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Preface

The 16th Workshop on Approximation and Online Algorithms (WAOA 2018) focused
on the design and analysis of algorithms for online and computationally hard problems.
Both kinds of problems have a large number of applications in a variety of fields.
WAOA 2018 took place in Helsinki, Finland, during August 23–24, 2018 and was a
success: It featured many interesting presentations and provided opportunity for
stimulating discussions and interactions. WAOA 2018 was part of the ALGO 2018
event that also hosted ALGOCLOUD, ALGOSENSORS, ATMOS, ESA, IPEC, and
WABI.

Topics of interest for WAOA 2018 were: graph algorithms, inapproximability
results, network design, packing and covering, paradigms for the design and analysis of
approximation and online algorithms, parameterized complexity, scheduling problems,
algorithmic game theory, algorithmic trading, coloring and partitioning, competitive
analysis, computational advertising, computational finance, cuts and connectivity,
geometric problems, mechanism design, resource augmentation, and real-world
applications. In response to the call for papers, we received 44 submissions. One
submission was rejected as out of scope right away, and each of the remaining sub-
missions was reviewed by at least three referees. The submissions were mainly judged
on originality, technical quality, and relevance to the topics of the conference. Based on
the reviews, the Program Committee selected 19 papers. This volume contains final
revised versions of these papers as well as an invited contribution by our invited
speaker Gerhard Woeginger. The EasyChair conference system was used to manage
the electronic submissions, the review process, and the electronic Program Committee
discussions. It made our task much easier.

We would like to thank all the authors who submitted papers to WAOA 2018 and all
attendees of WAOA 2018, including the presenters of the accepted papers. A special
thank you goes to the plenary invited speaker Gerhard Woeginger for accepting our
invitation, giving a very nice talk, and contributing a paper to these proceedings. We
would also like to thank the Program Committee members and the external reviewers
for their diligent work in evaluating the submissions and their contributions to the
electronic discussions. Furthermore, we are grateful to all the local organizers of ALGO
2018, especially the local co-chairs, Parinya Chalermsook, Petteri Kaski, and Jukka
Suomela.

September 2018 Leah Epstein
Thomas Erlebach
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Some Easy and Some Not so Easy
Geometric Optimization Problems

Gerhard J. Woeginger(B)

Department of Computer Science, RWTH Aachen, Aachen, Germany
woeginger@algo.rwth-aachen.de

Abstract. We survey complexity and approximability results for cer-
tain families of geometric optimization problems. We explain a generic
approximation approach for maximization problems that is built around
norms with polyhedral unit balls, and we pose a multitude of open prob-
lems.

Keywords: Combinatorial optimization · Approximation
Computational complexity · Geometry

1 Introduction

Let G be some fixed family of graphs. In this paper, we discuss geometric opti-
mization problems of the following type.

Generic geometric optimization problem:
Instance: A finite set P of n points in the Cartesian space R

s.
Goal: Choose an n-vertex graph from the family G and embed its
vertices bijectively in P , so that the total length of the embedded
edges is minimized/maximized.

If the family G consists of all n-vertex cycles Cn, then the resulting optimization
problem is (a geometric special case of) the classic Travelling Salesman Problem
[27]. If G consists of all perfect matchings, the resulting optimization problem is
the geometric version of the classic matching problem [9]. And if G contains the
graphs that are the disjoint union of 3-vertex cycles, then we get (a geometric
special case of) the three-dimensional matching problem [9].

In the generic geometric optimization problem, the length of the embedded
edges is measured according to some fixed norm. Recall that a norm is specified
by its unit-ball B ⊆ R

s, which is a compact and convex set with non-empty
interior, that is centrally symmetric with respect to the origin; see Fig. 1 for an
illustration. The norm with unit ball B determines for any two points x, y ∈ R

s

a distance d(x, y) in the following way: First translate the underlying space so
that point x coincides with the origin. Then determine the unique scaling factor
λ ≥ 0 by which one must rescale the unit ball B (shrinking for λ < 1, expanding

c© Springer Nature Switzerland AG 2018
L. Epstein and T. Erlebach (Eds.): WAOA 2018, LNCS 11312, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-030-04693-4_1
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4 G. J. Woeginger

Fig. 1. Unit-balls for various norms in R
2. The upper row contains the unit-balls of

the Euclidean norm, the Manhattan norm, and the Maximum norm.

for λ > 1), such that point y lies on its boundary. The distance is then given by
d(x, y) = λ. As B is centrally symmetric we have the symmetry d(x, y) = d(y, x),
and as B is convex we have the triangle inequality d(x, y) + d(y, z) ≥ d(x, z).

The most popular norms in R
s are the Euclidean norm, the Manhattan norm,

and the Maximum norm. For two points x = (x1, . . . , xs) and y = (y1, . . . , ys)
in s-dimensional space R

s, the Lp distance for 1 ≤ p < ∞ is given by

d(x, y) =

(
s∑

i=1

|xi − yi|p
)1/p

. (1)

Equation (1) with p = 1 yields the Manhattan distance, and with p = 2 yields
the Euclidean distance. The distance under the Maximum norm L∞ is given by
d(x, y) = max s

i=1|xi − yi|.
Now let us consider two unit-balls B1 and B2 that are “very similar” to each

other, which in our context means that they satisfy for some small real number
ε > 0 the relation

(1 − ε)B2 ⊆ B1 ⊆ (1 + ε)B2. (2)

Then of course the distance d1(x, y) under the norm with unit-ball B1 and the
distance d2(x, y) under the norm with unit-ball B2 satisfy the analogous relation

(1 − ε)d2(x, y) ≤ d1(x, y) ≤ (1 + ε)d2(x, y). (3)

See Fig. 2 for an illustration.

Crucial observation 1. Let G be a family of graphs, and let B1 and B2 be two
unit-balls that satisfy (2). Suppose that the geometric optimization problem for
G under the norm with unit-ball B2 is polynomially solvable. Then the geomet-
ric optimization problem for G under the norm with unit-ball B1 has a polyno-
mial time approximation algorithm with worst case guarantee (1 − ε)/(1 + ε) in
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Fig. 2. Two unit-balls B1 and B2 that are “similar” to each other.

case of maximization and with worst case guarantee (1 + ε)/(1 − ε) in case of
minimization.

Here is the short proof of this observation for the case of minimization: Consider
an optimal solution π1 under unit-ball B1 with objective value v1. Then the
objective value of this (feasible) solution π1 under the other unit-ball B2 is
at most v1/(1 − ε). and hence the optimal solution π2 under unit-ball B2 has
objective value v2 ≤ v1/(1 − ε). Finally, note that solution π2 can be computed
in polynomial time and that its objective value under unit-ball B1 is at most
(1+ε)v2. The proof for maximization problems follows by symmetric arguments.

How useful is this crucial observation? For instance, what does it give us
for the classic TSP, where one wants to find a Hamiltonian cycle of minimal
total length? The answer to this question is simple and disappointing: For
the minimization version of the TSP, the observation gives us nothing. Indeed,
Itai, Papadimitriou and Swarcfiter [20] have shown that in R

2 the TSP under
the Euclidean norm is NP-hard. The construction in [20] also directly yields
NP-hardness under the Manhattan norm, a rotation by 45 degrees yields NP-
hardness under the Maximum norm, and some further minor modifications yield
NP-hardness under an arbitrary norm. Hence, there are no unit-balls B2 to which
the crucial observation could be applied.

Our next goal will be to show that the crucial observation yields strong
approximation results for the maximization version of the TSP. For doing this,
we first need to take a closer look at polyhedral norms.

2 Polyhedral Norms

A norm is called polyhedral, if its unit-ball is a polyhedron. Throughout the
following sections, we will assume that the centrally symmetric polyhedral unit-
ball B of such a polyhedral norm has 2f facets and is the intersection of the
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following halfspaces with normal vectors h1, . . . , hf :

hi · x ≤ 1
hi · x ≥ −1

Note that we have scaled the normal vectors hi so that all the right hand sides
become ±1. As an example, for the Manhattan norm in R

2 the corresponding
normal vectors are h1 = (1, 1) and h2 = (1,−1), and for the Maximum norm in
R

2 the corresponding normal vectors are h1 = (1, 0) and h2 = (0, 1). Figure 3
shows the unit-ball of yet another polyhedral norm with f = 3.

h.x <= 1

h.x >= −1

Fig. 3. The unit-ball of a polyhedral norm with f = 3.

The distance d(x, y) between two points x, y ∈ R
s may then be written as

d(x, y) = min {λ : y ∈ x + λ B}
= min {λ : y − x ∈ λ B}
= min {λ : |hi · (y − x)| ≤ λ for i = 1, . . . , f}
= max {|hi · (y − x)| : 1 ≤ i ≤ f}
= max {hi · x − hi · y, − hi · x + hi · y : 1 ≤ i ≤ f} (4)

Now let us consider a point set P = {p1, . . . , pn} that forms an instance of
the generic geometric optimization problem. We create a corresponding edge-
weighted bipartite multi-graph G(P ) with n + f vertices in the following way:

– The vertices on one side of the bipartition are the points p1, . . . , pn, and the
vertices on the other side are the normal vectors h1, . . . , hf .
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– Every point pj is connected to every normal vector hi by two edges. There is
a so-called red edge with weight w+(pj , hi) = pj · hi and there is a so-called
blue edge with weight w−(pj , hi) = −pj · hi.

Note that with this notation, the distance (4) between two points x, y ∈ P can
be rewritten as

d(x, y) = max{w+(x, hi) + w−(y, hi),

w−(x, hi) + w+(y, hi) : i = 1, . . . , f}
In the red-blue bipartite graph G(P ), there are f blue-red ways of going from
x to y by first traversing a blue edge to some hi and then traversing the red
edge from hi to y, and there are f red-blue ways that use a red edge followed
by a blue edge. The distance between point x and point y is the largest weight
of these 2f paths.

Crucial observation 2. Let G be a family of graphs, and let s ≥ 2 be some
fixed integer. Suppose that for every polyhedral unit-ball B in R

s, the geometric
optimization problem for family G under the norm with unit-ball B is solvable in
polynomial time. Then for every unit-ball B∗ in R

s, the geometric optimization
problem for family G under the norm with unit-ball B∗ possesses a polynomial
time approximation scheme (PTAS).

The correctness of this statement is straightforward: We simply approximate the
unit-ball B∗ by an appropriately chosen polyhedral unit-ball in the sense of (2).
Observation 1 then yields an approximation algorithm with worst case guarantee
(1 − ε)/(1 + ε) for maximization and worst case guarantee (1 + ε)/(1 − ε) for
minimization problems. As ε tends to 0, these worst case guarantees tend to 1.

3 The Maximum TSP

Now let us turn to the maximization version of the Travelling Salesman Problem,
Max-TSP for short.

Max-TSP
Instance: A set P of n points in Cartesian space R

s; a unit-ball B.
Goal: Find the longest round-trip through the points in P where dis-
tances are measured according to the norm with unit-ball B.

In the general (non-geometric) Max-TSP, the distances between the points are
specified explicitly as part of the input. This general version is of course NP-hard.
APX-hardness of the general version follows from the arguments in Papadim-
itriou and Yannakakis [29]. The strongest known approximation algorithm for
the general version has a worst case guarantee of 4/5 and is due to Dudycz,
Marcinkowski, Paluch and Rybicki [17]. Kowalik and Mucha [24] reach an even
better worst case guarantee of 7/8 for the cases where the distances satisfy the
triangle inequality. The geometric versions of the Max-TSP behave in a more
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benevolent way. Serdyukov [32,33] and independently Barvinok [4] have shown
that for all fixed dimensions and for all fixed norms, the Max-TSP has a PTAS.
In this section we will discuss the PTAS of Barvinok, Fekete, Johnson, Tamir,
Woeginger and Woodroofe [5] which is based on our Observations 1 and 2.

In the following paragraphs, we consider a fixed polyhedral unit-ball B with
2f facets in R

s and we determine the red-blue bipartite graph G(P ) for point set
P as discussed in Sect. 2. A round-trip through the points in P is just a permu-
tation π of the n points. We translate every permutation π into a corresponding
subset E(π) of the red and blue edges in G(P ): Whenever two points x and y
are consecutive in the round-trip π, the edge set E(π) contains the red-blue or
blue-red edge pair that determines the distance d(x, y) between x and y. Note
that E(π) contains n blue and n red edges, and note that the length of round-
trip π equals the total weight of E(π). As an example, Fig. 4 shows a situation
with n = 6 points and a unit-ball with f = 4. The round-trip π = 〈1, 2, 5, 3, 4, 6〉
then translates into the depicted set E(π) with six red and six blue edges.

1 2 3 4 5 6
points

vectors

Fig. 4. The edge set E(π) for the round-trip π = 〈1, 2, 5, 3, 4, 6〉. (Color figure online)

Now let us ignore the identities of the points from P in the subgraph of G(P )
that is induced by E(π). Then the resulting subgraph has f main-vertices that
correspond to the f normal vectors. These main-vertices are connected to each
other by lots of paths of length 2, where the middle vertex of every such path is
an anonymous vertex. This subgraph is called the outline of round-trip π. Every
outline has the following two properties:

– The edges in the outline form a connected component.
– For every main-vertex, the number of incident red edges equals the number

of incident blue edges.

There are only moderately many combinatorially different outlines: Every path
of length 2 connects two of the f main-vertices, and its two edges have one of
the four color combinations red-red, red-blue, blue-red, or blue-blue. Hence every
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such path carries one of 4f2 possible types. As an outline altogether contains n
paths of length 2 that are partitioned into 4f2 types, there exist only O(n4f2

)
different outlines. It is easy to enumerate all outlines and to check that they
satisfy the above two properties (on connectedness, and on red and blue degrees).

For every fixed outline, we find the best way of assigning the n points in P to
the anonymized middle vertices on the n paths of length 2. Here the best way is of
course the way that maximizes the total edge weight in the resulting subgraph of
G(P ). If we assign a point to a middle vertex, this simply contributes the weight
of the two incident red/blue edges. Hence the entire problem boils down to a
bipartite matching problem which is solvable in polynomial time O(n3); see for
instance Burkard, Dell’Amico and Martello [9]. The optimal assignment can be
turned into a round-trip π with the same weight: Essentially, we need to find a
special Eulerian cycle for the edge set E(π) that changes edge color (red to blue,
or blue to red) whenever it traverses one of the main-vertices. Such a Eulerian
cycle exists in every outline by routine arguments and can be found by routine
methods. To summarize: There are O(n4f2

) outlines that each are handled in
O(n3) time, and we arrive at the following result.

Theorem 1 (Barvinok et al. [5]). Let B be a polyhedral unit-ball in R
s. Then

the Max-TSP with distances measured according to the norm with unit-ball B
can be solved in polynomial time O(n4f2+3).

Barvinok et al. [5] actually use a number of tricks (a more efficient type of
outline; a better way of enumerating cases; faster optimization algorithms) and
thereby get a better version of Theorem 1 with time complexity O(nf−2 log n).
For the Manhattan norm and for the Maximum norm, Barvinok et al. [5] show
how to solve the Max-TSP in R

2 in linear time O(n). At the ALGO conference in
August 2018 in Helsinki, Bart Jansen asked whether further strong improvements
on the running time are possible.

Open problem 1 (Jansen [21]). Does there exist an FPT algorithm with
parameter f for the Max-TSP under polyhedral norms with 2f-facet unit-balls?
In other words, do there exist a function g : N → N and some fixed integer c, such
that the Max-TSP under polyhedral norms with 2f-facet unit-balls is solvable in
O(ncg(f)) time?

Intuitively, such a beautiful FPT algorithm should be just too good to be true,
and perhaps one should better look for a W[1]-hardness argument. Finally, we
may combine Theorem 1 with Observation 2 from Sect. 2 to get the following
corollary:

Theorem 2 (Barvinok et al. [5]). For any fixed norm in any fixed dimension,
the Max-TSP has a PTAS.

We close this section by listing some further results and some open problems
on the Max-TSP. Barvinok et al. [5] show that the Max-TSP under the Maximum
norm is APX-hard, if the dimension of the underlying Cartesian space is part
of the input. The following problem was left open in [5] and does not look very
difficult.
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Open problem 2. Establish the APX-hardness of the Max-TSP under every
fixed Lp norm with 1 ≤ p < ∞, if the dimension of the underlying Cartesian
space is part of the input.

Furthermore, the Max-TSP under polyhedral norms is APX-hard in R
3, if the

number f of facets is part of the input [5]. The Euclidean Max-TSP is polynomi-
ally solvable in one-dimensional space [8,22] and is NP-hard in three-dimensional
space [5]. The two-dimensional case is wide open (though we expect it to be NP-
hard).

Open problem 3. Determine the complexity of the Euclidean Max-TSP in R
2.

Also the complexity of the Max-TSP in any fixed dimension s ≥ 2 under any
fixed non-polyhedral and non-Euclidean norm is open; polynomial time results
for one of these problems would come as a big surprise. Some non-geometric
tractable special cases of the Max-TSP are discussed by Burkard et al. [8] and
Deineko and Woeginger [16].

4 The Maximum Three-Dimensional Matching Problem

Next, we want to discuss the maximization version of the three-dimensional
matching problem, Max-3DM for short. We stress that in this context the word
“three-dimensional” does not indicate an underlying three-dimensional geomet-
ric space, but simply means that a set of objects is to be partitioned into groups
of size three.

Max-3DM
Instance: A set P of 3n points in Cartesian space R

s; a unit-ball B.
Goal: Partition the 3n points into n triangles, so that the sum of tri-
angle perimeters is maximized (where the side lengths of the triangles
are measured according to the norm with unit-ball B).

In the general (non-geometric) Max-3DM, the distances between the points are
specified explicitly as part of the input. The general Max-3DM is NP-hard, and
its APX-hardness can be deduced from Kann [23]. The general Max-3DM allows
a polynomial time approximation algorithm with constant worst case guarantee;
for instance a worst case guarantee of 1/3 can easily be extracted from the
work of Bandelt, Crama and Spieksma [3]. Better worst case guarantees must be
possible, but we are not aware of any serious work on the maximization version
(we note that the literature does contain a number of approximation results on
the minimization version). The geometric versions of the Max-3DM behave very
similarly to the geometric versions of the Max-TSP as discussed in the preceding
section: The cases with fixed polyhedral norms can be solved in polynomial time,
and there is a PTAS for any fixed norm in any fixed dimension. We will now
show how to recycle the approaches for the Max-TSP from the preceding section
and how to carry them over to the Max-3DM.

Hence, let us once again fix some polyhedral unit-ball B with 2f facets in R
s

and the red-blue bipartite graph G(P ) for point set P as discussed in Sect. 2. A



Some Easy and Some Not so Easy Geometric Optimization Problems 11

partition π of P into triangles consists of n triangles with 3n sides. Similarly as in
the preceding section, we translate such a partition π into a corresponding subset
E(π) of the red and blue edges in G(P ): Whenever two points x and y are in a
common triangle, the edge set E(π) contains the edge pair that determines the
distance d(x, y) between x and y. Every triangle Δp1p2p3 in π is then translated
into a six-cycle C(Δ) of edges that alternate between p1, p2, p3 and three (not
necessarily distinct) vertices that correspond to normal vectors; see Fig. 5. Note
that E(π) contains 3n blue and 3n red edges, and note that the sum of triangle
perimeters in π equals the total weight of E(π).

p1 points

vectors

p2 p3

Fig. 5. The edges in E(π) that correspond to the triangle Δp1p2p3. (Color figure online)

Let us once again ignore the identities of the points in P . The resulting
anonymized subgraph is called the outline of partition π; it has f main-vertices
(that correspond to the f normal vectors) and many edges that arise from the
six-cycles C(Δ). Note that an anonymized six-cycle C(Δ) is fully specified

– by the three main-vertices (in the even positions), and
– by the color (red/blue) of its first, third, fifth edge.

Consequently there exist at most 8f3 combinatorially different anonymized six-
cycles. As an outline consists of the edges of n six-cycles that are partitioned into
8f3 types, there exist only O(n8f3

) different outlines. For every fixed outline, we
find the best way of assigning the n points in P to the anonymized vertices; this
again boils down to a bipartite matching problem and hence is solvable in O(n3)
time. The optimal assignment can easily be turned into a collection of triangles.
We summarize:

Theorem 3 (Custic, Klinz and Woeginger [14]). Let B be a polyhedral unit-ball
in R

s. Then the Max-3DM with distances measured according to the norm with
unit-ball B can be solved in polynomial time O(n8f3+3).

It would be nice to get a more civilized time complexity for Theorem 3, where
the exponent of n grows linearly with f . And it would be nice to know whether
there exists an FPT algorithm for this problem:
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Open problem 4 (Jansen [21]). Does there exist an FPT algorithm with
parameter f for Max-3DM under polyhedral norms with 2f-facet unit-balls?

By combining Theorem 3 with Observation 2, we get the following corollary:

Theorem 4 (Custic, Klinz and Woeginger [14]). For any fixed norm in any
fixed dimension, Max-3DM has a PTAS.

We mention some further results and some open problems on Max-3DM.
Custic, Klinz and Woeginger [14] establish the NP-hardness of Max-3DM under
any fixed Lp norm with 1 ≤ p ≤ ∞, if the dimension of the underlying Cartesian
space is part of the input. The approximability of these problems is unclear.

Open problem 5. Establish the APX-hardness of Max-3DM under every fixed
Lp norm with 1 ≤ p ≤ ∞, if the dimension of the underlying Cartesian space is
part of the input.

The Euclidean Max-3DM problem in one-dimensional space is trivial [31]. In
higher dimensions, the complexity of Euclidean Max-3DM is open.

Open problem 6. For every fixed integer s ≥ 2, determine the complexity of
Euclidean Max-3DM in R

s.

Some non-geometric tractable special cases of Max-3DM are discussed by
Burkard, Rudolf and Woeginger [10] and by Pferschy, Rudolf and Woeginger
[30]. Finally, let us mention some results on Min-3DM, the minimization version
of the three-dimensional matching problem. Crama and Spieksma [13] design
a polynomial time approximation algorithm with worst case guarantee 4/3 for
Min-3DM, if the distances satisfy the triangle inequality. Euclidean Min-3DM in
R is trivial [30], and Euclidean Min-3DM in R

2 is NP-hard [30]. The following
open problem seems to be quite challenging.

Open problem 7. Design a PTAS for Euclidean Min-3DM in R
2.

5 A More General View

The approaches in Sects. 3 and 4 for the Max-TSP and Max-3DM under polyhe-
dral norms are based on the very same ideas: A feasible solution π is translated
into a corresponding subset E(π) of the red and blue edges in G(P ). The trans-
lation replaces every edge between two points x and y in π by the red-blue or
blue-red edge pair that determines the distance d(x, y) between x and y. The
length of the feasible solution π equals the total weight of E(π). Finally, a subset
E(π) of maximum weight in G(P ) can be computed in polynomial time.

– The approach only works for maximization problems. The translation step
from π to E(π) scrambles and merges the upper level maximization (find a
feasible solution of maximum weight) and the lower level maximization (find
the facet of B that determines the distance between x and y). Hence we
may simply search for a subset E(π) of maximum weight. In a minimization
problem the upper level would minimize and the lower level would maximize,
and the two levels would repel each other.
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– The approach only works for max-sum type optimization problem, where the
goal is to maximize the sum of the lengths of all edges. Another natural family
are max-min type optimization problem, where the goal is to maximize the
length of the shortest edge. When we move from the feasible solution π to the
subset E(π), we lose control over the individual edges. (But we stress that not
everything is lost: As long as we are able to optimize over all polyhedral unit-
balls for a max-min type problem, this will still imply a PTAS for arbitrary
unit-balls.)

– The main ingredient is the polynomial time optimization algorithm for finding
a maximum weight subset E(π) in the bipartite graph G(P ). For this, we
need a good understanding and a nice characterization of the feasible subsets
E(π). For making the anonymization of points/vertices work out, it seems to
be necessary that the points fall into a small (constant) number of equivalence
classes and that every point only interacts with a small (constant) number of
other points.

For getting a better understanding of the approach, we suggest that the reader
works through the following exercise. Which of the following six puzzle problems
allows a polynomial time algorithm under polyhedral norms in fixed dimension
(and hence also a PTAS)?

A. Given 5n points, partition them into n five-cycles of maximum total length.
B. Given 6n points, partition them into n six-cliques of maximum total length.
C. Given 2n points, partition them into two n-cliques of maximum total length.
D. Given 15n points, partition them into n seven-cliques and into n eight-cliques

of maximum total length.
E. Given 1

2n(n+1) points, partition them into n cliques that respectively contain
1, 2, 3, . . . , n points so that the total edge length is maximized.

F. Given n points together with a positive integer sequence d1, d2, . . . , dn with∑
di = 2n − 2, find a spanning tree of maximum length for the points whose

vertex degrees are d1, d2, . . . , dn.

The reader should have little difficulty in finding polynomial time algorithms for
the three problems A, B, and D (and for similar problems of this flavor). We
have no idea what to do with the other three problems C, E, and F. Section 6
lists some other (more natural) geometric maximization problems where the
approach of Sects. 3 and 4 does not seem to apply.

Finally, we want to mention a slight extension of Observation 2: For getting
the PTAS under arbitrary norms in some fixed dimension, it is sufficient to
construct a PTAS under arbitrary polyhedral norms in this dimension (and
it is not necessary to construct a polynomial time algorithm as imposed by
Observation 2). However, we are not aware of a single application for which this
slight extension would be useful.

6 Some Related Problems

In this concluding section we discuss three further geometric optimization prob-
lems that are centered around Hamiltonian cycles and cliques. Krarup [26]
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introduced the 2-peripatetic salesman problem as a generalization of the clas-
sic TSP. The maximization version (Max-2-PSP, for short) of this peripatetic
problem is defined as follows.

Max-2-PSP
Instance: A set P of n points in Cartesian space R

s; a unit-ball B.
Goal: Find two edge-disjoint round-trips of maximum total length
through the points in P , where distances are measured according to
the norm with unit-ball B.

In the general (non-geometric) Max-2-PSP, the distances between the points are
specified explicitly as part of the input. The general Max-2-PSP is NP-hard,
and it is an easy exercise to establish its APX-hardness. The strongest known
approximation algorithm for the general version has a worst case guarantee of 7/9
and is due to Glebov and Zambalaeva [18]. It might be possible to reach a worst
case guarantee of 4/5 by adapting the ideas of Dudycz, Marcinkowski, Paluch and
Rybicki [17] from the Max-TSP to the Max-2-PSP. De Brey and Volgenant [15]
discuss some tractable special cases of the general (non-geometric) 2-PSP. The
geometric versions of Max-2-PSP are easy to approximate: Baburin and Gimadi
[2] design a PTAS for the Euclidean norm in fixed dimension, and Shenmaier [34]
extends this to arbitrary norms in fixed dimension. The approaches in [2] and
[34] are heavily based on the geometric ideas of Serdyukov [32,33], and do not
follow the purely combinatorial approach outlined in Sects. 3 and 4. A central
open problem in this area concerns the complexity under polyhedral norms.

Open problem 8. For every fixed polyhedral unit-ball B, construct a polyno-
mial time algorithm for Max-2-PSP, if distances are measured according to the
norm with unit-ball B.
Of course, a positive solution to this problem would yield the existence of a
PTAS for Max-2-PSP under any fixed norm, and hence provide another proof
for the results in [2,34]. The complexity of the Euclidean Max-2-PSP should be
closely related to the complexity of the Euclidean Max-TSP:

Open problem 9. For every fixed integer s ≥ 2, establish NP-hardness of the
Euclidean Max-2-PSP in R

s.

Finally, it would be interesting to find a PTAS for the Euclidean Min-2PSP in
R

2 (that is, for the Euclidean minimization version of the 2-PSP).
Let us move on to the next problem. Motivated by problems in medical

imaging and in manufacturing, Arkin, Chiang, Mitchell, Skiena and Yang [1]
introduced a max-min variant of the TSP that they called the Maximum Scatter
TSP (Max-Scatter-TSP, for short).

Max-Scatter-TSP
Instance: A set P of n points in Cartesian space R

s; a unit-ball B.
Goal: Find a round-trip through the points in P that maximizes the
length of the shortest edge (where distances are measured according
to the norm with unit-ball B).
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In the general (non-geometric) Max-Scatter-TSP, the distances between the
points are specified explicitly as part of the input. The general Max-Scatter-
TSP is NP-hard and does not allow a constant-factor approximation algorithm
unless P=NP (Arkin et al. [1]). For the cases where the distances satisfy the tri-
angle inequality, there exists a polynomial time approximation algorithm with
worst case guarantee 1/2, and unless P=NP no better worst case guarantee can
be reached (Arkin et al. [1]).

The geometric versions of the Max-Scatter-TSP are easy to approximate:
Kozma and Mömke [25] derive a PTAS for every norm in fixed dimension. In
fact, the result in [25] even works for all so-called doubling metrics and even
yields an EPTAS (that is, a particularly nice PTAS, where the exponent of n
in the running time is a fixed constant that does not depend on the desired
precision of approximation). The Euclidean Max-Scatter-TSP is polynomially
solvable in one-dimensional space, is NP-hard for any fixed dimension s ≥ 3 [5],
and is open for dimension s = 2:

Open problem 10. Settle the complexity of the Max-Scatter-TSP in two-
dimensional Euclidean space.

The complexity of the Max-Scatter-TSP in fixed dimension is also open for all
non-Euclidean unit-balls. Perhaps the most fundamental open question in this
direction is the following.

Open problem 11. Settle the complexity of the Max-Scatter-TSP under poly-
hedral norms in fixed dimension.

Finally, we turn to the remote clique problem (RCP, for short) which origi-
nates from the work of Tamir [35]. The RCP asks for a subset of points that are
diverse and well-dispersed. It has applications in web-based search, document
summarization, facility location, portfolio management and other areas.

RCP
Instance: A set P of n points in Cartesian space R

s; a positive inte-
ger k; a unit-ball B.
Goal: Select a subset of k points from P that maximizes the sum of
all pairwise distances (where distances are measured according to the
norm with unit-ball B).

In the general (non-geometric) RCP, the distances between the points are spec-
ified explicitly as part of the input. The general RCP is NP-hard and does
not allow a constant-factor approximation algorithm under the exponential time
hypothesis (Manurangsi [28]). For the cases where the distances satisfy the tri-
angle inequality, Hassin, Rubinstein and Tamir [19] design a polynomial time
approximation algorithm with worst case guarantee 1/2. Birnbaum and Gold-
man [6] give an elegant analysis of a greedy approach that also yields a worst case
guarantee of 1/2. Borodin, Jain, Lee and Ye [7] prove that the approximation
factor of 1/2 is best possible under the assumption that the planted-clique prob-
lem is hard; it would be interesting to get this inapproximability result under
some weaker assumption.
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The geometric versions of the RCP are easy to approximate: Cevallos, Eisen-
brand and Morell [11] give a PTAS for the RCP under any fixed norm. Cevallos,
Eisenbrand and Zenklusen [12] establish the NP-hardness of the RCP under the
Manhattan norm, if the dimension is part of the input. Unfortunately, the com-
plexity of the RCP in fixed dimension is poorly understood, and there is not
a single hardness result in the literature. It is quite possible that the PTAS in
[11] could be strengthened to a polynomial time algorithm. Perhaps the most
fundamental open questions are the following.

Open problem 12. For every fixed s ≥ 2, determine the complexity of the
Euclidean RCP in R

s.

A positive answer to the following problem would yield (as a cheap by-product)
the existence of a PTAS for any norm in fixed dimension.

Open problem 13. For every fixed polyhedral norm in fixed dimension, con-
struct a polynomial time algorithm for the RCP.
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Abstract. We consider the online Minimum-Cost Perfect Matching
with Delays (MPMD) problem introduced by Emek et al. (STOC 2016),
in which a general metric space is given, and requests are submitted
in different times in this space by an adversary. The goal is to match
requests, while minimizing the sum of distances between matched pairs
in addition to the time intervals passed from the moment each request
appeared until it is matched.

In the online Minimum-Cost Bipartite Perfect Matching with Delays
(MBPMD) problem introduced by Ashlagi et al. (APPROX/RANDOM
2017), each request is also associated with one of two classes, and requests
can only be matched with requests of the other class.

Previous algorithms for the problems mentioned above, include ran-
domized O (log n)-competitive algorithms for known and finite metric
spaces, n being the size of the metric space, and a deterministic O (m)-
competitive algorithm, m being the number of requests.

We introduce O
(
mlog( 3

2+ε)
)
-competitive deterministic algorithms for

both problems and for any fixed ε > 0. In particular, for a small enough
ε the competitive ratio becomes O

(
m0.59

)
. These are the first determin-

istic algorithms for the mentioned online matching problems, achieving
a sub-linear competitive ratio. Our algorithms do not need to know the
metric space in advance.

Keywords: Matching · Bipartite matching · Delayed service
Online algorithm · Competitive analysis

1 Introduction

In the algorithmic graph theory, a Perfect Matching is a subset of graph edges, in
which each vertex of the graph is incident on exactly one edge of the subset, and
the weight of the matching is the sum of the weights of the edges of the subset.
In the well known Minimum-Cost Perfect Matching problem a weighted graph is
given, and a Perfect Matching of minimum weight is to be found. The Blossom
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Algorithm due to Edmonds [9] is the first algorithm to solve this problem in
polynomial time.

Many versions of the Minimum-Cost Perfect Matching problem have been
studied over the last few decades, some of the noticeable variants are online ver-
sions of the problem (e.g. Minimum-Cost Perfect Matchings with Online Vertex
Arrival due to Kalyanasundaram and Pruhs [14]).

In this paper we suggest a deterministic algorithm for the Minimum-Cost
Perfect Matching with Delays (MPMD) variant, which was introduced by Emek
et al. [10], and a similar deterministic algorithm for another variation of the
problem - the Minimum-Cost Bipartite Perfect Matching with Delays (MBPMD)
problem, which was introduced by Ashlagi et al. [2].

To illustrate the MPMD problem, imagine players logging in through a server
to an online game at different times, unknown a priori to the server they have
connected through. The server then needs to match between the players while
maximizing their satisfaction from playing the game. Players feel satisfied when
they play against players at a level similar to their own. Therefore, when pairing
players, the server needs to consider the difference in levels between the players,
called the connection cost.

Once logged in, a player doesn’t necessarily start playing instantly, as the
server can postpone the decision regarding with whom to match the player,
until a good match is found (i.e. another player at a similar level logs in to the
game). This is a poor strategy since players are unhappy when forced to wait
too long until they start playing. The time a player has to wait until the game
starts is called the delay cost.

More formally, an adversary presents requests at points in a general metric
space, in an online manner. The goal is to produce a minimum-cost perfect
matching when the cost of an edge is the sum of its connection cost (the distance
between the two points in the metric space) and the delay cost of the two requests
matched by the edge. All requests have to be matched by the server after a finite
time from the moment they have arrived.

The MBPMD problem is an extension of the MPMD problem (due to Ashlagi
et al. [2]), in which each of the requests may take one of two colors, and each edge
of the matching, must be incident on one request from each color. The MBPMD
problem has many applications, such as matching drivers to passengers (Uber,
Lyft), job finding platforms, etc.

Background. The standard method used to measure an online algorithm’s
performance is its competitive ratio. We use this method when comparing the
performance of matching algorithms for both MPMD and MBMPD. An algo-
rithm is α-competitive if the maximum ratio between the cost of the algorithm
to the cost of the optimum solution, over all inputs, is bounded by α.

The first algorithm for MPMD was developed by Emek et al. [10] with an
expected competitive ratio O

(
log2 n + log Δ

)
on a finite metric space of size

n, where Δ is the aspect-ratio of the metric space (the ratio of the maximum
distance to the minimum distance between any two points in the metric space).
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Azar et al. [3] improved the competitive ratio to O (log n), and showed a lower
bound of Ω

(√
log n

)
(both deterministic and randomized). Ashlagi et al. [2]

improved this lower bound to Ω
(

log n
log log n

)
(both deterministic and randomized).

They also gave an O (log n)-competitive randomized algorithm for MBPMD.
All mentioned above algorithms are randomized (on a general finite met-

ric). In online algorithms where one cannot repeat the algorithm in case the
cost is high, a deterministic algorithm is preferable. Bienkowski et al. [7] pro-
vided the first deterministic algorithm for MPMD on general metrics, with a
competitive-ratio of O

(
m2.46

)
, m being the number of requests. While the pre-

vious algorithms require the metric space to be known a priori, their algorithm
does not, and is also applicable when the metric space is revealed in an online
manner. Bienkowski et al. also noted that the algorithm of [3] can be used to
provide an O (n)-competitive deterministic algorithm for a general known metric
space. Recently, Bienkowski et al. [6] provided a new primal-dual deterministic
algorithm for MPMD on general metrics, with a competitive-ratio of O (m), m
being the number of requests.

Prior to our result there was no deterministic sub-linear competitive algo-
rithm, neither in n nor in m.

Our Contribution. In this paper we introduce deterministic algorithms for
both versions of the problem, both with a competitive ratio O

(
1
ε mlog( 3

2+ε)
)
.

When the constant ε is small enough, this becomes O
(
m0.59

)
. Our algorithms

do not need to know the metric space in advance.
We present a simple algorithm, which is an adaptation of the greedy algo-

rithm for the Minimum-Cost Perfect Matching problem by Reingold and Tar-
jan [21] to an online environment. In our algorithm, requests grow hemispheres
around them in a metric that is the Cartesian product of the original metric and
the time axis (also called the time-augmented metric space). The hemispheres
radii grow slowly in the negative direction of the time axis. Once a request is
found on the boundary of another request’s hemisphere, they are matched by
the algorithm. Our analysis is inspired by the analysis of the original greedy
algorithm by Reingold and Tarjan.

In the bipartite case, the algorithm is essentially the same, but requests are
matched only if they are of different colors.

Related Work. First we consider related work with delays. Since Emek et
al. [10] introduced the notion of online problems with delayed service, there has
been a growing number of works studying such problems (e.g. Online Service with
Delays [4], Minimum-Cost Bipartite Perfect Matching with Delays [2], Minimum-
Cost Perfect Matching with Delays for Two Sources [11]). Works dealing with
the Minimum-Cost Perfect Matching with Delays and Minimum-Cost Bipartite
Perfect Matching with Delays problems, such as the papers by Emek et al. [10],
Azar et al. [3], Ashlagi et al. [2] and Bienkowski et al. [7], are the most closely
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related to this work. As mentioned above, Emek et al. [10] provided a random-
ized O

(
log2 n + log Δ

)
-competitive algorithm for MPMD on general metrics, in

which n is the size of the metric space and Δ is the aspect ratio. They con-
sider the randomized embeddings of the general metric space into a distribution
over metrics given by hierarchically separated full binary trees, with distortion
O (log n), and give a randomized algorithm for the hierarchically separated trees
metrics.

Subsequently, Azar et al. [3] provided a randomized O (log n)-competitive
algorithm for the same problem, thus improving the original upper bound. They
used randomized embedding of the general metric space into a distribution over
metrics given by hierarchically separated trees of height O (log n), with dis-
tortion O (log n). Then they give a deterministic O (1)-space-competitive (that
is the competitive ratio associated with the connection cost) and O (h)-time-
competitive (that is the competitive ratio associated with the delay cost) algo-
rithm over tree metrics, where h is the height of the tree. This yields a compet-
itive ratio of O (log n). Moreover, they provided a randomized Ω

(√
log n

)
lower

bound, confirming a conjecture made by Emek et al. [10] that the competitive
ratio of any online algorithm for the problem must depend on n.

Ashlagi et al. [2] improved the lower bound on the competitive ratio to
Ω

(
log n

log log n

)
, almost matching the upper bound of Azar et al. of O (log n). The

rest of the paper focuses on the bipartite version of the problem, providing an
O (log n)-competitive ratio by the adaptation of the algorithm of Azar et al. [3]
to the bipartite case.

In order to provide a deterministic algorithm, Bienkowski et al. [7] used a
different approach for the problem - they used a semi-greedy scheme of a ball-
growing algorithm. In their analysis, they fix an optimal matching, and charge
the cost of each matching-edge generated by their algorithm against the cost of
an existing matching-edge of the optimal matching. As mentioned above, their
algorithm achieves a competitive ratio of O

(
m2.46

)
, where m is the number of

requests.
Bienkowski et al. improved this result in [6] by providing a new O(m)-

competitive LP-based algorithm. Briefly, their algorithm maintains a primal
relaxation of the matching problem and its dual (the programs evolve in time
as more requests arrive). Dual variables are increased along time, until a dual
constraint (corresponding to a pair of requests) becomes tight, which results in
the algorithm connecting the pair. They also proved that their analysis is tight
(the competitive-ratio of their algorithm is Ω(m)). Recall that our algorithm
achieves a sub-linear competitive-ratio (in m).

Next we consider related work without delays. The Online Minimum
Weighted Bipartite Matching (OMM) problem due to [14,16] is another impor-
tant online version of the Minimum-Cost Perfect Matching problem, in which
k vertices are given a priori, and k additional vertices are revealed at differ-
ent times, together with the distances from the first k vertices. The algorithm
then needs to match the later k vertices to the first k vertices, while trying to
minimize the total weight of the produced matching. In this version, delay of
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the algorithm’s decision is not available. Kalyanasundaram and Pruhs [14] and
Khuller et al. [16] showed independently a tight upper and lower bounds of 2k−1
on the deterministic competitive ratio of the problem.

The first sub-linear competitive randomized algorithm for the problem, was
given by Meyerson et al. [18] using randomized embeddings into trees, with
a competitive ratio of O(log3 k). Consequently, Bansal et al. [5] improved this
upper bound by providing a O(log2 k)-competitive randomized algorithm. In
addition, they showed an Ω(log k) lower bound on the competitive ratio for
randomized algorithms.

The special case of line-metrics is argued to be the most interesting instance
of OMM (e.g. [17]). Kalyanasundaram and Pruhs conjectured in 1998 [15] that
there exists a 9-competitive deterministic algorithm for OMM on line-metrics,
but in 2003 Fuchs et al. [12] disproved the conjecture, proving a lower bound of
9.001 for deterministic algorithms. This is the best known lower bound thus far.

Antoniadis et al. [1] presented the first sub-linear deterministic algorithm
for line-metrics, with a competitive ratio of O

(
1
ε klog( 3

2+ε)
)
. Recently, Nayyar

and Raghvendra [19] improved this upper bound to O(log2 k) by careful analysis
of the deterministic algorithm present in [20]. Gupta and Lewi [13] provided a
randomized O(log k)-competitive algorithm for doubling metrics, hence for line-
metrics as well.

To summarize, the best known deterministic upper bound on the competitive
ratio for line-metrics is O(log2 k), and the best known lower bound is 9.001. For
randomized algorithms the best known upper bound is O(log k).

Paper Organization. We describe the algorithm for Minimum-Cost Perfect
Matching with Delays in Sect. 3 and analyze its performance in Sect. 3.1. In
Sect. 4 we present the algorithm for Minimum-Cost Bipartite Perfect Matching
with Delays and analyze its performance.

2 Preliminaries

A metric space M = (S, d) is a set S and a distance function d : S × S −→
R

+ that meets the following conditions: non-negativity, symmetry, the triangle-
inequality, and that d(x, y) = 0 if and only if x = y. When S is finite, we refer
to M as a finite metric space, and an infinite metric space otherwise.

2.1 Model

In the online Minimum-Cost Perfect Matching with Delays problem on a metric
space M = (S, d) (known a priori to the algorithm), an input instance I =
〈ri〉m

i=1 is presented to the algorithm in an online fashion, so that each request ri

is revealed to the algorithm at time t(ri) at the location x(ri) ∈ S. The number
of requests m is even and unknown a priori to the algorithm.
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The online algorithm should produce a perfect matching in real time. For-
mally, two requests p, q can be matched by the algorithm at any time t ≥
max(t(p), t(q)), if they have not been matched yet by the algorithm.

Let 〈pi, qi, ti〉
m
2

i=1 be the set of pairs of requests matched by the algorithm,
and their matching times (pi and qi were matched by the algorithm at ti), then
the cost of the matching produced by the algorithm is

m
2∑

i=1

d(x(pi), x(qi)) + |ti − t(pi)| + |ti − t(qi)|

In other words, the cost is the sum of the connection cost of all matched pairs in
addition to the sum of the delay cost of all requests. The goal of the algorithm
is to minimize this cost.

The Minimum-Cost Bipartite Perfect Matching with Delays is virtually the
same problem as the Minimum-Cost Perfect Matching with Delays problem,
except that each request ri is associated with one of two classes, so that each
request ri can be matched to a request rj if and only if class(ri) �= class(rj).

2.2 The Time-Augmented Metric Space

Given a metric space M = (S, d) define the time-augmented metric space as
MT = (S × R,D) where D is a distance function defined as

D ((l1, t1) , (l2, t2)) = d(l1, l2) + |t1 − t2|

assuming (l1, t1), (l2, t2) ∈ S × R. That is, the time axis was added as another
dimension in the metric space. One can easily verify that D indeed defines a
metric.

The following lemma shows that for offline algorithms, solving the Minimum-
Cost Perfect Matching with Delays problem in the metric space M is equivalent
to solving the Minimum-Cost Perfect Matching problem in MT .

Lemma 1. Assume I = 〈ri〉m
i=1 is an instance of MPMD then OPT can be

computed as the weight of an optimal solution for the Minimum Metric Perfect
Matching problem on the instance I as points in the time-augmented metric
space MT .

Proof. Let OPT∗ be an optimal solution for Minimum Metric Perfect Matching
over the instance I. We show that OPT = OPT∗.

Let A be the solution for Minimum Metric Perfect Matching over the instance
I, which matches the pairs corresponding to those matched by OPT. The cost
of A is at most the cost of OPT, since for a given pair (u, v) matched by OPT at
time tuv ≥ max (t(u), t(v)), OPT would pay tuv −t(u)+tuv −t(v)+d(x(u), x(v)),
while A would pay D(u, v) = |t(u)− t(v)|+d(x(u), x(v)) which cannot be larger.
Therefore OPT∗ ≤ A ≤ OPT.
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For the other direction we define an online algorithm B which matches the
pairs corresponding to those matched by OPT∗, as soon as the two end-points
arrive. For a given pair of requests (p, q) matched by B, it pays

max(t(p), t(q)) − t(p) + max(t(p), t(q)) − t(q) + d(x(p), x(q)) =
|t(p) − t(q)| + d(x(p), x(q))

Therefore the cost paid by B is the same as the cost paid by OPT∗.
Hence OPT ≤ B = OPT∗. 
�

3 A Deterministic Algorithm for MPMD on General
Metrics

Our algorithm (ALG(ε)) is parametrized with a constant ε ∈ R. Upon the arrival
of a request p ∈ S ×R, the algorithm begins to grow a hemisphere surrounding p
in the negative direction of the time axis, such that the radius growth rate is ε.
Therefore, at time t, a request q ∈ S ×R is on the hemisphere’s boundary if and
only if ε (t − t (p)) = D(p, q) and t(q) ≤ t(p), where D is the distance function
defined by the time-augmented metric space MT . The algorithm matches a
request q to a request p as soon as q is found on the boundary of p’s hemisphere.

Note that the algorithm does not need to know the metric space in advance,
but it only requires that together with any arriving request p, it learns the
distances from p to all previous requests.

Algorithm 1. A Deterministic Algorithm for MPMD on General Metrics
1: procedure ALG(ε)
2: At every moment t:
3: Add the new requests that arrive at time t
4: for each unmatched request p do
5: for each unmatched request q �= p do
6: if t(p) ≥ t(q) and t = t(p) + D(p,q)

ε
then

7: match(p, q)
8: end if
9: end for

10: end for
11: end procedure

The algorithm is described as a continuous process but can be easily dis-
cretized using priority queues over anticipated matching events for each pair.

The algorithm breaks ties arbitrarily (i.e. a request that is on multiple hemi-
spheres at the same time, or multiple requests that are on the same hemisphere).
Note that for the analysis of the algorithm we may assume that there are no ties,
as an adversary might slightly perturb the points so that the algorithm would
choose the worse option.
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3.1 Analysis

Theorem 1. ALG(ε) is O
(

1
ε mlog( 3+ε

2 )
)
-competitive.

Given ε ∈ R we run ALG(ε) over the instance I = 〈ri〉m
i=1, that is with a

hemisphere growth rate of ε.
For the analysis, we denote ALGON to be the cost paid by ALG(ε), and ALGOFF

to be the weight of the matching produced by ALG(ε), when viewing I as points
in the time-augmented metric space MT . OPT is the cost of an optimal solution
for MPMD over the instance I.

Consider the last two pairs of requests to be matched by ALG. They consist
of four requests, name them a, b, c, d, such that (a, b) is one pair, and (c, d) is
the second pair. Assume w.l.o.g that (a, b) were matched at time tab, and (c, d)
at tcd ≥ tab. Also, assume w.l.o.g that t(a) ≤ t(b).

Lemma 2.

1. D(a, b) ≤ (1 + ε)D(a, c) and D(a, b) ≤ (1 + ε)D(a, d)
2. D(a, b) ≤ (1 + ε)D(b, c) and D(a, b) ≤ (1 + ε)D(b, d)

Proof. We only prove D(a, b) ≤ (1 + ε)D(a, c) and D(a, b) ≤ (1 + ε)D(b, c) since
there is no difference between c and d.

To prove 1, we look at two cases, that are t(c) ≥ t(a), and t(c) < t(a).
Case t(c) ≥ t(a): Upon the arrival of c and b, the algorithm begins to grow

hemispheres surrounding them, and in particular a might be on their boundaries.
Since (a, b) was the first pair to be matched, a was on b’s hemisphere before it was
on c’s hemisphere (otherwise (a, c) should have been matched first). Therefore
t(b) + D(a,b)

ε ≤ t(c) + D(a,c)
ε , and we conclude

D(a, b) ≤ D(a, c) + ε(t(c) − t(b)) ≤ D(a, c) + ε(t(c) − t(a)) ≤ (1 + ε)D(a, c)

Case t(c) < t(a): Upon the arrival of a and b, the algorithm begins to
grow hemispheres surrounding them. In particular, a might be on the boundary
of b’s hemisphere, and c might be on the boundary of a’s hemisphere. Since
(a, b) was the first pair to be matched, a was on b’s hemisphere before c was
on a’s hemisphere (otherwise (a, c) should have been matched first). Therefore
t(b) + D(a,b)

ε ≤ t(a) + D(a,c)
ε . Thus, we conclude that

D(a, b) ≤ D(a, c)+ε(t(a)−t(b)) = D(a, c)−ε(t(b)−t(a)) ≤ D(a, c) ≤ (1+ε)D(a, c)

To prove 2, we look at the two cases t(c) ≥ t(b), and t(c) < t(b).
Case t(c) ≥ t(b): Upon the arrival of c and b, the algorithm begins to grow

hemispheres surrounding them. In particular, a might be on the boundary of
b’s hemisphere, and b might be on the boundary of c’s hemisphere. Since (a, b)
was the first pair to be matched, a was on b’s hemisphere before b was on c’s
hemisphere (otherwise (b, c) should have been matched first). Therefore t(b) +
D(a,b)

ε ≤ t(c) + D(b,c)
ε . Thus, we conclude that

D(a, b) ≤ D(b, c) + ε(t(c) − t(b)) ≤ D(b, c) + εD(b, c) = (1 + ε)D(b, c)
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Case t(c) < t(b): Upon b’s arrival, the algorithm begins to grow a hemisphere
surrounding it, and in particular a and c might be on its boundary. Since (a, b)
was the first pair to be matched, a was on b’s hemisphere before c was (otherwise
(b, c) should have been matched first). Therefore t(b) + D(a,b)

ε ≤ t(b) + D(b,c)
ε .

Thus, we conclude that

D(a, b) ≤ D(b, c) ≤ (1 + ε)D(b, c)


�
We use the following well known observation.

Observation 1. The union of any two matchings is a set of vertex-disjoint
cycles. In every such cycle, the edges alternate between the two matchings. Note
that two parallel edges are considered a cycle.

Let C = {C1, . . . , Ck} be the set of cycles (vertices and edges) generated
from taking the union of the matchings produced by ALG and OPT. Define
l1, . . . , lk ∈ R such that li is the total length of edges of ALG in Ci. Define
similarly l∗1, . . . , l

∗
k ∈ R for edges of OPT.

Lemma 3. ALGOFF
OPT ≤ maxi

li
l∗i

Lemma 4. Denote l̂∗i the cost paid by an optimal algorithm for Minimum Metric
Perfect Matching on the instance constructed from the vertices of Ci, and l̂i the
cost of running ALG over the vertices of Ci. Then l̂∗i = l∗i and l̂i = li.

The proofs of Lemmas 3 and 4 are omitted and can be found in the full paper.

Corollary 1. By virtue of Lemmas 3 and 4 it suffices to consider ALGOFF
OPT when

the union of the matchings produced by ALG and OPT forms a single cycle.

Lemma 5. Let γ ∈ R s.t. γ > 2 and let f : N → R satisfy the recurrence
relation

f(2k) = min
1 ≤ i ≤ k−1

{
f (2i) ,

1
γ

(f (2i) + f (2k − 2i))
}

, f(2) = 1

Then,

f(n) = Ω

(
1

nlog( γ
2 )

)

Proof. We prove by induction on k that f(2k) ≥
(

2
γ

)log k

.

Base Case (k = 1): f(2) = 1, and
(

2
γ

)log 1

=
(

2
γ

)0

= 1.
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Inductive step: Assume the claim holds for all j < k. By the induction

hypothesis for every j < k it holds that f(2j) ≥
(

2
γ

)log j

>
(

2
γ

)log k

. Therefore,
from the definition of f

f(2k) ≥ min

((
2
γ

)log k

,
1
γ

(f(2) + f(2k − 2)) ,
1
γ

(f(4) + f(2k − 4)) , . . .

)

Define h(j) = 1
γ (f(2j) + f(2k − 2j)), so

f(2k) ≥ min

((
2
γ

)log k

, min
1 ≤ j ≤ k−1

{h(j)}
)

By the induction hypothesis,

h(j) ≥ 1
γ

((
2
γ

)log j

+
(

2
γ

)log k−j
)

≥ min
x ∈ R

1
γ

{(
2
γ

)log x

+
(

2
γ

)log k−x
}

Note that
(

2
γ

)log x

+
(

2
γ

)log k−x

is symmetric about x = k
2 . Moreover, it is

a concave function as it is the sum of two concave functions, thus the minimum
point occurs at x = k

2 .

We found that h(j) ≥ 1
γ

((
2
γ

)log k
2

+
(

2
γ

)log k
2
)

=
(

2
γ

)log k
2+1

=
(

2
γ

)log k

Hence, we conclude

f(2k) ≥ min

((
2
γ

)log k

,

(
2
γ

)log k
)

=
(

2
γ

)log k

=
1

klog γ
2


�
Lemma 6. ALGOFF ≤ O

(
mlog( 3+ε

2 )
)

OPT

Proof. We view the requests as if they were in the time-augmented metric space
MT , and analyze the performance of ALG in an offline manner. By Corollary 1
we analyze the performance of ALG when G = (I, E), the union of the matchings
produced by ALG and OPT, forms a single cycle.

Denote EO the subset of edges matched by OPT, and EA the subset of edges
matched by ALG. Consider again the last two pairs of requests to be matched
by ALG, that is (a, b) and (c, d), and assume that tab ≤ tcd and t(b) ≥ t(a) (tab is
the time that ALG matched (a, b), and tcd is the time that ALG matched (c, d)).
Denote T =

∑
e∈E\{(c,d)} D(e), and let O =

∑
e∈EO

D(e). From the triangle
inequality we have that D(c, d) is smaller than T , therefore

ALGOFF

OPT
=

D(c, d) + T − O

O
≤ 2T − O

O
= 2

T

O
− 1 (1)
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We will bound O
T from below, by developing and solving a recurrence relation

similar to the one developed in [21], thus giving an upper bound on ALGOFF
OPT .

Scale the distances so that T = 1. Of course, O
T stays the same. Let f(m) be

the minimal value of O
T over all possible inputs of size m (|I| = m), when the

union of the matchings produced by ALG and OPT forms a single cycle.
For the sake of this analysis consider Fig. 1.

a b

c d

Pca Pdb

Fig. 1. The cycle formed by the union of the matchings produced by ALG and OPT.
The length of Pca is α, and the length of Pdb is β.

Let Pca be the alternating path from c to a, and Pdb be the alternating path
from d to b. Denote α =

∑
e∈Pca

D(e), and β =
∑

e∈Pdb
D(e). Then, by the

triangle inequality
α ≥ D(a, c) (2)

From Lemma 2 we have

(1 + ε)D(a, c) ≥ D(a, b) (3)

It follows from Eqs. (2) and (3) that

1 − α − β = D(a, b) ≤ (1 + ε)α (4)

Similarly 1 − α − β ≤ (1 + ε)β.
Let 2i be the number of points on Pca, then f(m) satisfies the recurrence

relation
f(m) = min

1 ≤ i < m
2 −1

0 < 1−α−β ≤ (1+ε)α
0 < 1−α−β ≤ (1+ε)β

{αf(2i) + βf(m − 2i)} (5)

Conditioning on t, both f(t) and f(m − t) are constant, therefore αf(t) +
βf(m − t) becomes a linear function in α and β, so its minimum must occur
at a vertex of the polyhedron defined by the minimization constraints (see for
example [8]).
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The vertices of this polyhedron are (1, 0), (0, 1), ( 1
3+ε ,

1
3+ε ), so

f(m) = min
1 ≤ i ≤ m

2 −1

{
f (2i) ,

1
3 + ε

(f (2i) + f (m − 2i))
}

(6)

Also note that f(2) = 1, since there is only one way to match two points, so
T = O. The conditions of Lemma 5 are met with γ = 3 + ε, thus

f(m) = Ω

(
1

mlog( 3+ε
2 )

)

Finally, from 1 we conclude

ALGOFF

OPT
≤ 2

T

O
− 1 ≤ 2

f(m)
= O

(
mlog( 3+ε

2 )
)


�
Lemma 7. ALGON = Θ

(
1
ε

)
ALGOFF

Proof. Assume two requests p and q were matched by ALG at time t. Assume
w.l.o.g that t(p) ≥ t(q). The contribution of this pair to ALGON, is

t − t(p) + t − t(q) + d(x(p), x(q)) =
t − t(p) + t − t(p) + t(p) − t(q) + d(x(p), x(q)) = 2(t − t(p)) + D(p, q)

On the contrary, the contribution of this pair to ALGOFF, is just D(p, q).
Note that t is the time that q was on p’s hemisphere, so t = t(p) + D(p,q)

ε ,
hence the ratio between ALGON and ALGOFF for this pair is

2D(p,q)
ε + D(p, q)
D(p, q)

= 1 +
2
ε

Summing over all matched pairs we get ALGON
ALGOFF

= 1 + 2
ε = Θ

(
1
ε

)
. 
�

Finally we prove Theorem 1 using the inequalities proven in the previous
lemmas.

Proof (Proof of Theorem 1). Combining Lemmas 1, 6 and 7 we have

ALGON ≤ O

(
1
ε

)
ALGOFF ≤ O

(
1
ε
mlog( 3+ε

2 )
)

OPT

Hence, ALG(ε) is O
(

1
ε mlog( 3+ε

2 )
)
-competitive. 
�

4 The Bipartite Case

For the bipartite case, we suggest the same algorithm as in the monochromatic
case. The only difference is that we match a request q to a request p as soon as q
is found on the boundary of p’s hemisphere, and that q and p do not belong
to the same class.
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Algorithm 2. A Deterministic Algorithm for MBPMD on General Metrics
1: procedure ALG-B(ε)
2: At every moment t:
3: Add the new requests that arrive at time t
4: for each unmatched request p do
5: for each unmatched request q �= p do
6: if t(p) ≥ t(q) and t = t(p) + D(x(p),x(q))

ε
and class(q) �= class(p) then

7: match(p, q)
8: end if
9: end for

10: end for
11: end procedure

4.1 Analysis

We prove the following theorem:

Theorem 2. ALG-B(ε) is O
(

1
ε mlog( 3+ε

2 )
)
-competitive.

Observation 1, Lemmas 3 and 4 hold for the bipartite case as well, therefore
using Corollary 1 we may assume that the union of ALG-B and OPT forms a
single cycle.

The key difference in the analysis for this case, is that when we consider the
last four requests to be matched, not every two of them could have been matched
to each other. Therefore Lemma 2 does not hold, but a weaker yet similar result
does.

Consider the last two pairs of requests to be matched by ALG-B. Name them
(a, b) and (c, d), and assume w.l.o.g that (a, b) were matched at time tab, and
(c, d) at tcd ≥ tab. Also, assume w.l.o.g that t(a) ≤ t(b).

Lemma 8. If class(a) = class(d) �= class(b) = class(c) then

1. D(a, b) ≤ (1 + ε)D(a, c)
2. D(a, b) ≤ (1 + ε)D(b, d)

We omit the proof of this lemma as it is the same as the proof of Lemma 2 for
the relevant cases.

Considering Fig. 1 we have the following lemma.

Lemma 9. class(a) = class(d) �= class(b) = class(c)

Proof. From the alternation property of Observation 1 we have that the number
of edges along Pca must be odd (since the number of OPT edges along Pca

must be one more than ALG-B edges along Pca). Moreover, the classes of the
requests along Pca alternate as well (since every edge must match requests of
different classes). Since there are odd number of edges along Pca, there are odd
number of class alternations along Pca, so the class of the last request along Pca

(that is class(c)) must be different from the class of the first request along Pca

(that is class(a)). Thus class(c) �= class(a) and of course class(a) �= class(b),
class(c) �= class(d), so class(a) = class(d) �= class(b) = class(c). 
�
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Using Lemmas 9 and 8 we repeat the proof of Lemma 6 and achieve the following
result:

Lemma 10. ALG-BOFF ≤ O
(
mlog( 3+ε

2 )
)

OPT

The main theorem for the bipartite case now follows:

Proof (Proof of Theorem 2). Lemmas 7 and 1 hold for ALG-B as well, thus from
Lemma 10 we have

ALG-BON ≤ O

(
1
ε

)
ALG-BOFF ≤ O

(
1
ε
mlog( 3+ε

2 )
)

OPT

Hence, ALG-B(ε) is O
(

1
ε mlog( 3+ε

2 )
)
-competitive. 
�

5 Concluding Remarks and Open Problems

In this paper we presented the first sub-linear competitive deterministic algo-
rithm for Minimum-Cost Perfect Matching with Delays as a function of m, the
number of requests. We also provided a similar algorithm for the problem of
Minimum-Cost Bipartite Perfect Matching with Delays achieving the same com-
petitive ratio.

One open problem is to decide if a deterministic algorithm with a better
competitive ratio exists, in particular a polylog(m)-competitive one, by show-
ing a lower bound or providing an algorithm for the problem. In addition, the
problem of finding a sub-linear in n competitive deterministic algorithm is still
open.
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Abstract. Seager introduced the following game in 2013. An invisible
and immobile target is hidden at some vertex of a graph G. Every step,
one vertex v of G can be probed which results in the knowledge of the
distance between v and the target. The objective of the game is to min-
imize the number of steps needed to locate the target, wherever it is.

We address the generalization of this game where k ≥ 1 vertices can
be probed at every step. Our game also generalizes the notion of the
metric dimension of a graph. Precisely, given a graph G and two integers
k, � ≥ 1, the Localization Problem asks whether there exists a strategy
to locate a target hidden in G in at most � steps by probing at most k
vertices per step. We show this problem is NP-complete when k (resp.,
�) is a fixed parameter.

Our main results are for the class of trees where we prove this problem
is NP-complete when k and � are part of the input but, despite this, we
design a polynomial-time (+1)-approximation algorithm in trees which
gives a solution using at most one more step than the optimal one. It
follows that the Localization Problem is polynomial-time solvable in
trees if k is fixed.

Keywords: Games in graphs · Metric dimension · Complexity

1 Introduction

Localization (or Identification) problems consist of distinguishing the vertices
of a connected graph G = (V,E) using a smallest subset R ⊆ V of its vertices.
Many variants have been studied depending on how a subset of vertices allows to
identify other vertices. For instance, identifying codes [16], adaptive identifying
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codes [2], and locating dominating sets [21] ask for the vertices to be distinguished
by their neighbourhood in R. Another well studied example is the one of a
resolving set [13,20] which aims at distinguishing each vertex of a graph by
its distance to each vertex of this set. Given a graph G, the main problem is
to compute a resolving set with minimum size, called the metric dimension of
G [13,20]. The corresponding decision problem (first shown to be NP-complete
in [12]) is NP-complete in planar graphs [8] and in graphs of diameter 2 [11], and
W[2]-hard (parameterized by the solution’s size) [14]. On the positive side, the
problem is FPT in the class of graphs with bounded treelength [1]. Bounds on
the metric dimension have also been determined for various graph classes [10].
In this paper, we address a sequential variant of this problem.

Let us consider a graph G = (V,E) where an unknown vertex t ∈ V hosts
a hidden (invisible) and immobile target. Probing one vertex v ∈ V results in
the knowledge of the distance between t and v, denoted by dG(v, t). Probing
a set R ⊆ V of vertices results in the distance vector (dG(v, t))v∈R and a set
is a resolving set if the distance vectors are pairwise distinct for every t ∈ V .
The metric dimension of G, denoted by MD(G), is then the minimum number
of vertices that must be probed simultaneously (in one step) to determine the
location t of the target wherever it is. For instance, in the case of a path, probing
one of its ends is sufficient to locate the target, i.e., MD(P ) = 1 for every path
P . Another example (that we use throughout the paper) is the case of a star (tree
with a universal vertex) with n leaves, denoted by Sn, for which it is necessary
and sufficient to probe every leaf but one, i.e., MD(Sn) = n − 1.

If less than MD(G) vertices can be probed at once, it is natural to allow
more than one step. Obviously, if at most 1 ≤ k < MD(G) vertices can be
probed at once, it is always feasible to locate an immobile target in �MD(G)/k�
steps by sequentially probing k different vertices of a smallest resolving set at
each step. However, there are graphs for which the target can be located much
faster. In [18], Seager initiated the study of the following sequential locating
game: at each step, one vertex of a graph can be probed, and the objective is to
minimize the number of steps required to locate the target, wherever it is. Seager
gave bounds and exact values on this minimum number of steps in particular
subclasses of trees (e.g., subdivisions of caterpillars) [18] but left the problem
open in trees in general. In this paper, we study the generalization of this game
where k ≥ 1 vertices can be probed at each step.

Precisely, let k ≥ 1 be an integer and let G = (V,E) be a graph hosting an
invisible and immobile target hidden at t ∈ V . A k-strategy is allowed to probe
at most k vertices at each step of the game (where the choice of the probed
vertices at some step may obviously depend on the results of the probes during
previous steps) until the location t of the target is uniquely determined. Let
λk(G) denote the minimum integer h such that there exists a k-strategy that
locates the target in G in at most h steps, wherever it is. Given G, k and � ≥ 1,
the Localization Problem asks whether λk(G) ≤ �. We also consider the dual
parameter κ�(G) defined as the minimum integer h such that there exists an
h-strategy that locates the target in G in at most � steps. Note that, for every
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graph G, κ1(G) is exactly the metric dimension MD(G) of G, and λk(G) ≤ � if
and only if κ�(G) ≤ k. We are interested in the complexity of the Localization
Problem in general graphs and particularly in trees. Note that by the remarks
above, the Localization Problem and Metric Dimension Problem (for which
� = 1) behave very differently, so knowing that Metric Dimension Problem is
NP-complete does not imply the same for the Localization Problem.

1.1 Related Work

The literature related to localizing a target in a graph is vast. Below, we focus
on the related work that we find the most relevant.

Moving Target. Sequential games related to resolving sets have first been
introduced and mainly studied in the case of a mobile target. That is, at every
step, some vertices may be probed and, if the target has not been located yet,
it may move to one of its neighbours (sometimes, it is required that the target
cannot move to a vertex that has been probed during the previous step which
is called the “no-backtrack condition”) [17]. In this setting, locating the target
may not be feasible. For instance, it is not possible to locate a moving target
in a triangle when probing one vertex per step if the target may “backtrack”.
The question of how many times all the edges of a graph must be subdivided
to ensure locating a moving target probing 1 vertex (resp., k vertices) per step
has been addressed in [7] (resp. [15]). Let a graph be called locatable if there
exists a 1-strategy for locating the target in a finite number of steps with the
“no-backtrack condition”. The case of trees with the “no-backtrack condition”
has first been studied in [17] where it was shown that all trees T are locatable,
and in [6], the upper bound on the number of steps it takes to locate the target
in T was improved. In [19], the case of trees where the target may “backtrack”
was considered. Let ζ(G) be the minimum integer k such that there exists a
k-strategy for locating a moving target in G. In [5], it was shown that deciding
whether ζ(G) ≤ k is NP-hard and that ζ(G) is not bounded in the class of graphs
with treewidth 2. Moreover, ζ(G) ≤ 3 for any outerplanar graph G [4].

Relative Distance and Centroidal Dimension. Foucaud et al. defined a
variant of resolving sets, called centroidal basis, where the vertices of a graph
must be distinguished by their relative distance to the probed vertices [9]. In
this setting, given an integer k ≥ 2, probing a set B = {v1, . . . , vk} of vertices
results in the vector (δi,j(t))1≤i<j≤k where, for every 1 ≤ i < j ≤ k, δi,j(t) = 0
if dG(t, vi) = dG(t, vj), δi,j(t) = 1 if dG(t, vi) > dG(t, vj) and δi,j(t) = −1
otherwise. In other words, probing any two vertices returns the information of
which one is closer to the target or whether they are equidistant from it. The
set B is a centroidal basis if the vectors of relative distances for every t ∈ V are
pairwise distinct. The centroidal dimension of a graph G, denoted by CD(G) ≥ 2,
is the minimum size of a centroidal basis of G [9] (this is well defined since, clearly,
V is a centroidal basis of G). The decision problem associated to the centroidal
dimension is NP-complete and almost tight bounds on the centroidal dimension
of paths have been computed [9].
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A sequential variant of the centroidal basis can naturally be defined. This
variant has been studied in the case of a moving target in [4].

Here, we also initiate the study of this variant when the target is immobile.
Let k ≥ 2 be an integer and G be a graph. Let λrel

k (G) denote the minimum
integer h such that there exists a k-strategy that locates (using relative distances)
a hidden immobile target in G in at most h steps, whatever be the location of the
target. Given G, k, and �, the Relative-Localization Problem asks whether
λrel

k (G) ≤ �. The dual parameter κrel
� (G) is defined as the minimum integer h

such that there exists an h-strategy (with relative distances) that locates the
target in G in at most � steps. Note that, for every graph G, κrel

1 (G) is exactly
the centroidal dimension CD(G) of G, and λrel

k (G) ≤ � if and only if κrel
� (G) ≤ k.

1.2 Our Results

In the whole paper, G denotes a connected undirected simple graph. We consider
the computational complexity of the Localization Problem. In Sect. 2, we show
that it is polynomial-time solvable when both k and � are fixed parameters but
that it is NP-complete when only one of those two parameters is fixed. Precisely:

– Let k ≥ 1 and � ≥ 1 be two fixed integers. Given a graph G as an input, the
problem of deciding whether λk(G) ≤ � is polynomial-time solvable (in time
nO(k�)) (Theorem 1).

– Let k ≥ 1 be a fixed integer. Given a graph G with a universal vertex and
an integer � ≥ 1 as inputs, the problem of deciding whether λk(G) ≤ � is
NP-complete (Theorem 2).

– Let � ≥ 1 be a fixed integer. Given a graph G with a universal vertex and
an integer k ≥ 1 as inputs, the problem of deciding whether κ�(G) ≤ k is
NP-complete (Theorem 4).

On the way, we also show that the Relative-Localization Problem is
polynomial-time solvable when both k and � are fixed parameters (Theorem 1)
but that it is NP-complete when only one of those two parameters is fixed (The-
orems 3 and 5).

In Sect. 3, we then focus on the Localization Problem in the class of trees.
Surprisingly, in trees, the complexity of the Localization Problem only comes
from the first step. We show that, after the first step, the problem becomes
polynomial-time solvable. This allows us to design a polynomial-time approxi-
mation algorithm for the problem. More precisely, we show that

– deciding whether λk(T ) ≤ � is NP-complete in the class of trees T when both
k and � are part of the input (Theorem 6);

– there exists an algorithm that computes, in time O(n log n) (independent of
k), a k-strategy for locating a target in at most λk(T )+1 steps in any n-node
tree (possibly edge-weighted) (Theorem 9);

– deciding whether λk(T ) ≤ � can be solved in time O(nk+2 log n) (independent
of �) in the class of n-node trees (possibly edge-weighted) (Corollary 1).
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2 Complexity of the Localization Problem

This section is devoted to prove that the (Relative) Localization Problem
is polynomial-time solvable when both k and � are fixed parameters but that it
is NP-complete when only one of those two parameters is fixed. The proof when
� is fixed is an almost straightforward reduction from the Metric Dimension
Problem. In the case when k is fixed, it is a much more involved reduction
from the 3-dimensional matching Problem. The proof that the (Relative)
Localization Problem is in NP is given as a separate claim (Claim 1) as it is
used in all of the NP-completeness proofs.

Theorem 1. Let k ≥ 1 (k ≥ 2 for the Relative Localization Problem)
and � ≥ 1 be two fixed integers. The (Relative) Localization Problem is
polynomial-time solvable (in time nO(k�)).

Proof. Let G be any n-node graph. Let us consider the following tree T that
will be used to represent all possible strategies that probe exactly k vertices per
step and last at most � steps in G.

The tree T is rooted in r and all leaves are at distance 2� from the root. The
two types of vertices of T are labelled by subsets of vertices of V (G). For any
vertex v ∈ V (T ) at even distance from r, its label L(v) ⊆ V (G) represents the
set of possible locations of the target at this moment. For any vertex v ∈ V (T )
at odd distance from r, its label L(v) ⊆ V (G), of size k, represents the set of
vertices that are probed at this moment.

Precisely, T is defined as follows. Its root r is labelled with L(r) = V (G)
(initially, the target may be anywhere). Then, given a vertex v ∈ V (T ) at even
distance from r and such that L(v) = S ⊆ V (G), the node v has exactly

(
n
k

)

children labelled by each of the subsets of size k of V (G). Then, for every Q ∈
V (G)k, let w be the child of v such that L(w) = Q. The at most n children
of w are defined as follows. Let (S1, · · · , Sq) be the partition of S such that,
for any x, y ∈ S, the vertices x and y belong to the same Si if and only if
probing the vertices of Q knowing that the target is in S gives the same answer
(distance vector) for x and y. Then, w has exactly q children s1, . . . , sq such that
L(si) = Si for every 1 ≤ i ≤ q. Intuitively, each child of w corresponds to the
possible locations of the target in response to the probing of the vertices of Q.

First, note that |V (T )| is polynomial in n when k and � are fixed. Precisely,
since T has at most (

(
n
k

)
n)� leaves (due to the degree of the nodes and the

height of T ) and all leaves are at distance 2� from r, |V (T )| is upper bounded
by O(2�(

(
n
k

)
n)�) = nO(k�).

Secondly, every strategy (of length � and probing k vertices per turn) is
“contained” in T . Indeed, any subtree T ′ of T built as follows represents a
strategy: start with T ′ reduced to the root r, then while possible, for any leaf v
of T ′, if v is at an even distance from r, choose a single child of v and add it to
T ′ (this is the probing that the strategy performs in this situation), otherwise,
if v is at odd distance from r, add all its children to T ′. It is easy to see that, in
this way, any strategy, winning (locating the target in at most � turns, wherever
it is) or not, can be represented.
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By the same reasoning, for every node v at even distance 2(� − �′) from r,
the subtree of T rooted in v “contains” all strategies of length �′ and probing k
vertices per turn, assuming that, initially, the target occupies a vertex in L(v).
Let us say that v is valid if it contains at least one such winning strategy.

To find out if there is a winning strategy in G, let us proceed by dynamic
programming, bottom-up from the leaves of this tree to the root. A leaf v of
T is valid if and only if L(v) is a singleton (indeed, the leaves of T represent
strategies without any probe so the location of the target must be uniquely
identified). Then, a vertex v at odd distance from the root is valid if and only
if all its children are valid (after a probing, there must be a winning strategy,
whatever be the answer). Finally, a vertex v at even distance from the root is
valid if and only if at least one of its children is valid. Indeed, the subtree rooted
at v contains a winning strategy if, knowing that the target is in L(v), there
exists at least one possible probing (one set of k vertices to be probed) that
leads toward a winning strategy, whatever be the answer to this probing.

Therefore, there is a winning strategy for G if and only if the root is valid
which can be decided in time |V (T )| = nO(k�). �	

Claim 1. The (Relative) Localization Problem is in NP.

Proof of Claim. The proof is done for the Localization Problem. The certifi-
cate is a k-strategy which can be described by a rooted decision tree T as follows.
The nodes of T are labelled by sets of k vertices (the vertices to be probed at a
given step) and its edges are labelled by sets of vertices representing the possible
locations of the target. Precisely, the root node represents the first k vertices
to be probed in G according to the k-strategy. For every node v ∈ V (T ) (but
the root), the label Le ⊆ V (G) of the parent-edge e of v represents the current
possible locations of the target and the label Lv ⊆ V (G), |Lv| ≤ k, is the set of
vertices to be probed according to the strategy, given that the target occupies a
vertex in Le. Then, every child w of v corresponds to a possible outcome (after
probing the vertices in Lv). That is, Lvw is the new set of possible locations
after having probed Lv (given that the target was in Le). Note that, clearly,
Lvw ⊆ Le. Moreover, we may restrict our attention to progressive strategies,
i.e., strategies for which, for every non-root vertex v with parent-edge e, and
for every child-edge f of v, Lf ⊂ Le. Indeed, otherwise, the vertices probed in
Lv are not relevant and a better choice would be any subset containing at least
one vertex of Le (two vertices of Le in the case of the Relative Localization
Problem, where by definition k ≥ 2, and this is the only part of the proof that
differs between the two problems).

The previous remark shows that we can restrict ourselves to k-strategies
represented by rooted trees where all non-leaf nodes have at least two chil-
dren. Moreover, any such tree representing a winning strategy (a k-strategy that
locates the target) has exactly |V (G)| leaves since there is a one-to-one corre-
spondence between a path from the root to a leaf of T with the location of the
target in G. A trivial induction on |V (T )| allows to show that any rooted tree
with n leaves and where all non-leaf nodes have at least two children, has at
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most 2n nodes. Thus, any winning k-strategy may be encoded polynomially and
the Localization Problem is in NP. �

2.1 When the Number k of Probed Vertices per Step Is Fixed

Let k ≥ 1 be a fixed integer. The k-Probe Localization Problem takes a
graph G and an integer � ≥ 1 as inputs and asks whether λk(G) ≤ �.

Theorem 2. Let k ≥ 1 be a fixed integer. The k-Probe Localization Prob-
lem is NP-complete in the class of graphs with a universal vertex.

Sketch of proof. The problem is in NP by Claim 1. Let us prove it is NP-hard
by a reduction from the 3-dimensional matching Problem (3DMP) which is
a well known NP-hard problem. The 3DMP takes a set X = I1 ∪ I2 ∪ I3 of 3n
elements (|I1| = |I2| = |I3| = n) and a set S of triples (x, y, z) ∈ I1 × I2 × I3 as
inputs and asks whether there are n triples of S that are pairwise disjoint.

