and streaks on leaves and as cankers or galls on woody plants with
specific symptoms dependent on particular combinations of strains and hosts
(O’Brien et al. 2011; Mansfield et al. 2012; Baltrus et al. 2017). Virulence in
P. syringae is thought to be critically dependent on a structure called a type three
secretion system (T3SS) and effector proteins which are translocated into plant cells
to disrupt immune responses (Collmer et al. 2000). Almost all strains that clearly fall
within the P. syringae species complex appear to harbor at least one T3SS, the one
known exception being a strain from pathovar actinidiae that has naturally deleted
this structure, and each strain is thought to contain between approximately five and
40 effectors (Baltrus et al. 2017; O’Brien et al. 2011; McCann et al. 2017; Dillon
et al. 2017). T3SS effector proteins are produced by the bacteria but are translocated
into host cells where they can manipulate multiple plant pathways in a variety of
ways (Lindeberg et al. 2012). Pathogenic strains may additionally produce a handful
of secreted secondary metabolites which clearly affect plant physiology, notably
toxins and plant hormone mimics such as syringolin, syringomycin, mangotoxin,
syringopeptin, coronatine, tabtoxin, and phaseolotoxin (Bender et al. 1999; Carrión
et al. 2012; Schellenberg et al. 2008). As with many other pathogen-host systems,
disease is the manifestation of a complicated dance between multiple virulence
pathways that differentially interact with host immune and metabolic pathways.

There has been plenty already written about the role of P. syringae as an
agricultural pest and about the molecular basis of pathogenicity for this species.
There also exist many valid questions concerning diversity in how disease symptoms
from P. syringae are manifested, in how host range has traditionally been consid-
ered, and in how “virulence” is defined. As it’s not my goal to delve into these topics
too much here, I’ll point the reader to a variety of reviews on these subjects (Baltrus
et al. 2017; Lindeberg et al. 2012; O’Brien et al. 2011; Hirano and Upper 2000;
Ichinose et al. 2013). However, it is worth pointing out that the traditional strict focus
on phytopathogenicity and related properties has obscured the idea that P. syringae
can frequently be found naturally covering leaves of many plants as epiphytes in the
absence of disease (Hirano and Upper 2000; Morris et al. 2017). These strains
seemingly live in happy commensalism with plants and yet still reach decently
high census sizes, 104 or 105 cells per g of plant tissue (Morris et al. 2008). Some
strains found in the environment are closely related to those known to cause disease
on crop plants and are virtually indistinguishable from pathogens at a genomic level
(Monteil et al. 2013, 2016). It is possible that known virulence pathways also play a
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role in P. syringae survival in these alternate contexts and that secondary hosts could
enable a large pool that significantly contributes to widespread dispersal of strains,
but to date data addressing these hypotheses is limited.

3 Pseudomonas syringae: A Burgeoning Ecological Model

Recent years have seen a growing appreciation for the ecology of P. syringae outside
of the contexts of plant disease (Morris et al. 2008, 2010, 2013). Strains have been
isolated from various water sources like streams and lakes but also from clouds as
well as freshly fallen snow and rain. It is clear that P. syringae, and other phyto-
pathogen relatives from genera like Erwinia, can be lifted up into the atmosphere and
dispersed over wide areas through precipitation (Failor et al. 2017). For the purposes
of evolutionary arguments, it’s unclear whether strains actively grow during periods
of atmospheric transit or if there are significant effects of natural selection due to
differential death under these conditions (Morris et al. 2010, 2017). Also unclear are
the relative propensities for certain lineages and phylogroups to be dispersed through
the atmosphere or survive in environmental conditions ex planta. As with plant
epiphytes, many of the strains that can be isolated from environmental sources are
nearly indistinguishable from known phytopathogen lineages, which adds to ques-
tions concerning the mixing of strains from agricultural and environmental sources
(Bartoli et al. 2015; Monteil et al. 2016).

There are many questions and a few guesses as to characteristics that enable
strains to be carried up into the atmosphere, and actually testing for the genetic basis
of these traits is challenging for many reasons (Morris et al. 2013). One characteristic
that has received much attention because of striking visual and intuitive phenotypic
effects, and which impacts both environmental and phytopathogenic aspects of the
P. syringae life cycle, is the ability of some strains to produce ice-nucleation proteins
(Pietsch et al. 2017; Christner et al. 2008b; Morris et al. 2008). While it’s true that
many other proteins can act to promote ice nucleation, proteins encoded by the inaZ
gene in P. syringae do so at higher temperatures than other potential nucleating
molecules (Pandey et al. 2016). A very good demonstration of this effect can be
found in a video created by Dr. Mark Martin and found here: https://youtu.be/
SenJud3cHLc. So efficient is nucleation from InaZ that this protein has been
co-opted by the skiing industry to produce artificial snow and which is marketed
as Snowmax®. Ice nucleation is thought to promote plant pathogenicity by breaking
open cells to allow access to nutrients and entry into leaves after brief freezes, and
thus P. syringae can lead to crop damage due to frost at higher than expected
temperatures (Lindow et al. 1982). Conversely, Ice� strains that are high-quality
plant colonizers have been intentionally released to the environment and do appear
to lower disease symptoms through competitive exclusion of Ice+ strains (Lindow
1992). However, ice nucleation can also promote precipitation of bacteria from the
atmosphere and thus might also act as a dispersal agent (Morris et al. 2008, 2014;
Christner et al. 2008a). It is unclear whether the main selective force on the Ice+

102 D. A. Baltrus

https://youtu.be/SenJud3cHLc
https://youtu.be/SenJud3cHLc


phenotype is through interactions with plants or environmental dispersal (or both),
but this intriguing property of some strains certainly changes how dispersal shapes
population and community structures (Morris et al. 2008).

4 Are There Differences Between Phytopathogenic
and Environmental Strains of Pseudomonas syringae?

Many previous discussions about population dynamics within P. syringae have
been heavily skewed by sampling biases. For somewhat obvious reasons, many
well-characterized strains were originally isolated from disease outbreaks on crop
species. Other related lineages that might have been present within the same field or
present on different host plants were simply discarded or left unsampled. As such,
the foundation for understanding genotypic and phenotypic diversity throughout
P. syringae was (and largely still is) based on known pathogenic strains despite
recent efforts to categorize all possible lineages. In light of broader sampling
initiatives, numerous questions remain about how sampling location might alter
inferences about evolutionary and ecological patterns (Morris et al. 2010; Demba
Diallo et al. 2012; Monteil et al. 2013, 2016). However, we have now sequenced
upward of a thousand different and diverse strains, and genome characteristics are
roughly similar in a set of key parameters. There is usually one main chromosome,
approximately 5.5–6.5 Mb, with a GC content that hovers around 60% and with a
core of around ~2,500 proteins shared across strains of the species (Baltrus et al.
2017; O’Brien et al. 2011; Nowell et al. 2014; Dillon et al. 2017). This size is
relatively large when considering common bacterial workhorses such as Escherichia
coli and human pathogens like Streptococcus pneumoniae but is fairly standard
(if even a little small) when placed up against other terrestrial proteobacteria that are
culturable, such as Burkholderia and Ensifer (Land et al. 2015).

While there have been numerous ways to classify strains within P. syringae
throughout the years, lately the most prevalent system has invoked “phylogroups”
as a standard reference for defining clades or groups of related strains (Baltrus 2016;
Berge et al. 2014). Phylogroups are somewhat subjective groups of P. syringae that
form monophyletic clades within phylogenetic trees of the species. Currently, there
are 13 recognized phylogroups, with genetic distance between strains within a group
being <5% and between groups >5% [(Berge et al. 2014) and Fig. 1]. Given this
overall level of divergence, somewhat akin to that between Escherichia coli and
Salmonella, one could make the case that this group is composed of a variety of
different species (Vinatzer and Monteil 2014; Vinatzer et al. 2014; Baltrus et al.
2017; Dillon et al. 2017). However, due largely to the momentum of history, all of
these lineages are still subjectively considered to fall within the group of P. syringae
sensu lato. Originally, phylogroups were defined based on phylogenies inferred
using either four or seven loci conserved throughout P. syringae as parts of
multilocus sequence analysis (MLSA) or multilocus sequence analysis typing
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(MLST) schemes (Hwang et al. 2005; Sarkar and Guttman 2004). More recent whole
genome analyses have largely confirmed phylogroup relationships established on the
basis of MLSA schemes, although such convergence of evolutionary inferences
across methods has not always been the case for more closely related strains (Baltrus
2016; Baltrus et al. 2014, 2017; Monteil et al. 2016).

A thorough investigation analyzing sequences from 198 different strains demon-
strated that gene content doesn’t differ in a systematic way between strains isolated
as agricultural pathogens or from environmental sources. There are a handful of loci
(notably the type III effectors hopQ and hopD) that are significantly correlated with
status as a pathogen, but it seems definitive overall that there is no great distinction to
be made based on whether P. syringae strains are isolated from infected plants or
environmental sources (Monteil et al. 2016). Furthermore, although strains of
P. syringae aren’t well known to be competent for natural transformation (but see
this report involving episomal elements in Lovell et al. 2009), genome analysis
indicates that recombination within phylogroups can occur at relatively high rates
(ρ/θ between 1 and 6 depending on the strain combinations examined), although

Fig. 1 Pseudomonas syringae phylogroups. A Bayesian phylogeny of P. syringae strains from all
13 phylogroups was inferred using a fragment of the cts gene as per (Berge et al. 2014), with
P. rhizosphaerae as an outgroup, and using Mr. Bayes 3.2. The analysis was run for 1,000,000
generations with a burn-in period of 250,000 generations. All phylogroups with colored boxes
include strains that have been found as pathogens of plants, or which have demonstrated pathogenic
potential under laboratory conditions. Phylogroups with gray boxes and white letters indicate that
no member of that group has been demonstrated to be a phytopathogen at this time. Three
pathogenic lineages discussed in the text (Pae, Pto, Pan) are also highlighted
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mutation appears to be the dominant way that genetic variation is introduced
between phylogroups (Monteil et al. 2016; Sarkar and Guttman 2004; Yan et al.
2008; Cai et al. 2011a, b; McCann et al. 2017). A more thorough recent analysis
analyzing whole genome sequences supports the idea that intra-phylogroup recom-
bination occurs most frequently, but that intra-phylogroup recombination (and
specifically involving genes that provide ecological coherence) does play an impor-
tant evolutionary role across strains (Dillon et al. 2017). Moreover, this whole
genome analysis further supports the idea that there are two main evolutionary
clusters within the species currently known as P. syringae and that recombination
between strains does provide structure to these groups (Dillon et al. 2017). That
signals of recombination have been seen in housekeeping genes argues against a
simple and clean scenario whereby plasmids and phage facilitate gene exchange, and
although homologous recombination of chromosomal regions into plasmids/phage
could potentially explain gene movement, a clear mechanism behind such natural
recombination events remains undefined (but see Swingle et al. 2010; Bao et al.
2012). As a further demonstration of overlap between environmental strains and
those known to be pathogens, there is apparently no barrier for recombination
between strains found in the environment and on crops, suggesting that evolution-
arily relevant interactions occur between strains found in both environments
(Monteil et al. 2016).

Upon a wider analysis over multiple studies, phylogroup membership is more
indicative of phenotypic characteristics of strains than sampling location per se, and
some phylogroups and subclades appear to have distinctly different niches (Berge
et al. 2014). As of recent publications, a small minority of phylogroups have been
shown to contain only strains isolated from the environment or from asymptomatic
plants (Berge et al. 2014). Most phylogroups contain at least one strain that’s
canonically considered a pathogen. Many groups contain crop pathogens together
with a variety of isolates from the environment where there is little to no published
information concerning their potential pathogenicity (Berge et al. 2014; Demba
Diallo et al. 2012; Monteil et al. 2016) or where strains are often isolated from
asymptomatic plants (Kniskern et al. 2011; Clarke et al. 2010; Demba Diallo et al.
2012). Phylogroup XIII strains also appear to be frequently found in the environment
and have only recently shown potential as disease-causing agents (Berge et al. 2014;
Busquets et al. 2017). Additionally, there is a subclade within phylogroup III
(containing the model strain Pph1448a) that has never been sampled during envi-
ronmental sampling and which appears to contain lower metabolic capabilities than
other clades (Morris et al. 2010; Monteil et al. 2016; Rico and Preston 2008; Berge
et al. 2014). This could reflect a shift in ecological niche to more specifically infect
plants that is correlated with lower survival rates under environmental conditions.

One large-scale trend that’s quite apparent is that phylogroup II strains are known
as etiological agents of disease across a relatively broad range of hosts compared to
other phylogroups and are also sampled more frequently from the environment
(Baltrus et al. 2017; Hwang et al. 2005; Demba Diallo et al. 2012; Morris et al.
2010; Berge et al. 2014). Moreover, strains from this phylogroup contain a lower
number of type III effectors on average than other phylogroups, a trend that
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correlates with presence of a suite of toxins like mangotoxin, syringopeptin,
syringomycin, and syringolin (Baltrus et al. 2011, 2017). This trade-off between
number of effectors and toxin presence is supported by at least two distinct and
independent pieces of evolutionary data. One group of strains in phylogroup II (pea
pathogens of pathovar pisi) has lost the toxins and regained many effectors com-
pared to its likely ancestor (Baltrus et al. 2011). Likewise, there is a group of
phylogroup X strains that also appear to contain a lower number of effectors and
have independently gained syringomycin (Hockett et al. 2014). The relationship
between phylogroups II and X is even more intriguing because gene content for
genomes from these strains appears to have been independently shaped by conver-
gent forces (Dillon et al. 2017). As such, even across known pathogenic strains, there
likely exists at least two distinct ways to be a pathogen, and these differences
correlate with subtle changes in life history (toxin-producing phylogroup II strains
seem more environmentally hardy than other strains). There also exists a subclade
within phylogroup II that has swapped out the traditional and canonical tripartite PAI
containing structural genes for the T3SS and has replaced this locus with an alternate
yet related T3SS at a different region of the chromosome (Demba Diallo et al. 2012;
Clarke et al. 2010). While the functions of this atypical system under natural
conditions remain unknown, it is regulated differently than the canonical system
even though it is still competent to deliver effectors (Clarke et al. 2010). To this
point, it is also worth noting again that phylogroup II strains often have broad host
ranges and often contain highly active ice-nucleation capabilities, which could help
to explain their environmental prevalence and worldwide persistence (Pietsch et al.
2017; Morris et al. 2010; Berge et al. 2014; Demba Diallo et al. 2012).

5 What Is a Pseudomonas syringae Population?

P. syringae lineages are frequently found across environments, with seemingly little
differentiation between strains isolated as pathogens and from nonpathogenic con-
ditions. Moreover, there currently exists little consensus as to relevant scales for
sampling that could provide definitive views into what constitutes a niche for each
lineage. Even so, as an entrance into a discussion, I’d like to propose simple thought
experiment to demonstrate the challenges of understanding P. syringae populations.
Imagine you’re taking that same stroll outside as in the introductory paragraph but
this time remembered to bring plates to sample bacteria. After a bit of work and a bit
of sequencing, you come to realize that you have sampled nearly identical strains
repeatedly from the diseased leaves of one plant species, from healthy-looking
leaves of a different plant, from forest leaf litter, as well as from a nearby stream.
Imagine also that you have a friend on the other side of the world that samples this
nearly identical strain genotype from the bark of a tree in their backyard. As often
happens, sampling from each of these environments will also yield a wide collection
of P. syringae strains that are genotypically different than those mentioned imme-
diately above. Are all of these closely related isolates members of the same
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population, from multiple connected populations, from independently evolving
separate populations that form a metapopulation? Although divergence in the niches
of isolation may suggest that these are different lineages, each responding to
selective pressures inherent in their given environments, it’s possible that these
strains inhabit environments at separate points in time but form one large
metapopulation connected by dispersal. If these do represent different populations,
since there is almost no variation throughout their whole genomes, they must be
evolving quite slowly, dispersing quite rapidly, or experiencing a combination of
both. Monteil et al. (2016) have provided perhaps the closest genomic peek at this
scenario to date and suggest that a combination of both rapid dispersal and relatively
slow evolutionary rates can likely explain observed levels of genomic diversity, but
even then it is difficult to extrapolate given biases in sampling. In the absence of
more intensive whole genome sampling schemes across hosts, environments, as well
as spatial and temporal scales, it’s nearly impossible to come to a clear decision.

As the thought experiment above hopefully suggested, despite extensive knowl-
edge concerning mechanisms of pathogenesis and a growing body of literature
focused on natural ecology of P. syringae, the critical evolutionary question of
“How do we describe the relevant scale for P. syringae populations?” remains
unanswered. Part of this challenge stems from the reality that the name
“P. syringae” characterizes a hugely diverse group of bacterial isolates, as a result
of a somewhat tortured taxonomic history (Vinatzer and Monteil 2014; Baltrus
2016) with a range of genomic average nucleotide identity values that nearly spans
the difference from Salmonella to Escherichia (Vinatzer et al. 2017). We know that
multiple lineages of P. syringae can be found in the same ecosystems, in the same
plants, and even in the same leaves, but it is often difficult to measure whether these
lineages interact in an evolutionary relevant way (Morris et al. 2008, 2010, 2017;
Humphrey et al. 2014). It is possible that these lineages fill the same niche and
therefore directly compete, but it’s also possible that they are merely spatially similar
but ecologically disparate. Given that an Ice� strain can successfully outcompete
pathogens, and therefore lessen disease, we know that competitive exclusion
between strains does at least exist under natural conditions (Lindow 1992). The
true answer may lie in understanding that spectra of interaction exist, and for each
type of genetic variant, the relevant population parameters might differ. What are the
dominant evolutionary forces that will shape newly arising genetic variation within
P. syringae lineages? How much variation arises over the course of an outbreak
within a single field, and how much of this variation makes it through transmission
bottlenecks? Piece by piece, we can step through what we understand and compare
this to data arising from studies of outbreaks (like Cai et al. 2011b; McCann et al.
2017) and work out from there to at least narrow the list of possible answers.

Newly introduced genetic variation is the currency for understanding population
structure, and we can learn a significant amount by simply following the evolution-
ary fates of new variants (Cordero and Polz 2014; Shapiro and Polz 2014; Shapiro
et al. 2009; Choudoir et al. 2012). Genetic variation is introduced to strains through
mutation or horizontal gene transfer, and the fate of this new variation is then subject
to population-level forces such as genetic drift and natural selection. The strength of
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genetic drift is inherently correlated with effective population size (Ne), and our
understanding of drift is therefore intrinsically linked to defining populations (Nei
and Tajima 1981). It’s even possible and highly relevant for this discussion, albeit
with some assumptions, to back calculate from the rate of mutation fixation in
bacteria to effective population size (Sung et al. 2016). Although the strength of
selection is traditionally understood to rely on environmental context and competi-
tion between clones and species, competition can also occur between variant gene
sites within a clone (Gerrish and Lenski 1998). Therefore, our understanding of how
selection shapes P. syringae will also depend on how many circulating genetic
variants are competing within a population. As highlighted in other parts of this
book, we know much about relevant population-level parameters for some well-
studied bacterial systems across environments. Laboratory studies of clonal micro-
bial evolution have shown that, under relatively simple and controlled conditions,
adaptation within microbial populations can be approximated using a small number
of parameters including Ne and mutation rate (u) (Wiser et al. 2013; Sniegowski and
Gerrish 2010). Ne in fluctuating populations, as one would likely find in P. syringae,
can be calculated by taking the harmonic mean of population sizes throughout
the course of population existence (Sjödin et al. 2005). As such, calculation of
harmonic mean is dominated by the smallest numbers sampled. Even though you
may have 1010 cells within a flask as a census size, the level of variation seen by
evolution could be driven by the bottleneck that this population went through at the
beginning of growth. Furthermore, while it’s quite easy to measure u, it’s also quite
likely that u will physiologically change during population growth and may even
genetically change over the course of bacterial adaptation (Kivisaar 2010; Lynch
2010; Denamur and Matic 2006). So, even under the simplifying routines of daily
transfer and growth in a minimally complex environment, it can be difficult to get a
handle on microbial population dynamics.

Extrapolating from what we’ve learned under very simple conditions to faculta-
tive phytopathogens, the challenge of modern-day microbial population genetics
becomes apparent. While census population sizes may be huge even on single leaves
(1010), Ne for these very same leaves will likely be driven by bottlenecks that occur
during colonization and transmission and could be much lower than census size. If
microbes are obligate pathogens and grow only in one host, there will still likely be
changes in the origin of subpopulations due to differential niches and spatial
structuring. Mutation rates will likely change with physiology of infection and add
to that that host defenses themselves can be mutagenic to resident bacteria. Popula-
tion sizes for P. syringae will not be constant across hosts or environmental
reservoirs and will differ with type of plant and between genetic variants within a
host. Furthermore, different environmental contexts (leaf litter, rainwater, clouds,
etc.) will have different carrying capacities for P. syringae. Differential population
sizes between environments as well as the amount of growth possible within
environments will skew evolutionary forces on P. syringae populations that experi-
ence multiple environments. Ne may be quite large on some hosts for a fraction of
time, but since it is calculated from harmonic means, it may be bottlenecks between
hosts and long periods of time in low-carrying capacity environments that drive
population-level evolutionary phenomena.
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P. syringae genomes display relatively high rates of plasticity and are quite
diverse in terms of gene content and functional capabilities (Nowell et al. 2014).
For many facultative pathogens, and certainly for P. syringae, only a relatively small
portion of their genome is devoted to virulence in hosts, and this abundance of
“other” genes likely indicates that much of their life cycle is underappreciated. It
wouldn’t be shocking to see disparate, yet closely related, lineages of P. syringae
occupy different niches on the same leaf in proximity to one another. Perhaps one
lineage specializes as a pathogen attacking the plant, while the other is a secondary
colonizer and feasts on breakdown products of the primary infection. It’s also likely
that lineages only compete for short amounts of time in certain plant hosts but then
spend the majority of their life cycle specialized toward completely independent
environments with selective forces shaped by different parameters. Largely disparate
lineages may be part of the same proximate population or community for brief
periods but not over the majority of time. Alternatively, there could be enough
spatial structure, even within a single leaf, for multiple competing lineages to
actually coexist in small microcolonies or huddled together to take advantage of
nutrient oases (Lindow and Brandl 2003). Interactions within and between lineages
of P. syringae that are in contact, and the relevant differences in growth and survival
of these lineages, ultimately will determine which genetic variants reach high
frequencies, and thus an examination of these parameters is quite worthwhile for
understanding evolutionary dynamics.

6 What Can We Learn from Pseudomonas syringae
Epidemics?

Assuming that P. syringae epidemic strains behave similarly to other strains under
natural conditions, it’s an instructive exercise to compare the overall diversity of
P. syringae mentioned above to genetic variation that is present across multiple
genome sequences of strains sampled from three independent epidemics of
P. syringae. Indeed, temporal sampling over such outbreaks provides an unprece-
dented viewpoint into population-level differentiation. Furthermore, since these
outbreaks occurred on three different types of host plant (horse chestnut, tomato,
and kiwi) that represent a spectrum of domestication times and agricultural practices,
commonalities in pathogen evolutionary dynamics could provide a more general
view of the species as a whole.

The first genomic analyses of P. syringae from an epidemic focused on
P. syringae pv. aesculi (Pae) causing bleeding canker disease on horse chestnut
across Northwest Europe (Green et al. 2010; de Keijzer et al. 2012). Diseased trees
were first noticed around 2002–2003, with reports from Belgium, Germany, the
Netherlands, and the UK. Horse chestnut is a long-lived, woody host and has not
been domesticated. Although there is little agricultural value in horse chestnut, the
prominence of this tree as a landscape staple coupled with the unique opportunity to
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study bacterial epidemics with the potential to wipe out long-lived hosts motivated
relatively extensive research resources to study this pathogen. Two epidemic strains
were isolated in 2006, from Scotland (Glasgow) and England (Surrey), with a third
analyzed strain isolated from Scotland (Pitlochry) in 2008 (Green et al. 2010). At the
time of the analysis, the closest sequenced strain to the outbreak lineage was the type
strain of Pae isolated from a diseased tree in India in 1969, ~40 years before the
European strains, but which was genotypically identical over seven loci used for
MLSA studies. This comparison is interesting because Pae strains had only ever
previously been isolated as a foliar disease and had only ever been isolated in India.
Therefore, to the extent that conclusions can be drawn from this set of samples, the
Northwest European epidemic lines appear to have subtly switched hosts, from
Indian to European horse chestnut, and had likely developed the ability to cause
bleeding cankers in woody tissue over the span of a few decades. Comparison of four
Pae genomes showed that the European strains differed from the Indian type strain
by 1,613 single-nucleotide polymorphisms (SNPs) over 3 Mb (out of approximately
a 5.5 Mb genome). The European strains were not identical, but there were only a
total of three SNPs across this same 3 Mb across these three strains. Roughly 5% of
the genome differed in presence/absence between the Indian and European strains,
with the European strains possessing 245 additional proteins compared to their
Indian cousin. Much of the genetic variation found between the European strains
appears to already be present between strains isolated from different parts of the UK
in 2006 rather than having accumulated between the two Scottish strains from 2006
to 2008. Notably, gene gains in the European strains likely occurred through plasmid
acquisition, but none of the European isolates maintained the same plasmid suite.
From these data points, the overall message seems to be that relatively little
nucleotide variation arose in the years since the start of the epidemic in Northern
Europe but that acquisition and loss of plasmids contribute largely to the rapid
creation of intra-epidemic variation.

The second examined epidemic (in effect at least) provides an orthogonal view-
point to the pv. aesculi strains mentioned above because temporally isolated strains
causing speck of tomato were analyzed for the accumulation of genetic variation
(Cai et al. 2011b). In this case, there are three clonal lineages of P. syringae
pv. tomato (Pto) responsible for disease worldwide: T1, JL1065, and DC3000.
MLSA analysis of Pto strains isolated between 1942 and 2009 from a worldwide
collection demonstrated that T1 is currently the dominant disease-causing lineage,
but that the dominance of this clone only occurred after replacement of both JL1065
and DC3000 somewhere around 1960. However, both JL1065 and DC3000 clones
are extant and are occasionally isolated as causative agents of speck disease out-
breaks. Analysis of five T1 clones isolated in Europe and North America from 1961
to 2005 showed any two pairs of these strains only differed by between 53 and
183 SNPs over ~3.5 Mb of their core genome. Even given this reasonably dense
sample of temporal isolates, divergence times between these strains were estimated
to be between 1,000 and 1,000,000 years, demonstrating the challenge of estimating
clone divergence with only estimates of crucial parameters like mutation rate.
Denser sampling of known SNPs over all the catalogued isolates showed there
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was intra-clone evolution as well, with specific genotypes replacing each other as the
main disease-causing lineage within the T1 lineage. Furthermore, there was a bit of a
geographic signal in Pto clone identity and evolutionary dynamics, with the JL1065
persisting in developing countries and the appearance of biased dispersal of geno-
types between Europe and North America and between South America and Africa.
There were also hints of independent evolutionary events for Pto occurring in
different geographic regions, suggesting that (at least) evolutionary relevant sub-
populations do exist on the worldwide scale for this pathogen.

Recent outbreaks of disease on kiwi have driven P. syringae pv. actinidiae (Psa),
the causative agent of bleeding canker of kiwi, to be the best characterized of any
lineage within P. syringae (McCann et al. 2013, 2017; Fujikawa and Sawada 2016;
Wilstermann et al. 2017; Everett et al. 2011). It’s an interesting pathosystem to
investigate because kiwi is native to Asia and has only been domesticated within the
last 100 years. These outbreaks therefore represent a particularly interesting window
to view adaptation of phytopathogens in new crop species, because (unlike crops
such as tomato that have been shaped by human selection for thousands of years)
pathogens haven’t had much time to adapt to the specific agricultural lineages
(McCann et al. 2013). In the early 1980s, farmers in Japan and China began to
notice a P. syringae disease causing cankers, leaf spots, and flower damage infecting
their orchards. Observations of this pathogen increased through the next couple of
decades, but 2007/2008 was the beginning of a pandemic where Psa severely
threatened the kiwi supplies (McCann et al. 2017). This outbreak has provided
researchers the chance to follow phytopathogenic adaptation to a new crop in real
time through dense sampling of diseased and asymptomatic hosts.

Psa can be split into four phylogenetically coherent clades (McCann et al. 2017).
One clade is represented by strains that caused outbreaks in Japan and Italy in the
1980s, another clade caused a limited outbreak in Korea in 2007–2008, and a third
clade is represented by a small pocket of strains in Japan. The most recent pandemic
and destructive clone, Psa-3, appears to have originated in China and spread
worldwide from there, even though the center of diversity and likely origin of Psa
itself likely lie in Korea or Japan. Each of these four main Psa clades is separated
from each other by between one and 4,000 SNPs (McCann et al. 2017). However,
there also appears to be a relatively high level of gene exchange between these four
Psa clones, with SNPs being introduced by recombination between clones at a
slightly higher rate than through mutation. While recombination occurs within Psa
clonal complexes themselves, within clone evolution is driven much more by
mutation (7�) than recombination. This pattern suggests that there is a diverse
reservoir where all extant clones can come in contact, that occasionally a particularly
pathogenic type emerges to cause a pandemic, and that the three previous outbreaks
have been caused by phylogenetically distinct lineages of Psa. Strains related to
those implicated in the New Zealand outbreak, clone Psa-3, have been particularly
well sampled over temporal and geographic diversity and provide a rich epidemic
snapshot for how diversity emerges throughout P. syringae. China harbors a few
different subclades of strains from within Psa-3, with the most divergent strains
possessing hundreds of SNPs on average compared to each other. Epidemiological
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genomics suggests two independent escapes from this source population to Italy and
New Zealand. Transmission events to Italy and New Zealand are clearly different
because all New Zealand Psa-3 strains share four informative SNPs compared to
other lineages. In addition to these four shared SNPs, New Zealand strains them-
selves differ from each other on average by about four SNPs each. Subsequently, this
Psa-3 clone was introduced to Japan either from New Zealand or from the same
source population in China, as the Japanese isolates of Psa-3 share the four con-
served SNPs found in New Zealand isolates. Genome sequences of the New Zealand
and Japanese strains, along with extrapolation as to divergence times, suggest a
relatively slow rate of accumulation for nucleotide substitutions throughout Psa-3
during the epidemic (McCann et al. 2017). In contrast, gene gain and loss is much
more prevalent than the generation of SNPs across all lineages of Psa, with hori-
zontal gene transfer of ICE elements between strains representing a particularly
significant event for pathovar actinidiae (McCann et al. 2013). Overall, the story
from Psa is one of a somewhat diverse and interacting group of related clones at the
source population where every once in a while a particularly good pathogen emerges
at the right time and right place and is dispersed throughout the world. After
dispersal, it appears as though SNPs do accumulate but do so at a lower rate than
other well-sampled animal pathogens.

There is a question as to how well we can extrapolate from these outbreaks to
P. syringae as a whole. It’s possible that the same geographic and evolutionary
patterns reflected in the outbreak strains hold true across all of P. syringae. It’s also
possible that these outbreaks represent rare outliers in the overall spectrum of
diversity and population dynamics. Outbreak strains may reflect lineages that cap-
ture the right genotypic information at the right time, persist until a better strain
comes along, and may be sampled in a biased way due to human interest. For
agricultural pathogens, there may be distinctly separate evolutionary dynamics for
outbreak strains compared to closely related environmental isolates because out-
break strains potentially undergo different selection regimes and experience a
different landscape for host diversity (Stukenbrock and McDonald 2008). A rela-
tively high percentage of possible hosts in small geographic areas, as one would see
in a monoculture field, could enable a positive feedback loop of increases in effective
population size, rapid growth, introduction of new diversity through mutation, and
transmission to new monoculture fields. This feedback loop may lead to increasing
specialization on agriculturally relevant crops for the outbreak strains compared to
those found in the environment. Strains present under more “natural” conditions may
not experience such widespread availability of hosts in proximity, or may not grow
to as high a level inside of these hosts. Even with these differences in mind, multiple
papers have demonstrated that environmental isolates can infect plants at high rates
and that there is substantial genomic overlap between known phytopathogen line-
ages and those from other sources (Cai et al. 2011a; Monteil et al. 2013, 2016).
However, clearer answers to these questions will likely arise with increasing
sequence data from environmental strains, but it is at least worth considering that
context for which we have the most information about P. syringae population
dynamics (or for any other relevant agricultural pathogen) may not be representative
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of the majority of strains. As usually happens, the answer probably lies somewhere
in the middle of the spectrum, where outbreak strains are unique in some of their
population dynamics because of particular host distributions but reflect overall
qualities in terms of dispersal, gene gain and loss, and mutation that are in line for
the expectation for P. syringae as a whole.

7 Why Does the Delineation of Bacterial Populations
Matter?

Defining population structures and evolutionary parameters is difficult, even for
well-studied bacteria like E. coli (Shapiro et al. 2009). However, these estimates are
important for modeling real-time scenarios for evolution (for instance, in predicting
the spread of antibiotic resistance) as well as teasing apart epidemiological histories
of outbreaks (McCann et al. 2013, 2017; Cai et al. 2011b). Basic questions about
how bacterial populations are structured are also critical for understanding funda-
mental rules and constraints governing evolution of environmental bacteria under
natural conditions (Choudoir et al. 2012). While some parameters can be estimated
from widespread genomic data (i.e., Ne in Sung et al. 2016), at least enough to
provide ballpark estimates, the best case scenarios have temporally and geographi-
cally stratified samples that can be used to calibrate rates of evolution. Even with
such data, extrapolating backward still relies on an implicit definition for under-
standing how frequently two genetic variants are going to be competing against one
another for fixation.

Questions about species, lineages, and populations take on a heightened impor-
tance when considering agricultural pathogens. Typically, transport of and research
on known phytopathogens are strictly regulated at the level of localities as well as
countries. What strains are called and how evolutionary lineages are defined matters,
because it is this very nomenclature that controls how strains are regulated (Baltrus
2016). Exacerbating these underlying problems of confusion across strain names, in
many cases, the resources dedicated to classification of agricultural pathogens are
less than those for human and animal pathogens, and thus changes to regulatory
definitions occur more slowly than the research to define strains. It’s ironic to an
extent, because transport of pathogenic strains may be highly restricted to regions
where very similar (or identical) strains are already endemic. I, and I’m assuming
numerous others, have dealt with the frustrating scenario where a particular bacterial
strain has been requested but where the recipient doesn’t have the correct permits for
strain import. However, closely related strains would likely be available naturally on
plants growing in the recipients region if not right outside their door. Our lack of
understanding of how to interpret evolutionary patterns within phytopathogens
hampers our abilities to accurately and efficiently develop bureaucracies to minimize
risks of these pathogens. Aside from providing data to inform basic evolutionary
questions, a better understanding of how populations of P. syringae evolve under
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natural conditions could significantly help to sort out the Rube Goldbergian morass
of nomenclature for these strains that has arisen over time (Baltrus 2016).

8 Extrapolating from Pseudomonas syringae

I have focused on P. syringae for this chapter, partly because it’s a species I’ve come
to know quite well but also because it’s a great example of a bacterium where
extensive knowledge about one of its potential habitats completely overshadows our
understanding of other important factors in its existence. P. syringae is not an outlier
in this regard though, and the same kinds of evolutionary and population-level
questions can apply to nearly all other bacteria found in the phyllosphere and
rhizosphere. Strains of Erwinia and Pantoea have been sampled from a variety of
host-associated contexts in both the presence and absence of disease and without
much geographic provenance but are also abundantly sampled as parts of the water
cycle and are ice nucleators (Kado 2006; Starr and Chatterjee 1972; Walterson and
Stavrinides 2015; Christner et al. 2008b). Strains of Ensifer, Rhizobium, and
Burkholderia are well known as symbionts of nodulating plants but are often
found living freely within the soil or in phytobiomes. Although there is great
potential for local adaptation at microscales within these species, overall patterns
are somewhat equivocal when it comes to evidence for geographic or local adapta-
tion (Van Cauwenberghe et al. 2014; Lemaire et al. 2016; Harrison et al. 2017;
Stopnisek et al. 2014). Perhaps the most interesting of this bunch are members of the
genus Streptomyces which are widely found throughout soils across the world but
can also be both pathogens and endophytes of plants. In contrast to other bacteria
mentioned above, isolates of Streptomyces appear to follow some geographic pat-
tern, which raises new questions both about the extent of isolation between strains
and about patterns of local adaptation (Choudoir et al. 2016; Andam et al. 2016).
They also have the ability to form spores, which, although not as durable as
endospores, may shift both their abilities for dispersal and survival (Lennon and
Jones 2011).

What these species all have in common is that they are found associated with
plants widely throughout the planet and are fairly easy to culture, but to date there are
relatively few studies that have been carried out with enough power to truly
understand the effects of evolution at the level of populations. Even across these
species the relevant parameters of dispersal or growth may differ, but we stand at a
crossroads where we know much about their evolutionary potential but relatively
little about their evolutionary reality in nature. After the initial wave of genome
sequencing of interesting isolates, we can begin to fill in these gaps by focusing on
identifying geographic patterns at whole genome levels and with sequentially
sampling of the same sites throughout time. With those data in hand, we can begin
to address questions about relative dispersal capabilities between strains and genera
and to investigate more specific hypotheses about topics such as how spore forming
shapes population dynamics under natural conditions. Ultimately, it may be possible
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to begin to match the precision and efficiency with which marine microbiologists
have described ecological niches and selective pressures (Follows et al. 2007). No
doubt that each system will have its own strengths and unique weaknesses, but
overall the picture will begin to come together where our understanding of how
genome level diversity changes throughout time and space can guide delineation of
populations of microbes evolving independently from each other.

9 Conclusions

The ubiquity of P. syringae across environmental contexts, from various types of
freshwater habitats to plants to (sometimes) even insects, creates interesting ques-
tions about population dynamics but also challenges in defining basic evolutionary
parameters. The likelihood is that, across the broadly defined species P. syringae
sensu lato, there will be clades and subclades of related strains that behave the same
but also significant diversity throughout the entire group in terms of niches and
population dynamics. I would suggest not getting too hung up on the taxonomic
challenges correlated with these questions, but instead basing analyses on relative
phylogenetic relationships between strains. Phylogroups have shown to do a pretty
good job of approximating relevant evolutionary groups of P. syringae, in so much
as recombination seems to occur more frequently within phylogroups than between
them. Even so, strictly basing evolutionary analyses at the level of phylogroups will
undoubtedly miss important nuances because membership in phylogroups (at this
point at least) is somewhat subjectively determined (Berge et al. 2014). It is worth
noting that there exists a burgeoning movement to base relative classification
schemes on whole genome sequences for P. syringae and extending across bacterial
taxa (Vinatzer et al. 2017). Once bacterial taxonomists have fully embraced such
approaches, emergent evolutionary trends and patterns may arise over different
scales that are currently obscured by nomenclatural confusion, clutter, and rot.

Stepping back to the question of how P. syringae populations evolve under
natural conditions, it appears as though there are a few clear takeaway messages
from larger-scale genomic studies that can inform answers going forward. Every
P. syringae clone is not everywhere as there does exist a signal of geographic
provenance across multiple clades. That studies can epidemiologically trace dis-
persal and transmission routes for clones themselves speaks loudly to geographic
differences. Whatever the relevant population metric is within and across
phylogroups of P. syringae, there is also likely going to be a center of diversity
somewhere in the world from which new clones emerge and are dispersed. These
centers of diversity and the modes of dispersal need not be the same for every
phylogroup, so that interesting patterns will likely emerge as an increasing number
of strains are sequenced from across the globe. Recombination is likely going to
occur more frequently within phylogroups than between, and therefore one clear
prediction is that centers of diversity for a relevant phylogenetic clade may be
hotspots for interstrain recombination by currently unknown mechanisms. Within
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a “population” of P. syringae, regardless of how that group is defined, it’s also quite
clear that gene acquisition and loss are going to be the dominant evolutionary forces
generating diversity over short periods of time, especially when genes of interest are
found on prophage and plasmids. Single-nucleotide variants certainly matter when it
comes to evolutionary dynamics, especially when these variants impact host immune
recognition, but the frequency of such SNPs will likely be dwarfed by gene gain
and loss.

I don’t have a clear answer to the thought experiment proposed earlier, but given
all of the data, I’d like to make some informed guesses that could certainly change in
the future. As of this moment, I would feel confident saying that two nearly
genotypically identical strains of P. syringae found in the same proximate area
regardless of sampling source have a pretty good chance of being members of the
same population. The likelihood of population membership will fall with geographic
distance of sampling, although we don’t know much about the rate at this moment in
time, therefore I can’t easily rule out that two nearly genotypically identical strains
found on opposite sides of the world are from the same population. If two divergent
P. syringae strains are isolated from the same plant, I would say at this moment that
they are likely from within the same population in an evolutionarily relevant sense if
they are members of the same phylogroup, but if they are members of different
phylogroups, they are probably from two different populations that are either
coexisting peacefully or in direct competition.

10 Future Perspectives

There will no doubt be many future efforts to isolate, identify, and sequence
P. syringae strains. Even during the course of writing this chapter, multiple groups
have shared an incredible amount of data that can inform questions I’ve highlighted
using P. syringae (Dillon et al. 2017; Straub et al. 2017; Karasov et al. 2018). This
future accumulation of data will provide increasingly refined estimates of important
evolutionary parameters such as estimates of mutation rate, measurements of nucle-
otide diversity, size of core genomes shared across strains, and the amounts of
recombination and/or horizontal gene transfer that occurs between groups and
species. The publication of such information will suggest wonderful new avenues
for evolutionary research and could transform our understanding of the forces that
shape natural populations of environmentally ubiquitous microbes.

However, I also posit that despite this inevitable flood of nucleotide sequence, we
will eventually run into the similar challenges as we do now (albeit with more
information at our disposal) in terms of identifying evolutionarily relevant lineages
unless serious efforts are made to incorporate geographic and temporal sampling on
a wider scale. It’s my belief that the true transformative moment will come when the
power of genomic analyses are combined with time series across different hosts and
geographies. Then, we will firmly know just how much diversity can arise within a
field in between transmission bottlenecks during a disease outbreak, we will be able

116 D. A. Baltrus



to differentiate between specialist and generalist populations across hosts, and we
will know just how capable recombination, selection, and drift can be in shaping
species-wide diversity patterns. To these points, Karasov et al. (2018) provide a
unique viewpoint into community-level diversity of pseudomonads (using 16S
rRNA sequences) across levels of single plants scattered over geographic scales
and can be used as a framework for scaffolding studies to evaluate whole genome
diversity across hosts.

While we are currently awash in genomic sequences from this species, the
coming years promise much more in terms of sampling and sequencing. Genome
sequences and relevant information about characteristics such as mutation spectrum
will accumulate, as will isolates from diverse habitats and geographic regions. There
are currently no clear answers to many of the questions raised in this chapter, but I
have it on good authority that multiple groups are working to gather data pertinent to
these questions so that we’ll likely have a better idea sooner rather than later. Even as
this data accumulates, P. syringae has proven to be a fascinating organism, and there
are no doubt many other mysteries will continue to confound and challenge us for
decades.
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An Introductory Narrative
to the Population Genomics of Pathogenic
Bacteria, Exemplified by Neisseria
meningitidis

Kanny Diallo and Martin C. J. Maiden

Abstract The ability to study populations of bacteria, rather than individual isolates
from cases of disease, represented a step change in our understanding of the bacterial
pathogenesis. The last few decades of the twentieth century and the first two of the
twenty-first century saw the development of conceptual, technical, and analytical
approaches that enabled the development of first bacterial population genetics and
then bacterial population genomics, with the study of pathogens in the forefront of
this development. These investigations have enabled the diversity of bacterial
pathogen lifestyles to be revealed, including details of their ecology and evolution.
Studies of the pathogenic Neisseria and specifically Neisseria meningitidis were in
the forefront of these developments, driven in part because of the complexities of the
pathobiology of this organism. In addition to insights into the biology of the
meningococcus, these studies have provided insights into bacterial population geno-
mics generally, provided a number of broadly applicable techniques, and had major
impacts on understanding and controlling meningococcal disease with vaccination.

Keywords Epidemiology · Evolution · Meningococcus · MLST · Vaccination

1 Introduction

Population genomics is the combination of genome-wide analyses of nucleotide
sequence variation with the concepts of population genetics: the genetic analysis of
representative samples from biological populations. It has a wide variety of appli-
cations including understanding the phylogenetic relationships of members of a
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given biological population and elucidating the impact of evolutionary processes and
functional variation on their biology (Luikart et al. 2003). The term was initially
applied in 1998 in the study of human genomes, but the approach has been much
more widely applied, including in the study of bacterial pathogens (Gulcher and
Stefansson 1998). Population genomics involves the differentiation between
evolutionary processes that influence individual loci, i.e. mutation, selection, and
recombination, and those which lead to bacterial adaptation from those that act
genome-wide, such as genetic drift or population bottlenecks (Black et al. 2001).

In common with their application to other organisms, population genomic
analyses of bacterial pathogens aim to (1) characterise evolutionary forces (mutation,
gene flow, recombination, and genetic drift), (2) determine bacterial population
structures, (3) elucidate mechanisms of pathogen evolution, and, more pragmati-
cally, (4) improve isolate characterisation and identification (typing) (Robinson et al.
2010). Because of their intrinsic interest, the relatively small size of bacterial
pathogen genomes, and the very large numbers of bacterial isolates available from
cases of human and animal diseases, very many population genomic studies have
been undertaken on a variety of bacterial pathogens including the Neisseria (Maiden
2008). However, notwithstanding the advantages that have promoted these studies,
they are not without their difficulties, due in large part to the fact that bacterial
pathogens are very diverse, having evolved multiple times from non-pathogenic
ancestors to exploit different hosts. These difficulties include:

1. Population sampling. Depending on the ecological relationship of the pathogen to
the host, a collection of disease isolates may be a more-or-less representative
sample of the natural population of the pathogen.

2. Genetic diversity. Some pathogens are genetically highly diverse, while others
are essentially monomorphic.

3. Mechanisms of evolution. While all bacteria are fundamentally asexual and
clonal, in that they reproduce by binary fission, the impact of the parasexual
processes of horizontal gene transfer (HGT) varies widely from non-existent or
negligible to extensive and highly disruptive of clonality.

4. Analysis. Due to reasons (1)–(3), it is not straightforward to analyse population
genomic data for bacterial pathogens. As discussed elsewhere in this book,
population genomic models remain a rapidly developing area of study, and it is
usually necessary to adapt the analysis approaches available as well as to develop
new ones.

Given the impossibility of comprehensively reviewing the wide variety of
different bacterial pathogens for which genomic data are available within a limited
space, this chapter will concentrate on the knowledge that has been gained from the
population genomic analysis of the encapsulated bacterial pathogen N. meningitidis
(the meningococcus), with reference to a number of key studies in other organisms.
The meningococcus was among the first bacterial pathogens to be investigated using
these approaches, and meningococcal biology has a number of features that illustrate
the difficulties outlined above, which are broadly applicable to the field (Maiden
2008).
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The meningococcus is a major cause of meningitis and septicaemia worldwide. It
is especially notorious and feared because of its propensity to cause a rapidly
developing, very severe, and frequently fatal disease (invasive meningococcal
disease, IMD) in infants, children, and young adults, although it can affect any age
group (Rodrigues and Maiden 2018). Notwithstanding this fearsome global reputa-
tion as an aggressive pathogen, the meningococcus is normally an asymptomatic
coloniser of the human nasopharynx, which relies on transmission among healthy
hosts for its survival. Invasive disease therefore represents a dysfunctional
bacterium-host relationship that is detrimental, and indeed potentially fatal, to both
(Caugant and Maiden 2009). Interestingly, this feature of being an unintentional or
‘accidental’ pathogen is shared with two other principal causes of meningitis,
Streptococcus pneumoniae and Haemophilus influenzae. Another intriguing feature
of the meningococcus, shared with these two otherwise unrelated organisms, is the
high diversity of its populations, combined with its competence for DNA uptake
throughout its life cycle, which means that HGT has played an important role in its
evolution and population structure.

2 Population Sampling

An ideal population genomic study will employ a random, unbiased sample of the
population in question; however, such a sample is almost always impossible to
obtain due to sampling constraints, including limited number of samples, access to
the natural population, and other practical limitations. It is possible to reduce the
impact of these issues by aiming to collect an appropriate representation of popula-
tion diversity, based on an understanding of the natural history of the pathogen
(Maiden 2006). Such problems can also be ameliorated by taking care to frame
questions appropriate to the samples that have been collected. For obligate patho-
gens, i.e. those for which disease is an integral part of transmission such as
Mycobacterium tuberculosis, sampling bacteria from cases of invasive disease
may be sufficient to get a good representation of population diversity, at least of
those organisms that are transmitted frequently in the host population. It is more
complicated for bacteria that have more than one host or that are found in the animal
reservoirs and/or the environment, such as the zoonotic pathogens Campylobacter
spp. and Salmonella spp., where sampling the population requires sampling the
appropriate reservoir (Young et al. 2007).

In the case of the meningococcus, a particular problem is that culture collections
are dominated by organisms isolated from cases of IMD, which represent only a
small portion of the population compared to those meningococci that are asymp-
tomatically carried (Caugant and Maiden 2009). Indeed, as they have caused disease,
isolates from IMD are, by definition, unrepresentative of the natural population of
asymptomatically carried organisms. The focus on sequencing isolates from cases of
invasive disease can introduce bias into population genomic studies (Caugant and
Maiden 2009). Consequently, although population genomic studies of IMD isolates
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can and have been undertaken to investigate the spread of particular invasive
meningococcal genotypes, they have to be interpreted with care when using them
to understand the broader features of meningococcal biology.

At the time of writing, most population genomic studies generated bacterial
genome sequence data from cultured isolates; however, it is known that culture
methods are only effective for a small number of bacterial taxa and often underes-
timate the diversity of bacterial populations. With improvements in methodologies
and reductions in cost, it is now possible to consider metagenomic approaches that
identify all taxa present in a given sample, independent of culture (Bilen et al. 2018).
Discussed elsewhere in this volume, these new metagenomic methods will enable a
more complete analysis of bacterial populations, as they will permit the composition
of communities and populations to be studied; however, there remain difficulties in
the prosecution of such investigations, especially for locations such as the nasophar-
ynx, where obtaining sufficient samples of the microbiota free of human DNA can be
more difficult than some other locations (Goldberg et al. 2015).

3 Genetic Diversity

The diversity of a given biological population is primarily a consequence of its
age, with mutation accumulating over time, but this diversity is also influenced by
the selection pressures that the population experiences and the occurrence of HGT
(Achtman and Wagner 2008). Thus, the asexual pathogens mentioned below
(M. tuberculosis, M. leprae, B. anthracis, and Y. pestis) have very limited genetic
variation, i.e. they are genetically monomorphic, having evolved relatively recently
with limited or no HGT (Achtman 2008). Genomes also experience different types
of selection: stabilising (negative) selection, diversifying (positive) selection, and
drift (neutral) variation. These selection pressures are not evenly distributed around
the genome. In bacteria, which have small compact genomes, most genes are under
strong stabilising selection for conservation of function, but intriguingly even such
‘housekeeping’ genes in bacteria such as the meningococcus can harbour high levels
of genetic variation. Other genes, especially those that encode surface components
that are recognised by the host immune system, may be under strong diversifying
selection. An interesting example of where the selection pressures acting on a gene
can change is the penicillin-binding protein (pbp) genes of the meningococcus.
These were under stabilising selection for the conservation of function until the
introduction of penicillin, when diversifying selection pressures became more pre-
dominant (Spratt et al. 1989). The identification of the differing selection pressures
experienced by different genes by population genomic analyses provides important
insight into gene function and is a major contribution of this area of study to the
unravelling of complex bacterial phenotypes.
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4 Mechanisms of Evolution

Models of bacterial evolution and population structure have been revolutionised by
the availability of nucleotide sequencing data (Achtman 2004). It has long been
known that bacteria divide asexually by binary fission, which results in two identical
daughter cells. Initially, it was thought that genetic exchange played only a marginal
role in bacterial evolution and the generation of population structure. Population
genomic studies have shown to be the case in certain high-profile pathogenic
bacteria, including the monomorphic pathogens M. tuberculosis, Mycobacterium
leprae, Yersinia pestis, and Bacillus anthracis. As nucleotide sequence data became
increasingly available, however, it became clear that HGT is far more significant
than originally thought playing a major role in the evolution of most bacteria,
including most pathogenic organisms (Yahara et al. 2016). The meningococcus
and its close relative Neisseria gonorrhoeae (the gonococcus) were important
paradigms in establishing this in the late 1990s. The impact of HGT varies among
organisms: it is unusually extensive in the gastric pathogen Helicobacter pylori, but
more limited in most organisms, including the meningococcus (Vos and Didelot
2009).

4.1 Analysis Approaches

The variable impact of HGT in different bacterial populations complicates the
analysis of population genetic data from bacteria in general and pathogens in
particular (Didelot and Wilson 2015). A detailed description of these problems is
beyond the scope of the present chapter, being discussed elsewhere in this volume,
but will be mentioned briefly. In the absence of HGT, bacterial diversification
follows a phylogenetic model: each division event leads to an identical daughter
cell, with variation introduced by occasional mutations. Except in the very unusual
case of mutation occurring twice or a reverse mutation, these mutations are passed on
exclusively to the descendants of the cells in which they occurred. Thus, as popu-
lation growth occurs, accompanied by the inevitable accumulation of mutations and
diversity reduction events caused by periodic selection and bottlenecking, evolution
follows a branching process. This is relatively easily modelled as a phylogenetic tree,
and if data on mutation rate can be estimated reliably, major events can even be dated
with reasonable certainty. This is the case with the genetically monomorphic path-
ogens mentioned above, M. tuberculosis, M. leprae, Y. pestis, and B. anthracis.
Conversely, in sexually reproducing organisms, or bacteria where HGT is extensive
and reassorts variation genome-wide, such as in H. pylori, classical principles of
population genetics, developed in the early twentieth century for sexually
reproducing organisms, can be applied. As discussed above, however, neither of
these extremes applies to most bacteria and bacterial pathogens, including the
meningococcus. Consequently, a pragmatic combination of different analysis
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approaches, phylogenetic and population genetic, is essential for studies of pathogen
population genomics. The best and most developed approaches attempt to model
evolution directed by both processes, but this is complicated and computationally
intensive (Didelot and Wilson 2015; Didelot and Falush 2007). Here we shall
illustrate this with several studies, including early pre- and ‘first-generation’ popu-
lation genomic studies of the meningococcus.

5 Phenotypic Methods for Bacterial Characterisation
and Diversity Studies

Before the availability of nucleotide sequencing methods, which expanded at the end
of the twentieth century and the beginning of the twenty-first century, phenotype-
based methods were essential for bacterial characterisation. They remain an impor-
tant part of clinical microbiology and are often a prerequisite for population analysis.
Different tests have been elaborated to study the diversity of bacteria by exploring
the observed phenotypic diversity of the organisms, which ultimately represent the
diversity encoded by the genome. Bacterial culture is still widely used for bacterial
identification, but decisions on appropriate culture methods require an extensive
amount of a priori knowledge of the bacterium of interest. Optimal growth condi-
tions have yet to be identified for most bacteria, which remains a major challenge for
studying its diversity using culture-based methods; however, many human patho-
genic bacteria have been well-characterised in this respect. Serological assays have
also played an important role in improving the understanding of the epidemiology of
meningitis by facilitating the identification and typing of pathogenic bacteria like
N. meningitis, S. pneumoniae, Escherichia coli, Salmonella spp., and H. influenzae
which are known to harbour different serological types, with only few causing most
cases of disease.

One of the first applications of bacterial population genetic approaches to bacte-
rial diversity was multilocus enzyme electrophoresis (MLEE). This method, first
used in the study of drosophila (Lewontin and Hubby 1966) and human (Harris
1976) population genetics, was extended to bacteria in the 1980s (Selander et al.
1986). MLEE allowed the assessment of genetic discrimination within bacterial
population samples by assigning electrophoretic types (ETs), based on the differ-
ences in the electrophoretic mobility of housekeeping enzyme variants in starch gel
electrophoresis (Caugant et al. 1986). This was the first approach to indicate the large
spectrum of population structures present among different bacteria, ranging from
the predominantly clonal organisms such as Bordetella spp. (Musser et al. 1987),
encapsulated H. influenzae (Musser et al. 1988), and Salmonella spp. (Selander et al.
1990) to less strongly clonal bacteria such as N. meningitidis (Caugant et al. 1987a),
Staphylococcus aureus (Musser and Kapur 1992), and S. pneumoniae (Hall et al.
1996).
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Early MLEE analysis of N. meningitidis indexed the sequence diversity of
9 enzymes among 152 N. meningitidis isolates of diverse serogroups, but with a
majority of serogroup B meningococci (NmB), and identified 55 distinct ETs. No
substantive genetic differences were observed between carried and invasive isolates
with this method; however, one ET, ET-5, was associated with IMD, as it
represented 58% of invasive isolates in the samples but only 18% of the carried
isolates, demonstrating that distinct N. meningitidis genotypes were differentially
distributed among isolates from disease and carriage, with some meningococci
exhibiting a ‘hyperinvasive’ phenotype. The analysis of the allele distributions
among the different genotypes was also the first indication of extensive HGT,
mediated by homologous recombination in meningococcal populations (Caugant
et al. 1986).

MLEE was also used to study the diversity of invasive and carried N. meningitidis
(Caugant et al. 1987a, b, 1988; Olyhoek et al. 1987). A similar approach, with the
additional analysis of the diversity of OMPs, was also used to investigate the
diversity of serogroup A (NmA) epidemic isolates, suggesting a predominantly
clonal population structure (Olyhoek et al. 1987). Twelve different enzymes were
used in the MLEE analyses of 655 E. coli isolates, and 60 different ETs were
identified (Caugant et al. 1984); similarly, MLEE was used to study the diversity
among 261 E. coli isolates sharing the same serological antigens O, H, and K and
found that there was almost as much diversity among the isolates sharing a single
antigen as between randomly chosen isolates (Caugant et al. 1985). The study of
242 isolates of H. influenzae, including 65 nontypable and 177 type b isolates,
characterised at 15 enzymes, identified 94 ETs. This study confirmed the genetic
distinction between the type b isolates which were associated with specific ETs and
the nontypable ones, which had distinct ET for each 65 isolates tested. From these
results, it was hypothesised that the ancestors of H. influenzae were most likely
encapsulated (Musser et al. 1986a). In contrast the MLEE analysis of 60 strains of
Bordetella spp., using 15 enzymes, yielded 14 ETs that were very similar even
among different species like Bordetella parapertussis and Bordetella bronchiseptica
(Musser et al. 1986b). MLEE established bacterial population genetics as a disci-
pline, as it assessed variation at loci and could be correlated directly to allelic
changes in the enzyme-encoding DNA sequences. It could therefore be used for
phylogenetic analysis; however, the method was difficult to reproduce among
different laboratories, and the full potential of population genomics that was indi-
cated by these pioneering studies was realised by the advent of nucleotide sequence-
based methods.

6 Sequence-Based Methods for Bacterial Characterisation
and Diversity Studies

Even though it was possible to sequence the whole genome of a bacterium by the end
of the 1990s (Tettelin et al. 2000), it remained very expensive, technically difficult,
and mostly undertaken only by specialist genome centres on single, or at most a few,
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isolates of given bacterial pathogens. Bacterial population genetic studies therefore
relied on a series of sequence-based molecular methods focusing on a particular gene
or set of genes within a pathogen population. These methods were all at the interface
between population genetics and population genomics as it has subsequently
developed.

