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We dedicate this book to the memory of the
co-founder of the workshop series on
Genetic Programming Theory and Practice,
Rick Riolo, who passed away on August 25,
2018.



Foreword

I first met Rick Riolo in the late 1990s. I’d followed a well-beaten path by contacting
John Holland to talk about GP. John politely referred me to Rick, and when I got
to Rick’s office in the Program for the Study of Complex Systems, I found a tall,
slightly balding man in a tie-dye shirt with a face like a figure out of Leonardo’s
sketchbook. I asked if he was Rick Riolo. He agreed that he was, and we talked
for about an hour about a scheme that I had for a Genetic Programming system.
He was courteous but to the point saying what I was proposing was something he
hadn’t heard of before but was interested in seeing if it would work. This was the
start of a friendship that lasted until his death this year. Over the years, we did some
consulting work together, our families socialized, and we worked on several of the
GPTP Workshops over the years.

He introduced himself as being in charge of the hardware at CSCS—I took this
to mean he was a tech. I quickly learned that he was much more than that! Rick was
one of the members of the BACH group at CSCS and was known in particular for
his use of GAs to study the prisoner’s dilemma. He had been working with GAs for
decades with John Holland and the other members of the BACH group and was one
of the early people working and teaching at the Santa Fe Institute.

Elsewhere I’ve told the story of how GPTP came to be, but while I made some
suggestions of the organization of GPTP, Rick was the person who was the one
constant throughout the years until he became too ill to manage the workshop. With
the gracious staff of CSCS and Rick’s quiet skill at making hard things look easy,
GPTP was always on an even keel for the days of the workshop. More and more
over the years, GPTP grew in importance under Rick’s quiet stewardship.

However, though Rick was quiet, he was funny and his humor was often acerbic.
One time, when we were putting together one of the early books, we had an author
whose chapter was way over the page limit we set. We had sent it back and asked him
to cut it in half, and when he returned it, he had cut maybe two pages. I expressed
my frustration as time was getting short, but all Rick said was that for a smart man,
he couldn’t count very well.
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viii Foreword

When we started GPTP, we had no idea that it would last as long as it did. In
fact, we thought it was a one-off event. As the years past, I would often sit next
to Rick for at least one of the days, and after a particularly exciting talk, I leaned
over to Rick and asked him if GPTP reminded him of the early years of GAs. He
paused a moment and said that it reminded him more of the early days of the Santa
Fe Institute.

When his disease kept him from joining us at GPTP, we took GPTP to him by live
streaming and also visiting him at his home. In 2015 John Holland, who was one
of the godfathers of GPTP, died. John was a close friend of Rick, and in the normal
course of things, Rick would have written the dedication to John in the Foreword
of that year’s GPTP book, but his disease stopped him from doing so. He asked
me to write them a thing that was both heartbreaking and daunting, but since Rick
asked, I did my best. When I had done, I read it to him and told him that I tried to
find the words that he would have used and wished with all my heart that he could
have written them. We both cried a little, and I left that night knowing that Rick was
slipping away from us.

When I heard from Carl Simon that Rick had died, I sat and thought about the
years I’d known Rick, the things we’d done together, particularly at GPTP. Our
children had grown up and were adults. CSCS had changed; Carl Simon, who had
started the ball rolling for GPTP, had retired. But in thinking of Rick, I am grateful
for all that he did for us, and I know how much we will all miss him.

Ann Arbor, MI, USA Bill Worzel
October 2018



Preface

The 16th instance of the Workshop on Genetic Programming Theory and Practice
(GPTP) was held in Ann Arbor, Michigan, from May 17 to May 20, 2018. It
was held at the University of Michigan and was organized and supported by the
University’s Center for the Study of Complex Systems.

This book contains the written contributions of the workshop’s participants.
Each contribution was drafted, read, and reviewed by other participants prior to
the workshop. Each was then presented at the workshop and subsequently revised
after the workshop on the basis of feedback received during the event.

GPTP has long held a special place in the genetic programming community, as
an unusually intimate, interdisciplinary, and constructive meeting. It brings together
researchers and practitioners who are eager to engage with one another deeply,
in thoughtful, unhurried discussions of the major challenges and opportunities in
the field.

Participation in the workshop is by invitation only, and an effort is made to
invite a group of participants each year that is diverse in several ways, including
participants both from academia and industry. Efforts are also made to include
participants in “adjacent” fields such as evolutionary biology.

GPTP is a single-track workshop, with a schedule that provides ample time for
presentations and for discussions, both in response to specific presentations and on
more general topics. Participants are encouraged to contribute observations from
their own, unique perspectives and to help one another to engage with the presented
work. Often, new ideas are developed in these discussions, leading to collaborations
after the workshop.

Aside from the presentations of regular contributions, the workshop also features
keynote presentations that are chosen to broaden the group’s perspective on the
theory and practice of genetic programming. This year, the workshop began with
a keynote presented by longtime GPTP participant Katya Vladislavleva, now the
CEO of DataStories, on “Moonshot thinking and abundance mentality for better
data science.” On the second day, the keynote was presented by Walter Fontana,
Professor of Systems Biology at Harvard Medical School, on “Actual causality in
rule-based models.” The third and final keynote was delivered by Marco Tomassini,
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x Preface

Professor Emeritus in the Department of Information Systems at the University of
Lausanne, on “Strategic games: theory and human behavior.” As can be gathered
from their titles, none of these talks focused explicitly on genetic programming
per se. But each presented fascinating developments that connect to open issues in
genetic programming theory and practice in intriguing ways.

While most readers of this volume will not have had the pleasure of attending the
workshop’s presentations and discussions, our hope is that they will nonetheless be
able to appreciate and engage with the ideas that were presented. We also hope that
all readers will gain an understanding of the current state of the field and that those
who seek to do so will be able to use the work presented herein to advance their own
work and to make additional contributions to the future of the field.
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We would like to thank all of the participants for again making GP Theory and
Practice a successful workshop 2018. As is always the case, it produced a lot of
interesting and high-energy discussions, as well as speculative thoughts and new
ideas for further work. The keynote speakers did an excellent job at raising our
awareness and provided thought-provoking ideas about the potential of Genetic
Programming and its place in the world.

We would also like to thank our financial supporters for making the existence of
GP Theory and Practice possible for the past 15 years and counting. For 2018, we
did not have a major fund-raising drive but instead made good use of what had been
left from earlier workshops. Those funds were contributed by:

• The Center for the Study of Complex Systems at the University of Michigan
• John Koza
• Jason H. Moore
• Babak Hodjat at Sentient
• Michael Korns, Lantern LLC
• Mark Kotanchek at Evolved Analytics
• Stuart Card
• Thomas Kern
• The Heuristic and Evolutionary Algorithms Laboratory at the Upper Austria

University of Applied Sciences

A number of people made key contributions to the organization and assisted our
participants during their stay in Ann Arbor. Foremost among them are Linda Wood
and Mita Gibson who made the workshop run smoothly with their diligent efforts
behind the scene before, during, and after the workshop. Special thanks go to the
Springer Publishing Company for providing the editorial assistance for producing
this book. We are particularly grateful for the contractual assistance by Melissa
Fearon at Springer and all their staff has done to make this book possible.



Preface xi

We would like to express our gratitude especially to Carl Simon and Charles
Doering, the champions of the workshop series at the Center for the Study of
Complex Systems. Finally and foremost, we want to thank Rick Riolo for his
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Chapter 1
Exploring Genetic Programming Systems
with MAP-Elites

Emily Dolson, Alexander Lalejini, and Charles Ofria

1.1 Introduction

When programmers write code, they ideally want to structure it to be fast to
implement, easy to extend, and clear for others to understand. Of course, these
properties aren’t usually compatible: program architectures that are fastest to write
are usually not simple to extend or understand. We face a similar problem when
we evolve programs with genetic programming (GP); the solutions that evolve most
easily are typically a tangled mess. They are not useful as building blocks for solving
more complex problems (i.e., they are not evolvable), and they are challenging
to tease apart what is going on. Because program architecture is so important for
evolvability and decomposability, substantial effort goes into developing genetic
programming systems that promote the evolution of programs with more evolvable
architectures. For example, modularity is an important principle of software design
and is also known to be an important component of evolvability [9], which has
led many to design genetic programming systems with the goal of promoting the
evolution of modular code [11, 24, 26].

Indeed, within the GP community, we have an abundance of ways to represent
programs that we expect will be evolvable or interpretable, each with its own unique
set of available programmatic elements and ways of organizing, interpreting, and
mutating programs. Given the diversity of GP representations, understanding how to
choose the most appropriate representation or configuration of a representation for
a particular problem is an open issue in the field [17]. Making headway on this issue
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requires expanding the existing toolkit of formal analyses for GP representations.
While many different high-level properties of code can be considered, for the rest
of this chapter we will focus on code evolvability.

In particular, it would be helpful to have a way to get insight into the range of
program architectures that a given representation is capable of evolving. Doing so
will help us disentangle issues related to the representation itself from issues with
the way the rest of an evolutionary algorithm is set up (selection for evolvability
is notoriously challenging to facilitate). Moreover, having access to examples of
programs with different architectures is critical to setting up experiments that will
tell us when these architectures are useful and how they interact with other features
of a given representation. Ultimately, a tool for exploring program architectures
would aid us in drawing generalizable insights that may be useful for others in the
field.

The issue of wanting access to programs with a range of different architectures
is an instance of a common problem. Often in evolutionary computation, we would
like to evolve good solutions that are diverse with respect to a set of phenotypic traits
[18]. For example, we might want to provide a variety of options to stakeholders
making a decision [4]. Alternatively, we might want to provide a robot with
alternative locomotion strategies to use if it gets damaged [5]. MAP-Elites has been
demonstrated to be an effective technique for evolving a diverse set of solutions to
a problem [15].

In MAP-Elites, the user selects some number of phenotypic axes that they expect
will be relevant to solving the problem but might not be directly correlated with
fitness. Each axis is then discretized into some pre-determined number of bins,
resulting in a multi-dimensional grid where a location in the grid corresponds to
a distinct combination of phenotypic traits. When a new solution is generated, its
phenotype is assessed, and it is placed into a bin corresponding to that phenotype. If
that bin is empty or occupied by a lower-fitness individual, the new solution replaces
it. Otherwise, it is discarded.

Thus far, MAP-Elites had been used to evolve robot arms [6], robot gaits [5],
soft-bodied robots [15], and neural networks for a computer vision task [15].
Interestingly, in this last task, the phenotypic axes (connection cost and modularity)
related to the morphology of the neural networks themselves. Using these axes,
MAP-Elites not only found a range of good solutions, but provided insight into
the topology of the underlying fitness landscape as it relates to these two traits.
The heat map produced by MAP-Elites shows which types of networks are capable
of succeeding at the task and what constraints network traits place on each other.
Here, we attempt to do the same for GP. Are there multiple programmatic paths
to solving a problem? Can we identify inherent trade-offs between different traits
(e.g., modularity, instruction composition, etc.) in evolving programs? We see
MAP-Elites as a tool that can be used to answer these questions by illuminating
interactions between different aspects of a GP representation when applied to a
problem. This increased understanding can help in building an intuition for what
types of programs might be most appropriate for a given problem, which can be used
to inform representation choice, population initialization, or mutation operators.
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In this chapter, we demonstrate the use of MAP-Elites to explore a simple linear
GP representation. By selecting phenotypic axes for MAP-Elites that correspond
to program architecture and instruction composition, we can show how relevant
different features of our GP representation are to the evolutionary process across a
variety of problems. We compare the forms of programs evolved under MAP-Elites,
lexicase selection, tournament selection, and random drift, demonstrating that MAP-
Elites produces more varied solutions. Further, we discuss additional program traits
that could be used as phenotypic axes in MAP-Elites that appear promising, but we
have not yet explored in this work.

1.2 Methods

1.2.1 Computational Substrate

For this study, we evolve linear genetic programs where each program is a linear
sequence of instructions, and each instruction has up to three arguments that
may modify its behavior. Most notably, our linear genetic programming (LGP)
computational substrate supports subroutines, allowing programs with modular
architectures to evolve.

Making efficient use of modular subroutines has long been thought to be
important to facilitating the evolution of genetic programs that solve complex
problems. Indeed, incorporating modules into GP has been extensively explored,
and their benefits have been well documented (e.g., [1, 8, 10, 11, 20, 21, 24, 26]).
We designed our LGP representation to facilitate the evolution of modular and
reusable code while minimally affecting the way in which traditional linear genetic
programs are organized (i.e., linear sequences of instructions). We include a number
of instructions in the language that automatically create programming structures like
loops and subroutines, and we enable these features through the concept of “scopes”,
which are functionally similar to “environments” in Push [22, 25].

1.2.1.1 Virtual CPU Hardware

Our linear genetic programs are executed in the context of a virtual CPU with the
following components:

• Instruction Pointer: A marker to indicate the position in the genome currently
being executed. Many instructions will influence how the instruction pointer (IP)
moves through the genome.

• Registers: Each virtual CPU has 16 registers. Programs can store a single
floating-point value in each register. Registers are initialized with numbers
corresponding to their ID (e.g., register 0 is initialized to the value 0.0, register 1
is initialized to the value 1.0, and so on).
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• Stacks: Each virtual CPU has 16 stacks. Programs can push floating point
numbers onto these stacks and pop them off later.

• Inputs: Each virtual CPU can accept an arbitrary number of input values. These
values do not need to be in any particular order, but each value needs to be
associated with a unique numerical label that the program can use to access it.
For the purposes of this paper, we always use sequential integers starting at 0.

• Outputs: Outputs function the same way as inputs. The only difference between
inputs and outputs is the way instructions interact with them; whereas instruc-
tions can read from inputs but not write to them, instructions can write to outputs
but not read from them.

• Scopes: Each virtual CPU has 16 scopes (plus the global scope), described in the
next section.

1.2.1.2 Scopes

In software development, the scope of a variable specifies the region of code
in which that element may be used. In a sense, a scope is like a programmatic
membrane, capable of encapsulating all manner of programmatic elements, such as
variables, functions, et cetera, and allowing regions to be looped through or skipped
entirely. Our LGP representation gives evolving programs control over instruction-
and memory-scoping, allowing programs to easily manage flow control and variable
lifetime.

In our LGP representation, scopes provide the backbone on top of which all of
the other modularity-promoting features, such as loops and functions, are built. All
instructions in a program exist within a scope, be it the default outermost scope
or one of the 16 other available scopes (making 17 possible scopes) that can be
accessed via various instructions. These 16 inner scopes have a hierarchy to them,
such that higher-numbered scopes are always nested inside lower-numbered scopes.

At the beginning of the program, all instructions before the first change of scope
are in the outermost scope. After a scope-changing instruction occurs in the genome,
subsequent instructions are added to the new scope until another scope-changing
instruction is encountered, and so on. These scopes are ordered numerically. Higher-
numbered scopes are always nested inside lower-numbered scopes. Scopes can be
exited with the break instruction or by any instruction that moves control to a
lower-numbered scope.

Scopes are also the foundation of program modules (functions). The define
instruction allows the program to put instructions into a scope and associate the
contents of that scope with one of 16 possible function names. Later, if that function
is called (using the call instruction), the program enters the scope in which that
function was defined and executes the instructions within that scope in sequence,
including any internal (nested) scopes.

Similarly, scopes are the foundation of loops. Two kinds of loops exist in the
instruction set used here: while loops and countdown loops. Loops of both types
have a corresponding scope, which contains the sequence of instructions that make
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up the body of the loop. Both types of loops repeat their body (i.e., the contents
of their associated scope) until the value in an argument-specified register is 0.
Countdown loops automatically decrement this register by one on every iteration.
When any instruction is encountered that would cause the program to leave the
current scope, the current iteration is ended and the next one begins.

1.2.1.3 Instructions

In this work, evolving programs can contain the following library of 26 different
instructions. For each, instruction arguments are limited to 16 values (0 through 15)
and are used to specify any of the following: registers, scopes, functions, inputs, or
outputs. Arguments for each instruction and their types are shown in the parentheses
after each instruction name.

• Inc (Register A): Increment the value in register A by 1.
• Dec (Register A): Decrement the value in register A by 1.
• Not (Register A): If Register A equals 0.0, set to 1.0. Otherwise set to 0.0.
• SetReg (Register A, Value B): Store numerical value of B into register A.
• Add (Register A, Register B, Register C): Add the value in register A to the value

register B and store the result in register C.
• Sub (Register A, Register B, Register C): Subtract the value in register B from

the value in register A and store the result in register C.
• Mult (Register A, Register B, Register C): Multiply the value in register A by

the value in register B and store the result in register C.
• Div (Register A, Register B, Register C): Divide the value in register A by the

value in register B and store the result in register C.
• Mod (Register A, Register B, Register C): Calculate the value in register A

modded by the value in register B and store the result in register C.
• TestEqu (Register A, Register B, Register C): Store the value 1.0 in register C

if the value in register A is equal to value in register B. Otherwise store the value
0.0 in register C.

• TestNEqu (Register A, Register B, Register C): Store the value 0.0 in register C
if the value in register A is equal to value in register B. Otherwise store the value
1.0 in register C.

• TestLess (Register A, Register B, Register C): Store the value 1.0 in register
C if the value register A is less than the value in register B. Otherwise store the
value 0.0 in register C.

• If (Register A, Scope B): If the value in register A is not 0.0, continue to scope
B, otherwise skip scope B.

• While (Register A, Scope B): Repeat the contents of scope B until the value in
register A is equal to 0.

• Countdown (Register A, Scope B): Repeat the contents of scope B, decrement-
ing the value in register A each time, until the value in register A is 0.

• Break (Scope A): Break out of scope A.
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• Scope (Scope A): Enter scope A.
• Define (Function A, Scope B): Define this position as the starting point of

function A, with its contents defined by scope B. The function body is skipped
after being defined; when called, the function automatically returns when scope
B is exited.

• Call (Function A): Call function A (must have already been defined).
• Push (Register A, Stack B): Push the value in register A onto stack B.
• Pop (Stack A, Register B): Pop the top value off of stack A and store it in register

B.
• Input (Input A, Register B): Store the value in input A in register B.
• Output (Register A, Output B): Write the value in register A to output B.
• CopyVal (Register A, Register B): Copy the value in register A into register B.
• ScopeReg (Register A): Backup the value in register A. When the current scope

is exited, it will be restored.
• Dereference(Register A, Register B): Store the value of the register specified

by the value of register A in register B.

1.2.2 Evolution

1.2.2.1 Selection Operators

MAP-Elites
The Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm is
designed to illuminate search spaces and has been demonstrated as an effective
technique for evolving a diverse set of solutions to a problem [15]. In MAP-Elites, a
population is structured based on a set of chosen phenotypic traits. Each chosen trait
defines an axis on a grid of cells where each cell represents a distinct combination
of the chosen traits. Cells maintains only the most fit (elite) solution discovered
with that cell’s associated combination of traits. A MAP-Elites grid is initialized
by randomly generating solutions and placing them into their appropriate cell in
the grid (based on the random solution’s traits). After initialization, occupied cells
are randomly selected to reproduce. When a solution is selected for reproduction,
we generate a mutated offspring and determine where that offspring belongs in the
grid. If the cell is unoccupied, the new solution is placed in that cell; otherwise, we
compare the new solution’s fitness to that of the current occupant, keeping the fitter
of the two. Over time, this process produces a grid of solutions that span the range
of traits we used to define our grid axes.

Tournament Selection
To understand whether it’s valuable to use MAP-Elites to explore the range of
potential program architectures (rather than simply looking at the architectures
evolved under the selection scheme that is already being used), we need to compare
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it to a more standard approach to selection. Here, tournament selection with a
tournament size of two will serve as that control. Any time we need to generate
an offspring program using tournament selection, we select two random programs
from the population and allow the fitter one to reproduce. We intentionally selected
the lowest possible tournament size to minimize the strength of selection, facilitating
as much diversification as possible.

Lexicase Selection
Tournament selection is known to be bad at maintaining diversity in a population.
Lexicase selection [23] is known to maintain phenotypic diversity, although little
is known about the diversity of program architectures within these populations.
To better understand whether our proposed use of MAP-Elites is more effective
at exploring the range of possible program architectures than simply maintaining a
diverse population, we compare it to the results of using standard lexicase selection.

In lexicase selection, all of the test cases for a problem are randomly re-ordered
each time another program is being selected to reproduce. We then go through
the test cases in order and, for each test case, remove all but the top performing
programs from the set of candidates for selection. When there is only one program
remaining, we allow it to reproduce. In case of a tie we choose randomly.

Random Drift
What types of program architectures arise in the absence of selection pressure (i.e.,
from purely random drift)? We additionally compare the range of evolved program
architectures produced by MAP-Elites with those produced under random drift
where we select programs to reproduce at random. Although we do not expect any of
these programs to actually solve any of our test problems, they will provide insight
into large scale statistical trends that we might expect in the absence of selection.

1.2.2.2 Mutation Operators

In this work, we propagated programs asexually and applied consistent rates of
mutations to offspring across all treatments. We used four different operators to
introduce mutations on reproduction: instruction substitutions, argument substitu-
tions, point insertions, and point deletions [3]. Instruction substitutions, in which
one instruction was randomly replaced with another instruction, had a 0.005 chance
of occurring at each site in the genome. Argument substitutions, in which one
argument to an instruction was randomly replaced with another, had a 0.005 chance
of occurring for each argument in the genome. In point insertions, a random
instruction was added after a given site, increasing the length of the genome.
Conversely, point deletions removed the instruction at a given site, decreasing the
length of the genome. Point insertions and deletions both had a 0.005 chance of
happening at every site in the genome.
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1.2.3 Experimental Design

Is MAP-Elites an effective technique for exploring how different aspects of evolving
program architectures interact to affect performance in GP? In this work, we evolve
linear genetic programs with MAP-Elites to solve four simple programming syn-
thesis problems, selecting phenotypic axes that correspond to program architecture
and instruction composition. For each problem, we compare the types of programs
evolved with MAP-Elites and with lexicase and tournament selection; additionally,
we compare the types of programs evolved with MAP-Elites to programs produced
via random drift.

1.2.3.1 MAP-Elites Phenotype Axes

As a proof-of-concept, we have selected two phenotypic axes that we expected to
promote a useful exploration of the features of our linear GP representation. In
Sect. 8.13, we discuss additional axes that may also prove to be generally useful
for exploring GP representations.

Program Composition
A representation’s instruction set has a huge impact on what programs are able to do.
However, predicting the importance of an instruction a priori can be challenging.
MAP-Elites can help in understanding instructions’ importance in various contexts.
Theoretically, a wide variety of phenotypic traits related to instructions could be
used. For example, for any individual instruction, the number of times it is used
could be an axis.

For the purposes of getting a high-level understanding of the range of programs
that can evolve, however, we have chosen to use the overall diversity of instructions
in a program as an axis. Here, we quantify the diversity of instructions in a program
using Shannon entropy. This measurement provides high-level information about
the genotype as whole. Importantly, it cannot be easily altered through small
numbers of neutral mutations, meaning it should be informative about practical
differences between genomes. We discretize this value into 20 bins between 0 and
the maximum possible entropy for a program.

Module Use
Our representation is centered around modules in the form of scopes. As we attempt
to understand whether this programming paradigm is useful to evolution, it is critical
to understand the extent to which scopes are used. Thus, we chose the number of
scopes used by a program as our second phenotypic axis. Importantly, we only
counted scopes that were actually used; when a program is run, it must execute
at least one instruction in a given scope to get credit for using that scope. This,
however, does not guarantee that scopes are used meaningfully, only that they are
used. Since this measurement is already an integer value, we used 17 bins along this
axis so that each bin corresponds to a different possible number of scopes.
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1.2.3.2 Test Problems

All problems except the logic problem were defined by a set of test cases in which
programs were given specified input data and were scored on how close their output
was to the correct output. For MAP-Elites and tournament selection, we calculated
fitness as the sum of scores on these test cases.

• Logic: Programs receive two integers in binary form and must output the results
of doing bitwise logic operations on them. We reward 10 2-input (with the
exception of ECHO, which is 1-input) logic operations: ECHO, NOT, NAND,
OR-NOT, AND, OR, AND-NOT, NOR, XOR, and EQUALS. To facilitate the
evolution of these computations, we added a Nand instruction to the instruction
set, which converts inputs to integers and then performs a bitwise not-and
operation, structured in the same way as the Add instruction. Every unique
logic operation that a program outputs the solution to over the course of its
execution increases that program’s score by 1. Once a program has solved all
of the logic problems, it gets bonus points for the speed with which it solved
them. Specifically, the bonus is equal to the total number of allowed instruction
executions minus the number of instructions the program actually executed
before performing all 10 logic tasks. For lexicase selection, each logic operation
was treated as a different test case.

• Squares: Programs receive an integer as input and must output its square.
Because this problem is known to be easy, we evaluated programs on just 11
test cases.

• Sum: Programs receive a list of five integers as input that they must add together
and output their total. Programs were evaluated on a set of 200 test cases.

• Smallest: Programs receive a list of four integers as input and must output the
smallest one (from [7]). Programs were evaluated on a set of 200 test cases.

1.2.3.3 Experimental Parameters

We ran 30 replicates per condition for 50,000 generations. In conditions where
tournament selection, lexicase selection, or random drift is used to determine which
programs reproduce, we maintained a population size of 1000 programs. The
maximum population size in MAP-Elites, however, depends on the number and
resolution of phenotypic trait axes used to define the MAP-Elites grid. Thus, in
conditions that use MAP-Elites, the maximum population size is 340. However,
in our MAP-Elites conditions, we define a single generation to be equal to 1000
reproduction events, which ensures that all conditions experience the same total
number of reproduction events.

We initialized the population by generating random programs of random lengths.
Programs could not be less than 1 instruction long or greater than 1024 instructions
long. Each program was evaluated by executing its instructions in sequence until an
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upper limit was hit (128 instruction executions for the squares and logic problems;
512 instruction executions for the sum and smallest problems).

1.2.3.4 Data Analysis

To quantify the different ranges of program architectures explored by our different
selection operators we look at the population in the final generations of all of our
replicates and filter out all programs that do not fully solve the problem (i.e., those
that do not score perfectly on all test cases or, in the context of the logic problem,
do not perform all of the logic operations). However, in the random drift condition,
we do not filter any programs from the final population, as it is unreasonable to
expect that they would have solved the problems. We then look at the distribution
of values for each of our phenotypic axes and compare them across selection
schemes using a Kolmogorov-Smirnov test to tell us whether MAP-Elites produces
a significantly different distribution of program architectures than other selection
schemes. To correct for the number of Kolomogorov-Smirnov tests we perform
(one for each alternative selection operator that we compare MAP-Elites to, for
both scope count and instruction entropy), we use a Bonferonni correction. All data
analysis was performed using the R Statistical Computing Platform [19], and all data
visualization was done using the ggplot2 package [27]. We used the implementation
of the Kolmogorov-Smirnov test in the dgof package, as it is able to properly handle
discrete variables, such as scope count [2].

1.2.3.5 Code Availability

All code used to generate and analyze the data presented here is open source and
publicly available [12]. This code makes heavy use of the Empirical library, which
is also open source and publicly available [16].

1.3 Results and Discussion

The distributions of scope count and instruction entropy values for programs
evolved using MAP-Elites were dramatically different from those of programs
evolved using other selection schemes (Kolomogorov-Smirnov test, p < 0.0001).
As is qualitatively evident in Figs. 1.1 and 1.2, the range of each of the metrics
in programs evolved with MAP-Elites is much wider than the range for programs
evolved under other selection methods (with the exception in some cases of random
drift, which was not subject to the requirement that programs actually solve the
problem). While this result is not surprising, it provides confirmation that using
MAP-Elites as a tool for exploring GP representations provides information we
would not otherwise obtain.
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Fig. 1.1 Distribution (as density plot) of instruction entropy metric across all perfect solutions
from the final generation of all replicates for each selection scheme

The distribution of metrics evolved under MAP-Elites can suggest the presence
of constraints. For example, there generally seems to be some cut-off instruction
entropy below which solutions are hard (or impossible) to find. The location of this
cut-off varies by problem. This result makes intuitive sense; to achieve the minimum
possible instruction entropy, 0, a program would have to consist of a single type
of instruction. Any successful solution in this experiment would minimally need
to include both the Input instruction and the Output instructions, as well as
some instructions that perform actual calculations. Thus, no successful program
could possibly have an instruction entropy of 0. The same logic applies to other
low values of instruction entropy. The lack of other empty spots in the distributions
of instruction entropy and scope count generated by MAP-Elites indicates that there
are not other constraints on these aspects of program architecture; in essence, MAP-
Elites has provided an existence proof for programs with these various properties.
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Fig. 1.2 Distribution (as density plot) of scope count metric across all perfect solutions from the
final generation of all replicates for each selection scheme

Note that if we had tried to make the same inference based on one of the other
selection operators, we may have been mislead. Of course, even MAP-Elites is not
guaranteed to find all possible successful program structures. It just comes closer to
doing so.

Are there interactions between our two phenotypic traits? We can illuminate
possible interactions between phenotypic traits by making heat maps showing
the number of solutions found with each distinct combination of traits across all
replicates of a condition. To compare the interactions discovered by MAP-Elites to
the interactions we might have inferred from looking at the programs generated by
other selection schemes, we made a set of heat maps for each selection operator
on each problem (see Fig. 1.3). The fact that the heat maps for MAP-Elites are
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Fig. 1.3 Heat maps showing the number of perfect solutions from the final generation across all
replicates for each problem and selection scheme falling into each phenotypic bin

almost completely filled in (with the exception of bins at low instruction entropy)
suggests that there are no substantial interactions between instruction entropy and
scope count. Note that this is counter to the conclusion we would draw by looking
at the results of any of the other selection operators, all of which would seem to
suggest that programs with high scope count and low instruction entropy are hard
to find. Since random drift displays the same pattern, this is likely some sort of
statistical artifact of the types of programs that are most likely to be assembled by
chance. Using MAP-Elites to explore the space of program representations allows
us to distinguish this artifact from an actual constraint. For an example of using this
technique to uncover actual constraints in program architectures, see [13].
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1.4 Conclusion

We have demonstrated the use of MAP-Elites as a tool for exploring simple linear
GP representations. By selecting phenotypic axes for MAP-Elites that correspond to
aspects of program architecture, we can build an intuition for how relevant different
features of a GP representation are to the evolutionary process across a variety of
problems. These types of analyses are important as the GP community continues to
develop and characterize increasingly expressive representations.

In this work, we limited our selection of MAP-Elites phenotypic axes to
instruction entropy and module use; however, there are many possible informative
axes. Further, MAP-Elites is not limited to just two axes. We could select any
number of traits with which to define axes, allowing us to explore how many
different aspects of a GP representation interact in the context of a given problem.
There are a wide range of possible metrics that we could use in this context.

In genetic programming, it makes sense to evaluate the composition of instruc-
tions (or operations in the context of tree or graph-based GP) in the genome. We
can either evaluate the composition of all instructions in the genome, or only those
instructions that are actually executed. Such analyses can be performed using the
following metrics:

• Total number of instructions in the program (length)
• Total number of unique instruction types in the program
• Entropy of instructions (as used in this paper)
• The number of times a given instruction type was used
• The entropy of numbers of times that instruction types were used.
• The average effective dependence distance of instructions [3]

We might also care about more abstract attributes of program architecture. For
example, there are many quantities related to modularity that it may be informative
to measure, particularly in light of the fact that modularity is thought to promote
evolvability. The simplest of these is to measure the modularity of the program using
metrics such as the physical and functional modularity metrics described in [14]. In
cases where modules are easy to identify, we can probe further with the following
metrics:

• Total number of modules in the program
• Total number of times any module is used
• Total number of unique modules that are used (equivalent to scope count in this

paper)
• Entropy of time spent in each module

For representations with a concept of memory positions, it may be useful to
measure the way the program makes use of them:

• Number of effective memory locations [3]
• Entropy of memory locations used
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• The number of times a given individual memory location was referenced/
accessed

• Modularity of memory used.

There are also a wide range of potentially useful metrics that will depend on the
specifics of the genetic programming representation being used. For example, trees
and graph-based programs (e.g., Cartesian genetic programming) can be assessed
with metrics that describe their topology. Representations that have linear genomes,
on the other hand, can likely borrow a variety of useful metrics from biology.

We have demonstrated that using MAP-Elites with phenotypic axes based on
program architecture can illuminate constraints on program architecture that we
would have been unaware of simply from examining the programs generated by
traditional selection operators. Understanding these constraints can help us under-
stand why certain genetic programming representations are more or less successful
under certain circumstances, an important goal for the long-term advancement of
the field [17]. Thus, we expect that the approach presented here will be a useful
addition to the toolkit we use to study genetic programming.
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Chapter 2
The Evolutionary Buffet Method

Arend Hintze, Jory Schossau, and Clifford Bohm

2.1 Introduction

Within the field of Genetic Algorithms (GA) and Artificial Intelligence (AI) a
variety computational substrates with the power to find solutions to a large variety of
problems have been described. Research has specialized on different computational
substrates that each excel in different problem domains. For example, Artificial
Neural Networks (ANN) [28] have proven effective at classification, Genetic
Programs (by which we mean mathematical tree-based genetic programming and
will abbreviate with GP) [18] are often used to find complex equations to fit data,
Neuro Evolution of Augmenting Topologies (NEAT) [35] is good at robotics control
problems [7], and Markov Brains (MB) [8, 12, 21] are used to test hypotheses
about evolutionary behavior [25] (among many other examples). Given the wide
range of problems and vast number of computational substrates practitioners of GA
and AI face the difficulty that every new problem requires an assessment to find
an appropriate computational substrates and specific parameter tuning to achieve
optimal results.

Methods have been proposed that combine different computational substrates.
“AutoML” [27, 36] is a method designed to select a computational substrate most
appropriate for a given problem, and then generate a solution in that substrate.
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Another compound method is the “mixture of experts” concept, where an artificial
neural network is allowed to be constructed from a heterogeneous set of sub-
networks, originally pioneered by Jacobs et al. [14] and similar to more recent
work [31]. These methods choose from existing substrates or create a network of
existing substrates.

In this manuscript we propose a compound method that borrows elements from
various known computational substrates and uses them to create a heterogeneous
genetic algorithm that allows for direct low-level integration between components
from the different substrates. We call this approach the Buffet Method, in deference
to the No Free Lunch theorem [29, 39, 40, 42], which loosely “state[s] that any
two optimization algorithms are equivalent when their performance is averaged
across all possible problems” [41]. In this paper we choose components from four
computational substrates, and combined these components with a MB framework
to construct one possible implementation of the Buffet Method. Each substrate was
selected because it has been observed to be successful in some domain. We will
show that a MB that incorporates widely heterogeneous computational elements
from other systems (in this case GP, NEAT, ANNs, and MB) can combine the
advantages of these different systems, resulting in the ability to automatically
discover high quality, often hybrid, solutions while avoiding pitfalls suffered by the
individual systems.

2.2 Methods

We will be using terms that require definition, and/or specification. When we talk
about “computational substrate” we refer to the definition of a particular method
of computation. In this light, ANN, MB, etc., all define computational substrates,
but so does a biological brain (though we are not proposing the integration of
biological neurons into a buffet method. . . yet). It is also important here that when
we talk about ANN, GP and NEAT, we are talking about particular implementations
(usually the initial or canonical implementation). In particular, when we use GP we
specifically mean mathematical tree-based Genetic Programming and by no means
dismiss the large body of work that exists investigating other forms of Genetic
Programming. We also wish to note that we are using Markov Brains in two ways
in this paper. Firstly, MB are being used as the underlying method that allows
for the interconnection between elements from different computational substrates.
Secondly, we will be using two types of MB gates that have been in use since MB
were first proposed. When talking about Markov Brains in the first sense, we will
use MB, and in the second sense we will use CMB (for canonical Markov Brain).

Every computational substrate specifies unique sub-component behavior, the
ways sub-components connect with each other, the actions available to the substrate,
how inputs are received, how outputs are delivered, and how the substrate stores
internal states to allow for memory and recurrence. For example, GP is constructed
from nodes arranged as a tree whereas ANNs have a fixed layered topology. CMB
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logic gates work on digital inputs and not on the continuous values such as those
used by NEAT. It is therefore impossible to create one system that integrates
unmodified elements from all systems. Instead, we identified essential qualities of
each system and devised a way to incorporate these characteristics in a new system.

2.2.1 Markov Brains: An Introduction

Markov Brains describe a computational substrate comprised of three primary
elements: Nodes, Gates and Wires. Nodes are simply values (either input, output,
or hidden/recurrent). Gates are logical units which execute computations between
nodes. Wires connect input nodes to gates and gates to output nodes. When a MB is
executed, all of its gates are processed in parallel.

If more then one gate output is connected to the same output node then the gate
output values are summed (other methods such as overwrite and average have been
tested, but their discussion is outside the scope of this article). In many cases, MB
are used with binary inputs and produce binary outputs, in these cases the output
values are discretized as 1 if value > 0, else 0.

Usually, MB are used to find solutions to problems which require multiple
updates (i.e. navigation of a robot). On each update the inputs are set (conversion
of sensor state to input nodes), the MB is executed, and then the “world” is updated
based on the state of the output nodes (i.e. output nodes are used to control motors).
Memory between updates is achieved with hidden nodes. These are extra nodes are
added by reserving extra space in the input and output buffers. The values written
to the output hidden nodes are copied to the input hidden nodes after each MB
execution. In some configurations of MB additional input nodes are reserved so that
output node values may be copied in the same manner as hidden nodes, providing
direct access to the last outputs.

Since MB architecture is only one layer deep, output values are limited to
operations that only use single gate execution or a summation of such executions.
This limitation can be overcome by allowing hidden nodes and executing the MB
multiple times with a single set of inputs. More elaborate deeper topologies of nodes
and gates are possible. For example, if output nodes are available as inputs to gates,
then the output of one gate can be accessed by another gate in a single MB execution.
Of course, in this serial configuration, the gates cannot be run in parallel and a gate
execution order must be established (usually as additional information extracted
from the genome when the gates are being constructed).

The number of input and output nodes is determined by the task and the
number of hidden nodes is set by the user. The gates and wires are initially
randomly generated, but then are subject to selection, reproduction, and mutation
(see encoding methods below).

Gates may have any number of inputs and outputs. The basic gate type is a
deterministic logic gate using between 1 and 4 inputs that converts the inputs to
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bits (with the discretization function mentioned above) and then delivers between
1 and 4 outputs derived from a genetically determined look-up table. Neuron gates
are a more complex example gate type that take one or more inputs, sum these
inputs, then deliver an evolvable output value if the input total exceeds an evolvable
threshold and 0 if it does not. The summed value in a neuron gate can persist
over multiple updates providing the gate with its own local memory (apart from
the hidden nodes). Neuron gates have additional configuration options that, for
example, allow them to interactively alter their threshold value. Other gate types
that have been explored include counters, timers [13], mathematical operations, and
feedback [32]. It is not our intention here to describe the full range of possible (or
even existing) gate types, but rather to convey that the range of possible behaviors
is not limited and could even include nested MB networks. Adding new gate types
only requires the implementation of the gate’s internal process (gate update) and
construction and/or mutation behavior (depending on the encoding type). For a more
detailed description of Markov Brains, see [12].

In actuality, the logic contained within gates can define any computational
operation. Because of I/O standardization of MB gates any collection of gate types
will be compatible, regardless of internal computational processes. The modular
inter-operable structure of MB [12] lays the foundation for creating a heterogeneous
computational substrate that adopts elements from multiple sources and this is what
allows for the Buffet Method.

There are many processes that can be used to construct a MB. While the construct
method will likely effect evolvability, it can be considered separately from the MB
substrate. In order to generate more robust results (i.e. to insure that the encoding
method is not critical to the results) we replicated all experiments using a Genetic
Encoding method and a Direct Encoding method.

2.2.2 Genetic Encoding

Genetic Encoding uses a genome (a string of numbers) and a translation method.
The occurrence of predefined start codons (sub-strings of numbers, e.g. ‘43, 212’)
identify regions (genes) that define gates. Each gate is associated with a particular
start codon. The sequence following the start codon provides information needed to
define the function of that gate and how it is wired. Thus, every sequence of ‘43,
212’ in the genome will initiate the subsequent translation of a gate (of the type
associated with ‘43, 212’) when encountered during a linear read. Note that this
allows for overlapping gate genes. Since each gate type requires different data for
its construction, the information that must be extracted from the genome after the
start codon will be different and must be defined by the gate type. Gate types can be
allowed or disallowed by adding or removing their start codons from the translation
method.
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Fig. 2.1 Illustration of Indirect encoding for Markov Brains. A sub-string of values found in a
genome encodes each gate of a Markov Brain, each site on this string specifies different aspects of
the gate, such as the number of inputs and outputs, or how the inputs and outputs connect to nodes

For example, consider the genome sub-string in Fig. 2.1. If this were part of a
genome being translated into a MB the first thing that would happen is that the ‘43,
212’ sub-string would be located. As it happens, ‘43, 212’ is the start codon for a
deterministic gate. The next two values 31 and 89 would be used to determine the
number of inputs and number of outputs. Since deterministic gates have between 1
and 4 inputs and 1 and 4 outputs each of these values would be processed with
((value mod 4) + 1); resulting in 4 inputs and 2 outputs. The next 8 values
determine the input and output addresses. This gate will use all 4 input address
values but only the first 2 output address values. Since a mutation could alter the
number of inputs or outputs, the additional genome locations representing the 3rd
and 4th inputs go unread so that such mutations will not result in a frame shift. In
order to process the input and output address values the input genome values are
modded by the number of input nodes (including hidden) and the output values are
modded by the number of output nodes (including hidden). The following 64 values
(bold text in figure) are modded by 2 to generate 64 binary values for the look-up
table. Since this gate only has 4 inputs and 2 outputs a significant number of these
look-up table values will not be used, but they are unread (like the input and output
address values) to avoid frame shifts in the case of mutations, which alter the number
of inputs or outputs.

Reproduction and mutation are simple when using this form of genetic
encoding—the genome is copied, random mutations are applied, and then the
resulting genome is translated into a new MB. We allow for point mutations (the
random alteration of one random site in the genome), copy mutations (where a
section of the genome is selected and copied to another location) and deletion
mutations (where a section of the genome is deleted). The mutation rates are
established by the user and are defined as a per site percent chance. Sexual
reproduction is achieved by crossover between parent genomes (although all
experiments in this paper were asexual).
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2.2.3 Direct Encoding

The Direct encoding method we used in this paper generates the initial MB
populations using randomly generated genomes and translates the genomes using
the method described above, ensuring that experiments using Direct or Indirect
encoding have the same starting condition. But thereafter, organisms perform
reproduction and mutation by copying the MB and applying mutations to each
component of the MB directly. This method adds the requirement of specifying
mutational operators for each gate type based on the unique structure of that gate
type. In addition, the mutation rates of every possible mutation must be determined
explicitly. In this paper the direct encoding method allows for mutations that can add
a new randomly generated gate, copy an existing randomly selected gate, remove an
existing randomly selected gate, alter input or output wires of a gate and alter gate
internal parameters.

2.2.4 Multi-Step Functions

MBs execute all gates in parallel within a single update. If a computation requires
the participation of multiple gates in sequence, then there must be multiple updates.
If a task requires multiple updates and the MB performs multiple updates (i.e.
a navigation task where the input/update/output loop is repeated) then multi-step
processes can occur over time. On the other hand, some tasks pose a problem
and expect an answer or are time-critical. In these cases we allow the MB to
update multiple times between setting inputs and reading outputs. This is similar
in concept to allowing evolution to use portions of Jordan recurrent architecture,
Elman recurrent architecture, and evolvable connections as in NEAT [9, 16, 35].

2.2.5 Gate Types

For this paper we used four architectures: Canonical Markov Brain (CMB), GP,
ANN, and NEAT. We chose these because each has been shown to excel in
different problem domains. Elements from other systems, including neural Turing
machines [22], HyperNEAT [34], and POMDP [17] were considered and could be
incorporated later.

Our intent here is not to compare these different computational substrates, which
would not be possible or meaningful given that we are re-implementing them in the
MB framework, but rather to use these architectures for investigation.

To represent MB we selected two gate types: deterministic and probabilistic,
which were the first and most commonly used gates. When we are referring to the
use of these gate types we will use the abbreviation CMB (i.e. Canonical Markov
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Table 2.1 Computational
elements from genetic
programming

Command Description

CONST Constant value output

ADD Addition operator

SUB Subtraction operator

MUL Multiplication operator

DIV Division operator

SIN Sine operator in radians

COS Cosine operator in radians

LOG Logarithm

EXP Exponent function

Brain) rather then MB to avoid confusion. These gates take 1–4 inputs and generate
1–4 outputs. The update function is a look-up table that maps inputs to outputs.
In the probabilistic gate, every input pattern can result in any output pattern. For
each possible input pattern, every possible output pattern is assigned a probability.
Determining which output is generated by a given input requires the generation of a
random number during gate update.

From GP, we co-opted the idea of unary and binary math operations. A GP gate
takes 1 or 2 inputs and then performs an operation generating a single output (see
Table 2.1).

From ANN, we adopted the transfer function (summed weighted inputs) and the
hyperbolic tangent as the threshold function. These ANN gates have 1–4 inputs
serving as the input layer, and 1–4 outputs serving as the output layer, identical to
a small ANN without a hidden layer. The specific function of such an ANN gate is
controlled by a weight matrix.

From NEAT we borrowed more complex weighting and integration meth-
ods [33]. These gates are a hybrid between ANN and GP in that they take multiple
inputs, apply weights, aggregate them (product, sum, max, min, or mean), and then
pass them though a mathematical operation. These gates have 1–2 inputs, and a
single output (for the specific operators used, see Table 2.2).

2.2.6 Tasks

We chose a range of tasks that includes examples for which each of the gate
types described above has demonstrated competence. The purpose here is not to
benchmark these gate types or the Buffet Method as a whole, but to demonstrate
that the Buffet Method allows evolution to leverage the computational abilities of
the different gate types, which on average, yields better results than the use of a
single gate type. Moreover, our results show that evolution often finds solutions
comprised of combinations of gate types.
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Table 2.2 Computational
elements from NEAT, the
inputs become aggregated
into a

Command Description

CONST Constant value output

ABS Absolute operator

CLAMP Clamps a so that −1.0 < a < 1.0

CUBE a3

EXP exp a

GAUSS exp(−5.0a2)

HAT Hat function of a

EQU a

INV 1
a

LOG log a

RELU 0 for a < 0.0 otherwise a

SIG 1.0
1.0+exp(−a))

SQRT
√

a

TANH tanh a

SOFTPLUS 0.2 log 1.0 + exp a

2.2.6.1 Xor

For this task, two binary inputs are given, and fitness is awarded if the logical XOR
operation is correctly computed [15]. This is an extremely simple task for a MB,
since the initial population is made from randomly generated logic gates that likely
implement this function. However, evolving an ANN to solve this task is not trivial,
and this task has been used before as a benchmark example for NEAT [15, 37]. The
fitness (performance) is evaluated by presenting 100 pairs of binary inputs one pair
at a time, and comparing agent output to the expected output. Correct answers are
tallied resulting in a fitness between 0 and 100. Each agent is given 10 updates to
allow multi-step computation to be performed before evaluating the output.

2.2.6.2 Symbolic Regression

We organized a small set of functions for symbolic regression which all seem to
be equally complicated for the GA to find regardless of method (data not shown).
Here, we show the result for one function with two inputs x1 and x2: f (x1, x2) =
(x1 ∗ x2) ∗ (x2 − x1). The fitness of the agent is determined by the difference
between this function and the agent’s response (sampled 100 times with random
input values between −2.0 and 2.0), which is summed and squared. Each agent is
given 10 updates to allow multi-step computation.
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Fig. 2.2 Schematic overview of the inverted pendulum [38]. A weight with the mass m = 0.1,
kg is mounted on top of a beam (pendulum) of length l = 0.5 m. The cart must move forward
and backward to balance the pendulum upright. The simulation is stopped if the angle Θ increases

above 12◦. The cart has a mass M of 1.0 kg, but can be accelerated with a force
−→
F . We model

gravity to be earth-like: 9.8 m/s2

2.2.6.3 Inverted Pendulum

This task [4] involves balancing a vertical beam on a cart that can move only left
or right as if on rails. Each agent was evaluated 10 times. The beam (pendulum) is
mounted on top of the cart such that it can freely rotate around its mounting point
in 1 perpendicular axis (for an overview see Fig. 2.2. The agent can accelerate the
cart left or right, and the time the pendulum is above the cart is recorded during
100 simulation updates. The inputs are the current angle of the pendulum Θ , its first
derivative Θ̇ , the location of the cart x, and the current acceleration of the cart ẋ.
For each simulation update the agent experiences 8 multi-step computations, and

the output is the cart acceleration
−→
F (limited between −1.0 and 1.0). Both inputs

and outputs in this task are continuous (floating point) values. The code for this was
ported from openAI [26].

2.2.6.4 Value Judgment

This task originates from decision-making in psychology. An agent is confronted
with two noisy signals and must identify the stronger signal [19]. Imagine two
flickering lights of which you have to identify the one which is lit more often. In
this task each agent has two binary inputs and two binary outputs. Each evaluation
consists of 100 updates. At the beginning of each evaluation, a random value of 0 or
1 is generated that determines whether the first or second input will be more likely.
During each update there is a 55% probability that the more likely input will be 1
and the other input will be 0, and a 45% probability of the opposite. For the first 80
updates, the outputs are ignored. the agent then has 20 updates to provide an answer.
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Outputs of 0, 0 or 1, 1, are ignored, but 0, 1 and 1, 0 trigger an end of evaluation. If
an output of 0, 1 is provided and the second input was more likely or 1, 0 and the
first input was more likely, then the agent receives one point. This test is repeated
100 times and the results are summed, resulting in a fitness value between 0 and
100. Note: a) guessing will result in an average score of 50 and b) a perfect score is
unlikely because of the small variation in blink probabilities 0.55 vs. 0.45.

2.2.6.5 Block-Catching Task

This task involves an embodied agent that must either catch small blocks or
avoid large blocks that are moving obliquely towards the agent [5]. This is a task
we thoroughly investigated before [3, 21, 30] and it can be solved by MBs and
ANNs (for an illustration of the task see Fig. 2.3). The task is not trivial because
information must be integrated over time. Agents in this task are only allowed
one brain update per world update so to be successful they should integrate and
remember information while new information is presented.

