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Abstract. We introduce the itinerant list update problem (ILU), which
is a relaxation of the classic list update problem in which the pointer no
longer has to return to a home location after each request. The motiva-
tion to introduce ILU arises from the fact that it naturally models the
problem of track memory management in Domain Wall Memory. Both
online and offline versions of ILU arise, depending on specifics of this
application.

First, we show that ILU is essentially equivalent to a dynamic varia-
tion of the classical minimum linear arrangement problem (MLA), which
we call DMLA. Both ILU and DMLA are very natural, but do not appear
to have been studied before. In this work, we focus on the offline ILU and
DMLA problems. We then give an O(log2 n)-approximation algorithm for
these problems. While the approach is based on well-known divide-and-
conquer approaches for the standard MLA problem, the dynamic nature
of these problems introduces substantial new difficulties. We also show
an Ω(log n) lower bound on the competitive ratio for any randomized
online algorithm for ILU. This shows that online ILU is harder than
online LU, for which O(1)-competitive algorithms, like Move-To-Front,
are known.

1 Introduction

We introduce a variation of the classical list update problem, which we call the
itinerant list update problem (ILU). The setting consists of n (data) items, that
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without loss of generality we will assume are the integers [n] = {1, . . . , n}, stored
linearly in n locations on a track (tape). The track has a single read/write head.
Requests for these items arrive over time. In response to the arrival of a request
for an item x, the algorithm can perform an arbitrary sequence of the following
unit cost operations:

Move: Move the head to the left, or to the right, one position.
Swap: Swap the item pointed to by the head with the adjacent item on the
left, or the adjacent item on the right.

In order to be a feasible response, at some point in this response sequence, the
tape head must point to the position holding x. The objective is to minimize the
total cost over all requests. In the offline version of ILU, the request sequence
is known in advance, and in the online problem, only after the previous request
has been serviced.

Our motivation for introducing ILU is that it captures the problem of
dynamic memory management of a single track of Domain Wall Memory
(DWM). Here, dynamic means that the physical memory location where a data
item is stored may change over the execution of the application. DWM tech-
nology is discussed in more detail in the full version of the paper, but for our
algorithmic purposes it is sufficient to know that conceptually, a track of DWM
can be viewed as a tape with a read/write head. At least in the near term, it
is envisioned that DWM will be deployed close to the processor in the mem-
ory hierarchy, and used as scratchpad memory instead of cache memory, so the
stored data there would not have a copy in a lower level of the memory hier-
archy [6,7,10,13,14,16]. If the application is an embedded application, where
the sequence of memory accesses is (essentially) known before execution, then
dynamic memory management can be handled at compile time, and thus is an
offline problem [7]. If the sequence of memory accesses is not known before exe-
cution, then dynamic memory management would be handled by the operating
system at run time, and the problem is online. Additionally in this case, at run
time there would need to be an auxiliary data structure translating virtual mem-
ory addresses to physical memory addresses. We abstract away this issue (which
is independent of the memory technology), and model these two settings by the
offline and online ILU problems.

1.1 Relationship of ILU to List Update and Minimum Linear
Arrangement

The main difference between ILU and the standard list update problem (LU)
is that in LU there is an additional feasibility constraint. At the end of each
response sequence, the head has to return to a fixed home position. If the head
has a home position, there is a simple O(1)-approximation, which is also online:
The Move-To-Front (MTF) policy, which moves the last-accessed item to the
home position (and moves intermediate items one position further from the
home) can be shown to be O(1)-competitive by simple modifications to the
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analysis of MTF in [19]. There, the home position is the first position, and costs
are defined somewhat differently.

However, the natural adaptations of MTF for online ILU are all Ω̃(n)-
competitive, see the full version of the paper. These lower bounds hint at an
additional difficulty of online ILU relative to the standard list update problem.
In both problems it seems natural for the online algorithm to aggregate recently
accessed items together. However, in the standard list update problem it is obvi-
ous where to aggregate these items, near the home location, while in ILU, it
seems unclear where these items should be aggregated.

In the standard formulation of the list update problem [2,19], MTF is 2-
competitive, which is optimal for deterministic algorithms [19]. The optimal
competitive ratio for randomized algorithms (against an oblivious adversary) is
between 1.5 [20] and 1.6 [1]. The offline version of the list update problem is
shown to be NP-hard in [3,4], and there is an exact algorithm with running
time O(2nn!m), where m is the number of requests [18]. For a survey of many
further results related to the list update problem, see [2,12].

If items can only be reordered once at the beginning (so the memory manage-
ment is not allowed to be dynamic), then offline ILU is essentially the classical
minimum linear arrangement problem (MLA) [11]. In MLA, the input is an edge-
weighted graph G with n vertices. The output is an embedding of the vertices
of G into a track with n locations. The objective is to minimize the sum over
the edges of the weight of the edge times the distance between the endpoints of
the edge in the track. Here in the ILU application, the weight of an edge (x, y)
roughly corresponds to the number of times that item y is requested immediately
after item x is requested. We will make the connection between ILU and MLA
more precise shortly.

Hansen [11] gave a polynomial-time O(log2 n)-approximation algorithm for
MLA. This algorithm is a divide-and-conquer algorithm where the divide step
computes a balanced cut (say using [15]) to determine a partition of the items
into two sets, where all the items in the first set will eventually be embedded to
the left of all the items in the second set. As noted by Rao and Richa [17], this
same algorithmic design technique can be used to obtain approximation algo-
rithms with similar approximation ratios for the minimum containing interval
graph problem, and the minimum storage-time product problem. The algorithm
by Feige and Lee [9], which achieves the currently best known approximation
guarantee of O(

√
log n log log n) for these problems, combines rounding tech-

niques for semidefinite programs [5] and spreading-metric techniques [17].