Let k ≥ 1 be a fixed integer and let I = (X ,S) be an instance of 3DMP. First,
we may assume that |X | = 3kn since, if not, it is sufficient to take k disjoint
copies of (X ,S). Moreover, we may assume that m = |S| is such that 2m−1 ≡ 0
mod k (for instance by adding dummy triples if needed). Let X = {x1, . . . , x3kn}
and S = {S1, . . . , Sm}.

Let us build the graph G = (V,E) as follows. Let the vertex-set V = X ∪
X ′′ ∪ S ∪ {s} ∪ {q} be such that X = X1 ∪ · · · ∪ Xk+2 with Xi = {xi

1, . . . , x
i
3kn}

for every 1 ≤ i ≤ k + 2; X ′′ = {x′′
1 , . . . , x′′

(k+2)m}; and S = S1 ∪ · · · ∪ Sk+2

with Si = {si
j , 1 ≤ j ≤ m} for every i ∈ �1, k + 2�. The vertex s is universal

(i.e., adjacent to every other vertex), the vertex q is adjacent to every vertex in
X ∪X ′′ and, for every j ∈ �1, 3kn� and every g ∈ �1,m� such that xj ∈ Sg, there
is an edge between xi

j and si
g for every i ∈ �1, k + 2�. Intuitively, Xi is a “copy”

of X and Si is a “copy” of S for every 1 ≤ i ≤ k + 2.
Let p = m(k+2)−1

k ∈ N. We prove the theorem by showing that I = (X ,S)
admits a 3DM if and only if λk(G) ≤ (k + 2)n + p + 1. �	

The same proof also works for the case with relative distances. Hence,

Theorem 3. Let k ≥ 2 be a fixed integer. Given a graph G with a universal
vertex and 1 ≤ � ∈ N, the problem of deciding if λrel

k (G) ≤ � is NP-complete.

2.2 When the Number � of Steps Is Fixed

Let � ≥ 1 be a fixed integer. The �-Step Localization Problem takes a graph
G and an integer k ≥ 1 as inputs and asks whether κ�(G) ≤ k.

Theorem 4. Let � ≥ 1 be a fixed parameter. The �-Step Localization Prob-
lem is NP-complete in the class of graphs with a universal vertex.
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Sketch of proof. For � = 1, the result follows from the fact that κ1(G) is exactly
the metric dimension and from its NP-completeness [8].

Let � ≥ 2 be fixed. The problem is in NP by Claim 1. To prove the NP-
hardness, let us reduce the Metric Dimension Problem restricted to the class
of graphs that contain a universal vertex, which is known to be NP-hard [11].
Let <G, k> be an instance of Metric Dimension where G contains a universal
vertex. We construct, in polynomial time, an instance < G′, k > of the �-Step
Localization Problem such that MD(G) ≤ k if and only if κ�(G′) ≤ k.

The construction of G′ is as follows. Start from k(� − 1) + 1 disjoint copies
G1, . . . , Gk(�−1)+1 of G. Let v be a universal vertex of G, and for 1 ≤ i ≤
k(� − 1) + 1, let vi denote the copy of v in Gi. Finally, add a universal vertex u
to the graph. �	

A similar proof (but based on a reduction of Centroidal Dimension) works
for the case with relative distances. Hence,

Theorem 5. Let � ≥ 1 be a fixed integer. Given a graph G with a universal
vertex and 2 ≤ k ∈ N, the problem of deciding if κrel

� (G) ≤ k is NP-complete.

3 The Localization Problem in Trees

This section is devoted to the study of the Localization Problem in the class
of trees. Note that, if the number of steps is � = 1, the problem is equivalent to
the one of Metric dimension which can easily be solved in polynomial-time
in trees [13,20]. We first show that, if k and � are part of the input, deciding
whether λk(T ) ≤ � is NP-complete in the class of trees T . Our reduction actually
shows that the difficulty of the problem comes from the choice of the vertices
to be probed during the first step. Surprisingly, we show that the first step
is actually the only source of complexity. More precisely, our main result is
that, if the first step is given (intuitively, either given by an oracle or imposed
by an adversary), then an optimal strategy (according to this first pre-defined
step) can be computed in polynomial-time. This allows us to design a (+1)-
approximation algorithm for the Localization Problem in trees and to prove
that, in contrast with general graphs (Theorem 2), the k-Probe Localization
Problem is polynomial-time solvable in the class of trees (Corollary 1).

3.1 NP-Hardness

Theorem 6. The Localization Problem is NP-complete in the class of trees.

Sketch of proof. Again, the problem is in NP by Claim 1. To prove the NP-
hardness, let us reduce the Hitting-Set Problem. The inputs are an integer
k ≥ 1, a ground-set B = (b1, . . . , bn), and a set S = {S1, . . . , Sm} of subsets of
B, i.e., Si ⊆ B for every i ≤ m. The Hitting-Set Problem aims at deciding if
there exists a set H ⊆ B, |H| ≤ k, and H ∩ Si �= ∅ for every 1 ≤ i ≤ m.
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Adding one new element to the ground-set and adding this element to one
single subset clearly does not change the solution. Therefore, by adding some
dummy elements (each one belonging to a single subset), we may assume that
all the subsets are of the same size σ and that σ − 1 ≡ 0 mod k.

Let γ be any integer such that γ − 1 ≡ 0 mod k and γ > n − k − 1.
The instance T of the Localization Problem is built as follows. Let us start

with n vertex-disjoint paths B1, · · · , Bn (the branches) of length 2m, where
Bi = (bi

1, . . . , b
i
2m+1) for each 1 ≤ i ≤ n. Then, let us add one new vertex c

adjacent to bi
1 for all 1 ≤ i ≤ n. For every 1 ≤ j ≤ m and for every 1 ≤ i ≤ n

such that bi ∈ Sj , let us add γ new vertices adjacent to bi
2j . The subgraph induced

by bi
2j and by the γ leaves adjacent to it is referred to as the star representing

the element i in the set Sj (or representing the set Sj in the branch i). The
obtained tree T is depicted in Fig. 1.

b1
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i

b3
i

b2j
i

b2m+1
i

b1
b2
b3

b2j
i'
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n

b2m+1
n
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b1
1

b2
1
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1
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1
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b2
b3

b2j

b2m+1

Fig. 1. An example of a tree T built from an instance (k, B, S) of hitting set in the
proof of Theorem 6. The elements bi′ , bi′′ , and bn belong to the set S1 (but not the
elements b1 and bi) as figured by the three “stars” at level 2. The elements bi and bi′′

belong to Sj (stars at level 2j), but not the elements b1, bi′ , and bn.

Intuitively, it will always be better for the target to be located in a leaf of
some star because γ is “huge”. During the first turn of any strategy, the level
(roughly, the distance to the root) of the target can be identified. Each even level
2j corresponds to a set Sj . If, during the first turn, one star corresponding to each
even level can be eliminated from the possible locations (which corresponds to
hitting every subset), then the strategy finishes one step earlier than if all subsets
cannot be hit (if so, all stars would have to be checked).

Precisely, we show that λk(T ) ≤ 1+ σ−1
k + γ−1

k if and only if there is a hitting
set of size at most k. �	
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3.2 Algorithm in Trees

The proof above actually shows that, in our reduction, choosing the vertices to
be probed during the first step to ensure an optimal strategy is equivalent to
finding a minimum hitting set. We show below that the first step is actually the
only “part” of the problem that is difficult.

The key argument is the following easy remark. Let us consider a tree T
where a target is hidden and assume that a single vertex r ∈ V (T ) is probed.
After this single probe, the distance d ∈ N between the target and r is known.
Therefore, from the second step, the instance becomes equivalent to a tree T ′ (a
subtree of T ) rooted in r, with all leaves the same distance d from r, and where
the target is known to occupy some leaf of T ′. We first present an algorithm that
computes in polynomial-time (independent of k and �) an optimal strategy to
locate the target in such instances.

Let T be the set of rooted trees with all leaves the same distance from the
root. Given a rooted tree (T, r) ∈ T (in what follows, we omit r when it is clear
from the context), let λL

k (T ) be the minimum integer h such that there exists
a k-strategy that locates a target in at most h steps knowing a priori that the
target occupies some leaf of T . The next claim is a key argument for why the
problem is easier in the class T when the target is known to occupy a leaf.

Claim 2. Let (T, r) ∈ T rooted in r, let v be a child of r and Tv the subtree
rooted in v. If the target is known to occupy a leaf of T , then probing any vertex
in Tv allows to learn if the target occupies a leaf of Tv or a leaf of T \ Tv.

Proof of Claim. Let d be the distance between r and the leaves of T . Let w be
any vertex of Tv and let d′ be the distance between w and r. The target occupies
a leaf of Tv if and only if its distance to w is strictly less than d + d′. �

Let T ∈ T rooted in r, let v be a child of r, and let us assume that the secret
location of the target is some leaf of Tv. Note that (Tv, v) ∈ T . Let us assume
that Tv is not a path and let s be the first step of an optimal strategy φ in T that
probes some vertex of Tv (such a step s must exist since otherwise the target
would never be detected in Tv). By Claim 2, it is sufficient to probe a single
vertex of Tv to learn whether the target occupies a leaf of Tv. Then, applying
an optimal strategy φv in Tv will locate the target in a total of s + λL

k (Tv) − 1
steps if the first step of φv only requires probing a single vertex of Tv and
s + λL

k (Tv) steps otherwise. So, it may be possible to do better. Indeed, probing
several vertices of Tv during the sth step of φ may serve not only to detect
the target in Tv but also to “play” the first step of φv. Doing so, the strategy
will take only s + λL

k (Tv) − 1 steps. So, elaborating, an optimal strategy will
consist of doing a tradeoff between probing one single vertex in a subtree (and
detecting “quickly” in which subtree the target is hidden since several subtrees
are considered simultaneously) and probing more vertices in a subtree in order
to get a head start for the strategy in the case the target is in this subtree.

For any tree T , let π(T ) be the minimum integer q such that there exists a
k-strategy that locates a target in at most λL

k (T ) steps, knowing a priori that
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Algorithm 1. A1(k, (T, r)).
Require: An integer k and a tree T ∈ T rooted in r with children v1, . . . , vd∗

Ensure: (λL
k (T ), π(T ))

1: if (T, r) is a rooted path then
2: return (0, 0)
3: for i = 1 to d∗ do
4: Let (λi, πi) = A1(k, (T [i], vi))
5: Sort the (λi, πi)1≤i≤d∗ in non-increasing lexicographical order
6: return A2(k, (T, r), (λi, πi)1≤i≤d∗)

the target occupies some leaf of T , and such that at most q vertices are probed
during the first step.

To illustrate the need of a tradeoff, let us consider the following simple exam-
ple utilizing π. Consider two children v1 and v2 of r such that (λL

k (Tv1), π(Tv1)) =
(6, 4) and (λL

k (Tv2), π(Tv2)) = (6, 3). Let k = 6. Then, at the first step, we can-
not probe π(Tv1) + π(Tv2) = 7 vertices. W.l.o.g., let us assume that at most
3 < π(Tv1) vertices of Tv1 have been probed during the first step. Thus, by defi-
nition of π, a total of λL

k (Tv1) + 1 = 7 steps are necessary if we learn at the first
step that the target occupies some leaf of Tv1 .

Let T ∈ T rooted in r and let v1, . . . , vd∗ be the children of r. From previous
arguments, the computation of an optimal strategy for T consists of determining,
for each subtree Tvi

(1 ≤ i ≤ d∗), the first step for which a vertex of Tvi
will be

probed (if the target has not been located in a different subtree at a previous
step). If 1 vertex is probed during this step, then λL

k (Tvi
) extra steps are needed

if the target occupies some leaf of Tvi
(unless π(Tvi

) = 1 in which case λL
k (Tvi

)−1
extra steps are needed). If π(Tvi

) vertices of Tvi
are probed during this step, then

λL
k (Tvi

) − 1 extra steps are needed if the target occupies some leaf of Tvi
.

Description of Algorithm 1. The main algorithm A1(k, (T, r)) takes an inte-
ger k ≥ 1 and a rooted tree (T, r) ∈ T as inputs and computes (λL

k (T ), π(T ))
and a corresponding k-strategy. It proceeds bottom-up by dynamic program-
ming from the leaves to the root. Precisely, let v1, . . . , vd∗ be the children of
r. For any 1 ≤ i ≤ j ≤ d∗, let T [i] = Tvi

be the subtree rooted at vi, and
let T [i, j] = {r} ∪ Tvi

∪ · · · ∪ Tvj
(T [i, j] = ∅ if i > j). To lighten the nota-

tions, let us set λi = λL
k (T [i]) and πi = π(T [i]) for every 1 ≤ i ≤ d∗. Assume

that, (Λ,Π) = (λi, πi)1≤i≤d∗ have been computed recursively and sorted in non-
increasing lexicographical order. Then, A2(k, (T, r), (Λ,Π)), described in Algo-
rithm 2, takes the integer k ≥ 1, the rooted tree (T, r) ∈ T , and the sorted tuple
(Λ,Π) as inputs and computes (λL

k (T ), π(T )) and a corresponding strategy.

Description of Algorithm 2. We now informally describe A2(k, (T, r), (Λ,Π)).
First, Line 2 to Line 5 deals with the subtrees Tvd+1 , . . . , Tv∗

d
that are rooted paths

(path rooted at one of its vertices of degree one, the other vertex is the leaf). In
other words, it concerns all the subtrees Tvi

such that (λi, πi) = (0, 0). Indeed,
this case is somehow pathologic. Claim 3 proves that Line 2 to Line 5 computes
(λL

k (T [vd+1, d
∗]), π(T [vd+1, d

∗])). Let us define S ⊂ T as the set of subdivided
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Algorithm 2. A2(k, (T, r), (Λ,Π)).
Require: k ∈ N

∗, a rooted tree (T, r) with v1, . . . , vd∗ the children of r such that
(Λ, Π) = (λi, πi)1≤i≤d∗ is sorted in non-increasing lexicographical order.

1: l ← 1, p ← k, d ← d∗

2: if T [d∗] is a rooted path then
3: d ← z with 0 ≤ z < d∗ the smallest integer such that T [z + 1] is a rooted path
4: l ← 1 + � d∗−d−1

k
�

5: p ← k + k(� d∗−d−1
k

� − � d∗−d−1
d∗−d

�) − (d∗ − d − 1)
6: for i = d down to 1 do
7: if p = 0 or l < λi + 1 then
8: p ← k, l ← max(l + 1, λi + 1)
9: α ← πi − (πi − 1)�(l − (λi + 1))/l�

10: if α ≤ p then
11: p ← p − α
12: else
13: p ← k − 1, l ← l + 1
14: return (l − 1, k − p)

stars S (i.e., trees with at most one vertex of degree at least 3) with all leaves
the same distance from the root, where the root of S is the (unique) vertex with
degree > 2 or one of the two ends if S is a path.

Claim 3. Let S ∈ S and let δ be the degree of the root r. Then, λL
k (S) = � δ−1

k �
and π(S) = −k(� δ−1

k � − � δ−1
δ �) + (δ − 1).

We are now able to detail the second part of the algorithm (from Line 6).
Informally, A2(k, (T, r), (Λ,Π)) recursively builds, for i = d down to 1, an
optimal k-strategy φ for T [i, d∗] from an optimal k-strategy φ′ of T [i + 1, d∗]
and from an optimal k-strategy φ′′ of T [i] (the latter one being given as input
through (λi, πi)). In other words, (λL

k (T [i, d∗]), π(T [i, d∗])) is computed from
(λL

k (T [i + 1, d∗]), π(T [i + 1, d∗])) and (λi, πi). For every 1 ≤ i ≤ d + 1, let li
(resp., pi) denote the value of l (resp. of p) just before the (d + 2 − i)th iteration
of the for-loop (so, l1 and p1 are the final values of l and p). Intuitively, let us
assume that an optimal strategy for T [i + 1, d∗] has been computed, takes at
most li+1 − 1 steps and requires k − pi+1 = π(T [i + 1, d∗]) vertices to be probed
during its first step. Roughly, there are five cases to be considered.

– If πi ≤ pi+1 and λi = li+1 − 1, the strategy φ follows φ′ but, in addition,
probes πi vertices of T [i] during its first step. If the target is in T [i], then
φ follows φ′′ (and takes a total of at most λi steps), otherwise, it proceeds
as φ′ (and takes a total of at most li+1 − 1 steps). We get li = li+1 and
pi = pi+1 − πi.

– Else if πi > pi+1 > 0 and λi = li+1 − 1, the first step of φ probes a unique
vertex in T [i]. If the target is in T [i], then φ follows φ′′ (and takes a total of
at most λi + 1 steps). Otherwise, it proceeds as φ′ (and takes a total of at
most li+1 steps). We get li = li+1 + 1 and pi = k − 1.
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– Else, if pi+1 = 0 and λi ≤ li+1 − 1, the first step of φ probes a unique vertex
in T [i]. If the target is in T [i], then φ follows φ′′ (and takes a total of at most
λi + 1 steps). Otherwise, it proceeds as φ′ (and takes a total of at most li+1

steps). We get li = li+1 + 1 and pi = k − 1.
– Else, if λi < li+1 − 1 and pi+1 > 0, the strategy φ follows φ′ but, in addition,

probes one vertex of T [i] during its first step. If the target is in T [i], then φ
follows φ′′ (and takes a total of at most λi + 1 steps), otherwise, it proceeds
as φ′ (and takes a total of at most li+1 − 1 steps). We get li = li+1 and
pi = pi+1 − 1.

– Else (λi > li+1 − 1), the strategy φ probes πi vertices in T [i] during the first
step. If the target is in T [i], then φ follows φ′′ (and takes a total of at most λi

steps), otherwise, it proceeds as φ′ (and takes a total of at most li+1 steps).
We get li = λi + 1 and pi = k − πi.

As the subtrees are sorted in non-increasing lexicographical order (of (λi, πi)),
we prove in Lemma 1 that the strategy φ described before is optimal for T [i, d∗],
that is, it computes (λL

k (T [i, d∗]), π(T [i, d∗])).

Lemma 1. For every 1 ≤ i ≤ d+1, λL
k (T [i, d∗]) = li−1 and π(T [i, d∗]) = k−pi.

Correctness and Complexity of Algorithms 1 and 2. We prove in Theo-
rem 8 that A1(k, (T, r)) computes (λL

k (T ), π(T )) and a corresponding k-strategy
in time O(n log n), where n is the number of vertices. To do that, Theorem 7
proves the correctness and the linear (in the number of children of r) time com-
plexity of A2(k, (T, r), (Λ,Π)).

Theorem 7. Let k ≥ 1, let (T, r) ∈ T be a rooted tree, and let v1, . . . , vd∗

be the children of r such that the tuples (Λ,Π) = (λi, πi)1≤i≤d∗ are sorted
in non-increasing lexicographical ordering. Then, A2(k, (T, r), (Λ,Π)) returns
(λL

k (T ), π(T )) and a corresponding strategy. Furthermore, the time-complexity
of A2 is O(d∗) (independent of k).

Proof. The time-complexity is obvious and the correctness follows from Lemma 1
for i = 1. The fact that the strategy is also returned is not explicitly described
in Algorithm 2 but directly follows from the proof of Lemma 1. �	

Theorem 8. Let k ≥ 1, and let (T, r) ∈ T be an n-node rooted tree. Then,
A1(k, (T, r)) returns (λL

k (T ), π(T )) and a corresponding strategy. Furthermore,
the time-complexity of A1 is O(n log n) (independent of k).

Proof. The correctness is simply proved by induction and by Theorem 7. For
the time-complexity, at every recursive call on a subtree Tv rooted at v (with
dv children), the additional number of operations is O(dv log dv) (sorting) plus
O(dv) (Algorithm A2, by Theorem 7). Since in a tree,

∑
v∈V (T ) dv = 2(n − 1),

this gives a total complexity of O(
∑

v∈V (T ) dv log dv) = O(n log n). Again, the
strategy is not explicit in our presentation but can be easily computed. �	
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Main Results. From A1(k, (T, r)) presented before, it is easy to get an efficient
approximation algorithm when k and � are part of the input and a polynomial-
time algorithm when k is fixed.

Theorem 9. There exists an algorithm that, given any integer k ≥ 1 and any n-
node tree T , computes a k-strategy that locates a target in T in at most λk(T )+1
steps. Furthermore, the time-complexity of the algorithm is O(n log n).

Proof. The strategy proceeds as follows. The first step probes any arbitrary
vertex r of T . Let d be the distance between r and the target, let L ⊆ V (T )
be the set of vertices at distance exactly d from r, and let T d be the subtree
induced by r and every vertex on a path between r and the vertices in L. Note
that (T d, r) ∈ T and that the target is occupying a leaf of T d. Hence, it is
sufficient to apply A1(k, (T d, r)). By Theorem 8, the above strategy will locate
the target in at most 1 + maxd λL

k (T d) ≤ 1 + λk(T ) steps. �	

Corollary 1. There exists an algorithm that, given any integer k ≥ 1 and any n-
node tree T , computes an optimal k-strategy for locating a target in T in at most
λk(T ) steps. Furthermore, the time-complexity of the algorithm is O(nk+2 log n).

4 Further Work

Our results in trees leave the open question of whether λk(T ) is Fixed Parameter
Tractable (in k) in the class of n-node trees T . Moreover, it would be interest-
ing to study the localization Problem in other graph classes such as interval
graphs and planar graphs. Also, what is the complexity of the �-step Local-
ization Problem in trees?

The relative-localization Problem is much more intricate even for simple
topologies. A first step towards a better understanding of this problem would
be to fully solve it in the case of paths (i.e., to determine κrel

1 (P ) for every path
P ), which has been partially solved in [9], before studying it in the class of trees.
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Abstract. In the Min-cost Perfect Matching with Delays (MPMD)
problem, 2m requests arrive over time at points of a metric space. An
online algorithm has to connect these requests in pairs, but a decision
to match may be postponed till a more suitable matching pair is found.
The goal is to minimize the joint cost of connection and the total waiting
time of all requests.

We present an O(m)-competitive deterministic algorithm for this
problem, improving on an existing bound of O(mlog2 5.5) = O(m2.46).
Our algorithm also solves (with the same competitive ratio) a bipartite
variant of MPMD, where requests are either positive or negative and
only requests with different polarities may be matched with each other.
Unlike the existing randomized solutions, our approach does not depend
on the size of the metric space and does not have to know it in advance.

Keywords: Online algorithms · Delayed service · Metric matching
Primal-dual algorithms · Competitive analysis

1 Introduction

Consider a gaming platform that hosts two-player games, such as chess, go or
Scrabble, where participants are joining in real time, each wanting to play against
another human player. The system matches players according to their known
capabilities aiming at minimizing their dissimilarities: any player wants to com-
pete against an opponent with comparable skills. A better match for a player can
be found if the platform delays matching decisions as meanwhile more appro-
priate opponents may join the system. However, an excessive delay may also
degrade the quality of experience. Therefore, a matching mechanism that runs
on a gaming platform has to balance two conflicting objectives: to minimize
the waiting time of any player and to minimize dissimilarities between matched
players.

The problem informally described above, called Min-cost Perfect Matching
with Delays (MPMD), has been recently introduced by Emek et al. [20]. The
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problem is inherently online1: a matching algorithm for the gaming platform has
to react in real time, without knowledge about future requests (player arrivals)
and make its decision irrevocably: once two requests (players) are paired, they
remain paired forever.

The MPMD problem was also considered in a bipartite variant, called Min-
cost Bipartite Perfect Matching with Delays (MBPMD) introduced by Ashlagi
et al. [2]. There requests have polarities: one half of them is positive, and the
other half is negative. An algorithm may match only requests of different signs.
This setting corresponds to a variety of real-life scenarios, e.g., assigning drivers
to passengers on ride-sharing platforms or matching patients to donors in kidney
transplants. Similarly to the MPMD problem, there is a trade-off between min-
imizing the waiting time and finding a better match (a closer driver or a more
compatible donor).

1.1 Problem Definition

Formally, both in the MPMD and MBPMD problems, there is a metric space X
equipped with a distance function dist : X × X → R≥0, both known in
advance to an online algorithm. An online part of the input is a sequence
of 2m requests u1, u2, . . . , u2m. A request (e.g., a player arrival) u is a triple
u = (pos(u), atime(u), sgn(u)), where atime(u) is the arrival time of request u,
pos(u) ∈ X is the request location, and sgn(u) is the polarity of the request.

In the bipartite case, half of the requests are positive and sgn(u) = +1 for any
such request u; the remaining half are negative and there sgn(u) = −1. In the
non-bipartite case, requests do not have polarities, but for technical convenience
we set sgn(u) = 0 for any request u.

In applications described above, the function dist measures the dissimilarity
of a given pair of requests (e.g., discrepancy between player capabilities in the
gaming platform scenario or the physical distance between a driver and a pas-
senger in the ride-sharing platform scenario). For instance, for chess, a player is
commonly characterized by her Elo rating (an integer) [19]. In such case, X may
be simply a set of all integers with the distance between two points defined as
the difference of their values.

Requests arrive over time, i.e., atime(u1) ≤ atime(u2) ≤ · · · ≤ atime(u2m).
We note that the integer m is not known beforehand to an online algorithm. At
any time τ , an online algorithm may match a pair of requests (players) u and v
that

– have already arrived (τ ≥ atime(u) and τ ≥ atime(v)),
– have not been matched yet,
– satisfy sgn(u) = −sgn(v) (i.e., have opposite polarities in the bipartite case;

in the non-bipartite case, this condition trivially holds for any pair).

1 The offline variant of the problem, where all player arrivals are known a priori, can
be easily solved in polynomial time.
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The cost incurred by such matching edge is then dist(pos(u), pos(v)) + (τ −
atime(u)) + (τ − atime(v)). That is, it is the sum of the connection cost defined
as dist(pos(u), pos(v)) and the waiting costs of u and v, defined as τ − atime(u)
and τ − atime(v), respectively.

The goal is to eventually match all requests and minimize the total cost of
all matching edges. We perform worst-case analysis, assuming that the requests
are given by an adversary. To measure the performance of an online algo-
rithm Alg for an input instance I, we compare its cost Alg(I) to the cost
Opt(I) of an optimal offline solution Opt that knows the entire input sequence
in advance. The objective is to minimize the competitive ratio [14] defined as
supI{Alg(I)/Opt(I)}.

1.2 Previous Work

The MPMD problem was introduced by Emek et al. [20], who presented a ran-
domized O(log2 n + log Δ)-competitive algorithm. There, n is the number of
points in the metric space X and Δ is its aspect ratio (the ratio between the
largest and the smallest distance in X ). The competitive ratio was subsequently
improved by Azar et al. [4] to O(log n). They also showed that the compet-
itive ratio of any randomized algorithm is at least Ω(

√
log n). The currently

best lower bound of Ω(log n/ log log n) for randomized solutions was given by
Ashlagi et al. [2].

Ashlagi et al. [2] adapted the algorithm of Azar et al. [4] to the bipartite set-
ting and obtained a randomized O(log n)-competitive algorithm for this variant.
The currently best lower bound of Ω(

√
log n/ log log n) for this variant was also

given in [2].
Both lower bounds use O(n) requests. Therefore, they imply that no random-

ized algorithm can achieve a competitive ratio lower than Ω(log m/ log log m) in
the non-bipartite case and lower than Ω(

√
log m/ log log m) in the bipartite one.

(Recall that 2m is the number of requests in the input.)
The status of the achievable performance of deterministic solutions is far from

being resolved. No better lower bounds than the ones used for randomized set-
tings are known for deterministic algorithms. The first solution that worked for
general metric spaces was given by Bienkowski et al. and achieved an embarrass-
ingly high competitive ratio of O(mlog2 5.5) = O(m2.46) [12]. Roughly speaking,
their algorithm is based on growing spheres around not-yet-paired requests. Each
sphere is created upon a request arrival, grows with time, and when two spheres
touch, the corresponding requests become matched.

Concurrently and independently of our current paper, Azar and Jacob-
Fanani [6] improved the deterministic ratio to O((1/ε) ·mlog(3/2+ε)), where ε > 0
is a parameter of their algorithm. When ε is small enough, this ratio becomes
O(m0.59). Their approach is similar to that of [12], but they grow spheres in a
smarter way: slower than time progresses and only in the negative direction of
time axis. (Their work also appears in these proceedings.)

Better deterministic algorithms are known only for simple spaces:
Azar et al. [4] gave an O(height)-competitive algorithm for trees and Emek et
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al. [21] constructed a 3-competitive deterministic solution for two-point metrics
(the latter competitive ratio is best possible).

1.3 Our Contribution

In this paper, we focus on deterministic solutions for both the MPMD and
MBPMD problems, i.e., for both the non-bipartite and the bipartite variants of
the problem. We present a simple O(m)-competitive LP-based algorithm that
works in both settings.

In contrast to the previous randomized solutions to these problems [2,4,20],
and similarly to other deterministic solutions [6,12], we do not need the metric
space X to be finite and known in advance by an online algorithm. (All previous
randomized solutions started by approximating X by a random HST (hierar-
chically separated tree) [22] or a random HST tree with reduced height [8].)
This approach, which can be performed only in the randomized setting, greatly
simplifies the task as the underlying tree metric reveals a lot of structural infor-
mation about the cuts between points of X and hence about the structure of an
optimal solution. In the deterministic setting, such information has to be grad-
ually learned as time passes. For our algorithm, we require only that, together
with any request u, it learns the distances from u to all previous requests.

In contrast to the previous deterministic algorithms [6,12], we base our algo-
rithm on the moat-growing framework, developed originally for (offline) con-
strained connectivity problems (e.g., for Steiner problems) by Goemans and
Williamson [24]. Glossing over a lot of details, in this framework, one writes
a primal linear relaxation of the problem and its dual. The primal program has
a constraint (connectivity requirement) for any subset of requests and the dual
program has a variable for any such subset. The algorithm maintains a family
of active sets, which are initially singletons. In the runtime, dual variables are
increased simultaneously, till some dual constraint (corresponding to a pair of
requests) becomes tight: in such case an algorithm connects such pair and merges
the corresponding sets. At the end, an algorithm usually performs pruning by
removing redundant edges.

When one tries to adapt the moat-growing framework to online setting, the
main difficulty stems from the irrevocability of the pairing decision: the pruning
operation performed at the end is no longer an option. Another difficulty is
that an algorithm has to combine the concept of actual time that passes in an
online instance with the virtual time that dictates the growth of dual variables.
In particular, dual variables may only start to grow once an online algorithm
learns about the request and not from the very beginning as they would do in
the offline setting. Finally, requests appear online, and hence both primal and
dual programs evolve in time. For instance, this means that for badly defined
algorithms, appearing dual constraints may be violated already once they are
introduced.

We note that 2m (the number of requests) is incomparable with n (the num-
ber of different points in the metric space X ) and their relation depends on the
application. Our algorithm is better suited for applications, where X is infinite
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or virtually infinite (e.g., it corresponds to an Euclidean plane or a city map for
ride-sharing platforms [32]) or very large (e.g., for some real-time online games,
where player capabilities are represented as multi-dimensional vectors describing
their rank, reflex, offensive and defensive skills, etc. [3]).

1.4 Alternative Deterministic Approaches (That Fail)

A few standard deterministic approaches fail when applied to the MPMD and
MBPMD problems. One such attempt is the doubling technique (see, e.g., [17]):
an online algorithm may trace the cost of an optimal solution Opt and perform
a global operation (e.g., match many pending requests) once the cost of Opt
increases significantly (e.g., by a factor of two) since the last time when such
global operation was performed. This approach does not seem to be feasible
here as the total cost of Opt may decrease when new requests appear.

Another attempt is to observe that the randomized algorithm by
Azar et al. [4] is a deterministic algorithm run on a random tree that approx-
imates the original metric space. One may try to replace a random tree by a
deterministically generated tree that spans requested points of the metric space.
Such spanning tree can be computed by the standard greedy routine for the
online Steiner tree problem [26]. However, it turns out that the competitive
ratio of the resulting algorithm is 2Ω(m). (The main reason is that the adversary
may give an initial subsequence that forces the algorithm to create a spanning
tree with the worst-case stretch of 2Ω(m) and such initial subsequence can be
served by Opt with a negligible cost. The details are given in Appendix B.)

1.5 Related Work

Originally, online metric matching problems have been studied in variants where
delaying decisions was not permitted. In this variant, m requests with positive
polarities are given at the beginning to an algorithm. Afterwards, m requests
with negative polarities are presented one by one to an algorithm and they have
to be matched immediately to existing positive requests. The goal is to min-
imize the weight of a perfect matching created by the algorithm. For general
metric spaces, the best deterministic algorithms achieve the optimal competi-
tive ratio of 2m − 1 [27,30,36] and the best randomized solution is O(log2 m)-
competitive [7,34]. Better bounds are known for line metrics [1,23,25,31]: here
the best deterministic algorithm is O(log2 m)-competitive [35] and the best ran-
domized one achieves the ratio of O(log m) [25].

Another strand of research concerning online matching problems arose
around a non-metric setting where points with different polarities are connected
by graph edges and the goal is to maximize the cardinality or the weight of the
produced matching. For a comprehensive overview of these type of problems we
refer the reader to a recent survey by Mehta [33].

The M(B)PMD problem is an instance in a broader category of problems,
where an online algorithm may delay its decisions, but such delays come with
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a certain cost. Similar trade-offs were employed in other areas of online analy-
sis: in aggregating orders in supply-chain management [9–11,15,16], aggregating
messages in computer networks [18,28,29], or recently for server problems [5,13].

2 Primal-Dual Formulation

We start with introducing a linear program that allows us to lower-bound the
cost of an optimal solution. To this end, fix an instance I of M(B)PMD. Let V
be the set of all requests. We call any unordered pair of different requests in I an
edge; let E be the set of all edges that correspond to potential matching pairs,
i.e., the set of all edges in the non-bipartite case, and the edges that connect
requests of opposite polarities in the bipartite variant. For each set S ⊆ V ,
by δ(S) we denote the set of all edges from E crossing the boundary of S, i.e.,
having exactly one endpoint in S.

For any set S ⊆ V , we define sur(S) (surplus of set S) as the number of
unmatched requests in a maximum cardinality matching of requests within set S.

– In the non-bipartite variant (MPMD), we are allowed to match any two
requests. Hence, if S is of even size, then sur(S) = 0. Otherwise, sur(S) = 1
as in any maximum cardinality matching of requests within S exactly one
request remains unmatched.

– In the bipartite variant (MBPMD), we can always match two requests
of different polarities. Hence, the surplus of a set S is the discrepancy
between the number of positive and negative requests inside S, i.e., sur(S) =
|∑u∈S sgn(u)|.
To describe a matching, we use the following notation. For each edge e, we

introduce a binary variable xe, such that xe = 1 if and only if e is a matching
edge. For any set S ⊆ V and any feasible matching (in particular the optimal
one), it holds that

∑
e∈δ(S) xe ≥ sur(S).

Fix an optimal solution Opt for I. If a pair of requests e = (u, v) is
matched by Opt, it is matched as soon as both u and v arrive, and hence
the cost of matching u with v in the solution of Opt is equal to opt-cost(e) :=
dist(pos(u), pos(v)) + |atime(u) − atime(v)|. This, together with the preceding
observations, motivates the following linear program P:

minimize
∑

e∈E

opt-cost(e) · xe

subject to
∑

e∈δ(S)

xe ≥ sur(S) ∀S ⊆ V

xe ≥ 0 ∀e ∈ E.

As any matching is a feasible solution to P, the cost of the optimal solution
of P lower-bounds the cost of the optimal solution for instance I of M(B)PMD.
Note that there might exist a feasible integral solution of P that does not corre-
spond to any matching. To exclude all such solutions, we could add constraints
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∑
e∈δ(S) xe = 1 for all singleton sets S. The resulting linear program would then

exactly describe the matching problem (cf. Chap. 25 of [37]). However, our main
concern is not P, but its dual and its current shape is sufficient for our purposes.
The program D, dual to P, is then

maximize
∑

S⊆V

sur(S) · yS

subject to
∑

S:e∈δ(S)

yS ≤ opt-cost(e) ∀e ∈ E

yS ≥ 0 ∀S ⊆ V.

Note that in any solution, the dual variables yS corresponding to sets S for
which sur(S) = 0, can be set to 0 without changing feasibility or objective value.

The following lemma is an immediate consequence of weak duality.

Lemma 1. Fix any instance I of the M(B)PMD problem. Let Opt(I) be the
value of any optimal solution of I and D be the value of any feasible solution
of D. Then Opt(I) ≥ D.

Proof. Let P ∗ and D∗ be the values of optimal solutions for P and D, respec-
tively. Since any matching is a feasible solution for P, Opt(I) ≥ P ∗. Hence,
Opt(I) ≥ P ∗ ≥ D∗ ≥ D. 	


Lemma 1 motivates the following approach: We construct an online algorithm
Greedy Dual (GD), which, along with its own solution, maintains a feasible
solution D for D corresponding to the already seen part of the input instance.
This feasible dual solution not only yields a lower bound on the cost of the
optimal matching, but also plays a crucial role in deciding which pair of requests
should be matched.

Note that since the requests arrive in an online manner, D evolves in time.
When a request arrives, the number of subsets of V increases (more precisely, it
doubles), and hence more dual variables yS are introduced. Moreover, the newly
arrived request creates an edge with every existing request and the corresponding
dual constraints are introduced. Therefore, showing the feasibility of the created
dual solution is not immediate; we deal with this issue in Sect. 4.

3 Algorithm Greedy Dual

The high-level idea of our algorithm is as follows: Greedy Dual (GD) resembles
moat-growing algorithms for solving constrained forest problems [24]. During its
runtime, GD partitions all the requests that have already arrived into active
sets.2 If an active set contains any free requests, we call this set growing, and
non-growing otherwise. At any time, for each active growing set S, the algorithm
2 A reader familiar with the moat-growing algorithm may think that active sets are

moats. However, not all of them are growing in time.
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increases continuously its dual variable yS until a constraint in D corresponding
to some edge (u, v) becomes tight. When it happens, GD makes both active
sets (containing u and v, respectively) inactive, and the set being their union
active. In addition, if this happened due to two growing sets, GD matches as
many pairs of free requests in these sets as possible: in the non-bipartite variant
GD matches exactly one pair of free requests, while in the bipartite variant, GD
matches free requests of different polarities until all remaining free requests have
the same sign.

3.1 Algorithm Description

More precisely, at any time, GD partitions all requests that arrived until that
time into active sets. It maintains mapping A, which assigns an active set to
each such request. An active set S, whose all requests are matched is called non-
growing. Conversely, an active set S is called growing if it contains at least one
free request. GD ensures that the number of free requests in an active set S is
always equal to sur(S). We denote the set of free requests in an active set S by
free(S); if S is non-growing, then free(S) = ∅.

When a request u arrives, the singleton {u} becomes a new active and growing
set, i.e., A(u) = {u}. The dual variables of all active growing sets are increased
continuously with the same rate in which time passes. This increase takes place
until a dual constraint between two active sets becomes tight, i.e., until there
exists at least one edge e = (u, v), such that

A(u) �= A(v) and
∑

S:e∈δ(S)

yS = opt-cost(e). (1)

In such case, while there exists an edge e = (u, v) satisfying (1), GD processes
such edge in the following way. First, it merges active sets A(u) and A(v).
By merging we mean that the mapping A is adjusted to the new active set
S = A(u)  A(v) for each request of S. Old active sets A(u) and A(v) become
inactive.3 Second, as long as there is a pair of free requests u′, v′ ∈ S that can
be matched with each other, GD matches them.

In the non-bipartite variant, GD matches at most one pair as each active set
contains at most one free request. In the bipartite variant, GD matches pairs
of free requests until all unmatched requests in S (possibly zero) have the same
polarity. Observe that in either case, the number of free requests after merge
is equal to sur(S). Finally, GD marks edge e. Marked edges are used in the
analysis, to find a proper charging of the connection cost to the cost of the
produced solution for D. The pseudocode of GD is given in Algorithm 1 and an
example execution that shows a partition of requests into active sets is given in
Fig. 1.

3 Note that inactive is not the opposite of being active, but means that the set was
active previously: some sets are never active or inactive.
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Algorithm 1. Algorithm Greedy Dual

1: Request arrival event:

2: if a request u arrives then
3: A(u) ← {u}
4: for all sets S such that u ∈ S do
5: yS ← 0 � initialize dual variables for sets containing u

6:
7: Tight constraint event:

8: while exists a tight dual constraint for edge e = (u, v) where A(u) �= A(v) do
9: S ← A(u) � A(v) � merge two active sets

10: for all w ∈ S do � adjust assignment A for the new active set S
11: A(w) ← S

12: mark edge e
13: while there are u′, v′ ∈ free(S) such that sgn(u′) = −sgn(v′) do
14: match u′ with v′ � match as many pairs as possible

15:
16: None of the above events occurs:
17: for all growing active sets S do
18: increase continuously yS with the same rate in which time passes

3.2 Greedy Dual Properties

It is instructive to trace how the set A(u) changes in time for a request u. At the
beginning, when u arrives, A(u) is just the singleton set {u}. Then, the set A(u)
is merged at least once with another active set. If A(u) is merged with a non-
growing set, the number of requests in A(u) increases, but its surplus remains
intact. After A(u) is merged with a growing set, some requests inside the new
A(u) may become matched. It is possible that, in effect, the surplus of the new
set A(u) is zero, in which case the new set A(u) is non-growing. (In the non-
bipartite variant, this is always the case when two growing sets merge.) After
A(u) becomes non-growing, another growing set may be merged with A(u), and
so on. Thus, the set A(u) can change its state from growing to non-growing (and
back) multiple times.

The next observation summarizes the process described above, listing prop-
erties of GD that we use later in our proofs.

Observation 1. The following properties hold during the runtime of GD.

1. For a request u, when time passes, A(u) refers to different active sets that
contain u.

2. At any time, every request is contained in exactly one active set. If this request
is free, then the active set is growing.

3. At any time, an active set S contains exactly sur(S) free requests.
4. Active and inactive sets together constitute a laminar family of sets.
5. For any two requests u and v, once A(u) becomes equal to A(v), they will be

equal forever.
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Fig. 1. A partition of requests into active sets created by GD. Different polarities of
requests are represented by discs and squares. Free requests are depicted as empty discs
and squares, matched requests by filled ones. Active growing sets have bold boundaries
and each of them contains at least one free request. Active non-growing sets contain
only matched requests. Dashed lines represent marked edges and solid curvy lines
represent matching edges. Dashed gray sets are already inactive; the inactive singleton
sets have been omitted.

4 Correctness

We now prove that Greedy Dual is defined properly. In other words, we
show that the dual values maintained by GD always form a feasible solution
of D (Lemma 3) and GD returns a feasible matching of all requests at the end
(Lemma 4). From now on, we denote the values of a dual variable yS at time τ
by yS(τ).

By the definition, the waiting cost of a request is the time difference between
the time it arrives and the time it is matched. In the following lemma, we relate
the waiting cost of a request to the dual variables for the active sets it belongs to.

Lemma 2. Fix any request u. For any time τ ≥ atime(u), it holds that
∑

S:u∈S

yS(τ) ≤ τ − atime(u).

The relation holds with equality if u is free at time τ .

Proof. We show that the inequality is preserved as time passes. At time τ =
atime(u), request u is introduced and sets S containing u appear. Their yS

values are initialized to 0. Therefore, at that time,
∑

S:u∈S yS(τ) = 0 as desired.
Whenever a merging event or an arrival of any other requests occur, new

variables yS may appear in the sum
∑

S:u∈S yS(τ), but, at these times, the
values of these variables are equal to zero, and therefore do not change the sum
value.

It remains to analyze the case when time passes infinitesimally by ε and
no event occurs within this period. It is sufficient to argue that the sum∑

S:u∈S yS(τ) increases exactly by ε if u is free at τ and at most by ε otherwise.
Recall that yS may grow only if S is an active growing set. By Property 2 of
Observation 1, the only active set containing u is A(u). This set is growing if u is
free (and then yA(u) increases exactly by ε) and may be growing or non-growing
if u is matched (and then yA(u) increases at most by ε). 	
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The following lemma shows that throughout its runtime, GD maintains a fea-
sible dual solution.

Lemma 3. At any time, the values yS maintained by the algorithm constitute
a feasible solution to D.

Proof. We show that no dual constraint is ever violated during the execution
of GD.

When a new request u arrives at time τ = atime(u), new sets containing u
appear and the dual variables yS corresponding to these sets are initialized to 0.

Each already existing constraint, corresponding to an edge e not incident
to u, is modified: new yS variables for sets S containing both u and exactly one
of endpoints of e appear in the sum. However, all these variables are zero, and
hence the feasibility of such constraints is preserved.

Moreover, for any edge e = (u, v) where v is an existing request, a new
dual constraint for this edge appears in D. We show that it is not violated, i.e.,∑

S:e∈δ(S) yS(τ) ≤ opt-cost(e). As discussed before, yS(τ) = 0 for the sets S
containing u. Therefore,

∑

S:e∈δ(S)

yS(τ) =
∑

S:v∈S∧u/∈S

yS(τ) +
∑

S:u∈S∧v/∈S

yS(τ)

=
∑

S:v∈S∧u/∈S

yS(τ) ≤
∑

S:v∈S

yS(τ)

≤ atime(u) − atime(v) (by Lemma 2)
≤ opt-cost(e).

Now, we prove that once a dual constraint for an edge e = (u, v) becomes
tight, the involved yS values are no longer increased. According to the algorithm
definition, A(u) and A(v) become merged together. By Property 5 of Obser-
vation 1, from this moment on, any active set S contains either both u and v
or neither of them. Hence, there is no active set S, such that (u, v) ∈ δ(S),
and in particular there is no such active growing set. Therefore, the value of∑

S:e∈δ(S) yS remains unchanged, and hence the dual constraint corresponding
to edge e remains tight and not violated. 	


Finally, we prove that GD returns a proper matching. We need to show that
if a pair of requests remains unmatched, then appropriate dual variables increase
and they will eventually trigger the matching event.

Lemma 4. For any input for the M(B)PMD problem, GD returns a feasible
matching.

Proof. Suppose for a contradiction that GD does not match some request u.
Then, by Property 2 of Observation 1, A(u) is always an active growing set
and by Property 3, sur(A(u)) > 0. Therefore, the corresponding dual variable
yA(u) always increases during the execution of GD and appears in the objec-
tive function of D with a positive coefficient. By Lemma 3, the solution of D
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maintained by GD is always feasible, and hence the optimal value of D would
be unbounded. This would be a contradiction, as there exists a finite solution to
the primal program P (as all distances in the metric space are finite). 	


5 Cost Analysis

In this section, we show how to relate the cost of the matching returned by
Greedy Dual to the value of the produced dual solution. First, we show that
the total waiting cost of the algorithm is equal to the value of the dual solution.
Afterwards, we bound the connection cost of GD by 2m times the dual solution,
where 2m is the number of requests in the input. This, along with Lemma 1,
yields the competitive ratio of 2m + 1.

5.1 Waiting Cost

In the proof below, we link the generated waiting cost with the growth of appro-
priate dual variables. To this end, suppose that a set S is an active set for time
period of length Δt. By Property 3 of Observation 1, S contains exactly sur(S)
free points, and thus the waiting cost incurred within this time by requests in S
is Δt · sur(S). Moreover, in the same time interval, the dual variable yS increases
by Δt, which contributes the same amount, sur(S) · Δt, to the growth of the
objective function of D. The following lemma formalizes this observation and
applies it to all active sets considered by GD in its runtime.

Lemma 5. The total waiting cost of GD is equal to
∑

S⊆V sur(S)·yS(T ), where
T is the time when GD matches the last request.

Proof. We define G(τ) as the family of sets that are active and growing at time τ .
By Propertys 2 and 3 of Observation 1, the number of free requests at time τ ,
henceforth denoted wait(τ), is then equal to

∑
S sur(S) · 1[S ∈ G(τ)]. The total

waiting cost at time T can be then expressed as
∫ T

0

wait(τ) dτ =
∫ T

0

∑

S

sur(S) · 1[S ∈ G(τ)] dτ

=
∑

S

sur(S)
∫ T

0

1[S ∈ G(τ)] dτ =
∑

S

sur(S) · yS(T ),

where the last equality holds as at any time, GD increases yS value if and only
if S is active and growing. 	


5.2 Connection Cost

Below, we relate the connection cost of GD to the value of the final solution of
D, created by GD. We focus on the set of marked edges, which are created by
GD in Line 12 of Algorithm 1. We show that for any time, the set of marked
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edges restricted to an active or an inactive set S forms a “spanning tree” of
requests of S. That is, there is a unique path of marked edges between any two
requests from S. (Note that this path projected to the metric space may contain
cycles as two requests may be given at the same point of X .) We start with a
helper observation.

Observation 2. Fix any set S. If S is active at time τ , then its boundary δ(S)
does not contain any marked edge at time τ .

Proof. After an edge (u, v) becomes marked, both u and v belong to newly
created active set. From now on, by Property 5 of Observation 1, they remain in
the same active set till the end of the execution. Therefore, this edge will never
be contained in a boundary of an active set. 	

Lemma 6. At any time, for any active or inactive set S, the subset of all marked
edges with both endpoints in S forms a spanning tree of all requests from S.

Proof. We show that the property holds at time passes. When a new request
arrives, a new active growing set containing only one request is created. This set
is trivially spanned by an empty set of marked edges.

By the definition of GD, a new active set appears when a dual constraint
for some edge e = (u, v) becomes tight. Right before it happens, the active sets
containing u and v are A(u) and A(v), respectively. At that time, marked edges
form spanning trees of sets A(u) and A(v) and, by Observation 2, there are
no marked edges between these two sets. Hence, these spanning trees together
with the newly marked edge e constitute a spanning tree of the requests of
S = A(u)A(v). Finally, a set may become inactive only if it was active before,
and GD never adds any marked edge inside an already existing active or inactive
set. 	


Using the lemma above, we are ready to bound the connection cost of one
matching edge by the cost of the solution of D.

Lemma 7. The connection cost of any matching edge is at most 2·∑S⊆V sur(S)·
yS(T ), where T is the time when GD matches the last request.

Proof. Fix a matching edge (u, v) created by GD at time τ . Its connection cost
is the distance dist(pos(u), pos(v)) between the points corresponding to requests
u and v in the underlying metric space.

We consider the state of GD right after it matches u with v. By Lemma 6,
the active set S = A(u) = A(v) containing u and v is spanned by a tree of
marked edges. Let P be the (unique) path in this tree connecting u with v.
Using the triangle inequality, we can bound dist(pos(u), pos(v)) by the length of
P projected onto the underlying metric space.

Recall that for any edge e = (w,w′), it holds that dist(pos(w), pos(w′)) ≤
opt-cost(e). Moreover, if e is marked, the dual constraint for edge e holds with



64 M. Bienkowski et al.

equality, that is, opt-cost(e) =
∑

S:e∈δ(S) yS(τ). Therefore,

dist(pos(u), pos(v)) ≤
∑

(w,w′)∈P

dist(pos(w), pos(w′)) ≤
∑

e∈P

opt-cost(e)

=
∑

e∈P

∑

S:e∈δ(S)

yS(τ) =
∑

S

|δ(S) ∩ P | · yS(τ)

≤
∑

S

|δ(S) ∩ P | · sur(S) · yS(τ)

≤
∑

S

|δ(S) ∩ P | · sur(S) · yS(T ).

The penultimate inequality holds because a dual variable yS can be positive only
if sur(S) ≥ 1. It is now sufficient to prove that for each (active or inactive) set S,
it holds that |δ(S) ∩ P | ≤ 2, i.e., the path P crosses each such set S at most
twice.

For a contradiction, suppose that there exists an (active or inactive) set S,
whose boundary is crossed by path P more than twice. We direct all edges on P
towards v (we follow P starting from request u and move towards v). Note
that u may be inside or outside of S. Let e1 = (w1, w2) be the first edge on P
such that w1 ∈ S and w2 �∈ S, i.e., the first time when path P leaves S. Let
e2 = (w3, w4) ∈ P be the first edge after e1, such that w3 �∈ S and w4 ∈ S, that
is, the first time when path P returns to S after leaving it with edge e1. Edge e2
must exist as we assumed that P crosses the boundary of S at least three times.

By Lemma 6, a subset of the marked edges constitutes a spanning tree of S.
Hence, there exists a path of marked edges contained entirely in S that connects
requests w1 and w4. Furthermore, a sub-path of P connects w2 and w3 outside
of S. These two paths together with edges e1 and e2 form a cycle of marked
edges. However, by Lemma 6 and Observation 2, at any time, the set of marked
edges forms a forest, which is a contradiction. 	


5.3 Bounding the Competitive Ratio

Using above results we are able to bound the cost of Greedy Dual.

Theorem 1. Greedy Dual is (2m + 1)-competitive for the M(B)PMD prob-
lem.

Proof. Fix any input instance I and let D be the corresponding dual program.
Let D be the cost of the solution to D output by GD. By Lemma 5, the total
waiting cost of the algorithm is bounded by D and by Lemma 7, the connection
cost of a single edge in the matching is bounded by 2 · D. Therefore,

GD(I) ≤ D + m · 2D = (2m + 1) · D ≤ (2m + 1) · Opt(I),

where the first inequality holds as there are exactly m matched edges and the
last equality follows by Lemma 1. 	
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A Tightness of the Analysis

We can show that our analysis of Greedy Dual is asymptotically tight, i.e.,
the competitive ratio of Greedy Dual is Ω(m).

Theorem 2. Both for MPMD and MBPMD problems, there exists an
instance I, such that GD(I) = Ω(m) · Opt(I).

Proof. Let m > 0 be an even integer and ε = 1/m. Let X be the metric con-
taining two points p and q at distance 2.

In the instance I, requests are released at both points p and q at times
0, 1+ε, 1+3ε, 1+5ε, . . . , 1+(2m−3)·ε. For the MBPMD problem, we additionally
specify request polarities: at p, all odd-numbered requests are positive and all
even-numbered are negative, while requests issued at q have exactly opposite
polarities from those at p.

Regardless of the variant (bipartite or non-bipartite) we solve, GD matches
the first pair of requests at time 1, when their active growing sets are merged,
forming a new active non-growing set. Every subsequent pair of requests appears
exactly ε after the previous pair becomes matched. Therefore, they are matched
together ε after their arrival, when their growing sets are merged with the large
non-growing set containing all the previous pairs of requests. Hence, the total
connection cost of GD is equal to 2m. On the other hand, observe that the total
cost of a solution that matches consecutive requests at each point of the metric
space separately is equal to 2 · ((1 + ε) + 2ε · (m − 2)/2) = 2 · (1 + (m − 1) · ε)
< 4. 	


B Derandomization Using a Spanning Tree

In this part, we analyze an algorithm that approximates the metric space by
a greedily and deterministically chosen spanning tree of requested points and
employs the deterministic algorithm for trees of Azar et al. [4]. We show that
such algorithm has the competitive ratio of 2Ω(m). For simplicity, we focus on
the non-bipartite variant, but the lower bound can be easily extended to the
bipartite case.

More precisely, we define a natural algorithm Tree Based (TB). TB inter-
nally maintains a spanning tree T of metric space points corresponding to already
seen requests. That is, whenever TB receives a request u at point pos(u), it exe-
cutes the following two steps.

1. If there was no previous request at pos(u), TB adds pos(u) to T , connecting
it to the closest point from T . The addition is performed immediately, at
the request arrival. This part essentially mimics the behavior of the greedy
algorithm for the online Steiner tree problem [26].

2. To serve the request u, TB runs the deterministic algorithm of [4] on the tree
T .4

4 The algorithm must be able to operate on a tree that may be extended (new leaves
may appear) in the runtime. The algorithm given by Azar et al. [4] has this property.
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Theorem 3. The competitive ratio of Tree Based is 2Ω(m).

Proof. The idea of the lower bound is as follows. The adversary first gives m/2
requests that force TB to create a tree T with the stretch of 2Ω(m) and then
gives another m/2 requests, so that the initial m requests can be served with
a negligible cost by Opt. Afterwards, the adversary consecutively requests a pair
of points that are close in the metric space, but far away in the tree T .

Our metric space X is a continuous ring and we assume that m is an even
integer. Let h be the length of this ring and let ε = h/(m · 2m−1).

In the first part of the input, the adversary gives m/2 requests in the following
way. The first two requests are given at time 0 at antipodal points (their distance
is h/2). TB connects them using one of two halves of the ring. From now on,
the tree T of TB will always cover a contiguous part of the ring. Each of the
next m/2−2 requests is given exactly in the middle of the ring part not covered
by T . For j ∈ {3, 4, . . . ,m/2}, the j-th request is given at time (2 · (j −1)/m) · ε.

This way, the ring part not covered by T shrinks exponentially, and after m/2
initial requests its length is equal to h/2m/2−1. Let p and q be the endpoints (the
only leaves) of T . Then, dist(p, q) = h/2m/2−1, but the path between p and q
in T is of length h − dist(p, q) and uses an edge of length h/2. As T is built as
soon as requests appear, its construction is finished right after the appearance
of the (m/2)-th request, i.e., before time ε.

In the second part of the input, at time ε, the adversary gives m/2 requests
at the same points as the requests from the first phase. This way, Opt may serve
the first m requests paying nothing for the connection cost and paying at most
(m/2) · ε = h/2m for their waiting cost.

In the third part of the input, the adversary gives m/2 pairs of requests,
each pair at points p and q. Each pair is given after the previous one is served by
TB. Opt may serve each pair immediately after its arrival, paying dist(p, q) =
h/2m/2−1 for the connection cost. On the other hand, TB serves each such pair
using a path that connects p and q in the tree T . Before matching p with q, TB
waits for a time which is at least the length of the longest edge on this path, h/2
(see the analysis in [4]). In total, the cost of TB for the last m requests alone
is at least (m/2) · (h/2), while the total cost of Opt for the whole input is at
most h/2m + (m/2) · h/2m/2−1. This proves that the competitive ratio of TB
is 2Ω(m). 	
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control message aggregation in chain networks. In: Dehne, F., Solis-Oba, R., Sack,
J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 133–145. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40104-6 12

12. Bienkowski, M., Kraska, A., Schmidt, P.: A match in time saves nine: deterministic
online matching with delays. In: Solis-Oba, R., Fleischer, R. (eds.) WAOA 2017.
LNCS, vol. 10787, pp. 132–146. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89441-6 11

13. Bienkowski, M., Kraska, A., Schmidt, P.: Online service with delay on a line. In:
Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 237–248.
Springer, Heidelberg (2018)

14. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

15. Buchbinder, N., Feldman, M., Naor, J.S., Talmon, O.: O(depth)-competitive algo-
rithm for online multi-level aggregation. In: Proceedings of 28th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 1235–1244 (2017)

16. Buchbinder, N., Kimbrel, T., Levi, R., Makarychev, K., Sviridenko, M.: Online
make-to-order joint replenishment model: primal dual competitive algorithms. In:
Proceedings of 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
952–961 (2008)

17. Chrobak, M., Kenyon-Mathieu, C.: Competitiveness via doubling. SIGACT News
37(4), 115–126 (2006)

18. Dooly, D.R., Goldman, S.A., Scott, S.D.: On-line analysis of the TCP acknowledg-
ment delay problem. J. ACM 48(2), 243–273 (2001)

19. Elo, A.E.: The Rating of Chessplayers, Past and Present. Arco Publishing, London
(1978)

20. Emek, Y., Kutten, S., Wattenhofer, R.: Online matching: haste makes waste! In:
Proceedings of 48th ACM Symposium on Theory of Computing (STOC), pp. 333–
344 (2016)

https://doi.org/10.1007/978-3-319-89441-6_11
https://doi.org/10.1007/978-3-642-40104-6_12
https://doi.org/10.1007/978-3-319-89441-6_11
https://doi.org/10.1007/978-3-319-89441-6_11


68 M. Bienkowski et al.

21. Emek, Y., Shapiro, Y., Wang, Y.: Minimum cost perfect matching with delays
for two sources. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017.
LNCS, vol. 10236, pp. 209–221. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57586-5 18

22. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

23. Fuchs, B., Hochstättler, W., Kern, W.: Online matching on a line. Theoret. Com-
put. Sci. 332(1–3), 251–264 (2005)

24. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

25. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS,
vol. 7391, pp. 424–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31594-7 36

26. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discrete Math.
4(3), 369–384 (1991)

27. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993)

28. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic TCP acknowledgement and other
stories about e/(e - 1). Algorithmica 36(3), 209–224 (2003)

29. Khanna, S., Naor, J.S., Raz, D.: Control message aggregation in group communica-
tion protocols. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo,
R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 135–146. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 13

30. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipar-
tite matching and stable marriages. Theoret. Comput. Sci. 127(2), 255–267 (1994)

31. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In: Solis-
Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 179–191. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6 14

32. Lowalekar, M., Varakantham, P., Jaillet, P.: Online spatio-temporal matching in
stochastic and dynamic domains. In: Proceedings of 30th AAAI Conference on
Artificial Intelligence, pp. 3271–3277 (2016)

33. Mehta, A.: Online matching and ad allocation. Found. Trends Theoret. Comput.
Sci. 8(4), 265–368 (2013)

34. Meyerson, A., Nanavati, A., Poplawski, L.J.: Randomized online algorithms for
minimum metric bipartite matching. In: Proceedings of 7th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 954–959 (2006)

35. Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric
bipartite matching problem. In: Proceedings of 58th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 505–515 (2017)

36. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipar-
tite matching. In: Proceedings of 19th International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX), pp. 18:1–18:16 (2016)

37. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Heidelberg (2003)

https://doi.org/10.1007/978-3-319-57586-5_18
https://doi.org/10.1007/978-3-319-57586-5_18
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/3-540-45465-9_13
https://doi.org/10.1007/978-3-540-24592-6_14


Advice Complexity of Priority Algorithms

Allan Borodin1, Joan Boyar2, Kim S. Larsen2, and Denis Pankratov3(B)

1 University of Toronto, Toronto, Canada
bor@cs.toronto.edu

2 University of Southern Denmark, Odense, Denmark
{joan,kslarsen}@imada.sdu.dk

3 Concordia University, Montreal, Canada
denis.pankratov@concordia.ca

Abstract. The priority model of “greedy-like” algorithms was intro-
duced by Borodin, Nielsen, and Rackoff in 2002. We augment this model
by allowing priority algorithms to have access to advice, i.e., side infor-
mation precomputed by an all-powerful oracle. Obtaining lower bounds
in the priority model without advice can be challenging and may involve
intricate adversary arguments. Since the priority model with advice is
even more powerful, obtaining lower bounds presents additional difficul-
ties. We sidestep these difficulties by developing a general framework
of reductions which makes lower-bound proofs relatively straightforward
and routine. We start by introducing the Pair Matching problem, for
which we are able to prove strong lower bounds in the priority model
with advice. We develop a template for constructing a reduction from
Pair Matching to other problems in the priority model with advice –
this part is technically challenging since the reduction needs to define
a valid priority function for Pair Matching while respecting the priority
function for the other problem. Finally, we apply the template to obtain
lower bounds for a number of standard discrete optimization problems.

1 Introduction

Greedy algorithms are among the first class of algorithms studied in an under-
graduate computer science curriculum. They are among the simplest and fastest
algorithms for a given optimization problem, often achieving a reasonably good
approximation ratio, even when the problem is NP-hard. In spite of their impor-
tance, the notion of a greedy algorithm is not well defined. This might be satis-
factory for studying upper bounds; when an algorithm is suggested, it does not
matter much whether everyone agrees that it is greedy or not. However, lower
bounds (inapproximation results) require a precise definition. Perhaps giving a
precise definition for all greedy algorithms is not possible, since one can provide
examples that seem to be outside the scope of the given model.

The full version of the paper is available on arXiv [6]. For the first author, research is
supported by NSERC. The second and third authors were supported in part by the
Independent Research Fund Denmark, Natural Sciences, grant DFF-7014-00041.
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Setting this philosophical question aside, we follow the model of greedy-like
algorithms due to Borodin, Nielsen, and Rackoff [9]. The fixed priority model
captures the observation that many greedy algorithms work by first sorting the
input items according to some priority function, and then, during a single pass
over the sorted input, making online irrevocable decisions for each input item.
This model is similar to the online algorithm model with an additional prepro-
cessing step of sorting inputs. Of course, if any sorting function is allowed, this
would trivialize the model for most applications. Instead, a total ordering on the
universe of all possible input items is specified before any input is seen, and the
sorting is done according to this ordering, after which the algorithm proceeds
as an online algorithm. This model has been adopted with respect to a broad
array of topics [2,3,5,8,13,16,18,19]. In spite of its appeal, there are relatively
few lower bounds in this model. There does not seem to be a general method
for proving lower bounds; that is, the adversary arguments tend to be ad-hoc.
In addition, the basic priority model does not capture the notion of side infor-
mation. The assumption that an algorithm does not know anything about the
input is quite pessimistic in practice. This issue has been addressed recently in
the area of online algorithms by considering models with advice (see [10] for an
overview). In these models, side information, such as the number of input items
or a maximum weight of an item, is computed by an all powerful oracle and
is available to an algorithm before seeing any of the input. This information is
then used to make better online decisions. The goal is to study trade-offs between
advice length and the competitive ratio.

We introduce a general technique for establishing lower bounds on priority
algorithms with advice. These algorithms are a simultaneous generalization of
priority algorithms and online algorithms with advice. Our technique is inspired
by the recent success of the binary string guessing problem and reductions in
the area of online algorithms with advice. We identify a difficult problem (Pair
Matching) that can be thought of as a sorting-resistant version of the binary
string guessing problem. Then, we describe the template of gadget reductions
from Pair Matching to other problems in the world of priority algorithms with
advice. This part turns out to be challenging, mostly because one has to ensure
that priorities are respected by the reduction. We then apply the template to a
number of classic optimization problems. We restrict our attention to the fixed
priority model. We also note that we consider deterministic algorithms unless
otherwise specified.

Related Model

Fixed priority algorithms with advice can be viewed in terms of the fixed priority
backtracking model of Alekhnovich et al. [1]. That model starts by ordering the
inputs using a fixed priority function and then executes a computation tree
where different decisions can be tried for the same input item by branching in
the tree, and then choosing the best result. The lower bound results generally
consider how much width (maximum number of nodes for any fixed depth in
the tree) is necessary to obtain optimality where the width proven is often of
the form 2Ω(n). In contrast, our results give a parameterized trade-off between
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the number of advice bits and the approximation (competitive) ratio. However,
given an algorithm in the fixed priority backtracking model, the logarithm of the
width gives an upper bound on the number of bits of advice needed for the same
approximation ratio. Similarly, a lower bound on the advice complexity gives a
lower bound on width.

Organization

We give a formal description of the models in Sect. 2. We motivate the study
of the priority model with advice in Sect. 3. We introduce and analyze the Pair
Matching problem in Sect. 4. We describe the reduction framework for obtaining
lower bounds in Sect. 5 and apply it to classic problems in Sect. 6. We conclude
in Sect. 7. Omitted proofs can all be found in the full version of the paper [6].

2 Preliminaries

We consider optimization problems for which we are given an objective function
to minimize or maximize, and measure our success relative to an optimal offline
algorithm.

Online Algorithms with Advice

In an online setting, the input is revealed one item at a time by an adversary.
An algorithm makes an irrevocable decision about the current item before the
next item is revealed. For more background on online algorithms, we refer the
reader to the texts by Borodin and El-Yaniv [7] and Komm [15].

The assumption that an online algorithm does not know anything about the
input is quite often too pessimistic in practice. Depending on the application
domain, the algorithm designer may have access to knowledge about the number
of input items, the largest weight of an input item, some partial solution based
on historical data, etc. The advice tape model for online algorithms captures the
notion of side information in a purely information-theoretic way as follows. An
all-powerful oracle that sees the entire input prepares the infinite advice tape
with bits, which are available to the algorithm during the entire process. The
oracle and the algorithm work in a cooperative mode – the oracle knows how the
algorithm will use the bits and is trying to maximize the usefulness of the advice
with regards to optimizing the given objective function. The advice complexity
of an algorithm is a function of the input length and is the number of bits read by
the algorithm in the worst case for inputs of a given size. For more background
on online algorithms with advice, see the survey by Boyar et al. [10].

Fixed Priority Model with Advice

Fixed priority algorithms can be formulated as follows. Let U be a universe
of all possible input items. An input to the problem consists of a finite set of
items I ⊂ U satisfying some consistency conditions. The algorithm specifies a
total order on U before seeing the input. Then, a subset of the possible input
items is revealed (by an adversary) according to the total order specified by the
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algorithm. The algorithm makes irrevocable decisions about the items as they
arrive.1 The overall set of decisions is then evaluated according to some objec-
tive function. The performance of the algorithm is measured by the asymptotic
approximation ratio with respect to the value provided by an optimal offline
algorithm. The notion of advice is added to the model as follows. After the algo-
rithm has chosen a total order on U , an all-powerful oracle that has access to the
entire input I creates a tape of infinitely many bits. The algorithm knows how
the advice bits are created and has access to them during the online decision
phase. Our interest is in how many bits of advice the algorithm uses compared
with the result it obtains.

We consider only countable universes U . In this case, having a total order
on elements in U is equivalent (via a simple inductive argument) to having a
priority function P : U → R. The assumption of the universe being countable
is natural, but also necessary for the above equivalence: there are uncountably
many totally ordered sets that do not embed into the reals with the standard
order.

Definition 1. Let U be the universe of input items and let P : U → R be a
priority function. For u1, u2 ∈ U , we write u1 <P u2 to mean P (u1) < P (u2).
We will say that larger priority means that the item appears earlier in the input,
i.e., u1 <P u2 means that u2 appears before u1 when the input is given according
to P .

Example. Kruskal’s optimal algorithm for the minimum spanning tree problem is
a fixed priority algorithm without advice. The universe of items is U = N×N×Q.
An item (i, j, w) ∈ U represents an edge between a vertex i and a vertex j of
weight w. The consistency condition on the input is that the edge {i, j} can be
present at most once in the input. The total order on the universe is specified by
all items of smaller weight having higher priority than all items of larger weight,
breaking ties, say, by lexicographic order on the names of vertices. Kruskal’s
algorithm processes input items in the given order and greedily accepts those
items that do not result in cycles.

In this paper, we only consider the following input model for graph problems
in the priority setting:

Vertex arrival, vertex adjacency: an input item consists of a name of a vertex
together with a set of names of adjacent vertices. There is a consistency condition
on the entire input: if u appears as a neighbor of v, then v must appear as a
neighbor of u.

Binary String Guessing Problem

Later we introduce the Pair Matching problem that can be viewed as a priority
model analogue of the following online binary string guessing problem.

1 In the adaptive priority model, the algorithm is allowed to specify a new ordering
depending on previous items and decisions before a new input item is presented.
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Definition 2. The Binary String Guessing Problem [4] with known history
(2-SGKH) is the following online problem. The input consists of (n, σ =
(x1, . . . , xn)), where xi ∈ {0, 1}. Upon seeing x1, . . . , xi−1 an algorithm guesses
the value of xi. The actual value of xi is revealed after the guess. The goal is to
maximize the number of correct guesses.

Böckenhauer et al. [4] provide a trade-off between the number of advice bits
and the approximation ratio for the binary string guessing problem.

Theorem 1 (Böckenhauer et al. [4]). For the 2-SGKH problem and any ε ∈
(0, 1

2 ], no online algorithm reading fewer than (1 − H(ε))n advice bits can make
fewer than εn mistakes for large enough n, where H(p) = H(1−p) = −p log(p)−
(1 − p) log(1 − p) is the binary entropy function.

Competitive and Approximation Ratios

The performance of online algorithms is measured by their competitive ratios.
For a minimization problem, an online algorithm ALG is said to be c-competitive
if there exists a constant α such that for all input sequences I we have
ALG(I) ≤ cOPT(I) + α, where ALG(I) denotes the cost of the algorithm on
I and OPT(I) is the value achieved by an offline optimal algorithm. The infi-
mum of all c such that ALG is c-competitive is ALG’s competitive ratio. For
a maximization problem, ALG(I) is referred to as profit, and we require that
OPT(I) ≤ cALG(I) + α. In this way, we always have c ≥ 1 and the closer c is
to 1, the better. Priority algorithms are thought of as approximation algorithms
and the term (asymptotic) approximation ratio is used (but the definition is the
same).

3 Motivation

In this section we present a motivating example for studying the priority model
with advice. We present a problem that is difficult in the pure priority setting
or in the online setting with advice, but easy in the priority model with advice.
Furthermore, the advice is easily computed by an offline algorithm.

The problem of interest is called Greater Than Mean (GTM). In the GTM
problem, the input is a sequence x1, . . . , xn of rational numbers. Let m =∑

i xi/n denote the sample mean of the sequence. The goal of an algorithm
is to decide for each xi whether xi is greater than the mean or not, answering
1 or 0, respectively. We can also assume that the length of the sequence n is
known to the algorithm in advance. We start by noting that there is a trivial
optimal priority algorithm with little advice for this problem.

Theorem 2. For Greater Than Mean, there exists a fixed priority algorithm
reading at most �log n� advice bits, solving the problem optimally.

Proof. The priority order is such that x1 ≥ x2 . . . ≥ xn. Thus, the numbers
arrive in the order from largest to smallest. The advice specifies the earliest
index i ∈ [n] such that xi ≤ m. 	
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In the full version, we show that a priority algorithm without advice has to
make many errors.2

Theorem 3. For Greater Than Mean and any ε ∈ (0, 1
2 ], no fixed priority algo-

rithm without advice can make fewer than (1/2 − ε)n mistakes for large enough
n.

Finally, we show that an online algorithm requires a lot of advice to achieve
good performance for the GTM problem. The proof is a minor modification of a
reduction from 2-SGKH to the Binary Separation Problem (see [11] for details).
We present the proof in its entirety for completeness.

Algorithm 1. Reduction from 2-SGKH to GTM
procedure Reduction-2-SGKH-to-GTM

�1 ← 0, u1 ← 1
for i = 1 to n do

yi ← (�i + ui)/2
if A predicts yi is greater than mean then

predict xi = 1
else

predict xi = 0

receive actual xi

if actual xi = 1 then
ui+1 ← yi, �i+1 ← �i

else
ui+1 ← ui, �i+1 ← yi

yn+1 ← n+1
2

(�n+1 + un+1) − ∑n
i=1 yi

Theorem 4. For the Greater Than Mean problem and any ε ∈ (0, 1
2 ], no online

algorithm reading fewer than (1 − H(ε))(n − 1) advice bits can make fewer than
εn mistakes for large enough n.

Proof. We present a reduction from the 2-SGKH problem to the GTM problem.
Let A be an online algorithm with advice for the GTM problem. Our reduc-
tion is presented in Algorithm 1. In the course of the reduction, an online input
x1, . . . , xn of length n for the 2-SGKH problem is converted into an online input
y1, . . . , yn+1 of length n+1 for the GTM problem with the following properties:
The reduction is advice-preserving (the number of advice bits is the same) and
for each i ∈ [n], our algorithm A for 2-SGKH makes a mistake on xi if and only
if A makes a mistake on yi. This would finish the proof of the theorem.

2 In Theorem 3 and in all of our lower bound advice results, we state the result so as
to include ε = 1

2
, in which case the conditions “fewer than (1/2 − ε)” and “fewer

than (1 − H(ε))” make the statements vacuously true.
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Let S = {i ∈ [n] | xi = 1} and T = [n] \ S. The reduction uses a technique
similar to binary search to make sure that ∀i ∈ S and ∀j ∈ T we have yi > yj ,
i.e., all the yi corresponding to xi = 1 are larger than all the yj corresponding
to xj = 0. Then yn+1 is chosen to make sure that the mean of the entire stream
y1, . . . , yn+1 lies between the smallest yi with i ∈ S and the largest yj with j ∈ T .
This implies that yi is greater than the mean if and only if the corresponding
xi = 1.

The following invariants are easy to see and are left to the reader: (1) ui > �i;
(2) if xi = 1, then ui > yi ≥ ui+1; (3) if xi = 0, then �i < yi ≤ �i+1.

The required properties of the reduction follow immediately from the invari-
ants. Let i ∈ S and j ∈ T . Then, yi ≥ un+1 > �n+1 ≥ yj . Finally, observe
that yn+1 is chosen so that the mean is

∑n+1
i=1 yi/(n + 1) =

∑n
i=1 yi/(n + 1) +

yn+1/(n + 1) = (1/2)(�n+1 + un+1). This mean correctly separates S from T . 	


4 Pair Matching Problem

We introduce an online problem called Pair Matching.3 The input consists of a
sequence of n distinct rational numbers between 0 and 1, i.e., x1, . . . , xn ∈ Q ∩
[0, 1]. After the arrival of xi, an algorithm has to answer if there is a j ∈ [n]\{i}
such that xi + xj = 1, in which case we refer to xi and xj as forming a pair and
say that xi has a matching value, xj . The answer “accept” is correct if xj exists,
and“reject” is correct if it does not. Note that since the xi are all distinct, if
xi = 1

2 , the correct answer is “reject”, since 1
2 cannot have a matching value.

We let pairs(x1, . . . , xn) denote the number of pairs in the input x1, . . . , xn.

4.1 Online Setting

Analyzing Pair Matching in the online setting is relatively straightforward for
both deterministic and randomized algorithms.

Theorem 5. For Pair Matching, there exists a 2-competitive algorithm, answer-
ing correctly on n − pairs(x1, . . . , xn) input items.

Theorem 6. For Pair Matching, no deterministic online algorithm can achieve
a competitive ratio less than 2.

Theorem 7. For Pair Matching, there exists a randomized online algorithm
that in expectation answers correctly on 2n/3 input items.

Theorem 8. For Pair Matching, no randomized online algorithm can achieve
a competitive ratio less than 3/2.

Lastly, we prove that online algorithms need a lot of advice in order to start
approaching a competitive ratio of 1 for Pair Matching.
3 There are similarities to the NP-Complete problems, Numerical Matching with Tar-

get Sums and Numerical 3-Dimensional Matching, though these problems ask if
permutations of sets of inputs will lead to a complete matching.



76 A. Borodin et al.

Theorem 9. For Pair Matching and any ε ∈ (0, 1
2 ], no deterministic online

algorithm reading fewer than (1 − H(ε))n/2 advice bits can make fewer than εn
mistakes for large enough n.

4.2 Priority Setting

In this section, we show that Theorem 9 also holds in the priority setting. The
proof becomes a bit more subtle, so we give it in full detail.

Theorem 10. For Pair Matching and any ε ∈ (0, 1
2 ], no fixed priority algorithm

reading fewer than (1 − H(ε))n/2 advice bits can make fewer than εn mistakes
for large enough n.

Proof. We prove the statement by a reduction from the online problem 2-SGKH.
Let A be a priority algorithm solving Pair Matching, and let P be the corre-
sponding priority function. (Note that we assume that the algorithm knows P ;
this is the case in all of our priority algorithm reductions.) The reduction fol-
lows the proof of Theorem 9 closely. The idea is to transform the online input
to 2-SGKH into an input to Pair Matching. The difficulty arises from having to
present the transformed input in the online fashion while respecting the priority
function P .

Let x1, . . . , xn be the input to 2-SGKH. The online reduction works as follows.
The online algorithm picks n distinct numbers y1, . . . , yn from [0, 1] and creates
a list z1, . . . , z2n consisting of yi and 1−yi sorted according to P . The algorithm
keeps a (max-heap ordered) priority queue Q of elements from zi as well as a
subsequence Z of z1, . . . , z2n. The reduction always picks the first element z from
Z. We maintain the invariant that 1 − z appears later in Z according to P . If
needed, the reduction algorithm will insert 1 − z into Q to be simulated as an
input to A at the right time later on.