What might be termed ‘first-generation’ bacterial population genomics, which
linked bacterial population genetics with what is currently thought of as population
genomics, began in the late 1990s and consisted of the sequencing of a limited
number of loci across a large number of isolates using dideoxy sequencing, origi-
nally established by Fred Sanger in 1977 (Sanger et al. 1977) and subsequently
developed into a high-throughput approach (Prober et al. 1987). By the late 1990s,
the Sanger method provided sequence reads, of up to about 1,000 base pairs
(bp) with reliability on about 400–500 bp, within a single experiment, with suffi-
ciently high accuracy that a nucleotide sequence could be reliably established by
sequencing a given gene once on each DNA strand. The first-generation automated
sequencing instruments allowed high-throughput sequencing of individual loci,
making them suitable for multilocus studies and the sequencing of single complete
genomes (Prober et al. 1987).

One of the most common applications of Sanger sequencing in bacterial popula-
tion genomics was multilocus sequence typing (MLST), which at the time of writing
remained an important paradigm for bacterial typing (Maiden et al. 1998). MLST
schemes have been developed for many different bacteria, and 97 bacterial MLST
schemes were hosted on the PubMLST database (https://www.pubmlst.org) at the
time of writing (Jolley and Maiden 2014). MLST adapted the principles exploited by
MLEE but assessed the variation in the sequences of small number (usually seven) of
fragments of genes under stabilising selection for conservation of metabolic function
(housekeeping genes) (Maiden et al. 1998; Achtman et al. 2012; Meats et al. 2003;
Enright and Spratt 1998). MLST indexes allelic variation by assigning an arbitrary
allele number to each unique sequence described and combining the resulting seven
numbers obtained for each isolate into an allelic profile or sequence types (ST),
analogous to the ET of MLEE. The method led to the discovery that for many
bacteria, STs could be grouped into groups of related STs called clonal complexes
(cc), in a similar way that ETs had been grouped previously. For many organisms
including the meningococcus, ccs persist in bacterial populations through time and
geographical spread and are surrogates for genetic lineages (Bratcher et al. 2012). In
the case of N. meningitidis, this allowed the identification of hyperinvasive lineages,
equivalent to those observed by MLEE (Maiden et al. 1998; Yazdankhah et al.
2004); however, unlike MLEE, MLST was scalable, easily reproduced among
laboratories, and amenable to dissemination electronically, leading to the establish-
ment of global databases containing MLST data. In 2009 MLST analyses had
established that the following ccs corresponded to the hyperinvasive lineages
found to be responsible for IMD globally: cc1, cc5, cc8, cc11, cc18, cc23, cc32,
cc41/44, cc103, cc162, cc269, and cc334. Other clonal complexes were found
principally in samples from asymptomatic carriage (Caugant and Maiden 2009;
Bratcher et al. 2012).
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Despite its many advantages over MLEE, MLST remained relatively labour-
intensive, required expensive equipment and some level of computer literacy, and
was consequently challenging to implement in many routine settings. MLST
schemes remain still very relevant to epidemiological studies of many bacteria, but
in the era of next-generation sequencing (NGS) technologies (Loman et al. 2012), it
is increasingly more cost-effective to determine MLST loci from whole genome
sequence (WGS) data rather than sequencing them individually. The MLST
approach is, however, highly scalable in terms of the number of loci used (Maiden
et al. 2013).

Phylogenetic inference made by these sequence analyses confirmed the impor-
tance of HGT, as suggested by MLEE, in the evolution of bacteria (Didelot and
Maiden 2010). Different bacterial recombination mechanisms have been defined:
transduction, the introduction of genetic variation through incorporation of DNA
from a viral phage; conjugation, the transfer of DNA sequences via a direct cell to
cell contact between two bacterial cells; and transformation, involving DNA uptake
from the environment (Goodman and Scocca 1988). Despite the recognition of the
occurrence of HGT, the clonal paradigm of bacterial population was considered
predominant, and studies of invasive serogroup A meningococci suggested a clonal
model of evolution of these bacteria (Olyhoek et al. 1987; Wang et al. 1992; Nicolas
et al. 2001); however, the inclusion of more carriage isolates in the sequence analysis
has shown that the meningococcus was actually a highly recombinogenic bacterium
with high levels of HGT, as suggested by the different phylogenetic relationships
inferred from the trees reconstructed from sequences of different genes (Feil et al.
1996; Zhou et al. 1997; Salvatore et al. 2002). Recombination rates calculated from
MLST data using the ClonalFrame algorithm (Vos and Didelot 2009) have been
described to be about 30 times those of mutation, for Salmonella enterica, 23 times
in the case of S. pneumoniae (Hanage et al. 2005), 7 times for N. meningitidis (Jolley
et al. 2005), 4 times for H. influenzae (Meats et al. 2003), 0.3 times for Klebsiella
pneumoniae (Diancourt et al. 2005), and 0.1 times in the case of Staphylococcus
aureus (Enright et al. 2000).

7 The Genome Era: The Population Genomic Approach
Comes of Age

The improvement in the methods and decrease in cost of WGS technologies made
the sequencing of large numbers of genomes feasible, replacing and complementing
single-gene sequencing. The first bacterium to be whole genome sequenced was
H. influenzae in 1995 using a ‘shotgun’ sequencing approach (Hood et al. 1996).
This was achieved with Sanger sequencing methods with individual reads compu-
tationally assembled into a single contiguous sequence, or ‘contig’, of 1,830,137 bp.
This took about a year to complete and was a proof of concept that such method
could work with bacterial genomes, being the first of many pathogen genomes
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sequenced in this way (Fleischmann et al. 1995). The first meningococcal genomes
to be sequenced were the serogroup A isolate Z2491 (Parkhill et al. 2000) and the
serogroup B isolate MC58 (Tettelin et al. 2000) both published in 2000. It was not
until 2010 that the genome sequence of a non-pathogenic Neisseria, Neisseria
lactamica, became available (Bennett et al. 2010); indeed, despite the possibility
of WGS, most projects continued to rely on Sanger sequencing methods to study the
population genomics of particular medically relevant organisms up until a significant
drop in prices of the different technologies to affordable ranges. Not only have the
prices decreased, but the length of time to generate a sequence has also considerably
reduced to a few days, and user-friendly analysis tools have been developed making
the genome assembly and analysis more accessible to microbiologists, without the
necessity of an extensive training in bioinformatics. Robust population genomic
studies of bacterial pathogens have been made possible through those technical
improvements (Gardy and Loman 2018).

7.1 Impact of Next-Generation Sequencing Technologies

Once the population of interest has been identified and appropriately sampled,
different sequencing approaches can be used to analyse the isolates, depending on
the question(s) to be addressed. DNA extraction must be adequately prepared as they
represent the starting point of any WGS analysis. Following the success of first-
generation sequencing, new methods commonly called ‘next-generation sequenc-
ing’ (NGS) were developed and became available from 2005 (Junemann et al. 2013).
The first of such NGS platforms consisted of higher-throughput sequencing systems,
referred to in this chapter as second-generation sequencing (SGS). These increased
throughputs by sequencing large number of DNA molecules in parallel. Generally,
these approaches generated shorter, less accurate sequences compared to dideoxy
sequencing, but the extremely high sequencing capacity of these instruments, com-
bined with computational developments, enabled these disadvantages to be over-
come by high levels of sequence coverage (Loman et al. 2012). The SGS allowed
sequencing of hundreds or thousands of bacterial genomes to ‘high-quality draft’
status (Chain et al. 2009), that is, not complete finished genomes, but the great
majority of the genome assembled into a number of sequence contigs at high
accuracy. At the time of writing, for example, the Neisseria PubMLST database
contained more than 43,172 isolates with genetic and epidemiological data and
13,384 whole genome sequences from various geographical regions.

7.2 Evolution and Population Structure

Genomic analyses of large numbers of N. meningitidis isolates have elucidated many
aspects of meningococcal evolution and population structure, for example, enabling
an improved understanding of the role and mechanisms of HGT in this organism.
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For example, it has been shown that HGT was favoured by the presence of multiple
copies of DNA uptake sequences (DUS) throughout the genome, which are espe-
cially concentrated in and around conserved genes with essential metabolic
functions. This led to the suggestion that HGT plays an important conservative
role in meningococcal evolution and is not solely, or even principally, a means of
generating variation that can be acted on by diversifying selection (Davidsen et al.
2004; Treangen et al. 2008). Analysis of the first N. meningitidis genome sequences
identified almost 1,900 DUS copies (Davidsen et al. 2004; Treangen et al. 2008).
These DUS have also been identified in other non-pathogenic Neisseria species
(Marri et al. 2010), which are known to exchange DNA with N. meningitidis
(Bennett et al. 2009), and an increase rate of HGT is observed between meningo-
cocci sharing similar DUS (Frye et al. 2013). Other repetitive elements present in
both pathogenic and non-pathogenic Neisseria include Correia elements, which are
mobile sequences (Buisine et al. 2002) flanked by 26 bp inverted Correia repeats
(Correia et al. 1986), and dRS3 elements which are a family of 20 bp repeat
sequences abundant in N. meningitidis genomes and involved in recombination
(Parkhill et al. 2000); both have been shown to be involved in gene regulation and
sequence variation in pathogenic Neisseria (Bentley et al. 2007).

Meningococcal repetitive genome elements facilitate another important phenom-
enon, phase and antigenic variation, a mechanism which allows meningococci to
turn the expression of some of their OMPs on or off, allowing for immune evasion
when they are off. The changes in the length of these repeated sequences in these
protein-encoding genes are the results of recombination events altering the coding
sequences (Tan et al. 2016; Seib et al. 2015). Phase variation mechanisms are found
in genes that are important for bacterial adaptation to different environments, some
of which play a major role in invasion and virulence (Moxon et al. 1994). Although
phase variable genes are also present in non-pathogenic Neisseria, they tend to not
have the repeating elements and are probably subject to less phase switching (Marri
et al. 2010) than their homologs in pathogenic species.

We now know that most HGT events among meningococci are mediated by
homologous recombination between very closely related organisms. This makes
the process difficult to distinguish from genetic variation arising by mutation, as the
bacteria exchange sequences that are often similar with few nucleotide changes. The
limited number of genomes from carried isolates, only 751 carried N. meningitidis
were recorded in PubMLST at the time of writing, has been a limiting step in our
understanding of the evolution of the meningococci.

The study of N. meningitidis population structures has benefited from the higher-
resolution characterisation of the isolates. A meningococcal core genome has been
established, comprising 1,605 loci present in 95% of their 108 representative menin-
gococcal isolates and distinguishing 10 lineages in agreement with the major
invasive clonal complexes characterised by seven-locus MLST (Bratcher et al.
2014). This core genome has been subsequently used in the analysis of different
isolate collections, such as the Meningitis Research Foundation Meningo-
coccus Genome Library (MRF-MGL), a database of all the confirmed cases of
N. meningitidis infection in England and Wales since 2010; the analysis of the
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899 isolates collected in the epidemiological years 2010–2011 and 2011–2012
identified more than 20 distinct lineages and a high level of recombination (Hill
et al. 2015). Lineages or genogroup-specific population structure studies can be
conducted at genomic levels of resolution, as exemplified by the analysis of the
global cc11 isolates, which identified a South American/UK serogroup W strain,
distinct from those identified in other regions of the world (Lucidarme et al. 2015)
and the study of the invasive serogroup Y meningococci in Sweden (Toros et al.
2015). The analysis of the 92 cc11 serogroup W meningococci collected between
1994 and 2012 from the African meningitis belt (AMB) revealed a phylogeographic
clustering of the isolates, as their phylogeny reflected their geographical origin
(Retchless et al. 2016), while the analysis of 81 serogroup C isolates collected during
the 2015 epidemic in Niger showed that they were distinct from those circulating
globally (Kretz et al. 2016).

WGS studies have also focused on the identification of genomic determinants of
virulence, following on from studies undertaken with MLST or antigen gene
sequences (Callaghan et al. 2008; Climent et al. 2010). For example, the genomes
of disease and carriage isolates have been compared to identify genetic differences
between these groups of isolates, for both serogroup Y (Oldfield et al. 2016) and
serogroup A meningococci (Diallo et al. 2017); however, to date no genomic study
had identified a single virulent factor that differentiates between these phenotypes,
although the meningococcal disease-associated (MDA) island (Bille et al. 2005) was
shown to be involved in the ability of the bacteria to cause disease especially in
young adult (Bille et al. 2008). Nonetheless, it was found that the bacterial popula-
tion circulating during the Chadian serogroup A epidemic in 2011 was not homo-
geneous, as would have been suggested by genogrouping or MLST analysis (Fig. 1),
and was separated into distinct clusters associated with the age of the individuals
sampled, indicating that external factors, host-related or environmental, could play a
role in the microevolution of those bacteria (Fig. 2) (Diallo et al. 2017).

7.3 Disease Surveillance

At the start of the twenty-first century, there was a decline in the incidence of IMD
caused by the disease-associated meningococcal lineages that had characterised
global epidemiology over the latter half of the twentieth century (Hill et al. 2015).
This was due, at least in part, to the highly effective immunisation campaigns using
the capsular polysaccharide conjugate vaccines, with substantial reductions of IMD
caused by serogroup C and serogroup A organisms in those regions where the
vaccines had been deployed (Maiden 2013). Similar reductions had occurred in
the incidence of H. influenzae type b (Hib) disease, where the Hib-conjugate
polysaccharide vaccine had been widely used. However, continuing problems with
serogroup B IMD, where no conjugate polysaccharide vaccine was available, the
recrudescence of serogroup Y and W IMD (where vaccines were available), and
the issues with vaccine escape in S. pneumoniae, all indicated that continued
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epidemiological surveillance was necessary to maintain and improve control of IMD
(Elberse et al. 2016).

At the time of writing, WGS approaches were increasingly the method of choice
for meningococcal isolate characterisation in high-income countries. In these set-
tings, they were already the most cost-effective means of collecting multilocus data,
including those required for MLST and antigen typing. In addition, WGS provided

Fig. 1 rMLST neighbour-joining tree of 23 NmA from Chad and publicly available cc5 NmA. The
relationship from the concatenated nucleotide sequences of the ribosomal genes between the NmA
isolates from Chad (n ¼ 23) and other publicly available cc5 NmA genomes from the PubMLST
database is represented in this tree. The label on each node indicates the PubMLST ID number, the
country, the date, and the ribosomal sequence type (rST) for each isolate represented. A total of
141 other cc5 NmA isolates were found in PubMLST, but only 1 representative of each unique
strain (defined as isolates sharing the same alleles at all 53 ribosomal loci) was included in the tree
alongside all the Chadian NmA from the 2011 meningitis epidemic. The seven-locus MLST profiles
of the isolates are indicated by different coloured boxes. The position of the reference genome used
in this study (WUE 2594) is represented by a black star. This figure was published by Diallo et al.
(2017)
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additional information from the remainder of the genome that was useful for high-
resolution examination of disease outbreaks and surveillance. The first routine
application of WGS for meningococci for disease surveillance, and one of the first
for any bacterium, was the establishment of the Meningitis Research Foundation
Meningococcus Genome Library (MRF-MGL), hosted within the pubMLST.org/
neisseria database (Jolley and Maiden 2010, 2014). The MRF-MGL contains high-
quality draft genome sequences for all the meningococci isolates received at the UK
national reference laboratories since 2010 (Hill et al. 2015). This allows automatic
typing of isolates, rapid sharing of data via the Internet, and the possibility of
additional genomic analysis and comparisons with other genomes, from other
countries, present in the database.

As more European countries systematically sequence their isolates and deposit
them in web-accessible databases (Bratcher et al. 2018), a regional genomic surveil-
lance system will emerge, enabling high-resolution monitoring of the molecular
epidemiology of IMD; however, a complete picture of the molecular diversity of
meningococcal populations requires the simultaneous collection and characterisation
of carried isolates. The effort to sequence invasive isolates has not been limited to
N. meningitidis; indeed, in the UK Public Health England has adopted WGS as the
routine typing method for all the Salmonella isolates received, thereby replacing the
serotyping assays and creating a large pool of sequence data (Ashton et al. 2016).

In 2017, however, WGS remained very far from being accessible in LMIC
settings, even in well-established research centres and certainly not in national
reference laboratories. The national surveillance systems still relied mostly on

Fig. 2 wgMLST neighbour-net tree of the 23 NmA from the 2011 meningitis epidemic in Chad.
The genomic relationship based on wgMLST between the Chad NmA isolates is depicted in relation
to the reference genome WUE2594. Three clusters are observed and labelled on the tree. The
invasive isolates are depicted in red and the carried ones in yellow. The rSTs contained in each
cluster are also indicated as well as the age and region of the patient/healthy volunteer are indicated
when available; ND corresponds to the absence of any epidemiological information for the specific
isolate. The tree was produced based on a comparison in terms of n ¼ 2,070 loci defined in the
reference genome. This figure was published by Diallo et al. (2017)
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clinical diagnosis and classical laboratory methods, although more national refer-
ence laboratories were equipped to perform molecular tests such as PCR confirma-
tion or occasionally MLST. The regional surveillance supported by the World
Health Organization (WHO) provides a platform to implement a genomic surveil-
lance of meningococcal disease or any other bacterial disease of interest using a
web-based interface which would facilitate the sharing of results and encourage a
community data analysis.

Examples of the potential of this approach include the use of WGS-based
surveillance to identify (1) aggressive serogroup W meningococcal lineages in the
UK and South America that were distinct from the serogroup W ‘Hajj clone’
associated with a previous outbreak (Lucidarme et al. 2015), indicating the evolution
of the global cc11 serogroup W meningococci (Mustapha et al. 2015), and
(2) serogroup C meningococci circulating in the AMB that have caused large
epidemics (Kretz et al. 2016). Other WGS studies defined the meningococci respon-
sible for distinct waves of serogroup A:cc5 meningococci (ST7 and ST2859) in the
AMB: one study suggested this might be due to herd immunity evasion via homol-
ogous recombination affecting noncapsular exposed antigens (Lamelas et al. 2014),
but an alternative explanation was that this could be due to changes in genes
involved in metabolic functions affecting transmission (Watkins and Maiden
2017). Such analyses improved the understanding of the evolution of the disease
isolates and would not have been possible at lower resolution.

WGS analyses have been crucial in meningitis outbreak investigation in several
regions of the world, allowing the identification of new variants that were indistin-
guishable when characterised by MLST (Diallo et al. 2017; Lavezzo et al. 2013;
Mulhall et al. 2016). WGS data have also been used for identification of outbreak
strains and their discrimination from unrelated cases (Jolley et al. 2012). If coupled
with epidemiological data, there is potential for the study of transmission dynamics,
as previously undertaken for other bacterial pathogens, for example, in the investi-
gation of multidrug-resistant Staphylococcus aureus (MRSA) outbreaks (Millar
et al. 2017).

8 Future Perspectives

The advent of high-throughput, cost-effective WGS technologies in the first decades
of the twenty-first century provided a powerful impetus to the analysis of
populations of pathogenic bacteria. It became possible to analyse the complete, or
very new near-complete (high-quality draft), genomes for hundreds or even thou-
sands of bacterial isolates. The sequence data were combined with a number of
analysis approaches, both conventional and newly developed, to establish bacterial
population genetics as a major paradigm in the analysis of bacterial biology. This
was first widely exploited for the analysis of bacterial pathogens of humans but is a
broadly applicable approach with wide application.
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At the time of writing, population genomics has been exploited to investigate a
number of questions, ranging from high-resolution epidemiology (trees combined
with maps) through bacterial evolution and population structure to host-pathogen
interactions and virulence. There are also major opportunities for the investigation of
antibiotic resistance, the establishment of global bacterial disease surveillance data-
bases, and the development of new vaccines; however, the accessibility to these
technologies is still skewed to high-income countries, despite the highest burden of
infectious disease being localised in low- and middle-income countries (LMICs),
especially sub-Saharan Africa. Consequently, there remains a need to translate
population genomics to the LMIC setting. In principle, there are many advantages
to using sequencing in resource-poor settings: although the set-up costs are high, this
is also true for more conventional microbiological analyses, with molecular and
sequencing analyses presenting opportunities for a ‘technology jump’ where novel
laboratory capacity is set up a priori with molecular methods that are broadly
applicable with a wide range of pathogens. Some early examples of this were the
deployment of the Oxford Nanopore and Ion Torrent sequencing platforms for
molecular epidemiology in the Ebola epidemic in West Africa in 2015 (Quick
et al. 2016).

A further challenge is the establishment of representative sampling frames for
specimens from across the globe. The under-sampling of particular regions of the
world and oversampling of others increase the risk of biases and can lead to an
inaccurate picture of the diversity and evolution of a given bacterial population. It is
therefore important that sustainable systems are put in place for improved access to
appropriate sampling technology, combined with adequate training of infectious
disease scientists, and the development of improved surveillance systems in LMIC
settings. Similarly, the emphasis on bacterial isolates obtained from cases of invasive
disease can also give a distorted view of the bacterial population. The development
and deployment of effective metagenomic analyses and increased sampling of
asymptomatic infection and environmental reservoirs will have important practical
and conceptual implications (Bilen et al. 2018).

When it comes to translation of these data and ideas to public health, it is
important that the different analysis methods and bioinformatics pipelines are
standardised, with clear and reproducible procedures that have been validated with
appropriate publicly accessible trials. Regulatory and advisory bodies will need to
generate guidelines for the certification of genomic methods and agree on protocols
and algorithms to be implemented. Furthermore, studies are required to establish the
practical impact of implementation of these approaches in hospital settings for
patient care management and improved disease outcomes. Such studies are also
needed to determine the level at which genomic analysis should most appropriately
be performed (hospital, regional, national, or international) and when real-time
genomic data is clinically relevant.

The increase in data availability poses challenges in data storage and handling
and also generates a requirement for increased computational power and bioinfor-
matics expertise. Population genomics has not answered all the questions raised by
the intriguing life cycles of bacteria such as the meningococcus. For example, it

138 K. Diallo and M. C. J. Maiden



remains unclear why hyperinvasive variants of this accidental pathogen persist;
however, the integration of genomics with the other ‘omics’ approaches,
transcriptomics, proteomics, and epigenomics, will generate new insights into such
questions.

In conclusion, population genomics continues to revolutionise the study of
pathogenic bacteria, providing tools to address a wide range of questions but also
providing information and approaches that are directly applicable to public health.
As technologies and analysis approaches continue to develop and be deployed, their
utility and dissemination will increase in all settings, but, perhaps most importantly,
they provide the prospect of the ‘technology jump’ in LMIC settings, where it is
possible to envisage a move directly from first-generation technology, involving
culture and serotyping, to near-patient sequence analysis, with a consequent revo-
lution in clinical microbiology and public health.
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Population Genomics of Archaea:
Signatures of Archaeal Biology
from Natural Populations

David J. Krause and Rachel J. Whitaker

Abstract Since the advance of high-throughput whole-genome sequencing,
microbial population biology has been providing insight into the processes that
generate and maintain genomic diversity and shedding light on the complex lives
of microorganisms in the natural environment. The domain archaea harbors a wealth
of diverse populations useful for studying microbial population biology in highly
varied environments, and their deep divergence from Bacteria creates a distinct,
independent field of study despite superficial similarities. Today, much of the
knowledge derived from archaeal population genomics is the result of culturing
individuals from the environment and sequencing isolates, which has enabled the
study of population biology for several archaeal species, including mutation rates,
recombination rates, and the influence of environmental selection. With a constantly
increasing volume of metagenomic data and advancing technology for single-cell
genomics, population genomics is making its way into the uncultured majority that
has otherwise evaded previous population genomic techniques, and the unique
biology of the archaea is poised to enhance our understanding of microbial popula-
tion biology.

Keywords Archaea · Genome architecture · Population structure · Recombination ·
Selection · Species

D. J. Krause
Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow
Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA

R. J. Whitaker (*)
Department of Microbiology, Carl R. Woese Institute for Genomic Biology, University of
Illinois Urbana-Champaign, Champaign, IL, USA
e-mail: rwhitaker@life.illinois.edu

Martin F. Polz and Om P. Rajora (eds.), Population Genomics: Microorganisms,
Population Genomics [Om P. Rajora (Editor-in-Chief)],
https://doi.org/10.1007/13836_2018_49,
© Springer International Publishing AG, part of Springer Nature 2018

145

http://crossmark.crossref.org/dialog/?doi=10.1007/13836_2018_49&domain=pdf
mailto:rwhitaker@life.illinois.edu


1 Introduction

The discovery of archaea as a third domain of life in the 1970s transformed the way
we think about the origin of life, the scope of natural diversity, and the relationships
among organisms (Woese and Fox 1977; Woese et al. 1990). Archaea are single-
celled microorganisms that share many superficial similarities with the Bacteria,
despite being more closely related to Eukarya. However, a historic bias toward
bacteria, especially pathogenic strains, and eukaryotes has led to archaea being the
least sampled of the three domains of life (Schloss et al. 2016). For decades,
environmental 16S rRNA gene sequencing projects used primers biased toward
bacterial diversity, but often missing swaths of archaeal diversity (Klindworth
et al. 2013), and despite the early sequencing of Methanococcus jannaschii (Bult
et al. 1996), bacterial genomes quickly outnumbered those of their archaeal coun-
terparts, as a current search of NCBI genome yields 1,400 archaeal genomes, but an
excess of 21,000 bacterial genomes.

The sequencing of individual genomes enabled the study ofmicrobial populations,
as the highly similar 16S rDNA sequence clusters within populations could be
interrogated for further diversity using multi-locus sequence analysis (MLSA)
(Maiden 2006; Maiden et al. 1998). Further advances in sequencing technology
have enabled researchers to sequence many genomes of organisms within a popula-
tion (Mau et al. 2006). The most common methodology for this approach is to isolate
many individuals from a natural microbial population in the laboratory followed by
sequencing individual genomes. The essential component of this method is the ability
to interrogate individual level variation across the genome. The specificity of cultur-
ing systems has enabled the research of archaeal populations, often due to the ability
to isolate archaeal organisms that harbor unique traits. For example, methanogenic
archaea can be isolated anaerobically using CO2 and H2 or various C1 or C2
compounds (Wolfe 2011), thermoacidophilic Sulfolobus spp. can be isolated on
low pH media at high (>80�C) temperature (Brock et al. 1972), halophilic archaea
can be isolated using excess of 1M salt concentrations (Torreblanca et al. 1986), and
ammonia-oxidizing archaea can be isolated via selecting for chemoautotrophic
growth on ammonia (Könneke et al. 2005).

However, the appreciation for the difficulty, or impossibility, of culturing the vast
diversity of microbes led to the practice of metagenomic sequencing of environ-
mental DNA samples to access the genomes of organisms without the need for
culturing (Gilbert and Dupont 2011; Venter et al. 2004). Again, the progress of
sequencing technology has now enabled read lengths and coverage depths that make
it possible to assemble individual members of microbial communities from shotgun
metagenomic data (Parks et al. 2017; Tully et al. 2018). This is a fascinating and
encouraging approach to microbial population genomics; however, the difficulty in
linking variable regions of the genome into individual genotypes prevents many of
the population genetic methods described below. Also, in many environments
archaea are rare and masked by dominating bacteria. Further advances are now
enabling the sequencing of individual cells taken from natural environments,
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facilitating identification of individual genomes while maintaining the independence
from culture-based techniques (Gawad et al. 2016; Marcy et al. 2007; Woyke et al.
2009).

In all three domains, population genomics uses the patterns of natural variation in
the genomes of closely related organisms to infer key parameters of evolution,
including mutation, selection, gene flow through migration, recombination and
horizontal gene transfer, genetic drift, and how these forces interact. Understanding
these forces in natural populations can elucidate the basis of diversity, the formation
of species, and identify particular genes under selection in natural populations.
While some forces (selection, genetic drift, migration) are likely universal across
the domains, the underlying molecular mechanisms that establish mutation rates,
recombination, and horizontal gene transfer in archaea are likely different than those
in bacteria and may be similar to eukaryotes. This difference will shape the way
these forces interact in the architecture of archaeal genomes. The exciting and
powerful potential of studying the archaeal domain is evident in how their unique
molecular mechanisms are present in patterns of natural diversity.

Here we will summarize relevant progress in the field of archaeal population
genomics using distinct technical approaches: culturing members of archaeal
populations from nature and sequencing the genomes of individuals and assembling
the genomes of archaeal populations from larger metagenomic datasets.

2 Population Genomics of Cultured Archaeal Isolates

Sequencing the genomes of cultured isolates can be straightforward. Because indi-
vidual genomes are sequenced in isolation, SNPs can be called with high confidence
and information about linkage between SNPs within an organism is absolute. The
approach is limited to organisms that can be cultured in the laboratory; meaning it is
inaccessible to uncultured taxa or even restricted to only the easily cultured members
of generally culturable taxa. However, several archaeal systems have been investi-
gated using population genomics of cultured isolates, and these are currently the
most in-depth studies of all the technological approaches currently available.

3 The Thermoacidophilic Sulfolobus islandicus

Originally isolated from acidic hot springs in Iceland, S. islandicus has also been
found in thermal areas in Russia and North America. This species can be cultured on
complex media at low pH and high temperature, allowing for efficient selection of
this species from hot spring water samples. Prior to the accessibility of high-
throughput genome sequencing, multi-locus sequence studies had identified that
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populations of S. islandicus were isolated by large geographic distance (Whitaker
et al. 2003), and within endemic populations, recombination between strains was
common (Whitaker et al. 2005). As genomes became more prevalent, comparative
genomics approaches for strains from various populations further validated those
previous conclusions from MLST data, as well as identified polymorphism patterns
and variation in gene content that varied with respect to physical distance from the
multiple origins of replication (Flynn et al. 2010; Reno et al. 2009).

The first genomics study to leverage a single S. islandicus population focused on
the genome sequences of 12 strains isolated from a single hot spring in Kamchatka,
Russia (Cadillo-Quiroz et al. 2012). MLSA had identified two divergent subpopu-
lations within the larger Mutnovsky population, and the genomic approach solidified
this observation with genome-wide data. By modelling recombination events within
and between the subpopulation using ClonalOrigin (Didelot et al. 2010), the authors
found that genetic exchange was more frequent within than between the subpopu-
lations, a feature consistent with the biological species concept for diverging species
(Cadillo-Quiroz et al. 2012). The authors calculated FST, a metric for fixed differ-
ences between the two subpopulations, to find that fixation was highest near the
origins of replication, in the lower diversity regions. This view of “continents” of
fixation was an alternative to other studies of speciation that have identified more
targeted selection driving species apart in “islands” (Shapiro and Polz 2014). Further
analysis of the population genomic dataset using phylogenetic inferences revealed
that recombination rates varied around the chromosome and the reduced recombi-
nation around origins of replication could explain the decreased nucleotide diversity
in these regions due to background selection. Further, the high FST values calculated
in these regions may have also been the result of reduced interpopulation recombi-
nation in these regions relative to other regions (Krause et al. 2014).

S. islandicus and the related Sulfolobus spp. are prime systems for interrogating
population biology of thermophilic archaea in light of several of their novel features.
With a habitat restricted to acidic hot springs, the confounding influence of migration
is limited when studying isolated populations. S. islandicus, like other Sulfolobus
spp. and many other archaea but unlike most bacteria, have multiple origins of
replication (Lundgren et al. 2004; Robinson et al. 2004; Wu et al. 2014). Although
S. islandicus reproduces asexually, genetic recombination can be inferred from
genome sequences as well as observed in the laboratory (Cadillo-Quiroz et al.
2012; Krause et al. 2014; Whitaker et al. 2005; Zhang et al. 2013). Recombination
rate calculation in S. islandicus estimated a r/m value of 1.2, similar to another
archaeal taxon Halorubrum sp. at 2.1 (Vos and Didelot 2009).

Elucidation of the unique ways that Sulfolobus spp. exchange genetic material is
still in progress (Ajon et al. 2011; Schleper et al. 1995; Stedman et al. 2000;
van Wolferen et al. 2016).
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4 The Methanogenic Methanosarcina mazei

The methanogen M. mazei is a euryarchaeota with a wide metabolic diversity, being
capable of growth via anaerobic conversion of acetate, methylamines, and methanol
to methane, carbon dioxide, and ammonia in the case of methylamine (Deppenmeier
et al. 2002). The species can be isolated anaerobically on these substrates from
various anaerobic habitats. A recent study sampled various locations within the
Columbia River Estuary, isolating M. mazei from these samples and sequencing
their genomes (Youngblut et al. 2015). Genome analysis revealed the presence of
two major subpopulations within the isolate set. The authors identified several genes
characterized by high levels of fixation and divergence between the populations,
measured by FST and sequence identity, respectively. These genes included three
molybdate transport genes and three molybdenum-containing formylmethanofuran
dehydrogenase subunits, as well as other genes including several encoding hypo-
thetical proteins. Some of these genes were also concentrated in a highly fixed and
divergent region of the chromosome, raising the possibility of genomic architecture
playing a role. The subpopulations also differed in gene presence/absence patterns,
and although the majority of these genes were annotated as “hypothetical proteins”
as is frequent in archaeal genomes, several gene annotations represented multiple
instances of nearly fixed gene content, including CRISPR-associated proteins,
glycosyltransferases, and restriction-modification proteins. Further, the authors mea-
sured phenotypic variation between the subpopulations, as assayed by rates of
methane production from various substrates. They identified significant differences
between the subpopulations in methane production from trimethylamine.

The unique metabolism of methanogenic archaea allows them to fulfill a very
specific niche in anaerobic habitats. More population studies that continue to go
beyond single markers and into whole genomes will elucidate features of their
population structure and how metabolic diversity plays a role in the differentiation
of populations within species.

5 The Halophilic Halorubrum spp.

Halophilic archaea can be isolated on complex media from medium to high-salinity
environments, ranging from the Dead Sea, to salt flats, to even Antarctica (Anderson
et al. 2016; Mormile et al. 2003; Mullakhanbhai and Larsen 1975). A recent study in
the halophilic archaeal genus Halorubrum sequenced the genomes of 17 isolates
from a single saline lake in Aran-Bidgol, Iran (Fullmer et al. 2014). Genera such as
Halorubrum and other halophilic archaea are commonly found in saline lakes based
on both isolates and metagenomic data (Naghoni et al. 2017). Previous work
performed on isolates of Halorubrum from a set of saline ponds in Spain had
identified high levels of recombination using MLSA (Papke et al. 2004). In Fullmer
et al. (2014), the authors identified four major subpopulations within their isolate
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set based on maximum-likelihood gene trees. Two of these subpopulations were
considered cohesive groups based on high bootstrap support in the individual and
concatenated gene analyses, average nucleotide identity (ANI), and tetramer fre-
quency analysis. These groups differed in their presence and absence of CRISPR
systems as well as intein elements, protein segments that excise themselves from the
larger protein in which they are contained. Given the frequent observation of
transmission of inteins within recombining populations, intein divergence between
the subpopulations provided evidence that recombination barriers existed between
the phylogroups, laying the groundwork for future potential studies of speciation
between these groups.

As with Sulfolobus, the feature of recombination in asexually reproducing organ-
isms can help to reveal patterns in the population structure of the organisms, such as
barriers to recombination and migration. The novel feature of intein sequences in
Halorubrum further allowed for understanding how genetic elements outside of
plasmids and viruses can play a role in population structure as well.

6 Metagenomics and Single-Cell Genomics: Interrogating
the Uncultured Majority

Given that most of microbial diversity is not accessible to culture approaches, this
precludes the ability to easily interrogate individual microbes from a population. The
rise in popularity of metagenomics, combined with deeper sequencing, longer reads,
and computational pipeline advances, has led to the ability to assemble individual
genomes from larger community read datasets. There are inherent problems with this
method. While SNPs can be confidently identified throughout genomic assemblies, it
is not possible to assemble true individuals. SNP frequencies can be interrogated at
genomic positions, but they cannot be confidently linked to one another beyond the
length of an individual read pair. Despite these limitations, assembling individuals
from larger metagenomic datasets has revealed information about populations of
uncultured archaea in the natural environment.

7 The Acidophilic Ferroplasma

Even before the shift from MLST to whole-genome sequencing for isolates taken
from archaeal populations, the first archaeal population was being studied at a
whole-genome level using high-throughput sequence data, but without laboratory
isolation of the organisms. Shotgun metagenomic data from a pink biofilm in acid
mine drainage near Redding, California, was assembled, leading to scaffolds that
corresponded to two different “types” of the archaeal genus Ferroplasma (Eppley
et al. 2007). By analyzing individual read pairs for patterns of variation that
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distinguished between the two types, the authors were able to identify strain-level
variants within the two Ferroplasma populations. Using the information from these
strain-level variant, the authors inferred recombination events among strains within
an individual population, and even among strains across the two populations. They
also observed a decrease in calculated recombination rates as sequence divergence
between strains increased, a pattern commonly found in bacterial and eukaryotic
systems (Datta et al. 1997; Fraser et al. 2007).

The uniqueness of the acid mine drainage site lies in its high acidity (pH ¼ 0.7),
which enables the oxidation of ferrous iron as an energy source for Ferroplasma
(Golyshina et al. 2000). Again, recombination in archaeal populations is a major
feature underlying population structure, as would be confirmed later using genomes
from other archaeal species. The low diversity of the acid mine drainage microbial
community also facilitated the assembly of these populations, as more diverse
environments can make assembling individuals from populations far more
challenging.

8 Assembling Genomes from Massive Metagenomic
Datasets

Especially when species are not in high abundance within a microbial community,
populations are difficult to interrogate from assembling genomes and mapping reads.
Progress is being made toward assembling genomes from massive metagenomic
datasets, which can in the future facilitate more targeted population-level read map-
ping for population genomics. A recent assembly effort using 1,550 metagenomic
datasets assembled 43 TACK-group archaea, 41 DPANN-group archaea, and
538 Euryarchaeota (Parks et al. 2017). Metagenomic approaches in the human gut
microbiome have further identified features of uncultured methanogenic archaea,
possibly utilizing trimethylamine produced within the gut (Borrel et al. 2017).
Metagenomics has also been able to identify archaeal viruses in DNA samples, and
possibly even identify new ones (Bolduc et al. 2012; Gudbergsdóttir et al. 2016).

9 Sequencing Single-Cell Archaeal Genomes from Natural
Environments

Single-cell genomics has not yet fully matured to the point of probing many
members of archaeal populations. Single-cell amplification and sequencing of
32 individual cells of the uncultured archaeal lineage MSBL1 from several Brine
Pools in the Red Sea yielded the ability to construct a likely metabolic network
for these yet uncultured organisms, but did not analyze any population-level
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metrics among the sequenced strains (Mwirichia et al. 2016). Other approaches have
combined the use of single-celled amplified genomes (SAGs) with metagenomics, to
pull out metagenomic reads corresponding to a particular lineage. This was
performed for a population of the NAG1 archaeal lineage inhabiting the Great
Boiling Spring in Nevada (Becraft et al. 2017; Rinke et al. 2013). Again, the analysis
was capable of constructing likely metabolic networks for uncultured organisms for
which metabolic reconstruction would be impossible without genomic or culture
data, but no analyses comparing individual members of the populations were
performed.

10 Future Perspectives

Population genomics has yielded valuable insight into the population structures of
various archaeal organisms. Studying the genomes of closely related cultured isolates
has allowed for the identification and study of speciation events, barriers to recom-
bination between populations, and phenotypic differentiation between populations.
Future work with cultured isolates will be invaluable for directly correlating pheno-
typic variation observed in the laboratory with inferences made from genomic data.
Currently, cultured isolates are still the most efficient way to interrogate many
individuals within a population while maintaining linkage among sites and the
potential to interrogate other features of individual strains. While metagenomic
sequencing has been in favor for directly interrogating microbial communities for
more than a decade, technological advances are only recently allowing for the
interrogation of individual strains within larger metagenomic datasets. Single-cell
genomics is continuing to increase in popularity and make technological advances;
however, population genomics for archaea at this scale has not yet been performed.
Combining single-cell draft genomes with metagenomics may be a strong interme-
diate between the two, especially for the uncultured majority.

The archaea harbor many novelties that may influence various aspects of their
population biology. Multiple origins of replication may underlie larger chromosomal
architectures that influence how different parts of the genome evolve. The extreme
environments in which many archaea can be found may also underlie aspects of
population structure, such as limited migration. While many of the archaea described
here originate from environments with extreme temperatures, pH, or salinity,
mesophilic archaea can also be found in non-extreme habitats (Könneke et al.
2005). Future work should aim to highlight the novelty of archaea in understanding
what factors shape archaeal populations, including the role of recombination and
recombination barriers in speciation, how ecological or phenotypic differentiation
arises and is maintained between lineages, and how genomes evolve in regions and
as a whole.
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Population Genomics of Fungi



Advances in Genomics of Human Fungal
Pathogens

Daniel Raymond Kollath, Marcus de Melo Teixeira,
and Bridget Marie Barker

Abstract Fungi are responsible for 1.5 million deaths every year, and one-third of
the human population has experienced a fungal infection. The increasing numbers of
immunocompromised people are associated with the increased incidence of human
mycosis, either from medical interventions such as cancer therapy or transplantation
or due to other underlying diseases such as HIV/AIDS or diabetes. Additionally,
climate change has been implicated in widening distributions of endemic fungi,
potentially expanding beyond previously restricted ranges. In this chapter, we will
address two main classes of fungal pathogens: first, the globally distributed fungi
such as Candida, Aspergillus, and Cryptococcus, followed by a discussion of
endemic fungal pathogens and their relatives Paracoccidioides, Histoplasma,
Coccidioides, and Emmonsia. In the past, virulence and pathogenesis studies were
limited to few infection models and biomarkers, but these studies have progressed
significantly with the advances of DNA sequencing and genetic tools. Newly
sequenced structural (DNA) and functional (RNA and protein) genomes provide a
scaffold to understand gene gain and loss that might be associated with mammalian
infection and disease progression. During infection, these pathogens express a wide
range of genes that are associated with either establishment of infection or escaping
recognition by host immune cells. Moreover, population genomic studies reveal that
pathogen complexes exhibit different strategies to generate genetic diversity either
via sexual or parasexual recombination, and this phenomenon may be implicated in
altered virulence, disease presentation, and antifungal resistance. The literature of
genomic studies of the abovementioned pathogenic fungal genera are summarized,
and molecular taxonomy and population structure are explored, as well as a survey
of the main genomic characteristics, chromosomal variation, gene content, and
expression. Comparative genomics between pathogenic and nonpathogenic close-
related species provides evidence of both convergent and unique adaptation of those
fungal lineages to mammalian hosts. A better understanding of patterns of gene flow
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among species (hybridization), adaptation and evolutionary potential, fully closed
reference genomes, and general improvement of gene annotation and function is
needed.

Keywords Comparative genomics · Fungal infection · Fungal pathogen genomics ·
Population genetics of fungi

1 Introduction

The fungal kingdom is a diverse group of eukaryotes, harboring several million
species, which likely originated between 500 and 1,000 mybp (Hawksworth and
Lucking 2017). Although fungi are predominately saprobic, a number of fungi are
symbiotic, parasitic, or predatory species that feed on living organisms and some-
times kill the host (Taylor 2014). Worldwide, fungi kill more people each year than
malaria, tuberculosis, or breast cancer, and one-third of the human population has
experienced a fungal infection (Brown et al. 2012; Bongomin et al. 2017). The
frequency of invasive fungal infections is increasing and is often associated with
climate change, increased numbers of immunocompromised people who are under-
going cancer therapy, transplantation, as well as those with underlying diseases, like
granulomatous disease or HIV/AIDS (Park et al. 2005; Oladele et al. 2018; Chastain
et al. 2017; Brown et al. 2012). Moreover, there are several fungal pathogens that
infect otherwise healthy people, and the immune condition of the host is not always
directly linked to disease pathology (Kohler et al. 2017). As outlined in several of
the papers cited above, the number of invasive fungal infections in the human
population has dramatically increased, and the fungi responsible cover a broad
range of taxa. Candida ssp. (Saccharomycetes), Aspergillus ssp. (Eurotiales), and
Cryptococcus neoformans (Tremellales) represent fungal infections where the
impaired immune status of an individual is directly associated with the establishment
of the disease. Additionally, certain pathogens affect both immunocompetent and
immunocompromised people, and the immune condition of the host is not neces-
sarily associated with the infection and disease progression. These infections are
caused by fungal pathogens such as Cryptococcus gattii (Tremellales), Histoplasma
capsulatum, Blastomyces ssp., Paracoccidioides spp., Coccidioides spp.
(Onygenales), Talaromyces marneffei (former Penicillium – Eurotiales), Sporothrix
sp. (Ophiostomatales), and black yeast-like fungi (Chaetothyriales) which are
responsible for thousands of severe infections, especially in tropical and subtropical
countries around the globe (Queiroz-Telles et al. 2017).

Fungal infections represent a major challenge to public health, as fungi are
ubiquitous in the environment and rarely transmitted from human to human, or
transmitted by a vector, making exposure impossible to completely avoid (Barberan
et al. 2015). Furthermore, the distribution, exposure rates, and genetic basis of either
virulence or host escape mechanisms of these pathogens represent a major knowl-
edge gap in the medical mycology field. Thus, fungal epidemics and outbreaks are
challenging to predict and prevent, and the consequences are severe if not correctly
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addressed. The human fungal pathogens are polyphyletically distributed across
different phyla in the fungal kingdom, and different evolutionary trajectories and
adaptive strategies have led the emergence of different mechanisms of virulence and
adaptation to living hosts across these lineages (Fisher et al. 2012).

It is estimated that five million different species of fungi exist in the world, and
new fungi are discovered frequently (Dukik et al. 2017; Hawksworth and Lucking
2017). How do we determine if a novel organism is truly a new species? A common
definition for a microbial species is the evolutionary species concept (ESC), which is
summarized as a single lineage of ancestor-descendent populations which maintain
distinct identity from other such lineages and has its own evolutionary tendencies
and historical fate (Wiley 1978). In addition, morphological (MSC), biological
(BSC), and phylogenetic (PSC) species concepts all have specific criteria that have
been used to describe species boundaries in fungi (Hawksworth 2006; Taylor et al.
2000). The hallmark publication of Hawksworth describes the identification of
70,000 fungal species using morphological or phenotypic characters (Hawksworth
and Rossman 1997). The taxonomical classification of human fungal pathogens was
traditionally based on those morphological characters that are responsible for the
formation of the sexual structures (i.e., fruiting bodies) and asexual structures (i.e.,
conidia/conidiophores and phialides) or by characterizing the pathogenic phase
derived from animal hosts (i.e., yeast-like forms) often resulting in incorrect taxo-
nomic assignments (Bowman et al. 1992b).

The main challenges of defining pathogenic fungal species by morphological
characters or ability to form viable progeny are (1) not all fungal pathogens are
cultivable in artificial media; (2) fungal pathogens exhibit a high polyphyletic
morphological profile within species complexes or even between different genera;
(3) some fungal pathogens may take up to 6 weeks to be precisely characterized due
to slow growth rate under laboratory conditions; (4) not all fungal pathogens produce
fruiting bodies, or induction of these structures under laboratory conditions are
laborious and time-consuming; and (5) some fungi are homothallic (self-fertile),
and in this case the meiospores will not display a detectable inheritance pattern. In
these fungi, the presence of meiospores is not sufficient to determine if mating takes
place, necessitating genetic markers to ensure that the progeny has two distinct
parents (Taylor et al. 1999, 2000, 2006; Taylor and Ellison 2010; Bowman et al.
1992a). With the advances in molecular biology tools, the typing methods have
significantly increased in precision of defining species limits as well as the detection
of fungal pathogens. Prior to sequencing-based methods, molecular techniques, such
as restriction fragment length polymorphisms (Botstein et al. 1980), random ampli-
fied polymorphic DNAs (Williams et al. 1990), amplified fragment length poly-
morphisms (Vos et al. 1995), and simple sequence repeats (Tautz 1989), have been
used to determine species. Limitations include cost, rapidity, technical proficiency
required, the use of radioactive materials, and confidence in the frequency of specific
polymorphisms within species and populations.

In fungi, direct analysis of nucleotide sequence is most consistent with the
evolutionary species concept. Molecular phylogenetics has become a common
approach to define species, because changes in nucleotide sequences and allele
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frequencies at different loci can be detected prior to changes in morphology or
mating patterns (Taylor 2014). The hallmark publication of Taylor, Bruns, Lee,
and White proposed the idea of fungal barcoding (White et al. 1990). Universal PCR
primers targeting the ribosomal DNA of fungi were developed, which took advan-
tage of emerging Sanger DNA sequencing methodology, and became a powerful
tool to discriminate fungal species. Additional advances in Sanger sequencing and
cloning methods led to systematic functional genomic characterization of conserved
genes in fungi and eventually the first fungal genomes. The baker’s yeast
Saccharomyces cerevisiae was the first eukaryotic genome to be sequenced and
paved the way not only for fungal pathogen genomics, such as Candida albicans and
Aspergillus fumigatus, but genomics as a whole (Goffeau et al. 1996; Jones et al.
2004; Nierman et al. 2005).

The abundance of Sanger-derived DNA sequence data from fungi allowed
researchers to develop targeted sequencing and analysis of homologous genes
among fungal pathogens. In light of this, the genealogical concordance for phylo-
genetic species recognition (GCPSR) was proposed as a method for species assign-
ment among fungi and is widely used in medical mycology (Taylor et al. 2000). This
technique offers many advantages over the BSC and MSC, particularly in morpho-
logically homogeneous fungi or when there is insufficient knowledge of sexual
reproduction. According to the GCPSR method, each locus will produce slightly
different gene genealogies within the same species due to the existence of recombi-
nation. However, when comparing two different species, the genealogies for the
different loci will be concordant due to accumulation of genetic differences due to
genetic drift or selection. It is expected that within species there may be a conflict
between the branches generated due to recombination and gene flow. The detection
of common branches shared among different gene trees is the key to identification of
phylogenetic species.

Many fungal pathogens exist as either haploid or diploid mycelia and are prop-
agated by mitotic (clonal) divisions. In a clonal population, a single genotype is
maintained in a population, reducing diversity and maintaining an adaptive pheno-
type (Taylor et al. 2015). However, environmental stress, exposure to the host, or
antimicrobial drug exposure may induce some fungal pathogens to undergo sexual
or parasexual (the parasexual cycle involves plasmogamy, karyogamy, and meiosis
taking place at non-specified times in the fungal life cycle) reproduction to generate
recombinant progeny and genetic diversity that might adapt to the novel environ-
ment (Heitman 2010). Recombination has been identified by evolutionary analysis
in natural populations of human fungal pathogens, where divergent clades emerge
due to natural selection and speciation, which may lead to phenotypic changes
among these species, such as disease variation, adaptation strategies, virulence,
and pathogenicity, among others. The consequences of sexual and parasexual
recombination include gene duplications and losses, mutations, chromosomal
rearrangements, and loss of heterozygosity, which, coupled with horizontal gene
transfer and de novo gene formation, are the main forces of phenotypic variation in
fungi.
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The sexual cycle in fungi can occur via a heterothallic system (self-sterile) or a
homothallic system (self-fertile) mechanism. Among heterothallic species, mating
occurs between two sexually compatible individuals, which are morphologically
identical but are genetically determined by the mating-type (MAT) locus. Homothal-
lic species contain two complementary sexual loci in the same haploid genome, and
thus each individual can self-fertilize (Ni et al. 2011). The gene content and order of
the genes in the MAT locus vary according to each phylum. In Ascomycetes, the
MAT1-1 locus encodes for an α-box gene, while the MAT1-2 locus encodes for an
HMG-type gene, and the locus usually spans 10 kb. In basidiomycete yeasts, the
MAT locus (a or α) is composed of homeodomain genes (e.g., SXI1α and SXI2a in
Cryptococcus ssp.) and spans 100 kb (Yan et al. 2007). These transcription factors
regulate the downstream expression of pheromones and receptors in the MAPK
mating signaling pathway, pheromone-forming enzymes, and other transcription
factors. Same-sex mating has also been suggested in both Candida and
Cryptococcus species, and this may generate genetic and phenotypic plasticity
(Hirakawa et al. 2017; Fu et al. 2015).

The ability to sequence entire genomes provides insight into biological and
metabolic diversity within the fungal kingdom and has advanced research in medical
science, agricultural science, bioremediation, biotechnology, ecology, and many
other disciplines (Sharma 2016). As more genomes are sequenced and made avail-
able for public reference, we gain a greater understanding of the biological diversity
within the fungal kingdom. The first fungal genome to be entirely sequenced
(Saccharomyces cerevisiae) provided insight into the evolution and natural history
of yeasts. It also served as a model organism for eukaryotic biology, giving rise to
novel advancement in cancer biology and genetics. Fungi also serve as important
model organisms for biomedical and infectious disease research. The first full
genome sequence of a fungal pathogen was Candida albicans, as well as one of
the first eukaryotic pathogens (Jones et al. 2004). Sequencing genomes of pathogens
provides information about the evolution of pathogenicity and virulence factors as
well as potential targets for treatment (Sharma 2016). Aspergillus fumigatus is one of
the most prevalent causes of mycoses worldwide, but the basic biology of the
organism was not understood until comparative genomics was carried out. These
analyses revealed species-specific horizontally acquired genes that lead to extremely
rapid environmental adaptations (Fedorova et al. 2008). Genomic analysis was used
to help understand the recent emergence of Cryptococcus gattii in the Pacific
Northwest of North America. This geographical expansion of a previously described
endemic tropical and subtropical genotypes revealed that naturally acquired genomic
adaptations lead to the emergence of the pathogen in this region as well as a recent
microevolution caused by different selection pressures in the new environment
(Engelthaler et al. 2014). When doing comparative genomic analysis on the
C. albicans genome, allelic differences were identified that lead to resistance to
certain antifungals. These examples show how genomic sequencing of fungal
pathogens is an important tool to understand factors that may have led to the
emergence or outbreak of disease as well as acquired drug resistance (Cuomo 2017).
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In recent years many fungal genomic databases were created and made publicly
available for reference. The Saccharomyces database allows non-bioinformaticians
to access the full genome of strain S288C and provides extensive information on
mapping, sequence information, protein domains, expression data, and much more
(Sharma 2016). There are also databases that are dedicated to a specific genera
of fungi such as candidagenome.org that provides functional information about
genes and proteins of Candida spp. or aspergillus-genomes.org.uk, which offers
web-based tools to analyze genomic features. FungiDB (fungidb.org) is a database
that provides an interface that allows researchers to compare genomic data of
multiple species of fungi (Basenko et al. 2018). These databases allow researchers
with diverse skill sets to access a huge quantity of genomic data from a wide range of
species almost immediately. The growth of these existing databases and the creation
of new ones can increase the quality and speed for new research in the medical
mycology field (Cuomo 2017).

The following sections will look at the genomics and biology of several fungal
pathogens but are certainly not exhaustive. The use of population, evolutionary, and
functional genomics can give great insights into pathogenicity and other clinically
relevant traits by examining molecular variation within the same populations and
across different populations and species. We strive to summarize a large body of
knowledge to guide the reader to recent developments in human fungal pathogen
genomics and encourage the reader to further explore and engage with these
developing stories.

2 Human Fungal Pathogens from the Genus Candida

Candida is polyphyletic genus of fungi nested within the Saccharomycotina sub-
phylum of the Ascomycota and contains many pathogenic yeast species (Boekhout
et al. 2009; Turner and Butler 2014). Candida species are the most prevalent cause of
opportunistic fungal infections and are responsible for high rates of morbidity and
mortality worldwide (Eggimann et al. 2003). Whole genome sequencing has led to a
number of new findings, including novel codon usage distribution, recombination
patterns, gene gain/loss, and antifungal resistance mechanisms.

Disturbances in the normal microbial flora, particularly in patients that are
immunocompromised or have a severe primary disease, present an opportunity for
Candida spp. to cause disease. Disease states range from superficial infections of
skin and mucosal tissues (e.g., oral thrush, vaginal yeast infections) to systemic
infections that can affect a wide range of organs and tissues (Jackson et al. 2009).
Most Candida species belong to a single clade that is characterized by the unique
translation of CUG codons and harbor haploid (C. lusitaniae) and diploid species
(C. albicans, C. dubliniensis, C. tropicalis, and C. parapsilosis). The C. parapsilosis
complex is composed of at least two additional species revealed by multilocus
analysis: C. metapsilosis and C. orthopsilosis. C. glabrata, C. nivariensis, and
C. bracarensis are haploids and descendants from a common ancestor that
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underwent a whole genome duplication process (WGD) (Butler et al. 2009;
Gabaldon et al. 2013, 2016). Recently, the three CandidaWGD species were placed
into the Nakaseomyces genus, along with three environmental species:
Nakaseomyces delphensis, Nakaseomyces bacillisporus, and Nakaseomyces castellii
(Gabaldon et al. 2013).

Even though there is tremendous variation in phenotype and genome size
among the Candida species, the total number of protein-coding genes is similar
(Butler et al. 2009). Genome size varies broadly among the Candida species, ranging
from 10.6 to 15.5 megabases, and haploid species have a smaller genome than the
diploid species, and the overall frequency and distribution of single nucleotide
polymorphisms (SNPs) vary between diploid species (Turner and Butler 2014;
Butler et al. 2009; Jones et al. 2004). The subphylum Saccharomycotina consists
of pathogenic (genus Candida) and nonpathogenic yeasts. Within the genus Can-
dida are opportunistic pathogens that are assigned to this genus because they are
pathogens but belong to distinct lineages that are comprised of both pathogens
and free-living yeasts, suggesting that the ability to infect humans has evolved
independently several different times within the subphylum Saccharomycotina
(Gabaldon et al. 2016). Comparing Candida genomes reveals virulence factors
and utilization of the CUG codon for serine instead of leucine, which appears
to increase diversity of surface proteins to evade the host immune system by
changing the recognition patterns of immune cells (Gabaldon et al. 2016; Miranda
et al. 2013).

All members of the Candida genus, with the exception of C. glabrata and
C. krusei, have a unique way of translating CUG codons. While CUG codons are
normally translated to the amino acid leucine, the Candida clade translates CUG
to serine (Butler et al. 2009). There have been many studies that attempted to
understand the evolutionary advantage of this genetic code change. Using
Saccharomyces cerevisiae, a close relative of C. albicans, there is evidence that
selection drives a molecular mechanism that requires CUG to have ambiguity.
Codon ambiguity usually shows decreased fitness, which means there has to be
some positive evolutionary response to this negative impact. It has been shown that
CUG ambiguity induces increased expression of a novel set of stress proteins that
triggers the general stress response that gives the fungus a competitive edge in
stressful conditions (Santos et al. 1999). This genetic code change could give
Candida species an evolutionary advantage that could allow for the occupation of
new ecological niches by outcompeting other organisms under stress conditions.
This also may be an explanation as to why Candida species are exceptional
opportunistic pathogens.