1.2 Our Results

We have already mentioned the connection of ILU to the minimum linear
arrangement problem; we now make the connection more precise by defining
the dynamic minimum linear arrangement (DMLA) problem. The setting for
DMLA is the same as the setting for ILU: a linear track of items [n]. A sequence
of graphs H1,H2, . . . arrives over time, with the vertex set V (Ht) = [n] for each
time t. In response to the graph Ht, the algorithm can first perform an arbitrary



The Itinerant List Update Problem 313

sequence of swaps of adjacent items on the track; each such swap has a cost of
1. After this, the service cost for Ht is (as in MLA) the sum over the edges of
the distance between the current positions of the endpoints in the track. The
objective is to minimize the overall cost due to both swaps and service costs.
Note that in DMLA there is no concept of a track head, and swaps can be
made anywhere on the track. Once again, DMLA has both an online and offline
version. The standard MLA problem is essentially a special case of the offline
DMLA problem in which all of the many arriving graphs are identical (so there
is nothing to be gained from reordering the track).

We use DMLA1 to refer to the DMLA problem restricted to instances where
each request graph Ht has a single edge. We show the following.

Theorem 1. Consider offline ILU, DMLA, and DMLA1. If there is a
polynomial-time f(n)-approximation algorithm for one of these problems, there
are polynomial-time O(f(n))-approximation algorithms for the two other prob-
lems as well, as long as f(n) = O(polylog n).

The proof will be provided in the full version of the paper. It involves a somewhat
intricate sequence of reductions.

As our aim is a polylogarithmic approximation to ILU, we can henceforth
restrict our attention to DMLA1. Our main theorem is the following.

Theorem 2. There is a polynomial-time O(log2 n)-approximation algorithm for
offline DMLA1, implying the same for DMLA and ILU.

As the DMLA problem generalizes the standard MLA problem, it is natural
to suspect that the divide and conquer algorithmic design approaches used in,
e.g., [9,11], might be applicable. It turns out that the dynamic nature of the
problem introduces major new difficulties. We discuss these difficulties, and how
we succeed in bypassing them, in Sect. 2.1. We believe that our more sophisti-
cated algorithm design and analysis techniques may also be useful for other linear
arrangement problems, where the simpler techniques used for MLA, the mini-
mum containing interval graph problem and the minimum storage-time product
problem are also not sufficient [9,11,17].

We now turn to online ILU. We have already seen that it seems much harder
than the classical list update problem. This is confirmed by the following theo-
rem, proved in Sect. 3.

Theorem 3. The competitive ratio of any randomized online ILU algorithm
against an oblivious adversary is Ω(log n).

In the construction, the algorithm only gradually “learns” that certain items
should be close to each other to handle the requests cheaply. To profitably aggre-
gate these items, however, the algorithm would need to know where to aggregate
them, which requires more global information. This manifests the difficulties
encountered when trying to adapt MTF.

It remains a very interesting and challenging open problem to give a polylog-
competitive algorithm for online ILU. The reductions in the full version of the
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paper show that online ILU, DMLA and DMLA1 are also equivalent, and it
suffices to give a polylog-competitive algorithm for online DMLA1. We anticipate
that the insights obtained in the analysis of the approximation algorithm will
be crucial in making progress.

2 Approximation Algorithm

We now prove Theorem 2, by giving an O(log2 n)-approximation algorithm for
DMLA1; by Theorem 1 this implies the same for ILU and DMLA. The design of
our algorithm is described in Sect. 2.2, and its analysis in Sect. 2.3. We first give
a technical overview of our algorithm and analysis.

2.1 Overview

As the starting point for our algorithm for DMLA1 was the divide-and-conquer
algorithm for MLA by Hansen [11], we start by discussing this algorithm. The
MLA algorithm finds an approximate minimum balanced cut of the input graph
G into a “left” side and a “right” side (the balance is randomly selected). The
algorithm then recurses on the subgraph of G induced by the “left” vertices,
and on the subgraph of G induced by the “right” vertices, This recursion is
“simple”, in the sense that the subproblems are just smaller instances of the
MLA problem. This recursive process constructs a laminar family1 of subsets of
the vertices of G, with each set labeled left or right, and from which the ordering
can be obtained in the natural way. One issue that must be addressed in the
analysis is ruling out the possibility that choosing a high-cost balanced cut at the
root can drastically reduce costs at lower levels of the recursion, so that taking
a low-cost balanced cut at the root is already an unfixable mistake. In [11] this
is handled by showing that the MLA problem has the following subadditivity
property : the optimal cost for the left subinstance plus the optimal cost for
the right subinstance is at most the optimal cost for the original instance. This
subadditivity property makes it straightforward to observe that a c-approximate
algorithm for minimum balanced cut implies a c · h-approximate algorithm for
MLA, where h = Θ(log n) is the height of the recursion tree.