2.2.6.6 Associative Memory

In the associative learning task the agent is rewarded for each unique location visited
along a predefined path. The agent is given one input representing whether the
agent is on a straight part of the path or not. Two other inputs are also provided,
one if the path progresses to the Left and another if the path progresses to the
Right. Fitness is increased for each unique location along the path the agent visits,
and decreased for every time step that the agent is not on the path. Between each
fitness evaluation the set of inputs for “turn left” and “turn right” are randomized.
No information is provided indicating the end of the path. At the beginning of a
fitness evaluation the agent first should discover the mapping between signs and turn
directions, the behavior of which, if performed, looks like exploration. The agent
then may utilize that information to follow the path properly, which appears like an
exploitation phase [11] (Fig. 2.4). The original work was performed in AVIDA [1]
and this particular extension of the task to associative learning was proposed by
Anselmo Pontes in yet unpublished dissertation work. From prior experiments (data
not shown) we know that MBs as well as ANNs are well-suited to solve this task.

2.2.6.7 Noisy Foraging

This task uses an embodied agent that must search for randomly placed food on a
discrete grid; once the food is collected the agent must return to a previously defined
home location to increase fitness. This foraging trip can be repeated many times
over the lifetime of the agent, on each repetition the randomly placed food is moved
farther away from home. The home and food locations are marked by a beacon
that can be seen from great distance by the agent. The agent has eight detectors,
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Fig. 2.3 (a) In the simulation, large or small blocks fall toward the bottom row of a 20×20 discrete
world, only one at a time. As a block falls, it moves diagonally in a fixed direction either to the
right or left (e.g. on each time step a given block will move down one row and the left one column).
The agent is situated at the bottom row and can move left or right. For the purpose of illustrating
the task, a large brick may fall to the left, then the next block might be a small block that will fall to
the right. In this example the agent is rewarded for catching small blocks and punished for catching
large blocks, but the task may be reversed, or made more complicated with more rules (catch left-
falling blocks). (b) A depiction of the agent’s states (bottom left: triangles depict sensors, circles
illustrate brain (internal) states, trapezoids denote actuators) and the sequence of activity patterns
on the agent’s 4-bit retina (right), as a large brick falls to the right. Reproduced from [21], with
permission

each covering a 45◦ arc that can detect the food and home beacons. Agents can
turn 45◦ left and right or move forward. Additional sensors inform the agent about
having reached the home location or a location where food can be found. Each agent
has between 9900 and 10,155 time steps to collect food. The variation in lifetime
prevents agents from deploying a repetitive search pattern (data not shown). Fitness
is defined according to the following function:

w =
j<si∑

j=0

1.05
1

ti,j
d2
i,j (2.1)



28 A. Hintze et al.

Fig. 2.4 Overview of the associative learning task. The agent (orange triangle) navigates a path
(white) on which there are four signals that the agent can only see when standing on top of them.
One signal indicates that the path continues in a straight line (black circle). Two other signals
(green diamond and blue star) indicate that the path will turn left or right, with the meaning of
the signals randomized at the start of every experiment. Thus, the agent must first explore what
the signals mean and then exploit that information. The final signal is given when navigating off
the path into poison (purple) and has negative consequences, the severity of which is set by the
experimenter

where fitness is w, the distance of food to home is d , the time each trip takes is
t (only considering the last time an organism leaves either food or home until it
reaches the other), and the number of successful trips per trial is s. This equation
rewards efficient resource collection by penalizing time-consuming search ( 1

t
).

Additionally, collecting additional resources is rewarded exponentially (d2). We
then summed over all successful foraging trips completed in one evaluation of the
agent.

2.2.6.8 Maze Solving Task

In this navigation task [8], the agent is rewarded for navigating a binary maze
consisting of a sequence of long parallel walls, each containing a single door
somewhere along the wall (Fig. 2.5). When passing through a door the agent receives
an input (1) if the next door is to the right of the current door or an input (0) if the
next door is not to the right of the current door. The agent can only perform three
actions: step forward, sidestep left, or sidestep right. This task requires the agent to
identify sporadic signals and remember them (at least until the next door) in order
to navigate efficiently.
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Fig. 2.5 Overview of the navigation task. A typical maze (panel A), with gray boxes indicating
walls and white boxes indicating empty space to navigate. The agent (red triangle) finds the shortest
path through the maze by attending to the signals received when passing through the doors. A
signal (purple speech bubble) indicates that the next door is to the right (from the perspective of
the agent), and the absence of a signal indicates that the next door is either straight ahead or to the
left. When the agent navigates successfully through the maze, ideally following the optimal path
(dashed red line), it is moved back to the start. A schematic view of inputs feeding into the MB
and its connection to outputs is shown in panel B. If both actuators receive a positive signal then
the agent attempts to step forward. If actuator A receives a positive signal and B does not then the
agent attempts to step to the left, and vice versa for a step to the right. An attempt to step sideways
into a wall is conveyed by left/right wall inputs. The agent experiences single updates, disallowing
multi-step computation

2.2.6.9 Behavioral Optimization in “Berry-World”

This task was designed to test speciation and specialization of behavior [6], however,
it also allows us to test how agents integrate past information to optimize future
decisions. The environment is a small grid (6 × 6) surrounded by a wall and filled
with two types of collectible resources (commonly referred to as red and blue
berries, hence ‘berry world’). The agent is evaluated for 200 time steps. On each
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time step the agent can turn 45◦ left or right, move forward, or consume the berry at
its current location. If a berry is consumed and the agent moves, then the empty spot
is replenished with a new random berry (red or blue). The agent can sense resources
at its current location, in front of it, to the front left, and to the front right; empty, red,
blue, or wall. Consumption of each berry is rewarded with one point, however if the
type of berry consumed differs from the previous one, then a task-switching cost (1.4
points) is subtracted. The task-switching penalty discourages random consumption
and encourages foraging strategies that minimize switching. On each world update
(time step), agents receive five binary inputs. The first two describe the state of the
location occupied by the agent (either 1, 0 red food, 0, 1 blue food or, 0, 0 no food
here). The other three inputs depend on the state of the location in front of the agent
(red food, blue food or wall). the agent provides 2 binary output (0, 0 = no action,
0, 1 = turn right, 1, 0 = turn left, 1, 1 = move forward).

2.2.7 Experimental Parameters

For each possible combination of brains (CMB, GP, NEAT, ANN, and buffet),
environments (XOR, symbolic regression, inverted pendulum, value judgment,
berry world, spatial temporal integration, maze, associative learning, and noisy
foraging) and encoding (direct and indirect) we investigated 100 replicates of each
condition. Each condition was seeded with 10,000 randomly generated agents in the
first generation (to increase the likelihood to start with an initial viable agent). After
that the population size was reduced to 100 agents and evolution progressed for 5000
generations. In each generation roulette wheel selection was used to choose parents
and via asexual reproduction, mutated offspring were generated. We expect, our
results should also apply to other search methods such as map-elites [24], novelty
search [20], and sophisticated hill climbers [10].

All experiments were implemented and performed using the MABE frame-
work [6]. MABE is a general purpose digital evolution framework designed to allow
for the arbitrary combination of modules in order to construct agent-based evolution
experiments. Here we leveraged MABE’s ability to “swap” world modules (fitness
functions) between experiments while leaving computational substrates, genomes,
mutational operations, and the selection method fixed.

2.3 Results

While most combinations of brains and environments performed well, some
combinations failed to find a solution or preformed sub-optimally (see Fig. 2.6).
For example, NEAT, GP, and ANNs struggled with the Berry World and Foraging
environments, and CMB was unable to solve the pendulum task in the time allotted.
The Buffet Method was able to solve all tasks near perfectly.
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Fig. 2.6 Comparisons of
different experimental
conditions of the buffet
method only run allowing
CMB, NEAT, GP, or ANN
gates, respectively, in
comparison to allowing them
ALL types of gates at the
same time (columns). Each
condition was tested on nine
different tasks (XOR,
symbolic regression, inverted
pendulum, value judgment,
berry world, block catching,
maze navigation, associative
memory, and noisy foraging)
represented by the rows.
Average performance for the
indirect encoding shown as a
solid black line, direct
encoding represented by a
dashed line. The red dashed
line indicates the maximum
performance on each task
where applicable, except for
the symbolic regression,
which tries to minimize the
error
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When comparing CMB, GP, ANN, and NEAT to the Buffet Method we find
that the Buffet Method generally evolves populations to higher fitness regardless
of direct or indirect encoding (see Fig. 2.7), but in some cases is not the best.
In particular, ANNs performed better on the Inverted Pendulum task and CMBs
perform better on the associative memory task.

To investigate which components evolution selects, we reconstructed gate usage
over evolutionary time for CMB, NEAT, GP, and ANN gates. See Fig. 2.8. In
some environments (symbolic regression and inverted pendulum) ANN gates are
predominantly used, while in the XOR and Berry World CMB gates were dominant.
In all other environments we find more than one gate type with slight bias toward one
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Fig. 2.7 Final normalized scores after 5000 generations for encoding methods. See the legend for
the gate conditions. The x-axis is the eight different environments without the symbolic regression
task because that task is a score-minimizing task. Y-axis W̄ is average fitness. Standard error is
shown. (a) Results after genetic encoding was used. (b) Results after direct encoding was used

type or another (depending on task). Inspecting individual brains (data not shown)
confirms that evolved brains are composed of different gate types. This indicates
that the Buffet Method is not just allowing evolution to select a single optimal gate
type, but to also generate heterogeneous brains composed of different gate types.

2.4 Discussion and Conclusion

We showed that the Buffet Method performs generally well across all tasks, while
each of the subsets (CMB, NEAT, GP, ANN) failed at least one task and under-
performed on others.

While we cannot say for certain why different computational substrates struggle
with some tasks and not others, it is worth noting that the two tasks that were
problematic for NEAT, GP, and ANN involve directional navigation. We do know
that CMBs’ difficulty with the pendulum task is a result of the fact that MB gates are
not capable of producing negative outputs (because we chose to represent CMB with
deterministic and probabilistic gates which are binary and non-negative), and thus
can only accelerate the cart in one direction. We could have resolved the problem of
negative numbers for CMBs in the Inverted Pendulum task by changing the meaning
of the outputs for that task. We could have discretized the input to a string of bits
and instead of a force, we could have used two binary outputs, where both 00 and 11
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Fig. 2.8 Gate usage for the different experimental conditions using genetic encoding (direct
encoding results are similar, data not shown), in orange deterministic logic gates, in red proba-
bilistic logic gates, in shades of green GP gates, in shades of blue NEAT gates, and dark gray ANN
gates

mean nothing, and 01 or 10 indicate an acceleration to the left or right. The reason
that we did not re-implement the input and output to the Inverted Pendulum task
such that non-continuous value substrates could solve it was to highlight that not all
computational substrates will always be able to solve all problems. Our approach
allowed us to test whether the Buffet Method was capable of discovering solutions
using the provided elements given that the problem could be solved by at least some
part of the provided elements. One of the advantages of the buffet Method is that
it allows for the combination of significantly different computational substrates. In
this case, the substrates had different limitations on their input and output specifics.
Previous work has shown that the representation of a task can affect evolutionary
outcomes [2]. With the Buffet Method we were able to include tasks without needing
to consider how, or even if, the task will interface with the substrates.
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Considering that the Buffet Method has access to all of the elements of the
individual computational substrates it is noteworthy that it could not always find the
optimal solution. For example, a MB using only ANN gates is superior to the Buffet
Method on the pendulum task. Why did the Buffet Method not simply discard all
other gates while retaining the ANN gates? The same logic applies to the association
task where using MB gates alone produced better results than the Buffet Method. We
expect that this effect may be related to historical contingency. That is, if a strategy
that provided some fitness using a sub-optimal gate type was discovered, this gate
and strategy may have been “locked in” prohibiting the discovery of a more optimal
solution. But this is simply conjecture and requires more investigation.

2.5 Future Work

Here we incorporated ANN, NEAT, and GP gates into a MB substrate, but
integration of probabilistic and deterministic MB logic gates and ANN weighted
threshold elements into GP or NEAT should be investigated. This idea is not
entirely novel. For instance, some implementations of Cartesian GP include binary
logic elements [23]. Future exploration into integrated computational substrates, the
methods that allow for arbitrary integration, and methods for testing these emerging
systems provide ample opportunity for research and development.

The work presented here suggests that the typical approach of finding the correct
computational substrate for a given problem is sub-optimal to the Buffet Method in
which evolution can be used to discover not only which computational substrate is
optimal for a given problem, but can generate new hybrid systems in an automated
manner.

Far from insisting that everyone should abandon what they are doing to work on
the Buffet Method, we hope that work continues exploring separate domains, so that
whenever a new idea is shown to perform well (even if the domain is narrow) this
idea can be integrated into the buffet.

One area we did not explore is task classification depending on gate usage. The
Buffet Method could be applied to a greater number of tasks and a comparison made
between the times to achieve optimal solutions given access to a subset of gates. Or,
the distribution of gates used to make up solutions when all gates are provided could
be compared. Such profiles could provide an objective task classification method.

Lastly, we found that the Buffet Method creates new heterogeneous solutions
made from different components. One cannot help but wonder how components
never intended to work together might suddenly form functional computational
machines. We will explore these hybrid substrates in the future.
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Chapter 3
Emergent Policy Discovery for Visual
Reinforcement Learning Through
Tangled Program Graphs: A Tutorial

Stephen Kelly, Robert J. Smith, and Malcolm I. Heywood

3.1 Introduction

Visual reinforcement learning represents the direct application of reinforcement
learning algorithms to frame (pixel) data from camera or video sources. The learning
agent is therefore able to interact with the environment more directly than previously
possible, i.e. there are no a priori decisions made regarding what features are
useful/important, potentially reducing sources of bias. To date, such approaches
have been dominated by results from deep learning that have successfully mini-
mized the amount of pre-processing necessary to the source images (typically down
sampling with sequential image averaging) while demonstrating the ability to better
the performance of humans [28].

Some of the rationale for the ability of deep learning to provide state-of-the-art
performance in visual reinforcement learning tasks has been attributed to the explicit
manner in which the initially high-dimensional sensory input (pixels) is encoded
into an efficient low(er) dimensional representation. Having found an appropriate
encoding though a highly modular hierarchical (deep learning) architecture, a
decision making component is simultaneously trained to provide the agent’s policy
(typically a multi-layer perceptron). Also of importance was achieving these results
with a common topology and hyperparameters regardless of task (e.g. 49 Atari
gaming titles). Most research since the initial pioneering report by Mnih et al. [28]
has concentrated on either improving on the initial formulation of reinforcement
learning employed with deep learning (of which there are many, see for example
[24]) or suggesting approaches for evolving different parts of the deep learning
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architecture. The latter would imply that the complexity of the deep learning
architecture would more closely reflect the underlying complexity of the task,
e.g. [29].

In this work, we review a recent result in which a completely different approach
is taken, one in which program modularity plays a central role; hereafter Tangled
Program Graphs (TPG) [12, 13, 15, 31]. Thus, instead of learning to encode a lower
dimensional representation, we learn how to connect together multiple teams of
programs (modules). Each team individually attempts to make decisions based on a
low dimensional policy, thus teams decompose the task based on very small subsets
of pixel information. In this way the composition of teams and the connectivity
between teams is all emergent. Finally, only a fraction of an agent’s complement
of teams are actually utilized per decision. Thus, as an agent reacts to different
states, different subsets of the teams respond.1 All of this results in an exceptionally
efficient framework for decision making under visual reinforcement learning tasks.

In the following, we review related work (Sect. 3.2) and characterize visual
reinforcement learning (Sect. 3.3). A tutorial overview to the TPG framework is
presented in Sect. 3.4, before a case study is presented on decision making using
TPG in the Atari video game and VizDoom environments (Sects. 3.5 and 3.6
respectively). A concluding discussion is made in Sect. 3.7.

3.2 Related Work

TPG emphasizes the development of interrelationships between programs, ulti-
mately resulting in the emergence of a (tangled) graph. However, this came about as
a generalization of earlier research into teaming metaphors in genetic programming.
With this in mind, we provide a brief survey of related work from these two
perspectives. Naturally, there are many other interesting developments involving
graphs and programs, for example Cartesian GP [27], gene regulatory networks [2],
and graph programming [1]. However, these developments have tended to focus on
using graphs to express the interrelation between individual instructions, whereas
the contribution of TPG lies in providing for the emergent organization of the
interrelation between programs.

3.2.1 Evolving Graphs

Fogal pioneered the evolution of Finite State Machines for sequence learning
tasks [8]. However, such models required transition rules for all combinations of

1In contrast, even once trained, the convolutional operation central to deep learning results in orders
of magnitude higher computational cost.
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states and inputs, limiting their scalability. PADO appeared in 1996 and expressed
solutions as a graph of programs [35]. The graph had a start node and finish node.
Each node also had a program that manipulated its own stack, as well as supporting
the indexing of global memory. The path through the graph was determined by a
single conditional instruction associated with each node. Execution began with the
program at the start node and continued until a time out or the finish node was
encountered. Given that the input remains unchanged, it appears that the state of
programs local to each node is retained. It is not clear how much of the graph was
developed as an emergent property (i.e. if the number of nodes predefined/constant
throughout evolution), but it did appear that most if not all the nodes of the graph
were visited during each execution.

More recently Genetic Network Programming (GNP) has been proposed in
which a fixed number of graph nodes are declared a priori and each node has
to be one of two ‘types’: conditional or action [23]. There is a fixed number of
nodes (constant across evolution and common to all individuals), and a finite set
of (application specific) conditional operators and actions. GNP is initialized at a
specific start node, and then allowed to execute up to a minimum of 5 ‘ticks’. Each
node type has a specific tick cost (1 for conditionals and 5 for actions), where this
limits how much of the graph is visited per state from the environment. In effect,
a GA is used to define the connectivity between nodes and node type relative to a
predefined library of conditionals or actions.

Neural Evolution of Augmented Topologies (NEAT) represents a framework for
developing neural networks with arbitrary topology, beginning with a population
of perceptrons (each initially fully connected to the inputs). As such, the genotype
expresses a graph of connections between different types of node (input, output and
neurone). Moreover, NEAT introduced a genotypic marking scheme for connections
in order to establish context for crossover [33]. The same marking scheme forms
the basis for a genotypic diversity measure that maintains a fixed number of
niches in the population during evolution. The framework is capable of describing
recurrent connections, as well as defining weight values. The NEAT framework has
been widely adopted, and even benchmarked under the Atari visual reinforcement
learning domain [9]. Later developments, such as HyperNEAT, concentrated on
expressing very large arrays of neurones in a particularly compact genotype, but
resulted in all members of the population retaining a fixed number of neurones [9].

Several other frameworks for evolving neural networks (and therefore graphs)
have since been proposed, including neuroevolution through Cartesian GP [37]
and the use of linear genetic encoding for expressing graphs [25]. To date, such
approaches have not been applied to visual reinforcement learning tasks. More
recently, the DeepNEAT framework was proposed [26], in which each node of the
genome represents a layer as opposed to a single neuron (as in NEAT). Specifically,
each genome is a table of parameters used to characterize layers of the deep
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learning architecture and edges of the genome express connectivity between layers.
Evaluation was performed with image classification and language modelling tasks.

3.2.2 Evolution of Multiple Programs Without Graphs

Teaming metaphors in genetic programming have previously been proposed and
define cooperation in terms of an ensemble of programs that all operate simulta-
neously. Early work assumed a fixed length genome, thus the number of programs
was always declared a priori and never varied by the evolutionary process [4]. In
other cases a variable length genome was assumed, but fitness had to be specified at
the ‘level’ of programs and teams, so limiting the application base to classification
tasks [36, 40].

In order to avoid these issues, a symbiotic framework was previously assumed
in which one population conducts a search for useful team members and a second
provides the population of programs [20]. In addition, a trick from learning classifier
systems was adopted in which the decision of when to act and what action to take
were explicitly separated, or bid-based GP (Fig. 3.1) [19]. Hence, given a team
of bid-based GP individuals, the program for each is executed given the current
state, s(t), of the task. Which ever individual from the team has the maximum
output is said to have ‘won’ the right to suggest its action. The action is just a
scalar, a, taken from the set of scalar task specific (atomic) actions, A . Thus, for a
three class classification problem A = {0, 1, 2}. Each bid-based GP individual can
only ever have a single action, implying that the program context evolves against a

Fig. 3.1 Symbiotic coevolutionary relation between population of nodes and programs (a). Each
program expresses a bid-value and scalar action (b), as per bid-based GP. Programs assume a
linear representation (b) as this provides support for other algorithmic speedups such as intron
instruction skipping [5]. Instruction set is limited to arithmetic operators, 3 non-linear operators
(cosine, natural log, exponential), and a conditional (if R[x] < R[y] then R[x] = −R[x])
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static action, potentially clarifying credit assignment. Moreover, team complement
incrementally evolves in an emergent way until the relevant task decomposition
is achieved, i.e. there might be multiple programs with the same action within the
same team. Application examples to date include, multi-class classification [20, 21],
decomposition of very large attribute spaces into simple classification rules [7, 21],
and operation under non-stationary streams [18, 38].

A second development of the above approach introduced the ability to have (bid-
based GP) programs learn the context for deploying other (bid-based GP) programs
[6, 16, 22]. This was particularly useful in reinforcement learning tasks in which the
ultimate policy is constructed hierarchically from earlier policies (as in task transfer)
[11, 14, 30]. A limitation of the approach is that all aspects of each task need
encountering at the first ‘layer’ of development (e.g. source tasks), as all later layers
(of teams) express their policy ‘through’ some subset of earlier policies. Naturally,
there are many reinforcement learning tasks for which an agent only incrementally
uncovers properties of the task as the agent interacts with the environment, e.g. game
playing agents or evolutionary robotics. Conversely, the TPG approach explicitly
addresses this limitation by providing much more flexibility in how hierarchical
relationships between teams of programs develop.

3.3 Visual Reinforcement Learning

In the following we will assume visual reinforcement learning tasks with discrete
actions. For example, the Atari (arcade) Learning Environment (ALE) [3] defines
state in terms of the frame buffer at time t, with t = {0, 1, 2, . . . , n} denoting a

sequence of n + 1 consecutive frames.2 The goal of the decision making agent is to
suggest an action for each frame such that game score is maximized, i.e. reward is
delayed until some end criterion is encountered, such as the maximum number of
agent to game interactions (t = tmax) or an end of game state. Under ALE the set
of available (atomic) actions, A , are defined in terms of up to 18 atomic actions3

corresponding to the enumeration of the 8 discrete directions of the joystick, both
with and without a button ‘press’,4 plus a button press alone and ‘no action’ (NA).

The interest therefore lies in finding a single machine learning framework that is
capable of playing multiple game titles directly from the visual state information.
No attempt is made to a priori identify appropriate input features or decompose the
task into a sequence of incrementally more difficult training scenarios. The learning

2In practice the sequence of frames as experienced by the agent might represent a stochastic
sampling of the actual true frame sequence [24].
3Game titles might not use all atomic actions.
4The action of a button press is game dependent and might make the avatar ‘jump’ in some games
and ‘fire’ in others.
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agent therefore has to identify an appropriate policy for playing the game directly
from the same information that a human player would perceive (albeit without any
sound information).

To date, such visual reinforcement learning tasks have been dominated by devel-
opments from Deep Learning (see the review in [24]). Evolutionary approaches
have been proposed that required prior information to preprocess the original frame
information into separate ‘channels’ [9] or limited to optimizing the parameters of a
prior Deep Learning architecture [29, 34]. A GP formulation has also been proposed
in which GP defines a sequence of image processing operators [10]. The resulting
GP processed image then requires interpretation through a set of heuristics in order
to determine the action. Such an approach is therefore limited to subsets of games
for which appropriate heuristics can be designed. Most recently, Cartesian GP was
demonstrated on ALE, albeit while assuming a large instruction set that included
operators for explicitly manipulating vector (i.e. image) data [39].

TPG was previously demonstrated to be particularly effective at the 20 ALE
game titles that Deep Learning was poor at playing [12] and then benchmarked
over all 49 ALE titles [15]. TPG was also demonstrated to be capable of developing
single policies that played multiple game titles [13, 15]. Most recently TPG was
demonstrated under the VizDoom first person shooter environment [31], where this
indicates that TPG may also scale to much larger state spaces than under ALE, as
well as operating under much higher levels of partial observability than typically
present in ALE.

3.4 Tangled Program Graphs

TPG represents a framework for organizing multiple programs into structures such
that they solve some larger task in a highly modular way. Our starting point is a
symbiotic evolutionary framework (Fig. 3.1a) consisting of: (1) a Node population
that defines nodes in the TPG graph and (2) a Program population. Nodes define
which programs will cooperate in order to make a decision at that particular
node. The program population defines each individual in terms of program, p, and
atomic action a ∈ A (Fig. 3.1b). The two populations coevolve under a symbiotic
relationship in which the Node population conducts a search for ‘good’ modules
(teams of programs) and the Program population concentrates on sourcing ‘useful’
programs.

In the initial population all nodes consist of between 2 and ω (bid-based)
programs, initialized randomly, with action, a, assigned with uniform probability
from the set of atomic actions, A , under the constraint that:

• there must be at least two different actions present in the set of programs
associated with the same node.

• each node must have a unique complement of programs.
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Fig. 3.2 Snapshot of emergent process of TPG graph construction using a hypothetical illustrative
example. Black circles represent root nodes, and each root node constitutes the starting node
for evaluating an agent. Grey nodes represent members of the Node population that have
became subsumed into another agent through the action of the program variation operator pair
(pmn, patomic). (a) Initial (single node) agents. (b) Transition from a single node to a bi-node
agent. (c) Two bi-node agents emerge. (d) An agent with 4 nodes emerges

Such a starting point implies that: (1) all graphs initially only possess a single node
(Fig. 3.2a), and (2) the same program can appear in multiple Nodes (Fig. 3.1a).

After fitness evaluation the agents are ranked (Step 2d, Algorithm 1) and the
worst performing Gap deleted from the Node population (Step 2e). Variation
operators will sample until Rsize new agents are introduced into the Node population
(Sect. 3.4.2). There is no special significance to the adoption of a breeder model,
other than it is elitist.

At this point it is worth noting that:

• Although a two population framework is assumed, fitness is only explicitly
defined for nodes in the Node population.5

5Actually as nodes are subsumed into graphs, it will be come apparent that only a subset of nodes
require explicit fitness evaluation (Sect. 3.4.1).
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Algorithm 1 TPG algorithm. The term ‘agent’ denotes the subset of nodes in the
Node population that represent root nodes (Sect. 3.4.1). Although an agent typically
consists of multiple nodes, only the root node is subject to variation (Sect. 3.4.2)
• Initialize Node(0)

• Initialize P rog(0)

• For (g = 0; !EndOfEvolution; g = g + 1) # Generation loop

1. AgentList = ∅
2. For all (node ∈ Node(g)) AND (node = root) # Identify valid agent

a. agent = node;
b. update(AgentList, node)
c. For all (evaluations) # Evaluation loop (Sect. 3.4.3)

i. Evaluate(agent)
ii. update(agent.Fitness)

d. Rank(agents ∈ AgentList) # Select parents
e. Prune worst ranked Gap agents in AgentList and corresponding nodes in N(g)

f. Prune all prog ∈ P rog(g) without a node
g. Select (Parents ∈ AgentList)
h. Clone (NewAgents, Parents)
i. DO # Create offspring (Sect. 3.4.2)

i. agent ∈ NewAgents

ii. newRoot = DeleteProgFromNode(root ∈ agent, pd ) #
Node variation

iii. newRoot = AddProgToNode(root ∈ agent, pa)
iv. IF (ModifyProgram(pm ) THEN # Program variation

A. Select(prog ∈ newRoot)
B. Clone (newProg, prog)
C. ModInstr(newProg, pdel , padd , pmut , pswp)
D. ModAction(newProg, pmn, patomic) #

Action variation

v. IF (!unique(newProg)) THEN repeat ‘ModifyProgram’ #
Neutrality test

vi. P rog(g) = P rog(g)∪ newProg # Update Program population
vii. Node(g) = Node(g)∪ newRoot # Update Node population

j. WHILE count(newRoot) < Gap AND |AgentList | < Rsize

• Members of the program population are tested after the Gap worst performing
agents are deleted. If any program is not associated with a surviving individual
from the Node population, it is deleted (Step 2f). This implies that the size of the
Program population actually fluctuates as a function of the selection and variation
operators.

• Nodes in the Node population might be root nodes or nodes that are internal to a
graph. As will become apparent, the number of agents is equal to the number of
root nodes. It is therefore generally the case that the number of agents is less than
the size of the Node population, the precise composition also being an emergent
property. With this in mind, a test is introduced to ensure that a minimal number
of agents, Rsize, is maintained at each generation (Step 2j).
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Before introducing further details of the TPG algorithm Sect. 3.4.1 provides some
intuition as to how the symbiotic representation develops solutions into a tangled
graph from teams of programs (each node is a unique team). Section 3.4.2 will then
define the variation operators and relate their function to the overall TPG algorithm
(Algorithm 1). Finally, Sect. 3.4.3 provides a walk through for how a TPG agent is
evaluated, given a frame buffer input.

3.4.1 Developmental Cycle

Figure 3.1a established that at initialization each node (of the Node population)
identifies a unique subset of programs from the program population. We can make
the connection to graphs more obvious by ignoring the relationship to the two
populations (a genotypic property) and instead just concentrate on the representation
of agents (initially each node is an agent), a phenotypic property.

Figure 3.2a illustrates the case of an initial population consisting of three agents
a, b, c, each of which only consist of a single node. Agents b and c consist of three
programs and agent a only 2. Taking agent a as an example, it comprises of two
programs, 1 and 3. Arc direction always follows from the node at which programs
have team membership and ends at the corresponding action. Given that this is
the initial population, actions can only ever be atomic actions, Fig. 3.2a, and all
members of the Node population are therefore root nodes. Each root node represents
the node at which evaluation/execution begins (Sect. 3.4.3), thus each agent may
only have a single root node.

Figure 3.2b illustrates the effect of a modification to the action of program ‘5’.
Action modifications can either result in a different atomic action being selected
(a ∈ A ), or the program pointing to another node (a ∈ N(g)). As program ‘5’ was
modified, its identifier changes (to ‘9’) to reflect the fact that the original program
‘5’ might still exist elsewhere, i.e. as used by a different node (hence the use of
cloning before the application of variation operators, Sect. 3.4.2). Node ‘c’ now no
longer represents a root node, as it is a child of node ‘b’. Hence the number of agents
has actually decreased.

In Fig. 3.2c node ‘a’ from Fig. 3.2b was sampled twice as the parent and cloned
in both cases resulting in nodes ‘d’ and ‘e’. Node ‘e’ inherited the programs of node
‘a’, but had its atomic actions changed. Conversely, Node ‘d’ retained one program
unchanged (‘3’) but also gained program ‘6’ and a new program ‘10’. As the action
of program ‘10’ is a pointer to node ‘a’, node ‘a’ is no longer a root node. At this
point we have three agents: 〈b : c〉, 〈d : a〉, 〈e : ∅〉 where 〈x : y, z〉 denotes agent
‘x’ with root node ‘x’ and non-root nodes ‘y’ and ‘z’.

Figure 3.2d illustrates the point at which an agent with three nodes emerges.
In this case Node ‘b’ gained a 4th program (‘14’) with action identifying Node
‘a’. In addition, Node ‘e’ also had a program added (‘13’) which, in this case, also
happened to use Node ‘a’ as its action. We now have one three node agent, 〈b : a, c〉,
and two agents with 2 nodes, 〈d : a〉, 〈e : a〉. Note, that for clarity we have focused
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the above commentary on the offspring agents introduced as a function of selection
and variation. The parents would be retained and compete with the offspring for the
right to survive.

3.4.2 Variation

Following the identification of parents (Step 2g, Algorithm 1), each parent is cloned.
More specifically, only the root node of each parent is subject to cloning and
variation (at initialization all nodes are root nodes). This implies that competition
between the simpler parent and generally more complex offspring is enforced. Thus,
in order to survive the more complex offspring have to perform better than the
(simpler) parent.

The first set of variation operators operate on the cloned (root) nodes and take
the form:

• delete (Step 2(i)ii) or add (Step 2(i)iii) a reference to a program (pa, pd ) or,
• modify a program currently in the node (pm).6

The second set of variation operators operate on programs associated with a root
node offspring (only called upon when pm test true, Step 2(i)iv), in which case the
effected program is first cloned before applying variation operators to the cloned
program:

• delete or add an instruction (pdel, padd ),
• mutate an instruction (pmut ),
• swap two instructions within the same program (pswp), or
• modify the action of a program within the team (pmn).

Should pmn test true, then an additional test is applied, patomic, which establishes
the type of action change (Step 2(i)ivD). Thus, for patomic true, the cloned program’s
action, ai is selected from the set of atomic actions ai ∈ A , whereas for patomic

false, the new action is a pointer to any node in the Node population of generation
g, or ai ∈ N(g).

One constraint is enforced during action variation. When the program is inserted
in its corresponding node, there must be at least one atomic action present across
the subset of programs local to that node. This property will later be employed to
guarantee that infinite loops do not result during evaluation, i.e. all states will always
result in an atomic action (Sect. 3.4.3).

Finally, given the high cost of fitness evaluation we assess the uniqueness of
programs (Step 2(i)v). To do so, a collection of the 50 last state observations as
executed under fitness evaluation are retained. Each new program is then tested to

6The variation operators are actually applied multiplicatively, possibly resulting in any single
operator being applied several times, see [21].
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determine whether the bid values for the new program are at least τ different from
any of the other programs in Prog(g). If not, the variation operators for program
modification are reapplied. In effect this represents a test on the neutrality of the
variation operators using a minimum threshold of bidding behaviour.

3.4.3 Agent Evaluation

In the following we will assume that state information, s(t), corresponds to the
current content of the frame buffer. Evaluation of the agent always commences from
the root node. Thereafter, the path through the agent’s graph is dynamic, generally
resulting in only a fraction of the agent’s program graph being evaluated before an
action is identified. This makes TPG exceptionally efficient to evaluate as compared
to current Deep Learning or neuro-evolutionary approaches (both of which evaluate
the contribution from all of the topology for every decision).

Evaluation of a node is a two step process in which only the subset of programs
associated with the node are executed. Out of this subset, only the program with
the largest bid ‘wins’ the right to suggest its corresponding action (providing it is
not ‘marked’, see below). Thus, evaluating a node identifies a specific arc. There
are then two scenarios, either the arc references an atomic action or it references
another node in the graph. We process these cases as follows:

• Action is atomic: this represents the decision of this agent. The state of the world
would then be updated and the process of evaluation repeated.

• Action is non-atomic: the arc is marked and the node pointed to is subject to
evaluation, as above. The environmental state, s(t), is unchanged.

In the special case of a marked arc ‘winning’ a Node evaluation, this implies
that the node in question has been previously visited and a loop detected. The loop
is broken by removing this arc from the set of candidate programs at this node
evaluation and then returning the arc with the winning bid. If this is also marked,
the process of removing the marked arc and selecting the next available winning bid
at this node repeats. Because every node must have at least one atomic action, there
is always a way to break out of a loop, i.e. each time the same node is visited, it has
to ‘exit’ using a different arc.

Figure 3.3 illustrates the process of evaluation for a hypothetical TPG agent
and state. Subplot (a) represents the execution of programs associated with the
agent’s root node (programs 0, 2, 5, 9). Note that each program is free to index
any part of the state space (frame), adding to the ability to decompose the task.
Program 9 had the ‘winning’ bid and identifies the next node for evaluation (this
arc is also marked), Subplot (b). This node only consists of two (outgoing) arcs,
corresponding to programs 3 and 7. Execution of these two programs potentially
implies that completely different state information is utilized, Subplot (c). The
winning program is identified as program 7, with an atomic action, so evaluation
is complete, Subplot (d). This action would result in the game state changing in
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Fig. 3.3 Example of a TPG agent during evaluation. Execution always commences relative to the
agent’s root node (Subplot (a)). Winning program identifies next hop through the TPG individual
(Subplot (b)). Process of node evaluation repeats (Subplot (c)), until an atomic action is identified
(Subplot (d)). (a) Execution begins at the root node. (b) Winning program identified from root
node. (c) Execution passes to node, evaluate programs at node. (d) Winning program associated
with an atomic action

response to the avatar assuming this action, thus game state is advanced one step,
s(t) → s(t + 1). Naturally, if s(t + 1) corresponds to an end-of-game condition this
would complete the fitness evaluation for the agent. Otherwise all marked arcs are
reset and agent evaluation again commences from the root node.
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3.5 Case Study: Arcade Learning Environment

Section 3.3 provided background to the Arcade Learning Environment (ALE)
[3, 24], which represents one of the most widely employed benchmarks for visual
reinforcement learning. The basic goal is to return an agent capable of playing
different gaming titles from the ALE library under a common parameterization.
The only information provided to the agent is the visual information from the frame
buffer, and the subset of joystick actions specific to the title in question. We also note
that the ALE provides various sources of uncertainty including: random sampling
of the frames provided to the agent, sticky actions, inter frame variation in sprites
described, and depending on the game title, partial observability, i.e. the first person
perspective (see [24] for a discussion of these properties).

The approach taken by deep learning assumes: (1) ‘frame stacking’, a mechanism
for encoding the movement of objects, (2) screen down sampling (to 84 × 84
pixels) and greyscale pixels, (3) and turning ‘sticky actions’ off [24, 28]. For the
basis of this comparison, we will assume 13 titles common to recent evaluations of
evolutionary computation approaches to visual reinforcement learning under ALE.
Specifically, Salimans et al. describe an approach based on Evolutionary Strategies
for identifying weights of an a priori specified deep learning architecture [29].
Such et al., use a genetic algorithm to provide a very compact description of a
deep learning architecture consisting of four million weights [34]. In both cases,
the authors emphasize that the evolutionary computation approach is faster to train
(with extensive GPU support) than the original deep learning architecture, DQN
[28], while providing competitive agent policies.

Initial results for TPG in the ALE employed a frame preprocessing procedure
in which each pixel was limited to 8 potential colour values (i.e. the SECAM
colour encoding, [3]) and each frame was quantized by a factor of 5, resulting
in an input space of 1344 decimal state variables in the range 0–255 [12, 13].
In the results reported here, no attempt was made to reduce the dimensionality
of the initial state information. This implies that the screen as perceived by TPG
agents includes all 210 × 160 = 33,600 pixels with 128 possible colour values for
each pixel (i.e. the NTSC colour encoding, [3]). The instruction set is unchanged
from the 8 instructions adopted in earlier research when team GP was applied to
classification tasks [21], i.e. no application/image specific operators are employed.
Figure 3.1b illustrates a typical program employing this instruction set. As per
previous TPG results, ‘sticky actions’ are also present, implying that the ALE
environment experienced by TPG agents is stochastic [24].

Table 3.1 summarizes the average game score for each agent on the 13 ALE
titles (averaged over 200 evaluations with the no-op game initialization [28]). It is
clear that specific algorithms do particularly well on different subsets of games.
Also apparent is that DQN has both the most number of games at rank 1 (best) and
most number of games at rank 4 (worst). Conversely, TPG appeared to be the most
consistent across this set of titles, with only one worst ranked title (Atlantis) and
the best average rank across all titles. In short, TPG is competitive in terms of the
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Table 3.1 Game scores for 13 Atari titles under no-op game initialization

Game title TPG GA [34] ES [29] DQN [34]

Amidar 365 (3) 377 (2) 112 (4) 978 (1)

Assault 2027 (2) 814 (4) 1674 (3) 4280 (1)

Asterix 2967 (2) 2255 (3) 1440 (4) 4359 (1)

Asteroids 2575 (2) 2700 (1) 1562 (3) 1365 (4)

Atlantis 110,247 (4) 127,167 (3) 1,267,410 (1) 279,987 (2)

Enduro 108 (2) 80 (4) 95 (3) 727 (1)

Frostbite 6059 (2) 6220 (1) 370 (4) 797 (3)

Gravitar 1068 (1) 764 (3) 805 (2) 473 (4)

Kangaroo 14,026 (1) 11,254 (2) 11,200 (3) 7259 (4)

Sequest 1083 (3) 850 (4) 1390 (2) 5861 (1)

Skiiing −5734.1 (2) −5541 (1) −15,443 (4) −13,062 (3)

Venture 740 (3) 1422 (1) 760 (2) 163 (4)

Zaxxon 6523 (2) 7864 (1) 6380 (3) 5363 (4)

Avg. rank 2.15 2.54 2.77 2.54

Integer in parenthesis denotes the rank of the algorithm under each game title. Last row details
Average rank of each algorithm across the 12 titles

quality of the agent policies identified. Moreover, TPG is providing these results
while operating at the original ALE resolution and no frame staking.

Table 3.2 summarizes the complexity of TPG solutions, where for comparison
the GA individuals describe a deep learning architecture with four million weights
[34]. Moreover, the number of computations actually performed per decision is
significantly more than this on account of the convolution operation present in deep
learning architectures. It is readily apparent that the worst case cost of decision
making in TPG (≈1200 instructions) is at least 3 orders of magnitude less than that
experienced in deep learning (and can be up to 5 orders of magnitude less). In short,
TPG can evolve solutions to visual reinforcement learning tasks without specialized
hardware support such as GPUs because it explicitly breaks a task down through a
coevolutionary process of divide and conquer.

In general, TPG policies developed an exceedingly sparse coverage of the
available frame pixels, typically less that 5%, while each decision required less than
2% of the frame pixels, Table 3.2. This is a reflection of the fact that Atari video
games (and visual information in general) have a lot of redundant information. In
particular, a large portion of the screen content is designed for entertainment value
rather that being important for decision-making. Furthermore, while important game
entities are most often larger than a single pixel, the agent may only need to perceive
a very small number of pixels in order to detect and respond to such entities. The
capacity to automatically scale to these properties of the environment contributes to
the overall efficiency of the resulting policies.
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Table 3.2 Cost of decision making in TPG agent post training

Game title #Nodes Av. Nodes Av. #Instr. %Pixels Av.%Pixels

Amidar 65 4 680 6.36 0.9

Assault 53 4 768 4.03 0.88

Asterix 24 2 643 2.73 0.75

Asteroids 51 4 1259 4.86 1.38

Atlantis 53 6 1201 3.84 1.36

Enduro 7 2 170 0.53 0.24

Frostbite 63 4 1063 4.22 1.08

Gravitar 48 4 1150 4.93 1.21

Kangaroo 109 7 1213 9.43 1.38

Seaquest 70 4 980 4.98 1.03

Skiing 173 3 642 8.67 0.76

Venture 20 2 294 2.18 0.38

Zaxxon 35 3 414 2.23 0.48

#Nodes is the total number of nodes in the agent; Av. Nodes is the average number of nodes actually
evaluated in order to make a decision; Av. #Instr. is the average number of instructions executed
per decision; %Pixels is the percent pixels indexed by the entire TPG graph; Av.%Pixels is the
average percent of pixels indexed per decision

3.6 Case Study: VizDoom

In the following we provide a further illustration of some of the possible outcomes
and process of decision making when using TPG, in this case under the first person
shooter environment of VizDoom [17]. VizDoom represents an environment with
three dimensional state information and (care of the first person perspective) a lot
of partial observability. Smith and Heywood demonstrated TPG agents operating
under the raw VizDoom frame resolution of 320 × 240 = 76,800 [31].

Figure 3.4a illustrates a typical view that a player might encounter under
VizDoom when playing in single agent mode. That is to say, the goal is to navigate a
cavern like environment, while annihilating a range of predefined opponents, before
your own health reaches zero. Statistics characterizing the agent specific information
is present at the bottom of the screen (e.g., available ammunition, current health),
whereas current game state is captured in the remaining frame real-estate. Informa-
tion that a decision making agent can employ must come from the frame buffer.
There are no special inputs that express/summarize agent health or armour.

Figure 3.4b illustrates a TPG individual post training, and the nodes visited in
order to make a decision on the specific game state of Fig. 3.4a.7 In addition, we can
observe what state information is actually indexed in order to make each decision at
each TPG node and then express this as a distribution of pixels indexed w.r.t. the x-
and y-axis (Fig. 3.5).

7This TPG individual actually represents a policy able to operate under ten different VizDoom
tasks [31].
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Fig. 3.4 Example source frame and TPG agent. Sequence of node evaluations for this frame
content: Root → Node 1 → Node 2 → Node 3. A total of 7 atomic actions exist: F/B—
move forward/backward; TL/TR—turn left/right; SL/SR—Strafe Left/Right, A—Attack (shoot).
(a) Source frame from defend the circle task. (b) TPG agent
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Fig. 3.5 Distribution of
pixels indexed by nodes
identified in Fig. 3.4b for the
frame of Fig. 3.4a, as
projected on to the x- and
y-axis. Pixel co-ordinate
(0, 0) is at the top LHS of the
frame, (320, 0) is the top
RHS, (0, 240) is the bottom
LHS. Box plot denotes the
quartiles. (a) x-axis
distribution (0–320). (b)
y-axis distribution (0–240)

It is now apparent that each node takes a different approach to ‘querying’
the frame. The root node (Fig. 3.4b) indexes pixels using a circular distribution,
centred on the middle of the image (‘Root’ violin distributions, Fig. 3.5). Node
1, however, only indexes pixels at the very bottom of the frame, broadly corre-
sponding to the information pertaining to the internal state of the agent (i.e. the
‘AMMO’/‘HEALTH’/‘ARMS’/‘ARMOR’ status bar in Fig. 3.4a). This seems to
suggest that Node 1 is using the agent’s internal state information to select the
next TPG node. The pixel indexing of Node 2 is again unique, this time selecting
pixels predominantly from the RHS of the visual field of the agent. Indeed, when
reviewing animations of the agent behaviour, the agent does have a preference for
‘turning’ right, if it is going to turn. Finally, Node 4 indexes pixels corresponding
to a horizontal ‘slice’ right through the middle of the y-axis. This is interesting
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because Node 3 represents a node with atomic actions alone; so the agent either
shoots, moves forward or turns left, purely on the basis of this final slice of visual
information.

In summary, it appears that TPG decision making results in a hierarchical
decomposition of the input space in which an ordered conditional sequence of
decisions (path through the TPG graph) are being deployed relative to very specific
regions of the visual space. Moreover, no attempts are made to bias the order of
decisions, the regions indexed, or the specific formulation of the decision made at
each TPG node.

3.7 Discussion

Few machine learning paradigms are able to auto-construct modular topologies at
multiple levels of abstraction. Genetic programming represents a variable length
representation, but is rarely deployed to evolve anything other than monolithic solu-
tions, i.e. single programs in which all the instructions are executed.8 Conversely,
teaming metaphors organize programs into a single ‘group’, but might require (task
specific) fitness assignment at the level of individual (program) and team or face
issues regarding diversity maintenance.

TPG instead pursues an emergent process for spatially decomposing the task.
Thus, new topologies are identified by an offspring pointing to something else in
the population. A competition between simpler parents and more complex children
is the norm. Evaluation is always initiated from the root node and limited to the
programs explicitly associated with that node. There can only ever be a single
‘winning’ arc at each node evaluation, and loop detection ensures that a different
path must be taken when a previously visited node is detected. All of these
properties help ensure that graph structure is emergent, execution efficient, and task
decomposition explicit. Indeed, these results were demonstrated under the native
resolutions of each platform (33,600 and 76,800 pixels under Atari and VizDoom
respectively), implying that TPG continues to identify very efficient solutions,
even under high dimensional inputs. Additional results from the Atari platform
demonstrate that TPG is still competitive when evaluated against a wider range of
game titles and machine learning algorithms [12, 15]. Moreover, it appears that TPG
agents are also capable of playing multiple game titles simultaneously [13, 15].

Naturally, this represents a snapshot of very early developments in the TPG
framework and consequently a lot of unknowns exist. For example, can refinements
also be introduced ‘bottom up’ during development as well as ‘top down’, or
how might memory be introduced into geno/phenotypes that emerge dynamically?

8Part of this might be due to the types of tasks that researchers choose to deploy GP on. For
example, ‘expressive GP’ demonstrates its more interesting properties under tasks such as software
synthesis [32].
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It is certainly clear that the deep learning methodology (in concentrating on
finding appropriate encodings) scales to a wide range of tasks. Conversely, TPG
learns to develop very compact decompositions of a task relative to the original
high-dimensional state space. It remains to be seen what task preferences and/or
strengths/weaknesses might result as a function of this approach to model building.
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Chapter 4
Strong Typing, Swarm Enhancement,
and Deep Learning Feature Selection
in the Pursuit of Symbolic
Regression-Classification

Michael F. Korns and Tim May

4.1 Introduction

Symbolic Classification (SC), an offshoot of Genetic Programming (GP), can play
an important role in any well-rounded predictive analytics tool kit, especially
because of its so called “WhiteBox” properties. In these recent papers [4, 9, 13],
algorithms were developed to push SC to the level of basic classification accuracy
competitive with existing commercially available classification tools, including
the introduction of GP assisted Linear Discriminant Analysis (LDA) [10]. In this
chapter we add a number of important enhancements to our basic SC system and
demonstrate their accuracy improvements on a set of theoretical problems and on
a banking industry problem. We enhance GP assisted linear discriminant analysis
with a modified version of Platt’s Sequential Minimal Optimization algorithm [14]
which we call (MSMO), and with swarm optimization techniques [5]. We add a
user-defined typing system, and we add deep learning feature selection to our basic
SC system. This extended algorithm (LDA++) is highly competitive with the best
commercially available M-Class classification techniques on both a set of theoretical
benchmarks and on a real world banking industry problem. This new LDA++
algorithm moves genetic programming classification solidly into the top rank of
commercially available classification tools.

Each of the first four genetic programming SC algorithms is briefly explained
below, then a more detailed description of the proposed extended Linear Discrim-
inant Analysis algorithm (LDA++) is presented in this paper. The Platt inspired
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MSMO algorithm is described in detail and the manner in which the LDA matrix
math and Swarm optimizations are tightly integrated is also explained. The user-
defined typing system is described in detail herein, and the deep learning feature
selection methodology is discussed.

For theoretical testing, a set of ten artificial classification problems are con-
structed with no noise such that absolutely accurate classifications are theoretically
possible. The discriminant formulas for these ten artificial problems are listed. The
problems vary from linear to nonlinear multimodal and from 25 to 1000 features
such that each classification algorithm will be stressed on well understood problems
from the simple to the very difficult. All theoretical problems have 5000 training
points and a separate 5000 testing points. The scores on the out of sample testing
data, for each of the ten classification algorithms are reported here.

No assertion is made that these five genetic programming SC algorithms are the
best in the literature. In fact, we know of an additional enhanced algorithm, which
we have not had time to implement for this study, M3GP [13]. No assertion is made
that the five KNIME classification algorithms are the best commercially available,
only that KNIME is a trusted component of Lantern Credit predictive analytics.
This study is simply meant to provide one reference point for how far genetic
programming symbolic classification has improved relative to a set of reasonable
commercially available classification algorithms.