Initialization. Initially, Q is empty and Z is the entire sequence z1, . . . , z2n.
Before the element x1 arrives, the algorithm feeds z1 to A. If A answers that
z1 is a part of a pair, then the online algorithm predicts x1 = 1; otherwise the
algorithm predicts x1 = 0. Then the online algorithm finds j such that zj = 1−z1
and updates Z by deleting z1 and zj . Then x1 is revealed. If the actual value of
x1 is 1, the algorithm inserts zj into Q; otherwise the algorithm does not modify
Q.

Middle Step. Suppose that the algorithm has processed x1, . . . , xi−1 and has to
guess the value of xi. The algorithm picks the first element z from the subse-
quence Z. While the top element of Q has higher priority than z according to
P , the algorithm deletes that element from the priority queue and feeds it to A.
Then, the algorithm feeds z to A. The next steps are similar to the initialization
case. If A answers that z is a part of a pair, then the online algorithm predicts
xi = 1; otherwise the algorithm predicts xi = 0. The online algorithm finds
z′ in Z such that z = 1 − z′, and updates Z by deleting z and z′. Then xi is
revealed. If the actual value of xi is 1, the algorithm inserts z′ into Q; otherwise
the algorithm does not modify Q.
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Post-processing. After the algorithm finishes processing xn, it feeds the remaining
elements (in priority order) from Q to A.

It is easy to see that the online algorithm feeds a subsequence of z1, . . . , z2n to
A in the correct order according to P . In addition, the online algorithm makes
exactly the same number of mistakes as A (assuming that A always answers
correctly on the second element of a pair). The statement of the theorem follows
since the size of the input to A is at most 2n. 	


5 Reduction Template

Our template is restricted to binary decision problems since the goal is to derive
inapproximations based on the Pair Matching problem. In reducing from Pair
Matching to a problem B, we assume that we have a priority algorithm ALG
with advice for problem B with priorities defined by P . Based on ALG and P ,
we define a priority algorithm ALG′ with advice and a priority function, P ′,
for the Pair Matching problem. Input items x1, x2, . . . , xn in Q ∩ [0, 1] to Pair
Matching arrive in an order specified by the priority function we define, based
on P . We assume that we are informed when the input ends and can take steps
at that point to complete our computation. Knowing the size n of the input,
which one naturally would in many situations after the initial sorting according
to P ′, would of course be sufficient.

Based on the input to the Pair Matching problem, we create input items
to problem B, and they have to be presented to ALG, respecting the priority
function P . Responses from ALG are then used by ALG′ to help it answer
“accept” or“reject” for its current xi. Actually, ALG will always answer correctly
for a request xj = 1 − xi when i < j, so the responses from ALG are only used
when this is not the case. The main challenge is to ensure that the input items
to ALG are presented in the order determined by P , because the decision as to
whether or not they are presented needs to be made in time, without knowing
whether or not the matching value will arrive.

Here, we give a high level description of a specific kind of gadget reduction.
A gadget G for problem B is simply some constant-sized instance for B, i.e., a
collection of input items that satisfy the consistency condition for problem B. For
example, if B is a graph problem in the vertex arrival, vertex adjacency model,
G could be a constant-sized graph, and the universe then contains all possible
pairs of the form: a vertex name coupled with a list of possible neighboring
vertex names. Note that each possible vertex name exists many times as a part
of an input, because it can be coupled with many different possible lists of vertex
names. The consistency condition must apply to the actual input chosen, so for
each vertex name u which is listed as a neighbor of v, it must be the case that
v is listed as a neighbor of u.

The gadgets used in a reduction will be created in pairs (gadgets in a pair may
be isomorphic to each other, so that they are the same up to renaming), one pair
for each input item less than or equal to 1/2 (for x = 1/2, the gadget will only
be used to assign a priority to x = 1/2). One gadget from the pair is presented
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to ALG when 1 − x appears later in the input; and the other gadget when it
does not. Using fresh names in the input items for problem B, we ensure that
each input item less than 1

2 to the Pair Matching problem has its own collection
of input items for its gadgets for problem B. The pair of gadgets associated with
an input item x ≤ 1/2 can be written (G1

x, G2
x). The same universe of input

items is used for both of these gadgets.
We write maxP G to denote the first item according to P from the universe

of input items for G, i.e., the highest priority item. For now, assume that ALG
responds “accept” or“reject” to any possible input item. This captures problems
such as vertex cover, independent set, clique, etc.

For each x ≤ 1/2, the gadget pair satisfies two conditions: the first item con-
dition, and the distinguishing decision condition. The first item condition says
that the first input item m1(x) according to P gives no information about which
gadget it is in. To accomplish this, we define the priority function for ALG′ as
P ′(x) = P (maxP G1

x) for all x ≤ 1/2 and set m1(x) = maxP G1
x = maxP G2

x (the
second equality holds since we assume the two gadgets have the same input uni-
verse). The distinguishing decision condition says that the decision with regards
to item m1(x) that results in the optimal value of the objective function in G1

x

is different from the decision that results in the optimal value of the objective
function in G2

x. This explains why the one gadget is presented to ALG when
1 − x appears later in the input sequence and the other when it does not.

Now that the first item of the gadget associated with x is defined, the remain-
ing actual input items in the gadget pair for x must be completely defined accord-
ing to the distinguishing decision condition. This gives two sets (overlapping, at
least in m1(x)) of input items. The item with highest priority among all of the
items in the actual gadget pair, ignoring m1(x), is called m2(x), and we define
P ′(1 − x) = P (m2(x)) for x < 1/2. Thus, we guarantee the following list of
properties: x < 1/2 will arrive before 1−x in the input sequence for Pair Match-
ing for ALG′, m1(x) will arrive for algorithm ALG at the same time, ALG’s
response for m1(x) can define the response of ALG′ to x, and the decision as to
which gadget in the pair is presented for x can be made at the time 1−x arrives
or ALG′ can determine that it will not arrive (because either the input sequence
ended or an x′ with lower priority than 1 − x arrived).

To warm up, we start with an example reduction from Pair Matching to
Triangle Finding; a somewhat artificial problem in this context, but well-studied
in streaming algorithms [17], for instance. This reduction then serves as a model
for the general reduction template.

5.1 Example: Triangle Finding

Consider the following priority problem in the vertex arrival, vertex adjacency
model: for each vertex v, decide whether or not v belongs to some triangle (a
cycle of length 3) in the entire input graph. The answer “accept” is correct if
v belongs to some triangle, and otherwise the answer should be “reject”. We
refer to this problem as Triangle Finding. This problem might look artificial and
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it is optimally solvable offline in time O(n2), but as mentioned above, advice-
preserving reductions between priority problems require subtle manipulations of
a priority function. The Triangle Finding problem allows us to highlight this
issue in a relatively simple setting.

Theorem 11. For Triangle Finding and any ε ∈ (0, 1
2 ], no fixed priority algo-

rithm reading at most (1 − H(ε))n/8 advice bits can make fewer than εn/4
mistakes.

Proof. We prove this theorem by a reduction from the Pair Matching problem.
Let ALG be an algorithm for the Triangle Finding problem, and let P be the
corresponding priority function. Let x1, . . . , xn be the input to Pair Matching.
We define a priority function P ′ and a valid input sequence v1, . . . , vm to Triangle
Finding. When x1, . . . , xn is presented according to P ′ to our priority algorithm
for Pair Matching, it is able to construct v1, . . . , vm for ALG, respecting the
priority function P . Moreover, our algorithm for Pair Matching will be able to
use answers of ALG to answer the queries about x1, . . . , xn.

Now, we discuss how to define P ′. With each number x ∈ Q ∩ [0, 1/2], we
associate four unique vertices v1

x, v2
x, v3

x, v4
x. The universe consists of all input

items of the form (vi
x, {vj

x, vk
x}) with i, j, k ∈ [4], i ∈ {j, k} and j < k; there

are 12 input items for each x: 4 possibilities for the vertex, and for each of the(
3
2

)
= 3 possibilities for the ordered pair of neighbors. Let m1(x) be the first

item according to P among the 12 items. Using only the input items from the
12 items we are currently considering, we extend this item in two ways, to a
3-cycle C3

x and to a 4-cycle C4
x. When we write C3

x or C4
x, we mean the set of

items forming the 3-cycle or 4-cycle, respectively. Now, P ′ is defined as follows:

P ′(x) =
{

P (m1(x)), if x ≤ 1/2
maxg∈(C3

1−x∪C4
1−x)\{m1(1−x)} P (g), otherwise

In other words, if x > 1/2, we set P ′(x) to be the first element other than
m1(1 − x) in C3

1−x ∪ C4
1−x. In terms of our high level description given at the

beginning of this section, (C3
x, C4

x) form the pair of gadgets – a triangle and
a square (4-cycle). By construction, this pair of gadgets satisfies the first item
condition. By the definition of the problem, the optimal decision for all vertices
in C3

x is “accept” (belongs to a triangle) and the optimal decision for all vertices
in C4

x is “reject” (does not belong to a triangle). Thus, these gadgets also satisfy
the distinguishing decision condition.

Let x1, . . . , xn denote the order input items are presented to our algorithm as
specified by P ′. Our algorithm constructs an input to ALG which is consistent
with P along the following lines: for each x ≤ 1/2 that appears in the input, the
algorithm constructs either a three-cycle or a four-cycle (disjoint from the rest
of the graph). Thus, each x ≤ 1/2 is associated with one connected component.
During the course of the algorithm, each connected component will be in one
of the following three states: undecided, committed, or finished. When x ≤ 1/2
arrives, the algorithm initializes the construction with the item m1(x) and sets
the component status to undecided. It answers “accept” (there will be a matching
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pair) for x if ALG responds “accept” (triangle) for m1(x), and it answers“reject”
if ALG responds “reject” (square).

Note that for any x ≤ 1/2, P ′(x) > P ′(1 − x), so if x′ > 1/2 arrives and
1 − x′ has not appeared earlier, ALG′ can simply reject x′ and does not need
to present anything to ALG. If x has arrived and at some point, 1 − x arrives,
the algorithm commits to constructing the 3-cycle C3

x. If ALG′ had guessed
correctly that 1 − x would arrive, it is because ALG responded “accept” for
m1(x)) and also guessed correctly. If ALG′ had guessed that 1 − x would not
arrive, it is because ALG guessed that a square would arrive, and both guessed
incorrectly. If some x′ arrives with P ′(x′) < P ′(1 − x) for some x = x′ and
x has arrived earlier, then ALG′ can be certain that 1 − x will not arrive. It
commits to constructing the 4-cycle C4

x. Thus, if ALG′ answered “reject” for
x, it answered correctly, and a square makes ALG’s decision for m1(x) correct.
Similarly, if ALG′ answered “accept” for x, it answered incorrectly, so a square
makes ALG’s decision incorrect.

At the end of the input, ALG′ finishes off by checking which values of x have
arrived without 1−x arriving or some x′ with higher priority than 1−x arriving,
and ALG again commits to the 4-cycle, as in the other case where 1 − x does
not arrive.

Throughout the algorithm, there are several connected components, each of
which can be undecided, committed, or finished. Note that an undecided com-
ponent corresponding to input x consists of a single item m1(x). Upon receiving
an item y, the algorithm first checks whether some undecided components have
turned into committed ones: namely if an undecided component consisting of
m1(x) satisfies P ′(1 − x) > P ′(y), it switches the status to a committed com-
ponent according to the rules described above. Then, the algorithm feeds input
items corresponding to committed yet unfinished connected components to ALG
and does so in the order of P up until the priority of such items falls below P ′(y)
(this can be done by maintaining a priority queue). Finally, the algorithm pro-
cesses the item y by either creating a new component or by turning an undecided
component into a decided one. Then, the algorithm moves to the next item. Due
to our definition of P ′ and this entire process, the input constructed for ALG is
valid and consistent with P . Observe that the input to ALG′ is of size at most
4n, so the number of advice bits must be divided by four relative to Theorem10,
and the theorem follows. 	


5.2 General Template

In this subsection, we establish two theorems that give general templates for
gadget reductions from Pair Matching – one for maximization problems and one
for minimization problems. A high level overview is given at the beginning of
this section.

We let ALG(I) denote the objective function for ALG on input I. The size
of a gadget G, denoted by |G|, is the number of input items specifying the
gadget. We write OPT(G) to denote the best value of the objective function on
G. Recall that we focus on problems where a solution is specified by making an
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accept/reject decision for each input item. We write BAD(G) to denote the best
value of the objective function attainable on G after making the wrong decision
for the first item (the item with highest priority, max(G)), i.e., if there is an
optimal solution that accepts (rejects) the first item of G, then BAD(G) denotes
the best value of the objective function given that the first item was rejected
(accepted). We say that the objective function for a problem B is additive, if for
any two instances I1 and I2 to B such that I1 ∩ I2 = ∅, we have OPT(I1 ∪ I2) =
OPT(I1) + OPT(I2).

Theorem 12. Let B be a minimization problem with an additive objective func-
tion. Let ALG be a fixed priority algorithm with advice for B with a priority
function P . Suppose that for each x ∈ Q ∩ [0, 1/2] one can construct a pair of
gadgets (G1

x, G2
x) satisfying the following conditions:

The first item condition: m1(x) = maxP G1
x = maxP G2

x.
The distinguishing decision condition: the optimal decision for m1(x) in

G1
x is different from the optimal decision for m1(x) in G2

x (in particular, the
optimal decision is unique for each gadget). Without loss of generality, we
assume m1(x) is accepted in an optimal solution in G1

x.
The size condition: the gadgets have finite sizes; let s = maxx(|G1

x|, |G2
x|),

where the cardinality of a gadget is the number of input items it consists of.
The disjoint copies condition: for x = y and i, j ∈ {1, 2}, input items making

up Gi
x and Gj

y are disjoint.
The optimal/bad condition: the values OPT(G1

x), BAD(G1
x) and OPT(G2

x),
BAD(G2

x) are independent of x, and we denote them by OPT(G1), BAD(G1),
OPT(G2), and BAD(G2); we assume that OPT(G2) ≥ OPT(G1).

Define r = min
{

BAD(G1)
OPT(G1) ,

BAD(G2)
OPT(G2)

}
. Then for any ε ∈ (0, 1

2 ], no fixed pri-
ority algorithm reading fewer than (1 − H(ε))n/(2s) advice bits can achieve an
approximation ratio smaller than

1 +
ε(r − 1)OPT(G1)

ε OPT(G1) + (1 − ε)OPT(G2)
.

The following theorem is for maximization problems.

Theorem 13. Let B be a maximization problem with an additive objective func-
tion. Let ALG be a fixed priority algorithm with advice for B with a priority
function P . Suppose that for each x ∈ Q∩[0, 1/2] one can construct a pair of gad-
gets (G1

x, G2
x) satisfying the conditions in Theorem12. Then for any ε ∈ (0, 1

2 ],
no fixed priority algorithm reading fewer than (1 − H(ε))n/(2s) advice bits can
achieve an approximation ratio smaller than

1 +
ε(r − 1)OPT(G1)

ε OPT(G1) + (1 − ε)r OPT(G2)
,

where r = min
{

OPT(G1)
BAD(G1) ,

OPT(G2)
BAD(G2)

}
.
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We mostly use Theorems 12 and 13 in the following specialized form.

Corollary 1. With the set-up from Theorems 12 and 13, we have the following:
For a minimization problem, if OPT(G1) = OPT(G2) = BAD(G1) −

1 = BAD(G2) − 1, then no fixed priority algorithm reading fewer than
(1 − H(ε))n/(2s) advice bits can achieve an approximation ratio smaller than
1 + ε

OPT(G1) .
For a maximization problem, if OPT(G1) = OPT(G2) = BAD(G1) +

1 = BAD(G2) + 1, then no fixed priority algorithm reading fewer than
(1 − H(ε))n/(2s) advice bits can achieve an approximation ratio smaller than
1 + ε

OPT(G1)−ε .

Next, we describe a general procedure for constructing gadgets with the above
properties. For simplicity, we do it for graph problems in the vertex arrival, vertex
adjacency input model. Later we discuss what is required to carry out such
general constructions for other combinatorial problems. In the case of graphs,
an input item consists of a vertex name with the names of neighbors of that
vertex. First, consider defining a single gadget instead of a pair. We define a
gadget in several steps. As the first step, we define a graph G =

(
[n], E ⊂ (

[n]
2

))

over n vertices. Then, when defining a gadget based on input x to Pair Matching,
we pick n vertex names Vx and give a bijection f : Vx → [n]. Finally, we read off
the resulting input items in the order given by the priority function. Thus, we
think of G as giving a topological structure of the instance, and it is converted
into an actual instance by assigning new names to the vertices. The reason that
the names from the topological structure are not used directly is that we want
to define a separate gadget instance for each x ∈ Q ∩ [0, 1/2]. Thus, all gadgets
instances are going to have the same topological structure,4 but will differ in
names of vertices.

For graphs in the vertex arrival, vertex adjacency model, we say that two
input items are isomorphic if they have the same number of neighbors, i.e.,
they differ in just the names of the vertices and the names of their neighbors. A
topological structure G consisting only of isomorphic items is a regular graph. For
any priority function P and any vertex v ∈ [n], we can force the corresponding
item to appear first according to P by naming vertices appropriately. Fix x and
consider all possible input items that can be formed from Vx consistently with
G. One of those items appears first according to P . Define a bijection f by first
mapping that first item to u and its neighbors in G, and extending this one-to-
one correspondence to other vertices in G in an arbitrary, consistent manner. In
this case, the input item corresponding to u would appear first according to P
in the input to the graph problem. Because all items are isomorphic, it is always
possible to extend the bijection to all of G.

Now, suppose that two topological structures G1 = ([n], E1) and G2 =
([m], E2) consist only of isomorphic items. Using a similar idea, for each pri-
ority function P , each x ∈ Q ∩ [0, 1/2), each u ∈ [n], and each v ∈ [m], one can
4 However, both gadgets within a pair do not necessarily have the same topological

structure. In Triangle Finding, they did not.
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assign names to vertices of G1 and G2 such that the first input item according
to P is associated with u in G1 and the same item is associated with v in G2. In
particular, this means that as long as the two topological structures are regular,
we can always convert them into gadgets satisfying the first item condition.

Suppose that there is a vertex u in G1 that appears in every optimal solution
in G1, i.e., a “reject” decision leads to non-optimality. Furthermore, suppose that
there is a vertex v in G2 that is excluded from every optimal solution in G2, i.e.,
an“accept” decision leads to non-optimality. Then for each x, using the above
construction, we can make the first item according to P be associated with u
in G1 and with v in G2. This means that we can always convert the topological
structures into gadgets satisfying the distinguishing decision condition. Finally,
observe that the size condition is satisfied with s = max(|G1|, |G2|).

This gadget construction can be carried out in other input models. We need
to have a notion of isomorphism between input items, and a notion of the topo-
logical structure of a gadget. Once we have the two notions, if we find topo-
logical structures consisting only of isomorphic items with uniquely identifiable
“reject”/“accept” items in all optimal solutions, then we immediately conclude
that the problem requires the trade-off between advice and approximation ratio
as outlined in Theorems 12 and 13 and Corollary 1 with parameter s equal to
the size of the topological template.

We finish this section by remarking that one can perform similar reductions
with gadgets where not all input items are isomorphic. Theorem17, which is
based on a lower bound construction from [5], is proven via a reduction for
Vertex Cover using two gadget pairs with some vertices of degree 2 and others
of degree 3. One simply needs that there is one gadget pair for the case where
a vertex of degree 2 has the highest priority and another gadget pair for the
case where a vertex of degree 3 has highest priority. For both gadget pairs,
s = 7, the optimal value is 3, and the minimum possible objective value for
the gadget in the pair is 4. Thus, the results of Theorem 12 (or Theorem 13 if
it was a maximization problem) and Corollary 1 can be applied. This idea can
be extended to other input models where the gadgets have input items which
are not isomorphic. For simplicity, we do not restate the two theorems or the
corollary for the extension where there are t different classes of isomorphic input
items and thus t pairs of gadgets.

6 Reductions to Classic Optimization Problems

In this section, we provide one detailed example of an application of the general
reduction template, plus statement of results for other problems. With the excep-
tion of bipartite matching, all of these problems are NP-hard, as a consequence
of the NP-completeness of their underlying decision problems, as established in
the seminal papers by Cook [12] and Karp [14]. Furthermore, these problems are
known to have various hardness of approximation bounds.
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6.1 Detailed Example: Independent Set

We consider the maximum independent set problem in the vertex arrival, vertex
adjacency input model. Consider the topological structure of a gadget in Fig. 1.
There are 5 vertices on the top and 3 vertices on the bottom. All top vertices
are connected to all bottom vertices. Additionally, the 5 vertices on the top form
a cycle. In this way, each vertex has degree 5 and hence all the input items are
isomorphic. If we pick any vertex from the top to be in the independent set, then
we forgo all the bottom vertices, and we are essentially restricted to picking an
independent set from C5, which has size at most 2. On the other hand, we could
pick all 3 vertices from the bottom to form an independent set.

Suppose without loss of generality that the highest priority input item is
(1, {4, 5, 6, 7, 8}). The optimal decision for the first vertex is unique: For G1, one
should accept, and for G2, reject.

4 5 6 7 8

1 2 3

1 4 3 2 5

6 7 8

Fig. 1. Topological structure of the gadgets (G1, G2) for independent set.

In this case, the maximum number s of input items for a gadget is 8,
OPT(G1) = OPT(G2) = 3, and BAD(G1) = BAD(G2) = 2. By Corollary 1,
we can conclude the following:

Theorem 14. For Maximum Independent Set and any ε ∈ (0, 1
2 ], no fixed pri-

ority algorithm reading fewer than (1 − H(ε))n/16 advice bits can achieve an
approximation ratio smaller than 1 + ε

3−ε .

Theorem 14 is related to but incomparable with the inapproximation bound
results on priority algorithms (without advice) of Borodin et al. [5] for weaker
models.

6.2 Other Results

Detailed definitions of the problems below, input universes, general details on
how to obtain the following results from the general template, and the relation-
ship to the known literature can be found in the full version.

Theorem 15. For Maximum Bipartite Matching and any ε ∈ (0, 1
2 ], no fixed

priority algorithm reading fewer than (1 − H(ε))n/6 advice bits can achieve an
approximation ratio smaller than 1 + ε

3−ε .
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Theorem 16. For Maximum Cut and any ε ∈ (0, 1
2 ], no fixed priority algorithm

reading fewer than (1−H(ε))n/16 advice bits can achieve an approximation ratio
smaller than 1 + ε

15−ε .

Theorem 17. For Minimum Vertex Cover and any ε ∈ (0, 1
2 ], no fixed pri-

ority algorithm reading fewer than (1 − H(ε))n/14 advice bits can achieve an
approximation ratio smaller than 1 + ε

3 .

Theorem 18. For Maximum 3-Satisfiability and any ε ∈ (0, 1
2 ], no fixed pri-

ority algorithm reading fewer than (1 − H(ε))n/6 advice bits can achieve an
approximation ratio smaller than 1 + ε

8−ε .

Theorem 19. For Job Scheduling of Unit Time Jobs with Precedence Con-
straints and any ε ∈ (0, 1

2 ], no fixed priority algorithm reading fewer than
(1 − H(ε))n/18 advice bits can achieve an approximation ratio smaller than
1 + ε

6−ε .

7 Concluding Remarks

We have developed a general framework for showing linear lower bounds on the
number of advice bits required to get a constant approximation ratio for fixed
priority algorithms with advice. The framework relies on reductions from the
Pair Matching problem—analogue of the Binary String Guessing problem from
the online world, resistant to universe orderings. Many problems remain open:

– Can our framework (or a modification of it) show non-constant inapproxima-
tion results with large advice, for example, for independent set?

– In vertex coloring, any decision for the first item can be completed to an
optimal solution. Can our framework be modified to handle such problems?
For example, see an argument for the makespan problem in [19].

– An interesting goal is to study the “structural complexity” of online and
priority algorithms. Can one define analogues of classes such as NP, NP-
Complete, �P, etc. for online/priority problems? If so, are complete problems
for these classes natural?
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Toyota Technological Institute at Chicago. The work was initiated while the second
and third authors were visiting the University of Toronto. Most of the work was done
when the fourth author was a postdoc at the University of Toronto.
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Abstract. We study the problem of finding a minimum weight con-
nected subgraph spanning at least k vertices on planar, node-weighted
graphs. We give a (4 + ε)-approximation algorithm for this problem.
We achieve this by utilizing the recent Lagrangian-multiplier preserv-
ing (LMP) primal-dual 3-approximation for the node-weighted prize-
collecting Steiner tree problem by Byrka et al. (SWAT’16) and adopting
an approach by Chudak et al. (Math. Prog. ’04) regarding Lagrangian
relaxation for the edge-weighted variant. In particular, we improve the
procedure of picking additional vertices (tree merging procedure) given
by Sadeghian (2013) by taking a constant number of recursive steps and
utilizing the limited guessing procedure of Arora and Karakostas (Math.
Prog. ’06).

More generally, our approach readily gives a (4/3 ·r+ε)-approximation
on any graph class where the algorithm of Byrka et al. for the prize-
collecting version gives an r-approximation. We argue that this can be
interpreted as a generalization of an analogous result by Könemann et
al. (Algorithmica ’11) for partial cover problems. Together with a lower
bound construction by Mestre (STACS’08) for partial cover this implies
that our bound is essentially best possible among algorithms that uti-
lize an LMP algorithm for the Lagrangian relaxation as a black box. In
addition to that, we argue by a more involved lower bound construction
that even using the LMP algorithm by Byrka et al. in a non-black-box
fashion could not beat the factor 4/3 · r when the tree merging step relies
only on the solutions output by the LMP algorithm.

1 Introduction

We consider the node-weighted variant of the well-studied k-MST problem.
Given a graph G = (V,E) with non-negative node weights c : V → R+ and a
positive integer k, we consider the problem of finding a minimum cost connected
subgraph of G spanning at least k vertices. In analogy to the edge-weighted case,
we call this problem node-weighted k-MST (NW-k-MST) because the solution
can be assumed to be a tree. In fact, we focus on the rooted variant in which a
given vertex r has to be included in the final solution. To obtain the unrooted
version, simply use the resulting algorithm for each choice of root vertex.
c© Springer Nature Switzerland AG 2018
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It was already observed that this problem is Ω(log n)-hard to approxi-
mate [17]. However, the problem becomes easier when we restrict G to be a
planar graph. It is still NP-hard, as the edge-weighted variant is NP-hard even
on planar graphs [18]. To this end, consider the following reduction from edge-
weighted variant to the node-weighted variant. Each original vertex gets weight
0. Now, each edge e is replaced with a new vertex ve of weight equal to the cost
of e. Moreover, ve is connected by two edges with original endpoints of e. Finally,
each original vertex is connected to l new leaves of weight 0 where l is a param-
eter. It is easy to see, that for l > |E|, solutions for k-MST instances correspond
to solutions to node-weighted (k · l + k − 1)-MST instances after reduction and
vice-versa.

The above reduction preserves planarity. Therefore, the focus of this work is
to provide an approximation algorithm with small factor for planar NW-k-MST.

1.1 Related Work

Edge-Weighted k-MST. The standard, edge-weighted k-MST problem has
been thoroughly studied. In a sequence of papers [1,9,10] the 2-approximation
algorithm for prize-collecting Steiner tree problem [11] was used to finally obtain
a 2-approximation algorithm for k-MST. These results can be, to some extent,
explained as in the work of Chudak et al. [7] in terms of Lagrangian Relaxation.

In particular, a 5-approximation algorithm follows the framework known
mostly from Jain and Vazirani’s work on the k-median problem [12]. In these
algorithms, the Lagrangian multiplier preserving (LMP) property plays a crucial
role. The LMP property is also satisfied by the Goemans-Williamson algorithm
for the prize-collecting Steiner tree problem (PC-ST). Intuitively, the LMP prop-
erty of an α-approximation algorithm for some prize-collecting problem, means
that the solutions it produces would also be not more expensive than α times
optimum value even if we would have to pay α times more for penalties.

Node-Weighted k-MST. The NW-k-MST problem was already studied in
the more general quota setting, where each node has an associated profit, and
the goal is to find the minimum cost connected set of vertices having total
profit at least Π. In particular, an O(log n)-approximation was given in [17].
However, this result was based on their invalid O(log n)-approximation for NW-
PC-ST. Recently, Chekuri et al. [6] and also independently Bateni et al. [2]
proposed correct algorithms for generalizations of NW-PC-ST, but without LMP
guarantee. The result on the quota problem was finally restored by Könemann
et al. [14] who developed an LMP algorithm. In the related master thesis [19],
Sadeghian gives also an alternative way of picking vertices1 in the reduction for
the quota problem. In these results, the constant lost in the process was not
optimized.
1 by picking vertices we mean augmenting the smaller solution with some vertices

of larger solution. This is an important ingredient for the Lagrangian Relaxation
technique.
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Node-Weighted Planar Steiner Problems. Recently, the planar variants of
Steiner problems received increased attention. In particular, Demaine et al. [8]
obtained a 6-approximation for the node-weighted Steiner forest problem. The
factor was further improved to 3 by Moldenhauer [16]. Both results rely on
the moat-growing algorithm similar to that of Goemans and Williamson [11].
Currently the best result for this problem is the 2.4 approximation by Berman
and Yaroslavtsev [3] who use a different oracle for determining violated sets.

More general network design problems on planar graphs where also studied
by Chekuri et al. [5]. Finally, the result of Moldenhauer was generalized to the
prize-collecting variant by Byrka et al. [4], resulting in an LMP 3-approximation
for NW-PC-ST on planar graphs. We note that our result highly relies on this
last algorithm.

Partial Cover. Below, we argue that our problem on arbitrary graphs general-
izes the partial cover problem. In this problem we are given a set cover instance
along with a positive integer k. The objective is to cover at least k ground ele-
ments by a family of sets of minimum cost. In the prize-collecting version of the
problem every element has a penalty and the objective is to minimize the sum of
costs of the chosen sets and the penalties of the elements that are not covered.
Könemann et al. [13] describe a unified framework for partial cover. They show
how to obtain an approximation algorithm for a class I of partial cover instances
if there is an r-approximate LMP algorithm for the corresponding prize-collecting
version. In particular, their result implies a (43 + ε)r-approximation algorithm
for the class I. Mestre [15] shows that no algorithm that uses an LMP algorithm
as a black box can obtain a ratio better than 4

3r so these results are essentially
optimal.

1.2 Our Result and Techniques

We give a polynomial-time (4 + ε)-approximation algorithm for the NW-k-MST
problem on planar graphs. Our result extends to an algorithm for the quota
node-weighted Steiner tree problem on planar graphs with the same factor.

The main technique we use is the Lagrangian relaxation framework (as men-
tioned in the section above) where two solutions—one with fewer and the other
with more than k nodes—are combined to obtain a feasible tree. The overview
of our algorithm is as follows:

1. guess a skeleton and prune the instance
2. using the LMP algorithm [4], find trees T1, T2 with ≤ k and ≥ k nodes,

respectively
3. combine T1 and T2 into a single tree with exactly k vertices.

This is the standard design (although guessing step is not always necessary)
of algorithms based on Lagrangian relaxation framework. However, in order to
optimize the constant we employ additional ideas and techniques.
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The first guessing step bears some similarities to that of Arora and
Karakostas [1] where they improve Garg’s 3-approximation for edge-weighted
k-MST to 2 + ε. This additional guessing allows them to pay ε · OPT instead
of OPT for connecting a single set of vertices to the rest of the solution. Here,
we provide a node-weighted variant of this idea and also use it more extensively,
because we have to buy multiple (but still a constant number of) such connec-
tions. In our approach, we guess a set of vertices from optimum solution and
call it a skeleton. Then, we can safely prune the instance ensuring that each
remaining node will be not too far away from the skeleton. The guessing step is
described in Sect. 2.

For the second step, we have to slightly modify the primal-dual LMP 3-
approximation algorithm [4], so it returns solutions containing the guessed skele-
ton. This modification is technical and is described—together with the method
used to find suitable T1 and T2—in Sect. 4.

In the third step, we combine T1 and T2 by extending the procedure of picking
vertices of Sadeghian [19]. He finds some cost-effective subset of vertices, which is
two times larger than needed. We show that by picking vertices in certain order
and applying recursion a constant number of times, we are able to pick almost
exactly the number of nodes that is needed. Although, the number of compo-
nents of this set of nodes might be arbitrary, we need to buy only a constant
number of connections to restore connectivity. This is our main contribution and
is described in the Sect. 3.

The resulting approximation factor of our algorithm is (4 + ε). Additionally,
we show some evidence that our combining step is in some sense optimal. More
precisely, we show that no other algorithm, using LMP 3-approximation as a
black-box and which does not use planarity can give better constant than 4.
This is obtained by interpreting our algorithm in terms of the results for the
partial cover problem. The optimality of our algorithm within this framework is
discussed in Sect. 5.

2 Pruning the Instance

First, we assume that we know OPT up to a factor 1 + ε by using standard
guessing techniques [9]. A node v is called ε-distant to a node set U ⊆ V if there
exists a path P in G from v to a node u ∈ U of node weight c(V (P ) \ {u}) ≤
ε · OPT.

Lemma 1. Consider an optimum solution T and an ε > 0. Then there exists
a set W ⊆ V (T ) of size at most 1/ε such that each node in T is ε-distant to
W ∪ {r}.
Proof. Consider T as a tree rooted at r. For any node u in this tree let Tu denote
the subtree hanging from u. A subtree Tu is called good if for any node in Tu

the total weight of the unique path from this node to u within Tu (including the
weight of the end nodes) is at most ε · OPT.
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We traverse T in a bottom-up fashion starting with the leaves. We maintain
the invariant (by removing subtrees) that for all nodes u visited so far and still
being in T , the subtree Tu is good. To this end, when we encounter a node u such
that Tu is good we just continue with the traversal. If Tu is bad, however, then
there must be a path P within Tu ending in u of node weight c(P ) ≥ ε · OPT.
We include u into W and assign P as a witness to u. Because of our invariant
for all (if any) children v of u, we have that Tv is good. This means in particular
that for all nodes z in Tu the node weight (excluding the weight of u) of the path
from z to u is at most ε · OPT. Finally, remove Tu from T and continue with
the traversal. We stop when we reach the root r at which point we remove the
remaining tree (for the sake of analysis).

First, note that the set W has cardinality at most 1/ε because we assigned to
each node in W a witness path of weight at least ε·OPT and because the witness
paths are pairwise node-disjoint. Second, observe that whenever we removed a
node z from T as part of a subtree Tu, the node weight (excluding the weight
of u) of the path from z to u was at most ε · OPT. Hence, for every node in T
there exists such a path to a node in W ∪ {r} at the end of the tree traversal
since every node was removed. �	
In the sequel, we will call such a set W whose existence is provided by the above
lemma an ε-skeleton.

In a pre-processing, we iterate over all nO(1/ε) many sets W ′ ⊆ V with
|W ′| ≤ 1/ε thereby guessing the ε-skeleton W whose existence is guaranteed by
the above lemma. Moreover, we prune all nodes u from the instance that are not
ε-distant to W ∪ {r}.

3 The (4 + ε)-Approximation Algorithm

Sadeghian [19, Chap. 3] describes a O(log n) approximation for node-weighted
quota Steiner tree problem. His result is established using a framework of [7],
repeated also in [17] where a primal-dual LMP approximation algorithm for
the prize-collecting Steiner tree problem can be used along with the Lagrangian
relaxation method to obtain an approximation algorithm for the quota version
of the problem. Sadeghian loses some large constant factor in the process. Direct
application of his result would yield two digit approximation factor for our prob-
lem.

We now show that carefully injecting the LMP 3-approximation algorithm
for NW-PC-ST on planar graphs given in [4] into his analysis yields a (4 + ε)-
approximation. However, in the process, we need a more efficient way to pick
additional vertices. We show that it is possible to pick a cheap set of these
vertices. Although it will not be connected, only a constant number of additional
ε-distant vertices will suffice to connect the picked vertices.

For ease of the presentation, we will focus on the NW-k-MST problem. The
algorithm for quota version can be then easily deduced by arguments of Bateni
et al. [2]
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The analysis relies on the following lemma.

Lemma 2. We can produce trees T1 and T2 containing all the vertices W from
the ε-skeleton and the root r of sizes |T1| ≤ k ≤ |T2|, such that for α1, α2 ≥ 0
with α1 + α2 = 1 and α1|T1| + α2|T2| = k we have that

α1c(T1) + α2c(T2) ≤ (3 + ε)OPT

The construction of these trees T1 and T2 and the proof of above lemma is
described in Sect. 4.

Let now q = k−|T1| be the number of vertices that are missing from the tree
T1. We will now show, that these vertices can be picked from T2 \ T1 without
paying too much.

Lemma 3. It is possible to find a (not necessarily connected) set S of at least q
vertices in T2\T1 of cost at most (1+ε2)α2c(T2), which can be connected to T1 by
connecting additionally O(log(1/ε2)) many ε-distant vertices to the ε-skeleton,
where ε2 is any constant.

Proof. Here, we substantially extend the analysis in [19]. Consider a graph T ′
2

constructed from T2 by contracting all vertices from T1 ∩ T2 to a single vertex
r′. Define the cost of this vertex r′ to 0 (we will buy T1 anyway). From now on,
whenever we count the cardinality of some subset S of vertices in T ′

2, we do not
count vertex r′.

Definition 1. A subset of vertices S is cost-effective if c(S)
|S| ≤ c(T ′

2)
|T ′

2| .

Lemma 4. If cost-effective set S has size (1 + ε2)q then its cost is at most
(1 + ε2)α2c(T2).

Proof.

c(S) ≤ |S|c(T
′
2)

|T ′
2|

≤ (1 + ε2)q
c(T2)

|T2| − |T1| ≤ (1 + ε2)α2c(T2),

where we used the fact that α2 = k−|T1|
|T2|−|T1| . �	

So now, our goal is to find a cost-effective set S in T ′
2 of size only slightly

larger that q. First, we start with a procedure for picking at most 2q vertices
as in [19]. Initialize graph H with any spanning tree of T ′

2. Observe that H is
cost-effective. Consider any edge e of H. Let X and Y be the two components
that would be created after removing the edge e from H. At least one of these
two components must be cost-effective. For any cost-effective component from
this two, say X, do the following. If X has enough vertices, i.e. |X| ≥ q, remove
Y from H and continue. Otherwise, contract vertices of X to a single super
vertex and set its cost to the sum of all vertices in X. We consider that the new
super-vertex has super-cardinality equal to |X|.

It can be seen that after repeating this procedure as many times as possible,
the graph H will be a star graph with super-cardinality of each leaf at most q.
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Let p be the number of leaves of H. In the case when p ≤ 1 it is easy to see, that
taking the whole graph H would result in a cost-effective set of vertices of size at
most 2q. Therefore, assume now that p ≥ 2. Then, there exists a central vertex
of the star graph H, call it c, which is not a super vertex. Moreover, every leaf v
must be cost-effective (otherwise either we would remove v, or H would consist
of two nodes). Observe also, that the super-cardinality of each leaf is at most q.
Hence adding leaves to S one by one, would eventually lead to the set S with
super-cardinality at most 2q (and at least q). Finally, S could be connected to
T1 by a single path from vertex c.

We now modify this procedure of adding leaves. First, consider them in the
order of decreasing super-cardinalities. To this end, let v1, v2, . . . vp be leaves of
H and s1 ≥ s2 ≥ · · · ≥ sp be the corresponding super-cardinalities. Find the
smallest i such that

∑i
j=1 sj + si+1 ≥ q. If si+1 = 1, then the desired set S

consist of all vertices in v1, v2, . . . vi+1 and it has exactly q vertices. Otherwise,
add the first i leaves to the set S. Let t =

∑i
j=1 sj be the number of vertices

added to S. Now, instead of adding to S all vertices in the super vertex si+1,
we expand this super vertex back to the original graph and repeat the above
process with the new number of vertices to pick equal to q′ = q − t. Observe
that, because of sorting we have that t ≥ 1

2q, which also implies that q′ ≤ 1
2q.

This process is repeated recursively up to l times—where l is a parameter— but
in the last call we take the last leaf completely.

Let now q1, q2, . . . , ql be the numbers of vertices to pick in respective recursive
calls (note that q1 = q and qj ≤ 1

2qj−1). The total number of picked vertices is
then at most q+2ql ≤ (1+2−l+2)q. Therefore, to find the desired set S of at most
(1+ε2)q vertices, we need only a constant number of recursive calls—parameter
l is only O(log(1/ε2)). Moreover all the vertices of S can be connected to T1 by
buying paths from the central nodes of all the l star graphs that appeared in the
process. This finishes the proof. �	

To construct a feasible solution, take the set S guaranteed by the above
lemma and connect it to T1 by the O(log(1/ε2)) shortest paths to the ε-skeleton.
Denote this solution by SOL1. Let also SOL2 be the entire tree T2. Our algorithm
outputs cheaper of the two solutions SOL1 and SOL2.

This enables us to prove the following.

Lemma 5. Assuming ε ≤ 1, the cost of the cheaper of the two solutions SOL1

and SOL2 is (4 + O(
√

ε)) · OPT.

Proof. To bound the cost of the cheaper of two solutions SOL1 and SOL2 we
employ the following Lemma by Könemann et al. [13].

Lemma 6 ([13]). For any r > 1 and δ > 0, we have

max
α∈(0,1)
β∈[0,r]

min
{

r(1 + δ) − (1 − α)β
α

, r(1 + δ) + αβ

}

=
(

4
3

+ O(
√

δ)
)

r .

Now, let α = α2 and β = c(T1)
OPT . With this notation we obtain in a similar

way as Könemann et al. [13]
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c(SOL1) ≤ c(T1) + (1 + ε2)α · c(T2) + ε · O(log(1/ε2)) · OPT
≤ α · c(T1) + (1 − α) · c(T1) + (1 + ε2)α · c(T2) + ε · O(log(1/ε2)) · OPT
≤ (3(1 + ε2) + αβ) · OPT + ε · O(log(1/ε2)) · OPT,

and

c(SOL2) = c(T2)

=
α · c(T2)

α

≤ (3 + ε)OPT − (1 − α)c(T1)
α

≤ 3(1 + ε) − (1 − α)β
α

· OPT .

By setting r = 3 and δ = ε = ε2 we obtain via Lemma 6 that the better of the two
solutions has cost no more than (4+O(

√
ε+ε log 1/ε))·OPT = (4+O(

√
ε))·OPT

completing the proof. �	

4 Lagrangian Relaxation and Moat Growing on Planar
Graphs

In this section we prove Lemma 2. The proof utilizes Lagrangian Relaxation and
follows a framework similar to the one in [7].

We start with the following LP relaxation for the NW-k-MST problem, where
solutions are additionally constrained to contain all guessed vertices W of the
ε-skeleton. For each vertex v we have the xv variable indicating whether we will
include this vertex in the solution. The z variables are indexed by sets of vertices
not containing the root and the guessed vertices. There exists optimum integral
solution, such that only the one zX variable is set to 1. This would be for the
set X of vertices not included in the final solution.

min
∑

v∈V \{r}
xvcv (LP )

s.t.
∑

v∈Γ (S)

xv +
∑

X:S⊆X
X∩W=∅

zX ≥ 1 ∀S ⊆ V \ {r}

xv +
∑

X:v∈X
X∩W=∅

zX ≥ 1 ∀v ∈ V \ {r}

∑

X⊆V \{r}
|X|zX ≤ n − k (1)

xv ≥ 0 ∀v ∈ V \ {r}
zX ≥ 0 ∀X ⊆ V \ {r}
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The first two types of constraints guarantee connectivity of the solution to the
root vertex and skeleton W . The Γ (S) denotes the neighborhood of the set S,
i.e. the set of vertices that are not in S, but have a neighboring vertex in S.

The constraint (1) ensures that the final solution will have at least k ver-
tices and introduces difficulties. Therefore, we move it to the objective function
obtaining the following Lagrangian Relaxation:

min
∑

v∈V \{r}
xvcv + λ

⎛

⎝
∑

X⊆V \{r}
|X|zX − (n − k)

⎞

⎠ (LR(λ))

s.t.
∑

v∈Γ (S)

xv +
∑

X:S⊆X
X∩W=∅

zX ≥ 1 ∀S ⊆ V \ {r}

xv +
∑

X:v∈X
X∩W=∅

zX ≥ 1 ∀v ∈ V \ {r}

xv ≥ 0 ∀v ∈ V \ {r}
zX ≥ 0 ∀X ⊆ V \ {r}

The above LP (ignoring the constant −λ(n − k) term in the objective function)
is exactly the LP for the node-weighted prize-collecting Steiner tree (NW-PC-ST
in which the penalty of each vertex in V ′ = V \ W is equal to the parameter λ)
with a slight modification that the subset of vertices W is required to be in the
solution.

Consider now, the dual of the LR(λ):

max
∑

S⊆V \{r}
yS +

∑

v∈V \{r}
pv − λ(n − k) (DLR(λ))

s.t.
∑

S:v∈Γ (S)

yS + pv ≤ cv ∀v ∈ V \ {r}
∑

X⊆S

yX +
∑

v∈S

pv ≤ λ|S| ∀S ⊆ V ′ \ {r}

yS ≥ 0 ∀S ⊆ V \ {r}

Now, the slightly modified primal-dual LMP 3-approximation for (NW-PC-ST)
given in [4] can be used with penalties λ to produce the tree Tλ and the dual
solution (yλ, pλ) such that

c(Tλ) + 3λ(n − |Tλ|) ≤ 3

⎛

⎝
∑

S⊆V \{r}
yλ

S +
∑

v∈V \{r}
pλ

v

⎞

⎠ , (2)
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where Tλ contains all vertices of W . The description of this algorithm is deferred
to Subsect. 4.1. Let us now see how we can use it to finish the proof of Lemma 2.
We proceed essentially as in [19] and [7]. By subtracting 3λ(n − k) from both
sides of inequality (2) and simplifying the notation so that DSλ =

∑
S⊆V \{r} yλ

S+
∑

v∈V \{r} pλ
v denotes the value of a dual solution we have that

c(Tλ) + 3λ(k − |Tλ|) ≤ 3 (DSλ − λ(n − k))
≤ 3 · DLR(λ) ≤ 3 · OPT.

Observe that for λ = 0 the algorithm could output a tree with at least k vertices
(because of moats growing around vertices in W , see next subsection). In this
case the resulting tree is a 3-approximation so we do not need the merging
procedure described in Sect. 3. Otherwise, for some large λ, e.g. the maximum
cost of a vertex, the resulting tree would contain all the vertices. Therefore, we
do the binary search for λ such that |Tλ| is close to k. In a lucky event |Tλ| = k
and then we don’t need the merging procedure described in Sect. 3. Otherwise,
we obtain λ1 and λ2 such that |Tλ1 | < k < |Tλ2 |. By making enough steps of
the binary search we can ensure that λ2 −λ1 ≤ ε·OPT

3n . Let these trees be T1 and
T2. Now, by setting α1 = |T2|−k

|T2|−|T1| and α2 = k−|T1|
|T2|−|T1| and using inequality (2)

twice we have that

α1c(T1) + α2c(T2) ≤ 3 (α1DS1 + α2DS2 − α1λ1(n − |T1|) − α2λ2(n − |T2|))
≤ 3 (α1DS1 + α2DS2 − λ2(n − k) + (λ2 − λ1)(n − |T1|))
≤ 3 (OPT + (λ2 − λ1)n)
≤ (3 + ε) OPT,

where we used the fact that the convex combination of DS1 and DS2 is a feasible
solution for DLR(λ2).

4.1 Moat Growing

In this section we describe the slight technical modification needed in the primal-
dual algorithm for NW-PC-ST problem on planar graphs given in [4]. Observe,
that there are two differences in the LPs used.

First, we have additional constraints and corresponding dual variables pv.
This is due to the fact, that in our setting all vertices can have both nonzero
penalty and cost, while in the previous setting the reduction step was employed
so that each vertex is a terminal with some penalty and zero cost or a Steiner
vertex with zero penalty. However, this reduction step is equivalent to setting
pv to minimum of cost and penalty and defining the reduced costs and reduced
penalties. This does not influence the approximation factor, nor the LMP guar-
antee. See also Sect. 2.1 of Sadeghian [19] for details.

The second modification comes from the fact that we have to include some
guessed vertices W in the solution. However, it is enough to treat these vertices
in the same way as terminals.
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We now give a description of the resulting LMP primal-dual algorithm. First,
we do the reduction of eliminating pv variables as described above. This makes
some vertices terminal and the other Steiner vertices. We also add all the guessed
vertices to the set of terminals and set their penalty to infinite.

The algorithm maintains a set of moats, i.e., a family of disjoint sets of
vertices. In each step, these moats can be viewed as the components of the
graph induced by the so far bought nodes. Each moat has an associated potential
equal to the total penalty of vertices inside this moat minus the sum of the dual
variables for all the subsets of this moat. The moats with positive potential are
active, with an exception that the moat containing the root is always inactive.

The algorithm raises simultaneously the dual variables of all the active moats.
For the growth of a moat we pay with its potential. We can have two events.

In the first event, some vertex goes tight, i.e., the inequality for this vertex in
the dual program becomes tight. In this case we buy this vertex and merge all the
neighboring moats, setting the potential accordingly to the sum of all previous
moats’ potentials. We declare this new moat inactive whenever it contains a root
vertex.

In the second event, some moat goes tight, i.e. the inequality in the dual
program becomes tight for some set of vertices. This corresponds to the situation
when the potential of this moat drops to zero. In this case we declare this moat
inactive and we mark all the previously unmarked terminals inside it as marked
with the current time. Observe that in the dual we do not have these inequalities
for sets containing guessed vertices W . This means, that all the vertices of W
will be connected to the root vertex.

We repeat this process until we do not have any active moats. Then we
start a pruning phase. We consider all the bought vertices in the reverse order
of buying. We delete a vertex v if the removal of v would not disconnect any
unmarked terminal or any terminal marked with time greater than the time of
buying the vertex v. We return the pruned set of bought vertices as the solution.

A straightforward adaptation of the analysis in [4] implies that the above
algorithm run with initial penalty λ for all vertices in V ′ returns a tree Tλ

satisfying inequality (2).

4.2 Generalization to Non-planar Graph Classes

Note that in our algorithm, we use planarity exclusively by exploiting that the
LMP algorithm of Byrka et al. [4] for the prize-collecting version has ratio 3
on planar graphs. Their algorithm, however, can be executed on an arbitrary
graph class (e.g. H-minor-free graphs). Thus all our calculations can be carried
through by replacing 3 with any factor r ≥ 1 thereby obtaining the following
generalization.

Corollary 1. The above algorithm has performance (4/3 + ε)r for any graph
class where the algorithm of Byrka et al. [4] has a performance ratio of r.
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5 Trying to Beat the Factor of 4: Relation to the Partial
Cover

Here we draw connections to the recent work on the partial cover problems.
Könemann et al. [13] showed how to obtain a (4/3+ε)r-approximation algorithm
for the partial cover problems using an r-approximate LMP algorithm for the
corresponding prize-collecting version as a black-box. Their approach is roughly
as follows. First, the most expensive sets from the optimum solution are guessed
and all sets which are more expensive are discarded. Further, the black-box
algorithm is used together with binary search to find two solutions, one, say S1,
feasible but possibly expensive, and the other, say S2, infeasible but inexpensive.
Then the merging procedure is employed to obtain a solution S3. Finally, the
cheapest solution of the S1 and S3 is returned.

5.1 Generalizing the Algorithm of Könemann et al.

Extending a folklore reduction from set cover type problems to node-weighted
Steiner tree problems, we argue that our algorithm may be interpreted as a non-
trivial generalization of the above-outlined algorithm by Könemann et al. [13].

First of all, the following reduction shows that the partial covering problem
can be encoded as the quota node-weighted Steiner tree problem. The reduction
creates for each element a vertex with zero cost and profit 1. Then, for each
set it creates a node with the same cost and zero profit and connects it to the
elements covered by this set. Finally, the root vertex is added and connected to
all the set-corresponding nodes. The target quota profit is set to be the same as
the requirement for the partial cover problem.

For such a reduced instance, we can run the preprocessing step from Sect. 2
which will remove the expensive sets (we could also employ the Könemann’s
preprocessing beforehand). Then, we would run any LMP algorithm for the prize-
collecting cover problems within the Lagrangian relaxation framework which
would indicate two families of sets to merge. Putting it on the reduced instance,
these would correspond to two trees to merge. More precisely, take to the tree
the set-corresponding nodes, the root vertex and the elements covered by sets.
Now, we can apply the merging procedure described in the Lemma 3 with a
slight adjustment needed to account for quota variant. In particular we modify
the notion of cost-effectiveness to account profits instead of cardinalities and
we also redefine the super-cardinality to be the sum of profits. To retrieve the
solution from the tree, simply take the sets corresponding to non-zero cost nodes
in the tree. Finally, output the cheaper of the two feasible solutions giving a
partial cover with the same quality as the one by obtained via the algorithm by
Könemann et al.

We remark that the above argument does not work in the reverse direction.
The graph instances that are created have a very specific structure with three
node layers ensuring that any partial cover solution is automatically connected
at no additional cost. Achieving connectivity for general graphs, however, is not
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implied and guaranteeing this structural property without loss in the perfor-
mance guarantee of the algorithm can be seen as a main contribution of our
work.

Analogous arguments as in the result of Mestre [15] can be used to deduce
the following.

Corollary 2. For any r > 1 there is an infinite family of graphs where the
natural moat growing algorithm for NW-PC-ST [4] has a ratio r but where any
feasible solution to the NW-k-MST problem using only the nodes returned by this
algorithm has cost at least 4/3 · r times that of an optimum solution.

The proof will be included in the full version of the paper.

Interpretation. In the edge-weighted case of k-MST, Garg [10] was able to
carefully exploit the inner workings of the Goemans-Williamson algorithm [11]
for the Lagrangian relaxation to match its ratio of 2. Corollary 2 means that our
approach is in a certain sense optimal and that we would need to deviate from
this framework to improve on the loss of factor 4/3 in the tree-merging step. This
could possibly be achieved by exploiting structural properties of the underlying
graph class or using nodes outside the solution returned by the LMP algorithm.

Even when we exploit planarity it seems to be non-trivial to beat factor 4
along the lines of Garg [9,10]. The changes in the solutions by increasing initial
potentials of vertices can be much larger than those in the edge-weighted variant.
In particular, one can observe situations of node-flips in which two potentially
distant vertices exchange their presence in the solution. Also, in contrast to edge-
weighted variant, a single node can be adjacent to any number of moats and not
only two. This in turn causes the large difference in two trees produced by the
algorithm. In particular, the OLD vertices as described by Garg [9] can form
any number of connected components which may be expensive to connect even
when the graph is planar.

6 Conclusions and Comments

The 4 + ε approximation factor was obtained for the NW-k-MST problem on
planar graphs. In the process we used the Lagrangian Relaxation technique. Our
work can be interpreted as a generalization of a work on partial cover [13]. The
result by Mestre [15] implies that our factor is essentially best possible using the
underlying LMP algorithm for the NW-PC-ST as a black-box. It shows that one
would have to exploit planarity in the merging process to beat factor 4.

Our ultimate hope would be to match the factor of 3 of the LMP algorithm.
We think that the question of whether this is possible is very interesting and
challenging.
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Abstract. Moving an autonomous agent through an unknown environ-
ment is one of the crucial problems for robotics and network analysis.
Therefore, it received a lot of attention in the last decades and was
analyzed in many different settings. The graph exploration problem is a
theoretical and abstract model, where an algorithm has to decide how
an agent, also called explorer, moves through a network with n vertices
and m edges such that every point of interest is visited at least once.
For its decisions, the knowledge of the algorithm is limited by the per-
ception capacities of the explorer. We look at the fixed-graph scenario
proposed by Kalyanasundaram and Pruhs (ICALP, 1993), where the
explorer starts at a vertex of the network and sees all reachable vertices,
their unique names and their distance from the current position.

Because the algorithm only learns the structure of the graph during
computation, it cannot deterministically compute an optimal tour that
visits every vertex at least once without prior knowledge. Therefore, we
are interested in the amount of crucial a-priori information needed to
solve the problem optimally, which we measure in terms of the well-
studied model of advice complexity. Here, a deterministic algorithm can
at any time access a binary advice tape written beforehand by an ora-
cle that knows the optimal solution, the graph and the behavior of the
algorithm. The number of bits read by the algorithm until the end of
computation is called the advice complexity.

We look at the graph exploration problem on unknown directed graphs
and focus on cyclic solutions. It is known that O(n log n) bits of advice
are necessary and sufficient to compute an optimal solution, for general
graphs. In this work, we present algorithms with an advice complexity
of O(m), thus improving the classical bound for sparse graphs.
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1 Introduction

Orientation and navigation in an unknown environment is one of the basic tasks
for autonomous agents. The environment can be physical or virtual like in a net-
work of computers, where the connections between the computers are unknown.
To send messages as fast as possible, it is helpful to know the structure of the
network. Thus an explorer can be used to visit and test the connections for
every computer in the network. A more physical example is the field of robotics.
There are many applications for robots that explore unknown environments on
their own [23,27,28]. For example, exploring caves or abandoning mines is often
a dangerous task and autonomous robots can be used to create maps of such
environments.

Because there are many different applications for exploring, there are also
many different models for the environment and for the perception of the explorer.
The survey of Berman [3] gives an overview of navigation problems and distin-
guishes the following main properties: The representation of the environment,
the task that should be solved, and the senses of the explorer. The environment
can be a geometric space with obstacles [4] or, this is the case that we analyze
in this paper, an abstract and discrete space, where the explorer can move from
one point to a neighboring one, i.e., a graph consisting of vertices and edges.
Starting from a vertex in the given graph, the task can be to find a shortest
path to a target vertex or to compute a shortest tour that visits every vertex at
least once.

The task to compute a shortest tour that visits every vertex at least once
is related to the well-known Traveling Salesman Problem. Kalyanasundaram et
al. introduced the graph exploration problem as an online version of the TSP
[20] with the fixed-graph scenario which defines the senses of the explorer. In
this model, the vertices have unique labels, and the explorer sees all reachable
vertices, their labels and their distances to the current position. Moving onto a
new vertex reveals the adjacent vertices and the explorer recognizes if a vertex
was already reachable from a previous step.

Obviously, not having complete knowledge of the graph beforehand makes
it impossible in general for the explorer to find a tour of optimal length. Thus,
algorithms achieving some provable approximation guarantees have been inves-
tigated. The best known lower bound on the approximation ratio for exploring
general and undirected graphs in the fixed-graph scenario is 5

2 − ε [11]. For the
special case of undirected graphs with bounded genus g, an upper bound of
16(1+2g) is known [25]. The case of directed graphs in the fixed-graph scenario
is also well studied [1,14,15]. In [15], the authors give tight bounds for deter-
ministic and randomized graph exploration in directed graphs with weighted
or unweighted edges. Moreover, they look at a variation of the problem where
the explorer has to search for a specific vertex in the graph. There are many
slight variations of the graph exploration problem. The memory of the algo-
rithm [10,16], the number of explorers in the graph [7–9] or the abilities to set
pebbles [2] are well studied variations.
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For a more fine-grained analysis of how much information about the unknown
graph is really needed by the explorer, we look at a variation of the graph
exploration problem where the algorithm has access to some information in the
form of a bit string, provided by a helpful oracle that knows the network. The
number of bits that the algorithm reads until it finishes its computation is then
called its advice complexity. We are interested in how many bits are needed
to compute an optimal exploration sequence. Dobrev et al. [12] introduced this
model in the setting of online algorithms, which was later improved by Hromkovič
et al. [19] and Böckenhauer et al. [6] as well as by Emek et al. [13]. The setting
and many results are explained in detail in [21]. We use the model of Böckenhauer
et al. [6] in this paper.

The first time that the graph exploration problem was analyzed using the
advice complexity model was in [17], where Fraigniaud et al. were able to improve
the classical upper bound of 2 on the competitive ratio for tree exploration
by adding advice. They proved that log log(D) − c bits of advice suffice for c-
competitiveness, where D is the diameter of the input tree and c < 2. Moreover,
they showed that every algorithm that uses less advice bits has to be at least
2-competitive.

Since then, there have been many results regarding graph searching problems
with advice [11,18,22]. The search for a specific vertex in the graph stands in
focus of research in [22]. The authors present an algorithm that uses Θ(n/r) bits
of advice for a competitive ratio r. In [11], Dobrev et al. looked at the trade-off
between advice and competitiveness for the cyclic graph exploration problem.
Moreover, they show that Ω(n log n) bits of advice are necessary for optimality.
Gorain et al. [18] show bounds for a weaker oracle model, where the oracle does
not know the starting position of the algorithm. Moreover, they show that O(n)
advice bits results in a solution of quadratic size.

In the following, we will prove that O(m) bits of advice suffice to compute
an optimal solution. Note that an upper bound of O(n log n) advice bits can be
easily achieved by sorting the vertices by their first visits and encoding this order.
There also exists a lower bound of Ω(n log n) advice bits for general graphs [24].
These (almost) tight bounds motivate the investigation of special graph classes.
In this paper, we present an improvement over the general strategy for sparse
graphs, i.e., for graphs with o(n log n) edges. Note that we can assume that
m ≥ n − 1, otherwise the graph would not be connected, making its exploration
impossible. We first concentrate on the case where the algorithm should compute
a cyclic tour visiting all vertices on a directed graph that is unknown and has
bounded in- and outdegree. After that, we show how the problem for unbounded
degree graphs can be solved by some modification of the algorithm. Among
the different possible settings, the a-priori knowledge of the number of vertices
and how they are connected by the edges has the largest impact on the advice
complexity. Only the cost values are unknown in the known graph model. Since
our algorithm relies on the encoding of an optimal solution within the given
advice and does not take the edge costs into account, we formulate our results
for the more general case of arbitrary edge weights only.
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The paper is organized as follows. In Sect. 2, we give the basic definitions for
dealing with the graph exploration problem. Section 3 gives some basic observa-
tions and, in Sect. 4, we prove our main result for directed graphs with in- and
outdegree bounded by 2. This result is extended to directed graphs of arbitrary
degree in Sect. 5. Due to space restrictions, we refer the reader to the technical
report [5] for full details.

2 Basic Definitions

We start with a definition of the basic variant of the graph exploration problem
that we consider in this paper.

Definition 1. Let G = (V,E) be a directed graph. Every vertex v ∈ V has a
fixed unique identifier. There is an agent, called explorer, initially positioned on
some start vertex v0 ∈ V . The algorithm has to move this explorer along the
directed edges of G to visit all vertices and return to v0. The edges are weighted
by a cost function cost : E → N, and the goal is to minimize the total cost along
the cyclic tour traveled by the explorer. In every vertex the explorer is located, it
sees the outgoing edges, their costs, and the vertex identifiers at the endpoints of
these edges, but not the incoming edges.

Throughout the paper, we denote, for any graph G = (V,E) with vertex set
V and edge set E, the number of vertices by n = |V | and the number of edges by
m = |E|. We continue with some notations for the solutions or search sequences
computed by online and offline algorithms.

Definition 2. Let G = (V,E) be a directed graph. The out-neighborhood of a
vertex v ∈ V is defined as Nout(v) = {w | (v, w) ∈ E}. Analogously, we define
the in-neighborhood of a vertex v as Nin(v) = {w | (w, v) ∈ E}.

We describe the tour followed by the explorer in terms of a search sequence.

Definition 3. Let G = (V,E) be a graph. A sequence S = (v0, v1, . . . , vs) is
called a search sequence if (vi−1, vi) ∈ E for all 1 ≤ i ≤ s. If v0 = vs, we call S
a cyclic search sequence.

For a search sequence S = (v0, . . . , vk) with ei = (vi−1, vi), for 1 ≤ i ≤ k,
we denote by E(S) = (e1, e2, . . . , ek) the sequence of edges in S and by V (S) =
{v0, . . . , vk} the set of vertices in S. We also interpret E(S) as a multiset of
edges and thus write e ∈ E(S) if there exists some i with e = ei. The cost of a
search sequence S = (v0, . . . , vk) is defined by cost(S) =

∑
e∈E(S) cost(e) ·#S(e).

The search sequence is determined by the algorithm as follows. In each step,
the explorer is located at some vertex v and the algorithm chooses one of the
vertices from Nout(v) as target and moves the explorer towards it. As soon as
the explorer arrives at the target vertex, a new round starts and the algorithm
again receives the unique identifiers for the out-neighborhood and has to make an
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unrecoverable decision.1 The goal is to compute a cyclic search sequence visiting
each vertex at least once, we call such a sequence an exploration sequence.

Since the algorithm lacks global information about the structure of the graph,
there is no deterministic algorithm that finds an optimal exploration sequence
for any graph. We employ the model of online algorithms with advice as defined
in [6,19] for measuring the amount of missing information, which we can define
in the framework of graph exploration as follows.

An online algorithm with advice computes for an unknown graph
a search sequence S = (v0, v1, . . . , vend), where vi is computed from
Nout(v0), . . . , Nout(vi−1) (i.e., from the partial knowledge about the graph gath-
ered in the first i − 1 rounds) and the content φ of the advice tape, i.e., an
unbounded binary sequence of advice bits computed by an oracle that sees the
complete input graph together with its edge-cost function. An online algorithm
with advice solves the graph exploration problem if, for any input (G, cost), there
exists a computable advice φ such that S is an optimal exploration sequence.
The algorithm has sequential access to the bits from the advice tape, and its
advice complexity is the number of accessed advice bits. As usual, we measure
the advice complexity with respect to the input size by considering a worst-case
input of the respective size.

We now define how the algorithm makes a decision to extend a search
sequence S, based on some advice from the oracle. The basic idea is that the
oracle chooses some fixed optimal exploration sequence S∗ and communicates
a sufficient amount of information about it such that the algorithm can com-
pute this sequence without taking the costs of the edges into consideration. We
observe that it is sufficient for the algorithm to know the exact number of traver-
sals for each edge in E(S∗). Explicitly communicating these traversal numbers
could be done with O(m log n) advice bits in a straightforward way since no
edge can be traversed more than n times in an optimal exploration sequence.
But this would be too expensive, so the oracle only communicates some partial
information from which the algorithm can compute the traversal numbers. As
a first step, we partition the edges into three sets according to their number of
traversals (none, one, or multiple times) in an optimal exploration sequence.

To this end, we use the following notation. Let G = (V,E) be a graph, let S∗

be an optimal exploration sequence and let S be an arbitrary search sequence.
Then #S(e) is the number of traversals through an edge e ∈ E in a search
sequence S, and E0, E1, and EMulti are the sets of edges in E which are visited
0, 1, and multiple times by S∗, respectively. We denote the set of edges in E
which are visited at least once by S∗ by Eused = EMulti ∪E1. If #S(e) = #S∗(e)

1 Note that, with each decision, the algorithm influences the new input for the next
decision. Thus, strictly speaking, the graph exploration problem is no classical online
problem. But the adversary still knows the behavior of the deterministic algorithm
and can, with this knowledge, prepare the input graph, the unique identifiers for the
vertices, and thus the enumeration of the edges. Hence, we can analyze the graph
exploration problem using the same methodology as used for online problems.
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holds, e.g., an edge e is as often used in S as in the fixed optimal solution S∗,
we say e is exhausted in S.

The number of traversals for the edges could differ for different optimal solu-
tions, but the oracle fixes one of the optimal solutions such that the given advice
is consistent during the exploration. Figure 1(a) shows a sample graph where the
number of traversals for the edges in an optimal solution is non-unique. The five
traversals over the vertex x needs to be split up between the two paths (y, v1, x)
and (y, v2, x).

y
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x

(a)
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Fig. 1. (a) The optimal number of traversals for the edges of this graph is non-unique.
The five successors of x and the two possible paths to x require that the algorithm tra-
verses (y, v1, x) or (y, v2, x) multiple times. (b) A cycle of multi-edges in an exploration
sequence.

Knowing, for every edge e, its membership to the three sets, the traversal
number is unknown only for the edges from EMulti. Because the edges from
EMulti need additional advice to compute their exact number of traversals, the
oracle is interested in fixing a solution that minimizes the number of edges from
EMulti. For the graph presented in Fig. 1(a), the oracle would chose a solution
where either the edges (y, v2) and (v2, x) or the edges (y, v1) and (v1, x) are used
exactly once. Such a solution sets the number of edges from EMulti to three,
instead of five.

To ease the analysis of our algorithm, the oracle constructs a graph G′ from
the given graph G such that the optimal solution S∗ for G′ is unique in the sense
that, for all other optimal solutions S′, #S∗(e) = #S′(e). The oracle constructs
G′ by perturbing the costs on the edges by a small amount such that, for all
x and y, only one of two paths p1 = (y, . . . , x) and p2 = (y, . . . , x) with equal
costs is used multiple times. This minimizes the number of edges from EMulti

and fixes the traversal number for every edge. The following lemma guarantees
that we can choose a sufficiently small perturbation such that S∗ is also optimal
for G.
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Lemma 1. Let S∗ be an optimal exploration sequence for a graph with n ver-
tices. Then #S∗(e) ≤ n, for all e ∈ E(S∗).

From now on, we assume that the optimal exploration sequence S∗ fixed by
the oracle is unique.

If the input graph has a solution that visits every vertex at least once, it
must be strongly connected. Because the connectivity of the graph alone does
not reflect the current position of the explorer and the already exhausted edges,
we introduce the term of an expandable search sequence to formulate a stronger
and more precise connectivity requirement.

Definition 4. We call a search sequence S = (v0, . . . , vk) expandable with
respect to a fixed optimal exploration sequence S∗ = {v0, . . . , vend} if there exists
an outgoing edge e = (vk, w) that is less used than in S∗ and there is a search
sequence from vk that uses only non-exhausted edges and reaches the final vertex
vend such that cost(S∗) = cost(S) and V (S) = V .

3 Structural Observations

In this section, we focus on the structural properties of the fixed optimal solution
S∗. We distinguish between two different graphs that can be induced by S∗. If we
remove the edges from E0 and just look at the graph GS∗ = (V,Eused), we have
a graph for which all edges are needed in an optimal exploration sequence. If we
are more interested in traversed subsequences and want to distinguish different
traversals over the same edge from EMulti, we look at the multigraph MS∗ =
(V,Eused,#S∗). In MS∗ , every edge e = (v, u) ∈ EMulti is replaced by #S∗(e)
many edges that point from v to u. The multigraph MS∗ = (V,Eused,#S∗) is
an Eulerian graph. Let din(v) denote the indegree of the vertex v in MS∗ .

The following lemmas describe structural properties of optimal exploration
sequences which will be helpful for deducting the traversal numbers of the edges
from a rather small amount of advice.

Lemma 2. Let G = (V,E) be a connected graph, and let S∗ be the optimal
exploration sequence for G. A vertex v is part of din(v) cycles ci = (v, . . . , v) ∈ S∗

with 0 ≤ i ≤ din(v), and at least din(v) − 1 cycles are interchangeable, i.e.,
changing their order in S∗ does not change the cost of S∗.

Lemma 3. Let G = (V,E) be a graph with the optimal exploration sequence S∗,
then there is no vertex pair v, w with (v, w) ∈ E1 and (w, v) ∈ EMulti.

Lemma 4. Let G = (V,E) be a graph with the optimal exploration sequence
S∗. Let S = (v0, . . . , vend) be a simple cyclic contiguous subsequence of S∗. Then
there is an edge e ∈ S(E) with #S∗(e) = 1.

Proof. Assume that #S∗(e) > 1 holds for all edges in E(S). We now define a
traversal function on c : E → N0 with respect to the optimal solution S∗:

c(e) =
{

#S∗(e) − 1 for e ∈ E(S),
#S∗(e) otherwise.
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Note that #S∗(e) − 1 > 0 for e ∈ E(S), thus the multigraph M = (V,E, c)
is still connected. Furthermore, the condition dΔ(v) = 0 also holds for all ver-
tices v ∈ V . Thus, the graph M = (V,E, c) is Eulerian and has an exploration
sequence S′ with lower cost than the exploration sequence S∗. This is a contra-
diction to the minimality of the cost of S∗. ��

Our next observation regarding the edges from EMulti is that they cannot
even form a cycle in the underlying undirected graph. For a given optimal explo-
ration sequence S∗, we look at the underlying undirected graph and separate
it into cycles. For each hypothetical cycle of multi-edges, we summarize equally
directed edges into sequences Si and Ri, as presented in Fig. 1(b). If we increment
the traversal numbers for the sequences Si and decrease them for the sequences
Ri, the resulting graph is still Eulerian. This leads to the following lemma.

Lemma 5. Let G = (V,E) be a graph with the optimal exploration sequence S∗.
Let Si = (vi, . . . , ui) and Ri = (wi, . . . , ui), with 1 ≤ i ≤ k, be 2k simple search
subsequences of S∗ with wi = vi+1 (1 ≤ i < k) and v1 = wk. Then there is an
edge e ∈ Si ∪ Ri with #S∗(e) = 1.

We showed in Lemmas 3 to 5 that the information about the usage of edges
in an unique optimal solution S∗ provides some structural information. Because
the graph induced by EMulti is cycle-free, it is a forest and we will from now on
call it F . This holds even for the underlying undirected graph. As next step, we
show that it is possible to derive the exact traversal number for every edge from
this induced structure.

Lemma 6. Let G = (V,E) be a graph with the optimal exploration sequence
S∗ = (v0, . . . , vend). There is an algorithm A(V,E0, E1, EMulti) which computes,
for each edge e ∈ E, the number of visits by S∗.

4 Unknown Directed Graphs with In- and Outdegree
Two

While Lemma 6 immediately yields an algorithm with advice for the case that
the graph structure is known beforehand, it can, in unknown graphs, only be
applied after all edges are explored. Therefore, we now informally explain an
extended algorithm that requires that every vertex in the input graph has at
most two incoming and also at most two outgoing edges. In Sect. 5, we will
show how every graph can be transformed into such a degree-bounded graph.
We now give a high-level description of an algorithm with advice that computes
the precise number of traversals while traversing such a given degree-bounded
graph.

As soon as the explorer is located in a vertex v, the algorithm gets the iden-
tifiers of v and of all out-neighbors Nout(v) of v. If a neighbor w ∈ Nout(v) was
already the out-neighbor of a previously visited vertex, the algorithm recognizes
this vertex. The vertices Nin(v) that lead to v and their corresponding edges
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stay hidden as long as the explorer is positioned at v. The algorithm accesses
the advice tape to overcome this lack of information.

On the first visit of v, the algorithm reads advice bits to classify the outgoing
edges into the three sets E0, E1, or EMulti and to know the number of incoming
edges adjacent to v and their membership in the sets E0, E1, or EMulti. So, the
algorithm knows, for every visited vertex, all incoming and outgoing edges, and
whether they are used once, more than once, or never in an optimal exploration
sequence. The edges from the set E0 are ignored in the further process, so they
are not involved in computing the exploration sequence. Therefore, every vertex
in GS∗ looks like one of the vertices shown in Fig. 2.

v1 v2
v3 v4 v5 v6

v7 v8
v9 v10

v11
v12

Fig. 2. All possible edge configurations for GS∗ with in- and outdegree bounded by
two. The thick black edges are from EMulti. The gray edges are from E1.

Our algorithm will prefer a path that is relatively often used and will avoid
to exhaust an edge. As long as we know that the explorer does not use an edge
for the last time, we know that the incident vertices are visited again. Thus,
the algorithm will choose one of many exchangeable cycles and does not make
any mistake. If the explorer stands on a vertex with only one outgoing edge, the
algorithm does not need to make a decision because the only valid move is to
use this edge.

Therefore, we assume that the explorer is positioned at a previously unvisited
vertex where the algorithm has to decide between two edges which were not used
in some previous step. If there is only one edge of EMulti, the algorithm will prefer
it without knowing its number of traversals. But, if both outgoing edges are used
multiple times, the lack of precise traversal numbers makes it impossible for the
algorithm to choose the more often used edge. Thus, the algorithm accesses the
advice tape to compare which edge is more often used in the optimal exploration
sequence.

Definition 5. Let G be a graph where every vertex has at most two outgoing
and two incoming edges and let S∗ be the optimal exploration sequence. For
a vertex v with two outgoing edges e1 and e2 from EMulti we call e1 light if
#S∗(e1) < #S∗(e2). The other edge e2 will be called heavy. If v has only one
outgoing edge from EMulti, it is also called heavy. Analogously, we define for one
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or two incoming multi-edges of v one edge as heavy and, if a second edge exists,
the fewer traversed edge as light.

If both edges are equally often used, the oracle can decide arbitrarily which
edge is heavy. The algorithm will ask for the exact number of traversals for the
light edges and moves the explorer along the heavy one.

Thus, the algorithm moves the explorer along a path of edges for which the
precise number of traversals is unknown, but larger than one. But, the algorithm
knows the exact number of traversals for all the light edges (which are not yet
used for leaving the vertex for the first time). From Lemma 5, we know that
the path of multi-edges, which are preferred by the algorithm, are part of a tree
T in the forest F = (V,EMulti). When the explorer reaches a leaf w ∈ T , the
algorithm knows how often w will be visited, because w has only outgoing edges
from E1, like v10 or v12 in Fig. 2.

Additionally, due to the bounded degree and the Eulerian property, w can
have only one incoming edge e ∈ EMulti and therefore, the algorithm knows the
exact number of outgoing traversals for e is exactly 2. This number of traversals
can be used to compute the number of traversals for preceding edges, similar
to Lemma 6. For every preceding vertex with two outgoing edges, there was at
most one incoming and one outgoing edge for which the number of traversals was
unknown. Since, the number of traversals for the outgoing heavy edge can be
computed, there is only one incident edge with an unknown number of traversals
left. Thus, the algorithm can compute the number of traversals for all heavy
edges adjacent to the traversed path in a bottom-up approach as soon as the
explorer reaches a leaf w ∈ T . So, when a vertex is visited for the second time,
the algorithm knows, for all adjacent edges, their precise number of traversals in
the optimal solution.

Often, the algorithm just chooses between some interchangeable cycles, but
it can happen that the graph has some critical edges whose early traversal would
prevent the algorithm from completing an optimal exploration sequence. If the
algorithm is in the situation to choose between two edges with only one traversal
remaining (or two edges from E1), it asks for advice to know which edge should
be used as last edge to leave the vertex. We say that such an edge is important to
sustain the expandability (see Definition 4) of the current exploration sequence.

The correctness of this procedure is immediately implied by the following
theorem.

Theorem 1. Let G = (V,E) be a graph with the optimal exploration sequence
S∗ = (v0, . . . , vend) and let S = (v0, . . . , vp) be an expandable prefix of it such
that, for all v ∈ V (S∗) the algorithm knows the edge through which v is left for the
last time in S∗, and, for all e ∈ E(S∗), it knows whether #S∗(e)−#S(e) > 1 or
#S∗(e)−#S(e) or #S∗(e)−#S(e) = 0. Then S can be extended to an exploration
sequence S′ = (v0, vp, vp+1, . . . , vend) with cost(S∗) = cost(S′).

It remains to calculate the necessary amount of advice: Every vertex in the
input graph has at most two outgoing and two incoming edges. The algorithm
asks for advice to classify every adjacent edge, also the invisible incoming ones,
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into one of the three sets E0, E1 or EMulti. For every vertex v in GS∗ = (V,Eused)
that has two outgoing or incoming edges from EMulti, the algorithm asks which
edge is light. For every light edge, it asks for the number of traversals. Addition-
ally, if v has two outgoing edges from Eused, the algorithm asks which edge is
last. Because the algorithm traverses a path of heavy edges which must end at a
vertex with known number of traversals, it can compute the number of traversals
for the heavy edges in a bottom-up way.