In order to adapt this algorithm and analysis from MLA to DMLA1, the
first question is to determine what should play the role of the input graph. Our
algorithm operates on a time-expanded graph G, defined in Definition 1 (see
Fig. 1), that contains a vertex (x, t) for every item x and time t. A cut in G
can again be interpreted as dividing the nodes into a left and right part, but
now in a dynamic way: an item x might be in the left side of the cut at some
time t1, but on the right side at another time t2. “Consistency edges” of the
form {(x, t − 1), (x, t)} play a role in encoding swap costs; the edge contributes
to the cut if item x switches sides between times t − 1 and t. However, we now

1 A family F ⊆ 2S of sets over some ground set S is called laminar if, for all F1, F2 ∈ F ,
we have F1 ∩ F2 = ∅, F1 ⊆ F2, or F1 ⊇ F2.
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encounter a significant complication: a balanced cut of G does not suffice. One
instead needs a cut that is balanced at each time; in other words, a constant
fraction of the items should be to the “left” at any given time t. This is crucial for
the same reason as in MLA; to ensure, in essence, that the expected distortion
between the original line metric and the random tree metric described by the
laminar family is not too large.

Before describing how our algorithm finds per-time balanced cuts, we note a
major hurdle. Firstly, we cannot hope for a “simple” recursion. Consider the left
side of some per-time balanced cut; this will typically have some items that enter
and leave this set over time. So from the left subproblem’s point of view, items
are arriving and leaving over time. It is tempting to try to define a generalization
of DMLA1 in which items are allowed to enter and leave. However, we failed to
find a formulation of such a problem that (a) we could approximately solve in an
efficient manner, and (b) has the subadditivity property which is so critical to
the MLA analysis. Rather than surmounting this hurdle, we more or less bypass
it, as we will now describe.

Let us return to the issue of finding per-time balanced cuts. Our algorithm
proceeds as follows. First, compute a balanced cut of G; if this is sufficiently
cheap, it is easily argued (by virtue of the consistency edges) that the cut is
in fact per-time balanced. Otherwise, we find a balanced cut of the subgraph
corresponding to those vertices up to some time r, where r is chosen as large as
possible but such that the balanced cut is cheap, and hence per-time balanced.
Again our algorithm then recurses on the left and right subgraphs of the vertices
of G up to time r, but then also recurses on the subgraph consisting of vertices
with times after r. This however means that we make no effort whatsoever to
prevent a complete reordering between times r and r+1; there may be a complete
“reshuffle” of the items, and this is not captured in the cost of any of the balanced
cuts.

So the final major hurdle is to bound the cost of these reshufflings, which
can occur in all levels of the recursion. Because we don’t know how to show
that DMLA1 has an appropriate subadditivity property, we cannot charge these
reshuffling costs locally. This is unlike in the analysis of the MLA algorithm,
where all charging is done locally. Instead, we charge, in a somewhat delicate
way, the cost of reshuffling at a given level to cuts higher up in the laminar
family.

Finally we have to relate the expected reduced cost of the algorithm to the
cost of the optimum. This is broadly similar to the MLA algorithm analysis, with
some extra technical work to handle the dynamic aspect. In the end we obtain
an O(log2 n) approximation factor. As in the analysis of the MLA algorithm, we
lose one log factor in the approximation of the balanced cut, and one log factor
that is really the height of the recursion tree.

2.2 Algorithm Design

We begin by introducing some needed notation.
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For a graph G = (V,E) and a subset W ⊆ V , G[W ] denotes the subgraph
induced by W , and E[W ] the set of edges in G[W ]. For a set S ⊆ V , δ(S)
denotes the set of edges crossing the cut S. We also use the less standard notation
δW (S) to denote δ(S) ∩ E[W ]. The balance of a cut S in G is simply |S|/|V |.
Furthermore, by T we refer to the total number of requests. The following “time-
expanded graph” will be used throughout the algorithm.

Definition 1. G = (V,E) is defined as follows:

– There is a vertex (x, t) for each item x ∈ [n] and each time t, where t ∈
{0, 1, 2, . . . , T}. We call the set of nodes at time t layer t, and denote it by Lt.

– For each time t ∈ [T ], and the single edge {x, y} ∈ Ht, there is an edge
et := {(x, t), (y, t)}. We call these request edges.

– For each item x and t ∈ [T ] there is an edge {(x, t − 1), (x, t)}. We will call
these consistency edges.

Let Er and Ec denote the set of request and consistency edges respectively.

Note that the cost of any solution is certainly at least T , since each request
incurs a cost of at least 1. Thus we can afford to return the items to their
original order after every n2 requests, at only a constant-factor increase in cost.
This splits up the instance into completely independent sub-instances with at
most n2 requests each, and so we may assume that T ≤ n2. Next, we prove this
formally.

Lemma 1. If there is a polynomial-time f(n)-approximation algorithm A for
DMLA1 with T ≤ n2, then there is a polynomial-time O(f(n))-approximation
algorithm B for DMLA1 in general.

Proof. Given some DMLA1 instance I with one edge at a time and with-
out restrictions on T , Algorithm B first cuts I into contiguous sub-instances
I ′
1, I

′
2, . . . , I

′
k of n2 requests each (possibly except for the last one). Then B calls

A on each of these sub-instances and then connects these solutions up by moving
back to the initial order before each new sub-instance, at a total additional cost
of at most (k − 1)n2.

Then we have

costB(I) ≤
k∑

i=1

costA(I ′
i) + (k − 1)n2

≤ f(n) ·
k∑

i=1

costOPT(I ′
i) + (k − 1)n2

≤ f(n) · (costOPT(I) + (k − 1)n2) + (k − 1)n2,

≤ O(f(n)) · costOPT(I).