It is still unclear whether or not all Candida pathogens can undergo meiosis.
C. albicans, for example, was considered a strict diploid asexual fungus. Pathogenic
Candida species have a wide variety of strategies when it comes to sexual repro-
duction (Bennett 2010). There seem to be differences between haploid species and
diploid species, as well as differences within the ploidy groups. Diploid species have
members that reproduce sexually via parasexual cycles, where there is a mating of
compatible diploid cells followed by mitosis and chromosome loss rather than
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meiosis, homothallism (self-mating), and no observed outcrossing (Bennett 2010).
Haploid species have been observed to complete sexual cycles via heterothallic
mating (outcross mating) and homothallic mating cycles (Butler 2010; Butler et al.
2009). Idiomorphs at the mating-type locus (MTL) seem to determine mating type in
Candida species (Butler et al. 2009). There was an effort to find orthologs of meiotic
genes that have been observed in S. cerevisiae as well as in Candida pathogens.
Genetic analysis and mating crossings showed that sexual reproduction in
C. albicans occurs between two different and compatible mating-type cells (Butler
et al. 2009). Moreover, the ability to undergo the sexual cycle is dependent on a
phenotypic switch from white asexual stage to the opaque mating-efficient stage that
is controlled by the transcription factor Wor1 (Cain et al. 2012). Each of the a and α
diploid counterparts carries a single MTL, and mating occurs in vitro using specific
media conditions or by using in vivo mammalian models to generate a/α tetraploid
progeny. Likewise, C. tropicalis also undergoes a cryptic sexual cycle that is also
dependent on the white to opaque switch (Porman et al. 2011). Recently, C. albicans
was shown to regulate mating not only by the MTL but also by epigenetic pheno-
typic shifts (Bennett 2015). Cells switch from a white (round) state to an opaque
(elongated) state with the help of the transcription factor Wor1. Sexual mating
between opaque cells was shown to be a million times more efficient than mating
between white cells (Bennett 2015). This suggests that environment plays an
important role in the expression of a sexual versus asexual cycle and that mating is
linked with traits associated with pathogenicity and drug resistance (Hirakawa et al.
2017).

To date, for both C. parapsilosis complex and C. glabrata, no functional sexual
mechanism has been found, despite discovery that these “non-mating” species have
the MTL as well as genes involved in the pheromone response pathway, indicating
that cryptic sex may exist (Butler et al. 2009). In addition, genomic analysis showed
that IME1 meiotic regulators are absent in all Candida species and the DMCL-
dependent pathway (involved in meiotic recombination) was absent in heterothallic
species (Butler 2010). Surprisingly, non-mating species showed conserved phero-
mone response pathways indicating that these meiotic pathways are used for other
purposes such as virulence factors (Butler et al. 2009). According to population
genomic analysis, recombination due to sexual reproduction is low in Candida
species compared to other fungi, but there may be other novel mechanism to
maintain genetic variation and adaptation mechanisms of these pathogens (Salazar
et al. 2018; Holland et al. 2014; Turner and Butler 2014). Genetic studies suggest
that mitotic recombination followed by loss-of-heterozygosity events is one main
source of phenotypic variation in C. albicans (Gomez-Raja et al. 2008). Chromo-
some break-induced replication, loss, and segmental deletions can result in the
expression of recessive genes and reveal adaptive alleles important for virulence,
mating competence (Magee and Magee 2000), auxotrophy (Gomez-Raja et al.
2008), and antifungal drug resistance (Coste et al. 2007).

Twenty-one gene families are significantly enriched among pathogenic Candida,
including genes that encode for lipases, oligopeptide transporters, and adhesins
(Butler et al. 2009). These gene families are all known to be associated with
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pathogenicity and virulence, especially adhesins that facilitate adherence of the
pathogen to host cells or surfaces. Hwp1, ala1p, als5p, als1p, and epa1p are proteins
in the class glycosylphosphatidylinositol-dependent cell wall proteins (GPI-CWP),
which play a role in adherence to host endothelial and epithelial cells (Ariyachet
et al. 2013; Liu and Filler 2011; Zhu and Filler 2010; Almeida et al. 2008). The
Candida clade also harbors more gene families associated with extracellular
enzymes and transmembrane transporter proteins. Cell-surface transporters
(oligopeptide transporters and amino acid permeases) are also enriched in those
pathogens, providing more evidence of the importance of extracellular activities for
pathogens to be successful (Butler et al. 2009). Additionally, gene families enriched
for cell wall, hyphal, pseudohyphal, and biofilm growth have been identified in
pathogenic Candida species.

Many genes specific to C. albicans are associated with virulence, which may
provide an explanation as to why this member of the Candida clade is such a
successful pathogen. To investigate this, the genomes of C. albicans and
C. dubliniensis (a less virulent and closely related fungus) were compared (Jackson
et al. 2009). The genomes of the two species are virtually colinear with a few
exceptions. The secreted aspartic proteinase (SAP) gene family controls hydrolytic
responses of host tissues and is a crucial virulence factor for C. albicans (Naglik
et al. 2003a). These hydrolytic enzymes destroy host cell membranes, invade cells,
and degrade host immune defense molecules, such as lactoferrin, secretory IgA, and
macrophage proteins, to resist antimicrobial activity (Zakikhany et al. 2007). There
are four SAP loci on chromosome 6 of C. albicans; however, C. dubliniensis is
missing SAP4 and SAP5 (Jackson et al. 2009). This suggests an inversion, insertion-
deletion, or transposition event has led to C. dubliniensis-specific differences from
C. albicans. In addition, genes that encode for common fungal virulence-associated
cell wall proteins (e.g., Hyr/Iff proteins and Als adhesins) are found in C. albicans
genomes. Als adhesins are associated with adhesion to host surfaces, acquiring iron
from host, and invasion of host cells. These Als gene families are enriched in
C. albicans but are absent in nonpathogenic Saccharomyces fungi (Sheppard et al.
2004; Loza et al. 2004; Maguire et al. 2013). Patterns of gene enrichment suggest
that C. albicans has specifically evolved and adapted to occupy the host niche.

Candida glabrata is another important human pathogen in the Candida clade.
This pathogen accounts for a high number of mucosal systemic infections and is the
second most common yeast human pathogen behind C. albicans (Rodrigues et al.
2014). Both fungi show significant similarities in their genomic content for virulence
factors, but there are also important differences. Whereas C. albicans primarily
employs hyphal formation and proteinase secretion as virulence factors,
C. glabrata relies on the production of lectins (Kaur et al. 2005). The genome
shows a loss of genes involved in nitrogen, phosphate, and sulfur metabolism and
simple sugar utilization, and this gene loss may be a result of a close association and
evolution with mammalian hosts.

Although C. albicans utilizes secreted proteinases for infection, C. glabrata does
not produce a significant amount of extracellular proteinases (Turner and Butler
2014). The two yeasts both produce phospholipase B (PLB) enzymes that seem to be
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related to virulence (Naglik et al. 2003b). In C. albicans this is associated with
gastrointestinal tract colonization. PLB protein genes were found to be highly
expressed during C. glabrata vaginal infections, indicating that they play a role in
the metabolism of phospholipids and cause damage to the vaginal epithelium. As
compared to hyphal formation in C. albicans, C. glabrata initiates a signaling
cascade for the formation of pseudohyphae via mitogen-activated protein kinases
under depleted nitrogen conditions (Kaur et al. 2005). The transcription factor ste12
is required for pseudohyphae formation in low nitrogen conditions and is highly
conserved among fungi. The deletion of ste12 in C. glabrata results in lower
pathogenicity, which suggests that pseudohyphal formation plays a role in infection,
but the mechanism is not yet understood (Calcagno et al. 2003). Adherence to host
epithelial cells is controlled by different mechanisms in C. glabrata as compared to
C. albicans. HWP1 and genes in ALS family in C. albicans encode adhesins,
whereas in C. glabrata, adherence is controlled by GPI-anchored cell wall proteins
in the epithelial adhesions (EPA) gene family (Filler 2006). Notably, EPA1 is a
lectin that binds to host glycoproteins. The C. glabrata genome contains several
EPA-related genes, and deletion of EPA1 drastically reduces adherence in vitro,
which implies that this is an important virulence factor (Salazar et al. 2018; Cormack
et al. 1999).

The frequency of resistance to antifungal drugs within the pathogenic Candida
species has increased and is responsible for increasing hospitalizations and deaths
due to Candida infections (Arendrup and Patterson 2017). Azoles, echinocandins,
polyenes, nucleoside analogs, and allylamines are all used to treat candidiasis, but
the efficacy varies depending on the species resistance mechanism as well as its
related pathology (Whaley et al. 2016). Azoles are the most used drugs against
Candida infections and act by inhibiting the enzyme lanosterol 14a-demethylase
(used in the biosynthesis of ergosterol) codified by the gene Erg11 (Flowers et al.
2015). Point mutations in Erg11 confer resistance to azoles for both C. albicans and
C. tropicalis and are a common mechanism responsible for azole resistance. More-
over, the overexpression of Erg11 via mutation of the zinc-cluster transcriptional
regulator Upc2p is another mechanism that confers azole resistance (Macpherson
et al. 2005). This mechanism has been observed in other species such as C. tropicalis
and C. parapsilosis species complex; however it is absent in C. glabrata. In addition,
Erg3 is associated with antifungal resistance in C. albicans. The Erg3 enzyme is
sterol Δ5,6 desaturase which catalyzes the final steps in the ergosterol biochemical
pathway (Martel et al. 2010). The accumulation of 14α-methylergosta-8,24(28)-
dien-3β,6α-diol is toxic for fungal cells, and the activation or deletion of the
ERG3 gene, therefore, prevents such toxic compounds from being produced.
Overexpression of efflux pumps, ERG1 and its regulator Upc1, and ERG6 has
been shown to increase fluconazole resistance in C. parapsilosis (Silva et al. 2011).

Additionally, the overexpression of two other genes encoded for drug efflux
pumps named Mdr1p and Cdr1p/Cdr2p is also an important mechanism for azole
resistance in C. albicans (White 1997). Cdr1p/Cdr2 encodes for an ATP-binding
cassette (ABC)-containing protein and is regulated by TAC1 (transcriptional acti-
vator of CDR genes) (Tsao et al. 2009). Genome-wide analyses have shown at least
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nine overexpressed TAC1 alleles that were shown to be acquired by LOH
mechanisms (Coste et al. 2007). Another important gene conversion due LOH is
the MRR1 (multidrug resistance regulator 1) and was identified by comparing the
transcriptomes of fluconazole-resistant isolates that overexpressed MDR1 (White
1997). MRR1 knockouts have decreased fluconazole MICs, while introduction of
point mutations in this gene rescues the fluconazole-susceptible phenotype in the
native strains of C. albicans (Silva et al. 2011). In C. krusei, population and
comparative genomics revealed novel transporters that may play a role in drug
resistance or adaptation to different environments in this pathogen (Whaley et al.
2016; Cuomo et al. 2017). This pathogen is heterozygous, and large genomic regions
are affected by LOH and may be associated with antifungal resistance (Cuomo et al.
2017).

Finally, one pathogenic yeast in the Candida genus that must be mentioned due to
its global and recent emergence as the cause of severe infections on three continents
is C. auris. This species harbors multiple drug-resistant strains/populations and was
first described in Japan in 2009. This invasive fungus with the ability to cause
fungemia and infect tissues, such as inner ear canal, is a new threat to public health
(Vallabhaneni et al. 2016). C. auris seems to be highly resistant to fluconazole, other
azoles, and amphotericin B (Lockhart et al. 2017). This azole resistance may come
from orthologs of the C. albicans genes ERG11 and SC5314 previously implicated
in azole resistance in other Candida species (Whaley et al. 2016; Lockhart et al.
2017). Comparing these two orthologs, nine amino acid substitutions were identified
that were also identified in azole-resistant C. albicans. All nine plus three more
substitutions were identified in C. auris isolates that showed extreme azole resis-
tance. These amino acid substitutions are thought to play a major role in antifungal
resistance in this emerging pathogen.

Each species of Candida has varying degrees of pathogenicity and antifungal
resistance, which is why identifying the organism causing invasive candidiasis down
to the species level is important for treatment outcome (Lockhart et al. 2017). Most
clinicians tend not to perform species conformation when treating candidiasis, which
could have serious consequences. Candida albicans is very susceptible (>98% of
isolates) to fluconazole as a therapy, but 10–12% of Candida glabrata isolates are
resistant to fluconazole (Lockhart et al. 2017). With the emergence of Candida auris,
which is often multidrug resistant, it is even more vital to identify the infectious
species for the best treatment outcome. Most C. auris isolates are naturally resistant
to fluconazole, 50% of isolates are resistant to amphotericin B, and three isolates to
date have showed resistance to the three main classes of antifungal drugs (azoles,
polyenes, echinocandins) (Lockhart et al. 2017). Genomic epidemiology can be a
useful tool to identify antifungal-resistant genes and better treat these infections.

A clinical isolate of C. auris that showed resistance to all echinocandin drugs but
was susceptible to azoles (except for fluconazole) and also resistant to 5-flucytosine
was recently sequenced. In other fungal species, mutations in the FKS1 (encodes
1,3-β-D-glucan synthase which catalyzes the synthesis of crucial cell wall compo-
nents) gene have led to the resistance to echinocandins (Jiménez-Ortigosa et al.
2017). This C. auris isolate had a non-synonymous SNP in the FKS1 genes that
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caused a serine to tyrosine substitution (Rhodes et al. 2017). Another mutation,
which caused a phenylalanine to isoleucine substitution, was located in the FUR1
(encodes uracil phosphoribosyltransferase which synthesizes UMP from uracil) gene
(commonly associated with 5-flucytosine resistance). These mutations were not
described in any other Candida species (Rhodes et al. 2017). Non-synonymous
SNPs seem to be the source of resistance to echinocandin and 5-flucytosine. Inter-
estingly, no mutations specific for amphotericin B resistance were identified, which
the authors suggest may be acquired through a non-mutation mechanism.

In summary, the genus Candida contains a diverse array of human pathogenic
and commensal fungi. Genomics has helped to understand the basis of antifungal
resistance and the evolution of pathogenesis. See Fig. 1 for explanation of genetic
population structure and cryptic species of Candida.

3 Human Fungal Pathogens from the Genus Aspergillus

Aspergillus fumigatus is a primary and opportunistic pathogen, as well as considered
a major allergen. The human respiratory tract is constantly being exposed to high
volumes of the ubiquitous conidia, which are produced continuously by A. fumigatus
in the environment (Kwon-Chung and Sugui 2013). In immunocompromised
patients, A. fumigatus infections can reach up to 50% mortality rate, depending on
patient group and type of infection (Lin et al. 2001). The genome of A. fumigatus
was compared to its close nonpathogenic relative Neosartorya fischeri; 700 genes
were found in A. fumigatus, which were either absent from or significantly diverged
in N. fischeri. Many of these genes encode for pathogenic phenotypes and imply that
A. fumigatus diverged to be a streamlined pathogen (Nierman et al. 2005).

Aspergillus fumigatus is an ubiquitous saprophyte in the environment. It is
assumed that genes associated with a pathogenic lifestyle are upregulated during
host infection (Chung et al. 2014). The genome of A. fumigatuswas compared with a
common food biotechnology fungus and relative Aspergillus oryzae, as well as a less

Fig. 1 Candida sp. population structure
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pathogenic relative Aspergillus nidulans (Galagan et al. 2005). Approximately
500 genes were found to be unique to A. fumigatus. These genes were then compared
with other pathogenic fungi such as Candida and Cryptococcus, and none of these
500 genes were common virulence factors (Ronning et al. 2005). This suggests that
the ability to infect and survive in a human body is not uniquely present within the
genome but is a consequence of being a successful environmental saprophyte
adapted to high temperature and stressful environments, such as compost piles
(Kwon-Chung and Sugui 2013; Cramer 2016). Mechanisms to adapt to extreme
environmental conditions are also critical for pathogenicity. A. fumigatus has the
ability to grow well at 37�C, can grow in low oxygen, has a proteome that produces
metabolites that helps the fungus compete with other organisms, has mechanisms
that combat oxidative stressors, and activates efflux pumps regularly to transport
toxins out of cells quickly (Ronning et al. 2005; Grahl et al. 2012). These metabolic
factors are useful for survival and competition in the environment as well as the
harsh environment of the human body. Tolerance of higher temperatures, oxidative
stress (reactive oxygen species produced by neutrophils), and osmotic stress are
obstacles that A. fumigatus has to overcome in order for the conidia to germinate into
mycelia and establish infection in a living host (Takahashi et al. 2017; Cramer 2011).
A total of 266 stress response genes were highly expressed when A. fumigatus was
exposed to one of the environmental conditions above, and 77 have orthologs in
S. cerevisiae, which suggests that these genes are needed for environmental stress
adaptation and could increase pathogenicity (Takahashi et al. 2017). Studies have
examined the stress response genes that are expressed under hypoxic conditions
showing that 35% of genes were differentially expressed under 30–120 min of
hypoxic conditions and that A. fumigatus has 32 hypoxia-specific genes that were
not expressed under normal oxygen conditions (Losada et al. 2014). Hypoxia
induces a genomic stress response to which A. fumigatus has adapted and gives
A. fumigatus the ability to establish long-term chronic infections in hypoxic lung
nodules. Thermotolerance is a critical trait needed to survive in a mammalian host.
Certain genes in A. fumigatus were upregulated when exposed to higher tempera-
tures (37–48�C). Many of these genes code for specific heat shock proteins that are
different than the normal stress response genes of other fungi (Nierman et al. 2005).
This suggests that A. fumigatus has unique mechanisms to thrive at higher temper-
atures and in many different environments. Aspergillus fumigatus also has more
described allergens than in all other fungi combined (Ronning et al. 2005).
A. nidulans and A. oryzae are also common allergen-producing fungi but are less
common causes of allergies than A. fumigatus. Genes such as Asp f1, which codes
for a ribonuclease toxin, and the metalloproteinase Asp f5 are two well-studied
potent allergens (Ronning et al. 2005).

Aspergillus fumigatus has long been thought to reproduce solely asexually
despite the tremendous amount of genetic diversity within the species and genetic
evidence for sexual reproduction. Initially, theMAT1-1 (α-box domain) andMAT1-2
(HMG domain) mating-type genes of A. fumigatus were discovered, and the idio-
morphic structure suggested heterothallic sexual development (Paoletti et al. 2005).
Moreover, the authors found several pheromone-producing, pheromone-processing,
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and pheromone-detecting genes associated with sexual reproduction in the
genome. Recombination was previously detected within A. fumigatus species
(Brenier-Pinchart et al. 1998), and coupled with this genomic data, this provided
strong evidence that this fungus undergoes sexual reproduction. The existence of a
sexual life cycle creates several implications for the virulence and pathogenicity of
A. fumigatus. Heterothallic mating systems increase genetic variation within a
population and can result in rapid evolution in response to a changing environment
(Paoletti et al. 2005). The ability to adapt to novel environments may have led to the
success of A. fumigatus as a pathogen. The presence of a sexual life cycle could
also mean that within a population there could be a significant amount of gene flow.
Four years after discovering the genomic potential for sexual reproduction in
A. fumigatus, the sexual cycle in this species was discovered in laboratory setting
(O’Gorman et al. 2009). Opposite mating-type strains were co-incubated in oatmeal
agar medium for up to 6 months or until the observation of fruiting bodies.
A. fumigatus produces a globose cleistothecia varying from yellow to white
pigmentation and with diameter having no more than 150 μm (O’Gorman et al.
2009). The ascospores from each mating crossing were isolated, and random ampli-
fied polymorphic DNA (RAPD) markers and MAT idiomorph analysis of the
progeny identified recombining individuals. Sexual reproduction could lead to
inheritance of antifungal-resistant genes and genes that increase virulence expanding
throughout a population (Paoletti et al. 2005).

Like A. fumigatus, Aspergillus niger is an opportunistic fungal pathogen that is
also ubiquitous in the environment and is found worldwide. In the environment, it
grows in a filamentous fungus on decaying plant matter, in litter, and in the soil and
is able to grow at temperatures ranging from 6�C to 47�C (Schuster et al. 2002). It is
also economically important as it yields a high amount of citric acid during fermen-
tation that is used in a wide array of industrial applications (Schuster et al. 2002).
Genome sequencing and analysis of A. niger revealed that this species harbors at
least 8,695 genes and shares 6,755 orthologous genes with A. nidulans and
A. fumigatus (Pel et al. 2007). Infections from A. niger are not as common as
infections from A. fumigatus; however, immunocompromised patients are at risk
for developing life-threatening mycoses from A. niger. A study in Italy showed that
out of 194 patients that suffered from invasive aspergillosis, eight were due to
A. niger, and all eight patients died due to complications from the fungal infection
(Fianchi et al. 2004). Certain strains also produce a mycotoxin called ochratoxin A
that can cause nephropathy (kidney disease) and other renal diseases (Schuster et al.
2002).

Aspergillus flavus is a common soil saprobe as well as a pathogen of insects,
humans, and several different types of plants (Amaike and Keller 2011). Some
strains of this species produce the highly toxic carcinogenic secondary metabolite
aflatoxin (Geiser et al. 2000). Ingesting crops that have been contaminated with
aflatoxin as well as being infected with an aflatoxin-producing strain of A. flavus
causes serious health problems worldwide. It is also the second most common cause
of aspergillus infections in humans and animals behind A. fumigatus (Hedayati et al.
2007). A. flavus expresses virulence genes that activate when exposed to
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temperatures that correlate to mammalian and avian body temperatures (Yu et al.
2005). These genes encode for certain heat shock proteins. Several enzymes have
been identified with pathogenicity of both plants and animals such as pectinase P2c,
many proteases, and hydrolytic enzymes (amylases, glucanases). An important
biochemical pathway produces aflatoxin. There are 29 gene clusters which have
been identified in the production of this toxin. The polyketide synthase gene is the
most significant because no other PKS gene is known to be involved in aflatoxin
biosynthesis (Yu et al. 2005). There is evidence that several mitogen-activated
protein kinases are involved in aflatoxin synthesis and increased virulence
(Yu et al. 2005). There are many different genomic components that contribute to
pathogenicity and mycotoxin production. The variability in virulence factors that are
expressed may be due to the host that A. flavus infects (plant, insects, humans, etc.),
which reflects the wide dynamic host range.

4 Human Fungal Pathogens from the Cryptococcus Genus

The genus Cryptococcus is composed of two (but most likely more) universally
recognized species of pathogenic basidiomycete yeasts: Cryptococcus neoformans
and C. gattii (Kwon-Chung et al. 2014; Hagen et al. 2015). See Fig. 2 for an
itemization of the species complex and proposed species of Cryptococcus. These
yeasts are ubiquitous in the environment but can become highly pathogenic in
humans upon infection by aerosolized yeast or sexual spores. Cryptococcus spp.
account for millions of opportunistic infections worldwide every year, and most of
these infections take place in patients that have a compromised immune system such
as those infected with HIV/AIDS or undergoing immunosuppressive therapies (May
et al. 2016). Recently there has been an emergence of Cryptococcus infections in
healthy individuals in northwestern North America, despite the previous assump-
tions that the fungus was native to tropical or subtropical regions of the world.
Recent genomic analysis shows that this is a new, more virulent strain that evolved
the ability to survive in an environment different from their tropical relatives.

Cryptococcus neoformans sensu lato is an opportunistic fungal pathogen that is
emerging worldwide due to an increased number of immunocompromised individ-
uals infected with HIV/AIDS and on immunosuppressive therapies. C. neoformans
is the leading cause of secondary fungal infections and the leading cause of death
among HIV-infected individuals (Liu et al. 2008). At least two species are recog-
nized within C. neoformans species complex: C. neoformans sensu stricto genotypes
(serotype A, AFLP1/VNI, AFLP1A/VNB/VNII, and AFLP1B/VNII) and
C. deneoformans (serotype D, AFLP2/VNIV). There are many virulence factors
that give the ability of C. neoformans sensu lato to be a successful opportunistic
pathogen. The three most important are the ability to survive and proliferate at 37�C,
a polysaccharide capsule that surrounds the fungal cell and increases infectivity, and
the ability to melanize (Kent and Juneann 1998).
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The reference C. neoformans genomes were sequenced, assembled, and anno-
tated by two different groups (Loftus et al. 2005; Janbon et al. 2014). The genomes
of C. deneoformans JEC21 and B-3501A were sequenced and annotated and
assembled into a 19–18.5 Mb genome on 14 chromosomes (Loftus et al. 2005).
The JEC21 genomes harbor 6,572 genes, and most of the of genes share >98%
nucleotide identity; however chromosomal translocation and segmental duplication
were observed comparing the assemblies of the strains JEC21 and B-3501A. Strain-
specific genes were identified in both B-3501A (Ras guanosine triphosphatase-
activating protein and 2 proteins of unknown function) and JEC21 (4 proteins of
unknown function and 20 duplicate genes presented in the segmental duplication).
The genome and transcriptome of C. neoformans var. grubii H99 strain provided an
improved assembly of this species (Janbon et al. 2014). The genome of H99 also has
14 chromosomes (18.9 Mb) of varied sizes and encodes for 6,962 proteins, slightly
more compared to C. deneoformans. The overall sequence divergence between
orthologs shared between C. neoformans and C. deneoformans was high
(on average 7%).

Fig. 2 Proposed new species of Cryptococcus neoformans and C. gattii complexes based on
population genomics
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A distinctive feature of Cryptococcus spp. is the polysaccharide capsule that
surrounds and makes up the outermost layer of the cell and is required for virulence.
There are around 30 genes that are involved in biosynthesis of the polysaccharide
capsule. Two gene families are unique to basidiomycetes and are not present in other
nonpathogenic yeast relatives, the CAP64 and CAP10 gene families (Loftus et al.
2005). Recent gene knockout experiments reveal 5 of the 30 are novel genes that are
crucial for capsule biosynthesis. GAT201 and SSN801 are important transcription
factors. HOS2 and SET302 are chromatin genes that are important in gene expres-
sion, and CPL1 codes for proteins involved in capsule formation (Liu et al. 2008).
Gene deletions showed decreased virulence in murine models, showing the impor-
tance of the capsule in infecting host cells. Melanization is another important
virulence factor for C. neoformans. The ability to produce melanin is important to
pathogens because it reduces the susceptibility of pathogens to host immune
defenses. Thirty-three novel genes are identified in melanin production. Knockout
experiments were done to show the role of these genes, and one gene in particular
seemed to play a significant role in the infection process. The Rim101 gene, when
knocked out, caused a major lack of melanin production and decreased pathogenesis
(Liu et al. 2008). This is evidence that melanin plays an important role in the
infection process of C. neoformans. There are a number of other factors that play a
role in infectivity. These include genes that regulate urease production, oxidase
production, phospholipase production, and increased iron uptake and genes that
control resistance to some species of nitrogen and oxygen (Alspaugh 2015; Liu et al.
2008; Kronstad et al. 2012; Brown et al. 2007; Chun et al. 2007). When genes
associated with these processes are deleted using mutagenesis, the fungus is more
susceptible to certain chemicals and is unable to grow under the conditions needed
for infection of the host.

Many of PAMPs associated with C. neoformans must be transported from
intracellular sites to the cell surface (Rodrigues et al. 2008). These factors regularly
lack signaling peptides; so C. neoformans developed alternative mechanisms to get
these molecules to the cell surface. The polysaccharides that compose the capsule are
examples of these virulence-associated molecules. Membrane-bound microvesicles
have been observed inside and outside of the cell, evidence that these vesicles are
one of the mechanisms responsible for transporting virulence-associated molecules
throughout the fungal cell (Alspaugh 2015). These microvesicles have been shown
to contain many of these virulence-associated molecules including capsule precur-
sors, melanin, and secreted enzymes (Rodrigues et al. 2008). Microvesicles act
directly on the extracellular surface as well as influence the interactions with the
host cells (Alspaugh 2015). There is evidence that suggests that microvesicles can
alter the host blood-brain barrier to allow the fungus to enter the central nervous
system (Jong et al. 2008). C. neoformans appears to have evolved these
microvesicles to increase virulence and evade the host immune response (Huang
et al. 2012).

When a pathogen enters a host, it encounters a variety of host-derived stressors.
Adaptation to these stressors is an essential task to becoming a successful pathogen.
These adaptations lead to microevolution while infecting a host (Janbon et al. 2014).
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C. neoformans has evolved many cellular mechanisms to survive these stressors.
Transcriptome analysis of C. neoformans showed that most cryptococcal genes have
introns (nucleotide sequence removed by RNA splicing) and alternatively spliced
mRNA (Alspaugh 2015). These introns and mRNA variants are thought to be a
means to rapid adaptation to host response. Another important adaptation that a
pathogen must possess is the ability to rapidly repair DNA. The accumulation of
damage to DNA will be detrimental to the organism, but it is thought that a low level
of DNA damage is beneficial to C. neoformans as it allows for increased genetic
diversity of the infection population which can lead to the adaptation to new stressors
within that particular host. This microevolution due to host-derived stressors can
allow for persistent infection by the population.

The genetic machinery that controls these microvesicles is poorly understood,
although recent evidence suggests that the 14-3-3 proteins (which are highly abun-
dant in Cryptococcus microvesicles) play a role in the regulation of these vesicles
(Li et al. 2016). The 14-3-3 proteins are ubiquitous and conserved protein among
eukaryotic organisms. 14-3-3 proteins are a family of dimeric proteins that attach to
phosphorylated serine and threonine residues and play a critical role in maintaining
the cell cycle checkpoints, DNA repair, prevention of apoptosis, coordination of cell
adherence, and many other functions across all eukaryotes (Wilker and Yaffe 2004).
When the 14-3-3 gene was knocked out in C. neoformans, total microvesicle protein
was reduced, and laccase and acid phosphatase (both enzymes are associated with
Cryptococcusmicrovesicles) activity was reduced (Li et al. 2016). This suggests that
loss of 14-3-3 function results in a decline of microvesicle secretion, resulting in a
smaller capsule and a drop in virulence.

The HIV/AIDS pandemic has created a large population of people that are
immunocompromised susceptible to severe fungal infections (Chastain et al.
2017). C. neoformans is one of the main culprits of these debilitating infections,
and meningitis cases may require long-term therapy (Charalambous et al. 2018). The
long-term use of antifungal therapies during infection in immunocompromised
patients can lead to microevolution of the fungus within the host (Rhodes et al.
2017). Patients that appear to be successfully treated and show a resolution in
symptoms may later have a reoccurrence of disease due to a persistent infection of
C. neoformans, in some cases exhibiting evidence of resistance to certain antifungals
(azoles). A recent study investigating if relapsed infections are due to the original
infection or a subsequent new infection showed evidence that relapse infection is a
result of the original organism, but the original strain has changed consistently with
microevolution (Rhodes et al. 2017). Aneuploidy (deviation of normal chromosome
number leading to the loss or gain of chromosomes) events are known to occur in
Cryptococcus (Lengeler et al. 2001). Rhodes et al. observed that the aneuploidy
event (in this case triplication of the chromosome arm) was on different regions of
chromosome 12, which has 327 genes. Of those genes, the SFB2 gene stood out as a
potential virulence gene. This gene is involved in the conservation in sterol regula-
tory binding element pathway (an important transcription factor regulating sterol, a
component of the fungal cell membrane) and producing an alcohol dehydrogenase,
which is shown to be protective against host immune defense (Chang et al. 2009; De

176 D. R. Kollath et al.



Jesus-Berrios et al. 2003). It was also shown that there was an enrichment of genes
on chromosome 12 arm that are involved in the metabolism of drugs (Rhodes et al.
2017). Evidence suggests that change in ploidy over the course of infection is an
adaptive mechanism that allows microevolution of C. neoformans within the host,
which causes persistent infections to return after antifungal therapy.

Cryptococcus gattii is mainly found in tropical and subtropical parts of the world
and infects both immunocompetent or immunosuppressed people. C. gattii is
phylogenetically distinct from the C. neoformans/C. deneoformans complex inde-
pendent of the molecular marker used for analysis (Gillece et al. 2011; D’Souza et al.
2011; Fraser et al. 2005). C. gattii exhibits a unique teleomorph and yeast features
and distinctive biochemical properties used for routine laboratory differential diag-
nostics (Kwon-Chung et al. 2014). Similar to C. neoformans/deneoformans, C. gattii
has 14 chromosomes; centromere locations are preserved, but notable inversions and
balanced translocations are observed (Janbon et al. 2014). The overall sequence
divergence between C. neoformans and C. gattii orthologs is about 11% higher than
between C. neoformans and C. deneoformans. Lastly, comparative genomics
suggest that in contrast to C. neoformans, C. gattii VGII lineage has lost the RNAi
genomic apparatus (Billmyre et al. 2013).

In the early 2000s, there was an outbreak of cryptococcosis in northwestern North
America, and the causative organism was identified as a more virulent and clonal
strain of C. gattii (Stephen et al. 2002; Kidd et al. 2004). This C. gattii genotype
infects otherwise healthy individuals with no underlying conditions such as cancer
or HIV/AIDs, as is more common with C. neoformans. The genomes of the
worldwide strain of C. gattii (WM276) and the North American strain (R265)
were compared to determine the cause of the increase in virulence and the
geographic expansion. When the genomes of the two strains were compared,
chromosomal rearrangement and regions with inversions, as well as a 7.6% diver-
gence of nucleotide sequences, were observed (D’Souza et al. 2011). This suggests
speciation within C. gattii, and the emergence of this new hypervirulent species may
be the result of adaptation to a new ecological niche (Engelthaler et al. 2014).
Analysis of the emergent Pacific Northwest strain of C. gattii showed multiple single
nucleotide polymorphism (SNP) mutations that gave rise to unique alleles, which
support niche adaptation and possibly explain changes in virulence.

The gene content of the two strains was compared revealing that 445 of WM276
(worldwide strain) genes did not map to the genome of strain R265 (North American
strain). Perhaps the most important genes that were present in strain WM276 but
absent in strain R265 were Ago1 and Ago2, which encode for Argonaute proteins
(D’Souza et al. 2011). These Argonaute proteins are RNA silencing proteins that are
responsible for the phenomena of gene silencing. This could provide evidence that
strain R265 is more virulent because virulent genes are not silenced by Argonaute
proteins. There are other examples of gene loss in the R265 strain of C. gattii that
may be due to selective pressures, and selective loss of genes or gene functions
caused this strain to become more virulent (D’Souza et al. 2011). There has been
evidence that suggests that pathogens become adapted to selection pressures of the
host by inactivating anti-virulence genes (Alves et al. 2014; D’Souza et al. 2011).

Advances in Genomics of Human Fungal Pathogens 177



Another hypothesis for the emergence of C. gattii in North America has been
proposed. There is evidence that the outbreak of C. gattii on Vancouver Island is due
to same-sex mating by the fungus (Fraser et al. 2005). There are two genotypes of
C. gattii on Vancouver Island, and the more virulent majority genotype seems to be
produced through same mating-type sexual cycle. The researchers in this study
propose the dramatic geographical shift is due to airborne sexual spores produced
by same mating-type (α-mating type) parents. In laboratory studies it has been
shown that the close relative C. neoformans can undergo same-sex mating between
two α-mating-type individuals (Fraser et al. 2005). C. gattii isolates from Vancouver
Island can reproduce sexually but all of the isolates are α-mating type. Fraser et al.
(2005) analyzed the mating-type locus and showed that the majority of the outbreak
isolates were produced by an α-α sexual cycle. The authors tested virulence in
murine models, and the majority genotype (R265) is highly virulent, whereas the
minority genotype (WM276) was avirulent. Same-sex mating could contribute to the
global expansion of this fungus by eliminating the need for a sexual partner and
producing a proliferation of aerosolized spores and would produce identical clones
of the parents. If spores from a highly virulent parent strain of C. gattii landed on
Vancouver Island, the ability to undergo same-sex mating would allow this strain to
spread across the island infecting an abundance of naïve hosts. In T. gondii
(causative agent of toxoplasmosis), same mating-type sexual life cycles can alter
pathogenicity and lead to progeny with enhanced virulence (Grigg et al. 2001). Thus,
the cryptic sexual life cycle of C. gattii could account for the geographic expansion
and hypervirulence on Vancouver Island.

There are four distinct lineages of C. gattii (VGI-IV) that are so genetically
variable that some consider them four separate species, but they have the ability to
mate and exchange genetic material with one another (Farrer et al. 2015). These
species complexes were renamed as follows: C. gattii sensu stricto (VGI),
Cryptococcus bacillisporus (VGIII), Cryptococcus deuterogattii (VGII),
Cryptococcus tetragattii (VGIV), and Cryptococcus decagattii – a hybrid VGIVj/
VGIIIck (Hagen et al. 2015). C. gattii can form hybrids with C. neoformans. The
population structure of C. gattii consists of VGI in Europe, VGII in North and South
America, and VGIV in Africa (Farrer et al. 2015). All lineages cause infection, but
VGI and VGII seem to be the most virulent. For example, the emerging
hypervirulent strain of C. gattii in the American Pacific Northwest is in the VGII
lineage. This lineage is associated with higher rates of respiratory symptoms during
infection and has the ability to proliferate inside host macrophages, which differs
from the other lineages (Farrer et al. 2015). When these authors compared the
genomes of isolates from VGI and VGII lineages, there were several gene presence
and absence of polymorphisms. Each lineage has a set of unique genes that may
influence both virulence and outcome of disease. For example, VGI has a unique set
of genes coding for ferric reductase enzymes that are involved in the production of
melanin, a known virulence factor that contributes to azole drug resistance
(Farrer et al. 2015). VGII has more secretory carrier membrane proteins than other
lineages. These proteins are involved in distributing macromolecules throughout the
cell. Additionally, the Prmt1 chromatin-associated protein domain and the heat
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shock protein 70 (HSP70) domain that are found on chaperone proteins are all
expanded in VGII (Farrer et al. 2015). The presence or absence in certain genes
between C. gattii lineages reveals targets for different strategies to initiate and
maintain infections. Changes in environment and hosts are likely drivers of gene
polymorphism between lineages of C. gattii.

RNA interference (RNAi) is a process in which molecules of RNA inhibit
transcription or translation by neutralizing mRNA molecules. This conserved
eukaryotic process aids in genome stability and repression of transposable elements
(Billmyre et al. 2013). Genomic analysis of C. deuterogattii strain R265 shows that
both Argonaute genes (key components of the RNAi-induced silencing complex) are
missing (Feretzaki et al. 2016). When this strain was compared to Cryptococcus
genomes from other linages, 14 genes were found to be missing, four of which
(RDP1, AGO1, DCR1, ZNF3) are key components of the RNAi pathway. The loss
of RNAi could be associated with increased phenotypic and genotypic diversity that
might lead to the increased virulence of C. deuterogattii (Feretzaki et al. 2016).

5 Human Fungal Pathogens from the Onygenales Order

The order Onygenales harbors many dimorphic fungal pathogens responsible for
endemic and systemic mycosis worldwide (Sil and Andrianopoulos 2014). The order
includes several species complexes nested within the genera Paracoccidioides,
Coccidioides, Histoplasma, Blastomyces, Emmonsia, Emergomyces, and Lacazia.
Coccidioides immitis and C. posadasii are members of the family Onygenaceae
sensu stricto, but all other genera are placed within the Ajellomycetaceae family
(Untereiner et al. 2004; Dukik et al. 2017). See Fig. 3 for population structure,
proposed species, and cryptic species of dimorphic fungal pathogens. Beyond
humans, these species can potentially naturally infect every mammalian species
that comes in contact with the infectious propagules (primarily asexual conidia),
and the primary affected organs are the lungs (Bagagli et al. 2006; Kohler et al.
2017). The teleomorph of these fungi was previously characterized as Ajellomyces
for the genera Emmonsia, Blastomyces, and Histoplasma and comprises heterothal-
lic species that, under specific conditions, form complex ascomata (gymnothecia)
with coiled appendages, evanescent asci harboring oblate ascospores (McDonough
and Lewis 1967; Kwon-Chung 1972). The infections caused by these fungi vary
from asymptomatic to mild pneumonia that are resolved after a short period of time
(Hage et al. 2012). However, the disease often may progress to a chronic pulmonary
infection or disseminate to different body sites, including the meninges. Many of
these fungal infections may be fatal, especially in immunocompromised patients
(Brown et al. 2014), or debilitating if incorrectly diagnosed or treated (i.e., pulmo-
nary fibrosis) (Hardie et al. 2009). Current standard diagnostic methods may take
several weeks, and fast and accurate diagnostic tools are scarce.

Except for Lacazia loboi, which is considered an obligate pathogen, these species
live in the soil as saprobes likely decomposing animal-derived matter in a filamen-
tous form (Emmons and Ashburn 1942). These fungi produce large numbers of
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airborne-dispersed conidia that upon inhalation by a susceptible host are accumu-
lated into alveoli in the lungs. In the lung, or under specific in vitro conditions
(36–39�C and specific media), they convert into budding yeast-like cells, adiaspores,
or endosporulating spherules (Sil and Andrianopoulos 2014). This dimorphic tran-
sition is thought to promote expression of several virulence factors that allow the
fungi to colonize the lung tissues and spread to other organs by different mechanisms
(Boyce and Andrianopoulos 2015). According to Gauthier (2015), membrane fluid-
ity and lipid dynamics have a direct effect on dimorphism because lower tempera-
tures reduce membrane plasticity by a decrease in the ratio of saturated to
unsaturated fatty acids. The opposite occurs at higher temperatures.

Several studies have been conducted on dimorphic fungi focused specifically on
molecular mechanisms that underlie this morphological transition. Temperature,
oxidative stress, modifications in carbon dioxide tension, and hormones were
found to be important (Tavares et al. 2015; Edwards et al. 2013; Whiston et al.
2012). Signaling pathways have been shown to induce dimorphism and promote
yeast growth at 37�C. The two-component signaling system regulated via DRK1
(dimorphism-regulating kinase) was the first mechanism discovered to be important
for thermo-dimorphism in Onygenales. Gene knockouts for drk1 gene in
B. dermatitidis andH. capsulatum resulted in avirulent phenotypes in murine models
of infection and impaired the capacity to convert into pathogenic yeast form.
Moreover, those mutants grow as mycelia at 37�C, suggesting that this gene is a
key regulator for this process (Nemecek et al. 2006).

The DRK1 ortholog in P. brasiliensis is highly expressed in the virulent yeast
phase, and is fundamental in the mycelial to yeast transition, suggesting a potential
new drug target (Camacho and Nino-Vega 2017). In H. capsulatum, another group
of transcription factor genes was found to be important for the dimorphism, and such
genes are preserved in other pathogenic Onygenales. Those genes were named
RYP1–4 (required for yeast phase), and gene knockout studies also produced a
truncated hyphal phase at 37�C, as well as directly affecting the expression of other
known virulence factors (Nguyen and Sil 2008; Webster and Sil 2008). Using
comparative genomics and transcriptomics, none of the homologs of these regulators
(Ryp1, Ryp2, Ryp3, and Drk1 genes) are expressed more during the spherule phase
in Coccidioides sp., suggesting that this particular genus may have alternative ways
to induce the parasitic phase (Whiston et al. 2012).

Genetic studies revealed that all species, in both filamentous and pathogenic
forms, are haploid. However, a single cell may contain multiple nuclei. So far,
genomes of several species from Onygenales have been completed by different
sequencing methods. Recently published comparative genomic studies provide
information about the evolutionary adaptation of these pathogens to animal hosts
or environments enriched with animal-derived compounds, such as animal burrows
or caves (Sharpton et al. 2009; Whiston and Taylor 2015; Munoz et al. 2018). By
comparing the entire genomes of onygenalean pathogenic fungi and related envi-
ronmental species, several authors identified a significant gain of genes involved in
the degradation of proteins (i.e., keratinases, subtilases, metalloproteinases) and loss
of several genes involved in the degradation of plant-derived material enriched in
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different carbohydrate molecules (i.e., glycosyl hydrolases and pectin lyases)
(Sharpton et al. 2009). Fungal-specific kinases (FunK) are also overrepresented in
those fungal pathogens and may be important to pathogenesis and survival inside the
host (Desjardins et al. 2011; Munoz et al. 2015).

Species nested within the genus Paracoccidioides are the causative agents of
paracoccidioidomycosis (PCM), a mycosis endemic to Latin America, which ranges
from southern Mexico to northern Argentina (Bocca et al. 2013). The disease has a
high prevalence in Brazil, Colombia, Venezuela, and Argentina. The annual inci-
dence rate in Brazil is 10–30 infections per million inhabitants, and the mean
mortality rate is 1.4 per million inhabitants per year, the highest cause of mortality
among deep mycoses (Martinez 2017). The incidence of PCM is elevated in rural
and endemic areas, and the disease mainly affects those individuals that pursue
agricultural or hunting activities (especially armadillos). The infection primarily
affects the lungs after inhalation of conidia upon soil disturbance. A multi-budding
yeast cell characterizes the pathogenic form, and both cell types vary in shape and
size according to the isolate/species (Tavares et al. 2015).

Paracoccidioides brasiliensis was considered an orphan species for at least
100 years despite several genetic studies demonstrating a high level of genetic
diversity between isolates obtained from different endemic areas of the disease.
According to phenotypical, MSLT, phylogenomics and population genetics,
five species were recently determined within the Paracoccidioides genus.
Paracoccidioides lutzii is a single monophyletic species formed by isolates
so-called Pb01-like due the genetic similarities with the isolate Pb01 (Teixeira
et al. 2009, 2014a, b). This species was the second most diagnosed after
P. brasiliensis was discovered by Adolpho Lutz in 1909 and reclassified in 1930
by Floriano P. Almeida (Lutz 1908; Almeida 1930). P. lutzii is found in central and
northwestern Brazil, especially in the states of Goiás, Mato Grosso, and Rondônia
and outside the Brazilian borders, although a single case was detected in Ecuador
(Teixeira et al. 2014a, b). Conidial cells are usually more elongated compared to
those produced by other Paracoccidioides species (Teixeira et al. 2014a, b).
P. brasiliensis sensu lato (former S1) is the most dispersed species and has been
found in almost all endemic areas in Brazil, Argentina, and Uruguay (Matute et al.
2006). This species is comprised of at least two populations called S1a and S1b
(Turissini et al. 2017; Munoz et al. 2016). S1a harbors mostly isolates recovered
from São Paulo and Rio de Janeiro states of Brazil as well as those from Argentina.
Recent population genomic studies revealed that there is a strong geographic
isolation between isolates from southeast Brazil and Argentina. S1b, on the other
hand, is composed of isolates from Mato Grosso do Sul, Parana (Brazil), Paraguay,
and Argentina; however, recent studies suggest that these two populations poten-
tially overlap (Munoz et al. 2016; Theodoro et al. 2012). P. americana (former PS2)
is a less frequently isolated species from both humans and armadillos, and a few
cases have been reported in the São Paulo and Rio de Janeiro states of Brazil and a
single site in Venezuela (Turissini et al. 2017; Matute et al. 2006). The most
intriguing aspect is the fact that both P. brasiliensis and P. americana share the
same niche, since both species were recovered in the same hospital in Rio de Janeiro
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city or in nine-banded armadillos from a single municipality of São Paulo state
(Theodoro et al. 2012; De Macedo et al. 2016). A single isolation from a dog that
tested positive for this species represents the only canine isolate obtained for
Paracoccidioides (Theodoro et al. 2012; De Farias et al. 2011). P. venezuelensis
(former PS4) and P. restrepiensis (former PS3) are two other monophyletic species
that are geographically restricted to Venezuela and Colombia, respectively (Turissini
et al. 2017; Matute et al. 2006). Those species cause both acute and chronic forms of
PCM, and no clinical or morphological differences were observed (Shikanai-Yasuda
et al. 2017).

P. brasiliensis, P. americana, and P. restrepiensis have been recovered routinely
from armadillos, although several attempts to isolate P. lutzii, the most divergent
species, from these hosts have failed (Hrycyk et al. 2018). These results indicate that
P. lutzii may have an alternative host or may have a lower virulence compared to
other Paracoccidioides species. The diagnosis via serology between P. lutzii and the
other related species of Paracoccidioides must be performed differently, due the
high polymorphism of secreted antigens. The most used antigen glycoprotein
43 (GP43), as well as total antigenic extracts, results in differential serological test
results between P. lutzii and other Paracoccidioides species (Teixeira et al. 2014a, b;
Gegembauer et al. 2014). Previous studies suggest that infections caused by P. lutzii
had lymphoabdominal forms as the most prevalent manifestation, while those
carrying P. brasiliensis would have more classical pulmonary and mucosal involve-
ment. More studies aiming to characterize the clinical relevance in the species
context are needed (Shikanai-Yasuda et al. 2017; Teixeira et al. 2014a, b).

The genomes of Paracoccidioides range from 29.1 Mb to 32.9 Mb and code for
7,610 to 8,130 genes. The Paracoccidioides genomes are highly syntenic for the
species investigated. P. brasiliensis and P. americana share a higher percentage of
sequence similarity (around 96%) to each other compared to P. lutzii (around 90%).
The Paracoccidioides genomes display unique specific fungal kinases, reduction of
carbohydrate-degrading enzymes, and expansion of enzymes responsible for
degrading animal biomass. The transposable element content between these species
varies significantly: 8% in P. americana, 9% P. brasiliensis, and 16% in P. lutzii
(Desjardins et al. 2011). The most abundant are class I elements (retrotransposons),
LTR retrotransposons, and LINEs, but no SINE elements were identified. The
P. lutzii genome accumulated a twofold greater content of LTR elements compared
to P. brasiliensis and P. americana, while fewer LINE elements were found in
P. lutzii compared to P. brasiliensis and P. americana (Desjardins et al. 2011).
Additional analysis showed a rapid evolution of dimorphism-related genes as com-
pared to Histoplasma capsulatum. Proteins with zinc- and DNA-binding motifs,
especially transcription factors, represented the majority of genes under positive
selection (Munoz et al. 2016).

Paracoccidioides was considered a strict asexual and clonal fungus, but
molecular data using MLST showed evidence for recombination within both
P. brasiliensis and P. lutzii. The presence of two mating-type idiomorphs and
other mating- or meiosis-specific genes was also deciphered using comparative
genomic tools. Most genes involved in chromosome cohesion and recombination
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are conserved among sexual eukaryotes and are found in Paracoccidioides with the
exception of HOP2. This gene is missing not only in Paracoccidioides but also in
H. capsulatum and A. fumigatus. In vitro mating crosses showed evidence for sexual
development, but so far no gymnothecia or ascospores have been observed in vitro
(Teixeira et al. 2013; Desjardins et al. 2011).

Coccidioides immitis and C. posadasii are the etiological agents of coccidioido-
mycosis or valley fever, which is a deep systemic mycosis that affects animals in arid
and semiarid regions of the Americas (Lewis et al. 2015). Coccidioidomycosis is a
notifiable disease in both California and Arizona states which account for the
majority of the cases of the disease in the United States (Brown et al. 2013b). The
majority of the cases are asymptomatic (60%), and 250,000 new infections per year
are predicted to occur in the Americas (Odio et al. 2017). Beyond the southwestern
United States, the northern region of Mexico is highly affected by this disease
(Gaona-Flores et al. 2016). In Central America, cases have been reported in
Guatemala and Honduras, and in South America, the disease is present in the arid
regions of Argentina, Brazil, Paraguay, and Venezuela (Campins 1970). Both
species live as saprotrophs in the environment, and upon the inhalation of infectious
arthroconidia into the lung, the fungus switches to the parasitic phase. In a mamma-
lian lung, the arthroconidia swell into immature spherules and, after multiple rounds
of mitosis, form mature and endosporulating spherules (Lewis et al. 2015). Any
activity linked with soil perturbation in endemic areas or even natural events such as
haboobs, earthquakes, and tornados may be associated with the incidence of
coccidioidomycosis (Brown et al. 2013b).

C. immitis was considered a single species for almost a century, but with the
advances of molecular tools, the identification of a second species, C. posadasii, was
confirmed (Fisher et al. 2001, 2002). Recently, applying sophisticated phylogenetic
and population genetic tools identified at least six populations classified within
C. immitis and C. posadasii. The C. immitis isolates recovered from San Diego
and Northern Mexico are genetically distinct compared to those recovered from the
Central Valley of California (Teixeira and Barker 2016; Engelthaler et al. 2016).
Moreover, recently a new endemic area of coccidioidomycosis was identified in the
eastern part of the Washington state, USA, which harbors a cryptic C. immitis
population (Litvintseva et al. 2015). C. posadasii, on the other hand, is found in
every other state in the western part of the United States, Mexico, as well as in
Central and South America. C. posadasii clinical isolates from Arizona are genet-
ically different from those recovered from Texas, Mexico, and South America.
Genomic analysis also identified a third cryptic population composed by isolates
from Guatemala (Teixeira and Barker 2016; Engelthaler et al. 2016). So far no
significant morphological differences have been observed between populations or
species. The only known phenotypic difference is the fact that C. posadasii grows
faster in high concentrations of salt compared to C. immitis (Fisher et al. 2002). The
genomic survey on 18 Coccidioides immitis and Coccidioides posadasii isolates
revealed that hybridization and genetic introgression recently took place between the
two species and may be the main forces of genetic variation of this pathogen. This
study showed that gene flow from C. posadasii into C. immitis is more common, and
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at least 8% of the genes found within the C. immitis population were recently
introgressed from C. posadasii genomes (Neafsey et al. 2010).

Coccidioides comparative genomics represents one of the most complete popu-
lation genomic studies so far among onygenalean fungi based on deposited
sequences and published manuscripts (Engelthaler et al. 2016; Whiston and Taylor
2014). Initial comparative genomics found that C. posadasii C735 strain had a
27 Mb genome and 7,229 genes, while the C. immitis RS genome size totalized
28.9 Mb and 10,355 genes (Sharpton et al. 2009). The authors suggested that the
variation in the gene counts was due to different methods applied to both genomes.
This study identified that the Coccidioides lineage experienced gene family contrac-
tions for genes related to plant material degradation and acquired additional copies of
genes responsible for degradation of animal proteins (i.e., metalloproteases families
M35 and M36), especially keratinases. Moreover, this study showed that
Coccidioides gained genes involved in metabolism, membrane biology, and myco-
toxin biosynthesis that potentially enable associations with living animal hosts.
Genes that code for secreted proteins, metabolism, and secondary metabolism also
were found to be under positive selection suggesting that Coccidioides may adapt to
the host immune system defense (Sharpton et al. 2009).

Histoplasma capsulatum sensu lato is a dimorphic fungal pathogen causing
histoplasmosis, a mild pulmonary to a disseminated disease that is often fatal for
HIV patients (Kauffman 2007). Different than coccidioidomycosis or
paracoccidioidomycosis, this disease is found in all continents with the exception
of Antarctica (Bahr et al. 2015). The fungus lives in the soil, especially in humid and
dark environments, and is frequently associated with the presence of bird and bat
guano. The disease also deeply affects other mammal species such as dogs and cats
and is periodically isolated from bats. This may contribute to the dispersion of this
fungus (Vite-Garin et al. 2014). The disease is triggered by the inhalation of micro-
or macroconidia by a susceptible host that, under body temperatures, start to switch
into a single-budding yeast form; every single mammalian species is potentially
naturally infected by this fungus (Kauffman 2007).

Since this fungus is found in almost all continents, a complex population structure
is expected. Initial MLST evaluating 137 strains from 20 countries distributed in six
continents revealed the existence of at least seven phylogenetic species named North
American 1 (NAm 1), North American 2 (NAm 2), Latin American A (LAm A),
Latin American B (LAm B), Australia, Netherlands, and Africa (Kasuga et al. 2003).
Additionally, a cryptic clade composed of clinical isolates from England, China,
Thailand, and India was found to be derived from LAm A species. The old
nomenclature proposed to this fungus suggested the existence of three varieties,
Histoplasma capsulatum var. capsulatum, H. capsulatum var. duboisii, and
H. capsulatum var. farciminosum, and according to phylogenetic analysis is mean-
ingless since those isolates were found in multiple phylogenetic species. By using
molecular clock and DNA mutation rate estimates, these authors found that
H. capsulatum sensu lato started its radiation from 3.2 to 13.0 MYA (Kasuga et al.
2003).
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Recently, the phylogenetic distribution of H. capsulatum was reevaluated by
increasing the number of taxa. MLST and population genetic analyses identified
additional cryptic species: (1) the LAm A clade was split into LAm A1, LAm A2
(composed primarily of isolates from Mexico, Argentina, Colombia, and Honduras),
and RJ (composed of isolates from Rio de Janeiro and São Paulo); (2) the LAm B
species was also separated into two groups, LAm B1 and LAm B2, according to its
geographic location; (3) a phylogenetic species composed only by bat-derived
strains was identified as BAC1; and (4) a cryptic clade within NAm 1 was identified
and harbors only cat-derived strains. A series of additional cryptic monophyletic
clades were also identified in this study, and instead of eight clades proposed by
Kasuga et al. 2003, the H. capsulatum complex harbors at least reciprocally mono-
phyletic clades (Teixeira et al. 2016).

Recent investigation into the population genomics of the Histoplasma genus
suggests that there at least four species that are genetically isolated and rarely
interbreed with other species. There are at least five discrete genetic clusters within
the genus; these clusters appear to cluster based on geography. There are two North
American clusters (NAm 1 and NAm 2), Latin American cluster (LAm A),
Panamanian cluster, and an African cluster (Sepulveda et al. 2017). These clusters
seem to have little genetic overlap (allele frequencies) and little gene flow between
clusters. Using whole genome analysis, it was found that all genetic clusters appear
to be monophyletic and that the concordance factors are high enough to consider
each clade a different species (Sepulveda et al. 2017). It was calculated that the
divergence between the different cryptic species is approximately 1.7 million years
ago. Gene flow and the exchange of genes between the cryptic species were
measured and found that some gene flow and hybridization have occurred but the
magnitude is too small to impede species limitations.

In order to better understand the taxonomy and species boundaries in
H. capsulatum sensu lato, phylogenomic and population-based approaches were
employed using whole genome sequencing. By using non-discordance tree profiles,
four phylogenetic species diagnosed by Kasuga et al. (2003) were formally
described: H. capsulatum sensu stricto (formerly known as Panama/H81 lineage),
Histoplasma mississippiense (formerly known as NAm 1), Histoplasma ohiense
(formerly known as NAm 2), and Histoplasma suramericanum (formerly known
as LAm A). These authors showed that those species have limited gene flow, and
introgression may also take place between species since Histoplasma
mississippiense and Histoplasma ohiense are potentially sympatric (Sepulveda
et al. 2017). Phenotypic difference between species from Histoplasma occurs
(Sepulveda et al. 2014), but an assessment of relationships between the newly
described species and clinical/mycological phenotypes is needed.

Histoplasma spp. are also haploid fungi, and the first three genome assemblies
(strains 186R, 217B, and WU24) for this genus were published by Sharpton et al.
(2009) along with two Coccidioides genomes. The genome of Histoplasma ohiense
(NAm 1) assembled into 33 Mb and possesses 9,390 genes. When compared to other
Onygenales, Histoplasma did not present the same protease expansions observed in
Coccidioides. However, a reduction of plant-degrading enzymes was also observed
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as for other Onygenales (Sharpton et al. 2009; Desjardins et al. 2011). Other
genomes were also sequenced and annotated such as the H. capsulatum African
clade (H143 – 33.17 Mb and 9,547 genes; and H88 – 37.68 Mb and 9,445 genes),
H. capsulatum sensu stricto (G186AR – 30.28 Mb and 9,254 genes), and a second
H. ohiense (41.28 Mb but no annotation data is available – see https://genome.jgi.
doe.gov/Hisca1/Hisca1.home.html). No comparative genomic studies aiming to
compare H. capsulatum with related species have been executed so far.

Blastomyces is a genus of fungi responsible for pulmonary infections in areas of
the United States and Canada surrounded by the Ohio and Mississippi River valleys
as well as the Great Lakes (Castillo et al. 2016). This fungus also lives as a saprobe
and produces blastoconidia that upon inhalation by humans and other mammals
(such as dogs) differentiates into the yeast pathogenic phase (Smith and Kauffman
2010). The fungus is found mostly in humid soils enriched in organic matter and
usually associated with watercourses. Blastomycosis, as other fungal infections
caused by dimorphic fungi, varies from a mild pneumonia to a severe disseminated
mycosis that may be fatal if not diagnosed and treated correctly, since the disease is
often confounded with bacterial and viral infections (Saccente and Woods 2010).