This paper includes a comparison study of the five new SC algorithms and
five well-known commercially available classification algorithms to determine just
where SC now ranks in competitive comparison. The five SC algorithms are: simple
genetic programming using argmax referred to herein as AMAXSC; the M2GP
algorithm [4]; the MDC algorithm [9], Linear Discriminant Analysis (LDA) [10],
and Linear Discriminant Analysis extended with MSMO and Swarm (LDA++). The
five commercially available classification algorithms are available in the KNIME
system [1], and are as follows: Multiple Layer Perceptron Learner (MLP); Decision
Tree Learner (DTL); Random Forest Learner (RFL); Tree Ensemble Learner (TEL);
and Gradient Boosted Trees Learner (GBTL).

For real world testing, we use an actual banking data set for loan scoring as it
was received. The training data contains 337 features with 36,223 entries, while the
testing data contains the same 337 features with an additional 85,419 entries. The
testing and training data are distinct. We include a comparison study of the five new
SC algorithms and five well-known commercially available classification algorithms
to determine just where SC now ranks in competitive comparison on this real world
problem. Also included is the bank’s benchmark score, achieved over a multiple
month period by the bank’s in-house data science team with proprietary tools.

In conclusion we show that, on the theoretical problems, the two best classifi-
cation algorithms are Gradient Boosted Decision Trees (GBTL) and this paper’s
extended Linear Discriminant Analysis (LDA++). Furthermore we show, on the
real world banking problem, the three best classification algorithms are Gradient
Boosted Decision Trees (GBTL), the bank’s in-house data science approach, and
this paper’s extended Linear Discriminant Analysis (LDA++).



4 Strong Typing, Swarm Enhancement, and Deep Learning Feature Selection 61

Most of the formalism discussed here has been published in a previous volume
[11], but to make it easier for readers the formalism is repeated here.

4.2 Comparison Algorithms

4.2.1 AMAXSC in Brief

The simplest naive genetic programming approach to multiclass classification is
arguably a standard genetic programming approach, such as a modification of the
baseline algorithm [6], using the argmax function to classify as follows,

y = argmax(gp1, gp2, . . . , gpC) (4.1)

where C is the number of classes
Each gpk represents a separate discriminant function evolved via standard

genetic programming. The argmax() function chooses the class (1 to C) which has
the highest value, and is strongly related to the Bayesian probability that the training
point belongs to the c-th class. No other enhancements are needed other than the
standard argmax() function and a slightly modified genetic programming system—
modified to evolve one formula for each class instead of the usual single formula.

4.2.2 MDC in Brief

The Multilayer Discriminant Classification (MDC) algorithm is an evolutionary
approach to enhancing the simple AMAXSC algorithm.

y = argmax(w10 + w11 ∗ gp1, w20 + w21 ∗ gp2, . . . , wC0 + wC1 ∗ gpC) (4.2)

where C is the number of classes, gpk are the GP evolved formulas, and wij are real
weight coefficients (there are 2C weights).

Each gpk represents a separate discriminant function evolved via standard
genetic programming. The argmax() function chooses the class (1 to C) which has
the highest value, and is strongly related to the Bayesian probability that the training
point belongs to the c-th class. Given a set of GP evolved discriminant formulas
{gp1, gp2, . . . , gpC}, the objective of the MDC algorithm is to optimize the choice
of coefficient weights {w10, w11, w20, w21, . . . , wC0, wC1} such that Eq. (4.2) is
optimized for all X and Y .

The first step in the MDC algorithm is to perform a Partial Bipolar Regression
on each discriminant entry i.e. wk0 + (wk1 × gpk) = Yk + e. This produces
starting weights for wk0 and wk1 which are not very good but are much better than



62 M. F. Korns and T. May

random. The second step in the MDC algorithm is to run a Modified Sequential
Minimization on selected discriminant entries. This produces much better weight
candidates for all discriminant functions, but is still not perfect. Finally, the MDC
algorithm employs the Bees Algorithm [5] to fully optimize the coefficient weights.
The MDC algorithm is discussed in much greater detail in [9].

4.2.3 M2GP in Brief

The M2GP algorithm is described in detail in [4]. Briefly the M2GP algorithm
generates a D-dimensional GP tree instead of a 1-dimensional GP tree. Assuming
that there are C classes, the algorithm attempts to minimize the Mahalanobis
distance between the n-th training point and the centroid of the k-th class. The basic
training algorithm is as follows.

Algorithm A1: M2GP Training
1. Input: X, Y , D—where X is an M × N real matrix, Y is an N vector, D is a

scalar
2. For g from 1 to G do
3. Generate: F = {f1, f2,. . . ,fD} set of D solutions
4. Evaluate: Zs = Eval(fs(X)) for s from 1 to D—a D-dimensional point
5. Cluster: Zk in Z for all k from 1 to C—group all the Z which belong to each

class
6. For k from 1 to C do
7. Ck = cov(Zk)—a D by D covariance matrix for each class
8. Wk = centroid(Zk)—a 1 by D centroid vector
9. Dk(Xn) = sqrt((Zn − Wk) × (Ck)−1 × (Zn − Wk)T )—for n from 1 to N (the

number of training points)
10. For n from 1 to N do EYn = argmin(D1(Xn),D2(Xn), . . . ,DC(Xn))
11. For n from 1 to N do En = 1 IFF EYn �= Yn, 0 otherwise
12. Minimize average(EY )
13. Return F , C, M

The M2GP algorithm is discussed in much greater detail in [4].

4.2.4 LDA Background

Linear Discriminant Analysis (LDA) is a generalization of Fischer’s linear discrimi-
nant, which is a method to find a linear combination of features which best separates
K classes of training points [2, 3, 12]. LDA is used extensively in Statistics, Machine
Learning, and Pattern Recognition.

Similar to the arguments leading up to the M2GP algorithm [4], we argue that any
symbolic regression system can be converted into a symbolic classification system.
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In this paper we start with the baseline algorithm published in [6]. Our baseline SR
system inputs an N by M matrix of independent training points, X, and an N vector
of dependent values, Y . The SR system outputs a predictor function, F(X) ∼ Y

where F is the best least squares estimator for Y which the SR system could find
in the allotted training time. The format of F is important, and consists of one or
more basis functions Bfb with regression constants cb. There are always B basis
functions and B + 1 coefficients. The following is the format of F .

y = c0 + c1 ∗ Bf1 + c2 ∗ Bf2 + · · · + cB ∗ BfB (4.3)

There are from 1 to B basis functions with 2 to B +1 real number coefficients. Each
basis function is an algebraic combination of operators on the M features of X, such
that Bfb(X) is a real number. The following is a typical example of an SR produced
predictor, F(X).

y = 2.3 + 0.9 ∗ cos(x3) + 7.1 ∗ x6 + 5.34 ∗ (x4/tan(x8)) (4.4)

The coefficients c0 to cB play an important role in minimizing the least squares error
fit of F with Y . The coefficients can be evolved incrementally, but most industrial
strength SR systems identify the optimal coefficients via an assisted fitness training
technique. In the baseline SR algorithm this assisted fitness training technique is
simple linear regression (B = 1) or multiple linear regression (B > 1).

In symbolic classification problems the N by M matrix of independent training
points, X, is unchanged. However, the N vector of dependent values contains only
categorical unordered values between 1 and K . Furthermore the least squares error
fitness measure (LSE) is replaced with classification error percent (CEP) fitness.
Therefore we cannot use regression for assisted fitness training in our new SC
system. Instead, we can use LDA as an assisted fitness training technique in our
new SC system.

Our new SC system now outputs not one predictor function, but instead outputs
K predictor functions (one for each class). These functions are called discriminants,
Dk(X) ∼ Yk , and there is one discriminant function for each class. The format of
the SC’s discriminant function output is always as follows.

y = argmax(D1,D2, . . . ,DK) (4.5)

The argmax function returns the class index for the largest valued dis-
criminant function. For instance if Di = max(D1,D2, . . . ,DK ), then i =
argmax(D1,D2, . . . ,DK ).

A central aspect of LDA is that each discriminant function is a linear variation
of every other discriminant function and reminiscent of the multiple basis function
estimators output by the SR system. For instance if the GP symbolic classification
system produces a candidate with B basis functions, then each discriminant function
has the following format.
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D0 = c00 + c01 × Bf1 + c02 × Bf2 + · · · + c0B × BfB

D1 = c10 + c11 × Bf1 + c12 × Bf2 + · · · + c1B × BfB

Dk = ck0 + ck1 × Bf1 + ck2 × Bf2 + · · · + ckB × BfB

(4.6)

The K × (B + 1) coefficients are selected so that the i-th discriminant function
has the highest value when the y = i (i.e. the class is i). The technique for selecting
these optimized coefficients c00 to cKB is called linear discriminant analysis and in
the following section we will present the Bayesian formulas for these discriminant
functions.

4.2.5 LDA Matrix Formalism

We use Bayes rule to minimize the classification error percent (CEP) by assigning
a training point X[n] to the class k if the probability of X[n] belonging to class k,
P(k|X[n]), is higher than the probability for all other classes as follows:

EY[n] = k, iff P(k|X[n]) ≥ P(j |X[n]) for all 1 ≤ j ≤ K (4.7)

The CEP is computed as follows:

CEP =
∑

(EY[n] �= Y[n]| for all n)/N (4.8)

Therefore, each discriminant function Dk acts a Bayesian estimated percent proba-
bility of class membership in the formula.

y = argmax(D1,D2, . . . ,DK) (4.9)

The technique of LDA makes three assumptions, (a) that each class has a
multivariate Normal distribution, (b) that all class covariances are equal, and (c) that
the class covariance matrix is nonsingular. Once these assumptions are made, the
mathematical formula for the optimal Bayesian discriminant function is as follows:

Dk(Xn) = μk(Ck)
−1(Xn)

T − 0.5μk(Ck)
−1(μk)

T + ln Pk (4.10)

where Xn is the n-th training point, μk is the mean vector for the k-th class, (Ck)
−1

is inverse of the covariance matrix for the k-th class, (Xn)
T is the transpose of the n-

th training point, (μk)
T is the transpose of the mean vector for k-th class, and ln Pk

is the natural logarithm of the naive probability that any training point will belong
to class k.

In the following section we will present step by step implementation guidelines
for LDA assisted fitness training in our new extended baseline SC system, as
indicated by the above Bayesian formula for Dk(Xn).
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4.2.6 LDA Assisted Fitness Implementation

The baseline SR system [6] attempts to score thousands to millions of regression
candidates in a run. These are presented for scoring via the fitness function which
returns the least squares error (LSE) fitness measure.

LSE = f itness(X, Y,Bf1, . . . , BfB, c0, . . . , cB) (4.11)

The coefficients c0, . . . , cB can be taken as is, and the simple LSE returned.
However, most industrial strength SR systems use regression as an assisted fitness
technique to supply optimal values for the coefficients before returning the LSE
fitness measure. This greatly speeds up accuracy and allows the SR to concentrate
all of its algorithmic resources on the evolution of an optimal set of basis functions
Bf1, . . . , BfB .

Converting to a baseline symbolic classification system will require returning the
classification error percent (CEP) fitness measure, which is defined as the count of
erroneous classifications divided by the size of Y, and extending the coefficients to
allow for linear discriminant analysis as follows:

CEP = f itness(X, Y,Bf1, . . . , BfB, c00, . . . , cKB) (4.12)

Of course the coefficients c00, . . . , cKB can be taken as is, and the simple CEP
returned. However, our new baseline SC system will use LDA as an assisted fitness
technique to supply optimal values for the coefficients before returning the CEP
fitness measure. This greatly speeds up accuracy and allows the SC to concentrate
all of its algorithmic resources similarly on the evolution of an optimal set of basis
functions Bf1, . . . , BfB .

4.2.6.1 Converting to Basis Space

The first task of our new SC fitness function must be to convert from N by M feature
space, X, into N by B basis space XB. Basis space is the training matrix created by
assigning basis function conversions to each of the B points in XB as follows:

XB[n][b] = Bfb(X[n]) (4.13)

So for each row n of our N by M input feature space training matrix, (X[n]), we
apply all B basis functions, yielding the B points of our basis space training matrix
for row n, (XB[n][b]). Our new training matrix is the N by B basis space matrix,
XB.
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4.2.6.2 Class Clusters and Centroids

Next we must compute the K class cluster matrices for each of the K classes as
follows:

Define CX[k] where XB[n] ∈ CX[k] iff Y[n] = k (4.14)

Each matrix CX[k] contains only those training rows of XB which belong to the
class k. We also compute the simple Bayesian probability of membership in each
class cluster matrix as follows:

P[K] = length(CX[k])/N (4.15)

Next we compute the K cluster mean vectors, each of which is a vector of length
B containing the average value in each of the B columns of each of the K class
cluster matrices, CX, as follows:

μ[k][b] = column mean of the b-th column of CX[K] (4.16)

We next compute the class centroid matrices for each of the K classes, which are
simply the mean adjusted class clusters as follows:

CXU[k][m][b] = (CX[k][m][b] − μ[k][b]) for all k,m, and b (4.17)

Finally we must compute the B by B class covariance matrices, which are the
class centroid covariance matrices for each class as follows:

COV[k] = covarianceMatrix(transpose(CXU[k])) (4.18)

Each of the K class covariance matrices is a B by B covariance matrix for that
specified class.

In order to support the core LDA assumption that the class covariance matrices
are all equal, we compute the final covariance matrix by combining each class
covariance matrix according to their naive Bayesian probabilities as follows:

C[m][n] =
∑

(COV[k][m][n] × P[k]) for all 1 � k � K (4.19)

The final treatment of the covariance matrix allows the LDA optimal coefficients
to be computed as shown in the following section.

4.2.6.3 LDA Coefficients

Now we can easily compute the single axis coefficient for each class as follows.

c[k][0] = −0.5μk(Ck)
−1(μk)

T + ln Pk (4.20)
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The B basis function coefficients for each class are computed as follows.

c[k][1,...B] = μk(Ck)
−1 (4.21)

All together these coefficients form the discriminants for each class:

y = ck0 + ck1 ∗ Bf1(Xn) + ck2 ∗ Bf2(Xn) + · · · + ckB ∗ BfB(Xn) (4.22)

The estimated value for Y is defined as follows:

y = argmax(D1(Xn),D2(Xn), . . . ,DK(Xn)) (4.23)

4.2.6.4 Addressing the Problems with LDA Coefficients

The LDA matrix formalism is made easily computable via an important set of a
priori assumptions. These assumptions include that the distribution of the training
data is Gaussian, that all covariance matrices are equivalent, and that the covariance
matrix for all classes is not singular. Unfortunately these ideal assumptions are not
always valid in the course of LDA training, especially since in an SC run, there
are tens of thousands to hundreds of thousands of individual LDA training attempts
on various nonlinear GP discriminant candidates. Whenever these assumptions are
invalid, the resulting LDA coefficients will not be entirely accurate.

To address the problems with LDA coefficients, the LDA++ algorithm changes
the argument for the LDA matrix from a statistical justification to a heuristic
justification where only approximately accurate results are expected.

Since the LDA heuristic is no longer expected to obtain optimal results, we must
add optimization steps after the LDA to correct for any possible errors produced.
The second (post LDA) step is a set of heuristic matrix adjustments designed to
correct for any singular covariance matrix conditions. The third step adds Modified
Sequential Minimal Optimization (MSMO), and the fourth step adds a Swarm
intelligence layer consisting of the Bees algorithm [5].

In the unhappy event that the covariance matrix, Ck , in Eqs. (4.20) and (4.21)
is singular the matrix inversion function, (Ck)

−1 will fail with a divide by zero
error. Our heuristic alters the computer code of the covariance matrix inversion
function such that, should a divide by zero error be detected, the diagonal of the
covariance matrix, Ck , is multiplied by the scalar 1.0001. In the vast majority of
cases multiplying the covariance matrix diagonal by this scalar forces the matrix
to be non-singular. After diagonal adjustment the matrix inversion is attempted
anew. The resulting LDA coefficient will, of course, be inaccurate but nevertheless
approximately accurate. After diagonal adjustment, should a divide by zero error
still be encountered, then the adjusted computer code will divide by the scalar
0.0001 instead of zero. Once again the resulting LDA coefficient will, of course,
be inaccurate but nevertheless approximately accurate.
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The LDA coefficients, produced by the adjusted matrix inversion function, will
be anywhere from accurate to approximately accurate. In order to optimize the
coefficients further, we add a layer of Modified Sequential Minimal Optimization
(MSMO), described in the next section.

4.2.6.5 Modified Sequential Minimal Optimization (MSMO)

The third heuristic layer of the LDA++ algorithm is an opportunistic modification
of Platt’s sequential minimization optimization algorithm often used to train
support vector machines [14]. At the start of the MSMO heuristic, the percent of
misclassification errors (CEP) in the training data set is calculated for the LDA
coefficients. If the CEP is greater than 10%, then the MSMO heuristic is skipped
on the theory that it is not worthwhile to waste resources on a heuristics which
may improve the accuracy of the CEP by a maximum of 2% or 3%. Thus MSMO
resources are only expended for better candidates. Better candidates receive more
evolutionary activity. Worse candidates receive less evolutionary activity.

At the start of the Modified Sequential Minimal Optimization (MSMO) layer, the
candidate contains a swarm pool of a single set of coefficient constants which was
produced by the LDA heuristic with its singular matrix modifications. Also the CEP
for LDA coefficients in this single entry in the swarm pool is available.

For each repetition of our MSMO algorithm, on the current candidate, the most fit
coefficient entry in the swarm pool is chosen. If the CEP for the best coefficient entry
is 0%, then the MSMO algorithm is terminated, as in the case when all allocated
evolutionary iterations have been exhausted. If the CEP is greater than 0% then a
single erroneous training point is chosen at random, n.

Since the chosen training point, n, is in error, we know that it’s estimated
dependent variable, e, will not match the actual dependent variable, y (i.e. e �= y).
If K is the number of classes, then 0 ≤ e < K and 0 ≤ y < K . Since
LDA uses the argmax function to select the discriminant function with the highest
Bayesian probability, we know that two discriminant formulas have the following
relationship.

e = argmax(D1(Xn),D2(Xn), . . . ,DK(Xn)) (4.24)

And therefore

De(Xn) ≥ Dy(Xn) (4.25)

And therefore

ce0 + ce1 ∗ Bf1(Xn) + ce2 ∗ Bf2(Xn) + · · · + ceB ∗ BfB(Xn) ≥
cy0 + cy1 ∗ Bf1(Xn) + cy2 ∗ Bf2(Xn) + · · · + cyB ∗ BfB(Xn)

(4.26)
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Our goal at this step in the MSMO algorithm is to force

y = argmax(D1(X1),D2(X2), . . . ,DK(Xn)) (4.27)

Since the B basis functions in the K discriminants are all the same, our
only option is to modify the coefficients. Using Eq. (4.26), we select the basis
function, Bf m(Xn), such that the absolute difference abs((cem ∗Bf m(Xn))−(cym ∗
Bf m(Xn))) is greater than all other possible choices from the B basis functions.
We then make minimalist random changes to the coefficients cem and cym such that
Eq. (4.27) is forced to be true.

At this point in the MSMO algorithm, the modified coefficients are used to
score the candidate obtaining a new CEP. The modified coefficients along with their
associated new CEP are inserted into the candidate’s swarm pool, sorted in order of
most fit CEP. Then the most fit coefficient entry in the swarm pool is chosen, and
the MSMO algorithm repeats itself until all allocated evolutionary iterations have
been exhausted.

4.2.7 Bees Swarm Optimization

The fourth step adds a Swarm intelligence layer consisting of the Bees algorithm [5].
The BEES algorithm is too complex to describe in this paper. In summary the BEES
algorithm involves a fitness driven evolutionary modification of all coefficients at
once using a well-defined Swarm intelligence approach. More details can be found
in [5].

At the start of the BEES heuristic, the percent of misclassification errors (CEP) in
the training data set are calculated for the most fit coefficients. If the CEP is greater
than 5%, then the BEES heuristic is skipped on the theory that it is not worthwhile
to waste resources on a heuristic which may improve the accuracy of the CEP by
a maximum of 0.5% or 1%. Thus BEES resources are only expended for the better
candidates. Better candidates receive more evolutionary activity. Worse candidates
receive less evolutionary activity.

4.3 User-Defined Typing System

Unconstrained expressions (models) from Symbolic Classification Systems are
often rejected by decision makers regardless of their advantageous fitness scores.
Decision makers most often require that SC models make intuitive sense and be
logically defensible within the problem domain. This is especially true with SC
models for high impact decisions. In general, the greater the impact of trusting an SC
model, the more the decision maker needs to understand and believe in the model.
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SC systems can be modified with template based logic to constrain the evolution
of resulting models to match decision maker specifications [6–8]. Template con-
strained SC systems produce models which are readily accepted by the decision
maker since those models always conform to the templates supplied by the
decision maker. Unfortunately such template constraint systems are insufficient to
accommodate user strong typing rules.

Strong typing rules are important in SC applications where unit types should
not be mixed. For instance in a banking system the decision maker might want
to prohibit all SC models which add ‘personal income’ to ‘number of defaults’,
or which multiply ‘credit score’ by ‘race’. SC models which are confused about
appropriate typing will be rejected out of hand by decision makers, even if they are
highly accurate, and may engender distrust of the SC system as a whole.

4.3.1 User-Defined Templates with Constraints

Given any selected maximum depth K , it is an easy process to construct a maximal
binary tree fixed constraint template UK , which can be overlaid on the GP system
without violating the selected maximum depth limit K nor limiting the s-expressions
which can be produced. As long as we are reminded that each f-node represents a
function node while each t-node represents a terminal node (either a feature or a real
number constant), the template construction algorithm, for building the template
UK , is both simple and recursive as follows.

• (U0): t

• (U1): (f t t)
• (U2): (f (f t t) (f t t))
• (U3): (f (f (f t t) (f t t)) (f (f t t) (f t t)))
• (UK ): (f Uk−1 Uk−1)

For the arbitrary fixed template UK , each f-node represents a Lisp function call
such as cos, sin, +, /, or ln, and each t-node represents a terminal feature or constant
such as x0, 34.56, x10, or −45.1. The basic GP symbolic regression system [6]
contains a set of functions F , and a set of terminals T . We let t ∈ T , where T =
x0, . . . , xM, . . . IEEE real numbers. . . . We let f ∈ F = {+, −, *, /, sin, cos,
tan, square, etc}. Now UK becomes almost another template representation of the
irregular s-expressions in the SC. We say almost because UK is fixed and regular
whereas the SC s-expressions are irregular. To complete the template, we must add a
special noop function, ξ , to F = F ∪ξ . The special ξ function allows UK to express
irregular s-expressions be defining ξ(a, b, . . . ) = ξ(a) = a. Now any basis function
produced by the basic GP system will be represented by at least one element of UK .
Adding the ξ function allows UK to express all possible basis functions generated
by the basic GP system to a depth of K . Note to the reader, the ξ function performs
the job of a pass-through function. The ξ function allows a fixed-maximal-depth
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expression in UK to express trees of varying depth, such as might be produced from
a GP system. For instance, the varying depth GP expression

• x2 + (x3 − x5) = ξ(x2, 0.0) + (x3 − x5) = +(ξ(x2, 0.0) − (x3 − x5))

which is a fixed-maximal-depth expression in U2.
In addition to the special pass through function ξ , in our system we also make

additional slight alterations to improve template coverage, reduce unwanted errors,
and restrict results from wandering into the complex number range. All unary
functions, such as cos, are extended to ignore any extra arguments so that, for all
unary functions, cos(a, b) = cos(a). The sqroot and ln functions are extended for
negative arguments so that sqroot(a) = sqroot(abs(a)) and ln(a) = ln(abs(a)).

Given this formalism of the search space, it is easy to compute the size of the
search space, and it is easy to see that the search space is huge even for rather simple
basis functions. For our use in this chapter the function set will be the following
functions: F = (+ − * / abs inv cos sin tan tanh sqroot square cube quart exp ln ξ )
(where inv(x) = 1.0/x). The terminal set is the features x0 through xM−1 and the real
constant c, which we shall consider to be standard IEEE double long at 264 in size.

User specified constraints can be added to our SC system by explicitly enumerat-
ing each node in the template UK and by adding constraints to each of the explicitly
enumerated nodes. For instance an explicit enumeration of nodes in U2 would be as
follows.

• (U2): (f (f t t) (f t t)) = f0(f1(t0, t1), f2(t2, t3))

User specified constraints can be added to SC search commands by explicit user
declarations as follows.

regress (f0(f1(t0, t1), f2(t2, t3)))

where {f0(cos, sin, tan, ∗)f2(+,−, ∗, /)t0(x4, x6)t3(x10, x19, 1.0, 0.0)}
(4.28)

The above SC search command will produce models constrained by the explicit
user declarations as in the following examples (remember f0, f2, t0, and t3 are
constrained as declared above, while f1, t1, and t2 are unconstrained) (Table 4.1).

User constraints enhance the probability that a resulting SC model will be
accepted by the decision makers; but, alone they are not enough. Adding user
specified strong typing to the SC system will also be required for many applications.

Table 4.1 Productions from template f0(f1(t0, t1), f2(t2, t3)) as constrained in Eq. (4.28)

f0 f1 f2 t0 t1 t2 t3 Lisp expression

* sin + x6 x30 45.7 x10 (* (sin x6) (+45.7 x10))

* ξ * x4 x40 x1 x19 (* x4 (* x10 x19))

sin ln * x6 0.0 x21 1.0 (sin (ln x6))

cos square / x4 x63 x1 x10 (cos (square x4))
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4.3.2 Strong Typing

A user template facility is greatly enhanced if accompanied by the ability to add
strong typing rules to the SC search command. These rules may be formed as in the
following examples.

• Number = {x0, x1, x10, x20}
• Number = (Number + Number), (Number ∗ Number), (Number/Number)

(Number − Number)
• Income = {x21, x31, x11, x22}
• Income = (Income + Income), (Income ∗ Income), (Income/Income), (Income

− Income)
• Income = cos(Income), tan(Income), sin(Income)

The type rules consist of a “type” followed by a set of features, or operator-type
combinations which result in the specified type. The type rules must not contain
conflicts as in the rules below which contain a type conflict because feature x10
cannot be both a Number and a Widget.

• Number = {x0, x1, x10, x20}
• Income = {x21, x31, x11, x22}

The type rules can be consolidated by type and subdivided into the features, unary
operators, and binary operators which result in the specified type as in the following
example.

• Number

⎧
⎪⎪⎨

⎪⎪⎩

{x0, x1, x10, x20}
(Number+Number), (Number∗Number), (Number/Number)(Number−
Number)

cos(Number), abs(Number)

• Income: (Number + Income), (Number ∗ Income), (Income/Number)(Income −
Number)

Taken together, a user template system with constraints and strong typing can
greatly enhance the acceptability to the final SC model in the eyes of the domain
expert. This can be a critical component of model acceptance.

4.4 Deep Learning Enhancements

We use the RQL language to develop a deep learning strategy to enhance the
LDA++ algorithm [7, 8]. The first deep learning layer (RQL Island) handles feature
selection by performing a series of individual LDA (including the SMO, and Bees
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Algorithm enhancements) learning runs on each individual independent feature
using the following RQL search specification.

lda(v0, inv(v0), abs(v0), sqroot (v0), square(v0), cube(v0), curoot (v0),

ln(v0), cos(v0), sin(v0), tan(v0), tanh(v0))

Each independent feature is given this same nonlinear treatment with the above
12 nonlinear basis functions. The best ranking features (CEP) are selected as the
‘of-special-interest’ feature group.

Special Interest Feature Selection
1. Input: FX,X, Y—where FX is a set of M features, X is an MxN real matrix, Y

is an N Vector
2. For v0 from x1 to xM do
3. Run: lda(v0, inv(v0), abs(v0), sqroot (v0), square(v0), cube(v0), curoot (v0),

ln(v0), cos(v0), sin(v0), tan(v0), tanh(v0))

4. Sort each of LDA classification run by CEP accuracy
5. Extract the feature v0 = xi from each of the 50 most accurate runs into the

special feature set, FS .
6. FS now contains at most 50 features xi which returned the most accurate CEP

scores in Step 3.
7. Return FS

When feature selection is complete, a second deep learning layer is run, whose
only connected inputs are the ‘of-special-interest’ feature group. This general deep
learning layer is a standard 20 basis function Pareto front LDA evolutionary GP run
(including the SMO, and Bees Algorithm enhancements) which halts when it has
reached a learning plateau.

Initial Pareto Front Layer
1. Input: FS,X, Y—where FS is special feature set features, X is an MxN real

matrix, Y is an N Vector
2. For Gens from 1 to G evolve
3. lda(Bf1, Bf2, . . . , Bf20)

4. Where each basis function, Bfi , selects features ONLY from the special feature
set FS

5. Extract the 20 basis functions from the most fit individual into the best-of-breed
basis function set, BB

6. BB now contains 20 best-of-breed basis functions {BB
1 , . . . , BB

20} which contain
expressions using ONLY the special features in FS

7. Return BB

Once the general Pareto front LDA layer is complete, another 41 strongly linked
model recurrent deep learning layers are launched. The first of these is another
standard 20 basis function Pareto front LDA layer (including the SMO, and Bees
Algorithm enhancements) but which has ALL features connected.
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The next 20 deep learning layers are standard 20 basis function Pareto front
LDA layers (including the SMO, and Bees Algorithm enhancements) whose only
connected inputs are the ‘of-special-interest’ feature group, where each layer has
only one of its basis functions participating in evolution. The remaining basis
functions are all fixed. Each of the 20 deep learning layers has a different basis
function undergoing active evolution while the remaining basis functions are fixed.

The next 20 deep learning layers are also standard 20 basis function Pareto
front LDA layers (including the SMO, and Bees Algorithm enhancements) which
have ALL features connected, where each layer has only one of its basis functions
participating in evolution. The remaining basis functions are all fixed. Each of the
20 deep learning layers has a different basis function undergoing active evolution
while the remaining basis functions are fixed.

Strongly Linked Model Recurrent Layers
1. Input: FX,FS, BB,X, Y—where X is an MxN real matrix, Y is an N Vector
2. For Gens from 1 to G evolve the following 41 layers simultaneously one

iteration at a time
3. lda(Bf1, Bf2, . . . , Bf20) evolve Bf1 thru Bf20 feature set from FX

4. lda(Bf1, B
B
2 , . . . , BB

20) evolve Bf1 only where each BB
j is fixed with feature

set from FX

5. lda(BB
1 , Bf2, B

B
3 , . . . , BB

20) evolve Bf2 only where each BB
j is fixed with

feature set from FX

6. · · ·
7. lda(BB

1 , BB
2 , . . . , Bf20) evolve Bf20 only where each BB

j is fixed with feature

set from FX

8. lda(Bf1, B
B
2 , . . . , BB

20) evolve Bf1 only where each BB
j is fixed with feature

set from FS

9. lda(BB
1 , Bf2, B

B
3 , . . . , BB

20) evolve Bf2 only where each BB
j is fixed with

feature set from FS

10. · · ·
11. lda(BB

1 , BB
2 , . . . , Bf20) evolve Bf20 only where each BB

j is fixed with feature

set from FS

12. IF we have discovered a new global best fit champion then
13. Extract the 20 basis functions from the new global best individual into the best-

of-breed basis function set, BB

14. GOTO Step 3 and repeat the next evolution step1 3 thru 13 for all layers
15. Return BB

Each of the above 41 deep learning layers are strongly linked and model
recurrent. At the start, the best model discovered by the second 20 basis function
learning layer is fed into each of the 41 strongly linked model recurrent deep
learning layers. For example:

lda(Bf1, Bf2, . . . , Bf20) (4.29)
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This best scoring model is fed into each of the 41 deep learning layers, where
layer 1 performs a general evolutionary search on all 20 basis functions with ALL
features connected. Layers 2 through 21 each perform a general evolutionary search
on all 20 basis functions with only the ‘of-special-interest’ feature connected. And,
where each layer evolves only one basis function holding all other basis functions
fixed. Layers 22 through 41 each perform a general evolutionary search on all 20
basis functions with ALL the features connected. And, where each layer evolves
only one basis function holding all other basis functions fixed.

Since each of these 41 deep learning layers are strongly linked, the moment any
one of these layers discovers a model, which is a global fitness improvement, all
processing stops AND the new model is fed back into all 41 deep learning layers
(hence the term model recurrent). For instance, after some evolutionary effort, the
n-th layer discovers a model which is a global fitness improvement, for example:
lda(Bg1, Bg2, . . . , Bg20). This new improved globally fit model is fed recurrently
into each of the 41 deep learning layers, and the whole strongly linked model
recurrent process begins anew until another better globally fit model is discovered.

For purposes of keeping the models “WhiteBox” we arbitrarily set the maximum
number of basis functions to 20, and we arbitrarily set the maximum depth of each
basis function to 3 (i.e. 23 = 8 terminal nodes). If a basis function is not needed
for accuracy the algorithm will set its coefficient to 0.0, and each a basis function
will evolve to the optimal shape (limited by our arbitrary maximum depth of 3).
Obviously these parameters can be adjusted for the particular problem domain.

4.5 Artificial Test Problems

A set of ten artificial classification problems are constructed, with no noise, to
compare the five proposed SC algorithms and five well-known commercially avail-
able classification algorithms to determine just where SC now ranks in competitive
comparison. The test problems were described in [11] and are reproduced in the
appendix for convenience.

The five SC algorithms are: simple genetic programming using argmax referred
to herein as AMAXSC; the M2GP algorithm [4]; the MDC algorithm [9], Linear
Discriminant Analysis (LDA) [10], and Linear Discriminant Analysis extended
with MSMO and Swarm (LDA++). The five commercially available classification
algorithms are available in the KNIME system [1], and are as follows: Multiple
Layer Perceptron Learner (MLP); Decision Tree Learner (DTL); Random Forest
Learner (RFL); Tree Ensemble Learner (TEL); and Gradient Boosted Trees Learner
(GBTL).

Each of the artificial test problems is created around an X training matrix filled
with random real numbers in the range [−10.0, +10.0]. The number of rows and
columns in each test problem varies from 5000 × 25 to 5000 × 1000 depending
upon the difficulty of the problem. The number of classes varies from Y = 0, 1 to
Y = 0, 1, 2, 3, 4 depending upon the difficulty of the problem. The test problems
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are designed to vary from extremely easy to very difficult. The first test problem is
linearly separable with 2 classes on 25 columns. The tenth test problem is nonlinear
multimodal with 5 classes on 1000 columns.

Standard statistical best practices out of sample testing are employed. First
training matric X is filled with random real numbers in the range [−10.0, +10.0],
and the Y class values are computed from the argmax functions specified below.
A champion is trained on the training data. Next a testing matric X is filled
with random real numbers in the range [−10.0, +10.0], and the Y class values
are computed from the argmax functions specified below. The previously trained
champion is run on the testing data and scored against the Y values. Only the out of
sample testing scores are shown in the results in Table 4.2.

The Symbolic Classification system for all four SC algorithms (AMAXSC,
M2GP, MDC, LDA) avail themselves of the following operators:

• Binary Operators: + − / × minimum maximum
• Relational Operators: <,≤,=, �=,≥,>

• Logical Operators: lif land lor
• Unary Operators: inv abs sqroot square cube curoot quart quroot exp ln binary

sign sig cos sin tan tanh

The unary operators sqroot, curoot, and quroot are square root, cube root, and quart
root respectively. The unary operators inv, ln, and sig are the inverse, natural log,
and sigmoid functions respectively.

4.6 Real World Banking Problem

For real world testing, we use an actual banking data set for loan scoring as it was
received by Lantern Credit. The training data contains 337 features with 36,223
rows, while the testing data contains the same 337 features with an additional 85,419
rows. The training and testing data are distinct, and the training and testing data are
completely anonymized. The 337 independent features contain both categorical and
continuous data. But do not contain any FICO or similar agency ranking scores. The
dependent variable is 1 for ‘good’ and 0 for ‘bad’ loan.

An extensive user-defined typing file of thousands of strong typing rules was
constructed, with the help of domain experts.

The objective is to develop a model for scoring incoming 337 feature loan
applications. The model must pass the bank’s in-house compliance management,
and be accepted by the bank’s in-house lending management team.
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4.7 Performance on the Theoretical Problems

Here we compare the out of sample CEP testing scores of the five proposed SC
algorithms and five well-known commercially available classification algorithms
to determine where SC ranks in competitive comparison. The five SC algorithms
are: simple genetic programming using argmax referred to herein as AMAXSC; the
M2GP algorithm [4]; the MDC algorithm [9], Linear Discriminant Analysis (LDA)
[10], and Linear Discriminant Analysis extended with SMO and Swarm (LDA++).
The five commercially available classification algorithms are available in the
KNIME system [1], and are as follows: Multiple Layer Perceptron Learner (MLP);
Decision Tree Learner (DTL); Random Forest Learner (RFL); Tree Ensemble
Learner (TEL); and Gradient Boosted Trees Learner (GBTL). The following table
lists each classification algorithm in descending order of average CEP scores on all
ten theoretical test problems. The lower the CEP the more accurate the classification
results.

On a positive note, the four new proposed symbolic classifications algorithms
are a substantial improvement over the simple AMAXSC algorithm, and the newly
proposed LDA++ SC algorithm is extremely competitive with the best performer.
The top performer overall by a very small margin is the Gradient Boosted Trees
Learner (GBTL). The penultimate performer is the newly proposed LDA++ SC
algorithm.

It is interesting to note that all four newly proposed SC algorithms perform
better overall than the Multiple Layer Perceptron Learner (MLP). Of the four newly
proposed SC algorithms, the LDA++ algorithm was the best overall performer, and
is extremely competitive with the commercially available Gradient Boosted Trees
Learner (GBTL). In fact the LDA++ algorithm did better than GBTL on all but
three of the test problems.

4.8 Performance on the Real World Problem

We include a comparison study of the five new SC algorithms and five well-known
commercially available classification algorithms to determine just where SC now
ranks in competitive comparison on this real world banking problem. Also included
is the bank’s benchmark score, achieved over a multiple month period by the bank’s
in-house data science team with proprietary tools. The bank’s benchmark score
represents the best that human domain experts can achieve with months of effort
and state-of-the-art data science tools.
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Table 4.3 Banking problem CEP testing results after deep learning enhancements

AMAXSC LDA M2GP MDC DTL GBTL MLP RFL TEL LDA++ Benchmark

0.9101 0.4282 0.4472 0.4174 0.3165 0.2621 0.4523 0.2658 0.3084 0.2856 0.2841

Best performance printed in bold.

The bank’s benchmark score is compared to the five proposed SC algorithms and
five well-known commercially available classification algorithms to determine just
where SC now ranks in competitive comparison. The five SC algorithms are: simple
genetic programming using argmax referred to herein as AMAXSC; the M2GP
algorithm [4]; the MDC algorithm [9], Linear Discriminant Analysis (LDA) [10],
and Linear Discriminant Analysis extended with MSMO and Swarm (LDA++). The
five commercially available classification algorithms are available in the KNIME
system [1], and are as follows: Multiple Layer Perceptron Learner (MLP); Decision
Tree Learner (DTL); Random Forest Learner (RFL); Tree Ensemble Learner (TEL);
and Gradient Boosted Trees Learner (GBTL) (Table 4.3).

Each CEP score represents the percent of applications which were misclassified
(lower is better). On a positive note, the four new proposed symbolic classifications
algorithms are a large improvement over the AMAXSC algorithm, and the newly
proposed LDA++ SC algorithm is extremely competitive with the best performer.
The top performer overall by a 2% margin is the Gradient Boosted Trees Learner
(GBTL). It is interesting to note that the LDA++ result included user-defined
types—thus rendering basis functions which meet the preconditions established by
the bank. This greatly improves the probability of model acceptance.

It is interesting to note that of the four newly proposed SC algorithms, the
LDA++, algorithm was the best performer, and is extremely competitive with
the bank’s in-house benchmark. Both the Random Forest Learner (RFL) and the
Gradient Boosted Trees Learner (GBTL) are extremely competitive top performers.
However, despite achieving a 2% advantage over the Bank’s benchmark, both the
RFL and GBTL models will face a difficult uphill battle for acceptance by the
bank’s in-house compliance management. Each of the RFL and GBTL models
contain hundreds to thousands of embedded decision trees. They are very difficult to
understand and doubly difficult to support cogently within the logic of the banking
domain.

On the other hand, the newly proposed LDA++ SC algorithm produces an easily
understood “WhiteBox” model with 20 or less very simple user type compliant basis
functions. In its first training run, the LDA++ algorithm has produced a model that
is highly competitive with the bank’s in-house model (which took their in-house
data science team months to construct). Furthermore, the LDA++ model is already
in a form that is easily understood by the bank’s in-house data science team, easy
for them to work with, and compatible with their pre-specified constraints.
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4.9 Conclusion

Several papers have proposed GP Symbolic Classification algorithms for multi-
class classification problems [4, 9, 10, 13]. Comparing these newly proposed SC
algorithms with the performance of five commercially available classifications
algorithms shows that progress has been made. All four newly proposed SC
algorithms performed better overall than the Multiple Layer Perceptron Learner
(MLP). Of the four newly proposed SC algorithms, the LDA++ algorithm was
the best overall performer by a good margin, and is extremely competitive with
the commercially available Gradient Boosted Trees Learner (GBTL). In fact the
LDA++ algorithm did better than GBTL on all but three of the theoretical test
problems.

Clearly progress has been made in the development of commercially competitive
SC algorithms. We now have an SC classification algorithm which is highly
competitive with GBTL. But, a great deal more work has to be done before SC
can radically outperform the Gradient Boosted Trees Learner (GBTL) on the basis
of raw accuracy alone. We must perform comparative tests on a much wider range
of theoretical problems, and we must perform comparative tests on a wide range of
real world industry problems.

Acknowledgements Our thanks to: Thomas May from Lantern Credit for assisting with the
KNIME Learner training/scoring on all ten artificial classification problems.

Appendix: Artificial Test Problems

• T1: y = argmax(D1,D2) where Y = 1, 2, X is 5000 × 25, and each Di is as
follows:

{
D1 =sum((1.57∗x0), (−39.34∗x1), (2.13∗x2), (46.59∗x3), (11.54∗x4))

D2 =sum((−1.57∗x0), (39.34∗x1), (−2.13∗x2), (−46.59∗x3), (−11.54∗x4))

• T2: y = argmax(D1,D2) where Y = 1, 2, X is 5000 × 100, and each Di is as
follows:

{
D1 =sum((5.16∗x0), (−19.83∗x1), (19.83∗x2), (29.31∗x3), (5.29∗x4))

D2 =sum((−5.16∗x0), (19.83∗x1), (−0.93∗x2), (−29.31∗x3), (5.29∗x4))
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• T3: y = argmax(D1,D2) where Y = 1, 2, X is 5000 × 1000, and each Di is as
follows:

{
D1 =sum((−34.16∗x0), (2.19∗x1), (−12.73∗x2), (5.62∗x3), (−16.36∗x4))

D2 =sum((34.16∗x0), (−2.19∗x1), (12.73∗x2), (−5.62∗x3), (16.36∗x4))

• T4: y = argmax(D1,D2,D3) where Y = 1, 2, 3, X is 5000 × 25, and each Di

is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ cos(x0)), (−39.34 ∗ square(x10)), (2.13 ∗ (x2/x3)),

(46.59 ∗ cube(x13)), (−11.54 ∗ log(x4)))

D2 = sum((−0.56 ∗ cos(x0)), (9.34 ∗ square(x10)), (5.28 ∗ (x2/x3)),

(−6.10 ∗ cube(x13)), (1.48 ∗ log(x4)))

D3 = sum((1.37 ∗ cos(x0)), (3.62 ∗ square(x10)), (4.04 ∗ (x2/x3)),

(1.95 ∗ cube(x13)), (9.54 ∗ log(x4)))

• T5: y = argmax(D1,D2,D3) where Y = 1, 2, 3, X is 5000 × 100, and each Di

is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ sin(x0)), (−39.34 ∗ square(x10)), (2.13 ∗ (x2/x3)),

(46.59 ∗ cube(x13)), (−11.54 ∗ log(x4)))

D2 = sum((−0.56 ∗ sin(x0)), (9.34 ∗ square(x10)), (5.28 ∗ (x2/x3)),

(−6.10 ∗ cube(x13)), (1.48 ∗ log(x4)))

D3 = sum((1.37 ∗ sin(x0)), (3.62 ∗ square(x10)), (4.04 ∗ (x2/x3)),

(1.95 ∗ cube(x13)), (9.54 ∗ log(x4)))

• T6: y = argmax(D1,D2,D3) where Y = 1, 2, 3, X is 5000 × 1000, and each
Di is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ tanh(x0)), (−39.34 ∗ square(x10)), (2.13 ∗ (x2/x3)),

(46.59 ∗ cube(x13)), (−11.54 ∗ log(x4)))

D2 = sum((−0.56 ∗ tanh(x0)), (9.34 ∗ square(x10)), (5.28 ∗ (x2/x3)),

(−6.10 ∗ cube(x13)), (1.48 ∗ log(x4)))

D3 = sum((1.37 ∗ tanh(x0)), (3.62 ∗ square(x10)), (4.04 ∗ (x2/x3)),

(1.95 ∗ cube(x13)), (9.54 ∗ log(x4)))

• T7: y = argmax(D1,D2,D3,D4,D5) where Y = 1, 2, 3, 4, 5, X is 5000 × 25,
and each Di is as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ cos(x0/x21)), (9.34 ∗ ((square(x10)/x14) ∗ x6)),

(2.13 ∗ ((x2/x3) ∗ log(x8))), (46.59 ∗ (cube(x13) ∗ (x9/x2))),

(−11.54 ∗ log(x4 ∗ x10 ∗ x15)))

D2 = sum((−1.56 ∗ cos(x0/x21)), (7.34 ∗ ((square(x10)/x14) ∗ x6)),

(5.28 ∗ ((x2/x3) ∗ log(x8))), (−6.10 ∗ (cube(x13) ∗ (x9/x2))),

(1.48 ∗ log(x4 ∗ x10 ∗ x15)))

D3 = sum((2.31 ∗ cos(x0/x21)), (12.34 ∗ ((square(x10)/x14) ∗ x6)),

(−1.28 ∗ ((x2/x3) ∗ log(x8))), (0.21 ∗ (cube(x13) ∗ (x9/x2))),

(2.61 ∗ log(x4 ∗ x10 ∗ x15)))

D4 = sum((−0.56 ∗ cos(x0/x21)), (8.34 ∗ ((square(x10)/x14) ∗ x6)),

(16.71 ∗ ((x2/x3) ∗ log(x8))), (−2.93 ∗ (cube(x13) ∗ (x9/x2))),

(5.228 ∗ log(x4 ∗ x10 ∗ x15)))

D5 = sum((1.07 ∗ cos(x0/x21)), (−1.62 ∗ ((square(x10)/x14) ∗ x6)),

(−0.04 ∗ ((x2/x3) ∗ log(x8))), (−0.95 ∗ (cube(x13) ∗ (x9/x2))),

(0.54 ∗ log(x4 ∗ x10 ∗ x15)))

• T8: y = argmax(D1,D2,D3,D4,D5) where Y = 1, 2, 3, 4, 5, X is 5000×100,
and each Di is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ sin(x0/x11)), (9.34 ∗ ((square(x12)/x4) ∗ x46)),

(2.13 ∗ ((x21/x3) ∗ log(x18))), (46.59 ∗ (cube(x3) ∗ (x9/x2))),

(−11.54 ∗ log(x14 ∗ x10 ∗ x15)))

D2 = sum((−1.56 ∗ sin(x0/x11)), (7.34 ∗ ((square(x12)/x4) ∗ x46)),

(5.28 ∗ ((x21/x3) ∗ log(x18))), (−6.10 ∗ (cube(x3) ∗ (x9/x2))),

(1.48 ∗ log(x14 ∗ x10 ∗ x15)))

D3 = sum((2.31 ∗ sin(x0/x11)), (12.34 ∗ ((square(x12)/x4) ∗ x46)),

(−1.28 ∗ ((x21/x3) ∗ log(x18))), (0.21 ∗ (cube(x3) ∗ (x9/x2))),

(2.61 ∗ log(x14 ∗ x10 ∗ x15)))

D4 = sum((−0.56 ∗ sin(x0/x11)), (8.34 ∗ ((square(x12)/x4) ∗ x46)),

(16.71 ∗ ((x21/x3) ∗ log(x18))), (−2.93 ∗ (cube(x3) ∗ (x9/x2))),

(5.228 ∗ log(x14 ∗ x10 ∗ x15)))

D5 = sum((1.07 ∗ sin(x0/x11)), (−1.62 ∗ ((square(x12)/x4) ∗ x46)),

(−0.04 ∗ ((x21/x3) ∗ log(x18))), (−0.95 ∗ (cube(x3) ∗ (x9/x2))),

(0.54 ∗ log(x14 ∗ x10 ∗ x15)))

• T9: y = argmax(D1,D2,D3,D4,D5) where Y = 1, 2, 3, 4, 5, X is 5000 ×
1000, and each Di is as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ sin(x20 ∗ x11)), (9.34 ∗ (tanh(x12/x4) ∗ x46)),

(2.13 ∗ ((x321 − x3) ∗ tan(x18))), (46.59 ∗ (square(x3)/(x49 ∗ x672))),

(−11.54 ∗ log(x24 ∗ x120 ∗ x925)))

D2 = sum(((−1.56) ∗ sin(x20 ∗ x11)), (7.34 ∗ (tanh(x12/x4) ∗ x46)),

(5.28 ∗ ((x321 − x3) ∗ tan(x18))), ((−6.10) ∗ (square(x3)/(x49 ∗ x672))),

(1.48 ∗ log(x24 ∗ x120 ∗ x925)))

D3 = sum((2.31 ∗ sin(x20 ∗ x11)), (12.34 ∗ (tanh(x12/x4) ∗ x46)),

((−1.28) ∗ ((x321 − x3) ∗ tan(x18))), (0.21 ∗ (square(x3)/(x49 ∗ x672))),

(2.61 ∗ log(x24 ∗ x120 ∗ x925)))

D4 = sum(((−0.56) ∗ sin(x20 ∗ x11)), (8.34 ∗ (tanh(x12/x4) ∗ x46)),

(16.71 ∗ ((x321 − x3) ∗ tan(x18))), ((−2.93) ∗ (square(x3)/(x49 ∗ x672))),

(5.228 ∗ log(x24 ∗ x120 ∗ x925)))

D5 = sum((1.07 ∗ sin(x20 ∗ x11)), ((−1.62) ∗ (tanh(x12/x4) ∗ x46)),

((−0.04) ∗ ((x321−x3) ∗ tan(x18))), ((−0.95) ∗ (square(x3)/(x49 ∗ x672))),

(0.54 ∗ log(x24 ∗ x120 ∗ x925)))

• T10: y = argmax(D1,D2,D3,D4,D5) where Y = 1, 2, 3, 4, 5, X is 5000 ×
1000, and each Di is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = sum((1.57 ∗ sin(x20 ∗ x11)), (9.34 ∗ (tanh(x12/x4) ∗ x46)),

(2.13 ∗ ((x321 − x3) ∗ tan(x18))), (46.59 ∗ (square(x3)/(x49 ∗ x672))),

(−11.54 ∗ log(x24 ∗ x120 ∗ x925)))

D2 = sum(((−1.56) ∗ sin(x20 ∗ x11)), (7.34 ∗ (tanh(x12/x4) ∗ x46)),

(5.28 ∗ ((x321 − x3) ∗ tan(x18))), ((−6.10) ∗ (square(x3)/(x49 ∗ x672))),

(1.48 ∗ log(x24 ∗ x120 ∗ x925)))

D3 = sum((2.31 ∗ sin(x20 ∗ x11)), (12.34 ∗ (tanh(x12/x4) ∗ x46)),

((−1.28) ∗ ((x321 − x3) ∗ tan(x18))), (0.21 ∗ (square(x3)/(x49 ∗ x672))),

(2.61 ∗ log(x24 ∗ x120 ∗ x925)))

D4 = sum(((−0.56) ∗ sin(x20 ∗ x11)), (8.34 ∗ (tanh(x12/x4) ∗ x46)),

(16.71 ∗ ((x321 − x3) ∗ tan(x18))), ((−2.93) ∗ (square(x3)/(x49 ∗ x672))),

(5.228 ∗ log(x24 ∗ x120 ∗ x925)))

D5 = sum((1.07 ∗ sin(x20 ∗ x11)), ((−1.62) ∗ (tanh(x12/x4) ∗ x46)),

((−0.04) ∗ ((x321−x3) ∗ tan(x18))), ((−0.95) ∗ (square(x3)/(x49 ∗ x672))),

(0.54 ∗ log(x24 ∗ x120 ∗ x925)))
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Chapter 5
Cluster Analysis of a Symbolic
Regression Search Space

Gabriel Kronberger, Lukas Kammerer, Bogdan Burlacu, Stephan
M. Winkler, Michael Kommenda, and Michael Affenzeller

5.1 Introduction

Knowledge discovery systems such as Genetic Programming (GP) for symbolic
regression often have to deal with a very large search space of mathematical
expressions, which only grows exponentially larger with the number of input
variables.