In the second-to-last step we use that the optimal solution for I can be trans-
formed into optimal solutions for I ′

1, I
′
2, . . . , I

′
k by moving to the identical orders,

again at a total additional cost of at most (k − 1)n2. In the last step, we use
that costOPT(I) is at least the number of requests in I and f(n) ≥ 1. �	
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This is important when applying approximation algorithms to G (or sub-
graphs of it) whose approximation guarantees depend on the size of the input
graph. We proceed with further definitions.

Definition 2. For any W ⊆ V , let

tmin(W ) := min{t : (x, t) ∈ W for some x ∈ [n]},

tmax(W ) := max{t : (x, t) ∈ W for some x ∈ [n]}.

We say an item x is present in W if (x, t) ∈ W for some t ∈ {0, 1, . . . , T}.
We say x is permanent in W if (x, t) ∈ W for all tmin(W ) ≤ t ≤ tmax(W ); all
other items present in W are called temporary in W . Let α(W ) be the number
of items present in W , and β(W ) the number of temporary items in W . For any
tmin(W ) ≤ r ≤ tmax(W ), let W(r) = {(x, t) ∈ W : t ≤ r}. By layer t of W , we
refer to the set Lt ∩ W .

Algorithm Description. The first stage of the algorithm will recursively
and randomly hierarchically partition G. The output of this first stage will be
described by a laminar family L on V , with each set S ∈ L labeled either left or
right.

So let W be a subset of V , representing the vertex set of a subproblem.
Throughout, c will denote a positive constant chosen sufficiently small; c = 1/100
suffices. We assume that

β(W ) ≤ cα(W ); (1)

this is of course true when W = V (because β(V ) = 0), and we will ensure that
it holds for each subproblem that we create. If α(W ) < 16/c, we will terminate,
and this subproblem will be a leaf of the laminar family constructed. So asume
α(W ) ≥ 16/c from now on. The algorithm chooses κ uniformly from the interval
[12 − c, 1

2 + c], which is used as the balance parameter for a certain balanced cut
problem. The problem differs depending on whether tmin(W ) = 0 or tmin(W ) >
0, since the initial ordering is fixed. If tmin(W ) > 0, define Ḡ(r) = G[W(r)]. If
tmin(W ) = 0, define Ḡ(r) as the graph obtained from G[W(r)] by choosing z
so that the set A = {(x, 0) ∈ W : x ≤ z} has cardinality κα(W ), and then
contracting A into single node s, and the nodes {(x, 0) ∈ W : x > z} into a
single node t. Let W̄(r) be the vertex set of Ḡ(r).

We now compute a cut Sr in Ḡ(r) with

|Sr| ∈ [(κ − 8c)|W̄(r)|, (κ + 8c)|W̄(r)|], (2)

in such a way that |δW(r)(Sr)| = O(log |W̄(r)| · |δW̄(r)
(S∗

r )|), where S∗
r is the

minimum cut with

|S∗
r | ∈ [

(κ − 4c)|W̄(r)|, (κ + 4c)|W̄(r)|
]
. (3)

Note that the intervals in (2) and (3) are non-empty because α(W ) ≥ 16/c,
implying that both S∗

r and Sr exist; further O(log |W̄(r)|) ⊆ O(log n) because
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T ≤ n2. Bicriteria approximation algorithms to balanced cut required to com-
pute some |Sr| as above are well known [15,21]. In the case tmin(W ) = 0, we
ensure that Sr is chosen so that s ∈ Sr, by replacing Sr with W(r)\Sr if nec-
essary. Note that if |δW̄(r)

(Sr)| ≤ cα(W ) (which will be the case of interest),
Sr will separate s and t. This is because, if s, t ∈ Sr (s, t /∈ Sr analogously),
|δW̄(r)

(Sr)| is at least the number of items x permanent in W for which there is
a (x, τ) ∈ W(r)\Sr. Using the balance requirement (2), we can lower bound this
quantity by (12 − 9 · c)α(W ) − β(W ) ≥ (12 − 10 · c)α(W ), which exceeds cα(W )
for c sufficiently small. We can interpret Sr as a cut in G[W(r)] by uncontracting
s and t.

Roughly, the plan now is to pick r∗ as large as possible such that |δW(r∗)(Sr∗)|
is not too big; small enough so that we can be sure that at each time t between
tmin(W ) and r∗, Sr∗ ∩ Lt has size roughly κα(W ). However, some additional
care is needed, since we also would like that |δW(r∗)(Sr∗)| is not too small—
unless r∗ = tmax(W ). This is needed so that the edges in δW(r∗)(Sr∗) can be
charged to later.

Thus, we proceed as follows. We define the cuts S̄r inductively by: S̄tmin(W ) =
Stmin(W ), and for r > tmin(W ), S̄r is either Sr, or an extension S′ of S̄r−1 to
layer r, whichever is cheaper. This extension is obtained, roughly speaking, by
duplicating the layer r−1 nodes of S̄r−1, i.e., taking all (x, r) for which (x, r−1)
is in S̄r−1. But in order to ensure that S′ is sufficiently balanced, we adjust this
so that |S′ ∩ Lr| ∈ [(κ − 8c)|W ∩ Lr|, (κ + 8c)|W ∩ Lr|], by adding or removing
an arbitrary set of items of minimum cardinality that is sufficient to satisfy
this requirement. Then clearly S′ satisfies (2), since inductively S̄r−1 satisfied
it for W̄(r−1). Note that if q items are added or removed, then |δW(r)(S

′)| ≤
|δW(r−1)(S̄r−1)| + q + 1; here we use that Hr consists of only a single edge.