Lemma 7. The algorithm can learn, for every edge, its membership to the sets
E0, E1, or EMulti on the first visit of an incident vertex using n+log(3)m advice
bits overall.

The n bits are used to learn, for all vertices, whether they have one or two
incoming edges. Using standard coding schemes (see, e.g., [26]), the m one-out-
of-three decisions for the edges can be communicated by amortized log(3) bits
each.

All edges from the set E0 are not considered for any further decision of the
algorithm and are subsequently ignored. The information about heavy and light
edges and the last edges can be communicated using O(n) bits.

Lemma 8. For a given graph GS∗ = (V,Eused) with in- and outdegree bounded
by 2, with an optimal exploration sequence S∗, the algorithm needs at most 3n
bits of advice to learn about the light incoming and outgoing edges and which
outgoing edge is last in S∗, for all vertices.

The next step of the algorithm is to ask, for every light edge, its exact number
of traversals in the optimal solution S∗. We claim that this information can be
communicated with linearly many bits in the number of edges.

Lemma 9. For a given graph GS∗ = (V,Eused) with in- and out-degree bounded
by 2, with an optimal exploration sequence S∗, the algorithm needs at most 5m
advice bits to learn the exact traversal numbers for all multi-edges.

The technically involved proof of Lemma9 is based on the following ideas. If
there exists a light edge e = (x, y) which is traversed many times, this implies
that the subtree of multi-edges rooted at y contains many light edges with small
traversal numbers.

To illustrate the idea, we assume for the moment that a tree T of outgoing
multi-edges is a full binary tree of height h with no additional incoming edges
as shown in Fig. 3(a). Then T has n′ = 2h leaves, and, for all inner vertices
v ∈ T , both outgoing edges have the same traversal number. Thus, the single
light edge at the root is traversed n′ times. In the next level, there are two light
edges, which are traversed n′/2 times each. Adding all up, we need at most
∑h

i=1 2i−1 log(n′/2i−1) ≤ 2n′ advice bits for encoding the traversal numbers of
all light edges.

For an arbitrary tree of multi-edges, the incoming number of traversals for
a vertex v has to be split between the two outgoing multi-edges as shown in
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Fig. 3(b). Analyzing this general structure leads to a more complicated recursive
function, which can be shown to be bounded by 5m/2. The same number of bits
can be used to encode the traversal numbers for all incoming light edges.

log(n′)

2 log(n′/2)

4 log(n′/4)

(a)

vy
x1

y − x1

x2

x1 − x2

x3

y − x1 − x3
(b)

Fig. 3. The incoming number of traversals y at the vertex v needs to be split up
between the two outgoing multi-edges. This continues recursively downwards in the
tree. An edge is dashed if it is light.

Lemmas 7 to 9 imply the following bound on the advice complexity.

Theorem 2. There exists an online algorithm which solves the graph explo-
ration problem using 4n + (log(3) + 5)m bits of advice on a given unknown
directed graph G = (V,E, cost) with in- and outdegree bounded by 2.

5 General Unknown Directed Graphs

We now explain how our algorithms can be adapted to solve the graph explo-
ration problem on general unknown directed graphs. To count the number of
advice bits more easily, we transform the given unbounded graph G into a
graph H with in- and out-degree bounded by 2, which has an increased num-
ber of vertices and edges. To be more precise, H is implicitly constructed from
GS∗ = (V,Eused) during the traversal. The algorithm and the oracle agree on
this construction and the oracle provides the advice for H. One step in GS∗ will
be represented by a sequence of steps in H.

To construct H, the algorithm needs to know the number of incoming edges.
The approach from Lemma 7 only works if we know that there are either one
or two incoming edges. If their number is between 1 and n − 1, the algorithm
starts to classify the incoming edges with advice until it reads a delimiter that
tells the algorithm that there are no more incoming edges.

Lemma 10. The algorithm can learn for every edge its membership to the sets
E0, E1, or EMulti on the first visit of an incident vertex using 2(n + m) advice
bits overall.

For constructing the graph H, we introduce the terms compact out-tree and
compact in-tree, which are used to replace a large number of directed edges.
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Definition 6. A compact out-tree Tout(v) is a directed binary tree, directed
from the root v to the leaves, that minimizes the maximum distance between v
and some leaf. Analogously, we define a compact in-tree Tin(v), which is directed
from the leaves to the root v.

The union of a compact in-tree and a compact out-tree, with the same root
v, is called an in-out-tree Tv = Tout(v) ∪ Tin(v).

When the algorithm visits a vertex v for the first time, it uses the approach
from Lemma 7 to know, for every edge incident to v, about their membership to
the three sets E0, E1 and EMulti.

The algorithm replaces every vertex v with more than two outgoing edges
from Eused with Tout(v). If v has also more than two incoming edges from Eused,
it constructs Tin(v) to replace these edges and merges the two trees. So, v is
replaced by an in-out-tree Tv. Figure 4 shows a vertex with eleven incoming and
nine outgoing edges and the resulting in-out-tree Tv = Tout(v)∪Tin(v). Note that
all newly created edges in an in-out-tree, drawn in gray in Fig. 4, are multi-edges
by construction. Thus, the algorithm does not need to read additional advice to
know their membership to the three sets.

Tin(v)

Tout(v)

v

Fig. 4. A vertex of high degree is replaced by an in-out-tree. The gray vertices and
dotted edges are virtually added and not part of GS∗ . The black edges incident to the
gray leaves of the in-out-tree represent the edges from GS∗ .

The construction of H itself does not cost advice bits, but the increased
number of edges and vertices influences the number of advice bits used overall.
Therefore, we now analyze how the number of vertices and edges changes.
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Lemma 11. A graph G = (V,E) with an optimal exploration sequence S∗ can
be transformed into a graph H = (V ′, E′), with |V ′| = n′ and |E′| = m′, such
that every vertex has an outgoing and incoming degree of at most 2 by replacing
vertices v with an in-out-tree Tv.

The graph H = (V ′, E′) is bounded in the number of vertices and edges by
n′ ≤ 2m and m′ ≤ 3m.

Although the construction increases the number of vertices and edges, the
computed solution for H can be easily modified to obtain a solution for G.

Lemma 12. Let G be an arbitrary directed graph with an optimal exploration
sequence S∗. Let H be the degree-bounded graph resulting from the construction
described in Lemma 11. An algorithm computing an optimal exploration sequence
S for the transformed graph H can be used to compute an optimal exploration
sequence S′ for G.

Note that the construction visualizes the binary search approach that the
algorithm uses to compute the exact number of traversals for some edges. The
important information, like which edge is used for the last traversal or which edge
is light, can now be communicated with only one bit per (virtual or real) edge
such that we can apply Theorem 2. Obviously, we also increased the number
of vertices by transforming G into H and therefore it is also increased how
often the explorer asks for such information. Therefore, we need to compute
how transforming G into H increases the needed advice, if we apply the same
approach as in Theorem 2.

Theorem 3. There exists an online algorithm which solves the graph explo-
ration problem using 2n + 23m bits of advice on a given unknown directed graph
G = (V,E, cost).

6 Conclusion

In this work, we focused on the cyclic graph exploration problem on directed
graphs with weighted edges. The presented algorithm can be modified to work
on undirected graphs and also to solve the non-cyclic graph exploration prob-
lem. The advice complexity decreases if the algorithm already has some a-priori
knowledge, e.g., about the graph structure without the edge weights.
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24. Královič, R.: Personal communication (2017)
25. Megow, N., Mehlhorn, K., Schweitzer, P.: Online graph exploration: new results

on old and new algorithms. Theor. Comput. Sci. 463, 62–72 (2012)
26. Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online coloring prob-

lem. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 345–357.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38233-8 29

27. Thrun, S., et al.: Autonomous exploration and mapping of abandoned mines. IEEE
Robot. Autom. Mag. 11(4), 79–91 (2004)

28. Thrun, S., et al.: Robotic mapping: a survey. In: Exploring Artificial Intelligence
in the New Millennium, vol. 1, pp. 1–35 (2002)

https://doi.org/10.1007/978-3-319-25258-2_23
https://doi.org/10.1007/978-3-319-25258-2_23
https://doi.org/10.1007/978-3-642-38233-8_29


Call Admission Problems on Grids
with Advice (Extended Abstract)
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Abstract. We analyze the call admission problem on grids, thus gen-
eralizing previous results for the path graph, where a central authority
receives requests that two of the computers in a given network arranged
as a two-dimensional grid structure want to communicate. The central
authority can then, for every request, either grant it by establishing one
of the possible connections in the grid, or reject the request. Thereby,
the requests have to be answered in an online fashion, every connection
is permanent, and connections have to be edge-disjoint. The goal is to
admit as many requests as possible. We are particularly interested to
examine how much information about the future requests the central
authority needs in order to compute an optimal solution or a solution of
some given quality compared to the optimal solution; we quantify this
information by studying the advice complexity of the problem.

Our results show that, without additional information, the central
authority cannot perform satisfactorily well, and we establish a lower
bound linear in |E| for the number of advice bits needed for near-optimal
solutions, where |E| denotes the number of edges in the grid. Further-
more, concerning optimality, we are able to prove nearly tight bounds
of at least 0.94|E| and at most 3|E| advice bits. In addition, we state
another upper bound in the number of requests k and the number of
vertices |V | in the grid of �log2(5) · k + log2(3) · |V |� + �2 log2(k)� advice
bits, which is stronger for a small number of requests.

Keywords: Disjoint path allocation · Call admission
Advice complexity · Competitive analysis

1 Introduction

Imagine you are the administrator of a computer network, where each computer
can request a connection to any of the other ones from a central authority,
which immediately either grants the request or rejects it. Of course the different
properties of network topologies are manifold, and the priorities among them are
not the same in every case. However, your main concern is to be able to establish
connections for the largest possible portion of requests. Being interested in what
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can be guaranteed, we examine the worst case, i.e., the case where the requests
are the most unfavorable. Hence, given a specific topology, the question of how
good this topology suits our problem arises.

Now, for simplicity let us assume that once a connection between two comput-
ers has been established, the connection is fixed, i.e., it does not get terminated
or changed in any way. Further, every wire can only be utilized for one con-
nection, so there are no two connections sharing a wire. In the literature, this
informally described setting is known as the disjoint path allocation problem or
as the call admission problem [8].

Throughout this paper, we use the term disjoint path allocation problem
when referring to the problem on a path network, although the problem definition
actually comprises the complete variety of network topologies. Based on the
research on path networks, we aim to analyze the problem on two-dimensional
grid networks, and for distinction we specify this as the call admission problem on
grids. Note that, while some network topologies, e.g., a complete graph, naturally
perform well without the central authority being remarkably powerful, this is not
the case for path graphs or grids. Therefore, we study the advice complexity of
algorithms for the problem. Here, the central authority has access to an oracle
that knows the future requests and can transmit any information, called advice,
to the central authority. Deploying this model, we are not longer restricted to
just stating that some ratio of satisfied requests cannot be achieved, but can
give a precise measure of how much information the central authority has to
obtain from the oracle in order to be able to reach exactly this ratio of satisfied
requests.

Since the lack of knowledge about the future impeding a reasonably good
solution unifies a lot of online problems, suitable complexity models have been
invented: The fundamental idea of comparing the solutions of a specific algorithm
with the best possible solutions has been introduced by Sleator and Tarjan [18],
and the worst case ratio between them is called the competitive ratio. Further,
the notion of advice complexity is due to Dobrev et al. [11]. The model we
consider in this paper is a refined version proposed by Hromkovič et al. [15] and
Böckenhauer et al. [3,4]. Using this model, various online problems have already
been studied, including the ski rental problem, the paging problem [4,11], the
k-server problem [5,6,12,14], as well as the problem motivating this paper, the
disjoint path allocation problem [1,3,9,10,13].

For the latter, without the help of advice, no deterministic online algorithm
can achieve a constant competitive ratio. More precisely, measured in the length
l of the path of the network, every online algorithm accepts in the worst case
at most 1/l of the requests that are satisfied by an optimal algorithm [8]. Even
if we allow for a constant number of unsatisfied requests that are ignored for
the competitive ratio, Komm [16] proved that every algorithm is at least

√
l-

competitive, i.e., accomplishes at most a ratio of 1/
√

l of granted requests. Sim-
ilarly, with regards to the total number of requests k, Böckenhauer et al. [3]
already showed in their initial paper about this model that no algorithm is bet-
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ter than (k − O(1))-competitive, or in case of a randomized online algorithm,
(k/4 − O(1))-competitive in expectation.

In the context of deterministic online algorithms with advice, l − 1 bits of
advice are both necessary and sufficient in order to compute an optimal solution
for the disjoint path allocation problem [1]. Digressing from strict optimality,
for an algorithm to obtain a competitive ratio of c, again Böckenhauer et al. [3]
established that at least (k + 2)/(2c) − 2 ∈ Ω(k/c) advice bits have to be read.
Later, Boyar et al. [9] proved this to be asymptotically tight, i.e., Θ(k/c) bits of
advice are necessary and sufficient for being c-competitive.

Now, for the call admission problem on grids, we aim to generalize some of
the bounds for the disjoint path allocation problem and to establish further ones.
Since, in contrast to a path network, on a grid network there are multiple possible
paths that can be deliberated to satisfy a request between two computers, the
online algorithm has significantly more freedom to build its solution. At the
same time, there are far more possible requests that contradict each other, so
considering the worst case, the construction of a solution might be remarkably
more complicated. Thus, it is not clear whether more or less advice is needed
in order to ensure some competitive ratio in comparison to the disjoint path
allocation problem. However, this paper will present proofs that also on the grid
G = (V,E), advice is needed to achieve a competitive ratio constant in the grid
size, and that, for optimality, almost |E| advice bits are necessary. In addition,
we show a lower bound on the number of advice bits necessary for non-optimal
algorithms with a certain competitive ratio.

Concerning upper bounds, we prove that, for short, horizontally or vertically
aligned requests, less than |E| advice bits are sufficient to compute an optimal
solution. In general, no more than 3|E| bits of advice are needed. Similarly,
(partially) measured in the number of requests k, roughly log2(5)·k+log2(3)·|V |
bits of advice suffice.

The paper is organized as follows. In Sect. 2, we introduce our notation and
formally define the call admission problem. Section 3 is devoted to lower bounds
on the advice complexity, which are then complemented by almost matching
upper bounds in Sect. 4. Due to space restrictions, most of the proofs are omitted
in this extended abstract; for more detailed discussions, we refer to [7].

2 Preliminaries

Throughout this paper, N is defined as the set of positive integers, i.e., N =
{1, 2, 3, . . .}. For a graph G = (V,E), we denote V (G) = V and E(G) = E.
If G is a path, then |E(G)| is its length. The degree of a vertex v is d(v), the
maximum degree of a graph G is Δ(G), the chromatic number, i.e., the minimum
number of colors needed in a proper vertex-coloring of G, is denoted by χ(G),
and ω(G) is the maximum clique size.

For m,n ∈ N, an (m × n)-grid G = (V,E) is the Cartesian product of
two paths pver = (Vm, Em), and phor = (Vn, En), where Vk = {1, 2, . . . , k} and
Ek = {{1, 2}, {2, 3}, . . . , {k − 1, k}}. Therefore, V = {vi,j | (i, j) ∈ Vm ×Vn} and
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E = {{va,b, vx,y} | (a = x∧{b, y} ∈ Em)∨(b = y∧{a, x} ∈ En)}. Note that pver is
of length m−1 and phor is of length n−1. In illustrations and descriptions, v1,1 is
chosen to be the lower-left corner, whereas vm,n is the upper-right corner. Slightly
abusing notation, requests (calls) are denoted by (u, v) instead of {u, v}, in order
to distinguish them from edges, so in this context, exceptionally (u, v) = (v, u).

The essential underlying concept of the online setting is that an online algo-
rithm receives a sequence of requests r1, . . . , rk of an instance of the given online
problem, and has to answer each request ri with an answer ai before it can receive
the next request, and this answer cannot be changed later. At any point in time,
the online algorithm is only aware of the requests revealed so far without any
knowledge of future requests, so a response ai may only depend on r1, r2, . . . , ri.
For studying online problems, we use the notation from the textbook by Komm
[16].

The term optimal algorithm will be used for an algorithm that computes an
optimal solution on every instance I of some online problem Π; we abbreviate
it with Opt. The solution of a concrete deterministic algorithm Alg on some
instance I is denoted by Alg(I), and gain(Alg(I)) denotes its gain.

The call admission problem on grids (short CAPG) is an online maxi-
mization problem, where the set of instances consists exactly of all possible
I = (r1, r2, . . . , rk), such that the first request r1 contains two lengths m,n ∈ N,
which define an (m × n)-grid G = (V,E). Similarly to a path, obviously a grid
is completely specified through the lengths m and n, and with this observation
we have everything to define our primary object of study. Additionally, every
request ri with 1 ≤ i ≤ k consists of a pair of vertices (ui, vi) ∈ V × V , where
ui �= vi; the pairs of vertices in the requests in I have to be pairwise distinct.

We say a set of paths is contradicting if and only if the paths are not pairwise
edge-disjoint. A set of requests {r′

1, r
′
2, . . . , r

′
t} of I is contradicting if and only if

there is no set of paths {p1, p2, . . . , pt} in G that is not contradicting, and such
that pj is a path between the pair of vertices of request r′

j , for 1 ≤ j ≤ t. We
define the length of a request r to be the length of a shortest path between the
pair of vertices in r, and conversely, such path which is not of minimal length is
referred to as a detour.

A solution S = (a1, a2, . . . , ak) is an element from (P∪{0})k, where P denotes
the set of all paths in G, such that for all ai �= 0, ai connects the vertices in ri

and {ai | 1 ≤ i ≤ k ∧ ai �= 0} is not contradicting. The set of feasible solutions
for an instance I is denoted by S(I).

The gain of a solution S is the number of satisfied requests, i.e., |{ai | 1 ≤
i ≤ k ∧ ai �= 0}|, where S = (a1, a2, . . . , ak) ∈ S(I).

If the underlying graph is restricted to be a path graph, i.e., an (1 × n)-grid,
we call the problem the disjoint path allocation problem (short DPA).

While for the DPA problem it is sufficient to state whether a request should
be satisfied or not, because there is only one unique way to satisfy a request on
a path, this is not the case for the call admission problem on grids. Here, for
each of the respective requests, there may be multiple paths in the grid to grant
it. Hence, if a solution would only contain whether a request has been satisfied
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or not, the algorithm would not need to fix any paths at all, but it only has
to ensure the existence of some non-contradicting set of paths connecting the
granted requests. However, thinking of the real-world scenario behind CAPG,
it seems much more natural that the connection in the network should already
be established and therefore be fixed from the time of acceptance. Besides, in
some proofs we consider a (partial) solution in which the paths that satisfy some
requests are already fixed and use the term contradicting to make clear that these
fixed paths are not pairwise edge-disjoint.

An online algorithm Alg for an online problem Π is an algorithm that, given
an instance I = (r1, r2, . . . , rk) of Π, computes a feasible solution Alg(I) =
(a1, a2, . . . , ak), where ai may only depend on r1, r2, . . . , ri.

For c ∈ R with c ≥ 1, Alg is c-competitive if there is a constant α ≥ 0, such
that, for all instances I of an online maximization problem Π,

gain(Opt(I)) ≤ c · gain(Alg(I)) + α . (1)

If this holds for α = 0, Alg is called strictly c-competitive. The smallest value
of c satisfying (1) is called the competitive ratio of Alg.

For example, a greedy online algorithm for the DPA problem on an instance
I would check, for every request it receives, whether it contradicts any previously
satisfied request and, if this is not the case, satisfies it. Note, however, that for
CAPG there is no unique greedy online algorithm, since it is not clear which
path should be used in order to satisfy a request. However, using any ordering
Q of the paths in the grid, we could still define that the algorithm accepts a
request ri using a path pi between its vertices if and only if pi is the first path
in Q where {aj | 1 ≤ j < i ∧ aj �= 0} ∪ {pi} is not contradicting.

Consider an instance of DPA in which first a long request is asked and then
this request gets partitioned into requests each of length 1 which are demanded
next. The greedy algorithm Alg from above would satisfy the first request and
then all the other requests have to be rejected because they contradict (see
Fig. 1), leading to a competitive ratio which is as large as the length of the first
request.

Fig. 1. Greedy online algorithm for DPA which satisfies the first request (lowest one)
and has to reject all subsequent small requests of length 1.

For the ease of explanation, we will at times slightly abuse terminology and
also speak about the competitive ratio as the performance of an algorithm on
a single, specific instance. Moreover, if there is no constant c, such that some
algorithm is c-competitive, in some literature this is expressed as being “not
competitive” or that “there is no competitive ratio,” or similar [8,16]. However,
even if c = c(·) is a function, e.g., of the grid size or the number of requests,
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the ratio with respect to an optimal solution can still be of interest, so in the
respective cases we prefer to formulate this as something in the sense of the
algorithm is c(·)-competitive. Let us remark that in case that the grid size itself
is not part of the input, α can be a constant with respect to the instances, and
yet depend on the grid size. Then, for a given grid size there are only finitely
many instances, and thus, there always would exist a sufficiently large constant
α, such that any algorithm is 1-competitive, independently of what the algorithm
actually does. This is the reason for including the length of the path or the size of
the grid, respectively, into the first request in the definitions of DPA and CAPG.

As the competitive ratio of all deterministic (or even randomized) algorithms
for the call admission problem is undesirably high, we use the model of advice
complexity to analyze how much information a central authority needs to com-
pute a satisfactory solution. This model can be described as follows. The online
algorithm has access to an unbounded tape of advice bits which it can linearly
access during its computation. More formally, an online algorithm Alg with
advice computes, on a request sequence I = (r1, r2, . . . , rk), the output sequence
Algφ(I) = (y1, y2, . . . , yk), where yi is computed from r1, r2, . . . , ri, φ, and φ is
the content of the advice tape, i.e. an unbounded binary sequence. The advice
tape is beforehand prepared by a computationally unbounded oracle that has
access to the complete instance. We say that Alg is c-competitive with advice
complexity q(k) if it is c-competitive (as defined in (1)) and reads at most q(k)
bits of φ during its computation.

For a better comprehension, let us examine another example for DPA. Con-
sider an algorithm Alg with advice that, on every request ri, reads one bit bi

of the advice tape and, if bi = 1, it satisfies ri (recall that for DPA there is only
one unique possibility to grant a request), and else Alg rejects ri. We know that
the oracle provides the best possible string of advice, so we are safe to assume
that, according to some optimal solution S, it writes a 1 for every request that
is granted in S and a 0 for every non-satisfied request on the advice tape. Since
then Alg obviously computes the optimal solution S, it is strictly 1-competitive
(see Fig. 2).

Fig. 2. Example instance for DPA on a path of length 7 (in gray). If 0100101 is the
prefix on the advice tape, Alg satisfies the 2nd, 5th and 7th requests from above,
which constitute one of the optimal solutions.

For instances of length k, Alg reads exactly k bits of advice and the advice
complexity is therefore q(k) = k. Although not convenient in this case, we could
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measure the advice complexity with respect to the length l of the underlying
path as well: Since all requests are pairwise distinct, there are at most

∑l
i=1 i =

l(l+1)
2 requests in an instance. Hence, with respect to l, the advice complexity is

q(l) ≤ l(l+1)
2 .

We observe the following facts which will be helpful in our subsequent proofs.

Fact 1. In an (m × n)-grid G = (V,E), there are |V | = mn vertices and |E| =
m(n − 1) + n(m − 1) edges, so |E| = 2|V | − m − n.

Fact 2. For every graph G, we have ω(G) ≤ χ(G) ≤ Δ(G) + 1.

Remark 2.1. If we want to pass some value x ∈ N to an algorithm Alg using
parts of the advice tape, the algorithm has to know the beginning and the end of
the encoding of x. This can be ensured by using some self-delimiting encoding,
e.g., using 2
log2(x)� bits of advice [16].

3 Lower Bounds

First, we focus on lower bounds and establish some for CAPG that are similar
to those for DPA, just for general grid sizes. Of course, since paths are corner
cases of grids, DPA is a special case of CAPG, and its known lower bounds
immediately carry over to CAPG. However, we are interested in learning which
lower bounds hold for general grids, and how they depend on the grid sizes.

We start with a lower bound that is valid for grids where one dimension is
logarithmically bounded in the other.

Theorem 3.1. If k(l) ∈ o(log(l)) for some k : N → N, the competitive ratio of
every online algorithm without advice for CAPG on a (k(l) × (l + 1))-grid is at
least c ∈ Ω(l

1
k(l)+1 · k(l)−1).

Proof (idea). The proof is based on the following idea. The adversary constructs
a set of instances which consist of k+1 phases. In each phase Pj , many consecu-
tive requests of length c(l, j) are presented in row j of the grid, where c(l, j + 1)
is much smaller than c(l, j). As soon as one of these requests is granted by the
algorithm, the phase ends, and the next phase presents all of its requests in the
next row of the grid, but only directly “above” the granted request, as shown
in Fig. 3. This way, the algorithm can grant at most one request per phase. If
there is a phase where Alg does not grant any request, then Opt could take all
requests from this phase, leading to a bad competitive ratio. If Alg takes one
request from every phase P1, . . . , Pk, it cannot take any from phase Pk+1. The
only way would be via a detour, but for each detour, some necessary horizontal
edge is blocked. In contrast, Opt can take all requests from phase Pk+1.

Note that by the considerations stated priorly, in every row the number of
requests has to be increasing in l, we observe that as a result the partitioning of
l into the product of k +1 increasing functions is actually needed and the bound
on the competitive ratio is maximized when these functions are about the same,
i.e., l = c(l, 1)k+1 and thus c(l, 1) = l

1
k(l)+1 . �



Call Admission Problems on Grids with Advice (Extended Abstract) 125

Fig. 3. Schematic illustration on a general grid, where in each row of the grid a request
has been satisfied. In every row there are up to c(l, 1) many requests from the first
k phases. Then, in row k there are c(l, 1) many additional requests which cannot be
accepted anymore.

Also, let us remark that this proof generalizes the case of DPA very smoothly,
in the sense that for k = 1 it actually boils down to c(l, 1) = l1/(k+1) =

√
l, which

is precisely what has been used by Komm [16].

Corollary 3.1. For any constant k ∈ N, there is no online algorithm without
advice for CAPG which achieves a constant competitive ratio on a (k × (l + 1))-
grid.

Returning to the DPA problem, as already mentioned, the partitioning of
some former request r into two requests yields requests r′

1 and r′
2, which are

mutually exclusive to r. Since, given an instance containing such requests, every
algorithm then needs to decide whether to grant r or any requests from {r′

1, r
′
2}

instead, some advice should be necessary. This basic concept can be succes-
sively deployed in order to obtain further bounds: First, most obviously one can
attempt to make statements about the necessary amount of advice to acquire
an optimal solution, which in case of the DPA problem is proved to be at least
half the length of the path [3]. Secondly, by reducing the bit guessing problem
[2] to DPA, statements about the amount of advice which is needed to achieve
some competitive ratio can be established [19].

These proofs extend to grids nicely. Even so, there is one obstacle in the not
naturally given mutual exclusivity of these kinds of requests on grids. Since in
this case there are plenty of possibilities to satisfy a given request, we will pack
the requests very densely to cover the grid and provide some reasoning why then
any detours would contradict other requests.

Lemma 3.1. Every (m×n)-grid G, with m and n odd, can be completely covered
with requests of length 2, i.e., |E(G)|/2 = mn − (m + n)/2 requests of length 2
can be satisfied.

Proof (idea). The arrangement of the requests is shown in Fig. 4a. �
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Fig. 4. (a) Grid with odd m and n, which is completely covered by requests of length
2. (b) Some instance with ten requests in phase P2 (depicted in gray), requests from
phase P1 are depicted in black.

Theorem 3.2. Every optimal online algorithm with advice for CAPG on a grid
G uses at least |E(G)|/2 advice bits.

Proof (idea). It suffices to only consider (m×n)-grids G with m and n odd. We
construct a set I of instances consisting of two phases P1 and P2, where phase
P1 is constructed as in the proof of Lemma 3.1, and some of the requests from
P1 are subdivided by two requests from P2 as shown in Fig. 4b. This leads to
2|E(G)|/2 possible instances.

Any optimal online algorithm Alg needs to decide already in phase P1,
which requests to reject. Moreover, it can be shown that detours can never be
profitable. Thus, Alg needs |E(G)|/2 advice bits to distinguish all instances. �

As mentioned beforehand, this construction can be employed to prove lower
bounds beyond strict optimality, i.e., to make statements about the number of
advice bits that are needed in order to obtain some competitive ratio (larger
than 1). To this end, we use the string guessing problem and a known lower
bound on its advice complexity. Then, reducing this problem to CAPG, we can
transform the lower bound to one that is valid for CAPG.

Definition 3.1 (String Guessing with Unknown History [2]). The prob-
lem of string guessing with unknown history over an alphabet Σ with |Σ| ≥ 2 is
an online minimization problem ΠSGU. Every instance I ∈ I(ΠSGU) consists of
some n ∈ N, followed by n − 1 requests “?” containing no additional informa-
tion, and a string s = s1s2 . . . sn ∈ Σn of length n, i.e., I = (n, ?, ?, . . . , ?, s).
A corresponding solution S ∈ S(I) is of the form S = (a1, a2, . . . , an), where
ai ∈ Σ, and the last request remains unanswered. The measurement function is
the Hamming distance between s1s2 . . . sn and a1a2 . . . an.
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If |Σ| = 2, the problem is commonly referred to as the bit guessing prob-
lem with unknown history [2]. The next theorem states the lower bound for bit
guessing we will use in our reduction.

Theorem 3.3 (Böckenhauer et al. [2]). If 1/2 ≤ γ ≤ 1 and an online algo-
rithm with advice guesses at least γn bits correctly of every instance of bit guess-
ing with unknown history, then it uses at least (1+(1−γ) log2 (1 − γ)+γ log2 γ)n
bits of advice.

We can now use Theorem 3.3 to prove a lower bound for CAPG.

Theorem 3.4. Every online algorithm with advice for CAPG which achieves a
competitive ratio of c ≤ 12/11 on a grid G has to read at least

(

1 +
(

6 − 6
c

)

log2

(

6 − 6
c

)

+
(

6
c

− 5
)

log2

(
6
c

− 5
)) |E(G)|

2

bits of advice.

Proof (idea). The proof is based on the following idea. Let Capg be some
online algorithm with advice for CAPG. Then, we can devise another algorithm
BGuess for bit guessing with unknown history, which uses Capg and forwards
the advice bits on demand, i.e., we reduce the bit guessing problem to the call
admission problem on grids.

Initially, on an instance I ′ ∈ I ′ for bit guessing, BGuess obtains the number
n′ of bits it has to guess. We use the same instances I ∈ I for CAPG as in the
proof of Theorem 3.2, consisting of phases P1 and P2.

BGuess also operates in two phases: First, for every “?” received, it demands
one of the requests from P1 and guesses 1 for every request that Capg satisfies,
and 0 otherwise, so the ith answer of Capg specifies the ith guess of BGuess.

Therefore, in P2, BGuess partitions every request of P1 which corresponds
to a 0 in s into two requests, includes them into P2 and demands them from
Capg. Then, the optimal answer for Capg would have been to grant exactly
the requests for which s contains a 1. Note that this construction does not
depend on the answers of Capg or BGuess, but only on the last request s
for BGuess, which is transformed into possibly multiple requests for Capg.
So, this way BGuess penalizes Capg for every guessed bit that deviates from
the corresponding bit of s. However, since for multiple erroneously unsatisfied
requests of P1, Capg might be able to grant requests from P2 which are not
contained in the optimal solution, the cost of Capg is not obvious. However, a
thorough case distinction shows that this compensation is bounded. �

Using the proof method of partition trees [1], we are able to improve the
lower bound from Theorem 3.2 by almost a factor of 2.

Theorem 3.5. Every optimal online algorithm with advice for CAPG on an
(m × n)-grid G has to read at least 0.94677 · |E(G)| − m − n advice bits.
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Proof (idea). The technically involved proof is based on a generalization of the
DPA lower bound by Barhum et al. [1]. For their instances, they use the partition-
tree method to prove that there are many different instances requiring different
advice strings. Implementing subinstances of their instances on every row and
every column of the grid, where the length of all requests is bounded from above
by 4, leads to the situation that all bit strings associated to the different instances
do not contain more than 3 consecutive zeros. The number of such strings can be
counted using tetranacci numbers [17] and yields the claimed result. Bounding
the length of the requests by 4 is used for proving that detours are not helpful
for any online algorithm. �

Note that, if we could use bit strings of length n − 2 or respectively m − 2
for every row or column just as on the path, then this would result in m · (n −
2)+n · (m− 2) = |E(G)|−m−n advice bits, so our result is indeed surprisingly
close (see Fig. 5).

Fig. 5. Illustration of the number of advice bits needed on a path of length n in
comparison to the slightly worse lower bound which is obtained by using only requests
of length 4 as in the proof of Theorem 3.5.

4 Upper Bounds

Note that, unlike lower bounds, upper bounds for DPA do not inherently carry
over to CAPG, since a method to solve DPA does not necessarily have to be
applicable for CAPG as well. Let us start with the most obvious upper bound.

Theorem 4.1. There is an optimal online algorithm with advice for CAPG that
reads at most 2|E| · 
log2(|V |)� ≤ 2|E| · log2(|E|+m+n) bits of advice for every
(m × n)-grid G = (V,E).
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Proof (idea). Recall that there are |V | = mn vertices and |E| = m(n − 1) +
n(m − 1) = 2mn − m − n edges in G, so |V | = (|E| + m + n)/2. Hence, for an
arbitrary but fixed optimal solution, the oracle can encode the two endpoints
of every satisfied request using 2 · 
log2(|V |)� ≤ 2 · log2(|E| + m + n) bits per
request. Reading all of this advice at the very beginning of the computation,
the algorithm can then solve the resulting offline instance and find a set of non-
conflicting paths. Recall that, as usual when dealing with online algorithms, we
do not restrict the time complexity of the algorithm. �

Actually, a further upper bound for a restricted set of instances is already
established by the idea of Theorem 3.5, since its proof is (nearly) constructive,
just as for the inspiring result regarding DPA [1].

Theorem 4.2. For instances with either horizontally or vertically aligned
requests of length at most 4, there is an optimal online algorithm with advice
using at most |E(G)| − (m + n)/2 + 1 advice bits for every (m × n)-grid G.

As observed easily, knowing which edges of the grid are used to satisfy a
request and which remain unused for some optimal solution is not sufficient
for an algorithm to reconstruct it. Consider, e.g., the instances constructed in
the proof of Theorem 3.2, where all edges can be used. Thus, it is necessary to
transmit the “membership” of a request in some way as well. For this reason,
“neighboring” paths in an optimal solution need to be distinguishable. This leads
to the task of vertex-coloring an auxiliary graph Ĝ(S) = (V̂ , Ê) whose vertices
are the paths of an optimal solution S together with a partition of the unused
edges of the grid into connected components. The vertices of this auxiliary graph
are connected by an edge if and only if the corresponding paths or components
of the grid share a vertex. The partition of the unused edges is chosen in a way
that minimizes the chromatic number of Ĝ(S).

For reasons of readability, we will hide the dependency on S and simply write
Ĝ instead of Ĝ(S) whenever suitable.

Theorem 4.3. Let I denote all possible instances of CAPG on a grid G =
(V,E), and let Sopt(I) be the set of optimal solutions for an instance I ∈ I.
Then, there is an optimal online algorithm with advice for CAPG that uses at
most

max
I∈I

min
S∈Sopt(I)


|E| · log2(χ(Ĝ))� + 2
log2(χ(Ĝ))�

advice bits.

Corollary 4.1. If maxI∈I minS∈Sopt(I) χ(Ĝ) can be bounded by a number cχ

which is known by an online algorithm with advice for CAPG, then the bound of
Theorem 4.3 adjusts to 
|E| · log2(cχ)� bits of advice.

Note that this immediately yields a better constant than Theorem 4.1 since
every request has length at least 1, so there are at most |E| − 1 requests left



130 H.-J. Böckenhauer et al.

which can be neighboring, i.e., χ(Ĝ) ≤ Δ(Ĝ)+1 ≤ |E|, so already 
|E|·log2(|E|)�
advice bits are sufficient. However, a short request cannot have many incident
paths in a grid, thus this bound is only a rather coarse estimate and can be
improved easily as the following corollary shows.

Corollary 4.2. There is an optimal online algorithm with advice for CAPG
that reads at most 
|E| · log2((2|E| + 7)/3)� bits of advice.

Proof (idea). The idea behind this proof is that there cannot be too many over-
laps between different paths from S due to the bounded degree of the grid. This
in turn bounds the degree of the vertices in Ĝ. �

Fig. 6. On the empty edges of the grid the instance contains requests of length 1
and there are no further requests. All requests shown start in the lower left part, go
vertically (horizontally) until they reach an empty section or the border and then
continue horizontally (vertically). Satisfying the shown requests and all requests of

length 1 is the unique optimal solution . Hence, ̂G has a clique of size at least 6, i.e.,
in G every shown path needs to be colored in a different color.

However, as Fig. 6 illustrates, on an (n × n)-grid with even n there is an
instance such that Ĝ contains an n-clique. Since χ(Ĝ) ≥ ω(Ĝ), this implies
that, with this approach, the upper bound cannot be enhanced to less than

|E|·log2(n)� = 
|E|·log2(

√|V |)� = 
 1
2 |E|·log2(|E|+2n)−1� ∈ O(|E|·log(|E|))

advice bits. Hence, we need an advanced method to prove a more compact bound.
Such a bound is given by the next theorem.

Theorem 4.4. There is an online algorithm with advice for CAPG that com-
putes an optimal solution using at most 3|E| advice bits.

Proof (idea). The proof of this claim is based on the following idea. Each path
can be partitioned into subpaths using the same row or column. For each edge,
3 advice bits are used to classify the edge into one of eight classes describing
whether the edge belongs to the same subpath as its neighboring edges and how
the direction of a path possibly changes at the endpoint of the edge. �
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We can continue along the same line of reasoning to obtain a slightly different
result, bounding the number of advice bits from above in the number of requests:
It is sufficient to know for every request whether it has been taken and then to
be able to follow the request until its end, in order to reconstruct an optimal
solution. Hence, for the first vertex of a request, the oracle can encode whether
to reject it or one of the four directions to start, and, for every inner vertex of the
path that satisfies the request, the oracle can encode one of the three directions
left, straight, or right to continue. Moreover, given that, for a path satisfying a
request, the incoming direction for a vertex v is known and already two incident
edges of v are used to satisfy another request, there is only one direction left, so
there is no additional information needed for v. In other words, for a particular
solution, every vertex used as an inner vertex of any path satisfying a request
only needs advice once (see Fig. 7). The next theorem formalizes this observation.

Fig. 7. The dashed lines indicate formerly satisfied requests. For a start vertex of a
path, N, l, u, r, d are interpreted as “not satisfied”, “left”,“upwards”, “right”, or respec-
tively “downwards”, and, for an inner vertex v, the labels l, s, r are interpreted as
“left,”“straight” and “right” with respect to the incoming edge at v. On the request
((1, 1), (2, 5)) the string usrsl translates to the depicted path.

Theorem 4.5. Let I denote all possible instances of CAPG on a grid G =
(V,E), and let Sopt(I) be the set of optimal solutions for an instance I ∈ I.
Then, there is an optimal online algorithm with advice for CAPG that uses at
most


log2(5) · k� + 
log2(3) · |V |� + 
2 log2(k)�

advice bits, where k is the number of requests in I.

For fewer than approximately 0.95|E| − 0.34(m + n) requests, Theorem 4.5
is indeed an improvement, otherwise (e.g., in the worst case of both bounds)
Theorem 4.4 yields the stronger result, since there can be up to

(|V |
2

)
=

(1/8)(|E| + m + n − 1)2 − 1/8 requests in an instance.
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Abstract. Given an undirected graph with edge costs, the power of a
node is the maximum cost of an edge incident to it, and the power of a
graph is the sum of the powers of its nodes. Motivated by applications
in wireless networks, we consider two network design problems under
the power minimization criteria. In both problems we are given a graph
G = (V,E) with edge costs and a set T ⊆ V of terminals. The goal is
to find a minimum power edge subset F ⊆ E such that the graph H =
(V, F ) satisfies some prescribed requirements. In the Min-Power Edge-

Cover problem, H should contain an edge incident to every terminal.
Using the Iterative Randomized Rounding (IRR) method, we give an
algorithm with expected approximation ratio 1.41; the ratio is reduced
to 73/60 < 1.217 when T is an independent set in G. In the case of
unit costs we also achieve ratio 73/60, and in addition give a simple
efficient combinatorial algorithm with ratio 5/4. For all these NP-hard
problems the previous best known ratio was 3/2. In the related Min-

Power Terminal Backup problem, H should contain a path from
every t ∈ T to some node in T \ {t}. We obtain ratio 3/2 for this NP-
hard problem, improving the trivial ratio of 2.

Keywords: Approximation algorithms
Iterative randomized rounding · Minimum power · Edge-cover
Terminal backup

1 Introduction

Wireless networks are studied extensively due to their wide applications. The
power consumption of a station determines its transmission range, and thus
also the stations it can send messages to. Assigning power levels to the stations
(nodes) determines the resulting communication network. Conversely, given a
communication network, the power required at v only depends on the farthest
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node that is reached directly by v. This is in contrast with wired networks, in
which every pair of stations that need to communicate directly incurs a cost.
Thus the minimal power p(v) of a node v equals the largest cost of an edge
incident to v in the communication network. The first work under the minimum
power model is from 1989 [7]. For a sample of other works under this model see
for example [1,4–6,8,9,14–18,20,21,23–25,27,29–31].

Definition 1. Let H = (V, F ) be a graph with edge-costs {c(e) : e ∈ F}. For
v ∈ V , the power p(v) = pH(v) = pF (v) of v in H (w.r.t. c) is the maximum
cost of an edge in F incident to v (or zero, if no such edge exists), i.e., p(v) =
pF (v) = max

vu∈F
c(vu). The power of H is the sum of the powers of its nodes,

namely, p(H) = p(F ) =
∑

v∈V pF (v).

All the graphs are assumed to be undirected, unless stated otherwise. In our
problems, the input is a graph G = (V,E) with edge costs {c(e) : e ∈ E} and
a subset T ⊆ V of terminals; the goal is to find a minimum power subgraph
H = (V, F ) of G that satisfies some prescribed properties. We refer the reader
to a recent survey [28] on such problems. We consider the min-power variant of
two classic problems, Edge-Cover and Terminal-Backup, defined below.

Definition 2. For a graph H = (V, F ) and a set T ⊆ V of terminals, we say
that F (or H) is:

– a T -cover if every t ∈ T has some edge in F incident to it (equivalently, no
connected component of H is a single terminal);

– a T -backup if every t ∈ T has a path to some other node in T (equivalently,
no connected component of H contains a single terminal).

Min-Power Edge-Cover

Here F should be a T -cover, namely, every t ∈ T has some edge in F incident
to it.

Min-Power Terminal Backup

Here F should be a T -backup, namely, every t ∈ T has a path to some other
node in T .

For illustration, suppose we have two sets A,B of stations. The stations in
A can communicate with each other via an existing wired infrastructure, while
each station in B should have a wireless communication with some station in
A. We want to assign energy levels to the stations while minimizing the total
energy. This is modeled as a Min-Power Edge-Cover problem in a bipartite
graph with terminal set T = B. This bipartite case models many other practical
scenarios, that were studied in the (easier) geometric setting, c.f. [22,26].

In the case T = V the problems coincide; the resulting min-power problem is
still NP-hard with a standard reduction from Set Cover. The min-cost versions
(where one seeks to minimize c(F ) =

∑
e∈F c(e)) of these problems can be solved

in polynomial time see [10] and [2], respectively. Min-Cost Edge Cover is
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among the most basic problems in combinatorial optimization and theoretical
computer science, see for example the book [32]. However, the Min-Power

Edge-Cover problem is NP-hard even if T is an independent set in the input
graph G and all costs are equal to 1 [15]. The NP-hardness proof in [15] easily
extends to the Min-Power Terminal Backup problem.

For each of these problems, any inclusion-minimal solution is a forest,
since removing any edge from any cycle keeps the solution feasible and does
not increase the objective function. It is known that if F is a forest then
c(F ) ≤ p(F ) ≤ 2c(F ). This implies that both problems admit ratio 2, by simply
computing an optimal min-cost solution.

For Min-Power Edge-Cover the trivial ratio 2 was improved to 1.5 in
[19]. No better ratio was known even for the case when T is an independent set
in G and all costs are equal to 1. We improve this as follows.

Theorem 1. Min-Power Edge-Cover admits a polynomial time algorithm
with expected approximation ratio 1.41. If T is an independent set in G then the
ratio can be reduced to 73/60 < 1.217.

The algorithm in Theorem 1 uses the Iterative Randomized Rounding (IRR)
method. We also use a method of analyzing the best of two algorithm using a
convex combination of their results; we have seen this technique in [12].

In the case of unit costs we show a simple approximation ratio preserving
reduction to the case when T is an independent set, thus obtaining for this case
ratio 73/60 < 1.217. In addition, we use a different method to obtain an efficient
combinatorial approximation algorithm with good ratio.

Theorem 2. Min-Power Edge-Cover with unit costs admits a polynomial
time algorithm with expected approximation ratio 73/60 < 1.217. The problem
also admits a 5/4-approximation algorithm with running time O(n3).

We also improve the trivial ratio 2 for Min-Power Terminal Backup.

Theorem 3. Min-Power Terminal Backup admits a polynomial time algo-
rithm with approximation ratio 1.5.

The proof of the latter theorem uses the idea of the 1.5-approximation al-
gorithm in [19] for Min-Power Edge-Cover, but the details are more involved.

We now briefly survey some work where the IRR method is used. This method
is due to Byrka, Grandoni, Rothvoß and Sanita [3], that gave a ln 4 + ε < 1.39
approximation for the Min-Cost Steiner Tree problem. This is currently the
best ratio known for the problem. Goemans, Olver, Rothvoß and Zenklusen [11]
gave faster and simpler ln 4 + ε approximation for the same problem, and also
obtained a better ratio 73/60 for quasi-bipartite graphs. Grandoni [13] used the
IRR method to give the currently best known ratio 1.91 for the Min-Power

Steiner Tree problem. Our paper has similarities with [13] including a Har-
monic potential function, and two main differences: (i) it is technically easier
(for us) to cover terminals than to cover all cuts separating terminals as in [13];
(ii) we combine iterative randomized rounding with another algorithm, since by
itself, iterative randomized rounding fails to improve the ratio 3/2 in some cases.
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2 Algorithm for Min-Power Edge-Cover (Theorem1)

A star is a rooted tree R such that only its root r, called the center, may have
degree ≥ 2. Note that any inclusion-minimal T -cover F is a collection of disjoint
stars, as if F has a path of length three, then the middle edge e of this path can
be removed and F \ {e} remains an T -cover.

For S ⊆ T let πS be the minimum power of a star RS that contains S
(πS = ∞ if no such star exists). Note that given S, both RS and πS can be
computed in polynomial time by “guessing” the center of RS . For an integer
k ≥ 1 let Tk = {S ⊆ T : |S| ≤ k}. We say that a subfamily T ⊆ Tk is a k-
restricted T -cover if the union of the sets in T is T ; the power of T is defined
to be p(T ) =

∑
S∈T πS . In what follows we denote by t = |T | the number of

terminals and by n = |V (G)|.

Lemma 1. Min-Power Edge-Cover with t = |T | terminals can be solved
optimally in time O

(
2t log2 tpoly(n)

)
.

Proof. For S ⊆ T let RS be some minimum power star that contains S. For
every partition P of T compute a solution FP = ∪S∈PRS for this partition, and
among the solutions FP computed return one of minimum power. Note that FP
can be computed in polynomial time for any P, since RS can be computed in
polynomial time for each S ∈ P . For the partition P defined by the stars of
some optimal solution, FP is an overall optimal solution for the problem. The
number of partitions of a set of size t is the Bell number Bt, and it is known
that Bt ≤ 2t log2 t. The lemma follows. �	

The “hypergraphic” linear program LPk(T ) below has a variable xS for every
S ∈ Tk, and it is a relaxation for the problem of finding a k-restricted T -cover
of minimum power.

min
∑

S∈Tk

πSxS

s.t.
∑

S∈Tk,S�v

xS ≥ 1 ∀v ∈ T

xS ≥ 0 ∀S ∈ Tk

By Lemma 1, LPk(T ) can be solved in polynomial time for any constant k.
Let us call a feasible solution x to LPk(T ) irreducible if no coordinate of x

can be lowered while keeping feasibility.

Lemma 2. Let x be an irreducible solution to LPk(T ). Then
∑

S∈Tk
xS ≤ n,

and Tk with probabilities Pr[S] = xS/n for S �= ∅ and Pr[∅] = 1 −
∑

S∈Tk
xS/n

is a sample space, in which Pr[{S ∈ Tk : S  v}] ≥ 1/n holds for any v ∈ T .

Proof. Since x is irreducible, for any S ∈ Tk with xS > 0 there exists v ∈ S such
that the inequality of v in LPk(T ) is tight. For every S ∈ Tk with xS > 0 choose
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one such node vS . Let W = {vS : xS > 0, S ∈ Tk} be the set of chosen nodes,
and note that W ⊆ T . Then

∑

S∈Tk

xS ≤
∑

v∈W

∑

S∈Tk,S�v

xS ≤
∑

v∈W

1 ≤ |W | ≤ n .

This implies that Pr[∅] = 1−
∑

S∈Tk
xS/n ≥ 0 and thus we have a sample space.

Furthermore, Pr[{S ∈ Tk : S  v}] =
∑

S∈Tk,S�v xS/n ≥ 1/n, by the constraint
of v in LPk(T ). �	

The following lemma provides a (tight) bound on the ratio between the power
of an optimal T -cover and a k-restricted T -cover.

Lemma 3 ([19]). For any T -cover F there exists a k-restricted T -cover T of
power p(T ) ≤ (1 + 1/k)p(F ).

We run two algorithms and take the best of the two. The first algorithm
is the 3/2-approximation algorithm of Kortsarz & Nutov [19]; we call it the
KN-Algorithm.

Algorithm 1. KN-Algorithm(G = (V,E), c, T )

1 for all u, v ∈ T (possibly u = v) compute a min-power {u, v}-cover Juv

2 let (T,E′) be a complete graph with all loops and edge costs cuv = p(Juv)
for all u, v ∈ T

3 compute a minimum cost T -cover J ′ ⊆ E′

4 return J =
⋃

uv∈J ′
Juv

The second algorithm is an Iterative Randomized Rounding algorithm, abbre-
viated by IRR-Algorithm. For previous applications of this type of algorithms see
[3,11] for the Min-Cost Steiner Tree problem, and [13] for the Min-Power

Steiner Tree problem.

Algorithm 2. IRR-Algorithm(G = (V,E), c, T, k)

1 initialize J ← ∅
2 while T �= ∅ do
3 compute an irreducible optimal solution x for LPk(T ) and

sample one set S ∈ Tk with probabilities as in Lemma 2
4 T ← T \ S, J ← J ∪ RS

5 return J

Note that in every iteration, the set of terminals may change. In such a case,
the IRR-Algorithm solves a new LP with respect to the new set of terminals. To
ensure polynomial time, after 2n lnn iterations the while-loop is terminated, and
we add to J a solution for the residual problem computed by the KN-Algorithm.
The following lemma shows that the expected loss in the approximation ratio
incurred by such modification is negligible.
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Lemma 4. In every iteration, every v ∈ T is hit with probability at least 1/n.
The probability that T �= ∅ after 2n lnn iterations is at most 1/n. The expected
loss in the approximation ratio incurred by stopping the IRR algorithm after
2n lnn iterations is at most 3

2n .

Proof. The first statement follows from Lemma 2. The probability that after
i = 2n lnn iterations a terminal is not hit is at most (1 − 1/n)i ≤ 1/n2. By the
union bound the probability that there exists a non hit terminal is at most 1/n.
Finally, in the case that there exists a non hit terminal, the algorithm has an
approximation ratio of 3/2. Thus the loss in the ratio is at most 3

2n . �	
We now give properties of these algorithms that will enable us to prove the

approximation ratio. We say that a star R is a proper star if R has at least one
terminal and, if R has at least two edges, then all the leaves of R are terminals
(a star with one edge may have one terminal, that may be the leaf or the center).
Fix some proper star R with center r. Note that if R has a single edge then r can
be the unique terminal in R. Denote the leaves of R by v1, v2, . . . , vq arranged
by non-increasing edge costs c1 ≥ c2 ≥ . . . ≥ cq where cj = c(rvj) and assume
that c1 > 0. Note that p(R) = c1 + c(R) = c1 +

∑q
j=1 cj . Let ψ(R) be defined

by:

ψ(R) =

⎧
⎨

⎩

c3 + c5 + · · · + cq q ≥ 3 odd
c3 + c5 + . . . + cq−1 q ≥ 4 even, r /∈ T
c3 + c5 + . . . + cq−1 + cq q ≥ 4 even, r ∈ T

Here ψ(R) = 0 if q ∈ {1, 2}, except that ψ(R) = c2 if q = 2 and r ∈ T .
The following lemma is proved in [19], but we provide a proof-sketch for

completeness of exposition.

Lemma 5 ([19]). Let R be a proper star as above. Then there exists a 2-
restricted cover T of the terminals in R such that p(T ) ≤ p(R)+ψ(R) ≤ 3

2p(R).

Proof. It is not hard to verify that the following T is as required:

T = {{v1, v2}, {v3, v4}, . . . , {vq−2, vq−1}, {vq}} q odd, r /∈ T
T = {{v1, v2}, {v3, v4}, . . . , {vq−2, vq−1}, {vq, r}} q odd, r ∈ T
T = {{v1, v2}, {v3, v4}, . . . , {vq−3, vq−2}, {vq−1, vq}} q even, r /∈ T
T = {{v1, v2}, {v3, v4}, . . . , {vq−3, vq−2}, {vq−1}, {vq, r}} q even, r ∈ T

It is also not hard to see that ψ(R) ≤ 1
2p(R). �	

Assume for a moment that proper star R as above contains all terminals and
is an optimal solution to our problem. Then p(R) + ψ(R) bounds the solution
value produced by the KN-Algorithm. We will show later that the expected
solution value produced by the IRR-Algorithm is bounded by p(R)+φ(R) where

φ(R) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q∑

j=1

cj/j q ≥ 1, V (R) ⊆ T

q∑

j=2

cj/j q ≥ 1, r /∈ T

0 otherwise (q = 1, V (R) ∩ T = {r})
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The function φ(R) is built so that the proof of Lemma 7 to follow holds; we note
that Harmonic functions are also used in [13] and [11].

If we know that our optimal solution is just one star R, then by taking the
best outcome of the two algorithms, the (expected) value of the produced solu-
tion will be p(R)+min{ψ(R), φ(R)}. In the case of many stars, we take a convex
combination of the two algorithms: KN-Algorithm with probability θ = 2/3 and
IRR-Algorithm with probability 1 − θ = 1/3. Since any inclusion-minimal solu-
tion is a collection of node-disjoint proper stars, we conclude that the (expected)
approximation ratio of the convex combination algorithm is bounded by the
maximum possible value of

θ(p(R) + ψ(R)) + (1 − θ)(p(R) + φ(R))
p(R)

= 1 +
1
3

· 2ψ(R) + φ(R)
p(R)

over all the stars R (this assumes that, as shown in Lemma 8 below, the expected
power of the output of the IRR-Algorithm is p(R) + φ(R)).

For a proper star R as above let us denote (with some abuse of notation)
p(q) = p(R), ψ(q) = ψ(R), and φ(q) = φ(R). Then the expected approximation
ratio of the convex combination algorithm is bounded by max

q≥1
ρ(q), where

ρ(q) = 1 +
1
3

max
c1≥···≥cq≥0,c1>0

2ψ(q) + φ(q)
p(q)

.

We will show later that:

Lemma 6. ρ(q) ≤ 1 73
180 < 1.4056.

Let Φ(R) = p(R) + φ(R) and Ψ(R) = p(R) + ψ(R). It is convenient to also
have Φ(R) = 0 if the star R has only a center and no leaves (this is not a proper
star, and has p(R) = 0). The next lemma, to be proved in Sect. 3, is the heart
of the proof of Theorem 1.

Lemma 7. Consider an iteration of the IRR-Algorithm. Let R be a proper star
at the beginning of the iteration and let R′ be a star obtained from R by removing
the leaves of R that are terminals covered at the iteration, with one exception: if
only the center of R is an uncovered terminal among V (R) after the iteration, we
keep in R′ the leaf closest to the center (this means that, unless all the terminals
of R are covered, R′ remains a proper star). Then Φ(R) − E[Φ(R′)] ≥ p(R)/n.

For a collection R of stars let Φ(R) :=
∑

R∈R Φ(R) and p(R) :=
∑

R∈R p(R).

Lemma 8. Let R = {RS : S ∈ T } be a set of stars of a k-restricted (optimal) T -
cover T and J a solution produced by the IRR-Algorithm. Then E[p(J)] ≤ Φ(R).

Proof. Let Ti−1 be the set of terminals uncovered at the beginning of iteration
i and τ∗

i the expected optimal value of LPk(Ti−1). Let R0 = R and for i ≥ 1
obtain Ri from Ri−1 by taking, for each proper star in R ∈ Ri−1, the star R′

as in Lemma 7. Now, note the following:
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– E[p(J)] ≤
∑

i≥1 τ∗
i /n, since after solving LPk(Ti−1) at iteration i ≥ 1, each

star RS is selected with probability xS/n.
– τ∗

i ≤ E[p(Ri−1)] at iteration i ≥ 1, since the stars in Ri−1 cover Ti−1 while
τ∗
i is the expected optimal value of LPk(Ti−1).

– E[p(Ri−1)]/n ≤ E[Φ(Ri−1) − Φ(Ri)] at iteration i ≥ 1, by Lemma7.

Combining we get that the expected power of J is bounded by:

E[p(J)] ≤
∑

i≥1

τ∗
i /n ≤

∑

i≥1

E[p(Ri−1)]/n ≤
∑

i≥1

E[Φ(Ri−1) − Φ(Ri)] = Φ(R)

The last equality holds since the sum is telescopic and since Φ(R0) = Φ(R) is
not a random variable. �	

Let JKN and JIRR be the outputs of the KN-Algorithm and the IRR-
Algorithm, respectively. Let R and Rk be optimal and k-restricted optimal set
of stars that cover T , respectively. Then p(Rk) ≤ (1 + 1/k)p(R), by lemma3.
As was mentioned, in [19] it is proved that p(JKN ) ≤ Ψ(R). By Lemma8,
p(JIRR) ≤ Φ(R). Combining we get that the power of the solution produced by
the convex combination of the two algorithms is bounded by

θp(JKN ) + (1 − θ)p(JIRR) ≤ θΨ(R) + (1 − θ)Φ(Rk) ≤
(
1 +

1

k

)
(θΨ(R) + (1 − θ)Φ(R))

From Lemma6 we conclude that θΨ(R)+(1−θ)Φ(R) ≤ 1.4056p(R) for θ = 2/3.
Consequently, we get that for θ = 2/3 and constant k large enough

θp(JKN ) + (1 − θ)p(JIRR) ≤ 1.41p(R) = 1.41 · opt .

To complete the proof of the 1.41 approximation ratio it only remains to
prove Lemmas 6 and 7; Lemma6 is proved below, while Lemma 7 is proved in
the next section.

For the proof of Lemma 6 we bound the function h(q) = 3(ρ(q) − 1), so
ρ(q) = 1 + 1

3h(q). For simplicity of notation let us write

h(q) =
2ψ(q) + φ(q)

p(q)
meaning h(q) = max

c1≥c2≥···≥cq,c1>0

2ψ(q) + φ(q)
p(q)

.

Note that Lemma6 follows immediately from the following lemma:

Lemma 9. h(q) ≤ 73
60 .

Proof. Let us consider the cases q = 1, 2, 3, 4, 5.

1. ψ(1) = 0, φ(1) ≤ c1 and p(1) = 2c1 > 0, hence h(1) = 1/2.
2. ψ(2) = c2, φ(2) = c1 + c2/2, and p(2) = 2c1 + c2, hence h(2) ≤ c1+

5
2 c2

2c1+c2
≤ 7

6 .
3. We have h(3) = 2c3+c1+c2/2+c3/3

2c1+c2+c3
≤ 23

24 .
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4. We have h(4) = 2c3+2c4+c1+c2/2+c3/3+c4/4
2c1+c2+c3+c4

, and this can be verified to be at
most 73

60 by expanding and using c1 ≥ c2 ≥ c3 ≥ c4 (we get equality when
c1 = c2 = c3 = c4).

5. We have h(5) = 2c3+2c5+c1+c2/2+c3/3+c4/4+c5/5
2c1+c2+c3+c4+c5

, and this can be verified to be
at most 73

60 by expanding and using c1 ≥ c2 ≥ c3 ≥ c4 ≥ c5.

For q > 5, we use induction on q. For even q > 4, we must prove: 60(2(c3 +
c5+ · · · cq−1+cq)+

∑q
j=1 cj/j) ≤ 73(c1+

∑q
j=1 cj), which follows from summing

up the inductive hypothesis: 60(2(c3+c5+· · · cq−3+cq−2)+
∑q−2

j=1 cj/j) ≤ 73(c1+
∑q−2

j=1 cj) and the inequalities 60cq ≤ 60cq−2, 60cq−1 ≤ 60cq−2, 60cq(1 + 1/q) ≤
73cq, and 60cq−1(1 + 1/(q − 1)) ≤ 73cq−1.

For odd q > 5, we must prove: 60(2(c3 + c5 + · · · + cq) +
∑q

j=1 cj/j) ≤
73(c1 +

∑q
j=1 cj), which follows from summing up the inductive hypothesis:

60(2(c3+ c5+ · · ·+ cq−2)+
∑q−2

j=1 cj/j) ≤ 73(c1+
∑q−2

j=1 cj) and (120+60/q)cq +
cq−160/(q − 1) ≤ 73(cq−1 + cq). �	

In the case when T is an independent set in G, no star has center in T . In
this case, we simply run the IRR-Algorithm (the improvement one gets from
using a convex combination is minor). The approximation ratio stated for this
case in Theorem 1 follows from the following lemma.

Lemma 10. If T is an independent set in G then Φ(q)/p(q) ≤ 73
60 .

Proof. In this case, we have Φ(q) =
∑q

j=1 cj(1+1/j). One obtains that 60Φ(q) ≤
73p(q) for q = 1, 2, 3, 4 by inspection, using c1 ≥ c2 ≥ c3 ≥ c4. The bound is
tight for q = 4 and c1 = c2 = c3 = c4. For q ≥ 5, the bound follows from the
fact that 60(1 + 1/j) ≤ 73 for any j ≥ 5. �	

3 Proof of Lemma 7

Let us write explicitly the function Φ:

Φ(R) = p(R)+φ(R) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1 +
q∑

j=1

cj(1 + 1/j) q ≥ 1, V (R) ⊆ T

q∑

j=1

cj(1 + 1/j) q ≥ 1, r /∈ T

2c1 otherwise (q = 1, V (R) ∩ T = {r})

We split the proof into two cases: r /∈ T and r ∈ T .

3.1 The Case r /∈ T

Recall that a set-function f on a groundset U is submodular if for any A ⊆ U
and aj , ak ∈ U \ A we have:

Δf (A, {aj , ak}) := f(A ∪ {aj}) + f(A ∪ {ak}) − f(A) − f(A ∪ {aj , ak}) ≥ 0 .
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We will need the following lemma. We believe this lemma is known, but we failed
to find its proof in the literature.

Lemma 11. Let U be a set of items with non-negative weights {w(u) : u ∈ U}
and let z1 ≥ z2 ≥ · · · ≥ z|U | be reals. Let f(∅) := 0 and for ∅ �= A ⊆ U

define f(A) :=
∑|A|

i=1 ziw(ai), where a1, . . . , a|A| is an ordering of A such that
w(a1) ≥ · · · ≥ w

(
a|A|

)
. Then f is submodular and non-decreasing.

Proof. Let A ⊆ U and aj , ak ∈ U \A. Order the elements in A∪{aj , ak} in non-
increasing order a1, . . . , a|A|+2 by the weights w1 ≥ · · · ≥ w|A|+2, and suppose
w.l.o.g. that this order is a1, . . . , aj−1, aj , aj+1, . . . , ak−1, ak, ak+1, . . . , a|A|+2.
Note that the terms in the sums defining f(A ∪ {ak}) and f(A) coincide up to
the kth term, and this so also for f(A∪{aj}) and f(A∪{aj , ak}). Then we have:

f(A ∪ {ak}) − f(A) =

|A|+2∑
i=k

wizi−1 −
|A|+2∑
i=k+1

wizi−2 =

|A|+2∑
i=k

wizi−1 −
|A|+1∑
i=k

wi+1zi−1

f(A ∪ {aj}) − f(A ∪ {aj , ak}) =
|A|+2∑
i=k+1

wizi−1 −
|A|+2∑
i=k

wizi =

|A|+1∑
i=k

wi+1zi −
|A|+2∑
i=k

wizi

Consequently,

Δf (A, {aj , ak}) =
|A|+2∑

i=k

wizi−1 −
|A|+1∑

i=k

wi+1zi−1 +
|A|+1∑

i=k

wi+1zi −
|A|+2∑

i=k

wizi

=
|A|+2∑

i=k

wi(zi−1 − zi) −
|A|+1∑

i=k

wi+1(zi−1 − zi)

≥
|A|+1∑

i=k

(wi − wi+1)(zi−1 − zi) ≥ 0

This shows that f is submodular. It is easy to see that f is non-decreasing. �	

We want to show that Φ(R)− E[Φ(R′)] ≥ p(R)/n. Let R̄ be the set of leaves
of R. The case R̄ = ∅ is obvious hence we assume that R̄ �= ∅.

In this case, by definition, Φ(R) =
∑q

j=1(1 + 1/j)cj . Therefore if we set in
Lemma 11 wi = ci for every i and and zi = 1 + 1/i for 1 ≤ i ≤ q, then by
definition f(R̄) = Φ(R).

Definition 3. Let H̃ be the random variable of the set of terminals hit in itera-
tion i. For H ⊆ T we denote the probability that H̃ ∩ R̄ = H by Pr[H], namely,
that H is exactly the set of hit terminals among the vertices of R.

Denote Δ(H) = Φ(R)−Φ(R′); in this case (r �∈ T ), we have Δ(H) = f(R̄)−
f(R̄ \ H). Consider some arbitrary set H ⊆ R̄ of possible terminals that could
be hit. The following lemma is a standard consequence of submodularity:

Lemma 12. Δ(H) ≥
∑

v∈H Δ({v}).
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Proof. We have
Δ(H) = f(R̄) − f(R̄ \ H) = (As the sum is telescopic)

=

p∑

�=1

f
(
R̄ \ {v1, . . . v�−1}

)
− f(R̄ \ {v1, . . . v�}) ≥ (As f is submodular)

≥
p∑

�=1

f(R̄) − f(R̄ \ {v�}) =

p∑

�=1

Δ({v�})

�	

Therefore
E[Δ(H)] =

∑

H⊆R̄

Pr[H]Δ(H) ≥ (As Δ(H) ≥
∑

�

Δ(v�))

≥
∑

H⊆R̄

(
Pr[H]

∑

v∈H

Δ({v})
)

= (By changing summation order)

=
∑

v∈R̄

⎛

⎝Δ({v})
∑

H⊆R̄ | v∈H

Pr[H]

⎞

⎠

=
∑

v∈R̄

Δ(v)Pr[v is hit] ≥
∑

v∈R̄

Δ(v)
1

n

To justify the last equality, note that
∑

H⊆R̄ | v∈H Pr[H] = Pr[v is hit] because
we sum the probabilities of all sets H that contain v. The last inequality follows
from Lemma 2.

What remains to be proved is that
∑

v∈R̄

Δ(v) ≥ p(R) (1)

We need to measure the change in the potential Δ(v�) (recall that v� is the
�th child of the star R). Also recall that in the potential function Φ(R), c� is
multiplied by (1 + 1/�). The addition of v1 (and its most expensive edge) shifts
all indexes by 1. This means that v�−1 becomes v�. In the new star with v1 the
coefficient of the edge number � is 1 + 1/� and in the star without this edges it
was 1/(� − 1). Thus the difference between the coefficients is −(1/(� − 1)− 1/�).

Suppose that we add an edge rvp, p ≥ 2. Then the coefficients are shifted
only for edges that are p+1 smallest or later. This means that the sum will start
with � = p + 1. Indeed adding edge number p does not change the location of
the p − 1 first edges. Thus the changes are as follows:

Δ({v1}) ≥ 2c1 −
q∑

�=2

c�

(
1

� − 1
− 1

�

)

Δ({v2}) = c2

(

1 +
1
2

)

−
q∑

�=3

c�

(
1

� − 1
− 1

�

)

. . .

Δ({vk}) = ck

(

1 +
1
k

)

−
q∑

�=k+1

c�

(
1

� − 1
− 1

�

)
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. . .

Δ({vq}) = cq

(

1 +
1
q

)

Note that the coefficient of edge k is counted k − 1 times and thus we get by
summing up these equations that:

q∑

k=1

Δ(vk) ≥ 2c1+
q∑

k=2

ck

(

1 +
1
k

− (k − 1)
(

1
k − 1

− 1
k

))

= 2c1+
q∑

k=2

ck = p(R),

ending the proof for the case r �∈ T .

3.2 The Case r ∈ T

Note that the equality Φ(R) − Φ(R′) = f(R̄) − f(R̄′) no longer holds in all the
cases, because Φ(R) = f(R̄)+ c1, but this may not hold for Φ(R′). Precisely, the
bound Δ(H) is by definition:

Δ(H) = f(R̄) − f(R̄′) + c1 if r is hit (H  r)
Δ(H) = f(R̄) − f(R̄′) + c1 − c′

1 if r is not hit (H � r) and R̄ �= H

Δ(H) = f(R̄) + c1 − 2cq if R̄ = H

Indeed, if r is hit, then c1 does not appear anymore in φ(R′), since r is no longer
a terminal. If r is not hit, its power goes from c1 to c′

1. In the case R̄ = H we get
that Φ(R)−Φ(R′) = (c1 −2cq)+

∑
j≥1(1+1/j) ·cj . This is because R′ is defined

to keep from R only the leaf closest to the center, and therefore Φ(R′) = 2cq.

Corollary 1. If R̄ �= H then Φ(R) − Φ(R′) ≥ f(R̄) − f(R̄′). If R̄ = H then
Δ(H) = f(R̄) + c1 − 2cq ≥ f(R̄) − c1.

We continue with the proof of Lemma 7 for the case r ∈ T . We first assume
that Pr[R̄] ≤ 1/n. Then we have

E[Δ(H)] = Pr[R̄] · Δ(R̄) +
∑

H �=R̄

Pr[H] · Δ(H) (Corollary 1 and Pr[R̄] ≤ 1/n)

≥ −
1

n
c1 + Pr[R̄]f(R̄) +

∑

H �=R̄

Pr[H]Δ(H) (By separating r from the sum)

≥ −
1

n
c1 + Pr[R̄]Δ(R̄) +

∑

H ��r,H �=R̄

Pr[H]Δ(H) +
∑

H�r

Pr[H]Δ(H)

By the definition of Δ we get that E[Δ(H)] + 1
nc1 is at least

Pr[R̄]f(R̄) +
∑

H ��r,H �=R̄

Pr[H](f(R̄) − f(R̄ \ H)) +
∑

H�r

Pr[H](c1 + f(R̄) − f(R̄ \ H))

=
∑

H ��r

Pr[H](f(R̄) − f(R̄ \ H)) +
∑

H�r

Pr[H](c1 + f(R̄) − f(R̄ \ H))
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Lemma 12 submodularity implies that the last expression is at least
∑

H 
�r

∑

v∈H

Pr[H]
∑

v∈H

(f(R̄)−f(R̄\{v}))+
∑

H�r

Pr[H](c1+
∑

v∈H\{r}
(f(R̄)−f(R̄\{v}))

By rearranging terms and applying Lemma4 we get

E[Δ(H)] ≥ − 1
n

c1 +

⎛

⎝
∑

v∈R̄

(f(R̄) − f(R̄ \ {v})) ·
∑

H�v

Pr[H]

⎞

⎠ + c1 ·
∑

H�r

Pr[H]

≥ − 1
n

c1 +

⎛

⎝
∑

v∈R̄

(f(R̄) − f(R̄ \ {v})) 1
n

⎞

⎠ + c1 · 1
n

=
1
n

∑

v∈R̄

(f(R̄) − f(R̄ \ {v}))

≥ p(R)/n,

where the last inequality is as in the case r �∈ T .
The second case is if Pr[R̄] > 1/n. In this case only the contribution of

disjoint events H = R̄ and r ∈ H is taken into account:

E[Δ(R)] ≥ Pr[R̄]Δ(R̄) + Pr[r is hit] · Δ({r}) (Corollary 1)

≥ Pr[R̄]
(
f(R̄) − c1

)
+ Pr[r is hit ] · Δ({r}) (

We assume Pr[R̄] ≥ 1/n
)

≥ 1

n
· (

f(R̄) − c1
)
+ Pr[r is hit ] · Δ({r}) (Lemma 4 )

≥ 1

n
· (

f(R̄) − c1
)
+ Δ({r})/n (Definition of Δ)

=
1

n
· f(R̄) (Definition of f)

≥ 1

n
p(R).

This finishes the proof of Lemma 7 and thus the proof of Theorem 1 is complete.
Theorems 2 and 3 will be proved in the full version, due to space limitation.
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Abstract. This work presents an optimally-competitive algorithm for
the problem of maximum weighted online perfect bipartite matching with
i.i.d. arrivals. In this problem, we are given a known set of workers, a
distribution over job types, and non-negative utility weights for each pair
of worker and job types. At each time step, a job is drawn i.i.d. from the
distribution over job types. Upon arrival, the job must be irrevocably
assigned to a worker and cannot be dropped. The goal is to maximize
the expected sum of utilities after all jobs are assigned.

We introduce Dispatch, a 0.5-competitive, randomized algorithm. We
also prove that 0.5-competitive is the best possible. Dispatch first selects
a “preferred worker” and assigns the job to this worker if it is available.
The preferred worker is determined based on an optimal solution to a
fractional transportation problem. If the preferred worker is not available,
Dispatch randomly selects a worker from the available workers. We show
that Dispatch maintains a uniform distribution over the workers even
when the distribution over the job types is non-uniform.

Keywords: Perfect matching · i.i.d. arrivals · Competitive ratio

1 Introduction

We consider the problem of maximum online perfect bipartite matching. Suppose
that we have a set of jobs and a set of workers. At every time step, a single job
arrives to be served by one of the workers. Upon a job’s arrival, we observe the
utility of assigning the job to each of the workers. We must immediately decide
which worker will serve the job. Once a worker is assigned a job, it is busy and
cannot be assigned to another job. Jobs continue to arrive until all workers are
busy.

In the natural bipartite graph that arises, there is an edge between each
worker and job with a non-negative utility of assigning that worker to that job.
The assignment of workers to jobs will form a perfect matching in this bipartite
graph. Our goal is to design a dispatching algorithm that maximizes the expected
sum of utilities of the perfect matching.
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In this work, we consider the maximum online perfect bipartite matching
problem with independent and identically distributed (i.i.d.) arrivals. This means
that, at each time step, a job is drawn i.i.d. from a known distribution over job
types.

Examples of online bipartite matching include matching doctors to patients
in hospitals, matching operators to callers in call centers, matching drivers to
passengers in ride-sharing, and matching impressions to customers in online ad
auctions [17].

We introduce the randomized algorithm Dispatch for the problem of
online weighted perfect bipartite matching with i.i.d. arrivals. Dispatch is 0.5-
competitive algorithm: the total expected utility of the perfect matching pro-
duced by Dispatch is at least half of the total expected utility of an optimal
algorithm that knows the job arrival sequence in advance. We also describe a
family of problem instances for which 0.5 is the best-possible competitive ratio.
The Dispatch algorithm, thus, achieves the best-possible competitive ratio. In
contrast, the same problem with adversarial job arrivals cannot be bounded, as
observed by Feldman et al. [6].

To assign workers to jobs, Dispatch first selects a preferred worker. This pre-
ferred worker is determined based on an optimal solution to a fractional trans-
portation problem. If the preferred worker is available, then job is assigned to
this worker. Otherwise, Dispatch randomly selects a worker from the available
workers.

1.1 Related Work

Our work resides in the space of online matching problems, including the Maxi-
mum (Imperfect) Bipartite Matching problem and the Minimum (Perfect) Bipar-
tite Matching problem. Another closely related problem is the k-Server problem.
For each of these problems, several arrival models are considered. Arrival models
including adversarial, where the adversary chooses jobs and their arrival order;
random order, where the adversary chooses jobs but not their arrival order; and
i.i.d., where the adversary specifies a probability distribution over job types and
each arrival is sampled independently from the distribution. We briefly describe
each of these problems and present best-known results, contrasting it to the
setting considered here. A summary is in Table 1.

Maximum Online (Imperfect) Bipartite Matching. The maximum online
(imperfect) bipartite matching problem is defined on a bipartite graph with n
known workers and n jobs that arrive one at a time. Jobs either get assigned to
a worker or are discarded. The goal is to maximize the cardinality (or sum of
weights) of the resulting matching. In contrast to our problem, jobs may be the
discarded and the resulting matching may be imperfect.

For the unweighted problem with adversarial arrivals, Karp, Vazirani, and
Vazirani [10] showed a best-possible algorithm that achieves a competitive ratio
of 1− 1

e ≈ 0.632. Variations of the problem have been proposed: addition of edge
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or vertex weights, the use of budgets, different arrival models, etc. Mehta [17]
provides an excellent overview of this literature. When the arrivals are in a
random order, it is possible to do better than 1 − 1

e . Mahdian and Yan [14], in
2011, achieved a competitive ratio of 0.696. Manshadi et al. [16] showed that
you cannot do better than 0.823. If the problem also has weights, then the best-
possible competitive ratio is 0.368 by a reduction from the secretary problem as
shown by Kesselheim et al. [11]. They also give an algorithm that attains this
competitive ratio.

The problem has also been studied when the jobs are drawn i.i.d. from a
known distribution. This problem is also referred to as Online Stochastic Match-
ing. The first result to break the 1 − 1

e barrier for the unweighted case was the
0.67-competitive algorithm of Feldman et. al. [7] in 2009. To date, the best-
known competitive ratio of 0.730 is due to Brubach et al. [2]. This is close the
best-known bound of 0.745 by Correa et al. [4].

Online Minimum (Perfect) Bipartite Matching. The online minimum
(perfect) bipartite matching addresses the question of finding a minimum cost
perfect matching on a bipartite graph with n workers and n jobs. Given any
arbitrary sequence of jobs arriving one by one, each job needs to be irrevocably
assigned to worker on arrival. This problem is the minimization version of the
problem considered in this work. However, the obtained competitive ratios do
not transfer.