Genetic programming guides the search via selection and discovers new model
structures via the action of crossover and mutation. Population diversity plays an
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important role in this process, as it affects the algorithm’s ability to assemble
existing building blocks into increasingly-fit solutions. The relationship between
diversity at both the genotypic and phenotypic level has been previously explored
[1], leading to a number of important insights:

• Strong exploitation of structures occurs in almost all runs
• Diversity at the structural level is quickly lost
• Encouraging different amounts of diversity can lead to better performance
• The interplay between genetic operators induces a neighborhood structure in the

search space
• Fitness is positively-correlated with fitness-based (phenotypic) diversity and

negatively correlated with genotypic diversity

In light of the above, we set our goal to investigate GP’s ability to explore
different areas of the search space by superimposing a neighborhood structure
obtained via clustering of symbolic regression models generated via grammar
enumeration.

In this contribution we concentrate on the distribution of models in symbolic
regression search spaces. Our motivation for this work is that we hope to be able
to reduce the computational effort which is required to find well-fitting symbolic
regression models by precomputing a clustering of all symbolic regression models
in the search space. In particular, we aim to precompute a similarity network
or (equivalently) a hierarchical clustering for symbolic regression models, that is
independent from a concrete dataset.

Our research questions in this work are:

1. What is the distribution of models in a symbolic regression search space? We
are interested in identifying clusters of similar models whereby similarity could
either be determined based on the model outputs (phenotypic) or similarity of the
evolved expressions (genotypic).

2. What is the distribution of solutions visited by genetic programming? Here we
are interested in the systematic search biases of GP. In particular, (1) whether
there are areas of the search space that are completely ignored by GP, and (2)
how the individuals in a GP population are distributed in the search space and
how this distribution changes from the beginning to the end of a GP run.

Our assumptions about the goals of symbolic regression modeling indexregression,
symbolic are the following. We use these assumptions as a guide for our research in
symbolic regression solution methods.

• The aim of symbolic regression modeling is primarily to find compact expres-
sions that are open for interpretation.

• Shallow expressions are preferred over deeply nested expressions.
• Models for real-world regression problems are often made up of multiple terms

which capture independent effects. The independent terms can be modeled one
after another.
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• Interesting real-world regression problems often necessitate to capture non-
linear correlations in the model. A non-linear effect is often driven by only one
independent variable.

• Interactions of two or three variables are common. Interactions of more than four
variables are often not relevant.

• The set of potentially relevant variables is much larger than the set of actually
relevant variables. It is usually not known which individual variables or which
interactions of variables are relevant.

• Measurements of input variables as well as target variables are noisy.

5.2 Methodology

In our journey to find answers for the research questions stated above we enumerate
the complete search space (see Sect. 5.2.1) and evaluate all expressions for fixed
input data. To limit the size of the search space we consider only uni-variate
functions and limit the maximum length of expressions. Additionally, we use a
grammar which constrains the complexity of expressions and which does not allow
numeric parameters (i.e. random constants). This further reduces the search space.

For the analysis of the distribution of expressions in the symbolic regression
search space (RQ1), our idea is to create a visual map of all expressions which
hopefully allows us to identify larger clusters of similar expressions. Thus, we use
the set of all evaluated expressions, identify the set of phenotypically distinct expres-
sions and determine the phenotypically nearest neighbors for each expression (see
Sect. 5.2.3). This allows us to map expressions to a two-dimensional space while
preserving the local neighborhood structure of the high-dimensional space. The
graph of nearest neighbors also allows us to create a clustering of all expressions. As
we are interested in both—the map of phenotypically similar expressions as well as
the map of genotypically similar expressions—we create a similar map based on a
measure for genotypic similarity (see Sect. 5.2.2). Ideally, we expect to see similar
cluster structure on both levels, assuming that expressions that are genotypically
similar should also be phenotypically similar and vice-versa.1

For the analysis of the search bias of GP (RQ2), the idea is to re-use the map and
clusters that we generated in the first phase and analyze whether GP explores the
complete map and all clusters. Our idea is to find the phenotypically most similar
expression in the pre-calculated map for each solution candidate visited by GP. For
this we determine the visitation frequency for the pre-computed clusters for each
generation of GP. We expect that GP visits many different clusters in the beginning
and converges to the clusters with well-fitting expressions at the end of the run.

1We actually found that this assumption is wrong. We found that the search space can be split
into clusters of phenotypically and genotypically similar expressions. However, we could not show
that phenotypically similar expressions also are phenotypically similar and/or vice versa. This is
intuitive because two highly similar expressions become dissimilar on the phenotypic level just by
a multiplication with zero. Symmetrically, many different expressions can be found which produce
the same output.
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Fig. 5.1 Overview of the flow of information for the search space visualization and clustering
(RQ1)

Figure 5.1 shows an overview of the flow of information for search space
visualization and clustering. Figure 5.2 shows how we map GP solution candidates
to the pre-computed mapping of the search space and the clusters.

A major challenge in our methodological approach is the sheer size of the search
space. We have handled this challenge using state-of-the-art algorithms for dimen-
sionality reduction and clustering which still work for datasets with millions of
observations and hundreds of features (see Sect. 5.2.4). The core idea of these algo-
rithms is the approximation of nearest neighbors using random projection trees [3].

5.2.1 Grammar Enumeration

We create symbolic regression models by deriving sentences from a formal grammar
for expressions as shown in the listing in Fig. 5.3. By defining a maximum
sentence length and omitting numerical constants as a start, a large but finite set
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Fig. 5.2 Overview of the
flow of information for
tracking which parts of the
search space are explored by
GP (RQ2). GP solution
candidates are mapped to the
visualization and the clusters
by finding the most similar
representative

stack.push(start)

Algorithm for grammar enumeration:

while stack not empty:
phrase = stack.pop()
symbol = fetch nonterminal symbol from phrase
for each production rule of symbol:

create new phrase with substituted symbol

if new phrase is a sentence:
evaluate(new phrase)
save(new phrase)

else:
stack.push(new phrase)

Fig. 5.3 Pseudo-code for generating all sentences of a language defined via a context-free
grammar

of all possible models—the search space—can be generated for a problem. These
sentences without actual constant values can be seen as a general structure of an
actual model [5, 14].

Given a formal grammar many mathematical identities and other phenotypi-
cally equal but genotypically different expressions are generated. This includes
for example different orders of arguments in commutative operators or different
representations of binomial identities. To keep the search space size manageable,
we want to avoid semantic duplicates. Although it is computationally not feasible
to fully prevent all semantic duplicates in such a large search space, their number
can be largely reduced in two simple steps: First, the grammar is restricted, so that
only one representation of relevant mathematical identities can be derived. Second,
identities which cannot be prevented in the grammar are identified by hashing:
semantic duplicates should have the same hash value.
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G(Expr):
Expr -> Term "+" Expr | Term
Term -> Factor "*" Term | Factor | "1/(" InvExpr ")"
Factor -> VarFac | ExpFac | LogFac | SinFac
VarFac -> <variable>
ExpFac -> "exp(" SimpleTerm ")"
LogFac -> "log(" SimpleExpr ")"
SinFac -> "sin(" SimpleExpr ")"

SimpleExpr -> SimpleTerm "+" SimpleExpr | SimpleTerm
SimpleTerm -> VarFac "*" SimpleTerm | VarFac

InvExpr -> InvTerm "+" InvExpr | InvTerm
InvTerm -> Factor "*" InvTerm | Factor

Fig. 5.4 The formal grammar used for grammar enumeration. In the design of the grammar, we
want to allow a large set of potentially interesting expressions on the one hand, on the other hand we
want to restrict the search space to disallow overly complex expressions as well as many different
forms of semantically equal expressions

Expressions derived from the restricted grammar (Fig. 5.4) are sums of terms,
which again contain variables and unary functions, such as e.g. the sine function or
the inverse function. The latter can only occur once per term. Also the structures of
function arguments are individually restricted.

Using a context-free grammar, semantic duplicates such as differently ordered
terms cannot be prevented. Therefore, we additionally use a semantic hash function
to identify semantically equivalent expressions. For each derived symbolic expres-
sion we calculate a hash value symbolically without evaluating the expression.
Semantic duplicates are recognized by comparing the hash values of previously
derived sentences. In case of a match, the derived sentence is a likely to be a
semantic duplicate and therefore discarded.

The hashing function calculates the hash value recursively from a syntax tree.
Each terminal symbol in the tree is assigned to a constant hash value. To cover
commutativity, binary operators like multiplication or addition are flattened to n-ary
operators and their arguments are ordered.

5.2.2 Phenotypic Similarity

For the phenotypic similarity we use Pearson’s correlation coefficient of the model
outputs. This allows us to determine the output similarity regardless of the offset and
scale of the function values [4]. When we evaluate the expressions it is necessary
to assume a range of valid input values. We use 100 points distributed on a grid in
the range (−5.0..5.0). All output vectors are scaled to zero mean and unit variance;
undefined output values and infinity values are replaced by the average output. This
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preprocessing allows us to use cosine-similarity for the clustering and visualization
which is supported by many implementations for approximate nearest neighbors
and equivalent to Pearson’s correlation coefficient for zero-mean vectors.

5.2.3 Genotypic Similarity

We define the genotypic similarity between two tree-based solution candidates using
the Sørensen-Dice index

GenotypicSimilarity(T1, T2) = 2 · |M|
|T1| + |T2| (5.1)

Here, M is the bottom-up mapping between T1 and T2 calculated using the algorithm
described in [13]. We describe below the main steps of the algorithm:

1. Build a forest F = T1
⋃̇

T2 consisting of the disjoint union between the two trees
2. Map F to a directed acyclic graph G. Two nodes in F are mapped to the same

vertex in G if they are at the same height in the tree and their children are mapped
to the same sequence of vertices in G. The bottom-up traversal ensures that nodes
are mapped before their parents, leading to O(|T1| + |T2)| build time for G.

3. Use the map K : F → G obtained in the previous step to build the final mapping
M : T1 → T2. This step iterates over the nodes of T1 in level order and uses
K to determine which nodes correspond to the same vertices in G. Level-order
iteration guarantees that every largest unmapped subtree of T1 will be mapped to
an isomorphic subtree of T2.

The algorithm has a runtime complexity linear in the size of the trees regardless
whether the trees are ordered or unordered.

5.2.4 Clustering and Visualization

One of the challenges in visualizing the search space using phenotypic or genotypic
similarity measures is to find a mapping of expressions to a two-dimensional space
which preserves pairwise similarities as well as possible.

We use the t-SNE algorithm [7] with the distance matrices which are calculated
on the basis of the previously described phenotypic or genotypic similarity mea-
sures.

The main idea behind t-SNE is to map a high-dimensional space X to a low-
dimensional space Y where the distribution of pairwise similarities is preserved
as much as possible. Similarity between data points xi, xj ∈ X is defined as the
probability that xi would pick xj as its neighbor. A similar probability distribution
is found in Y by minimizing the Kullback-Leibler divergence between the two
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distributions using gradient descent. While t-SNE does not preserve distances, the
visualization can potentially provide new insight into the structure of the search
space for symbolic regression.

In the following we describe the visualization and clustering procedure in more
detail.

5.2.4.1 Clustering and Visualization Based on Genotypic Similarity

The base set of ≈ 1.6 ·105 unique expressions obtained via grammar enumeration is
unfeasibly big for the calculation of the full similarity matrix. Therefore, we further
reduce this set to a feasible quantity by filtering expressions based on their R2 value
in relation to the Keijzer-4 function [4]. Figure 5.5 shows the distribution of R2

values over the full set of all unique expressions. For the genotypic mapping we
took only expressions with R2 > 0.2.

We used the HDBSCAN algorithm [2] for clustering. We tried two approaches:
(1) clustering based directly on the pre-computed similarity matrix, and (2) cluster-
ing in the mapped 2-d space. Both approaches produced similar results.

5.2.4.2 Clustering and Visualization Based on Phenotypic Similarity

For the mapping based on phenotypic similarity we decided to use the complete set
of the unique expressions and applied the LargeVis implementation [11] to produce
the visualization. LargeVis relies on approximate nearest neighbor algorithms to
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Fig. 5.5 Distribution of R2 values for the Keijzer-4 function
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make visualization of large-scale and high-dimensional datasets feasible. For our
analysis we used the R library for LargeVis.2 LargeVis implements a variant of
t-SNE in which the exact determination of nearest neighbors is replaced by the
approximate nearest neighbors list. This has only linear runtime complexity in the
number of data points. As a consequence, the asymptotic runtime of clustering and
the embedding becomes linear in the number of data points.

The algorithm works in three steps. First, a the lists of approximate nearest
neighbors for each data point are determined using random projection trees [3].
In the second step, a sparse weighted edge matrix is calculated which encodes
the nearest neighbor graph. Finally, the approximate nearest neighbor lists and the
edge matrix can be used for t-SNE. LargeVis provides a variant of the HDBSCAN
algorithm [8, 9] which uses the approximate nearest neighbor list.

5.2.5 Mapping GP Solution Candidates

Based on the results of the phenotypic clustering we study how GP explores the
search space. For this we add a step in the GP algorithm after all individuals in the
population have been evaluated. In this step, we identify the closest expression or
cluster of expressions in the enumerated search space for each evaluated solution
candidate. With this we are able to calculate a visitation density for the enumerated
search space.

We expect that in the early stages of evolution GP explores many different areas
of the search space, whereby over time GP should converge to the area of the search
space which contains expressions which are most similar to the target function.

5.3 Results

In the following sections we first present our results of the clustering and visualiza-
tion based on the phenotypic similarity and compare with the results of clustering
and visualization based on the genotypic similarity. Then we present the results of
our analysis of cluster qualities for five uni-variate functions. Finally, we present the
results of the GP visitation frequency analysis.

2https://github.com/elbamos/largeVis.

https://github.com/elbamos/largeVis
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5.3.1 Phenotypic Mapping

Figure 5.6 shows a result for the visualization and clustering based on phenotypic
similarity where we have used LargeVis directly on all output vectors and using
cosine-similarity. Each dot represents an expression. The color indicates to which
cluster an expression has been assigned. The visualization clearly shows that several
clusters of similar expressions can be identified in the search space.

As a post-processing step we prepared plots for all clusters which show the
outputs of all expressions within the clusters. We found that the search space
includes many rather complex functions and that several clusters of interesting and
similar functions are identified. Some selected plots as well as the position of the
cluster center on the mapped search space are shown in Fig. 5.6. It should be noted
that the visualization does not show unique expressions which have been identified
by HDBSCAN as outliers.

Figure 5.7 again shows a phenotypic map. The difference to Fig. 5.6 is that
here all expressions are shown and we have used a coloring scheme based the
similarity of expression outputs with the Keijzer-4 function (squared correlation
R2). The visualization clearly shows that only certain areas of the search space
contain expressions which are similar to the target function. Notably, there are
several areas which contain expressions with large R2 values. There are at least
two potential explanations for this. First, it could be an artifact of the approximation
of t-SNE. Another reason could be the fact that we have used cosine similarity for

Fig. 5.6 Visualization of the embedding and clustering result based on phenotypic similarity. The
phenotypic mapping leads to several clearly defined clusters
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Fig. 5.7 All expressions in the mapped search space. We use squared correlation with the Keijzer-
4 function for the coloring

Fig. 5.8 All expressions in the mapped search space colored based on the squared correlation with
the Pagie-1d function

the embedding and the R2 value for the coloring scheme. With the cosine similarity
measure, two vectors that are negatively correlated are dissimilar.

Figure 5.8 shows the same visualization for a different function (Pagie-1d).
Compared to Fig. 5.7 other areas of the search space are highlighted.

The results produced for the phenotypic mapping are motivating for further
research. At least for the two considered examples we should be able to use a hill-
climbing algorithm on the mapped search space to find well-fitting expressions. The
mapping of the search space must be pre-computed only once and can be reused for
potentially any target function.
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Fig. 5.9 Results of HDBSCAN and t-SNE with the genotypic similarity (top: coloring based on
clusters; bottom: coloring based on the R2 value with the Keijzer-4 function). The visualization
of the two-dimensional mapping shows clusters of genotypically similar solutions. However, the
genotypic clusters do not correlate strongly with qualities

5.3.2 Genotypic Mapping

Figure 5.9 shows the results of t-SNE for dimensionality reduction and HDBSCAN
for clustering when we use the genotypic similarity (see Sect. 5.2.3). We used
HDBSCAN on the t-SNE mapped points. In comparison to the phenotypic mapping
of the search space, the genotypic mapping does not produce such clearly defined
clusters. In particular, in the lower sub-plot of Fig. 5.9 no strong correlation with the
quality values is visible.
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5.3.3 Cluster Qualities for Benchmark Problems

To check whether the phenotypic clustering of our search space is generalizable
over multiple problem instances, we use the following five uni-variate benchmark
functions:

• Keijzer-4 [4]: f (x) = x3e−x cos(x) sin(x)(sin(x)2 cos(x) − 1) for x ∈ [0, 10]
• Keijzer-9 [4]: f (x) = ln(x + √

x2 + 1) for x ∈ [0, 100]
• Pagie-1d [10]3: f (x) = 1

1+x−4 for x ∈ [−5, 5]
• Nguyen-5 [12]: f (x) = sin(x2) cos(x) − 1 for x ∈ [−1, 1]
• Nguyen-6 [12]: f (x) = sin(x) + sin(x + x2) for x ∈ [−1, 1]

We average the resulting R2 values within each cluster and rank the clusters by
the average R2 for each benchmark function independently. Figure 5.10 shows the
average R2 values over cluster ranks for the five benchmark functions. We find that
for each of the benchmark functions a cluster with well-fitting expressions is be
found. Figure 5.11 shows plots of all functions in the best four clusters for each of
the considered benchmark functions. The plots show that for the Keijzer-4 and the
Pagie-1d functions the search space contains well-fitting expressions. However, for
the other three functions the best clusters do not fit the target function well. This is
in contrast to the calculated average R2 values for the clusters which are relatively
high (≥ 0.95) for all functions except for Keijzer-4. Here we want to stress again,
that the search space clustering has been calculated independently from the target
functions.

Fig. 5.10 Ranking of clusters by average R2 values of expressions within all clusters. For each of
the benchmark functions there are clusters which contain well-fitting expressions

3We have used a uni-variate variant of the benchmark function described by Pagie and Hogeweg.



98 G. Kronberger et al.

Fig. 5.11 The five benchmark functions and the best four clusters with the highest average R2 for
each of the functions from left to right. The average R2 values are: 0.70 (Keijzer-4), 0.97 (Keijzer-
9), 0.97 (Pagie-1d), 0.95 (Nguyen-5), and 0.95 (Nguyen-6)

5.3.4 Mapping of GP Solution Candidates

We use the 2d-mapping of the search space to analyze the search bias of GP. For
this we use a rather canonical GP implementation and map each evaluated solution
candidate to the search space by identifying the closest representative expression in
the enumerated search space. Each expression in the search space is assigned to a
cluster. Therefore, we can determine which clusters of the search space are visited
by GP. We have again used the Keijzer-4 function to demonstrate the concept.

Figure 5.12 shows the results of the analysis. In the left sub-plot the number of
different clusters visited by GP are shown over generations; on the right hand side
the median cluster rank (ordered by cluster quality) is shown. This clearly shows that
in the beginning GP visits many different solution candidates and later concentrates
on only a view high quality clusters.
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Fig. 5.12 The number of clusters that are visited by GP as well as the median rank (lower rank in
better quality) of clusters over GP generations

In Fig. 5.13 we show the distribution of solution candidates visited by GP in
more detail for the first few generations (1, 2, 3, 4, 5, and 10). It is clearly visible
that within the first ten generations GP explores almost each of the 16,000 clusters
(population size=500 and PTC2 tree creator [6]) and quickly finds the clusters with
highest quality.

5.4 Discussion

Our analysis so far has some limitations that merit a more detailed discussion.

• We have only looked at uni-variate models.
• The grammar is very restricted.
• Even with the limit of seven variable references, the computational effort is

already rather high. When increasing the length limits the computational effort
quickly becomes too big.

• The phenotypic clustering depends on the range of input values that are used
when evaluating the model.

• We have completely ignored the effect of numeric constants in models, i.e. we
have not used numeric constants.

In this work we have considered a search space of approximately 160,000
semantically different expressions. However, in Fig. 5.11 we see that the search
space does not contain well-fitting expressions for all of the considered target
functions. For a more in-depth analysis the size of the search space should be
extended even for uni-variate problems.

We also found that the grammar we used produced many discontinuous functions
(e.g. because of division by zero or extreme arguments to exp(x)). If we assume that
we are not interested in such functions then the search space could potentially be
reduced massively by removing expressions leading to discontinuous functions.

If we extend the analysis to include multi-variate models, the size of the search
space would increase significantly even if we use the same size restrictions. This is
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Fig. 5.13 More detailed visualization of the search space explored by a GP run. The plots in the
first and second rows show the visitation frequency for each cluster in generations 1, 2, 3, 4, 5, 10.
Clusters with lower ranks are high quality clusters. The plots in the third and fourth row show the
visitation frequency in the two-dimensional phenotypic map. Within the first 10 generations GP
converges to a focused area of the search space

simply a consequence of the fact that there are more different models that can be
expressed. Based on preliminary experiments, even with two or three independent
variables it is possible to enumerate the search space with the same size restrictions
as we used above. For more than three variables it would be necessary to use even
smaller size limits.

We also need to consider that the variety of function outputs becomes much larger
with increased dimensionality which could lead to a larger set of clusters.

We hypothesize that for practical problems it is usually sufficient to be able
to represent two- or three-way interactions of variables as separable terms can be
modeled independently. However, we cannot expect this in general.
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Regarding the complexity of the grammar, we have purposefully limited the
number of alternatives to be able to enumerate the full search space. It would
however be rather easy to add more functions (e.g. a power or root function) as
long as the complexity of the argument to the added functions is limited similarly
as we have limited arguments for log(x).

A different approach that could potentially be worthwhile is to calculate the
phenotypic similarity in the frequency-domain of the function.

5.5 Conclusion

This contribution aims to analyze the search behavior of GP in a space of hypotheses
that is visualized as a 2D mapping of the search space. The idea of this approach
is to enumerate the complete search space in the off-line phase independently of
the regression problem to be solved. In order to do so we had to define some
restrictions like the consideration of only uni-variate functions under restricting
grammar assumptions. The still huge search space can be further restricted by
filtering unique expressions by hashing.

The ideas presented in this chapter have to be considered as very first findings
of a novel approach having in mind that the restrictions on the search space delimit
the generality of claimed findings. In order to achieve a deeper and more universal
understanding it will be necessary to extend the approach to multi-variate models.
Also it will be interesting to analyze the search behavior of different flavors of GP
and other hypothesis search techniques.

Furthermore, the massive set of off-line generated models could be used to filter
an initial population for a GP run as soon as the regression problem to be tackled is
available. Similar to what is done in the ANN community recently with pre-trained
neural networks we could establish somehow pre-evolved initial populations for
evolutionary search: In this way we could for example filter a genotypically diverse
subset of models for a GP problem.
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Chapter 6
What Else Is in an Evolved Name?
Exploring Evolvable Specificity with
SignalGP

Alexander Lalejini and Charles Ofria

6.1 Introduction

In Genetic Programming Theory and Practice IX, [20] explored the use of tag-based
naming in evolving modular programs. In this chapter, we continue exploring tag-
based naming with SignalGP [14]; we investigate the importance of inexactness
when making tag-based references: How important is imprecision when calling an
evolvable name? Additionally, we discuss possible broadened applications of tag-
based naming in the context of SignalGP.

What’s in an evolved name? How should modules (e.g., functions, sub-routines,
data-objects, etc.) be referenced in evolving programs? In traditional software
development, the programmer hand-labels modules and subsequently refers to them
using their assigned label. This technique for referencing modules is intentionally
rigid, requiring programmers to precisely name the module they aim to reference;
imprecision often results in syntactic incorrectness. Requiring evolving programs to
follow traditional approaches to module referencing is not ideal: mutation operators
must do extra work to guarantee label-correctness, else mutated programs are likely
to make use of undefined labels, resulting in syntactic invalidity [20]. Instead,
is genetic programming (GP) better off relying on more flexible, less exacting
referencing schemes?

Inspired by John Holland’s use of “tags” [8–11] as a mechanism for matching,
binding, and aggregation, Spector et al. [20–22] introduced and demonstrated a
tag-based naming scheme for GP where tags are used to name and reference
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program modules. Tags are evolvable labels that are mutable, and the similarity
(or dissimilarity) between any two possible tags is quantifiable. Tags allow for
inexact referencing. Because the similarity between tags can be calculated, a
referring tag can always link to the program module with the most similar tag;
further, this ensures that all possible tags are valid references. Because tags are
mutable, evolution can incrementally shape tag-based references within evolving
code. Spector et al. demonstrated the value of an evolvable name, showing that
the tag-based naming scheme supports the evolution of programs with complex,
modular architectures by allowing programs to more easily reference and make use
of program modules [20].

We previously extended Spector et al.’s tag-based naming scheme, broadening
the application of tags to develop SignalGP [14], a GP technique designed to provide
direct access to the event-driven programming paradigm. In Spector et al.’s original
implementation [22], tags were used as an evolvable mechanism to label and later
refer to code fragments. At there core, tags provide general-purpose, evolvable
specificity—an evolvable way to specify zero or more tagged entities. SignalGP
broadens the application of tags, using them to specify the relationships between
events and event handlers (i.e., program modules that process events). However, the
application of tag-based naming can be further broadened. For example, tag-based
naming could be used to label and refer to particular instructions, other agents, or
other virtual hardware components (e.g., registers, locations in memory, etc.). In
this broader context, tags are still mutable labels with well-defined tag-tag similarity
measures, allowing for inexact referencing. The context of a referring tag can limit
the valid set of tagged entities with which it can match. For example, in the context
of a function call, a referring tag might only match to function tags, whereas in the
context of a memory access, a referring tag might only match to a tagged location
in memory.

In this chapter, we investigate the importance of inexactness when making
tag-based references, and we propose possible extensions to SignalGP that use
broader applications of tag-based naming. In Sect. 6.2, we give a brief overview
of SignalGP. In Sect. 6.3, we use an environment coordination toy problem to
investigate the effectiveness of different thresholds of allowed imprecision when
performing tag-based referencing. We compare the fitness effects of requiring
different levels of tag similarity when matching referring tags to referents, ranging
from requiring exact matches between tags for a successful reference to placing
no restrictions on tag similarity for a successful reference. We find that, indeed,
allowing for some inexactness when performing tag-based referencing is crucial.
In Sect. 6.4, we demonstrate that requiring a minimum threshold of similarity
for tags to match is important when programs must evolve to ignore irrelevant or
misleading environmental signals. In addition to providing access to the event-
driven programming paradigm, the way SignalGP programs are organized is
well-suited for several interesting extensions. In Sect. 6.5, we speculate on several
possibilities for how SignalGP can be extended to support module regulation, multi-
representation programs, and major transitions in individuality.
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6.2 SignalGP

SignalGP defines a way of organizing and interpreting genetic programs to provide
computational evolution direct access to the event-driven programming paradigm.
The event-driven programming paradigm is a software-design philosophy where
software development focuses on the processing of events (often in the form of
messages from other processes, sensor alerts, or user actions) [2, 4, 5]. Events are
processed by segments of code called event handlers. In traditional event-driven pro-
gramming, some identifying characteristic associated with the event (e.g., its name
or type) determines the most appropriate event handler to trigger for processing the
event, and the programmer is responsible for labeling event handlers such that they
process the appropriate types of events. Software development environments that
support the event-driven paradigm often abstract away the logistics of monitoring
for events and triggering event handlers. This technique simplifies the code that must
be designed and implemented by the programmer in domains that require on-the-fly
reactions to signals from the environment or other agents.

SignalGP provides similarly useful abstractions to evolving programs. In Sig-
nalGP, signals (events) trigger the execution of program modules (functions) to
respond to those signals. SignalGP applies tag-based referencing techniques to
specify which function is triggered by each signal, allowing the relationships
between signals and functions to evolve over time.

Here, we give a general overview of SignalGP in the context of linear GP,
wherein programs are represented as sequences of instructions; however, the
underlying organization and interpretation of SignalGP programs is generalizable
across a variety of evolvable representations of computation (see Sect. 6.5.2).
Figure 6.1 is provided to visually guide our discussion of SignalGP. A more detailed
discussion can be found in [14].

SignalGP programs (agents) are explicitly modular, composed of a set of
functions, each of which associates a tag with a linear sequence of instructions.

Functions have two components:
  1) a tag (bit string)

  2) a linear sequence of instructions

Events have two components:

  2) data

  1) a tag (bit string) [tag]
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Fig. 6.1 A high-level overview of SignalGP. Programs are defined by a set of functions. Events
trigger functions with the most similar tag, allowing programs to respond to signals. SignalGP
agents handle many signals simultaneously by processing them in parallel
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SignalGP makes explicit the concept of events. Each event is associated with a tag
(indicating the event type) as well as additional event-specific data. In our work,
we represent tags as fixed-length bit strings where tag similarity is quantified as
the proportion of matching bits between two tags (simple matching coefficient).
Because both events and functions are tagged, SignalGP uses tag-based referencing
to determine the most appropriate function to process an event: events trigger the
function with the closest matching tag as long as its within a fixed threshold. When
an event triggers a function, the function is run with the event’s associated data as
input. In this way, functions act as event handlers, and tag-based referencing is used
as an evolvable mechanism to determine the most appropriate function to trigger
in response to an event. SignalGP agents handle many events simultaneously by
processing them in parallel. Events may be generated internally, by the environment,
or by other agents, making SignalGP particularly well-suited for domains that
require programs to respond quickly to their environment or other agents.

The underlying instruction set is crafted to allow programs to easily trigger
internal events, broadcast external events, and to otherwise work in a tag-based
context. In our implementation of SignalGP, instructions are argument based,
and as in traditional linear GP representations, arguments modify the effect of
an instruction, often specifying memory locations or fixed values. In addition to
evolvable arguments, each instruction has an evolvable tag, which may also modify
the effect of an instruction. For example, instructions that refer to functions do so
using tag-based referencing, and when an instruction generates an event (e.g., to
be used internally or broadcast to other agents), the instruction’s tag is used as the
event’s tag. The set of SignalGP instructions used in this work are documented in
our supplemental material, which can be accessed via GitHub at https://github.com/
amlalejini/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP [13].

In Spector et al.’s original conception of tag-based referencing, as long as a
program had at least one tagged module, all referential tags could successfully
reference something [22]. The tag-based referencing employed by SignalGP, how-
ever, can be configured to only match tags whose similarity exceeds a threshold,
allowing programs to ignore events by avoiding the use of similar tags. This
similarity threshold allows us to adjust the degree of exactness required for tag-
based references to succeed.

6.3 The Value of Imprecision in Evolvable Names

How important is imprecision when calling an evolvable name? Tag-based refer-
encing has built-in flexibility, not requiring tags to exactly match to successfully
reference one another. In Spector et al.’s initial implementation of tag-based
referencing [22], referring tags always matched to the most similar receptor tag.
Spector et al. speculated that tag-based referencing performed well because of

https://github.com/amlalejini/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP
https://github.com/amlalejini/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP
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this inexactness: any tag-based reference is able to find a referent as long as one
exists. We can, however, imagine different degrees of allowed imprecision when
performing tag-based referencing, ranging from only identical tags being allowed
to reference one another, to any two tags being allowed to match as long as they
are the most similar pair. Indeed, any minimal level of tag-similarity for successful
referencing can be imposed (e.g., requiring tags to be at least 50% similar before
they can be considered as the best match).

Here, we explore the importance of imprecision in tag-based referencing using
SignalGP. We evolve SignalGP agents to solve an environment coordination
problem under a range of similarity thresholds, spanning from 0% (no similarity
requirement) to 100% (requiring perfect matches).

6.3.1 The Changing Environment Problem

The changing environment problem is a toy problem that we designed to test GP
programs’ capacity to respond appropriately to environmental signals. We have
previously used this problem to demonstrate the value of the event-driven paradigm
using SignalGP [14].

The changing environment problem requires agents to continually match their
internal state with the current state of a stochastically changing environment. The
environment is initialized to a random state, and at every subsequent time step, the
environment has a 12.5% chance of randomly changing to any of 16 possible states.
To be successful, agents must monitor the environment for changes, adjusting their
internal state as appropriate.

Environmental changes produce signals (events) with environment-specific tags
that will trigger an appropriate SignalGP function; in this way, SignalGP agents can
respond to environmental changes. Each of the 16 environment states is associated
with a distinct tag that is randomly generated at the beginning of a run. Agents
adjust their internal state by executing one of 16 state-altering instructions (one for
each possible environmental state). Thus, the optimal solution to this problem is a
16-function program where each function is triggered by a different environment
signal, and functions, when triggered, adjust the agent’s internal state appropriately.
An example solution to the changing environment problem is documented in our
supplemental material, which can be accessed via GitHub at https://github.com/
amlalejini/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP [13].

To explore the value of imprecision in tag-based referencing, we evolved 30
replicate populations of SignalGP agents under nine treatments, each requiring
a different similarity threshold for events to trigger functions: 0%, 12.5%, 25%,
37.5%, 50%, 62.5%, 75%, 87.5%, and 100%. Note that when performing a tag-
based reference, if the closest matching tag is not greater than or equal to the
required similarity threshold, the reference fails.

https://github.com/amlalejini/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP
https://github.com/amlalejini/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP
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6.3.1.1 Hypothesis

A 100% similarity threshold is equivalent to exact-name referencing; thus, we
expected it to perform poorly. A 0% similarity threshold is equivalent to what [22]
used in their original demonstration of tag-based referencing; thus, we expected to it
perform well. However, are intermediate thresholds just as effective? They provide
varying degrees of allowed imprecisions while allowing programs to passively
ignore some incoming signals. In prior work using SignalGP [14], a 50% similarity
threshold performed well on the changing environment problem; thus, we expected
treatments with intermediate thresholds to perform better than runs requiring exact
tag-matching for references to succeed.

6.3.1.2 Experimental Parameters

For each treatment, we evolved 30 replicate populations of 1000 agents for 10,000
generations, starting from a simple ancestor program consisting of a single function
with eight no-operation instructions. We initialized all replicates with a unique
random number seed. Each generation, we evaluated all agents in the population
three times (three trials). Each trial was composed of 256 time steps, and an
agent’s score for a single trial was equal to the number of time steps the agent’s
internal state matched the environment state. Thus, possible scores ranged from 0
to 256. An agent’s fitness was the minimum score achieved after three trials, thus
selecting agents that performed consistently. We used a combination of elite and
tournament (size four) selection to determine which agents reproduced asexually
each generation.

Offspring were mutated using SignalGP-aware mutation operators. We used
whole-function duplication and deletion operators, applied at a per-function rate
of 0.05; these operators allowed evolution to tune the number of functions in
a SignalGP program. We mutated instruction- and function-tags at a per-bit
mutation rate of 0.005. We applied instruction and argument substitutions at a
per-instruction/argument rate of 0.005. We applied single-instruction insertion and
deletion operators at a per-instruction rate of 0.005; when a single-instruction
insertion occurred, we inserted a random instruction with random arguments and
a random tag. In addition to single-instruction insertions and deletions, instruction
sequences could be inserted or removed via slip-mutation operators [15]. When
triggered, slip-mutations can either duplicate or delete multi-instruction sequences
within a function. We applied slip-mutations at a per-function rate of 0.05.

Agents were limited to a maximum of 16 total functions, each of which were
limited to a maximum length of 32 instructions. Agents were limited to a maximum
of 32 parallel-executing threads. Agents were further limited to 128 call states per
call stack. All tags were represented as length-16 bit strings.
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6.3.1.3 Data Analysis

We analyzed evolving populations at two time points during the evolutionary
process: generation 1000 and generation 10,000. For every population analyzed,
we extracted the best-performing program and evaluated it 100 times (to account
for environmental stochasticity), using its average performance as its representative
fitness. For each time point (generation 1000 and 10,000) analyzed, we compared
the performances of evolved programs across treatments. To determine if any of the
treatments were significant (p < 0.05) within a set, we performed a Kruskal-Wallis
test. For a time point in which the Kruskal-Wallis test was significant, we performed
a post-hoc pairwise Wilcoxon rank-sum test, applying a Bonferroni correction for
multiple comparisons. All statistical analyses were conducted in R 3.3.2 [18].

All visualizations of our results were generated using the seaborn Python library
[23]. The code to run our experiments, perform statistical analyses, and generate
visualizations is publicly available on Github [13].

6.3.2 Results and Discussion

Figure 6.2 gives the results for the changing environment problem early during our
experiment (generation 1000) and at the end of our experiment (generation 10,000).
At both generation 1000 and generation 10,000, programs evolved under different
similarity thresholds had significantly different performance (Gen. 1000: Kruskal-
Wallis test, Chi-squared = 161.27, p < 2.2e−16; Gen. 10,000: Kruskal-Wallis
test, Chi-squared = 221.72, p < 2.2e−16). Table 6.1 gives the results of a post-
hoc pairwise Wilcoxon rank-sum test for our results at both generation 1000 and
generation 10,000.

(a) (b)

Fig. 6.2 Changing environment problem results at: (a) generation 1000 and (b) generation 10,000.
The box plots indicate the fitnesses (each an average over 100 trials) of the best performing
programs from each replicate across a range of minimum similarity thresholds

https://github.com/amlalejini/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP
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Table 6.1 Pairwise Wilcoxon rank-sum test results for the changing environment problem at
generation 1000 and generation 10,000

Generation 1,000

0.0%
12.5%

25%
37.5%
50.0%
62.5%
75.0%
87.5%

100.0%

0.0% 12.5% 25% 37.5% 50.0% 62.5% 75.0% 87.5% 100.0%

1.0

1.0

1.0

1.0

1.0
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8.6e-10

8.6e-10

1.0

1.0

1.0

1.0

0.0109

7.6e-10

7.6e-10

1.0

1.0

1.0

0.0956

8.1e-10

8.1e-10

1.0

1.0

0.0013

5.2e-10

5.2e-10

1.0

0.0654
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Each row/column corresponds to a tag similarity threshold treatment. Each entry in the table
indicates the Bonferroni-adjusted p value for a given comparison between two treatments.
Statistically significant relationships (p < 0.05) are bolded. ‘NONE’ indicates that two treatments
have identical distributions of data. Results for generation 1000 are in red, below the table’s
diagonal (in black). Results for generation 10,000 are in yellow, above the table’s diagonal

At After 10,000 generations of evolution, programs evolved in the 87.5%
and 100.0% similarity threshold treatments still perform significantly worse than
those evolved in treatments with lower similarity thresholds. However, by 10,000
generations, some replicates evolved under the 87.5% similarity threshold treatment
were able to produce optimal programs. No optimal programs evolved in the 100.0%
similarity threshold treatment (exact name matching). Fully detailed statistical
results can be found in our supplemental material [13].

Allowing for Some Imprecision is Crucial When Calling a Tag-Based Name
Because we limited agents to a maximum of 16 total functions, optimally solving
the 16-state changing environment problem required programs to dedicate each of
their 16 possible functions to responding to a particular environment state. Each
function must be tagged such that only a single environment state change could
trigger it, and when triggered, the function must immediately update the agent’s
internal state appropriately. If exact tag-matching (100% similarity threshold) is
required for events to trigger functions, each function’s tag must evolve to match
a single environment state tag bit-for-bit. As expected, our results demonstrate
that requiring tags to exactly match for successful references impedes evolution:
after 10,000 generations, no optimal programs evolved under the 100.0% similarity
threshold treatment.

In treatments that allow for inexactness when performing tag-based referencing,
each function’s tag must evolve to closely match (above a given similarity threshold)
a single environment state; higher minimum required similarity thresholds require
evolution to more precisely tune function tags. As demonstrated by the 87.5%
similarity threshold treatment, requiring exceedingly high levels of precision can
impede evolutionary adaptation.

http://lalejini.com/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP/analysis/stats.html
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By 10,000 generations, there was no significant difference in program perfor-
mance among all treatments with similarity thresholds lower than 87.5%. While
allowing for inexactness in tag-based referencing is crucial for evolving programs to
solve the changing environment problem, intermediate levels of required precision
(12.5%, 25.0%, 37.5%, 50.0%, 62.5%, and 75.0% similarity thresholds) proved
just as effective as not imposing any tag similarity constraints (0.0% similarity
threshold).

6.3.2.1 Illuminating Solution Space with MAP-Elites

We use the MAP-Elites [17] evolutionary algorithm to further illuminate the
importance of inexactness when using tag-based naming schemes. In MAP-Elites,
a population is structured based on a set of chosen traits of evolving solutions.
Each chosen trait defines an axis on a grid of cells where each cell represents a
distinct combination of the chosen traits; further, each cell maintains only the most
fit (elite) solution discovered with the cell’s associated combination of traits. A
MAP-Elites grid is initialized by randomly generating solutions and placing them
into their appropriate cell in the grid (based on the random solution’s traits). After
initialization, occupied cells are randomly selected to reproduce. When a solution is
selected for reproduction, we generate a mutated offspring and determine where that
offspring belongs in the grid. If the cell is unoccupied, the new solution is placed in
that cell; otherwise, we compare the new solution’s fitness to the current occupant,
keeping the fitter of the two. Over time, this process produces a grid of prospective
solutions that span the range of traits we used to define our grid axes.

Dolson et al. extended the use of MAP-Elites to examine GP representations [3].
By selecing MAP-Elites grid axes that correspond to program architecture, we can
get a snapshot of what types of programs are capable of succeeding at a task and
what tradeoffs might exist between the chosen traits. We use this approach to explore
the role of inexactness in SignalGP: we apply the MAP-Elites algorithm to the
changing environment problem, using minimum similarity threshold for tag-based
referencing and the number of unique functions used by a program during evaluation
to define our MAP-Elites grid axes. In our more traditional evolution experiment,
we locked in the minimum required similarity threshold for each treatment. In our
MAP-Elites analysis, we allow the minimum similarity threshold for a program to
evolve between 0.0% and 100.0%. Further, we increased the allowed number of
functions in a program from 16 to 32.

We initialized our MAP-Elites grid with 1000 randomly generated SignalGP
programs. We ran the MAP-Elites algorithm for 100,000 generations where each
generation represents 1000 reproduction events. We ran 50 replicate MAP-Elites
runs, giving us 50 grids of diverse solutions for the changing environment problem.
At the end of each run, we filtered out any program unable to solve the problem
perfectly in each of our 50 runs. The heat map in Fig. 6.3 shows the density of
optimal programs (aggregated across runs) within our chosen trait space.
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Fig. 6.3 Heat map of SignalGP programs evolved to solve the changing environment problem
using MAP-Elites. Locations in the heat map correspond to distinct combinations of the following
two program traits: the number of unique functions used by a program during evaluation and the
program’s minimum tag similarity threshold. Darker areas of the heat map indicate a higher density
of perfect solutions found with a particular trait combination

From Fig. 6.3, we can see that all optimal programs use 16 or more functions.
This is not surprising, as the changing environment problem cannot be optimally
solved with fewer than 16 functions. The highest similarity threshold among all
evolved solutions represented in Fig. 6.3 was 87.4657%, supporting the idea that
requiring too much precision when performing tag-based referencing can impede
evolution.

6.4 The Value of Not Listening

What’s the value of ignoring signals in the environment? In some problem domains,
the capacity to completely ignore distracting, irrelevant, or misleading signals while
monitoring for others is crucial. For example, selective attention at a crowded
restaurant allows us to ignore background noise and pay attention to a single
conversion.
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Here, we incorporate misleading distraction signals into the changing envi-
ronment problem to demonstrate the value of ignoring signals in the context of
SignalGP. In SignalGP, a 0% similarity threshold for tag-based references prevents
agents from passively ignoring signals (events) in the environment. SignalGP
programs can still be organized to actively ignore signals by having appropriately
tagged, ineffectual functions to consume signals or by filtering signals based
on event-specific data. In SignalGP, a 100% similarity threshold for tag-based
references causes SignalGP programs to ignore any event whose tag is not an
exact match with one of the agent’s function tags, which we have shown to impede
evolution (Sect. 6.3). Intermediate similarity thresholds, however, allow SignalGP
agents to passively ignore signals in the environment without impeding adaptive
evolution. We explore the value of allowing varying degrees of passive signal-
discrimination via different similarity thresholds in SignalGP using the distracting
environment problem.

6.4.1 The Distracting Environment Problem

The distracting environment problem is identical to the changing environment
problem (described in Sect. 6.3.1) but with the addition of randomly occurring
distraction signals. Like the changing environment problem, the environment can
be in one of 16 states at any time with a 12.5% chance to change each update. Every
time step there is also a 12.5% chance of a distraction event occurring, independent
of environmental changes. Just as we randomly generate 16 distinct tags associated
with each of the 16 environment states, we also generate 16 distinct distraction
signal tags, which are guaranteed to not be identical to environment-state tags. Thus,
to be successful, agents must monitor the environment for changes (adjusting their
internal state as appropriate) while ignoring misleading distraction signals.

We repeated the experiment described in Sect. 6.3 with identical experimental
treatments and parameters, but in the context of the distracting environment problem
instead of the changing environment problem.

6.4.1.1 Hypothesis

As in the changing environment problem, optimal performance in the distracting
environment problem requires 16 functions, each tagged such that it is triggered by
a single environment-state signal; once triggered, a function must adjust the agent’s
internal state appropriately. However, the distracting environment problem also
requires agents to ignore distraction signals. If a distraction signal is able to trigger
a function, the agent cannot reliably maintain an internal state that matches the
current environment state. Given that agents must dedicate 16 functions to adjusting
internal state in response to environmental changes, they must be able to passively
ignore distraction signals to avoid triggering an erroneous internal state. As such, the
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0% similarity threshold treatment cannot produce optimally-performing programs.
Further, intermediate similarity thresholds must be high enough to allow agents
to passively discriminate between distraction signals and environmental changes.
We expect treatments with higher intermediate similarity thresholds to be able to
achieve optimality.

6.4.1.2 Statistical Methods

Our statistical methods for analyzing these data are identical to those described in
Sect. 6.3.1.3.

6.4.2 Results and Discussion

Figure 6.4 gives the results for the distracting environment problem early during
our experiment (generation 1000) and at the end of our experiment (generation
10,000). At both generation 1000 and generation 10,000, programs evolved under
different similarity thresholds had significantly different performance (Gen. 1000:
Kruskal-Wallis, Chi-squared = 144.3, p < 2.2e−16; Gen. 10,000: Kruskal-Wallis,
Chi-squared = 193, p < 2.2e-16). Table 6.2 gives the results of a post-hoc pairwise
Wilcoxon rank-sum test for our results at both generation 1000 and generation
10,000.

As in the changing environment problem, runs requiring exact name matching
(the 100% tag similarity threshold treatment) produce programs that perform
significantly worse than those evolved in all other treatments. At generations
1000 and 10,000, programs evolved in the 75% tag similarity threshold treatment
significantly outperform programs evolved in all other treatments. By 10,000

(a) (b)

Fig. 6.4 Distracting environment problem results at: (a) generation 1000 and (b) generation
10,000. The box plots indicate the fitnesses (each an average over 100 trials) of the best performing
programs from each replicate across a range of minimum similarity thresholds
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Table 6.2 Pairwise Wilcoxon rank-sum test results for the distracting environment problem at
generation 1000 and generation 10,000

Generation 1,000

0.0%
12.5%
25.0%
37.5%
50.0%
62.5%
75.0%
87.5%

100.0%

0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100.0%

1.0

1.0

1.0

1.0

1.0

1.1e-09

1.0

1.1e-09
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1.0

1.0

1.3e-09

1.0

1.1e-09

1.0

1.0

1.0

1.1e-09

1.0

1.1e-09

1.0
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4.4e-11

4.4e-11

4.4e-11

4.4e-11

4.4e-11

4.4e-11
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1.4e-09

1.4e-09

1.4e-09

1.4e-09

2.7e-09

7.2e-06
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Each row/column corresponds to a tag similarity threshold treatment. Each entry in the table
indicates the Bonferroni-adjusted p value for a given comparison between two treatments.
Statistically significant relationships (p < 0.05) are bolded. Results for generation 1000 are in
red, below the table’s diagonal (in black). Results for generation 10,000 are in yellow, above the
table’s diagonal

generations, only the 75% and 87.5% tag similarity threshold treatments produced
perfectly optimal programs. Fully detailed statistical results can be found in our
supplemental material, which can be accessed via GitHub [13].