Our algorithm sets r∗ to be the maximum r ≤ tmax(W ) such that

β(W(r)) + |δW(r)(S̄r)| ≤ 1
4cα(W ). (4)

We argue that r = tmin(W ) always fulfills this inequality, so that r∗ does always
exist: In this case, β(W(r)) = 0 and |δW(r)(S̄r)| ≤ 1. To see the latter, distinguish
two cases. If tmin(W ) = 0, then the corresponding layer has been contracted into
two nodes, there is only one possible balanced cut, and it can be cut only by a
single request edge. If on the other hand tmin(W ) > 0, then there is a balanced
cut of cost 0. Since α(W ) ≥ 16/c by assumption, the inequality holds.

For convenience let S∗ := S̄r∗ and W ∗ := W(r∗). We illustrate this in Fig. 1.
We now note a property that will be required later in the analysis.

Property 1. If r∗ < tmax(W ), then β(W ) + |δW ∗(S∗)| = Ω(α(W )).

Proof. Let S′ be the extension of S∗ that was considered by the algorithm at
time r∗ + 1, and let q be the number of items that needed to be added to or
removed from the duplication of layer r∗ of S∗ in order to ensure |S′ ∩ Lr∗+1| ∈
[(κ − 8c)|W ∩ Lr∗+1|, (κ + 8c)|W ∩ Lr∗+1|]. We bound q: Since S∗ fulfills (2),
there is a layer r′ such that |S∗ ∩ Lr′ | ∈ [(κ − 8c)|W ∩ Lr′ |, (κ + 8c)|W ∩ Lr′ |].
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tmin(W )

r∗

tmin(W ) + 8

S∗ W ∗ \ S∗

α(W )− β(W ) β(W )

Fig. 1. An example of G[W ], S∗, and W ∗\S∗. For the sake of illustration, we do not
require S∗ to satisfy the inequalities with the same constants as in our algorithm.

Now note that, when going from layer r′ of S∗ to layer r∗ +1, each item that we
need to add or remove in order to restore the balance requirement is due to an
edge in E[W ∗] being cut by S∗ or an item temporary in W leaving or entering.
So we have q ≤ |δW ∗(S∗)| + β(W ).

Then |δW(r∗+1)(S
′)| ≤ |δW ∗(S∗)| + q + 1 ≤ 2|δW ∗(S∗)| + β(W ) + 1. Since the

Condition (4) was not satisfied by r∗ + 1, we deduce that 1
4cα(W ) − β(W ∗) <

|δW(r∗+1)(S
′)|. Combining these inequalities and using that β(W ∗) ≤ β(W ) yields

β(W ) + |δW ∗(S∗)| ≥ 1
8cα(W ) − 1. Since α(W ) ≥ 16/c, the claim follows. �	

Furthermore, we have the following lemma.

Lemma 2. α(S∗) and α(W ∗\S∗) are both at least 1
4α(W ).

Proof. Let ρ = r∗ − tmin(W )+1. Observe that ρ ·α(S∗) ≥ |S∗| ≥ (κ−8c)|W ∗| ≥
(12 − 9c)|W ∗|. These inequalities follow by the definition of ρ and α(·), Inequal-
ity (2), and the choice of κ and c, respectively. Since |W ∗| is at least ρ times
the number of permanent items in W , α(S∗) ≥ ( 12 − 9c)(α(W ) − β(W )) ≥
(12 − 9c)(1 − c)α(W ) ≥ 1

4α(W ), where the last inequality follows by our choice
of c. A symmetric argument holds for W ∗\S∗. �	
Since the number of temporary items in S∗ is at most the number of temporary
items in W ∗ plus the size of the cut δW ∗(S∗), (4) yields that β(S∗) ≤ 1

4cα(W ),
and so β(S∗) ≤ cα(S∗) by the lemma. Similarly, β(W ∗\S) ≤ cα(W ∗\S∗). This
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shows that the algorithm may recurse in S∗ and W ∗\S∗. Eventually this recur-
sion yields labeled families Lleft and Lright on S∗ and W ∗\S∗, respectively. If
W\W ∗ 
= ∅, the algorithm also iterates on W\W ∗, obtaining Lrest. The result-
ing labeled laminar family L is Lleft ∪ Lright ∪ Lrest ∪ {S∗,W ∗\S∗}, where S∗ is
labeled left and W ∗\S∗ is labeled right. We call S∗ and W ∗\S∗ siblings. Note
that W may have many direct children in L, but each layer intersects precisely
one sibling pair. Also note that since |S∗| ∈ [

( 12 − 9c)|W ∗|, ( 12 + 9c)|W ∗|],L has
logarithmic depth.

Once L has been constructed, the ordering ≺t of the algorithm’s list At at
time t is determined in the following manner. If there exists a set in L containing
(x, t) but not (y, t), and the maximal such set S is labeled left, then x is to the
left of y in At, that is, x ≺t y; if S is labeled right, x is to the right of y, that
is, y ≺t x. If there is no set in L containing (x, t) but not (y, t), we let x ≺t y
if and only if x < y, i.e., we order x and y according to the initial ordering. In
the latter case, we say x ≺t y by default. Note that this rule yields the correct
ordering for A0, since for any x < y, at the moment where they are separated,
we ensure that (x, 0) ∈ S∗ and (y, 0) /∈ S∗.

2.3 Algorithm Analysis

Definition 3. Given two orderings A, B of the items, and any two distinct
items x, y, we say that (x, y) is a discordant pair (for A and B) if x and y have
a different relative order in A and in B.