The problem was first considered by Khuller, Mitchell, and Vazirani [12] and
independently by Kalyanasundaram and Pruhs [9]. If the weights are arbitrary,
then the competitive ratio cannot be bounded. To address this, both papers
considered the restriction where the edge weights are distances in some metric
on the set of vertices. They give a 2n−1 competitive algorithm, which is the best-
possible for deterministic algorithms. When randomized algorithms are allowed,
the best-known competitive ratio is O(log2(n)) by Bansal et al. [1]. If the arrival
order is also randomized, then Raghvendra [19] shows that 2 log (n) is attainable.
He also shows that this is the best possible.

k-Server Problem. In the k-server problem, k workers are distributed at initial
positions in a metric space. Jobs are elements of the same metric space and
arrive one at a time. When a job arrives, it must be assigned to a worker which
moves to the job’s location. The goal in the k-server problem is to minimize
the total distance traveled by all workers to serve the sequence of jobs. After
an assignment, the worker remains available for assignment to new jobs. This
reassignment distinguishes the k-server problem from ours, where workers are
fixed to a job once assigned.

The k-server problem was introduced by Manasse, McGeoch, and Sleater [15].
A review of the k-server problem literature was written by Koutsou-
pias [13]. For randomized algorithms in discrete metrics, the competitive ratio
O(log2 (k) log (n)) was attained by Bubeck et. al. [3], where n is the number of
points in the discrete metric space. On the other hand, Ω(log (k)) is a known
lower bound. In the i.i.d. setting, Dehghani et. al. [5] consider a different kind
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of competitive ratio: they give an online algorithm with a cost no worse than
O(log (n)) times the cost of the optimal online algorithm.

Table 1. Best-known competitive ratios and impossibility bounds for various online
bipartite matching problems. �: Results presented in this paper.

Sense Matching Arrivals Restrictions Best known Best possible

Max Imperfect Advers 0/1 0.632 [10] 0.632 [10]

Max Imperfect Rand. Ord 0/1 0.696 [14] 0.823 [16]

Max Imperfect Rand. Ord None 0.368 [11] 0.368 [11]

Max Imperfect i.i.d None 0.730 [2] 0.745 [4]

Min Perfect Advers Metric O(log2(n)) [1] Ω(log(n)) [18]

Min Perfect Rand. Ord Metric 2 log (n) [19] 2 log (n) [19]

Max Perfect Adversarial None - 0 [6]

Max Perfect i.i.d. None 1
2

� 1
2

�

1.2 Structure of This Work

This paper is organized as follows. Section 2 formally introduces the problem of
online perfect bipartite matching with i.i.d. arrivals and defines the concept of
competitive ratio. Section 3 describes Dispatch, presents an example to demon-
strate the algorithm, and provides the proof that Dispatch is 0.5-competitive.
Section 4 introduces a family of instances of the online perfect bipartite match-
ing problem for which no online algorithm performs better than 1

2 in terms of
competitive ratio. Finally, Sect. 5 summarizes the results and suggests directions
for future research.

2 Preliminaries

The set of workers is denoted by W with size n = |W |. The set J denotes the
set of job types with size k = |J |. For every worker w ∈ W and job type j ∈ J
there is a utility of uwj ≥ 0 for assigning a job of type j to worker w. Let D(J)
be a known probability distribution over the job types.

At every time step t = 1, . . . , n, a single job is drawn i.i.d. from J according
to D. The job must be irrevocably assigned to a worker before the next job
arrives. Workers are no longer available after they have been assigned a job.
Let rj denote the expected number of jobs of type j that arrive. After n steps,
each worker is assigned to one job and the resulting assignment forms a perfect
matching. Our goal is to design a procedure such that the expected sum of the
utilities of the resulting perfect matching is as high as possible.

Throughout this work, we will repeatedly use two bipartite graphs; the expec-
tation graph G and the realization graph ̂G. The expectation graph G = (W,J,E)
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is a complete bipartite graph defined over the set of workers W and the set of
job types J . An edge [w, j] ∈ E has associated utility uwj ≥ 0, for w ∈ W

and j ∈ J . The realization graph ̂G = (W, ̂J, ̂E) is the random bipartite graph
obtained after all n jobs have arrived. ̂J denotes the set of n jobs that arrived.
We use ĵt ∈ ̂J to denote the job that arrives at time t and jt ∈ J to denote its job
type. The edge set ̂E consists of all worker-job pairs, such that ̂G is a complete
bipartite graph defined over W and ̂J . Every edge [w, ĵ] ∈ ̂E has utility uwj ,
where j is the job type of job ĵ. It is important to remember that the expectation
graph G is deterministic and known in advance whereas the realization graph
̂G is a random graph representing a realization of the job arrival process and is
revealed over time.

An instance of the online perfect bipartite matching problem with
i.i.d. arrivals is defined by the set of workers W , the job types J , non-negative
utilities uwj , and a distribution over the job types D(J). Equivalently, the expec-
tation graph G and the distribution D(J) defines an instance of this problem.
Here we analyze the family of potentially randomized algorithms that return a
perfect matching M̂ on ̂G. The performance of an algorithm ALG for a single
realization ̂G is given by:

ALG( ̂G) = E

⎡

⎣

∑

[w,j]∈E

uwjIwj

⎤

⎦ ,

where Iwj is a random indicator variable that equals 1 if ALG assigned a job
of type j to worker w and equals 0 otherwise. For a given problem instance
defined by expectation graph G and distribution D(J), E

[

ALG( ̂G)
]

measures

the algorithm’s expected performance over samples of ̂G from G according to
D(J).

The worst-case performance across instances is measured by the competitive
ratio. Let OPT ( ̂G) be the maximum weight perfect matching in the realization
graph ̂G and let E

[

OPT ( ̂G)
]

be its expectation across different realizations for

a given expectation graph G and distribution D(J). E
[

OPT ( ̂G)
]

measures the
performance of an optimal algorithm that has full information about the arrival

sequence. This is known as an adaptive online adversary. The ratio
E[ALG( ̂G)]
E[OPT ( ̂G)]

measures the performance of ALG relative to the optimal algorithm for a given
instance of the problem. The competitive ratio is the worst-case, i.e. lowest, ratio
among all possible instances of the expectation graph G and distributions D(J):

Definition 1 (Competitive Ratio). An algorithm ALG is said to have a
competitive ratio of α when for all instances of the expectation graph G and
distribution D(J):

α ≤
E

[

ALG( ̂G)
]

E

[

OPT ( ̂G)
] .
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2.1 Bounding the Performance of OPT

It is difficult to compute E

[

OPT ( ̂G)
]

directly. We show that the randomness in
̂G reduces the expected value of the optimal perfect matching compared to the
value of the optimal transportation problem where the number of jobs of each
type is equal to its expectation. This offline transportation problem is then used
to guide the online assignment.

A similar approach was used in the context of unweighted online imperfect
bipartite matching by Feldman et al. [7] and Haepler et al. [8]. Here, we use a
transportation problem instead of a maximum weight matching. We also bound
the performance of OPT differently.

Recall that, in expectation, rj jobs of job type j ∈ J will arrive in Ĝ. An
optimal fractional matching of these jobs is obtained by solving a fractional
transportation problem on the expectation graph G, where each job type has
a demand of rj and each worker has a supply of 1 and the sum of utilities is
maximized.

Formally, let fwj ≥ 0 be the flow from worker w ∈ W to job type j ∈ J . This
can be interpreted as a fractional assignment of worker w to jobs of job type j.
We define the transportation problem TPP :

TPP (G) = max
fwj≥0

∑

w∈W

∑

j∈J

uwjfwj ,

∑

w∈W

fwj = rj ∀j ∈ J,

∑

j∈J

fwj = 1 ∀w ∈ W.

Let f∗
wj be an optimal flow on edge [w, j] ∈ E.

We claim that E

[

OPT ( ̂G)
]

≤ TPP (G). The reason is that the weighted

average of perfect matchings OPT ( ̂G) forms a feasible solution to the trans-
portation problem above.

Lemma 1. Given any expectation graph G and distribution over job types D(J),

E

[

OPT ( ̂G)
]

≤ TPP (G).

Proof. Assign each edge in G an indicator variable Iwj , which takes on the value
1 if OPT assigns worker w to a job of type j in ̂G and 0 otherwise. We claim
that fwj = E [Iwj ] forms a feasible solution to the transportation problem in G.
Indeed,

∑

w∈W

E [Iwj ] = E

[

∑

w∈J

Iwj

]

= rj ,
∑

j∈J

E [Iwj ] = E

⎡

⎣

∑

j∈J

Iwj

⎤

⎦ = 1.
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Since E [Iwj ] is feasible for the transportation problem, it must have objective
smaller than TPP (G):

E

[

OPT ( ̂G)
]

= E

⎡

⎣

∑

[w,j]∈E

uwjIwj

⎤

⎦ =
∑

[w,j]∈E

uijE [Iwj ] ≤ TPP (G).

��
This implies that we can bound the performance of an algorithm with respect

to TPP (G). We apply this technique in Sect. 3.3.

3 A 1/2-Competitive Algorithm

3.1 The Dispatch Algorithm

Before any jobs arrive, Dispatch solves the offline transportation problem TPP
on the expectation graph G. We find an optimal flow f∗

wj from workers to jobs.
Throughout the online stage, the algorithm reconstruct this flow between job
types and workers as much as possible. For each arriving job, a preferred worker
wP is randomly selected with a probability proportional to the optimal flow
f∗ between the corresponding job type and the worker in the transportation
problem. If the preferred worker is no longer available, then the job is assigned
to a worker selected randomly from the set of available workers AW . We refer
to this worker as the assigned worker wA. The resulting assignment forms a
perfect matching on ̂G since each worker is assigned at most once and each job
is assigned to a worker.

In the context of online bipartite matching, the idea of using an offline solu-
tion to guide the online algorithm was used in the “Suggested Matching” algo-
rithm [7] and subsequent work, e.g. [8]. Our algorithm differs in two ways. First,
the offline solution is a transportation problem instead of a maximum weight
matching problem. Second, the job is randomly assigned instead of discarded
when the preferred worker is no longer available. This random selection ensures
that we obtain a perfect matching and is crucial for Lemma 3. The analysis of
the competitive performance of Dispatch is also novel except for Lemma 2.

The algorithm is formally defined in Algorithm 1. We prove the following
result:

Theorem 1. Dispatch achieves a competitive ratio of 1
2 for the online perfect

bipartite matching problem with i.i.d. arrivals.

3.2 Example

To illustrate Dispatch, we consider the example shown in Fig. 1. The example
has five workers (n = 5) and three job types (k = 3). The expectation graph
is shown in Fig. 1a. Note that the distribution over job types, D(J), is fully
specified by rj . An instance of the realization graph is shown in Fig. 1c.
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Algorithm 1. Dispatch

Input: Expectation graph G.
Output: Perfect matching M̂ on ̂G.

Initialization:
Solve the transportation problem TTP on G to obtain the optimal flow f∗.
M̂ ← ∅
AW ← W

Online stage:
for t = 1, . . . , n do

# Job ĵt arrives with job type jt.

Randomly draw preferred worker wP with probability p(w) =
f∗
wjt
rjt

for w ∈ W .

# Use preferred worker (wP ) as assigned worker (wA) if possible.

if wP ∈ AW then
wA ← wP

else
Randomly draw wA ∈ AW with equal probability.

end if
M̂ ← M̂ ∪ [wA, ĵt]
AW ← AW − {wA}

end for

Figure 1b shows f∗, the solution to the transportation problem on G that is
used by Dispatch. The corresponding objective value is TPP (G) = 8. Fig-
ures 1d to h show the arrival of the jobs and the corresponding assignment
made by Dispatch. Figure 1h illustrates an instance where the preferred worker
selected by Dispatch is not available, and a different worker is assigned. For
this particular realization ̂G, the perfect matching constructed by Dispatch has
a total utility 6, while the optimal perfect matching on ̂G has a total utility 8.
Note that these values are for this particular realization of ̂G. The performance
guarantee is with respect to the expectation over all realizations of ̂G.

3.3 Proof of 1
2
-Competitiveness

To prove that the perfect matching produced by Dispatch has a competitive
ratio of a 1

2 , we rely on a key feature of Dispatch: It maintains the invariant,
Lemma 4, that workers are equally likely to be available even though the distri-
bution over job types may not be uniform. To prove this invariant, we first show
that both the preferred and the assigned worker are selected uniformly across
workers. Recall that the preferred worker may be different than the assigned
worker. In fact, the preferred worker does not have to be available and could
have been assigned to another job already. Lemma 2 states this formally for
the selection of the preferred worker. The observation underlying this lemma is
that each worker is selected with a probability proportional to the total flow f∗

originating at the worker, which is equal to one for each worker.
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of jobs per type.
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(b) Optimal flow f∗ for TPP
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(d) A job of type 3 arrives.
Worker 4 is preferred (p =
1/2). Worker 4 is assigned.
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(e) A job of type 1 arrives.
Worker 2 is preferred (p =
2/5). Worker 2 is assigned.
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(f) A job of type 2 arrives.
Worker 3 is preferred (p =
2/3). Worker 3 is assigned.
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(g) A job of type 2 arrives.
Worker 5 is preferred worker
(p = 1/3). Worker 5 is as-
signed.
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(h) A job of type 3 arrives.
Worker 4 is preferred, but not
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(i) Perfect matching M̂ con-
structed by Dispatch for real-
ization graph G.

Fig. 1. An example of the Dispatch algorithm on the realization graph shown in
Fig. 1c. The underlying expectation graph G with n = 5 and k = 3 is shown in Fig. 1a.
In Figs. 1d up to 1h, the numbers in parenthesis denote the probability of selecting
that worker as the preferred worker. Red edges represent the assignment made by the
algorithm, thick black edges are previous assignments, and blue edges mark unavailable
preferred workers. Figure 1h shows an instance where the preferred worker is busy.
(Color figure online)
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Throughout this section we use additional notation. Let the random variable
WP

t represent the preferred worker for the job arriving at time t, and let the
random variable WA

t be the assigned worker. Furthermore, let the random set
AWt consist of the available workers when the job at time t arrives. We make
no further assumptions on the expectation graph G and/or distribution D(J)
other than those outlined in Sect. 2. Lemmas and theorems in this section are
therefore applicable to all problem instances.

Lemma 2. At each time t, the preferred worker WP
t is drawn uniformly from

all workers:

P
(

WP
t = w

)

=
1
n

for all w ∈ W and t = 1, . . . , n.

Proof. By conditioning on the job type jt at stage t and using the law of total
probability, we can rewrite the probability of selecting worker w as:

P
(

WP
t = w

)

=
∑

j∈J

P
(

WP
t = w|jt = j

)

P (jt = j) .

Since the jobs are drawn i.i.d., a job of type j is selected with probability
P (jt = j) = rj

n , by definition of rj . Given a job of type j, the algorithm selects

a worker w as the preferred worker with probability P
(

WP
t = w|jt = j

)

= f∗
wj

rj
.

Thus,

P
(

WP
t = w

)

=
∑

j∈J

f∗
wj

rj

rj
n

=
∑

j∈J

f∗
wj

n
.

Finally, recall that every worker supplies a unit of flow in the offline transporta-
tion problem, equivalent to the expected number of jobs it serves. The edges
adjacent to worker w must thus transport a unit of flow, so

∑

j f∗
wj = 1. Thus,

P
(

WP
t = w

)

= 1
n . ��

Next we show that the assigned worker is selected uniformly at random from
the set of available workers. For this lemma to hold, it is crucial that the draw
of the assigned worker is done uniformly at random when the preferred worker
is not available. Recall that WA

t is the assigned worker for the job arriving at
time t and that AWt are the available workers before the job arrives.

Lemma 3. At each time step t, the assigned worker WP
t is drawn uniformly

from the available workers:

P
(

WA
t = w|w ∈ AWt

)

=
1

n − (t − 1)
.

Proof. Assume that w is fixed and that w ∈ AWt. There are two ways for w to
be the assigned worker. Either w is the preferred worker or the preferred worker
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is not available and w is randomly selected. We express this as:

P
(

WA
t = w|w ∈ AWt

)

= P
(

WP
t = w|w ∈ AWt

)

+ P
(

WA
t = w|WP

t /∈ AWt, w ∈ AWt

) ×
P

(

WP
t /∈ AWt|w ∈ AWt

)

The selection of WP
t is independent of whether w ∈ AWt. Therefore,

P
(

WA
t = w|w ∈ AWt

)

= P
(

WP
t = w

)

+ P
(

WA
t = w|WP

t /∈ AWt, w ∈ AWt

)

P
(

WP
t /∈ AWt

)

Now we use three observations to complete the proof. First, Lemma 2 implies
that P

(

WP
t = w

)

= 1
n . Second, since there are t − 1 busy workers, Lemma 2

implies that P
(

WP
t /∈ AWt

)

= (t−1)
n . Third, the fact that the assigned worker is

drawn uniformly at random when the preferred worker is not available implies
that P

(

WA
t = w|WP

t /∈ AWt, w ∈ AWt

)

= 1
n−(t−1) . Thus,

P
(

WA
t = w|w ∈ AWt

)

=
1
n

+
1

n − (t − 1)
(t − 1)

n
=

1
n − (t − 1)

.

��
Lemma 3 specifies each available worker is equally likely to be assigned to

the next job. As a consequence, we can derive the probability that a worker is
still available after t − 1 jobs have arrived:

Lemma 4. Dispatch maintains the following invariant throughout the online
stage:

P (w ∈ AWt) =
n − (t − 1)

n
for all w ∈ W and t = 1, . . . , n.

Proof. At every time step, a worker is chosen randomly from the remaining
available workers, as shown in Lemma 3. The probability that an available worker
in time step t is still available in time step t + 1 is:

P (w ∈ AWt+1|w ∈ AWt) = 1 − P
(

WA
t = w|w ∈ AWt

)

= 1 − 1
n − (t − 1)

=
n − t

n − (t − 1)
.

Thus, the probability of being available for the tth job is equal to:

P (w ∈ AWt) =
t

∏

i=1

P (w ∈ AWt|w ∈ AWt−1)

=
n − (t − 1)
n − (t − 2)

n − (t − 2)
n − (t − 3)

. . .
n − 1

n
=

n − (t − 1)
n

.

��
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From Lemma 4, we know the probability that a worker is available at each
time step. We use this to bound the probability that a worker w is assigned
to a job with job type j by Dispatch. We use the indicator random variable
Iwj . Iwj = 1 when the Dispatch assigns worker w to a job with job type j, and
Iwj = 0 otherwise. We bound the probability with respect to f∗

wj in TPP (G). By
bounding the algorithm’s performance with respect to TPP (G) we can bound
the competitive ratio of Dispatch. See Sect. 2.1 for more details.

Lemma 5. Given a perfect matching M̂ constructed by Dispatch, the proba-
bility that worker w is assigned to a job of type j is bounded by:

P (Iwj = 1) ≥ 1
2
f∗
wj .

Proof. If Iwj = 1, then worker w must have been assigned to a job of type j in
one of the time steps. Thus, Iwj =

∑n
t=1 Itwj where Itwj is indicator for whether

worker w is assigned to a job of type j at time step t:

P (Iwj = 1) =
n

∑

t=1

P
(

Itwj = 1
)

.

Let us bound the probability P
(

Itwj = 1
)

for all t = 1, . . . , n. First, we condition
on the job type arriving at time t. Note that jt must equal j:

P
(

Itwj = 1
)

= P
(

Itwj = 1|jt = j
)

P (jt = j) .

Recall that there are two ways for worker w to be assigned after a job of type
j arrives. Either w is the preferred worker and is assigned the job, or another
worker w′ is selected as the preferred worker but is not available. w is then
selected as the assigned worker. We lower bound the probability that worker w
is assigned for the job of type j by considering only the case where w is the
preferred worker.

P
(

Itwj = 1
) ≥ P

(

w ∈ AWt,W
P
t = w|jt = j

)

P (jt = j)

= P (w ∈ AWt)P
(

WP
t = w|jt = j

)

P (jt = j)

=
n − (t − 1)

n

f∗
wj

rj

rj
n

=
1
n

n − (t − 1)
n

f∗
wj .

For the first equality, we use that the job type at time t and the selection of
the preferred worker are independent from whether w is available at time t. The
second equality follows from Lemma 4, the weighted random selection of the
preferred worker, and the job arrival process.

We use P
(

Itwj = 1
)

= 1
n

n−(t−1)
n f∗

wj to bound the total probability of assign-
ing worker w for a job of type j:

P (Iwj = 1) =
n

∑

t=1

P
(

Itwj = 1
) ≥

n
∑

t=1

1
n

n − (t − 1)
n

f∗
wj =

1
2

n + 1
n

f∗
wj ≥ 1

2
f∗
wj .

��
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Lemma 5 bounds the probability that worker w is matched to a job of type
j. By linearity of expectation, Theorem 1 and the 1

2 competitive ratio follow
almost immediately from Lemma 5.

Proof (Proof of Theorem 1). The expected utility returned by the algorithm is
a weighted sum of indicators whether worker w is assigned to a job of type j.
Note that each worker is assigned to at most one job (type). We can then apply
Lemma 5 to bound the probability P (Iwj = 1) and the expected utility of the
algorithm:

E

[

Dispatch( ̂G)
]

= E

⎡

⎣

∑

w∈W,j∈J

uwjIwj

⎤

⎦

=
∑

w∈W,j∈J

uwjE [Iwj ]

=
∑

w∈W,j∈J

uwjP (Iwj = 1)

≥ 1
2

∑

w∈W,j∈J

uwjf
∗
wj =

1
2
TPP (G).

Note that the inequality requires that the utility weights are non-negative.
Finally, we apply Lemma 1 to obtain a bound on the competitive ratio

attained by Dispatch for any expectation graph G and distribution D(J):

E

[

Dispatch( ̂G)
]

≥ 1
2
TPP (G) ≥ 1

2
E

[

OPT ( ̂G)
]

��

4 Best-Possible Competitive Ratio

We present here a family of instances for which any online algorithm attains a
competitive ratio of at most 1

2 . The Dispatch algorithm guarantees a competi-
tive ratio of 1

2 and is thus optimal with respect to competitive ratio.

Theorem 2. For the online perfect bipartite matching problem with an
i.i.d. arrival process, no online algorithm can achieve a competitive ratio
E[ALG( ̂G)]
E[OPT ( ̂G)] better than 1

2 .

Proof. Consider an instance G with the number of job types k = n + 1. Let the
job types be indexed from 1 to n + 1 and the workers from 1 to n. Job types 1
to n each arrive with probability p/n and job type n+1 arrives with probability
1 − p. For this graph, we set uwj = 1 if w = j and to 0 otherwise. This implies
uw,n+1 = 0 for all w ∈ W .

Note that OPT gains a utility of one per unique job type in {1, . . . , n} that
arrives. The expected number of unique job types is computed by considering
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each job type as a geometric random variable with a success probability of p
n .

Thus, E
[

OPT ( ̂G)
]

= n
(

1 − (

1 − p
n

)n)

.
For any online algorithm ALG∗, t−1 workers are no longer available at time

step t regardless of the strategy. Thus, with probability (1−p)+p t−1
n the increase

in utility is zero. Thus, the total expected utility increases by at most pn−(t−1)
n

in time step t. The total expected utility obtained by ALG∗ is then:

E

[

ALG∗( ̂G)
]

≤ p
n

n
+ p

n − 1
n

+ p
n − 2

n
+ · · · + p

1
n

=
1
2
p(n + 1)

We compute the relevant ratio and then take the limit as n goes to infinity:

lim
n→∞

E

[

ALG∗( ̂G)
]

E

[

OPT ( ̂G)
] = lim

n→∞

1
2p(n + 1)

n
(

1 − (

1 − p
n

)n) =
1/2 · p

1 − e−p

Since p can take on any value in the interval (0, 1), we consider the limit as p
goes to zero:

lim
p→0+

1/2 · p

1 − e−p
= lim

p→0+

1/2
e−p

=
1
2
.

��
Corollary 1. Dispatch achieves the best-possible competitive ratio of 1

2 for the
Online Perfect Bipartite Matching problem.

5 Conclusion

In this paper, we examine the problem of online perfect bipartite matching with
i.i.d. arrivals from a known distribution. We present the Dispatch algorithm.
It attains a competitive ratio of 1

2 . We show that this is the best possible. Thus,
the algorithm Dispatch is optimal in terms of competitive ratio.

There is an intriguing difference between online perfect bipartite matching
algorithms for minimization and the Dispatch algorithm for maximization.
Whereas the competitive ratio for minimization is bounded logarithmically, a
constant bound was obtained for maximization with i.i.d. arrivals. This raises
the question of whether a constant competitive ratio is possible for minimization
with i.i.d. arrivals.

It may be possible to translate the analysis in this work to other contexts.
Our analysis relied on two key ideas; the use of the expectation graph and prov-
ing that, regardless of how the jobs arrive, the Dispatch algorithm effectively
translates the non-uniform sampling over jobs to a uniform sampling over work-
ers.
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Abstract. We consider the problem of resolving contention in commu-
nication networks with selfish users. In a contention game each of n ≥ 2
identical players has a single information packet that she wants to trans-
mit using one of k ≥ 1 multiple-access channels. To do that, a player
chooses a slotted-time protocol that prescribes the probabilities with
which at a given time-step she will attempt transmission at each chan-
nel. If more than one players try to transmit over the same channel
(collision) then no transmission happens on that channel. Each player
tries to minimize her own expected latency, i.e. her expected time until
successful transmission, by choosing her protocol. The natural problem
that arises in such a setting is, given n and k, to provide the players with
a common, anonymous protocol (if it exists) such that no one would uni-
laterally deviate from it (equilibrium protocol).

All previous theoretical results on strategic contention resolution
examine only the case of a single channel and show that the equilibrium
protocols depend on the feedback that the communication system gives
to the players. Here we present multi-channel equilibrium protocols in
two main feedback classes, namely acknowledgement-based and ternary .
In particular, we provide equilibrium characterizations for more than one
channels, and give specific anonymous, equilibrium protocols with finite
and infinite expected latency. In the equilibrium protocols with infinite
expected latency, all players transmit successfully in optimal time, i.e.
Θ(n/k), with probability tending to 1 as n/k → ∞.

Keywords: Contention resolution · Multiple channels
Acknowledgement-based protocol · Ternary feedback · Game theory

1 Introduction and Motivation

In the last fifteen years a great number of works in the Electrical and Elec-
tronics Engineering community has been devoted to designing medium access

P. G. Spirakis—The work of this author was partially supported by the ERC Project
ALGAME.
For a full version with detailed comments and proofs see [11].

c© Springer Nature Switzerland AG 2018
L. Epstein and T. Erlebach (Eds.): WAOA 2018, LNCS 11312, pp. 165–180, 2018.
https://doi.org/10.1007/978-3-030-04693-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04693-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-04693-4_11


166 G. Christodoulou et al.

control (MAC) protocols that achieve high throughput. Their main approach is
to consider, instead of the initial single-channel scheme, multi-channel schemes
(multi-channel MAC protocols) which resolve contention caused by packet colli-
sions (e.g. [6,20,24–26,29]). Apart from high throughput, an additional benefit
of introducing more channels in such a system is robustness, meaning no great
dependence on a single node’s functionality. However, to the authors’ knowl-
edge, strategic behaviour in multi-channel systems is limited to the Aloha pro-
tocol ([19]), contrary to the case of single-channel systems (e.g. [2,7–9,12]). In
this paper, we examine the problem of strategic contention resolution in multi-
channel systems, where obedience to a suggested protocol is not required. We
seek only anonymous, equilibrium protocols, that is, protocols which do not use
player IDs. If a players’ protocol depended on her ID, then equilibria are sim-
ple, but can be unfair as well; scheduling each player’s transmission through a
priority queue according to her ID is an equilibrium.

We provide two types of equilibrium protocols. The first type, called FIN-
EQ, describes an anonymous, equilibrium protocol that yields finite expected
time of successful transmission (latency) to a player. Similarly, the second type,
called IN-EQ, describes an anonymous, equilibrium protocol which yields infinite
expected latency to a player but is also efficient, i.e, all players transmit success-
fully within Θ( #players

#channels ) time with high probability. We study equilibria for two
classes of feedback protocols: (a) acknowledgement-based protocols, where the
user gets just the information of whether she had a successful transmission or
not, only when she tries to transmit her packet, and (b) protocols with ternary
feedback, where the user is informed about the number of pending players in
each time-step regardless of whether she attempted transmission or not. Previ-
ous results on these classes of protocols have been produced only for the case of
a single transmission channel ([7,12]). Here we investigate the multiple-channels
case.

In the last part of the paper we seek efficient protocols for both feedback
classes. Due to an impossibility result that we show (Theorem 7), the technique
used in [12] by Fiat et al. for the single-channel setting in order to provide a
FIN-EQ that is also efficient, cannot be applied when there are more than one
channels. This fact discourages us from searching for efficient FIN-EQ protocols
and, instead, points to the search for efficient IN-EQ protocols, which indeed we
find. One could argue that an anonymous protocol with infinite expected time
until successful transmission, such as the IN-EQ protocols we provide, does not
incentivize a player to participate in such a communication system. To this we
reply that exponential waiting-time for a large amount of players (see protocol
in Subsect. 4.2) is equally bad for a player, since waiting for e.g. e10 msec is like
waiting forever in Real-Time-Communications.

1.1 Our Results

Most of the proofs are omitted due to lack of space, and can be found in the full
version of the paper.
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The main contributions of this work are the characterizations of FIN-EQ
and IN-EQ protocols in the two aforementioned feedback classes. Note that
in the current bibliography regarding the single-channel setting, there are no
characterizations of equilibrium in acknowledgement-based protocols. Also, in
the single-channel setting the existence of a symmetric equilibrium with finite
expected latency in the class of acknowledgement-based protocols remains an
open problem, even for three players. However, for the settings with 2 and 3
transmission channels, in a short companion paper [10] we presented simple
anonymous FIN-EQ protocols for up to 4 and 5 players respectively. Further-
more, these protocols are memoryless, while the only known FIN-EQ protocol
in the single-channel setting ([7]) is not.

The paper is organized in three main parts. Section 3 deals with FIN-EQ
protocols in the acknowledgement-based feedback setting. In that section we
give two characterizations of equilibrium and also provide FIN-EQ protocols
for specific numbers of players and channels. These results have also appeared
recently in a complementary short paper ([10]) with no proofs; for detailed proofs
of this section we refer the reader to the full version of the paper. Section 4
deals with FIN-EQ protocols in the ternary feedback setting and extends the
corresponding results for the single-channel setting by Fiat et al. [12]. Finally, in
Sect. 5, IN-EQ protocols with deadline are provided with the property that the
time until all n players transmit successfully is Θ(n/k) with high probability,
when there are k channels. The latter result makes clear the advantage (with
respect to time efficiency) that multiple channels bring to a system with strategic
users, which is that the time until all players transmit successfully with high
probability is inversely proportional to the number of available channels.

1.2 Related Work

Contention in telecommunications is a major problem that results to poor
throughput due to packet collisions. Motivated mainly by this problem, many
works studying conflict-resolution protocols emerged in the late 70’s ([4,5,15,
23,28]). Their approach is to resolve a collision when it occurs, and only then
allow further transmissions on the channel. In those works the user’s packets are
assumed either to be generated by some stochastic process, or to appear at the
same time in a worst-case scenario. Here, we consider the latter setting, i.e. a
worst-case model of slotted time, where at any time-step all users have a packet
ready to be transmitted (for an example of a similar bursty-input case, see [3]).
As stated in [13], even though real implementations of multiple-access channels
do not fit precisely within the slotted-time model, it can be shown (e.g. [14,17])
that results obtained in this model do apply to realistic multiple-access channels.

Also, many works have examined multiple-channel communication protocols.
In the data link layer, a Medium Access Control (MAC) protocol is responsible
for the flow of data through a multiple-access medium. Our multiple-channels
model is motivated by theoretical and experimental results which have shown
that higher throughput and lower delay is achieved by using “multi-channel”
MAC protocols (see [20,21,25,26]). In [26], the multi-channel hidden terminal



168 G. Christodoulou et al.

problem is raised which, additionally to increased packet collisions, results to
incapability of the users to“sense” more than one channels at a time (possibly
none); therefore a user might not know whether another user transmitted suc-
cessfully or not (see also [27] for the classical “hidden terminal problem”). This
motivates us for the consideration of feedback protocols with minimum feed-
back, i.e.“acknowledgement-based” protocols (see par.2, Sect. 1). Also, settings
with stronger feedback have been studied (e.g. the Aloha protocol in [19]) in
which a user is informed about the number of users that have not transmitted
successfully yet. This is why we consider “ternary feedback” protocols (see par.2,
Sect. 1).

Apart from the latter, all of the aforementioned works assume that the users
blindly follow the given protocol, i.e. the users are not strategic. Contention
resolution with strategic users has been studied only in single-channel settings
or in the special case of the multiple-channel Aloha protocol. Some interesting
cooperative and noncooperative models of slotted Aloha have been analysed in
[1,18,19]. Aiming to understand the properties of contention resolution under
selfishness, apart from various feedback settings, many cost functions have also
been studied. One of the most meaningful cost functions is the one that models
non-zero transmission costs as in [9] (and also [2,19]).

The theoretical works that relate the most to the current paper are the sem-
inal paper by Fiat, Mansour and Nadav [12] and two by Christodoulou et al.
[7,8] which study protocols for strategic contention resolution with zero trans-
mission costs. These works examine the case of a single transmission channel
only. In [12] the feedback is ternary. In that work, a characterization of sym-
metric equilibrium is provided, along with an efficient FIN-EQ protocol that
puts an extremely costly equilibrium after a deadline in order to force users to
be obedient. The feedback model of [7] and [8] is the acknowledgement-based.
Among other results, [7] provides the unique FIN-EQ protocol for the case of
two players and a deadline IN-EQ protocol for at least three players.

2 The Model and Definitions

Game Structure. We define a contention game as follows. Let N = {1, 2, . . . , n}
be the set of players, also denoted by [n], and K = {1, 2, . . . , k} the set of chan-
nels. Each player has a single packet that she wants to send through a channel
in K, without caring about the identity of the channel. All players know n and
K. We assume synchronous communications with discretized time, i.e. time slots
t = 1, 2, . . . . The players that have not yet successfully transmitted their packet
are called pending and initially all n players are pending. At any given time slot
t, a pending player i has a set A = {0, 1, 2, . . . , k} of pure strategies: a pure
strategy a ∈ A is the action of choosing channel a ∈ K to transmit her packet
on, or no transmission (a = 0). At time t, a (mixed) strategy of a player i is a
probability distribution over A that potentially depends on information that i
has gained from the process based on previous transmission attempts. If exactly
one player transmits on a channel in a given slot t, then her transmission is suc-
cessful, the successful player exits the game (i.e. she is no longer pending), and
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the game continues with the rest of the players. On the other hand, whenever
two or more players try to access the same channel (i.e. transmit) at the same
time slot, a collision occurs and their transmissions fail, in which case the play-
ers remain in the game. The game continues until all players have successfully
transmitted their packets.

Transmission Protocols. Let Xi,t ∈ A be the channel-indicator variable that
keeps track of the identity of the channel where player i attempted transmission
at time t; value 0 indicates no transmission attempt. For any t ≥ 1, we denote
by �Xt the transmission vector at time t, i.e. �Xt = (X1,t,X2,t, . . . , Xn,t).

An acknowledgement-based protocol uses very limited channel feedback. After
each time step t, only players that attempted a transmission receive feedback,
and the rest get no information. In fact, the information received by a player i
who transmitted during t is whether her transmission was successful (in which
case she gets an acknowledgement and exits the game) or whether there was a
collision.

In a protocol with ternary feedback every pending player in every round is
informed about the number of remaining players m ≤ n. This information is
given to the players regardless of their transmission history.

Let �hi,t be the vector of the personal transmission history of player i up to
time t, i.e. �hi,t = (Xi,1,Xi,2, . . . , Xi,t). We also denote by �ht the transmission
history of all players up to time t, i.e. �ht = (�h1,t,�h2,t, . . .�hn,t). A decision rule
fi,t for a pending player i at time t, is a function that maps �hi,t−1 to a strategy
�Pi,t, with elements Pr(Xi,t = a|�hi,t−1) for all a ∈ A. When the transmission
probability on some a′ ∈ A is not stated in a decision rule it is because it can
be deduced from the stated ones.

For a player i ∈ N , a (transmission) protocol fi is a sequence of decision rules
fi = {fi,t}t≥1 = fi,1, fi,2, . . . . Given a protocol fi for player i, when her decision
rules depend on the number of pending players and the personal history of i,
then we describe them by the player’s probability distribution on the action set
A. In this case, we denote by pi,a

m,t the probability of player i choosing action a at
time t given her personal history ht−1 when m players are pending right before
t. When the context is clear enough we will drop some of the indices accordingly.

When we state that the players use an anonymous protocol f , we will mean
that they follow a common protocol f(= f1 = · · · = fn) whose decision rules do
not depend on any ID of the player (in our setting players do not have IDs), i.e.
the decision rule assigns the same strategy to all players with the same personal
history. In particular, for any two players i �= j and any t ≥ 0, if �hi,t−1 = �hj,t−1,
it holds that fi,t(�hi,t−1) = fj,t(�hj,t−1). In this case, we drop the subscript i in
the notation and write f instead of fi.

A protocol fi for player i is a deadline protocol with deadline t0 if and only
if there exists a finite t0 ≥ 1 such that a particular channel ai ∈ K is assigned
(deterministically or stochastically) to player i at some time t ≤ t0 and Pr(Xi,t =
ai|�hi,t−1) = 1 for every time slot t ≥ t0 and any history �hi,t−1.
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Efficiency. Assume that all n players follow an anonymous protocol f . We will
call f efficient if and only if all players will have successfully transmitted by time
Θ(n/k) with high probability (i.e. with probability tending to 1, as n/k → ∞).

Individual Utility. By protocol profile �f = (f1, f2, . . . , fn) we will call the n-tuple
of the players’ protocols. For a given transmission sequence �X1, �X2, . . . , which
is consistent with �f , define the latency of agent i as Ti � inf{t : Xi,t = a,Xj,t �=
a, for some a ∈ K,∀j �= i}. That is, Ti is the time at which i successfully
transmits. Also, define the finishing time of �f as T � supi{Ti}, i.e., the least time
at which all players have successfully transmitted. Given a transmission history
�ht, the n-tuple of protocols �f induces a probability distribution over sequences of
further transmissions. In that case, we write C

�f
i (�ht) � E[Ti|�ht, �f ] = E[Ti|�hi,t, �f ]

for the expected latency of a pending agent i given that her current history is �hi,t

and from t + 1 on she follows fi. For anonymous protocols, i.e. when f1 = f2 =
· · · = fn = f , we will simply write Cf

i (�ht) instead. Abusing notation slightly, we

will also write C
�f
i (�h0) for the unconditional expected latency of player i induced

by �f . We also define the expected future latency F
�f

i (�ht) � C
�f
i (�ht)− t and again,

whenever clear from the context, we omit redundant indices or vectors from the
notation.

Equilibria. The objective of every player is to minimize her expected latency.
We call a protocol gi a best response of player i to the partial protocol profile �f−i

if for any transmission history �ht, player i cannot decrease her expected latency
by unilaterally deviating from gi after t. That is, for all time slots t, and for all
protocols f ′

i for player i, we have

C
(�f−i, gi)
i (�ht) ≤ C

(�f−i, f ′
i)

i (�ht),

where (�f−i, gi) (respectively, (�f−i, f ′
i)) denotes the protocol profile where every

player j �= i uses protocol fj and player i uses protocol gi (respectively f ′
i). For

an anonymous protocol f , we denote by (f−i, gi) the profile where player j �= i
uses protocol f and player i uses protocol gi.

We say that �f = (f1, f2, . . . fn) is an equilibrium if for any transmission
history �ht the players cannot decrease their expected latency by unilaterally
deviating after t; that is, for every player i, fi is a best response to �f−i.

FIN-EQ and IN-EQ Protocols. We call an anonymous protocol FIN-EQ if it is
an equilibrium protocol and yields finite expected latency to a player. Similarly,
we call an anonymous protocol IN-EQ if it is an equilibrium protocol, yields
infinite expected latency to a player, and is also efficient.

3 Equilibrium for Acknowledgement-Based Protocols

For the sake of completeness, in this section we state the definitions and results
that have also appeared as a companion short paper in the 11th International
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Symposium on Algorithmic Game Theory (SAGT 2018) [10], together with some
complementary ones.

3.1 Nash Equilibrium Characterizations

The following equilibrium characterizations for the class of acknowledgement-
based protocols help us check whether the protocols we subsequently guess are
equilibrium protocols. The characterizations are for symmetric and asymmetric
equilibria, arbitrary number of channels k ≥ 1 and number of players n ≥ 2.

In an acknowledgement-based protocol, the actions of player i at time t
depend only (a) on her personal history �hi,t−1 and (b) on whether she is pend-
ing or not at t. Let �f = (f1, f2, . . . , fn) be a tuple of acknowledgement-based
protocols (not necessarily anonymous) for the n players. For a (finite) positive
integer τ∗, and a given history hi,τ∗ = (ai,1, ai,2, . . . , ai,τ∗), define for player i
the protocol

gi = gi(hi,τ∗) �
{

(Pr{Xi,t = ai,t} = 1, Pr{Xi,t �= ai,t} = 0) , for 1 ≤ t ≤ τ∗

fi,t, for t > τ∗.

A personal history �hi,τ∗ is consistent with the protocol profile �f if and only if
there is a non-zero probability that �hi,τ∗ will occur for player i under �f . Protocol
gi(hi,τ∗) is consistent with �f if and only if hi,τ∗ is consistent with �f , and when
clear from the context we write gi instead. We denote the set of all gi’s, that is,
all gi(hi,t)’s for all t ≥ 1, which are consistent with �f , by G �f

i . If fi = f ∀i (i.e. f

is anonymous), then instead of gi and G �f
i we write g and Gf respectively.

Lemma 1 (Equilibrium Characterization 1). Consider a profile �f =
(f1, f2, . . . fn) of acknowledgement-based protocols and a protocol gi = gi(hi,τ∗)
for some τ∗ ≥ 1. The following statements are equivalent:

(i) �f is an equilibrium.
(ii) For every player i ∈ [n],

if gi ∈ G �f
i then C

(�f−i,gi)
i (�h0) = min

f ′
i

C
(�f−i,f

′
i)

i (�h0) = C
�f
i (�h0).

Lemma 2 (Equilibrium Characterization 2 [10]). Consider a profile �f =
(f1, f2, . . . fn) of acknowledgement-based protocols. The following statements are
equivalent:

(i) �f is an equilibrium.
(ii) For every player i ∈ [n],

{
(a) C

(�f−i,gi)
i (�h0) = C

(�f−i,ri)
i (�h0) = C

�f
i (�h0), ∀gi, ri ∈ G �f

i , and

(b) C
(�f−i,gi)
i (�h0) ≤ C

(�f−i,ri)
i (�h0), ∀gi ∈ G �f

i , ri /∈ G �f
i .
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3.2 Acknowledgment-Based FIN-EQ Protocols

Regarding the search for FIN-EQ protocols, there is no straight-forward way for
our equilibrium characterizations (previous subsection) to be used in order to find
an equilibrium protocol. However, they allow us to check whether the protocols
discussed in this subsection are equilibrium protocols. In this subsection we give
FIN-EQ protocols for k = 2 and k = 3. For the detailed proofs see the full
version of the paper.

We define the following anonymous, memoryless protocol for k ≥ 2 channels.

Protocol f k: For player i, every t ≥ 1 and any history �hi,t−1,

fk
i,t =

(
Pr{Xi,t = 0} = 0, Pr{Xi,t = a} =

1
k

, ∀a ∈ K

)
. (1)

n Players - 2 Transmission Channels. Here, we first give an example of a
method for checking equilibria (Theorem 1). Then, with a better approach, by
employing our characterizations of the previous subsection, we prove that f2 is
an equilibrium protocol for n ∈ {2, 3, 4} players and k = 2 channels (Theorem 3).

Lemma 3 ([10]). When all n ≥ 2 players use protocol f2 the expected latency
of any player is 2n/n.

In the next theorem we will give an example of a method for checking whether
a given protocol profile is an equilibrium, which however could be inconclusive in
some cases. Suppose you we want to check whether an arbitrary protocol profile �f
is an equilibrium. By definition of the equilibrium, we can fix all protocols except
player i’s, i.e. �f−i and check if fi is a best response to them, and repeat this for
every player i. By fixing �f−i we create a stochastic environment for player i who
can be considered to be free to take sequential decisions through time. These
decisions correspond to decision rules of fi. Since, due to the feedback limitations,
i has no information about the number of pending players, this situation from
her point of view is modeled as an infinite state Partially Observable Markov
Decision Process (POMDP). fi is a best response to �f−i if and only if fi is
an optimal policy of the POMDP, that is, a set of decisions through time that
minimize her expected latency.

However for this kind of POMDPs there are no known techniques to find an
optimal policy. In order to circumvent this problem, we can assume that player
i is an advantageous player that always knows how many players are pending.
This turns the infinite state POMDP into a finite state Markov Decision Process
(MDP), whose optimal policy we can find through known techniques (e.g. [22]).
One can see that the optimal policy in the MDP of the advantageous player i
yields at most the expected latency of the optimal policy in the POMDP of the
initial player i. Thus, if the best policy in the MDP yields the same expected
latency as what �f gives to i, then we know that fi is a best response; however,
if the best policy of the MDP yields smaller expected latency, then we get no
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information about whether fi is a best response in the POMDP or not. The proof
of the next theorem (see full version of the paper) demonstrates the method and
shows that protocol f2 of (1) is an equilibrium protocol for 3 players.

Theorem 1. For 3 players and 2 channels, f2 is an equilibrium protocol with
expected latency 8/3.

We subsequently exploit the lack of memory and the anonymity of our pro-
tocol f defined in equation (1) and show more general results on equilibria
(Theorem 3), using the characterizations from Subsect. 3.1.

Theorem 2. In a contention game with k = 2 channels, consider an anony-
mous, memoryless protocol of player i with the property: Pr{Xi,t = 0} = 0, for
every t ≥ 1. For more than 4 players any such protocol is not an equilibrium
protocol.

Since protocol f2 belongs to the class of protocols defined in the statement
of Theorem 2, the following corollary is immediate.

Corollary 1 ([10]). For n ≥ 5 players and k = 2 channels, f2 is not an equi-
librium protocol. In fact, a better response for any player is to not transmit in
t = 1 and then follow f2.

Theorem 3 ([10]). For n ∈ {2, 3, 4} players and k = 2 channels, f2 is an
equilibrium protocol with expected latencies 2, 8/3 and 4, respectively.

n Players - 3 Transmission Channels. Here, by employing our charac-
terizations from Subsect. 3.1, we give an acknowledgement-based, equilibrium
protocol for n ∈ {2, 3, 4, 5} players and k = 3 channels.

Theorem 4. For n ∈ {2, 3, 4, 5} players and k = 3 channels, f3 defined in (1)
is an equilibrium protocol with expected latencies 3/2, 15/8, 189/80 and 597/200,
respectively. (See also [10].)

4 Equilibria for Ternary Feedback Protocols

In this section we consider anonymous protocols with ternary feedback, that is,
a pending player knows at every time t the number m ≤ n of pending players.
This knowledge is given to each player regardless of her transmission history.

4.1 Nash Equilibrium Characterization

Here we give a characterization of FIN-EQ protocols for n ≥ 1 players and k = 2
channels in the general history-dependent case for ternary feedback. (For details
on the characterization, see the full version of the paper.)

Theorem 5. There exists an anonymous, history-dependent, equilibrium proto-
col with ternary feedback for n players and 2 transmission channels.

The equilibrium probability that defines the equilibrium protocol, although
guaranteed to exist when expected (future) latencies are finite, is difficult to
be expressed in closed form, if possible at all. For more comments, see the full
version of the paper.
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4.2 History-Independent FIN-EQ Protocols

Let us now consider anonymous, history-independent protocols, that is, protocols
whose decision rules depend only on the number 1 ≤ m ≤ n of pending players.
Now, the decision rule pm of the players does not depend on their transmission
history (and therefore on time as well), hence a player’s expected future latency
Fm does not depend on her transmission history. In this class of protocols the
following theorem fully characterizes the equilibria.

Theorem 6. There exists a unique, anonymous, history-independent, equilib-
rium protocol with ternary feedback for n players and 2 transmission channels,
which is: any player among 2 ≤ m ≤ n remaining players, for every t ≥ 1
attempts transmission to each channel with equal probability pm. This probabil-
ity is Θ( 1√

m
) and yields expected future latency eΘ(

√
m) for every player.

The latter result is analogous to the one in [12] that characterizes anonymous,
history-independent, equilibrium protocols with ternary feedback for the case of
a single channel. However here, the proof methodology is different due to the
fact that the transmission probabilities in equilibrium cannot be expressed in
closed-form, therefore their asymptotic behaviour can only be extracted from a
recurrence relation, which, contrary to the one in [12], is quite complex. Using
dynamic programming, we can compute the equilibrium probabilities in linear
time (for more details see the full version of the paper).

5 IN-EQ Protocols for Both Feedback Classes

Ideally, we would like to find an anonymous, equilibrium protocol that is efficient
(i.e. the time until all players transmit successfully is Θ(n/k) with high proba-
bility) and also has finite expected latency. For the case of ternary feedback and
a single channel such a protocol was found in [12]. That protocol set a deadline
t0 ∝ n after which it prescribed to the players to transmit with probability 1
on the channel at every time. It is easy to see that transmitting surely at every
time is an equilibrium for more than 2 players. The idea of that protocol was
to employ that “bad equilibrium” by putting it after the deadline so as to keep
the players that were unsuccessful until t0 for a very long (exponential in n)
time. This works as a threat to the players, which they try to avoid by adopting
a cooperative behaviour; using a history-dependent, equilibrium protocol they
attempt transmission with probability low enough so that all of them are success-
ful before the deadline with high probability. After the long part of the protocol,
there is a last part that prescribes to the players to use a history-independent,
equilibrium protocol (similar to the one we find for the 2-channel case) which
has finite expected future latency. Since all three parts of the protocol are in
equilibrium, the whole protocol is in equilibrium as well.

However, for the case of multiple channels in both the ternary feedback and
acknowledgement-based feedback classes, a protocol with the above structure
cannot be constructed as the following theorem shows (for the proof see the
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full version of the paper). First, let us define the following notion of equilibrium
protocol: By equilibrium with blocking step (EBS) we call an anonymous, equi-
librium protocol with the property that there exists a time-step of the protocol
in which every pending player has probability of successful transmission equal
to 0.

Theorem 7. In the classes of acknowledgement-based and ternary feedback pro-
tocols with k ≥ 2 channels and n ≥ 2 players, there exists no equilibrium protocol
with blocking step (EBS) and finite expected latency.

This impossibility result discourages the search for multiple-channel protocols
with the additional property of finite expected latency, since the only candidate
that guarantees efficiency seems to be a deadline protocol. Whether no anony-
mous, efficient, equilibrium protocol with finite expected latency can be found
for multiple channels is one of the most interesting open problems that stem
from this work.

In the rest of this section we present IN-EQ protocols within the classes
of acknowledgement-based and ternary feedback for the general case of k ≥ 1
channels and any number of n ≥ 2k+1 players. For this, we employ the deadline
idea introduced in [12] and consequently used in [7,8]. Our protocols are efficient,
even though the expected latency is infinite.

5.1 Acknowledgement-Based Feedback

In the aforementioned companion short paper [10] we provided an efficient dead-
line protocol with infinite expected latency for k ≥ 1 channels and n ≥ 2k + 1
players. This protocol generalizes the efficient protocol of [7] which deals with a
single channel and at least 3 players. The general protocol we present uses their
idea, that is, estimating the number of pending players (since it is not known in
the acknowledgement-based environment) and adjusting the transmission proba-
bilities of the players accordingly, in order to simulate a socially optimal protocol
(see protocol SOP below) that allows all transmission to be successful by time
Θ(n/k) with high probability. Our modification is that, instead of prescribing to
the players to always transmit to the single channel once they reach the deadline
(so that with some positive probability they get blocked forever), we block all
channels with positive probability by prescribing a random assignment of each
player to a channel. The protocol and proof of equilibrium and efficiency can be
found in the full version of the paper.

5.2 Ternary Feedback

Since in the ternary feedback setting the only history-independent equilibrium
from Subsect. 4.2 yields exponential expected latency in the number of players n,
even one player’s latency being any polynomial in n happens with exponentially
small probability. This fact points to history-dependent protocols as candidates
for efficient equilibria. Here, we construct a protocol (Theorem 8) which imposes
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a heavy cost on any player that does not manage to transmit successfully until a
certain deadline-round. This forces any potential deviator to play “fairly” until
the deadline and follow an anonymous, socially optimal protocol, named SOP
(guarantees expected time Θ(n/k) for all players to pass). To prove the main
theorem of this subsection we need a series of technical results, namely the
following three lemma 4, 5, and 6. Lemma 5 shows that protocol SOP is socially
optimal.

Lemma 4. Consider a single round with k ≥ 1 channels and n ≥ 1 players.
Assume that for every player the probability of transmission attempt is z ∈ [0, 1]
which she splits equally to all k channels. Then, the expected number1 of players
that transmit successfully is zn

(
1 − z

k

)n−1.

We define the following anonymous, history-independent protocol which we
prove to be efficient. However, we remark that it is not in equilibrium, due to
Theorem 6 which characterizes the unique, anonymous, equilibrium protocol
that is history-independent.

Protocol SOP:
Every player among 1 ≤ m ≤ n pending players, in each round t ≥ 1
assigns transmission probability 1/max{m, k} to each channel.

Lemma 5. Protocol SOP for k ≥ 1 channels and n > k players has expected
finishing time O((n − k)/k).

In the sequel, by e we denote the constant named “Euler’s number”, i.e.
e = 2.7182 . . . . Using the above lemma we are able to prove the following.

Lemma 6. (a) If at t = 0 there are n pending players, the probability that more
than k players are pending at time t1 = 2e(n − k)/k is at most exp

(−n−k
2ek

)
.

(b) If at t = 0 there are k pending players, the probability that not all players
have transmitted successfully at time t2 = 2e(n−k)/k is at most exp

(−n−k
2ek

)
.

Proof. Let {Yt}t1
t=1 be random variables which indicate the number of successful

transmissions that occur in each time-step from t = 1 up to t1 � 2e(n − k)/k,
given that there are n pending players at time t = 0. For the events for which
Y �

∑t1
t=1 Yt > n − k we have the desired outcome. For the rest, since the

pending players in each round 1 ≤ t ≤ t1 are m > k, the protocol prescribes
to each player probability 1/m on each channel. Therefore, by Lemma 4, we
have E[Yt] = k (1 − 1/m)m−1. In the next claim we show that Yt stochastically
dominates a random variable Zt ∈ {0, 1, . . . , k} that indicates the number of
successful transmissions in round 1 ≤ t ≤ t1 but, in this process, the players
that transmit successfully are placed back to the group of pending players.

Claim. Pr{Yt ≥ x} ≥ Pr{Zt ≥ x}, for all x ∈ {0, 1, · · · , k}.
1 We define 00 = 1..
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Proof. We will prove the above claim by showing the stronger fact that, for any
fixed number 1 ≤ m ≤ n − 1 of pending players at time t,

Pr{Yt ≥ x | m pending players} ≥ Pr{Yt ≥ x | m + 1 pending players},

for all x ∈ {0, 1, · · · , k}.
Indeed, by substituting the probabilities of the above inequality we get,

(
m

x

)
x!

(
1
m

)x (
1 − x

m

)m−x

≥
(

m + 1
x

)
x!

(
1

m + 1

)x (
1 − x

m + 1

)m+1−x

,

or equivalently, (m + 1)m(m − x)m−x ≥ mm(m − x + 1)m−x,

and finally,
(

1 +
1
m

)m

≥
(

1 +
1

m − x

)m−x

,

which is true, since the function f(w) = (1 + 1/w)w is strictly increasing. The
claim follows from the fact that for any fixed x ∈ {0, 1, · · · , k},

Pr{Zt ≥ x} = Pr{Yt ≥ x | n pending players}.


�
Clearly {Zt}t1

t=1 are independent random variables bounded in [0, k]. Let Z �∑t1
t=1 Zt and μ1 � E[Z] =

∑t1
t=1 E[Zt] = t1k (1 − 1/n)n−1. Then by Hoeffding’s

inequality [16] and the stochastic domination we have,

Pr(Y ≤ n − k) ≤ Pr(Z ≤ n − k) = Pr

(
Z ≤ μ1

2e (1 − 1/n)n−1

)
≤ Pr

(
Z ≤ μ1

2

)

≤ exp

(
− (1 − 1/2)2μ2

1

t1(k − 0)2

)
≤ exp

(
−1

4
t1
e2

)
= exp

(
−n − k

2ek

)
,

where in the last three inequalities we used the fact that (1 − 1/n)n−1 ≥ 1/e.
For the second part of the proof, suppose the process is at round t = 0

with k pending players. Let {Xt}t2
t=1 be random variables which indicate the

number of successful transmissions that occur in each time-step from t = 1
up to t2 � 2e(n − k)/k, given that there are k pending players at time t = 0.
The pending players in each round 1 ≤ t ≤ t2 are m ≤ k, hence the proto-
col prescribes to each player probability 1/k on each channel. By Lemma 4, we
have E[Xt] = m (1 − 1/k)m−1. Now, observe that Xt stochastically dominates
a random variable Wt ∈ {0, 1, . . . , k} that indicates the number of successful
transmissions in round 1 ≤ t ≤ t2 but, in this process, the players that transmit
successfully are placed back to the group of pending players. The latter observa-
tion is easy to see since an argument similar to the Claim that was stated earlier
holds in this case.
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Clearly, {Wt}t2
t=1 are independent random variables bounded in [0, k]. Let

W �
∑t2

t=1 Wt and μ2 � E[W ] =
∑t2

t=1 E[Wt] = t2k (1 − 1/k)k−1. Then by
Hoeffding’s inequality [16] and the stochastic domination we have,

Pr(X ≤ k − 1) ≤ Pr(W ≤ k) = Pr

(
W ≤ μ2k

2e(n − k) (1 − 1/k)k−1

)

≤ Pr
(
W ≤ μ2

2

)
≤ exp

(
− (1 − 1/2)2μ2

2

t2(k − 0)2

)
≤ exp

(
−1

4
t2
e2

)

= exp

(
−n − k

2ek

)
,

where in the last three inequalities we used the fact that (1 − 1/k)k−1 ≥ 1/e,
and n ≥ 2k + 1. This completes the proof of the lemma. 
�

We define the following anonymous protocol. In the next theorem we show
that it is an equilibrium protocol and also that it is efficient.

Protocol r:
Let the deadline be t0 = 4e(n − k)/k. Every player among 1 ≤ m ≤ n
pending players for 1 ≤ t ≤ t0 − 1 assigns transmission probability
1/max{m, k} to each channel. Right before t0 each pending player is
assigned to a random channel equiprobably, and for t ≥ t0 always
attempts transmission to that channel.

Theorem 8. Protocol r for n ≥ 2k+1 players and k ≥ 1 channels is an efficient,
equilibrium protocol.

Proof. First, we show that it is an equilibrium protocol when n ≥ 2k + 1. The
expected latency of a player using protocol r is ∞. That is because there is
an event with positive probability in which some player i finds herself in an
equilibrium where at least 2 of the other players have been assigned to each and
all of the k channels and transmit there in every time slot. In particular, with
probability at least k( 1

n )t0−1 > 0 all players will be pending right after t0 − 1.
Given this, with probability

(
n−1

2,2,...,2,n−1−2k

)
( 1

k )n−1 > 0 exactly 2 out of n − 1
players will be assigned to each of the k − 1 channels and the remaining players
(including player i), which are at least 3, are assigned to the remaining channel.
Therefore, the aforementioned two events occur with positive probability, and
then for player i all channels are blocked for every t ≥ t0, resulting to infinite
latency. Hence, the expected latency of a player using protocol r is ∞.

Now suppose that player i unilaterally deviates to some protocol r′. The
event that all players are pending right before t0 remains non-empty, since the
event that all players transmit on the same channel as i for every 1 ≤ t ≤ t0 − 1
happens with positive probability. Given that, the event that at least 2 of the
players other than i will be assigned to each channel happens with positive
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probability. Therefore, the deviator’s expected latency remains ∞ and r is an
equilibrium protocol.

Finally, we will show that, when n ∈ ω(k), this protocol is also efficient, i.e.
the time until all n players transmit successfully is linear in n/k with probability
tending to 1 as n

k → ∞. By Lemma 6, the probability that not all players have
successfully transmitted by time t1 + t2 = 4e(n − k)/k is at most exp

(−n−k
2ek

)
+

exp
(−n−k

2ek

)
= 2exp

(−n−k
2ek

)
. Therefore, when n ∈ ω(k), no player is pending

after 4e(n − k)/k rounds with high probability. 
�
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Abstract. We introduce the problem of augmenting graphs with sub-
linear memory in order to speed up replies to queries. As a concrete
example, we focus on the following problem: the input is an (unparti-
tioned) bipartite graph G = (V, E). Given a query q ∈ V , the algorithm’s
goal is to output q’s color in some legal 2-coloring of G, using few probes
to the graph. All replies have to be consistent with the same 2-coloring .
We show that if a linear amount of preprocessing is allowed, there is
a randomized algorithm that, for any α, uses O

(
m
α

)
probes and Õ(α)

memory, where m is the number of edges in the graph. On the nega-
tive side, we show that for a natural family of algorithms that we call
probe-first local computation algorithms, this trade-off is optimal even
with unbounded preprocessing.

We describe a randomized algorithm that replies to queries using

Õ
(√

n
Φ2

)
probes with no additional memory on regular graphs with con-

ductance Φ (n is the number of vertices in G). In contrast, we show
that any deterministic algorithm for regular graphs that uses no mem-
ory augmentation requires a linear (in n) number of probes, even if the
conductance is the largest possible. We give an algorithm for grids and
tori that uses a sublinear number of probes and no memory. Last, we
give an algorithm for trees that errs on a sublinear number of edges (i.e.,
a sublinear number of edges are monochromatic under this coloring) that
uses sublinear preprocessing, memory and probes per query.
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1 Introduction

We consider a fundamental scenario in the analysis of big graphs, in which we
would like to implement query access to parts of a solution to a combinatorial
problem on some graph G. Consider for example, the maximum matching prob-
lem. In order to detect the structure of a solution, we would like to be able to
query every vertex for an incident edge (if any) that belongs to an optimal (or
approximately optimal) solution. In the classical model of algorithmic analysis,
this task can be solved using global computations, by running an algorithm that
takes as its input the entire graph, performs some computations, and returns the
output. For massive graphs such an approach is not feasible—just reading the
entire input may be too costly. In this paper, we consider the scenario where in
order to answer the query, we have only local access to the input: we have probe
access to G and some additional, strictly limited amount of auxiliary memory at
our disposal. A probe1 specifies a vertex v and a port number p, and the reply
to the probe is the ID of v’s pth neighbor, and its degree. To measure the quality
of performance of our algorithms, we consider four parameters:

– the number of probes made to the graph per query (which also serves as a
proxy for runtime),

– the size of the additional auxiliary memory,
– the preprocessing time, and
– the quality of the solution.

Specifically, the focus of this work is the trade-offs between these four parameters.
Our main goal is to study local algorithms that use only very limited additional
resources (either sublinear or no additional auxiliary memory) and implement
fast replies to queries used in the analysis of big graphs.

2-Coloring Bipartite Graphs. To make our study more precise, we focus on a
concrete, representative problem: 2-coloring a bipartite graph. Given a graph
G = (V,E), and a coloring of the vertices c : V → {red, blue}, we say an edge
(u, v) ∈ E is monochromatic if c(u) = c(v).

Given an uncolored graph G = (V,E), |V | = n, |E| = m, that is known to
be bipartite, the goal is to design an algorithm A that has probe access to the
graph G, takes queries of the form q ∈ V and outputs a color c(q) ∈ {red, blue},
such that the following properties hold:

1. the coloring c = 〈c(v) : v ∈ V 〉 induces at most εm monochromatic edges;
2. A uses at most k probes per query;
3. A uses at most α words of (auxiliary) memory;
4. A uses little or no preprocessing.

Naturally, we would like ε, k, and α to be as small as possible. If ε = 0, then we
say the algorithm A is exact.
1 Feige et al. [9], differentiate between strong and weak probes. Our definition of probe

is consistent with their definition of weak probe, which is also the definition of probes
used in the context of property testing by Goldreich and Ron [14] and others.
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Isn’t 2-Coloring a Bipartite Graph Trivial? To see the difficulty of this scenario,
let us first consider the case that we want ε = 0, and G is an n-vertex cycle,
with vertex IDs taking the values {1, 2, . . . , n}. Assume the reply to the first
queried vertex is red, and the next queried vertex is “on the other side” of
the cycle. We can clearly not hope to give the correct color with o(n) probes
per query, regardless of how much memory we have. This example shows the
main challenge in designing good algorithms in our setting: how to coordinate
local computations to establish global properties of the input graph, to maintain
consistent local information.

The problem we have posed naturally falls in the framework of local compu-
tation algorithms (LCAs), as introduced by Rubinfeld et al. [32] (see Sect. 2 for
a formal definition). This work differs from previous work on LCAs, see, e.g.,
[8,17,23,25], in several ways:

1. We (sometimes) allow a preprocessing stage in which the LCA can write to
the auxiliary memory. If this stage is short enough (i.e., uses a small enough
number of probes) we can incorporate it into the algorithm’s first query.

2. We use the auxiliary memory to store additional information about the graph.
In previous work the auxiliary memory was used exclusively to store a random
seed that is needed for consistency in randomized LCAs, see, e.g., [9,26,31].

3. We allow our algorithms to use new random bits in every query. This could
potentially lead to different results for the same query if different random bits
are used; we ensure that this can not happen.

We note that the new features of LCAs that we use are not disallowed by
previous definitions, they have just not been used previously. We discuss this
further in Sect. 2.

1.1 Results

We begin with a simple algorithm that exploits the use of linear-time prepro-
cessing.

Theorem 1. There exists an exact 2-coloring algorithm that, for any α > 0
and any bipartite graph G = (V,E), uses O(m + n) preprocessing probes, α log n
words of memory and performs O

(
m
α

)
probes per query w.h.p.

The idea behind Theorem 1 is straightforward: if a linear amount of prepro-
cessing is allowed, we use BFS to color each connected component of the graph,
and then store a randomly selected set of vertices S along with their color. When
given a query q, the algorithm performs a BFS from the queried vertex. We show
that the BFS either finds a vertex of S or the entire connected component of q
is processed, and it is easy to color q in both cases.

Theorem 1 shows that with sufficiently long (linear-time) preprocessing, there
is an efficient exact 2-coloring LCA. If the input is large, however, even linear
preprocessing may be infeasible in many scenarios. Our main focus in this paper
is therefore on the case when little to no preprocessing is allowed.

Our main technical result is a lower bound that serves to complement The-
orem 1.
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Theorem 2. For any α > 0, k ≥ 0, and n ≥ (k + 2)α + 2, there is no deter-
ministic probe-first LCA for exact 2-coloring of even-length cycles of length n
that uses at most k probes per query and less than α bits of memory, even with
unbounded preprocessing.

Theorem 2 holds for a natural family of LCAs: deterministic probe-first LCAs.
Probe-first LCAs are the ones whose probes are independent of the memory: the
LCA first performs its probes and only then consults the memory. While the
memory may provide useful information, it does not provide any encoding of the
graph itself. All of the LCAs in this paper can be thought of as probe-first LCAs,
and indeed, we are not aware of any deterministic LCA in the literature that is
not (or cannot be formulated as one). The randomized LCAs in the literature
read the memory to obtain the random seed, and so are not technically probe-
first LCAs; we remark upon this further in Sect. 2.

We then consider what can be done without any auxiliary memory. We give
algorithms for regular graphs with high conductance and for grids (grids have
low conductance) that require no preprocessing and no memory. The high level
description of both algorithms is similar: given the queried vertex q, we find a
path from q to some predetermined vertex (in our case, we choose the vertex
with ID 1), whose color is set to be red. If the path between q and 1 is of
even length, we color q red, otherwise we color it blue. On regular graphs with
high conductance, we perform two random walks, one from q and one from 1,
until they intersect. On grids, we show how to efficiently construct a hyperplane
containing q and 1-dimensional paths from vertex 1; we use their intersection to
find the path. The results on grids immediately apply to tori as well.

For regular graphs that have constant conductance, we give a lower bound
of Ω(n) probes for deterministic algorithms to complement the upper bound
of Õ(

√
n) (where n is the number of vertices), showing that randomization is

necessary to obtain algorithms with small probe complexity for this problem on
graphs with high conductance (we use Õ to hide logarithmic dependencies). We
use complete bipartite graphs to prove our lower bounds; these graphs have the
largest conductance of all the bipartite graphs.

Theorem 3. There exists a randomized exact 2-coloring algorithm of connected
regular bipartite graphs with conductance Φ that uses no preprocessing, no mem-
ory, and performs O

(√
n log2 n

Φ2

)
probes per query w.h.p.

Theorem 4. There is no deterministic algorithm for exact 2-coloring of com-
plete bipartite graphs that uses no memory and fewer than n

4 probes per query.

Theorem 5. There exists a deterministic exact 2-coloring algorithm for r-
dimensional grids with no preprocessing and no memory that performs
O

(
rn( r−1

r )
)
probes per query.

Our results for grids and graphs with large conductance implicitly use the
fact that these graphs have (relatively) small diameter. What if the diameter is
unbounded?

For the special family of trees, we show the following.
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Theorem 6. For any α > 0, there exists a 2-coloring algorithm for trees with
O(α) preprocessing and O(α) memory that performs O

(
n log n

α

)
probes per query

with probability 1 − 1
poly(n) with at most α − 1 monochromatic edges.

We summarize our results in Table 1.

Table 1. Summary of results—n is the number of vertices; m is the number of edges
in the input graph. “det.” means the bound holds for deterministic algorithms.“det.
pf.” means the bound holds for deterministic probe-first algorithms.

Graph type Preproc.
time

Memory Probes Failure
probabilitya

Monoch.
edges

General O(m + n) α logn O (m/α) 1/poly(n) 0 Theorem1

Cycle (det. pf.) any α (bits) Ω (n/α) 0 0 Theorem2

Expander 0 0 Õ(
√

n) 1/poly(n) 0 Theorem3

Expander (det.) 0 0 Ω(n) 0 0 Theorem4

r-dim grid 0 0 O

(
rn

(
r−1

r

))
0 0 Theorem5

Tree O(α) O(α) Õ(n/α) 1/poly(n) α − 1 Theorem6
aThe probability that the LCA performs more than the allotted number of probes.

1.2 Lower Bound Proof Technique

The main technical contribution of this paper is a new technique for proving
lower bounds for LCAs. In Sect. 2.2, we give a concise description of (determin-
istic) LCAs: any LCA can be viewed as a set of functions that map replies to
previous probes to a new probe. In order to prove that any LCA for a problem
requires x, we explicitly construct an adversarial family of graphs for every LCA
A. The graph family is such that A gives the same reply for each member of
this family after x probes, while it should give different replies. We are able to
explicitly describe the family of graphs using the description and notation of
Sect. 2.2. We use this technique to prove both of the lower bounds in this paper
– Theorems 2 and 4.

1.3 Related Work

If preprocessing is allowed, our model is similar in spirit to graph sparsifiers,
see, e.g., [5,12,35], in particular graph spanners [4,10,29]: given a connected,
edge-weighted graph G = (V,E), a spanner is a sparse subgraph H of G that
approximately preserves all pairwise distances. A spanner can be thought of as
adding some auxiliary information to the graph: which edges of G are in H. This
additional information allows for saving in query reply time. Spanners are useful
in routing [30,37], by allowing for small routing tables, and in distance oracles
[6,36,38]. For example, Chechik [6] shows that it is possible to augment a graph
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with O(kn1+1/k) bits of memory, such that it is possible to reply to queries of the
form “what is the distance between u and v?” in time O(1), where the reply is a
2k − 1 approximation to the real distance. The two main conceptual differences
between this work and the previous work on spanners are (1) we are interested
in performing only sublinear or even no preprocessing (all of the above works use
preprocessing that is polynomial in the input size), and (2) we wish to augment
the graph with sublinear memory.

Rubinfeld et al. [32] formally introduced the LCA model, though several
well studied models fit within the framework. For example, local reconstruction
[1,33]: given access to a function g that is close to having a certain property
(e.g., monotonicity) the goal is to reply to a query x with some value f(x) such
that f is close to g, using few probes to g. Locally decodable codes e.g., [18,39]
allow the decoding of part of a code without decrypting it in its entirety. In
the past few years, many papers have studied LCAs for maximal independent
set (e.g., [3,13]), maximal and approximate maximum matching (e.g., [23,27])
and coloring (e.g., [8,11]). Most of the work has been on bounded degree graphs;
recently Feige et al. [9] considered LCAs on graphs of unbounded degree, employ-
ing sparsification techniques to obtain LCAs for weak coloring and approximate
maximum matching. London et al. [24] showed how to apply LCAs to convex
optimization to obtain distributed algorithms for e.g., network utility maximiza-
tion, that are robust to link failures. Levi et al. [21,22] and Lenzen and Levi [20]
describe LCAs that reply to queries of the form “is this edge in a sparse spanner
of G?”

A main difference between LCAs and distributed algorithms in the LOCAL
model (in which vertices can only communicate with their neighbors; see, e.g.,
[28]) is that LCAs are allowed to use remote probes—probes to vertices that were
neither given as the query nor received as a reply to a probe. Göös et al. [16] show
that for certain problems, remote probes do not help. We use remote probes in
our LCAs for regular graphs and tori; Levi et al. [23] use remote probes to find
a good random seed for their approximate matching LCA. We are unaware of
other LCAs that use remote probes.

Graph 2-coloring has been used as a benchmark in the area of property testing,
where a large body of work has been devoted to testing bipartiteness, see, e.g.,[7,
14,15,19]. Property testing differs conceptually from this line of work in that we
are guaranteed that the input is bipartite and our goal is to provide local evidence
of this fact. Testing for bipartiteness typically involves sampling a subgraph and
coloring it; it is not clear whether it is possible to adapt these testers to LCAs,
while ensuring the consistency of the coloring. It is interesting to extend the
results of the paper to graphs that are only guaranteed to be “almost” bipartite.

2 Preliminaries

We denote the set of integers {1, 2, . . . , n} by [n]. Logarithms are natural. Our
input is a simple undirected bipartite graph G = (V,E), |V | = n, |E| = m, in
which each vertex has a unique ID in [n]. The neighborhood of a vertex v, denoted
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by N(v), is the set of vertices that share an edge with v: N(v) = {u : {u, v} ∈ E}.
The degree of a vertex v is denoted by dv = |N(v)|.

We think of each vertex v as having dv ports, 1, 2, . . . , dv, where dv is v’s
degree. Each of v’s neighbors is connected to v via a single unique port. There
are two probe models for LCAs: strong and weak [9]. A strong probe is given
a vertex ID v and returns a list of all neighbors of v. A weak probe is given a
vertex ID v and a port number i, and returns v’s ith neighbor u and u’s degree.
In this paper we focus on weak probes. We remark that it is easy to adapt all of
our algorithmic results to the strong probe model, and that Theorem2 holds in
the strong probe model as well.

2.1 Local Computation Algorithms

We define LCAs as follows (cf. [32]).

Definition 1 (Local computation algorithm (LCA)). A p(n)-probe s(n)-
memory local computation algorithm A for a computational problem is an algo-
rithm that receives an input of size n. Given a query, A makes at most p(n)
probes to the input in order to reply. A is allocated a memory of s(n) words in
addition to the memory required to reply to each query. A must be consistent;
that is, the algorithm’s replies to all possible queries must combine into a single
feasible solution to the problem.

If the LCA is randomized, it also has a failure probability δ(n), which is the
probability per a single query that A uses more than p(n) probes.

Our definition of LCAs is subtly different from earlier definitions considered
in the literature. The main differences are the following:

1. We allow the LCA to write on the auxiliary memory. Although not explicitly
disallowed in most previous work, the enduring memory has thus-far (see,
e.g., [3,23,26,27,31]) only been used for storing a random seed.

2. The randomness we use does not need to be identical between queries. In
previous work, randomized LCAs fix their randomness before the first query;
thereafter, they behave deterministically: if the same query is given several
times, the LCA performs exactly the same steps each time. In this work, we
allow LCAs to perform different actions if the same query is given.

Regarding the second point, we note that we do not allow the LCA to reply
“fail”, or return an arbitrary color if too many probes are used. The replies to
all probes must be consistent with the same solution, and this implies that the
replies to the same query must be the same, even though the LCA may reach the
same result in a different way. An LCA fails if it exceeds the number of probes it
is allowed to make (in this case the LCA still performs the number of probes it
needs to obtain the required solution). In contrast to previous work, our failure
probability is per single query and not over all possible queries. This is because
the number of possible queries is bounded by the input size in previous works,
whereas here it is unbounded. Furthermore, as we do not need all queries to use



188 A. Czumaj et al.

the same randomness, we do not need to reason about random seeds; we simply
assume that all nodes have access to (sufficiently many) random bits. Note that
this is a weaker requirement than access to a shared random seed, and it is easy
to extend our results to a shared pseudorandomness, similarly to e.g., [31].

Definition 2 (Probe-first LCAs). Probe-first LCAs are LCAs whose choice
of probes is not a function of the memory content. In other words, the LCA first
performs the probes and only then accesses the memory.

There are several properties of LCAs that are usually considered to be desir-
able (cf. [8,32]):

1. Query-obliviousness: the replies to different queries do not depend on the
order in which the queries are presented to the LCA.

2. Parallelizability.

All of the LCAs in this paper possess these two properties. In the following
Subsect. 2.2, we discuss a method of describing LCAs that will be later found
useful for the proofs of Theorems 2 and 4.

We sometimes allow preprocessing. In that case, we measure the complexity
of this phase using the classical notion of running time. Note that this is trivially
an upper bound to the number of probes performed in this stage.

2.2 A Concise Description of LCAs

For the purposes of the description, assume that we have a deterministic probe-
first LCA that uses exactly k probes per query and α words of memory (which
we sometimes call a key); it is easy to extend the notation to the case when
the LCA is allowed to use at most k probes. A probe is of the form “who is the
neighbor at port p of vertex v?” and is represented by a pair (v, p), v ∈ V, p ∈ [Δ],
where Δ is the maximal degree of the input graph G = (V,E). The reply to a
probe is a vertex ID u and u’s degree. We assume for simplicity for the rest of
this subsection that the graph is d-regular, and the reply to a probe is only a
vertex ID. It is straightforward to extend the notation to non-regular graphs.
An LCA is also allowed to write to the memory and can have a pre-processing
stage. As we do not use these in the proofs, we omit both of these aspects from
the notation.

The LCA consists of a set of functions f1
v , . . . , fk

v : v ∈ [n] that map sets of
IDs (a history of replies to previous probes) to an ID and a port number:

f i
v : V i → V × [d].

The LCA includes one more set of functions that map the key and the history
of replies to all k probes to a color:

fk+1
v : Lα × V k → {red, blue},

where L is the set of all possible words.
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We give an example of a (hypothetical) LCA using this notation. Let A be an
LCA that is defined on cycles on the vertex set {1, 2, . . . , 9}. A does some prepro-
cessing on the graph and writes 2 words of memory before the first query is given.
When A is given a query, it performs 3 probes, accesses the memory and decides
on a color for the queried vertex. For readability, instead of denoting the port
numbers by the set {1, 2}, we denote them by {clockwise, anticlockwise}.