Requiring Some Precision When Calling a Tag-Based Name Can Be Important,
Too
These data are not surprising: we designed the distracting environment problem
as a toy problem to demonstrate the idea that sometimes requiring some amount
of precision when using tag-based referencing can be important. Because we
limited programs to 16 functions and all 16 functions were required to monitor
for environment changes, solving the distracting environment problem required
programs to have the capacity to discriminate between true, meaningful signals
and irrelevant, meaningless signals. However, even in this case where signal
discrimination was crucial, requiring exact tag-matching for signals to successfully
trigger program functions was still too harsh a requirement for well-performing
programs to evolve.

For both the changing environment and distracting environment problems, the
75% tag similarity threshold treatments produced optimally performing programs,
allowing for sufficient signal discrimination in the distracting environment problem
while not too badly impeding evolution’s ability to bootstrap program responses to
true signals. However, these data do not necessarily imply anything general about a
75% tag similarity threshold. The critical tag similarity threshold for the distracting
environment problem depends on the number of distraction signals that must be
ignored versus the number of true signals the programs must respond to, the number
of bits composing a tag (here, we used 16), as well as the number of functions
SignalGP programs are allowed to have.

http://lalejini.com/GPTP-2018-Exploring-Evolvable-Specificity-with-SignalGP/analysis/stats.html
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6.4.2.1 Illuminating Solution Space with MAP-Elites

As we did for the changing environment problem, we again use the MAP-Elites
evolutionary algorithm [17] to illuminate the solution space for the distracting
environment problem. We apply MAP-Elites to the distracting environment problem
exactly as described in Sect. 6.3.2.1, using minimum tag similarity threshold for
tag-based referencing and the number of unique functions used during program
evaluation as our MAP-Elites grid axes. The heat map in Fig. 6.5 shows the density
of optimal programs evolved using MAP-Elites within our chosen trait space.

Figure 6.5 confirms our intuition about the solution space in the distracting
environment problem, showing that many strategies with a wide range of minimum
tag similarity thresholds exist that use around 32 functions where extra ‘dummy’
functions can consume distraction signals. Indeed, there are optimal solutions that
use only 16 functions; however, these solutions seem require high minimum tag
similarity thresholds.

Fig. 6.5 Heat map of SignalGP programs evolved to solve the distracting environment problem
using MAP-Elites. Locations in the heat map correspond to distinct combinations of the following
two program traits: the number of unique functions used by a program during evaluation and the
program’s minimum tag similarity threshold. Darker areas of the heat map indicate a higher density
of solutions found with a particular trait combination
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6.5 What Else Is in an Evolved Name? Broadened
Applications of Tag-Based Naming in SignalGP

Thus far, we have explored the importance of inexactness in evolvable names in the
context of SignalGP. In this section, we discuss several extensions to the SignalGP
framework that are possible because of the evolvable specificity afforded by its tag-
based naming scheme.

6.5.1 SignalGP Function Regulation

Bringing together ideas from GP and gene regulatory networks is not novel [1, 16].
The capacity to regulate genotypic expression is valuable in both biological and
computational systems, allowing environmental feedback to alter phenotypic traits
within an individual’s lifetime.

SignalGP is easily extended to model gene regulatory networks where functions
can be up-regulated (i.e., be made more likely to be referenced by a tag) or down-
regulated (i.e., be made less likely to be referenced by a tag). For example, a function
that would normally not be triggered by an event can be up-regulated to increase
its priority over other function that have closer match. We can add regulatory
instructions to the instruction set that increase or decrease function regulatory
modifiers, using tag-based referencing to determine which function should be
regulated by a particular instruction.

Gene regulation provides yet another mechanism for phenotypic flexibility,
allowing SignalGP programs to alter referential relationships in response to envi-
ronmental feedback. Such a mechanism might be useful for problems that require
within-lifetime learning or general behavioral plasticity.

6.5.2 Multi-Representation SignalGP

In this work and in prior work, we have exclusively used SignalGP in the context of
linear GP: SignalGP functions associate a tag with a linear sequence of instructions.
However, in principle, SignalGP is generalizable across a variety of evolutionary
computation representations.

SignalGP programs are composed of a set of functions where each function
is referred to via its tag. We can imagine these functions to be black-box input-
output machines: when called or triggered by an event, they are run with input and
can produce output by manipulating memory or by generating signals. We have
exclusively used linear GP in SignalGP functions; however, we could have just as
easily used other types of representations capable of receiving input and producing
output (e.g., other GP representations, artificial neural networks, Markov Brains [6],
hard-coded modules, etc.). We could even employ a variety of representations within
a single agent.
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The evolvable specificity afforded by SignalGP’s tag-based naming scheme
allows us to use this sort of black-box metaphor. Functions composed of different
representations can still refer to one another via tags, and events are agnostic to the
underlying representation used to handle them, requiring only that the representation
is capable of processing event-specific data. Allowing for these types of multi-
representation agents may complicate the SignalGP virtual hardware, program
evaluation, and mutation operators, but it would provide evolution with a toolbox
of diverse representations.

Hintze et al. proposed and demonstrated the evolutionary Buffet Method where
Markov Brains [6] could be composed of heterogeneous computational substrates,
allowing evolution to work out the most appropriate representation for a given
problem [7]. Further, Hintze et al.’s Buffet Method demonstrated the success of
hybrid solutions. Multi-representation SignalGP provides an unexplored, alternative
approach to evolving multi-representation agents, bringing the Buffet Method into
an event-driven context.

6.5.3 Major Transitions in SignalGP

In a major evolutionary transition in individuality, formerly distinct individuals
unite to form a new, more complex lifeform, redefining what it means to be an
individual. The evolution of eukaryotes, multi-cellular life, and eusocial insect
colonies are all examples of transitions in individuality. Often the individuals that
make up the higher-level entity are limited to local information, lacking direct
access to the global state of the higher-level unit; lower-level units must rely on
signaling and sensory information to coordinate their roles in the group [19, 24].
In a computational sense, a major transition in individuality is the evolution of a
distributed system. Capturing these types of transitions in GP would give evolution
a mechanism to incrementally form distributed systems from formerly individual
programs.

In the previous section, we described how SignalGP could be extended to
allow multi-representation programs where functions (modules) can be of any
representation capable of receiving input and producing output. We can take this
approach to multi-representation SignalGP one step further: any module within
a SignalGP agent could be another (former) SignalGP agent. This approach is
conceptually similar to Tangled Program Graph representation [12].

We can imagine a mutation operator that, when applied, induces transitions
in individuality by injecting co-evolving SignalGP programs as self-contained,
tagged modules into the program being mutated, allowing single individuals to
be aggregates of lower-level individuals. Further, transitions in individuality can
be applied hierarchically. Biological evolution has examples of such hierarchical
transitions: eusocial insect colonies are composed of many multicellular individuals,
each which are composed of many eukaryotic cells, which in turn are composed of
organelles (many of which are thought to have been formally distinct individuals).
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Fig. 6.6 Example of a
multi-level SignalGP
program. In this example, the
agent is composed of five
modules, including a neural
network, a Markov Brain, a
linear GP representation, and
two multi-module programs
at a lower level of
organization
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An individual SignalGP program may be composed of many SignalGP program
modules, which may themselves be composed of many SignalGP programs, and so
on (Fig. 6.6).

Implementing a mutation operator capable of inducing arbitrary numbers of hier-
archical transitions in individuality requires us to answer the following questions:
How should formerly individual programs interact when forced into an aggregate?
And, how should an evolutionary algorithm handle evaluating both individuals and
aggregates of individuals?

From the evolutionary algorithm’s perspective, a multi-level SignalGP program
is indistinguishable from a single-level. However, just as biological organisms
composed of lower-level units of individuality require more energy to subsist, multi-
level SignalGP programs require many more CPU cycles than single-level SignalGP
programs. This is consistent with biology where major transitions disproportion-
ately occur in energy-rich environments [19].

Extending SignalGP to support hierarchical transitions in individuality would
provide a useful model for studying biological evolutionary transitions, allowing us
to ask general questions about their dynamics. A transition in individuality mutation
operator would also allow us to solve problems that might be best solved by a
distributed system without knowing the optimal configuration of that distributed
system a priori.

6.6 Conclusion

In this chapter, we explored the importance of inexactness when calling a tag-based
name in GP. We show that allowing for inexactness when performing tag-based
references is crucial for rapid adaptive evolution. Conversely, when some signals
need to be ignored (such as in our distracting environment) it can be critical
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to prevent dissimilar tags from finding incorrect matches. As such, intermediate
thresholds for tag similarity may be ideal for optimal evolution in a broad range of
environments. The most appropriate similarity thresholds for a given problem will
depend on the specifics of the problem and the representation used. For example,
we would need to consider the ways tags are used in a particular problem, as well
as how those tags are represented, mutated, and compared.

Interestingly, while exact naming is the most intuitive referencing mechanism
for human programmers, evolution is far more successful when program references
are allowed to be inexact. In fact, mutation-selection balance may prevent exact
references from being stably maintained over evolutionary time. If tags are mutated
such that we expect at least one of a program’s tags (referring or referent) to be
mutated per reproduction event, the relationships between referring and referent
tags are unlikely to be stably maintained.

Both SignalGP and our proposed extensions to SignalGP are inspired by
biological systems and processes. As we continue to develop SignalGP, our goal
is to continue to push the boundary of GP and to use SignalGP as a tool to study the
natural systems that inspired its development, such as the evolution of modularity,
gene regulation, cell signaling, and major evolutionary transitions in individuality.
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Chapter 7
Lexicase Selection Beyond Genetic
Programming

Blossom Metevier, Anil Kumar Saini, and Lee Spector

7.1 Introduction

Lexicase selection is a selection algorithm for evolutionary computation systems,
used to determine which individuals will be permitted to contribute to future
generations in the evolutionary process. Although it has been used for survivor
selection [8], its primary use has been as a parent selection algorithm, selecting
individuals to be provided as inputs to genetic operators. The genetic operators,
such as mutation and crossover, use the selected parents as source material out of
which to construct children.

Lexicase selection selects individuals by filtering a pool of individuals which,
before filtering, typically contains the entire population. The filtering is accom-
plished in steps, each of which filters according to performance on single test
case (input/output pair). The test cases are considered one at a time in random
order. Lexicase selection has been tested most extensively in genetic programming
systems, where it has been shown to outperform other selection methods in several
contexts [2–5, 7, 9–11]. However, the effectiveness of lexicase selection in other
settings has not been fully explored.

In this paper, we investigate the utility of lexicase selection in traditional genetic
algorithms with linear, fixed-length genomes. We chose this framework in part

B. Metevier · A. K. Saini
College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA
e-mail: bmetevier@umass.edu; aks@cs.umass.edu

L. Spector (�)
School of Cognitive Science, Hampshire College, Amherst, MA, USA

College of Information and Computer Sciences, University of Massachusetts,, Amherst, MA,
USA
e-mail: lspector@hampshire.edu

© Springer Nature Switzerland AG 2019
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVI,
Genetic and Evolutionary Computation,
https://doi.org/10.1007/978-3-030-04735-1_7

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04735-1_7&domain=pdf
mailto:bmetevier@umass.edu
mailto:aks@cs.umass.edu
mailto:lspector@hampshire.edu
https://doi.org/10.1007/978-3-030-04735-1_7


124 B. Metevier et al.

because the large literature of traditional genetic algorithms provides context for
the interpretation of our results that is both broad and deep.

The problems to which we apply traditional genetic algorithms, using several
parent selection methods, are randomly generated Boolean constraint satisfaction
problems [1]. Although the problems are derived from Boolean satisfiability
problems, the problem-solvers (in this case, the genetic algorithms) are not given
access to the constraints themselves, or to the variables that they contain. Rather, the
problem-solvers are given access only to a procedure that determines whether each
constraint is satisfied by an assignment of truth values to all variables. Crucially, the
problem-solvers are given no information about which constraints may depend on
which others. This design is intended to allow the problems serve as abstractions
of problems in many real-world domains, in which we can tell whether or not a
candidate solution satisfies a constraint, but we have no further information about
the nature of the constraint, or of the ways in which different constraints might be
interdependent.

In this chapter, we present the results of experiments using the traditional
genetic algorithm, with lexicase selection, to solve Boolean constraint satisfaction
problems. We compare the performance of the algorithm using lexicase selection
to the performance of the same algorithm run with more traditional selection
algorithms, specifically fitness-proportionate selection and tournament selection
(with several tournament sizes).

In the following sections we first describe the lexicase selection algorithm that is
the focus of this investigation. We then describe the Boolean constraint satisfaction
problems that we use for our experiments, and our experimental methods. We then
present our results, and discuss their implications for future work.

7.2 Lexicase Selection

Lexicase selection is a method by which individuals can be selected from a
population for use as the source material out of which genetic operators, such
as mutation and crossover, construct offspring for the following generation. Lex-
icase selection is distinctive in that it allows selection to depend on multiple
assessment criteria and all of their combinations, without requiring that these
criteria be aggregated into overall “fitness” values. This is different from the
selection methods used traditionally in genetic programming, which require the
assignment of a single scalar value to each candidate solution in order to guide
search.

In most of the prior work on lexicase selection, it has been used in genetic
programming systems to select parent programs that are then subjected to variation
to produce the next generation of programs. In this context, the assessment criteria
are generally the errors of the program on different inputs, which are often referred
to, in the genetic programming literature, as “fitness cases” or “test cases.”
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Algorithm 1: Lexicase selection
Result: Individual to be used as a parent
candidates := the entire population
cases := list of all test cases in a random order
while True do

candidates := candidates performing best on the first case
if only one candidate exists in candidates then

return that candidate
end
if cases is empty then

return a randomly selected candidate from candidates
end
delete the first case from cases

end

In lexicase selection, each time a parent is needed, a pool of individuals, which
initially contains the entire population,1 is winnowed in successive stages until a
single individual remains and is selected. In the first stage, only the individuals
that perform best over a randomly chosen test case are retained. If more than
one individual remains, a second randomly chosen test case is used for the next
stage of winnowing. This process repeats until only a single individual remains, or
until the test cases have been exhausted, in which case a random individual from
the remaining pool is selected. Pseudocode for the most commonly used form of
lexicase selection is provided in Algorithm 1.

Sometimes, lexicase selection chooses individuals with performance that is
good over only a small number of test cases. Many of these “specialists” would,
under many selection methods that require aggregation of performance on all test
cases into single scalar values, rarely be selected for reproduction and variation.
This would often be the case even if one of the cases solved by the specialist
was difficult for a majority of the population to solve. The reason for this is
the assumption of uniformly distributed selection pressure, with all parts of a
problem being equally hard.“Specialists” are ignored even though they are better
at certain subsets of the problem and may contain a partial solution to the task at
hand. By allowing these “specialists” to contribute to the next generation, lexicase
selection allows for offspring that may contain solutions to a particular subset of
the problem. Comparisons of lexicase selection to other methods developed with
similar motivations, such as “implicit fitness sharing” and “deterministic crowding,”
are presented elsewhere [5, 7].

Several variants of the lexicase selection method have also been developed and
studied. For example, epsilon lexicase selection, a variant in which candidates that
are not strictly “best” on the current case but which are “close enough” (within

1It is also possible to limit the initial pools in various ways. When the initial pool contains the
entire population, which is the best-studied setting, we refer to the algorithm more specifically as
“global pool” lexicase selection.
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epsilon, for some definition of epsilon) has been developed and shown to be
particularly effective on problems with floating-point errors. Other variants have
been developed and explored in previous instances of the Genetic Programming
Theory and Practice workshop [12]. For the present study, however, we used the
simplest and most standard version of the method, as described above.

7.3 Problems

7.3.1 Boolean Constraint Satisfaction

The problems used for the experiments in this study are Boolean constraint
satisfaction problems [1] that are randomly generated based on three parameters:
a total number of variables v, a number of constraints c, and a number of clauses
per constraint n.

Each clause is a disjunction of three literals, each of which is either a variable
or a negated variable. Each constraint is a conjunction of clauses, and a problem
is a conjunction of constraints. An assignment of truth values to the variables is a
solution if all of the constraints evaluate to true in the context of the assignment.

These problems are similar in some respects to Boolean satisfiability problems
expressed in 3-CNF (conjunctive normal form, with three literals per clause), with
the clauses grouped to form constraints. However, unlike the case with standard
satisfiability problems, such as those used in SAT-solver competitions [6], we do
not allow our problem solvers to see the formulae themselves, or to have any
information about which variables appear in which constraints. The problem-solvers
can evaluate an assignment of truth values to the variables with respect to each
constraint, determining whether or not each constraint is satisfied by the assign-
ment, but this is the only information that the problem solver receives about the
problem.

7.3.2 Random Problem Generation

We generate a problem by starting with a random assignment of truth values to all
variables. This assignment will be a solution to the generated problem, but we will
discard it after generating the problem, and it will be the task of the problem solver
to re-discover the assignment, or to discover another assignment that also satisfies
all of the constraints in the problem.

Once we have a random assignment of truth values to all variables, we generate
the problem itself with a simple, iterated generate-and-test algorithm: We create a
random set of constraints of the specified size (which may include duplicate clauses,
possibly in different constraints), and we check to see if it evaluates to true with
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Table 7.1 Problem parameters

Parameter Value

Number of variables (v) 20, 30, 40

Number of constraints (c) 8, 12, 16, 32

Number of clauses per constraint (n) 20, 25, 30, 35, 40

Number of problems per combination of v, c, and n 15

Number of runs per method per problem 50

Total number of runs per method per combination of v, c, and n 750

Table 7.2 Genetic algorithm
parameters

Parameter Value

Population size 200

Number of generations 500

Mutation operator Bit-flip

Probability of mutation 0.1

Crossover operator One-point

Probability of crossover 0.9

the given assignment. If it does, then we use the constraints as a problem for our
experiments; if it doesn’t, then we randomly generate a new set of constraints,
repeating the process until we find one that is satisfied by the assignment.

For each (v, c, n) triple, we generated 15 different problems. Each problem-
solving method was run 50 times on each of these problems, resulting in 750
runs per problem-solving method for each combination of v, c, and n. Results
were evaluated by averaging over all 750 runs for each parameter combination.
The specific parameters used for generating problems, and for the numbers of runs
conducted on each problem with each method, are shown in Table 7.1.

7.4 Experimental Methods

7.4.1 Genetic Algorithm

Our problem-solving methods were all instances of the same genetic algorithm, with
identical parameters (shown in Table 7.2) except for the parent selection method.

Individuals in the population were truth assignments, with genomes consisting of
genes for each variable, indicating whether that variable had a value of true or false
in the specified assignment.

We used a generational genetic algorithm that began with a population of random
individuals, and then entered a cycle in which, for each generation, all individuals
were tested for errors, parents were selected for the production of children on the
basis of those errors, and children were produced by varying the selected parents.
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7.4.2 Variation

At the variation step, individuals selected to serve as parents were first (possibly)
subjected to crossover and then (possibly) to mutation.

The standard one-point method was used as the crossover operator, allowing
parent recombination at a randomly chosen crossover point. The crossover rate was
0.9, meaning that 90% of children were produced by crossover.

For mutation, a bit-flip mutation operator was used, allowing for a randomly
chosen bit in a chromosome to be flipped. The mutation rate was 0.1, meaning that
10% of children were subject to mutation.

7.4.3 Parent Selection

We compared lexicase parent selection, tournament parent selection, and fitness
proportionate parent selection. All selection methods performed selection with
replacement; that is, the same individual might be selected to be a parent several
times in the same generation.

For tournament selection and fitness proportionate selection, an individual’s
total error value was determined from the number of constraints it satisfied. If an
individual satisfied all constraints, then its error was 0. Otherwise, its error value
was the number of constraints that it did not satisfy.

For tournament selection with an integer-valued tournament size t , we first
form a tournament set of t individuals, each of which is chosen with uniform
probability (with possible duplication) from the entire population. We then return,
as the selected parent, the individual in the tournament set that has the lowest total
error.

Higher tournament sizes make tournament selection more selective, in the sense
that individuals with high total error are less likely to be selected, while lower
tournament sizes make it less selective. Because our preliminary experiments
showed that less selective settings appeared to perform better, we wanted to consider
methods even less selective than tournament selection with tournament size 2,
which is normally considered to be the minimum, since with tournament size 1
tournament selection is equivalent to selecting individuals entirely randomly. For
this purpose we adopted the convention that for a non-integer-valued tournament
size t between 1 and 2 we would use tournament size 2 with probability t − 1, and
select a parent entirely randomly otherwise. For example, with t = 1.25, 25% of
the time we will choose 2 individuals randomly and return, as the selected parent,
the one with the lower total error; the remaining 75% of the time we will return,
as the selected parent, a parent chosen with uniform probability from the entire
population.

We performed fitness-proportionate selection in the standard way: The proba-
bility of selection for an individual i that satisfies si constraints is si divided by



7 Lexicase Selection Beyond Genetic Programming 129

sum of sj for all individuals j across the population. In the degenerate case of no
individuals satisfying any constraints, which would produce a denominator of zero,
an individual is selected at random.

7.5 Results

7.5.1 Success Rates by Parent Selection Method

Our primary results are shown in Table 7.3, comparing success rates of the genetic
algorithm when run with fitness proportionate parent selection, tournament parent
selection (with tournament size 2), and lexicase parent selection.

Table 7.3 contains a row for every combination of number of variables (v) and
number of constraints (c). All runs with a specified value of v and c are aggregated
in the corresponding line, regardless of the number of clauses per constraint (n).
Because we conducted 750 runs with each combination of v, c, and n for each
parent selection method, and because we conducted experiments with 5 different
values of n (see Table 7.1), each row in Table 7.3 reports data from 5 ∗ 750 = 3750
runs with each of the three parent selection methods listed in the table.

The numbers reported in Table 7.3 are success rates, defined as the proportion of
the total runs that produced a successful solution (with error vector consisting only
of zeros). Lexicase selection produces the highest success rate in every case, and the
improvement provided by lexicase selection is statistically significant in most cases.

Table 7.3 Success rate for the genetic algorithm with fitness proportionate, tournament (size 2),
and lexicase parent selection for each studied combination of v (number of variables) and c (number
of constraints)

Number of Number of Fitness Tournament
variables (v) constraints (c) proportionate (size 2) Lexicase

20 8 0.835 0.867 0.992

20 12 0.940 0.954 1.000

20 16 0.980 0.987 1.000

20 32 0.999 1.000 1.000

30 8 0.415 0.475 0.889

30 12 0.614 0.697 0.995

30 16 0.815 0.869 1.000

30 32 0.983 0.995 1.000

40 8 0.205 0.257 0.689

40 12 0.224 0.310 0.927

40 16 0.433 0.576 0.993

40 32 0.861 0.944 1.000

Underlines indicate statistically significant improvements, determined using a pairwise chi-square
test with Holm correction and p < 0.05
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The only cases in which the improvement is not significant are those in which all
the selection algorithms approach a perfect success rate.

7.5.2 Success Rates by Tournament Size

Because the success rate of tournament selection is better or equal to fitness
proportionate selection, many of our analyses in the remainder of this paper
will compare lexicase selection only against tournament selection. Furthermore,
because tournament selection is itself parameterized by the tournament size, we
conducted additional experiments to compare performance across settings with
different tournament sizes.

Table 7.4 shows the results of these runs. We again conducted 3750 runs
for each combination of number of variables (v) and number of constraints (c),
across the range of values for number of clauses per constraint (n) given in
Table 7.1. We conducted runs for tournament sizes ranging from 1.25 to 8, with
non-integer-valued tournament sizes handled as described in Sect. 7.4. The runs
with tournament size 2 were independent of those conducted for the experiments
documented in Table 7.3, so the numbers differ between the two tables, but not
by much.

From Table 7.4 it appears that the most effective tournament size is around 1.5 or
2, and that larger tournament sizes perform poorly. None of the tested tournament
sizes performs better than lexicase selection.

Table 7.4 Success rate for different tournament sizes

Number of Number of Tournament Tournament Tournament Tournament Tournament
variables (v) constraints (c) size 1.25 size 1.5 size 2 size 4 size 8

20 8 0.850 0.860 0.856 0.818 0.777

20 12 0.948 0.955 0.959 0.952 0.934

20 16 0.982 0.987 0.988 0.989 0.979

20 32 1.000 1.000 0.999 1.000 0.999

30 8 0.443 0.485 0.471 0.428 0.367

30 12 0.644 0.702 0.773 0.712 0.618

30 16 0.850 0.888 0.879 0.846 0.766

30 32 0.993 0.996 0.996 0.990 0.974

40 8 0.226 0.271 0.137 0.120 0.105

40 12 0.254 0.322 0.293 0.245 0.213

40 16 0.510 0.614 0.503 0.423 0.335

40 32 0.938 0.958 0.901 0.794 0.680

Boldfaced numbers indicate the highest success rate in a particular row
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Fig. 7.1 Average error per generation for runs with lexicase selection and tournament selection
with tournament size 2, with 50% confidence intervals

7.5.3 Errors over Evolutionary Time

Other features of the data produced by the runs described above, in Sect. 7.5.1, may
be revealing, aside from the success rates described above.

In Fig. 7.1 we show the normalized average error across all runs. Here each error
has been normalized by the total number of constraints (maximum error) used for
that particular run. For a particular generation, the error has been averaged across
the runs which were active up to that generation.

Here we see that lexicase selection not only produces lower errors, but also that
lower errors are reached earlier in evolutionary time. We also see that both methods
make most of their gains quite early in evolutionary time, with few improvements
occurring after 100 generations.

7.5.4 Mean Least Error

Figure 7.2 shows the mean lest error (MLE) for each combination of number of
variables (v) and number of constraints (c). MLE is defined as the average of the
error values of the lowest-error individuals in each of the runs:

MLE = (1/N)
∑

i

error(best_indi),
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Fig. 7.2 Mean Least Error (MLE) for each combination of parameters. The number C denotes the
number of constraints used for the corresponding plot. (a) C = 8, (b) C = 12, (c) C = 16, (d)
C = 32

where best_indi is the individual having lowest total error in a given run i.
These plots show that tournament selection not only fails to solve problems in

many cases, but also that the best errors achieved in the failing runs are often quite
high. This effect is particularly pronounced for runs with large numbers of clauses
per constraint.

7.5.5 Success Generations

Figure 7.3 shows the success generation—that is, the generation in which the genetic
algorithm was able to find a zero-error solution—for each combination of number
of variables (v) and number of constraints (c), averaged over the runs in which the
genetic algorithm was able to find a solution.

Here we see that even when the genetic algorithm with tournament selection was
able to find a solution, it generally required more generations to do so than did the
genetic algorithm with lexicase selection.
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Fig. 7.3 Success Generation for each combination of parameters. The number C denotes the
number of constraints used for the corresponding plot. (a) C = 8, (b) C = 12, (c) C = 16,
(d) C = 32

7.5.6 Diversity over Evolutionary Time

Figure 7.4 shows the average number of unique chromosomes (individuals) in the
population over evolutionary time, aggregated over all parameter combinations, and
grouped by selection method and whether each method found a solution to the
problem or not. We see from these plots that, with the exception of brief periods at
the starts of runs, lexicase selection maintains relatively high diversity throughout
the process of evolution, both in successful and in unsuccessful runs.

7.6 Discussion

The results presented above show that, for the Boolean constraint satisfaction prob-
lems studied here, the traditional genetic algorithm performs better with lexicase
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Fig. 7.4 Average number of unique chromosomes (individuals) in the population, over evolution-
ary time, under different conditions

parent selection than with tournament parent selection or fitness proportionate
parent selection. In these experiments, lexicase selection found solutions more
frequently and in fewer generations than did the other parent selection methods.

In addition, more diverse populations were maintained under lexicase selection,
although the results here do not say anything definitive about the causal relations that
may hold between diversity, success rate, and the number of generations required to
find solutions.

With respect to the central question of this study, about whether lexicase selection
has utility outside of genetic programming, these results suggest a positive answer:
Lexicase selection does appear likely to have broader applicability than has been
demonstrated previously.

The problems studied in this investigation were artificial, but they were designed
to have features that resemble those many real-world problems. More specifically,
the problems studied here were designed to be resemble real-world problems in
which the goal is to satisfy many constraints simultaneously, but in which both the
constraints themselves, and their interdependencies, are opaque.

For the problems studied here, the problem-solver is given access to a procedure
that indicates whether or not each constraint is satisfied by a candidate solution,
but it has no other information about the nature of the constraints or about shared
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components or structure among multiple constraints. To the extent that a real-
world problem fits this characterization, the results here suggest that lexicase parent
selection could help to solve it.

Nonetheless, lexicase parent selection is probably not appropriate for all prob-
lems. For example, it seems unlikely that it would work well on problems that
involve only a single constraint. In these cases, only the single individual in the
population with the best performance on that constraint (or other individuals with
the same performance) could be selected to serve as a parent. It seems reasonable
to assume that this would undermine population diversity, making it more difficult
to find solutions. Problems with more than a single constraint, but not many more,
may be a poor match to lexicase parent selection for the same reason.

Previous work has also shown that lexicase parent selection sometimes performs
poorly on problems with floating-point error values. The epsilon lexicase selection
method appears to address this problem quite well [9], and it seems reasonable to
assume that it would also work well on floating-point versions of the constraint
satisfaction problems presented here.

One exciting avenue for future work would be an investigation of whether
lexicase selection may have even broader applicability, perhaps extending beyond
evolutionary computation altogether. Other machine learning methods might also be
able to take advantage of the core idea of lexicase selection, that whenever we must
make a decision based on the quality of candidate solutions, instead of aggregating
multiple measures of quality into single, scalar values, we may instead consider
them one at a time, in random order.

The ways in which this core idea of lexicase selection can be fleshed out will
differ from one machine learning method to another, and we cannot yet provide
definitive guidance on how it should be done for any specific methods outside of
evolutionary computation. The results presented here, however, lead us to speculate
that some such efforts will be rewarded with improvements in the problem-solving
capabilities of the machine learning methods to which they are applied.
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Chapter 8
Evolving Developmental Programs That
Build Neural Networks for Solving
Multiple Problems

Julian F. Miller, Dennis G. Wilson, and Sylvain Cussat-Blanc

8.1 Introduction

Artificial neural networks (ANNs) were first proposed 75 years ago [26] Yet, ANNs
still have poorer general learning capabilities than relatively simple organisms.
Organisms can learn to perform well on many tasks and can generalise from few
examples. Most ANNs models encode learned knowledge solely in the form of
connection strengths (i.e. weights). Biological brains do not learn merely by the
adjustment of weights, they undergo topological changes during learning. Indeed,
restricting learning to weight adjustment leads to “catastrophic forgetting” (CF)
in which ANNs trained to perform well on one problem, forget how to solve the
original problem when they are re-trained on a new problem [9, 25, 34]. Although
the original inspiration for ANNs came from knowledge about the brain, very few
ANN models use evolution and development, both of which are fundamental to the
construction of the brain [29]. In principle, developmental neural approaches could
alleviate catastrophic forgetting in at least two ways. Firstly, new networks could
form in response to learning. Secondly, by growing numerous connections between
pairs of neurons. In this way the influence of individual weighted connection could
be lessened.

Developmental neural networks have not widely been explored in the literature
and there remains a need for concerted effort to explore a greater variety of effective
models. In this paper, we propose a new conceptually simple neural model. We
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suggest that at least two neural programs are required to construct neural networks.
One to represent the neuron soma and the other the dendrite. The role of the
soma program is to allow neurons to move, change, die or replicate. For the
dendrite, the program needs to be able to grow and change dendrites, cause them
to die and also to replicate. Since developmental programs build networks that
change over time it is necessary to define new problem classes that are suitable
to evaluate such approaches. We argue that trying to solve multiple computa-
tional problems (potentially even of different types) is an appropriate class of
problems.

In this chapter, we show that the pair of evolved programs can build a network
from which multiple conventional ANNs can be extracted each of which can solve
a different classification problem. As far as we can tell, this is the first work that
attempts to evolve developmental neural networks that can solve multiple problems,
indeed it appears to be the first attempt to solve standard classification problems
using a developmental approach. We investigate many parameters and algorithmic
variants and assess experimentally which aspects are most associated with good per-
formance. Although we have concentrated in this paper on classification problems,
our approach is quite general and it could be applied to a much wider variety of
problems.

8.2 Related Work

A number of authors have investigated ways of incorporating development to
help construct ANNs [24] and [42]. Researchers have investigated a variety of
genotype representations at different levels of abstraction. Cangelosi et al. defined
genotypes which were a mixture of variables, parameters, and rules (e.g. cell type,
axon length and cell division instructions) [4]. The task was to control a simple
artificial organism. Rust et al constructed a genotype consisting of developmental
parameters (encoded in binary) that controlled the times at which dendrites could
branch and how the growing tips would interact with patterns of attractants placed
in an environment [38]. Balaam investigated controlling simulated agents using
a two-dimensional area with chemical gradients in which neurons were either
sensors, affectors, or processing neurons according to location [2]. The neurons
were defined as standard CTRNNS. The genotype was effectively divided into
seven chromosomes each of which read the concentrations of the two chemicals
and the cell potential. Each chromosome provided respectively the neuron bias,
time constant, energy, growth increment, growth direction, distance to grow and
new connection weight.

Gruau used a more abstract approach, called cellular encoding in which ANNs
were developed using graph grammars [12, 13]. He evaluated this approach on
hexapod robot locomotion and pole-balancing. Kodjabachian and Meyer used a
“geometry-orientated” variant of cellular encoding to develop recurrent neural
networks to control the behaviour of simulated insects [23].
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Jacobi presented a low-level approach in which cells used artificial genetic
regulatory networks (GRNs). The GRN produced and consumed simulated proteins
that defined various cell actions (protein diffusion movement, differentiation,
division, threshold). After a cellular network had developed it was interpreted as a
neural network [18]. Eggenberger also used an evolved GRN [6]. A neural network
phenotype was obtained by comparing simulated chemicals in pairs of neurons to
determine if the neurons are connected and whether the connection is excitatory or
inhibitory. Weights of connections were initially randomly assigned and Hebbian
learning used to adjust them subsequently. Astor and Adami also encoded a form
of GRN together with an artificial chemistry (AC), in which cells were predefined
to exist in a hexagonal grid. Genes encoded conditions involving concentrations of
simulated chemicals which determine the level of activation of cellular actions (e.g.
grow axon or dendrite, increase or decrease weight, produce chemical) [1]. They
evaluated the approach on a simple artificial organism.

Federici used a simple recursive neural network as a developmental cellular
program [7]. In his model, cells could change type, replicate, release chemicals or
die. The type and metabolic concentrations of simulated chemicals in a cell were
used to specify the internal dynamics and synaptic properties of its corresponding
neuron. The position of the cell within the organism is used to produce the
topological properties of neuron: its connections to inputs, outputs and other
neurons. From the cellular phenotype, Federici interpreted a network of spiking
neurons to control a Khepera robot.

Some researchers have studied the potential of Lindenmeyer systems for devel-
oping artificial neural networks. Kitano used a kind of L-system in which he
evolved matrix re-writing rules to develop an adjacency matrix defining a neural
network [22]. Boers and Kuiper adapted L-systems to develop artificial feed-forward
neural networks [3]. They found that this method produced more modular neural
networks that performed better than networks with a predefined structure. They
showed that their method could produce ANNs for solving problems such as the
XOR function. Hornby and Pollack evolved L-systems to construct complex robot
morphologies and neural controllers [15, 16].

Downing adopted a higher-level approach which avoided axonal and dendritic
growth, while maintaining key aspects of cell signaling, competition and coop-
eration of neural topologies [5]. He applied this technique to the control of a
multi-limbed starfish-like animat.

Khan and Miller created a complex developmental neural network model that
evolved seven programs each representing various aspects of biological neurons
[19]. These were divided into two categories. Three of the CGP encoded chro-
mosomes were responsible for ‘electrical’ processing of the ‘potentials’. These
were the dendrite, soma and axo-synapse chromosomes. One chromosome was
devoted to updating the weights of dendrites and axo-synapses. The remaining three
chromosomes were developmental responsible for updating the neural variables
for the soma (health and weight), dendrites (health, weight and length) and axo-
synapse (health, length). The evolved developmental programs were responsible for
the death and replication of neural components. The model was used in various
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applications: intelligent agent behaviour (wumpus world), checkers playing, and
maze navigation [20, 21].

Stanley introduced the idea of using evolutionary algorithms to build neural
networks constructively (called NEAT). The network is initialised as a simple
structure, with no hidden neurons consisting of a feed-forward network of input and
output neurons. An evolutionary algorithm controls the gradual complexification
of the network by adding a neuron along an existing connection, or by adding
a new connection between previously unconnected neurons [39]. However, using
random processes to produce more complex networks is potentially very slow.
It also lacks biological plausibility since natural evolution does not operate on
aspects of the brain directly. Later Stanley introduced an interesting extension to the
NEAT approach called HyperNEAT [41] which uses an evolved generative encoding
called a Compositional Pattern Producing Network (CPPN) [40]. The CPPN takes
coordinates of pairs of neurons and outputs a number which is interpreted as
the weight of that connection. The advantage this brings is that ANNs can be
evolved with complex patterns where collections of neurons have similar behaviour
depending on their spatial location. It also means that one evolved function (the
CPPN) can determine the strengths of connections of many neurons. It is a form
of non-temporal development, where geometrical relationships are translated into
weights.

Developmental Symbolic Encoding (DSE) [43] combines concepts from two
earlier developmental encodings, Gruau’s cellular encoding and L-systems. Like
HyperNEAT it can specify connectivity of neurons via evolved geometric patterns. It
was shown to outperform HyperNEAT on a shape recognition problem defined over
small pixel arrays. It could also produce partly general solutions to a series of even-
parity problems of various sizes. Huizinga et al. added an additional output to the
CPP program in HyperNEAT that controlled whether or not a connection between
a pair of neurons was expressed or not [17]. They showed that the new approach
produced more modular solutions and superior performance to HyperNEAT on three
specially devised modular problems.

Evolvable-substrate HyperNEAT (ES-HyperNEAT) implicitly defined the posi-
tions of the neurons [35], however it proved to be computationally expensive. Iter-
ated ES-HyperNEAT proposed a more efficient way to discover suitable positioning
of neurons [37]. This idea was taken further leading to Adaptive HyperNEAT which
demonstrated that not only could patterns of weights be evolved but also patterns
of local neural learning rules [36]. Like [17] in Adaptive HyperNEAT Risi et al.
increased the number of outputs from the CPPN program to encode learning rate
and other neural parameters.

8.3 The Neuron Model

Our aim is to construct a minimal developmental model. Minimal means that if
we take a snapshot of the neural network at a particular time we would see a
conventional graphs of neurons, weighted connections and a standard activation
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functions. However, to make a developmental neural network we require a mech-
anism whereby the ANN can change over time (possibly even during training). In
addition, we take a cellular view of development, in which an entire network is
developed from a few cells (possibly a single cell). The network itself grows from
the interaction of neurons acting in parallel (but sequentially simulated).

To construct such a developmental model of an artificial neural network we need
neural programs that not only apply a weighted sum of inputs to an activation
function to determine the output from the neuron, but a program that can adjust
weights, create or delete connections, and create or delete neurons. Following [21]
we have used the concept of health to make this possible.

The model is illustrated in Fig. 8.1. The neural programs are represented using
Cartesian Genetic Programming (CGP) (see Sect. 8.4). The programs are actually
sets of mathematical equations that read variables associated with neurons and
dendrites to output updates of those variables. This approach was inspired by some
aspects of a developmental method for evolving graphs and circuits proposed by
Miller and Thomson [32]. It was also influenced by some of the ideas described
in [21]. In the proposed model, weights are determined from a program that is a
function of neuron position, together with the health, weight and length of dendrites.
It is neuro-centric and temporal in nature. Thus the neural networks can change over
time.

The inputs to the soma program are as follows: the health, bias and position of
the neuron and the average health, length and weight of all dendrites connected to
the neuron and problem type.

The problem type is a constant (in range [−1, 1]) which indicates whether a
neuron is not an output or in the case of an output neuron what computational
problem the output neuron belongs to. Let Pt denote the computational problem.
Define Pt = 0 to denote a non-output neuron, and Pt =1,2 or Np to respectively
denote output neurons belonging to different computational problems. Where, Np

denotes the number of computational problems. We define the problem type input
to be given by −1 + 2Pt/Np. For example, if the neuron is not an output neuron the
problem type input is −1.0. If it is an output neuron belonging to the last problem
its value is 1.0. For all other computational problems its value is a value greater than
−1.0 and less than 1.0. The thinking behind the problem type input is that since
output neurons are dedicated to a particular computational problem, they should
be given information that relates to this, so that the identical neural programs can
behave differently according to the computational problem they are associated with.

Bias refers to an input to the neuron activation function which is added to the
weighted sum of inputs (i.e. it is unweighted). The soma program updates its own
health, bias and position based on these inputs. These are indicated by primed
symbols in Fig. 8.1). The user can decide between three different ways of using the
program outputs to update the neural variables. Which is most effective is a research
question. The update method is decided by a user defined parameter called Incropt

(see Sect. 8.3.4) which defines how neuron variables are adjusted by the evolved
programs (using user-defined incremental constants or otherwise).

Every dendrite belonging to each neuron is controlled by an evolved dendrite
program. The inputs to this program are the health, weight and position of the
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Fig. 8.1 The model of a developmental neuron. Each neuron has a position, health and bias and
a variable number of dendrites. Each dendrite has a position, health and weight. The behaviour
of a neuron soma is governed by a single evolved program. In addition each dendrite is governed
by another single evolved program. The soma program decides the values of new soma variables
position, health and bias based on previous values, the average over all dendrites belonging to the
neuron of dendrite health, position and weight and an external input called problem type. The latter
is a floating point value that indicates the neuron type. The dendrite program updates dendrite
health, position and weight based on previous values, the parent neuron’s health, position and bias
and problem type. When the evolved programs are executed, neurons can change, die replicate and
grow more dendrites and their dendrites can also change or die

dendrite and also the health, bias and position of the parent neuron. In addition
as mentioned earlier, dendrite programs can also receive the problem type of the
parent neuron The the evolved dendrite program decides how the health, weight and
position of the dendrite are to be updated.

In the model, all the neuron and dendrite parameters (weights, bias, health,
position and problem type) are defined by numbers in the range [−1,−1].

A fictitious developmental example is shown in Fig. 8.2. The initial state of the
brain is represented in (a). Initially there is one non-output neuron with a single
dendrite. The curved nature of the dendrites is purely for visualisation. In reality the
dendrites are horizontal lines emanating from the centre of neurons and of various
lengths. When extracting ANNs the dendrites are assumed to connect to their nearest
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Fig. 8.2 Example showing a developing brain. The squares on the left represent the inputs. The
solid circles indicate non-output neurons. Non-output neurons have solid dendrites. The dotted
circles represent output neurons. Output neuron’s dendrites are also dotted. In this example we
assume that only output neurons are allowed to move. The neurons, inputs and dendrites are
all bound to the interval [−1,1]. Dendrites connect to nearest neurons or inputs on the left of
their position (snapping). (a) shows the initial state of the brain. (b) shows the brain after one
developmental step and (c) shows it after two developmental steps

neuron on the left (referred to as ‘snapping’). Output neurons are only allowed to
connect to non-output neurons or the first input (by default, if their dendrites lie
on the left of the leftmost non-output neuron). Thus the ANN that can be extracted
from the initial brain, has three neurons. The non-output neuron is connected to the
second input and both output neurons are connected via their single dendrite to the
non-output neuron.

Figure 8.2b shows the brain after a single developmental step. In this step, the
soma program and dendrite programs are executed in each neuron. The non-output
neuron (labeled 0) has replicated to produce non-output neuron (labeled 1) it has
also grown a new dendrite. Its dendrites connect to both inputs. The newly created
non-output neuron is identical to its parent except that its position is a user-defined
amount, MNinc, to the right of the parent and its health is set to 1 (an assumption
of the model). Both its dendrites connect to the second input. It is assumed that
the soma programs running in the two output neurons A and B have resulted in both
output neurons having moved to the right. Their dendrites have also grown in length.
Neuron A’s first dendrite is now connected to neuron one. In addition, neuron A has
high health so that it has grown a new dendrite. Every time a new dendrite grows it
is given a weight and health equal to 1.0. Also its new dendrite is given a position
equal to half the parent neuron’s position. These are assumptions of the model. This
its new dendrite is connected to neuron zero.Neuron B’s only dendrite is connected
to neuron one.

Figure 8.2c shows the brain after a two developmental steps. The dendrites of
neuron zero have changed little and it is still connected in the same way as the
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previous step. Neuron one’s dendrites have both changed. The first one has become
longer but remains connected to the first input. The second dendrite has become
shorter but it still snaps to the second input. Neuron one has also replicated as a result
of its health being above the replication threshold. It gets dendrites identical to its
parent, its position is again incremented to the right of its parent and its health is set
to 1.0. Its first dendrite connects to input one and its second dendrite to neuron zero.
Output neuron A has gained a dendrite, due to its health being above the dendrite
birth threshold. The new dendrite stretches to a position equal to half of its parent
neuron. So it connects to neuron zero. The other two dendrites remain the same and
they connects to neuron one and zero respectively. Finally, output neuron B’s only
dendrite has extended a little but still snaps to neuron one. Note, that at this stage
neuron two is not connected to this is redundant. It will be stripped out of the ANN
that is extracted from the brain.

8.3.1 Model Parameters

The model necessarily has a large number of user-defined parameters these are
shown in Table 8.1.

The total number of neurons allowed in the network is bounded between a user-
defined lower (upper)boundNNmin (NNmax). The number of dendrites each neuron

Table 8.1 Neural model constants and their meanings

Symbol Meaning

NNmin(NNmax) Min. (Max.) allowed number of neurons

Ninit Initial number of non-output neurons

DNmin(DNmax) Min. (Max.) number of dendrites per neuron

NDinit Initial number of dendrites per neuron

NHdeath(NHbirth) Neuron health thresholds for death (birth)

DHdeath(DHbirth) Dendrite health thresholds for death (birth)

δsh Soma health increment (pre, while)

δsp Soma position increment (pre, while)

δsb Soma bias increment (pre, while)

δdh Dendrite health increment (pre, while)

δdp Dendrite position increment (pre, while)

δdw Dendrite weight increment (pre, while)

NDSpre Number of developmental steps before epoch

NDSwhi Number of ‘while’ developmental steps during epoch

Nep Number of learning epochs

MNinc Move neuron increment if collision

Iu Max. program input position

Ol Min. program output position

α Sigmoid/Hyperbolic tangent exponent constant
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can have is bounded by user-defined lower (upper) bounds denoted by DNmin

(DNmax). These parameters ensure that the number of neurons and connections
per neuron remain in well-defined bounds, so that a network can not eliminate itself
or grow too large. The initial number of neurons is defined by Ninit and the initial
number of dendrites per neuron is given by NDinit .

If the health of a neuron falls below (exceeds) a user-defined threshold, NHdeath

(NHbirth) the neuron will be deleted (replicated). Likewise, dendrites are subject
to user defined health thresholds, DHdeath (DHbirth) which determine whether the
dendrite will be deleted or a new one will be created. Actually, to determine dendrite
birth the parent neuron health is compared with DHbirth rather than dendrite
health. This choice was made to prevent the potential very rapid growth of dendrite
numbers.

When the soma or dendrite programs are run the outputs are used to decide
how to adjust the neural and dendrite variables. The amount of the adjustments are
decided by the six user-defined δ parameters.

The number of developmental steps in the two developmental phases (‘pre’
learning and ‘while’ learning) are defined by the parameters, NDSpre and NDSwhi .
The number of learning epochs is defined by Nep. Note that the pre-learning phase of
development, ‘pre’, can have different incremental constants (i.e. δs) to the learning
epoch phase, ‘while’.

In some cases, neurons will collide with other neurons (by occupying a small
interval around an existing neuron) and the neuron has to be moved by a certain
increment until no more collisions take place. This increment is given by MNinc.

The places where external inputs are provided is predetermined uniformly within
the region between −1 and Iu. The parameter Iu defines the upper bound of
their position. Also output neurons are initially uniformly distributed between the
parameter Ol and 1. However, depending on a user-defined option the output
neurons as with other neurons can move according to the neuron program. All
neurons are marked as to whether they provide an external output or not. In the
initial network there are Ninit non-output neurons and No output neurons, where
No denotes the number of outputs required by the computational problem being
solved.

Finally, the neural activation function (hyperbolic tangent) and the sigmoid
function (which is used in nonlinear incremental adjustment of neural variables)
have a slope constant given by α.

8.3.2 Developing the Brain and Evaluating the Fitness

An overview of the algorithm used for training and developing the ANNs is given
in Overview 3.

The brain is always initialised with at least as many neurons as the maximum
number of outputs over all computational problems. Note, all problem outputs are
represented by a unique neuron dedicated to the particular output. However, the
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Overview 3 Overview of fitness algorithm
1: function FITNESS

2: Initialise brain
3: Load ‘pre’ development parameters
4: Update brain NDSpre times by running soma and dendrite programs
5: Load ‘while’ developmental parameters
6: repeat
7: Update brain NDSwhi times by running soma and dendrite programs
8: Extract ANN for each benchmark problem
9: Apply training inputs and calculate accuracy for each problem

10: Fitness is the normalised average accuracy over problems
11: If fitness reduces terminate learning loop and return previous fitness
12: until Nep epochs complete
13: return fitness
14: end function

maximum and initial number of non-output neurons can be chosen by the user. Non-
output neurons can grow change or give birth to new dendrites. Output neurons can
change but not die or replicate as the number of output neurons is fixed by the choice
of computational problems. The detailed algorithm for training and developing the
ANN is given in Algorithm 1.

8.3.3 Updating the Brain

Updating the brain is the process of running the soma and dendrite programs once
in all neurons and dendrites (i.e. it is a single developmental step). Doing this will
cause the brain to change and after all changes have been carried out a new updated
brain will be produced. This replaces the previous brain. Overview Algorithm 4
gives a high-level overview of the update brain process.

Overview 4 Update brain overview
1: function UPDATEBRAIN

2: Run soma program in non-output neurons to update soma
3: Ensure neuron does not collide with neuron in updated brain
4: Run dendrite program in all non-output neurons
5: If neuron survives add it to updated brain
6: If neuron replicates ensure new neuron does not collide
7: Add new neuron to updated brain
8: Run soma program in output neurons to update soma
9: Ensure neuron does not collide

10: Run dendrite program in all output neurons
11: If neuron survives add it to updated brain
12: Replace old brain with updated brain
13: end function
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Section 8.13 presents a more detailed version of how the brain is updated at
each developmental step (see Algorithm 2) and gives details of the neuron collision
avoidance algorithm.

