
Chapter 7
Lexicase Selection Beyond Genetic
Programming

Blossom Metevier, Anil Kumar Saini, and Lee Spector

7.1 Introduction

Lexicase selection is a selection algorithm for evolutionary computation systems,
used to determine which individuals will be permitted to contribute to future
generations in the evolutionary process. Although it has been used for survivor
selection [8], its primary use has been as a parent selection algorithm, selecting
individuals to be provided as inputs to genetic operators. The genetic operators,
such as mutation and crossover, use the selected parents as source material out of
which to construct children.

Lexicase selection selects individuals by filtering a pool of individuals which,
before filtering, typically contains the entire population. The filtering is accom-
plished in steps, each of which filters according to performance on single test
case (input/output pair). The test cases are considered one at a time in random
order. Lexicase selection has been tested most extensively in genetic programming
systems, where it has been shown to outperform other selection methods in several
contexts [2–5, 7, 9–11]. However, the effectiveness of lexicase selection in other
settings has not been fully explored.

In this paper, we investigate the utility of lexicase selection in traditional genetic
algorithms with linear, fixed-length genomes. We chose this framework in part
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because the large literature of traditional genetic algorithms provides context for
the interpretation of our results that is both broad and deep.

The problems to which we apply traditional genetic algorithms, using several
parent selection methods, are randomly generated Boolean constraint satisfaction
problems [1]. Although the problems are derived from Boolean satisfiability
problems, the problem-solvers (in this case, the genetic algorithms) are not given
access to the constraints themselves, or to the variables that they contain. Rather, the
problem-solvers are given access only to a procedure that determines whether each
constraint is satisfied by an assignment of truth values to all variables. Crucially, the
problem-solvers are given no information about which constraints may depend on
which others. This design is intended to allow the problems serve as abstractions
of problems in many real-world domains, in which we can tell whether or not a
candidate solution satisfies a constraint, but we have no further information about
the nature of the constraint, or of the ways in which different constraints might be
interdependent.

In this chapter, we present the results of experiments using the traditional
genetic algorithm, with lexicase selection, to solve Boolean constraint satisfaction
problems. We compare the performance of the algorithm using lexicase selection
to the performance of the same algorithm run with more traditional selection
algorithms, specifically fitness-proportionate selection and tournament selection
(with several tournament sizes).

In the following sections we first describe the lexicase selection algorithm that is
the focus of this investigation. We then describe the Boolean constraint satisfaction
problems that we use for our experiments, and our experimental methods. We then
present our results, and discuss their implications for future work.

7.2 Lexicase Selection

Lexicase selection is a method by which individuals can be selected from a
population for use as the source material out of which genetic operators, such
as mutation and crossover, construct offspring for the following generation. Lex-
icase selection is distinctive in that it allows selection to depend on multiple
assessment criteria and all of their combinations, without requiring that these
criteria be aggregated into overall “fitness” values. This is different from the
selection methods used traditionally in genetic programming, which require the
assignment of a single scalar value to each candidate solution in order to guide
search.

In most of the prior work on lexicase selection, it has been used in genetic
programming systems to select parent programs that are then subjected to variation
to produce the next generation of programs. In this context, the assessment criteria
are generally the errors of the program on different inputs, which are often referred
to, in the genetic programming literature, as “fitness cases” or “test cases.”
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Algorithm 1: Lexicase selection
Result: Individual to be used as a parent
candidates := the entire population
cases := list of all test cases in a random order
while True do

candidates := candidates performing best on the first case
if only one candidate exists in candidates then

return that candidate
end
if cases is empty then

return a randomly selected candidate from candidates
end
delete the first case from cases

end

In lexicase selection, each time a parent is needed, a pool of individuals, which
initially contains the entire population,1 is winnowed in successive stages until a
single individual remains and is selected. In the first stage, only the individuals
that perform best over a randomly chosen test case are retained. If more than
one individual remains, a second randomly chosen test case is used for the next
stage of winnowing. This process repeats until only a single individual remains, or
until the test cases have been exhausted, in which case a random individual from
the remaining pool is selected. Pseudocode for the most commonly used form of
lexicase selection is provided in Algorithm 1.