We do not give the entire LCA in this form, as this would require at least
9!/5! probe descriptions (there are 9 possible queries, the reply to the first query
is one of the 8 vertices that were not queried, and so on). Instead, we give a
small sample of the description of A.

When A receives vertex ID 1 as a query, it probes vertex 1’s anticlockwise
neighbor:

f1
1 = 〈1, anticlockwise〉.

If it receives as a reply that 1’s anticlockwise neighbor is 2, it probes vertex 1’s
clockwise neighbor next. If it receives as a reply that 1’s anticlockwise neighbor
is 3, it probes 6’s anticlockwise neighbor next (this is a remote probe, as A has
not encountered vertex 6 yet):

f2
1 (2) = 〈1, clockwise〉

f2
1 (3) = 〈6, anticlockwise〉.

For the last probe example:

f2
1 (2, 3) = 〈3, clockwise〉

means that given that the replies to the previous two queries were 2 and 3, we
next probe vertex 3’s clockwise neighbor.

Finally,
f4
1 ((0, 0), (2, 3, 9)) = red

means that if the replies to the three probes were 2, 3, 9 and the key is (0, 0),A
colors vertex 1 red. Note that f4

1 ((1, 0), (2, 3, 1)) = red, while syntactically cor-
rect, is impossible for this particular LCA, as 1 cannot be 3’s clockwise neighbor
because it is 2’s clockwise neighbor. We allow “impossible” histories, to simplify
the notation and proof.

This interpretation can be extended in the natural way to general (not probe-
first) LCAs, by having the key as part of the input to all of the functions.

2.3 Breadth First Search

Several of the LCAs herein use Breadth-First Search (BFS). During its execution,
the BFS algorithm maintains a data structure that contains so called “gray”
vertices—vertices that have been encountered, but whose neighbors have not yet
been probed. At any time, the vertices in the data structure are all at distance i
or i+1 from the root of the BFS tree, for some i. In the generic BFS description,
when it “pops” a new vertex from the data structure, it arbitrarily chooses one
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of the vertices at distance i. For consistency, we always break ties by ID; that
is, our BFS always chooses the vertex at distance i with the lowest ID. The
tie breaking with respect to the ports is done similarly: earlier neighbors in the
adjacency list are chosen first.

3 Connected General Graphs with Preprocessing

We begin with a simple result that shows that with linear preprocessing, there is
an LCA for 2-coloring of arbitrary connected bipartite graphs that uses k probes
and α words of memory such that kα = Õ(m).

Theorem 1. For any α > 0, and any bipartite graph G = (V,E), there exists
an exact 2-coloring LCA for G that uses O(m + n) preprocessing probes, α log n
words of memory and performs O

(
m
α

)
probes per query w.h.p.

Proof. Let G = (V,E) be a bipartite graph. In the preprocessing stage, 2-color
G arbitrarily. This can be done using O(m + n) probes using BFS on each
connected component. Uniformly at random, choose a set E′ ⊂ E of α log n
edges. Set S = {u : (u, v) ∈ E′}; in other words, for each edge in E′, arbitrarily
choose an endpoint and denote the chosen vertices by the set S. Save the ID and
color of the vertices in S to memory.

For any queried vertex q, perform BFS until either (1) some vertex s ∈ S is
encountered, or (2) q’s entire connected component is discovered. If (1) occurs,
color q according to the parity of a path between q and s. If (2) occurs, color
the vertex with the smallest ID in q’s connected component red, and color q
accordingly. It is easy to see that this is a proper 2-coloring LCA.

To show that at most k probes are used w.h.p., we consider two cases: If q’s
connected component has at most k edges, then clearly at most k probes are
used, whether a vertex s ∈ S is encountered or not. If q’s connected component
has more than k edges, the probability that no vertex s ∈ S is encountered after
k probes is at most the probability that no edge of E′ is traversed:

k−1∏

i=0

(
1 − α log n

m − i

)
≤

(
1 − α log n

m

)k

.

Setting k = O(m
α ) gives that this probability is at most e−Ω(log n).

Remark 1. Although the result and proof are for randomized LCAs, the result
also holds for deterministic LCAs, albeit with a worse time bound on the time
used by the preprocessing stage (naturally the number of preprocessing probes
is the same): if α log n “good” edges can be selected at random, they can clearly
also be selected deterministically.
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4 Lower Bound for Probe-First LCAs

In this section we consider deterministic probe-first LCA for exact 2-coloring (cf.
Definition 1) and prove the following main result:

Theorem 2. For any α > 0, k ≥ 0, and n ≥ (k +2)α+2, there is no determin-
istic probe-first LCA for exact 2-coloring of even cycles of length n that uses at
most k probes per query and less than α bits of memory, even with unbounded
preprocessing time.

4.1 Summary of Proof

The high level idea of the proof is the following: assume that there exists an
LCA A that uses k probes per query and α−1 bits of memory and can correctly
color all vertices of an n vertex graph. We build a family of 2α graphs for which
A makes the same k probes and receives the same replies when queried on the
vertices 1, . . . , α. We use these graphs to encode strings in {0, 1}α. Specifically,
let {s1, . . . , s2α} denote the set of all strings {0, 1}α. We construct 2α graphs
G(s1), . . . , G(s2α) such that for all i ∈ [α], the color of vertex i in G(sj) is blue
iff sj(i) = 1. Alice is then given a graph, corresponding to a string s, and sends
α−1 bits to Bob. By the assumption that the LCA can color the vertices 1, . . . , α
correctly, we get that Bob can recover s. This is true as Bob already knows the
replies to all of the probes the LCA would make, and only needs the α−1 bits to
decide the colors of 1, . . . , α. But if this is true, we will have given a protocol for
encoding α bits of information using α−1 bits, which is information-theoretically
impossible. Hence no such LCA can exist.

4.2 Proof of Theorem2

Proof. Assume there is a probe-first LCA A for bipartite 2-coloring even cycles
on n = (k + 2)α + 2 vertices that uses (at most) k probes per query and α − 1
bits of memory. For simplicity, we assume that k is even; the proof can easily
be tweaked to accommodate odd k. Note that each vertex on the cycle has two
ports: 0 and 1. For a line segment I = (v1, v2, . . . , vm), we call v1 the first vertex
of I and vm the last. Vertices v2, . . . , vm−1 have both ports allocated and v1 and
vm only have one port allocated.

Constructing the Segments. We use A to construct a set of α + 1 line segments
as follows. Initialize the segments I1, . . . , Iα+1 to consist of vertices 1, . . . , α + 1
respectively (i.e., each segment starts off as a single vertex). Set Ψ = [n] \
{1, 2, . . . , α+1}, the set of vertices that have not yet been assigned. We simulate
A for the queries 1, . . . , α. Whenever A probes 〈y, p〉, i.e., port p of vertex y, do
the following.

1. If y ∈
α+1⋃

j=1

Ij and port p of y has been assigned, do nothing.
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2. If y ∈
α+1⋃

j=1

Ij and port p of y has not been assigned, choose some z ∈ Ψ , assign

z to port p of y, assign y to some port of z, and remove z from Ψ .

3. If y /∈
α+1⋃

j=1

Ij , choose the last vertex z ∈ Iα+1, assign z to port p of y and

assign y to an available port of z.

After simulating k probes for queries 1, . . . , α, we have a set of α+1 line segments.
Denote this set by I. Note that given I,A can perform all of the probes when
queried on the vertices 1, . . . , α.

If |I| is odd, add α + 1 integers from Ψ to I, otherwise add α integers from
Ψ . We call these vertices auxiliary vertices, and we shortly explain precisely how
they are added to I. Note that |I| is now even. Then add to I the remaining
(k+2)α+2−|I| vertices in Ψ , to ensure that I has exactly (k+2)α+2 vertices.
We call these vertices leftover vertices, and shortly explain how these are added
to I as well.

Lemma 1. After the addition of the auxiliary vertices, I contains at most (k +
2)α + 2 vertices.

Proof. After the initialization of the segments, |I| = α + 1. We perform αk
probes, each one removes at most 1 vertex from Ψ , for a total of α + 1 + kα.
After adding at most α + 1 auxiliary vertices to I, I has at most (k + 2)α + 2
vertices.

Connecting the Segments. Before adding the auxiliary and leftover vertices, there
are α + 1 segments I1, . . . , Iα, Iα+1, such that Ii contains vertex i. For every
i ∈ [α], we allow Ii and Ii+1 to be joined in two ways:

1. By connecting the last vertex in Ii directly to the first vertex of Ii+1.
2. By connecting the last vertex in Ii and the first vertex of Ii+1 to an auxiliary

vertex.

After these segments are connected, the last vertex of Iα+1 is connected to the
first vertex of I1, using the remaining auxiliary and all of the leftover vertices as
intermediaries. This completes the cycle, and ensures all cycles have the same
number of vertices. The α choices of inserting or not inserting an auxiliary vertex
between Ii and Ii+1, i ∈ [α] describe the 2α possible graphs that we can construct
in this fashion from the α + 1 intervals.

Encoding the String. We show how to construct the graph G(x) that encodes
the string x = x1x2 . . . xα. Note that the graph is a function of A and x.

Set xα+1 = 0. For all i ∈ [α], if connecting the last vertex of Ii and the first
vertex of Ii+1 results in the path between i and i + 1 being of even length, and
xi 
= xi+1, add an auxiliary vertex between Ii and Ii+1, otherwise connect them
directly. Similarly, if connecting the last vertex of Ii and the first vertex of Ii+1
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results in the path between i and i + 1 being of odd length, and xi = xi+1, add
an auxiliary vertex between Ii and Ii+1, otherwise connect them directly.

Finally, connect the last vertex of Iα+1 to the first vertex of I1, using the
remaining auxiliary and leftover vertices, completing the cycle.

This cycle encodes x, because vertex i is an odd number of vertices away
from vertex α + 1 if and only if xi = 1, hence a 2-coloring of the graph that
assigns vertex α + 1 the color red, will assign all vertices i such that xi = 0 the
color red and all vertices i such that xi = 1 the color blue.

Set |I| = n. We have shown a construction of 2α different graphs {G(x) :
x ∈ {0, 1}α}, each of length n, for which A performs the same probes, and gets
the same replies thereto, when queried on vertices 1, . . . , α, but there are no two
graphs G(x) 
= G(x′) for which it colors all the vertices 1, . . . , α identically.

The Protocol. We are ready to give the one-way (α−1)-word protocol for encod-
ing an α-word string x.

Alice is given x (or G(x) - they are isomorphic) and sends an (α − 1)-word
encoding of G(x) to Bob. Bob knows the replies to the probes that the LCA
A would make when queried on vertices 1, . . . , α. The LCA, having the replies
to the probes, can use the key to correctly color all the vertices 1, . . . , α by the
assumption that A is a 2-coloring LCA for even-length cycles of length n. But
from this coloring, it is easy to decode x. Therefore such an LCA implies an
encoding protocol for α bits using α − 1 bits, a contradiction.

5 LCAs for Regular Graphs (No Preprocessing, No
Memory)

In this section, we will consider exact 2-coloring LCAs for arbitrary (connected)
regular graphs that have no preprocessing, use no auxiliary memory (stored
between the queries), and so the goal is to optimize the number of probes per
query. We show in Subsect. 5.1 that for graphs with conductance Φ, one can
design an LCA that requires only O

(√
n log2 n

Φ2

)
probes w.h.p. We note that Φ is

assumed to be an input to the LCA; it is easy to verify that an approximation to
Φ suffices. In Subsect. 5.2, we show that even when the conductance is the best
possible (i.e., on a complete balanced bipartite graph), any deterministic exact
2-coloring that uses no preprocessing and no memory requires Ω(n) probes.
This proves a separation between randomized and deterministic algorithms for
regular bipartite graphs with a large (constant) conductance and shows that
randomness is indeed necessary for obtaining a sublinear probe complexity if no
auxiliary memory is used.

5.1 Upper Bound

We design a randomized exact 2-coloring that uses no preprocessing and no
memory, and characterizes the number of probes used as a function of the con-
ductance of the graph. Let A be the adjacency matrix of G such that au,v = 1
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iff (u, v) ∈ E, and let a(S) =
∑

u∈S,v∈V

au,v. The conductance Φ of an undirected

graph G = (V,E) is defined as follows (see, e.g., [34]):

Φ(G) = min
S⊂V :0≤a(S)≤a(V )/2

∑
u∈S,v/∈S au,v

a(S)
.

Our randomized LCA uses random walk approach, and so we begin with some
basic definitions. Consider a discrete-time random walk (Markov chain) M on
an undirected graph G = (V,E) with symmetric transition probability matrix
P . The state space of the chain is V . The chain is said to be irreducible if it is
possible to get from any state to any state using a finite number of transitions;
it is aperiodic if for any v,∈ Ω, gcd{t : P t(v, v) > 0} = 1; it is lazy if for all
v ∈ Ω,P (v, v) ≥ 1/2. A fundamental theorem of stochastic processes states that
an irreducible and aperiodic Markov chain on G converges to a unique stationary
distribution π over V , i.e., limt→∞ P t(u, v) = π(v′) for all u, v′ ∈ V . If in addition
P is symmetric, then π is uniform over V (cf. [2]).

We are interested in the rate at which a Markov chain converges to its sta-
tionary distribution π. We define the mixing time from a vertex v to be

τv(δ) = min{t̄ : dTV (P t(v, ·), π) ≤ δ for all t ≥ t̄}, (1)

where dTV is the total variation distance: for any two distributions μ, ν on V ,2

dTV (μ, ν) = max
S⊆V

|μ(S) − ν(S)|. (2)

We further define the mixing time of the Markov chain to be τ(δ) =
max

σ
τσ(δ). We say that a Markov chain is rapidly mixing if τ(1/2e) is loga-

rithmic in n. The constant 1/2e is arbitrary, as a bound on τ(1/2e) implies a
bound on τ(δ) for any δ > 0 (e.g., [2]) by,

τ(δ) ≤ (1 − log δ) · τ(1/2e).

Let G = (V,E) be a d-regular connected bipartite graph. We define the
Markov chain M for a random walk on G (in standard way) as follows: for
every vertex v, move to each of v’s neighbors with probability 1

2d , and stay at v
with probability 1

2 . It is well known that this chain is aperiodic and irreducible.
As its transition matrix is symmetric, its stationary distribution is the uniform
distribution, i.e., ∀v ∈ V : π(v) = 1

n .
We use the following well-known result (see, e.g., [34]).

Lemma 2. Let P be the transition matrix of a lazy, reversible, irreducible
Markov chain that describes a random walk on a graph G. Then

τ(ε) ≤ 2
Φ(G)2

log
(

1
επmin

)
,

where πmin = minv∈Ω π(v).
2 Alternatively, it is known that we can define it as dTV (μ, ν) = 1

2

∑
σ∈Ω |μ(σ)−ν(σ)|.
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Our main positive result of this section is the following theorem describing a
randomized exact 2-coloring LCA:

Theorem 3. There exists a randomized exact 2-coloring LCA for connected reg-
ular bipartite graphs with conductance Φ that uses no preprocessing, no memory,
and performs O

(√
n log2 n

Φ2

)
probes per query with probability at least 1 − 1

n .

We note that it is straightforward to increase the success probability to 1 −
1

poly(n) .

Proof. Set τ = 6
Φ(G)2 log n and ε = 1

n2 , and since πmin = 1
n , we have that τ(ε) ≤ τ

by Lemma 2.
Our LCA is the following: color vertex 1 red. Given a vertex q as a query,

perform the random walk M for 4τ
√

n steps starting at vertex 1. Color the
encountered vertices blue if they are at an odd distance from vertex 1 and
red otherwise. Store IDs and colors of the vertices encountered on this random
walk; call this set S. Next, perform a random walk from vertex q until one of
the vertices of S is encountered. This creates a path p between q and some
vertex s ∈ S. If p is of even length, return the color of s, otherwise return its
complement.

The algorithm above clearly returns a valid 2-coloring (since G is bipartite).
Lemma 3 below shows that O(τ

√
n log n) probes are used w.h.p. in the second

walk.

Lemma 3. Let S be the set of vertices encountered in the first random walk.
The probability that none of these vertices is encountered in the second random
walk after 4τ

√
n log n steps is at most 1

n .

Proof. For the purposes of the proof, let the second random walk be such that
it is carried out for 4τ

√
n log n steps regardless of whether a vertex in S is

encountered. Consider the vertices at intervals of τ steps from one another in the
first and second random walks. Denote these sets by T1 ⊂ S and T2 respectively.
We bound the probability that T1 ∩ T2 = ∅, which is an upper bound to the
probability that none of the vertices in the second random walk are in S. We do
this by standard methods, but need to be careful with the analysis as the vertices
of T1 and T2 are not selected uniformly at random from V , but rather from a
distribution that is almost uniform. Let X1 denote the probability that there
are at least 2

√
n distinct vertices in T1; let X2 denote the event that there are

at least 2
√

n log n distinct vertices in T2. Let X3 be the event that T1 ∩ T2 
= ∅.
We bound Pr[X1] and Pr[X2]: There are fewer than x distinct vertices in a

set S if all vertices in S are chosen from the same subset S′ ⊆ V of size x; there
are

(
n
x

)
such subsets and the measure of each such subset is at most (x+1/n)/n,

by the fact that the total variation distance of the distribution reached by the
random walk from uniform is at most 1

n2 .
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Pr[¬X1] ≤
(

n

2
√

n

)(
2
√

n + 1/n

n

)4
√

n

≤
(

ne

2
√

n

)2
√

n (
2
√

n + 1/n

n

)4
√

n

≤
(

e
√

n

2

)2
√

n (
4√
n

)4
√

n

<
1
n2

.

The proof that Pr[X2] ≥ 1 − 1
n2 is similar and is omitted.

We bound Pr[¬X3|X1 ∧ X2], the probability that none of the vertices of the
first walk is encountered in the second walk after t steps, given that X1 and X2

both hold. This is the probability that every unique vertex in T2 is not in T1:
after verifying that i − 1 vertices from T2 are not in T1, the probability that the
next chosen vertex is in T1 would be least |T1|

n−i if the vertices were all chosen
from the uniform distribution. The total variation distance between D1 and D2

is at most 2
n2 , where D1 and D2 are the distributions over V from which the

vertices are sampled in the first and second random walks respectively. This is
because dTV (D1, U) and dTV (D2, U) are both at most 1

n2 . Hence the additional
2
n in the numerator of the first inequality.

Pr[¬X3|X1 ∧ X2] ≤
|T2|∏
i=1

(
1 − 2

√
n − 2/n

n − i

)
≤

|T2|∏
i=1

(
1 −

√
n

n

)
≤

(
1 − 1√

n

)2
√

n log n

≤ 2

n2
.

Therefore,

Pr[¬X3] ≤ Pr[¬X3|X1 ∩ X2] + Pr[¬X1] + Pr[¬X2] ≤ 1
n ,

implying Pr[X3] ≥ 1 − 1
n , as required.

5.2 Lower Bound

We prove the lower bound:

Theorem 4. There is no deterministic LCA for exact 2-coloring of complete
bipartite graphs that uses no memory and fewer than n

4 probes.

Proof. Let n be a multiple of 4. Consider any LCA A on the vertex set [n] that
uses at most k = n

4 − 1 probes per query. Assume w.l.o.g. that A uses exactly k
probes per query.

We construct two complete balanced (i.e., both sides have n
2 vertices) bipar-

tite graphs Ga and Gb such that the following hold:

– A receives the same replies to the k probes it makes on Ga and Gb when it
is given vertices 1 or 2 as queries.

– In Ga, vertices 1 and 2 are neighbors, and hence should be colored differently,
while in Gb, they are not, and should be colored the same.

In order to construct Ga and Gb, we first construct two subgraphs, G1 and G2.
Intuitively, G1 and G2 will consist of the vertices that A will encounter when
probing vertices it has already seen when queried on vertices 1 and 2 respectively.
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In addition, G1 and G2 will also be used for remote probes made by A when
queried on vertices 2 and 1 respectively.

We initialize G1 = ({1}, ∅), G2 = ({2}, ∅). Set Ψ = V \ {1, 2}, the set of
“free” vertices – vertices that we have not yet assigned to G1 or G2.

We first consider the set of probes when A is queried on vertex 1. Consider the
jth probe, j ∈ {1, . . . , k} made by A; denote the replies to the previous probes
by v1, . . . , vj−1. Using the notation of Sect. 2.2, the jth probe is represented as
f j
1 (v1, . . . , vj−1) = 〈y, p〉, where y is a vertex and p is a port number (in our case,

p ∈ {1, . . . , n
2 }). In other words, given that the replies to the previous probes

were v1, . . . , vj−1, A now probes the pth port of vertex y. We (possibly) extend
G1 or G2 as follows:

1. If y ∈ G1 ∪ G2, and port p of y has been assigned, do nothing.
2. If y ∈ G1 ∪ G2, and port p of y has not been assigned, choose some z ∈ Ψ ,

assign z to port p of y, assign y to some port of z, and remove z from Ψ .
3. If y /∈ G1 ∪ G2, choose some vertex z ∈ G2, assign z to port p of y and assign

y to an available port of z. As z initially has n
2 free ports, and 2k < n

2 , there
is at least one available port for z.

After considering these k probes, we have graphs G1 and G2, which comprise
together at most k + 2 vertices. Next, we consider the set of probes made when
A is queried on vertex 2. We continue in the same fashion, except that if y /∈
G1 ∪ G2, choose some vertex z ∈ G1, assign z to port p of y and assign y to an
available port of z. G1 and G2 now comprise at most 2k + 2 = n

2 vertices. Note
that G1 and G2 are bipartite and disjoint, by their construction.

Ga is the following: let G1 and G2 be subgraphs of Ga such that vertices
1 and 2 are on the same side and arbitrarily fill in the rest of the vertices and
edges. For Gb, fix G1 and G2 so that vertices 1 and 2 are on different sides, again
arbitrarily filling in the vertices and edges. It is possible to construct both Ga

and Gb in this fashion regardless of A as the total number of vertices in G1 and
G2 is at most n

2 . Executing A on Ga and Gb with queries 1 and 2 gives the same
replies to the probes. As there is no key (additional memory), the color given to
vertices 1 and 2 must be the same in Ga and Gb, hence there does not exist a
deterministic LCA for exact 2-coloring complete bipartite graphs that uses no
memory and fewer than n

4 probes.

6 LCAs for Grids and Tori (No Preprocessing, No
Memory)

The LCA from Theorem 3 shows that for graphs with high conductance there is
an exact 2-coloring LCA with very low number of probes per query, and therefore
in this section we focus now our attention to a representative class of graphs with
very low conductance: grids and tori. We describe our results for grids, noting
that they hold for tori as well. Designing algorithms for a tori is intuitively at
least as hard as for grids, as there is no notion of an end, and hence no absolute
position, which could hypothetically be leveraged by algorithms for grids.



198 A. Czumaj et al.

6.1 Warm Up : 2-Dimensional Grids

We assume that a
√

n×√
n grid is arranged so that each interior vertex has four

neighbors—to the north, south, east and west. However, the vertices do not know
which neighbor is in which direction; locally, each vertex just sees four neighbors.
When we say that it is possible to land on a vertex we mean to reach it and
“know that we are there” (to distinguish from the usual notion of reachability).

The central feature of our algorithms is that we can efficiently follow any
single line on a grid (Corollaries 1 and 2), and that we can detect efficiently all
vertices on a single hyperplane of a multidimensional grid (Lemma7). We begin
with the following lemma.

Lemma 4. Assume w.l.o.g. that vertex v’s neighbor at port p is u and u is to
the north of v. It is possible to land on the vertex north of u using at most 36
weak probes.

Proof. Vertex u has at most three neighbors in addition to v. All of u’s neighbors
(that are not v) are at distance 2 from v, but if we do not count paths that pass
through u, the north neighbor is at distance 4 (and the other two are still at
distance 2).

It takes it most 16 probes to find out whether x, a neighbor of u, is at distance
2 from v—four probes to find all of x’s neighbors and four more per neighbor
that is not u. Therefore 16 probes per vertex are sufficient to either confirm or
rule out any of u’s neighbors as the northern neighbor. It suffices to check any
two of them (if both are ruled out, the third is the northern neighbor). Adding
the 4 probes made by u completes the claim.

It is also possible to land on the vertex south of v using the same reasoning. It
is easy to know when we reach the edge of the grid, as the edge vertices have
one fewer neighbor; the following is immediate.

Corollary 1. It is possible to traverse the graph in a straight line from side to
side through any vertex using 36

√
n probes.

It is not possible to know in which direction the graph is being traversed (north-
south or east-west), however it is not necessary.

Theorem 7. There exists a deterministic exact 2-coloring LCA for 2-
dimensional grids with no preprocessing and no memory that performs O (

√
n)

probes per query.

Proof. When queried on a vertex q, traverse the graph in both directions (north-
south and east-west). Traverse the graph in one direction from the vertex with ID
1 (it will be either north-south or east-west). The line described by the traversal
from vertex 1 must intersect exactly one of the lines emanating from v (unless
v’s ID is 1, in which case it intersects both). Coloring vertex 1 red determines
v’s color.
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6.2 General Grids

Each interior vertex of an r-dimensional grid is connected to 2r other vertices.
The LCA is the following: When a vertex q is queried, the LCA discovers all the
vertices of some hyperplane passing through vertex 1; the LCA then traverses
the grid along the r straight lines that pass through q. At least one of these lines
intersects the hyperplane; coloring vertex 1 red determines q’s color. The proof
follows the same reasoning as the proof for 2-dimensional grids.

Lemma 5. Let G = (V,E) be a r-dimensional grid, r ≥ 1 and let u and v be two
interior vertices such that (u, v) ∈ E. Then there exists a single w ∈ N(u) \ {v}
such that there does not exist a path of length 2 from w to v that does not include
u.

Proof. Denote W = N(u)\{v}. There exists one vertex w ∈ W for which u, v, w
lie on a line. The shortest path between v and w that does not include u must
have length 4. For all other w′ ∈ W , u, v, w define a two dimensional plane, and
there is a vertex x such that v, u, w, x comprise a square. The path w, x, v has
length 2.

For simplicity, we give a loose upper bound in the next lemma instead of an
exact bound as in the previous subsection; it is straightforward to compute a
tight bound.

Lemma 6. Given an edge (v, u), assume w.l.o.g. that u is to the north of v. It
is possible to land on the vertex north of u using at most (2r)3 weak probes.

Proof. Probe all 2r neighbors of u. By Observation 5, all but one of them has a
path of length 2 to v that doesn’t pass through u. For each of the neighbors of
u, it is possible to enumerate all length 2 paths using (2r)2 probes.

Note that it is also possible to land on the vertex to the south of v using the
same reasoning, therefore:

Corollary 2. It is possible to traverse the r-dimensional grid in a straight line
from side to side through any vertex using O

(
r3n

1
r

)
probes.

We show how to build on the line construction to construct a hyperplane.

Lemma 7. Given a r-dimensional grid G = (V,E) and a vertex v ∈ V , it is
possible to construct a hyperplane that passes through v using at most O

(
r4n

1
r

)
+

O
(
rn( r−1

r )
)
weak probes.

Proof. Construct r−1 lines passing through v that traverse the grid, p1, . . . pr−1.
This takes O

(
r4 r

√
n
)

probes. We can complete these lines to a hyperplane as
follows: Set P =

⋃r−1
i=1 pi. As long as there exist two vertices u,w ∈ P , such that

N(u) ∩ N(w) 
= ∅, add the vertex x ∈ N(u) ∩ N(w) (there is exactly one such
neighbor) to P . This takes at most r probes per vertex in the hyperplane.
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We need to show that (1) all vertices of the hyperplane are added to P , and
(2) no vertices that are not in the hyperplane are added to P . To show (1),
assume that some vertices in the hyperplane are not added to P . Consider the
distances from v in the metric space defined by the grid. Let x be the closest
vertex to v in the hyperplane (there may be more than one) that is not in P . If
x has a single neighbor in P then x must be on pi for some i, hence it is added
to the hyperplane. If x is not on pi for any i, it must hold that there are two
neighbors of x in the plane that contains v and x that are closer to v and are in
P (as x is the closest vertex not in P ). By the construction of the hyperplane,
x would have been added too. To show (2), note that any vertex not in the
hyperplane has at most one neighbor in the hyperplane at distance 1, and hence
will not be added to P .

Theorem 5. There exists a deterministic exact 2-coloring LCA for r-
dimensional grids with no preprocessing and no memory that performs
O

(
rn( r−1

r )
)
probes per query.

Proof. If the queried vertex q’s ID is 1, color q red. Otherwise, construct a
hyperplane through vertex 1, and r orthogonal lines that traverse the grid that
pass through q. The hyperplane must intersect exactly one of these lines. Color
1 red, and color q accordingly.

7 LCAs for Trees (with a Small Number of
Monochromatic Edges)

In this section, we demonstrate that for trees, significantly better results can be
obtained if we allow for a small number of monochromatic edges. We show that,
for any α, we can find a coloring (using only two colors) that has at most α − 1
monochromatic edges using O(α) preprocessing, O(α) memory and O(n log n

α )
probes per query w.h.p.

Our LCA A is the following. Given a tree T = (V,E) and α, choose a set S ⊂
V, |S| = α, of focii uniformly at random, and store their IDs. (Implicitly) color
the focii red. The preprocessing and memory required are therefore proportional
to α. Whenever a vertex q is queried, if q /∈ S, perform a BFS. Color q consistently
with the first encountered focus, which we call q’s focus.

Define the skeleton of the tree to be the union of the paths between the focii.
For any vertex v in the skeleton, its skeletal subtree is the set of vertices W not
on the skeleton, for which any path connecting w ∈ W to any vertex on the
skeleton passes through v. Note that some vertices on the skeleton may have an
empty skeletal subtree.

Lemma 8. If v is on the skeleton, and v’s focus is u, then u is the focus of
every vertex in v’s skeletal subtree.

Proof. Let w be some vertex in v’s skeletal subtree. Clearly a focus is closest
to v if and only if it is closest to w. Furthermore, the BFS tie-breaking rule is
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global, guaranteeing that the focus that will be found first (out of all the closest
focii) in the BFS from v is the same one that will be found by BFS from w.

Lemma 9. There are at most α − 1 monochromatic edges in T , when T is
colored according to A.

Proof. From Claim 8, edge violations can only be on the skeleton; we restrict
our attention to the skeleton. Call any vertex of degree at least 3 that is not
a focus, a junction. To show that at there are at most α − 1 monochromatic
edges, we use a charging process, in which we charge monochromatic edges to
focii. We describe an iterative process by which we contract edges to shrink the
skeleton, maintaining the invariant that the skeleton remains a tree, and charge
monochromatic edges to focii. At the start of an iteration, consider some focus
f that is a leaf of the skeleton. There must be at least one, as the skeleton is a
tree. From f , follow the skeleton until we either reach (i) a junction, (ii) another
focus or (iii) a monochromatic edge.

If (i): we reach a junction j, we contract the path, and let f replace j (the
degree of f is now 1 less than the degree of j, and f is not a leaf any more).

If (ii): we reach another focus f ′, remove f and the path between f and f ′.
If the degree of f ′ was 2 it is now a leaf.

If (iii): we reach a monochromatic edge, we charge the monochromatic edge e
to f , and remove f , e and the path between them. We also remove the path from
e to the nearest junction, j or focus f ′, whichever is closer. Clearly, if we reach
another focus f ′, no edge between e and f ′ will be monochromatic. It remains
to show that no edge between e and the junction j can be monochromatic. Once
e and f are removed, the path between e and j is part of j’s skeletal subtree,
and therefore by Claim 8 (with v = j), all of the vertices on the path from e to
j have the same focus, hence there is no monochromatic edge on this path.

Lemma 10. The number of probes used to reply to any query is O
(

n log n
α

)
with

probability 1 − 1
poly(n) .

The proof is similar to the proof of Theorem1 and is omitted. The algorithm
description together with Lemmas 9 and 10 imply Theorem 6.

Acknowledgements. We thank the anonymous reviewers for their useful comments
and suggestions.
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Abstract. A selfish bin packing game is a variant of the classical bin
packing problem in a game theoretic setting. In our model the items
have not only a size but also a positive weight. The cost of a bin is 1,
and this cost is shared among the items being in the bin, proportionally
to their weights. A packing is a Nash equilibrium (NE) if no item can
decrease its cost by moving to another bin, and OPT means a packing
where the items are packed optimally (into minimum number of bins).
Without any misunderstanding we denote by NE both the packing and
the number of bins in the packing, and the same holds for the OPT
packing. We are interested in the Price of Anarchy (PoA), which is the
limsup of NE/OPT ratios. Recently there is a growing interest for games
where the PoA is low.

We give a setting for the weights where the PoA is between 1.4646
and 1.5. The lower bound is valid also for the special case of the game
where the weight of any item is the same as its size, and any item has size
at most one half. The previous bound was about 1.46457. Next we give
another setting where the PoA is at most 16/11 ≈ 1.4545. This value is
better than any previous, that was got for such games.

Keywords: Selfish bin packing · Price of anarchy
Algorithmic game theory

1 Introduction

The bin packing problem [7] is one of the classical combinatorial optimization
problems. We are given a set I = {1, 2, ...,m} of m items, the size of item i is
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si ∈ (0, 1]. The goal is to pack the items into a minimum number of bins, so
that any bin can contain only items with total size at most 1. For a survey on
approximation algorithms for bin packing problems see [2].

In a selfish bin packing game (in our model) an item i has not only a size but
also a positive weight, denoted by gi. Each item plays the role of a selfish agent,
and any agent/item pays some cost for being in a bin. The cost of a bin is 1,
and this cost is shared among the items being in the bin, proportionally to their
weight gi; i.e., any item i packed into a bin (with total size at most 1) pays the
cost gi/g(B) where g(B) is the total weight of the items in the bin. Analogously,
we denote by s(B) the total size of items being packed into this bin, also called
level of the bin.

Any item is interested in decreasing its own cost. So, if an item fits into
another bin, and moving there the cost of this item will be strictly smaller than
before, we call this move an improving step.

A Nash equilibrium (NE, for short) is a packing where an improving step, as
described above, does not exist for any item. Such a NE is also called a stable
packing. It is easy to see that a NE packing is reached from any initial (valid)
packing after finitely many selfish steps.

Observation 1. The game terminates in a NE after a finite number of selfish
moves, starting from any initial packing.

Proof. Define a potential function ψ for all feasible packings B as

ψ(B) =
∑

B∈B
(g(B))2

where the summation is taken over all used bins B. Under a selfish move the
contents of two bins, say Bi and Bj , are modified to B′

i and B′
j such that

g(B′
i) + g(B′

j) = g(Bi) + g(Bj) and |g(B′
i) − g(B′

j)| > |g(Bi) − g(Bj)|.

It follows that the value of ψ increases after every selfish move, and consequently
no B can occur more than once during a game. Since each input admits only
finitely many possible packings, the process surely terminates. ��

Note that in case of a NE packing, the number of used bins can be much
larger than necessary for packing the items in an optimal solution for classical
bin packing. Therefore, it is interesting to compute the price of anarchy (PoA)
[8] of the game which is in general given by the maximum ratio between the
maximum social cost of any NE, and the minimum social cost of any situation.
In our case, it is defined as

PoA = lim sup
N→∞

(sup
I

max
NE∈NE(I)

{ NE(I)
OPT (I)

| OPT (I) = N}),

where I is an arbitrary (finite) set of items, NE(I) is the set of all Nash equilibria
for I, NE(I) is the number of used bins in a Nash equilibrium packing NE of
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the items, and OPT (I) denotes the number of bins used in an optimal packing
of the items. If it is clear from the context, we will write NE instead of NE(I)
and OPT instead of OPT (I), respectively.

Next, we provide a short review about selfish bin packing games. The first
such game was defined by Bilò [1] for gi = si. Consequently, the cost of an item
i for being in bin B is si/s(B) in this case. Bilò proved that 8/5 ≤ PoA ≤ 5/3
holds in this game. Epstein and Kleiman [4] tightened the gap between the lower
and upper bound to 1.6416 ≤ PoA ≤ 1.6428.

Ma et al. [9] defined another model. If there are k items in a bin, each item in
this bin pays 1/k cost for being in this bin. This corresponds to the case gi = 1.
It is shown that any NE packing is the output of a run of the First Fit (FF )
algorithm (which packs the items according to some given list, and the next
item is always packed into the first bin where it fits [7]). From this, it directly
follows that the PoA of this version of the game is at most 1.7. Later Dosa and
Epstein [3] gave a more exact estimation, showing that the PoA is in the interval
[1.6966, 1.6994].

There are also many other results which correspond to the models listed
above; see, e.g., [4–6,12]. In fact there is also a model in the literature which
generalizes all previous selfish bin packing games [11].

Returning to our game, we have seen that the two different models (sharing
the cost proportionally to the sizes, or equally, regardless of item sizes) give two
different PoA values. For the former this is at most 1.6428, but for the latter it
is bigger than 1.6966 [3,4]. Note that both these cost-sharing mechanisms are
special cases of our more general model, where the cost is shared according to
the weights of the items. It means that the weight matters. Notice that in [3] it
is proven that by any choice of the weights, the PoA is at most 1.7, and there
exists a choice where this value is exactly 1.7.

In this work we attack the problem from the opposite side, namely we inves-
tigate the following question.

Problem 1. How should one define the weights for the items, so that the PoA
will be as small as possible?

This problem—in a more general context—sounds as follows: Can one deter-
mine the rules of a structure1 (in our case it is the current game) in such a way
that the behavior of participants will be advantageous for the whole community?
If the answer is yes, how to do this? In the language of games: Can one construct
a game where the PoA is very small?

A recent work in this direction is [13] which defines a cost-sharing mechanism
with PoA ≈ 1.467. Another similar work is [14] where the PoA is between
1.47407 and 1.4748. Another recent work defining a bin packing game with a
price of anarchy of 3/2 is [10]. It means that we see a growing interest in defining

1 An existing example on the large scale is that different types of products include
different percentages of VAT in their price, hence orienting the consumption habits
of people to some extent.



Bin Packing Games with Weight Decision 207

such games where the PoA is low. In this paper we define a game with an even
smaller PoA.

We will consider two settings for the weights in this paper. In the first one,
in most cases the weight of an item is equal to its size, except that the items
having sizes above one half get larger weight, namely their weight will be set
to 1. For this special setting we will see that the PoA is already at most 1.5.
Although the PoA in this case is above 1.4646, the principle of the construction
provides a frame for later improvements and hence in this aspect it is crucial.

It also turns out that our construction (given for this special setting) also
works for the special case of the game were the weight of any item is the same
as its size (i.e. for the original version of Bilò [1]), and the size of any item is at
most 1/2. This parametric model (where the size of any item is at most 1/t for
some integer t) is investigated in [6]. So, as a by-product, for the case of t = 2
we get a slightly improved lower bound.

We also define and investigate a more complicated setting, where the PoA is
at most 16/11 ≈ 1.4545, and at least 1.4528.

It is important to note that the PoA cannot be very small, namely we shall
prove that it can never be smaller than 4/3.

The paper is structured as follows. In Sect. 2 we present a general lower bound
for the price of anarchy. Section 3 contains the first simple setting which has PoA
of at most 3/2. In Sect. 4 we present the more complicated setting with PoA at
most 16/11. We finish in Sect. 5 with short conclusions and open problems.

As the page limit does not allow to present all material of this work, some
proof is omitted and will be published in the journal version of this paper.

2 A General Lower Bound

In this section we present a general lower bound for the PoA, which universally
is valid no matter how the weights for the items are chosen. The construction is
based on the property that no item can move to another bin since it does not
fit.

Theorem 2. The PoA of the game is at least 4/3.

Proof. We make the following construction. Let n be divisible by four, and let
ε be a sufficiently small rational number. We construct a packing into n bins
that is a NE. Then we show that the items can be packed into (3/4)n + 1 bins
proving our claim.

In any NE bin there are two items, a medium item and a small item, denoted
by Mi and Si, 1 ≤ i ≤ n, respectively. In the first n/2 bins the medium items
have the same size, Mi = 1/3 + (2n − 1)ε, for 1 ≤ i ≤ n/2, these are the biggest
items in our construction. In the other bins the medium items have sizes as
follows: Mi = 1/3 + (52n − i)ε, for n/2 + 1 ≤ i ≤ n (then Mn/2+1 has the same
size as the previous medium items, and the sizes of the medium items are slightly
decreasing from this point.)

Now we give the sizes of the small items in the bins.
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For any n/2+1 ≤ i ≤ n, let Si = 1/3− ( 32n− i)ε. Hence, Mi +Si = 2/3+nε.
Note that the smallest small item among these items is Sn/2+1 = 1/3− (n−1)ε.
This is the size of any further small items as well, so Si = 1/3 − (n − 1)ε for
1 ≤ i ≤ n/2. (The biggest small item has size Sn = 1/3 − (n/2)ε.)

Then the levels of the bins are as follows. We have level 1/3 + (2n − 1)ε +
1/3 − (n − 1)ε = 2/3 + nε in the first n/2 bins and also exactly 2/3 + nε in the
last n/2 bins. It is trivial that this packing is a NE, as no item fits into another
bin (to see this, it is enough to see that the smallest item does not fit into any
other bin).

Now we show that the items can be packed into (3/4)n + 1 bins.
We create n/2−1 bins as follows. For any n/2+2 ≤ i ≤ n, the bin contains Mi,

moreover Si−1 and finally Si−n/2. Let us realize that Mi+Si−1 = 2/3+(n−1)ε,
so after packing these two items in the bin, the remaining space in the bin is
just the size of Si−n/2. So these three items fit into a common bin.

The largest medium items are packed pairwise, and so we get n/4 further
bins.

There remain one medium item and two small items unpacked (namely
Mn/2+1, Sn and finally Sn/2). We pack them into two further bins and get
in total (n/2 − 1) + n/4 + 2 = (3/4)n + 1 bins. ��
Observation 3. In the previous construction the level of any NE bin is exactly
2/3 + nε, and the level of any not full optimal bins is exactly 2/3 − (4n − 2)ε.

Since the PoA is computed as a limes superior, it does not matter if a certain
property does not hold for a bounded number of bins. Bins for which a certain
property does not hold, will be called irregular in the following. The bins which
are not irregular are called regular bins.

At the end of this section we provide a simple lemma which will be useful
several times.

Lemma 1. Suppose that the level of any NE bin is at least l > 0 with at most
C irregular bins. Then NE ≤ (1/l) · OPT + C.

Proof. We have OPT ≥ S ≥ l · (NE − C) where S denotes the total level of the
bins. From this we get NE ≤ (1/l) · OPT + C. ��

3 A Simple Setting: S1

In this section we will examine a simple setting, denoted as setting S1, and we
redefine the classes (i.e. big and small). The weights are defined as follows. Let
the items be called big and small (denoted by B and S) if their sizes are larger
than 1/2, or at most 1/2, respectively. The big items get weight 1. Each small
item gets weight equal to its size. The weights in setting S1 are illustrated in
Table 1. In the following we give lower and upper bounds for the PoA of setting
S1.
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Table 1. Weights for setting S1

Class Size si Weight gi

Big si >
1
2

gi = 1

Small si ≤ 1
2

gi = si

3.1 A Simple Lower Bound for S1

As a first step, in this subsection we prove the following lower bound for the PoA
of S1. The method will be developed further afterwards, to obtain a stronger
estimate.

Theorem 4. For setting S1 the PoA is at least 4
3 + 1

3 · ∑∞
k=1

1
3·2k−1

≈ 1.4589.

Proof. We extend our construction from Theorem2. The original items of that
instance, say I, are called old items. Let us recall that in the optimum packing
of I, the n/2 largest medium items are packed pairwise into a set of n/4 bins,
which we shall denote by B. The bins in B have some space left for further items.
Let us consider any bin of B. The unused space of such a bin is 1/3 − (4n − 2)ε
by Observation 3, that is, a bit below 1/3. We will use that space for packing
smaller items.

Let k ≥ 4 be a very large integer. We create a new instance I ′ which augments
I by the following new items: n/4 items of size a1 = 1/6 + nε, n/4 items of size
a2 = 1/12 + nε, and so on. In general, we get for any 1 ≤ i ≤ k, n/4 new items
of size ai = 1

3·2i + nε so that the smallest item ak has size ak = 1
3·2k + nε.

We get a packing for the items in I ′ by adding to each bin of B items of sizes
a1, a2, . . . , ak, exactly one item for each size. The total size of the items in any
such bin is

1 − 1
3 · 2k

+ (kn + 4n − 2)ε ≤ 1 − 1
3 · 2k

+ 2knε.

We choose ε such that the items fit together, so let ε ≤ 1/(6kn · 2k). In this way
all bins are “almost” completely full.

The optimal packing for I used (3/4)/n + 1 bins. Consequently, the optimal
packing for I ′ does also use not more than (3/4)/n + 1 bins.

Now we construct a NE for the instance I ′. Without loss of generality, we
suppose that n is divisible by 3 · 2k − 1 for any 1 ≤ i ≤ k. The old items
are packed as before. In any new bin, items of the same size ai (i = 1, . . . , k)
are packed. That means, there are bins containing five a1 items, also there are
bins containing eleven a2 items, and so on. Generally, there are bins containing
3 · 2i − 1 items of type ai, 1 ≤ i ≤ k. It follows that the number of newly created
bins is

n

4
·

k∑

i=1

1
3 · 2i − 1

.
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The total number of bins in the packing is

n +
n

4
·

k∑

i=1

1
3 · 2i − 1

,

while there is an optimal packing using only (3/4)n + 1 bins. Thus the lower
bound follows, once we prove that this packing is a NE.

We show that no item can make an improving step. It is trivial that no old
item can move as it fits into no other bin. Let us suppose that the bins containing
the new items are ordered in nonincreasing order of their levels. Then, we have:

– No new item fits into a bin to the right.
– No new item wants to move to the left.

This completes the proof of the theorem. ��
Remark 1. In [6] a better lower bound is proved. In fact, [6] considers the pro-
portional cost sharing, the general and also the parametric case, where each item
has size at most 1/t for an integer t. If t = 2, this means that each item has size
at most 1/2. For this case their (stronger) lower bound is 1.464571. This lower
bound applies also to our case, as for items having sizes at most 1/2 we give the
same weights as in [6], namely the weight of any item is the same as its size. In
the previous theorem we gave our very simple construction to give intuition. It
provides an easy lower bound and allows a simple proof. In the next subsection
we give a stronger lower bound, but it will need a much more careful analysis.

3.2 A More Difficult Lower Bound Construction

Here we give an improved lower bound for the PoA as follows.

Theorem 5. The PoA is at least 3543193
2419209 ≈ 1.46460806.

Proof. The better lower bound is achieved by a more tricky construction, again
using the one from Theorem 2. Its old items are given in n optimal bins. Among
these optimal bins there are n/4 bins, each having a room of 1/3− (4n−2)ε (see
Observation 3). We will use this room for packing new items, and we call these
bins recycled bins.

The new items will have sizes approximately 1/6, 1/12, 1/24 and 1/48. There
are three subtypes from each type, these subtypes are denoted by the symbols
“-”,“+”, and “++”. The exact sizes are as follows:

1/6+ = 1/6 + 19α 1/6− = 1/6 − 20α 1/6++ = 1/6 + 999α
1/12+ = 1/12 + 19β 1/12− = 1/12 − 20β 1/12++ = 1/12 + 999β
1/24+ = 1/24 + 19γ 1/24− = 1/24 − 20γ 1/24++ = 1/24 + 999γ
1/48+ = 1/48 + 19δ 1/48− = 1/48 − 20δ 1/48++ = 1/48 + 999δ



Bin Packing Games with Weight Decision 211

where the values of α, β, γ, and δ are as follows: α = (4n − 2)ε, β = 1000α,
γ = 1000β and δ = 1000γ. We ensure that δ is still very small, for example
δ < 10−100 applies.

We give the types of the recycled bins of the optimal packing. We list only the
new items in these bins (any such recycled bin already contains two old medium
sized items.) We will need new parameters of a, b, c, d, e.

– There are a bins containing one 1/6+ and one 1/6−-item.
– There are b bins containing one 1/6++-item, one 1/12+ and one 1/12−-item.
– There are c bins containing one 1/6++ and one 1/12++-item, moreover one

1/24+ and one 1/24−-item.
– There are d bins containing one 1/6++, one 1/12++ and one 1/24++-item,

and one 1/48+ and one 1/48−-item.
– There are e bins containing one 1/6++, one 1/12++, one 1/24++ and one

1/48++-item.

It is easy to see that based on the definition of the sizes of the items, all such
bins are valid (i.e. the items fit into the bins); in fact, all these bins are fully
packed, except the last subtype where among other items the 1/48++-items are
packed. Now we give the new bins that are created in the NE. For this we need
some new parameters, as x, y, z, u, t, s, v, w.

– There are x bins containing one 1/6− and four 1/6+-items, and y bins con-
taining three 1/6− and two 1/6++-items.

– There are z bins containing four 1/12− and seven 1/12+-items, and u bins
containing nine 1/12− and two 1/12++-items.

– There are t bins containing ten 1/24− and thirteen 1/24+-items, and s bins
containing twenty-one 1/24− and two 1/24++-items.

– There are v bins containing twenty-two 1/48− and twenty-five 1/48+ -items,
and w bins containing forty-five 1/48− and two 1/48++-items.

We need to ensure that the number of items of each subtype is the same in the
two (i.eȯptimal and NE) packings. For this we get the next system of equations:

b + c + d + e = 2y (1)
a = 4x (2)
a = x + 3y (3)

c + d + e = 2u (4)
b = 7z (5)
b = 4z + 9u (6)

d + e = 2s (7)
c = 13t (8)
c = 10t + 21s (9)

e = 2w (10)
d = 25v (11)
d = 22v + 45w (12)
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Here (1) stands for the number of 1/6++-items in the OPT packing and
in the NE packing on the left-hand side and the right-hand side, respectively.
Similarly, (4), (7), and (10) count the number of 1/12++-items, 1/24++-items
and 1/48++-items, respectively.

Moreover, (2) stands for the number of 1/6+-items, in the OPT packing and
in the NE packing on the left-hand side and the right-hand side, respectively.
Similarly, (3) stands for the number of 1/6−-items. Following the list, (5) and
(6) count the number of 1/12+ and 1/12−-items, (8) and (9) count the number
of 1/24+ and 1/24−-items, and finally (11) and (12) count the number of 1/48+

and 1/48−-items.
We have 12 equations and 13 variables, the degree of freedom is one. Let us

choose w = 8, then the unique solution for the variables is as follows: w = 8,
v = 120, s = 1508, t = 10556, u = 70122, z = 210366, x = y = 806403,
moreover a = 3225612, b = 1472562, c = 137228, d = 3000, e = 16. Note that
a + b + c + d + e = 4838418 while x + y + z + u + t + s + v + w = 1905486.

Now let us see what is the new lower bound. The number of optimal bins
is (3/4)n + 1. Within these bins, there are n/4 recycled bins. Let us choose a
new integer variable g, such that n/4 = 4838418g. Then there are 1905486g new
bins in the NE packing, thus OPT = (3/4)n + 1 while NE′ = n + 1905486g
(here NE′ means the new value of the bins in the equilibrium). It means that
by letting g → ∞, our improved lower bound is

PoA ≥ NE′

OPT − 1
=

4 · 4838418 + 1905486
3 · 4838418

=
3543193
2419209

≈ 1.46460806.

We still need to prove that the new packing is really a stable packing. We will call
the new bins in the NE as x-bins, y-bins, ..., w-bins, according to the number
of those bins. By easy calculation we get the levels of the different types of bins.
This is given in the table below. For the sake of simplicity, we use the notation
l(x) for the level of x-bins, l(y) for the level of y-bins, and so on.

l(x) = 5/6 + 56α l(y) = 5/6 + 1938α
l(z) = 11/12 + 53β l(u) = 11/12 + 1818β
l(t) = 23/24 + 47γ l(s) = 23/24 + 1578γ
l(v) = 47/48 + 35δ l(w) = 47/48 + 1098δ

In what follows, we show that no item moves in the NE packing. A k-bin
means a bin with exactly k items, and a k+-bin means a bin with at least k
items. We illustrate the principle with the 5-bins (i.e. the x-bins and y-bins) and
items therein.

A 1/6+-item or a 1/6−-item does not want to go to a 2-bin, since there the
level of the bin is 2/3 + nε < 2/3 + α (see Observation 3), and the size of an
x-item is at most 1/6 + 19α, thus the increased level of the target bin would
be at most 5/6 + 20α, which is smaller than l(x). A 1/6++-item would create
a higher level, but still lower than l(y), therefore an item of that size does not
want to move either. A 1/6-type item does not fit into any other 5-bin, neither
into any 11+-bin. We conclude that no 1/6-type item moves.
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In a very similar way, which is a matter of routine to check, it can be verified
that the other items do not move either. Details are left to the reader. ��
Notes. We do not apply any big item in our construction. The reason is that
the weight of a big item itself is 1, and the weight of any bin not containing a big
item is at most 1. It follows that if there is at least one bin containing a big item,
any small item wants to move there. As a consequence, the bin of any big item
will be almost completely full in any NE packing (more exactly, if x is the size
of the smallest item being packed into a bin without a big item, then the level of
any bin with a big item is bigger than 1 − x). Hence, it seems that applying big
items in a construction is not advantageous if we want to get a large NE/OPT
ratio in the considered setting.

On the other hand, since we do not apply any big item in the construction,
our improved lower bound (i.e. 1.46460806) applies also for the parametric PoA
where each item has size at most 1/2, for the original version of the bin packing
game. For this case [6] provides a lower bound of about 1.464571, hence our
lower bound is a little better.

We also note that our construction applies to items of sizes around 1/6,
1/12,...,1/48. If we go further and include also items of sizes around 1/96 (or
even smaller ones) we will get certain improvement on the lower bound, but this
improvement is really very small. If the smallest items were about 1/24 (instead
of about 1/48), the implied lower bound would be about 1.464599.

3.3 An Upper Bound of 3/2 for S1

We prove the following bound.

Theorem 6. For setting S1 the PoA is at most 3/2.

Proof. Let us consider an arbitrary NE packing. Recall that an item is called
big if its size is above 1/2 otherwise it is small. We define the following two bin
types:

B1: The bin contains one big item, and possibly several further (small) items.
B2: The bin contains only small items.

Since all big items have weight 1, the weight of any B1-bin is at least 1, while
the weight of any B2-bin is at most 1. It follows that any item of a B2-bin has
the intention to move into a B1-bin. Since the considered packing is a NE, no
item of a B2-bin fits into a B1-bin.

If there is no B2-bin, then every NE bin contains a big item, thus the packing
is optimal. If there is only one B2-bin, still NE ≤ OPT + 1 holds. Thus, let us
suppose that there exist at least two B2-bins. Consider the B2-bin with the
smallest level—let l1 denote this level—and let X be the smallest item in this
bin. Now consider the B2-bin with the second smallest level—let l2 denote this
level, then l2 ≥ l1—and let Y be the smallest item in this bin.

We distinguish two cases.
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Case 1: l2 > 2/3.
It means that the level of any B2-bin is above 2/3, except possibly the bin

containing X. If also the level of any B1-bin is above 2/3, we are done by an
averaging argument. Thus let us suppose that there is a B1-bin with smaller
level. Since no item of a B2-bin fits into a B1-bin, it follows that any small item
in the B2-bins has size above 1/3. Let us denote the number of B1 and B2-bins
by x and y, respectively. Obviously, OPT ≥ x.

If y ≤ x/2, we have

NE = x + y ≤ 3
2
x ≤ (3/2)OPT.

Suppose now that y > x/2. Every B2-bin contains exactly two items, both are
larger than 1/3, and any B1-bin contains a big item. Two big items cannot be
packed into a common bin, and a big item can share a bin with at most one
small item which is larger than 1/3. Thus OPT ≥ x + (2y − x)/2 = x/2 + y.
Hence,

NE

OPT
≤ x + y

x/2 + y
= 1 +

x/2
x/2 + y

≤ 1 +
x/2

x/2 + x/2
= 3/2.

Case 2: l1 ≤ l2 ≤ 2/3.
Under this assumption it follows that X > 1/3, as X would like to go into

the bin of Y , but cannot move, since X does not fit into the bin of Y .
Assume Y ≤ 1/3. Since Y does not fit into any other bin apart from the bin

of X, the level of any bin apart from the bins of X and Y is above 2/3. Thus,
NE ≤ (3/2)OPT + 2 and we are done.

Therefore, also Y > 1/3 holds. If there are at least two items in the bin of
X, then X ≤ 1/3 would follow, also if there were at least two items in the bin
of Y . We conclude that both X and Y are the only items in their bins. This is
a contradiction, since both are small items. They rather share their bins than
stay alone. This completes the proof of the theorem. ��

4 A More Complicated Special Setting: S2

We found quite close bounds in the considered simple setting S1. In this section
we consider another, more complicated setting, denoted as S2, where the PoA
is a bit smaller. For this, we give larger weights to certain smaller items as well,
but then it is necessary to make a more detailed analysis.

We choose the item weights as follows. Let the items be denoted as big,
medium, small and tiny if their sizes are larger than 1/2, larger than 1/3 and at
most 1/2, larger than 1/4 and at most 1/3, and finally at most 1/4, respectively.
The classes and their weights are described in Table 2.
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Table 2. Weights for setting S2

Class Size si Weight gi

Big 1/2 < si gi = 1

Medium 1/3 < si ≤ 1/2 gi = 1/2

Small 1/4 < si ≤ 1/3 gi = si

Tiny si ≤ 1/4 gi = si

4.1 A Lower Bound for S2

Here we give a lower bound for the PoA as

PoA ≥ 4
3

+
1
11

+
1
3

·
∞∑

k=3

1
3 · 2k − 1

≈ 1.4528

Theorem 7. For setting S2 the PoA is at least 1.4528.

Proof. Consider the construction given in Theorem 4 where we gave a packing
for instance I ′ which was a NE for setting S1. This packing is not a NE for
S2 since any bin containing a medium item has level close to 2/3 and weight
close to 5/6. Thus, we would get an improving step by moving an item of size
a1 = 1/6 + nε into that bin.

Hence, we construct a new instance I ′′ where each item of size a1 is replaced
by two items of size a2 = 1/12+nε and the other items of I ′ are left unchanged.

Again, there is an optimal packing using only (3/4)n + 1 bins. We use the
same packing strategy for the items in I ′′ as for the items in I ′.

Now in the NE packing the a1 items are missing, but there are three times
more bins of type B2 containing eleven a2 items. The number of newly created
bins is therefore

n

4
(

3
3 · 22 − 1

+
k∑

i=3

1
3 · 2k − 1

).

The total number of bins in the packing is

n +
n

4
· (

3
3 · 22 − 1

+
k∑

i=3

1
3 · 2k − 1

).

Thus, the lower bound follows, once we show that this packing is a NE. We show
that no item can make an improving step. Now the difference is only regarding
the option that a new item perhaps wants (and can) move into a bin of a medium
item. It is sufficient to see that an item a2 does not want to move into a bin of
a medium item. In such a target bin the total weight is maximal if the biggest
small item is packed together with a medium item. Hence the maximum weight
is bounded by 1/2 + Sn = 1/2 + 1/3 − (n/2)ε = 5/6 − (n/2)ε. The weight of a
current bin of an a2 item is 11 · (1/12+nε). Should the a2-item move, the weight
in the target bin would become 5/6 − (n/2)ε + 1/12 + nε = 11/12 + (n/2)ε,
which is smaller than the weight of the current a2-bin. Hence, this packing gives
a NE. ��
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Let us remark that in the previous construction there are no big items as
their bins would be filled too much. We have medium items, and considerably
smaller items which are close to 1/12, and even smaller items. It means that if
we want to define a “better” weighting system which makes the PoA (much)
smaller, it does not help if we give larger weight for the items between 1/3 and
1/12 + δ for some δ > 0.

4.2 An Upper Bound of 16/11 ≈ 1.4545 for S2

The main result of Sect. 4 is summarized in the following theorem. The proof is
quite long and detailed, so due to page limit we cannot provide it here.

Theorem 8. The PoA of the game in setting S2 is at most 16/11.

We mention only one more thing here. We have seen that in our simpler
setting the PoA is at least 1.4646, but for the more difficult setting the PoA is
at most 1.4545. This clearly distinguishes the two settings, as the PoA of the
simpler setting and the PoA of the more difficult setting cannot be the same, as
they are in two, disjoint intervals.

5 Conclusions

We have investigated the price of anarchy in selfish bin packing games under two
types of weight assignments. In the setting of weights which is more sensitive
to item size, the PoA is proven to be between 1.4528 and 16/11 ≈ 1.4545. The
lower bound is definitely not tight, as it can slightly be improved by a more
complicated construction. Also, it is possible that the upper bound could be
decreased a bit.

We also mention that along the lines of our more difficult lower bound con-
struction for setting S1 (see Sect. 3.2.) one can get improved lower bounds for
the parametric game of Bilò (i.e. weight = size), not only for t = 2 as we got the
bound but for any bigger t values as well. As this was not our main purpose in
this work, we leave this option (to improve) for others.

Beyond S1 and S2. Another option would be to introduce a refinement of setting
S2: We follow the harmonic sequence, define weight 1 for items having sizes above
1/2, weight 1/2 for items having sizes at most 1/2 and bigger than 1/3, weight
1/3 for items having sizes above 1/4 but at most 1/3, and the weight of any
smaller item equals the size of the item. In this setting (called S3) possibly the
PoA is smaller, but the investigation seems hard.
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Bin Packing Games with Weight Decision 217

References
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Abstract. The Fréchet distance is a popular distance measure for curves
which naturally lends itself to fundamental computational tasks, such as
clustering, nearest-neighbor searching, and spherical range searching in
the corresponding metric space. However, its inherent complexity poses
considerable computational challenges in practice. To address this prob-
lem we study distortion of the probabilistic embedding that results from
projecting the curves to a randomly chosen line. Such an embedding
could be used in combination with, e.g. locality-sensitive hashing. We
show that in the worst case and under reasonable assumptions, the dis-
crete Fréchet distance between two polygonal curves of complexity t in
IRd, where d ∈ {2, 3, 4, 5}, degrades by a factor linear in t with constant
probability. We show upper and lower bounds on the distortion. We also
evaluate our findings empirically on a benchmark data set. The prelimi-
nary experimental results stand in stark contrast with our lower bounds.
They indicate that highly distorted projections happen very rarely in
practice, and only for strongly conditioned input curves.

Keywords: Fréchet distance · Metric embeddings
Random projections

1 Introduction

The Fréchet distance is a distance measure for curves which naturally lends itself
to fundamental computational tasks, such as clustering, nearest-neighbor search-
ing, and spherical range searching in the corresponding metric space. However,
their inherent complexity poses considerable computational challenges in prac-
tice. Indeed, spherical range searching under the Fréchet distance was recently
the topic of the yearly ACM SIGSPATIAL GISCUP 2017 competition [34], high-
lighting the relevance and the difficulty of designing efficient data structures for
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this problem. At the same time, Afshani and Driemel showed lower bounds on
the space-query-tradeoff in the pointer model [2] that demonstrate that this
problem is even harder than simplex-range searching.

The computational complexity of computing a single Fréchet distance
between two given curves is a well-studied topic [3,10–13,18,21]. It is believed
that it takes time that is quadratic in the length of the curves and this running
time can be achieved by applying dynamic programming. In this body of liter-
ature, the case of 1-dimensional curves under the continuous Fréchet distance
stands out. In particular, no lower bounds are known on computing the continu-
ous Fréchet distance between 1-dimensional curves. It has been observed that the
problem has a special structure in this case [14]. Clustering under the Fréchet dis-
tance can be done efficiently for 1-dimensional curves [19], but seems to be harder
for curves in the plane or higher dimensions. Bringmann and Künnemann used
projections to lines to speed up their approximation algorithm for the Fréchet
distance [12]. They showed that the distance computation can be done in linear
time if the convex hulls of the two curves are disjoint. It is tempting to believe
that the curves being restricted to 1-dimensional space makes the problem sig-
nificantly easier. However, in the general case, there are no algorithms known
which are faster for 1-dimensional curves than for curves in higher dimensions.
In practice, it is very common to separate the coordinates of trajectories to sim-
plify computational tasks. It seems that in practice the inherent character of a
trajectory is often largely preserved when restricted to one of the coordinates of
the ambient space. Mathematically, this amounts to projecting the trajectory to
a line.

This motivates our study of probabilistic embeddings of the Fréchet distance
into the space of 1-dimensional curves. Concretely, we study distortion of the
probabilistic embedding that results from projecting the curves to a randomly
chosen line. Such a random projection could be used in combination with prob-
abilistic data structures, e.g. locality-sensitive hashing [20], but also with the
multi-level data structures for Fréchet range searching given by Afshani and
Driemel [2]. See below for a more in-depth discussion of these data structures.

We show that in the worst case and under certain assumptions, the discrete
Fréchet distance between two polygonal curves of complexity t in IRd, where
d = {2, 3, 4, 5}, degrades by a factor linear in t with constant probability. In
particular, we show upper and lower bounds on the change in distance for the
class of c-packed curves. The notion of the c-packed curves was introduced by
Driemel, Har-Peled and Wenk in [18] and has proved useful as a realistic input
assumption [4,10,17]. A curve is called c-packed for a value c > 0 if the length
of the intersection of the curve with any ball of any radius r is a most cr. While
our study is mostly restricted to the discrete Fréchet distance, we expect that
our techniques can be extended to the case of the continuous Fréchet distance.

A closely related distance measure, which is popular in the field of data-
mining, is dynamic time warping (DTW) [16,31,33]. The computational com-
plexity of DTW has also been extensively studied, both empirically and in the-
ory [1,4,24,29]. Some of our lower bounds extend to DTW.
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1.1 Related Work on Data Structures with Fréchet Distance

The complexity of classic data structuring problems for the Fréchet distance is
still not very well-understood, despite several papers on the topic. We review
what is known for nearest-neighbor searching and range searching. Indyk [27]
gave a deterministic and approximate near-neighbor data structure for the dis-
crete Fréchet distance. A c-approximate nearest-neighbor data structure returns
for a given query point q a data point p ∈ S, such that the distance d(p, q)
is at most c · d(p∗, q), where p∗ ∈ S is the true nearest neighbor to q. Indyk’s
data structure for data set S, containing n curves which have at most t ver-
tices, achieves approximation factor c ∈ O(log t + log log n) and has query time
O(poly(t) log n). This data structure requires large space, as it precomputes all
queries with curves with

√
t vertices. For short curves (with t ∈ O(log n)) Driemel

and Silvestri [20] described an approximate near-neighbor structure based on
locality-sensitive hashing with approximation factor O(t), query time O(t log n),
using space O(n log n + tn). See [15] for an experimental evaluation of this data
structure with improvements by Ceccarello et al. LSH is a technique that uses
families of hash functions with the property that near points are more likely
to be hashed to the same index than far points. Driemel and Silvestri were
the first to define locality-sensitive hash functions for the discrete Fréchet dis-
tance. Emiris and Psarros [22] improved their result and also showed how to
obtain (1 + ε)-approximation with query time Õ

(
d · 22t · log n

)
and using space

Õ(n)·(2 + d/ log t)O(t·d·log(1/ε)). No such hash functions are known for the contin-
uous case. It is conceivable that the concept of signatures which was introduced
by Driemel, Krivošija and Sohler [19] in the context of clustering of 1-dimensional
curves could be used to define an LSH for the continuous case and that this tech-
nique could be used in combination with projections to random lines.

De Berg et al. [9] studied range counting data structures for spherical
range search queries under the continuous Fréchet distance assuming that the
centers of query ranges are line segments. This data structure stores com-
pressed subcurves using a partition tree, using space O(s polylog(n)) and query
time O((n/

√
s) polylog(n)) to obtain a constant approximation factor, where

n ≤ s ≤ n2 is a parameter to the data structure which is fixed at preprocessing
time.

Afshani and Driemel recently showed how to leverage semi-algebraic range
searching for this problem [2]. Their data structure also supports polygonal
curves of low complexity and answers queries exactly. In particular, for the dis-
crete Fréchet distance they described a data structure which achieves query
time O

(
n1−1/d · logO(ts) n · t

O(d)
q

)
and uses space O

(
n (log log n)ts−1

)
, where

ts denotes the complexity of an input curve, and it is assumed that the com-
plexity of the query curves tq is upper-bounded by a polynomial of log n. For
the continuous Fréchet distance they described a data structure for polygonal
curves in the plane which achieves query time O

(√
n logO(t2s) n

)
and uses space

O
(
n(log log n)O(t2s)

)
. For the case where the curves lie in dimension higher than
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2 and the distance measure is the continuous Fréchet distance, no data structures
for range searching or range counting are known.

1.2 Related Work on Metric Embeddings

Given metric spaces (X, dX) and (Y, dY ), we call a metric embedding an injective
mapping f : X → Y . We call c, c ≥ 1, the distortion of the embedding f
[28] if there is an r ∈ (0,∞) such that for all x, y ∈ X it is r · dX(x, y) ≤
dY (f(x), f(y)) ≤ c · r · dX(x, y).

The work that is perhaps closest to ours is a recent result by Backurs
and Sidiropoulos [5]. They gave an embedding of the Hausdorff distance into
constant-dimensional �∞ space with constant distortion. More precisely, for any
s, d ≥ 1, they obtained an embedding for the Hausdorff distance over point
sets of size s in d-dimensional space, into �sO(s+d)

∞ with distortion sO(s+d). No
such metric embeddings are known for the discrete or continuous Fréchet dis-
tance. It has been shown that the doubling dimension of the Fréchet distance
is unbounded, even in the case when the metric spaces is restricted to curves
of constant complexity [19]. A result of Bartal et al. [8] for doubling spaces
implies that a metric embedding of the Fréchet distance into an �p space would
have at least super-constant distortion, but it is not known how to find such an
embedding.

We discuss what is known on two variations of the metric embedding problem
that are most studied. The first is to find the smallest distortion for any metric
from the given class. Matoušek [30] showed that any metric on a point set of
size s can be embedded into d-dimensional Euclidean space with multiplicative
distortion O

(
min{s2/d log3/2 s, s}

)
, but not better than Ω

(
s1/�(d+1)/2�). For

d = 1 this implies that the distortion is linear in the worst case.
The second problem is to find the smallest approximation factor to a minimal

distortion for a given metric over a point set of size s. We call a spread Δ a
maximum/minimum ratio of the distances of the input point set X. Badoiu
et al. [6] gave an O

(
Δ3/4c11/4

)
-approximation to the embedding to a line, where

c is the distortion of embedding of the input set onto the line. They also showed
that it is hard to approximate this problem up to a factor Ω

(
n1/12

)
, even for a

weighted tree metrics with polynomial spread. Assuming a constant distortion c
and a polynomial spread Δ, Nayyeri and Raichel [32] gave a O(1)-approximation
algorithm to the minimal distortion of the embedding to a line, in time polygonal
in s and Δ. See the work of Badoiu et al. [7], Fellows et al. [23], H̊astad et al.
[25], and Indyk [26] for further reading.

1.3 Our Results

Given two polygonal curves P and Q with t vertices each from R
d, where d ∈

{2, 3, 4, 5}. Consider sampling a unit vector u in respective R
d uniformly at

random, and let P ′ and Q′ be the projections of the two curves to the line
supporting u. We observe that Fréchet distance always decreases when the curves
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are projected to a line (Lemma 3). We show that if the curves P and Q are
c-packed for constant c, then, with constant probability, the discrete Fréchet
distance between the curves P and Q, denoted by dF (P,Q), degrades by at
most a linear factor in t. This is stated by Theorem 1 for d ∈ {2, 3}, and by
Theorem 2 for d ∈ {4, 5}.

Theorem 1. Given c ≥ 2, for any two polygonal c-packed curves P and Q from
R

2 or R
3, and for any γ ∈ (0, 1) it holds that

Pr
[

dF (P,Q)
dF (P ′, Q′)

≤ 12c + 16
γ

· t

]
≥ 1 − γ.

Theorem 2. Given c ≥ 2, for any two polygonal c-packed curves P and Q from
R

4 or R
5, and for any γ ∈ (0, 1) it holds that

Pr
[

dF (P,Q)
dF (P ′, Q′)

≤
(

1 +
2
π

)
· 12c + 16

γ
· t

]
≥ 1 − γ.

We also present a lower bound on the ratio of the two distances. The con-
struction of the lower bound uses c-packed curves with c < 3.

Theorem 3. Given c ≥ 2, there exist polygonal c-packed curves P and Q, such
that for any γ ∈ (0, 1/π)

Pr
[

dF (P,Q)
dF (P ′, Q′)

≥ 5πγ

6
· t

]
≥ 1 − γ.

Theorem 3 holds for the continuous Fréchet distance and for dynamic time
warping distance as well.

We also show that there exist polygonal curves P and Q that are not c-packed
for sublinear c and their (continuous or discrete) Fréchet distance degrades by a
linear factor for any projection line (i.e. with probability 1). Theorem4 presents
this result.

Theorem 4. There exist the curves P = {p1, . . . , pt} and Q = {q1, . . . , qt}, such
that if P ′ and Q′ respectively are their projections to the one-dimensional space
that supports the unit vector chosen uniformly at random on the unit hypersphere,
then it holds that

dF (P,Q)
dF (P ′, Q′)

≥ f(t),

where f(t) ∈ Ω(t).

Please refer to the full version of the paper for the omitted proofs.
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2 Preliminaries

Throughout the paper we use the following notational conventions. Consider
two polygonal curves P = {p1, p2, . . . , pt} and Q = {q1, q2, . . . , qt} in R

d given
by their sequences of vertices. We choose a unit vector u in R

d by choosing
a point on the (d − 1)-dimensional unit hypersphere uniformly at random. We
denote with L the line through the origin that supports the vector u. Let P ′ =
{p′

1, p
′
2, . . . , p

′
t} and Q′ = {q′

1, q
′
2, . . . , q

′
t} be the projections of P and Q to L,

defined by p′
i = 〈pi,u〉 and q′

j = 〈qj ,u〉, for all 1 ≤ i ≤ t and 1 ≤ j ≤ t. We
denote δi,j = ‖pi − qj‖ and δ′

i,j = ‖p′
i − q′

j‖, for all 1 ≤ i ≤ t and 1 ≤ j ≤ t, i.e.
δi,j and δ′

i,j are the pairwise distances of the vertices for the input curves P and
Q and for their respective projections P ′ and Q′.

We define the discrete Fréchet distance of P and Q as follows: we call a
traversal T of P and Q a sequence of pairs of indices (i, j) of vertices (pi, qj) ∈
P × Q such that

(i) the traversal T starts with (1, 1) and ends with (t, t), and
(ii) the pair (i, j) of T can be followed only by one of (i + 1, j), (i, j + 1) or

(i + 1, j + 1).

We notice that every traversal is monotone. If T is the set of all traversals T of
P and Q, then the discrete Fréchet distance between P and Q is defined as

dF (P,Q) = min
T∈T

max
(i,j)∈T

‖pi − qj‖. (1)

Furthermore, we define a directed, vertex-weighted graph G = (V,E) on the
node set V = {(i, j) : 1 ≤ i, j ≤ t}. A node (i, j) corresponds to a pair of vertices
pi of P and qj of Q and we assign it the weight δi,j . The set of edges is defined
as E = {((i, j), (i′, j′)) : i′ ∈ {i, i + 1}, j′ = {j, j + 1}, 1 ≤ i, i′, j, j′ ≤ t}. The
set of paths in the graph G between (1, 1) and (t, t) corresponds to the set of
traversals T . We call a path in G which does not start in (1, 1) or end in (t, t) a
partial traversal of P and Q.

It is useful to picture the nodes of the graph G as a matrix, where rows
correspond to the vertices of P and columns correspond to the vertices of Q. For
any fixed value Δ > 0, we define the free-space matrix1 FΔ = (φi,j)1≤i,j≤t with

φi,j =

{
1 if ‖pi − qj‖ < Δ

0 if ‖pi − qj‖ ≥ Δ.

Overlaying the graph with the free-space matrix for Δ > dF (P,Q), we can
observe that there exists a path in the graph from (1, 1) to (t, t) that visits only
the matrix entries with value 1. Moreover, the existence of such a path in the
free-space matrix for some value of Δ implies that Δ > dF (P,Q).

We define c-packedness of curves as follows.
1 Note that the conventional definition of the free-space matrix for parameter Δ is

slightly different, since usually there is an 1-entry iff ‖pi − qj‖ ≤ Δ. We are using
this definition since it better suits our needs.
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Definition 1 (c-packed curve). Given c > 0, a curve P ∈ R
d is c-packed if

for any point p ∈ R
d and any radius r > 0, the total length of the curve P inside

the hypersphere ball(p, r) is at most c · r.

The proof of the following three lemmas can be found in the full version of
the paper. For a general problem in much higher dimension d, the probability
stated by Lemmas 1 and 2 cannot be bounded by a linear function in ϕ, due to
the measure concentration around π/2.

Lemma 1. If two points p and q are projected to the straight line L, which
supports the unit vector chosen uniformly at random on the unit hypersphere in
R

2 or R
3, the probability that the distance of their projections will be reduced

from the original distance by a factor greater than ϕ is at most ϕ.

Lemma 2. If two points p and q are projected to the straight line L, which
supports the unit vector chosen uniformly at random on the unit hypersphere in
R

4 or R
5, the probability that the distance of their projections will be reduced

from the original distance by a factor greater than ϕ is at most (1 + 2/π) · ϕ.

Lemma 3. Given two curves P = {p1, . . . , pt} and Q = {q1, . . . , qt} in R
d, and

let P ′ = {p′
1, . . . , p

′
t} and Q′ = {q′

1, . . . , q
′
t} respectively be their projections to

the straight line L which supports the vector u chosen uniformly at random on
the unit hypersphere in R

d. It holds that dF (P,Q) ≥ dF (P ′, Q′).

3 Upper Bound

3.1 Guarding Sets

The discrete Fréchet distance between curves P and Q is realized by some pair
(pi, qj) of vertices pi ∈ P and qj ∈ Q, being at the distance ‖pi − qj‖ = δ. We
would like to apply Lemma 1 to this pair of vertices to show that the distance is
preserved up to some constant factor. However, it is possible that the pairwise
distances in the projection are such that a cheaper traversal is possible that
avoids the pair (pi, qj) altogether. Therefore, we will apply the lemma to a subset
of pairs of vertices of P and Q whose distance is large (e.g. larger than Δ = δ/θ
for some small value of θ ≥ 1) and such that the chosen set forms a hitting set
for the set of traversals T . To this end we introduce the notion of the guarding
set by the following definition.

Definition 2 (Guarding set). For any two polygonal curves P = {p1, . . . , pt}
and Q = {q1, . . . , qt} and a given parameter θ ≥ 1, a θ-guarding set B ⊆ V for P
and Q is a subset of the set of vertices of G that satisfies the following conditions:

(a) (distance property) for all (i, j) ∈ B, it holds that δi,j ≥ dF (P,Q) /θ, and
(b) (guarding property) for any traversal T of P and Q, it is T ∩ B = ∅.
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Note that the set B “guards” every traversal of P and Q in the sense that
any path in G from (1, 1) to (t, t) has non-empty intersection with B. In other
words, B is a hitting set for the set of traversals T .

For a guarding set B we define the subset of vertices SB ⊆ V that can be
reached by a path in G starting from (1, 1) without visiting a vertex of B. We
also define the subset of vertices HB = V \ (B ∪ SB). A guarding set B thus
defines a vertex partition of the graph G into three subsets V = SB ∪ B ∪ HB .