8.3.4 Running and Updating the Soma

The UPDATEBRAIN program calls the RUNSOMA program to determine how the
soma changes in each developmental step. As we saw in Fig. 8.1a the seven soma
program inputs are: neuron health, position and bias, the averaged position, weight
and health of the neuron’s dendrites and the problem type. Once the evolved CGP
soma program is run the soma outputs are returned to the brain update program.
These steps are shown in Overview 2.

Overview 2 Running the soma: algorithm overview
1: function RUNSOMA

2: Calculate average dendrite health, position and weight
3: Gather soma program inputs
4: Run soma program
5: Return updated soma heath, bias and position
6: end function

The detailed version of the RUNSOMA function can be found in Sect. 8.13. The
RUNSOMA function uses the soma program outputs to adjust the health, position
and bias of the soma according to three user-chosen options defined by a variable
Incropt .This is carried out by the UPDATENEURON overview Algorithm 3.

Overview 3 Update neuron algorithm overview
1: function UPDATENEURON

2: Assign original neuron variables to parent variables
3: Assign outputs of soma program to health, position and bias
4: Depending on Incropt get increments
5: If soma program outputs > 0 (≤0) then incr(decr.) parent variables
6: Assign parent variables to neuron
7: Bound health, position and bias
8: end function

8.3.5 Updating the Dendrites and Building the New Neuron

This section is concerned with running the evolved dendrite programs. In every
dendrite, the inputs to the dendrite program have to be gathered. The dendrite
program is executed and the outputs are used to update the dendrite. This is carried



148 J. F. Miller et al.

out by a function called RUNDENDRITE. Note, in RUNALLDENDRITES we build
the completely updated neuron from the updated soma and dendrite variables. The
simplified algorithm for doing this is shown in overview Algorithm 4. The more
detailed version is available in Sect. 8.13.

Overview 4 An overview of the RUNALLDENDRITES algorithm which runs all
dendrite programs and uses all updated variables to build a new neuron
1: function RUNALLDENDRITES

2: Write updated soma variables to new neuron
3: if Old soma health > DHbirth then
4: Generate a dendrite for new neuron
5: end if
6: for all Dendrites do
7: Gather dendrite program inputs
8: Run dendrite program to get updated dendrite variables
9: Run dendrite to get updated dendrite

10: if Updated dendrite is alive then
11: Add updated dendrite to new neuron
12: if Maximum number of dendrites reached then
13: Stop processing any more dendrites
14: end if
15: end if
16: end for
17: if All dendrites have died then
18: Give new neuron the first dendrite of the old neuron
19: end if
20: end function

Overview Algorithm 4 (in line 9) uses the updated dendrite variables obtained
from running the evolved dendrite program to adjust the dendrite variables (accord-
ing to the incrementation option chosen). This function is shown in the overview
Algorithm 5. The more detailed version is available in Sect. 8.13.

The RUNDENDRITE function begins by assigning the dendrite’s health, position
and weight to the parent dendrite variables. It writes the dendrite program outputs
to the internal variables health, weight and position. It respectively carries out the
increments or decrements of the parent dendrite variables according whether the
corresponding dendrite program outputs are greater than or less than or equal to
zero. After this it bounds those variables. Finally, it updates the dendrites health,
weight and position provided the adjusted health is above the dendrite death
threshold.

We saw in the fitness function that we extract conventional ANNs from the
evolved brain. The way this is accomplished is as follows.

Since we share inputs across problems we set the number of inputs to be the
maximum number of inputs that occur in the computational problem suite. If any
problem has less inputs the extra inputs are set to zero.

The next phase is to go through all dendrites of the neurons to determine which
inputs or neurons they connect to. To generate a valid neural network we assume
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Overview 5 Change dendrites according to the evolved dendrite program
1: function RUNDENDRITE

2: Assign original dendrite variables to parent variables
3: Assign outputs of dendrite program to health, position and weight
4: Depending on Incropt get increments
5: If dendrite program outputs > 0 (≤0) then incr(decr.) parent variables
6: Assign parent variables to neuron
7: Bound health, position and weight
8: if (health > DHdeath) then
9: Update dendrite variables

10: Dendrite is alive
11: else
12: Dendrite is dead
13: end if
14: Return updated dendrite variables and whether dendrite is alive
15: end function

that dendrites are automatically connected to the nearest neuron or input on the left.
We refer to this as “snapping”. The dendrites of non-output neurons are allowed to
connect to either inputs or other non-output neurons on their left. However, output
neurons are only allowed to connect to non-output neurons on their left. It is not
desirable for the dendrites of output neurons to be connected directly to inputs,
however, when output neurons are allowed to move, they may only have inputs on
their left. In this case the output neuron dendrite neuron will be connected to the
first external input to the ANN network (by default).

The detailed version of the ANN extraction process is given in Sect. 8.13.

8.4 Cartesian GP

The two neural programs are represented and evolved using a form of Genetic
Programming (GP) known as Cartesian Genetic Programming (CGP). CGP [28, 31]
is a form of GP in which computational structures are represented as directed,
often acyclic graphs indexed by their Cartesian coordinates. Each node may take
its inputs from any previous node or program input (although recurrent graphs can
also be implemented see [45]). The program outputs are taken from the output of
any internal node or program input. In practice, many of the nodes described by
the CGP chromosome are not involved in the chain of connections from program
input to program output. Thus, they do not contribute to the final operation of the
encoded program, these inactive, or “junk”, nodes have been shown to greatly aid
the evolutionary search [30, 46, 47]. The representational feature of inactive genes
in CGP is also closely related to the fact that it does not suffer from bloat [27].

In general, the nodes described by CGP chromosomes are arranged in a
rectangular r × c grid of nodes, where r and c respectively denote the user-defined
number of rows and columns. In CGP, nodes in the same column are not allowed to
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be connected together. CGP also has a connectivity parameter l called “levels-back”
which determines whether a node in a particular column can connect to a node in a
previous column. For instance if l = 1 all nodes in a column can only connect to
nodes in the previous column. Note that levels-back only restricts the connectivity
of nodes; it does not restrict whether nodes can be connected to program inputs
(terminals). However, it is quite common to adopt a linear CGP configuration in
which r = 1 and l = c. This was done in our investigations here. CGP chromosomes
can describe multiple input multiple output (MIMO) programs with a range of
node functions and arities. For a detailed description of CGP, including its current
developments and applications, see [28]. Both the soma and dendrite program have

Table 8.2 Node function gene values, mnemonic and function definition

Value Mnemonic Definition

0 abs |z0|
1 sqrt

√|z0|
2 sqr z0

2

3 cube z0
3

4 exp (2exp(z0 + 1) − e2 − 1)/(e2 − 1)

5 sin sin(z0)

6 cos cos(z0)

7 tanh tanh(z0)

7 inv −z0

9 step if z0 < 0.0 then 0 else 1.0

10 hyp
√

(z0
2 + z1

2)/2

11 add (z0 + z1)/2

12 sub (z0 − z1)/2

13 mult z0z1

14 max if z0 >= z1 then z0 else z1

15 min if z0 <= z1 then z0 else z1

16 and if (z0 > 0.0 and z1 > 0.0) then 1.0 else − 1.0

17 or if (z0 > 0.0 or z1 > 0.0) then 1.0 else − 1.0

18 rmux if z2 > 0.0 then z0 else z1

19 imult −z0z1

20 xor if (z0 > 0.0 and z1 > 0.0) then − 1.0

else if (z0 < 0.0 and z1 < 0.0) then − 1.0

else 1.0

21 istep if z0 < 1.0 then 0 else − 1.0

22 tand if (z0 > 0.0 and z1 > 0.0) then 1.0

else if (z0 < 0.0 and z1 < 0.0) then − 1.0

else 0.0

23 tor if (z0 > 0.0 or z1 > 0.0) then 1.0

else if (z0 < 0.0 or z1 < 0.0) then − 1.0

else 0.0
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7 inputs and 3 outputs. (see Fig. 8.1). The function set chosen for this study are
defined over the real-valued interval [−1.0, 1.0]. Each primitive function takes up
to three inputs, denoted z0, z1 and z2. The functions are defined in Table 8.2.

8.5 Benchmark Problems

In this study, we evolve neural programs that build ANNs for solving three standard
classification problems. The problems are cancer, diabetes and glass. The definitions
of these problems are available in the well-known UCI repository of machine
learning problems.1 These three problems were chosen because they are well-
studied and also have similar numbers of inputs and a small number of classes.
Cancer has nine real attributes and two Boolean classes. Diabetes has eight real
attributes and two Boolean classes. Glass has nine real attributes and six Boolean
classes. The specific datasets chosen were cancer1.dt, diabetes1.dt and glass1.dt
which are described in the PROBEN suite of problems.2 Since, for each benchmark
problem we extract an ANN the order of presentation of the benchmark problems is
unimportant.

8.6 Experiments and Results

The long-term aim of this research is to explore effective ways to develop ANNs.
The work presented here is a just a beginning and there are many aspects that need
to be investigated in the future (see Sect. 8.12). The specific research questions we
have focused on are:

• Are multiple learning epochs more effective than a single epoch?
• Should neurons be allowed to move?
• Should evolved program outputs update neural variables directly or should they

determine user-defined increments in those variables (linear or non-linear)?

To answer these questions a series of experiments were carried out to investigate
the impact of various aspects of the neural model on classification accuracy.
Twenty evolutionary runs of 20,000 generations of a 1+5-ES were used. Genotype
lengths for soma and dendrite programs were chosen to be 800 nodes. Goldman
mutation [10, 11] was used which carries out random point mutation until an active
gene is changed. For these experiments a subset of allowed node functions were
chosen as they appeared to give better performance. These were: step, add, sub,
mult, xor, istep. The remaining experimental parameters are shown in Table 8.3.

1https://archive.ics.uci.edu/ml/datasets.html.
2https://publikationen.bibliothek.kit.edu.

https://archive.ics.uci.edu/ml/datasets.html
https://publikationen.bibliothek.kit.edu
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Table 8.3 Table of neural model parameters.

Parameter Value Value

NNmin(NNmax) 0 (20)

Ninit 5

DNmin(DNmax) 1 (40)

NDinit 5

NDSpre 8

NDSwhi 3

NDSaf t 0

Nep 1

MNinc 0.03

Iu -0.6

Ol 0.8

α 1.5

Development parameters ‘Pre’ ‘While’

NHdeath(NHbirth) -0.6 (0.308) -0.58 (0.8)

DHdeath(DHbirth) -0.404772 (-0.2012) -0.38 (0.85)

δsh 0.1 0.01

δsp 0.1 0.01

δsb 0.07 0.0402

δdh 0.1 0.01

δdp 0.2032 0.01

δdw 0.1 0.02029

Four types of experiments were carried out to investigate the utility of neuron
movement. Acronyms describe these experiments. AMA means all neuron move-
ment was allowed (both non-output and output neurons). OMA means only the
movement of output neurons is allowed. NOMA means only the movement of non-
output neurons is allowed and finally, AMD means all movement of neurons is
disallowed. In addition, we examined three ways of incrementing or decrementing
neural variables. In the first the outputs of evolved programs determines directly the
new values of neural variables (position, health, bias, weight), that is to say there
is no incremental adjustment of neural variables. In the second, the variables are
incremented or decremented in user-defined amounts (the deltas in Table 8.1). In
the third, the adjustments to the neural variables are nonlinear (they are adjusted
using a sigmoid function). It should be noted that the scenario AMD does not imply
that all neurons remain in the fixed positions that they were initially given. The
collision avoidance mechanism and the birth of new neurons means that neurons will
be assigned different positions during development. However, the neuron positions
can not be adjusted by incrementing neuron position.
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Table 8.4 Training and testing accuracy for various neuron movement scenarios

Acc. AMA OMA NOMA AMD
train (test) train (test) train (test) train (test)

Mean 0.7093 (0.6959) 0.7456 (0.7206) 0.6929 (0.6803) 0.6920 (0.6821)

Median 0.7066 (0.7020) 0.7481 (0.7329) 0.6886 (0.6954) 0.6929 (0.6950)

Maximum 0.7598 (0.7539) 0.7854 (0.7740) 0.7617 (0.7643) 0.7363 (0.7245)

Minimum 0.6627 (0.6275) 0.7022 (0.6498) 0.6254 (0.6028) 0.6575 (0.6089)

All neurons allowed to move (AMA), only output neurons are allowed to move (OMA), only non-
output neurons are allowed to move (NOMA) and no neurons are allowed to move (AMD)

Table 8.5 Training and testing accuracy on individual problems when only output neurons are
allowed to move

Acc. Cancer Diabetes Glass
train (test) train (test) train (test)

Mean 0.9397 (0.9534) 0.7094 (0.6622) 0.5879 (0.5462)

Median 0.9471 (0.9598) 0.7031 (0.6510) 0.5888 (0.5849)

Maximum 0.9657 (0.9942) 0.7526 (0.7500) 0.6636 (0.6415)

Minimum 0.8771 (0.8391) 0.6693 (0.6094) 0.4766 (0.3774)

Table 8.6 Comparison of test accuracies on three classification problems

Acc. Cancer Diabetes Glass
ML (OMA) ML (OMA) ML (OMA)

Mean 0.935 (0.9534) 0.743 (0.6622) 0.610 (0.5462)

Maximum 0.974 (0.9942) 0.790 (0.7500) 0.785 (0.6415)

Minimum 0.655 (0.8391) 0.582 (0.6094) 0.319 (0.3774)

OMA compared with huge suite of classification methods as described in [8]

8.7 Tables of Results

The mean, median, maximum and minimum accuracies achieved over 20 evolution-
ary runs when all neurons are allowed to move are shown in Table 8.4. We can
see that the best values of mean, median, maximum and minimum are all obtained
when only output neurons are allowed to move. The mean, median, maximum and
minimum are shown for each individual problem (cancer, diabetes and glass) in
Table 8.5.

Table 8.6 shows how the results for OMA compare with the performance of 179
classifiers (covering 17 families) [8].3 The figures are given just to show that the
results for the developmental ANNs are respectable and are especially encouraging
considering that the evolved developmental programs build classifiers for three
different classification problems simultaneously.

3The paper gives a link to the detailed performance of the 179 classifiers which contain the figures
given in the table.



154 J. F. Miller et al.

8.8 Comparisons and Statistical Significance

The results for the four experimental scenarios are presented graphically in Figs. 8.3
and 8.4. Maximum outliers are shown as asterisks and minimum outliers as filled
squares. The ends of the whiskers are set at 1.5*IQR above the third quartile and
at 1.5*IQR below the first quartile, where IQR is the inter quartile range (Q3–Q1).
Clearly, the figures show that allowing only the output neurons to move (OMA)
produces the best results both on the training data set and the test data set. Also, in
this scenario there is a high level of generalisation as the results on the unseen data
set are close to the training results.

The Wilcoxon Ranked-Sum test (WRS) was used to assess the statistical
difference between pairs of experiments. In this test, the null hypothesis is that the
results (best accuracy) over the multiple runs for the two different experimental
conditions are drawn from the same distribution and have the same median. If there
is a statistically significant difference between the two then null hypothesis is false

Fig. 8.3 Results for four experiments which allow or disallow neurons to move. The four neuron
movement scenarios are: all neurons allowed to move (AMA), only output neurons are allowed to
move (OMA), only non-output neurons are allowed to move (NOMA) and no neurons are allowed
to move (AMD). The figure shows classification accuracy on training set

Fig. 8.4 Results on test set for four experiments which allow or disallow neurons to move
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Table 8.7 Statistical comparison of training results from experiments (Wilcoxon Rank-Sum two-
tailed)

Question Expt. A Expt. B W W critical P -value Significant

Output movement OMA AMD 0 21 p < 0.001 Very
v. no. movement?

Output movement OMA NOMA 1 21 p < 0.001 Very
v. non-output movement?

Output movement OMA AMA 33 37 0.005 <

p < 0.01
Yes

v. all movement?

Linear OMA OMA-
non-lin

19 37 p < 0.001 Very
v. nonlinear incr.

Non-linear OMA-
non-lin

OMA
no incr.

54 69 0.05 <

p < 0.1
Weakly

v. no increment?

with a degree of certainty which depends on the smallness of a calculated statistic
called a p-value. However, in the WRS before interpreting the p-value one needs
to calculate another statistic called Wilcoxon’s W value. This value needs to be
compared with calculated values which depend on the number of samples in each
experiment. Results are statistically significant when the calculated W-value is less
than or equal to certain critical values for W[48]. The critical values depend on the
sample sizes and the p-value. We used a publicly available Excel spreadsheet for
doing these calculations.4 The critical W-values can be calculated in two ways: one-
tailed or two-tailed. The two-tailed test is appropriate here as we are interested in
whether one experiment is better than another (and vice versa).

For example, in Table 8.7 the calculated W-value is 0 and the critical W-value
for the paired sample sizes of 20 (number of runs) with p-value less than 0.001
is 21 (assuming a two-tailed test).5 The p-value gives a measure of the certainty
with which the null hypothesis can be accepted. Thus the lower the value the more
likely that the two samples come from different distributions (i.e. are statistically
different). Thus in this case, the probability that the null hypothesis can be rejected
is 0.999.

The results of these tests are shown in Tables 8.7 and 8.8. Comparing OMA
with AMD shows that there is an large advantage to allowing output neurons to
move. Indeed, allowing only output neurons to move is statistically significantly
better than either only allowing non-outputs neurons to move (NOMA) or allowing
all neurons to move (AMA). This is true both for testing and training. However,
as expected the differences are even more significant in training than testing. Also
using a linear increment is statistically significantly better than using a nonlinear
increment. Nonlinear increment is only marginally better than no increment (i.e.
Incropt=0).

4http://www.biostathandbook.com/wilcoxonsignedrank.html.
5http://www.real-statistics.com/statistics-tables/wilcoxon-signed-ranks-table/.

http://www.biostathandbook.com/wilcoxonsignedrank.html
http://www.real-statistics.com/statistics-tables/wilcoxon-signed-ranks-table/
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Table 8.8 Statistical comparison of test results from experiments (Wilcoxon Rank-Sum two-
tailed)

Question W critical
Expt. A Expt. B W critical P -value Significant

Output movement OMA AMD 35 37 0.005 < p < 0.01 Yes
v. no movement?

Output movement OMA NOMA 44 52 0.02 < p < 0.05 Yes
v. non-output movement?

Output movement OMA AMA 53 60 0.05 < p < 0.1 Yes
v. all movement?

It is important to understand how the experimental parameters shown in Table 8.3
were discovered. They were found by carrying out many experiments in the
OMA scenario. It turned out that when small changes in parameters had a clear
improvement on the quality of the first evolutionary run they significantly improved
the average performance over all twenty runs.6 This was fortuitous in that one could
investigate the effect of changing parameters quickly by observing the performance
of the first evolutionary run. However, it is possible that the parameters found were
particular to the OMA scenario and that a similar process of tuning in the other
scenarios would probably improve the results in those scenarios. Ideally, one would
tune the parameters in each scenario (OMA, AMA, etc.) and compare results for the
best parameter set for each scenario. This would be computationally prohibitive.

8.9 Evolved Developmental Programs

The average number of active nodes in the soma and dendrite programs for the OMA
experiments was respectively, 56.75 and 55.0. Thus the programs are relatively
simple. It is also possible that the graphs can be logically reduced to even simpler
forms. The graphs of the active nodes in the CGP graphs for the best evolutionary
run in the OMA scenario are shown in Figs. 8.5 and 8.6. The red input connections
between nodes indicate the first input in the subtraction operation. This is the only
node operation where node input order is important.

8.10 Developed ANNs for Each Classification Problem

The ANNs for the evolutionary run with only output neuron movement allowed
were extracted (using Algorithm 9) and can be seen in Figs. 8.7, 8.8 and 8.9. The
plots ignore connections with weight equal to zero. The average training accuracy

6Indeed, sometimes adjustments to a parameter in the fourth decimal place had a significant effect.
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Fig. 8.5 Best evolved soma program when only output neurons can move. The input nodes are:
soma heath (sh), soma bias (sb), soma position (sp), average dendrite health (adh), average dendrite
weight (adw), average dendrite position (adp) and problem type (pt). The output nodes are: soma
health (SH), soma bias (SB) and soma position (SP)

of these three networks is 0.78538 (best) and the average test accuracy is 0.7459. In
the figures, each neuron is labeled with the problems it belongs to (cancer, diabetes,
glass) and it is also labeled with the neuron ID (in blue). Using these labels makes
it easy to identify which neurons are shared between problems. Note that output
neurons are not allowed to be shared.

The ANN which classifies the cancer data has 6 neurons with IDs: 9, 10, 12, 13,
19, 20. Neurons 9 and 13 are shared with the glass ANN, Neurons 10 and 12 are
shared over all three problems. Class 0 of the cancer dataset is provided by a simple
function. The first attribute in the dataset is multiplied by a single weight and then
is the only input to a biased tanh neuron.

The ANN classifier for the diabetes dataset has 5 neurons with IDs: 10, 12, 15,
21, 27. Neurons with IDs 10 and 12 are shared across all problems. Neuron 15 is
shared with glass ANN.

The ANN classifier for the glass dataset has 15 neurons with IDs: 9, 10, 11, 12,
13, 14, 15, 16, 18, 22, 23, 24, 25, 26, 28. There are 4 neurons that are shared.

An interesting feature is that pairs of neurons often have multiple connections.
This is equivalent to a single connection where the weighted value is the sum of
the individual connections weights. This phenomenon was also observed in CGP
encoded and evolved ANNs [44].
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Fig. 8.6 Best evolved dendrite program when only output neurons can move. The input nodes
are: soma heath (sh), soma bias (sb), soma position (sp), dendrite health (dh), dendrite weight
(dw), dendrite position (dp) and problem type (pt). The output nodes are: dendrite health (DH),
dendrite weight (DW) and dendrite position (DP)

8.11 Evolving Neural Learning Programs

The fitness function (see overview Algorithm 3) included the possibility of learning
epochs. In this section we present and discuss results when a number of learning
epochs have been chosen. The task for evolution is then to construct two neural
programs that develop ANNs that improve with each learning epoch. The aim
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Fig. 8.7 Developed ANN for
cancer dataset. This dataset
has nine attributes and two
outputs. The numbers inside
the circles are the neuron
bias. Above the bias the
problems which share the
neuron are shown. Below the
bias the neuron ID (in blue) is
shown. If any attributes are
not present it means they are
unused. The training accuracy
is 0.9571 and the test
accuracy is 0.9828
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Fig. 8.8 Developed ANN for
diabetes dataset.This dataset
has eight attributes and two
outputs. The numbers inside
the circles are the neuron
bias. Above the bias the
problems which share the
neuron are shown. Below the
bias the neuron ID (in blue) is
shown. Attributes not present
are unused. The training
accuracy is 0.7448 and the
test accuracy is 0.6510

is to find a general learning algorithm in which the ANNs change and improve
with each learning epoch beyond the limited number of epochs used in training.
The experimental parameters required to investigate were changed from those used
previously when there were no learning epochs. For the experiments here we
retained most of the previous parameters but altered the number of learning epochs
and the delta parameters in the ‘while’ loop. The new parameters are shown in
Table 8.9.

Informal experiments were undertaken to investigate suitable neural parameters
when using multiple learning epochs. The best results appeared to be obtained when
only the dendrite length was incrementally adjusted. As before, results are quite
sensitive to exact values for these parameters. It is interesting and surprising to
observe that adjustment of weights only in while phase does not produce as good
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Fig. 8.9 Developed ANN for
glass dataset. This dataset has
nine attributes and six
outputs. The numbers inside
the circles are the neuron
bias. Above the bias the
problems which share the
neuron are shown. Below the
bias the neuron ID (in blue) is
shown. Attributes not present
are unused. The training
accuracy is 0.6542 and the
test accuracy is 0.6038
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Table 8.9 Changed neural
model parameters when using
multiple learning epochs

Parameter Value

Nep 10

δsh 0.0

δsp 0.0

δsb 0.0

δdh 0.0

δdp 0.00106

δdw 0.0

Table 8.10 Training and
testing accuracy for ten
learning epochs versus no
learning epochs when only
output neurons are allowed to
move

Learning epochs No learning epochs
Acc. train (test) train (test)

Mean 0.7226 (0.6482) 0.7456 (0.7206)

Median 0.7298 (0.6767) 0.7481 (0.7329)

Maximum 0.7609 (0.7864) 0.7854 (0.7740)

Minimum 0.6613 (0.3919) 0.7022 (0.6498)

Fig. 8.10 Variation of classification accuracy for training and testing with learning epoch when
only output movement is allowed

results as adjusting dendrite length. Twenty evolutionary runs were carried out using
these parameters and the results are shown in Table 8.10.

In Table 8.10 we compare the results with multiple learning epochs with no
learning epochs. Using no learning epochs gives better results. However, the results
with multiple learning epochs is reasonable despite the fact that the task is much
more difficult, effectively one is to trying evolve a learning algorithm. It is possible
that further experimentation with developmental parameters could produce better
results with multiple epochs.

In Fig. 8.10 we examine how the accuracy of the classifications varies with
learning epochs. We set the maximum number of epochs to 30 now to see if learning
continues beyond the upper limit used during evolution (10). We can see that both
the test and training classification accuracy increases with each epoch up to 10
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epochs and there is a gradual decline in accuracy after this point. However, at 18
epochs the accuracy stabilises to an accuracy of 0.65. Interestingly, the test accuracy
is always better than the training accuracy. We obtained several evolved solutions
in which training accuracy increased at each epoch until the imposed maximum
number of epochs, however, as yet none of these were able to improve beyond the
limit.

8.12 Further Work

It remains unclear why better results can not at present be obtained when evolving
developmental programs with multiple epochs. Neither is it clear why programs
can be evolved that continuously improve the developed ANNs over a number
of epochs (i.e. 10) yet do not improve subsequently. It is worth contrasting the
model discussed in this chapter with previous work on Self-Modifying CGP [14].
In SMCGP phenotypes can be iterated to produce a sequence of programs or
phenotypes. The fitness was accumulated over all the correct test cases summed
over all the iterations. In the problems studied (i.e. even-n parity, producing π)
there was also a notion of perfection. For instance in the parity case perfection
meant that at each iteration it produced the next parity case (with more inputs)
perfectly. If at the next iteration, the appropriate parity function was not produced,
then the iteration stopped. In the work discussed here, the fitness is not cumulative.
At each epoch, the fitness is the average accuracy of the classifiers over the three
classification problems. If the fitness reduces at the next epoch, then the epoch loop
is terminated. However, in principle, we could sum the accuracies at each epoch and
if an accuracy at a particular epoch is reduced, terminate the epoch loop. Summing
the accuracies would give reward to developmental programs that produced the best
history of developmental changes.

At present, the developmental programs do not receive a reward signal during
multiple epochs. This means that the task for evolution is to continuously improve
developed ANNs without being supplied with a reward signal. However, one would
expect that as the fitness increases at each epoch the number of changes that need to
be made to the developed ANNs should decrease. This suggests that supplying the
fitness at the previous epoch to the developmental programs might be useful. In fact
this option has already been implemented but as yet evidence is inconclusive that
this produces improved results.

While learning over multiple epochs, we have assumed that the developmental
parameters should be fixed (i.e. they are chosen before the development loop—see
line 5 of Overview Algorithm 3). However, it is not clear that this should be so.
One could argue that during early learning topological changes in the brain network
are more important and weight changes more important in later phases of learning.
This suggests that at each step of the learning loop one could load developmental
parameters, this would allow control of each epoch of learning.
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The neural variables that are given as inputs to the CGP developmental programs
are an assumption of the model. For the soma these are: health, bias, position,
problem type and average dendrite health, position and weight. For the dendrite
they are: dendrite health, weight, position, problem type and soma health, bias and
position. Further experimental work needs to be undertaken to determine whether
they all are useful. The program written already has the inclusion of any of these
variables as an option.

There are also many assumptions made in quite small aspects of the whole
model. When new neurons or dendrites are born what should the initial values of the
neural variables be? What are the best upper bounds on the number of neurons and
dendrites? Currently, dendrite replication is decided by comparing the parent neuron
health with DHbirth rather than comparing dendrite health with this threshold. If
dendrite health was compared with a threshold it could rapidly lead to very large
numbers of dendrites. Many choices have been made that need to be investigated in
more detail.

There are also very many parameters in the model and experiment has shown
that results can be very sensitive to these. Thus further experimentation is required
to identify good choices for these parameters.

A fundamental issue is how to handle inputs. In the classification problems
the number of inputs is given by the problem with the most attributes, problems
with less are given the value zero for those inputs. This could be awkward if the
problems have hugely varying numbers of inputs. Is there another way of handling
this? Perhaps one could borrow more ideas from SMCGP and make all input
connections access inputs using pointer to a circular register of inputs. Every time
a neuron connected to an input, a global pointer to the register of inputs would be
incremented.

So far, we have examined the utility of the developmental model on three
classification problems. However, the aim of the work is to produce general
problem solving on many different kinds of computational problems. Clearly, a
favourable direction to go is to expand the list of problems and problem types.
How much neuron sharing would take place across problems of different types (e.g.
classification and real-time control)? Would different kinds of problems cause whole
new sub-networks to grow?

Currently the neurons exist in a one-dimensional space however it would be
relatively straightforward to extend it to two or even three spatial dimensions. This
remains for future work.

Eventually, the aim is to create developmental networks of spiking neurons. This
would allow a study of activity dependent development [33] which is an extremely
important aspect of biological brains.

8.13 Conclusions

We have presented a conceptually simple model of a developmental neuron in
which neural networks develop over time. Conventional ANNs can be extracted
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from these networks. We have shown that an evolved pair of programs can produce
networks that can solve multiple classification problems reasonably well. Multiple-
problem solving is a new domain for investigating more general developmental
neural models.

Appendix: Detailed Algorithms

Developing the Brain and Evaluating the Fitness

The detailed algorithm for developing the brain and assessing its fitness is shown
in Algorithm 1 There are two stages to development. The first (which we refer to
as ‘pre’) occurs prior to a learning epoch loop (lines 3–6). While the second phase
(referred to as ‘while’) occurs inside a learning epoch loop (lines 9–12).

Lines 13–22 are concerned with calculating fitness. For each computational
problem an ANN is extracted from the underlying brain. This is carried by a function
ExtractANN(problem,OutputAddress) which is detailed in Algorithm 9.
This function extracts a feedforward ANN corresponding to each computational
problem (this is stored in a phenotype which we do not detail here). The array
OutputAddress stores the addresses of the output neurons associated with the
computational problem. It is used together with the phenotype to extract the network
of neurons that are required for the computational problem. Then the input data is
supplied and the outputs of the ANN calculated. The class of a data instance is
determined by the largest output. The learning loop (lines 8–29) develops the brain
and exits if the fitness value (in this case classification accuracy) reduces (lines
23–27 in Algorithm 1). One can think of the ‘pre’ development phase as growing
a neural network prior to training. The ‘while’ phase is a period of development
within the learning phase. Nep denotes the user-defined number of learning epochs.
Np represents the number of problems in the suite of problems being solved.
Nex(p) denotes the number of examples for each problem. A is the accuracy of
prediction for a single training instance. F is the fitness over all examples. T F is
the accumulated fitness over all problems. Fitness is normalised (lines 20 and 22).

Updating the Brain

Algorithm 2 shows the update brain process. This algorithm is run at each devel-
opmental step. It runs the soma and dendrite programs for each neuron and from
the previously existing brain creates a new version (NewBrain) which eventually
overwrites the previous brain at the last step (lines 52–53).

Algorithm 2 starts by analyzing the brain to determine the addresses and numbers
of non-output and output neurons (lines 3–11). Then the non-output neurons are
processed. The evolved soma program is executed and it returns a neuron with
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Algorithm 1 Develop network and evaluate fitness
1: function FITNESS

2: Initialise brain
3: Use ‘pre’ parameters
4: for s = 0 to s < NDSpre do # develop prior to learning
5: UpdateBrain
6: end for
7: T Fprev = 0
8: for e = 0 to e < Nep do # learning loop
9: Use ‘while’ parameters # learning phase

10: for s = 0 to s < NDSwhi do
11: UpdateBrain
12: end for
13: T F = 0 # initialise total fit
14: for p = 0 to p < Np do
15: ExtractANN(p, OutputAddress) # Get ANN for problem p
16: F = 0 # initialise fit
17: for t = 0 to t < Nex(p) do
18: F = F + Acc # sum acc. over instances
19: end for
20: T F = T F + F/Nex(p) # sum normalised acc. over problems
21: end for
22: T F = T F/Np # normalise total fitness
23: if T F < T Fprev then # has fitness reduced?
24: T F = T Fprev # return previous fitness
25: Break # terminate learning loop
26: else
27: T Fprev = T F # update previous fitness
28: end if
29: end for
30: return TF
31: end function

updated values for the neuron position, health and bias. These are stored in the
variable UpdatedNeurV ars.

If the user-defined option to disallow non-output neuron movement is chosen
then the updated neuron position is reset to that before the soma program is run
(lines 16–17). Next the evolved dendrite programs are executed in all dendrites. The
algorithmic details are given in Algorithm 6 (See Sect. 8.3.5).

The neuron health is compared with the user-defined neuron death threshold
NHdeath and if the health exceeds the threshold the neuron survives (see lines 22–
28). At this stage it is possible that the neuron has been given a position that is
identical to one of the neurons in the developing brain (NewBrain) so one needs
a mechanism for preventing this. This is accomplished by Algorithm 3 (Lines 19
and 46). It checks whether a collision has occurred and if so an increment MNinc

is added to the position and then it is bound to the interval [−1, 1]. In line 23 the
updated neuron is written into NewBrain. A check is made in line 25 to see if the
allowed number of neurons has been reached, if so the non output neuron update
loop (lines 12–38) is exited and the output neuron section starts (lines 39–51). If the
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limit on numbers of neurons has not been reached, the updated neuron may replicate
depending on whether its health is above the user-defined threshold, NHhealth (line
29). The position of the new born neuron is immediately incremented by MNinc so
that it does not collide with its parent (line 30). However, its position needs to be
checked also to see if it collides with any other neuron, in which case its position is
incremented again until a position is found that causes no collision. This is done in
the function IFCOLLISION.

In CREATENEWNEURON (see line 32) the bias, the incremented position and
dendrites of the parent neuron are copied into the child neuron. However, the new
neuron is given a health of 1.0 (the maximum value). The algorithm examines the
non-output neurons (lines 39–51) and again is terminated if the allowed number
of neurons is exceeded. The steps are similar to those carried out with non-output
neurons, except that output neurons can not either die or replicate as their number is
fixed by the number of outputs required by the computational problem being solved.

The details of the neuron collision avoidance mechanism is shown in
Algorithm 3.

Running the Soma

The UPDATEBRAIN program calls the RUNSOMA program (Algorithm 4) to deter-
mine how the soma changes in each developmental step. The seven soma program
inputs comprising the neuron health, position and bias, the averaged position, weight
and health of the neuron’s dendrites and the problem type are supplied to the
CGP encoded soma program (line 12). The array ProblemTypeInputs stores
NumProblems+1 constants equally spaced between −1 and 1. These are used to
allow output neurons to know what computational problem they belong to.

The soma program has three outputs relating to the position, health and bias of
the neuron. These are used to update the neuron (line 13).

Changing the Neuron Variables

The UPDATENEURON Algorithm 5 updates the neuron properties of health, position
and bias according to three user-chosen options defined by a variable Incropt . If this
is zero, then the soma program outputs determine directly the updated values of the
soma’s health, position and bias. If Incropt is one or two, the updated values of the
soma are changed from the parent neuron’s values in an incremental way. This is
either a linear or nonlinear increment or decrement depending on whether the soma
program’s outputs are greater than or less than or equal to zero (lines 8–16). The
magnitudes of the increments is defined by the user-defined constants: δsh, δsp, δsb

and sigmoid slope parameter, α (see Table 8.1).
The increment methods described in Algorithm 5 change neural variables, so

action needs to be taken to force the variables to strictly lie in the interval [−1, 1].
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Algorithm 2 Update brain
1: function UPDATEBRAIN

2: NewNumNeurons = 0
3: for i = 0 to i < NumNeurons do # get number and addresses of neurons
4: if (Brain[i].out = 0) then
5: NonOutputNeuronAddress[NumNonOutputNeurons] = i
6: increment NumNonOutputNeurons
7: else
8: OutputNeuronAddress[NumOutputNeurons] = i
9: increment NumOutputNeurons

10: end if
11: end for
12: for i = 0 to i < NumNonOutputNeurons do # process non-output neurons
13: NeuronAddress = NonOutputNeuronAddress[i]
14: Neuron = Brain[NeuronAddress]
15: UpdatedNeurVars = RunSoma(Neuron) # get new position, health and bias
16: if (DisallowNonOutputsToMove) then
17: UpdatedNeurVars.x = Neuron.x
18: else
19: UpdatedNeurVars.x = IfCollision(NewNumNeurons,NewBrain,UpdatedNeurVars.x)
20: end if
21: UpdatedNeuron = RunAllDendrites(Neuron, UpdatedNeurVars)
22: if (UpdatedNeuron.health > NHdeath) then # if neuron survives
23: NewBrain[NewNumNeurons] = UpdatedNeuron
24: Increment NewNumNeurons
25: if (NewNumNeurons = NNmax -NumOutputNeurons) then
26: Break # exit non-output neuron loop
27: end if
28: end if
29: if (UpdatedNeuron.health > NHhealth) then# neuron replicates
30: UpdatedNeuron.x = UpdatedNeuron.x+MNinc

31: UpdatedNeuron.x = IfCollision(NewNumNeurons, NewBrain, UpdatedNeuron.x)
32: NewBrain[NewNumNeurons] = CreateNewNeuron(UpdatedNeuron)
33: Increment NewNumNeurons
34: if (NewNumNeurons = NNmax - NumOutputNeurons) then
35: Break # exit non-output neuron loop
36: end if
37: end if
38: end for
39: for i = 0 to i < NumOutputNeurons do # process output neurons
40: NeuronAddress = OutputNeuronAddress[i]
41: Neuron = Brain[NeuronAddress]
42: UpdatedNeurVars = RunSoma(Neuron) # get new position, health and bias
43: if (DisallowOutputsToMove) then
44: UpdatedNeurVars.x = Neuron.x
45: else
46: UpdatedNeurVars.x = IfCollision(NewNumNeurons,NewBrain,UpdatedNeurVars.x)
47: end if
48: UpdatedNeuron = RunAllDendrites(UpdatedNeuron)
49: NewBrain[NewNumNeurons] = UpdatedNeuron
50: Increment NewNumNeurons
51: end for
52: NumNeurons = NewNumNeurons
53: Brain = NewBrain
54: end function
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Algorithm 3 Move neuron if it collides with another
1: function IFCOLLISION(NumNeurons, Brain, NeuronPosition)
2: NewPosition = NeuronPosition
3: collision = 1
4: while collision do
5: collision = 0
6: for i = 0 to j < NumNeurons do
7: if (| NeuronPosition - Brain[i].x | < 1.e-8) then
8: collision = 1
9: end if

10: if collision then
11: break
12: end if
13: end for
14: if collision then
15: NewPosition = NewPosition+MNinc

16: end if
17: end while
18: if collision then
19: NewPosition = Bound(NewPosition)
20: end if
21: return NewPosition
22: end function

Algorithm 4 RunSoma(Neuron)
1: function RUNSOMA(Neuron)
2: AvDendritePosition = GetAvDendritePosition(Neuron)
3: AvDendriteWeight = GetAvDendriteWeight(Neuron)
4: AvDendriteHealth = GetAvDendriteHealth(Neuron)
5: SomaProgramInputs[0] = Neuron.health
6: SomaProgramInputs[1] = Neuron.x
7: SomaProgramInputs[2] = Neuron.bias
8: SomaProgramInputs[3] = AvDendritePosition
9: SomaProgramInputs[4] = AvDendriteWeight

10: SomaProgramInputs[5] = AvDendriteHealth
11: SomaProgramInputs[6] = ProblemTypeInputs[WhichProblem]
12: SomaProgramOutputs = SomaProgram(SomaProgramInputs)
13: UpdatedNeuron = UpdateNeuron(Neuron, SomaProgramOutputs)
14: return UpdatedNeuron.x, UpdatedNeuron.health, UpdatedNeuron.bias
15: end function

We call this ‘bounding’ (lines 34–36).This is accomplished using a hyperbolic
tangent function.

Running All Dendrite Programs and Building a New Neuron

Algorithm 6 takes an existing neuron and creates a new neuron using the updated
soma variables, position, health and bias which are stored in UpdateNeurV ars

(from Algorithm 4) and the updated dendrites which result from running the dendrite
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Algorithm 5 Neuron update function
1: function UPDATENEURON(Neuron, SomaProgramOutputs)
2: ParentHealth = Neuron.health
3: ParentPosition = Neuron.x
4: ParentBias = Neuron.bias
5: health = SomaProgramOutputs[0]
6: position = SomaProgramOutputs[1]
7: bias = SomaProgramOutputs[2]
8: if (Incropt = 1) then # calculate increment
9: HealthIncrement = δsh

10: PositionIncrement = δsp

11: BiasIncrement = δsb

12: else if (Incropt = 2) then
13: HealthIncrement = δsh*sigmoid(health, α)
14: PositionIncrement = δsp*sigmoid(position, α)
15: BiasIncrement = δsb*sigmoid(bias, α)
16: end if
17: if (Incropt > 0) then # apply increment
18: if (health > 0.0) then
19: health = ParentHealth + HealthIncrement
20: else
21: health = ParentHealth - HealthIncrement
22: end if
23: if (position > 0.0) then
24: position = ParentPosition + PositionIncrement
25: else
26: health = ParentPosition - PositionIncrement
27: end if
28: if (bias > 0.0) then
29: bias = ParentBias + BiasIncrement
30: else
31: bias = ParentBias - BiasIncrement
32: end if
33: end if
34: health = Bound(health)
35: position = Bound(position)
36: bias = Bound(bias)
37: return health, position and bias
38: end function

program in all the dendrites. Initially (line 3–5), the updated soma variables are
written into the updated neuron. The number of dendrites in the updated neuron is
set to zero. In lines 8–11, the health of the non-updated neuron is examined and if
it is above the dendrite health threshold for birth, a new dendrite is generated and
the updated neuron gains a dendrite. If so, the neuron gains a dendrite created by
a function GenerateDendrite(). This assigns a weight, health and position to the
new dendrite. The weight and health is set to one and the position set to half the
parent neuron position. These choices appeared to give good results.

Lines 12–33 are concerned with processing the dendrite program in all the
dendrites of the non-updated neuron and updating the dendrites. If the updated
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Algorithm 6 Run the evolved dendrite program in all dendrites
1: function RUNALLDENDRITES(Neuron, DendriteProgram, NewSomaPosition, NewSoma-

Health, NewSomaBias)
2: WhichProblem = Neuron.isout
3: OutNeuron.x = NewSomaPosition
4: OutNeuron.health = NewSomaHealth
5: OutNeuron.bias = NewSomaBias
6: OutNeuron.isout = WhichProblem
7: OutNeuron.NumDendrites = 0
8: if (Neuron.health > DHbirth ) then
9: OutNeuron.dendrites[NumDendrites] = GenerateDendrite()

10: Increment OutNeuron.NumDendrites
11: end if
12: for i = 0 to i < OutNeuron.NumDendrites do
13: DendriteProgramInputs[0] = Neuron.health
14: DendriteProgramInputs[1] = Neuron.x
15: DendriteProgramInputs[2] = Neuron.bias
16: DendriteProgramInputs[3] = Neuron.dendrites[i].health
17: DendriteProgramInputs[4] = Neuron.dendrites[i].weight
18: DendriteProgramInputs[5] = Neuron.dendrites[i].position
19: DendriteProgramInputs[6] = ProblemTypeInputs[WhichProblem]
20: DendriteProgramOutputs = DendriteProgram(DendriteProgramInputs)
21: UpdatedDendrite = RunDendrite(Neuron, DendriteProgramOutputs)
22: if (UpdatedDendrite.isAlive) then
23: OutNeuron.dendrites[NumDendrites] = UpdatedDendrite
24: increment OutNeuron.NumDendrites
25: if (OutNeuron.NumDendrites > MaxNumDendrites) then
26: break
27: end if
28: end if
29: end for
30: if (OutNeuron.NumDendrites = 0) then # if all dendrites die
31: OutNeuron.dendrites[0] = Neuron.dendrites[0]
32: OutNeuron.NumDendrites = 1
33: end if
34: return OutNeuron
35: end function

dendrite has a health above its death threshold then it survives and gets written
into the updated neuron (lines 22–28). Updated dendrites do not get written into the
updated neuron if it already has the maximum allowed number of dendrites (line
25–27). In lines 30–33 a check is made as to whether the updated neuron has no
dendrites. If this is so, it is given one of the dendrites of the non-updated neuron.
Finally, the updated neuron is returned to the calling function.

Algorithm 6 calls the function RUNDENDRITE (line 21). This function is detailed
in Algorithm 7. It changes the dendrites of a neuron according to the evolved
dendrite program. It begins by assigning the dendrites health, position and weight
to the parent dendrite variables. It writes the dendrite program outputs to the
internal variables health, weight and position. Then in lines 8–16 it defines the
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Algorithm 7 Change dendrites according to the evolved dendrite program
1: function RUNDENDRITE(Neuron, WhichDendrite, DendriteProgramOutputs)
2: ParentHealth = Neuron.dendrites[WhichDendrite].health
3: ParentPosition = Neuron.dendrites[WhichDendrite].x
4: ParentWeight = Neuron.dendrites[WhichDendrite].weight
5: health = DendriteProgramOutputs[0]
6: weight = DendriteProgramOutputs[1]
7: position = DendriteProgramOutputs[2]
8: if (Incropt = 1) then
9: HealthIncrement = δdh

10: WeightIncrement = δdw

11: PositionIncrement = δdp

12: else if (Incropt = 2) then
13: HealthIncrement = δdh*sigmoid(health, α)
14: WeightIncrement = δdw*sigmoid(weight, α)
15: PositionIncrement = δdp*sigmoid(position, α)
16: end if
17: if (Incropt > 0) then
18: if (health > 0.0) then
19: health = ParentHealth + HealthIncrement
20: else
21: health = ParentHealth - HealthIncrement
22: end if
23: if (position > 0.0) then
24: position = ParentPosition + PositionIncrement
25: else
26: health = ParentPosition - PositionIncrement
27: end if
28: if (weight > 0.0) then
29: weight = ParentWeight + BiasIncrement
30: else
31: weight = ParentWeight - BiasIncrement
32: end if
33: end if
34: health = Bound(health)
35: position = Bound(position)
36: weight = Bound(weight)
37: if (health > DHdeath) then
38: UpdatedDendrite.weight = weight
39: UpdatedDendrite.health = health
40: UpdatedDendrite.x = position
41: UpdatedDendriteisAlive = 1
42: else
43: UpdatedDendriteisAlive = 0
44: end if
45: return UpdatedDendrite and UpdatedDendriteisAlive
46: end function

possible increments in health, weight and position that will be used to increment
or decrement the parent variables according to the user defined incremental options
(linear or non-linear). In lines 17–33 it respectively carries out the increments or
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Algorithm 8 Create new neuron from parent neuron
1: function CREATENEWNEURON(ParentNeuron)
2: ChildNeuron.NumDendrites = ParentNeuron.NumDendrites
3: ChildNeuron.isout = 0
4: ChildNeuron.health = 1
5: ChildNeuron.bias = ParentNeuron.bias
6: ChildNeuron.x = ParentNeuron.x
7: for i = 0 to i < ChildNeuron.NumDendrites do
8: ChildNeuron.dendrites[i] = ParentNeuron.dendrites[i]
9: end for

10: end function

decrements of the parent dendrite variables according whether the corresponding
dendrite program outputs are greater than or less than or equal to zero. After this it
bounds those variables. Finally, in lines 37–44 it updates the dendrites health, weight
and position provided the adjusted health is above the dendrite death threshold (in
other words it survives). Note that if Incropt = 0 then there is no incremental
adjustment and the health, weight and position of the dendrites are just bounded
(lines 34–36).

Algorithm 2 uses a function CREATENEWNEURON to create a new neuron if
the neuron health is above a threshold. This function is described in Algorithm 8.
It makes the new born neuron the same as the parent (note, its position will be
adjusted by the collision avoidance algorithm) except that it is given a health of one.
Experiments suggested that this gave better results.

Extracting Conventional ANNs from the Evolved Brain

In Algorithm 1, a conventional feed-forward ANN is extracted from the underlying
collection of neurons (line 15). The algorithm for doing this is shown in Algo-
rithm 9. Firstly, this algorithm determines the number of inputs to the ANN (line
5). Since inputs are shared across problems the number of inputs is set to be the
maximum number of inputs that occur in the computational problem suite. If an
individual problem has less inputs than this maximum, the extra inputs are set to
0.0. The brain array is sorted by position. The algorithm then examines all neurons
(line 7) and calculates the number of non-output neurons and output neurons and
stores the neuron data in arrays NonOutputNeurons and OutputNeurons. It also
calculates their addresses in the brain array.