Sometimes, lexicase selection chooses individuals with performance that is
good over only a small number of test cases. Many of these “specialists” would,
under many selection methods that require aggregation of performance on all test
cases into single scalar values, rarely be selected for reproduction and variation.
This would often be the case even if one of the cases solved by the specialist
was difficult for a majority of the population to solve. The reason for this is
the assumption of uniformly distributed selection pressure, with all parts of a
problem being equally hard.“Specialists” are ignored even though they are better
at certain subsets of the problem and may contain a partial solution to the task at
hand. By allowing these “specialists” to contribute to the next generation, lexicase
selection allows for offspring that may contain solutions to a particular subset of
the problem. Comparisons of lexicase selection to other methods developed with
similar motivations, such as “implicit fitness sharing” and “deterministic crowding,”
are presented elsewhere [5, 7].

Several variants of the lexicase selection method have also been developed and
studied. For example, epsilon lexicase selection, a variant in which candidates that
are not strictly “best” on the current case but which are “close enough” (within

1It is also possible to limit the initial pools in various ways. When the initial pool contains the
entire population, which is the best-studied setting, we refer to the algorithm more specifically as
“global pool” lexicase selection.
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epsilon, for some definition of epsilon) has been developed and shown to be
particularly effective on problems with floating-point errors. Other variants have
been developed and explored in previous instances of the Genetic Programming
Theory and Practice workshop [12]. For the present study, however, we used the
simplest and most standard version of the method, as described above.

7.3 Problems

7.3.1 Boolean Constraint Satisfaction

The problems used for the experiments in this study are Boolean constraint
satisfaction problems [1] that are randomly generated based on three parameters:
a total number of variables v, a number of constraints c, and a number of clauses
per constraint n.

Each clause is a disjunction of three literals, each of which is either a variable
or a negated variable. Each constraint is a conjunction of clauses, and a problem
is a conjunction of constraints. An assignment of truth values to the variables is a
solution if all of the constraints evaluate to true in the context of the assignment.

These problems are similar in some respects to Boolean satisfiability problems
expressed in 3-CNF (conjunctive normal form, with three literals per clause), with
the clauses grouped to form constraints. However, unlike the case with standard
satisfiability problems, such as those used in SAT-solver competitions [6], we do
not allow our problem solvers to see the formulae themselves, or to have any
information about which variables appear in which constraints. The problem-solvers
can evaluate an assignment of truth values to the variables with respect to each
constraint, determining whether or not each constraint is satisfied by the assign-
ment, but this is the only information that the problem solver receives about the
problem.

7.3.2 Random Problem Generation

We generate a problem by starting with a random assignment of truth values to all
variables. This assignment will be a solution to the generated problem, but we will
discard it after generating the problem, and it will be the task of the problem solver
to re-discover the assignment, or to discover another assignment that also satisfies
all of the constraints in the problem.

Once we have a random assignment of truth values to all variables, we generate
the problem itself with a simple, iterated generate-and-test algorithm: We create a
random set of constraints of the specified size (which may include duplicate clauses,
possibly in different constraints), and we check to see if it evaluates to true with
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Table 7.1 Problem parameters

Parameter Value

Number of variables (v) 20, 30, 40

Number of constraints (c) 8, 12, 16, 32

Number of clauses per constraint (n) 20, 25, 30, 35, 40

Number of problems per combination of v, c, and n 15

Number of runs per method per problem 50

Total number of runs per method per combination of v, c, and n 750

Table 7.2 Genetic algorithm
parameters

Parameter Value

Population size 200

Number of generations 500

Mutation operator Bit-flip

Probability of mutation 0.1

Crossover operator One-point

Probability of crossover 0.9

the given assignment. If it does, then we use the constraints as a problem for our
experiments; if it doesn’t, then we randomly generate a new set of constraints,
repeating the process until we find one that is satisfied by the assignment.

For each (v, c, n) triple, we generated 15 different problems. Each problem-
solving method was run 50 times on each of these problems, resulting in 750
runs per problem-solving method for each combination of v, c, and n. Results
were evaluated by averaging over all 750 runs for each parameter combination.
The specific parameters used for generating problems, and for the numbers of runs
conducted on each problem with each method, are shown in Table 7.1.