We show the following simple lemma for d ∈ {2, 3}, and its counterpart for
d ∈ {4, 5}, given by Lemma 5, which is proven analogously.

Lemma 4. Given parameter θ ≥ 1, if B is a θ-guarding set for the given curves
P = {p1, . . . , pt} and Q = {q1, . . . , qt} from R

2 or R
3, and if P ′ and Q′ are

their projections to the straight line L, whose support unit vector u is chosen
uniformly at random on the unit hypersphere, then for any β > 1 it holds that

dF (P ′, Q′)
dF (P,Q)

≥ 1
β · θ · |B|

with positive constant probability at least 1 − 1/β.

Proof. Let u be the unit vector which is chosen uniformly at random on the unit
hypersphere in R

d with d ∈ {2, 3}, and let u be supported by the projection line
L. Let αi,j be the angle between u and the vector qj − pi, for i, j ∈ {1, . . . , t}. If
we consider the distances of the pairs of the points (pi, qj) ∈ P × Q, represented
by the elements (i, j) ∈ B, then the probability of the event that some of these
distances of the points of P and Q is reduced by a factor greater than β · |B|
(the “bad” event) when projected to L can be bounded by the union bound
inequality and by Lemma1 for ϕ = 1

β|B| as:

Pr
[
(∃(i, j) ∈ B) :

δ′
i,j

δi,j
<

1
β|B|

]
≤

∑

(i,j)∈B

Pr
[
δ′
i,j

δi,j
<

1
β|B|

]
≤

∑

(i,j)∈B

1
β|B| =

1
β

(2)
for any β > 1.

Since by Definition 2 any traversal T of P and Q has nonempty intersection
with B, the Fréchet distance of P and Q has to be at least as big as the distance of
some pair (i, j) ∈ T∩B. These pairs of vertices have distance at least dF (P,Q) /θ,
and they are going to be reduced at most by the factor β · |B| (with positive
constant probability). The traversal T ′ of P ′ and Q′ that realizes dF (P ′, Q′) has
to contain at least one of the pairs of B by Definition 2, since the pairs of the
traversal T ′ are simultaneously the pairs of the traversal T of P and Q (that
contains the pairs of the vertices of P and Q in the same order as the pairs of
their projections in P ′ and Q′). Thus dF (P ′, Q′) ≥ dF (P,Q) / (β · θ · |B|), which
proves the lemma. ��

Lemma 5. Given parameter θ ≥ 1, if B is a θ-guarding set for the given curves
P = {p1, . . . , pt} and Q = {q1, . . . , qt} from R

4 or R
5, and if P ′ and Q′ are
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their projections to the straight line L, whose support unit vector u is chosen
uniformly at random on the unit hypersphere, then for any β > 1 it holds that

dF (P ′, Q′)
dF (P,Q)

≥ 1
(1 + 2/π) · β · θ · |B|

with positive constant probability at least 1 − 1/β.

Intuitively we think of δ′
i,j as an approximation to δi,j . Lemma 4 yields a

naive
(
β · t2

)
-approximation for any β > 1 and θ = 1. Let B be the set of all

pairs (i, j) ∈ {1, . . . , t} × {1, . . . , t} such that ‖pi − qj‖ = δi,j ≥ dF (P,Q). In the
worst case B could contain all t2 pairs. Set B is a 1-guarding set. The correctness
of the condition (a) of Definition 2 is provided directly by the definition of B.
The condition (b) follows by contradiction. If there would exist some traversal
T such that T ∩ B = ∅, then for all pairs (i, j) ∈ T it would have to hold that
‖pi − qj‖ < dF (P,Q). But then the traversal T would witness that dF (P,Q) ≤
max(i,j)∈T ‖pi − qj‖ < dF (P,Q), a contradiction.

One could obtain better constant β by more technical argument, which we
omit here. Clearly, the approximation factor of Lemma4 can be improved by the
better choice of the set B. This question we explore in the following section.

3.2 Improved Analysis for C-packed Curves

In order to ensure that the number of the pairs of the indices that take part
in the sum in the union bound inequality in (2) is not quadratic but at most a
linear one in terms of the input size, we have to carefully select a small subset
that satisfies the guarding set properties.

Building of the Initial Guarding Set. We first give the simple construction
of a θ-guarding set for any θ ≥ 1 by Algorithm 1.

Lemma 6. The set B obtained by Algorithm1 is a θ-guarding set, for any θ ≥ 1.

Proof. We have to show that the resulting set B satisfies the conditions of Defini-
tion 2. In the case that the distance δ1,1 ≥ δ/θ, it suffices to assign B = {(1, 1)},
since any traversal of the curves P and Q has to include the pair (1, 1). For the
rest of the proof let δ1,1 < δ/θ.

Algorithm 1 selects into B only the pairs (i′, j′) with δi′,j′ ≥ δ/θ in the line
12, and that are reached by an edge from a pair (i, j) with δi,j ≤ δ/θ. Thus the
condition (a) of Definition 2 is satisfied by the yielded set. For the condition (b)
we show by induction the following invariant: in each point of time during the
BFS, any traversal T contains either a vertex of B or a vertex in the queue Q.
The BFS starts with (1, 1) ∈ Q with δ1,1 < δ/θ. While processing the pair in
(i, j) ∈ Q with δi,j < δ/θ during the BFS (lines 7 and 8) the traversal T may use
one of the pairs (i+1, j), (i, j +1) or (i+1, j +1) (connected by the edges in E).
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Algorithm 1. Computing the θ-guarding set, θ ≥ 1
Data: δ = dF (P, Q), vertex-weighted graph G = (V, E)
Result: set B

1 B ← ∅
2 if δ1,1 ≥ δ/θ then
3 B ← {(1, 1)}
4 else
5 FIFO-Queue Q ← {(1, 1)} /* Breadth-First-Search on G = (V, E) */
6 while Q �= ∅ do
7 (i, j) ← pop(Q)
8 foreach ((i, j), (i′j′)) ∈ E do
9 if δi,j < δ/θ and δi′,j′ < δ/θ then

10 push(Q, (i′, j′))

11 else if δi,j < δ/θ and δi′,j′ ≥ δ/θ then
12 B ← B ∪ {(i′, j′)}

13 return B

The next pair in the traversal T is either added into Q (line 10), or added into
B (line 12). In both cases the invariant remains valid. Since the queue is empty
at the end, this means that any traversal contains a vertex in B, as claimed. ��

q1 = q4 = q7 = . . .

p1

q3 = q6 = q9 = . . .

q2 = q5 = q8 = . . .

Q

P

p2 = p4 = p6 = . . .

p3 = p5 = p7 = . . .

δ/θ

δ/θ

pt

Fδ/θ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 . . .

1 0 1 1 0 1 1 0 . . .

. . .

1 0 1 1 0 1 1 0 . . .

1 0 0 1 0 0 1 0 . . .

1 0 1 1 0 1 1 0 . . .
1 0 0 1 0 0 1 0 . . .

1 1 1 1 1 1 1 1 . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 1. The curves P and Q (left) that yield a “fork-like” free-space matrix Fδ/θ for
some θ ≥ 1 (right). The pairs selected into B by Algorithm 1 are marked with the red
bound. (Color figure online)

Unfortunately, the set B built by Algorithm1 can have a quadratic number
of elements in terms of the input size, like the one in Fig. 1 (marked with the
red bound). If the free-space matrix Fδ/θ would have the “fork-like” structure
for some θ ≥ 1, such that for every column j with j mod 3 = 1 it holds for all
pairs δi,j < δ/θ and thus φi,j = 1 (except for δt,j ≥ δ/θ), and for every column
j with j mod 3 = 2 there are all pairs with δi,j ≥ δ/θ and thus φi,j = 0 (except
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for δ1,j < δ/θ). For the columns with j mod 3 = 0 let φ1,j = 1, φ2,j = 0 and
φt,j = 0 (the rest may be filled arbitrarily). Then the set B built by Algorithm1
would contain (t − 1) · t/3 = O

(
t2

)
entries. We note that this cannot happen

if the curves P and Q are c-packed for some constant c, c ≥ 2, as it will be
discussed in the further text.

On the Structure of the Distance Matrix. Lemma 7 states one property
of the c-packed curves, which we apply in Lemma 8.

Lemma 7. Given point p and a c-packed curve Q = {q1, . . . , qt} from R
d, then

for any value b > 0 there exists a value r ∈ [b/2, b], such that the hypersphere
centered at p with radius r intersects or is tangent to at most 2c edges of Q.

Proof. Assume for the sake of contradiction that there exists c′ > 2c, such that
for any r ∈ [b/2, b] there are at least c′ edges of Q that intersect or are tangent
the surface of the hypersphere ball(p, r). Let the event points be the points in
ball(p, b) \ ball(p, b/2), such that they are either

(i) vertices qi of Q or
(ii) the points q′ ∈ qiqi+1, such that pq′ ⊥ qiqi+1.

Let the set of events be R = {R1, . . . , R�}, and let ri = ‖p−Ri‖ for all 1 ≤ i ≤ �.
We may assume that the events Ri are sorted ascending by ri. Let r0 = b/2 and
r�+1 = b, thus r0 ≤ r1 ≤ . . . ≤ r�+1.

The number of the edges of Q that intersect or are tangent to ball(p, r) is
equal for all r′ ∈ [ri, ri+1) and for all 0 ≤ i ≤ �, since the number of such edges
changes only in event points. After assumption there are at least c′ edges of Q
that intersect ball(p, r′), for any r′ ∈ [ri, ri+1) and for any 0 ≤ i ≤ �. The length
of the curve Q within ball(p, b) \ ball(p, b/2) is

�∑

i=0

‖Q∩(ball(p, ri+1) \ ball(p, ri)) ‖ = ‖Q∩
(
ball(p, b) \ ball

(
p,

b

2

))
‖ ≤ c·b

since Q is c-packed. But on the other side it is

�∑

i=0

‖Q ∩ (ball(p, ri+1) \ ball(p, ri)) ‖ ≥
�∑

i=0

c′ · |ri+1 − ri| = c′ ·
(

b − b

2

)
> c · b,

a contradiction. ��
Lemma 8. Given point p and a c-packed curve Q = {q1, . . . , qt} from R

d, and
given a value b > 0, then for any pairwise disjoint set of intervals

I ⊆ {[i1, i2] | i1 ≤ i2 ∈ IN, 1 ≤ i1 ≤ i2 ≤ t}

with d(p, qi) ≥ b for all i ∈ [i1, i2] ∈ I, there exists a value of r ∈ [b/2, b] and a
pairwise disjoint set of intervals

J ⊆ {[j1, j2] | j1 ≤ j2 ∈ IN, 1 ≤ j1 ≤ j2 ≤ t}

with the following properties:
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(i) |J | ≤ c + 1
(ii) ∀ [j1, j2] ∈ J ∃ i1 ≤ i2 < i3 ≤ i4 : [i1, i2], [i3, i4] ∈ I ∧ j1 = i1 ∧ j2 = i4
(iii) ∀ i ∈ [j1, j2] ∈ J : d(p, qi) ≥ r

b

b/2
p

qj

qj+1

Q

r

∈ I

∈ J

Fig. 2. The process of Lemma 8 for the vertex p and the curve Q

Proof. We set r to be the value of the same variable as in Lemma 7. Now we
construct the set J by merging intervals of I as follows. Initially J is empty. We
iterate over the intervals of I in the order of their starting points. Consider the
first interval [i1, i2] and the next interval in the order [i3, i4], we merge them
into one interval [i1, i4] if there exists no point qj with i2 < j < i3 such that
d(p, qj) < r. We continue merging this interval with the intervals in I until
we found a point qj such that d(p, qj) < r. Then, we add the current merged
interval to J and take the next interval from I and merge it with the proceeding
intervals in the same manner. When there are no intervals left in I, we also add
the current interval to J . Each time we add an interval to J (except possibly
for the last one), we encountered two edges of Q that intersect the sphere of
radius r centered at p. By Lemma 7 we have added at most c + 1 intervals to J
(including the last interval). The other properties stated in the lemma follow by
construction of J . Figure 2 illustrates the merging process. ��

Avoidable Pairs

Definition 3 (Avoidable pair). Let B be the θ-guarding set produced by Algo-
rithm1, and let V = SB ∪ B ∪ HB be the partition of V implied by B. The pair
(i, j) ∈ B is called avoidable if there exist a pair (i′, j′) ∈ B and two partial
traversals T1 and T2 of P and Q from (1, 1) to (i′, j′), such that:

(i) ∀(i′′, j′′) ∈ (T1 ∪ T2) \ {(i′, j′)} it holds that (i′′, j′′) ∈ SB,
(ii) there exist pairs (i, y1) ∈ T1 and (i, y2) ∈ T2, with y1 < j < y2,
(iii) there exist pairs (x1, j) ∈ T2 and (x2, j) ∈ T1, with x1 < i < x2.
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We notice that for the pair to be avoidable, it suffices to have the conditions
(i) and (ii), or (i) and (iii), since the remaining condition is implied by the
monotonicity of the traversals. The definition of the avoidable pair (i, j) implies
that any partial traversal of P and Q from (i, j) to (t, t) has to have a nonempty
intersection with T1 ∪ T2.

Figure 3 shows the pairs selected by Algorithm 1 into the θ-guarding set B,
for some θ ≥ 1, marked with polygonal red and blue bounds. The pairs within
the red bound are avoidable, and the pairs within the blue bound are not. Two
partial traversals T1 and T2 in SB that make the red bounded pairs avoidable
(as in Definition 3) are marked by arrows.

Fδ/θ =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 1 1 1 . . .

1 1 1 0 0 0 0 . . .
1 0 1 1 0 1 0 . . .
1 0 0 1 1 1 0 . . .

1 1 1 1 1 1 0 . . .

⎞

⎟
⎟
⎟
⎟
⎠

Fig. 3. Avoidable pairs from the θ-guarding set B (for some θ ≥ 1) are marked with
red bound. Not avoidable pairs are marked with blue bound. (Color figure online)

Lemma 9. Given parameter θ ≥ 1 and the θ-guarding set B. Let B′ ⊆ B be the
set of the avoidable pairs. Then B \ B′ is a θ-guarding set.

Trimming the Reachable Area of a Guarding Set. Let B be a 1-guarding
set for two curves P and Q. We now want to modify B to shrink the number
of pairs while maintaining the guarding property. It turns out that we can do
this if we relax the approximation quality of the guarding set (which we denoted
with θ). We perform this trimming in three phases:

(1) Remove all avoidable pairs from B.
(2) Trim the reachable area of B row by row.
(3) Trim the reachable area of B column by column.

In the following, we describe the trimming operation on a single row. Consider
a vertex pi of the curve P and consider the intersection of B with the row of
the distance matrix associated with pi. Let Ii denote the set of intervals of the
column indices that represent this intersection. We now apply Lemma8 with
parameter b = dF (P,Q) to obtain a set of intervals Ji that can be used to trim
the reachable area of B with respect to the ith row. Each interval in Ji covers
a set of intervals of Ii. Let Ai be the subset of pairs of the ith row of which
the column index is contained in an interval of Ji, but not contained in any
interval of Ii. We call Ai the filling pairs of the row. We now want to trim
the reachable area SB defined by B along the vertices of the reachability graph
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which correspond to pairs of Ai. For this we will remove all vertices of Bi that
are reachable from Ai and add the pairs of Ai to B. See Algorithm 2 for the
pseudocode of this trimming operation. Figure 4 illustrates the process with an
example. The trimming operation for a single column is analogous, except that
we use b = dF (P,Q) /2 as a parameter to Lemma 8.

Algorithm 2. Trimming the reachable area for one row
Data: guarding set B, row index i, value of b > 0
Result: modified guarding set B

1 Ii := {[j, j] | (i, j) ∈ B} /* pairs of B in the ith row */
2 Let Ji be the set of intervals obtained from Lemma 8 using Ii and b = dF (P, Q)

3 Ai := SB ∩
{

(i, j) | j ∈
(⋃

[j1,j2]∈Ji
[j1, j2] \ ⋃

[i1,i2]∈Ii
[i1, i2]

)}
/* Compute

filling pairs */
4 FIFO-Queue Q ← Ai /* find guarding pairs reachable from Ai via BFS */
5 while Q �= ∅ do
6 (i, j) ← pop(Q)
7 foreach (i′, j′) ∈ {(i + 1, j), (i + 1, j + 1)} do
8 if (i′, j′) ∈ B \ Q then
9 B ← B \ {(i′, j′)} /* remove them from B */

10 else
11 push(Q, (i′, j′))

12 B ← B ∪ Ai /* add pairs of Ai to B */

F before
b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

0 0 0 0 0 . . .

0 0 1 1 0 . . .

0 1 1 0 0 . . .

0 1 1 0 0 . . .
1 1 1 1 1 . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

F after
b/2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

0 0 0 0 0 . . .

0 0 1 1 0 . . .

0 1 1 0 0 . . .

0 0 0 0 0 . . .
1 1 1 1 1 . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 4. The elements of a guarding set (marked with boxes) before (left) and after
(right) applying of Algorithm 2 to the second row. The removed pairs are marked by
circles

Lemma 10. Let B be a 1-guarding set.

(i) After the first phase of the algorithm, which removes all avoidable pairs,
the modified set B is a 1-guarding set.
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(ii) After the second phase of the algorithm, which applies the trimming oper-
ation to each row with b = dF (P,Q), the modified set B is a 2-guarding
set.

(iii) After the third phase of the algorithm, which applies the trimming operation
to each column with b = dF (P,Q) /2, the modified set B is a 4-guarding
set.

Proof. The first part of the lemma follows directly from Lemma 9. We now prove
the second part of the lemma statement. Condition (iii) of Lemma8 ensures
that any pair of a set Ai added to B corresponds to a pair of vertices p ∈ P
and q ∈ Q with d(p, q) ≥ b/2 = dF (P,Q) /2. Indeed, the column indices of the
pairs of Ai are contained in intervals of Ji. Therefore, after the second phase,
the modified set B satisfies property (a) in the definition of guarding sets if
we set θ = 2. Secondly, we argue that property (b) is not invalidated after the
trimming operation was applied to a row. Let B denote the guarding set before
the trimming operation applied to the ith row and let B′ denote the modifed
guarding set after trimming. Clearly, the trimming operation does not add any
avoidable pairs to B. Therefore we can assume that throughout the second phase
no avoidable pairs are present.

Assume for the sake of contradiction that there exists a traversal T that
contains a pair of B, but does not contain a pair of B′. Let (i′, j′) be the first
pair along T that was removed from B during the trimming operation and let
(i, j2) be a pair of Ai that has a BFS-path to (i′, j′). T must contain a pair (i, j1)
in the ith row and this pair cannot be contained in an interval of Ji (otherwise
T would contain a pair of B′). Let T1 be the partial traversal (path in G) of T
that starts in (1, 1) goes via (i, j1) and ends in (i′, j′). Since (i′, j′) was the first
vertex along T in B, it follows that T1 only visits vertices that are in SB. Note
that i′ > i since the BFS only visits row indices strictly greater i. Since Ai ⊆ SB ,
there must be a path T2 in G from (1, 1) via (i, j2) to (i′, j′) that only contains
vertices of SB . Now, condition (ii) of Lemma8 implies that there must be a
vertex (i, j′′) in B, such that either j1 < j′′ < j2 or j2 < j′′ < j1. This implies
that (i, j′′) must be avoidable with respect to B. However, this contradicts the
fact that B does not contain any avoidable pairs. This proves (ii). The third part
of the lemma follows by a symmetric argument applied to the columns. ��

3.3 Bounding the Complexity of the Modified Guarding Set

Given set B after the algorithm of Lemma10. For every row of B (presented as
matrix) let the pairwise disjoint set of intervals Ri ⊆ {[j1, j2] |j1 ≤ j2 ∈ N, 1 ≤
j1 ≤ j2 ≤ t} be a set of intervals on {1, . . . , t} of minimal size, such that for any
1 ≤ j′ ≤ t there exist j1 and j2 with j′ ∈ [j1, j2] ∈ Ri if and only if (i, j′) ∈ B.
We can analogously define such pairwise disjoint sets Cj over the columns of B.

Lemma 8 implies that for every row i there is a set of pairwise disjoint inter-
vals Ji constructed by line 2 of Algorithm 2, with |J | ≤ c + 1. Algorithm 2 takes
into B only the pairs that belong to the subsets of the intervals of Ji that were in
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. . .

. . . s s b b h h h h h . . .

. . . s s s b h h h h h . . .

. . . s b h h h h h h h . . .

. . . s b h h b b b b h . . .

. . . s b h h s s s b h . . .

. . . s b b b s s s b h . . .

. . . s s s s s s s b h . . .

Fig. 5. The pairs of the guarding set B (red) and its extended group (blue) within one
column. The pairs denoted with s, b, and h are from SB , B and HB respectively (Color
figure online)

SB too. But since the pairs (i, j) ∈ HB such that j ∈ [j1, j2] ∈ Ji have the prop-
erty that any traversal using these pairs has to contain a pair in B prior to (i, j),
we could have added such pairs too into B and then it would be Ji = Ri. Since
we took only its subsets, it holds that for every [j1, j2] ∈ Ri there is [j3, j4] ∈ Ji

with j3 ≤ j1 ≤ j2 ≤ j4. By counting all intervals of Ri that are subset of one
interval from Ji as one, we say that all such intervals Ri build one extended
group of consecutive pairs within ith row. It follows that there are at most c + 1
extended groups within i-th row. This process gets repeated over columns as
well. See Fig. 5 for an illustration.

We have to note that the filling pairs added into B also imply the removal
of a pair in B that lies in the same row but with higher column index, except
possibly for the last pair in the row. This can happen at most once per row,
adding one pair (and one extended group) to the row. We obtain the following
lemma.

Lemma 11. In the guarding set produced by Algorithm1 and modifed by the
algorithm of Lemma 10, there are at most c+1 extended groups within a column,
and c + 2 extended groups within a row.

To finally bound the complexity of our guarding set by Lemma13, we show
first Lemma 12.

Lemma 12. For the guarding set produced by Algorithm1 and after every phase
of algorithm of Lemma 10 the following invariant holds: for every pair (i, j) ∈ B
there exists a pair (i′, j′) ∈ SB such that ((i′, j′), (i, j)) ∈ E.

Proof. We call the pair (i′, j′) the predecessor pair. The construction of the
guarding set B Algorithm 1 guarantees that a pair (i, j) is added into B if it is
visited over an edge ((i′, j′), (i, j)) ∈ E, where (i′, j′) /∈ B. Thus ((i′, j′) ∈ SB as
claimed.

The first phase of the algorithm of Lemma 10 removes the avoidable pairs
from B, thus for the pairs that remain in B the invariant holds. The second
phase runs Algorithm 2 upon a row and adds into B only pairs which were
already in SB, thus have also a predecessor in SB . For every pair (i′, j′) which
was in SB before and is in HB after Algorithm 2 it holds that the BFS passes
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it and then visits and subsequently removes the pairs from B. Therefore the
invariant remains valid for the pairs that remain in B, as for the pairs that were
already in B their predecessors remain in SB , so their status is not changed. The
third phase is equivalent to the second one, and the invariant remains valid. ��

Lemma 13. The set B obtained by the algorithm of Lemma 10 is a 4-guarding
set, containing at most (3c + 4) · t pairs.

Proof. For every pair (i, j) ∈ B one of the following holds true:

(i) the index j is the smallest index of an extended group over the ith row;
(ii) the index i is the smallest index of an extended group over the jth column;
(iii) none of the above.

We argue that if neither (i) nor (ii) holds true, then it must be that i − 1
is the smallest index of an extended group over the jth column. Indeed, note
that if neither (i) nor (ii) holds true, then (i − 1, j) and (i, j − 1) are part of an
extended group and such groups can only contain pairs of B or HB . Therefore,
the pair (i − 1, j − 1) must be in SB because Lemma 12 implies that (i, j) must
have an ingoing edge from a pair in SB. Now, since pairs of SB and HB cannot
be directly connected by an edge of G, it must be that (i − 1, j) and (i, j − 1)
are both in B. Thus, i − 1 is the smallest index of an extended group over the
jth column.

We charge elements of B of type i) and of type ii) to their respective extended
intervals. We charge elements of type iii) it to their extended interval over the
column. Thus, extended intervals in the column are charged at most twice. By
Lemma 11 we have at most (c + 1) extended intervals per column and at most
(c+2) extended intervals per row. This implies that altogether |B| ≤ (3c+4) · t,
as claimed. ��

Fig. 6. The cumulative probability distribution of the distortion (left). Given c ≤ 0.5,
the cumulative probability of distortion is shown as a function of the complexity t of
the curves, for t ∈ {10, 50, 100, 150, 200, 250, 300, 350, 400} (right). The means μ of the
values denoted by red circles. The intervals [μ−σ, μ+σ] denoted by black dots, where
σ is the standard deviation. The minima and maxima denoted by blue triangles. (Color
figure online)
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Lemmas 4 and 13 imply the correctness of Theorem 1. The proof of Theorem2
is analogous to the proof of Theorem1, while Lemmas 1 and 4 are replaced by
Lemmas 2 and 5, respectively. The rest of the proof can be taken verbatim.

4 Conclusions

We studied the behavior of the discrete Fréchet distance between two polygonal
curves under projections to a random line. Our results show that in the worst
case and under reasonable assumptions, the discrete Fréchet distance between
two polygonal curves of complexity t in IRd, where d ∈ {2, 3, 4, 5}, degrades by a
factor linear in t with constant probability. One can see this as a negative result,
since we hoped that the Fréchet distance would be more robust under such pro-
jections. We also performed some preliminary experiments on the dataset of the
6th ACM SIGSPATIAL GISCUP 2017 competition [34] (please refer to the full
version of the paper). The cumulative probability distribution of the distortion2

c = dF (P ′, Q′) /dF (P,Q) (Fig. 6, left) suggests that for realistic input curves
we can expect that Pr [c ≤ γ] ≤ γ. This holds independently of the complex-
ity t of the input curves, as illustrated by Fig. 6 (right) for the given threshold
γ = 0.5. This implies that with probability of at least 0.5 we expect that the
discrete Fréchet distance will be reduced at most by a factor 2 when projected
to a line chosen uniformly at random, independently of the input complexity.
These results stand in stark contrast with our lower bounds. They indicate that
highly distorted projections happen very rarely in practice, and only for strongly
conditioned input curves.
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5. Backurs, A., Sidiropoulos, A.: Constant-distortion embeddings of Hausdorff met-
rics into constant-dimensional l p spaces. In: Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM,
pp. 1:1–1:15 (2016). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.1

6. Badoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings of
general metrics into the line. In: Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, STOC, pp. 225–233 (2005). https://doi.org/10.1145/
1060590.1060624

7. Badoiu, M., et al.: Approximation algorithms for low-distortion embeddings into
low-dimensional spaces. In: Proceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA, pp. 119–128 (2005)

8. Bartal, Y., Gottlieb, L., Neiman, O.: On the impossibility of dimension reduction
for doubling subsets of lp. In: ACM Symposium on Computational Geometry,
SoCG, pp. 60–66 (2014). https://doi.org/10.1145/2582112.2582170

9. de Berg, M., Cook, A.F., Gudmundsson, J.: Fast Fréchet queries. Comput. Geom.
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Abstract. The dynamic NFV placement problem captures one of the
main challenges facing the telecom industry following the emergence of
the Network Function Virtualization (NFV) networking paradigm, that
is, deciding the placement of network functions while taking into consid-
eration the dynamic nature of networks and workloads. We model the
problem as a generalization of the classic Uncapacitated Facility Location
(UFL) problem, where we consider both multiple types of commodities
and dynamic clients whose location changes over time.

We show that under reasonable assumptions we are able to develop
a 7-approximation algorithm for the Dynamic Facility Location (DFL)
problem, improving the logarithmic approximation of Eisenstat et al.
[6]. We build upon this result to develop the first virtualized services
placement algorithm that accounts for dynamic changes. Our tri-criteria
approximation algorithms provide constant approximation factors with
respect to the overall performance and size constraints, and logarithmic
approximation factors with respect to capacity constraints.

Keywords: Approximation algorithms · Facility location · NFV

1 Introduction

Network Function virtualization (NFV) is an emerging networking paradigm [7]
where network functions and networking related applications are implemented
in software over Commercially-Off-The-Shelf (COTS) servers located at small
data centers that are distributed in the network. This new paradigm is gaining
popularity in the telecommunication industry and almost all major operators are
reporting initial commercial or proof of concept (POC)1 deployments. Two of the
main reasons for this shift toward NFV and SDN (Software Defined Networks)
are the race for the ability to rapidly introduce new services, sometimes referred
to as network agility, and the need (of operators) to reduce cost. For this reason
the orchestration of network services and the efficient use of resources is gaining

1 Two of the most notable examples are Vodafone’s Ocean virtual VPN service
(see http://www.mobileeurope.co.uk/news-analysis/ocean-s-40-vodafone-looks-
to-minimise-hold-ups-as-it-battles-with-group-wide-nfv-sdn-project) and AT&T’s
vCPE (see http://www.netmanias.com/en/post/blog/10363/kt-sdn-nfv/sdn-nfv-
based-vcpe-services-by-at-t-verizon-and-kt).
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more and more attention, both in industry and academia, where new forums and
open projects are forming to address it [1–3].

Many of the initial NFV deployments concentrated on somewhat static appli-
cations like virtual customer premises equipment (vCPE), where demand is either
generated in private customers’ homes or in business customers’ offices, tending to
have fixed locations. However, there are new emerging applications and network
functions that are much more dynamic in nature, both due to mobility and rapid
change in demand. One such an example is vRAN, where the low layer wireless
technology is implemented in NFV, and demand depends on the current load of
the base stations. Another example is the area of self driving cars and drone con-
trols; here, the mobility of the platform, together with fluctuations in demand,
creates a highly dynamic service. A third class of fast growing applications having
a very dynamic workload are enhanced video and virtual reality applications. In
these applications there is a need for real time latency-bounded services, while the
workload can rapidly change over time. This calls for an adjustment of the orches-
tration modules in order to allow for dynamic allocation of resources in smaller
time frames and live migration of services, as needed.

While these new orchestration capabilities are addressed both by the indus-
try and by standardization organizations [1,7], the algorithmic engine behind
the actual allocation of resources in real time needs also to adapt to the ever-
changing environment, so as to handle dynamic workloads. Current resource
optimization algorithms for NFV like [5,8] are static in nature, assuming a fixed
demand for network functions which is obtained from static flows, as part of
the input. Indeed, one can run these resource allocation algorithms each time
demand changes, but that requires reallocation of resources, leading to non-
negligible management cost.

We address this important aspect by considering a dynamic model, based on
the facility location problem, that captures frequent changes in workload. We
develop new algorithms having “built in” capabilities for handling the dynamic
nature of networks.

Facility location is a well known family of problems that deals with selecting
locations for facilities providing service to a set of clients. It is commonly assumed
that each facility has an opening cost and there is a given metric space defining
distances between clients and possible locations of facilities (see e.g., [10]). The
goal is to open facilities, as well as assigning clients to facilities, minimizing the
total cost of opening facilities and serving the clients. Of special relevance to us
is the multi-commodity facility location (MCFL) problem, introduced by Ravi et
al. [9]. In this problem there is a set of commodities that can be installed (opened)
at the facilities, incurring an installation cost for each commodity. Each client
requires a subset of the commodities, and the goal is to satisfy the requirements
of all the clients by connecting them to facilities that provide the commodities
they need, while minimizing the total service and installation costs2.

2 The specific model considered in [9] captures the set cover problem, and therefore
only a logarithmic factor approximation could be obtained for the problems studied
therein.



240 Y. Fairstein et al.

Cohen et al. [5], following the paradigm of MCFL problems, defined a model
for the NFV placement problem that takes into account special properties of
the NFV setting. The input is a set of clients, representing network flows, each
requiring service from a subset of the network functions, or commodities. The
network functions are installed on servers at various parts of the network. Locat-
ing the functions is performed in a practical environment in which servers have
limited space for allocating network functions. The overall cost is defined as
the sum of installation costs, reflecting the cost of having VMs that execute a
function, and the cost of diverting traffic to these servers. The goal is to locate
network functions in a way that minimizes overall network cost, while adhering
to limited space (size) for installing functions on servers, and the constraint that
each function can serve only a limited number (capacity) of clients.

An additional extension of facility location, dynamic facility location (DFL),
was recently presented by Eisenstat et al. [6]. DFL is defined over a time horizon
in which a new distance metric is given at each time step, resulting in variable
service cost. Clients can be reassigned to new facilities between time steps, how-
ever, reassignment of a client incurs a change cost. The goal is to minimize the
total opening, service, and change costs. An O(log nT )-approximation algorithm
for the problem was given by [6], where n is the number of clients and T is the
number of time steps.

1.1 Our Results

Our main contributions are the introduction of a new temporal model for
dynamic NFV placement together with approximation algorithms with proven
performance guarantees. Our new model contains both NFV placement [5] and
dynamic facility location [6], capturing the most important aspects of dynamic
NFV placement. We do not make any assumptions on how our network evolves
over time, however, we do assume that we are given (ahead of time) the changes
in the network between time steps. We note that in the NFV setting it is reason-
able to assume that servers remain at fixed locations over time, and only clients
are dynamic and can change their location3. This allows us to consider the NFV
placement problem in a dynamic setting that takes into account the different
stages a network goes through, thus developing algorithmic solutions that better
fit the NFV setting.

The models we consider generalize facility location which is known to be
NP-hard. Therefore, we turn to approximate solutions that can be computed
efficiently. We first revisit the dynamic facility location problem studied by [6].
By assuming facilities are static, we obtain an elegant 7-approximation algo-
rithm for this problem, improving over the O(log nT ) approximation algorithm
of Eisenstsat et al. [6]. We note that this improvement is essential for constant
factor approximations when extending the NFV setting to the dynamic setting.

3 In [6] it is assumed, in contrast, that the full metric (i.e., facilities and clients)
changes in each time step.
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We distinguish between two versions of the dynamic NFV placement prob-
lem: dynamic uncapacitated NFV (dynamic UNFV) and dynamic capacitated
NFV (dynamic CNFV) which extends the former. In dynamic CNFV there is
a capacity constraint, a limit on the number of clients that can receive service
from a network function. Our results for these problems are summarized in the
following theorems.

Theorem 1. There exists an efficient algorithm for the Dynamic UNFV prob-
lem with an (O(1), O(1)) bi-criteria approximation algorithm, where we approx-
imate the overall network cost by a constant factor, while exceeding the size
constraints of the servers by at most a constant factor.

The next theorem contains our main contribution, which is also the most tech-
nically challenging part of our paper.

Theorem 2. There exists an efficient algorithm for the Dynamic CNFV prob-
lem with an (O(1), O(1), log(min{n, T})) tri-criteria approximation algorithm,
where we approximate the overall network cost by a constant factor, while exceed-
ing the size constraints of the servers by at most a constant factor, and the capac-
ity constraints by at most a factor of O(log min{n, T}). Here, n is the number
of clients and T is the number of time steps.

We also show that the problem of selecting the final assignment of clients
to functions in the dynamic CNFV problem reduces to the interval graph list
coloring problem. In this problem we are given an interval graph and a palette
of colors. For each interval a subset of the color set is given. The goal is to find a
coloring of the intervals such that: (i) each interval is colored by a color from its
allowed subset of colors; (ii) intersecting intervals are colored differently. As this
problem is NP-hard, we turn to find an approximate solution with a bounded size
set of intersecting intervals that receive the same color. We prove the following:

Theorem 3. There exists an efficient algorithm for the Interval Graph List
Coloring problem that finds a coloring in which at most O(log min{k, T}) inter-
secting intervals receive the same color, where k is the size of the largest clique
in the interval graph, and T is the number of distinct cliques (time steps) in the
interval graph.

We accompany this results by a proven lower bound for the IGLC problem,
showing our algorithm is almost tight.

In order to show that our new algorithms indeed improve network utiliza-
tion under dynamic workloads, we conduct a real scenario simulation based
performance evaluation. In this evaluation we compare the performance of the
dynamic algorithm to two variants of the static algorithm (presented by [5]), and
to the optimal fractional solution to the dynamic problem computed using an
LP-solver. The results indicate that the dynamic algorithm preforms at least 40%
better than the static algorithm (in some cases up to 2–3 times better), and the
comparison to the fractional solution indicates that in the considered practical
scenarios, our algorithm is at most twice the optimal (fractional) solution.
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Techniques. Our approximation algorithms are based on linear program round-
ing, that is, given a fractional solution to the linear relaxation of the problem,
our goal is to round it, while bounding the resulting increase in cost. There are
several techniques that we use for achieving this goal. For each network func-
tion we apply a cover-growing procedure which defines covers of bounded radius
around clients. The covers constructed have the property that they are disjoint
so that clients do not share opening costs. The covers are also advantageous as
they allow us in a sense to “ignore” distances in the network. This turns out
to be crucial for computing the final network function placement via a round-
ing algorithm for the general assignment problem (GAP) [10]. We also use the
interval selection technique of Eisenstat et al. [6] to partition the time horizon
in the dynamic case into static intervals for each client.

In the dynamic CNFV problem we encounter further difficulties, as capacity
constraints do not allow us to assign clients freely to the network functions.
Reducing the final assignment of clients to functions to the interval graph list
coloring problem, and the algorithm promised by Theorem3 translates into the
violation factor of the capacity in our solution.

2 Preliminaries

Here we formalize our model, as well as present several known procedures we
use throughout.

2.1 The Model

The dynamic NFV placement problem is defined over a time horizon. We are
given a set of demands, each composed of a set of flows, one for each time step,
and a set of functions from which it requires service. The functions are to be
installed on network servers. Each server has a size constraint; each function has
both a size and cost for installing it at each server. In addition, each function
has a capacity that bounds the number of flows it can serve. We are also given
a change cost paid to change the assignment of a demand to different servers
between two consecutive time steps. The objective is to find an assignment that
minimizes the total cost of installing the functions at the servers, the sum of the
distances of the flows from the servers and the sum of change costs. In our model,
demands are represented by clients, servers by facilities, and network functions
by network commodities. We now elaborate on our model.

We are given a time horizon T , and an undirected graph (or network) G =
(V,E), equipped with a distance function dt(·, ·) between any pair of nodes at
each time step t ∈ T . The distance functions induce a metric space over the
graph. We are given a set F ⊆ V of m facilities and a set C ⊆ V of n clients.
For a facility i ∈ F and client j ∈ C, i and j indicate both facility and client,
respectively, as well as where they reside at each time step. We assume that
facilities remain at fixed locations in the network, while the evolution of the
metric reflects the movement of clients over time, and thus change their distance



Algorithms for Dynamic NFV Workload 243

to the facilities. There is a set S of k network commodities; for each client
j ∈ C, δ(j) denotes the subset of commodities that it requires. We are also given
a change cost g, paid for each change in assignment of a client to a facility.

Each facility i ∈ F has a total size wi, and each commodity s occupies size wis

on facility i. The installation cost of a commodity s at facility i is denoted by fis.
In the capacitated NFV placement problem, each commodity s is associated with
a capacity μs, a bound on the number of clients it can serve. To accommodate
more clients, several copies of commodity s can be installed at facility i, however,
each copy occupies size wis and pays cost fis.

In a feasible solution to the dynamic NFV placement problem we find an
allocation of commodities to facilities, and an assignment of clients to facilities
such that at each time step, each client j ∈ C is assigned to a subset of facilities
that can serve all the commodities in δ(j). To comply with the constraints, a
solution must fulfill the requirement that the sum of the sizes of the commodities
installed at a facility does not exceed its size. In the capacitated NFV it is also
required that at each time step, the number of clients served by a (copy of a)
commodity does not exceed its capacity. The goal is to find a feasible solution
minimizing the overall cost, comprising of the sum of installation costs, the sum
of distances between the clients and the facilities to which they are assigned
(paid for each commodity separately), which we also call connection costs, and
the sum of change costs.

We formulate the dynamic NFV placement problem as a linear program
(DNFV-LP). We denote by yis the variable indicating the number of copies of
commodity s installed in facility i, and by xt

ijs the variable indicating whether
facility i serves commodity s to client j at time step t. Variable zt

ijs indicates a
change in the assignment.

min
∑

i∈F

∑

s∈S

fisyis +
∑

t∈[T ]

∑

j∈C

∑

s∈δ(j)

dt
ijx

t
ijs +

∑

t∈[T )

∑

j∈C

∑

s∈δ(j)

zt
ijs · g subject to:

xt
ijs ≤ yis ∀i ∈ F, j ∈ C, t ∈ [T ], s ∈ δ(j) (1)

∑

i∈F

xt
ijs = 1 ∀j ∈ C, t ∈ [T ], s ∈ δ(j) (2)

∑

s∈S

yiswis ≤ wi ∀i ∈ F (3)

xt
ijs − xt+1

ijs ≤ zt
ijs ∀i ∈ F, j ∈ C, t ∈ [T ), s ∈ δ(j) (4)

∑

j∈C

xt
ijs ≤ yisμs ∀i ∈ F, t ∈ [T ], s ∈ S (5)

yis, x
t
ijs, z

t
ijs ≥ 0 ∀i ∈ F, j ∈ C, t ∈ [T ], s ∈ S (6)

Constraint (1) states that a facility cannot provide service of a commodity
unless it is installed in it. Constraint (2) guarantees that each client is served
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all the commodities it requires. Constraint (3) bounds the total size of the com-
modities installed in each facility. Constraint (4) charges for connection changes
between consecutive time steps. Constraint (5) limits the number of clients each
commodity can serve.

2.2 Interval Graph List Coloring

We are given an interval graph G = (V,E), i.e., an intersection graph of intervals,
where each vertex v ∈ V corresponds to an interval Iv on the real line, and there
is an edge e = (u, v) ∈ E if and only if Iu and Iv intersect. In addition, there
is a set of colors C, and each vertex v is associated with a subset Cv ⊆ C of
colors by which it can be legally colored. The goal is to find a legal coloring of
the vertices such that neighboring vertices receive different colors. This is called
the interval graph list coloring problem (IGLC).

Let T be the set of points on the real line containing all start and end points
of the intervals. Obviously, the set T defines the set of maximal cliques (w.r.t.
containment) in G. We denote the clique at point t ∈ T by I(t), i.e., the intervals
that contain point t. Let xvc indicate whether vertex v is colored by color c. We
define an integer feasibility program for (IGLC) with three constraints:

(i) for v ∈ V ,
∑

c∈Cv
xvc ≥ 1, guaranteeing that vertex v is assigned a color

from Cv.
(ii) for t ∈ T, c ∈ C,

∑
Iv∈I(t) xvc ≤ 1, guaranteeing that at most a single interval

in each clique I(t) is assigned a particular color.
(iii) for v ∈ V, c ∈ C, xvc ∈ {0, 1}: integrality constraints for the variables.

Clearly, a feasible solution implies a legal coloring for (IGLC).
In [4] it was shown that the IGLC problem is NP-hard, even though color-

ing interval graphs can be done efficiently. In Sect. 6 we present approximation
algorithms that minimize the size of the largest clique with the same color, i.e.,
minimizing the violation factor of constraint (ii) in the feasibility program. This
can also be viewed as bounding the number of copies of each color. We comple-
ment this result by showing that the violation achieved almost matches the gap
between the feasibility of the integral and linear programs. We consider this gap
as the integrality gap.

2.3 Useful Procedures

Our model generalizes several known problems. For example, [5] showed that the
generalized assignment problem (below) and the uncapacitated facility location
problem (see Introduction) are special cases of the NFV problem. Throughout
the paper we use several known procedures briefly defined below. A full descrip-
tion is in AppendixA.

Cover-Growing Algorithm. An LP rounding procedure for the uncapacitated
facility location (UFL) problem (see Introduction). Given a fractional solu-
tion, the output is a set of disjoint covers, where each cover is defined by a set
of fractionally opened facilities, and an assignment of clients to the covers.
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Generalized Assignment Problem. In the generalized assignment problem
(GAP) we are given m machines and n jobs that need to be assigned to the
machines. We use a known rounding procedure for the problem [10]. We define
for each cover (created by the cover-growing procedure) a job, and for each
facility a machine. The rounding returns an assignment of functions to the
facilities.

Interval Selection. In the linear relaxation (presented in Sect. 3) of the DFL
problem we pay for fractional changes in the assignment of a client to a facility
between consecutive time steps. Eisenstat et al. [6] gave a procedure that
outputs a set of intervals, breaking the time horizon, separately for each client,
such that in each interval the fractional connection is static. In addition, the
fractional change in each interval is bounded. The cost of the new solution is
at most twice the optimal fractional solution.

3 Dynamic Facility Location

We consider here the dynamic facility location problem (i.e., single commodity)
under the assumption that facilities/servers are static (as in the NFV setting).
We obtain a 7-approximation algorithm for this problem, improving over the
O(log nT ) approximation algorithm of Eisenstat et al. [6]. This improvement
forms the basis for obtaining constant factor approximations when extending the
NFV setting to the dynamic setting. Our algorithm uses the interval selection
procedure of Eisenstat et al. [6], however, our approach significantly departs
from [6], thus enabling us to improve on their results. The linear program is4:

min
∑

i∈F

fiyi +
∑

t∈[T ]

∑

j∈C

dt(i, j)xt
ij +

∑

t∈[T )

∑

j∈C

zt
ij · g subject to:

xt
ij ≤ yi ∀i ∈ F, j ∈ C, t ∈ [T ] (7)

∑

i∈F

xt
ij = 1 ∀j ∈ C, t ∈ [T ] (8)

xt
ij − xt+1

ij ≤ zt
ij ∀i ∈ F, j ∈ C, t ∈ [T ) (9)

yi, x
t
ij , z

t
ij ≥ 0 ∀i ∈ F, j ∈ C, t ∈ [T ] (10)

We first solve the LP for the problem. Given a fractional solution, we run the
interval selection procedure and then apply the cover-growing algorithm. The
details are as follows.

4 The variables are the same as in the linear program for the dynamic NFV problem
in Sect. 2.1.
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DFL-Algorithm

1. Solve the LP and construct the intervals for each client (see Sect. 2.3).
2. For each client and interval, find the average distance from the client to each

facility (over the time steps of the interval), and define a cover for the client
containing only facilities that, on average, are within distance of at most twice
the fractional connection cost.

3. Run the cover-growing algorithm over the covers from the previous step as in
Sect. 2.3.

Lemma 1. DFL-Algorithm provides a 7-approximation factor for the DFL prob-
lem.

Proof. As mentioned in Sect. 2.3, the interval selection procedure can at most
double the cost of the solution, yet it allows us to change the assignment (only)
between consecutive intervals, while paying at most the fractional change cost.
Thus, the total change cost is twice the fractional change cost. The next claim
is rather easy to prove:

Claim. For every interval of a client, if two facilities are in the cover of the
interval, i.e., the average distance to each of them is smaller than twice the
fractional connection cost, 2r, then the distance between them is at most 4r.

In Step (3) we run the cover-growing algorithm over the constructed covers.
Each client in each interval is either assigned to a facility in its own cover, or in
its representative cover. Recall that all facilities in its own cover are at distance of
at most twice its fractional connection cost, thus summing up over the interval,
the total connection cost is at most twice the fractional connection cost times
the number of time steps in the interval. If a client is assigned to a facility in its
representative cover, we pay an additional connection cost, from the intersection
of the covers to the opened facility. As seen in the above claim, the distance
between each pair of facilities inside a cover is at most four times the fractional
connection cost over the interval it is defined for, so this additional cost is at
most four times the fractional connection cost which defines the cover. Since the
representative cover has a smaller fractional connection cost, the overall distance
from the client to the opened facility in its representative cover is at most six
times its own fractional connection cost. In addition, since we open at most a
single facility in each cover, from Markov inequality the total installation cost
is at most twice the fractional installation cost. Concluding, after accounting
for the 1

θ factor of the interval selection procedure (see AppendixA for the role
of θ), we get an approximation ratio of 6

θ for the connection costs, 2
θ for the

installation costs, and 1
1−θ for the change costs. By choosing θ = 6

7 we get an
approximation ratio of 7.

4 Dynamic Uncapacitated NFV

This problem combines the uncapacitated NFV placement problem with the
dynamic facility location problem. As mentioned (see Sect. 2.1), for each time
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step we need to solve an instance of the uncapacitated NFV problem, while
paying for changes in the assignment of clients to facilities. We solve this problem
by extending the DFL-Algorithm. The algorithm first constructs covers for each
commodity separately, but then it uses a rounding algorithm for GAP (instead of
the cover-growing algorithm) to decide on the final location of the commodities.
The next algorithm together with Lemma2 prove Theorem 1.

Dynamic-UNFV-Algorithm

1. Solve DNFV-LP (with infinite capacities) and construct the intervals for each
client (see Sect. 2.3).

2. For each client and interval, calculate the average distance from the client
to each facility (over the time steps of the interval), and define a cover for
the client containing only facilities that, on average, are within distance of at
most twice the fractional connection cost. The radius of a cover is defined as
twice its client’s fractional connection cost.

3. Separately, for each commodity, pick a non-intersecting set of representative
covers as follows: select a cover with minimum radius and delete all covers
that intersect with it. Continue until there are no more covers. Each client
whose cover was deleted receives service from the representative cover that
“caused” the deletion.

4. Apply the GAP rounding algorithm to the fractional solution defined by the
representative covers (see Sect. 2.3): each cover is considered a separate job
and each facility a machine.

5. Assign each client at each interval to the facility in its representative cover in
which the commodities were installed according to the GAP rounding.

Lemma 2. Dynamic-UNFV-Algorithm provides (O(1), O(1)) bi-criteria
approximation factor for the Dynamic UNFV problem.

Proof. We first notice that the analysis of the connection and change costs
remains the same as for the DFL-Algorithm (Sect. 3), assuming the same choice
of θ = 6

7 . This means that the connection costs of the rounded solution are at
most 7 times the fractional connection costs, and the change costs are at most
7 times the fractional change costs. For each commodity s, the representative
covers do not intersect. This allows us to install a copy of s in each representative
cover. It follows that we can treat each cover, a fractional allocation of a com-
modity to a facility, as a fractional assignment of a job to a set of machines. Each
job has a cost equal to its installation cost and a size equal to the commodity’s
size, and each machine has a size bound equal to the facilities size bound. Thus,
the fractional allocation of representative covers to facilities define an instance of
GAP. The rounding algorithm for GAP returns an integral solution whose cost
is at most the fractional cost and the size constraints are violated by at most a
factor of 2. Thus, since we multiplied the installation fractions by 2

θ = 7
3 (in the

interval selection and in the covers construction), the integral solution returned
from it has an installation cost of at most 7

3 times the fractional installation
costs, and the size constraints are violated by at most a factor of 14

3 . To con-
clude, we get a bi-criteria approximation. The approximation ratio of the cost
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is 7 for the connection costs, 7
3 for the installation costs and 7 for the change

costs, and the size constraints are violated by at most a factor of 14
3 .

5 Dynamic Capacitated NFV

This problem combines the dynamic facility location problem and the capaci-
tated NFV problem. In this problem (see Sect. 2.1) we need to solve an instance
of the capacitated NFV placement problem at each time step, while taking into
account the cost of changing the assignment of clients to facilities between time
steps. Just like the previous algorithm (for dynamic UNFV) we select the inter-
vals and find their covers for each client. The difficulty we encounter here is that
we may connect too many covers to the same representative cover, resulting in
a violation of the commodities’ capacities. We choose the representative covers
similarly to Cohen et al. [5], and then reduce the problem to an instance of the
interval graph list coloring problem. The next algorithm together with Lemma3
prove Theorem 2.

Dynamic-CNFV Algorithm

1. Solve DNFV-LP and select intervals.
2. For each client and interval, calculate the average distance from the client

to each facility (over the time steps of the interval), and define a cover for
the client containing only facilities that, on average, are within distance of at
most twice the fractional connection cost. The radius of a cover is defined as
twice its client’s fractional connection cost.

3. Select a cover with smallest radius and assign all intersecting covers to it.
Remove covers that were already assigned at least 1

4 of their service. Continue
till all covers are removed.

4. For each cover, normalize to 1 the total service it gets from the representative
covers.

5. Apply the interval graph list coloring rounding algorithm (see Sect. 6) to
the problem defined by the covers and representative cover: each cover is
considered an interval and each representative cover defines a set of colors (of
size equal to its capacity).

6. Apply the GAP rounding algorithm to the fractional solution defined by the
representative covers (see Sect. 2.3): each cover is considered a separate job
and each facility a machine.

7. Assign each client, at each interval, to the facility in its representative cover
in which the commodities were installed according to the GAP rounding.

Lemma 3. Dynamic-CNFV-Algorithm provides (O(1), O(1)), O(log min{n, T}))
tri-criteria approximation factor for the Dynamic UNFV problem.

Proof. Like previous algorithms, we first select the intervals, paying a factor of
1

1−θ over the change cost, and 1
θ over all other terms. Next we find a cover for

each interval and pay another factor of 2 for doubling its radius (for all terms,
but the change cost). Afterwards, we assign each cover to a set of representative
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covers of smaller radius, supplying at least 1
4 of its service. By normalizing the

total service of each cover we multiply all installation fractions by at most 4,
increasing the installation cost and size constraint violation.

We are left with two tasks. First, assigning each cover to a single represen-
tative cover, and second, choosing in which facility to install each cover, which,
like the previous (uncapacitated) algorithm, we solve by running a GAP round-
ing algorithm. We solve the first task by reducing the problem it defines to the
IGLC problem. For each representative cover with a total capacity of μ, we cre-
ate μ different colors. Each cover is defined for a time interval [t1, t2] and is
represented by a set of representative covers. Thus, for each cover we create an
interval I = [t1, t2], associated with the subset of colors created for its represen-
tative covers. The fractional service assignment of covers to representative covers
can be seen as a fractional coloring of intervals, in which a single copy of each
color suffices. This defines an instance of IGLC. From the algorithm for IGLC
we get a coloring of the intervals. If the interval defined for cover j is colored by
color c, and c is the color created for representative cover i, we set cover i as the
final representative of cover j.

What are the properties of the fractional coloring? From the construction of
the (IGLC) instance, together with the fact that each interval is fully colored,
we can infer that there is a feasible solution for the linear program for (IGLC).
This means that every subset of � intersecting intervals has at least � colors
available for it, which is exactly the local condition our rounding algorithms
requires. Thus, the rounding algorithms for (IGLC) return a solution in which
the number of copies of each color is at most log(min{n, T}), leading to a vio-
lation of the capacity constraints of the commodities by the same factor. After
taking into account the additional violation from the GAP rounding we get that
the size constraints are violated by a factor of 16

θ . By choosing θ = 16
17 we get

that the total cost is at most 17 times the fractional cost, and that the size
constraints are violated by a factor of 17. Overall we get an approximation of
(17, 17, O(log(min{n, T}))): 17-approximation for the costs and size constraints,
and O(log(min{n, T}))-approximation for capacities.

6 Interval Graph List Coloring

We provide two approximation algorithms for the (IGLC) problem. Given a legal
fractional solution for the feasibility program (see Sect. 2.2), the first algorithm
(see Sect. 6.1) finds a solution in which the maximum number of intersecting
intervals that get the same color is of size O(log k), where k is the size of the
largest clique. The second algorithm (see AppendixB) finds a solution in which
the maximum number of intersecting intervals that get the same color is of size
O(log T ). We emphasize that T and k are independent parameters. Combining
the two algorithms proves Theorem3.

We note that the fractional feasibility of the (IGLC) instance guarantees
the following: the size of the union of the allowed color sets of any set S of
intersecting intervals is at least as large as |S|. Thus, the conditions of Hall’s
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theorem are satisfied in the bipartite graph of intersecting intervals vs. colors.
This property turns out to be very useful in our algorithms.

We complement the above results and show that the integrality gap of the
linear feasibility program is Ω( log k

log log k ). This means that given a feasible frac-
tional solution, any integral solution might have to color a clique of size at least
Ω( log k

log log k ) with the same color.

6.1 Clique Size Dependent Approximation

We can achieve an O(log k) approximation if we find a coloring of at least half
the intervals in each clique (with a constant number of copies of each color).
This is achieved by utilizing Hall’s theorem. Then, by repeating iteratively, we
end up with a full coloring of the intervals.

Claim. There exists a subset of intervals S that can be colored with color c,
such that in each clique I(t) having an interval that can be colored by color c,
1 ≤ |I(t) ∩ S| ≤ 2.

Proof. Let us assume the claim is false and there is no such subset S. Define
S = {Iv|c ∈ Cv}. Obviously, each clique with an interval that can be colored by
color c has an interval in this subset S. There is a point t with at least three
intervals (otherwise, we are done). Let I1 = [a1, b1], I2[a2, b2] and I3 = [a3, b3] be
three intervals in S that intersect at t. First we notice that all starting points
ai are smaller than t, and all ending points bi are bigger than t. Without loss
of generality let us assume a1 is the smallest starting point. Now there are
two options, either b1 is bigger than b2 and b3, which in this case, obviously, I1
contains both of I2 and I3. The other option is that either b2 or b3 has the biggest
ending point. W.l.o.g let us assume that a2 ≥ a3. So the range [a1, b2] contains
I3. In either case we notice that we can remove at least one of the intervals
without uncovering points on the line. We can continue with this process until
there are no points with more than two intervals in S.

Using this claim we can iterate through the colors, and color intervals. In
each iteration we can guarantee that in each clique I(t) containing an interval
that can be colored by color c (the color of the current iteration), some interval
I ∈ I(t) is colored.

Clique-Coloring Algorithm

1. For each color c:
(a) Create a subset of intervals that can be colored c.
(b) Until there are no cliques of size three or more: select three intervals in

such a clique and remove the interval contained in the other two intervals
from the subset.

(c) Color all intervals in the subset with color c.
2. If there are uncolored intervals, go back to (1).
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Lemma 4. Clique-Coloring Algorithm provides O(log k) approximation for
IGLC.

Proof. Each clique can be seen as a matching of intervals to colors. We are
guaranteed by the fractional solution (to IGLC in Sect. 2.2) that the number
of colors available for any set of � intersecting intervals is at least �. Therefore,
by Hall’s theorem, there is a perfect matching in each clique from intervals to
colors.

Whenever we color a subset of intervals by color c, we color at least one
interval in every clique with an interval that can be colored with c. Consider a
clique I(t) of size s with an interval that received color c. As already mentioned,
I(t) has a perfect matching before coloring the intervals. After we color a subset
of intervals by color c, at least one of the intervals in I(t) was colored by c, and
no other interval in I(t) will receive color c in the same iteration. It may be
the case that coloring the interval by color c does not agree with the coloring
in the perfect matching of I(t). So, by coloring it we may have lost a potential
match, and are left with only s − 2 possible matches. In the worst case, for
every interval colored, each clique has two less color matches available, one for
the colored interval, and one for the interval that was matched to color c in
the perfect matching. In addition, any clique without an interval that can be
colored by c can still be matched perfectly since the bipartite graph of intervals
and colors does not change.

Since we use a single color each time, if an interval can be matched to color
c in one clique, it can be matched to it in all cliques (that contain it). Overall
we lose a single match in each clique for an interval we color, so we are left
without colors only after half of the intervals in each clique were colored. Since
this applies to all cliques, after log k iterations, where k is the size of the largest
clique, all cliques are fully colored. Each iteration uses only two copies of each
color, thus the result coloring uses at most O(log k) copies of each color.

6.2 Integrality Gap

We define an instance of (IGLC) where we are given 4 colors denoted by 1, 2, 3, 4.
There are six intervals, I1, . . . , I6, as seen in Fig. 1. The intervals’ subsets of
allowed colors are: C1 = {1, 2}, C2 = {3, 4}, C3 = {1, 3}, C4 = {2, 3}, C5 =
{1, 4}, and C6 = {2, 4}. We define a feasible fractional solution in which each
interval is colored half-half by its allowed colors. For any integral coloring of I1
and I2 there is no legal coloring for one of the other intervals (intervals I3, I4, I5
and I6, cover all coloring combination of intervals I1 and I2). This means we will
need at least two copies of some color, and the integrality bgap is 2.

This example can be expanded along the same lines. First, we define a set of
x intervals, B1, each colored equally with its own distinct set of x colors. Next we
define B2, a set of xx disjoint intervals. Each interval in B2 requires a different
color set, one from each of the intervals in B1, and is colored equally by them.
As seen in the example above, for every coloring of the intervals in B1, one of
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Fig. 1. An IGLC instance with an integrality gap of 2

the intervals in B2 will be left without a color it can be legally colored with.
This results with a clique of two intervals that receive the same color.

Next, we create a copy of the intervals in B1, each with its own set of distinct
colors, and add them to B1. For each interval I ∈ B2 we create xx disjoint
intervals in its range. Their colors are chosen in the same way as the colors of
the intervals in B2, but with the colors of the new intervals of B1. The new
intervals are added to B2 as well. As a result of this process, in any integral
coloring, a point t exists such that I(t) contains at least two different pairs of
intervals that received the same color.

Applying this process x times results with an instance for which:

(i) in any integral solution, there exists a clique with x different pairs of intervals
that received the same color.

(ii) in every clique we used at most 2
x of every color, 1

x for every level.

An interval that requires the x colors described in (i), that are already used by x
pairs of intervals, forces us to use a third copy of some color. We can create the
third level B3 appropriately to guarantee that some interval receives the third
color. We can create at most x levels in this manner, as each level requires at
most 1

x of every color. If the size of the largest clique is k = O(xx), the integrality
gap is Ω( log k

log log k ).

A Useful Procedures

Our model generalizes several known problems. For example, [5] showed that
the generalized assignment problem (see Sect. 2.3) and the uncapacitated facility
location problem (see Introduction) are special cases of the NFV problem.

Here we describe several known procedures for theses problems which we use
throughout the paper.

A.1 Cover-Growing Algorithm

Here we describe a cover-growing algorithm for the uncapacitated facility loca-
tion (UFL) problem. We present it together with its analysis, since we use it
later and take advantage of its local properties. We assume that our input is a
fractional solution to the UFL problem. The output is an integral solution, i.e.,
a set of open facilities such that each client is assigned to an open facility.

We can view a fractional solution to the facility location problem as inducing
a probability distribution over the facilities from which a client gets service.
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Thus, the fractional connection cost of a client is an expectation, since it is a
sum of weighted distances (where the service fractions serve as weights). A cover
(or ball) around a client, having radius twice the expected distance, contains at
least half of the client’s fractional service. Thus, by doubling the fractions inside
the cover, the client gets all of its service from it.

Rounding Algorithm

1. Define a cover around each client with radius twice the expected distance.
2. Until all clients are satisfied:

(a) among all unconnected clients, find client i with minimum radius cover.
(b) open facility f that minimizes the installation cost in the cover.
(c) for every client i′ whose cover intersects the cover of client i (there exists

a facility that serves both): connect it to facility f .

It follows from the rounding algorithm that every client is either connected
to a facility in its own cover or connected to a facility in an intersecting cover
(which does not have a larger radius). In this case we say that a client j is
connected to a facility in its representative cover. Thus, the connection costs are
at most 6 times the sum of the expected distances, and the installation costs are
at most twice the fractional installation costs. In total, the approximation factor
achieved is 6 for the uncapacitated facility location.

A.2 Generalized Assignment Problem

In the generalized assignment problem (GAP) we are given m machines and n
jobs that need to be assigned to the machines. Job j has cost cij and size wij

on machine i; machine i has total size wi. Our goal is to assign each job to a
machine, without violating machine size constraints, while minimizing the total
assignment cost. Assume we are given a feasible fractional solution to GAP. In
our algorithms we apply a rounding procedure to the given fractional solution
due to Shmoys and Tardos (see [10]). The output of the rounding procedure is
an integral solution whose cost is at most the cost of the fractional solution,
and the size of every machine is violated by at most the maximum size of a job
assigned fractionally to the machine, i.e., by at most a factor of two. GAP is a
special case of the NFV placement problem in which all distances in the metric
are set to be zero. In this case at most one copy of each function (i.e., a job) is
installed, yielding a GAP instance.

A.3 Interval Selection

In the linear relaxation (presented in Sect. 3) of the DFL problem we pay for
fractional changes in the assignment of a client to a facility between consecutive
time steps. Eisenstat et al. [6] gave a procedure that breaks the time horizon
into intervals, separately for each client, such that in each interval the fractional
connection is static. The fractional change in each interval is bounded. The idea
behind the procedure is to iteratively construct the intervals for each client. An
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interval terminates at the latest time step t in which the fractional changes that
were accumulated through until t are bounded. The procedure for client j is as
follows:

1. Set tj0 = 1 and � = 1.
2. Next interval starts at the maximal t, t ∈ (tj� , T + 1], such that∑

i∈F (min{tj
�≤u<t} xu

ij) ≥ θ (where θ ∈ [0, 1]).
3. If t = T +1, all intervals are selected; otherwise, set � ← �+1 and select next

interval.

For each interval we set the new static fractions x̂ as follows. For each t in
the �th interval,

x̂t
ij =

min{tj
�≤u<tj

�+1} xu
ij

∑
i′∈F min{tj

�≤u<tj
�+1} xu

i′j
.

It is straightforward to verify that the fractions in the solution are at most
multiplied by 1

θ , since the numerator is smaller than all fractions in its interval
and the denominator is at least 1

θ . If we multiply the installation fractions by 1
θ ,

then the solution is feasible. Next, we want to show that fractional changes in
each interval are at least 1− θ. If so, since we only change the assignment at the
end of each interval, we pay at most 1

1−θ times the change cost. If we consider
the �th interval, the total fractional change in assignment in the interval is

∑

i∈F

∑

tj
�≤u≤tj

�+1

zu
ij ≥

∑

i∈F

(xtj
�

ij − min
{tj

�≤u≤tj
�+1}

xu
ij)

= 1 −
∑

i∈F

min
{tj

�≤u≤tj
�+1}

xu
ij ≥ 1 − θ.

The first inequality follows since the change is at least the first fractional
connection minus the min fractional connection.

B Horizon Length Dependent Approximation

Assuming there is a feasible fractional solution to the (IGLC) program, we split
the time horizon into two independent parts which we color separately, achieving
an O(log T ) approximation. Similarly to the previous algorithm, we exploit the
fact that each clique can be legally colored.

Time-Split Algorithm

1. Let t be the middle point in T .
2. Color the intervals in clique I(t).
3. Continue recursively on both halves of T . At the ith iteration use the ith

copy of the set of colors.
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Lemma 5. Time-Split Algorithm provides O(log T ) approximation for the
IGLC problem.

Proof. Each clique can be seen as a matching of intervals to colors. We are
guaranteed by the fractional solution (to IGLC in Sect. 2.2) that the number
of colors available for any set of � intersecting intervals is at least �. Therefore,
by Hall’s theorem, there is a perfect matching in each clique from intervals to
colors. Next, at each step we color the middle point with a new set of colors.
After removing all colored intervals we are left with two ranges that do not share
any intervals thus, we can use the next copy of the set of colors at both of them.
Each time the we color a clique we create two ranges that are at most half the
size of the original range, so it is obvious we will not need more than O(log T )
copies of the colors to color all intervals.

C Experiments

We devote this section to test the uncapacitated dynamic NFV algorithm. To this
end we consider a subnet of the physical network of Cogent, a tier 1 ISP, which
offers us a realistic facilities’ deployment (using its publicly available data center
locations). We choose ten data centers placed in Europe and defined facilities at
their location. Next, we added a hundred clients in random positions, and for
each client defined a random walk, taking a step at a random direction of random
size. In addition, each client was assigned a random commodity vector describing
which commodities, out of a list of five different commodities, it requires. Finally,
a random size was assigned to each facility, together with a size and cost for each
commodity (at each facility).

In order to evaluate the algorithm, we compare it with previous solutions for
the problem, the uncapacitated (static) NFV from [5]. Since the static algorithm
does not optimize over the time horizon of the dynamic problem, we define two
different variants for using it. The first one uses the clients’ position over the time
horizon to find the average position of each client. Using this average position
we obtain a single time step instance. The second one runs the static algorithm
at each time step separately, paying change costs accordingly. These two options
define the two extreme options of a fully static solution, in which we do not
allow any changes, and a fully dynamic one, which does not integrate between
solutions to avoid overpaying for change costs and opening costs.

In Fig. 2 shows the cost percentage of the two versions of the static algorithm
compared to the cost of the dynamic algorithm. It can be seen that the intuition
for the performance of the algorithm is correct, that is, for small change costs
(relative to the connection cost), ignoring it results in higher costs, and for high
change costs, it does not necessarily come with a cost. Still, giving consideration
to the dynamic nature of the problem does give advantage to the dynamic algo-
rithm, and for high change costs, the performance of the static algorithm and
the dynamic algorithm, converge to one another.

In Sect. 2.3 we discussed the interval selection procedure. For each client, we
found the time steps so that in between substantial fractional changes in the
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Fig. 2. Performance ratio of the dynamic UNFV algorithm compared to the static
UNFV with respect to the ratio between the average connection cost and the change
cost. Top presents the full graph while the bottom zooms in on the smaller values.

assignment were accumulated, and we split the time horizon into intervals at
these time steps. The question of at which point the “right amount” of fractional
change has accumulated arises. We ran the experiments with a small change cost
(0.04 of the average connection cost) and a large change cost (which equals the
average connection cost). As seen in Fig. 3, this value, denoted by θ, may have
significant impact on the performance of the algorithm. If we choose a value
too big, we may induce too many assignment changes as we break the time
horizon into too many intervals. And for small values of θ, we may end up
with a static solution which may lose the advantage of the dynamic algorithm.
Another evidence for this can be found in the comparison with the fractional
solution. For values of θ in the range [0.4, 0.6], the ratio between the fractional
solution and the algorithm’s solution is bigger. Usually the optimal solution and
the fractional solution are not close. This leads us to assume that in practice, the
ratio between the algorithm’s solution and the optimal solution is better than 2.

Lastly, in Fig. 4 we can see the performance ratio of the dynamic algorithm as
a function of the expected number of commodities that can be installed in each
facility. The performance of the algorithm peaks as the size constraint loosens.
The lower performance ratio may be the result of tight size constraint which
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Fig. 3. Performance ratio of the dynamic UNFV algorithm compared to the static
UNFV and the fractional solution with respect to theta.

Fig. 4. Performance ratio of the dynamic UNFV algorithm compared to the static
UNFV with respect to the facility size.

creates a hard problem without room for much improvement. On the other hand,
when the sizes of the facilities are very large, we may install each commodity at
several facilities to allow more assignment changes.
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Abstract. We study the problem of computing a longest increasing sub-
sequence in a sequence S of n distinct elements in the presence of per-
sistent comparison errors. In this model, (Braverman and Mossel, Noisy
sorting without resampling, SODA, 2008) every comparison between two
elements can return the wrong result with some fixed (small) probability
p, and comparisons cannot be repeated. Computing the longest increas-
ing subsequence exactly is impossible in this model, therefore, the objec-
tive is to identify a subsequence that (i) is indeed increasing and (ii) has
a length that approximates the length of the longest increasing subse-
quence.

We present asymptotically tight upper and lower bounds on both the
approximation factor and the running time. In particular, we present an
algorithm that computes an O(log n)-approximation in time O(n log n),
with high probability. This approximation relies on the fact that we can
approximately sort (Geissmann, Leucci, Liu, and Penna, Optimal Sorting
with Persistent Comparison Errors, ArXiv e-prints 1804.07575, 2018) n
elements in O(n log n) time such that the maximum dislocation of an ele-
ment is at most O(log n). For the lower bounds, we prove that (i) there
is a set of sequences, such that on a sequence picked randomly from this
set every algorithm must return an Ω(log n)-approximation with high
probability, and (ii) any O(log n)-approximation algorithm for longest
increasing subsequence requires at least Ω(n log n) comparisons, even in
the absence of errors.
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1 Introduction

When dealing with complex systems and large volumes of information, it is
often the case that at least part of the involved data will be inconsistent. These
inconsistencies can be intrinsic, i.e., they might shed from the fact that the data
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is obtained from an inherently noisy source (this is typically the case in human-
produced data), or they might be the result of corruptions caused by random
errors (think, for instance, of random memory faults or communication errors).
It is therefore important to understand how the classical techniques used to solve
basic algorithmic problems can cope with such errors.

In this paper, we consider the problem of computing a longest increasing
subsequence LIS(S) in a given sequence S of distinct elements –a fundamental
task that appears naturally in many areas, such as in probability theory and
combinatorics [2,5], scheduling [4,24], and computational biology [11,26]– in
presence of random persistent comparison errors.

In this model, every comparison between two elements is wrong with some
small fixed probability p, and correct with probability 1 − p. The comparison
results are independent over all pairs of elements, and comparisons cannot be
repeated. Note that this is equivalent to say that repeating the same compari-
son multiple times yields each time the same result. Hence, comparison results
are persistent: always wrong or always correct. Furthermore, we assume that we
cannot inspect the values of the elements, but only use such element compar-
isons. Because of these comparison errors, it is impossible to compute LIS(S)
correctly, instead, we seek to return a sequence that (i) is indeed increasing and
that (ii) has some guaranteed minimum length depending on the length of the
longest increasing sequence l := |LIS(S)|. In particular, we are interested in
algorithms that return an increasing sequence of length at least 1

r · l, where r is
the approximation factor.

This error model has been first employed by Braverman and Mossel [7], who
studied the problem of sorting. Other work on sorting followed (see [15,16,22])
and the model has been studied also for finding the minimum, searching, and
linear programming in two dimensions [22]. In this paper, we will present an
algorithm that returns an O(log n)-approximation on the longest increasing sub-
sequence in O(n log n) time, with high probability. Moreover, we will prove that
this approximation factor is the best possible as Ω(log n) is also a lower bound,
regardless of the running time, and that any (log n)-approximation algorithm
requires Ω(n log n) comparisons, even in the absence of comparison errors.

1.1 Related Work

There are several algorithms to compute a longest increasing subsequence of
a sequence S, if no comparison errors happen. Typically, they are based on a
common underlying algorithmic idea: They process the elements one by one and
maintain for each length found so far the increasing subsequence of this length
that ends with the smallest possible element seen so far. We shall call this algo-
rithmic idea the Core-Algorithm to compute a longest increasing subsequence.
The running time of the Core-Algorithm is O(n log n) in the decision-tree model
(see for instance [6,8,13]). This time complexity is tight, as shown in [13]. In the
RAM model, where one can also inspect the values, the algorithm can be imple-
mented to run in O(n log log n) time [9,25]. All the results can be parameterized
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to O(n log l) or O(n log log l), respectively, where l is the length of the longest
increasing subsequence.

The longest increasing subsequence of S is also the longest common subse-
quence between S and the sorted sequence of the elements in S. This implies
an O(n2) time (or O(n2/ log n) time if optimized) algorithm to find the longest
increasing subsequence when using the standard dynamic programming tech-
nique that is used to find longest common subsequences [13,23].

The model with random persistent comparison errors has been extensively
studied for finding the smallest element, for searching, and for sorting (see for
instance [7,15,16,22]). A common way to measure the quality of an output
sequence in terms of sortedness, is to consider the dislocation of the elements.
The dislocation of an element is the absolute difference between its position in
the output sequence and its position in the correctly sorted sequence (its rank).
Typically, one considers the maximum dislocation of any element in the output
sequence and the total dislocation (the sum of the dislocations of all elements).
It has been shown for instance in [17], that there is an algorithm with running
time O(n log n) which achieves simultaneously maximum dislocation O(log n)
and total dislocation O(n) with high probability, and that this is indeed the
best one can hope for (i.e., there exist matching lower bounds that show that
no possibly randomized algorithm can sort such that, with high probability, the
maximum dislocation is o(log n) or the total dislocation is o(n)). A maximum
dislocation of O(log n) implies the following: on the positive side, it is possible
to derive the correct relative order of two elements whose ranks differ by at least
Ω(log n); on the negative side, this is not possible for two elements whose ranks
differ by less than O(log n). The results on the maximum dislocation of sorting
are of interest for the problem of finding the longest increasing subsequence,
because an increasing subsequence is also a sorted subsequence.

An easier variant is a model with non-persistent comparison errors, where
repeating a comparison can yield different results. In this model, one can sort
in O(n log(n/q)) time, where 1 − q is the success probability of the algorithm
(see for instance [12]). The impact of such errors on classical sorting algorithms
such as Insertionsort, Quicksort, and Mergesort have been analyzed in [3,19–21].
Other models restrict the comparisons in which errors can happen. For instance,
[1] gives a sorting algorithm when errors occur only between elements whose
difference is at most some fixed threshold, and [10] provides an algorithm when
the total number of errors is known in advance.

1.2 Our Contribution

We prove asymptotically tight upper and lower bounds on both the approx-
imation factor and the running time for longest increasing subsequence under
persistent comparison errors. For the upper bounds, we define an Approximation-
Algorithm that computes an O(log n)-approximation to the longest increasing
subsequence of S. In fact, it even finds the longest possible increasing subse-
quence under the implication that we cannot sort better than obtaining an order
with maximum dislocation O(log n). Formally, we prove the following result:
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Theorem 1 (Upper Bounds). For any sequence S that contains n distinct
elements, our Approximation-Algorithm computes an O(log n)-approximation to
the longest increasing sequence of S, in O(n log n) time, with probability at least
1 − 1

n .

This result on the upper bound can be generalized to other error models. In
fact, if we are given or able to obtain an approximately sorted sequence with
maximum dislocation d, then our Approximation-Algorithm will return a 2d-
approximation to the longest increasing subsequence. We discuss this point in
the Conclusion (Sect. 6).

To prove our lower bound on the approximation factor of any algorithm
solving LIS(S) under persistent comparison errors with high probability, we will
identify a small collection of sequences that contain a longest increasing sequence
of size Θ(log n) and that are likely to look the same in our error model. Then,
we show for any algorithm that if it succeeds on one sequence of this collection
by returning a constant number of elements of this increasing sequence it must
fail on another sequence. In particular, we will prove the following theorem:

Theorem 2 (Lower Bound – Approximation Factor). There exists a col-
lection of sequences S (permutations of length n) and a probability distribution
on S, such that no algorithm can return an O(log n)-approximation (for s suit-
able hidden constant that depends on p) of the longest increasing subsequence
with probability 1 − 1

n .

We prove a lower bound of Ω(n log n) on the number of comparisons (which
is also a lower bound on the running time) needed to compute an O(log n)-
approximation by considering the easier case in which all comparisons are cor-
rect, and by adapting the techniques used in [13] for proving a similar lower
bound for exact (i.e., 1-approximate) algorithms:

Theorem 3 (Lower Bound – Running Time). Any (log n)-approximation
algorithm for longest increasing subsequence requires Ω(n log n) comparisons,
even if no errors occur.

2 Preliminaries

Since we assume that all elements in the input sequence S = 〈s1, s2, . . . , sn〉
are distinct, we can also assume, for easier analysis and readability, that S is
a permutation of the numbers (elements) {1, . . . , n}. By our error model, the
elements in S posses a true linear order, i.e., Ssort := 〈1, . . . , n〉, however, this
order can only be observed through erroneous comparisons.