For several years Blastomyces dermatitidis was believed to be a single species,
and outside the American territory, few cases were observed in Africa. The African
blastomycosis is now known to be caused by two closely related fungi in the
Emergomyces genus (Kenyon et al. 2013). Population genetics and MLST analysis
suggested that Blastomyces was composed of at least two different species:
B. dermatitidis and B. gilchristii. Phylogeographic data reveals that B. gilchristii is
restricted to northwestern Ontario, Wisconsin, and Minnesota, and B. dermatitidis is
found in central and southern Ontario. By using molecular clock analysis on nuclear
markers, B. dermatitidis and B. gilchristii diverged about 1.9 MYA during the
Pleistocene. Population analysis reveals that those species harbor cryptic populations
and more species within both complexes may exist (Brown et al. 2013a; McTaggart
et al. 2016). Recently two other Blastomyces species were described as causing
disseminated human infections, but not related to any of the previous species.
B. helicus was isolated from a patient suffering from chronic leukemia with dissem-
inated infection in Canada and is genetically distant from B. dermatitidis and
B. gilchristii (Schwartz et al. 2017). B. percursus is another recently discovered
species of Blastomyces. It was isolated from a granulomatous lip lesion from a
patient with severe disseminated infection (Dukik et al. 2017).

A deep comparative genomic analysis between B. dermatitidis and B. gilchristii
was performed, and a better understanding of the overall genetics of these fungi was
achieved (Munoz et al. 2015). The species from the Blastomyces genus are haploid,
and the assembled genomes are double the size of other Onygenales. B. dermatitidis
assemblies ranged from 66.6 Mb for the ER-3 strain to 75.4 Mb for the B. gilchristii
strain SLH14081. However, the number of genes was predicted to be similar to other
Onygenales, ranging from 9,180 in the ATCC26199 to 10,187 in the strain
ATCC18188. By deeply investigating the chromosomal organization of both
Blastomyces species, the author provided evidence that these genomes are composed
of large isochore-like regions containing high and low GC content. The low GC
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content regions are structured into large AT-repeat segments as well as transposable
elements (especially gypsy) and contain very few genes (Munoz et al. 2015).

Comparative gene family evolution data reveals that fungi in the
Ajellomycetaceae family have experienced significant loss of polyketide synthase
(PKS) domains and consequently fewer PKS gene clusters compared to other
Onygenales. Moreover, the Ajellomycetaceae have fewer classes of peptidases
(M36, M43, S8) as well as its associated inhibitor (I9, inhibitor of S8 protease),
variable copy number of LysM-domain proteins, and a higher number of fungal-
specific protein kinases (FunK1). Finally, Blastomyces and Coccidioides have
gained specific genes required for zinc uptake while such genes are depleted in
Paracoccidioides and Histoplasma, suggesting that those fungi have evolved
different mechanisms for zinc acquisition (Munoz et al. 2015, 2018).

Emmonsia is a genus nested within the Ajellomycetaceae family that comprises
mammalian fungal pathogens rarely associated with human infections (Schwartz
et al. 2015). Emmonsia spp. are filamentous and saprotrophic fungi and the causative
agents of adiaspiromycosis (Anstead et al. 2012). E. parva was first isolated and
characterized by Chester Emmons as Chrysosporium parvum from rodents in
Arizona (Emmons and Ashburn 1942). The first human case was reported in France
in 1964, and the disease is also found in Honduras, Brazil, the Czech Republic,
Russia, the United States, and Guatemala (Schwartz et al. 2015). The fungus is
believed to be found in rodent burrows, which are enriched in animal-derived
material and the probable niche for this fungal species. By using phylogenetic
analysis and mating assays, Emmonsia parva was split into two different species
(Sigler 1996). Those two species were reciprocally monophyletic and sexually not
compatible. Both species are thermo-dimorphic; however, E. crescens produces
classical budding yeasts, while E. parva usually produces adiaspores (enlarged
double-walled yeast-like cells) that may reach 200 um in diameter (Dukik et al.
2017; Sigler 1996).

Recently, Emmonsia-like organisms were isolated from invasive human infec-
tions, and by using phylogenetic analysis, a new species was proposed: Emmonsia
pasteuriana (Kenyon et al. 2013). These studies are extremely important in
addressing questions about disseminated yeast-like infections in HIV patients caused
by dimorphic fungi that aren’t classical Blastomyces and Histoplasma (Schwartz
et al. 2015). Histoplasma and Blastomyces also produce small (2–5 um) yeast cells
during infection and cannot be discriminated by classical mycological methods from
other infections such as E. pasteuriana and E. crescens. With increased attention on
these emerging pathogens, new phylogenetic and phylogenomic methods were
applied to better understand the systematics and taxonomy of new Emmonsia-like
fungus that was isolated from patients worldwide. Phylogenetic analysis of five loci
(ITS, LSU, rPB2, TEF3, and TUB2) revealed that E. crescens was grouped in a
single branch, while E. parva was closely related with other Blastomyces species
such as B. dermatitidis and B. gilchristii (Dukik et al. 2017). Kenyon et al. (2013)
reported another disease among HIV-positive patients in South Africa caused by an
Emmonsia-like fungus different from E. pasteuriana. Using the same five loci and
whole genome phylogenies, Dukik et al. (2017) proposed a new genus called
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Emergomyces that contained E. pasteurianus and the new fungus reported by
Kenyon et al. (2013), Emergomyces africanus. Given the attention to this new
fungal taxon, novel species within Emergomyces were described: Emergomyces
orientalis (Wang et al. 2017a) and Emergomyces canadensis (Schwartz et al.
2018). So far, 80 human infections with E. africanus in South Africa have been
reported, mostly immunocompromised patients with cutaneous dissemination in
95% of patients and mortality reaching 50% (Maphanga et al. 2017). Based on
phylogenetic analysis, E. crescens maintains a single branch of Ajellomycetaceae,
E. parva was placed within the Blastomyces, and a new genus (Emergomyces)
was proposed that includes E. pasteurianus, E. africanus, E. orientalis, and
E. canadensis. This species needs special attention due to its rapid emergence and
high rates of mortality among HIV-infected patients (Crombie et al. 2018).

The estimated genome sizes of E. parva and E. crescens were deduced based on
genome assemblies totaling 30.35 and 30.36 Mb, respectively, which is a similar size
range to other onygenalean species but about half the size of B. dermatitidis and
B. gilchristii genomes (Munoz et al. 2015). The number of predicted genes for
E. parva and E. crescens is similar to other Onygenales, 8,563 and 9,444, respec-
tively, and both exhibit a lower repeat sequence content as compared to Blastomyces
sp., 9.9% (3.0 Mb) and 5.4% (1.6 Mb), respectively. Because Emmonsia has a lower
pathogenicity profile as compared to Blastomyces, a comparative genomic analysis
between Blastomyces sp. and Emmonsia sp. was conducted. At least 552 orthologs
were identified in all Blastomyces isolates and found absent in both Emmonsia
isolates where 92% of unique hits for Blastomyces had no PFAM domain records
and included the Blastomyces yeast phase-specific gene 1 (BYS1). One gene absent
only in E. crescens was the siderophore iron transporter mirB, while most of the
dimorphic fungal pathogens harbor two iron transporters (mirB and mirC) and are
overexpressed under iron starvation (Munoz et al. 2015). More recently the genomes
of two Emergomyces species were sequenced, and the assemblies indicate that the
genome of E. africanus harbors 29.7 Mb and 32.4 Mb in E. pasteurianus. As
expected for other Onygenales, 8,769 and 8,950 protein-coding genes were discov-
ered for E. africanus and E. pasteurianus, respectively (Dukik et al. 2017). To date,
no comparative genomics has been performed exclusively for the genus
Emergomyces.

Dermatophytes are a diverse group of onygenalean fungi that include human and
animal pathogens, as well as free-living environmental fungi (Persinoti et al. 2018).
Trichophyton rubrum is the most common human pathogen that infects the skin of
immunocompetent individuals (causative agent of athlete’s foot). There are other
species of dermatophytes that are localized to other areas of the body including
T. tonsurans andMicrosporum canis, which infect the skin on the head (Kohler et al.
2017). The economic impact of dermatophytes is vast but not well catalogued; one
estimate shows that 500 million dollars was spent every year on the treatment of
these infections worldwide in the 1990s (Kane et al. 1997).

The genomes of dermatophytes are enriched with four gene classes that may
contribute to the ability to infect the skin of many organisms. These gene classes
include genes that encode for secreted proteases (degradation of skin), kinases
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(involved in signaling and the adaption to skin), secondary metabolites (involved in
the interactions between fungus and host), and LysM proteins that mask cell wall
components to avoid detection by the host immune system (Martinez et al. 2012).
There are homologous of Argonaute and dicer genes in all dermatophyte species,
indicating that RNA interference (constrains transposable elements within the
genome) is an important adaptation in the infection process. When the genomes of
environmental dermatophytes were compared to zoophiles and anthropophiles, there
were orthologs unique to the pathogens and absent in the environmental organisms.
These are kinase domains, secondary metabolism domains, major facilitator super-
family I (MFS-1) (which is related to secondary metabolite production), and the
production of zinc finger proteins (Martinez et al. 2012). These orthologs suggest
that signaling and regulation may determine the ecological niche and host specificity
of these fungi.

The sexual life cycle has been observed in some dermatophyte species but not in
human pathogens including T. rubrum (Persinoti et al. 2018). The presence of one of
two of the idiomorphs at a single mating-type (MAT) locus, which is the case in
other ascomycete species, determines mating type (Fraser and Heitman 2003). In
environmental dermatophytes, such as M. gypseum, sexual reproduction occurs
when isolates of opposite mating type (MAT1-1 and MAT1-2) mate and produce
recombinant meiospores (Li et al. 2010). Recently, 79 out of 80 isolates of the
T. rubrum species complex were shown to contain the α-domain gene at the
MAT1-1 locus, and a small subset of a Turkish population contained HMG gene
at the MAT1-2 (Persinoti et al. 2018). This suggests that T. rubrum has the ability to
undergo sexual recombination, but due to a high frequency of the MAT1-1 mating
type circulating within populations, it is likely that clonal growth is the main mode of
reproduction.

Members of the dermatophyte family have additional copies of genes that may
aid in drug resistance and evading the host immune system. ERG4 is a gene that
encodes for an enzyme that catalyzes the final step in the biosynthesis of ergosterol,
an important component of the fungal cell wall (Martinez et al. 2012).
T. interdigitale has an extra copy of the ERG4 gene, which indicates that more
enzyme is being synthesized and the reaction is not rate limited, suggesting that this
could lead to resistance of antifungals that target the biosynthesis of ergosterol by
outcompeting competitive inhibitors (Persinoti et al. 2018). LysM-domain proteins
are involved in dulling the host recognition of chitin, which is present in the fungal
cell wall (De Jonge et al. 2010). Dermatophyte species have increased copy numbers
of these LysM genes than closely related onygenalean fungi (Martinez et al. 2012).
Specifically, M. canis has 31 copies of LysM genes, and T. rubrum has 16–18
copies, one of which encodes for a polysaccharide deacetylase involved in the
breakdown of chitin, suggesting that changing the cell wall may decrease recogni-
tion by host immune cells and is an important way that these pathogens evade the
host immune system (Persinoti et al. 2018).
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6 Human Fungal Pathogens from the Pneumocystis Genus

Pneumocystis species are a group of opportunistic fungal pathogens of mammals.
These pathogens can infect humans and can cause severe pneumonia, most
frequently in individuals who are immunocompromised (Hawksworth 2007).
These obligate pathogens require a living host in order to proliferate. The life
cycle consists of a metabolically active trophic stage and asci stage which consists
of sexual spores (the sexual cycle takes place only within mammals) (Cushion et al.
2018). Pneumocystis jirovecii is the main species that infects humans. Infections by
this fungus have high mortality rates in immunocompromised people (Wang et al.
2017b). These infections are clinically complicated to treat due to the lack of
treatment options and the evolution of drug-resistant strains (Cisse et al. 2018).

Fungal parasitism generally materializes in two ways, necrotrophy (feeding on
dead host cells) and biotrophy (feeding on host cells when host is still alive (Kemen
and Jones 2012)). P. jirovecii lives almost exclusively in human lungs where it feeds
on living cells without causing extensive cell death (Cisse et al. 2014). The genome
of P. jirovecii reveals a lack of virulence machinery that is usually common among
fungal pathogens such as a glyoxylate cycle, toxin-producing pathways, and
secondary metabolites (Cushion et al. 2007). This suggests that gene loss contributed
to the evolution of biotrophy in P. jirovecii.

Comparative genomics was used to investigate the hypothesis that gene loss may
be associated with adaptation to biotrophy in Pneumocystis. It was shown that there
are 2,324 genes that are present in the most recent common ancestor of the genus but
are lost in Pneumocystis spp., and out of 183 enzymes encoded by these genes, 42%
were involved in amino acid and purine metabolism (Cisse et al. 2014). This implies
that P. jirovecii scavenges these compounds, which it is unable to synthesize, from
the lungs of the host it is infecting. Another 19% of the identified enzymes that are
lost in Pneumocystis are used in purine (synthesis and degradation of adenine and
guanine) metabolism; however the precursors of purine and pyrimidine (inosine
5-phosphate and uridine 5-phosphate) synthesis were identified. The actual enzymes
to complete purine synthesis were not identified in P. jirovecii (Cisse et al. 2014).

The metabolism of inorganic nitrogen and sulfur is essential for life, but
Pneumocystis spp. lack the key enzymes (nitrite and sulfite reductases) needed for
nitrogen and sulfur metabolism (Cisse et al. 2014). Pneumocystis has a lower
number of proteases used for the breakdown of the extracellular matrix in the
lungs, which was thought to be an important virulence factor for fungal pathogens.
P. jirovecii, however, has a Clp protease that is involved in the hydrolysis of proteins
(Cisse et al. 2014). The evolution of biotrophy in the genus Pneumocystis likely
contributed to the loss of certain gene families (Cisse et al. 2018). The ability to
acquire nutrients and molecules from the host, rather than synthesize de novo, is
evidence that these fungi are evolved to be obligate pathogens, and the results from
this analysis of genome reduction is consistent with this lifestyle.
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7 Future Directions

In this chapter, we surveyed the genomic structure and composition of several
human fungal pathogens. Each pathogen discussed has unique mechanisms to
evade the immune system of humans. However, shared evolutionary patterns such
as streamlined genomes and reduction of plant-based carbohydrate degrading
enzymes and expansion of gene families related to adhesion, infection, and degra-
dation of host cells are shared among several species of distantly related genera. We
observed that these fungi could generate genetic diversity using either sexual or
parasexual cycles. Thus, complex population genetic structure may result in a wide
range of phenotypes, including variation in virulence and antifungal resistance.
Specific point mutations and loss of heterozygosity play important roles in antifungal
resistance and other medically relevant phenotypes. In addition to intraspecific
variation, the occurrence of hybrid genotypes between species of human fungal
pathogens can be revealed with advances in genomic science and may be a novel
source of extreme genetic reassortment and phenotypic diversity.

Despite the great advances in comparative genomics and molecular systematics
of fungal human pathogens, there are key questions that still need to be answered:
(1) despite efforts on global molecular epidemiology, there are broad unsampled
regions of disease. South and Central America, Africa, and Asia are still poorly
sampled for many of these pathogens. (2) Many reference genomes are based on old
sequencing technologies (e.g., Sanger sequencing) or obsolete next-generation
sequencing pipelines (e.g., Roche 454, Illumina GAII), and assembly errors are
frequent (Munoz et al. 2014). Long-read sequencing using PacBio or Nanopore
instruments coupled with high-coverage short-read sequencing has become a pow-
erful technology to close microbial genomes with high repetitive content. (3) Auto-
matic ab initio gene predication and annotation also need attention from the fungal
community. The use of mRNA and proteomic-based data for more accurate model
prediction of intron-exon boundaries is advised. There are new platforms specific for
fungal genome annotation such as FunGAP and funannotate. (4) More phenotypic
data is needed to advance functional significance to the exponential growth of
genome sequencing projects. Genome-wide association studies (GWAS) are useful
to associate loci in a given population genome dataset with phenotypes (e.g.,
antifungal susceptibility, thermotolerance, dimorphic switch, virulence) using pipe-
lines adapted from other eukaryotic systems. These modern molecular methods will
be useful when determining evolutionary relationships of these pathogens, improv-
ing rapid diagnostics in a clinical setting, and identifying mechanisms of antifungal
resistance and pathogenesis.
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Yeast Population Genomics Goes Wild:
The Case of Saccharomyces paradoxus

Mathieu Hénault, Chris Eberlein, Guillaume Charron, Éléonore Durand,

Lou Nielly-Thibault, Hélène Martin, and Christian R. Landry

Abstract Speciation and adaptation are important processes that are difficult to study

in the invisible microbial world because of the lack of easily identifiable characters that

canbe correlatedwith species boundaries and adaptive traits.Genomic tools canbe used

to assess and measure the genetic and genomic bases of species and population differ-

entiation. This allows for the identification of the genes that are potential targets of

natural selection and thus that underlie adaptation to specific environments. Here, we

illustrate how useful this approach is by describing recent progress on microbial

genomics empowered by studying Saccharomyces paradoxus in thewild. These studies
have revealed the spatial and temporal scales at which fungal populations diverge, a

quantification of the life history parameters of this yeast and its mechanisms of speci-

ation, which include allopatric speciation driven by geographical barriers and hybrid

speciation driven by chromosomal reorganization. Altogether, these studies establish

S. paradoxus as an extremely powerful model in microbial population genomics.

Keywords Adaptation · Hybridization · Introgression · Population genomics

· Saccharomyces paradoxus · Speciation · Yeast

1 Introduction

Fungi are among the most diverse and ubiquitous eukaryotes. Recent surveys of

fungi across various environments showed that we are only beginning to appreciate

the extent of this diversity, which could include more than one million species, and
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Département de Biologie and Département de Biochimie, Microbiologie et Bio-informatique,
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even more (Newsham et al. 2016; Mora et al. 2011). One field of fungal biology that

has progressed extremely rapidly over the past decade is the genomics of fungi

associated with human activity, including wine and beer yeasts (Saccharomyces
spp.) (Marsit et al. 2017); filamentous fungi used in the food industry, for instance,

cheese production (Cheeseman et al. 2014); and plant and human pathogens such as

Magnaporthe sp., Candida sp., and Cryptococcus sp. (Desjardins et al. 2017; Ford
et al. 2015; Gabaldon et al. 2013; Chiapello et al. 2015). These studies offered

unprecedented insight into genome evolution by revealing that fungal genomes

are extremely plastic in terms of structure, gene content, and regulation and as a

consequence, they can adapt rapidly to challenging conditions. However, we are

still lagging behind in terms of understanding what are the ecological, demo-

graphic, and historical factors that drive fungal diversity in nature.

While human-associated fungal species offer great study systems in genomics

and the genetics of adaptation, the underlying genetic changes that have accumulated

over time may not reflect processes that normally take place in nature. Accordingly,

they may only provide limited information on the evolutionary forces that have

shaped the diversity of fungi over the past millions of years. To explore the interplay

between historical events that have shaped fungal phylogeography, ecology, and

genomic variation, it is imperative that we develop tractable model systems that

have been minimally affected by human activities. A few free-living models have

emerged in the field of ecological genomics for this purpose over the past decade.

One of them is Neurospora crassa, a classical model in genetics with a nearly

worldwide distribution and a large diversity of habitats (Turner et al. 2001). The

analysis of Neurospora genomes, for instance, identified populations locally adapted

to ambient temperatures and this, despite its broad-scale distribution (Ellison et al.

2011). Another model that has emerged recently is the wild yeast Saccharomyces
paradoxus, sister species of the budding yeast S. cerevisiae (Replansky et al. 2008).

Yeast population genomics benefited from many aspects of the recent progress

on S. cerevisiae’s cell biology, systems biology, and genetics, including the ability

to be handled in the lab, to be subjected to high-throughput phenotyping, and to

have its genome manipulated in several ways, including by whole chromosome

synthesis (Richardson et al. 2017). While S. cerevisiae is the prime fungal model in

experimental and evolutionary biology in the laboratory (Marsit et al. 2017), its

wild sister species has become a very promising model for population genomics by

providing opportunities to explore yeast ecology and the genomics of adaptation

and speciation. Here, we review recent research performed in ecological genomics

of S. paradoxus to illustrate how population genomics illuminates the ecological

and historical factors that shape fungal genome diversity.

2 Distribution and Ecology of S. paradoxus

S. paradoxus is associated with deciduous forests in the northern hemisphere across

the globe (Fig. 1). Some strains have been isolated in Australia and New Zealand

but these appear to be due to recent migration from Europe (Zhang et al. 2010).
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Although the extent of the specificity of S. paradoxus to its host still requires full

investigation, the fact that it is commonly found on the bark and in the soil

associated with trees such as oaks (Quercus spp.) and maples (Acer spp.) suggests
that these are likely its natural habitats (Sniegowski et al. 2002; Naumov et al. 1998;

Kowallik and Greig 2016; Charron et al. 2014a). In addition, a recent broad study of

yeast diversity in Wisconsin (USA) showed that S. paradoxus appears indeed to be

significantly more often associated with oak trees than with any other tree species

(Sylvester et al. 2015). Another survey performed recently in Europe confirms that

S. paradoxus prefers oak trees but that leaf litter could be its usual substrate, not tree
bark (Kowallik and Greig 2016). S. paradoxus could therefore occupy similar

niches across its range. This habitat appears to be shared with other species of the

genus, which often have overlapping geographical distributions. For instance,

S. paradoxus and S. cerevisiae are frequently found on the same tree species in

North America where the two yeasts’ distributions overlap (Sniegowski et al.

2002). The ecological niches of S. paradoxus and its closest relatives within the

genus are therefore not entirely distinct, which suggests that the radiation of the

Saccharomyces genus may have taken place in this type of habitat and conditions.

As discussed below, this gives rise to opportunities for interspecies hybridization,

as recently observed in several contexts using population genomics (Barbosa et al.

2016; Leducq et al. 2016; Peris et al. 2016).

As is the case for most microbes, the ecological significance of S. paradoxus in
its ecosystem is largely unknown but one can assume that it is a commensal

Fig. 1 Worldwide distribution of Saccharomyces paradoxus. S. paradoxus has been sampled in

many countries around the world (>500 strains) on various substrates including tree bark, flowers,

insects, and soil. Most strains were sampled in Europe and North America, and only a few strains

have been isolated from the southern hemisphere. Sampling regions were retrieved from Zhang

et al. (2010), Naumov et al. (1998), Gonçalves et al. (2011), Charron et al. (2014a), Robinson et al.

(2016), Johnson et al. (2004), Koufopanou et al. (2006), Sniegowski et al. (2002), Liti et al. (2009),

Samani et al. (2015), Leducq et al. (2016), Xia et al. (2017), Almeida et al. (2017), Hyma and Fay

(2013), Redzepovic et al. (2002), and Sampaio and Gonçalves (2008). The map was drawn with R

using the package maps (version 2.3–9). Red intensities reflect the number of strains isolated by

sampling site
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saprophyte, feeding on tree exudates, leaf litters, and soils associated with trees.

Conversely, our understanding of the role of ecological factors in driving

S. paradoxus’ distribution and success on specific hosts has progressed in recent

years. Summer temperatures appear to be major determinants of its geographical

distribution. Laboratory experiments showed that the different species of the genus

have distinct maximum growth temperatures, from 34�C for S. uvarum, 37–38�C
for S. paradoxus, and up to 42�C for S. cerevisiae (Gonçalves et al. 2011). Surveys
of S. paradoxus and S. cerevisiae in the wild generally confirmed these laboratory

observations. A study by Charron et al. (2014a) examined the presence of

S. cerevisiae and S. paradoxus in eastern Canada and showed that S. paradoxus
tends to be found alone in northern deciduous forests, while S. cerevisiae is absent
at these latitudes, in accordance with their respective maximum growth tempera-

tures. A worldwide analysis of sampling sites also confirmed that summer temper-

atures and optimal growth temperatures are predictors of the S. paradoxus
geographical distribution (Robinson et al. 2016). In addition to these observations

in the field, measurements of growth rates and cell survival in the laboratory

showed that, as predicted from the local adaptation hypothesis, southern

populations of S. paradoxus grow faster at higher temperatures than northern

populations and that survival to freezing correlates with the number of oscillations

above and below 0�C at sampling locations (Leducq et al. 2014). As for many other

fungi (Sylvester et al. 2015; Newsham et al. 2016), temperature therefore appears to

be a major factor driving the geographical distribution of S. paradoxus. This makes

S. paradoxus a powerful model system to examine how temperature determines the

geographical distributions of fungi.

3 Population Genetics and Life Cycle

Several aspects of microbial ecology in the wild remain to be investigated to fully

understand how microbes adapt to local conditions across their geographical

ranges. One of these aspects is how much time individuals spend in each phase of

their life cycle, including the frequency of sexual reproduction. These parameters

are key determinants for evolution because they define how selection and genetic

drift shape genome architecture and limit the level of genetic polymorphism by

affecting linkage among beneficial and deleterious mutations (McDonald et al.

2016; Lang et al. 2013).

It can be extremely difficult to directly quantify yeast life cycles in natural

populations because it cannot be directly observed. Population genetics approaches

can however provide invaluable insights into this question by allowing the quanti-

fication of the extent of heterozygosity and recombination in natural samples.

Thanks to several years of research on the model S. cerevisiae, the life cycle of

species of the Saccharomyces genus has been described in great details. As in

S. cerevisiae, wild strains of S. paradoxus are usually diploid and homothallic

(Johnson et al. 2004): haploid spores can switch mating types after a cell division

210 M. Hénault et al.



to mate with daughter cells. Consequently, the opportunity for inbreeding is

extremely high and may limit the rate of adaptation by favoring the accumulation

of deleterious mutations in small, local populations.

One of the first surveys of genetic diversity in S. paradoxus was performed in a

10 km2 forest area in England and looked at 7 kb of DNA sequences in 28 isolates

(Johnson et al. 2004). The first observation that was made on a subset of strains

revealed that none of the isolates were heterozygous, suggesting that outbreeding

occurred indeed extremely rarely but was happening, as inferred through traces of

recombination among loci. In addition, identical genotypes were identified in

different samples, indicating that mitotic growth and thus clonal reproduction are

important. The same genotypes could also be found on the same tree, in a proximity

of 5 cm, implying that mating among clones is physically possible, which further

enhances the opportunity for inbreeding (Koufopanou et al. 2006). The extension of

this survey to the sequencing of the entire third chromosome in 20 isolates allowed

Tsai and colleagues to quantify the different steps of its life cycle (Tsai et al. 2008).

Using population genetics analyses, Tsai and colleagues confirmed that outcrossing

is rare and estimated that sexual cycles occur only about once every 1,000 cell

divisions. Their estimates also suggest that 94% of mating events occur between

spores of the same tetrad (haploid meiotic products), 5% of matings occur within a

clone after mating type switching, and only 1% of matings occur between spores of

different tetrads (potential outcrossing events). Sexual reproduction is therefore

infrequent, and inbreeding may be a dominant factor in driving local population

differentiation. Finally, a recent study showed that genotypes at a local site could be

resident over time, for instance, from year to year, such that limited migration could

allow adaptation to local conditions (Xia et al. 2017). How the factors promoting

inbreeding interfere with the opportunity for local adaptation created by the exis-

tence of stable population structure over time remains to be investigated.

A survey of genetic diversity of a handful of loci across geographical scales

confirmed that populations of S. paradoxus are differentiated. Genetic differentia-
tion was shown to increase with geographical distance. Sampling sites within a tree

on a centimeter scale are more similar than samples from different continents, for

instance, between Europe, North America, and Far East Asia (Koufopanou et al.

2006). These results, along with experimental crosses demonstrating that American

and European strains show partial reproductive isolation (Kuehne et al. 2007),

confirmed that S. paradoxus is not a panmictic species but rather displays local

populations that diverged over a long period across continents, leading to partial

reproductive isolation and potentially to allopatric species formation. This global

pattern of genomic differentiation by geographic origins was later confirmed by

whole genome sequencing of a large number of strains sampled worldwide (Liti

et al. 2009). This survey revealed that on a global scale, there are four distinct

lineages of S. paradoxus corresponding to European, Far Eastern, American, and

Hawaiian populations that show divergence on the order of a few percent at the

nucleotide level. A more recent study using long-read sequencing showed that these

lineages also diverge in terms of protein-coding gene content due to chromosomal

rearrangements in the chromosomal cores, including the deletion of some stress
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response genes and the duplication of sulfite transporters in specific lineages (Yue

et al. 2017), which could contribute to their phenotypic differentiation (Fig. 2). The

initial genome-wide survey (Liti et al. 2009) also included a large set of

S. cerevisiae strains, which failed to show perfectly consistent geographic popula-

tion structures, confirming that S. paradoxus may be a more suitable model for

elucidating the role of ecological and evolutionary forces on natural populations.

To be relevant for local adaptation and speciation, these global genetic differ-

ences uncovered by whole genome sequencing have to translate into phenotypic

variation. A global survey of growth rates across conditions, including temperature

gradients, ethanol concentration, pH, and various drugs, suggested that indeed

phenotypic variation is extensive across worldwide samples of S. paradoxus (Liti
et al. 2009), although phenotypic similarity among the strains did not necessarily

reflect their phylogenetic relationships. While this result does not support the role of

local adaptation in the phenotypic divergence of the strains, it does not reject it

either because the conditions surveyed, with few exceptions, do not represent

conditions that natural yeast populations would encounter in their natural habitats.

However, phenotypic divergence between the North American and European

populations was recently addressed for relevant metabolic traits (Samani et al. 2015).

CBS432 (Russia, Quercus spp.)

N44 (Russia, Quercus mongolica)

YPS138 (USA, Quercus velutina)

UFRJ50816 (Brazil, Drosophila spp.)

UWOPS91-917.1 (Hawaii,
Myoporum sandwicense)

+3/-10

+1/-1

+1/-1

+1/-2

-4

-2

+1/-1

+3/-1

+1

Fig. 2 Gene gain and loss by unbalanced structural rearrangements among the major lineages of

S. paradoxus. Yue et al. (2017) used long-read sequencing to produce de novo assemblies of five

S. paradoxus genomes from various origins and sources. The resulting high-quality genomes

allowed for the detection of large structural unbalanced rearrangements responsible for gene

number variation among strains. Events that occurred in nuclear chromosomal cores – i.e.,

considering nuclear genomes without subtelomeres and chromosome ends – are shown with a

filled (insertion or duplication) or empty (deletion) rectangle. The total number of gene gains and

losses is indicated above each branch of the tree; one event could affect several genes at the

same time
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The ability of 45 wild isolates to use various carbon sources, which are expected to

vary in relative abundance in nature temporally and/or spatially, was measured in

the laboratory. This study revealed that both populations could readily metabolize

sugars such as glucose, fructose, galactose, mannose, sucrose, turanose, and iso-

maltulose, indicating that these could be among their main carbon sources if they

are available on natural substrates. However, a strong difference in yield was

observed on substrates of the pentose phosphate pathway, with North American

strains performing better than European strains. These analyses demonstrate that

there is a population differentiation at the level of carbon source metabolism

between these two main lineages of S. paradoxus, indicating that differentiation

between continents also accumulates at the phenotypic level. Whether these phe-

notypic differences result from the neutral accumulation of mutations by genetic

drift or from adaptation to local conditions remains to be investigated.

One of the major challenges in microbial ecological genomics is to identify what

are the fitness determinants in natural conditions, for instance, what are the actual

sources of limiting nutrients exploited by free-living cells in nature. As Saccharo-
myces yeasts are associated with deciduous trees including oak and maple trees, sap

exudates are suspected to provide nutrients used for growth. Because it is used in

the production of maple syrup in northeastern America, maple sap is readily

available to do experiments and examine these questions in the laboratory. Filteau

et al. (2016) tested the growth of S. paradoxus wild strains in maple sap and

observed variation in growth rates among strains from different locations along a

northeast to southwest gradient. Using a functional genomics approach based on the

yeast deletion collection and barcode sequencing, Filteau and colleagues identified

the allantoin degradation pathway to be required for optimal growth rate on maple

sap. Using knockout strains of S. paradoxus for the genes involved in the utilization
of allantoate, a metabolite found in the same pathway, the authors demonstrated

that allantoate is indeed one of the main limiting nitrogen sources available in

maple sap and that growth depends on the ability of strains to use this nitrogen

source. The ability to do so could therefore be a major determinant of fitness in wild

population feeding on maple trees. Variation in growth rate among strains from

diverse geographical origins therefore reflects potentially adaptive standing genetic

variation in nitrogen metabolism.

4 Genomics of Speciation in North American S. paradoxus
Populations

Studies of S. paradoxus on a global scale showed that geographic barriers play a

predominant role in shaping its population structure, with continents representing

the major lineages (North American, Far Eastern, American, Hawaiian). Geograph-

ical barriers alone could therefore contribute to microbial speciation. However,

analyses on these larger scales make it difficult to estimate the contribution of local
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ecological factors to this differentiation because long divergence time can be

confounded with other factors such as climatic conditions. Ideally, one would

study the early step of divergence among populations. A study by Kuehne and

colleagues (2007) uncovered distinct populations of S. paradoxus within a close

geographic range within North America. The study of several kilobases of DNA

sequence in a set of 62 isolates from the east coast of the United States revealed

three lineages with potentially overlapping distributions, with two highly abundant

lineages, SpA and SpB. Sequence analyses showed that SpB appears to be specific to

North America, while the SpA group was nearly genetically identical to European

strains, suggesting that it recently migrated to North America. In addition, a single

isolate from a newly discovered lineage, called SpC, was identified, suggesting that
this rare lineage, could have diverged from SpB within North America and this,

without any obvious geographical barriers.

The population structure and evolution of these North American populations

were addressed by whole genome sequencing of more than 150 strains from a large

region in the northeast of North America. The analysis confirmed the presence

of three genetically distinct lineages in North America, SpA, SpB, and SpC, and
revealed in addition that the SpC lineage is not a rare lineage found only in

Pennsylvania but is broadly occupying the northeast of the S. paradoxus distribu-
tion (Leducq et al. 2016). Another lineage, closely related to SpC, labeled SpC*,
was also identified in this region (see below for details on its origin). Across this

geographic range, strains display variation at several levels, including the utiliza-

tion of carbon and nitrogen sources, confirming what was observed between

continents, i.e., that populations of S. paradoxus diverge in their ability to use

various substrates for growth in the laboratory. SpB outperforms SpC on almost all

of the substrates except a few cases, notably when asparagine, proline, or lysine is

the sole nitrogen source (Fig. 3). The ecological significance and the molecular

basis of these differences are unknown, but since proline plays a key role in plant

biology, including stress response, its availability on plant substrates and leaf litter

may vary geographically with local conditions (Hayat et al. 2012) and thus be a key

element to determining fitness locally.

The northeast of North America was covered by an ice sheet up until about

10,000 years ago, which implies that the divergence between SpB and SpC could

have been initiated during or prior to the last ice age (~110,000–10,000 years ago).

This event likely shaped the evolution of a large number of microbes, plants, and

animals. For instance, this region comprises many species pairs or semi-species

pairs of animals that show similar patterns of divergence (April et al. 2013; Wong

Miller et al. 2017). The two lineages SpB and SpC thus would have been isolated

during the last glaciation in separate glacial refugia and are now partly sympatric

following the glacial retreat.

The current distribution, which shows almost no SpC strains in the south and

almost no SpB in the north, suggests that ecological factors are limiting migration.

One reason why the data suggests that effective migration is limited by ecological

factors is that the dispersal capabilities of budding yeast is likely high and

10,000 years would have been enough to homogenize the two distributions if
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selection was not acting. For instance, SpA is thought to have been introduced in

North America in the last 600 years (Kuehne et al. 2007), and it is now found over a

large geographic region overlapping Pennsylvania, Québec, and Ontario, and this,

in the absence of genetic diversity, implying that it was introduced as a single or a

few related clones. The mode of dispersion of budding yeasts is largely unknown,

but their association with insects (Stefanini et al. 2012) allows to believe that they

may disperse along by these vectors over relatively long distances. The recent

demonstration that local populations could be stable at least over a 2-year period

(Xia et al. 2017) however argues against an extremely high dispersal rate, although

this study examined two consecutive years only. Whether any of the phenotypic

traits that differentiate the two lineages (growth at high temperature and on various

carbon and nitrogen sources) contribute to this ecological barrier remains to be

determined. The analyses of the SpB and SpC coding genomes recently provided

insight into this question.

5 Genomic Divergence Between Lineages, Ecological
Specialization and Reproductive Isolation

Genomic divergence between the North American S. paradoxus lineages was

driven by the isolation period during the last ice age and evolutionary forces such

as genetic drift and natural selection caused by variation in local environmental

conditions. Drift likely has played an important role because these natural

populations, especially SpC, show limited polymorphism, which may reflect

small effective population sizes (Leducq et al. 2016), at least partly due to the

frequent opportunities for inbreeding. The main lineages in Northern America are

distinguished by genomic divergence of about 2–3%, providing the opportunity to

identify regions of the genome that are rapidly evolving. A study by Eberlein et al.

(2017) examined the degree of divergence of the coding genomes between SpB and

SpC by investigating 17 genomes from representatives of both lineages. The

authors assessed the divergence of these lineages in about 4,400 genes since their

separation from the European sister clade SpA (Fig. 4). The analysis revealed that

both lineages tend to be under purifying selection across the proteome, and only a

few genes showed signs of positive selection. Moreover, they identified genes that

accumulated significantly different numbers of protein-altering mutations between

SpB and SpC.
The resulting 76 candidate genes included GRS2, which has been acquired

during the whole genome duplication in yeasts ~100 Mya (Kellis et al. 2004).

GRS2, a glycyl-tRNA synthetase, was long thought to be pseudogene-like (Turner

et al. 2000), but Chen et al. (2012) showed that the transcription of this paralog is

actually induced under various stress conditions such as 37�C in S. cerevisiae. For
S. paradoxus, Eberlein and colleagues (2017) were able to link the rapid evolution

of GRS2 in the SpC lineage to relaxed selection. Their hypothesis was that survival
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in SpC’s northern habitat did not require high temperature tolerance, which resulted

in the relaxation of selection on some genes in this lineage, including GRS2. These
could therefore now contribute to the poor growth of SpC at high temperature and

thus to its inability to migrate further south. This study highlights the importance of

relaxed selection rather than adaptive changes in ecological specialization and

the importance of paralogous genes as a driving force for ecological divergence

between closely related species (Sanchez-Perez et al. 2008).

The distinct geographical distributions of SpB and SpC and their monophyly

based on whole genome sequencing also suggest that they are reproductively

isolated. Prezygotic reproductive isolation is thought to be limited in budding

yeast because the mating systems are simple (Hittinger 2013). Crosses between

distantly related species of the genus can be performed with success, showing

that intrinsic prezygotic barriers are inexistent or weak, although evidence for
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Fig. 4 Protein-coding divergence between SpB and SpC and ecological specialization. A study of

the coding genomes of 17 representative strains of the lineages SpB and SpC using the European

lineage SpA as an outgroup identified candidate genes that potentially evolved asymmetrically or

were under positive selection. One of the candidate genes isGRS2, a paralog that originated during
the yeast whole genome duplication and potentially neofunctionalized for stress response in the

Saccharomyces clade prior to the divergence between S. paradoxus and S. cerevisiae. Eberlein
et al. (2017) proposed a model in which this gene evolved under relaxed selection in the SpC
lineage, which correlates with the inability of SpC strains to grow at high temperature. Fitness

assays performed in the laboratory confirmed that the GRS2 SpB allele performs better than the

SpC allele at high temperature. This result indicates that relaxed selection could be an important

factor in ecological specialization
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prezygotic isolation was recently reported between populations (Murphy and Zeyl

2015). The major mechanism of reproductive isolation appears to be postzygotic

and can be detected by measuring spore survival in interspecies crosses. This was

examined in crosses between SpB and SpC strains. Charron et al. (Charron et al.

2014b) showed that SpB and SpC are indeed partially reproductively isolated such

that their recent divergence was enough for the accumulation of reproductive

incompatibilities, most likely due to genomic rearrangements. Variation in chro-

mosomal structure also seemed to correlate with the extent of partial sterility, even

within SpC, which displayed particularly strong variation in spore survival in

within-lineage crosses (see SpC* below).

Reproductive incompatibilities between SpB and SpC could decrease gene flow

between these two incipient species. However, the distributions of these lineages do

overlap significantly, and postzygotic reproductive isolation cannot alone prevent

the formation of F1 hybrids in this region. In spite of this, no F1 hybrids have been

sampled so far, suggesting that if hybridization occurs, it is rare. Another mecha-

nism that could contribute to diminish the presence of SpB-SpC hybrids is selection

against them, for instance, through poor growth performance. This hypothesis was

recently tested by using high-throughput screening of yeast growth rates over

multiple environmental conditions (Fig. 5) (Charron and Landry 2017). The growth

of SpB-SpC hybrids was compared to their parents in order to assess the mode of

inheritance of the parental phenotypes by calculating the degree of dominance. The

results showed that, in the majority of the cases, hybrids between the two diverging

lineages display overdominant or partially dominant growth phenotypes of the

fittest parent. SpB-SpC hybrids could therefore outperform the least fit or even

both of their parents in several growth conditions.

Charron and Landry (2017) concluded that postzygotic extrinsic isolation (selec-

tion against hybrids) likely does not act as a barrier to gene flow because the

overdominance observed in hybrids across a wide range of environmental condi-

tions could have the effect of promoting hybridization. The authors suggest hypoth-

eses for the rarity of hybrids in the wild such as the colonization of a novel and

unsampled habitat or the specialization of each lineage for specific host trees, which

would effectively keep the lineages in allopatry, even if their geographical distri-

butions overlap. Other studies suggest that this is a general phenomenon and have

reported similar hybrid superiority for other inter- or intraspecific crosses within

Saccharomyces, although with limited biological or ecological contexts (Shapira

et al. 2014; Bernardes et al. 2016). In the case of SpB-SpC crosses, the extent of

dominance of the growth phenotypes is not correlated with the fertility of crosses,

suggesting that they are caused by different mechanisms (Fig. 5).
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6 Hybrid Speciation

The study of speciation in microorganisms has benefited the most from the devel-

opment of genomics tools because it allows to detect barriers to gene flow without

the need for distinguishing species a priori based on phenotypic traits, which is

particularly challenging in microbes. Population genomics analyses of the North

American S. paradoxus revealed the existence of a cryptic lineage within SpC,
called SpC* (Fig. 6) (Leducq et al. 2016). In a genome-wide and windows-based

analysis of divergence between SpB and SpC, some small regions showed abnor-

mally small FST values, indicating balancing selection or gene flow between SpB
and SpC. These low divergence regions were found to be caused by genomic

segments in the SpC* lineage, accounting for 2–6% of the genome, that were highly

similar to SpB’s, suggesting that this lineage could have arisen through the recent
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values of 32 growth conditions are shown (Charron and Landry 2017) for 21 crosses. Each zone
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hybridization of SpB and SpC strains. Further support for the hybridization hypoth-

esis came from genomic data that revealed particular chromosomal rearrangements

that were found in both SpB and SpC* strains but were absent from SpC. Geo-
graphical data also supported this scenario as SpC* was mostly isolated in the zone

of sympatry between SpB and SpC. The analysis of the divergence between SpC*
and SpC allowed to estimate that the SpC* lineage initially diverged about

10,000 years ago, while the glaciers were retreating in this region. In the first

study on the reproductive isolation between SpB and SpC (Charron et al. 2014b),

these SpC* (considered as SpC at the time) contributed disproportionally to the

variance in spore survival in crosses performed within SpC, revealing that they are

partially reproductively isolated. A larger number of crosses within and among

SpC*, SpC, and SpB revealed that SpC* is partially reproductively isolated from

both its putative parental lineages (Leducq et al. 2016). The emergence and

persistence of SpC* therefore represent an incipient hybrid speciation event that

occurred after the allopatric speciation event that gave rise to SpB and SpC.
The regions introgressed from SpB to SpC* and the partial reproductive isolation

with SpC showed that SpC* is a hybrid species. Remarkably, speciation by hybrid-

ization was shown to occur in experimental crosses between closely related species

where a small fraction of the surviving spores are reproductively isolated from the

two parental species and yet interfertile among themselves (Greig et al. 2002). The

definition of hybrid species requires that the mechanisms of reproductive isolation
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are caused by hybridization itself (Schumer et al. 2014). In the case of SpC*,
support from this association comes from a correlation between spore survival in

SpB-SpC crosses and the segregation of introgressed regions, particularly chromo-

somal fusions (Leducq et al. 2016). In a recent survey of genomic variation in

Ontario (Canada), Xia et al. (2017) discovered a new group of strains, the lineage

SpD, which may be another admixed population (Figs. 6 and 7a). This observation

further strengthens the previous evidence supporting the role of hybridization in

shaping genome diversity in S. paradoxus.

7 Consequence of Hybridization on Genome Organization

Introgression and admixture are initiated by the formation of F1 hybrids between

partially isolated populations and species. The first-generation yeast hybrid can

undergo several fates. The F1 hybrid could reproduce like the parental species by

meiosis, sporulation, and mating, including backcrosses with the parental species

(see life cycle above). In the case of highly diverged parental lineages, F1 hybrids
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were inherited from SpB and that are present in all SpC* strains. These blocks comprise 105 genes
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enrichment was performed with Gorilla (Eden et al. 2009)
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would be sterile, limiting their potential to contribute to further generations.

However, another possibility is that the F1 hybrid could divide mitotically and

lose heterozygosity, either through mitotic recombination or the initiation of mei-

osis and return to growth (Laureau et al. 2016). Such loss of heterozygosity would

eventually create a largely homozygous mosaic genome, which could restore

fertility. The hybrid species SpC* gradually lost elements of the SpB genome by

the first or second scenario. Only a few percent of the SpC* genome originated from

the SpB parental species (2–6%) (Leducq et al. 2016). Although small, these

regions appear to contribute disproportionally to the traits of SpC* because in

many conditions, this lineage is phenotypically more similar to SpB than to SpC
or intermediate between them. It is not clear why these regions in particular were

maintained. Neutral mechanisms such as a low recombination rate in some regions

could have contributed. Another possibility is that these regions contain SpB alleles

that confer an advantage to SpC*. A gene ontology enrichment analysis of genes

occurring in the 1.6% SpB-like regions revealed a significant enrichment for genes

involved in the response to amino acids (Fig. 7b), a function that repeatedly show

signs of divergence among populations (Fig. 3).

8 Effect of Hybridization on the Mitochondrial Genome

The study of nuclear markers and whole nuclear genome sequencing has revealed

both the existence of genetically distinct populations and evidence of extensive

genetic exchanges across populations in the worldwide distribution of S. paradoxus.
The mitochondrial genome makes no exception to this pattern, as recent population

genomic studies revealed that mitochondrial DNA (mtDNA) sequence, structure,

and content vary greatly among populations of S. paradoxus (Leducq et al. 2017).

The phylogenetic relationships among North American S. paradoxus mtDNAs

mostly fit those of the nuclear genomes, revealing a clearly defined population

structure. However, even at the intrapopulation level, mtDNA content varies in

terms of elements like introns and genes coding for homing endonucleases and

maturases. Furthermore, the comparison of mtDNAs showed important

rearrangements that occurred since the divergence between the North American

and Asian populations of S. paradoxus (Fig. 8a). A recent study performed long-

read whole genome sequencing and de novo assembly of five S. paradoxus
genomes, including the mitochondrial genomes (Yue et al. 2017). They found a

very similar pattern of rearrangements between mtDNAs of two Russian strains and

three American strains from the continental United States, Hawaii, and Brazil. They

also confirmed the presence/absence polymorphism of introns in the COX1 and

COB mitochondrial genes.

Unlike what is known in most animals and plants, yeast cell biology allows

biparental inheritance of mtDNAs, i.e., the mitochondria of both parental gametes

can be found at least initially in the zygote (Breton and Stewart 2015). Recombi-

nation between mtDNA molecules inherited from the two parental cells in yeast
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controlled crosses is well known (Shannon et al. 1972) and suggests that it is likely

to occur in the context of natural hybridization. In line with this hypothesis, mtDNA

sequences of natural S. paradoxus populations exhibit evidence of genetic exchange
with other populations and even with other Saccharomyces species. For instance,
the COX3 and ATP6 mitochondrial genes of the North American lineages exhibit

close sequence similarity with the alleles of the same genes in S. cerevisiae,
suggesting ancient hybridization and mtDNA recombination between those clades

(Fig. 8b) (Leducq et al. 2017; Peris et al. 2017a). In addition, mtDNAs of SpC*
strains exhibit various patterns of introgression between SpB and SpC mtDNAs, as

revealed by gene-by-gene phylogenetic analysis (Fig. 8b) (Leducq et al. 2017). In

many cases, genes encoding components of the same mitochondrial complexes

(notably, the complexes of oxidative phosphorylation and the mitochondrial ribo-

some) were inherited from both SpB and SpC. The alleles of these genes, which

evolved independently since the divergence of SpB and SpC, were thus combined in

the same mtDNA haplotype in SpC*, leading to a situation in which SpB-SpC
chimeric complexes have to assemble in SpC*. Given the fact that any heteroge-

neous mtDNA population within a cell lineage ultimately fixes a single haplotype

(i.e., homoplasmy is reached) (Birky 2001), fixation of such mosaic mtDNAs could

promote the emergence of incompatibilities among mitochondrial loci or with

interacting nuclear loci. A recent study supports this hypothesis by showing an

association between recombinant mtDNAs in S. paradoxus hybrids and increased

phenotypic variation in a condition requiring mitochondrial metabolism (Leducq

et al. 2017).

9 Perspective

Population genomics in wild yeast populations has revealed their population struc-

ture and the existence of cryptic species. These studies have laid the groundwork for

the study of microbial speciation and adaptation in the wild. They have also opened

the door to further studies that could be empowered by the tools that were recently

adapted in the genetics and genomics model S. cerevisiae, including genome

editing. These tools could allow to examine the molecular mechanisms responsible

for the fitness effects of mutations among populations and incipient species. For

instance, CRISPR-Cas9 genome editing was recently used to engineer the budding

yeast genome to express candidate adaptive alleles from S. paradoxus for adapta-
tion to elevated temperatures (Eberlein et al. 2017). In another recent study, the

authors used the Cas9 enzyme to manipulate gene expression levels and elucidate

the adaptive bases of gene expression differences between S. paradoxus and

S. cerevisiae (Naranjo et al. 2015). The ability to relocate single alleles or entire

molecular pathways from one genetic background to another and to measure the

phenotypic and fitness consequences is extremely promising.

Technical advances in the laboratory will however not be sufficient to under-

stand what are the fitness determinants of yeast in nature. Additional tools in
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microbial ecology are needed to be able to measure fitness in natural conditions, for

instance, through reciprocal transplant experiments. Such approaches have recently

been developed and allowed for the detection of fitness differences among yeast

strains on leaf litter (Boynton et al. 2017). These tools, combined with the ability to

introduce tractable DNA barcodes in the yeast genomes of any strain of interest

(Maclean et al. 2017), could allow to profile the fitness of entire populations of

known genotypes in natural conditions. Because the distributions of yeast species

and populations appear to be largely determined by the ambient temperature, S.
paradoxus could be a powerful tool to study the migration and evolution of

genotypes through time, for instance, in the context of climate change or through

annual environmental fluctuations.

Hybridization appears to be a driving force in yeast genome evolution. However,

its contribution to yeast genomic diversity in nature is still largely unknown. Most

yeast hybrids identified up until recently were associated with human activities

(Hittinger 2013; Marsit et al. 2017), including those developed for biotechnological

purposes (Peris et al. 2017b). However, population genomics of natural populations

has revealed that this is happening relatively frequently without the need for direct

human intervention (Leducq et al. 2016; Peris et al. 2016; Barbosa et al. 2016). The

growth advantage observed in yeast hybrids (heterosis) suggests that hybridization

could be favored because it has an immediate effect on fitness. However, out-

crossing is rare, and yeast hybrids generally suffer from strong postzygotic fitness

reduction. For instance, S. cerevisiae-S. paradoxus hybrids show heterosis but as

little as 1% spore viability (Greig et al. 2002). Traces of hybridization between the

two species was recently reported in South American populations (Barbosa et al.

2016), showing that this strong reproductive barrier can indeed be overcome and

allow for introgression to proceed. By which mechanisms these barriers are over-

come to allow for heterosis and other genetic interactions to favor the maintenance

of genomic introgression appears to be a particularly promising avenue of research.

Once again, the ability to borrow tools from S. cerevisiae to study hybrid genome

instability (Herbst et al. 2017), protein-protein interactions (Piatkowska et al. 2013;

Leducq et al. 2012), and transcriptional networks (Tirosh et al. 2009; Swain Lenz

et al. 2014) will accelerate discoveries in this field.

Although chromosomal rearrangements were pointed out as an important molec-

ular mechanism contributing to the emergence of reproductive isolation among

incipient species (Charron et al. 2014b; Leducq et al. 2016), the accumulation of

negative epistatic interactions in hybrids (first modeled by Bateson, Dobzhansky,

and Mueller) stands as an important driver of speciation and is supported by solid

empirical evidence (Presgraves 2010). Notably, many genetic interactions found to

be responsible for the fitness decrease of hybrids between yeast species involve

genes in both the nuclear and mitochondrial genomes (Chou and Leu 2010; Jhuang

et al. 2017), suggesting an important role for cytonuclear genetic interactions in the

generation of hybrid incompatibilities http://www.annualreviews.org/doi/abs/10.

1146/annurev-ecolsys-110512-135758. The availability of population-scale geno-

mic data, the vast body of knowledge on yeast systems biology, and the ability to

perform high-throughput phenotypic measurements hold promising avenues for

investigating how previously unmatched genetic variation interacts within hybrids
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and translates into phenotypic changes at various levels. For instance, the use of the

latest yeast genome-editing tools will make it possible to introduce heterozygosity

at very specific loci in diploid yeast strains. This enables to dissect the gene-by-gene

phenotypic consequences of hybridization in an ecologically realistic scenario, for

instance, by using genetic variation segregating in natural populations.
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Population Genomics of Plant Viruses

Israel Pagán and Fernando García-Arenal

Abstract For more than one century, studies of plant viruses have broken paths in
many fields of biology. More recently, studies of plant viruses have also been
pioneer in population genomics. In the past few decades, there has been a significant
advance in the number, sophistication, and quality of molecular techniques and
bioinformatics tools for the genetic characterization of virus populations. This has
broadened current knowledge on the mechanisms that generate genetic diversity and
on the evolutionary forces and ecological factors that shape the genetic structure and
dynamics of plant virus populations. This chapter aims at summarizing this knowl-
edge, and it is structured around three major levels at which plant virus populations
have been studied:

1. The within-host level, that is, the analysis of the genetic diversity of virus
populations during plant colonization and of how phenomena such as co-/
superinfection exclusion and population bottlenecks determine population
structure

2. The between-host level, which includes studies on genetic diversity of virus
populations in the host plant population and on the ecological factors shaping
the genetic structure of the virus populations

3. The community level, which adddresses current studies on the genetic diversity
of virus communities in multiple infected hosts and of multi-host-multivirus
interactions

In sum, we provide an overview of current understanding on the population
genomics of plant viruses at every level of population organization.
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1 Introduction

Most plant viruses have genome sizes ranging between 5 and 15 kb, and one of the
defining traits of viruses with small genomes is their high capacity to generate
genetic diversity (Holmes 2009). This capacity has been proposed to be one of the
main reasons for their biological success. Indeed, plant viruses have been found to be
ubiquitous in ecosystems inhabited by plants (Roossinck 2017), which has been
linked to the continuous appearance of new virus genotypes or species that colonize
new areas or previously non-infected host populations (García-Arenal and
McDonald 2003; Holmes 2009; Elena et al. 2014).

1.1 Mechanisms of Generation of Genetic Diversity in Plant
Virus Populations

The high capacity to generate genetic diversity derives from a combination of
factors. The first major factor is the high mutation rates of plant viruses. Most
plant viruses have RNA genomes that encode RNA-dependent RNA polymerases,
which lack proofreading activity resulting in high rates of nucleotide mis-
incorporation (Drake and Holland 1999). Mutation rates in RNA plant viruses,
first estimated for Tobacco mosaic virus (TMV) (Malpica et al. 2002), are in the
range of 10�3 to 10�6 nucleotide substitutions per site per round of replication,
similar to those reported for RNA viruses infecting bacteria or animals (Malpica
et al. 2002; Sanjuán et al. 2009, 2010; Tromas and Elena 2010). Thus, viral mutation
rates are several orders of magnitude higher than those of their host plants, estimated
to be around 10�9 (Kay et al. 2006). High mutation rates allow viruses to explore
large portions of the mutational space. The higher the mutation rate the larger the
probability to generate virus genotypes fitter in new environments. However, it has
been well established that most mutations in RNA plant viruses are highly delete-
rious, with an important fraction being lethal, whereas neutral mutations are consid-
erably less frequent (Carrasco et al. 2007; Hillung et al. 2015). In this scenario, high
mutation rates may lead to a high burden of deleterious mutations (i.e., mutational
load) in the virus populations and ultimately to extinction (Chao 1990). Here the
second major factor associated with the high genetic diversity of virus populations
becomes important: plant viruses generally have large population sizes (García-
Arenal et al. 2001). For instance, the number of infectious units of TMV has been
estimated as about 107 per infected mesophyll cell of experimentally infected
tobacco plants (Harrison 1956; Malpica et al. 2002), and the number of Tobacco
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mild green mosaic virus (TMGMV) particles in field-infected Nicotiana glauca
leaves has been estimated as 1011 (Moya et al. 1993). Also, the effective population
size of TMGMV in N. glauca was estimated to be of about 105 (Moya et al. 1993),
and that of 12 potyviruses have been estimated to be in the order of 104 (Hughes
2009). As a consequence, deleterious mutations have small chances to persist in the
virus population, as these will be quickly purged by negative selection (Elena and
Sanjuán 2005). However, it should be noted that factors, such as variation in
replication potential among genotypes, differences in generation time among
infected cells, and severe reductions in population size at various steps during the
virus life cycle, might lead to effective population sizes (roughly, the number of
individuals in the population that pass their genes to the next generation) much
smaller than the census size of the population. Finally, the third major factor is the
much shorter generation time of RNA viruses (minutes to hours) (Wu et al. 1994)
than that of plants. Thus, virus evolution occurs in different time scales from that of
their host plants.

Besides mutation, genetic diversity in virus populations can also be generated by
recombination, that is, the exchange of genomic fragments between genotypes.
Recombination can occur between genotypes of the same or of different
virus species. Recombination rates have been estimated for plant viruses to be
between 10�5 and 10�8 (Froissart et al. 2005; Tromas et al. 2014b), so that the
contribution of recombination to the generation of genetic diversity would be in the
same order as that of mutation. Recombination may represent an evolutionary
advantage for viruses because (1) it can create fitter genotypes more rapidly than
mutation and (2) it might purge deleterious mutations from virus populations,
thereby preventing the decrease in overall fitness in clonal populations due to the
accumulation of deleterious mutations (Muller’s ratchet) (Pressing and Reanney
1984; Chao 1990; García-Arenal et al. 2001; Hull 2014; Moya et al. 2004). Genetic
exchange may also result from reassortment of genomic segments in viruses with
segmented or multipartite genomes, with similar genetic and evolutionary conse-
quences as recombination sensu stricto. Indeed, segment reassortment is also called
pseudorecombination by plant virologists.