Note that the number of discordant pairs for A and B is precisely the permuta-
tion distance between A and B, i.e., the minimum number of swaps of adjacent
items required to obtain order B starting from order A.

Definition 4. For S ∈ L, define cost(S) to be α(S) · |δ(S)| and cost(L) to
be

∑
S∈L cost(S). Let parent(S) be the parent of S, meaning the minimal set

S′ ∈ L∪{V } with S′ � S (which is unique by the laminarity of L). (By including
V here, we ensure that every set in L has a parent.) Let pair(S) be the union of
S and its sibling (i.e., the other child of parent(S) in L which covers the same
layers as S). Note that S � pair(S) ⊆ parent(S).

Lemma 3. The cost of the algorithm is at most 8 · cost(L)+O(OPT) (irrespec-
tive of the random choices made in the algorithm).

Proof. We argue separately for each time t. First consider the swap costs, so let
t ≥ 1, and define Ec

t = {{(x, t − 1), (x, t)} : x ∈ [n]
}
. The proof strategy for this

part is to consider discordant pairs for At−1 and At, assigning them to certain
sets S ∈ L, and later counting the number of discordant pairs assigned to each
set S ∈ L. Hence suppose x ≺t−1 y and y ≺t x (so (x, y) is a discordant pair for
At−1 and At).

First consider the case that x ≺t−1 y by default; the case where y ≺t x by
default is analogous. As x ≺t−1 y by default, there is a set T minimal in L with
(x, t − 1), (y, t − 1) ∈ T . Since (x, y) is a discordant pair, however y ≺t x not
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by default. Hence, the construction of At from L tells us that there is a unique
left-labeled set U ∈ L with (y, t) ∈ U , (x, t) ∈ parent(U)\U . We say that U
certifies that y ≺t x. Note that U ∩ T = ∅ or (parent(U)\U) ∩ T = ∅ (or both).
Assign discordant pair (x, y) to the corresponding set out of U,parent(U)\U .

Now consider the case that neither x ≺t−1 y by default nor y ≺t x by default.
Again we know that there is a left-labeled set U ∈ L certifying y ≺t x. Similarly,
there is a left-labeled set T certifying that x ≺t−1 y. We prove the following
claim.

Claim. (x, t) /∈ T or (y, t − 1) /∈ U (or both).

Proof (Claim). Suppose not. Then T contains (x, t−1) and (x, t), and U contains
(y, t − 1) and (y, t). Moreover T is a maximal set in L containing (x, t − 1) and
not (y, t − 1), and U is a maximal set containing (y, t) and not (x, t); we deduce
that T ′ := parent(T ) = parent(U). But this contradicts the assumption that T
and U are both labeled left; within the subproblem induced by T ′, the algorithm
produces only one set labeled left containing nodes at time t. �	

So in this case assign discordant pair (x, y) to T if (x, t) /∈ T , and to U if
(y, t − 1) /∈ U (if both occur, the assignment can be arbitrary). Now consider
the assignment of discordant pairs (in both cases) from the perspective of a set
S ∈ L. If (x, y) is assigned to S, then for (z, z̄) ∈ {(x, y), (y, x)} we have

– (z, t − 1) ∈ S, (z̄, t − 1) ∈ parent(S)\S, and (z, t) /∈ S,
– or (z, t) ∈ S, (z̄, t) ∈ parent(S)\S, and (z, t − 1) /∈ S.

Thus we can bound the total number of discordant pairs assigned to S by

2 · (|{z : (z, t − 1) ∈ S, (z, t) /∈ S}|
+ |{z : (z, t) ∈ S, (z, t − 1) /∈ S}|) · α(parent(S))

= 2 · |δ(S) ∩ Ec
t | · α(parent(S))

≤ 8 · |δ(S) ∩ Ec
t | · α(S),

where the last inequality follows by Lemma2. So the cost to optimally reorder
At−1 to At, being exactly the number of discordant pairs, is at most 8 ·∑

S∈L α(S) · |δ(S) ∩ Ec
t |.

We now consider the service cost at time t. The request pair is an edge
et = {(x, t), (y, t)} in G; assume that x ≺t y, otherwise relabel x and y. The
algorithm pays the distance between x and y in At. If x ≺t y by default, the
distance between x and y in At is at most 16/c by construction, and the cost
is taken care of by the O(OPT) term in the cost bound, because OPT pays
at least one for the considered request. Otherwise consider the set S certifying
that x ≺t y. Then S′ := parent(S) contains both (x, t) and (y, t), and α(S′)
clearly bounds the distance between x and y in At (because any item outside of
S′ is either to the left of both x and y or to the right of both). Since α(S′) ≤
4 · α(S) (again Lemma 2), we conclude that the service cost at time t is at most
4 · ∑

S∈L α(S) · 1et∈δ(S). Combining the swap and service costs at all times, we
obtain the lemma. �	
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Before we state the next lemma, we note that for any S ∈ L, pair(S) is
exactly the set within which S was a good balanced cut, and |δpair(S)(S)| is
exactly the cost of S in this balanced cut problem.

Definition 5. We define costcore(S) to be α(S) · |δpair(S)(S)|, and costcore(L) to
be

∑
S∈L costcore(S).

Lemma 4. Irrespective of the random choices made by the algorithm, we have
costcore(L) = Ω(cost(L)).

Proof. Begin by assigning to each pair (e, S), where S ∈ L and e ∈ δ(S), a
charge of α(S). Our goal is to redistribute this charge to pairs (e, S) where
e ∈ δpair(S)(S), and where each such pair gets a total charge of O(α(S)). This
clearly implies the lemma.