The next phase is to go through all dendrites of the non-output neurons to
determine which inputs or neurons they connect to (lines 19–33). The evolved
neuron programs generate dendrites with end positions anywhere in the interval
[−1, 1]. The end positions are converted to lengths (line 25). In this step the
dendrite position is linearly mapped into the interval [0, 1]. To generate a valid
neural network we assume that dendrites are automatically connected to the nearest
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Algorithm 9 The extraction of neural networks from the underlying brain
1: function EXTRACTANN(problem, OutputAddress)
2: NumNonOutputNeurons = 0
3: NumOutputNeurons = 0
4: OutputCount=0
5: Ni = max(Ni , p)

6: sort(Brain, 0, NumNeurons-1) # sort neurons by position
7: for i = 0 to i < NumNeurons do
8: Address = i + Ni

9: if (Brain[i].isout > 0) then # non-output neuron
10: NonOutputNeur[NumNonOutputNeur] = Brain[i]
11: NonOutputNeuronAddress[NumNonOutputNeur]= Address
12: Increment NumNonOutputNeur
13: else # output neuron
14: OutputNeurons[NumOutputNeurons]= Brain[i]
15: OutputNeuronAddress[NumOutputNeurons]= Address
16: Increment NumOutputNeurons
17: end if
18: end for
19: for i = 0 to i < NumNonOutputNeur do # do non-output neurons
20: Phenotype[i].isout = 0
21: Phenotype[i].bias = NonOutputNeur[i].bias
22: Phenotype[i].address = NonOutputNeuronAddress[i]
23: NeuronPosition = NonOutputNeur[i].x
24: for j = 0 to j < NonOutputNeur[i].NumDendrites do
25: Convert DendritePosition to DendriteLength
26: DendPos = NeuronPosition - DendriteLength
27: DendPos = Bound(DendPos)
28: AddressClosest = GetClosest(NumNonOutputNeur, NonOutputNeur, 0, DendPos)
29: Phenotype[i].ConnectionAddresses[j] = AddressClosest
30: Phenotype[i].weights[j] = NonOutputNeur[i].weight[j]
31: end for
32: Phenotype[i].NumConnectionAddress = NonOutputNeur[i].NumDendrites
33: end for
34: for i = 0 to i < NumOutputNeurons do # do output neurons
35: i1 = i+NumOutputNeurons
36: Phenotype[i1].isout = OutputNeurons[i].isout
37: Phenotype[i1].bias = OutputNeurons[i].bias
38: Phenotype[i1].address = OutputNeuronAddress[i]
39: NeuronPosition = OutputNeurons[i].x
40: for j = 0 to j < OutputNeurons[i].NumDendrites do
41: Convert DendritePosition to DendriteLength
42: DendPos = NeuronPosition - DendriteLength
43: DendPos = Bound(DendPos)
44: AddressClosest = GetClosest(NumNonOutputNeur, NonOutputNeur, 1, DendPos)
45: Phenotype[i1].ConnectionAddresses[j] = AddressClosest
46: Phenotype[i1].weights[j] = OutputNeuron[i].weight[j]
47: end for
48: Phenotype[i1].NumConnectionAddress = OutputNeurons[i].NumDendrites
49: if (OutputNeurons[i].isout == problem+1) then
50: OutputAddress[OutputCount] = OutputNeuronAddress[i]
51: Increment OutputCount
52: end if
53: end for
54: end function
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Algorithm 10 Find which input or neuron a dendrite is closest to
1: function GETCLOSEST(NumNonOutNeur, NonOutNeur, IsOut, DendPos)
2: AddressOfClosest = 0
3: min = 3.0
4: if (IsOut = 0) then # only non-out neurons connect to inputs
5: for (i = 0 to i < MaxNumInputs) do
6: distance = DendPos - InputLocations[i]
7: if distance > 0 then
8: if (distance < min) then
9: min = distance

10: AddressOfClosest = i
11: end if
12: end if
13: end for
14: end if
15: for j = 0 to j <NumNonOutputNeur do
16: distance = DendPos - NonOutNeur[j].x
17: if distance > 0 then # feed-forward connections
18: if (distance < min) then
19: min = distance
20: AddressOfClosest = j + MaxNumInputs
21: end if
22: end if
23: end for
24: return AddressOfClosest
25: end function

neuron or input on the left. We refer to this as “snapping” (lines 28 and 44). The
dendrites of non-output neurons are allowed to connect to either inputs or other non-
output neurons on their left. However, output neurons are only allowed to connect to
non-output neurons on their left. Algorithm 10 returns the address of the neuron or
input that the dendrite snaps to. The dendrites of output neurons are not allowed to
connect directly to inputs (see Line 4 of the GETCLOSEST function), however, when
neurons are allowed to move, there can occur a situation where an output neuron is
positioned so that it is the first neuron on the right of the outputs. In that situation
it can only connect to inputs. If this situation occurs then the initialisation of the
variable AddressOfClosest to zero in the GETCLOSEST function (line 2) means
that all the dendrites of the output neuron will be connected to the first external input
to the ANN network. Thus a valid network will still be extracted albeit with a rather
useless output neuron. It is expected that evolution will avoid using programs that
allow this to happen.

Algorithm 9 stores the information required to extract the ANN in an array called
Phenotype. It contains the connection addresses of all neurons and their weights
(lines 29–30 and 45–46). Finally it stores the addresses of the output neurons
(OutputAddress) corresponding to the computational problem whose ANN is
being extracted (lines 49–52). These define the outputs of the extracted ANNs
when they are supplied with inputs (i.e. in the fitness function when the Accuracy
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is assessed (see Algorithm 1). The Phenotype is stored in the same format as
Cartesian Genetic Programming (see Sect. 8.4) and decoded in a similar way to
genotypes.
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Chapter 9
The Elephant in the Room: Towards the
Application of Genetic Programming to
Automatic Programming

Michael O’Neill and David Fagan

9.1 Introduction

The origin of what we now call the field of Genetic Programming lies in the problem
of automatic programming [1–8]. Yet in our field this is a hibernating Elephant.
Somewhere along the way we got distracted, in particular by success in model
induction, system identification, or as we call it symbolic regression. However, in
recent years we have also seen the emergence of arguably superior methods for
symbolic regression (e.g., [9–11]), which if nothing else, should serve as a nudge to
the community to turn its attention fully back towards automatic programming.

Taking a step back, looking at the bigger picture, there is much hype these
days around Artificial Intelligence, which is largely driven by the significant
real-World success demonstrated by neural networks and so-called deep learning.
Gaining in confidence in being able to tackle problems traditionally thought to be
beyond the ability of current technology, recently the machine learning community
has started to turn its head towards what is arguably the holy grail problem of
automatically creating code, historically referred to as automatic programming,
and more recently terms like program synthesis and machine programming have
been coined. Solving Automatic Programming promises the ability of a machine
capable of programming itself, perhaps a necessary step in machines being capable
of reaching true intelligence.

As the wider field of Machine Learning turns its head toward the holy grail of
automatic programming, we need to awake the Elephant. Building on the open
issues in our field [12], O’Neill and Nicolau [13] propose that our focus could
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be directed towards “What are the sufficient set of features in natural, genetic,
evolutionary and developmental systems, which can translate into the most effective
computational approaches for program synthesis?”. More generally, we propose
that we should now focus efforts towards the problem of Automatic Programming
and find the best combination of search, optimisation and machine learning methods
which might be used to tackle this problem.

The remainder of this chapter continues with an overview of the journey of
genetic programming and automatic programming with a perspective from our
own groups efforts in this space in Sect. 9.2, followed by an examination of a
very successful collaboration between our group and Bell Labs in the domain
of software-defined communication networks (Sect. 9.3), before providing some
Concluding Remarks in Sect. 9.4 on what this all means for the future of Genetic
Programming and its application to Automatic Programming.

9.2 A Journey with Genetic Programming and Automatic
Programming

It is incorrect to state that Genetic Programming has not been applied to automatic
programming, and there are many examples including perhaps its earliest incar-
nations towards machine code [14, 15]. However, arguably the majority of effort
in our field has been directed towards symbolic regression. For example, it was
noted that 36% of papers at GECCO between 2009 and 2012 were devoted to
symbolic regression, and taken in combination with applications to classification
the figure rose to 57% with only 3.8% on what might be considered more traditional
programming problems [16]. This popularity and focus on symbolic regression is
perhaps unsurprising due to the flexibility of the approach and its potential for
impact. However, if we treat symbolic regression as the application (or problem
domain), there are now alternative methods, some inspired by genetic programming,
which outperform genetic programming approaches.

Building on the Open Issues paper [12], at the GECCO 2013 tutorial on the
same topic we also asked “whatever happened to evolving algorithms” and noted
“algorithm induction” as an outstanding open issue for our community [17]. Of
course we are not alone in recognising the opportunity presented by the hibernating
elephant. For some recent examples, in 2015, Helmuth and Spector [18] proposed
a suite of 29 benchmark programming problems and have provided a GitHub
resource, which includes the problem data sets [19], and Krawiec et al. [20] have
proposed the use of formal specifications in combination with Genetic Programming
to improve generalisation.

The research of our group at University College Dublin has followed an inter-
esting path rooted in method development, and predominantly in grammar-based
approaches to genetic programming [21], in particular Grammatical Evolution [22–
26], but coupled to persistent application of these methods to a diverse set of
problem domains.
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As a group we are grounded in Natural Computing methods, in particular genetic
and evolutionary computation, and have sought to distil the salient computational
properties and mechanisms of nature into in-silico algorithms which exhibit superior
performance and robustness in search, optimisation and machine intelligence. At
the core of our research agenda, our target problem has always been automatic
programming. We can see evidence of this in the title of the PhD thesis of one
of the authors of this study “Automatic Programming in an Arbitrary Language:
Evolving Programs with Grammatical Evolution” [27]. Our earlier work in auto-
matic programming includes tackling the generation of Caching [28] and Sorting
algorithms [29] in addition to multi-line C code [30]. We have undertaken many
applications in Finance using grammars to constrain the model form, including
generating trading rules [31, 32], corporate failure prediction [33], bond rating [34],
and evolving trade execution strategies for Algorithmic Trading [35]. More recently
we have been tackling program synthesis examining Helmuth and Spectors 26
benchmark programming suite for this work [36–39], and through search-based
software engineering in the form of genetic improvement [45, 46].

We have examined a much wider set of problem domains through the years,
including engineering applications such as truss optimisation and design [40, 43],
pylon design [42], and aircraft design [44], to platform games [41] and business
analytics [47–49]. The following section outlines our progress in the domain of
software-defined networks in which we have enjoyed much success over the past 7
years, achieving beyond human-competitive performance.

9.3 A Journey in Software-Defined Communications
Networks

In 2011 we began a collaboration with Bell Labs in the domain of Software-
defined Communications Networks. The “getting to know each other” phase of
the collaboration with Bell Labs involved approaching the problem of improving
network coverage using genetic programming. Bell Labs are pioneers in femtocell
technology, which was being used to augment macro cells, filling in the coverage
gaps, and managing the configuration of femtocells became the manner in which we
addressed this and a number of publications followed [50–53]. Figure 9.1 illustrates
a multi-tier heterogeneous network comprised of macro (MC) and small cells (SC).
Small cells are used to offload user equipment (e.g., smart phones and tablets) from
congested macro cells.

Today, coverage is no longer the primary concern of network operators. In the
era of smart phones and the proliferation of connected devices represented by the
concept of the internet of everything, providing and efficiently managing capacity
is the new challenge. In our second phase of collaboration with Bell Labs our
focus shifted with this change in objective [54–56]. In Fig. 9.2 we can see how
heterogeneous networks can be configured by controlling the power (a) and bias
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Fig. 9.1 Multi-tier heterogeneous networks containing (a) Macro and (b) Small cells

Fig. 9.2 Heterogeneous networks can be configured, such that Small Cells can control their power
and bias (see (a) and (b)). Using bias creates an artificially expanded region around the small
cell (b), however, user equipment in this cell edge region experience severe interference from the
macro cell (c). Macro cells can be configured using Almost Blank Subframes, where they are
silent (except for control signals) allowing small cells to communicate with user equipment with
significantly reduced interference (d)

(b) of small cells, and managing interference through the adoption of almost blank
subframes (ABS) by macro cells. When user equipment attaches to a small cell as a
result of being in the artificially expanded region of a small cell as a result of bias,
it suffers from severe interference from the more powerful macro cell. Managing
power and bias in combination with the adoption of appropriate ABS patterns allows
us to increase data transmission rates in the network resulting in improved quality
of service for users.
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Fig. 9.3 From an optimisation perspective we explore two facets of the heterogeneous network.
(1) We wish to reduce interference experienced by the cell-edge users, and (2) manage fairness
of service to all users. As such we explore a number of approaches to optimise the network
configuration and user equipment scheduling

Figure 9.3 illustrates the bi-level optimisation problem we tackle to improve
fairness of service for users and to minimise interference, through the search for
improved scheduling strategies and optimised network configurations.

Our experiments involve a real-World network simulation of downtown Dublin
city centre in Ireland (see Fig. 9.4), which includes 21 macro cells and varying
numbers of small cells and items of user equipment in low, medium and high-density
scenarios. Network performance is calculated using the Sum Log Rate measure,
which calculates the sum of the log of the average downlink rate for each user across
all forty subframes of the simulation time.

Perf ormance =
∑

u∈U

log(R
avg
u ) (9.1)

Fitness is the difference between the optimised network from the original
network state (in terms of sum log rates).

In the subsections that follow we outline the main elements of the work to date.
Firstly we will examine the scheduling of users within a fixed network configuration
before examining how the augmentation of the network configuration can improve
upon the networks performance with a fixed industry standard scheduler. Finally,
we look at combining both approaches and adapt the network configuration whilst
also using evolved solutions to achieve large gains in performance.
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Fig. 9.4 The simulation environment of downtown Dublin city centre with the river Liffey flowing
across the top of the simulated area. The top right, and bottom row figures illustrate different levels
of densification (low, medium and high numbers of small cells and user equipment) on the network

9.3.1 Network Scheduling

Heterogeneous networks have multiple layers that exist on differing change time-
scales. Whilst the network configuration utilises a time-scale of minutes between
possible configuration changes, the schedulers utilise a micro second scale. What
is required from an effective scheduler is schedule all connected UEs for a frame
(40 ms in duration), that consists of 40 subframes. The industry standard is to
schedule across 8 subframes and then repeat this five times. Figure 9.5 outlines
the required process. The UEs report there SINR to the hosting cell. These values
are then quantised and normalised between a range. These values are then used by
a scheduler to output a schedule for that frame. This all has to be done within 40 ms
so that the network can effectively transmit to the UEs.

During the course of this project several approaches to this have been undertaken
as outlined briefly below:
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Fig. 9.5 Each subframe corresponds to 1 ms. A full frame is comprised of 40 subframes, with the
first 8 subframes repeated as a block five times. The actual SINR values (dB) are reported to the
cell by both being clipped to a range and quantized, and as such are a coarse-grained representation
of the actual network state. The reported SINR values are then used to generate a user schedule

• GA Approach—The first approach taken was to employ a GA to schedule the
users as the representation of the problem was suited to a GA approach. What
was found was that the GA could produce a very high quality schedule for each
frame, that outperformed the state of the art. The only caveat being that it was
not possible to meet the hard 40 ms time constraint.

• GP Approach—To try and address the time constraint problem of the GA
approach, we used the GA to produce example solutions and then used GP to
try and evolve a model that would functionally approximate to what the GA
was evolving. This approach was successful in that it still outperformed the
industry standard scheduler but it still lacked the outright performance of the
GA approach.

• NN Approach—Another model induction approach to try and utilise the GAs
power was to employ a hybrid neural network. A large dataset of 500k cases
was generated and the GA was used to evolved high performing schedules for
each case, 25k of which were then used as a training set on a deep NN, with the
remained used for test. This proved to be very successful approach resulting in
performance very close to the GA. The only caveat was that training time was
long, but once trained the networks proved very robust.

• Advanced GP Approach—The decision was made to then try and evolve a
scheduler using GP that was not influenced by what the GA was outputting.
This fresh outlook at the problem used summary statistics on the reported UEs
SINR values. These new features where then used by GP in a regression manner
to output a function that would schedule each user. This approach proved very
successful and also had the added ability to adapt the desired characteristics
of the scheduler for certain scenarios e.g. cell edge users priority, fairness,
boost high performing users more. Also during this work ensemble approaches
where examined, such as random forests, and the transition to partial assigned
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bandwidth was introduced. With partially assigned bandwidth a user was not just
scheduled in a binary manner as before, but was now assigned a percentage of
its possible bandwidth within a subframe. These new models that GP evolved
proved to be great starting points in the development of robust models that had
great general performance. Domain experts, armed with the evolved solutions,
could take the simplified GP models and break down what the model was doing
and produce very robust models.

• Adaptive Tuning—The advanced GP approach proved to be the most expressive
and tunable approach for scheduling. The pinnacle of this tuning was achieved
when we introduced the ability for users to tune what sort of profile they wished
to evolve for. The addition of a Σ parameter to allowed for the user to define
what percentile of the UEs would take priority during evolution. Essentially what
is now possible is for us to evolve a scheduler that would focus on the bottom
fifth percentile of users and bias our gains to focusing on improving the lowest
performing users.

While initially the direct-encoding GA approach had shown to produce impres-
sive performance, the time constraints that it fails to meet have led to the discovery
of this whole body of research grounded in the model induction approach of GP. We
have uncovered the ability to evolve, and tune the evolution of schedulers, that are
beyond human-competitive, and also can guide domain experts to refine and tune
these models into very robust models with good general performance.

9.3.2 Network Configuration

The configuration of the network as stated above can be augmented by changing
the levels or power and the bias of the various cells. The ABS patterns can also be
changed to allow for better performance of UEs. But how these elements should be
augmented over time is the question we set out to understand. Several approaches
to this will now be outlined:

• GA Load Balancing with Power and Bias—The first foray into the network
configuration was to try and balance the load on each network component. A GA
was used to set the power level for each device, as well as the bias level, that
would assign UEs to small cells even though they are better suited to connecting
to the macro cell. This approach was simple in its goal to remove congestion
and thus improve the overall network performance. While the approach was
successful we were not tuning for pure performance of the UEs and especially
the users in areas or high noise.

• GA Maximise Fairness with Power, Bias, and ABS ratios—Fairness became
the overriding goal of the project as time went on. Adopting a Robin Hood
approach of stealing from the rich and giving to the poor became the goal. In this
approach the GA was used to not only set the power and bias levels as before but
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we now were tuning the ABS ratios for the macro cells to allow for the network
to give every UE usable performance when connected to the network.

• GP Maximise Fairness with Power, Bias, and ABS ratios—The GA approach
experienced the same issues as in scheduling in terms of not being able to operate
in a timely manner. Similarly we took the model induction approach, like in
scheduling, to use GP and summary statistical features, constructed from the
reported signal qualities of users attached to cells. This was then given to GP
to evolve a function that would set the power, bias, and ABS ration for each
small cell in the network. The performance of the GP model was acceptable and
gains were seen in fairness.

• Hill Climbing Approach—Several search mechanisms were tried in further
studies to establish the validity of the GA/GP performance. While random search
and others fell short of the mark it was discovered that adopting a hill climbing
approach to setting power, bias and ABS ratios proved to be not only very fast
but also produced performance on par with and in many cases exceeding the
GP approach. This was only in a static network situation. If any mobility of
small cells exists within the network the GA/GP approaches remain the best
performers.

With the exploration of the network configuration completed it was decided that
if the network could be shown to be static that the hill climber produced the best
results in a timely manner, but that if the network was subject to fluctuations in the
numbers of available small cells then the GP/GA approaches should be considered.
Now that we had stable approaches to both levels of the problem could we combine
them?

9.3.3 Combining Network Configuration and Scheduling

Could the power of both approaches now be unlocked. By having a very effective
scheduler in the GP solutions that the network operators could deploy based on
certain criteria (boost cell edge user performance, boost bottom 25% of users
etc;) and the ability to evolve the network configuration to minimize SINR within
the network we investigated if the two approaches could exist synergistically in
tandem or if we would be faced with both approaches competing against each
other. To this end the best approaches to each problem level were deployed on the
Dublin simulation. Starting from a baseline configuration for the network, the hill
climber was allowed to adjust the networks power, bias, and ABS ratios. This was
happening on a minute time scale. While the network was being adapted the GP
based scheduler was deployed. With both approaches operating in tandem we saw
performance increase for the lower performing users improve in the range of 600%.
The adoption of the evolved network configuration provided the scheduler with the
ability to vastly increase its performance than had been observed previously.
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The main bulk of work to this point had focused on augmenting the network
configuration and scheduling processes to deliver better performance to cell edge
users. This while of great benefit to infrastructure providers, provides for little in
terms of a recurring revenue stream for cellular network operators. All performance
measures had been displayed in industry standard style plots as above, where
every user is just a point on the graph. We wanted to focus in, and study the real
world impact of our approaches to the average user of a network. To this end we
investigated how single users experience was enhanced by the application of our
enhanced network management solutions. It was seen that we could offer minimum
level of performance guarantees to nearly 30% of all connected users before we
would see any noticeable drop in quality to the majority of users [57].

9.3.4 Summary

In summary we have observed that GP alone is not necessarily the ideal approach
to the heterogeneous communications network problem, however, it and more
broadly evolutionary computation is an essential component of the toolkit. Through
the best combination of tools available to us we have successfully achieved
network performance gains significantly beyond the control algorithms deployed on
networks and the state of the art [55, 56]. Not only that but the generated solutions
are transparent, being amenable to human understanding and modification [54].

In terms of implications for the field of Genetic Programming, the take home
message we would like to convey in this chapter is that the field of GP set out to
tackle the challenging problem of Automatic Programming. As a community of
researchers we have however become distracted by the vast number of interesting
real-World problems which our flexible method can tackle, as a consequence of
how many of these problems can be cast in the form of symbolic regression.
Automatic Programming requires more than the ability to generate single line

symbolic expressions.
Has the field of GP not achieved scalable automatic programming to date as a

result of this distraction, or due to the limitations of the method itself? Arguably a
fresh approach to automatic programming is required which considers a wider set
of methods drawn from, for example, machine learning and software engineering.

9.4 Discussion and Concluding Remarks

We are not alone in recognising the opportunity presented by the hibernating
elephant in our field, and in recent years in particular, Helmuth and Spector [18]
have made a significant contribution to direct our focus by introducing the set of 29
benchmark programming problems, which our own group have directed attention.
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Genetic Programming as a method is not perfect, and does not have all
the necessary ingredients to tackle Automatic Programming. Despite overlook-
ing the entire field of genetic programming, a recent position paper [58] pro-
vides an interesting perspective on what they call machine-based programming
(i.e., automatic programming), stating that there are three pillars required for
an automatic programming system, namely intention, invention and adaptation.
The first of these, intention, is overlooked (or at the very least simplified) by
our community and involves understanding the users intent. In genetic program-
ming this equates to encoding a fitness function. Invention is captured by the
generation of code from the specification of intent, and adaptation refers to
targeting and optimising the generated code towards different platforms in addition
to its maintenance. It is clear to see how advances in fields such as Natu-
ral Language Processing and Brain Computer Interfaces may bring advances
in automating intention. Even if we restrict our consideration to the program
synthesis (invention) component of automatic programming, Genetic Programming
has a number of open issues which need to be addressed many of which have
already been captured [12] and include scalability and modularity, generalisa-
tion, complexity and usability and semantics. Indeed, there are many opportuni-
ties which might already exist in the literature including logic-based approaches
including the use of formal specifications, deduction, induction and learning [1],
the field of Inductive Logic Programming [59], in addition to approaches from
the wider field of software engineering. It is notable that Krawiec et al have
recently proposed the adoption of formal specifications as an approach to address
generalisation [20], and a book on Behavioral Program Synthesis with Genetic
Programming [60].

From our own journey in understanding the utility of genetic programming
in the domain of software defined networks, it is clear that variants of Genetic
Programming used in combination with other methods results in performance
beyond human competitiveness [54, 55]. And this is not the first real-World problem
domain in which we have observed this. As a community who set out to tackle
automatic programming, we need to sit up and pay attention. Arguably we need to
re-orient our field, to re-define ourselves as the field of Automatic Programming,
and as such embrace any and all methods to drive success in this domain.

We hope that this chapter acts as a clarion call to our community, to truly awaken
the hibernating elephant in our field, and to broader our horizons to embrace any and
all methods to address the holy grail of computer science, automatic programming.
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Chapter 10
Untapped Potential of Genetic
Programming: Transfer Learning and
Outlier Removal

Leonardo Trujillo, Luis Muñoz, Uriel López, and Daniel E. Hernández

10.1 Introduction

The landscape of machine learning (ML) and pattern recognition has changed
markedly over the last decade. The mainstream of ML focused on statistical and
probabilistic approaches in the 1990s and early 2000s, while neural networks
(NNets), fuzzy systems and evolutionary computation based methods were often
considered to be a different discipline, referred to as soft computing, computational
intelligence and bio-inspired computation [6]. This distinction, however, was at the
approach and paradigm level, not at the application level, since the type of problems
being studied and solved were often the same in both communities. However, thanks
to substantial developments in computing hardware that has increased the access to
massively parallel architectures, NNets in particular have become the tool of choice
in ML in the form of Deep Learning (DL) [11].

Evolutionary-based approaches to ML, on the other hand, have not followed
suit, at least not at the same level. For many years genetic programming (GP) in
particular has been seen as a mirror opposite to NNets, in the sense that the type of
models produced by each method were fundamentally different even though they
were designed to solve the same type of tasks, mainly supervised learning. On the
one hand, GP produces symbolic expressions that could be more interpretable and
amenable to human improvement, producing white or grey box models. On the other
hand, NNets are black-box models that could not be inspected in any practical way.
However, NNets were more efficiently trained and easier to setup. The choice of one
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approach over another was a matter of preference or specific requirements, since the
type of performance achieved by both methods was more or less comparable.1

However, the gap in efficiency has changed dramatically as ML has moved on
to tackle much larger problems in the age of Big Data [23]. While both methods
perform some form of search/optimization to generate a model, there are important
differences between both paradigms in this respect. While NNets rely on traditional
mathematical programming methods, namely variants of gradient descent. GP uses
a more complex syntactic based search that is far more inefficient, given the poor
locality of the search space and the almost impossibility to define a search gradient.
The gap in efficiency between both methods has gotten wider because NNets
learning algorithms can easily exploit powerful parallel architectures such as GPUs
[11], whereas the migration of GP to these architectures has been comparatively
less successful [3]. Moreover, thanks to these technological developments, the new
NNet models, namely DL architectures, have produced results that far exceed those
of other ML algorithms, tackling problems that are not even considered in most GP
research [11].

One possible road forward is to work on improving the implementations of GP-
based systems on new parallel architectures [3], and to also simplify the use of GP-
based algorithms, following the model of popular machine learning libraries such as
Scikitlearn, TensorFlow or PyLearn. Another approach is to use a more constrained
approach to GP-based learning, such as exploiting the hierarchical architecture of
some models of the human brain [4], which are very similar to DL architectures.

This chapter, conversely, takes a look at more traditional GP-based systems
and argues that there may still be significant untapped potential in (close to) the
canonical GP paradigm for the most common GP application domain, symbolic
regression. The goal is to present preliminary results that highlight two aspects of
GP that have not received sufficient attention from the GP community. The first is
transfer learning, where solutions evolved for one problem are re-used on another.
This approach has become popular in DL [11, 22], but has not been explored in GP.
The second is the ability for a GP system to be robust in the presence of outliers in
the training data. For the first point, a GP system that evolves feature transformations
called M3GP [19] is studied, showing that transfer learning is in fact possible in this
domain, the first such result to the authors knowledge. For the second point, this
work shows evidence that GP can exploit the inherent structure in semantic space to
easily detect outliers within a set of training samples (fitness cases). These results
are presented to show that the evolutionary GP paradigm may still have untapped
potential that could be leveraged to develop future GP-based ML systems.

The remainder of this work proceeds as follows. Section 10.2 presents how
transfer learning can be carried out in symbolic regression problems. Afterward,
Sect. 10.3 describes how GP can detect outliers in the target variables using two real-

1Experimental evidence more or less confirmed the No-Free-Lunch theorem in many domains
where, on average, many algorithms tended to perform similarly.
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world datasets contaminated with extreme numbers of outliers. Finally, conclusions
and future research directions are discussed in Sect. 10.4.

10.2 Transfer Learning

While Deep NNets have proven to be extremely powerful learning tools, they also
suffer from some important shortcomings. Training these massive architectures
requires a lot of computational power and incur long processing times [11]. Despite
the increased access to massively parallel hardware, much research has been devoted
to improving computational efficiency and reducing wait times. One approach is to
use transfer learning [22], which can be explained quite easily. Basically, transfer
learning entails the reuse of a previously trained model on a new problem. In other
words, training a model with data from Problem A, lets call this problem the Donor,
and then reusing the model on Problem B, lets call this the Recipient. The actual
process is slightly more complicated, most transfer learning approaches re-use a
large part of the original model but may replace the deepest levels of the NNet and
then re-train (weight optimization with gradient descent) the network using training
data from the Recipient. However, this second training phase is comparatively much
shorter, making the re-use quite efficient.

The logic of why transfer learning works is straightforward. It is assumed that the
Donor and the Recipient are similar in some sense; i.e. that they require the same
type of low-level feature extraction or feature construction processes. For instance,
the Donor may be a person recognition problem while the Recipient may be a car
recognition problem. Since both tasks would require the detection and extraction of
similar low-level features, then it is reasonable to assume that these shallow levels
could be reused. Such an approach greatly simplifies the design of a Deep NNet,
and can reduce the training time substantially.

While transfer learning has become popular in DL, there are no works, to the
authors knowledge, that study this approach in the context of GP. It may be that this
is the case, simply because there are no GP systems that produce models that are
comparable to Deep NNets. For the scale of models usually sought by a GP search
[27], it may not seem like a good idea to try to transplant solutions from one problem
to another. It may seem reasonable to assume that if a model is small enough, then
it will probably be specialized to the problem for which it was derived. And large
models in GP are normally assumed to be bloated, not really the type of model one
would want to reuse.

In this section, we present the first study of transfer learning in GP. Our intent is
to provide a proof-of-concept experiment, which shows that it is possible to use this
approach with a GP-based system for symbolic regression . In particular, we use
a recently proposed variant of GP called M3GP [19] to derive linear in parameter
models that are then fitted with Multiple Linear Regression (MLR). Two real world
problems are used, and two sets of results are presented, using each problem as a
Donor and a Recipient. The next subsections present the M3GP system, the test
problems, experiments and a discussion of the results.
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10.2.1 Case Study

M3GP evolves a transformation k : Rp → R
d with p, d ∈ N using a special tree

representation, in essence mapping the p input features of the problem to a new
feature space of size d [19]. M3GP uses a multi-tree representation, where each
individual is composed by d standard GP-trees, each one defining a new feature
dimension. Each one of the new features is constructed by a linear or non-linear
(depending on the function set) combination of the original problem features. The
method includes specialized search operators, that operate at both the subtree level
and at the feature level, in conjunction with a greedy pruning method to help keep
the number of new feature dimensions as low as possible. Originally, M3GP is a
wrapper-approach to ML problems, where genetic operators that function at syntax
level are used to evolve a population of transformations, and an additional learning
process is used to fit the final model. For instance, M3GP was originally proposed
to tackle multi-class classification problems using a Mahalanobis distance classifier
applied to the transformed feature set, where fitness is defined by the training
accuracy of the classifier [19].

Recently, M3GP was extended to tackle symbolic regression problems [20]. In
essence, the new feature set generated by an M3GP individual is used to construct
a linear in parameter model that is fitted using MLR. Results clearly show that
the evolved feature set is more efficient at describing the target variable, with
the evolved transformations increasing the mutual information with respect to the
output. Moreover, the method compares favorably with several GP and non-GP
methods, including GSGP [18], FFX [16] and MARS [8], producing very accurate
models that are also far more parsimonious than those produced by the compared
algorithms.

In this sense, M3GP can be considered to be a memetic algorithm [2], where
both an explorative metaheuristic (GP) and a local optimizer (MLR) are combined.
The general idea to test transfer learning for M3GP is to use an evolved feature
transformation that was generated for the Donor problem, and to apply it on the
Recipient problem. No further evolution will be carried out on the Recipient, but
model parameters are re-fitted using MLR. One important issue to consider is to
determine a proper ordering of the original problem features; i.e. how will the
Recipient features will be given as input to the transformation evolved on the Donor.
To do so, the original features are first transformed using Principal Component
Analysis (PCA), and the feature set is truncated so both problems have the same
number of features. Brute force is then used to test all possible feature combinations
in the Recipient. For each combination, model parameters are re-fitted using a
training partition from the Recipient and tested on unseen data. The results show
that a large number of possible combinations can lead to relatively accurate models
that improve upon naive MLR computed on the original features. Furthermore,
the transferred transformations reach similar performance levels as running M3GP
on the original problem features. However, as will be shown, the possibility of
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transferring solutions from one problem to another is not symmetric, an interesting
result that is also discussed.

10.2.2 Experiments and Results

The proposed experimental strategy to test the viability of transfer learning with
M3GP is carried out as follows. First, two real world problems are chosen, which
have previously been solved with M3GP [19]. The problems are summarized in
Table 10.1. The first is called the Tower problem, an industrial problem where
the goal is to model gas chromatography measurements of the composition of a
distillation tower, where the target variable is propylene concentration at the top of
the tower. The input variables are related to temperature, flow and pressure, and
the goal is to obtain a function that directly relates the inputs to the target [29]. The
second is the Energy Efficiency Heating problem, a real-world problem related to the
optimal prediction of the energy performance of residential buildings. The problem
is to predict the heating load of a building based on eight descriptive features, such
as the glazing area, height and orientation [28].

Both input datasets are transformed using PCA and only the top 6 new feature
dimensions are selected. The number of features is set to 6 to keep the brute
force search as small as possible without loosing too much information. Afterward,
10 independent runs of M3GP are performed over 10 random partitions of each
problem, using a 70–30 data split for training and testing, and the setup specified
in [19]. The results of these initial runs are summarized in Table 10.2, showing the
minimum, maximum and median RMSE. The table also summarizes the size of
the evolved models, showing the median size of the ten models (number of nodes),
medium depth and medium number of new feature dimensions generated.

From the 10 runs we obtain 10 transformations, the best solution found in each
run. Each of these solutions will be transferred to the Recipient problem. Moreover,
since each problem has been reduced to 6 feature dimensions, we will test every
possible combination to match the features of the Recipient with the inputs of the
evolved transformations. This corresponds to 720 possible combinations for each
model. A total of 7200 possible transformations when considering all the models.

Table 10.1 Symbolic
regression real-world
problems

No Real-world problem Attributes Samples

1 Energy heating [28] 8 768

2 Tower [29] 25 4999

Table 10.2 Performance of M3GP on the two test problems, based on 10 independent runs

Problem/measure Min. RMSE Med. RMSE Max. RMSE Size Depth Dimensions

Energy heating 0.422 0.433 0.452 300.5 13.5 32

Tower 36.65 37.98 38.00 572.5 14 32
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For each combination we transform the data from the Recipient, the new features
are used to build a linear model. The Recipient dataset is randomly split into a
training and testing sets (70–30), the former is used to fit the model parameters with
MLR. In what follows a single training/testing split is reported, but multiple runs
confirmed that the performance of the M3GP transformations showed low variance
(as reported in [19]).

10.2.2.1 Donor-Tower/Recipient-Energy

We start by using the Tower problem as the Donor and the Energy problem as the
Recipient. For a comparative baseline to evaluate the transferred solutions from the
Donor to the Recipient, we will use two measures. The testing performance of MLR
using the original problem features and the performance of the full M3GP learning
on the reduced feature set after PCA, as reported by the median performance in
Table 10.2.

For the first comparison the performance of the transferred solutions, all 7200
possibilities, is summarized in the first row of Table 10.3, which shows: the
minimum, median and maximum RMSE in the first three columns; the RMSE
of MLR on all the original features in the fourth column; and the number of
combinations that achieves a lower RMSE than MLR (using all 10 features) in the
fifth column, referred to as improvements.

The results are very interesting. As can be seen, a substantial majority (95%) of
the possible models performed better than the naive MLR applied to the original
problem data. In fact the best transferred model is one order of magnitude better
than MLR. These results are summarized graphically in Fig. 10.1, which shows a
frequency histogram relative to the testing error of how many combinations achieve
a certain level of performance. The figure also shows a vertical mark to indicate the
performance of MLR.

However, the transferred solutions did not reach the same performance when
compared with solutions found by applying M3GP directly on the Energy prob-
lem. Nonetheless, the performance gap between the best transferred solution
and the best performance on the Energy problem, reported in Table 10.2, is
smaller than the difference between the best transferred model and the standard
MLR model.

Table 10.3 Analysis of transfer learning results, each column focuses on a different Donor →
Recipient configuration

Problem/measure Min. RMSE Med. RMSE Max. RMSE MLR Improvements

Tower → Energy 0.818 2.11 5.35 2.87 6847

Energy → Tower 47.94 58.00 181.1 28.96 0
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Fig. 10.1 Donor-
Tower/Recipient-Energy
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Fig. 10.2 Donor-
Tower/Recipient-Tower
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10.2.2.2 Donor-Energy/Recipient-Tower

The same experiments and results are reported when the roles are reversed. Energy
is used as the Donor problem and Tower is the Recipient; the results are summarized
in the second row of Table 10.3 and in Fig. 10.2. However in this case the
results are completely different. None of the transferred models achieved adequate
performance, all performed worse than using MLR on the original problem features.
This result is informative for two reasons. First, it shows that transfer learning will
not necessarily be possible in all problem pairs. It seems that when defining a
Donor/Recipient pair, some problems will be amenable to transfer learning while
others will not. Moreover, the relationship between problems, in terms of the
usefulness of transferred solutions, does not seem to be symmetric; i.e. if one
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problem can act as Donor for another, this is not necessarily true the other way
around.

10.2.3 Discussion

This section presents a preliminary experimental evaluation of transfer learning
in GP. The chosen task is probably the most studied application domain of GP,
symbolic regression. The lack of work on this subject tacitly suggests that it has
been widely assumed that GP learning will produce highly specialized models, that
are only applicable to a specific problem instance. These results suggest the contrary,
with several questions immediately coming to the forefront.

• Can transfer learning with GP be possible in other domains, such as classification
or automatic program synthesis?

• What problems offer good potential to act as Donors and which problems are
good Recipients?

• Is transfer learning related in any way with problem difficulty in GP [15]?
• Is it possible to define a process or system that uses transfer learning to optimize

the creation of solutions for new problems, such as the one suggested in [24]?

Besides these questions, probably the most exciting outcome of these results is
the possibility of continuous open ended evolution. These results clearly show that at
least some solutions (the best solution) from a population evolved for one problem,
are relevant for another problem. Hence, it may be that other individuals might also
be relevant. If this is the case, and it seems intuitive to believe they would be, then
using the population from one problem to kick-start the evolutionary process in
another process seems entirely feasible.

Finally, it is worth studying how transfer learning relates to problems with
dynamic fitness landscapes [9, 21]. It is possible to appreciate a continuum of
problem types where both dynamic fitness problems and transfer learning prob-
lems may reside. First, we have problems with static fitness landscapes, such as
standard supervised learning. Second, dynamic fitness landscapes where changes
are monotonic for all individuals. Third, dynamic problems where changes are not
monotonic but follow a smooth dynamic. Fourth, dynamic problems where the
fitness landscapes varies in a highly irregular manner. Finally, transfer learning
problems, where the fitness landscapes changes in abrupt and discontinuous manner.
While this is only a vague high-level outline, it may provide the basis for future
experimental work on this topic.

10.3 Detecting Outliers

The presence of outliers in a training set can severely skew a regression system.
Even a single outlier can eliminate the possibility of deriving the true underlying
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model that best describes a dataset, for linear [12] and symbolic regression [14]. In
the case of linear regression there is a large amount of literature dealing with the
issue of robust regression methods that can handle a certain percentage of outliers
in a dataset. The breakdown point of a regression algorithm is the percentage of
outliers in a training set above which the algorithm fails. For instance, ordinary
least squares regression has a breakdown point of 0%, while robust methods have
a breakdown point as high as 50% [12]. Above this point only sampling techniques
are useful, such as Random Sample Consensus (RANSAC) [5] that samples the
training set to find a sufficiently clean sample to build a useful model. RANSAC
can be used in extreme cases of dataset contamination, but the computational cost
increases exponentially with the percentage of outliers in the dataset.

In the case of GP this topic has received far less attention. In previous work
[14], we presented several relevant results. First, the work showed that both robust
objective functions, such as Least Median Squares (LMS) and Least Trimmed
Squares (LTS), are applicable to GP, and that empirically their breakdown point
appears to be 50% for symbolic regression. Second, the work also evaluated fitness-
case sampling techniques for GP, such as interleaved sampling [10] and Lexicase
selection [25]. Results showed that these approaches are not useful in dealing
with outliers. The best results were obtained using RANSAC and LMS with GP
for data contamination above 50%. The approach was called RANSAC-GP, and it
achieved almost equal test set prediction than directly learning on a clean training
set. The main drawback is the high computational cost, since GP had to be executed
on each sample taken by RANSAC. Moreover, an assumption of RANSAC-GP
is that the GP search will be able to find an accurate model on a clean subset
of training examples, but this assumption might not hold for some real-world
problems.

In [17] GP and Geometric Semantic Genetic Programming (GSGP) are compared
to determine which method was more sensitive to noisy data. The training sets
are corrupted with Gaussian noise, up to a maximum of 20% of the training
instances, concluding that GSGP is more robust when the contamination is above
10%. However, the issue of outliers is not considered. Another example is [26],
in this case focusing on classification problems with GP-based multiple feature
construction when the data set is incomplete, data samples which can be considered
to be outliers. The proposed method performs well, even when there is up to 20% of
missing data, but extreme cases where most of the data is missing (above 50%) are
not considered. In [13] the authors build ensembles of GP models evolved using a
multiobjective approach, where both accuracy and program size are minimized. The
proposed approach is based on the same general assumption of many techniques
intended to be robust to outliers, that model performance will be worse on outlier
points that inliers. The ensembles are built from hundreds of independent GP runs,
making it a relatively costly approach. Experiments are carried out using a single
real-world test case, where the number of outliers in not known in advance, but
results suggest that the number is not higher than 5%. However that work does not
present an automatic approach for outlier detection or removal, the proposed method
requires human interpretation of the results to determine which samples could be
labeled as outliers.
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10.3.1 Case Study

In this work we reveal an interesting property of a randomly generated GP
population, an ability to automatically detect which samples in a training set are
outliers and which are not. In particular, we will focus on outliers in the output
variable, what are referred to as vertical outliers. As stated above, many robust
regression methods assume a model will better fit inlier data points than outliers.
Since this is assumed to be true for a fitted model, it is intuitively clear why robust
methods can only deal with less than 50% of outliers.

In this work we want to evaluate this assumption for random GP trees, by
attempting to answer the following question. Is the accuracy of a random GP tree
different for inlier samples than for outliers? If this question is answered in the
affirmative, then it may be possible to automatically detect outlier data. To answer
this question empirically the following approach is taken. First, we start with a real-
world dataset with multiple input features, a more difficult scenario than the one
considered in [14]. Second, we add fitness cases that are vertical outliers relative to
the distribution of target values in the original dataset. Third, we generate a large
random population of GP trees using standard Ramped Half-and-Half initialization.
Fourth, using each GP tree we rank the fitness cases based on their residual error.
Finally, we take the p% of fitness cases with the lowest residual error and compute
the percentage of inliers in this set. If our assumption is correct, then the question
will be answered in the affirmative. Such a result might lead to automatic robust
symbolic regression with GP.

10.3.2 Experiment and Results

To perform this study, we use the Energy Efficiency Cooling and Heating problems
defined in [28]. These problems deal with the prediction of the cooling and heating
load, respectively, in residential buildings [1]. The datasets are contaminated as
in [14], using the inverse of the Hampel identifier. To generate an outlier sample,
we perform the following steps. The input features xl of an outlier sample are
generated by randomly sampling the input values already present in the dataset for
each feature. In this way, we are assured that the input values are consistent with
the original dataset. To generate the outlier output yl we follow the approach of [14]
based on the Hampel identifier. First, a reference yr value is chosen randomly from
all the inlier values in the original dataset. Then yl = yr ± M × MAD, where the
MAD is computed over all the inlier target outputs in the original dataset, M takes
a random value in the range [10, 100], and the sign of the sum is equiprobable at
random.

A clean dataset is contaminated by adding outlier points such that the percentage
of contamination (proportion of outliers) can be controlled. For instance, if the size
of a given dataset is N , and we want a 50% contamination level, then we generate



10 Untapped Potential of Genetic Programming 203

N outliers and add them to the dataset. The considered datasets were contaminated
by different amounts of outliers, 10%, 50% and 90% contamination.

The experiment proceeds as follows. We generate 20,000 random GP trees using
Ramped Half-and-Half initialization, with a maximum depth of 7 levels, with the
function set F = {+,−,×,÷, sin, cos} where ÷ is the protected division, and
considering all the input features as terminals. For each individual ki in the sample
we compute its residual error to each fitness case and its fitness (RMSE); we do
this for each problem and for each level of contamination (percentage of outliers).
Using the residuals we order the fitness cases in the dataset and we extract the ρ%
percentile of fitness cases with the lowest residual errors, setting ρ% to the known
percentage of inliers in the dataset (the compliment of the contamination level).
From this subset we compute the percentage of samples that correspond to inliers.
If our assumption is correct, then the best individuals (with lowest error) should
mostly return fitness cases that are inliers. The GP system used in this study is the
tree-based algorithm defined in the Distributed Evolutionary Algorithms in Python
library (DEAP) [7].

Figures 10.3 and 10.4 present a summary of the results as scatter plots where
each point represents a single GP individual. Each tree is plotted based on its
fitness (horizontal axis) and the percentage of inliers detected within the top ρ%
percentile of fitness cases. The top row of plots shows the scatter plots for all 20,000
individuals, but to get a better visualization of the point cloud the bottom row of
plots only shows the best 15,000 individuals based on fitness. The plot also shows
a horizontal line at 50%, which is the breakdown point of most robust regression
methods.
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Fig. 10.3 Analysis of random GP individuals showing scatter plots where each individual is
plotted based on their fitness and percentage of inliers found. Results for the Energy Cooling
problem, with the top row showing the full 20K individuals and the bottom row showing the 15K
individuals with the best fitness. (a) 10% of contamination, (b) 50% of contamination, (c) 90% of
contamination, (d) 10% of contamination, (e) 50% of contamination, (f) 90% of contamination
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Fig. 10.4 Analysis of random GP individuals showing scatter plots where each individual is
plotted based on their fitness and percentage of inliers found. Results for the Energy Heating
problem, with the top row showing the full 20K individuals and the bottom row showing the 15K
individuals with the best fitness. (a) 10% of contamination, (b) 50% of contamination, (c) 90% of
contamination, (d) 10% of contamination, (e) 50% of contamination, (f) 90% of contamination

For low contamination levels it is easier to detect which samples are outliers,
particularly for the most fit individuals. As the percentage of outliers increases,
then it becomes progressively more difficult to detect which samples are outliers.
However, even when the contamination level reaches 90% there is still a significant
number of individuals that detect a large percentage of inliers. What is particularly
important is that the number of inliers found is larger then 50% for some of
these individuals, since in such a scenario a robust regression method could solve
the regression task using the ρ% percentile of training samples with the lowest
associated residual error.

10.3.3 Discussion

This section presented results that suggest that random GP individuals can detect
which fitness cases are inliers and which are outliers, even when the number of
outliers reaches as high as 90%. This results may seem counterintuitive, the GP
trees were randomly generated, why would they better fit some fitness cases over
another? The answer may be related to how random GP trees sample semantic space,
the space of all possible program outputs for a given the inputs specified in the
training set. While it is usually assumed that we are performing a random sampling
of the solution space, there is substantial experimental evidence that suggests that
the sampling is actually quite biased to some regions of the semantic space. This bias
can be assumed to be due to the nature of the program representation and the manner
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in which it interacts with a problem’s input features. Hence, it seems easy for GP
trees to detect which fitness cases do not follow this implicit sampling bias. Such
a result may lead to a powerful outlier detection method, which we are currently
developing.

10.4 Conclusions and Future Outlook

This paper explores to aspects of GP that have received little or no attention. The
first is transfer learning, where the results showed that it is indeed possible to transfer
solutions from one problem to another. The transferred solutions performed better
than a naive linear regression approach, and some reached a performance that was
comparable to that of a full GP evolutionary process. Moreover, the possibility of
transferring solutions from one problem to another does not seem to be symmetric,
and interesting result that will be the focus of future research. Furthermore, is it
possible to find an universal donor, or a solutions structure that can be used in
multiple problems. The second aspect was a study of how GP trees respond to the
presence of outliers in the training set. Results clearly show that a large proportion
of randomly generated individuals have a different response to inliers and outliers.
This difference can be used to rank the fitness cases and attempt to differentiate
between both types, a possible road towards robust symbolic regression with GP.
We feel that both results are noteworthy, and could lead to extracting promising
untapped potential from the GP paradigm.
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Chapter 11
Program Search for Machine Learning
Pipelines Leveraging Symbolic Planning
and Reinforcement Learning

Fangkai Yang, Steven Gustafson, Alexander Elkholy, Daoming Lyu,
and Bo Liu

11.1 Introduction

Automatic programming is one of the original goals of Artificial Intelligence and
has begun to see a resurgence of research activity. The same technology trends
(the availability of low-cost computing and data storage) that are enabling this
resurgence are also driving industries to seek improvements in their operations by
leveraging more data and analytics to optimize the process of decision making.
However, as the development of such data and analytics solutions remain difficult,
and the human resources needed are in short supply, the development of automated
and semi-automated capabilities that assist in development is of particular interest.
The benefits of such assistant technology extend far beyond industrial applications
to areas of basic science. In our research, we aim to contribute to these efforts to
advance the field of automated programming, and in particular, we aim to explore
capabilities that help users develop knowledge about machine learning pipelines.
That is, we not only want to assist in performing the highly repetitive task of trying
various techniques and parameters that represent data and analytic solutions, but
also our goal is to provide the user with the new, concrete knowledge about what
are good selections for their particular problem instances, and give them confidence
and efficiency to build production solutions that will stand up to validation and
verification efforts in their industries.
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The task of automated machine learning (AutoML) has gained more interest
recently due to the availability of public dataset repositories and open source
machine learning code bases. AutoML differs from the many previous attempts
to automatically select parameters of individual machine learning methods in that
it attempts to optimize the entire machine learning pipeline, which can consist of
very independent steps like featurization that encodes data into a numeric form, or
feature selection that attempts to pick the best subset of features to train a model
from data. Most prior work would make various assumptions about the data having
been already processed and featurized and instead focus on making it easier to
build a specific classifier like a random forest, a neural network, or a regression
model. AutoML attempts to learn a program, or machine learning pipeline, that
can accomplish many more functions in the data science, or machine learning,
process. In real-world, and basic science applications, the ability for the automated
programming approach to address the entire pipeline of data processing to model
building is critical, otherwise, the process will still require significant resources
to build customer data processing and featurization pipelines for new problem
instances and new problems.

Three recent examples of AutoML include Auto-WEKA [19], Auto-SKLEARN
[3] and TPOT[14]. Whereas the former two approaches, Auto-WEKA and Auto-
SKLEARN, combine Bayesian optimization with the machine learning libraries,
WEKA and scikit-learn, to learn a probability graph from model building over many
datasets, the TPOT algorithm leverages the DEAP genetic programming library with
scikit-learn to learn a specific pipeline over an individual dataset. Due to our use case
of assisting users by providing them with concrete knowledge about the machine
learning pipelines, the TPOT algorithm more closely meets our objective. That is
because machine learning pipelines are significantly different from previous appli-
cations of genetic programming, and with our added goal of delivering knowledge to
the user, we are also investigating alternative representations and algorithms similar
to the early days of genetic programming when basic algorithm and representation
studies included analysis of other approaches like local search [15].