1.2 Processes that Shape the Genetic Diversity of Plant Virus
Populations

Mutation and recombination are a consequence of the mechanisms of virus replica-
tion, and the resulting new genotypes are therefore in principle randomly generated
(but see Bujarski 2013 for exceptions). Central to understanding the population
genomics of plant viruses is which mutations become fixed in the population and
how fast they do so (Duffy et al. 2008) or, more generally, what determines the
frequency in the populations of the genotypes generated through mutation and
recombination. In the absence of migration, the number and frequency of these
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genotypes in the population (i.e., the genetic structure of the population) is the result
of two different evolutionary processes: genetic drift and selection (García-Arenal
et al. 2001; Hartl and Clark 2007; Acosta-Leal et al. 2011). Genetic drift occurs when
populations of organisms are not large enough to ensure that each genotype will have
progeny in the next generation. As a consequence, the genotypes passed into the next
generation are randomly sampled from the mother population, regardless of their
relative fitness. Genetic drift may be particularly relevant in plant virus populations
during the severe reductions in their population size (population bottlenecks) that
may occur along the virus life cycle, for instance, at the infection of a new host
population, a new host plant, or new organs within a host plant (Sacristán et al. 2003;
Gutiérrez et al. 2012a; Fabre et al. 2014). Genetic drift reduces the genetic diversity
of populations and increases the diversity among populations. Also, because the
genotypes that start a new population are not selected according to their fitness,
genetic drift counters the effects of selection (García-Arenal et al. 2001; Acosta-Leal
et al. 2011). On the other hand, selection is a directional process by which genotypes
that are fittest in a given environment will increase in frequency in the population
(positive selection), whereas less fit genotypes will decrease in frequency (negative
or purifying selection). As is the case for genetic drift, selection results in a decrease
of the population diversity and may also cause an increased diversity between
populations, if under different selection pressures, so that the effects of selection
and genetic drift are often difficult to distinguish. When selection has been differ-
entiated from genetic drift, selection has been associated with every life history trait
of plant viruses, such as survival in the environment due to higher structural stability
of the virus particles (Fraile et al. 2014), adaptation to the host plant resulting in more
effective within-host multiplication (Hillung et al. 2015), and adaptation to the
transmission mode resulting in more efficient between-host transmission (Hajimorad
et al. 2011; Pagán et al. 2014).

This chapter aims at summarizing current knowledge on the interplay between the
mechanisms that generate genetic diversity and the evolutionary forces that shape
the genetic structure and dynamics of plant virus populations. We have structured the
chapter around three major levels at which plant virus populations have been
studied: the within-host level, the between-host level, and the community level.

2 Genomics of Within-Host Plant Virus Populations

2.1 Within-Host Virus Genetic Diversity

Early evidence for genetic heterogeneity of within-host plant virus populations was
provided several decades ago (McKinney 1935; Rochow 1972). However, the
analysis of the genetic structure of virus populations within the plant level became
a topic of research considerably more recently. More recent research has shown that
nucleic acid extracts obtained from plants systemically infected with both DNA and
RNA viruses contain genetically heterogeneous virus populations, even if the
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infections were generated from biologically active cDNA clones (e.g., García-Arenal
et al. 2001; García-Arenal and Fraile 2008). Since then, accumulating evidence
based on population genomic analyses has shown that within-plant virus populations
may be genetically diverse and plastic.

The within-host genetic diversity of plant viruses has been analyzed in several
plant-virus combinations, most of them involving crops. Thus, within-host
populations of Zucchini yellow mosaic virus (ZYMV) in squash; of Cucumber
mosaic virus (CMV) in tomato, pepper, and squash; and of Plum pox virus (PPV)
and Prunus necrotic ringspot virus (PNRSV) in Prunus spp. trees have been found
to consist of a cloud of genotypes (Jridi et al. 2006; Alí and Roossinck 2010;
Simmons et al. 2012; Dunham et al. 2014; Kinoti et al. 2017). Analyses in wild
plants reported the same trends. Populations of Endive necrotic mosaic virus
(ENMV) infecting Tragopogon pratensis and of Asclepias asymptomatic virus in
Euphorbia marginata showed high levels of genetic diversity within a single plant
(Hackett et al. 2009; Piry et al. 2017). Interestingly, these analyses showed that such
genetic diversity is not homogeneous across the plant, so that different parts of the
plant host virus populations that differ between them. For instance, Jridi et al. (2006)
found a nonrandom association between physical distance (distance between tree
leaves from which samples were collected) and PPV genetic distance. Nucleotide
sequence analyses of Asclepias asymptomatic virus by Hackett et al. (2009) showed
differences in the genetic structure of the virus in the different Euphorbia marginata
organs. In the same sense, several analyses using high-coverage deep sequencing
data reported the presence of different viral genotypes depending on the plant organ
sampled (Dunham et al. 2014; Kinoti et al. 2017).

Besides describing the within-host genetic structure of plant virus populations,
some studies have also attempted to understand the evolutionary mechanisms
involved. Dunham et al. (2014) reported that 80% of the ZYMV genotypes found
in squash plants were sampled only once and consisted of synonymous mutations.
This could be explained if most genotypes generated during plant colonization were
deleterious. However, the authors suggested that, because most mutations were
synonymous, their observations would be compatible with neutral evolution and
genetic drift likely being the major drivers of ZYMV genetic diversity. Sacristán
et al. (2003) also reported stochastic processes influencing TMV genotype compo-
sition in different systemically infected leaves of pepper. Alí and Roossinck (2010)
obtained similar results when they analyzed CMV genotype composition during
pepper, Nicotiana benthamiana, and squash colonization. However, genetic drift is
not always the dominating evolutionary force. The relative importance of selection
and genetic drift, and/or the sense and magnitude of selection pressures, might
depend on the host-virus combination. For instance, CMV within-host populations
in tomato and tobacco have been shown to be under negative selection (Li and
Roossinck 2004; Alí and Roossinck 2010). Also, Kinoti et al. (2017) found that
selection pressures in the PNRSV populations within Prunus spp. trees varied
depending on the genomic segment analyzed, with genetic segment 1 being under
neutral evolution and segments 2 and 3 mostly accumulating non-synonymous
mutations. Analyses of the fitness of the genotypes generated during plant
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colonization have been seldom reported. Perhaps the most detailed analysis is that of
Tobacco etch virus (TEV) mutants generated during adaptation to a single
Arabidopsis thaliana genotype (Hillung et al. 2015). Most of the mutations were
deleterious or neutral and did not result in increased fitness, suggesting a major role
of genetic drift in shaping TEV genetic diversity. In addition, the authors found that
mutational effects were mostly multiplicative, with few cases of significant epistasis.
Thus, the virus population was composed of genotypes that, regardless they had one
or several mutations, had similar fitness levels. Complementary work by the same
group demonstrated that the larger the plant colonization time, the greater the
chances of fitter genotypes being selected (Zwart et al. 2014).

Together, reported analyses indicate that the within-host genetic diversity of plant
viruses is spatially structured and reveal that both selection and genetic drift shape
that structure, with the relative importance of these two evolutionary forces
depending on the specific host-virus combination. Several factors associated with
virus population dynamics have been proposed to determine the relative importance
of selection and genetic drift in the within-host genetic structure of virus populations.
Thus, severe population bottlenecks at different stages of plant colonization result in
genetic drift, whereas competition for resources as a result of coinfection by more
than one genotype of the same cell or organ could exert a selection pressure on the
virus population (Frank 2001; Holmes 2009; García-Arenal and Fraile 2013). The
next sections focus on these factors.

2.2 Virus Coinfection and Superinfection Exclusion in Host
Cells

Evidence of a spatially heterogeneous distribution of virus genotypes within the
plant was provided long before this genetic diversity could be characterized.
McKinney (1935) reported the spatial separation of TMV genotypes causing com-
mon mosaic and yellow mosaic from tobacco leaves showing both symptoms.
Similarly, Hull and Plaski (1970) reported the spatial separation of two strains of
Alfalfa mosaic virus (AMV) that induced specific aggregation bodies in the cyto-
plasm of infected cells, on the basis of electron microscopy examination of samples
from different parts of the same leaf. Later, Hall et al. (2001) reported nonuniform
distribution of two strains of Wheat streak mosaic virus (WSMV) that multiplied to
similar levels in coinfected wheat leaves. Molecular detection of each strain in disks
from coinfected leaves allowed these authors to report the first quantitative descrip-
tion of genotype distribution of a virus in different leaf areas, as there were disks in
which only one strain was detected and disks in which both strains were detected
either in similar or in different amounts. The use of viruses labeled with different
fluorescent proteins, coupled with detection of single-cell infection by confocal laser
scanning microscopy, facilitated the location of leaf areas infected by the different
virus genotypes. Thus, spatial separation of variously GFP- and RFP-labeled
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genotypes has been reported for CMV, Potato virus X (PVX), Plum pox virus (PPV),
TVMV, Bean common mosaic virus (BCMV), and Apple latent spherical virus
(ALSV): red and green fluorescence occurred in discrete cell clusters, and only a
small number of cells at the contact area of these clusters showed both red and green
fluorescence, i.e., coinfection by both genotypes (Divéki et al. 2002; Dietrich and
Maiss 2003; Takeshita et al. 2004; Takahashi et al. 2007).

The abovementioned studies suggest that infection by one virus of a given
genotype results in some type of exclusion mechanism limiting super- and/or
coinfection by a virus of a second genotype. To better describe virus exclusion,
González-Jara et al. (2009) co-inoculated N. benthamiana plants with GFP- and
RFP-labeled TMV and determined the fraction of protoplasts isolated from leaves at
different times post-inoculation that fluoresced green or red. Only a small fraction of
infected cells (2–5%) were coinfected by both TMV genotypes. The fraction of
coinfected cells at later times after infection (2–3%) was smaller than expected had
they been infected by random. In both single- and mixed-infected cells, the kinetics
of the number of infected cells over time followed a logistic distribution. However, a
plateau was reached much earlier in mixed- than in single-infected cells. As it could
be expected that the fraction of coinfected cells would increase as foci of single-
infected cells coalesce, the observation of an early plateau for the fraction of
coinfected cells suggests the existence of mechanisms preventing superinfection of
already infected cells. Using a similar approach, Miyashita and Kishino (2010)
analyzed the colonization of barley leaves by Soil-borne wheat mosaic virus
(SBWMV) using two YFP- and CFP-labeled genotypes. Although soon after inoc-
ulation both genotypes coinfected cells, their frequency decreased as the foci
expanded, and as soon as 3 days post-inoculation, most cells at the periphery of
the foci were single-infected. Moreover, 83% of the cells adjacent to the initially
coinfected ones were coinfected, whereas only 61% of the cells in the subsequent
rows were so. These results suggest again the operation of exclusion mechanisms.
Cross-protection and RNA silencing (Roossinck 2005; Bergua et al. 2014; Donaire
et al. 2016), and/or competitive displacement of one genotype in coinfected cells
(González-Jara et al. 2009), have been proposed as the basis for these mechanisms.
Competition among viruses of different genotypes in a coinfected cell may result in a
smaller fitness of each genotype as compared with their fitness in single infection
(Levontin 1970; Frank 2001). Thus, limiting coinfection may be a major driver of
within-host population genetic diversity and a selective advantage for the virus.

2.3 Multiplicity of Infection During Plant Colonization

Despite the consistent evidence for spatial exclusion of virus genotypes within the
infected cell, the work discussed above shows that cell coinfections do occur and not
infrequently. These observations have boosted the analyses of the multiplicity of
infection (MOI), i.e., the number of virus particles or genomes that simultaneously
infect a cell during plant colonization. In this sense, MOI is different than the number
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of virus particles required to start an infection, which was shown from early date to
be one in viruses with monopartite genomes (reviewed in García-Arenal and Fraile
2011). MOI is a relevant parameter in virus epidemiology and evolution, as it
determines processes such as genetic exchange through recombination or
reassortment of genomic segments, complementation of deleterious mutants and
hence selection intensity on viral genes, hyperparasitism by molecular parasites such
as RNA satellites, or the evolution of segmented genomes (Nee and Maynard-Smith
1990; Chao 1991; Szathmáry 1992; Simon and Bujarski 1994; Roossinck 1997;
Worobey and Holmes 1999; García-Arenal et al. 2001; Tepfer 2002; Froissart et al.
2004). However, MOI values have been rarely estimated for plant viruses or for any
viruses (Table 1).

González-Jara et al. (2009) estimated MOI values for TMV during colonization
of N. benthamiana leaves, assuming that the probability of infection of a cell by
GFP- and RFP-labeled viruses was independent and followed a binomial distribu-
tion. Average MOI values in inoculated leaves were of around 1 along the monitored
infection period (2–17 dpi) both in inoculated and in systemically infected leaves
(González-Jara et al. 2013). Miyashita and Kishino (2010) also estimated the value
of MOI for SBWMV from the frequency of double- and single-infected cells in
infection foci initiated by two virus genotypes, assuming a binomial distribution of
the probability of infection and a Poisson distribution of the value of MOI. Their
reported MOI values are in the same range as those for TMV: five to six founder
genomes infect a new cell from an adjacent one. MOI estimates for cells two cells
apart from the initially infected ones (~5) were slightly lower than for cells adjacent
to the initially infected ones (~6), suggesting a decrease of MOI as infection
progressed. However, Miyashita and Kishino (2010) made the cautionary comment
that the MOI decrease with leaf colonization could be an artifact of the model,
because as infection foci expand each infected cell makes contact with a decreasing
number of uninfected cells. The model used by González-Jara et al. (2009, 2013)
was not sensitive to this factor, as it assumed an equal probability of infection of all
abutting cells. Analyses for other plant viruses have yielded MOI values in the same
range as for TMV and SBWMV. For instance, a MOI of<1.5 has been estimated for

Table 1 Multiplicity of infection (MOI) estimates for plant viruses

Virus Host Methoda MOI Reference

CaMV Brassica rapa Genetic marker 2–13 Gutiérrez et al. (2010)

CTV Citrus macrophylla FP-labeling 1.06–1.07 Bergua et al. (2014)

SBWMV Triticum aestivum FP-labeling 5.02–5.97 Miyashita and Kishino (2010)

TBSV Nicotiana benthamiana Genetic marker 1.76–3.98 Donaire et al. (2016)

TEV Nicotiana tabacum FP-labeling 1.00–1.43 Tromas et al. (2014a, b)

TMV Nicotiana benthamiana FP-labeling 1.17–7.00 González-Jara et al. (2009)

TMV Nicotiana benthamiana FP-labeling 1.01–1.18 González-Jara et al. (2013)

TuMV Brassica rapa FP-labeling 21.7–41.5 Gutiérrez et al. (2015)
aGenetic marker, virus genotype-specific sequence tag; FP-labeling, virus genotypes labeled with
fluorescence proteins
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TEV in Nicotiana tabacum (Tromas et al. 2014a), values between 1.6 and 3.9 have
been calculated for Tomato bushy stunt virus (TBSV) in N. benthamiana (Donaire
et al. 2016), and Citrus tristeza virus (CTV) MOI in Citrus macrophylla was
estimated to be around 1 (Bergua et al. 2014). On the other hand, higher MOI values
have been reported for Cauliflower mosaic virus (CaMV) (13) (Gutiérrez et al. 2010)
and for TuMV (21.7–41.5) (Gutiérrez et al. 2015). If these MOI values are consid-
ered as Poisson distributed over the infected cells, most of them would be coinfected
at the end of the colonization period. This would provide ample opportunity for
recombination or for the complementation of lethal or deleterious mutations, which
may have large impact on the genetic composition of the virus population.

2.4 Population Bottlenecks During Systemic Infection

Another factor involved in the within-host spatial genetic structure of plant virus
populations is the existence of population bottlenecks associated with the coloniza-
tion of new organs during systemic movement. This hypothesis was first tested by
Sacristán et al. (2003), who used the segregation in the two first systemically infected
leaves of two TMV genotypes co-inoculated at the same infectivity dosage for
estimating the effective population number under a binomial model for the proba-
bility of infection. Estimates indicated effective founder sizes of 1–15, i.e., several
orders of magnitude less than the 107–109 census of the TMV population in an
infected leaf. Using a similar approach, French and Stenger (2003) estimated the
effective WSMV founder population size of new wheat tillers from the data of Hall
et al. (2001) at about 4, a value in the same range as that reported for TMV. Li and
Roossinck (2004) utilized an artificial population of 12 CMV mutants to show that
the virus population diversity decreased significantly when the population moved
from the inoculated leaves to primary systemically infected leaves (six to eight
mutants recovered) and decreased further as the systemic infection progressed
(three to five mutants recovered). The elimination of a majority of the mutants was
a stochastic process attributed to population bottlenecks. Comparable founder sizes
(6–8) have been recently estimated by Thébaud and Michalakis (2016) for TEV
infection in tobacco using data extracted from Tromas et al. (2014a).

In contrast with these two reports, Monsion et al. (2008) did not find any
significant difference in the genetic composition of Cauliflower mosaic virus
(CaMV) populations in different systemically infected leaves of turnip plants
infected with a mixture of six mutants. Based on analyses of population differenti-
ation, they came to the conclusion that founder populations for systemically infected
leaves were large, in the order of several hundreds, with confidence intervals for the
estimates extending into the thousands. They interpreted these results as a trait of
CaMV, a reverse-transcribing DNA virus, while all previous evidence or estimates
of severe bottlenecks during systemic colonization derived from the analysis of RNA
viruses. However, another factor that might influence the results of Monsion et al.
(2008) is the way they handled the infected plants. At odds with the other founder
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size estimates, all inoculated and systemically infected turnip leaves were eliminated
at 13 dpi, and analyses were done 32 days later in the 10–15 leaves that formed
afterward. Analyses at such late times after infection do not allow the identification
of the sources for the virus infection of the systemically infected leaves, and pruning
the plants could alter the photoassimilate source-sink dynamics in the plant and
consequently the virus transport to the new growing leaves. Indeed, more recent
estimates of CaMV population bottlenecks during turnip colonization, using condi-
tions similar to those utilized by Hall et al. (2001), Sacristán et al. (2003), and Li and
Roossinck (2004), yielded much similar founder sizes at the 5th and 21th leaves (8.8
and 10.8, respectively). Larger founder sizes were observed at the 16th leaf (127),
but this estimate had a large confidence interval (19.1–908.9) (Gutiérrez et al.
2012b).

In summary, most evidence indicates that population bottlenecks are severe
during systemic colonization of new plant organs and that these bottlenecks, regard-
less of other phenomena such as exclusion mechanisms discussed at the cell level,
may explain the observations on the spatial genetic structure of virus populations
within the organs of infected plants.

3 Genomics of Between-Host Plant Virus Populations

The increasing number of tools for comparative genomic analyses of plant virus
populations, the constant increase in the sophistication of sequence methods, and the
exponential reduction of sequencing costs have allowed enormous amounts of
sequence information to be obtained with a reasonable investment of resources
and time. This has boosted the analysis of the population genomics of plant viruses
not only within an individual plant (see previous section) but also at the population
level. In this section, we will focus on three major aspects of plant virus evolution
that benefit from access to such a large amount of genomic information: the time
scale of virus evolution, the effects of ecological factors on virus evolution, and the
analyses of plant-virus coevolution.

3.1 Time Scale of Plant Virus Evolution

As mentioned above, many if not most plant virus populations have high mutation
rates, which allow direct estimation of evolutionary rates. The evolutionary rates of
plant virus populations can be estimated most directly by comparing samples
collected at different times (Table 2). For instance, the combined analysis of
mutations accumulated by Wheat streak mosaic virus (WSMV) during serial pas-
saging in wheat, and of differences within its population in North America, gave an
estimate that the virus population diverged at about 1.1 � 10�4 nucleotide sub-
stitutions per site per year (Stenger et al. 2002). Alternatively, and taking advantage
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of the combination of Bayesian analyses and coalescence theory, evolutionary rates
are estimated most often from phylogenetic analyses of gene sequences obtained
from natural populations. A key aspect of this phylogenetic methodology is dating
the tree. For this, different approaches have been used. Serial sampling was utilized
to estimate the rates of evolution of Banana bunchy top virus (BBTV) and Maize
streak virus (MSV) populations, in which trees were dated from epidemiological
data (Almeida et al. 2009; Harkins et al. 2009). Also, node dating through known
events or co-divergence studies has been used to estimate substitution rates of
potyviruses and Turnip yellow mosaic virus (TYMV) (Gibbs et al. 1986, 2008b).
But perhaps the most used method is heterochronous sampling, i.e., tree calibration
using the collection dates of sequences obtained during a sufficiently long period of
time for evolutionary changes to have occurred (Drummond et al. 2003). Using this
approach, estimates of evolutionary rates for RNA plant viruses such as species of
the family Luteoviridae, Rice yellow mottle virus (RYMV), or ZYMV, among

Table 2 Estimates of nucleotide substitution rates in plant viruses

Methoda Virus Substitution ratesb Reference

Serial sampling BBTV 3.9 � 10�4 Almeida et al. (2009)

MSV-1 7.4–7.9 � 10�4 van der Walt et al. (2008)

MSV-2 2.0–3.0 � 10�4 Harkins et al. (2009)

Heterochronous
sampling

BBTV 1.4 � 10�4 Almeida et al. (2009)

BYDV 3.2–6.3 � 10�4 Malmstrom et al. (2007),
Wu et al. (2011)

EACMV 1.6–1.3 � 10�4 Duffy and Holmes (2009)

Geminivirus 1.8� 10�3
–3.9� 10�4 Lefeuvre et al. (2011)

Luteoviridae 3.5� 10�2
–1.4� 10�4 Pagán and Holmes (2010)

PepGMV 2.4–3.7 � 10�3 Rodelo-Urrego et al. (2013)

PepMV 5.6 � 10�3 Gómez et al. (2012)

PHYVV 1.7–3.9 � 10�3 Rodelo-Urrego et al. (2013)

PVY 5.97–9.99 � 10�5 Gibbs et al. (2017)

RYMV 4.8 � 10�3 Fargette et al. (2008a)

Tobamovirus 1.3 � 10�3
–1 � 10�5 Pagán et al. (2010a)

TYLCV 2.9 � 10�4 Duffy and Holmes (2008)

ZYMV 5.0 � 10�4 Simmons et al. (2008)

Node dating Geminivirus 3.1 � 10�8 Lefeuvre et al. (2011)

Potyviruses 1.2 � 10�4 Gibbs et al. (2008b)

WSMV 1.1 � 10�4 Stenger et al. (2002)

Co-divergence Cereal
mastrevirus

1.0 � 10�8 Wu et al. (2008)

TYMV 1.3 � 10�7 Blok et al. (1987), Gibbs et al. (1986),
Guy and Gibbs (1981)

Tobamovirus 2.2 � 10�8 Gibbs (1980), Gibbs et al. (2008a)

Begomovirus <0.6 � 10�6 Gibbs et al. (2010)
aMethod for phylogenetic tree dating
bNucleotide substitutions per site per year
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others, have been obtained (Pagán and Holmes 2010; Fargette et al. 2008a; Simmons
et al. 2008; Rodelo-Urrego et al. 2013). These studies reported substitution rates
between 10�3 and 10�6 nucleotide substitutions per site per year, which are values in
the same range than those obtained for RNA animal viruses (Jenkins et al. 2002).
Similar rates have been estimated for plant viruses with small DNA genomes such as
East African cassava mosaic virus (EACMV) and Tomato yellow leaf curl virus
(TYLCV), both belonging to the genus Begomovirus (Duffy and Holmes 2008,
2009; Lefeuvre et al. 2011), and CaMV (Yasaka et al. 2014). However, there
are notable exceptions to this general pattern. Estimates for tobamoviruses,
Begomovirus-related sequences integrated in the host genome, and cereal mastre-
viruses revealed evolutionary rates of 10�8

–10�9 (Gibbs et al. 2008a; Wu et al.
2008; Lefeuvre et al. 2011), much closer to those of their hosts (but see Pagán et al.
2010a).

The introduction of time as a variable in phylogenetic analyses has allowed us to
estimate evolutionary rates, as well as explore when the current virus diversity
originated. Analyses of evolutionary scales of several virus species/families traced
back the radiation of these viruses hundreds, if not thousands, of years ago. Pagán
and Holmes (2010) dated the origin of the family Luteoviridae up to 10,000 years
ago and the two major genera of the family (Luteovirus and Polerovirus) to about
1000–2000 years ago, with most of the species radiation in these two genera
occurring in the last 500 years. Similarly, Gibbs et al. (2017) dated the origin of
Potato virus Y (PVY) up to 7000 years ago, Gibbs et al. (2008b) traced the origin of
the genus Potyvirus about 6600 years ago, and Fargette et al. (2008b) dated the
divergence of the genus Sobemovirus up to 5000 years ago. All these estimates of
origin or radiation times for virus taxa that include important crop pathogens find
time points near to the origin or the expansion of agriculture, which has led to
formulate the hypothesis that agriculture has provided the ecological driver for the
radiation of pathogenic plant viruses. Despite this general agreement on plant virus
evolutionary time scales, some reports have revealed that certain groupings of RNA
plant viruses could be much more ancient. This is the case of the species in the genus
Tobamovirus, the origin of which has been traced to around 100,000 years ago
(Gibbs et al. 2008a), and the proposal that known tobamoviruses first diverged at the
same time as their solanaceous hosts, namely, 1000 times earlier (Gibbs et al. 2015).
Similarly, diversification of Begomovirus species through analyses of virus-related
sequences integrated in the host genome has been traced back up to 80 million years
ago (Lefeuvre et al. 2011). Besides these estimates of long-term evolutionary rates,
coalescent Bayesian phylogenies have been also used to analyze the short-term
evolutionary time scales. For instance, Fraile et al. (2011) traced the origin of
tobamovirus epidemics in pepper crops of Spain to about 100–120 years before
present and showed that in epidemic outbreaks tobamoviruses had much faster
evolutionary rates (1 � 10�4 subs/site/year) than during their long-term evolution.
Duffy and Holmes (2009) estimated similar evolutionary rates for EACMV epi-
demics in Central Africa and dated the origin of the epidemic 34–175 years ago
based on sequences of the coat protein (CP) gene. Using also the CP gene, Rodelo-
Urrego et al. (2013) dated the origin of the begomovirus epidemics in wild pepper or
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chiltepin (Capsicum annuum var. glabriusculum) plants in Mexico to about 30–50
years ago. Importantly, these estimates were in agreement with existing epidemio-
logical evidence, indicating that phylogenetics can also provide relevant information
both on disease evolution and epidemiology. In this regard, further advances in the
methodology for tree inference have allowed adding the spatial scale to phylogenetic
reconstructions and contributed to understand the factors determining the epidemi-
ology of plant viruses. Using spatial diffusion models, De Bruyn et al. (2012)
showed that dispersion of EACMV from Africa to the Indian Ocean islands mostly
resulted from human activity. Similarly, Rodelo-Urrego et al. (2013) reconstructed
the migration patterns of begomoviruses infecting wild pepper populations across
Mexico and observed that short-distance movements were mostly driven by viral
vectors, whereas long-distance dispersal of the virus was likely to be due to human
intervention (i.e., trade of infected plant material). Using a similar approach, Trovão
et al. (2015) showed that the major factor affecting RYMV dispersal in Africa was
the distance between rice fields, with faster dispersal rates in West Africa where
agriculture is more intensive and extensive.

Together, these works have shown that the ecological context in which plant-
virus interactions take place influences the epidemiology and evolution of plant virus
populations.

3.2 Effect of Ecosystem Biodiversity on Plant Virus
Populations

Changes in host ecology are among the most frequently identified causes of disease
emergence (i.e., the increase of disease incidence following its appearance in a new,
or previously existing, host population) (Morse and Schluederberg 1990; Jones
2009; Pagán et al. 2016). It is thought that changes in plant populations or commu-
nities caused by humans are a major driver of these ecological changes. A classical
hypothesis in plant pathology states that ecological changes associated with agricul-
ture favor epidemic infection dynamics of highly virulent pathogens and lead to
disease emergence. Three main factors are considered to be involved in this process
as a consequence of ecosystem simplification: the reduced species diversity, the
reduced genetic diversity within species—both components of biodiversity—and the
greater host density of agricultural ecosystems as compared with wild ones (Burdon
and Chilvers 1982; Thresh 1982; Stukenbrock and McDonald 2008). Current
decreases in biodiversity and the increasing number of emergent pathogens have
resulted in a new interest on the relationship between ecosystem simplification and
disease risk (Keesing et al. 2010). As a result, two hypotheses representing extreme
situations have been proposed that relate ecosystem biodiversity to disease risk:
diversity may be either positively (“amplification effect” hypothesis) or negatively
(“dilution effect” hypothesis) correlated with disease risk, as greater biodiversity
may result in either increased abundance of reservoirs for a focal host or in a
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decreased abundance of the focal host hindering pathogen transmission (Keesing
et al. 2006; Ostfeld and Keesing 2012). Hence, the effects of diversity on disease risk
would be related to the host range of the pathogen: an amplification effect would
require a generalist pathogen, while the more restricted the host range of the
pathogen, or the higher the differences between shared hosts in their ability to
amplify or transmit the pathogen, the higher the dilution effect. The general appli-
cation of these concepts has been questioned (Randolph and Dobson 2012). For
instance, a recent analysis of a multi-host-multivirus system at different spatial scales
showed that the relationship between biodiversity and disease risk was both scale
dependent and habitat dependent (McLeish et al. 2017).

The relationship between biodiversity and disease risk has been analyzed only in
a few plant-virus interactions. Early analyses of Cereal and Barley yellow dwarf
viruses (B/CYDV) in wild grassland ecosystems in the west of the USA mostly
agree with the amplification effect hypothesis (Power and Mitchell 2004;
Malmstrom et al. 2005a, b; Borer et al. 2009, 2010; Hall et al. 2010; Power et al.
2011). However, the effect of biodiversity changes on the genetic composition of
B/CYDV populations was not addressed. More recently, a study has analyzed
begomovirus incidence in Mexican populations of chiltepin growing in habitats
along a gradient of human management, from wild to cultivated populations
(Pagán et al. 2012). Increased human management was associated with an increase
of virus infection risk, and the main predictor of disease risk was the biodiversity of
the habitat, agreeing with the dilution effect hypothesis. Interestingly, cultivation
resulted in the loss of the spatial genetic structure of the virus populations (Rodelo-
Urrego et al. 2013). Moreover, the smaller biodiversity and greater host density
characteristic of cultivated chiltepin populations favored the genetic diversification
of the begomovirus populations (Rodelo-Urrego et al. 2015). Another observation of
these authors was that the ecological factors associated with higher virus genetic
diversity decreased the frequency of recombinant genotypes, suggesting that in
cultivated chiltepin populations genetic diversity was mostly generated by mutation,
whereas recombination had higher relative importance in wild populations (Rodelo-
Urrego et al. 2015). Hence, biodiversity and plant density could also affect the
relative importance of mutation and recombination in virus evolution. These two
studies involved viruses that infect more than a single host, but as stated above the
relationship between biodiversity and disease risk could depend on the virus host
range as well as on community composition and spatial scales. Rodríguez-Nevado
et al. (2017) utilized data on infection risk and population genetic diversity of the
specialist virus Mediterranean ruda virus (MeRV) in its host Ruta montana L.,
collected in the native wild ecosystem where this host-virus interaction occurs, to
test their association with biodiversity and host density. These authors showed that
plant density, but not ecosystem biodiversity, was the major determinant of infection
risk: the larger the host density, the greater the MeRV incidence. Both infection risk
and host density were positively associated with MeRV population genetic diversity.
Although these results would be compatible with the dilution effect hypothesis, they
also show that the effects and relative importance of biodiversity and host density
could depend on the identity of the host and virus involved. This would be in
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accordance with further elaborations about the amplification/dilution effect hypoth-
eses (Randolph and Dobson 2012; Johnson et al. 2015; Ostfeld and Keesing 2017).

It is worth noting that in wild populations of both chiltepin and R. montana, the
infecting viruses increased host mortality, which may determine the demography of
the host plant (Fraile et al. 2017; Rodríguez-Nevado et al. 2017). This being so, hosts
might develop mechanisms to avoid/limit virus infection or to reduce its detrimental
effects (Agnew et al. 2000; Little et al. 2010). Plant defense against viruses can
manifest as resistance, i.e., the host ability to limit virus multiplication (Clarke
1986), and tolerance, i.e., the host ability to reduce the effect of infection on its
fitness (Little et al. 2010). Because pathogen virulence and host resistance/tolerance
have reciprocal effects on each other’s fitness, it is generally assumed that host-virus
interactions result in coevolutionary processes (Woolhouse et al. 2002).

3.3 Coevolution Between Plants and Viruses

Host-pathogen coevolution requires four conditions: (1) genetic variation in the
relevant host and pathogen traits (e.g., resistance, tolerance, infectivity, virulence),
(2) reciprocal effects of the relevant traits of the interaction on the fitness of host and
pathogen, (3) dependence of the outcome of the host-pathogen interaction on the
specific host and pathogen genotypes involved, and (4) changes in genotype fre-
quencies in both the host and the pathogen populations (Woolhouse et al. 2002).
Current evidence of plant-virus interactions that meet these conditions mostly
derives from highly virulent viruses in crops and from the changes in the genetic
structure of virus populations in agricultural ecosystems as a response to human
manipulation of the genetics of the host by breeding resistance factors (Fraile and
García-Arenal 2010). Demonstration of plant-virus coevolution in wild plant
populations, where the genetic composition of the host may change in response to
virus infection, is lacking, and evidence in support of plant-virus coevolution is very
scant (but see Pagán et al. 2010b).

The first condition for plant-virus coevolution to occur is the genetic variation in
host resistance/tolerance and in the pathogen’s ability to infect and multiply in the
host (i.e., infectivity) and to cause disease (i.e., pathogenicity). The available
evidence that this is indeed the case for plant viruses derives mostly from analysis
of the patterns of variability of plant resistance genes and of the viral pathogenicity
genes in interactions resulting in qualitative resistance. This is the case for the
different alleles of the L gene in Capsicum, which confer resistance to different
genotypes/species of tobamoviruses and differ in a few non-synonymous mutations
(Tomita et al. 2008). Similarly, field isolates of the tobamovirus species Pepper mild
mottle virus (PMMoV) that overcome L-mediated resistance in pepper differ from
the avirulent genotype by a few amino acid substitutions in the coat protein (Berzal-
Herranz et al. 1995; Tsuda et al. 1998; Hamada et al. 2002, 2007). Another good
example is provided by the rice-RYMV interaction. In this system, different muta-
tions have been observed in the RYMVVPg determining infection on rice genotypes
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carrying different resistance alleles at the rymv locus, encoding eIF(iso)4G (Pinel-
Galzi et al. 2007; Poulicard et al. 2014). The interaction pepper-Potato virus Y
(PVY), determined by the pvr2 locus of Capsicum spp., encoding eIF4E, and the
virus VPg has been also well characterized (Quenoiulle et al. 2013; Moury et al.
2014). High variability and positive selection has been observed at both the VPg and
eIF4E encoding genes, and almost all amino acid changes are linked to gains of
function (resistance of the plant or infectivity of the virus), which determines the
genetic composition of both plant and virus populations. Interestingly, no equivalent
analyses have been done in plant-virus interactions in wild ecosystems.

The second condition for plant-virus coevolution is that there must be reciprocal
effects of the relevant traits of the interaction on the fitness of host and pathogen. For
this to happen, infectivity and resistance must negatively affect the fitness of plants
and viruses, respectively. Evidence that virus infection can have detrimental effects
in the host mainly comes from crop-virus systems (Fraile and García-Arenal 2010;
Froissart et al. 2010). A few experiments have shown such effects in wild plants
under controlled conditions (e.g., Kelly 1994; Friess and Maillet 1996; Pagán et al.
2007), but evidence that plant viruses have a negative effect on plant fitness in
natural ecosystems is still limited (but see Maskell et al. 1999; Power and Mitchell
2004; Prendeville et al. 2014; Fraile et al. 2017). Also, evidence of negative effects
of plant resistance on virus fitness derives from crop-virus interactions (Fraile and
García-Arenal 2010). Most of these studies quantify virus fitness as within-host
multiplication and assume that virus multiplication and transmission are positively
correlated. Although this seems to be the case for horizontally transmitted plant
viruses (Sacristán and García-Arenal 2008; Froissart et al. 2010), it has been shown
that this positive correlation does not hold for some vertically transmitted plant
viruses (Pagán et al. 2014). A potential consequence of the reciprocal effects of
plants and viruses on each other’s fitness and evolution is the congruence of their
phylogenies (Nieberding and Olivieri 2007). In various plant-virus systems, such
congruence has been interpreted as evidence of coevolution, i.e., reciprocal evolu-
tionary change in the host and the virus driven by natural selection (Thompson
2005), and as mentioned earlier even of co-divergence, co-divergence meaning that
the host plant and the virus have shared their whole evolutionary history (Lartey
et al. 1996; Wu et al. 2008; Gibbs et al. 2015; Stobbe et al. 2012). However, other
phenomena such as population geographic isolation may result in host-virus phylo-
genetic congruence. Also, different evolutionary scales have been estimated for
some viruses and their hosts (see Sect. 1.1), which do not support plant-virus
co-divergence over extended periods of time (Pagán et al. 2010a; Rodelo-Urrego
et al. 2013).

The third condition for plant-virus coevolution is dependence of the outcome of
the interaction on the combination of host and virus genotypes involved. As
discussed above, genetic diversity in genes determining resistance/susceptibility in
plants and infectivity/pathogenicity in viruses has been described in a variety of
plant-virus interactions (García-Arenal and Fraile 2013). In such interactions, the
specific combination of plant and virus alleles determines whether the plant-virus
interaction would be a compatible one, i.e., whether the virus is able to establish a

248 I. Pagán and F. García-Arenal



successful infection (Tomita et al. 2008; Quenoiulle et al. 2013; Ishibashi et al. 2014;
Moury et al. 2014). Thus, there is evidence that the outcome of the plant-virus
interaction depends on the specific genotypes of the interacting partners. Resistance
to viruses in plants may also be quantitative, in which within-host multiplication of
the virus is reduced. Examples of quantitative resistance depending on the plant-
virus genotype � genotype interaction have also been reported. This is the case of
the interaction between CMV, Turnip crinkle virus (TCV), CaMV and TuMV, and
its natural host A. thaliana (Pagán et al. 2007, 2010b; Shuckla et al. 2018). The other
major defense strategy of plants against pathogens’ tolerance is determined by
genotype� genotype interactions. Tolerance of A. thaliana to CMV, which depends
on modification of life-history traits, varies according to the plant and virus genotype
(Pagán et al. 2008, 2009). In summary, there is evidence that the outcome of plant-
virus interactions depends on genotype � genotype interactions regardless of the
type of plant defense or interaction model.

Finally, the fourth condition for plant-virus coevolution is the existence of
changes in genotype frequencies in both the host and the pathogen populations.
Even in agricultural systems, long-term analyses of these dynamics are rather rare,
but they have demonstrated that the frequency of virus genotypes changes in
response to the deployment of genetic resistance of crop varieties (Fraile et al. 2011).

Altogether, the studies discussed above highlight the contribution of genomic
studies to understand the evolution of plant-virus interactions. Despite evidence for
plant-virus coevolution is limited, these studies also suggest that this process influ-
ences the genetic composition of both interactive partners.

4 Genomics of Plant and Virus Communities

Most of the work discussed above focuses on single plant-virus combinations.
However, in nature the interaction between a virus population and its host(s) is
embedded in the context of the plant and virus communities within multi-host-
multivirus systems (Malmstrom and Alexander 2016). As a consequence, the out-
come of virus infection and the evolution of virus populations may be influenced by
the presence of other viruses that share common hosts or vectors with the focal one
and by the presence of plant species other than the focal host, both alternative hosts
and nonhost species. These virus-virus, plant-virus, and plant-plant interactions are
central to understand the genomics of plant virus ecology and evolution. Although
scientists are just starting to explore interactions at the community level, virus
population genomics has been pivotal in the pioneer works that have addressed
these questions (Roossinck 2017). Because the previous section extensively dealt
with plant-virus interactions, this section focuses in virus-virus and plant-plant
interactions.
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4.1 Virus-Virus Interactions

Although a large fraction of known plant viruses are multi-host pathogens (García-
Arenal and Fraile 2013; Moury et al. 2017), the study of the distribution of multi-
host plant viruses in an ecosystem has not been undertaken until recently. Malpica
et al. (2006) first addressed this question by analyzing the prevalence and distribu-
tion of five vector-transmitted multi-host plant viruses in wild plant communities of
Central Spain. This work raised two major conclusions: (1) the distribution of plant
viruses was not random; rather, viruses preferred some host species to others; and
(2) coinfection of a single plant by more than one virus was frequent. Since this
seminal paper, accumulating evidence indicates that infection of the same plant by
multiple viruses is common in nature (Moreno et al. 2004; Roossinck et al. 2010;
Tugume et al. 2016). This being so, perhaps the most obvious questions to address
when exploring the dynamics of plant virus communities are (1) how many viruses
are in a plant assemblage (Roossinck 2011) and (2) how these viruses interact with
each other (Syller 2012).

The advent of deep sequencing techniques has allowed the virome of a number of
different ecosystems (e.g., Delwart 2007; Hurwitz and Sullivan 2013), including
plant communities, to be explored. The majority of the analyses of plant community
viromes have focused on wild ecosystems (reviewed by Roossinck 2012; Stobbe and
Roossinck 2014), uncovering large (previously) unknown virus diversity (Roossinck
2011), in particular when it comes to double-stranded RNA viruses (Massart et al.
2014). These analyses have revealed that virus infections are common in wild plants,
and virus diversity and identity in wild plants appear to be different from that in
crops (Roossinck 2012; Wylie et al. 2013; Stobbe and Roossinck 2014). The few
metagenomic analyses of crop plants have confirmed this observation, although
these works tend to focus in already known plant viruses, which bias the comparison
between wild ecosystems and agroecosystems (Coetzee et al. 2010; Giampetruzzi
et al. 2012; Ng et al. 2011). Despite that metagenomics analyses have significantly
broadened our understanding on the composition of plant virus communities, two
main questions remain opened. The first question refers to how much of the true viral
diversity is represented in the metagenomics analyses. The methodology used is a
significant factor limiting how much of the viral diversity present in a plant com-
munity is captured. Since there are no universal genes for viruses, deep sequencing
methods often use random priming for reverse transcription (RT) or PCR to obtain
virus sequences. Therefore, the procedure to obtain template material for sequencing
determines the information that can be extracted from metagenomics analyses
(Roossinck et al. 2015; Blawid et al. 2017; Massart et al. 2017). One approach
(Fig. 1) is to enrich the sample in viruslike particles and use the nucleic acids in these
particles for deep sequencing. Although this method has yielded validated results, it
may exclude genomes of viruses that do not form particles or those with labile
particles. Some works have used methods that enrich nucleic acid extracts in double-
stranded RNAs (dsRNA), as many plant viruses have RNA genomes and generate
dsRNA intermediates during replication (Roossinck et al. 2010). However, this
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method could preferentially target persistent viruses, which often have dsRNA
genomes (Roossinck 2012). Also, projects of plant virus discovery have taken
advantage of the plant defense mechanisms based on gene silencing, which involves
the generation of small interfering RNAs (siRNAs) derived from viral genomes that
target viral sequences for degradation (Ghoshal and Sanfaçon 2015; Wu et al. 2015).
These siRNAs have been used for discovery of RNA and DNA viruses in plants
(Donaire et al. 2009; Kreuze et al. 2009). However, genome assembly through
siRNAs is based on short sequences (21–24 nt), which makes repetitive regions
difficult to resolve (Blawid et al. 2017; Massart et al. 2017). The second aspect
brought by the increasing metagenomics information on plant viromes is how much
of the described virus diversity is biologically meaningful. Although much progress
has been done in bioinformatics methods for sequence assembly, particularly in the
case of deep sequencing data (Hadidi et al. 2016; Blawid et al. 2017), plant virus
diversity estimates are often based only on partial sequences. The available partial
sequences often do not allow differentiating if they derive from infectious genomes
or are just “environmental noise.” Recently Koch’s postulates have been revised to
accommodate new pathogen discovery techniques, based on criteria for establishing
causation organized into three levels (Lipkin 2013): Level 1, evidence of the disease
agent by sequence analysis; Level 2, finding the agent in host cells, similarity of the
agent to known pathogens, and finding the agent in numerous individuals with
similar symptoms; and Level 3, prevention of the disease by an agent-specific
drug, antibody, or vaccine. Not all of these criteria can be applied to the discovery
of new plant viruses. Level 3 is probably not possible, although siRNAs could be
used as corroborative evidence that the plant has mounted a defense response (Chen
et al. 2015). On the other hand, levels 1 and 2 could be easily adapted to the
discovery of new plant viruses even if they are asymptomatic in their host(s), as in
many wild plants (Prendeville et al. 2012; Roossinck 2012). However, although
metagenomic analyses of plant virus communities comply with Level 1, very few of
the new viruses discovered have been biologically characterized and tested for
infectivity (Massart et al. 2017; Rodríguez-Nevado et al. 2017).

Analyses of plant viromes therefore indicate that plant virus communities are
populated by a large number of species, and it would be reasonable to expect that
these species interact with each other. In this sense, another interesting observation is
that multiple infections are frequent in wild and cultivated plants (Malpica et al.
2006; Roossinck et al. 2010; Tugume et al. 2016). The importance of mixed
infections in the epidemiology and genetic diversity of plant virus populations was
realized almost a century ago (Fawcett 1931). Early works indicated that mixed
infections could lead to the appearance of new virus strains and to modify the fitness
of some virus genotypes (Thompson 1961; Rochow 1972). Although initially
considered as relatively infrequent, the increasing evidence that mixed infections
are widespread has prompted the analyses of the effects of such virus-virus interac-
tions for the population dynamics of plant viruses. These studies have indicated that
mixed infections may have far-reaching consequences for virus populations. For
instance, mixed infections may determine the severity of infection symptoms
(Rodelo-Urrego et al. 2013; Tugume et al. 2016), alter plant viral load (Taiwo
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et al. 2007), allow the survival of less fit genotypes and affect virus host range
(Gómez et al. 2009), promote recombination events between coexisting viruses
(García-Andrés et al. 2007), and alter virus transmission (de Assis Filho and
Sherwood 2000; Salvaudon et al. 2013). Mixed infections may also modify the
fitness of the interacting viruses, and both synergistic (Taiwo et al. 2007; Rentería-
Canett et al. 2011; Nsa and Kareem 2015) and antagonistic (Martín and Elena 2009;
Syller 2012) effects have been described. These effects may have deep impact on the
prevalence of plant virus species and genotypes in the within-host population,
therefore determining the genetic diversity/haplotype composition of plant virus
populations (Gómez et al. 2009; Rodelo-Urrego et al. 2015). Altogether, these
works underscore the relevance of considering virus-virus, and not only host-virus,
interactions in determining the genetic structure of the population.

4.2 Plant-Plant Interactions

Plant virus communities exist in the context of the plant communities they infect.
Therefore, plant virus communities should not be independent of the structure of the
plant community where infections occur. Competition is one major factor determin-
ing community structure. In host-parasite systems, there are different competitive
interactions: intra-class competition among uninfected hosts or among infected hosts
and interclass competition between uninfected and infected hosts. Each interaction
may have different effects on host life-history traits, resulting in a direct cost of
infection, due to parasitism itself, and in an indirect cost, due to modification of the
competitive ability of the infected host, both being modulated by host population
density (Bedhomme et al. 2005). Theory predicts that fitness reduction will be higher
under the combined effects of host population density and parasitism than under
each factor separately (Hochberg 1991; Lively 2006). Although these indirect costs
of virus infection may obviously occur at the plant population level (see Friess and
Maillet 1996; Pagán et al. 2009 for examples), such costs may also apply for plant
and virus communities. An obvious effect of virus infection on plant competition
derives from the different susceptibility that the same host species may have to
different viruses. It has been shown that B/CYDV infection has similar direct costs in
invasive exotic grasses and native bunchgrasses in California. However, indirect
costs of B/CYDV infection were much higher in native than in exotic grasses,
suggesting that B/CYDV infection can have high impact on host population dynam-
ics through indirect costs of infection (Malmstrom et al. 2005a). Interestingly,
infected exotic grasses did not only compete better with native bunchgrasses, they
were also more attractive for virus vectors, such that they amplified infection and
increased virus incidence in the native host (Malmstrom et al. 2005b). Such flow of
virus genotypes between hosts has been shown to play a role in both selectively
favoring novel mutations as well as contributing variation to the pathogen popula-
tion on the receptor host (Burdon and Thrall 2008). Moreover, changes in virus
incidence may affect population size, affecting evolutionary rates (Scholle et al.
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2013; Lanfear et al. 2014). Hence, plant-plant competition may have an effect on the
genetics of virus population. Indirect costs of virus infection may also involve third-
party parasites. For instance, indirect costs of ZYMV infection in populations
consisting on mixtures of resistant and nonresistant squash genotypes were derived
from the fact that susceptible plants, upon infection, were less competitive than
resistant ones. However, this indirect cost was softened because ZYMV-infected
plants became less attractive to vectors of pathogenic bacteria, so that plants resistant
to viruses had greater burden of bacterial diseases than ZYMV susceptible plants
(Sasu et al. 2009). Thus, the effect of virus infection on plant-plant interactions is not
necessarily negative. In this sense, it has been shown that plant virus infection may
reduce plant attractiveness to herbivores (Gibbs 1980; van Molken et al. 2012),
which represents a competitive advantage against uninfected individuals of the same
host species as well as against other coexisting species. Other viral infections have
been shown to confer resistance to drought (Xu et al. 2008), which could be also
interpreted as a benefit for infected individuals in plant communities. To our
knowledge, information on how the properties conferred to the host affect the
genetic structure of the virus are not available.

In summary, these observations indicate that plant-plant interactions may have a
great impact on host population dynamics. Evidence of equivalent effects on the
evolution of virus populations are only indirect, and whether this translates into
changes of the genetic composition of the virus population is yet to be addressed.

5 Future Perspective

Plant virologists have benefited from remarkable advances in the number, sophisti-
cation, and quality of the methods for isolation of virus nucleic acids and for
determining their nucleotide sequences and of bioinformatics tools for the genetic
characterization of virus populations. The information obtained with these
approaches, reviewed in this chapter, has significantly increased knowledge on the
mechanisms and determinants of plant virus evolution at every level of population
organization. Still, various aspects of the molecular and deterministic basis of
changes in plant virus population structure, and the consequences for disease
dynamics, remain poorly understood. We think that future studies would pay special
attention to aspects that include, but are not restricted to:

– Studies on the genetic diversity of plant virus populations within a plant. Present
studies have shown that it is structured according to the tissue and organ.
However, current methodologies would allow questions to be studied such as:
is the genetic diversity of virus populations structured at the cell level within a
given tissue? Single-cell sequencing has been suggested as a possible way to
address this question in other host-virus interactions (Rato et al. 2016), and it
could be equally applicable to plant viruses. These analyses may be particularly
interesting in the case of multipartite plant viruses. It has been recently shown

254 I. Pagán and F. García-Arenal



that, during within-host infection, some genomic components accumulate at
higher frequency than others (Sicard et al. 2013), but is this a general phenom-
enon among plant viruses? If so, infection of susceptible cells by at least one copy
of each segment would require the entry of a number of viral particles well above
the estimated MOI (see Sect. 2.3). Thus, is it necessary that every genomic
segment is present in every infected cell? (Sicard et al. 2016). If the answer is
no, then the minimum unit at which virus genetic diversity within a plant is
generated could be different for mono- and multipartite viruses.

– Analyses of the factors that shape the genetic diversity of plant virus populations.
These are currently derived mostly from crop-virus interactions; analyses in hosts
growing in wild ecosystems are scant. Analyses in wild ecosystems should
consider exploring: (1) under which conditions do plants and viruses coevolve,
and what are the consequences of plant-virus coevolution for the genetic compo-
sition of both plant and virus populations; (2) if epidemiological changes associ-
ated with biodiversity loss that determine the relationship between diversity and
disease risk affect the genetic diversity of virus populations and how; (3) if
estimates of the evolutionary rates for crop viruses can be extrapolated to wild
ecosystems, as factors associated with virus evolutionary rates such as biodiver-
sity, host population size, or virus prevalence (Burdon and Thrall 2008; Scholle
et al. 2013) may broadly differ between wild ecosystems and agroecosystems
(Malmstrom and Alexander 2016); and (4) if, as suggested by some studies
(Rodelo-Urrego et al. 2015; Lima et al. 2017), the relative importance of mutation
and recombination in generating genetic diversity of virus populations differs
between viruses infecting wild and cultivated hosts. Answering these questions
would contribute to understand the genetic plasticity of virus populations in the
wide variety of environments in which they are present.

– Finally, technological improvements will allow better investigating the true
diversity of plant virus communities. In this sense, recently developed procedures
for fast and accurate sequencing of whole genomes (Wanunu 2012; Wang et al.
2017) would contribute to reduce, at least in part, the “environmental noise”
associated with the virome assembly based on partial sequences. This would also
help to better characterize the number of virus-virus interactions and identify the
most relevant ones, in both wild and anthropic habitats. Obviously, the full
description of plant viromes would need to combine the application of these
technological advances with the biological characterization of the virus species
identified in these ecosystems. Also, understanding plant-virus interactions at the
community level, where viruses will be able to infect a variety of hosts, and hosts
will be exposed/infected by a variety of viruses, would require utilizing theoret-
ical models and bioinformatic tools designed to analyze mutualistic infection
networks. Network models open the possibility of understanding how plant-virus
interactions evolve at scales other than the single individual/population (Nuismer
et al. 2013) and may allow exploration of the factors that shape virus and plant
communities (Malmstrom and Alexander 2016).
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We believe that the improvement of sequencing and in silico analysis of genomic
data will continue in the near future, and this will further allow these questions to be
addressed. This will be a most stimulating challenge for the next few years and
will much contribute to understand the evolution and genomics of plant virus
populations.

Acknowledgment IP was supported by grant (BIO2016-79165-R) and FGA was supported by
grant (BFU2015-60418-R), both funded by Plan Nacional I + D + I, MINECO, Spain.

References

Acosta-Leal R, Duffy S, Xiong Z, Hammond RW, Elena SF. Advances in plant virus evolution:
translating evolutionary insights into better disease management. Phytopathology.
2011;101:1136–48.

Agnew P, Koella JC, Michalakis Y. Host life-history responses to parasitism. Microbes Infect.
2000;2:891–6.

Alí A, Roossinck MJ. Genetic bottlenecks during systemic movement of Cucumber mosaic virus
vary in different host plants. Virology. 2010;404:279–83.

Almeida RPP, Bennett GM, Anhalt MD, Tsai C-W, O’Grady P. Spread of an introduced vector-
borne banana virus in Hawaii. Mol Ecol. 2009;18:136–46.

de Assis Filho F, Sherwood J. Evaluation of seed transmission of turnip yellow mosaic virus and
tobacco mosaic virus in Arabidopsis thaliana. Phytopathology. 2000;90:1233–8.

Bedhomme S, Agnew P, Vital Y, Sidobre C, Michalakis Y. Prevalence-dependent costs of parasite
virulence. PLoS Biol. 2005;2:e262.

Bergua M, Zwart MP, El-Mohtar C, Shilts T, Elena SF, Folimonova SY. A viral protein mediates
superinfection exclusion at the whole-organism level but is not required for exclusion at the
cellular level. J Virol. 2014;88:11327–38.

Berzal-Herranz A, de la Cruz A, Tenllado F, Díaz-Ruíz JR, López L, Sanz AI, Vaquero C, Serra
MT, García-Luque I. The Capsicum L3 gene-mediated resistance against the tobamoviruses is
elicited by the coat protein. Virology. 1995;209:498–505.

Blawid R, Silva JMF, Nagata T. Discovering and sequencing new plant viral genomes by next-
generation sequencing: description of a practical pipeline. Ann Appl Biol. 2017;170:301–14.

Blok J, Mackenzie A, Guy P, Gibbs AJ. Nucleotide sequence comparisons of turnip yellow mosaic
isolates from Australia and Europe. Arch Virol. 1987;97:283–95.

Borer ET, Adams VT, Engler GA, Adams AL, Schumann CB, Seabloom EW. Aphid fecundity and
grassland invasion: invader life history is the key. Ecol Appl. 2009;19:1187–96.

Borer ET, Seabloom EW, Mitchell CE, Power AG. Local context drives infection of grasses by
vector-borne generalist viruses. Ecol Lett. 2010;13:810–8.

Bujarski J. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and
research perspectives. Front Plant Sci. 2013;4:68.

Burdon JJ, Chilvers GA. Host density as a factor in plant-disease ecology. Annu Rev Phytopathol.
1982;20:143–66.

Burdon JJ, Thrall PH. Pathogen evolution across the agro-ecological interface: implications for
disease management. Evol Appl. 2008;1:57–65.

Carrasco P, de la Iglesia F, Elena SF. Distribution of fitness and virulence effects caused by single-
nucleotide substitutions in tobacco etch virus. J Virol. 2007;81:12979–84.

Chao L. Fitness of RNA virus decreased by Muller’s ratchet. Nature. 1990;348:454–5.
Chao L. Levels of selection, evolution of sex in RNA viruses, and the origin of life. J Theor Biol.

1991;153:229–46.

256 I. Pagán and F. García-Arenal



Chen S, Huang Q, Wu L, Qian Y. Identification and characterization of a maize-associated
mastrevirus in China by deep sequencing small RNA populations. Virol J. 2015;12:156.

Clarke DD. Tolerance of parasites and disease in plants and its significance in host-parasite
interactions. Adv Plant Pathol. 1986;5:161–98.

Coetzee B, Freeborough M-J, Maree HJ, Celton J-M, Rees DJG, Burger JT. Deep sequencing
analysis of viruses infecting grapevines: virome of a vineyard. Virology. 2010;400:157–63.

De Bruyn A, Villemot J, Lefeuvre P, Villar E, Hoareau M, Harimalala M, Abdoul-Karime AL,
Abdou-Chakour C, Reynaud B, Harkins GW, Varsani A, Martin DP, Lett JM. East African
cassava mosaic-like viruses from Africa to Indian Ocean islands: molecular diversity, evolu-
tionary history and geographical dissemination of a bipartite begomovirus. BMC Evol Biol.
2012;12:228.

Delwart EL. Viral metagenomics. Rev Med Virol. 2007;17:115–31.
Dietrich C, Maiss E. Fluorescent labelling reveals spatial separation of potyvirus populations in

mixed infected Nicotiana benthamiana plants. J Gen Virol. 2003;84:2871–6.
Divéki Z, Salánki K, Balázs E. Limited utility of blue fluorescent protein in monitoring plant virus

movement. Biochimie. 2002;84:997–1002.
Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C. Deep-sequencing of plant

viral small RNAs reveals effective and widespread targeting of viral genomes. Virology.
2009;392:203–14.

Donaire L, Burgyán J, García-Arenal F. RNA silencing may play a role in but is not the only
determinant of the multiplicity of infection. J Virol. 2016;90:553–61.

Drake JW, Holland JJ. Mutation rates among RNA viruses. Proc Natl Acad Sci U S
A. 1999;96:13910–3.

Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG. Measurably evolving
populations. Trends Ecol Evol. 2003;18:481–8.

Duffy S, Holmes EC. Phylogenetic evidence for rapid rates of molecular evolution in the single-
stranded DNA begomovirus tomato yellow leaf curl virus. J Virol. 2008;82:957–65.

Duffy S, Holmes EC. Validation of high rates of nucleotide substitution in geminiviruses: phylo-
genetic evidence from East African cassava mosaic viruses. J Gen Virol. 2009;90:1539–47.

Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and
determinants. Nat Rev Genet. 2008;9:267–76.

Dunham JP, Simmons HE, Holmes EC, Stephenson AG. Analysis of viral (zucchini yellow mosaic
virus) genetic diversity during systemic movement through a Cucurbita pepo vine. Virus Res.
2014;191:172–9.