For a set S ∈ L, we call an edge of the form {(x, tmax(S)), (x, tmax(S) + 1)}
that crosses S a top shuffle edge for S, and similarly an edge of the form
{(x, tmin(S) − 1), (x, tmin(S))} a bottom shuffle edge for S. Let Q(S) denote
the set of shuffle edges (either top or bottom) for S. Note that Q(S) ⊆
δ(S)\δpair(S)(S). Now notice that we have the following downward-closed prop-
erty.

Claim. If e is a shuffle edge for some S ∈ L, and e ∈ δ(T ) for some T ∈ L with
T ⊂ S, then e is a shuffle edge for T as well.

We reassign the charge in stages. In the first stage, we reassign all the charges
involving an edge e to a maximal S ∈ L with e ∈ δ(S). Note that there are two
possible choices for S. If e ∈ Ec, choose the S containing the earlier endpoint
of e and not the later one; if e ∈ Er, make any choice. Now consider any (e, S).
It may receive charge from multiple consistency edges, whose initial charges are
geometrically decreasing starting from α(S), and a single request edge with initial
charge α(S). So (e, S) has charge O(α(S)) after this reassignment. Moreover, by
the above choice of S, no bottom shuffle edges have any charge remaining.

For the next stage, we prove the following statement.

Claim. For any S ∈ L, the total charge in Q(S) is O
(
α(S) · |δ(S)\Q(S)|).

Proof (Claim). Let W = parent(S) and U = pair(S). There are two cases. The
first case is if tmax(S) = tmax(W ). In this case, all top shuffle edges for S cross
W as well, and so have no charge. The second case is if tmax(S) < tmax(W ).
In this case, since each shuffle edge of S currently has charge at most O(α(S)),
it suffices to show that |Q(S)| = O(|δ(S)\Q(S)|). Notice that |δ(S)\Q(S)| ≥
|δU (S)| + β(W ), because every non-shuffle edge crossing S is either contained in
U , or crosses W , meaning it was a temporary node in W . But since tmax(S) <
tmax(W ), we know from Property 1 that |δU (S)|+β(W ) = Ω(α(W )). The claim
follows since |Q(S)| ≤ α(S) and α(S) ≤ 4 · α(W ), by Lemma 2. �	

It follows that, in the next stage, we can now redistribute all charge on the
shuffle edges of a set S ∈ L to other edges, maintaining that no edge of δ(S) has
a charge more than O(α(S)).
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In the final stage, we again reassign all charge of an edge to a maximal
set that it crosses; each pair (e, S) still has a charge O(α(S)). It remains true
that no pair (e, S) with e ∈ Q(S) gets any charge, because of Claim 2.3. So all
charge for a set S is on edges that are not shuffle edges, and which do not cross
parent(S); these are precisely the edges of δpair(S)(S). This completes the proof of
Lemma 4. �	
Lemma 5. E[costcore(L)] = O(log2 n) · OPT.

Proof. Let A∗
t denote the ordering in the optimum solution after responding to

request t. Let S1, . . . Sk be the left elements of L that are of some depth d in
this laminar family. Let Wi = parent(Si) and Ui = pair(Si). (Note that the
Ui’s are disjoint, but many of the Wi’s may be the same.) We fix the random
choices made by the algorithm above level d (thus we may consider Wi to be
deterministic for each i, although Ui is random). Define, for any i ∈ [k] and S ⊆
pair(Si), costcore(S) = α(S) · |δpair(Si)(S)|. Then for each Si, we will show how to
derive from OPT a (random) balanced cut Ci of G[Ui], such that costcore(Si) =
O(log n) · costcore(Ci) and

k∑

i=1

E[costcore(Ci)] = O(OPT). (5)

The expectation is over the random choices made by the algorithm at layer d.
The result then follows, since L has depth O(log n).

Now fix some i ∈ [k]. Note that we can assume α(Wi) ≥ 16/c. We define
Ci as follows. Let κi denote the random choice made by the algorithm for the
subproblem Ui. and let mi = �κiα(Wi)�. Now consider the permanent items of
Wi as they appear in A∗

t , and let pi,t be the position of the mi’th such item, for
any i ∈ [k] and tmin(Ui) ≤ t ≤ tmax(Ui). Note that the probability that pi,t takes
any specific value is O(1/α(Wi)). Then define

Ci = {(x, t) ∈ Ui : x is at or to the left of position pi,t in A∗
t }.

Note that the Ci’s are obviously disjoint sets, since the Ui’s are disjoint.
We first prove that costcore(Si) = O(log n) · costcore(Ci) (irrespective of the

random choice of κi). To see this, consider some layer of Ui, and observe that
the number of nodes in it is in [α(Wi)−β(Wi), α(Wi)] ⊆ [(1− c) ·α(Wi), α(Wi)]
(using (1)). On the other hand, the number of nodes contained in any layer of
Ci is in [�κi · α(Wi)�, �κi · α(Wi)� + β(Wi)] ⊆ [κi · α(Wi) − 1, (κi + c) · α(Wi)]
(again using (1)). Putting the two observations together and using α(Wi) ≥ 16/c
yields that any layer of Ci contains a fraction in [κi − c, κi + 3c] of the nodes of
the corresponding layer of Ui. Summing over all layers shows that the balance
of Ci in Ui is in [κi − c, κi + 3c] ⊆ [12 − 2c, 1

2 + 4c]. Therefore, α(Ci) = Θ(α(Si)).
Applying this to |δUi

(Si)| = O(log n) · |δUi
(Ci)|, which follows from the fact that

Ci fulfills (3) in the definition of the algorithm, yields costcore(Si) = O(log n) ·
costcore(Ci).
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Next, we show (5). Look at any request edge et. If it is not contained within
Ui for some i, then it does not contribute to the left hand side of (5), so suppose
it is contained in Ui. Let q1 < q2 be the positions of the endpoints of et in A∗

t ; so
OPT pays q2 − q1. Then the probability that et crosses Ci is P(q1 ≤ pi,t < q2),
which is O((q2−q1)/α(Wi)). If et does cross Ci, it contributes α(Ci) = Ω(α(Si)),
and so its expected contribution is O(q2 − q1).