7.4 Experimental Methods

7.4.1 Genetic Algorithm

Our problem-solving methods were all instances of the same genetic algorithm, with
identical parameters (shown in Table 7.2) except for the parent selection method.

Individuals in the population were truth assignments, with genomes consisting of
genes for each variable, indicating whether that variable had a value of true or false
in the specified assignment.

We used a generational genetic algorithm that began with a population of random
individuals, and then entered a cycle in which, for each generation, all individuals
were tested for errors, parents were selected for the production of children on the
basis of those errors, and children were produced by varying the selected parents.
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7.4.2 Variation

At the variation step, individuals selected to serve as parents were first (possibly)
subjected to crossover and then (possibly) to mutation.

The standard one-point method was used as the crossover operator, allowing
parent recombination at a randomly chosen crossover point. The crossover rate was
0.9, meaning that 90% of children were produced by crossover.

For mutation, a bit-flip mutation operator was used, allowing for a randomly
chosen bit in a chromosome to be flipped. The mutation rate was 0.1, meaning that
10% of children were subject to mutation.

7.4.3 Parent Selection

We compared lexicase parent selection, tournament parent selection, and fitness
proportionate parent selection. All selection methods performed selection with
replacement; that is, the same individual might be selected to be a parent several
times in the same generation.

For tournament selection and fitness proportionate selection, an individual’s
total error value was determined from the number of constraints it satisfied. If an
individual satisfied all constraints, then its error was 0. Otherwise, its error value
was the number of constraints that it did not satisfy.

For tournament selection with an integer-valued tournament size t , we first
form a tournament set of t individuals, each of which is chosen with uniform
probability (with possible duplication) from the entire population. We then return,
as the selected parent, the individual in the tournament set that has the lowest total
error.

Higher tournament sizes make tournament selection more selective, in the sense
that individuals with high total error are less likely to be selected, while lower
tournament sizes make it less selective. Because our preliminary experiments
showed that less selective settings appeared to perform better, we wanted to consider
methods even less selective than tournament selection with tournament size 2,
which is normally considered to be the minimum, since with tournament size 1
tournament selection is equivalent to selecting individuals entirely randomly. For
this purpose we adopted the convention that for a non-integer-valued tournament
size t between 1 and 2 we would use tournament size 2 with probability t − 1, and
select a parent entirely randomly otherwise. For example, with t = 1.25, 25% of
the time we will choose 2 individuals randomly and return, as the selected parent,
the one with the lower total error; the remaining 75% of the time we will return,
as the selected parent, a parent chosen with uniform probability from the entire
population.

We performed fitness-proportionate selection in the standard way: The proba-
bility of selection for an individual i that satisfies si constraints is si divided by
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sum of sj for all individuals j across the population. In the degenerate case of no
individuals satisfying any constraints, which would produce a denominator of zero,
an individual is selected at random.

7.5 Results

7.5.1 Success Rates by Parent Selection Method

Our primary results are shown in Table 7.3, comparing success rates of the genetic
algorithm when run with fitness proportionate parent selection, tournament parent
selection (with tournament size 2), and lexicase parent selection.

Table 7.3 contains a row for every combination of number of variables (v) and
number of constraints (c). All runs with a specified value of v and c are aggregated
in the corresponding line, regardless of the number of clauses per constraint (n).
Because we conducted 750 runs with each combination of v, c, and n for each
parent selection method, and because we conducted experiments with 5 different
values of n (see Table 7.1), each row in Table 7.3 reports data from 5 ∗ 750 = 3750
runs with each of the three parent selection methods listed in the table.

The numbers reported in Table 7.3 are success rates, defined as the proportion of
the total runs that produced a successful solution (with error vector consisting only
of zeros). Lexicase selection produces the highest success rate in every case, and the
improvement provided by lexicase selection is statistically significant in most cases.