Elena SF, Sanjuán R. On the adaptive value of high mutation rates in RNA viruses: separating
causes from consequences. J Virol. 2005;79:11555–8.

Elena SF, Fraile A, García-Arenal F. Evolution and emergence of plant viruses. Adv Virus Res.
2014;88:161–91.

Fabre F, Moury B, Johansen EI, Simon V, Jacquemond M, Senoussi R. Narrow bottlenecks affect
Pea seedborne mosaic virus populations during vertical seed transmission but not during leaf
colonization. PLoS Pathog. 2014;10:e1003833.

Fargette D, Pinel A, Rakotomalala M, Sangu E, Traoré O, Sérémé D, Sorho F, Issaka S, Hébrard E,
Séré Y, Kanyeka Z, Konaté G. Rice yellow mottle virus, an RNA plant virus, evolves as rapidly
as most RNA animal viruses. J Virol. 2008a;82:3584–9.

Fargette D, Pinel-Galzi A, Sérémé D, Lacombe S, Hébrard E, Traoré O, Konaté G. Diversification
of Rice yellow mottle virus and related viruses spans the history of agriculture from the Neolithic
to the present. PLoS Pathog. 2008b;4:e1000125.

Fawcett HS. The importance of investigations on the effects of known mixtures of microorganisms.
Phytopathology. 1931;2:545–50.

Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv
Virus Res. 2010;76:1–32.

Fraile A, Pagán I, Anastasio G, Sáez E, García-Arenal F. Rapid genetic diversification and high
fitness penalties associated with pathogenicity evolution in a plant virus. Mol Biol Evol.
2011;28:1425–37.

Population Genomics of Plant Viruses 257



Fraile A, Hily J-M, Pagán I, Pacios LF, García-Arenal F. Host resistance selects for traits unrelated
to resistance-breaking that affect fitness in a plant virus. Mol Biol Evol. 2014;31:928–39.

Fraile A, McLeish MJ, Pagán I, González-Jara P, Piñero P, García-Arenal F. Environmental
heterogeneity and the evolution of plant-virus interactions: viruses in wild pepper populations.
Virus Res. 2017;241:68–76.

Frank SA. Multiplicity of infection and the evolution of hybrid incompatibility in segmented
viruses. Heredity. 2001;87:522–9.

French R, Stenger DC. Evolution of wheat streak mosaic virus: dynamics of population growth
within plants may explain limited variation. Annu Rev Phytopathol. 2003;41:199–214.

Friess N, Maillet J. Influence of cucumber mosaic virus infection on the intraspecific competitive
ability and fitness of purslane (Portulaca oleracea). New Phytol. 1996;132:103–11.

Froissart R, Wilke CO, Montville R, Remold SK, Chao L, Turner PE. Co-infection weakens
selection against epistatic mutations in RNA viruses. Genetics. 2004;168:9–19.

Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y. Recombination every day:
abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol.
2005;3:e89.

Froissart R, Doumayrou J, Vuillaume F, Alizon S, Michalakis Y. The virulence-transmission trade-
off in vector-borne plant viruses: a review of (non-)existing studies. Philos Trans R Soc
B. 2010;365:1907–18.

García-Andrés S, Tomás DM, Sánchez-Campos S, Navas-Castillo J, Moriones E. Frequent occur-
rence of recombinants in mixed infections of tomato yellow leaf curl disease associated
begomoviruses. Virology. 2007;365:210–9.

García-Arenal F, Fraile A. Questions and concepts in plant virus evolution: a historical perspective.
In: Roossinck MJ, editor. Plant virus evolution. Berlin: Springer; 2008. p. 1–14.

García-Arenal F, Fraile A. Population dynamics and genetics of plant infection by viruses. In:
Caranta C, Aranda MA, Tepfer M, Lopez-Moya JJ, editors. Recent advances in plant virology.
Norfolk: Caister Academic Press; 2011. p. 263–81.

García-Arenal F, Fraile A. Trade-offs in host range evolution of plant viruses. Plant Pathol.
2013;62:S2–9.

García-Arenal F, McDonald BA. An analysis of the durability of resistance to plant viruses.
Phytopathology. 2003;93:941–52.

García-Arenal F, Fraile A, Malpica JM. Variability and genetic structure of plant virus populations.
Annu Rev Phytopathol. 2001;39:157–86.

Ghoshal B, Sanfaçon H. Symptom recovery in virus-infected plants: revisiting the role of RNA
silencing mechanisms. Virology. 2015;479–480:167–79.

Giampetruzzi A, Roumi V, Roberto R, Malossini U, Yoshikawa N, La Notte P, Terlizzi F, Credi R,
Saldarelli P. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived
small RNAs in Cv Pinot gris. Virus Res. 2012;163:262–8.

Gibbs AJ. A plant virus that partially protects its wild legume host against herbivores. Intervirology.
1980;13:42–7.

Gibbs AJ, Blok J, Coates DJ, Guy PL, Mackenzie A, Pigram N. Turnip yellow mosaic virus in an
endemic Australian alpine Cardamine. In: Barlow BA, editor. Flora and Fauna of Alpine
Australasia; ages and origins. Collingwood: CSIRO; 1986. p. 289–300.

Gibbs AJ, Gibbs MJ, Ohshima K, García-Arenal F. More plant virus evolution; past present and
future. In: Domingo E, Parrish CR, Holland JJ, editors. Origin and evolution of viruses. 2nd
ed. London: Academic Press; 2008a.

Gibbs AJ, Ohshima K, Phillips MJ, Gibbs MJ. The prehistory of potyviruses: their initial radiation
was during the dawn of agriculture. PLoS One. 2008b;3:e2523.

Gibbs AJ, Fargette D, García-Arenal F, Gibbs MJ. Time—the emerging dimension of plant virus
studies. J Gen Virol. 2010;91:13–22.

Gibbs AJ, Wood J, Garcia-Arenal F, Ohshima K, Armstrong JS. Tobamoviruses have probably
co-diverged with their eudicotyledonous hosts for at least 110 million years. Virus Evol. 2015;1:
vev019.

258 I. Pagán and F. García-Arenal



Gibbs AJ, Ohshima K, Yasaka R, Mohammadi M, Gibbs MJ, Jones RAC. The phylogenetics of the
global population of potato virus Y and its necrogenic recombinants. Virus Evol. 2017;3:
vex002.

Gómez P, Sempere RN, Elena SF, Aranda MA. Mixed infections of Pepino mosaic virus strains
modulate the evolutionary dynamics of this emergent virus. J Virol. 2009;83:12378–87.

Gómez P, Sempere RN, Aranda MA, Elena SF. Phylodynamics of Pepino mosaic virus. Eur J Plant
Pathol. 2012;134:445–9.

González-Jara P, Fraile A, Canto T, García-Arenal F. The multiplicity of infection of a plant virus
varies during colonization of its eukaryotic host. J Virol. 2009;83:7487–94.

González-Jara P, Fraile A, Canto T, García-Arenal F. The multiplicity of infection of a plant virus
varies during colonization of its eukaryotic host. Author’s correction. J Virol. 2013;87:2374.

Gutiérrez S, Yvon M, Thébaud G, Monsion B, Michalakis Y, Blanc S. Dynamics of the multiplicity
of cellular infection in a plant virus. PLoS Pathog. 2010;6:e1001113.

Gutiérrez S, Michalakis Y, Blanc S. Virus population bottlenecks during within-host progression
and host-to-host transmission. Curr Op Virol. 2012a;2:546–55.

Gutiérrez S, Yvon M, Pirolles E, Garzo E, Fereres A, Michalakis Y, Blanc S. Circulating virus load
determines the size of bottlenecks in viral populations progressing within a host. PLoS Pathog.
2012b;8:e1003009.

Gutiérrez S, Pirolles E, Yvon M, Baecker V, Michalakis Y, Blanc S. The multiplicity of cellular
infection changes depending on the route of cell infection in a plant virus. J Virol.
2015;89:9665–75.

Guy P, Gibbs AJ. A tymovirus of Cardamine sp. from alpine Australia. Australas Plant Pathol.
1981;10:12–3.

Hackett J, Muthukumar V, Wiley GB, Palmer MW, Roe BA, Melcher U. Viruses in Oklahoma
Euphorbia marginata. Proc Oklahoma Acad Sci. 2009;89:49–54.

Hadidi A, Flores R, Candresse T, Barba M. Next-generation sequencing and genome editing in
plant virology. Front Microbiol. 2016;7:1325.

Hajimorad MR, Wen R-H, Eggenberger AL, Hill JH, Saghai Maroof MA. Experimental adaptation
of an RNA virus mimics natural evolution. J Virol. 2011;85:2557–64.

Hall JS, French R, Hein GL, Morris TJ, Stenger DC. Three distinct mechanisms facilitate genetic
isolation of sympatric wheat streak mosaic virus lineages. Virology. 2001;282:230–6.

Hall GS, Peters JS, Little DP, Power AG. Plant community diversity influences vector behavior and
Barley yellow dwarf virus population structure. Plant Pathol. 2010;59:152–1158.

Hamada H, Takeuchi S, Kiba A, Tsuda S, Hikichi Y, Okuno T. Amino acid changes in Pepper mild
mottle virus coat protein that affect L3 gene-mediated resistance in pepper. J Gen Plant Pathol.
2002;68:155–62.

Hamada H, Tomita R, Iwadate Y, Kobayashi K, Minemura I, Takeuchi S, Hikichi Y, Suzuki
K. Cooperative effect of two amino acid mutations in the coat protein of Pepper mild mottle
virus overcomes L3-mediated resistance in Capsicum plants. Virus Genes. 2007;34:205–14.

Harkins GW, Delport W, Duffy S, Wood N, Monjane AL, Owor BE, Donaldson L, Saumtally S,
Triton G, Briddon RW, Shepherd DN, Rybicki EP, Martin DP, Varsani A. Experimental
evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virol
J. 2009;6:104.

Harrison BD. The infectivity of extracts made from leaves at intervals after inoculation with viruses.
J Gen Microbiol. 1956;15:210–20.

Hartl DL, Clark AG. Principles of population genetics. 4th ed. Sunderland: Sinauer; 2007.
Hillung J, Cuevas JM, Elena SF. Evaluating the within-host fitness effects of mutations fixed during

virus adaptation to different ecotypes of a new host. Philos Trans R Soc B. 2015;370:20140292.
Hochberg ME. Population dynamic consequences of the interplay between parasitism and intra-

specific competition for host-parasite systems. Oikos. 1991;61:297–306.
Holmes EC. The evolution and emergence of RNA viruses. Oxford: Oxford University Press; 2009.
Hughes AL. Small effective population sizes and rare nonsynonymous variants in potyviruses.

Virology. 2009;393:127–34.

Population Genomics of Plant Viruses 259



Hull R. Plant virology. 5th ed. San Diego: Academic Press; 2014.
Hull R, Plaski A. Electron microscopy on the behaviour of two strains of Alfalfa mosaic virus in

mixed infections. Virology. 1970;42:773–6.
Hurwitz BL, Sullivan MB. The Pacific Ocean virome (POV): a marine viral metagenomic dataset

and associated protein clusters for quantitative viral ecology. PLoS One. 2013;8:e57355.
Ishibashi K, Kezuka Y, Kobayashi C, Kato M, Inoue T, Nonaka T, Ishikawa M, Matsumura H,

Katoh E. Structural basis for the recognition-evasion arms race between Tomato mosaic virus
and the resistance gene Tm-1. Proc Natl Acad Sci U S A. 2014;111:3486–95.

Jenkins GM, Rambaut A, Pybus OG, Holmes EC. Rates of molecular evolution in RNA viruses: a
quantitative phylogenetic analysis. J Mol Evol. 2002;54:156–65.

Johnson PT, Ostfeld RS, Keesing F. Frontiers in research on biodiversity and disease. Ecol Lett.
2015;18:1119–33.

Jones RAC. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving
emergence, effects of changing world conditions, and prospects for control. Virus Res.
2009;141:113–30.

Jridi C, Martin JF, Marie-Jeanne V, Labonne G, Blanc S. Distinct viral populations differentiate and
evolve independently in a single perennial host plant. J Virol. 2006;80:2349–57.

Kay KM, Whittall JB, Hodges SA. A survey of nuclear ribosomal internal transcribed spacer
substitution rates across angiosperms: an approximate molecular clock with life history effects.
BMC Evol Biol. 2006;6:36.

Keesing F, Holt RD, Ostfeld RS. Effects of species diversity on disease risk. Ecol Lett.
2006;9:485–98.

Keesing F, Belden LK, Daszk P, Dobson A, Harwell CD, Holt RD, Hudson P, Jolles A, Jones KE,
Mitchell CE, Myers SS, Bogich T, Ostfeld RS. Impacts of biodiversity on the emergence and
transmission of infectious diseases. Nature. 2010;468:647–52.

Kelly SE. Viral pathogens and the advantage of sex in the perennial grass Anthoxanthum odoratum:
a review. Phil Trans R Soc Lond B. 1994;346:295–302.

Kinoti WM, Constable FE, Nancarrow N, Plummer KM, Rodoni B. Analysis of intra-host genetic
diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequenc-
ing. PLoS One. 2017;12:e0179284.

Kreuze JF, Pérez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R. Complete viral genome
sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method
for diagnosis, discovery and sequencing of viruses. Virology. 2009;388:1–7.

Lanfear R, Kokko H, Eyre-Walker A. Population size and the rate of evolution. Trends Ecol Evol.
2014;29:33–41.

Lartey RT, Voss TC, Melcher U. Tobamovirus evolution: gene overlaps, recombination, and
taxonomic implications. Mol Biol Evol. 1996;13:1327–38.

Lefeuvre P, Harkins GW, Lett J-M, Briddon RW, Chase MW, Moury B, Martin DP. Evolutionary
time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome.
PLoS One. 2011;6:e19193.

Levontin RC. The units of infection. Annu Rev Ecol Syst. 1970;1:1–18.
Li H, Roossinck MJ. Genetic bottlenecks reduce population variation in an experimental RNA virus

population. J Virol. 2004;78:10582–7.
Lima ATM, Silva JCF, Silva FN, Castillo-Urquiza GP, Silva FF, Seah YM, Mizubuti ESG,

Duffy S, Murilo Zerbini F. The diversification of begomovirus populations is predominantly
driven by mutational dynamics. Virus Evol. 2017;3:vex005.

Lipkin WI. The changing face of pathogen discovery and surveillance. Nat Rev Microbiol.
2013;11:133–41.

Little TJ, Shuker DM, Colegrave N, Day N, Graham AL. The coevolution of virulence: tolerance in
perspective. PLoS Pathog. 2010;6:e1001006.

Lively CM. The ecology of virulence. Ecol Lett. 2006;9:1089–95.
Malmstrom CM, Alexander HM. Effects of crop viruses on wild plants. Curr Op Virol.

2016;19:30–6.

260 I. Pagán and F. García-Arenal



Malmstrom CM, Hughes CC, Newton LA, Stoner CJ. Virus infection in remnant native bunch-
grasses from invaded California grasslands. New Phytol. 2005a;168:217–30.

Malmstrom CM, McCullough AJ, Johnson HA, Newton LA, Borer ET. Invasive annual grasses
indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia.
2005b;145:153–64.

Malmstrom CM, Shu R, Linton EW, Newton LA, CookMA. Barley yellow dwarf viruses (BYDVs)
preserved in herbarium specimens illuminate historical disease ecology of invasive and native
grasses. J Ecol. 2007;95:1153–66.

Malpica JM, Fraile A, Moreno I, Obies CI, Drake JW, García-Arenal F. The rate and character of
spontaneous mutation in an RNA virus. Genetics. 2002;162:1505–11.

Malpica JM, Sacristán S, Fraile A, García-Arenal F. Association and host selectivity in multi-host
pathogens. PLoS One. 2006;1:e41.

Martín S, Elena SF. Application of game theory to the interaction between plant viruses during
mixed infections. J Gen Virol. 2009;90:2815–20.

Maskell LC, Raybould AF, Cooper JI, Edwards ML, Gray AJ. Effects of turnip mosaic virus and
turnip yellow mosaic virus on the survival, growth and reproduction of wild cabbage (Brassica
oleracea). Ann Appl Biol. 1999;135:401–7.

Massart S, Olmos A, Jijakli H, Candresse T. Current impact and future directions of high
throughput sequencing in plant virus diagnostics. Virus Res. 2014;188:90–6.

Massart S, Candresse T, Gil J, Lacomme C, Predajna L, Ravnikar M, Reynard JS, Rumbou A,
Saldarelli P, Škorić D, Vainio EJ, Valkonen JP, Vanderschuren H, Varveri C, Wetzel T. A
framework for the evaluation of biosecurity, commercial, regulatory, and scientific impacts of
plant viruses and viroids identified by NGS technologies. Front Microbiol. 2017;8:45.

McKinney HH. Evidence of virus mutation in the common mosaic of tobacco. J Agric Res.
1935;51:951–81.

McLeish MJ, Sacristán S, Fraille A, García-Arenal F. Scale dependencies and generalism in host
use shape virus prevalence. Proc. R. Soc. B, 2017;284: 20172066.

Miyashita S, Kishino H. Estimation of the size of genetic bottlenecks in cell-to-cell movement of
soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection
of variations in trans-acting genes or elements. J Virol. 2010;84:1828–37.

van Molken T, de Caluwe H, Hordijk CA, Leon-Reyes A, Snoeren TA, van Dam NM, Stuefer
JF. Virus infection decreases the attractiveness of white clover plants for a non-vectoring
herbivore. Oecologia. 2012;170:433–44.

Monsion B, Froissart R, Michalakis Y, Blanc S. Large bottleneck size in Cauliflower mosaic virus
populations during host plant colonization. PLoS Pathog. 2008;4:e1000174.

Moreno A, De Blas C, Biurrun R, Nebreda M, Palacios I, Duque M, Fereres A. The incidence and
distribution of viruses infecting lettuce, cultivated Brassica and associated natural vegetation in
Spain. Ann Appl Biol. 2004;144:339–46.

Morse SS, Schluederberg A. Emerging viruses: the evolution of viruses and viral diseases. J Infect
Dis. 1990;162:1–7.

Moury B, Janzac B, Ruellan Y, Simon V, Ben Khalifa M, Fakhfakh H, Fabre F, Palloix
A. Interaction patterns between Potato virus Y and eIF4E-mediated recessive resistance in the
Solanaceae. J Virol. 2014;88:9799–807.

Moury B, Fabre F, Hébrard E, Froissart R. Determinants of host species range in plant viruses. J
Gen Virol. 2017;98:862–73.

Moya A, Rodríguez-Cerezo E, García-Arenal F. Genetic structure of natural populations of the
plant RNA virus tobacco mild green mosaic virus. Mol Biol Evol. 1993;10:449–56.

Moya A, Holmes EC, González-Candelas F. The population genetics and evolutionary epidemiol-
ogy of RNA viruses. Annu Rev Microbiol. 2004;2:279–88.

Nee S, Maynard-Smith J. The evolutionary biology of molecular parasites. Parasitology. 1990;100:
S5–S18.

Ng TFF, Duffy S, Polston JE, Bixby E, Vallad GE, Breitbart M. Exploring the diversity of plant
DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS One.
2011;6:e19050.

Population Genomics of Plant Viruses 261



Nieberding CM, Olivieri I. Parasites: proxies for host genealogy and ecology? Trends Ecol Evol.
2007;22:156–65.

Nsa IY, Kareem KT. Additive interactions of unrelated viruses in mixed infections of cowpea
(Vigna unguiculata L. Walp). Front Plant Sci. 2015;6:812.

Nuismer SL, Jordano P, Bascompte J. Coevolution and the architecture of mutualistic networks.
Evolution. 2013;67:338–54.

Ostfeld RS, Keesing F. Effects of host diversity on infectious disease. Annu Rev Ecol Evol Syst.
2012;43:157–82.

Ostfeld RS, Keesing F. Is biodiversity bad for your health? Ecosphere. 2017;8:e01676.
Pagán I, Holmes EC. Long-term evolution of the Luteoviridae: time scale and mode of virus

speciation. J Virol. 2010;84:6177–87.
Pagán I, Alonso-Blanco C, García-Arenal F. The relationship of within-host multiplication and

virulence in a plant-virus system. PLoS One. 2007;2:e786.
Pagán I, Alonso-Blanco C, García-Arenal F. Host responses in life-history traits and tolerance to

virus infection in Arabidopsis thaliana. PLoS Pathog. 2008;4:e1000124.
Pagán I, Alonso-Blanco C, García-Arenal F. Differential tolerance to direct and indirect density-

dependent costs of viral infection in Arabidopsis thaliana. PLoS Pathog. 2009;5:e1000531.
Pagán I, Firth C, Holmes EC. Phylogenetic analysis reveals rapid evolutionary dynamics in the

plant RNA virus genus Tobamovirus. J Mol Evol. 2010a;71:298–307.
Pagán I, Fraile A, Fernández-Fuello E, Montes N, Alonso-Blanco C, García-Arenal F. Arabidopsis

thaliana as a model for plant-virus co-evolution. Philos Trans R Soc B. 2010b;365:1983–95.
Pagán I, González-Jara P, Moreno-Letelier A, Rodelo-Urrego M, Fraile A, Piñero D, García-Arenal

F. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus
system. PLoS Pathog. 2012;8:e1002796.

Pagán I, Montes N, Milgroom MG, García-Arenal F. Vertical transmission selects for reduced
virulence in a plant virus and for increased resistance in the host. PLoS Pathog. 2014;10:
e1004293.

Pagán I, Fraile A, García-Arenal F. Evolution of the interactions of viruses with their plant hosts. In:
Weaver SC, Denison M, Roossink MJ, Vignuzzi M, editors. Virus evolution: current research
and future directions. Norfolk: Caister Academic Press; 2016. p. 127–54.

Pinel-Galzi AS, Rakotomalala M, Sangu E, Sorho F, Kanyeka Z, Traoré O, Sérémé D, Poulicard N,
Rabenantoandro Y, Sere Y, Konaté G, Ghesquiere A, Hébrard E, Fargette D. Theme and
variations in the evolutionary pathways to virulence of an RNA plant virus species. PLoS
Pathog. 2007;3:e180.

Piry S, Wipf-Scheibel C, Martin J-F, Galan M, Berthier K. High throughput amplicon sequencing to
assess within- and between-host genetic diversity in plant viruses. BioRXiv. 2017. https://doi.
org/10.1101/168773.

Poulicard N, Pinel-Galzi A, Fargette D, Hébrard E. Alternative mutational pathways, outside the
VPg, of rice yellow mottle virus to overcome eIF(iso)4G-mediated rice resistance under strong
genetic constraints. J Gen Virol. 2014;95:219–24.

Power AG, Mitchell CE. Pathogen spillover in disease epidemics. Am Nat. 2004;164:S79–89.
Power AG, Borer ET, Hosseini P, Mitchell CE, Seabloom EW. The community ecology of barley/

cereal yellow dwarf viruses in Western US grasslands. Virus Res. 2011;159:95–100.
Prendeville HR, Ye XH, Morris TJ, Pilson D. Virus infections in wild plant populations are both

frequent and often unapparent. Am J Bot. 2012;99:1033–42.
Prendeville HR, Tenhumberg B, Pilson D. Effects of virus on plant fecundity and population

dynamics. New Phytol. 2014;202:1346–56.
Pressing J, Reanney DC. Divided genomes and intrinsic noise. J Mol Evol. 1984;20:135–46.
Quenoiulle J, Vassilakos N, Moury B. Potato virus Y: a major crop pathogen that has provided

major insights into the evolution of viral pathogenicity. Mol Plant Pathol. 2013;14:439–52.
Randolph SE, Dobson DM. Pangloss revisited: a critique of the dilution effect and the biodiversity-

buffers-disease paradigm. Parasitology. 2012;139:847–63.
Rato S, Golumbeanu M, Telenti A, Ciuffi A. Exploring viral infection using single-cell sequencing.

Virus Res. 2016;239:55–68.

262 I. Pagán and F. García-Arenal

https://doi.org/10.1101/168773
https://doi.org/10.1101/168773


Rentería-Canett I, Xoconostle-Cázares B, Ruiz-Medrano R, Rivera-Bustamante RF. Geminivirus
mixed infection on pepper plants: synergistic interaction between PHYVV and PepGMV. Virol
J. 2011;8:104.

RochowWF. The role of mixed infections in the transmission of plant viruses by aphids. Annu Rev
Phytopatol. 1972;10:101–24.

Rodelo-Urrego M, Pagán I, González-Jara P, Betancourt M, Moreno-Letelier A, Ayllón MA,
Fraile A, Piñero D, García-Arenal F. Landscape heterogeneity shapes host-parasite interactions
and results in apparent plant-virus codivergence. Mol Ecol. 2013;22:2325–40.

Rodelo-Urrego M, García-Arenal F, Pagán I. The effect of ecosystem biodiversity on virus genetic
diversity depends on virus species: a study of chiltepin-infecting begomoviruses in Mexico.
Virus Evol. 2015;1:vev004.

Rodríguez-Nevado C, Montes N, Pagán I. Ecological factors affecting the infection risk and
population genetic diversity of a novel potyvirus in its native wild ecosystem. Front Plant Sci.
2017;8:1958.

Roossinck MJ. Mechanisms of plant virus evolution. Annu Rev Phytopathol. 1997;35:191–209.
Roossinck MJ. Symbiosis versus competition in plant virus evolution. Nat Rev Microbiol.

2005;3:917–24.
Roossinck MJ. The big unknown: plant virus biodiversity. Curr Op Virol. 2011;1:63–7.
Roossinck MJ. Plant virus metagenomics: biodiversity and ecology. Annu Rev Genet.

2012;46:357–67.
Roossinck MJ. Deep sequencing for discovery and evolutionary analysis of plant viruses. Virus

Res. 2017;239:82–6.
Roossinck MJ, Saha P, Wiley GB, Quan J, White JD, Lai H, Chavarría F, Shen G, Roe

BA. Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Mol
Ecol. 2010;19:81–8.

Roossinck MJ, Martin DP, Roumagnac P. Plant virus metagenomics: advances in virus discovery.
Phytopatology. 2015;105:716–27.

Sacristán S, García-Arenal F. The evolution of virulence and pathogenicity in plant pathogen
populations. Mol Plant Pathol. 2008;9:369–84.

Sacristán S, Malpica JM, Fraile A, García-Arenal F. Estimation of population bottlenecks during
systemic movement of tobacco mosaic virus in tobacco plants. J Virol. 2003;77:9906–11.

Salvaudon L, De Moraes CM, Mescher MC. Outcomes of co-infection by two potyviruses:
implications for the evolution of manipulative strategies. Proc R Soc Lon
B. 2013;280:20122959.

Sanjuán R, Agudelo-Romero P, Elena SF. Upper-limit mutation rate estimation for a plant RNA
virus. Biol Lett. 2009;5:394–6.

Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol.
2010;84:9733–48.

Sasu MA, Ferrari MJ, Du D, Winsor JA, Stephenson AG. Indirect costs of a nontarget pathogen
mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita. 2009;45:19067–71.

Scholle SO, Ypma RJ, Lloyd AL, Koelle K. Viral substitution rate variation can Arise from the
interplay between within-host and epidemiological dynamics. Am Nat. 2013;182:494–513.

Shuckla A, Pagán I, García-Arenal F. Effective tolerance based on resource reallocation is a virus-
specific defence in Arabidopsis thaliana. Mol Plant Pathol. Published on line 30 Jan 2018.

Sicard A, Yvon M, Timchenko T, Gronenborn B, Michalakis Y, Gutierrez S, Blanc S. Gene copy
number is differentially regulated in a multipartite virus. Nat Commun. 2013;4:2248.

Sicard A, Michalakis Y, Gutierrez S, Blanc S. The strange lifestyle of multipartite viruses. PLoS
Pathog. 2016;12:e1005819.

Simmons HE, Holmes EC, Stephenson AG. Rapid evolutionary dynamics of zucchini yellow
mosaic virus. J Gen Virol. 2008;89:1081–5.

Simmons HE, Dunham JP, Stack JC, Dickins BJA, Pagán I, Holmes EC, Stephenson AG. Deep
sequencing reveals persistence of intra- and inter-host genetic diversity in natural and green-
house populations of zucchini yellow mosaic virus. J Gen Virol. 2012;93:1831–40.

Population Genomics of Plant Viruses 263



Simon AE, Bujarski JJ. RNA-RNA recombination and evolution in virus infected plants. Annu Rev
Phytopathol. 1994;32:337–62.

Stenger DC, Seifers DL, French R. Patterns of polymorphism in wheat streak mosaic virus:
sequence space explored by a clade of closely related viral genotypes rivals that between the
most divergent strains. Virology. 2002;302:58–70.

Stobbe AH, Roossinck MJ. Plant virus metagenomics: what we know and why we need to know
more. Front Plant Sci. 2014;5:150.

Stobbe AH, Melcherl U, Palmer MW, Roossinck MJ, Shen G. Co-divergence and host-switching in
the evolution of tobamoviruses. J Gen Virol. 2012;93:408–18.

Stukenbrock EH, McDonald BA. The origin of plant pathogens in agro- ecosystems. Annu Rev
Phytopathol. 2008;46:75–100.

Syller J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol
Plant Pathol. 2012;13:204–16.

Szathmáry E. Viral sex, levels of selection, and the origin of life. J Theor Biol. 1992;159:99–109.
Taiwo MA, Kareem KT, Nsa IY, Hughes JD’A. Cowpea viruses: effect of single and mixed

infections on symptomatology and virus concentration. Virol J. 2007;4:95.
Takahashi T, Sugawara T, Yamatsuta T, Isogai M, Natsuaki T, Yoshikawa N. Analysis of the

spatial distribution or identical and two distinct virus populations differently labelled with cyan
and yellow fluorescent proteins in coinfected plants. Phytopathology. 2007;97:1200–6.

Takeshita M, Shigemune N, Kikuhara K, Takanami Y. Spatial analysis for exclusive interactions
between subgroups I and II of cucumber mosaic virus in cowpea. Virology. 2004;328:45–51.

Tepfer M. Risk assessment of virus-resistant transgenic plants. Annu Rev Phytopathol.
2002;40:467–91.

Thébaud G, Michalakis Y. Comment on “Large bottleneck size in Cauliflower mosaic virus
populations during host plant colonization” by Monsion et al. (2008). PLoS Pathog. 2016;12:
e1005512.

Thompson AD. Interactions between plant viruses. I Appearance of new strains after mixed
infection with Potato virus X strains. Virology. 1961;13:507–14.

Thompson JN. The geographic mosaic of coevolution. Chicago: University of Chicago Press; 2005.
Thresh JM. Cropping practices and virus spread. Annu Rev Phytopathol. 1982;20:193–218.
Tomita R, Murai J, Miura Y, Ishikara H, Liu S, Kubotera Y, Honda A, Hatta R, Kuroda T,

Hamada H, Sakamoto M, Munemura I, Nunomura O, Ishikawa K, Genda Y, Kawasaki S,
Suzuki K, Meksem K, Kobayashi K. Fine mapping and DNA fiber FISH analysis locates the
tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster
embedded in highly repetitive sequences. Theor Appl Genet. 2008;117:1107–18.

Tromas N, Elena SF. The rate and spectrum of spontaneous mutations in a plant RNA virus.
Genetics. 2010;185:983–9.

Tromas N, Zwart MP, Lafforgue G, Elena SF. Within-host spatiotemporal dynamics of plant virus
infection at the cellular level. PLoS Genet. 2014a;10:e1004186.

Tromas N, Zwart MP, Poulain M, Elena SF. Estimation of the in vivo recombination rate for a plant
RNA virus. J Gen Virol. 2014b;95:724–32.

Trovão NS, Baele G, Vrancken B, Bielejec F, Suchard MA, Fargette D, Lemey P. Host ecology
determines the dispersal patterns of a plant virus. Virus Evol. 2015;1:vev016.

Tsuda S, Kirita M, Watanabe Y. Characterization of a pepper mild mottle tobamovirus strain
capable of overcoming the L3 gene-mediated resistance, distinct from the resistance-breaking
Italian isolate. Mol Plant Microbe Interact. 1998;11:327–31.

Tugume AK, Mukasa SB, Valkonen JPT. Mixed infections of four viruses, the incidence and
phylogenetic relationships of Sweet potato chlorotic fleck virus (Betaflexiviridae) isolates in
wild species and sweetpotatoes in Uganda and evidence of distinct isolates in East Africa. PLoS
One. 2016;11:e0167769.

van der Walt E, Martin DP, Varsani A, Polston JE, Rybicki EP. Experimental observations of rapid
maize streak virus evolution reveal a strand-specific nucleotide substitution bias. Virol
J. 2008;5:104.

264 I. Pagán and F. García-Arenal



Wang J, Moore NE, Deng Y-M, Eccles DA, Hall RJ. MinION nanopore sequencing of an influenza
genome. Front Microbiol. 2017;6:766.

Wanunu M. Nanopores: a journey towards DNA sequencing. Phys Life Rev. 2012;9:125–58.
Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical

implications of the co-evolution of pathogens and their hosts. Nat Genet. 2002;32:569–77.
Worobey M, Holmes EC. Evolutionary aspects of recombination in RNA viruses. J Gen Virol.

1999;80:2535–43.
Wu X, Xu Z, Shaw JG. Uncoating of tobacco mosaic virus RNA in protoplasts. Virology.

1994;200:256–62.
Wu B, Melcher U, Guo X, Wang X, Fan L, Zhou G. Assessment of codivergence of mastreviruses

with their plant hosts. BMC Evol Biol. 2008;8:335.
Wu B, Blanchard-Letort A, Liu Y, Zhou G, Wang X, Elena SF. Dynamics of molecular evolution

and phylogeography of Barley yellow dwarf virus-PAV. PLoS One. 2011;6:e16896.
Wu Q, Ding SW, Zhang Y, Zhu S. Identification of viruses and viroids by next-generation

sequencing and homology-dependent and homology-independent algorithms. Annu Rev
Phytopathol. 2015;53:425–44.

Wylie SJ, Li H, Dixon KW, Richards H, Jones MGK. Exotic and indigenous viruses infect wild
populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia.
Virus Res. 2013;171:22–32.

Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ. Virus infection improves
drought tolerance. New Phytol. 2008;180:911–21.

Yasaka R, Nguyen HD, Ho SYW, Duchêne S, Korkmaz S, Nikolaos K, Takahashi H, Gibbs AJ,
Ohshima K. The temporal evolution and global spread of Cauliflower mosaic virus, a plant
pararetrovirus. PLoS One. 2014;9:e85641.

Zwart MP, Willemsen A, Darós JA, Elena SF. Experimental evolution of pseudogenization and
gene loss in a plant RNA virus. Mol Biol Evol. 2014;31:121–34.

Population Genomics of Plant Viruses 265



Population Genomics of Human Viruses

Fernando González-Candelas, Juan Ángel Patiño-Galindo,
and Carlos Valiente-Mullor

Abstract Viruses, and a few RNA viruses in particular, represent one of the greatest
threats for human health. High mutation rates, large population sizes, and short
generation times contribute to their typically fast evolutionary rates. However,
many additional processes operate on their genomes, often in opposite directions,
driving their evolution and allowing them to adapt to diverse host populations and
antiviral drugs. Until recently, the high levels of genetic variation of most viruses
have been explored only at a few genes or genome regions. The recent advent and
increasing affordability of next-generation sequencing techniques have allowed
obtaining complete genome sequences of large numbers of viruses, mainly HIV,
HCV, influenza A, and others associated with emerging infections, such as Zika,
chikungunya, or dengue virus. This opens the possibility to explore the effects of the
different processes affecting viral diversity and evolution at the genome level.
Consequently, population genomics provides the conceptual and empirical tools
necessary to interpret genetic variation in viruses and its dynamics and drivers and
to transform these results into information that may complement the epidemiological
surveillance of the virus and its disease. This chapter provides an overview of human
viruses from a population genomics perspective, with a special emphasis on RNA
viruses, and the potential benefits of “genomic surveillance” to establish public health
policies that improve the control and monitoring of the diseases caused by these
viruses.
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1 Introduction

The development of fast and efficient sequencing methodologies has brought the
opportunity for obtaining complete sequences of hundreds, even thousands, of viral
genomes at affordable costs. This has led to a new interest in the analysis of viral
populations, which, until recently, was usually linked to outbreaks and other health
emergencies. Most previous studies paid attention only to those fragments of the
viral genome that were of interest from a clinical perspective, for diagnostics,
surveillance, or similar applications. Furthermore, most insights into the population
genetics of viral populations were drawn from markers likely under the influence of
selective forces, thus leading to distorted or biased views of viral population
genetics. This situation is rapidly changing, and the availability of complete genome
sequences is shifting the perspective from “population genetics” to “population
genomics,” that is, the analysis of the processes and mechanisms that govern the
population dynamics of genetic variation at the complete genome level and not only
on a portion of it.

Although information on complete genomes is rapidly accumulating, there is still
a huge gap between the number and diversity of viral population samples that have
been analyzed in only one or a few genes and those with complete genome
information. However, there is a shift of interest in using population genomics
inference to better understand the intra-host and inter-host dynamics of epidemio-
logically and evolutionary relevant processes and to incorporate this information into
surveillance systems. This shift has also benefited from recent methodological and
technical advances, which have allowed the combination of different sources of
information (temporal, geographical, genetic, and epidemiological) into a compre-
hensive framework, known as “genomic surveillance.” Here, we review the current
state of the art in the population genomics of human viruses and its relevance for the
surveillance, monitoring, and control of the diseases they cause. Because of their
rapid rate of evolution and the serious diseases they produce – AIDS, hepatitis C,
Ebola, influenza, among many others – RNA viruses have received most attention
until now and abundant information on their population genomics is accumulating.
We will center this review on these viruses.

2 Evolutionary Processes in Viral Populations

Mutation is the ultimate source of variation in all living organisms, viruses included.
However, the genetic diversity and the evolutionary rate of RNA viruses are
influenced and shaped by other processes and factors apart frommutation. The action
of natural selection and genetic drift, the mode of transmission, particular mecha-
nisms for genetic exchange (such as recombination and reassortment), genome size,
procedures for compressing genetic information, generation time, and population size
are the most relevant such factors. In addition, we must also consider environmental
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factors, resulting from differences among hosts and, occasionally, from antiviral
treatments (Cuypers et al. 2016; Rambaut et al. 2008; Renzette et al. 2014; Simon-
Loriere et al. 2013; Snoeck et al. 2011; Wilson et al. 2016).

Deciphering the mechanisms responsible for the production of spontaneous
mutations in viruses has important applications for public health and for basic
science (Geller et al. 2016) due to their critical role in virus evolution and genetic
diversity (Cuevas et al. 2015). One defining feature of RNA viruses is their high
mutation rates, in the range from 10�3 to 10�6 mutations/nucleotide/replication
round, which result from low-fidelity replication (Simon-Loriere et al. 2013; Cuevas
et al. 2015; Duffy et al. 2008; Sanjuan et al. 2010). This also leads to a very high
evolutionary rate of 10�2 to 10�5 substitutions/site/year. These high mutation rates
can be decomposed into several factors or mechanisms with complex interactions
such as the fidelity of the RNA polymerase, the capacity for error correction, the
propensity of ribonucleic acid to damage, or the edition by hosts’ enzymes (Geller
et al. 2016; Cuevas et al. 2015). These high mutation rates might explain the small
genome size of RNA viruses (ranging from 3 to 29 kb) because in larger genomes,
deleterious mutations would appear at such a high frequency that they would
compromise virus survival (Duffy et al. 2008; Bradwell et al. 2013).

In general, RNA viruses have short generation times and large population sizes.
These features favor fast evolutionary rates, which lead to genetically very diverse
populations, with a high capacity for adaptation even under very strong selective
pressures (Wilson et al. 2016). However, we must consider that virus evolutionary
rates are limited by the frequency of deleterious mutations since virus mutation rates
are very close to the error threshold beyond which deleterious mutations are so
frequent that they lead to population extinction (Holmes 2003). In addition, some
mechanisms for genetic exchange, which are present in some RNA viruses, favor the
generation and maintenance of diversity. Two such mechanisms are genetic
reassortment and recombination (homologous and nonhomologous).

Genetic reassortment occurs in segmented viruses, whose genome is distributed
in individual segments, each carrying a different portion of the genetic information.
Reassortment plays a major role at the epidemiological level in the evolution of
influenza A virus (Rambaut et al. 2008; Wilson et al. 2016; Steel and Lowen 2014)
and in other segmented viruses (McDonald et al. 2016; Nomikou et al. 2015).
Recombination is also a frequent process in many viruses. In retroviruses, such as
HIV, a nonhomologous type of recombination known as copy-choice recombination
is common, and it can occur when two different viral strains simultaneously infect
the same cell. In this form of recombination, the RNA polymerase “jumps” between
two copies of single-stranded RNA, which makes up the genome of retroviruses,
while it is still attached to the newly synthesized chain. This mechanism occurs only
during RNA synthesis and the parental (donor) strand is not physically transferred to
the recombined strand. It is likely that secondary structures of the RNA genomes are
involved in controlling the “jump” between strands (Lai 1992; Negroni and Buc
2000; Simon-Loriere and Holmes 2011).

Natural selection may deplete genetic diversity from viral populations (negative
or purifying selection) or increase its levels (some forms of positive selection) and,
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consequently, may increase or decrease the rate of evolution. Therefore, there is a
trade-off between the conservation of those regions that are essential for completing
the viral cycle of replication and the genetic change and innovation that are involved
in evading the immune system and responding to antiviral treatments. The former
group includes genes encoding for slowly evolving enzymes and structural proteins
as well as genome regions involved in the formation of secondary structures. This
compromise is partially achieved through differential mutation rates along the viral
genome (Geller et al. 2015, 2016).

Because of their high mutation rates, RNA viruses are under selection for small
genome size. This is due to the deleterious effect on fitness of most mutations, which
lead to an excessive genetic load in large genomes, which, in turn, leads to population
extinction (Muller 1932). A small genome size represents a limitation for the gener-
ation of genetic diversity because (1) sequence lengths are limited and (2) using gene
overlapping to compress genetic information implies an increase in the sensitivity to
deleterious mutations in certain parts of the genome and, consequently, a larger role
for purifying selection (Simon-Loriere et al. 2013). Although gene overlapping is
present in all cellular organisms, mammals included (Veeramachaneni et al. 2004), it
is very frequent only in viruses (Rogozin et al. 2002; Brandes and Linial 2016).

Another factor limiting the rate of evolution is the transmission between hosts.
Each of these events represents a bottleneck that dramatically reduces the size of the
viral population and, as a result, its genetic diversity (Gray et al. 2011; Grenfell et al.
2004; Joseph et al. 2015). Besides, founder viruses will generally be poorly adapted
to the new environment because, in general, the specific adaptations to the immune
system of the donor/source individual do not imply a higher fitness in another
individual of the same species and they can even be penalized by natural selection
(Kubinak et al. 2012).

Therefore, viruses mutate and may evolve very fast. It is crucial to understand the
mechanisms by which they generate and maintain genetic diversity for the applica-
tion of research on these organisms to health-related questions, such as the evasion
of immune response, the development and spread of drug resistance mutations,
virulence, species jumps, and the failure or success of vaccination campaigns
(Wilson et al. 2016; Geller et al. 2016; Smyth et al. 2012). In this context, the rate
of mutation should be considered not only as a mechanism generating diversity but
also as a virulence factor (Cuevas et al. 2015).

3 Selective Pressures

In viruses, as in all living organisms, natural selection operates as a force that, on the
one hand, may reduce genetic variability and, on the other hand, may increase
genetic diversity (Snoeck et al. 2011). Hence, we start by describing the different
types of natural selection that operate in viral populations.

Positive selection promotes an increase of the relative frequency of an allele or
genetic variant in a population. Positively selected mutations confer higher fitness to
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their carriers, resulting in an increased frequency of the corresponding allele. Two
paradigmatic examples of positive selection are immune escape mutations and drug
resistance mutations.

Positive selection may act as an evolutionary force that restricts the genetic
diversity of a population (directional selection) or as a force that promotes an
increase of genetic diversity (diversifying selection). Directional selection is com-
monly associated with selective sweeps. During selective sweeps, neutral or nearly
neutral mutations increase their relative frequencies, even become fixed, in the
population due to genetic linkage with positively selected variants (Maynard-
Smith and Haigh 1974). The strength and scope of selective sweeps (which may
act at the genome-wide level) (Rambaut et al. 2008) will also depend on the rate of
recombination. For example, as detailed above, high recombination rates limit the
scope of selective sweeps in HIV (Ramirez et al. 2008; Vuilleumier and Bonhoeffer
2015; Zanini et al. 2015). Additionally, the rate of emergence of adaptive mutations
influences the intensity of selective sweeps.

When different adaptive mutations, which have either newly arisen or were
previously present at low frequencies in a population, are selected simultaneously
or nearly simultaneously, then soft sweeps will be produced as several mutations –
located in different regions of the viral genome – propagate jointly. Such soft sweeps
may result in clonal interference, which consists of competition between distinct
lineages in the viral population carrying different adaptive mutations. Consequently,
even mutations favored by natural selection may not be fixed in the population or,
alternatively, they may get fixed at lower rates. Thus, clonal interference may slow
down adaptation in a viral population (Miralles et al. 1999).

Soft selective sweeps have a minor impact on the loss of population genetic
diversity. However, if adaptive mutations arise rarely in a population, then a single
variant will increase its frequency along with its genetically linked neutral alleles.
Consequently, a hard selective sweep will be produced, which implies a huge
decrease in genomic diversity (Feder et al. 2016; Hermisson and Pennings 2005;
Messer and Petrov 2013; Pennings et al. 2014).

The rate at which adaptive mutations emerge and become positively selected
depends on the mutation rate, the population size, with small sizes resulting in strong
genetic drift and reduced efficiency of natural selection, and the strength of the
selective pressure. This complex process can be studied in individuals under
antiviral drug therapy. Highly efficient drug treatments, consisting of a combination
of antiviral drugs, reduce viral population size and the frequencies of drug-resistant
alleles. Moreover, the number of permissive mutations needed for acquiring drug
resistance (genetic barrier) may increase (Feder et al. 2016).

Diversifying selection occurs when selection favors different adaptive mutations
over time and/or space, and it results in an increase in genetic diversity. Generally, we
can observe this type of selection in viral responses to the hosts’ immune systems. As a
result, the genome regions coding for proteins targeted by the immune response
(antigens) present much higher variability than the remainder of the genome. Antigenic
drift – antigenic evolution in influenza A virus – exemplifies this phenomenon and
should not be confused with genetic drift. Due to the interaction between influenza A
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virus and the human immune system, mutations accumulate in antigenic regions
encoding surface proteins such as hemagglutinin and neuraminidase. Influenza A
viruses show episodic selection, that is, positive selection over long periods inter-
spersed with purifying selection over short time periods. This process might explain the
new seasonal antigenic variants of influenza A virus (Rambaut et al. 2008; Cobey and
Koelle 2008;McHardy and Adams 2009). However, it must be noted that the two sides
of positive selection are linked: antigenic drift is inevitably related to periodic selective
sweeps (McHardy and Adams 2009).

Negative (or purifying) selection operates by removing deleterious alleles (i.e.,
mutations that decrease viral fitness). Negative effects of deleterious mutations can
involve a reduction in the replication rate or increased susceptibility to the host
immune response or to antiviral drugs. Most mutations arising in living organisms
are deleterious. For instance, nearly 60% of the spontaneous mutations in vesicular
stomatitis virus are deleterious (Duffy et al. 2008). Thus, purifying selection consti-
tutes a force acting to preserve nucleotide or amino acid sequence. Therefore,
negative selection constrains genetic diversity.

Purifying selection can be prominent in the viral genome, even in viruses, such as
HIV, in which positive selection and neutral evolution have an important role at the
intra-host level (Snoeck et al. 2011; Zanini et al. 2015; Pybus and Rambaut 2009;
Ross and Rodrigo 2002). HCV is a clear example of predominance of negative
selection. Despite the high levels of genetic variability in this virus, negative
selection represents the main force acting on the HCV genome: more than 80% of
the nucleotide sites in the viral genome are under negative selective pressure
(Cuypers et al. 2016; Geller et al. 2016; Patiño Galindo and González-Candelas
2017).

Natural selection can be studied by comparing the synonymous substitution
rate per synonymous site (dS) and the non-synonymous substitution rate per
non-synonymous site (dN ). The ratio of both rates (ω ¼ dN/dS) allows different
types of selection to be distinguished throughout the viral genome. Under neutral
evolution, all mutations are expected to have the same effect (i.e., none or negligible)
on fitness, and, thus,ωwill be around 1. Negative or purifying selection reduces dN –

because non-synonymous substitutions lead to changes in the amino acid sequence
and thus protein structure or function will likely be affected – whereas dS should not
be affected. Therefore, the ratio ω will be lower than 1. In contrast, positive selection
favors non-synonymous substitutions over synonymous substitutions, and, therefore,
ω will be larger than 1 (Cobey and Koelle 2008; Jackowiak et al. 2014).

When interpreting the results of analyses based on this popular method for
analyzing selection at the genome level, several caveats have to be considered.
Firstly, the method was originally proposed to analyze selection acting over evolu-
tionary large time scales, because it makes use of the rates of substitution, which
implies the replacement and fixation of mutations in populations/species. This is not
usually the case in viral populations, where we are dealing with constantly arising
polymorphisms that, even when they are deleterious, will segregate in the population
before selection removes them. This effect can be controlled for by considering only
those mutations that can be mapped onto the internal branches of the phylogeny
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whereas those at the external branches are excluded from the analyses. Secondly,
these tests can be misleading if recombination occurs frequently (Anisimova et al.
2003), because it may alter the estimates of dN and dS, thus leading to incorrect
estimates of ω.

4 How Selective Pressures Operate on Viral Genomes

Viruses are subjected to different types of selective pressures that drive their evolu-
tion and shape their genome diversity. Distinct selective pressures can increase or
constrain genome variability. These selective pressures and evolutionary trade-offs
drive virus evolution. They include interactions with the host’s immune system as
well as the need for immune escape, the pressures exerted by antiviral drug therapies,
the trade-off between high viral mutation rates and genome size, the maintenance of
protein structure and function, the maintenance of RNA secondary structures, and the
presence of epistatic interactions between different parts of the genome. It is neces-
sary to take into account these, sometimes opposite, forces for understanding viral
genome evolution (Snoeck et al. 2011).

4.1 Interaction with the Host Immune System

Some of the most prevalent infectious diseases are caused by RNA viruses due to
their high capacity for escaping their hosts’ immune system by rapid antigenic
evolution (Cobey and Koelle 2008). Viruses, as well as parasites, are involved in a
constant “arms race” with their hosts. The former evolve to evade the immune
system of the latter, while hosts’ immune systems evolve to detect, control, and
efficiently eliminate pathogens [the “Red Queen hypothesis” illustrates this situation
(Van Valen 1973)]. The strong selective pressures exerted by the hosts’ immune
systems on viruses, along with their high genomic variability, result in rapid
adaptation and constant evolution in coding genome regions involved in interaction
with the hosts (Snoeck et al. 2011; Duffy et al. 2008; Kubinak et al. 2012; Jackowiak
et al. 2014; Alizon and Fraser 2013). Thus, mutations that allow evading the immune
system usually propagate rapidly through viral populations (Zanini et al. 2015).

Genome regions or segments involved in immune escape show high evolutionary
rates due to positive selective pressures exerted by the hosts (Rambaut et al. 2008).
Generally, these regions encode surface or viral envelope proteins. Therefore, these
proteins act as targets for viral recognition by the host’s immune system. Examples
include the env region in HIV (Cobey and Koelle 2008; Alizon and Fraser 2013),
the E1 and E2 genes in HCV (Thurner et al. 2004; Campo et al. 2008), and the
hemagglutinin and neuraminidase segments in influenza A virus (Rambaut et al.
2008; Cobey and Koelle 2008; Pybus and Rambaut 2009; Neverov et al. 2015).
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There are three types of canonical viral targets and, consequently, “hot spots” for
positive selection. These are targets of neutralizing antibodies, CD4 T-cell and CD8
T-cell epitopes (i.e., regions of viral antigen recognized by molecules of the host
immune system) (Zanini et al. 2015; Jackowiak et al. 2014). However, their rele-
vance has been questioned. For example, CD4 T-cell epitopes seem to be conserved
(i.e., under negative selection) in HCV, whereas CD8 T-cell epitopes are under
positive selection and, consequently, drive immune evasion in this virus (Cuypers
et al. 2016; Patiño Galindo and González-Candelas 2017). Another example is
represented by the mapping of positively selected sites in the HIV genome and by
considering different likely targets of selection, such as epitopes recognized by
immune system cells, secondary structure of protein and nucleic acids, and particular
dinucleotides targeted by antiviral proteins such as APOBEC3G/F (Snoeck et al.
2011). Antibody and CD4 T-cell epitopes were found to be under positive selection.
However, no positive selection was detected on CD8 T-cell epitopes. Although
this observation may suggest an absence of host selective pressures acting on CD8
T-cell epitopes, the authors suggest other explanations. On the one hand, positively
selected escape variants without deleterious effects will fix rapidly in the viral
population, thus becoming relatively conserved. On the other hand, T-cell epitopes
could be under opposite selective pressures over chronic infection.

HCV is a good example of changing host selective pressures through chronic
infection at the intra-host level. HCV populations progress through different stages.
Firstly, right after infection, the viral population establishes under relaxed selective
pressures, before triggering the immune response. As the viral population size
increases, the immune response activates. Consequently, population diversity also
increases, whereas escape variants appear and become fixed under positive selection.
In the last stage, purifying selection predominates. This suggests that the virus has
adapted steadily to its host (Jackowiak et al. 2014).

4.2 Antiviral Drug Therapies

The evolution of pathogenic microorganisms – including viruses – and the emer-
gence of drug resistances are major concerns for public health. Drug resistance
is usually related to treatment failure and results in increasing deaths, hospitaliza-
tions, and treatment duration as well as huge economic costs (Wilson et al. 2016;
McGowan 2001; WHO Scientific Working Group 1983).

Some features of RNA viruses, as with immune escape, allow them to adapt
rapidly in response to the strong selective pressures exerted by antiviral treatments.
These features (including high mutation rates, large population sizes, and recombi-
nation or reassortment) facilitate the emergence of de novo resistance mutations. In
the absence of drug-selective pressures, resistance mutations may be deleterious or,
occasionally, neutral, which implies that their evolution will be governed mainly
by genetic drift. For this reason, in the absence of treatment, drug-resistant variants
are usually found as minority variants that increase their relative frequency in
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the population only in the presence of antiviral drugs. Hence, the possibility of
transmission of resistance mutations between hosts must be taken into account in
order to predict the effectiveness of a particular antiviral therapy. Next-generation
sequencing is necessary to detect resistance variants at low frequencies prior to the
start of treatment. The development of drug resistance may depend on the presence
of various permissive mutations in the same haplotype in order to decrease the
genetic barrier (Wilson et al. 2016; Pybus and Rambaut 2009; Chabria et al. 2014).

It is expected that strong and directional positive selection, which is restricted to
periods of time when a patient is undergoing antiviral treatment, will increase the
relative frequency of resistance alleles, whereas the genetic variability of those
regions close to selected loci will decrease due to selective sweeps (Renzette et al.
2014; Murrell et al. 2012). The evolution of HIV since the introduction of early
antiretroviral therapies is a good example of this process. Modern treatments –

highly active antiretroviral therapy (HAART) – are more effective than single
drug-based early therapies. HAART consists in a customized combination of
drugs. Therefore, several resistance mutations are necessary to develop simultaneous
resistance against every drug included in the treatment. In contrast, early, single
drug-based therapies were prone to the rapid emergence of drug resistance (Smyth
et al. 2012; Martin et al. 2008). Due to the high efficiency of treatments consisting of
different drugs, resistance mutations are uncommon and emerge rarely. Thus,
positive selection results in strong selective sweeps that reduce genetic diversity
and slow down virus evolution (Feder et al. 2016). The opposite situation was found
in influenza A virus resistance to oseltamivir. One of several resistance mutations to
oseltamivir (H274Y) underwent rapid and global spread during the influenza seasons
between 2007 and 2009. However, the rapid increase in H274Y frequency did
not substantially alter the viral genomic diversity. It is perhaps a consequence of
emergence of different mutations conferring resistance to oseltamivir (Renzette et al.
2014).

4.3 Secondary RNA Structures: Protein Structure
and Function

The presence of structural elements at the nucleotide and amino acid levels is of
major significance for viral genome evolution because they contribute to increasing
genome stability, controlling viral replication, and avoiding genome recognition by
RNAses and innate antiviral defenses (Baird et al. 2006; Watts et al. 2009). Struc-
tural elements are often highly conserved. Mutations that disrupt RNA secondary
structures or protein domains may have strong deleterious effects (Thurner et al.
2004; Simmonds et al. 2004).

Coding regions are under strong purifying selection, and, therefore, they are
highly conserved at the amino acid level, particularly those involved in the mainte-
nance of protein secondary structure and function (Snoeck et al. 2011). This is true
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for genes or segments that code for RNA polymerase in different viruses (Rambaut
et al. 2008; Zanini et al. 2015; Rothenberger et al. 2016).

RNA secondary structures are frequent in viral genomes, particularly in those of
single-stranded RNA viruses. RNA secondary structures may be relevant for repli-
cation and transmission of the virus as well as for drug resistance and host interaction
(Cuypers et al. 2016; Simon-Loriere et al. 2013; Thurner et al. 2004; Simmonds et al.
2004; Sanjuán and Bordería 2011). In this case, purifying selection operates at the
nucleotide sequence level. As nucleotide changes driven by positive selection might
disrupt RNA secondary structures, this will result in conflict between purifying
selection and positive selection acting on coding regions (Snoeck et al. 2011;
Sanjuán and Bordería 2011). In other words, the maintenance of RNA secondary
structures may restrict protein evolution, and, in turn, selection at the protein level
may restrict the pairing of nucleotides that maintain RNA secondary structures. The
disruption of RNA secondary structures produced by amino acid changes could
explain the fitness decrease in drug-resistant viruses in the absence of selective
pressure by antiviral therapies (Sanjuán and Bordería 2011).

The case of HIV illustrates this situation. Although HIV evolution is largely
driven by positive selection, more than 60% of its amino acid sites are strongly
conserved. RNA secondary structures and α-helix domains mainly determine con-
servation in the HIV genome (Snoeck et al. 2011).

4.4 Genome Size and Gene Overlapping

Due to their high mutation rates, RNA viruses are under selective pressures favoring
small genome sizes. Because most spontaneous mutations are deleterious, high
mutation rates in large genomes result in excessive mutational load that may lead
to population extinction. More deleterious and even lethal mutations emerge in large
genomes per replication cycle than in small genomes although mutation rates can be
similar. Moreover, a trend toward small genome size may also be influenced by the
rate of replication, because selection favoring rapid replication will, in turn, favor
viruses with minimal genome sizes (Simon-Loriere et al. 2013; Duffy et al. 2008;
Bradwell et al. 2013).

Small genome size implies two problems for viral evolution: firstly, the need for
storing all the genetic information in a limited space and, secondly, the need for
generating genetic novelty while maintaining a small genome size. Consequently,
RNA viruses often use gene overlapping in order to compress genetic information
and avoid the aforementioned problems without increasing their genome size.
However, gene overlapping leads to hypersensitivity to deleterious mutations (i.e.,
an increase in the deleterious effects of mutations in overlapping genome regions) as
they affect more than one gene. Therefore, strong purifying selection operates in
these regions, resulting in a reduced evolutionary rate and adaptation in RNA
viruses. Despite this, the negative effects of gene overlapping on evolutionary rate
depend on the type of overlapping where internal overlapping (i.e., a single gene that
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contains another gene within its nucleotide sequence) is associated with stronger
negative selection (Simon-Loriere et al. 2013).