Now consider the swap cost. The swap cost in the optimal solution at time t
is the number of discordant pairs for A∗

t−1 and A∗
t . So assign the swap cost to an

item x at time t to be equal to the number of such discordant pairs that include
x. The sum of the costs assigned to all items over all times is then exactly twice
the swap cost of OPT.

So fix some item x and time t. Suppose {(x, t − 1), (x, t)} ∈ E[Ui] for some i
(otherwise again, it does not contribute to (5)). Let q1 and q2 be the number of
permanent items in Wi to the left of x in A∗

t−1 and A∗
t , respectively. Once again,

the probability that {(x, t − 1), (x, t)} ∈ δUi
(Ci) is at most O(|q2 − q1|/α(Wi)),

yielding an expected contribution to (5) of O(|q2 − q1|). But |q2 − q1| is at most
the number of discordant pairs involving x. Summing over all x and t completes
the proof. �	
Combining Lemmas 3, 4 and 5 yields that the cost of the algorithm is O(log2 n ·
OPT), as desired.

3 Lower Bound for ILU

We now prove that there is no randomized o(log n)-competitive online algorithm
for ILU.

Proof (Theorem 3). We apply Yao’s principle: For a particular input distribu-
tion, we show that the expected cost for every deterministic online algorithm
is a Ω(log n) factor more than the expected optimal cost [8]. Conceptually,
underlying the lower bound construction is a complete binary tree T , of depth
q = Θ(log n), with n leaves. We think of each internal node of T as having a
left and right subtree; thus the leaves of T can be associated with the positions
on the track. We begin by choosing an uniformly random initial assignment δ of
items to leaves. The adversary initially orders the items in the track to match
this assignment, and will not move the items after this.

The sequence of requests consists of q rounds. Each round i, 0 ≤ i ≤ q − 1,
the request sequence πi is a permutation of [n]. We define a depth-d subtree to
be a subtree rooted at a node of depth d in T . Here we assume the root of T has
depth 0. To obtain πi, the depth-(q − i) subtrees, of which there are 2q−i, are
first ordered uniformly at random (and independent of all other random choices).
Then, while maintaining the order of the subtrees, the 2i leaves within each of
the depth-(q − i) subtrees are uniformly randomly ordered (again independent
of all other random choices). To make this more precise, let vσ(1), . . . , vσ(2q−i) be
a random permutation of the vertices of depth q − i in T . For each 1 ≤ j ≤ 2q−i,
let vρj(1), . . . , vρj(2i) be a random permutation of the leaves of the subtree of T
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rooted at vσ(j). Then vρj(k) precedes vρj′ (k′) in πi if and only if j occurs before
j′ in σ, or j = j′ and k occurs before k′ in ρj .

We now bound the costs for the optimum. The only swap cost is incurred
initially and is no more than n2. During πi, movement between two items in the
same depth-(q − i) subtree costs at most 2i. Thus the total movement between
items in the same depth-(q − i) subtrees costs at most n2i. Movement between
two such items costs at most n.

The movement cost for the first item is at most n. Also, movement between
two items in different depth-(q − i) subtrees costs at most n. There are exactly
2q−i − 1 consecutive accesses to items in different depth-(q − i) subtrees. Thus
the total movement cost between items in different depth-(q − i) subtrees is
at most n2q−i. Summing over i, we get that the adversary’s cost is at most∑q

i=1 n2i + n2q−i = O(n2).
We now bound the expected cost for the online algorithm. We can generously

assume that the online algorithm knows the adversary’s strategy for constructing
the sequences πi and that it sees πi just before round i. Before seeing πi, the
online player knows the depth-(q− i+1) subtrees of T , but it has no information
at all on how depth-(q − i + 1) subtrees are paired to form the depth-(q − i)
subtrees. So an alternative equivalent way to randomly generate δ would be to
at this time randomly pair the depth-(q − i + 1) subtrees.

For the moment assume that the online algorithm does not reorder the items
during round i. Then consider the 2i consecutive requests to the leaves in some
depth-(q − i) subtree in πi. In expectation, at least a constant fraction of these
consecutive accesses will be to items in different depth-(q−i+1) subtrees. As the
depth-(q− i+1) subtrees are paired up randomly, any online algorithm will have
to move in expectation Ω(n) positions in response to the requests in the different
depth-(q − i + 1) subtrees. Hence, the expected cost for the algorithm for each
round is Ω(n2) if the online algorithm makes no swaps after seeing permutation
πi. But note that any swap made after seeing πi can reduce the movement cost
in round i by at most 2 since each item is requested only once in πi. Hence, the
cost for the online algorithm is Ω(n2) per round, and Ω(n2 log n) in total.

Note that this construction can be repeated to rule out the possibility of a
o(log n)-competitive algorithm with an additive error term.
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