Table 7.3 Success rate for the genetic algorithm with fitness proportionate, tournament (size 2),
and lexicase parent selection for each studied combination of v (number of variables) and c (number
of constraints)

Number of Number of Fitness Tournament
variables (v) constraints (c) proportionate (size 2) Lexicase

20 8 0.835 0.867 0.992

20 12 0.940 0.954 1.000

20 16 0.980 0.987 1.000

20 32 0.999 1.000 1.000

30 8 0.415 0.475 0.889

30 12 0.614 0.697 0.995

30 16 0.815 0.869 1.000

30 32 0.983 0.995 1.000

40 8 0.205 0.257 0.689

40 12 0.224 0.310 0.927

40 16 0.433 0.576 0.993

40 32 0.861 0.944 1.000

Underlines indicate statistically significant improvements, determined using a pairwise chi-square
test with Holm correction and p < 0.05
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The only cases in which the improvement is not significant are those in which all
the selection algorithms approach a perfect success rate.

7.5.2 Success Rates by Tournament Size

Because the success rate of tournament selection is better or equal to fitness
proportionate selection, many of our analyses in the remainder of this paper
will compare lexicase selection only against tournament selection. Furthermore,
because tournament selection is itself parameterized by the tournament size, we
conducted additional experiments to compare performance across settings with
different tournament sizes.

Table 7.4 shows the results of these runs. We again conducted 3750 runs
for each combination of number of variables (v) and number of constraints (c),
across the range of values for number of clauses per constraint (n) given in
Table 7.1. We conducted runs for tournament sizes ranging from 1.25 to 8, with
non-integer-valued tournament sizes handled as described in Sect. 7.4. The runs
with tournament size 2 were independent of those conducted for the experiments
documented in Table 7.3, so the numbers differ between the two tables, but not
by much.

From Table 7.4 it appears that the most effective tournament size is around 1.5 or
2, and that larger tournament sizes perform poorly. None of the tested tournament
sizes performs better than lexicase selection.

Table 7.4 Success rate for different tournament sizes

Number of Number of Tournament Tournament Tournament Tournament Tournament
variables (v) constraints (c) size 1.25 size 1.5 size 2 size 4 size 8

20 8 0.850 0.860 0.856 0.818 0.777

20 12 0.948 0.955 0.959 0.952 0.934

20 16 0.982 0.987 0.988 0.989 0.979

20 32 1.000 1.000 0.999 1.000 0.999

30 8 0.443 0.485 0.471 0.428 0.367

30 12 0.644 0.702 0.773 0.712 0.618

30 16 0.850 0.888 0.879 0.846 0.766

30 32 0.993 0.996 0.996 0.990 0.974

40 8 0.226 0.271 0.137 0.120 0.105

40 12 0.254 0.322 0.293 0.245 0.213

40 16 0.510 0.614 0.503 0.423 0.335

40 32 0.938 0.958 0.901 0.794 0.680

Boldfaced numbers indicate the highest success rate in a particular row
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Fig. 7.1 Average error per generation for runs with lexicase selection and tournament selection
with tournament size 2, with 50% confidence intervals

7.5.3 Errors over Evolutionary Time

Other features of the data produced by the runs described above, in Sect. 7.5.1, may
be revealing, aside from the success rates described above.

In Fig. 7.1 we show the normalized average error across all runs. Here each error
has been normalized by the total number of constraints (maximum error) used for
that particular run. For a particular generation, the error has been averaged across
the runs which were active up to that generation.

Here we see that lexicase selection not only produces lower errors, but also that
lower errors are reached earlier in evolutionary time. We also see that both methods
make most of their gains quite early in evolutionary time, with few improvements
occurring after 100 generations.

7.5.4 Mean Least Error

Figure 7.2 shows the mean lest error (MLE) for each combination of number of
variables (v) and number of constraints (c). MLE is defined as the average of the
error values of the lowest-error individuals in each of the runs:

MLE = (1/N)
∑

i

error(best_indi),
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Fig. 7.2 Mean Least Error (MLE) for each combination of parameters. The number C denotes the
number of constraints used for the corresponding plot. (a) C = 8, (b) C = 12, (c) C = 16, (d)
C = 32

where best_indi is the individual having lowest total error in a given run i.
These plots show that tournament selection not only fails to solve problems in

many cases, but also that the best errors achieved in the failing runs are often quite
high. This effect is particularly pronounced for runs with large numbers of clauses
per constraint.