In conclusion, small genome sizes limit the generation of genetic diversity as the
nucleotide sequence space is limited and the use of gene overlapping as a mechanism
of genome compression leads to hypersensitivity to deleterious mutations in certain
regions of the genome, thus resulting in stronger purifying selection.

4.5 Epistasis

Epistasis has been described as an evolutionary phenomenon in which the fitness of a
mutation depends on its genetic background (Phillips 2008). In other words, differ-
ent loci along the viral genome interact with each other and determine fitness.
Consequently, the phenotypic effects of a mutation may change in the presence or
absence of certain genetic elements. Therefore, epistasis can significantly influence
how certain mutations navigate the adaptive landscape (Wilson et al. 2016; Cobey
and Koelle 2008; Assis 2014). Epistasis can be relevant in the fitness effects of RNA
secondary structures, drug resistance mutations, and recombination or reassortment
events. Thus, epistasis must be taken into account in order to predict the success of
mutations in a viral population.

A simple form of epistasis occurs in the secondary structures of RNA viruses. The
maintenance of these structures depends on base pairing between sites located on a
single-stranded RNA genome. Nucleotide pairings usually follow the classical
Watson-Crick model (guanine-cytosine [G-C] and adenine-uracil [A-U]). As
expected, any mutation disrupting Watson-Crick pairs will alter highly conserved
RNA secondary structures. Thus, they are often deleterious, and we expect that
strong purifying selection operates on Watson-Crick sites, resulting in a reduced rate
of evolution. This pattern has been observed in HIV, HCV, and influenza A virus.
However, G-U pairs are also stable and they can maintain RNA structures. Although
G-U pairs usually show fewer effects on fitness than Watson-Crick pairs, the fitness
difference is relatively small. G-U pairs can operate as intermediates between
adaptive peaks (i.e., G-C and A-U pairs), thus relaxing negative selective pressures
on Watson-Crick sites. Moreover, G-U can remain in the population because, after
all, G-U pairs show higher fitness than unpaired nucleotides (Assis 2014).

Epistasis is also relevant for the emergence of drug resistance. The fate of new
drug resistance mutations depends on their efficiency in avoiding antiviral drugs
effects and on their deleterious effects, mainly on viral replication. However, a
permissive mutation can interact epistatically with drug resistance mutations in
order to increase their fitness and, therefore, their relative frequencies in the viral
population (Wilson et al. 2016; Chabria et al. 2014). The emergence of oseltamivir
resistance in influenza A virus during the influenza seasons of 2007–2009 illustrates
this phenomenon (see Sect. 4.2). Highly deleterious effects were predicted for the
H274Y drug resistance mutation. However, H274Y spread rapidly and globally,
thanks to two permissive mutations that made the mutant fitness equal to that of the
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non-mutated genotype in the absence of oseltamivir (Neverov et al. 2015; Duan et al.
2014; Kryazhimskiy et al. 2011).

Influenza A virus can also be used as an example to highlight the relevance of
genetic background for genetic exchange between different strains. Most segment
combinations resulting from genetic reassortment are probably deleterious due to
epistatic interactions (Rambaut et al. 2008; Renzette et al. 2014; Sobel Leonard et al.
2017).

In conclusion, epistatic interactions must be taken into account in order to predict
virus evolution and, specifically, the epidemiological consequences of drug resis-
tance mutations. Complete genome sequencing can be used in this context to detect
epistatic interactions between distant genome regions (Rambaut et al. 2008; Wilson
et al. 2016).

5 Mutation Rate and Natural Selection

Mutation is a key factor in the generation of genetic variability. In addition, the rate
of mutation is a viral character evolving under natural selection. Natural selection
favors high mutation rates in viruses as they increase their adaptive capacity,
particularly regarding infection, host adaptation, and immune escape. In this light,
viral mutation rates might be considered a virulence factor. The presence of local
RNA secondary structures in the viral genome may operate as a mechanism of
modulation for genome variability. RNA secondary structures flank hypervariable
regions, which are prone to low-fidelity replication because they are usually located
in single-stranded segments, thus focusing higher mutation rates in genomic regions
involved in immune escape (Geller et al. 2016; Cuevas et al. 2015; Duffy et al. 2008;
Sanjuán and Bordería 2011).

However, variability in viral genomes has an upper limit. Mutation rates are often
close to the error threshold. Beyond the error threshold, deleterious mutations
emerge too frequently, resulting in population extinction (error catastrophe). There-
fore, purifying selection purges variants exceeding certain mutation rates. In this
context, it must be noted that viral genome hypermutation exerted by host deami-
nases constitutes a potential mechanism against viral infection. This is apparently the
case in HIV infection (Snoeck et al. 2011; Cuevas et al. 2015; Duffy et al. 2008;
Holmes 2003; Neogi et al. 2013; Noguera-Julian et al. 2016).

6 Within and Among Patient Diversification

The evolutionary dynamics of genetic diversity in RNA viruses can differ markedly
between levels of biological organization, within individuals (intra-host), and at the
epidemiological level (inter-hosts). This prominent feature has been analyzed in
depth in some viruses that produce chronic or persistent infections, such as HIV or
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hepatitis C virus (HCV). However, it is also possible to analyze the genetic changes
at the intra- and inter-hosts levels in viruses that produce acute infections, such as
influenza A virus. Viral evolution during chronic infection occurs simultaneously in
different parts of the genome and, depending on the virus, independently in the
segments. Hence, it is important to analyze genetic diversity in complete genomes,
because different genome regions can be under distinct, even opposed, selective
pressures (Pybus and Rambaut 2009; Holmes 2004; Luciani and Alizon 2009;
Lythgoe and Fraser 2012; Sobel Leonard et al. 2016).

Viral infections usually start by a founder virus or a population of a few viral units
with very similar genomes (Joseph et al. 2015; Jackowiak et al. 2014; Sobel Leonard
et al. 2016). It is unlikely that there is only one genome sequence in the founder
population shared by all the viruses. However, among the many variants present
in the source individual, the fittest phenotypes for transmission will be more
represented in the infecting population. Shortly after the infection, the process
known as clonal expansion starts. This process results from the rapid replication of
the virus that leads to an increasingly diverse population in which new mutations
accumulate from the initial sequence. This genetically diverse population is usually
known as a viral quasispecies (Eigen 1996), a set of highly diverse, evolutionarily
close, nonidentical haplotypes (because they derive from the same virus or a reduced
population) undergoing diversification, competition, and selection (Chabria et al.
2014; Domingo et al. 2012; Khiabanian et al. 2014). In later stages of infection, the
initially homogeneous viral population will be more diverse. This indicates that,
during transmission, there are several bottlenecks that reduce diversity at the inter-
host level (Gray et al. 2011; Joseph et al. 2015).

Many pathogens produce chronic infections that evolve so rapidly that late
variants in the infection are very different from the genetic variants in the founders
(Luciani and Alizon 2009; Vrancken et al. 2015). During the early stages of chronic
infection by RNA viruses, such as HIV, mutations that contribute to evade the
host’s immune system may appear and increase in frequency (Goonetilleke et al.
2009; Kearney et al. 2009; Liu et al. 2011). Hence, chronically infecting viral
populations become adapted to their hosts and this may compromise their capacity
for transmission (Wright et al. 2010; Brockman et al. 2010).

During infection, viral populations explore the adaptive landscape – the set of
variants close to a given genotype that might increase the fitness of the population –

around the founder virus. This is supported by the fact that the same reversions are
observed in unrelated individuals. In HIV, some nucleotide substitutions produced
during intra-host evolution are reversions to that global consensus sequence (Zanini
et al. 2015; Li et al. 2007). This trend suggests that in chronic infections, directional
natural selection is the main evolutionary force determining the diversity of the viral
population. But most mutations are neutral or reduce rather than increase fitness.
Nevertheless, in populations with high recombination rates, such as in HIV, adap-
tation to the host may be concurrent with a sustained exploration of the adaptive
landscape. This trend is more evident for globally conserved genome positions, and
it can also be observed in viruses producing acute infections (Zanini et al. 2015;
Sobel Leonard et al. 2016; Wang et al. 2014; Gire et al. 2014). However, the number
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of positions under directional positive selection in the HIV genome is limited. Most
of the genome is under purifying selection or accumulates neutral mutations. The
action of diversifying selection, which acts in an opposite sense to directional
selection, and the emergence of neutral mutations may disguise the convergence
toward a global consensus sequence in positively selected positions (Snoeck et al.
2011; Ross and Rodrigo 2002).

Selective pressures acting on a viral population can differ intra- or inter-host and
can often have opposing effects, leading to a trade-off. At the intra-host level, natural
selection favors fast replicating variants, those that can evade the immune response,
and, if the patient is being treated, those with resistance mutations against the
corresponding drugs. At the inter-host level, natural selection will favor variants
that can propagate rapidly in the host population, that is, those that are more easily
transmitted from one host to another (Alizon and Fraser 2013).

One of the most remarkable differences between intra- and inter-host dynamics is
the faster evolutionary rate associated with intra-host differentiation compared to the
inter-host rate of evolution (Alizon and Fraser 2013; Lythgoe and Fraser 2012;
Khiabanian et al. 2014). Intra-host evolutionary rates can be from two to six times
higher than those among hosts (Lythgoe and Fraser 2012). Viral evolutionary rates
show a trend to slow down in the long term. This trend is reinforced by the
bottlenecks and selective pressures operating at transmission events (Zanini et al.
2015). Due to their dependence on infecting other hosts, inter-host evolutionary rates
are also dependent on the transmission rate (Gray et al. 2011).

The difference in intra- and inter-host evolutionary rates means that, in chronic
infections, viral populations are not homogeneous in their capacity for transmission
to another host. If this were the case, we would not observe such different values
between the corresponding rates (Alizon and Fraser 2013; Lythgoe and Fraser 2012).
To explain this difference, we should also take into account that the viral population
needs to adapt to the immune system of a specific host after each transmission.
Therefore, intra-host evolution is governed by strong, continuous selective pressures
leading to fast evolutionary dynamics with high evolutionary rates. Furthermore, the
heterogeneity of the viral population and the different lineages that can coinfect an
individual may affect the action of the immune system and, in consequence, the viral
evolutionary dynamics (Grenfell et al. 2004).

However, although the intra-host rate of evolution is generally higher throughout
the genome of these viruses, the pattern of evolution and the intra- and inter-host
differences vary among genomic regions (Alizon and Fraser 2013). In some viruses,
different genome regions can evolve independently due to recombination, such as in
HIV (Zanini et al. 2015), thus minimizing the effect of selective sweeps (see below).
For instance, some genes encoding for viral proteins targeted by the immune
response show a faster intra-host evolution, with high levels of positive selection
as a consequence of the selective pressures by the host’s immune system (Gray et al.
2011; Sobel Leonard et al. 2016).
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The reasons for the differences between intra- and inter-host evolutionary rates
are not fully understood. Among potential alternatives, we can mention the follow-
ing: (a) preferential transmission of slow-evolving lineages, (b) reduced intra-host
rate of evolution over time, (c) reversion to genotypes similar to the founder virus
that are likely better adapted to infecting other hosts, and (d) changes in selective
pressures over the course of infection (Gray et al. 2011; Pybus and Rambaut 2009;
Lythgoe and Fraser 2012). In HCV, it has been shown that the large differences
between intra- and inter-host evolutionary rates in genome regions related to evasion
from the immune system can be explained by reversions of host-specific adaptations
to genotypes similar to those of the founder virus. The hypothesis of a preferential
transmission of slow-evolving lineages seems to be quite unlikely, at least for HCV
(Gray et al. 2011). In other viruses, such as HIV, the contribution of reversions to
evolution has not been studied in detail (Zanini et al. 2015). Another contributing
factor is that inter-host evolution is shaped by many bottlenecks produced in every
transmission event (Gray et al. 2011; Joseph et al. 2015), which act reducing the
evolutionary rate. As a consequence, phylogenies including isolates serially sampled
within patients usually present long external but short internal branches, the latter
corresponding to evolutionary changes occurring among patients.

7 Conflict Between Selective Pressures Within and Among
Hosts

Intra- and inter-host selective pressures can be in conflict because mutations favoring
adaptations to exploit the host, that is, those that are favored at the intra-host level
(including immune system evasion and resistance mutations), are unlikely to also
increase transmissibility to other hosts. Consequently, such mutations will be neu-
tral, or selection at the inter-host level may act against them. The viral population
evolves at the intra-host level during infection, becoming adapted to each new host.
However, genotypes carrying host-specific adaptations do not seem to be the most
efficient in being transmitted to new hosts (Alizon and Fraser 2013). The study of
this conflict, known as “short-sighted evolution,” was initiated in the last decade of
the past century and applied to different pathogens (Levin and Bull 1994). Although
until recently this conflict had been studied at the genomic scale only in HIV, its
presence in other viruses such as HCV or Marburg virus has led to question whether
this is a common feature of RNA viruses (Gray et al. 2011). Would it be possible
then that less fit variants, presumably purged by natural selection or belonging to
minority classes, persist and be transmitted in a population?

Several mechanisms have been proposed to explain the transmission of those less
fit variants (intra-host) to new hosts. For instance, HIV populations “archive”
resistance variants in latent T-cells, which act as reservoirs of variants that can be
transmitted later. Alternatively, mutations reverting to the founder virus, the one
initially infecting the host and presumably fitter for transmission (Joseph et al. 2015;
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Zanini et al. 2015; Jackowiak et al. 2014; Alizon and Fraser 2013; Chabria et al.
2014), might be transmitted preferentially to variants better adapted to the current
host. These mechanisms might help to explain the persistence and transmission of
resistance mutations to drugs in untreated hosts because, in an analogous way,
resistance mutations usually reduce viral fitness in the host in the absence of
selective pressure by drugs (Chabria et al. 2014).

When studying the virus rate of replication, we find a trade-off that represents a
nice example of the conflict between selection pressures at the intra- and inter-host
levels. The rate of replication of the founder virus is an important factor for the
epidemiological success of the disease as well as for the natural history of the viral
population in the infected individual. The rate of replication influences the interac-
tion between the viral population and the immune system of the host, which is a key
factor determining the outcome of the infection (acute or chronic). The rate of
replication is a quantitative trait that also evolves throughout an infection. There
are observations of groups of variants in subpopulations, both within and among
hosts, with different RNA polymerase activity. Hence, diverse variants with different
ranges in their rates of replication can coexist in the same individual (Luciani and
Alizon 2009). High rates of growth lead to a stronger immune response against the
virus. Consequently, at the inter-host level, the prevalence of slow-replicating
variants is favored by natural selection, because it allows a longer time of infection
in the host and, as a result, maximizes the reproductive number (R0) of the infection.
In epidemiology, R0 is defined as the number of new infections caused by an infected
individual in a susceptible population and is very closely related to the intrinsic rate
of growth of a population in ecological models. However, at the intra-host level,
variants with a high rate of replication are favored, because they allow a faster
exploitation of the host’s resources.

Therefore, it seems likely that this trade-off results in variants with intermediate
rates of replication, which maximize the number of infected individuals from a
single host and the exploitation of resources, being favored by natural selection
(Luciani and Alizon 2009; Alizon et al. 2009).

Studying the intra- and inter-host dynamics and variation provides relevant
information about the transmission and epidemiology of infectious diseases. This
is highly relevant in the case of outbreaks, because groups of patients that share
similar and even identical viral genotypes usually also show patterns of transmission
coincident in time and suggest links that can help to determine the origin or the
routes of transmission of the outbreak (Gire et al. 2014). In addition, understanding
the evolution and diversity of viruses and their intra- and inter-host dynamics is
relevant at the clinical level. The viral diversity and its dynamics are crucial for the
design of vaccines (Cuypers et al. 2016; Gaschen et al. 2002) and for determining
whether an infection leads to a chronic or acute disease or the chances of success of
the antiviral therapy (Gray et al. 2011; Chabria et al. 2014).

The recent advances in sequencing technologies, more specifically in high-
throughput sequencing (HTS), have led to significant improvements for the analysis
of viral diversity and how it affects intra- and inter-host dynamics. The development
of ultra-deep sequencing has been very important for research on chronic viral
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infections, which can show high levels of intra-host diversity such as HIV and HCV.
Its higher sensitivity compared to traditional Sanger sequencing allows a deeper
analysis of viral diversity, identifying minority variants and rare polymorphisms
that, on the one hand, are invisible for classical techniques, which usually involve
reconstructing consensus sequences, and, on the other hand, can be very relevant for
basic and applied research (Chabria et al. 2014; Khiabanian et al. 2014). Further-
more, the capability of HTS to sequence a large number of molecules in parallel
allows obtaining large datasets, which also help in reducing the economic costs of
sequencing (Hall 2007; Churko et al. 2013).

The efforts to investigate evolutionary dynamics at the genome level have
focused mainly on RNA viruses causing chronic infections, for which the study of
changes in genomic diversity at the intra-host level is more relevant. Among these,
HIV and HCV have received most attention due to their evident clinical and
epidemiological relevance for humans. In addition, there have also been studies at
the genome level aimed at relating intra- and inter-host dynamics in acute disease-
causing viruses such as influenza A (Sobel Leonard et al. 2016). Hence, lack of
representative data for some viruses is still a major obstacle for studying their
population evolution and dynamics.

8 Spatial Distribution of Viruses

The spatial distribution of rapidly evolving viruses depends on ecological and
evolutionary processes that interact with each other. In RNA viruses, ecological
processes, such as spatial spread, and epidemiological processes occur in a similar
time scale to that of evolutionary processes, as a result of their high mutation and
evolutionary rates (Holmes 2008). This makes them very appropriate model organ-
isms to study the dynamics of microevolutionary changes, because these can be
observed “in real time.” In addition, there is a bias toward studying RNA viruses
rather than those with a DNA genome that derives not only from their fast evolution
(Duffy et al. 2008) but because, in general, they are more relevant in epidemics and
emerging diseases (Holmes 2004; WHO 2017).

Avise (2000) defined phylogeography as the field of study concerned with the
principles and processes governing the distribution of geographical lineages at the
intraspecific level as well as the interspecific level for related species. In other words,
from a more applied perspective, phylogeography includes studies using phyloge-
netic trees to combine genetic data with spatial information and analyze the spatial
patterns suggested in these trees (Holmes 2004; Pybus et al. 2015). Holmes (2004)
used a wider definition in which phylogeography incorporates spatial and temporal
patterns as well as their interactions. The rapid evolution of viruses can generate
enough genetic variation, even at the intra-host level, in just a few days to perform
phylogenetic analyses at the infected individual level. This allows applying phylo-
genetic methods to emerging diseases and to build highly resolved phylogenetic
trees (Holmes 2004; Avise 2000; Pybus et al. 2015). The most basic way to
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integrate spatial and genetic information consists of localizing cases of infections
and associating them to different variants (subtypes, genotypes, etc.) of the disease-
causing virus (Pybus et al. 2015).

Phylogeographic methods are a powerful tool to infer migration and transmission
routes and to reconstruct the evolutionary history of a lineage from genetic data.
When applied to viruses, these methods are useful to track the origin of outbreaks
and the source of emerging diseases and to reconstruct transmission histories not
only between individual hosts but also among social groups of the hosts, among host
species, and even their dispersion within body compartments within an individual
(De Maio et al. 2015; Alcala et al. 2016).

Due to the coincidence of time scales between molecular evolution and ecological
processes that shape their diversity, virus phylogenies provide not only spatial
information (i.e., lineages that cluster in geographically defined clades) but also
temporal information (i.e., lineages ordered according to sampling times). The
molecular clock is a statistical model that establishes a relationship between time
and genetic distances in nucleotide sequences. If samples are identified with known
dates, then the branching events and the common ancestor in a phylogeny can be
placed in a temporal scale. This information can be integrated with spatial informa-
tion to reconstruct the dispersal history of a virus, linking each branch of the
phylogeny with its geographic location. Therefore, with models based on the
molecular clock, it is possible to analyze the spread of an epidemic (in months or
years) complementing the phylogeny of the isolates with a time scale (Pybus and
Rambaut 2009; Pybus et al. 2015). The simplest models for the molecular clock, also
known as “strict clock” models, assume a single, constant evolutionary rate for all
the lineages. However, more complex, “relaxed clock” models have incorporated
variation in the evolutionary rate among lineages or through time (Drummond et al.
2006).

However, the application of phylogeographic tools is valuable only if the spatial
epidemiology leaves a signal in the viral genome. This depends both on the rate of
molecular evolution and on the rate of transmission in space. If the genome accrues
diversity too quickly compared to the rate of spatial spread, then the information
provided by phylogeographic analyses is lost as a result of mutation saturation at
informative positions (Emmett et al. 2015; Pybus et al. 2015).

Using specific genes or regions to build phylogenetic trees is still a current and
complementary approach to analyzing complete genomes (Shen et al. 2016), espe-
cially when these genome regions are important sources of predictive information
because they encode antigenic proteins (McHardy and Adams 2009). However, the
analysis at the genome level is very important to obtain a more complete and
unbiased information. Mechanisms such as recombination and reassortment may
generate genomes in which different portions thereof have different evolutionary
histories (Rambaut et al. 2008; McHardy and Adams 2009; Holmes 2004; Pybus
et al. 2015), and this has to be considered when analyzing complete genomes. Next-
generation sequencing methods have advanced to the “subnucleotide” level in the
analysis of viral sequences. This implies considering the infected individuals as
viral populations rather than repetitive collections of the same consensus genome
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and, additionally, detecting variability within individuals, even very low-frequency
variants (subclonal variants). Studying the intra-host and subclonal variability can
improve the resolution of phylogenetic analyses and, when combined with epide-
miological information, provide a very valuable information to track transmission
chains during an outbreak, especially when the transmission rate is very fast, even
higher than the viral evolutionary rate (Emmett et al. 2015).

9 Transmission Dynamics

In order to study and understand the dynamics of viral epidemics, we need an
approach combining the methods and theories of evolutionary biology, epidemiol-
ogy, and human geography.

For obligate parasites, such as viruses, which are usually unable to survive for a
long time outside their hosts, the mobility and movement patterns of the host are
crucial for understanding their transmission dynamics (Alcala et al. 2016; Hufnagel
et al. 2004; Pybus et al. 2015). This is closely related to the density and communi-
cation between susceptible populations because for virus transmission, a certain
proximity between hosts or hosts and vectors is necessary. The smaller the popula-
tion size of the host, the less likely transmission will be and, consequently, the more
difficult to be sustained long enough to cause acute infections. However, large, dense
host populations can easily sustain a virus that causes short, virulent infections. In
this context, the analysis of the basic reproductive number (R0) is highly relevant.
This number depends on several factors, such as the number of contacts with
susceptible individuals, the probability of transmission, and the length of the infec-
tious period (Dietz 1993). This value is very useful to estimate the speed of
propagation of an infection in a susceptible population (Ridenhour et al. 2014).
The interest in estimating this parameter and its application to the analysis of out-
breaks and epidemics and the design of public health strategies gained momentum
during the influenza A pandemics of 2009 (Fraser et al. 2009; Ridenhour et al. 2014).

Therefore, the spatial distribution of human viruses will reflect, at least partially,
the spatial distribution of human populations, which will also influence the virulence
of the disease. However, we must also consider whether the virus can infect other
animal species or whether they represent a reservoir for human infections (zoono-
ses). This is the case for some viruses, such as Ebola virus, with reservoirs in animal
species but also capable of being transmitted from person to person. Furthermore,
even in RNA viruses well-adapted to humans, there is the possibility of relatively
frequent zoonotic contacts, such as in influenza A and MERS-CoV, which are
usually associated with the emergence of epidemics and pandemics as a result of
genetic exchanges between strains from different species. For vector-borne viruses,
we must consider not only human geography but also the geographic distribution of
the corresponding vectors, such as different mosquitos of the genera Aedes and
Culex, which are vectors for Zika, dengue, or chikungunya viruses. Spatial distribu-
tion analyses should also include ecological features, life history, or migration
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potential of the vectors (Holmes 2004; Faria et al. 2017; Shen et al. 2016; Bullivant
and Martinou 2017; Cunha and Opal 2014).

In the study of the mobility and geographic distribution of humans for under-
standing the distribution and spread of human viruses, it is necessary to take into
account social factors such as international trade and air traffic. The global commu-
nications and interrelationships of human populations are growing continuously and
represent new opportunities for the transmission, propagation, and colonization of
new regions by viruses and their vectors. These can move viruses across geographic
barriers and bring into contact with previously isolated populations. This process has
contributed to the emergence and reemergence of viral epidemics such as Zika,
dengue, and chikungunya. However, we are just starting to understand the effects
of global mobility of people and goods on the genetic diversity and evolution of
viruses (Alcala et al. 2016; Pybus et al. 2015). To better control epidemics and to
understand the evolution and ecology of viruses, it will be necessary to integrate
spatial and genomic information along with information about human mobility in a
single mathematical framework (Pybus et al. 2015). One example in this direction is
BEAST, a framework for Bayesian statistical analysis that allows inference of
phylogeographic relationships including spatial and temporal dynamics of migration
(Lemey et al. 2009; Drummond and Rambaut 2007).

Clear examples of the relevance of this approach are the analyses of emerging viral
epidemics such as SARS or Zika virus. The international spread of Zika virus is likely
due to a global increase in air traffic. Specifically, using phylogeographic methods,
the origin of the epidemics has been traced to Brazil, where it was detected in 2015,
dating its origin in this country between 2013 and 2014 (Worobey 2017). These dates
were coincident with several events that brought an important flow of international
air traffic to Brazil, such as the 2014 FIFA World Cup (June–July 2014) and the
2013 FIFA Confederations Cup (June 2013) of football (Faria et al. 2016). This
highlights the importance of integrating genomic and epidemiologic information
about the global movement of persons when surveillance systems are implemented.
The large-scale patterns of people’s movements can suggest useful hypotheses to
study the introduction of viruses and the emergence of epidemics (Faria et al. 2016,
2017; Shen et al. 2016).

From a population genomics perspective, how does this increase in international
trade and movements impact the spread of infectious diseases, the population
dynamics of viruses, and their genetic diversity?

Isolation and subsequent secondary contact of viral populations are common in
natural host populations and can occur at short time scales. These events, facilitated
by a higher mobility and contact among human populations, are usually associated to
epidemics and pandemics. This has been observed in viruses such as influenza A
virus, HIV, and human cytomegalovirus. Furthermore, these processes are important
for understanding the evolutionary trajectory of zoonotic viruses, such as Ebola
virus.

While they are isolated, viral populations from the same species diverge and adapt
to the specific features of their host populations. Hence, during this period, natural
selection and demographic changes, such as expansions and bottlenecks, acting on
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either the viral or the host population will affect the evolution of the virus. After the
viral populations are connected again, gene flow, recombination, or reassortment will
influence the evolution of the virus, leading to a “mixture” at the genome level.
Although selection and demographic changes still act during the reconnection, the
other processes act more intensely and rapidly. This mixture impacts on diversity at
the genome level: isolated populations have evolved independently, diverging and
adapting to the specific conditions of their host populations. After reconnection, the
diversity that has accumulated separately increases, which also leads to higher
adaptive potential since recombination and reassortment allow the combination of
polymorphisms selected in different environments into the same genome. If these
polymorphisms are compatible in that particular genomic context, this opens the
opportunity for the development of new features which might have not developed
(or do so only after very long periods) by just mutation and selection. The second
consequence of this shared genetic diversity is a progressive trend toward the
homogenization of the populations. Due to the increase in human mobility, these
events are expected to be more frequent in the future (Alcala et al. 2016).

10 Epidemiological Surveillance and Genomic Surveillance

Phylogenetic and phylogeographic analyses complement each other, and both
are used in epidemiological surveillance systems to control infectious diseases.
Phylogeographic information can be used to confirm the source(s) of epidemic out-
breaks, and it can also provide valuable information when surveillance is not well
implemented or the data it generates are uncertain, unavailable, or insufficient to
reconstruct or predict the propagation of the virus (Faria et al. 2017; Pybus et al.
2015). It is even possible to talk about “genomic surveillance” (Emmett et al. 2015) in
which the sequencing and analysis of complete genomes contribute to tracking
evolution at the genome level as the disease spreads. On the other hand, phylogenetic
analysis combined with epidemiological information is useful to study the routes of
infection in human populations or the number of introductions that have caused an
epidemic (Blackley et al. 2016; Gire et al. 2014; Shen et al. 2016; Drummond et al.
2006; Emmett et al. 2015; Faria et al. 2016).

Another goal of virus phylogeography is to ascertain the future propagation of the
organisms and the potential for epidemics by asking which variants are more likely
to become predominant and which places are more likely to be colonized and
through which ways. This implies building a predictive framework integrating social
and environmental factors associated to virus movement and transmission along
with genomic and epidemiological information (McHardy and Adams 2009; Pybus
et al. 2015).

Influenza A is a good example of how a well-established, global epidemiological
surveillance system provides useful information for disease control and vaccine
design. It also facilitates the collection of genome sequences at temporal and spatial
scales that can be used in evolutionary and phylogeographic analyses. Conversely, at
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the beginning of the Zika virus epidemics in Brazil in 2015, the country lacked a
surveillance system for this virus, and, 1 year later, this task still rested on the passive
diagnostics of the disease. This problem, along with the added difficulties for the
diagnosis of Zika due to its coexistence with dengue and chikungunya virus, has
been a major hurdle in the epidemiological study of the disease and the gathering of
abundant genomic information. The example of Zika reinforces the relevance of
epidemiological surveillance for the phylogeographic analysis of the virus (Faria
et al. 2016; Worobey 2017; Metsky et al. 2017).

The phylogenetic analysis of a virus can help in evaluating the efficiency of
surveillance systems. Estimating the most recent common ancestor of a group of
sequences can inform about the delay in the detection and notification of the
pathogen with respect to the moment of its introduction in the population (Pybus
et al. 2015).

One of the limitations in the phylogeographic analysis of viruses is the choice of
the correct model. A wrong model selection can lead to erroneous inferences about
the transmission history of the pathogen. As epidemiological investigations rely
increasingly on genome sequencing to study the origin and spread of infections, the
use of accurate phylogeographic methods will be crucial to stop their propagation
and design public health preventive measures. De Maio et al. (2015) review different
models used to infer transmission rates and spread patterns for viruses, and they
illustrate a trade-off between computational costs and speed, on the one hand, and
the reliability of the conclusions, on the other hand. The more reliable approaches
(continuous models) are, in general, the slowest and most costly with regard to
computational resources.

Recently, and partly to fulfill the need for a fast response in cases of outbreaks
and emerging epidemics, the so-called discrete character models have gained popu-
larity (Gire et al. 2014). These models treat locations as if they were discrete traits
evolving as alleles in a locus. This approach allows a much faster analysis; however,
its results are not reliable. They are very sensitive to sampling bias and not robust
to scarce genetic data. Different models can yield very different results for the same
dataset and, in general, lead to very different and wrong biological interpretations
when applied to the study of virus transmission (rather than to the evolution of
discrete traits, their original target). De Maio et al. (2015) suggested a model for
phylogeographic analysis that combines the advantages of both approaches, discrete
and continuous (reliability and precision along with speed and computational effi-
ciency). This model has been used recently in the study of emerging epidemics, such
as Zika in Brazil (Faria et al. 2017).

Another limitation for phylogeographic analyses is the public availability of
sequences. This depends, in part, on the relevance of the disease caused by the
virus, the implementation of an efficient epidemiological surveillance, and the stage
of the epidemics. For instance, in 2016 the number of genome sequences for Zika
virus available in GenBank was very limited (Shen et al. 2016) as a result of being a
recent epidemic and inefficient surveillance. On the contrary, the availability in the
public domain of influenza A virus sequences is much higher (Pybus et al. 2015).
The rapid publication of genome sequences during emerging epidemics is important
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to improve genomic and epidemiological surveillance and to monitor the spread of
the disease and the adaptive processes in the virus (Gire et al. 2014).

11 Conclusions

Viruses, especially those with RNA genomes, have high mutation rates, short gener-
ation times, and large population sizes and are under strong selective pressures. These
factors make these viruses organisms with fast evolutionary rates, high genetic
variability, and great adaptive capacity.

Understanding the mechanisms that allow human viruses to generate and main-
tain genetic diversity and to adapt to the host’s selective pressure is fundamental for
human health. A better knowledge of the evolution of human viruses at the genome
level can shed light on questions such as the evasion of immune response, the
development and transmission of resistance mutations, vaccine design, the evolution
and virulence of the disease or the control of outbreaks, epidemics, and emerging
diseases.

In general, viruses, as any other pathogen, are under strong selective pressure by
the immune system of their hosts. In addition, human viruses are usually under the
additional pressure of antiviral drugs and treatments. These pressures result in high
mutation rates in those genome regions involved in the interaction with the host and
in those that encode the targets of antiviral drugs. This leads to the development of
drug resistance and of mechanisms to evade the immune system.

The typically high mutation rates of RNA viruses are, most likely, another
consequence of these selective pressures because in a stable environment (very
different from a host infected by the virus), natural selection will favor a lowmutation
rate (Kamp et al. 2002). This common feature of RNA viruses is a key factor to
explain their adaptation, and, simultaneously, it keeps viral populations at the extinc-
tion threshold by accumulating an excessive number of deleterious mutations.
Recently, it has been observed that the human immune system might take advantage
of this feature to fight viral infections by forcing hypermutation in the viral genome.

The genomic diversity is also limited by different constraints: the need to keep a
small genome size, RNA secondary structures at the genome level, structural domains
of proteins to sustain their function, and gene overlapping. In some viruses, such as
HCV, these negative selection pressures might be the main factor driving evolution.
In others, such as HIV, positive selection has a more relevant role.

In this context, it is important to consider how the interactions between genome
positions can affect the “displacement” of different mutations through the adaptive
landscape. Mutations that could be considered as deleterious, such as some resis-
tance mutations or those that disrupt secondary structures, can be retained in a
population and even spread rapidly depending on the genome context where they
appear.

The population dynamics of RNA viruses are different depending on the level of
biological organization at which they are analyzed. Selective pressures acting at the
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intra-host and inter-hosts levels can differ and often act in opposite directions.
Frequently, these selective pressures conflict between the need to adapt to the host
and the ability for transmission to other hosts. Those variants that are favored by
selection within hosts – mutations for evading the immune system and drug resis-
tance – may diminish the capacity for transmission of the virus and, in consequence,
will be selected against at the inter-host level. In addition, every transmission event
represents a bottleneck that reduces drastically the population size of the virus and,
consequently, also its genetic diversity. This leads to slower evolutionary rates at the
inter-host level. For instance, in HIV there seems to be an inverse relationship
between transmission and evolutionary rate (Berry et al. 2007). We must also
consider how and by which means is the virus transmitted. Transmission rates are
higher in air-transmitted virus, such as influenza A, than in those that use the sexual
route. Similarly, those viruses that use arthropod species as vectors have lower rates
of evolution, a cost associated to their need for replication in different hosts (Holmes
2004; Woelk and Holmes 2002).

Another consequence of the high rates of evolution is that ecological and evolu-
tionary processes acting on viral populations occur at similar time scales. Their
interaction affects their spatial distribution. The combination of complete viral
genomes and phylogeographic methods is very useful for tracking the origin of
epidemic outbreaks, locating reservoirs that may act as sources of infection for
humans or of new potentially virulent strains (such as influenza A), to reconstruct
transmission histories and to monitor the spread of an epidemics. These applications
are very relevant nowadays, in an increasingly connected planet in which trade and
air traffic bring geographically distant populations close and erase natural barriers for
the transmission of diseases. Furthermore, human impacts on previously intact
ecosystems are helping the emergence and global spread of new infectious, as
illustrated by the recent epidemics of Zika and Ebola viruses.

12 Future Perspectives

The development of population genomics is closely linked to advances in sequenc-
ing technologies. Standard techniques, based on deriving consensus sequences, miss
the presence of minor or subclonal variants (low-frequency polymorphisms) which
might be important to understand the dynamics of viral populations as well as the
evolution and spread of the disease. Next-generation sequencing techniques allow
the detection of rare polymorphisms and minor variants and lead to consideration of
infected hosts as viral populations rather than “collections” of the same consensus
genome. Consequently, these methods provide a better view of viral diversity, which
enables an improvement in the study of the epidemiology and evolution of human
viruses. A more widespread use of these technologies to characterize genome
variation will provide increased information about the intra-host dynamics and the
relationship between viral diversity and infection outcome (Liu et al. 2012; Farci
et al. 2000), the inter-host transmission and dynamics (reservoirs for better-
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transmitted variants), the development of resistance and the failure of antiviral
treatments, and the building of highly resolved phylogenies and transmission histo-
ries during epidemic outbreaks. In addition, advances in sequencing technologies
have also allowed the fast and in-depth analysis of complete genomes. The evolution
and accumulation of genetic variation occur differently and simultaneously through-
out the genome. Separate regions of the same genome can interact with each other
(epistasis) and, even, evolve independently and show different phylogenetic histo-
ries. Hence, the possibility of analyzing complete genomes – as opposed to the
analysis of individual loci or isolated genome regions – provides a more complete,
resolved, and less biased view of genomic variation, the phylogeny and population
dynamics of the virus.

Finally, an important limitation in the population genomic study of virus
populations is the availability of genomic information for many viruses. This is
intimately related to the clinical and epidemiological relevance of the disease caused
by most viruses. Human diseases with high prevalence and important consequences
such as HIV, hepatitis C, or influenza receive much attention in the public health
realm and have a more efficient surveillance. This translates in higher availability of
viral genomes and epidemiological information, which are necessary for the evolu-
tionary analysis of virus populations.

The evolutionary analysis of viral genomes and epidemiological surveillance are,
in consequence, necessarily complementary. Implementing a “genomic surveil-
lance” can contribute to control and monitor the spread of infectious diseases and
to design better public health strategies to achieve these goals.
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Population Genomics of Bacteriophages

Harald Brüssow

To the memory of the late Roger Hendrix and Hans
Ackermann, who dedicated their scientific life to
bacteriophage research.

Abstract Due to their small genome size, an abundance equaling or surpassing
that of bacteria, and an obligatory dependence on their host bacteria, bacteriophages
are an ideal study object for population genomics. However, due to a certain research
neglect, less than 2,700 phage genomes were deposited in the NCBI database, far
less than the 90,000 prokaryotic genomes. Large and ecologically representative
phage genome sequencing projects have so far only conducted for a small number
of phage systems. Phages of dairy bacteria belong to this group since they were
systematically collected and extensively sequenced due to their negative impact
on industrial milk fermentation. More than ten different phage species were defined
for Lactococcus lactis and four for Streptococcus thermophilus, the two most
important starter bacteria in cheese and yogurt production, respectively. The genetic
interrelationship between the phages infecting the same host species and between
phages infecting phylogenetically (L. lactis vs. L. garvieae and S. thermophilus
vs. S. salivarius phages) or ecologically closely related host bacteria (L. lactis
vs. S. thermophilus dairy phages) is here reviewed. Dairy phages allowed the
study of population genomics as a function of time, geography, and distinct fermen-
tation technologies. The elucidation of the CRISPR-Cas antiviral defense system
in S. thermophilus provided first insights into the phage-bacterium arms race at
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the level of phage and bacterial population genomics. Phages studied by applied
microbiologists thus became important study objects for fundamental questions
of biology.

Keywords Bacteriophages · Cheese · Dairy · Lactic acid bacteria · Lactococcus ·
Milk fermentation · Phylogeny · Population genomics · Streptococcus · Taxonomy

1 Introduction

Population genomics is an extension of population genetics into the genomic sequenc-
ing era. By large-scale, whole genome comparisons of DNA sequences, population
genomics tries to understand the phylogenetic history, the “phylogeography,” “demog-
raphy,” and occupation of ecological niches by a defined population of organisms.
Bacteriophages (bacterial viruses or, in short, phages) are a particularly interesting study
object for population genomics for a number of reasons. The majority of described
phages are from the order of Caudovirales, which are the tailed phages (Ackermann
2003). They consist of relatively small genome sizes (10–300 kbp) packaged into a viral
capsid, whose size is closely linked to genome length. At the genome sequence, phages
are specific to the bacterial genus level (Grose and Casjens 2014). With respect to
infection, phages are mostly specific to the species or even subspecies level of host
bacteria (Bourdin et al. 2014), and such specificity is largelymediated through tailfibers
that adsorb to surface receptors. Tailed phages are further classified into one of three
families based on their tail length: Siphoviridae (long, noncontractile tail), Podoviridae
(short tail), or Myoviridae (long, contractile tail) (Maniloff et al. 1999; Ackermann
2006). Phages are either virulent or temperate (Campbell 2006). Both have a lytic cycle
of replication and host lysis, while temperate phages have an additional lifestyle that
permits them to integrate into and subsequently exist dormant as part of the host
bacterial chromosome until a later activation (Gottesman and Oppenheim 1999; Little
2006). Virulent and temperate phages can be distinguished by genome analysis (pos-
session of an integrase gene mediating prophage formation and a characteristic genetic
switch region) (Lucchini et al. 1999b). Phage genomes are organized into modules of
genes for replication, structural proteins, and host lysis, although not in a set order
(Desiere et al. 2001a). These basic properties of phage biology seem simplistic in an
isolated examination, yet they become quite complex when analyzed at a population
level in a natural environment.

The viral nature of phages itself is of interest for population genomics. While
phages are not considered living (micro)organisms, they do contain nucleic acids as
their genetic material (Villarreal 2004) and are therefore subject to genome evolution
(Brüssow and Desiere 2006). The biological status of viruses has been controver-
sially discussed, with some researchers considering them as genetic material that
became secondarily independent from cellular life, while others considered viruses
as remnants of biological precursors of cellular life (Brüssow 2009). Whatever the
answer, the split of phages from bacteria goes back to the root of the universal tree of
life, if it does not represent an independent evolutionary tree itself.
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Furthermore, the Darwinian concept of species does not apply to phages and
different modes of evolution for phages than for sexual organisms for which the term
species was defined can therefore be anticipated. Indeed, a distinct modular concept
of evolution was proposed for bacteriophages in 1980 where it was recognized that
recombination and horizontal gene transfer shaped phage genomes more than the
sequential accumulation of point mutations over time on which selection forces
worked (Botstein 1980). This special status of phages was later lost when the role
of horizontal gene transfer also became obvious for bacteria (Doolittle 1999), which
are true living microorganisms, but still not species in the original Darwinian sense.

It is indeed difficult to discuss phages and bacteria separately as phages represent
a major element of mobile DNA for bacteria and are therefore important drivers of
bacterial evolution. When temperate phages integrate their DNA into the bacterial
genome as a prophage and become part of the bacterial genome, they are subject
to selection forces working on the host bacterium, therefore resulting in genetic
cooperation between phages and bacteria (Canchaya et al. 2003). In a number of
important human pathogens, phage-encoded genes are responsible for the virulence
of the pathogen (e.g., Vibrio cholerae, Escherichia coli, Streptococcus pyogenes,
Staphylococcus aureus). Phages have thus impacts ranging from bacterial pathoge-
nicity (Brüssow et al. 2004) to biogeochemical cycles (Roux et al. 2016).

Bacteria additionally evolve to develop mechanisms against phage infection.
This is accomplished through a variety of different strategies, including receptor
modification, restriction-modification systems, CRISPR-Cas systems, etc. Phages
in turn must evolve to overcome the resistance mechanism, creating an ongoing
evolutionary “arms race” between a predator and a prey.

Bacterial species in turn are infected by a variety of phages. Since many phages
have a host range limited to a single bacterial species, frequently only to a limited
number of strains within a single species, this could mean that the number of
different phage types is one order of magnitude higher than the number of bacterial
species (Rohwer 2003), which concurs with recent estimates from metagenome data
(Paez-Espino et al. 2016). Despite the fact that phage genomes are smaller than those
of bacteria, the phage sequence space might thus still be of comparable size to that
of bacteria. The large number of phage genes with no homology to known genes
agrees with this estimate of a large phage DNA sequence space.

Lastly, many environments contain a significant number of phages. Estimates
vary from a ratio of 10:1 to 1:1 for phage to bacterial numbers in marine environ-
ments, and it is suggested that 20% of the bacterial biomass in the oceans is lysed
by phage infection daily. Phages are thus also major ecological players and
one of the most numerous biological entities in the biosphere (Wommack and
Colwell 2000).

Phage research has historically been a springboard for molecular biology, thanks
to their relative simplicity, small size, and ease and speed of experimental manipu-
lation (Cairns et al. 1966). These properties remain assets even in contemporary
biology (Brüssow and Hendrix 2002), including for population genomics. In view
of these considerations, phage population genomics is a subject of substantial
theoretical and practical interest in microbiology, if not for biology in general.
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2 Database Limitations

When stressing the theoretical importance of phage population genomics, there are
several considerable practical problems associated with the subject. While many
large bacterial strain collections exist, only one moderately large phage collection
is maintained in Canada (www.phage.ulaval.ca/). In addition, there are phage col-
lections comprising phage isolates from a single or few related bacterial species
of specific research interest to academic and industrial laboratories, which are not
part of international collections. Researchers interested in phage population geno-
mics can’t therefore rely on existing collections, but must frequently first isolate their
study objects from the field. For several decades, phage has been absent from the
limelight of biological research, and the number of sequenced phage genomes
deposited in the NCBI database reflects this neglect. Despite the scientific attrac-
tiveness of phage and the convenience of sequencing small genomes (Brüssow and
Hendrix 2002), less than 2,700 phage genomes were deposited in the NCBI database
at the beginning of 2017, far less than the 90,000 prokaryotic genomes (Hayes et al.
2017). In addition, viral taxonomists officially recognized only 441 species of tailed
phages in 2016 (Caudovirales) (Krupovic et al. 2016), which most likely represent a
serious underestimate of their true number.

Phage population genomics as an emerging research branch is thus still seriously
data limited; a meaningful analysis can currently only be done for a handful of well-
documented phage systems. Historically, phages have been intensively studied for
Escherichia coli. Following the reductionist approach of Max Delbrück, coliphage
research was historically focused on a detailed genetic analysis of a few selected
model phages. Thanks to efforts initiated by Roger Hendrix for lambdoid coliphages
(Hendrix et al. 1999) and Henry Krisch for T4-like phages (Filée et al. 2005; Petrov
et al. 2010), knowledge of these two coliphage groups has been extended to phylo-
genetic and ecological aspects. A few other phage systems have been investigated
with substantial genome sequencing efforts, providing also valuable material for
phage population genomics. Of note here are the efforts of the “Phage Hunters” from
Graham Hatfull’s lab who sequenced a large number of mycobacteriophages in
student and high school courses (Pedulla et al. 2003; Pope et al. 2015), marine
phage surveys (Roux et al. 2016), and the constitution of large phage collections
as a basis for phage therapy approaches (Kwan et al. 2005; Sarker et al. 2012).
However, currently we owe the best sequencing datasets for phage population
genomics to applied dairy microbiologists, who collect, characterize, and sequence
phages from lactic acid bacteria, which are used as starter bacteria in industrial
milk fermentation.

In cheese and yogurt production, a major cause of fermentation failure is phage
attack in both the industrial and artisanal settings. Dairy fermentation is largely
reliant upon Lactococcus lactis and Streptococcus thermophilus starter cultures.
For the control of the fermentation process, dairy industries regularly screen the
factories for phages, put the isolated phages into collections, and classify these
phages. This activity provides an interesting study material for phage population
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genomics, although it is restricted to a man-made industrial environment. A single
large dairy uses half a million liters of milk per day. Dairies represent an important
part of the food industry from Western societies, which have now been running for
more than half a century (Brüssow 2001). Dairies and their phages represent
therefore an upscaled version of the “evolution machine” constructed by Manfred
Eigen and therefore promise important insights for evolutionary biologists and
geneticists. The present review will concentrate on phage population genomic
aspects in the dairy environment, which reflects the background of the reviewer,
but also the unique possibilities of this man-made environment for experimental
phage population genomics studies.

3 General Aspects of Dairy Phages

Approximately a dozen distinct phage types have been characterized in L. lactis.
With an average genome size of 40 kb and limited nucleotide sequence sharing
between the different phage groups, the minimal sequence space of lactococcal
phages is 12 � 40 kb ¼ 0.48 Mb compared to 2 Mb for the host genome. Both
estimates under project the true size of the respective sequence space. The
pangenome of L. lactis converges toward 6,000 genes (Kelleher et al. 2017).
The average lactococcal gene is 1 kb, which would mean that the pangenome of
the lactococcal phage is about one tenth the size of its host. However, lactococcal
phages belonging to the same phage species still differ by many genes, and each
newly discovered L. lactis phage presents many genes without homologies to known
genes; the pangenome for lactococcal phages is therefore certainly greater and
will come close to that of its host pangenome. For many well-investigated phage-
host systems (coliphages, mycobacteriophages), the viral DNA sphere seems to
match that of its bacterial host, if not to exceed it since many phage pangenomes
are still far from saturation.

The close relatedness of L. lactis and S. thermophilus brings into questions the
genomic relatedness of their phages. The pangenomes of these two major dairy
starter bacteria can be in first approximation considered to be additive. If lactococcal
phages were able to also infect the streptococcal starter and vice versa, the combined
pangenome for lactococcal and streptococcal phages would be less than additive and
possibly far from it. In practice, there are clear cross-species barriers for phage
infection between these two dairy starters: L. lactis phages in general do not infect
S. thermophilus and vice versa. If cross-species infections occur as suggested by
transduction experiments, they are rare and unusual and do not necessarily involve
a fully completed infection (Szymczak et al. 2017). In addition, genetic relationships
between lactococcal and streptococcal phages extend only in exceptional cases to the
nucleotide level and then only over short segments of the genome. The data do not
exclude the exchange of phage genes between these two phage systems, but they
exclude a model where phages are ecologically shared between species. There is
thus no reason to discount the pangenome of lactococcal phages for overlaps with
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streptococcal or other phages. Data from dairy phages thus support a model where
their pangenomes come close to that of their bacterial hosts. Obviously, the large size
of the phage sequence space and its relative isolation from the bacterial sequence
space raise interesting questions about the origin of phage genes.

If the lactococcal and streptococcal phages and their host bacteria present mostly
distinct genes with respect to DNA sequence, this does not mean that they are totally
unrelated. Several lactococcal and streptococcal phage types demonstrate related-
ness at the protein sequence level. Comparative genomics with dairy phages has
demonstrated that several phage types infecting different bacterial species and even
bacterial genera can be traced back to a hypothetical common ancestor phage
(Lucchini et al. 1998; Brüssow and Desiere 2001). However, comparative genomics
in coliphages and dairy phages has shown that phages are not the unit of evolution.
Due to a pervasive role of horizontal gene transfer in phage evolution, evolutionary
histories can only be established for individual phage modules, i.e., units of inter-
acting phage genes, like the genes involved in DNA packaging and phage head
construction.

When considering phage evolution, one might ask whether relatedness of phages
reflects more the phylogenetic or the ecological relatedness of their host bacteria.
The phylogenetic model anticipates relatedness by descent over time scales of
bacterial species and genus formation, entailing that few trans-species genetic
exchanges would occur once species have split. The ecological model anticipates
more frequent genetic exchanges across species barriers for bacteria inhabiting
the same ecological niche. Current data do not allow a clear conclusion on these
alternatives: L. lactis phages are indeed more closely related to S. thermophilus
phages than to phages from a pathogenic Lactococcus species of fish, therefore
suggesting that ecological relatedness dominates over evolutionary relatedness.
However, the database for such comparison of phages from different Lactococcus
species is still small. With the possible exception of the most recently described
S. thermophilus phage group 987 (McDonnell et al. 2016), the dairy phages from
S. thermophilus are more similar to those of S. salivarius, a human oral commensal,
than to L. lactis, indicating dominance of evolutionary relationships. The graded
relatedness of streptococcal phages with other phages that range from nucleotide
over protein sequence similarity to sharing a gene order without sequence similarity
and that mirror the phylogenetic relatedness of their hosts suggests elements of
coevolution of phages with their bacterial hosts. However, a clear separation of both
models cannot be expected. Phages are mobile DNA; recombination between phage
DNA can be expected between two phages infecting the same cell or between a
phage infecting a cell that contains phage as an integrated prophage. The difference
between both models therefore concerns mostly the question of how frequent are
cross-species infections. If they occur very rarely, phylogenetic relationships of the
hosts will dominate for phage relatedness; if they occur more frequently, niche
relatedness will dominate the similarity of phages from different species.

However, comparative phage genomics is not phage population genomics. The
first analysis addresses mainly problems of evolution, while the second looks for
ecological aspects. Dairy phages have here provided some answers. Overall, dairy
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phages are cosmopolites: only weak signals for a geographical fragmentation of
dairy phages were detected. Other phage systems have also shown closely related
phages isolated on different continents. However, in the case of dairy phages,
the dairy factory is a man-made environment where a limited number of defined
bacterial strains are worldwide distributed by starter companies, precluding geo-
graphical specialization of dairy phages. Time series of phage isolation do not reveal
clear trends probably because dairy phages cover too short time periods (decades). In
addition, dairy phage genomes were not systematically sequenced from the same
place over time. Finally, dairies represent a constrained area for phage evolution
since the starter is frequently changed and the dairy is cleaned between each new
fermentation cycle.

With the number of sequenced dairy phages, investigations into genome varia-
tions within a given phage type reveal a type of population dynamics at the genomics
level. This type of analysis allowed the differentiation of a core genome (not
necessarily a contiguous segment of genes, but more a set of shared genes, which
can be scattered across the phage genome) from non-shared genes. The latter must
not necessarily be nonessential genes, but can represent different alleles for the same
gene function. The non-shared genes probably also contain genes that mediate
ecological adaptation to the specific niche. Since most of the non-shared genes in
defined phage types lack annotations, an ecology-oriented population genomics is
not (yet) possible. However, intragroup phage genome comparisons allow inferences
about the mechanisms of genome reshuffling in dairy phages. Exchanges of entire
modules and even to a larger extent single gene exchanges punctuate dairy phage
genomes.

Phages have a couple of easilymeasurable phenotypes, e.g., the burst size¼ number
of phages produced per infected cell; latent period ¼ time between infection and
appearance of progeny phage. Burst size and latent period cannot be read from the
genome, but must be measured with isolated phages in vitro. Dairy microbiologists
reported short latent periods in phages from industrial and long latent adaptation
periods in phages from artisanal cheese production (Samson and Moineau 2010).
Short latent periods and high burst size were interpreted as an adaptation to the
industrial environment. Also the lactococcal phage types differed between industrial
and artisanal cheese production. The latter are probably closer to lactococcal phages
in their natural environment (plant leaves). However, phage genomes are still not
easily “readable” to the researcher such that ecological adaptations can be gleaned
from genome analysis.

Phage population genomics has already delivered important insights for the
evolution and ecological adaptation of important human pathogens. This subject
has been extensively reviewed in the past (Brüssow 2007, 2008). Many of the
temperate phages conferring virulence genes to human bacterial pathogens carry
these genes in a specific genome region (lysogenic conversion module).
S. thermophilus phage isolates show relatively few temperate phages, which is
explained ecologically by the abundance of target cells in the dairy. In contrast,
lactococcal phages particularly from the P335 group represent many temperate
phages. However, very few have been described, but they are rather abundant in
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lactococcal genomes. The temperate lifestyle is believed to represent an adaptation
to rare target cells in nature when producing progeny virions would be a futile effort.
However, some phages from dairy bacteria are very similarly organized as these
prophages from human pathogens. In addition, they contain genes in a genome
region corresponding to this lysogenic conversion module. It was speculated that
these phage genes are candidates for fitness factors for human commensals and
by extension also to dairy bacteria containing prophages. While representing an
attractive model, no proof for this hypothesis has been provided because all genes
from the putative lysogenic conversion module lacked so far annotations and
phenotypes except for the sie (superinfection exclusion) genes in lactococcal and
streptococcal phages (McGrath et al. 2002).

Phage population genomics can also provide interesting insights into the arms
race between phages and their host bacteria. Dairy phages respond to the introduc-
tion of phage resistance mechanisms into dairy starters with countermeasures
circumventing these infection inhibitors. Since dairy microbiologists follow care-
fully the factories for the appearance of such escape phages after introduction of a
phage-resistant starter cell, the effect of strong selective forces on phage genome
adaptation can be studied in detail for dairy phages by phage genome sequencing.
In the man-made industrial dairy environment, this arms race can be studied exper-
imentally and, at large scale, not disturbed by the myriad of confounding factors
met in natural environments. Dairy microbiology and phage population genomics
are likely two cross-fertilizing fields in the near future.

The next sections will provide a detailed review on the population genomics of
dairy phages with literature references for readers interested in the state of current
knowledge in that specific field.

4 Population Genomics of Lactococcal Phages

4.1 Early Taxonomy of Lactococcal Phages

Lactococcus lactis belongs to the handful of bacteria domesticated by humans
shortly after the domestication of milk-producing animals (Passerini et al. 2010).
For millennia, milk fermentation was an empirical small-scale activity of dairy
farmers, and industrial milk fermentation was only developed in the twentieth
century. L. lactis is now extensively used as a bacterial starter for many fermented
dairy products. Because of the worldwide industrial and financial consequences
of phage attack, particularly in cheese production, L. lactis phages are among
the most commonly isolated phages. By 2007, over 700 lactococcal phage isolates
had been reported in the literature (Ackermann and Kropinski 2007). Over the
last decade, this number has probably passed beyond 1,000 with a concomitant
increase in complete lactococcal phage genomes, which tallied 84 sequenced phage
genomes in a census from 2016 (Murphy et al. 2016) and will have surpassed 100
by now (Mahony et al. 2017b). Early on, dairy microbiologists tried to establish
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a taxonomic differentiation scheme for lactococcal phages based on phage morphol-
ogy, host range determination, restriction analysis, and especially DNA-DNA
hybridization techniques (Jarvis 1984; Braun et al. 1989; Prevots et al. 1990).
Electron microscopic analysis revealed that all isolated lactococcal phages belonged
to the group of tailed phages (Caudovirales). Tailed phages come in three different
phage families: Siphoviridae (phages with long, flexible, noncontractile tails),
Podoviridae (phages with short tails), and Myoviridae (phages with contractile
tails). The vast majority of lactococcal phages belong to the family of Siphoviridae
(Deveau et al. 2006). Morphologically, the lactococcal Siphoviridae can be distin-
guished by capsid diameter ranging from 45 to 70 nm (the capsid size is roughly
proportional to genome size), capsid form (isometric to slightly elongated), and tail
lengths, which cover sizes from 93 to 490 nm (the latter corresponds to half the
length of a small-sized bacterium). Baseplate structures are likewise variable, as well
as the collar structures. Only two Podoviridae were detected within the lactococcal
phage isolates. The lactococcal Podoviridae showed either a slightly or extensively
elongated, cigar-shaped phage, both with small tails (19 and 32 nm, respectively).
Strikingly, not a single myovirus has so far been identified in L. lactis. Based on
morphology and DNA-DNA hybridization analysis, ten phage groups (sometimes
also called phage species) were distinguished (Deveau et al. 2006). The species
concept was used for phage taxonomy purposes (Ackermann et al. 1992), but one
should be aware that it represents a polythetic species concept. Polythetic means
sharing a number of characteristics, which occur commonly in members of a group,
but none is essential for membership in that group. The polythetic species concept
for phages is a direct reflection of the modular mode of phage evolution (Botstein
1980) and is of central importance for the understanding of phage population
genomics.