Highlighted in the recent AutoML work are some additional challenges that
we hope to address. For example, AutoML can take a significant amount of
resources to build, requiring either massive computation infrastructure or a lot
of time cost, despite the availability of low-cost computing resources. Therefore
finding approaches that are computationally efficient is still a key goal to not only
make such techniques available to a wider audience but to prevent the scientific
process of hypothesis to insight to a new hypothesis from being disrupted while
long-running computing jobs finish. Secondly, the No Free Lunch Theorem for
machine learning algorithms [20] would suggest to us that it also applies to the
AutoML space, and as such, except providing the user with a candidate solution,
it would be highly valuable to transfer knowledge to them about the individual
interactions within the solution space via a strong knowledge representation. So
finding a good knowledge representation for AutoML is desirable, as it would allow
users to query and reason over the results directly so that the knowledge can be
acquired more efficient, as opposed to simply applying data mining approaches to
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the log files. Lastly, because AutoML pipelines have a lot of dependencies between
the steps, assigning rewards, or learning, back to individual pipelines or stages is
another interesting and challenging problem. In TPOT, reinforcement learning is
handled via the natural selection metaphor of allowing better-performing solutions
to be used to generate future solutions. In both Auto-WEKA and Auto-SKLEARN,
Bayes learning is used as a representation of rewards from dataset features through
to pipeline elements.

In this paper, we solve the problem of searching for machine learning pipelines
using PEORL framework [21], an integration of symbolic planning and hierarchical
reinforcement learning. In the context of ML tasks, generating machine learning
pipeline is treated as a symbolic planning problem [2]. We provide a formulation
of dynamic domains that consist of actions such as preprocessing, featurizing,
cross validation, training and prediction, using action language BC [8], a logic-
based formalism that describes dynamic transition domain. Such formulation can
be used to solve planning problem by a translation to answer set programming[9]
and solving by an answer set solver such as CLINGO [4]. The pipeline is sent
to execution by mapping to options [1] that consists of primitive actions in a
Markov Decision Process [17] (MDP) space. The primitive actions in MDP space
are ML pipeline components instantiated with random hyper-parameters, in order
to learn the quality of the actions in the pipeline. The learning process is value
iteration through reinforcement learning algorithm R-learning [11, 18], where cross-
validation accuracy of the pipeline is used as rewards. After the quality of the current
pipeline is measured, an improved ML pipeline is generated thereafter using the
learned values, and the interaction with learning continues, until no better pipeline
can be found. This step is called model profiling. After that, a more systematic
parameter sweeping is performed, i.e., model searching. This allows us to describe
the pipeline steps in an intuitive representation and explore the program space more
systematically and efficiently with the help of reinforcement learning.

The paper is organized as follows. We start with a brief survey of related work in
Sect. 11.2. After that, our method is presented in Sect. 11.4 and we will demonstrate
its usage in Sect. 11.5. The conclusion of our paper with final summary is made in
Sect. 11.6.

11.2 Related Work

Automated machine learning via automated programming touches several areas of
prior art. In our work, we are mainly concerned with finding program structures
and their parameters where the program primitives are steps in a machine learning
pipeline. This is unlike other automated programming where the primitives may
be the primitives in a programming language like Java or come from a domain
specific language like string functions used to learn programs that manipulate
data in a spreadsheet [6]. In machine learning pipelines, it is common for one to
consider it as a task of moving a set of training data through various stages of data
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processing, creating features from which to build a model from, selecting features
that are informative, sampling data for training models and enable various forms
of testing and parameter tuning. Using a combination of knowledge about the data
and knowledge about the machine learning techniques, practitioners typically go
through a fair amount of trial-and-error to identify good machine learning pipelines.
Our motivation is to provide assistance in this challenge to help the user identify
good pipelines and the elements in them so that the user can be allowed to more
quickly focus on other issues like model robustness and parameter tuning.

AutoML, or automated machine learning, also tries to learn a machine learning
pipeline, but is primarily focused on learning an overall model that given features of
the dataset will select with high probability various model steps and parameters.
Two recent advances in AutoML are Auto-WEKA [19] and Auto-SKLEARN
[3]. The Auto-WEKA approached the problem of automated machine learning by
formalizing the problem as a Combined Algorithm Selection and Hyperparameter
optimization problem (or CASH problem), whereby both the machine learning
algorithm and its hyperparameters are selected for in a Bayesian optimization
scheme.

Auto-SKLEARN extends Auto-WEKA approach with a meta-learning capabil-
ity, ensemble model selection, and use of the popular Python machine learning
library scikit-learn. While these approaches show impressive results, they are
particularly suited for black-box style optimization where the users do not need
to necessarily understand the underlying model, parameters or computational com-
plexity, but rather focus on the performance of the model based on its predictions.
Auto-SKLEARN builds a repository of top performing ML pipelines and their
parameters offline on OpenML datasets, and when new data comes, by comparison
with the original dataset on L1 scores, it chooses a few top performing ML pipelines
and uses SMAC [7] for further offline tuning. In our work, where we want to assist a
model developer, or data scientists, who may very much need to validate the model
for various attributes due to possible industry regulations or sensitivities, we would
like an approach that is more iterative and transparent to allow users to learn at the
same time while providing guidance on what methods or parameters are useful.

With the TPOT approach[14], the authors more closely match the type of
objectives we have as they search for good machine learning pipelines using the
genetic programming algorithm and Python package DEAP. They compare their
approach to several variations, including random search, over machine learning
methods available in the scikit-learning Python library and find that while TPOT
can find competent pipelines, the search time can be significant and the search
heuristic does not seem to be more efficient than random search. The search
algorithm with TPOT is different from AutoML which uses the SMAC algorithm
and the representation of pipelines using genetic programming expression trees
allows for a more expression, less constrained solution space. So while TPOT
offers a compelling representation and intuitive search heuristic, the lack of pipeline
constraints and the complexities within the fitness landscape may be responsible
for the excessive run times and lack of competitiveness with a random search. In
our approach, we want to explore if similarly richer representations of pipelines as
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programs, or plans, can be easily coupled with another intuitive search heuristic but
achieve a more efficient search.

11.3 Background

11.3.1 Symbolic Planning

Symbolic planning concerns on formulating a dynamic transition system T where
states denote the properties of the world (using a set of logical atoms) and the edges
are actions, and reasoning over them to solve planning problem: given one initial
state I and goal state D, find a path in T that starts from I and ends at G, and all
actions on the edges of the path form a plan. Several languages have been developed
to formulating the transition system such as PDDL [13] or action languages [5] that
relates to logic programming under answer set semantics (answer set programming)
[9]. In this paper, we will be using BC [8] that belongs to the latter family.

An action description D in the language BC includes two kinds of symbols,
fluent constants that represent the properties of the world, denoted as σF (D), and
action constants, denoted as σA(D). A fluent atom is an expression of the form
f = v, where f is a fluent constant and v is an element of its domain. For boolean
domain, denote f = t as f and f = f as ∼f . An action description is a finite set
of causal laws that describe how fluent atoms are related with each other in a single
time step, or how their values are changed from one step to another, possibly by
executing actions. For instance,

A if A1, . . . , Am

is a static law that states at a time step, if A1, . . . , Am holds then A is true. Another
static law

default f = v

states that by default, the value of f equals v at any time step.

a causes A0 if A1, . . . , Am

is a dynamic law, stating that at any time step, if A1, . . . , Am holds, by executing
action a, A0 holds in the next step.

nonexecutable a if A1, . . . , Am

states that at any step, if A1, . . . , Am holds, action a is not executable. Finally, the
dynamic law

inertial f
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states that by default, the value of fluent f does not change from one step to another,
formalizing the commonsense law of inertia that addresses the frame problem.

Automated planning with an action description in BC can be achieved by an
answer set solver such as CLINGO,1 and an output answer set encodes a sequence of
actions that solves the planning problem.

11.3.2 Reinforcement Learning

A Markov Decision Process (MDP) [17] is defined as the tuple (S ,A , P a
ss ′, r, γ ),

where S and A are the sets of symbols denoting states and actions, the transition
kernel Pa

ss ′ specifies the probability of transition from the state s ∈ S to the next
state s′ ∈ S by taking an action a ∈ A , r(s, a) : S ×A �→ R is a reward function
bounded by rmax, and 0 ≤ γ < 1 is a discount factor. A solution to an MDP is a
policy π : S �→ A that maps a state to an action. RL concerns on learning a near-
optimal policy by executing actions and observing the state transitions and rewards,
and it can be applied even when the underlying MDP is not explicitly given, a.k.a,
model-free policy learning.

To evaluate a policy π , there are two types of performance measures: the
expected discounted sum of reward for infinite horizon problems and the expected
un-discounted sum of reward for finite horizon problems. In this paper we adopt the

latter metric defined as Jπ
avg(s) = E[

T∑
t=0

rt |s0 = s]. We define the gain reward ρπ(s)

reaped by policy π from s as

ρπ(s) = lim
T →∞

Jπ
avg(s)

T
= lim

T →∞
1

T
E[

T∑

t=0

rt ].

R-learning [11, 18] is designed for the average reward case which is a model-free
value iteration algorithm that can be used to find the optimal policy for average
reward criteria. At the t-th iteration (st , at , rt , st+1), update:

Rt+1(st , at )
αt←− rt − ρt (st ) + max

a
Rt (st+1, a),

ρt+1(st )
βt←− rt + max

a
Rt (st+1, a) − max

a
Rt (st , a)

(11.1)

where αt , βt are the learning rates, and at+1
α←− b denotes the update law as at+1 =

(1 − α)at + αb.
Compared with regular reinforcement learning, hierarchical reinforcement learn-

ing (HRL) [1] specifies on real-time-efficient decision-making problems over a

1http://potassco.sourceforge.net/.

http://potassco.sourceforge.net/
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series of tasks. A MDP can be considered as a flat decision-making system where
the decision is made at each time step. On the contrary, humans make decisions
by incorporating temporal abstractions. An option is temporally extended course of
action consisting of three components: a policy π : S ×A �→ [0, 1], a termination
condition β : S �→ [0, 1], and an initiation set I ⊆ S . An option (I, π, β)

is available in state st iff st ∈ I . After the option is taken, a course of actions is
selected according to π until the option is terminated stochastically according to the
termination condition β. With the introduction of options, the decision-making has
a hierarchical structure with two levels, where the upper level is called the option
level (also termed as task level) and the lower level is called the (primitive) action
level. The Markovian property exists among different options at the option level.

11.4 Methodology

In this section we describe our approach of integrating ML pipeline search
and parameter tuning into an unified framework. Intuitively, generating machine
learning pipelines and tuning parameters are operations that are different levels of
abstraction. Given a dataset and a ML task (i.e., classification or regression), the
data scientist begins by empirically choosing a pipeline, a sequence of operations
such as preprocessing, feature computation, feature selection, model selection, cross
validation, training and prediction. After the high-level pipeline is chosen, different
sets of parameters for preprocessing, featurizers and models will be empirically
tried, evaluated and selected based on certain metric. It is possible that the original
pipeline is modified due to the poor performance observed during parameter tuning,
leading to a different pipeline that produces better results on the dataset. The
loop of searching for ML pipelines, tuning parameters, observing results, retuning
parameters, and refining the ML pipelines continues until the data scientist cannot
find better solutions. The data scientist finally comes up with the pipeline and
respective parameters that have the best performance on the dataset.

Our approach of automating the process above is the integration of symbolic
planning with reinforcement learning. The high-level pipeline generation is treated
as a symbolic planning problem studied by the classical AI planning community.
The low-level parameter sweeping is treated as a reinforcement learning problem.
Symbolic planning and reinforcement learning are integrated using the recent
result of PEORL (Planning—Execution—Observation—Reinforcement Learning)
framework [21].

11.4.1 Pipeline Generation

We use action language BC to represent dynamic domain of ML operations. We
first introduce three types of objects:
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• Preprocessors, including

– matrix decompositions (truncatedSVD,pca,kernelPCA,fastICA),
– kernel approximation (rbfsampler,nystroem),
– feature selection (selectkbest,selectpercentile),
– scaling (minmaxscaler,robustscaler,absscaler), and
– no preprocessing,

• Featurizers: including two standard featurizers for text classification, i.e.,
Count-Vectorizor and TfidfVectorizer.

• Classifier: including logistic regression, Gaussian naive Bayes, linear SVM,
random forest, multinomial naive Bayes and stochastic gradient descent.

We treat each operation in the pipeline as an action, with describing their causal
laws accordingly.

• Facts about compatibility with sparse vectors.

acceptsparse(randomforest). acceptsparse(linearsvc).
acceptsparse(logistic). acceptsparse(sgd).

acceptsparse(truncatedsvd). acceptsparse(kernelpca).

acceptsparse(noop). acceptsparse(fastica).

acceptsparse(nystroem). acceptsparse(rbfsampler).

• Importing dataset. If the dataset D has type T (i.e., training or testing), then
import data Y has the effect of having text and labels from data D of type T .

import(D) causes hasdata(D, text, T ), hasdata(D, label, T ) if datatype(Y, T )

• Tokenize dataset. If we have text from the data, then it can be tokenized, leading
to the results of having tokens:

tokenize(text,D) causes hasdata(D, token, T ) if hasdata(D, text, T )

• Select featurizer:

selectfeaturizer(F ) causes featurizerselected(F ) if featurizer(P )

• Select preprocessor:

selectpreprocessor(P ) causes proprocessorselected(P ) if preprocessor(P )

• Crossvalidate. If we have token and label from the data, we can cross validate the
pipeline by choosing a featurizer, preprocessor and a classifier, and the effect is
the model being validated. If one of preprocessor and classifier does not accept
sparse vector, it needs to be transformed into dense vector.
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crossvalidate(C, F, P, dense, token, label) causes
modelvalidated(C, F, P, dense, token, label)
if classifier(C), featurizerselected(F ), preprocessorselected(P ),

hasdata(D, token, train), hasdata(D, label, train),∼ acceptsparse(P ).

crossvalidate(C, F, P, dense, token, label) causes
modelvalidated(C, F, P, dense, token, label)
if classifier(C), featurizerselected(F ), preprocessorselected(P ),

hasdata(D, token, train), hasdata(D, label, train),∼ acceptsparse(C).

crossvalidate(C, F, P, sparse, token, label) causes
modelvalidated(C, F, P, sparse, token, label)

if classifier(C), featurizerselected(F ), preprocessorselected(P ),

hasdata(D, token, train), hasdata(D, label, train), acceptsparse(P ),

acceptsparse(C).

• Featurize. If we have token from the data, and the model that uses the featurizer
has been validated, then featurizing tokens has the effect of generating raw
features.

featurize(F, token,D) causes hasdata(D, feature, T )

if hasdata(D, token, T ), modelvalidated(C, F, P, S, token, label).

• Preprocess. If we have raw feature computed from the data, and the model that
uses the preprocessor has been validated, then preprocessing the features leads to
the feature been processed.

preprocess(P, f eature, S,D) causes processed(D, feature, S, T )

if hasdata(D, feature, T ), modelvalidated(C, F, P, S, token, label).

• Train. If we have feature preprocessed, and the model that uses the classifier has
been validated, training the classifier leads to the model been trained.

train(C, F, P, token, label) causes modeltrained(D, text, label)
if modelvalidated(C, F, P, S, token, label), processed(D, feature, train).

• Predict. If model has been trained using classifier, featurizer and preprocessors,
and test data has been featurized and preprocessed, then predicting on test data
set gives us labels.

predict(C, F, P, label) causes hasdata(D, label, test)
if modelvalidated(C, F, P, S, token, label), processed(D, feature, test).
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Besides causal laws described above, all fluents are declared inertial, and
concurrent execution of actions are prohibited. Given a training data set as initial
condition

datatype(data, train), datatype(datatest, test)

and a goal hasdata(datatest, label, test), a plan can be generated by translating the
action description above to ASP and run answer set solver CLINGO

1 : import(data) 2 : tokenize(text, data)

3 : selectfeaturizer(countervectorizer) 4 : selectpreprocessor(kernelPCA)

5 : crossvalidate(randomforest, countervectorizer, kernelPCA,sparse,tokens,label)
6 : featurize(countervectorizer, token, data)

7 : preprocess(kernelPCA, sparse, feature, data)

8 : train(randomforest, countervectorizer, kernelPCA, token, label)
9 : import(datatest) 10 : tokenize(text, datatest)
11 : featurize(countervectorizer, token, datatest)
12 : preprocess(kernelPCA, sparse, feature, datatest)
13 : predict(randomforest, countervectorizer, kernelPCA, label)

Currently we only pick up one feature preprocessors, following the same paradigm
with Auto-SKLEARN [14]. This leads to total of 132 pipelines. But the action
description can be formulated such that more than one preprocessor can be applied
sequentially.

Automated planning provides the flexibility of generating ML pipelines given
different initial and goal state. For instance, given goal modeltrained(data, text, label)
only the first six steps of the plan above will be generated. Given an initial state such
as as hasdata(data, token, train), the pipeline skip the first two steps and start cross-
validation. Finally, the user can also change the set of preprocessors, featurizers and
classifiers to only explore a part of all possible pipelines. This paradigm is one of
the differentiation of our method in comparison to Auto-SKLEARN that specifies
fixed ML pipeline structure.

11.4.2 Parameter Tuning and Pipeline Evaluation

In our framework, we map symbolic actions to options, in the sense of hierarchical
reinforcement learning. In particular:

• selectfeaturizer is mapped to ˜selectfeaturize which in practice just checks the
availability of the featurizer by printing out a checking status.

• selectpreprocessor is mapped to ˜selectpreprocessor which in practice just checks
the availability of the preprocessor by printing out a checking status.
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• crossvalidate(M,F, P, S, token, label) into an option of three sequential steps
in MDP space if S = sparse2

˜featurize(F̃ , token), ˜preprocess(P̃ , token, label), ˜validate(M̃, F̃ , P̃ , token, label)
(11.2)

or four sequential steps if S = dense

˜featurize(F̃ , token), ˜todense(F̃ , token)

˜preprocess(P̃ , token, label), ˜validate(M̃, F̃ , P̃ , token, label)
(11.3)

where M̃ , F̃ , P̃ are instantiation of the classifier M , featurizer F and pre-
processor P with a set of parameters that can be selected by any parameter
sweeping algorithm such as grid search, random search or Bayesian optimization.
todense transforms the raw features into dense vector, if specified by the symbolic
action. After each MDP action is performed, perform value iteration by following
Eq. (11.1), where the final cross-validation score is the reward.

After the option terminates, update the value for the option by following
Eq. (11.1) where the reward value of performing crossvalidate(M,F ,P ,token, label)
comes from the reward the option achieved. Following the methodology proposed
in [21], ρ values are the learned score for the action performed at state following
the policy. Since ρ values are learned at every state and every action in the MDP
space, eventually this method allows us to learn the score not only for the pipeline,
but also for individual classifier, featurizer, preprocessors and their combinations,
providing valuable insight to the data scientists to build ML models that work well
with the dataset.

11.4.3 AutoML Framework

The complete meta-learning algorithm is described in Algorithm 11. It includes two
major steps:

1. Model Profiling. In this step, symbolic planner generates a plan (line 4) with
the goal modeltrained(data), execute each action (lines 9–27). The algorithm
performs R-learning for selectfeaturizer and selectpreprocessor (lines 10,11).
When it it executes cross-validation, it performs episode iteration by randomly
sampling hyper parameters on classifier, featurizer and preprocessors, perform
cross validation and R-learning from the rewards (lines 13–20). It updates the
values for the symbolic action (line 16). This model profiling process goes on
for a given pipeline for a number of episodes, before switching to a different
symbolic plan such that the plan quality is better than the current one (line 24).

2Tildes are used to distinguish actions in MDP space from actions in symbolic planning space.
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In practice, the symbolic planner will either generate a pipeline that hasn’t been
tried before (all pipeline starts with a good initial score so that the exploration
would be encouraged at the beginning), or pick up any one that was profiled
before with the score higher then the current one. This process continues until
the best ML pipeline converges to an optimal Πo (line 5). After that, it goes to
Step 2.

2. Model Searching. After Πo is obtained, perform parameter sweeping on Πo. In
this stage all computational resources can be used to search for a wide space of
parameters for classifier C, featurizer F and preprocessor P specified by Πo, and
return the best one when the search finishes.

The meta-learning loop to generate ML parameters by integrating symbolic plan-
ning and reinforcement learning is detailed in Algorithm 11. D denotes the action
description formulated for ML pipeline domain, as is described in Sect. 11.4.1.

Algorithm 11 Meta-learning loop
Require: (I,G,D,FA) where G = (modeltrained(data),∅), and an exploration proba-

bility ε. A set of symbolic actions where R-learning will be performed for: L =
{selectfeaturizer(F ), selectpreprocessor(P ), crossvalidate(C, F, P , label, data)}.

1: P0 ⇐ ∅, Π ⇐ ∅
2: while True do
3: Πo ⇐ Π

4: take ε probability to solve planning problem and obtain a ML pipeline Π ⇐
CLINGO.solve(I,G,D ∪ Pt )

5: if Π = Πo then
6: perform parameter sweeping on Πo and obtain the optimal C,F, P .
7: return (C, F, P )

8: end if
9: for action 〈s, a, s′〉 ∈ Π do

10: if a ∈ [selectfeaturizer(F ), selectpreprocessor(P )] then
11: update R(a, s) and ρa

t (s) for action a

12: end if
13: if a ∈ [crossvalidate(C, F, P ,D, label, data)] then
14: for i < episode do
15: instantiate C, F , P by sampling their hyper-parameters.
16: assemble pipeline using C̃, F̃ , P̃ and D.
17: perform cross validation using C̃, F̃ , P̃

18: update R and ρ by R-learning value iteration until the option terminates,where
reward ∝ cvscore.

19: update R(a, s) and ρa
t (s) for action a

20: i ← i + 1
21: end for
22: else
23: execute a

24: end if
25: end for
26: quality(Π) ← ρa(s), where a ∈ L ⊂ Π

27: update planning goal G ⇐ (A, quality > quality(Π)).
28: update facts Pt ⇐ {ρ(a) = z : ρa

t (s) = z}, where a = crossvalidate(C, F, P , label, data)

29: end while
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11.5 Empirical Evaluation and Discussion

To better the approach, we perform several experiments using a well known dataset,
the IMDB movie review for sentiment analysis [10]. This dataset contains 10,000
movie reviews, with 5000 labeled as “positive” and 5000 labeled as “negative.”
Next, we motivate the empirical evaluation, summarize the known results of
classification using this data, and then conclude with a discussion of AutoML using
our approach on this data.

11.5.1 Dataset and Problem Instance

In prior work, a variety of datasets are used to test pipeline learning, where
most datasets are already featurized into numerical values that are ready for
machine learning classifiers. Some datasets have been heavily preprocessed to
remove missing values, unnecessary features, and even newly created features from
the raw data. These critical steps in the machine learning pipeline can not be
assumed to have been completed in real-world settings, particularly in the industrial
applications. Therefore, we used a common industrial problem where it is very
common to work directly with raw data: document classification.

The task of document classification is that, given a set of documents of pieces
of text, classify each into a given category. One example of this is sentiment
analysis. Given a set of texts (e.g. movie reviews, product reviews), label if the
text is positive or negative. [10] collected a large dataset of movie reviews labeled
with their sentiment. This dataset (commonly called the IMDB datset) has since
been used as a general benchmark dataset for NLP and machine learning tasks in
general. It contains 25,000 records of movie reviews which express very strong
sentiment, along with a ‘positive’ or ‘negative’ label for each, and 25,000 reviews
which are unlabeled. The authors were able to achieve an accuracy of 88.89% with
their model.

Their approach included a variety of machine learning tasks. Their base model
was a linear support vector machine (linear SVC) with multiple features. While they
achieved their highest score by learning a bag of words model and learning a word
vector model, they also tested multiple other methods of generating features for
comparison. These included latent Dirichlet allocation and latent semantic analysis.
In our experiment, we sampled 300 labeled movie reviews, with 150 reviews in each
category, to run meta-learning. We use meta-learning to find the best pipeline, and
then test the results of using this pipeline with hyper-parameter search on two larger
benchmark datasets.

In addition, two other common techniques used in document classification are
dimensionality reduction and feature selection. Very often large sparse matrices
are used built-in training a document classifier. This can often be inefficient and
potentially over-fit the data. By reducing the size of the overall matrix with
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techniques such as principal component analysis (PCA), whereby the data is reduced
to a smaller set of linearly uncorrelated variables, or select k best, where a statistical
test is applied and a representative set of uncorrelated features are chosen, the trained
model can generalize much better to unseen data.

11.5.2 Hypotheses

We believe that our approach for AutoML will help to address a few key areas for
learning machine learning pipelines: provide a computationally efficient approach
that helps users develop a feasible solution, capture and convey knowledge about the
machine learning pipeline options for the particular problem instance, and provide
an alternative mechanism for reinforcement learning over pipelines. Besides helping
the AutoML space, we hope that our approach will also be useful for the more
general automatic programming problem for similar reasons.

1. To test our hypotheses that the approach is viable, we will first validate that the
approach can indeed find competitive solutions in a reasonable computationally
efficient framework by comparing accuracy with run-time.

2. To test that knowledge from AutoML can be easily extracted, we will examine
the usefulness of the rewards conveyed to pipelines and pipeline steps.

3. To test that our reinforcement learning approach, which leverages symbolic
planning, we will look at the convergence efficiency of learning.

Additionally, we can look at the results to see if we are able to “rediscover”
common knowledge about machine learning. Specifically about which techniques
tend to work well together and on different problems. For example, in the realm
of document classification, data scientists frequently use combinations of classifiers
suited for text (e.g. SVM and logistic regression) over others.

11.5.3 Pipeline Profiling

In total we evaluated 80 pipeline profiling results which are shown in Figs. 11.1
and 11.2. These are curves of the ρ values plotted from R-learning over the
complete pipeline, i.e., the gain reward of following the complete policy. Symbolic
planner picked up pipeline by the metric on its plan quality, i.e., the sum of
ρ values for applying featurizer, preprocessor and classifier. Some pipelines
where dropped very early in profiling stages because of the low cross-validation
score it receives (such as the ones in bottom left of Fig. 11.1), and for this
reason the score of the whole pipeline remains flat. Some pipelines start with
good results but after further attempts, the performance degrades and were
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Fig. 11.1 Profiling of half the pipelines, grouped by featurizer and preprocessor, showing the ρ

values (Y -Axis) against the total number of episodes (X-Axis) given to each pipeline, indicating
how promising each pipeline was determined to be during learning. Figure 11.2 contains the other
half of the results

dropped, such as TFIDF+Nystroem+SGD classifier. Finally, the good ones are
constantly picked up for further profiling and leads to the final best scored
pipelines, such as TFIDF+Nystroem+linear SVC and bag of words+fast ICA+SGD
classifier.

The figures on profiling progress suggests that by using cross-validation score as
a reward, reinforcement learning can gradually get rid of less promising pipelines
considering the gain reward of each step of the pipeline, selectively pick up more
promising pipelines for more profiling and dramatically narrow down the scope of
interested pipeline. Planning-guided reinforcement learning has shown to improve
data efficiency and leads to rapid policy search.
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Fig. 11.2 Profiling of half the pipelines, grouped by featurizer and preprocessor, showing the ρ

values (Y -Axis) against the total number of episodes (X-Axis) given to each pipeline, indicating
how promising each pipeline was determined to be during learning. Figure 11.1 contains the other
half of the results

11.5.4 Optimal Pipeline Generation

After running our algorithm on a selection of 300 documents dataset from the IMDB
dataset, we obtain the optimal pipeline to be: Bag of words, fast ICA and stochastic
gradient descent (SGD), with the following parameters:

• Bag of words: ngram_range = (1,2), lowercase = False
• Fast ICA: n_components = 3
• SGD Classifier: loss=log, penalty=l2.

The second best pipeline uses TF-IDF, Nystroem preprocessor and linear SVC
classifier. In particular, their hyper parameters are:
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• TFIDF: lowercase=True, max_df=0.93620, min_df=0.014796, ngram_range=(1,
1)

• Nystroem preprocessor: gamma=0.2, random_state=1
• Linear SVC: C=0.87664, class_weight=None, dual=True, fit_intercept=True,

intercept_scaling=1, loss=‘squared_hinge’, max_iter=1000, multi_class=‘ovr’,
penalty=‘l2’, random_state=None, tol=1e-05, verbose=0.

This pipeline is shown to achieve fivefold cross validation mean accuracy to be
0.9. The third best pipeline that achieves cross validation score of 0.896 is hashing
vectorizor, truncateSVD preprocessor and stochastic gradient descent. Their hyper-
parameters are

• Bag of words: ngram_range = (1, 3),lowercase=False
• Truncated SVD: n_component = 2, iter = 8
• SGD Classifier: learning_rate=‘optimal’, loss=‘log’, penalty=‘l1’.

The third best pipeline uses bag of words, Nystroem preprocessor and linear SVC.
The output of meta-learning pipeline in general agrees with the result investigated
earlier [12, 16].

To evaluate the generality of the highly scored pipeline for larger dataset, we
further use polarity dataset 2.0, 3 a smaller dataset used by [12, 16] containing 2000
movie reviews. It returns a model with cross validation accuracy of 0.84. The hyper
parameters are

• Bag of words: ngram_range = (1,3), lowercase = True
• Fast ICA: n_components = 3
• SGD classifier: loss = modified_huber, penalty=elasticnet.

Finally, we tried this pipeline using the full IMDB dataset [10] with a cross-
validation score of 0.88, with the hyper parameters as follows:

• Bag of words: ngram_range = (1,1), lowercase = False
• Fast ICA: n_components = 3
• SGD Classifier: loss=log, penalty=None.

The scores achieved by automated pipeline search is close to the accuracy
achieved by the original authors on the same dataset [10].

11.5.5 Pipeline Ranking

We tested our algorithm in movie review data set and ranked over five classifiers
(logistic regression, random forest, linear SVC, SGD classifier, Gaussian NB), two
featurizers (bag of words and TFIDF), and preprocessors (truncated SVD, PCA, rbf

3http://www.cs.cornell.edu/people/pabo/movie-review-data/.

http://www.cs.cornell.edu/people/pabo/movie-review-data/
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Table 11.1 Top five ranked pipelines by mean accuracy

Pipeline Mean accuracy ρ

Bag of words/fastICA/SGD classifier 0.88 4.83

Bag of words/noop/SGD classifier 0.87 4.77

Bag of words/truncatedSVD/SGD classifier 0.87 4.80

Bag of words/kernelPCA/SGD classifier 0.86 4.66

TFIDF/fastICA/linear SVC 0.86 4.76

Table 11.2 Bottom five ranked pipelines by mean accuracy

Pipeline Mean accuracy ρ

Bag of words/rbf sampler/logistic regression 0.79 3.10

Bag of words/rbf sampler/random forest 0.52 3.00

Bag of words/pca/SGD classifier 0.51 2.84

Bag of words/rbf sampler/GaussianNB 0.51 3.06

Bag of words/rbf sampler/SGD classifier 0.51 2.8

sampler, Nystroem, select k best, select percentile, fast ICA, kernel PCA, and no
preprocessor [noop]) (Tables 11.1 and 11.2).

It should be noted that the score obtained from ML pipeline profiling is closely
related to the profiling episode and the parameter sweeping strategy. Longer
profiling episodes and more intelligently chosen parameter space may find better
parameters, boost the score and reflect the true performance of the overall pipeline.
The user has the flexibility of changing those configuration based on their own use
cases and constraints on time and computational resources. The results also show
that the highest accuracy does not necessarily show the highest learning rate (ρ).
This is due to us taking the mean accuracy. While a single run of the of a pipeline
may produce a higher score, the overall learning rate of this pipeline with different
parameters may be lower.

On this dataset, the classifiers commonly used for text rose to the top. The
meta-learning algorithm tended to favor both logistic regression and the linear svc
classifier over the non-linear random forest. These pipelines, along with the sparse
features used, tend to be favored more by data scientists in document classification.
The pipeline search managed to hit upon commonly used techniques, whereby
kernal approximation techniques (e.g. Nystroem) are used with linear svc.

However, it should be noted that each classifier was able to find a pipeline with
>80% accuracy. Given the features and the classifier, finding the hyper-parameters
and the preprocessing step were just ways of tweaking overall performance.

The ranking for the combination of feature and preprocessors can also be learned
from the reinforcement learning process, indicating how promising these two steps
are to lead to an ideal final result (Figs. 11.3 and 11.4).

The ρ values of the feature/preprocessor combinations are more important
relative to each other than in the absolute value. This is because: (1) the algorithm
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Fig. 11.3 Learning rate for each pipeline trained by classifier (higher is better)

Fig. 11.4 Pipeline ranking results for featurizer and preprocessors review data set (higher is better)
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will select the pipelines with higher ρ scores to pursue, as long as they rank
relatively higher and, (2) a combination can ranked pretty low but when combined
with a particular model, the overall pipeline is ranked high.

11.5.6 Extracted Knowledge About Problem

After searching the space of machine learning pipelines, we can begin to ask useful
questions for the dataset. Questions such as, what are the good ways to featurize it?
Or, given an existing featurization of the data, what are the best ways to preprocess
it? What are the best classifiers to use? To demonstrate this idea, we collect the
learned ρ values for the pipelines starting from the initial featurization selection, the
featurization selection plus the selected preprocessor, and finally the entire pipeline.
We keep only the two options with the greatest ρ value, and place them in the
decision tree, in Fig. 11.5.

One of the benefits of AutoML is not just parameter tuning or automation of
repetitive trial and error exploration of data and analytic selections, but AutoML

Fig. 11.5 Learned knowledge about machine learning pipelines specific to the task of document
classification. Each node can be thought of as a made decision, and each directed edge with a ρ

value as a choice, where the higher ρ value suggests a better option. Note that the edges and ρ

values are dependent on the prior selections in the pipeline
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allows a significant amount of knowledge to be gathered about the problem instance
and what methods might be more suitable, regardless of whether the optimal
parameter values were found. As can be seen in Fig. 11.5, the user has two options
for featurizing their data, either using the TFIDF or bag of words approach. But
given the selection of either one, they have two distinct choices for a preprocessing
technique. Finally, there are some choices of classifiers. If the deployment envi-
ronment has certain technical requirements, like scale or availability of performant
libraries, this type of knowledge can be helpful to the data scientist. Additionally,
being able to generate knowledge about the machine learning pipelines also helps
us better understand the problem domain.

11.6 Conclusion and Future Work

We explore the use of PEORL framework for an AutoML task of learning machine
learning pipelines. Our approach uses a symbolic planner to generate the solution
space of possible pipeline steps, and reinforcement learning to inform the selection
of the next best program to explore based on a crossvalidated, parameter-tuning
step that is specific to the selected pipeline elements. The combination of the
symbolic planner with reinforcement learning provides some nice properties of
convergence while at the same time allowing the user to get a coarse grain idea
of what a good machine learning pipeline would look like. To demonstrate this
idea, we leverage benchmark dataset for sentiment analysis, where the machine
learning problem is to learn to classify movie reviews into positive or negative.
We show that the approach is feasible and provides several additional benefits
that allow the user to reason and gather new knowledge about the pipelines
for their specific problems. Our future work is to improve the computational
efficiency of PEORL, testing on larger and more diverse datasets, and gather real-
world user experience feedback to shape the next areas of feature research and
development.

This preliminary work provides a potential in the future to perform more
informative inference on the data obtained during profiling ML pipeline on the
dataset that the data scientist needs to tackle. Such inference may be called “data
science for data science”, which will provide a quick and valuable suggestion for
data scientist of building fine-tuned models for complex dataset, such as providing
ranking results on pipeline and their individual pieces, sensitivity ranking and many
other suggestions. The best model it learned can also be a baseline for data scientist
for further fine tuning as well.



230 F. Yang et al.

References

1. Barto, A., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discrete
Event Systems Journal 13, 41–77 (2003)

2. Cimatti, A., Pistore, M., Traverso, P.: Automated planning. In: F. van Harmelen, V. Lifschitz,
B. Porter (eds.) Handbook of Knowledge Representation. Elsevier (2008)

3. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and
robust automated machine learning. In: Advances in Neural Information Processing Systems,
pp. 2962–2970 (2015)

4. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187–188, 52–89 (2012)

5. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial Intelligence
(ETAI) 6 (1998)

6. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using examples. Commun.
ACM 55(8), 97–105 (2012)

7. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: International Conference on Learning and Intelligent Optimiza-
tion, pp. 507–523. Springer (2011)

8. Lee, J., Lifschitz, V., Yang, F.: Action Language BC : A Preliminary Report. In: International
Joint Conference on Artificial Intelligence (IJCAI), pp. 983–989 (2013)

9. Lifschitz, V.: What is answer set programming? In: Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 1594–1597. MIT Press (2008)

10. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors
for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 142–150. Association for
Computational Linguistics, Portland, Oregon, USA (2011)

11. Mahadevan, S.: Average reward reinforcement learning: Foundations, algorithms, and empiri-
cal results. Machine Learning 22, 159–195 (1996)

12. Martineau, J., Finin, T.: Delta TFIDF: An Improved Feature Space for Sentiment Analysis.
In: Proceedings of the Third AAAI Internatonal Conference on Weblogs and Social Media,
pp. 258–261. AAAI Press, San Jose, CA (2009)

13. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins,
D.: PDDL-the planning domain definition language. Tech. Rep. CVC-TR-98–003, Yale Center
for Computational Vision and Control (1998)

14. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-based pipeline
optimization tool for automating data science. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2016, GECCO ’16, pp. 485–492. ACM, New York, NY, USA (2016)

15. O’Reilly, U.M., Oppacher, F.: Program search with a hierarchical variable length represen-
tation: Genetic programming, simulated annealing and hill climbing. In: Y. Davidor, H.P.
Schwefel, R. Männer (eds.) Parallel Problem Solving from Nature — PPSN III, pp. 397–406.
Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

16. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In: Proceedings of the 42nd annual meeting on Association for
Computational Linguistics, p. 271. Association for Computational Linguistics (2004)

17. Puterman, M.L.: Markov Decision Processes. Wiley Interscience, New York, USA (1994)
18. Schwartz, A.: A reinforcement learning method for maximizing undiscounted rewards. In:

Proceedings of the Tenth International Conference on International Conference on Machine
Learning, ICML’93, pp. 298–305. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1993)

19. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined selection
and hyperparameter optimization of classification algorithms. In: Proc. of KDD-2013, pp. 847–
855 (2013)



11 Program Search for Machine Learning Pipelines 231

20. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural
Computation 8, 1341–1390 (1996)

21. Yang, F., Lyu, D., Liu, B., Gustafson, S.: Peorl: Integrating symbolic planning and hierarchical
reinforcement learning for robust decision-making. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 4860–4866. Interna-
tional Joint Conferences on Artificial Intelligence Organization (2018)



Index

A
ABS ratio, 186
Acknowledgments, x
Action, atomic, 47
Action, non-atomic, 47
Affenzeller, Michael, 85
Agent, 37
ALE, 41
ANN, 137
Artificial intelligence, 17, 179, 209
Atari learning environment, 41
Automatic programming, 179, 209
AutoML, 210
Auto-WEKA, 210

B
Bee, 69
Bell Labs, 181
Big data, 194
Bohm, Clifford, 17
Brain, 145
Burlacu, Bogdan, 85

C
Centroid, 66
CGP, 39, 141, 149
Classification problem, 156
Classification, symbolic, 59
Cluster, 66
Clustering, 85, 91
Constraint satisfaction, 126
Cussat-Blanc, Sylvain, 137

D
Dedication, v
Deep learning, 37, 59, 72, 193
Dimensionality reduction, 85
Distribution, 86
Dolson, Emily, 1
Donor, 195

E
Elkholy, Alexander, 209
Energy efficiency problem, 197
Events, 104

F
Fagan, David, 179
Foraging, 26

G
Genetic network programming, 39
Genetic regulatory network, 139
GNP, 39
GRN, 139
Gustafson, Steven, 209

H
Hernández, Daniel E., 193
Heywood, Malcolm I., 37
Hintze, Arend, 17

I
IMDB, 224
Inverted pendulum, 25

© Springer Nature Switzerland AG 2019
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVI,
Genetic and Evolutionary Computation,
https://doi.org/10.1007/978-3-030-04735-1

233

https://doi.org/10.1007/978-3-030-04735-1


234 Index

K
Kammerer, Lukas, 85
Kelly, Stephen, 37
KNIME, 60
Kommenda, Michael, 85
Korns, Michael, 59
Kronberger, Gabriel, 85
Kumar Saini, Anil, 123

L
Lalejini, Alexander, 1, 103
LDA, 59, 62
Lexicase selection, 7, 123
LGP, 4
Liu, Bo, 209
Loan scoring, 76
Loop, 5
López, Uriel, 193
Lyu, Daoming, 209

M
Machine learning, 194, 210
MAP elite, 1, 111
Markov brain, 19
May, Tim, 59
Maze, 28
Metevier, Blossom, 123
Miller, Julian F., 137
Muñoz, Luis, 193

N
NEAT, 17, 39, 140
Network configuration, 186
Neural networks, 137
Neuron model, 140

O
Ofria, Charles, 1, 103
O’Neill, Michael, 179
Outliers, 193, 200

P
PADO, 39
PCA, 196, 222
Preface, ix

R
RANSAC, 201

Recipient, 195
Regression, symbolic, 24, 85, 188, 195
Reinforcement learning, 37, 211, 214

S
Schossau, Jory, 17
Scope, 4
Self-modifying CGP, 163
Signal GP, 103
Similarity, genotypic, 91
Similarity, phenotypic, 90
SKLEARN, 210
SMCGP, 163
Smith, Robert J., 37
Sørensen-Dice index, 91
Spector, Lee, 123
Support vector machine, 221
Swarm optimization, 69
Symbolic planning, 213
Symbolic regression, 24, 86, 179, 188, 195

T
Tags, 103
Tangled program graph, 38
Tournament, 6
Tower problem, 197
TPG, 38
TPOT, 211
Transfer learning, 193, 195
Trujillo, Leonardo, 193
t-SNE, 91
Typing, 69
Typing, strong, 72

V
VizDoom, 51

W
White box, 59, 79
Wilson, Dennis G., 137
Winkler, Stephan M., 85

X
XOR, 24

Y
Yang, Fangkai, 209


	Foreword
	Preface
	Acknowledgments

	Contents
	Contributors
	1 Exploring Genetic Programming Systems with MAP-Elites
	1.1 Introduction
	1.2 Methods
	1.2.1 Computational Substrate
	1.2.1.1 Virtual CPU Hardware
	1.2.1.2 Scopes
	1.2.1.3 Instructions

	1.2.2 Evolution
	1.2.2.1 Selection Operators
	1.2.2.2 Mutation Operators

	1.2.3 Experimental Design
	1.2.3.1 MAP-Elites Phenotype Axes
	1.2.3.2 Test Problems
	1.2.3.3 Experimental Parameters
	1.2.3.4 Data Analysis
	1.2.3.5 Code Availability


	1.3 Results and Discussion
	1.4 Conclusion
	References

	2 The Evolutionary Buffet Method
	2.1 Introduction
	2.2 Methods
	2.2.1 Markov Brains: An Introduction
	2.2.2 Genetic Encoding
	2.2.3 Direct Encoding
	2.2.4 Multi-Step Functions
	2.2.5 Gate Types
	2.2.6 Tasks
	2.2.6.1 Xor
	2.2.6.2 Symbolic Regression
	2.2.6.3 Inverted Pendulum
	2.2.6.4 Value Judgment
	2.2.6.5 Block-Catching Task
	2.2.6.6 Associative Memory
	2.2.6.7 Noisy Foraging
	2.2.6.8 Maze Solving Task
	2.2.6.9 Behavioral Optimization in ``Berry-World''

	2.2.7 Experimental Parameters

	2.3 Results
	2.4 Discussion and Conclusion
	2.5 Future Work
	References

	3 Emergent Policy Discovery for Visual Reinforcement Learning Through Tangled Program Graphs: A Tutorial
	3.1 Introduction
	3.2 Related Work
	3.2.1 Evolving Graphs
	3.2.2 Evolution of Multiple Programs Without Graphs

	3.3 Visual Reinforcement Learning
	3.4 Tangled Program Graphs
	3.4.1 Developmental Cycle
	3.4.2 Variation
	3.4.3 Agent Evaluation

	3.5 Case Study: Arcade Learning Environment
	3.6 Case Study: VizDoom
	3.7 Discussion
	References

	4 Strong Typing, Swarm Enhancement, and Deep Learning Feature Selection in the Pursuit of Symbolic Regression-Classification
	4.1 Introduction
	4.2 Comparison Algorithms
	4.2.1 AMAXSC in Brief
	4.2.2 MDC in Brief
	4.2.3 M2GP in Brief
	4.2.4 LDA Background
	4.2.5 LDA Matrix Formalism
	4.2.6 LDA Assisted Fitness Implementation
	4.2.6.1 Converting to Basis Space
	4.2.6.2 Class Clusters and Centroids
	4.2.6.3 LDA Coefficients
	4.2.6.4 Addressing the Problems with LDA Coefficients
	4.2.6.5 Modified Sequential Minimal Optimization (MSMO)

	4.2.7 Bees Swarm Optimization

	4.3 User-Defined Typing System
	4.3.1 User-Defined Templates with Constraints
	4.3.2 Strong Typing

	4.4 Deep Learning Enhancements
	4.5 Artificial Test Problems
	4.6 Real World Banking Problem
	4.7 Performance on the Theoretical Problems
	4.8 Performance on the Real World Problem
	4.9 Conclusion
	Appendix: Artificial Test Problems
	References

	5 Cluster Analysis of a Symbolic Regression Search Space
	5.1 Introduction
	5.2 Methodology
	5.2.1 Grammar Enumeration
	5.2.2 Phenotypic Similarity
	5.2.3 Genotypic Similarity
	5.2.4 Clustering and Visualization
	5.2.4.1 Clustering and Visualization Based on Genotypic Similarity
	5.2.4.2 Clustering and Visualization Based on Phenotypic Similarity

	5.2.5 Mapping GP Solution Candidates

	5.3 Results
	5.3.1 Phenotypic Mapping
	5.3.2 Genotypic Mapping
	5.3.3 Cluster Qualities for Benchmark Problems
	5.3.4 Mapping of GP Solution Candidates

	5.4 Discussion
	5.5 Conclusion
	References

	6 What Else Is in an Evolved Name? Exploring Evolvable Specificity with SignalGP
	6.1 Introduction
	6.2 SignalGP
	6.3 The Value of Imprecision in Evolvable Names
	6.3.1 The Changing Environment Problem
	6.3.1.1 Hypothesis
	6.3.1.2 Experimental Parameters
	6.3.1.3 Data Analysis

	6.3.2 Results and Discussion
	6.3.2.1 Illuminating Solution Space with MAP-Elites


	6.4 The Value of Not Listening
	6.4.1 The Distracting Environment Problem
	6.4.1.1 Hypothesis
	6.4.1.2 Statistical Methods

	6.4.2 Results and Discussion
	6.4.2.1 Illuminating Solution Space with MAP-Elites


	6.5 What Else Is in an Evolved Name? Broadened Applications of Tag-Based Naming in SignalGP
	6.5.1 SignalGP Function Regulation
	6.5.2 Multi-Representation SignalGP
	6.5.3 Major Transitions in SignalGP

	6.6 Conclusion
	References

	7 Lexicase Selection Beyond Genetic Programming
	7.1 Introduction
	7.2 Lexicase Selection
	7.3 Problems
	7.3.1 Boolean Constraint Satisfaction
	7.3.2 Random Problem Generation

	7.4 Experimental Methods
	7.4.1 Genetic Algorithm
	7.4.2 Variation
	7.4.3 Parent Selection

	7.5 Results
	7.5.1 Success Rates by Parent Selection Method
	7.5.2 Success Rates by Tournament Size
	7.5.3 Errors over Evolutionary Time
	7.5.4 Mean Least Error
	7.5.5 Success Generations
	7.5.6 Diversity over Evolutionary Time

	7.6 Discussion
	References

	8 Evolving Developmental Programs That Build Neural Networks for Solving Multiple Problems
	8.1 Introduction
	8.2 Related Work
	8.3 The Neuron Model
	8.3.1 Model Parameters
	8.3.2 Developing the Brain and Evaluating the Fitness
	8.3.3 Updating the Brain
	8.3.4 Running and Updating the Soma
	8.3.5 Updating the Dendrites and Building the New Neuron

	8.4 Cartesian GP
	8.5 Benchmark Problems
	8.6 Experiments and Results
	8.7 Tables of Results
	8.8 Comparisons and Statistical Significance
	8.9 Evolved Developmental Programs
	8.10 Developed ANNs for Each Classification Problem
	8.11 Evolving Neural Learning Programs
	8.12 Further Work
	8.13 Conclusions
	Appendix: Detailed Algorithms
	Developing the Brain and Evaluating the Fitness
	Updating the Brain
	Running the Soma
	Changing the Neuron Variables
	Running All Dendrite Programs and Building a New Neuron
	Extracting Conventional ANNs from the Evolved Brain

	References

	9 The Elephant in the Room: Towards the Application of Genetic Programming to Automatic Programming
	9.1 Introduction
	9.2 A Journey with Genetic Programming and Automatic Programming
	9.3 A Journey in Software-Defined Communications Networks
	9.3.1 Network Scheduling
	9.3.2 Network Configuration
	9.3.3 Combining Network Configuration and Scheduling
	9.3.4 Summary

	9.4 Discussion and Concluding Remarks
	References

	10 Untapped Potential of Genetic Programming: Transfer Learning and Outlier Removal
	10.1 Introduction
	10.2 Transfer Learning
	10.2.1 Case Study
	10.2.2 Experiments and Results
	10.2.2.1 Donor-Tower/Recipient-Energy
	10.2.2.2 Donor-Energy/Recipient-Tower

	10.2.3 Discussion

	10.3 Detecting Outliers
	10.3.1 Case Study
	10.3.2 Experiment and Results
	10.3.3 Discussion

	10.4 Conclusions and Future Outlook
	References

	11 Program Search for Machine Learning Pipelines Leveraging Symbolic Planning and Reinforcement Learning
	11.1 Introduction
	11.2 Related Work
	11.3 Background
	11.3.1 Symbolic Planning
	11.3.2 Reinforcement Learning

	11.4 Methodology
	11.4.1 Pipeline Generation
	11.4.2 Parameter Tuning and Pipeline Evaluation
	11.4.3 AutoML Framework

	11.5 Empirical Evaluation and Discussion
	11.5.1 Dataset and Problem Instance
	11.5.2 Hypotheses
	11.5.3 Pipeline Profiling
	11.5.4 Optimal Pipeline Generation
	11.5.5 Pipeline Ranking
	11.5.6 Extracted Knowledge About Problem

	11.6 Conclusion and Future Work
	References

	Index