7.5.5 Success Generations

Figure 7.3 shows the success generation—that is, the generation in which the genetic
algorithm was able to find a zero-error solution—for each combination of number
of variables (v) and number of constraints (c), averaged over the runs in which the
genetic algorithm was able to find a solution.

Here we see that even when the genetic algorithm with tournament selection was
able to find a solution, it generally required more generations to do so than did the
genetic algorithm with lexicase selection.
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Fig. 7.3 Success Generation for each combination of parameters. The number C denotes the
number of constraints used for the corresponding plot. (a) C = 8, (b) C = 12, (c) C = 16,
(d) C = 32

7.5.6 Diversity over Evolutionary Time

Figure 7.4 shows the average number of unique chromosomes (individuals) in the
population over evolutionary time, aggregated over all parameter combinations, and
grouped by selection method and whether each method found a solution to the
problem or not. We see from these plots that, with the exception of brief periods at
the starts of runs, lexicase selection maintains relatively high diversity throughout
the process of evolution, both in successful and in unsuccessful runs.

7.6 Discussion

The results presented above show that, for the Boolean constraint satisfaction prob-
lems studied here, the traditional genetic algorithm performs better with lexicase
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Fig. 7.4 Average number of unique chromosomes (individuals) in the population, over evolution-
ary time, under different conditions

parent selection than with tournament parent selection or fitness proportionate
parent selection. In these experiments, lexicase selection found solutions more
frequently and in fewer generations than did the other parent selection methods.

In addition, more diverse populations were maintained under lexicase selection,
although the results here do not say anything definitive about the causal relations that
may hold between diversity, success rate, and the number of generations required to
find solutions.

With respect to the central question of this study, about whether lexicase selection
has utility outside of genetic programming, these results suggest a positive answer:
Lexicase selection does appear likely to have broader applicability than has been
demonstrated previously.

The problems studied in this investigation were artificial, but they were designed
to have features that resemble those many real-world problems. More specifically,
the problems studied here were designed to be resemble real-world problems in
which the goal is to satisfy many constraints simultaneously, but in which both the
constraints themselves, and their interdependencies, are opaque.

For the problems studied here, the problem-solver is given access to a procedure
that indicates whether or not each constraint is satisfied by a candidate solution,
but it has no other information about the nature of the constraints or about shared
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components or structure among multiple constraints. To the extent that a real-
world problem fits this characterization, the results here suggest that lexicase parent
selection could help to solve it.

Nonetheless, lexicase parent selection is probably not appropriate for all prob-
lems. For example, it seems unlikely that it would work well on problems that
involve only a single constraint. In these cases, only the single individual in the
population with the best performance on that constraint (or other individuals with
the same performance) could be selected to serve as a parent. It seems reasonable
to assume that this would undermine population diversity, making it more difficult
to find solutions. Problems with more than a single constraint, but not many more,
may be a poor match to lexicase parent selection for the same reason.

Previous work has also shown that lexicase parent selection sometimes performs
poorly on problems with floating-point error values. The epsilon lexicase selection
method appears to address this problem quite well [9], and it seems reasonable to
assume that it would also work well on floating-point versions of the constraint
satisfaction problems presented here.

One exciting avenue for future work would be an investigation of whether
lexicase selection may have even broader applicability, perhaps extending beyond
evolutionary computation altogether. Other machine learning methods might also be
able to take advantage of the core idea of lexicase selection, that whenever we must
make a decision based on the quality of candidate solutions, instead of aggregating
multiple measures of quality into single, scalar values, we may instead consider
them one at a time, in random order.

The ways in which this core idea of lexicase selection can be fleshed out will
differ from one machine learning method to another, and we cannot yet provide
definitive guidance on how it should be done for any specific methods outside of
evolutionary computation. The results presented here, however, lead us to speculate
that some such efforts will be rewarded with improvements in the problem-solving
capabilities of the machine learning methods to which they are applied.
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