4.2 Lactococcal Phage Sequencing and Database

At least one representative from each of the ten lactococcal phage species was
sequenced, allowing a comprehensive comparative genomic analysis of lactococcal
phages. Of interest for phage population genomics, multiple phage isolates from the
“936 species” were sequenced, including 28 isolates from a survey in 8 Australian
cheese factories conducted between 1994 and 2001 (Castro-Nallar et al. 2012)
and 35 isolates sampled between 2009 and 2013 from 4 Dutch dairy factories
(Murphy et al. 2016). Several genomes were also deposited for the “P335 species”:
15 phage and 8 prophage genomes were reported (Oliveira et al. 2016), and recently
17 novel genomes were added (Mahony et al. 2017b). The “949 species” is
represented with 12 complete phage genomes, the “P087 species” with 7 genomes
(Mahony et al. 2017a), and the “1706 species” with 5 (Kot et al. 2014), while
only 1 or 2 genomes are available for the remaining lactococcal phage species
(Mahony and van Sinderen 2014). The overrepresentation of genome sequences
for lactococcal phages from the 936 and P335 species reflects the fact that these two
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lactococcal phage species also represent the main causes of milk fermentation
failures worldwide (Josephsen et al. 1994; Moineau et al. 1992), while the other
species are rare isolates from dairy factories, sometimes even representing unique
isolates, which are thus of fundamental interest for defining the breadth of
lactococcal phage genome variety, but of limited interest for practical phage control
in the factories. However, this preponderance of lactococcal phages from the
936 and P335 species depends on the ecological context. While these isolates
dominate in industrial cheese environments, the “rare” lactococcal species 949 and
P087 are prevalent in whey from artisanal cheese making (Mahony et al. 2017b).
The major difference between both systems is the fact that large dairies work with a
genetically restricted set of industrial starter strains provided by specialized com-
mercial suppliers, while artisanal cheese makers use complex, variable, and
undefined starter mixtures. The streamlining of the L. lactis starters in the industry
has thus also narrowed the diversity of lactococcal phages encountered in industrial
context. The natural habitat of L. lactis is decaying plant material where this
bacterium ferments plant cell wall material. The dairy strains of L. lactis living in
the nutritionally richer milk environment are derived by a process of genome erosion
from plant strains of L. lactis (Siezen et al. 2008). It will be interesting to investigate
the ecological specialization of L. lactis phages following their host from plant
association to artisanal and from there to industrial milk fermentation, but phage
isolates from the original niche occupation of L. lactis in plants are completely
lacking for such studies and are still scarce for artisanal cheese production.

4.3 The 936 Species (Now: Sk1virus)

The prototype of the “936 species” is phage sk1 for which a detailed transcription
map was established, differentiating blocks of early, middle, and late transcription
genes (Chandry et al. 1994). The overall organization of this 28 kb genome resem-
bled that of a size-reduced E. coli phage λ genome. The left half of the sk1 genome
contains late structural genes, all transcribed rightward, and intriguingly the gene
order closely resembles the structural gene order of phage λ, without, however,
sharing any sequence similarity at nucleotide or protein level with phage λ.
Only the gene map and the order of the prospective structural genes were very
similar between both phages. A similar genome organization was also found in a
number of phages from Gram-negative and high GC-content and low GC-content
Gram-positive bacteria, even in viruses infecting one subgroup of Archaea (Brüssow
and Desiere 2001). This structural gene module seems to represent an old evolu-
tionary constellation that was conserved from a hypothetical ancestor phage into
modern descendants of this evolutionary viral lineage when adapting to a wide range
of prokaryotes. The conservation of this gene order has fascinated biologists, and
several explanations were proposed. Some researchers noted a parallel between
the phage particle’s morphology and the gene map (DNA packaging, head, head
to tail, tail fiber, lysis genes) and suggested that this order would assure a temporal
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sequence of expression parallel to their requirement during morphogenesis (Casjens
and Hendrix 1974). Others have argued that a fixed linkage arrangement has a
selective advantage since it minimizes recombination events that lead to nonviable
phages when the same cell is infected with two different phages (Stahl and Murray
1966). This concept underlies the Botstein hypothesis of modular phage evolution
(Botstein 1980). Modular evolution does not exclude recombination within a func-
tional module between unrelated phages, but since they bring together incompatible
genetic elements, no viable phage is formed and consequently counter-selected
(Juhala et al. 2000). Selection thus favors phages with a conserved gene order within
a given module. Other researchers suggested that short DNA repeats within phage
genomes (Blatny et al. 2004) or promotor sequences demarcate preferred sites for
recombination enzymes.

The 28 Australian 936-like phages indeed showed an extremely conserved
structural gene module (Castro-Nallar et al. 2012). The only variation was found
in the length of the neck passage structural gene and a small adjacent gene, which
allowed the separation of the Australian 936 phages into two subgroups. The sub-
groups correlated with host tropism, but not geographical location of the factories.
The neck passage protein and the receptor-binding protein represented peak regions
in the compared 936 genomes with respect to genetic diversity and recombination
rate. The 35 Dutch 936-like phages also showed a conserved structural gene module,
but they displayed more variations than the Australian phages (Murphy et al. 2016).
One additional site of diversity was the region between the small and large terminase
genes involved in DNA packaging which were in some isolates separated by one to
three extra genes. This additional extra DNA comprised a homing endonuclease
and a methyltransferase gene, which suggest invasion of the phage genome by
another mobile DNA element (Foley et al. 2000). Another site of diversity is located
in the major tail gene, which is in some phages not preceded by a neck passage
structural gene and followed in others by a tail extension gene. Variations in that
genome region correlated with morphological changes in the neck of the phages
displaying either whiskers, a double disc, or no extra structure. Another tail mor-
phology variant, a spiral structure around the tail, was associated with a translational
frameshift between the major tail and the tail extension genes. Also, the Dutch
936-like phages showed sequence diversity over the receptor-binding gene, which
correlated with the cell wall polysaccharide biosynthesis type of the Lactococcus
host cell, suggestive of positive selection for host adaptation.

The right genome half of the 936-like phages is nearly entirely occupied by
numerous, small-sized, early transcribed genes; all are transcribed in opposite
direction to the structural genes. The few annotated genes suggest DNA replication
function. The Australian phages showed highly conserved replication modules
within each of the two 936 subgroups (Castro-Nallar et al. 2012). The early gene
modules from the Dutch phages displayed substantial differences between the
sequenced isolates suggesting gene gain and loss. Some variation was tentatively
associated with genes circumventing host cell-encoded antiphage systems of abor-
tive infection (Abi) systems (Murphy et al. 2016) resulting from the arms race
between bacterial phage defense systems and phage anti-defense countermeasures.
Demographic analysis revealed a constant population size and genetic diversity of
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the phages through time, which could mean that there was a stable number of
outbreaks through time over the time period covered by phage isolates (Castro-
Nallar et al. 2012) and that the introduction of Abi systems met countermeasures
of phages (Labrie et al. 2010).

Middle transcripts of 936-like phages are derived from a small genome region at
the right end of their genomes. These genes are transcribed in opposite direction to
the early genes. The Australian phages differed by the presence or absence of tRNA
genes, while the Dutch phages showed more gene variation in this genomic region.

Notably, the Australian phages clustered into the same two distinct groups
whether based on late, early, or middle gene clusters, therefore suggesting that the
reshuffling of phage genomes between modules – as predicted by Botstein – did not
occur during the last decades. Molecular clock arguments indicate time frames
between 60 and 110 years for the differentiation of the two subgroups, a time
frame compatible with the industrialization of dairy activities in Australia, but
probably too short for the Botstein type of phage genome evolution to occur.
This argument limits also the use of dairy factories as proxies for an evolutionary
machine as an alternative to large-scale laboratory evolution experiments (Lenski
2017). Loss and gain of single genes under selective pressure of Abi systems were
by these population genomics data identified as rapid processes, occurring within
the considered time frame. This concurs with the observation of resistant mutants
created by natural recombination after biotechnological introduction of Abi systems
into starter strains (Labrie et al. 2010).

When phages were sorted according to a presence or absence matrix of protein
families, some clustering by country was evident. However, frequent exceptions
were seen and attributed to the global movement of industrial starter cultures,
which distorted any geographical clustering via natural means of phage dispersal
(Murphy et al. 2016).

4.4 The P335 Quasi-Species

The second major group of phages isolated from cheese fermentation failures is
named after a phage isolated in 1979 from a German dairy (Labrie et al. 2008).
It showed an isometric small head, a relatively short tail, and a complex baseplate.
Its genome is 33.6 kb long and showed a clear modular organization. A replication/
transcription module is followed by a morphogenesis and a lysis module. With
lactococcal phages TP901-1 and Tuc2009, better investigated members of the
P335 group, it shares not only a closely related gene map, but also sequence identity
over the morphogenesis module. The alignment was, however, patch-wise: regions
with protein sequence identity >95% alternated with regions of lesser or no
sequence identity. Differences in the tail tape and baseplate genes correlated with
differences in tail length and baseplate structures. Over the replication/transcription
module, P335 shared only 4 out of 22 genes with TP901-1, but the shared genes
were not adjacent, therefore excluding a single modular transfer event. Phage P335
lacked the entire lysogeny module located at the left genome end of the temperate
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phages TP901-2 and Tuc2009. Between the transcription and morphogenesis mod-
ule, P335 possesses a transcribed four-gene insert, not known in other lactococcal
phages but found in a prophage from a streptococcal pathogen.

Comparative genomics in the P335 phage species thus demonstrates a different
mode of genome evolution than seen for the 996 species. Quite extensive gene
exchanges have apparently shaped the P335-like phage genomes. Small blocks of
genome segments rather than entire modules were the target for genetic recombina-
tion. This conclusion was not only derived from genome comparisons but also seen
in natural mutants from another lactococcal phage from the P335 group, namely,
phage ul36 (Bouchard and Moineau 2000). Phage ul36 acquired DNA sequences
from a prophage of its L. lactis host. The recombinant phage had the selective
advantage to be insensitive to AbiK abortive infection system. The exchange
was mediated by homologous recombination over a stretch of 23 bp with 100% bp
identity between phage and prophage. This was not a singular event: DNA acquisi-
tion by phages from the bacterial chromosome (Moineau et al. 1994) and from a
plasmid (Hill et al. 1991) has previously been described. Also, phage LC3, a member
of another subgroup of the P335 phage species, contained 14 noncoding regions
larger than 50 bp that shared sequence identity with similar positioned intergenic
regions of other P335 phages and might thus represent potential recombination sites
for gene exchange. Two of these regions were indeed located at mosaic borders
(Blatny et al. 2004).

With such a prominent role of recombination for phage genome evolution, it is
obvious that the definition of a phage species will meet with severe difficulties.
Indeed, the P335 species was subdivided into four subgroups, I–IV. The common
denominator was literally a single gene, a dUTPase, different from the chromosomal
dut gene but strangely conserved across the phages of the P335 species. The function
of this phage gene is still unknown, but its conservation was used by dairy micro-
biologists to develop a diagnostic PCR assay for P335 phages. However, exceptions
have been found (Kelly et al. 2013), questioning both the essential role of this gene
for phages of the P335 group and removing the last shared denominator in the P335
species. The P335 species was therefore referred to as a polythetic species (Labrie
et al. 2008) or as a quasi-species (Labrie and Moineau 2007; Chopin et al. 2001).
The lactococcal phages from the P335 species are thus a good illustration for the
distinct mode of genome evolution in bacteriophages in general. The need for
collecting and characterizing large numbers of phages for the practical needs of
the dairy industry has provided interesting raw material for phage population
genomics studies. After the recent sequencing of 17 novel P335 phage genomes
from 8 different countries (Mahony et al. 2017a), 27 complete genomes can now be
analyzed.

4.4.1 P335: Subgroup I (e.g., BK5-T)

The prototype of this phage group is the temperate phage BK5-T with a 40 kb-long
genome. BK5-T shares >60% aa sequence identity with two other members of this
subgroup (phages 4268, bIL286), but the sequence relatedness is restricted to the
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morphogenesis module and excludes the tail appendages (Deveau et al. 2006).
Only two genes from the remainder of the genome are shared with phage 4268.
With lactococcal phages from the other P335 subgroups, BK5-T shares only a few
isolated nonstructural genes. BK5-T displayed similarity at the protein sequence
level over a 15 kb-long part of the morphogenesis module with S. thermophilus
phage Sfi21. Notably, a gradient of relatedness ranging from nucleotide sequence to
protein sequence similarity to gene map similarity without sequence relatedness was
seen with phages from Gram-positive bacteria. Since the degree of relatedness
was correlated with the evolutionary distance separating their bacterial hosts, these
observations were interpreted as elements of vertical evolution for the structural gene
cluster of this phage group (Desiere et al. 2001a, b). Protein sequence similarity was
also observed between several genes of the DNA replication module from BK5-T
and Sfi21 (Desiere et al. 1997).

4.4.2 P335: Subgroup II (e.g., TP901-1)

When ten lactococcal phages from subgroup II, representing isolates from four
continents, were compared, a complex pattern of genome sharing was observed.
Phages independently isolated in Australia, the UK, and the USA shared more than
90% aa identity over the entire genome except for two tail proteins (TMP, Tal), while
phage isolates from the USA and Canada aligned essentially across the morphogen-
esis module only, excluding the receptor-binding protein-encoding gene (Mahony
et al. 2017a). The alignments of the structural module showed a patchwork of related
and unrelated genes for some subgroup II phages, suggesting genetic exchange of
single genes or small gene groups. Apparently, single genes or gene groups exist in
multiple alleles that can be relatively freely assorted, leading to genetic mosaics for
these phage genomes (Labrie and Moineau 2007). No significant sequence identity
was seen between the structural gene modules from subgroup II phages and those of
the other subgroup P335 lactococcal phages. One might therefore ask whether
subgroup II phages are not better defined as a distinct phage species particularly
since the different subtypes of the P335 phage species can also be clearly distin-
guished by morphologically distinct distal tail regions (Mahony et al. 2017a). Since
this would further increase the already large number (n ¼ 11) lactococcal phage
species, dairy microbiologists have (so far) opted against this solution.

4.4.3 P335: Subgroup III (e.g., LC3)

The dot-plot analysis of the subgroup III lactococcal phages LC3 (Blatny et al. 2004)
and r1t (van Sinderen et al. 1996) showed an alignment over the entire genome,
punctuated by smaller and larger alignment gaps. The gaps mostly respect gene
borders, suggesting that single genes or groups of adjacent genes were the units of
genetic exchange. Interestingly, these gene groups were partially flanked by direct
repeats, which may represent target regions for recombination enzymes and thus
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demarcate predestined breakpoints (Blatny et al. 2004). When comparative geno-
mics was extended to further subgroup III phages, substantial variation over the
nonstructural genes was observed. Some phages shared only a small number of
isolated genes (Mahony et al. 2017a), less than between some inter-subgroup
comparisons within P335 phages (Blatny et al. 2004). In contrast, the structural
modules were shown to be better conserved (Mahony et al. 2017a).

4.4.4 P335: Subgroup IV (e.g., Q33)

Subgroup IV phage isolates from three continents shared a highly conserved struc-
tural gene module, while no links to structural genes from other lactococcal phages
were detected. Since Q33 structural genes shared similarity with prophage from
diverse colonizers of the gastrointestinal tract (Enterococcus, Bifidobacterium), it
was suspected that Q33-like phages infected initially another host before acquiring
the appropriate machinery to infect Lactococcus. In support of this hypothesis,
subgroup IV phages shared substantial gene identity over nonstructural genes with
subgroup III P335 phages (Mahony et al. 2013, 2017a).

4.5 The c2 Species (Now: C2virus)

Together with phages from the 936 and P335 group, phages from the c2 group are
consistently found in industrial milk fermentation failures that use L. lactis as starter.
C2virus, which is recognized by the International Committee on Taxonomy of
Viruses (ICTV), shows a prolate head in contrast to the isometric head of the
936 and P335 phages and displays a smaller 22 kb genome. Two subgroups were
distinguished in this exclusively virulent phage species: c2- and bIL67-like phages.
Both genomes showed an absolute synteny of their genome maps, nearly bp
sequence identity over the leftmost 17 kb of their genomes, but differed for a
group of three structural genes at the right end of the genome, which displayed
only about 40% aa sequence identity (Lubbers et al. 1995). Sequencing of a larger set
of C2virus isolates confirmed this separation into two subgroups and linked the
difference observed with the three genes at the right genome end (l14–l16 in c2) with
the recognition of two alternative phage receptor proteins Pip and YjaE on L. lactis
host cells (Millen and Romero 2016). Hybrids between c2 and bIL67 phages could
be created in vivo, demonstrating that host-determinant specificity serves as a strong
selective pressure for phage evolution by recombination (Millen and Romero 2016).
By using only host strain rotation as selection pressure, phage-phage recombinants
could be created, which associated further genome regions with host range determi-
nants at the level of DNA entry (l10 in c2) and cos-end ligation (1.5kb right terminal
end) (Rakonjac et al. 2005). Starter strain rotation, used in the dairy industry to keep
phage titers low, might ironically stimulate horizontal gene transfer contributing to
the observed mosaicism of dairy phages.
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4.6 The Not So Rare Lactococcal Phage Species
949 and P087 from Artisanal Cheese

More than half a dozen further L. lactis phage groups have so far been identified.
Due to their low industrial prevalence, they represent sometimes only single,
sequenced isolates. However, it must be remembered that their rarity refers to a
man-made environment, while their prevalence is sometimes higher in a natural
environment (Mahony et al. 2017b). This was demonstrated for two such rare
lactococcal phage groups, repetitively isolated and sequenced from artisanal cheese
production. Of course this observation contradicts their rarity and shows that the
frequency of isolation depends on the ecological niche investigated. Isolation of
phages is difficult from artisanal cheese since starter cultures are undefined and
complex. When using a test panel of 25 indicator strains for phage detection in
traditional Sicilian cheese whey, 59 phage isolates were obtained. With a multiplex
PCR approach, 51 isolates could not be typed, pointing to a high prevalence of
variant phage groups, not covered by this PCR. The artisanal cheese whey yielded
representatives of the previously defined “rare” phage groups 949 and P087.

Phage 949 is, in many respects, unusual: morphologically it represents a sipho-
virus with a large isometric head of 70 nm diameter. It is the largest known
lactococcal phage genome with 115 kb of DNA, containing terminal redundancy
suggesting a pac-site phage. Phage 949 presents a 500 nm-long tail, which is
larger than previously reported for any siphovirus and renders it more sensitive to
thermal inactivation (Mahony et al. 2017b) practiced in industrial cheese making.
Its genome comprises 154 ORFs that are subdivided into 4 segments of opposite
orientation. Half of the ORFs have no significant identity with entries from the NCBI
database. Matches were mostly with Firmicutes and their phages at an aa identity
level below 50%. The genome organization was unusual and characterized by a
number of similarities with T4 phage (e.g., the presence of ribonucleotide reduc-
tases, group I introns, many tRNA genes) (Samson and Moineau 2010). When
12 further 949-like genomes were included into the comparison, only 94 gene
families were identified for the core genome (where members of a given core gene
family are defined as those whose deduced products share aa identity above 50%,
while all analyzed genomes should contain at least 1 member of that family). The
core genome extends only across half of the genome map indicating substantial
variability within this phage species (Mahony et al. 2017b). A further unusual
feature of the 949 phage group was its broad host range on lactococci and its wide
ecological distribution: 949-like phages were also found in rennet from the stomach
of young ruminants. However, these phages may have originated from the whey of
the artisanal fermentation that may have been used as feed for piglets and calves.
In fact, except for a few scattered, gene-poor regions, the cheese phage isolate WRP3
aligned at the nucleotide level across the entire genome length with the sewage
phage L47 (Mahony et al. 2015), isolated on a grass-associated L. lactis strain
(Cavanagh et al. 2014). As mentioned above, L. lactis is believed to have evolved
from plant strains. The domestication of this organism to the milk environment is
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associated with genome reduction and gene decay and the acquisition of specific
genes involved in protein and lactose utilization by horizontal gene transfer
(Cavanagh et al. 2015). The case of the 949-like phages indicates that the ecological
distribution and genetic diversity of L. lactis phages might be substantially greater
than currently appreciated.

Phage genes conferring adaptation to a specific niche beyond receptor-anti-receptor
interactions in host recognition (Mahony et al. 2017a, b) are less well investigated for
lactococcal phages. For example, phage 949 has a latency period of 70 min, which is
longer than latency periods commonly found in dairy phages from industrial environ-
ments, which can be as short as 20 min (Samson and Moineau 2010) and most likely
represent an adaptation to the fast-growing industrial L. lactis starters. The predomi-
nance of phages from the 936, P335, and c2 group in dairies might present adaptations
to highly domesticated L. lactis strains, which went through two selection processes:
first, the selection for milk-adapted lactobacilli in prehistoric time of early dairy
activities documented in archaeological sherds from Turkey (Evershed et al. 2008)
and, second, a selection for efficient industrial starters during the twentieth century.
L. lactis not undergoing this domestication process have certainly survived in their
natural habitat on plant leaves and phages adapted to this environment. As there is
no applied incentive to study lactococcal phages from this environment, our knowl-
edge about these natural lactococcal phages is extremely limited. The distinct nature of
phage isolates from artisanal cheese allows a fascinating glimpse into the world of
preindustrial lactococcal phages.

A similar situation applies to lactococcal phage P087, a siphovirus with an
isometric head and a 60 kbp-long, circularly permutated genome with an uncommon
organization. All genes are oriented in one direction. The left genome half encodes
nonstructural genes involved in the early phage infection cycle. The right half
encodes structural proteins, which display distant sequence similarity with a pro-
phage from a clinical Enterococcus faecalis isolate (Villion et al. 2009). E. faecalis
overlaps the ecological niche of L. lactis since it is also isolated from dairy foods,
but the level of sequence identity is mostly below 35%, which argues against direct
horizontal gene transfer between Enterococcus and Lactococcus. Six further P087-
like phages were isolated from artisanal Sicilian cheese whey. Their sequencing
revealed a conserved P087 core genome that comprised 80% of the predicted
genome. Despite this high degree of genome conservation, phylogenetic tree anal-
ysis split P087 phages into three separate branches (Mahony et al. 2017b).

4.7 Raw Milk-Associated Lactococcal Phages: The Case
of the 1706 Species

Another interesting case is represented by phage 1706. It was isolated 20 years ago
from a failed French soft cheese production, but rarely encountered in dairies since.
Phage 1706 is a siphovirus with an isometric head, a relatively long tail (276 nm),
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and a 56 kb-long cos-site containing DNA genome, with an unusual constellation of
the lysis cassette (Garneau et al. 2008). A large, contiguous segment of the morpho-
genesis module and several regions of nonstructural genes share a common genome
organization and up to 60% aa sequence identity with a prophage from Clostridium
leptum, a constituent of the human fecal microbiota, and Ruminococcus torques,
found in the rumen of cattle and sheep. This finding recalls the isolation of
949 phages from rennet of young ruminants with the caveat cited above. However,
a recent horizontal transfer from clostridia is unlikely: the GC content of phage 1706
is typical for lactococci (34 vs. 36%), while the C. leptum prophage and its host have
a much higher GC content (45 vs. 50%) (Garneau et al. 2008). If phage 1706
originated in clostridia, enough time has elapsed since its cross-species infection to
adapt its genome to the new low GC-content host. Interestingly, phage 1706 carries
a clear signature of adaptation to lactococci in possessing a receptor-binding gene
that shares 71% aa identity with a L. lactis prophage. A similar prophage had
contributed genes to L. lactis phages infecting a host containing two different
phage resistance mechanisms, AbiK and AbiT (Labrie and Moineau 2007).
Apparently, under selective pressure of resistance genes, prophage elements provide
the genetic material to superinfection phages to escape from control. Prophage-
phage interaction thus drives the evolution of lytic phages in L. lactis. Phage 1706
might therefore represent the outcome of a cross-species phage infection where the
resulting phage adapted to the new host by modifying its GC content and acquiring
a L. lactis-specific receptor-binding gene. Acquisition of only the receptor-binding
gene was apparently not enough to change the host specificity, since this gene
was preceded by two tail proteins also related to L. lactis, more specifically phage
bIL286 (P335 subgroup I). Apparently, these tail proteins are also needed to connect
the receptor-binding protein to the remainder of the tail from phage 1706.

Four lactococcal phages isolated 40 years ago from raw milk were recovered from
a freezer and sequenced. They turned out to be closely related, sharing 90% bp
identity between each other. They also shared 45% overall bp identity with phage
1706, but regions of similarity were scattered across 19 non-contiguous genomic
segments, and none was larger than 1 kb (Kot et al. 2014), pointing to a complicated
evolutionary history of phage 1706, which might be the result of multiple, sequential
recombination events.

4.8 Rare Lactococcal Siphoviridae Isolates: Q54 and 1358

For the dairy technologist, the rare, sometimes unique lactococcal phage isolate
represents curiosities of little practical interest. For the population geneticist, such
isolates provide important additional information on the overall natural diversity of
L. lactis phages and could shed light on their origins, evolution, and relationships
with other phages.

Phage Q54 is such a rare lactococcal phage isolate. With its prolate head, this
siphovirus closely resembles C2virus. However, DNA-DNA hybridization failed to
reveal any homology with the known lactococcal phage species. Q54 has a narrow

314 H. Brüssow



host range, a property which it shares notably with the rare phage isolates 1706 and
949. Its 27 kb-long cos-site DNA genome contains early and late morphogenesis
modules on the upper strand and a smaller segment containing further early genes on
the lower strand. The morphogenesis module shares a nearly collinear gene map and
up to 34% aa identity for six genes with C2virus. Five isolated nonstructural genes
show up to 59% aa identity with the lactococcal phage sk1 (Fortier et al. 2006).
The genome analysis suggests recombination events between c2-like and 936-like
lactococcal phages. The presence of three separate genes, related to P335, indicates a
complicated recombination and evolutionary history of phage Q54. Genes related to
P335-like phages are not surprising since this lactococcal phage group contains
temperate phages, which reside as prophages in the bacterial genome (Chopin et al.
2001). Prophage DNA is genetically accessible for recombination to phages superin-
fecting such lysogens.

Phage 1358 was isolated in 1981 in New Zealand. With respect to size, it is the
smallest of the lactococcal Siphoviridae. The left half of the 37 kb-long dsDNA
genome encodes the morphogenesis module, the right half nonstructural genes; all
genes are transcribed in the same direction (Dupuis and Moineau 2010). Several
features make this lactococcal phage unusual. The genes of the morphogenesis
module share 25–49% aa identity with Listeria monocytogenes phages P40 and
P35, and two segments of the DNA transaction genes resemble putative prophage
genes from Listeria. Not a single best gene match was with a lactococcal phage.
Even more unusual was the high GC content of 51%, far above all other lactococcal
and Listeria phages, rendering the origin of this phage enigmatic. Problems with the
codon usage might explain the long latent period of 90 min and the rare isolation
of this phage from industrial cheese making.

4.9 Rare Lactococcal Podoviridae Isolates: P034 and KSY1

Lactococcal phages from the P034 species display a prolate head, whiskers, and a
short tail characteristic for Podoviridae. While they have been repetitively isolated in
the dairy industry, they represent less than 1% of the phage isolates (Braun et al.
1989). Their 19 kb-long dsDNA genome is in several aspects unusual for lactococcal
phages: it contains 0.6 kb inverted terminal repeats, a phage-encoded DNA poly-
merase, and a terminal protein (Kotsonis et al. 2008). The genome contains non-
structural and structural genes in opposing transcriptional orientations. Despite a
distinct overall genome map organization, several similarities including weak
sequence similarity place this lactococcal phage close to Bacillus subtilis phage
ϕ21 and Streptococcus pneumoniae phage Cp-1. However, two putative tail genes
show 53% aa identity with lactococcal phages, which were possibly needed to
interact with the L. lactis host. DNA-DNA hybridization between different members
of the lactococcal P034 species suggested some genomic variability.

Lactococcal phage KSY1 is another unusual and so far unique isolate. It shows a
220 nm large cigar-shaped head structure, an elaborate base plate, and a short tail,
defining another Podoviridae. In contrast to the lactococcal Siphoviridae, which
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show distantly related λ-like genome maps for the structural module, KSY1 displays
a T7-like transcription system, including an RNA polymerase. Several genes show
low-level sequence similarity with diverse E. coli, Bacillus, Lactobacillus, Strepto-
coccus, and Staphylococcus phages. Notable is a >80% bp identity over a 5 kb
segment encoding putative baseplate and adjacent tail genes from Lactococcus
phages of the P335 group (Chopin et al. 2007). This observation suggests that
genes enabling interaction with the L. lactis cell surface were possibly acquired
from lactococcal prophages by an alien phage following a cross-species infection.
This scheme seems to be a common motive in rare lactococcal phage types.

4.10 An Outgroup: L. garvieae Phages

A close phylogenetic relative of L. lactis is L. garvieae, an important fish pathogen,
which has also been isolated from raw milk, sewage water, and vegetables. Several
L. garvieae phages were characterized, e.g., the soil isolate GE1 (Eraclio et al. 2015).
GE1 displays a morphology that closely resembles L. lactis phage c2. In addition,
GE1 shares a comparable genome map despite a slightly larger genome size
(25 vs. 22 kb). Thirteen of the forty-eight GE1 ORFS showed aa identity up to
58% with phage c2, but at most three adjacent genes demonstrated this sequence
identity suggesting several modular exchanges between both phage systems in
a distant past.

L. garvieae phage WP-2, isolated from water of a rainbow trout farm, presents
a 19 kb genome with two opposing nonstructural and structural gene modules
including a DNA polymerase. It is a new member of the Ahjdlikevirus genus of
Podoviridae with numerous matches to Staphylococcus phages at 30–40% protein
sequence identity; only two genes shared similarity with other L. garvieae phages
(Ghasemi et al. 2014).

Subsequently a prophage was induced from a L. garvieae strain of marine fish.
The siphovirus PLgT-1 possesses a 40 kb genome with a genome organization
that is typical of many temperate dairy phages. A short lysogeny module is diver-
gently transcribed from the remainder of the genome comprising DNA replication/
morphogenesis/lysis modules. It shared with L. lactis phage TP712, a member of
the P335 species, the overall genome organization and high sequence identity over
the central part of the genome that encodes transcriptional regulation, DNA pack-
aging, and head and major tail genes (Hoai et al. 2016). However, homology was
frequently closest with an Enterococcus phage genome. Recently, eight prophages
from L. garvieae isolated from dairy products and fish were characterized. Prophage
PLg-TB25 with a 38 kb genome, isolated from a cheese strain, displayed homology
with other L. garvieae phages over nonstructural genes, while the structural genes
resembled mostly various phages from other genera of low GC-content Firmicutes
(however, protein sequence identity remained <55%). Another prophage from a
dairy L. garvieae strain was shown to display >90% and 50% protein sequence
identity with head and tail proteins from L. lactis phage ul36.k1 (a subgroup II P335
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species). The same strain yielded another prophage which showed a similar pattern
of identity with L. lactis phage r1t (Eraclio et al. 2017). Further L. garvieae pro-
phages showed a similar genome organization, but no significant identity with other
phage genomes. Overall, L. garvieae phages seem not to be in active gene exchange
with L. lactis phages prevented either by ecological or species barrier effects.

5 Streptococcus thermophilus Phages

S. thermophilus is an interesting reference for comparative phage genomics with
lactococcal phages for several reasons. Lactococcus was initially referred to the
genus Streptococcus. Lactococcus has in the meanwhile been attributed to a distinct
genus. S. thermophilus is, after the other Lactococcus species, the closest phyloge-
netic relative of L. lactis. Both species share the same ecological niche, the dairy
environment, and a similar evolutionary pathway. Like L. lactis, S. thermophilus
adapted mainly through loss of function to milk as a habitat (Hols et al. 2005).
Today, S. thermophilus is, after L. lactis, the second most important starter in the
dairy industry. Both species have ample opportunity for genetic exchange since both
starter bacteria are used in the same vat in many industrial fermentation processes.
It is thus interesting to compare the bacteriophages from both species to understand
forces that drive genome evolution of phages in this ecological niche.

Two basic observations have struck dairy microbiologists when comparing both
phage-host systems. Firstly, S. thermophilus phages are highly uniform compared to the
diversity of L. lactis phages (Mahony and van Sinderen 2014). Secondly, L. lactis
mounts a multitude of frequently plasmid-encoded abortive infection defense mecha-
nisms (Labrie et al. 2010), while plasmids are rare in S. thermophiles. This suggests a
fundamentally different phage-host interaction, as recently underlined by the discovery
of the CRISPR-Cas defense system in S. thermophilus (Barrangou et al. 2007).

5.1 Two Phage Lineages in Streptococcus thermophilus:
cos-Site Sfi21 and pac-Site Sfi11 Phages

Compared to the great diversity of lactococcal phage species, the taxonomy of
S. thermophilus phages was, until recently, quite simple. Over decades of
factory surveys, the collected phages revealed morphologically uniform phages:
Siphoviridae with 65 nm isometric heads, 260 nm-long noncontractile tails, and
a long tail fiber (e.g., Brüssow et al. 1994a; for reviews see Brüssow 2001; Mahony
and van Sinderen 2014). Most phages represented virulent isolates, but the less
numerous temperate S. thermophilus phages showed close genetic relationship
with the lytic phages (Brüssow and Bruttin 1995). In fact, by serial passage of
the temperate S. thermophilus phage Sfi21 in the laboratory, spontaneous lytic phage
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mutants were derived that had showed deletions at identical nucleotide positions,
which suggests a site-specific recombination system transforming temperate into
lytic S. thermophilus phages (Bruttin and Brüssow 1996). A faulty side reaction of
the phage integrase may have been responsible for part of the spontaneous deletions
leading to lytic derivative phages (Bruttin et al. 1997b).

The early partial sequencing of S. thermophilus phage genomes had revealed
a highly conserved DNA replication module (Desiere et al. 1997). The conservation
was twofold: first, this module was widely shared between three quarters of all
S. thermophilus phages from dairy factories (Brüssow et al. 1994a, b; Le Marrec
et al. 1997). Second, the degree of nucleotide sequence identity over the DNA
replication module between many independent isolates differed frequently by
<0.1% (Brüssow et al. 1994b). At a protein sequence level, the genes of the
conserved DNA replication module matched genes from other phages in a patch-
wise fashion, including coliphages. Most prominent were, however, similarities with
lactococcal phages of the P335 group (Desiere et al. 1997). S. thermophilus phage
7201 displayed an alternative DNA replication module: it shared up to 40% protein
sequence identity with replication proteins from widely distributed plasmids in
Firmicutes and with Bacillus, Lactococcus, and E. coli phages (Stanley et al. 2000).

Subsequently, S. thermophilus phages were classified into two groups based on
the presence or absence of cohesive genome ends. This difference in DNA packag-
ing co-segregated with differences in the virion protein composition: cos-site phages
showed two major structural proteins, while pac-site phages had three (Le Marrec
et al. 1997). Neither the host range nor the DNA replication modules were correlated
with these differences in DNA packaging and virion structure. In line with the
modular theory of phage evolution developed 40 years ago from comparisons of
lambdoid coliphages (Botstein 1980), S. thermophilus phages are composed by
either an Sfi21-like cos-site structural gene cluster or an Sfi11-like pac-site structural
gene cluster that associates independently with either of two nonstructural gene
clusters, represented by Sfi21 or 7201 phages (Lucchini et al. 1999a). In strepto-
coccal phages, large modular DNA exchanges between phages were further modi-
fied by the accumulation of point mutations and the subsequent acquisition of small
deletions and insertions (Desiere et al. 1998). Each module has thus a complex
evolutionary history. The structural module of the Sfi11-like phages resembled
Lactococcus phages (BK5-T, r1t, TP901-1), and to a lesser degree Bacillus phages
(SPP1), mycobacteriophages, and E. coli phage λ, defining a gradient of relatedness
(Lucchini et al. 1998). In contrast, the structural gene module from S. thermophilus
phage Sfi21 shared a close relationship with L. lactis phage BK5-T and moderate
protein sequence identity with various phages of low GC-content Gram-positive
bacteria and even a gene constellation and distant protein relatedness with E. coli
phage HK97 (Desiere et al. 1999). Notably, E. coli phages λ and HK97 represent two
distinct modes of head assembly of virions. It thus seems that the dichotomy of
Sfi21- versus Sfi11-like structural modules seen in S. thermophilus phages represents
two distinct and very ancient modes of virion assembly that were invented by
ancestor phages and transmitted through bacterial evolution to extant phages.
Comparative phage genomics can thus retrace part of the evolutionary history of
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phage modules, like capsid building or the establishment of the lysogenic state.
A gradient of relatedness is seen with various degrees of nucleotide sequence
identity between phages infecting bacteria that currently exchange DNA or
exchanged DNA in a relatively recent past. Phage modules that share only protein
sequence identity represent more distant relatives that were in genetic separation for
sufficient time to lose nucleotide sequence identity. Phage modules separated by
even greater evolutionary distances share only a common genome organization
(synteny of genes) without any sequence identity. Additional evidence for an
evolutionary relationship beyond any detectable sequence relationship is the discov-
ery of a specific viral head protein fold motif named after the prototype E. coli phage
HK97, which was found in viruses from all three domains of life by crystallographic
structural analysis (Pietilä et al. 2013). Tailed phages are thus the result of both
vertical and horizontal evolution, which explains the weblike phylogenies of phages
(Brüssow and Desiere 2001). Structural genes are particularly well conserved, but
synteny of the nonstructural genes in the lysogeny module was also seen across
phages from diverse bacterial hosts (Lucchini et al. 1999b).

In this context, it is notable that dairy phages from both L. lactis and
S. thermophilus share substantial protein sequence identity with phages from an
exclusive human pathogen, Streptococcus pyogenes (Desiere et al. 2001a). Appar-
ently, with respect to the genetic relationship between these phages, phylogenetic
relationships between their host bacteria are more important than their current
ecological separation. However, it is likewise significant that the genome
S. thermophilus phage Sfi21 still exhibits a considerable degree of DNA sequence
identity with that of L. lactis phage BK5-T: over half of the DNA packaging and
head morphogenesis module (Desiere et al. 2001b). This was not a singular case:
also S. thermophilus phage 7201 does still share a measurable level of DNA
sequence similarity with L. lactis phage bIL286 (Proux et al. 2002). Due to the
close phylogenetic relationship between their bacterial hosts, lactococcal and lactic
streptococcal phages have shared ancestor phages or have exchanged DNA modules
in a relatively recent past such that DNA sequence similarity was not entirely eroded
by the relentless accumulation of point mutations. Interestingly, the relationship
between Sfi21 and BK5-T phages (or 7201 and bIL286) is closer than between
currently known L. lactis and L. garvieae phages. This observation suggests that
sharing a common ecological niche allows substantial phage gene exchanges across
bacterial genus barriers.

5.2 Phage 5093

When phage isolates from mozzarella cheese whey samples were screened with a
DNA probe for a highly conserved S. thermophilus phage anti-receptor gene (Binetti
et al. 2005), the nonreactive S. thermophilus phage 5093 was identified. Except for a
distinct tail tip structure (distinct baseplate with flexible globular appendices instead
of a long tail fiber), it showed the usual siphovirus morphology and shared the
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overall genome organization of S. thermophilus phages. With only three gene
replacements, the right genome half comprising the lysis, lysogeny, and DNA
replication modules displayed a close relatedness with known S. thermophilus
phages. In contrast, over the structural gene modules, phage 5093 shared relatedness
with neither Sfi21- nor Sfi11-like S. thermophilus phages, but with phages isolated
from evolutionary related species (S. pneumoniae, S. pyogenes, S. gordonii), which
inhabit distinct ecological niches, namely, the nasopharynx, pharynx, and oral cavity
of humans. Since these habitats are quite different from dairy environments, the
role of recombination events within an interbreeding phage population is unlikely in
phage 5093 evolution (Mills et al. 2011). A similar phage was isolated from a
different collection (Szymczak et al. 2017).

5.3 The 987 Phage Group

When two groups applied a modified PCR test detecting cos- and pac-site
S. thermophilus phages (Quiberoni et al. 2006) to large phage collections, only
few nonreactive phage isolates were identified (McDonnell et al. 2016). Four variant
phages were identified, which differed from Sfi21-, Sfi11-, and 5093-like phages by
a shorter genome size of 33 kb and a substantially shorter tail length (140 vs.
250 nm). These so-called 987-like phages were closely related across their structural
gene modules despite their distinct geographical origin, which was probably
explained by the fact that they were all isolated from the same industrial starter.
Over the structural modules, the best matches were with subgroup II phages of the
lactococcal phage species P335 and notably not with other S. thermophilus phages.
Over the nonstructural gene modules, similarities with S. thermophilus phage 7201
were seen. However, for these genes, substantial variations were observed between
the individual 987-like phage isolates. Another group found two S. thermophilus
phages that showed an even closer relatedness to subgroup II P335 lactococcal
phages over the structural modules reaching >80% bp identity over a long, contig-
uous stretch of DNA packaging, head, and tail genes, excluding anti-receptor and tail
appendage genes (Szymczak et al. 2017). Over the nonstructural genes, one of these
variant phages aligned with the typical S. thermophilus phage DNA replication
module, while the second variant phage displayed unattributed genes. 987-like
streptococcal and subgroup II P335 lactococcal phages were able to absorb with
reduced efficiency to the reciprocal heterologous host but were unable to infect them,
demonstrating a strong species barrier effect for a direct genetic exchange even for
such close cross-species infections (McDonnell et al. 2016; Szymczak et al. 2017).
While cross-species infections apparently occur and punctuate the evolution of dairy
phages, the events are of low frequency, and lactococcal and streptococcal phages do
not represent a genetically interbreeding population even when sharing the same
dairy environment.

Phylogenetic tree analysis based on whole genome nucleotide comparisons
reveals currently four clusters of S. thermophilus phages. The majority belongs to

320 H. Brüssow



either the Sfi21- or the Sfi11-like phage group, while rare isolates constitute the
5093-like and 987-like phage groups, respectively. The 987-like phage group
represents a side branch of the more numerous subgroup II P335 lactococcal
phage cluster (McDonnell et al. 2016; Szymczak et al. 2017).

5.4 An Outgroup: S. salivarius Phages

Streptococcus salivarius was initially classified together with S. thermophilus in
the same species, and both were considered as two subspecies. In the meanwhile,
bacterial taxonomists have separated them into two different, although phylogenet-
ically closely related, species. However, the ecological niches are totally different,
therefore suggesting substantial niche adaptation. S. thermophilus has raw milk as
habitat, while S. salivarius is a major inhabitant of the oral cavity and the small
intestine from humans. It is thus not only interesting to compare phages from
L. lactis and S. thermophilus, which share the same niche and are separated by a
larger evolutionary distance, but also phages from S. thermophilus and S. salivarius,
which share a closer phylogenetic relationship, but differ for niche specialization.
Such a comparison is now possible with the report of one temperate S. salivarius
phage and three S. salivarius prophages (Chou et al. 2017). The answer is clear-cut:
with few exceptions of small hypothetical proteins, S. salivarius phage YMC-2011
has the closest homology along its entire genome with S. thermophilus phages. A
phylogenetic tree analysis attributes YMC-2011 together with S. salivarius prophage
JIM8777 to the Sfi21 branch of S. thermophilus phages, while two other S. salivarius
prophages were attributed the 5093-like S. thermophilus phage branch.

6 Limitations and Opportunities for Population Genomics
Work with Dairy Phages

As for L. lactis phages, a word of caution should be mentioned for the relative
prevalence of S. thermophilus phages. Phages have mostly been isolated from
industrial fermentation failures using relatively few defined S. thermophilus starters
that were distributed worldwide to dairy factories by commercial starter strain
companies. However, mozzarella cheese in Italy is still produced by the “madre
naturale” technique where complex, undefined mixtures of thermophilic starters are
used. The starters are obtained by controlled heating of raw milk from cows from
spring pastures. These “starters” contain mostly, but not exclusively, S. thermophilus
isolates. Titers greater than 106 phages/ml cheese whey have regularly been
observed in mozzarella factories employing these starters and open vat fermentation.
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After starter changes (rotation), new phages entered into the factory derived
from raw milk since some phages survived the pasteurization process (Bruttin
et al.1997a). Many of the cheese factory S. thermophilus phage isolates could not be
typed as either Sfi21- or Sfi11-like phages (Brüssow et al. 1994a, b), suggesting that
under these artisanal fermentation conditions, many more variant phages remain to
be described. As raw milk is the ecological niche of S. thermophiles, such surveys
are more likely to represent the natural variability of these phages.

The cheese factory phages were isolated on indicator strains or occasionally on
S. thermophilus colonies isolated directly from the raw milk. Due to the rather
narrow host range of S. thermophilus phages, few of the many different phages are
identified by cultivation techniques. The introduction of metagenome sequencing to
cheese whey samples is likely to change the situation since it allows phage detection
by a culture-independent method and potentially allows a true population genomic
analysis of phages (Muhammed et al. 2017). Population genetics studies with
S. thermophilus phages have so far been limited to the sequencing of small genome
segments. With that limited resolution, it could be demonstrated that the source of
new phages invading a cheese factory was raw milk phages. In addition, it was
observed that phages isolated from a single cheese factory over a 2-year survey
period showed the same degree of sequencing differences as S. thermophilus phages
isolated over 30 years from dairy factories located in different countries (Bruttin
et al. 1997a). Extending the sequencing analysis to the whole genome will enable
population genomics insights not possible with these older population genetics
studies.

The broad background knowledge gained about dairy phages over the last
decades, combined with the small size of dairy phage genomes, makes the dairy
environment an ideal system for studying phage population genomics, even if this
system represents an artificial, man-made industrial environment. With the discovery
of the CRISPR-Cas system in dairy phages and their industrial starters, applied food
microbiologists have already yielded fundamental insights for basic biology (see
next section). Phage-host interaction at the genome level has already started with the
analysis of phage genomes after the introduction of abortive infection plasmids in
L. lactis (Labrie and Moineau 2007; Labrie et al. 2012) and with spacer acquisition
in S. thermophilus after phage challenge (Achigar et al. 2017). The continuous
struggle between phages and their hosts, between bacterial resistance and viral
anti-resistance, and on evaluations of the cost of resistance has already started
(Vale et al. 2015). Extending this analysis to the phage genome level will provide
new insights. Phage population genomics under the strong selective pressure of
newly introduced resistance mechanisms in dairy starters (Labrie andMoineau 2007;
Labrie et al. 2012) is likely to become a fruitful research area in phage population
genomics and possibly beyond.
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7 Streptococcus thermophilus Phages and the CRISPR-Cas
System

It is not for the first and probably not for the last time that phage research laid the
foundation for the next revolution in molecular biology. Research on E. coli phages
led to the discovery of restriction-modification enzymes, which became instrumental
for molecular cloning. Research on S. thermophilus phages prepared the ground for
an even more versatile instrument of targeted genetic manipulation potentially
revolutionizing human gene therapy.

In 2005, clustered regularly interspaced short palindromic repeats (CRISPRs),
composed of 25–50 bp repeats separated by unique sequence spacers of similar
length, were found in S. thermophilus, located in the vicinity of cas (CRISPR-
associated) genes encoding RNA-guided DNA endonuclease enzymes. The spacers
showed homology with sequences from phages. Phage resistance of different strains
correlated with the number of spacers in the CRISPR locus, which led to the
hypothesis that the spacer elements are the traces of past invasions by extrachromo-
somal elements and represent a type of cell immunity against phage infection
(Bolotin et al. 2005). Indeed, 2 years later, scientists demonstrated that after viral
challenge, bacteria integrated new spacers derived from phage genomic sequences.
Removal or addition of particular spacers modified the phage-resistant phenotype
of the cell. The resistance specificity was determined by spacer-phage sequence
similarity (Barrangou et al. 2007). When 124 S. thermophilus strains were studied,
109 unique spacer arrangements were observed across the 3 CRISPR loci. Most
showed identity to phage sequences (77%), but identity with plasmid sequences
(16%) was also found, while only few matched bacterial sequences. CRISPR loci
evolved both via polarized addition of novel spacers after exposure to foreign
genetic elements and via internal deletion of spacers (Horvath et al. 2008). Each
CRISPR contains a ~100–500 bp leader element that typically includes a transcrip-
tion promoter, followed by an array of captured ~35 bp sequences (spacers) sand-
wiched between copies of an identical ~35 bp direct repeat sequence. In general new
spacers are added immediately downstream of the leader.

Interference is based on small RNAs carrying a spacer sequence. These RNAs
guide the defense apparatus to foreign molecules carrying sequences that match the
spacers. Soon it was demonstrated by in vivo experiments that the CRISPR1/Cas
system specifically cleaves plasmid and bacteriophage double-stranded DNA within
the proto-spacer at specific sites (Garneau et al. 2010). The conservation of proto-
spacer adjacent motifs (PAMs) was a common theme for the most diverse CRISPR
systems (Mojica et al. 2009). S. thermophilus CRISPR3/Cas system could be
transferred into Escherichia coli and provided there heterologous protection against
plasmid transformation and phage infection. The interference was sequence-
specific, and mutations in the vicinity or within the proto-spacer adjacent motif
(PAM) allowed plasmids to escape CRISPR-encoded immunity; in these experi-
ments, cas9 was the only cas gene necessary for CRISPR-encoded interference
(Sapranauskas et al. 2011). The silencing of invading nucleic acids is executed by
ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs
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(crRNAs) that act as guides for targeting and degradation of foreign nucleic acid.
The S. thermophilus CRISPR3/Cas system introduced a double-strand break at a
specific site in DNA containing a sequence complementary to crRNA. DNA cleav-
age is executed by Cas9, which uses two distinct active sites to generate site-specific
nicks on opposite DNA strands (Gasiunas et al. 2012). Cas9 co-purifies with an
additional RNA molecule, tracrRNA (trans-activating CRISPR RNA), and it is the
ternary Cas9-crRNA-tracrRNA complex that cleaves DNA (Karvelis et al. 2013).
The CRISPR-Cas9 nuclease has been engineered by biotechnologists, and a cas9
gene from the related bacterium Streptococcus pyogenes has now been repurposed
for hyper-accurate genome editing in human cells (Chen et al. 2017).

The CRISPR-Cas systems have been categorized into three major types (I–III).
Type I and II systems provide immunity against invading DNA. The type IIIA
system in S. thermophilus type (StCsm) restricts the MS2 RNA phage and cuts
RNA in vitro. Upon phage infection, crRNA-guided StCsm binds to the emerging
transcript and recruits Cas10 DNase to the actively transcribed phage DNA, resulting
in degradation of both the transcript and phage DNA, but not the host DNA
(Kazlauskiene et al. 2016). The molecular details have recently been deciphered.
Target RNA binding by the Csm effector complex of S. thermophilus triggers
Cas10 to synthesize cyclic oligoadenylates. Acting as signaling molecules, cyclic
oligoadenylates bind Csm6 to activate its nonspecific RNA degradation by allosteric
activation (Kazlauskiene et al. 2017; Niewoehner et al. 2017). The CRISPR-Cas
system reveals here striking conceptual similarity to oligoadenylate signaling in
mammalian innate immunity. CRISPR-Cas also shows astonishing resemblance
with the adaptive immune system by the acquisition of the spacer sequences specific
for the infecting phages. The parallels with the adaptive immune go even further.
Bacterial cells can acquire spacers not only from infectious phages (which would
mostly kill the target bacterium before it had time enough to mount a CRISPR-Cas-
based resistance system) but also from defective phages at a rate directly propor-
tional to the quantity of replication-deficient phages to which the cells are exposed
(Hynes et al. 2014). This process reminded the researchers of immunization in
humans by vaccination with inactivated viruses.

Beyond its enormous impact on biology and biotechnology in general, CRISPR-
Cas systems have also delivered important insights for dairy microbiologists and
for phage population genomics. Bacteriophage-insensitive mutants (BIMs) of a
S. thermophilus yogurt starter were generated with the same phage in different
phage challenge experiments. Each BIM acquired unique spacer regions ranging
between one and four new spacers in CRISPR1. Formation of second-generation
BIMs did not lead to increases in spacer numbers, but to alterations in spacer regions
(Mills et al. 2010). In another study of 23 spontaneous BIMs, all of them had
acquired at least 1 new spacer in their CRISPR1 array. While 14 BIMs had acquired
spacer at the 50-end of the array, 9 other BIMs acquired a spacer within the array
(Achigar et al. 2017), challenging the concept of preferential spacer insertion
at the 50- end. The diversification and host-phage coevolution in a population
derived from a single colony were also characterized after 1 week of co-culturing
using metagenome sequencing approaches. The acquisition of new spacers led
to a genetically diverse population with multiple subdominant strain lineages.

324 H. Brüssow



Phage mutations that circumvented the interference were localized in or near the
proto-spacer adjacent motif (PAM) indicating a strong selection force on these phage
regions (Sun et al. 2013). A strong and reproducible bias in the phage genome
locations from which spacers derive was also observed in a further report. Spacers
that target the host chromosome are infrequent and strongly selected against,
suggesting autoimmunity is lethal. The researchers observed early dominance by
a few spacer subpopulations and rapid oscillations in subpopulation abundances
(Paez-Espino et al. 2013). Strains that acquired a single spacer showed only an
incomplete resistance phenotype (Levin et al. 2013). Increased resistance can also
be obtained by combining different resistance systems: restriction-modification
(R-M) and CRISPR-Cas systems are compatible and act together to increase the
overall phage resistance. Specifically, methylation of phage DNA does not impair
CRISPR-Cas acquisition or interference activities (Dupuis et al. 2013).

Mathematical models revealed a highly complex coevolutionary dynamics in
the virus-host arms race, with viruses escaping resistance and hosts reacquiring it
through the capture of new spacers, when taking fitness cost of CRISPR-Cas systems
into account (Koonin and Wolf 2015). Others developed an eco-evolutionary model
called distributed immunity – the coexistence of multiple, equally fit immune alleles
among individuals in a microbial population – and how it emerges and fluctuates
in multi-strain communities of hosts and viruses. Distributed immunity promoted
in this model sustained diversity and stability in host communities and decreased
viral population density that could lead to viral extinction (Childs et al. 2014).

The fitness costs of two type II functional CRISPR-Cas systems were experi-
mentally measured in S. thermophilus with growth assays in isolation or in pairwise
competition. Cas protein expression was particularly costly, as Cas-deficient mutants
achieved higher competitive abilities than the wild-type strain with functional
Cas proteins. Increasing immune memory by acquiring more than one and up to
four phage-derived spacers was not associated with fitness costs, while the activation
of the CRISPR-Cas system during phage exposure induced a significant, but small,
fitness costs (Vale et al. 2015). Long-term S. thermophilus-phage coevolution
experiments followed by massive deep sequencing demonstrated that CRISPR
immunity drives fixation of single nucleotide polymorphisms that accumulated
exclusively in phage genome regions targeted by CRISPR. The presence of multiple
phages increased phage persistence by enabling recombination-based formation
of chimeric phage genomes in which sequences heavily targeted by CRISPR were
replaced. These observations identify CRISPR as one of the fundamental drivers
of phage evolution (Paez-Espino et al. 2015).

8 Future Perspectives

In the following outlook, we take a quick bird’s eye view on contemporary biolog-
ical research and suggest phage research as a suitable approach to bring mechanis-
tically oriented molecular genetics and phylogeny- and ecology-oriented genomics
together.
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In physics, natural phenomena are conceptually reduced to basic principles
described by a few fundamental laws with the ultimate aim to be summarized in
a universally applicable “world formula.” Such an approach is not meaningful in
biology. Biological phenomena – as we know them today – lack universality since
they are limited to the special conditions observed on a single planet. However,
despite this drastic limitation of biological phenomena in physical space, biology
is characterized by an exuberant diversity of phenomena manifested as many life
forms beyond the grasp of any single biologist. There are millions of eukaryotic
species and a currently still unchartered number of prokaryotic “species.” Even more
disturbing, the extant organisms are only a small fraction of the species, which have
populated the planet through evolutionary time periods. Biology has thus elements
of a historical science with the uniqueness of a given historical situation which
upon a replay would result in a different constellation. The history of organisms
can only indirectly be deduced from the study of fossils and retro-projections of
genome analyses.

The only unifying theory of biology is currently that of evolution formulated
by Charles Darwin and his modern followers. Yet, when reducing biology to abstract
principles, the most interesting and defining aspects of biology are neglected,
namely, the filling of all habitable niches on earth by different life forms. Biology
strives to define the position of a constantly evolving organism in its given ecolog-
ical niche, which is highly variable due to changing physicochemical conditions
of the niche over time and varying under the pressure exerted by a myriad of other
competing biological organisms, which are also in a constant flux.

To come research-wise to grip with this complexity, physicists have introduced
the reductionist principle into biological research by taking out a few living elements
from the environment and by studying them in the splendid isolation of simple,
constant, and defined laboratory conditions. The most spectacular and most success-
ful of these reductionist approaches in biology was the study of a handful of coli-
phages infecting a few E. coli strains in a defined broth culture or on the Petri dish.
We owe to this conceptional approach the molecular biology revolution, which
has fundamentally changed biology. With the current and still ongoing analytical
technology revolution in biology, which started with the sequencing and omics
technologies, biology has entered another era, which addresses increasingly complex
systems. By sequencing techniques, huge datasets are now created that aim to
describe entire ecosystems. Some biologists have expressed the concern that these
datasets will outstrip our intellectual capacity to interpret them. With this type of
research, frequently we can’t see the wood for the trees. Or as expressed more
poetically by Goethe in his “Faust” play, “Wer will was Lebendigs erkennen und
beschreiben/ sucht erst den Geist heraus zu treiben/ Dann hat er die Teile in seiner
Hand/ Fehlt leider! Nur das geistige Band” (to docket living things past any doubt/
You cancel first the living spirit out/The parts lie in the hollow of your hand/You
only lack the living link you banned). Clearly, we need new overarching concepts
which allow us to reduce the apparent complexity that prevents us from seeing the
“wood.” Some proposals are emerging; for example, it was suggested that the global
pool of available metabolic functions, rather than the distribution of functions among
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organisms, drives community assembly (Coles et al. 2017). This concept could
rationalize the apparent randomness and fluctuation in the microbial species com-
position in the ocean or in the gut microbiota. According to this concept, the entire
ecosystem at least in model calculations is evolving in an understandable way, while
randomness, if not chaos, might blur our view when we analyze these systems from
the perspective of individual species constituting the ecosystem (Sarker et al. 2017).
Another possible solution could be found in a combination of a reductionist principle
with the current trend for ecological complexity. Phages, due to their position
at the lowest level of biological complexity, might permit such a compromise
when being investigated at the population genomics level in natural environments
like the ocean or the intestine of humans or animals. Time series of virome meta-
genome sequences from the gut of individual animals or humans could represent
meaningful first steps for future phage ecology studies, which reach beyond the
artificial environment of the man-made dairy factory, opening new vistas for phage
population genomics. Such longitudinal phage population genomics studies might
reveal the dynamics of such systems much better than cross-sectional studies.
It might even be desirable to trigger microbiota changes by targeted interventions
to induce changes in phage composition, allowing dynamic studies of phages.
Recently, we have, for example, observed that systemic antibiotic application in
malnourished diarrhea patients leads to an outgrowth of E. coli in their gut. In some
patients this microbiota change is mirrored by an outgrowth of two specific coli-
phage types (Kieser et al. 2018). The microbiota changes seen in these patients
showed striking parallels to observations in a mouse model of Salmonella infection
(Faber et al. 2016). Clinical observations can thus be integrated into the large body
of knowledge acquired for coliphage E. coli host interaction in vitro and in animal
models. Perhaps coliphage population genomics studies in such patients could
become appropriate bridge points into the interpretation of the large and complex
datasets of contemporary metagenome research.
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