For two distinct elements x and y, we will write x < y to denote that x is
smaller than y according to the true linear order (resp. x > y to denote that
x is larger than y according to the true linear order), and we will write x ≺ y
(resp. x � y) to mean that x is observed to be smaller (resp. larger) than y
in the comparison result. For a given sequence S and an element x ∈ S, we
define rank(x, S) = 1 + |{y ∈ S : y < x}| to be the true rank of element x
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in S (note that ranks start from 1), and we define pos(x, S) ∈ [1, |S|] to be
the position of x in S (positions also start from 1). The dislocation of x in S
is then disl(x, S) =|pos(x, S) − rank(x, S)|, and the maximum dislocation of S

is disl(S) = maxx∈S disl(x, S). For a given sequence S, we let C ∈ {≺,�}(n2)

denote the comparison outcomes that we can observe. For C = 〈c1, . . . , c(n2)〉,
this means that if ck = c(i−1)n+j = “≺” with 1 ≤ i < n and i < j ≤ n, then
si ≺ sj (resp. si � sj if ck = c(i−1)n+j = “�”). Finally, for z ∈ IR, we write log z
for the binary logarithm of z.

We continue the preliminaries with some results on sorting that we will use
to prove our upper bound on the approximation factor.

Theorem 4 (Theorem3 in [17]). There is an algorithm that approximately
sorts, in O(n log n) worst-case time, n elements subject to random persistent
comparison errors so that the maximum dislocation of the resulting sequence is
O(log n), with probability 1 − 1

n .

Lemma 5. Let Sapx = 〈apx1, apx2, . . . , apxn〉. If disl(Sapx) ≤ d, then for 1 ≤
i < n − 2d, apxi and apxi+2d are in correct relative order: pos(apxi, S

sort) <
pos(apxi+2d, S

sort).

Proof. Since the maximum dislocation in Sapx is at most d, pos(apxi, S
sort) ∈

{i − d, . . . , i + d} and pos(apxi+2d, S
sort) ∈ {i + d, . . . , i + 3d}. These intervals

intersect in at most one position, and the claim follows since no two elements
can appear in the same position. �	

3 Upper Bound and Approximation-Algorithm

We will modify the so-called Core-Algorithm (as named in Sect. 1.1, Related
work) that computes a longest increasing subsequence in the absence of compar-
ison errors, such that it computes an O(log n)-approximation with high proba-
bility in our error model. Before we do so, we first show that it is possible to
identify a 2d-approximation by looking at S and a sequence Sapx with maximum
dislocation d. Since we can sort such that the maximum dislocation is O(log n)
(see Theorem 4), this implies an O(log n)-approximation on LIS(S).

3.1 Upper Bound

The proof of the upper bound is based on the following fact and observation:

– Without any comparison errors, the problem of finding LIS(S) is equivalent
to the problem of finding a longest common subsequence between S and Ssort,
where Ssort is the correctly sorted order of the elements in S.

– This leads to the following observation. Let Sapx be the sequence obtained
from approximately sorting S with comparison errors and consider now Sapx

as the total order over all elements, i.e., for each pair of elements, their com-
parison result is redefined as their relative order in Sapx. Furthermore, let A
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be any algorithm that solves LIS(S) in the absence of errors. If A uses the
redefined comparison results, it computes the longest common subsequence
LCS(S, Sapx) between S and Sapx.

The immediate idea of computing LCS(S, Sapx) comprises some difficulties,
since this subsequence is not necessarily increasing and, on top of that, its length
might be smaller than |LIS(S)|. However, we can still get a first approxima-
tion. Assume that Sapx has maximum dislocation at most d. Lemma 5 implies
that we obtain an increasing subsequence when taking every 2d-th element of
LCS(S, Sapx). And the maximum dislocation implies that the elements in the
subset containing every 2d-th element of LIS(S) appear in the same relative
order in Sapx, thus |LCS(S, Sapx)| ≥ 1

2d |LIS(S)|. When put together, we get a
4d2-approximation.

This approximation factor can be improved, and it turns out that considering
common subsequences whose elements lie (at least) 2d positions apart in Sapx

is actually a good start: By Lemma 5, a common subsequence between S and
Sapx is increasing if for every pair of adjacent elements in this subsequence
their positions in Sapx differ by at least 2d. Therefore, we say that a sequence
S′ = (s′

1, s
′
2, . . . , s

′
m) is 2d-distant in Sapx if

pos(s′
i, S

apx) + 2d ≤ pos(s′
i+1, S

apx) for 1 ≤ i < m. (1)

Notice that any (increasing) subsequence of S that is 2d-distant in Sapx is auto-
matically also a common (increasing) subsequence of S and Sapx. This observa-
tion suggests the following easy recipe to obtain a 2d-approximation on longest
increasing subsequence:

– First, partition the elements into 2d subsets, such that every 2d-th element
in Sapx gets into the same subset, and obtain 2d input subsequences based
on this partition.

– Then, on every input subsequence, run any algorithm that computes a longest
increasing subsequence if no comparison errors happen, and return the longest
result.

By pigeon hole principle and since every input subsequence is now 2d-distant in
Sapx, the longest result must be a 2d-approximation on |LIS(S)|. This recipe
however is not optimal in the sense that in many cases, we could do better
and find a longer subsequence in S that is still 2d-distant in Sapx. In fact, we
lose up to a factor 2d in the case where LIS(S) is already 2d-distant in Sapx,
but these elements are equally distributed among all input subsequences. For
this reason, we will define an approximation algorithm that finds the longest
increasing subsequence in S that is 2d-distant in Sapx. We conclude this section
with the obvious lemma.

Lemma 6. The longest subsequence S∗ of S that is 2d-distant in Sapx has length
at least

|S∗| ≥ 1
2d

|LIS(S)|.
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Algorithm 1. Core-Algorithm(S = 〈s1, . . . , sn〉)
1 L[1] ←− s1;
2 k ←− 1;
3 foreach i = 2, . . . , n do
4 x ←− si;
5 if x < L[1] then L[1] ←− x;
6 else
7 j ←− max{j ≤ k : L[j] < x};
8 if j = k then k ←− k + 1;
9 L[j + 1] ←− x;

10 prec[x] ←− L[j];

11 lis[1] ←− L[k];
12 foreach i = 2, . . . , k do
13 lis[i] ←− prec[lis[i − 1]]

14 return lis;

3.2 Approximation-Algorithm

Consider the Core-Algorithm described in Algorithm 1 that computes the longest
increasing subsequence of the input sequence S in the error-free case. The algo-
rithm processes the input elements one by one, maintaining the longest increasing
subsequence found so far. In particular, it maintains a parameter k and an array
L, such that k is the length of the longest increasing subsequence found so far
and L contains an entry for each length 1 to k, such that L[i] stores the smallest
element processed so far that can be at the end of an increasing subsequence of
length i.

– The first element is placed to L[1] and k is set to 1.
– Each subsequent element x is placed to L[j + 1], such that j is the largest

position where y = L[j] is smaller than x.
– If x is placed to L[k + 1], then k is updated to k + 1.
– Whenever a new element x is placed, put a pointer prec from x to the element

in y = L[j], that, by construction, has a lower value than x.
– In the end, follow these pointers from the top element of the last pile to

recover the longest increasing subsequence (in reverse order).

An entry L[j] basically represents the increasing sequence of length j that
ends with the smallest possible element processed so far. When an element x
is inserted into some position L[j + 1] this means that it is appended to the
sequence represented by L[j]. Hence, x either increases the longest increasing
sequence so far (case j = k) or the sequence L[j + 1] gets replaced by this new
sequence (case x < L[j + 1]).

Our Approximation-Algorithm, as described in Algorithm 2, is obtained by
modifying the Core-Algorithm such that it works in our error model.
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Algorithm 2. Approximation-Algorithm(S = 〈s1, . . . , sn〉)
1 Sapx ←− approximately sort S as shown in [17] ;
2 d ←− c · log n // ∃c s.t. w.h.p. disl(s) ≤ c · log n [17];
3 L[1] ←− s1;
4 k ←− 1;
5 foreach i = 2, . . . , n do
6 x ←− si;
7 if pos(x, Sapx) < pos(L[1], Sapx) then L[1] ←− x;
8 else
9 j ←− max{j ≤ k : pos(L[j], Sapx) < pos(x, Sapx)};

10 if pos(L[j], Sapx) + 2d ≤ pos(x, Sapx) then
11 if j = k then k ←− k + 1;
12 L[j + 1] ←− x;
13 prec[x] ←− L[j];

14 lis[1] ←− L[k];
15 foreach i = 2, . . . , k do
16 lis[i] ←− prec[lis[i − 1]];

17 return lis;

– We first approximately sort (using the algorithm from [17], see also Theorem 4
in the current paper) the elements of S to obtain Sapx, and we redefine the
comparison outcomes based on this total order, i.e., the result of a comparison
between two elements now corresponds to their relative order in Sapx.

– To compute a suitable subsequence, we change the algorithm so that it
remembers the longest 2d-distant in Sapx subsequences instead of the longest
increasing subsequences. This implies that an element x is only appended to
an (intermediate) subsequence that ends with element y if pos(y, Sapx)+2d <
pos(x, Sapx).

For easier analysis, we introduce some additional notation. We call one exe-
cution of the lines 5 to 13 of Algorithm2 an iteration, and enumerate them such
that element si is considered in iteration i. We also say that line 4 corresponds
to the first iteration. Furthermore, we denote by Lt and kt the state and the
value of L and k after the t-th iteration, respectively, and for any j ≤ kt, we
call the subsequence 〈Lt[j], prec[Lt[j]], prec[prec[Lt[j]]], . . . 〉 with length j the
implied sequence of Lt[j].

Lemma 7. For every t ≤ n, after the t-th iteration of our Approximation-
Algorithm, every implied sequence is a subsequence of S that is 2d-distant in
Sapx. Moreover, 〈Lt[1], . . . , Lt[kt]〉 is also 2d-distant in Sapx.

Proof. For any t and j ≤ kt, let S′ = 〈s′
1, . . . , s

′
m〉 be the implied sequence of

Lt[j]. Observe that to every element s′
i ∈ S′, such that i > 1, the algorithm has

assigned s′
i−1 as its predecessor. Since the predecessor of any element can only

have been processed in an earlier iteration, S′ is a subsequence of S.
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It follows by induction, that the condition on line 10 in Algorithm2 ensures
that S′ is 2d-distant in Sapx: It is trivial to see for t = 1, thus, assume that every
implied sequence before the t-th iteration is 2d-distant in Sapx. If st is inserted
into L[j] (nothing changes in the other case), the implied sequence of Lt[j] is
equal to st appended to the implied sequence of Lt−1[j − 1] (if it exists). By
hypothesis and the condition on line 10, Lt[j] is still 2d-distant, and since the
other implied sequences do not change, the claim also holds after iteration t.

That 〈Lt[1], . . . , Lt[kt]〉 is 2d-distant in Sapx also follows by induction: If L[j]
changes (thus L[j′] does not change for all j′ �= j), then by hypothesis and the
conditions in lines 7, 9, and 10, pos(Lt−1[j − 1], Sapx) + 2d ≤ pos(Lt[j], Sapx) <
pos(Lt−1[j], Sapx) ≤ pos(Lt−1[j +1], Sapx)−2d (for all those entries that exist).
�	
Lemma 8. Let S′ = 〈s′

1, . . . , s
′
m〉 be the sequence that our Approximation-

Algorithm returns. Then, S′ is a longest subsequence of S that is 2d-distant
in Sapx.

Proof. Lemma 7 implies that S′ is a subsequence of S and 2d-distant in Sapx.
Let S∗ = 〈s∗

1, . . . , s
∗
m∗〉 be a longest subsequence of S that is 2d-distant in Sapx.

We now show that |S′| ≥ |S∗|. In particular, we show by induction that after
iteration t∗i , pos(Lt∗

i
[i], Sapx) ≤ pos(s∗

i , S
apx). For the base case, consider itera-

tion t∗1, where s∗
1 is processed. Either s∗

1 gets inserted into some position j ≥ 1,
i.e., Lt∗

1
[j] = s∗

1, or not. If it gets inserted, then by conditions in lines 7 or 9
in Algorithm 2, pos(Lt∗

1
[1], Sapx) ≤ pos(s∗

1, S
apx). If not, then it must hold that

Lt∗
1
[1] = Lt∗

1−1[1] and thus pos(Lt∗
1
[1], Sapx) < pos(s∗

1, S
apx).

For the step case, consider iteration t∗i+1, where s∗
i+1 is processed, and

observe that the value of k only increases during the algorithm, and for any
t′ < t and j ≤ kt′ it holds that pos(Lt′ [j], Sapx) ≥ pos(Lt[j], Sapx). There-
fore, and by induction hypothesis and the assumption that S∗ is 2d-distant
in Sapx, pos(Lt∗

i+1−1[i], Sapx) + 2d ≤ pos(s∗
i+1, S

apx). And Lemma 7 implies,
pos(Lt∗

i+1−1[i], Sapx) + 2d ≤ pos(Lt∗
i+1−1[i + 1], Sapx). Thus, if s∗

i+1 does not get
inserted, it is because pos(Lt∗

i+1−1[i + 1], Sapx) < pos(s∗
i+1, S

apx), and if it gets
inserted, it will be in some position j ≥ i + 1. In any case, the hypothesis also
holds after the iteration iteration t∗i+1, which means that S′ has indeed maximum
length. �	

3.3 Proof of Theorem1

We now prove the initially stated Theorem1, which for convenience, we restate
here:

Theorem 1 (Upper Bounds). For any sequence S that contains n distinct
elements, our Approximation-Algorithm computes an O(log n)-approximation of
the longest increasing sequence of S, in O(n log n) time, with probability at least
1 − 1

n .
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Proof. Let d ∈ O(log n) according to Theorem 4, such that with probability 1− 1
n ,

the maximum dislocation in Sapx is at most d. If this is true, by Lemmata 5–8,
our Approximation-Algorithm returns a subsequence S′ of S that is increasing,
and that has length at least LIS(S)

2d ∈ Ω
(LIS(S)

log n

)
.

The running time consists of the initial sorting, which by Theorem4 takes
O(n log n) time1, and the n iterations of the algorithm, which take O(log n)
time each if binary search is used to implement line 10. The final construction
of the output takes O(k) time, where k ≤ LIS(S) ≤ n is the length of the
approximation. �	

4 Lower Bound on the Approximation Factor

We continue this paper with a lower bound on the approximation factor, that
implies that the upper bound we showed in Theorem1 is tight up to constant
factors. In particular, we prove Theorem2, which we restate here:

Theorem 2 (Lower Bound – Approximation Factor). There exists a col-
lection of sequences S (permutations of length n) and a probability distribution
on S, such that no algorithm can return an O(log n)-approximation (for some
suitable hidden constant that depends on p) of the longest increasing subsequence
with probability 1 − 1

n .

Our proof can be seen as a generalization of the lower bound on the maxi-
mum dislocation for sorting (see proof of Theorem 9 in [15]), where it is shown
that two elements whose ranks differ by less than O(log n) are likely to be indis-
tinguishable by any algorithm, and hence to appear in the wrong relative order.
Intuitively, the argument there is as follows: consider the sorted sequence and the
sequence obtained by swapping two elements, and assume that the comparison
outcomes on these sequences look identically. It turns out that the probability
of this happening is larger than 1

n , whenever the rank difference is smaller than
O(log n), since only a small number of comparison outcomes must differ.

This is not enough in our case, since an algorithm could simply ignore such
two elements. For instance, consider an increasing sequence of c adjacent ele-
ments. If the first and the last element are swapped, the algorithm could simply
return the subsequence without these two elements and be almost optimal. A
first idea to fix this problem could be to consider the case, where one observes
the whole increasing sequence to be reversed. However, to have this happen with
probability larger than 1

n , c needs to be smaller than O(
√

log n), thus implying
a weaker lower bound.

Instead, we shall use a collection of similar sequences (more than two), such
that if an algorithm succeeds on one of these sequences it must fail on another
one.

1 By modifying this algorithm so that it returns also the mapping from each element
in S to its position in Sapx we can obtain the new comparison results in the same
time.
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Proof. We say that an algorithm succeeds if it returns a (c log n)-approximation
for any constant c < 1

2 log 1−p
p

, otherwise we say it fails. We shall first define

our collection S of similar sequences. Let η :=  log n

2 log 1−p
p

�. Let S∗ denote the

sequence, in which the largest η elements appear first in increasing order and
then the remaining elements appear in decreasing order,

S∗ := 〈n − η + 1, . . . , n − 1,n, n − η, . . . , 1〉.

Furthermore, for 1 ≤ i < η, let S(i) be the sequence obtained from S∗ when the
largest element is moved to position i,

S(i) := 〈n − η + 1, . . . , n − η + (i − 1),n, n − η + i, . . . , n − 1, n − η, . . . , 1〉.

Now, let S := {S∗, S(1), S(2), . . . , S(η−1)} (note that basically S∗ = S(η)) and
let P be the uniform distribution over S. We will show (proof by contradiction)
that no algorithm succeeds on this pair (S,P) with probability at least 1 − 1

n .
Assume towards a contradiction that algorithm A succeeds with high prob-

ability on a sequence S′ chosen uniformly at random from S, i.e.,

Pr(A(S′) succeeds) =
η∑

i=1

Pr(A(S(i)) succeeds) · Pr(S′ = S(i)) ≥ 1 − 1
n

.

This implies that
P := Pr(A(S∗) succeeds) ≥ 1 − η

n
, (2)

since by hypothesis and assuming the case where the algorithm succeeds on all
the other input sequences (i.e., best case for the algorithm, worst case for the
proof), P

η + η−1
η ≥ 1 − 1

n resolves to (2).

Let C ∈ {≺,�}(n2), then A(S,C) means that algorithm A runs on sequence
S and observes comparison outcomes C. Now, consider the set of all com-
parison outcomes that the algorithm can observe and let C := {C ∈ {≺,�
}(n2) : A(S∗, C) succeeds} denote the set of all possible comparison outcomes for
which A succeeds on input S∗. We define R(S) ∈ {≺,�}(n2) to be the random
variable corresponding to the comparison outcomes as they would be observed by
the algorithm when the input sequence is S. Then, the probability that A(S∗)
succeeds is expressed by the total probabilities of the events that A observes
comparison outcomes in C,

P = Pr(A(S∗) succeeds) =
∑

C∈C
Pr(R(S∗) = C). (3)

Before we continue the proof, we shall first show the following lemma.

Lemma 9. ∀S ∈ S \ {S∗} and C ∈ {≺,�}(n2), Pr(R(S) = C) > Pr(R(S∗) =

C) ·
(

p
1−p

)η

.
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Proof. Consider S∗ = 〈s∗
1, . . . , s

∗
n〉 and C and let E(S∗, C) be the set of wrong

comparison results, i.e., the set of pairs (s∗
i , s

∗
j ) with i < j such that either

s∗
i < s∗

j and c(i−1)n+j = “�” (i.e., s∗
i � s∗

j ) or s∗
i > s∗

j and c(i−1)n+j = “≺”.
Thus,

Pr(R(S∗) = C) = (1−p)(
n
2)−|E(S∗,C)| ·p|E(S∗,C)| = (1−p)(

n
2) ·

(
p

1 − p

)|E(S∗,C)|
.

Now consider S = S(k) = 〈s1, . . . , sn〉 and observe that only the relative order
of the pairs (sk, sj) with k < j ≤ η, changed compared to S∗. This implies
that there can be at most η − k < η additional wrong comparison results, i.e.,
|E(S,C)| < |E(S∗, C)| + η. Therefore, and since p

1−p ≤ 1,

Pr(R(S) = C) = (1 − p)(
n
2) ·

(
p

1 − p

)|E(S,C)|

> (1 − p)(
n
2) ·

(
p

1 − p

)|E(S∗,C)|+η

= Pr(R(S∗) = C) ·
(

p

1 − p

)η

.

�	
Continuation of the Proof of Theorem 2. Now notice that in order to succeed,
A needs to return at least two of the first η elements in S∗. Therefore, we can
map every C ∈ C to a (not necessarily unique) sequence of S as follows: for each
C ∈ C, let iC be the position of the first element that A(S∗, C) returns and let
S(C) := S(iC). (Note that iC < η as otherwise A does not return at least two
elements of the first η elements in S∗.) For each S ∈ S \ {S∗},

Pr(A(S) fails) ≥
∑

C∈C : S=S(C)

Pr(R(S) = C)

>
∑

C∈C : S=S(C)

Pr(R(S∗) = C) ·
(

p

1 − p

)η

.

And as a consequence, for S′ ∈ S chosen uniformly at random,

Pr(A(S′) fails) ≥
∑

S∈S\{S∗}
Pr(S′ = S) · Pr(A(S) fails)

>
∑

S∈S\{S∗}

1
η

∑

C∈C : S=S(C)

Pr(R(S∗) = C) ·
(

p

1 − p

)η

=
1
η

(
p

1 − p

)η ∑

S∈S\{S∗}

∑

C∈C : S=S(C)

Pr(R(S∗) = C)

≥ 1
η

(
p

1 − p

)η ∑

C∈C
Pr(R(S∗) = C) ≥ 1

η

(
p

1 − p

)η (
1 − η

n

)
,

where from line 3 to line 4 we use that every instance of comparison results is
mapped to exactly one sequence, and on the last line we use Eqs. (2) and (3).
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Now, observe that for n large enough,
(
1 − η

n

)
> 1

2 and that, by our choice of η,(
p

1−p

)η

≥ 1√
n
. Therefore,

Pr(A(S′) fails) >
2 log 1−p

p

log n
· 1√

n
· 1
2

>
1
n

.

To conclude the proof, note that this is a contradiction to our assumption that
A succeeds with high probability. �	

The lower bound shown in Theorem2 holds for all deterministic algorithms,
but can be expanded to also hold for probabilistic algorithms as explained in the
following remark.

Remark 10. To make the lower bound on the approximation factor work also
for any randomized algorithm A, we can turn A into a deterministic version by
fixing a sequence λ ∈ {0, 1}t random bits that can be used by the algorithm.
Thus, for the resulting deterministic algorithm Aλ, the lower bound holds. Let
pλ be the probability to generate the sequence λ of random bits. To lower bound
the probability that A(S′) fails, where S′ is chosen uniformly at random from S,
one simply needs to sum over all λ the probabilities that Aλ fails multiplied by
pλ, i.e., Pr(A(S′) fails) =

∑
λ∈{0,1}t Pr(Aλ(S′) fails) · pλ ≥ 1

n

∑
λ∈{0,1}t pλ = 1

n .

5 Lower Bound on the Running Time

We complement this paper by showing that the running time of our
Approximation-Algorithm is asymptotically optimal. In [13], it is shown that
(in the error-free model) computing the longest increasing subsequence is at
least as hard as sorting. We will use this proof to informally show Theorem3
which we restate here:

Theorem 3 (Lower Bound – Running Time). Any log n-approximation
algorithm for longest increasing subsequence requires Ω(n log n) comparisons,
even if no errors occur.

The proof techniques of the lower bound in [13] are as follows: Assume that
we are in the error-free case. Consider the easier problem of deciding on a given
sequence S of n distinct elements whether |LIS(S)| < k, and consider the com-
parison tree of an algorithm A with leaves that tell as an answer to this question
either “yes” or “no”. Without loss of generality, assume that no useless com-
parisons are made on a root to a leaf path (i.e., no comparison twice and no
comparisons whose outcome is predictable by the outcomes of previous compar-
isons).

Every leaf � can be associated with a partial order implied by a set of linear
orderings on S that are consistent with the transitive closure of the comparisons
performed on the path from the root to �. If the answer in a leaf is “yes”, this
implies that there are no k elements of S that are pairwise incomparable in
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this partial order (i.e., the relative order of every pair is neither tested in any
comparison on the path, nor implied by other comparisons), as otherwise, these
elements could possibly form an increasing sequence of length k. Such a subset
of elements is called antichain, while a chain is a subset of elements that are
linearly ordered. An important property of chains and antichains used in the
proof is based on the so-called Dillworth theorem:

Lemma 4 (Lemma 3.1 in [13]). In any finite partial order, the elements can
be partitioned into m chains, where m is the size of the largest antichain.

This implies that in a “yes”-leaf, the elements can be partitioned into less than
k chains, since there is no antichain of size k. Furthermore, given such a par-
tition into (less than) k chains, the elements can be sorted with n log k + O(n)
comparisons, think for instance of natural merge sort:

Lemma 5 (Lemma 3.3 in [13]). If a linear order is partitioned into k chains,
then this linear order can be algorithmically restored with at most nlog k� com-
parisons.

In order to lower bound the number of comparisons needed to end in a “yes”-
leaf, algorithm A can be extended to A∗ as follows: whenever A concludes to
be in a “yes”-leaf, A∗ continues to completely sort the elements of S (which
requires no more than n log k + O(n) further comparisons). Let S(n, k) denote
the number of linear orderings of the elements in S that end in a “yes”-leaf, i.e.,
the number of linear orderings such that the longest increasing subsequence in
S is strictly smaller than k. Then,

S(n, k) ≥ n!

(

1 −
(
n
k

)

k!

)

,

since there are n! different linear orderings and
(
n
k

)
possible subsequences of size k

each increasing with probability 1/k!. The comparison tree corresponding to A∗

has thus at least S(n, k) leaves, and therefore must perform at least log S(n, k)
comparisons in its worst case. Therefore and by Lemma 5, algorithm A must
perform at least

log S(n, k) − n log k − O(n)

comparisons in its worst case to end up in a “yes”-leaf, which is Ω(n log n) when
choosing k = 3 ·√n, since in this case 0 <

(
n
k

)
/k! < 1, and therefore S(n, k) ∼ n!

(see also Theorem 3.5 in [13]).
We can use the above proof techniques to show that every algorithm, that

computes a log n-approximation on longest increasing subsequence must perform
at least Ω(n log n) comparisons.

Proof (of Theorem 3). Let B be an log n-approximation algorithm for LIS(S)
under our error model (i.e., we can always simulate our error model in the
error-free case) and consider a relaxation of the problem of determining whether
|LIS(S)| is smaller than k log n. In this relaxation we require the answer to be
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“yes” (resp. “no”) if |LIS(S)| < k (resp. |LIS(S)| ≥ k log n), while we do not
impose any restriction on the range k ≤ |LIS(S)| < k log n.

It is clear that algorithm B can be used to solve this relaxed problem without
increasing the number of needed comparisons. Therefore, the associated compar-
ison tree must reach a leaf corresponding to answer “yes” for all linear orderings
on the elements in S that contain no increasing subsequence of length k, while
the largest antichain in any such an ordering is smaller than k log n. This implies,
by using Lemmata 4 and 5, that algorithm B∗ (now in the error-free case) needs
at least n log(k log n) + O(n) further comparisons in the worst case to sort the
elements in S, and B thus needs at least

log S(n, k) − n log(k log n) − O(n)

comparisons in the worst case to end in a “yes”-leaf, which is in Ω(n log n) if
we set again k = 3 · n1/2. This step follows since by Stirling’s approximation
k! ≥ (k/e)k, and thus

S(n, 3 · n1/2) ≥ n!
(

1 − n!
(n − 3 · n1/2)!(3 · n1/2)!(3 · n1/2)!

)

≥ n!
(

1 − n3·n1/2

(
9n
e2

)3·n1/2

)

≥ n!
(
1 − 1.2−3·n1/2

)
,

which is larger than 1/2 · n! for n ≥ 2. Therefore,

log S(n, 3 · n1/2) ≥ log
n!
2

≥ n log n − O(n),

while

n log(3 · n1/2 log n) ≤ 1
2
n log n + O(n log log n).

�	
Finally, we can conclude that our Approximation-Algorithm performs in

asymptotically optimal time, since we can always simulate our error model in
the error-free case.

6 Conclusion

Although a logarithmic approximation ratio might not seem very exciting at
first glance, it turns out that this is the best one that can be obtained in the
presence of persistent comparison errors. In this respect, it is interesting to see
that there exist such simple recipes to compute a logarithmic approximation.
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We have seen in the very beginning one recipe that can use as a black box
any algorithm that computes a longest increasing sequence if no comparison
errors happen. And we have seen afterwards another recipe that dives into such
an algorithm and changes the rule of when to add (or append) an element to
a previously computed increasing subsequence. Note that this approach also
works for the very similar patience sort algorithm. As indicated earlier, our
Approximation-Algorithm has the advantage, that it performs much better than
O(log n)-approximate on many input sequences and is even optimal in the case
where the longest increasing subsequence is already 2d-distant in Sapx, whereas
this is not necessarily true when using the black-box recipe. Moreover, it is easy
to observe that the Approximation-Algorithm is never worse than the other.

Finally, we would like to explain how the upper bound on the approxima-
tion factor can be generalized. Our Approximation-Algorithm actually succeeds
whenever the approximately sorted sequence has maximum dislocation at most
d. This implies that the result can be parametrized and also used in other models
with comparison comparison errors.

– Whenever one can obtain a total order with maximum dislocation d, the
Approximation-Algorithm is 2d-approximative.

Consider for instance the so-called threshold -model [1,14,18], where comparisons
between numbers that differ by more than some threshold τ are always correct,
while those between numbers that differ by less than τ can fail persistently (with
some probability possibly depending on the difference or even adversarially).
If the input sequence S is a permutation of the numbers {1 . . . , n}, running
Quicksort in this error model yields a sequence with maximum dislocation 2τ
(see [18]). Thus, our Approximation-Algorithm finds a 4τ -approximation of the
longest increasing subsequence in S.
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Abstract. In this paper we consider a cut sparsification problem for
digraphs parametrized by balancedness. A weighted digraph D = (V, E)
is said to be α-balanced if the total weight of the edges from U to V \ U
is at most α times the total weight of the edges from V \ U to U for
any U ⊆ V . Based on the combinatorial cut-sparsification framework by
Fung et al. (2011), we show that for any α-balanced weighted digraph
D with n vertices and m edges there is a weighted subdigraph D′ with
O(αε−2n log n log(nW )) edges that (1+ε)-cut-approximates D, where W
is the maximum weight of an edge in D. We also show how to compute
such a cut sparsifier in O(m log α+α3n log Wpoly(log n)) time with high
probability.

Applying our sparsifier as a preprocessing, the running time of the
minimum cut approximation algorithm by Ene et al. (2016) is improved
to O(m log α + α3ε−4npoly(log n)) for an α-balanced digraph with n
vertices and m edges.

Keywords: Cut sparsification · Balanced digraph
Minimum cut problem

1 Introduction

Graph sparsification is one of the fundamental tools for developing efficient graph
algorithms. The seminal work of Karger [9] and Benczúr and Karger [1,2] showed
that for any positively weighted undirected graph G with n vertices and m edges,
there is a weighted subgraph G′ with O(ε−2n log n) edges such that the size of
each cut is within (1 ± ε) factor of the original cut size. Such a sparse subgraph
is called a cut sparsifier. They also gave an O(m log3 n) time algorithm for con-
structing a cut sparsifier with high probability, and demonstrated applications
to several cut and flow problems. Later, Spielman and Teng [15] introduced a
generalized notion, a spectral sparsifier, that sparsifies G keeping the spectral of
the Laplacian, and have broadened applications to solving linear systems. Since
the work of [15], various improved spectral sparsifiers and efficient algorithms
have been developed.

This successful line of research is only for undirected graphs, and despite
its obvious importance, there has been little progress for digraphs. Cohen et
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al. [4] recently introduced a new notion of spectral sparsifiers based on a scaled
norm, and they showed the existence of sparsifiers with O(ε−2npoly(log n)) edges
for any strongly connected digraphs. However, unlike the undirected case, their
spectral sparsifier does not imply a cut sparsifier. In fact there are digraphs
which do not admit cut sparsifiers with sub-quadratic size (see [4]). This is a
typical reason why there is no counterpart theory for digraphs.

Although we cannot hope for a perfect theory for digraphs, there is a natural
question; for which class of digraphs can we construct good cut sparsifiers? In
this paper we study this problem by focusing on balanced graphs. Balancedness
is a new notion introduced by Ene et al. [5] for expressing the ratio of the in-
coming and out-going cut sizes. More formally, for α ≥ 1, a digraph D = (V,E)
is called α-balanced if

δ+(U ;D) ≤ αδ−(U ;D)

holds for any U ⊆ V , where δ+(U ;D) (resp., δ−(U ;D)) denotes the sum of the
weights of the edges from U to V \ U (resp., from V \ U to U). The imbalance
bD of D is defined to be the infimum of α such that D is α-balanced. Note that
bD = 1 if and only if D is Eulerian.

The main contribution of this paper is to show the existence of cut spar-
sifiers whose sizes are parametrized by bD. We show that for any weighted
digraph D with n vertices and m edges, there is a weighted subdigraph D′

with O(bDε−2n log n log(nW )) edges such that

(1 − ε)δ+(U ;D) ≤ δ+(U ;D′) ≤ (1 + ε)δ+(U ;D) for all U ⊆ V,

where W is the maximum weight of an edge in D. We further show how to
obtain such a cut sparsifier in O(m log bD + b3Dn log Wpoly(log n)) time with
high probability.

Our result on the existence of cut sparsifiers is actually a direct application
of a result on undirected cut sparsifiers. Although the main focus of the research
for undirected graphs has been shifted to spectral sparsifiers, still interesting
questions remain even for cut sparsifiers. One such a question is to understand
which graph parameter can be used as a sampling parameter in a sampling-
type algorithm. Fung et al. [6] gave a general framework to solve this question
for undirected graphs. In this paper we exploit the power of their remarkable
combinatorial approach; we show that the proof of the main result in [6] can be
applied even to digraphs without any substantial modification.

As is always the case with cut sparsifiers, our result can be used as a pre-
processing of algorithms for any cut problem. One interesting example is the
minimum cut problem of balanced digraphs studied by Ene et al. [5]. Ene et
al. [5] gave an algorithm to find a (1 + ε)-approximate minimum cut (and a
(1−ε)-approximate maximum flow) of a digraph D that runs in O(mb2Dε−2 logc n)
time for some constant c. (Here the current best c is 45, see [14].) Using
our sparsifier at a preprocessing phase, we obtain an algorithm that runs in
O(m log bD + b3Dε−4n poly(log n)) time. This is a substantial improvement if bD
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is not too large. (Note that an exact algorithm in [11] is faster than that of Ene
et al. [5] if bD = Ω(n1/4).)

The paper is organized as follows. In Sect. 2 we show the existence of cut
sparsifiers for balanced digraphs, and in Sect. 3 we give an efficient algorithm
for constructing those sparsifiers. In Sect. 4 we explain an application to the
minimum cut problem. In Sect. 5 we give a short remark on the number of cut
projections in α-balanced digraphs.

Throughout the paper we consider a digraph D = (V,E) or an undirected
graph G = (V,E) with n vertices, m edges, and each edge weight is a positive
integer. As defined above, for U ⊆ V , δ+(U ;D) (resp., δ−(U ;D)) denotes the
sum of the weights of the edges from U to V \ U (resp., from V \ U to U).
In an undirected graph G, we use δ(U ;G) to denote the sum of the weights
of the edges between U and V \ U . The (local) edge connectivity κ(e;G) of
e = {u, v} in G is defined by κ(e;G) = κe = min{δ(U ;G) | U ⊆ V, u ∈ U, v /∈ U}.
Similarly, the edge connectivity κ(e;D) of e = (u, v) in D is defined by κ(e;D) =
min{δ+(U ;D) | U ⊆ V, u ∈ U, v /∈ U}.

2 Digraph Sparsification

In this section, we give cut sparsifications for digraphs based on the result by
Fung et al. [6]. Let us first give the following formal definition.

Definition 1. Let D = (V,E) be a digraph. A digraph D′ = (V,E′) ε-cut-
approximates D, which is often abbreviated as D′ ∈ (1 ± ε)D, if for all U ⊆ V ,

(1 − ε)δ+(U ;D) ≤ δ+(U ;D′) ≤ (1 + ε)δ+(U ;D).

A sparse subgraph that ε-cut-approximates the original graph is called a cut
sparsifier.

As is in the ordinary sparsification framework, our algorithm is a random
sampling algorithm. More specifically, we use the compression of each edge, first
introduced by Benczúr and Karger [1,2], where each edge e is sampled with prob-
ability pe and the sampled edge is given a weight 1/pe. The sampling probability
is determined by a graph parameter λe for each edge e. The original algorithm
by Benczúr and Karger [1,2] uses the strong connectivity of each edge e for λe,
which is defined to be the largest k for which a k-edge-connected subgraph con-
taining the edge exists. Fung et al. [6] showed that it is possible to construct a
cut sparsifier using edge connectivity, effective resistance, or Nagamochi-Ibaraki
index (defined in Sect. 2.1).

A formal description of the compression for digraphs is given in Algorithm1.
We now analyze the quality of the output Dε. Following the analysis by Fung

et al. [6], we consider a partition F0, F1, . . . , FΛ of the edge set E of D defined
by

Fi := {e ∈ E | 2i ≤ λe < 2i+1}
where Λ = �lg(maxe∈E λe)�.
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Algorithm 1. Compress(D,λ, γ, d, ε)
Input: A weighted simple digraph D = (V, E, w) with weight ω : E → Z+, an edge

parameter λ : E → Z+, a constant γ, d ∈ R+, and ε ∈ (0, 1)
Output: A cut sparsifier Dε = (V, F, u)
1: C ← 43(d + 7)
2: ρ ← Cγ ln n/ε2

3: F ← ∅
4: for each e ∈ E do
5: pe ← min{ρ/λe, 1}
6: Generate a random number Xe from a binomial distribution B(we, pe)
7: if Xe > 0 then
8: Add edge e to F and set ue = Xe/pe

9: end if
10: end for
11: return Dε = (V, F, u)

We say that a family G0, . . . , GΛ of weighted undirected graphs covers D if
for each i and for each (u, v) ∈ Fi, the weight of {u, v} in Gi is greater than or
equal to the sum of the weights of (u, v) and (v, u) in Fi. Such a cover is said to
be a γ-certificate1 if the following two properties are satisfied:

(Connectivity) For each i ≥ 0 and each edge (u, v) ∈ Fi, κ({u, v};Gi) ≥ 2i−1.
(Overlapped) For any U ⊆ V ,

∑Λ
i=0 δ(U ;Gi) ≤ γ · δ+(U ;D).

Given γ-certificates, the following theorem states the existence of cut sparsi-
fiers.

Theorem 1. Let D be a weighted digraph, and λe be a positive integer for
each e ∈ E. Suppose that there exists a γ-certificate family of weighted
undirected graphs that covers D. Then, Dε = Compress(D,λ, γ, d, ε) contains
O(γ log n

ε2

∑
e∈E

we

λe
) edges in expectation, and Dε ∈ (1 ± ε)D with probability at

least 1 − 1/nd.

Proof. The theorem follows from the following more general statement, Theo-
rem 2, by observing that each undirected graph Gi is considered as an Eulerian
digraph if we regard each undirected edge as two parallel directed edges of both
directions. �	

We can apply the above definition of a covering family and a γ-certificate
to a family of weighted digraphs D0, . . . , DΛ. Formally, a family D0, . . . , DΛ of
weighted digraphs covers D if for each i and for each (u, v) ∈ Fi, the weight of
(u, v) in Di is greater than or equal to the weight of (u, v) in Fi. A cover is said
to be a γ-certificate if κ((u, v);Di) ≥ 2i−1 holds for each i ≥ 0 and each edge
(u, v) ∈ Fi, and

∑Λ
i=0 δ+(U ;Di) ≤ γ · δ+(U ;D) for any U ⊆ V .

Theorem 1 still holds if Gi is substituted by an Eulerian digraph Di.
1 This is a simplified and adapted notion of the (π, α)-certificate introduced by Fung

et al. [6].
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Theorem 2. Let D be a weighted digraph, and λe be a positive integer for
each e ∈ E. Suppose that there exists a γ-certificate family of weighted
Eulerian digraphs that covers D. Then, Dε = Compress(D,λ, γ, d, ε) contains
O(γ log n

ε2

∑
e∈E

we

λe
) edges in expectation, and Dε ∈ (1 ± ε)D with probability at

least 1 − 1/nd.

Theorem 2 is a proper extension of Theorem 1. The proof of Theorem 2 is an
adaptation of that of Fung et al. [6], but for completeness we give a formal proof
in AppendixB.

2.1 Compression Using NI Indexes

In the following two subsections, we shall show how to set up parameter λe to
apply Theorem 1.

Nagamochi and Ibaraki [12,13] showed how to compute a sparse certificate
for the k-connectivity of undirected graphs. Motivated by their work, Fung et
al. [6] introduced the following simplified variant of the local connectivity.

Definition 2 (NI forest, NI index [6]). Let G be an undirected graph with
integer-valued edge weight, and let G̃ be the multigraph obtained from G by replac-
ing each edge e with weight we by we parallel edges. A sequence of edge-disjoint
spanning forests T1, T2, . . . of G̃ is said to be an NI forest packing if Ti is a
spanning forest on the edges left in G̃ after removing those in T1, T2, . . . , Ti−1.
An edge with weight we in G must appear in we contiguous forests. The NI index
of edge e in G, denoted 
e, is the index of the last NI forest in which e appears.

Let D = (V,E) be an α-balanced digraph, and G be the undirected graph
obtained from D by ignoring the direction. For each edge e ∈ E, we set λe = 
e,
where 
e is the NI index of e in G. It turns out that the compression using
this parameter gives a good sparsifier. To see this we need to construct a family
G0, . . . , GΛ of undirected graphs with the properties as given in Theorem1.

Let T1, T2, . . . , Tk be an NI forest packing of G. We define a weighted undi-
rected graph Hi to be the union of T2i−1 , T2i−1+1, . . . , T2i−1 (i.e., the weight of
{u, v} is the number of appearances of edge {u, v} in T2i−1 , T2i−1+1, . . . , T2i−1.)
We then define Gi = (V,Ei) such that the weight of {u, v} is the sum of the
weight of {u, v} in Hi and the weights of (u, v) and (v, u) in Fi for every pair
u, v ∈ V (and Ei is defined to be the set of pairs of vertices with nonzero weight).

Lemma 1. A family Gi of undirected graphs defined above is a 2(1 + α)-
certificate covering D.

Proof. Clearly the family covers D.
To see the connectivity, recall first that λe ≥ 2i for any e = (u, v) ∈ Fi. Hence

u and v are connected in each of T2i−1 , T2i−1+1, . . . , T2i−1 by the definition of NI
forest packing. Therefore κ({u, v};Gi) ≥ 2i−1.

To evaluate the overlapping, note that for any i 
= j, Fi ∩ Fj = ∅ and the
edge set of Hi is disjoint from that of Hj . Hence the sum of the weights of
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{u, v} over Gi is at most two times the weight of {u, v} in G. Thus for each
U ⊆ V we get

∑
i δ(U ;Gi) ≤ 2δ(U ;G) ≤ 2(1 + α)δ+(U,D), and it is 2(1 + α)-

overlapped. �	
We can now apply Theorem1.

Theorem 3. Let D be a weighted digraph, and Dε = Compress(D, 
, 2(1 +
bD), d, ε). Then, Dε contains O(bDε−2n log n log(nW )) edges in expectation, and
Dε ∈ (1±ε)D with probability at least 1−1/nd, where W is the maximum weight
of an edge in D.

Proof. By Lemma 1, there always exists a 2(1+ bD)-certificate covering D. Thus
by Theorem 1, we have a weighted subgraph Dε with O(ρ

∑
e we/
e) edges and

Dε ∈ (1 ± ε)D with probability at least 1 − 1/nd. It was shown by Fung et
al. [6] that

∑
e∈E we/
e = O(n log(nW )). Therefore Dε has the properties in the

statement. �	

2.2 Compression Using Edge Connectivities

If we use the local edge connectivity, we have a slightly better sparsifier. But
computing the local edge connectivities is more expensive than computing the
NI indexes.

Let D = (V,E) be an α-balanced digraph, and G be the undirected graph
obtained from D by ignoring the direction. For an edge e = (u, v) in D, we con-
sider the local edge connectivity κe of {u, v} in G. We consider the compression
by setting λe = κe for each e ∈ E. We need to construct a family G0, . . . , GΛ of
undirected graphs with the properties as given in Theorem1.

Let T1, . . . , Tk be an NI forest packing of G. We define a weighted undi-
rected graph Hi to be the union of T1, T2, . . . , T2i−1−1 for i ≤ lg n, the union of
T2i−1−lg n , T2i−1−lg n+1, . . . , T2i+1−1 for i ≥ lg n + 1. We then define Gi = (V,Ei)
such that the weight of {u, v} is the sum of the weight of {u, v} in Hi and the
weights of (u, v) and (v, u) in Fi for every pair u, v ∈ V (and Ei is defined to be
the set of pairs of vertices with nonzero weight).

Lemma 2 (Fung et al. [6]). Let T1, T2, . . . be an NI forest packing of an
undirected graph G = (V,E). For any pair of vertices u, v ∈ V and for any i ≥ 1,
κ(u, v;T1 ∪ T2 ∪ · · · ∪ Ti) ≥ min{κuv, i}.
Lemma 3. A family Gi of undirected graphs defined above is a (1+α)(3+lg n)-
certificate covering D.

Proof. Clearly the family covers D.
To see the connectivity, recall first that λe ≥ 2i for any e = (u, v) ∈ Fi.

Hence, for i ≤ lg n, it holds that κ({u, v};Hi) ≥ 2i−1 − 1 by Lemma 2, and
κ({u, v};Gi) ≥ 2i−1. For i ≥ lg n+1, it holds that κ({u, v};T1∪· · ·∪T2i+1−1) ≥ 2i

by Lemma 2. Since there are at most 2i−1 edges in T1, T2, . . . , T2i−1−lg n−1, we
have κ({u, v};Gi) ≥ 2i−1.



Cut Sparsifiers for Balanced Digraphs 283

To evaluate the overlapping, note that for any i 
= j, Fi ∩ Fj = ∅ and each
edge of G appears in Hi for at most 2 + lg n different values of i. Hence the
sum of the weights of {u, v} over Gi is at most 3 + lg n times the weight of
{u, v} in G. Thus for each U ⊆ V we get

∑
i δ(U ;Gi) ≤ (3 + lg n)δ(U ;G) ≤

(1 + α)(3 + lg n)δ+(U ;D), and it is (1 + α)(3 + lg n)-overlapped. �	
We can now apply Theorem 1.

Theorem 4. Let D be a weighted digraph, and Dε = Compress(D,κ, (1+bD)(3+
lg n), d, ε). Then, Dε contains O(bDε−2n log2 n) edges in expectation, and Dε ∈
(1 ± ε)D with probability at least 1 − 1/nd.

Proof. By Lemma 3, there always exists a (1 + bD)(3 + lg n)-certificate covering
D. Thus by Theorem 1, we have a weighted subgraph Dε with O(ρ

∑
e we/κe)

edges and Dε ∈ (1 ± ε)D with probability at least 1 − 1/nd. It is known [6] that∑
e∈E we/κe ≤ n − 1. Therefore Dε has the properties in the statement. �	
We can also apply the analysis to the compression algorithm using the local

edge connectivity of digraphs (rather than that of the underlying undirected
graphs) as sampling parameter λe. However, the resulting edge density is no
better than that in Theorem4.

3 Digraph Sparsification Algorithm

In this section we give an efficient implementation of Compress based on the NI
index. For this, we compute the NI index of a weighted graph before calling
Compress. It is implicit in the work by Nagamochi and Ibaraki [13] that the
NI index of a weighted graph can be computed in O(m + n log n) time. The
generation of a random variable from a binomial distribution B(we, pe) can be
done in O(wepe) time (see e.g. [8]). Therefore, Compress(D, 
, 2(1 + α), ε) can
be implemented in O(m +

∑
e wepe) time if we know that D is α-balanced in

advance. Here
∑

e wepe = O(αε−2n log n log(nW )) is the expected number of the
edges in the sparsifier, and we may always assume that it is O(m) since otherwise
we can simply return D as a better sparsifier. Hence the total running time is
O(m). To apply the algorithm to any digraph D, we need to (approximately)
compute the imbalance of D. For this, the following result is known.

Lemma 4 (Ene et al. [5, Lemma 2.9]). Given a weighted digraph D and α
such that D is α-balanced, there is an algorithm ApproxBal(D,α, ε0) that outputs
(1 + ε0)-approximate bD in O(mα2ε−2

0 poly(log n)) time.

By simply calling the algorithm in Lemma4, we obtain an O(mb2Dpoly(log n))
time algorithm for constructing a cut sparsifier for a digraph D. In this section
we shall present an improved implementation by first showing the following.

Lemma 5. Given a weighted digraph D, there is an algorithm that outputs
α with bD ≤ α ≤ 27bD with probability at least 1 − 1/nd in O(m log bD +
b3Dn log W poly(log n)) time, where W is the maximum weight of an edge in
D.
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In the algorithm stated in Lemma5, we use the following two algorithms as
subroutines.

– ApproxBal(H,α, ε0): Given α ∈ Z+, ε0 ∈ R+, and an α-balanced digraph
H with n vertices and m edges, output b with bH ≤ b ≤ (1 + ε0)bH in
O(mα2ε−2

0 poly(log n)) time.
– Sparsify(H,α, ε0): Given α ∈ Z+, ε0 ∈ R+, and an α-balanced digraph H with

n vertices and m edges, output H ′ with O(αε−2
0 n log n log(nW )) edges that

(1 + ε0)-cut-approximates H with probability at least 1 − 1/nd+1 in O(m)
time.

Note that in these subroutines we are required to know that the input is α-
balanced in advance.

Combining these two subroutines, we consider Algorithm 2 to compute the
imbalance approximately. Here D−1 denotes the digraph obtained from D by
reversing the direction of each edge, and αD denotes the weighted digraph in
which the weight of each edge is α times of the original weight.

Algorithm 2. An algorithm to approximate imbalance
Input: A weighted digraph D = (V, E, w)
1: ε0 ← 0.1, ε1 ← 2(1 + ε0)/(1 − ε0), α ← 1
2: while α ≤ n do
3: Dα ← D ∪ αD−1

4: Hα ← Sparsify(Dα, α, ε0)
5: bα ← ApproxBal(Hα, α(1 + ε0)/(1 − ε0), ε0)
6: if bα ≤ (α + α−1)/2ε1 then
7: return α
8: else
9: α ← 2α

10: end if
11: end while
12: Output “α is larger than n”

We show that Algorithm 2 outputs a constant-factor-approximation of bD. We
first remark that, since there are at most log n iterations, all Sparsify(Dα, α, ε0)
outputs a cut sparsifier with probability at least 1 − 1/nd.

Lemma 6. For any α ∈ Z+, Dα = D ∪ αD−1 satisfies

bDα
=

1 + αbD

α + bD
≤ α.

Proof. For any nonempty subset U � V ,

δ−(U ;Dα)
δ+(U ;Dα)

=
δ−(U ;D) + αδ+(U ;D)
δ+(U ;D) + αδ−(U ;D)

=
1 + αβ(U)
β(U) + α
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where β(U) := δ+(U ;D)/δ−(U ;D). For a ≥ 1, a function f(x) = (1 + ax)/(a +
x) = a − (a2 − 1)/(a + x) is monotonically increasing. Hence, bDα

is given by U
that maximizes β(U), implying the first equation in the statement.

The second inequality simply follows by observing

bDα
= α − α2 − 1

α + bD
≤ α.

�	
Lemma 7. Let Hα = Sparsify(Dα, α, ε0) and bα = ApproxBal(Hα, α(1+ε0)/(1−
ε0), ε0). Then with probability at least 1 − 1/nd+1,

1 − ε0
1 + ε0

bDα
≤ bα ≤ (1 + ε0)2

1 − ε0
bDα

.

Proof. From Lemma 6, Sparsify(Dα, α, ε0) correctly outputs a cut sparsifier with
probability at least 1 − 1/nd+1. Hence,

1 − ε0
1 + ε0

bDα
≤ bHα

≤ 1 + ε0
1 − ε0

bDα
.

By Lemma 6 this in particular implies bHα
≤ α(1 + ε0)/(1 − ε0), and therefore

ApproxBal(Hα, α(1 + ε0)/(1 − ε0), ε0) correctly outputs a (1 + ε0)-approximate
of bHα

, i.e., bHα
≤ bα ≤ (1 + ε0)bHα

. Therefore we obtain the relation in the
statement. �	
Lemma 8. Let bα = ApproxBal(Hα, α(1 + ε0)/(1 − ε0), ε0), and suppose that
bα ≤ (α + α−1)/2ε1 where ε1 = 2(1 + ε0)/(1 − ε0). Then α ≥ bD with probability
at least 1 − 1/nd+1.

Proof. If bα ≤ (α + α−1)/2ε1,

1 − ε0
1 + ε0

· 1 + αbD

α + bD
≤ (1 − ε0)

2(1 + ε0)
· 1
2

(

α +
1
α

)

(1)

holds from Lemmas 6 and 7. Then (1) is equivalent to

0 ≤ α3 − 3α2bD − 3α + bD = α(α − bD)(α − 1) − (2bD − 1)α2 − bD(α − 1) − 3α.

Since α ≥ 1 and bD ≥ 1, it is necessary that α ≥ bD. �	
Lemma 9. Let bα = ApproxBal(Hα, α(1 + ε0)/(1 − ε0), ε0) and Δ = 4ε1(1 +
ε0)2/(1 − ε0). If α ≥ ΔbD, then bα ≤ (α + α−1)/2ε1 with probability at least
1 − 1/nd+1.
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Proof.

bα ≤ (1+ε0)
2

1−ε0
bDα

(by Lemma 7)

= (1+ε0)
2

1−ε0
· 1+αbD

α+bD
(by Lemma 6)

≤ (1+ε0)
2

1−ε0

(
1

α+bD
+ α

Δ

)
(by α ≥ ΔbD)

≤ (1+ε0)
2

1−ε0
· 2α

Δ

(
by 1

α+bD
≤ 1

2 < bD ≤ α
Δ

)

≤ (1+ε0)
2

1−ε0
· 2

Δ

(
α + 1

α

)

= 1
2ε1

(
α + 1

α

)

�	
We are now ready prove Lemma 5.

Proof (of Lemma 5). Let α∗ be the output. By Lemma 8 we have bD ≤ α∗. By
Lemma 9 and Line 6 of Algorithm 2, it holds that α in the second to last loop
(= α∗/2) is at most ΔbD. Thus, by the definition of Δ and ε1,

α∗ ≤ 2ΔbD =
16(1 + ε0)3

(1 − ε0)2
.

When we take ε0 = 0.1, we have α∗ ≤ 27bD.
The time complexity can be obtained by replacing m of the time complexity

of ApproxBal with the edge size of the output of Sparsify. �	
Now, by using Algorithm 2 to compute the imbalance of a given digraph, we

have the following computational result for cut sparsifiers.

Theorem 5. Given a weighted digraph D and ε, there is an algorithm that
outputs a cut sparsifier with O(bDε−2n log n log(nW )) edges in expectation with
probability at least 1 − 1/nd in time O(m log bD + b3Dn log W poly(log n)), where
W is the maximum weight of an edge in D.

4 Minimum Cut Problem

Ene et al. [5] show the following algorithm.

Theorem 6 (Ene et al. [5]). Given a weighted digraph D, a source s, a sink t,
and ε0 with 0 < ε0 < 1, there is an algorithm that outputs a (1+ε0)-approximate
minimum s-t cut in time O(mb2Dε−2

0 poly(log n)).

When computing a (1 + ε0)-approximate minimum s-t cut, there is a simple
trick to suppose that the edge weight is integer-valued and the maximum weight
value is at most O(m2/ε0) [3]. Hence by using the cut sparsifier in Theorem 5 at
a preprocessing phase in the algorithm in Theorem 6, we have the following.

Theorem 7. Given a weighted digraph D, a source s, a sink t, and ε0 with
0 < ε0 < 1, there is an algorithm that outputs a (1 + ε0)-approximate minimum
s-t cut with probability at least 1 − 1/nd in O(m log bD + b3Dε−4

0 n poly(log n))
time.
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5 Bound of the Number of Cut Projections in Balanced
Digraphs

It was shown by Karger and Stein [10] that the number of cuts of size at most
β times the minimum cut size is bounded by n2β for any undirected graph with
n vertices. This was generalized by Fung et al. [6] in the form of cut projections
(defined below for digraphs), and was crucially used in the analysis of cut spar-
sifiers. On the other hand, there is a family of digraphs for which the number
of the minimum cuts exponentially grows in n, and this is a critical difference
between undirected and directed graphs. In view of this, in this section we shall
give a new bound on the number of cut projections in terms of imbalance.

Definition 3 (Fung et al. [6]). An edge is said to be k-heavy if its connectivity
is at least k; otherwise, it is said to be k-light. The k-projection of an edge set
is the set of k-heavy edges in it.

The following theorem, a natural extension of the theorem by Fung et al. [6],
is a key tool in the proof of Theorem2.

Theorem 8. Let λ be the weight of a minimum weight cut in a digraph D. Then,
for any integer k ≥ λ and any real number β ≥ 1, the number of k-projections
of cuts with size at most βk is at most 2n2βbD .

Suppose that D is an Eulerian digraph, i.e., bD = 1. One natural idea to
prove Theorem 8 for D is to apply the undirected version of Fung et al. [6] to the
underlying undirected graphs. Specifically for counting the number of cuts of size
k, we may count the number of cuts of size 2k in the underlying undirected graph
since in the Eulerian digraph D = (V,E) we have δ+(U ;D) = δ−(U ;D) for any
U ⊆ V . This simple approach does not seem to work. Consider, for example, the
graph in Fig. 1, which consists of n disjoint pairs of strongly connected graphs of
two vertices. The corresponding undirected graph consists of n pairs of vertices
with two multiple edges. Consider counting the number of cuts of size n in this
digraph. This corresponds to picking one vertex from each component, and hence
we have 2n choices. On the other hand, in the underlying graph, there is only
one cut of size 2n, that is, the whole edge set.

We may guess such a gap does not occur in strongly connected digraphs;
however we cannot ignore disconnected digraphs in order to count the number of
k-projections stated in Theorem 8; even if a given digraph is strongly connected,
it can be disconnected after removing k-light edges.

Nevertheless we can apply the proof of the undirected counterpart by Fung et
al. [6]. One critical ingredient in the proof by Fung et al. [6] is Mader’s splitting-
off theorem, whose directed counterpart does not hold in general. Fortunately,
Jackson [7] already pointed out an extension of Mader’s theorem to Eulerian
digraphs, and this extension enables us to apply the proof of Fung et al. [6]
to Eulerian digraphs. Extending the result from Eulerian digraphs to general
digraphs using the imbalance parameter is done by a simple counting argument.
See AppendixA for a formal proof.
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Fig. 1. An example that shows the simple approach for counting does not seem to
work.

A Proof of Theorem8

Let D = (V,E) be a strongly connected digraph. Since the edge weight is integer-
valued, in the following discussion we may assume that D is an unweighted
multigraph. For U ⊆ V , we define C+(U ;D) (resp., C−(U ;D)) be the set of
edges from U to V \ U (resp., from V \ U to U). We also define P (k, β;D) to
be the set of the k-projections of cuts with size at most βk in D. Our goal is to
prove |P (k, β;D)| ≤ 2n2βbD .

We first consider the case when D is Eulerian.

Lemma 10. Let λ be the weight of a minimum weight cut in an Eulerian digraph
D. Then, for any integer k ≥ λ and any real number β ≥ 1, |P (k, β,D)| ≤ 2n2β.

To prove this, we introduce the splitting-off operation.

Definition 4. The splitting-off operation replaces a pair of edges (u, v) and
(v, w) with the edge (u,w), and is said to be admissible if it does not change
the edge connectivity kst between any two vertices s, t 
= v. It is well-known that
splitting-off operation never increases the size of any cut.

The complete splitting-off operation at a vertex v repeatedly performs admis-
sible splitting-off operations on the edges incident on v until v becomes an isolated
vertex, and then removes v.

Lemma 11 (Jackson [7]). Let v be a non isolated vertex of an Eulerian
digraph D. Then, there exists a complete splitting-off operation at v.

The proof of Lemma 10 is done by analyzing the following algorithm, Algo-
rithm3, which is identical to that given by Fung et al. [6]. In Algorithm 3, a
vertex v is said to be k-heavy if there exists an k-heavy edge incident on v;
otherwise, it is said to be k-light.

Algorithm 3 performs a set of iterations. In each iteration, it performs com-
plete splitting-off at all k-light vertices in D, contracts an edge selected uni-
formly at random, and removes all self-loops. The iterations terminate when at
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most �2β� vertices are left in the graph. At this point, the algorithm outputs
the k-projection of a cut selected uniformly at random. Note that a complete
splitting-off adds new edges to D. All new edges are treated as k-light irrespec-
tive of their connectivity. Therefore, the k-projection of a cut that is output by
the algorithm does not include any new edge.

Algorithm 3. An algorithm for proving bound on cut projections
Input: An Eulerian digraph D = (V, E), an integer k ≥ λ where λ is the weight of a

minimum weight cut in D, and a real number β ≥ 1
1: while there are more than 
2β� vertices remaining do
2: while there exists a k-light vertex v in D do
3: Perform a complete splitting-off at v
4: end while
5: Pick an edge e uniformly at random
6: Contract e and remove all self-loops
7: end while
8: return the k-projection of a cut selected uniformly at random

Lemma 10 follows from the following.

Lemma 12. Let F be the k-projection of a cut with size at most βk. Then,
Algorithm3 outputs F with probability at least n−2β/2.

Indeed, if Lemma 12 holds, the probability that a k-projection of a cut with size
at most βk is returned is at least n−2β/2 times the number of such k-projections.
Thus we get |P (k, β,D)| ≤ 2n2β .

We shall now prove Lemma 12. Algorithm 3 changes a graph to a different
graph by complete splitting-offs, edge-contractions, and removals of self-loops.
Let Di = (Vi, Ei) (i = 0, . . . , M) be the graphs which we consider during the
algorithm. To prove Lemma12, we consider the following properties:

– (I1) Di is Eulerian.
– (I2) There exists a subset Ui ⊆ Vi such that prk(C+(Ui;Di);D) = F and

δ+(Ui;Di) ≤ βk, where prk(C;D) is the k-projection of C in D.
– (I3) If e ∈ Ei is not an edge added by complete splitting-offs and κ(e;D) ≥ k,

then κ(e;Di) ≥ k.

Clearly, D = D0 has the properties (I1)–(I3). Since the removal of a self-loop
does not affect any cut set, (I1)–(I3) are preserved. For a complete splitting-off
operation,

– (I1) is preserved from the definition of splitting-off.
– (I2) is preserved since we only split-off at a k-light vertex and a splitting-off

never increases the size of any cut.
– (I3) is preserved since we only split-off at a k-light vertex and the splitting-offs

are admissible.
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Lemma 13. Let Di+1 be the result of a contraction of an edge f = (w, x) chosen
from Di uniformly at random. Suppose that Di has the properties (I1)–(I3).
Then, Di+1 has the properties (I1)–(I3) with probability at least 1 − 2β/|Vi|.
Proof. Clearly, (I1) is preserved. For (I3), since a contraction does not create
new cuts, the edge connectivity of an uncontracted edge cannot decrease. Now
we consider the probability that Di+1 has (I2). (I2) is preserved if C+(Ui;Di) ∪
C−(Ui;Di) does not contain f , and,

Pr[f /∈ C+(Ui;Di) ∪ C−(Ui;Di)] = 1 − |C+(Ui;Di) ∪ C−(Ui;Di)|
|Ei|

= 1 − 2δ+(Ui;Di)
|Ei| .

Since every vertex in Di is k-heavy, the outdegree of each vertex is at least k.
Therefore, we have

|Ei| =
∑

v∈Vi

δ+(v;Di) ≥ k|Vi|,

and

Pr[f /∈ C+(Ui;Di) ∪ C−(Ui;Di)] ≥ 1 − 2δ+(Ui;Di)
k|Vi| ≥ 1 − 2β

|Vi| .

�	
We use a following technical lemma.

Lemma 14 (Karger [9, p. 42, ll.27–28]). For any real number β ≥ 1 and any
positive integer n > 2β,

n!
Γ (n − 2β + 1)

< n2β .

Now we are ready to prove Lemma 12.
We assume that n > 2β; otherwise there is nothing to prove. Let N be the

number of contractions, and suppose that the ith contraction transforms Dji
into

Dji+1. The output is F if D0,D1, . . . , DM satisfies (I1)–(I3) and the algorithm
selects the cut defined by UM in Line 8. Let R be �2β�. Then,

Pr[Algorithm 3 outputs F ]

≥
(

1 − 2β

|Vj1 |
) (

1 − 2β

|Vj2 |
)

· · ·
(

1 − 2β

|VjN
|
)

2−|VM |

=
(

1 − 2β

n

)(

1 − 2β

n − 1

)

· · ·
(

1 − 2β

R + 1

)

2−R

=
n − 2β

n
· n − 1 − 2β

n − 1
· · · R + 1 − 2β

R + 1
· 2−R

=
Γ (n − 2β + 1)
Γ (R − 2β + 1)

· R!
n!

· 2−R ≥ Γ (n − 2β + 1)
2 · n!

> n−2β/2,
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where the second last inequality follows from 2R−1 ≤ R! and 0 < Γ (x) ≤ 1 for
1 ≤ x ≤ 2, and the last inequality follows from Lemma14. This completes the
proof of Lemma 12, and hence Lemma 10.

Proof (of Theorem 8). Let D′ = D ∪ D−1. For any U ⊆ V , it follows from the
definition of imbalance that

(1 + b−1
D )δ+(U ;D) ≤ δ+(U ;D′) ≤ (1 + bD)δ+(U ;D). (2)

From the first inequality of (2), for any u, v ∈ V ,

κ((u, v);D′) = min
{
δ+(U ;D′) | U ⊆ V, u ∈ U, v /∈ V

}

≥ min
{
(1 + b−1

D )δ+(U ;D) | U ⊆ V, u ∈ U, v /∈ V
}

= (1 + b−1
D )κ((u, v);D).

Hence for k-heavy edge e in D,

κ(e;D′) ≥ (1 + b−1
D )κ(e;D) ≥ (1 + b−1

D )k.

Furthermore, from the second inequality of (2), if U ⊆ V satisfies δ+(U ;D) ≤ βk,
then δ+(U ;D′) ≤ β(1 + bD)k. Thus,

|P (k,β;D)| = |{prk(C+(U ;D);D) | U ⊆ V, δ+(U ;D) ≤ βk}|
≤ |{pr(1+b−1

D )k(C+(U ;D′);D′) | U ⊆ V, δ+(U ;D′) ≤ β(1 + bD)k}|.

Note that the last formula is |P ((1 + b−1
D )k, βbD;D′)|. Thus, by Lemma 10, we

have |P (k, β;D)| ≤ |P ((1 + b−1
D )k, βbD;D′)| ≤ 2n2βbD . �	

B Proof of Theorem2

The proof is again an adaptation of that for the undirected counterpart [6].
We prepare some notations. Recall that C+(U ;D) is the set of edges from U

to V \ U . For U ⊆ V , we define F
(U)
i = Fi ∩ C+(U ;D), and f

(U)
i = |F (U)

i |. Let
̂
f
(U)
i be the sum of weight over edges in F

(U)
i that appear in Dε. It holds that

E[
̂
f
(U)
i ] = f

(U)
i .

The following Chernoff bound will be used.

Lemma 15 (Fung et al. [6]). Let X1,X2, . . . , Xn be n independent random
variables such that Xi takes value 1/pi with probability pi and 0 otherwise. Then,
for any p such that p ≤ pi for each i, any ε ∈ (0, 1), and any N ≥ n,

Pr

[∣
∣
∣
∣
∣

n∑

i=1

Xi − n

∣
∣
∣
∣
∣
> εN

]

< 2e−0.38ε2pN .

The following lemma is a key to prove Theorem 2.
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Lemma 16. Let D0, . . . , DΛ be a γ-certificate family of weighted Eulerian
digraphs that covers D, and i ∈ {0, 1, . . . , Λ}. Then with probability at least
1 − 1/nd+2, any U ⊆ V satisfies

|f (U)
i − ̂

f
(U)
i | ≤ ε

2
max

{
δ+(U ;Di)

γ
, f

(U)
i

}

. (3)

Proof. If f
(U)
i = 0, (3) holds with probability one. So we only consider U

such that f
(U)
i > 0. By the connectivity condition of γ-certificates, we have

δ+(U ;Di) ≥ 2i−1 for any such U . Then we partition subsets of V into Uij (j ≥ 0)
based on δ+(U ;Di):

Uij = {U ⊆ V | f
(U)
i > 0, 2i+j−1 ≤ δ+(U ;Di) ≤ 2i+j − 1}.

In order to analyze the worst situation, we may assume that each edge is
sampled with probability strictly less than one, i.e, pe = ρ

λe
. We claim the

following:

Each U ∈ Uij satisfies (3) with probability at least 1 − 2n−(d+7)2j

. (4)

To see this, recall that λe < 2i+1 for each e ∈ F
(U)
i . Hence

pe =
ρ

λe
≥ ρ

2i+1
.

Therefore by Lemma 15, we have

Pr
[

|f (U)
i − ̂

f
(U)
i | >

( ε

2

)
max

{
δ+(U ;Di)

γ
, f

(U)
i

}]

< 2 exp
(

−0.38
ε2

22
ρ

2i+1
max

{
δ+(U ;Di)

γ
, f

(U)
i

})

≤ 2 exp
(

−0.38
ε2

22
ρ

2i+1

δ+(U ;Di)
γ

)

.

Using δ+(U ;Di) ≥ 2i+j−1 and ρ = Cγ ln n/ε2 with C = 43(d + 7), the last term
is bounded by 2n−(d+7)2j

.
By (4) and the union bound, the failure probability of (3) is at most

∑

j≥0

|{F
(U)
i | U ∈ Uij}| · 2n−(d+7)2j

. (5)

To bound |{F
(U)
i | U ∈ Uij}| we use Theorem 8. By the connectivity condition

of γ-certificates,

|{F
(U)
i | U ∈ Uij}| ≤ |{F

(U)
i | δ+(U ;Di) ≤ 2i−1 · 2j+1 − 1}|

≤ |P (2i−1, 2j+1;Di)| ≤ 2n4·2j

.
(6)
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By (5) and (6) the failure probability of (3) is at most

∑

j≥0

4n−(d+3)2j ≤ 4n−(d+3)

1 − n−(d+3)
≤ 1

nd+2
.

�	
Proof (of Theorem 2). In the graph D, there are at most n2 pairs of vertices, so
the number of distinct λe is at most n2. Hence the number of nonempty Fi is
at most n2. Using union bound over these values of i, we can conclude that (3)
is satisfied for all i and U with probability at least 1 − 1/nd. Thus, from the
triangle inequality, we have

|δ+(U ;D) − δ+(U ;Dε)| =

∣
∣
∣
∣
∣

Λ∑

i=0

f
(U)
i −

Λ∑

i=0

̂
f
(U)
i

∣
∣
∣
∣
∣
≤

Λ∑

i=0

|f (U)
i − ̂

f
(U)
i |

≤ ε

2

Λ∑

i=0

max
{

δ+(U ;Di)
γ

, f
(U)
i

}

≤ ε

2

(
Λ∑

i=0

δ+(U ;Di)
γ

+
Λ∑

i=0

f
(U)
i

)

≤ ε · δ+(U ;D)

since γ-overlapped property holds and
∑Λ

i=0 f
(U)
i = δ+(U ;D). Hence we con-

clude that Dε ∈ (1 ± ε)D.
Finally, observe that the expected number of edges in Dε is

∑
e(1 − (1 −

pe)we) ≤ ∑
e wepe = O(

∑
e ρwe/λe). This completes the proof. �	
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Abstract. A graph G realizes the degree sequence S if the degrees of its
vertices is S. Hakimi [5] gave a necessary and sufficient condition to guar-
antee that there exists a connected multigraph realizing S. Taylor [13]
later proved that any connected multigraph can be transformed into any
other via a sequence of flips (maintaining connectivity at any step). A
flip consists in replacing two edges ab and cd by the diagonals ac and bd.
In this paper, we study a generalization of this problem. A set of subsets
of vertices CC is nested if for every C,C′ ∈ CC either C ∩C′ = ∅ or one is
included in the other. We are interested in multigraphs realizing a degree
sequence S and such that all the sets of a nested collection CC induce
connected subgraphs. Such constraints naturally appear in tandem mass
spectrometry.

We show that it is possible to decide in polynomial if there exists a
graph realizing S where all the sets in CC induce connected subgraphs.
Moreover, we prove that all such graphs can be obtained via a sequence
of flips such that all the intermediate graphs also realize S and where
all the sets of CC induce connected subgraphs. Our proof is algorithmic
and provides a polynomial time approximation algorithm on the shortest
sequence of flips between two graphs whose ratio depends on the depth
of the nested partition.

1 Introduction

Let G = (V,E) be a graph where V denotes the set of vertices and E the set of
edges. All along the paper, unless otherwise specified, all the graphs are loop-
free but may admit multiple edges. Reconfiguration problems consist in finding
a step by step transformation between two solutions of a given problem such
that all intermediate states are also solutions. Reconfiguration problems arise
in many different fields (e.g. graph theory [2,3], statistical physics [10], combi-
natorial games [8], chemistry [12] and peer-to-peer networks [4]) and received a
considerable attention in the last few years. For a complete overview of the recon-
figuration field, the reader is referred to the recent surveys of van den Heuvel [9]
and Nishimura [11]. In this paper we consider the reconfiguration of graphs with
a fixed degree sequence and its applications to cheminformatics.
c© Springer Nature Switzerland AG 2018
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The degree sequence of a graph G is the sequence of the degrees of its
vertices in non-increasing order. Given a non-increasing sequence of integers
S = {d1, . . . , dn}, a graph G = (V,E) with V = {v1, . . . , vn} realizes S if
d(vi) = di for all i ≤ n.

In the fifties, mathematicians tried to find conditions that guarantee that
given a sequence of integers S = {d1, . . . , dn}, there exists a graph realizing S.
Senior [12] gave necessary and sufficient conditions for the case of connected
(multi)graphs. Havel [7] proposed a polynomial time algorithm that outputs a
simple loop-free graph realizing S if such a graph exists or returns no otherwise.
Hakimi [5] re-discovered the results of both Senior and Havel and also proposed
an algorithm that outputs a connected loop-free graph realizing S if such a graph
exists or returns no otherwise.

A flip (also called swap or switch in the literature) on two edges ab and cd
consists in deleting the edges ab and cd and creating the edges ac and bd (or
ad and bc)1. The flip operation that transforms the edges ab and cd into the
edges ac and bd is denoted (ab, cd) → (ac, bd). When the target edges are not
important we will simply say that we flip the edges ab and cd.

Let S = {d1, . . . , dn} be a non-increasing sequence and let G and H be two
graphs on n vertices v1, . . . , vn realizing S. The graph G can be transformed
into H if there is a sequence of flips that transforms G into H. Since flips do not
modify the degree sequence, the intermediate graphs also realize S. Let G(S) be
the graph whose vertices are loop-free multigraphs realizing S and such that two
vertices G and H of G(S) are adjacent if G can be transformed into H via a
single flip. Since the flip operation is reversible, the graph G(S) is an undirected
graph called the reconfiguration graph of S. Note that there exists a sequence
of flips between any pair of graphs realizing S if and only if the graph G(S) is
connected. In [6], Hakimi proved the following:

Theorem 1 (Hakimi [6]). Let S be a non-increasing sequence. If the graph
G(S) is not empty, it is connected.

A connected reconfiguration graph has some interesting consequences for
sampling or enumerating solutions. For instance, it implies that all the solu-
tions can be enumerated with polynomial delay (as long as we get one of them).
An enumeration algorithm is an algorithm that lists without repetition all the
solutions of a given problem. An algorithm solves an enumeration problem with
polynomial delay, if the delay between two consecutive outputs is bounded by a
polynomial of the input size. Any reconfiguration problem such that the reconfig-
uration graph is connected and the number of local operations (in our case flips)
is polynomial admits a polynomial delay enumeration algorithm. So Theorem 1
ensures that there exists an algorithm that enumerates with polynomial delay
all the graphs realizing S. Note however that the space needed by this algorithm
might be exponential. As far as we know, the existence of a polynomial delay
algorithm with polynomial space to generate all the graphs realizing S is open.
1 In the case of multigraphs, we simply decrease by one the multiplicities of edges ab

and cd and increase by one the ones of ac and bd.
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One can wonder if the reconfiguration graph is still connected if only we con-
sider graphs with additional properties. For a graph property Π, let us denote by
G(S,Π) the subgraph of G(S) induced by the graphs realizing S with the prop-
erty Π. If we respectively denote by C and S the property of being connected
and simple, Taylor proved in [13] that G(S,C ), G(S,S ) and G(S,C ∧ S ) are
connected (∧ stands for “and”). Let G,H be two graphs of G(S,Π). A sequence
of flips transforms G into H in G(S,Π) if the sequence of flips transforms G
into H and all the intermediate graphs also have the property Π. Note that it
is equivalent to find a path between G and H in G(S,Π).

Applications to Mass Spectrometry. Mass spectrometry is a technique used to
measure the mass-to-charge (m/z) ratio of molecules. The process results in a
m/z-spectrum, whose deconvolution provides a histogram with the quantity of
each complex. Given this histogram, chemists can determine how many atoms
of each type compose the molecule (i.e. the chemical formula of the molecule).
With this chemical formula, we want to understand the structure of the molecule.
Two question naturally arise: (i) Can we find a molecule structure satisfying this
formula? (ii) Can we find all of them? Two molecules with the same chemical
formula are called structural isomers.

The problem of determining the structure of a molecule given its chemical
formula, can be formulated as a combinatorial problem. Let v1, . . . , vn be the n
atoms of the molecules. The degree of each atom vi is its valence. The questions
then become: (i) Can we find a connected loop-free (multi-)graph on vertices
v1, . . . , vn for which the degree of each vi is equal to the valence of its corre-
sponding atom? (ii) If yes, can we generate all of them? As we have already
seen, Hakimi [6] and Taylor [13] answered positively to both questions: we can
enumerate with polynomial delay all the graphs in G(S,C ).

In the last few years, with the development of tandem mass spectrometry,
we get more information on the structure of the original molecule. With this
technology, we can again break the molecule into several fragments which in
turn can be broken into other fragments...etc... For each produced fragment of
this subdivision, we can determine its atoms constitution. Finally, we can obtain
a tree of fragments, where each fragment corresponds to a part of the molecule
that have to be connected. Rephrased in terms of graphs, it means that instead
of simply knowing that the whole graph is connected, we are given a collection of
subsets of vertices that have to induce connected subgraphs. Since the number
of graphs realizing a degree sequence is usually large, this additional information
can drastically reduce the number of possible molecules.

Our Results. A collection CC of subsets of vertices is nested if for every pair
Ci, Cj in CC, either Ci ∩ Cj = ∅ or one is included in the other. The height d
of a nested partition CC is the maximum number of sets Ci1 , . . . , Cid in CC such
that Ci1 � Ci2 � . . . � Cid .

Let S = {d1, . . . , dn} be a degree sequence and CC be a nested collection such
that V ∈ CC. Let us denote by G(S, CC) the subgraph of G(S) induced by the
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graphs such that G[C] is connected for C in CC. We study the three following
questions:

(i) Is it possible to find in polynomial time a graph G in G(S, CC) if such a
graph exists?

(ii) Is G(S, CC) a connected subgraph of G(S)?
(iii) If yes, is it possible to find or approximate a shortest transformation

between two graphs of G(S, CC)?

In Sect. 4, we answer positively to (i). We actually provide a necessary and
sufficient condition for a graph to be realizable and then prove that this charac-
terization can actually be turned into an algorithm.

In Sect. 5, we answer to both (ii) and (iii). We show that, given two graphs
G,H in G(S, CC), there always exists a transformation between G and H in
G(S, CC). To prove it, we exhibit an algorithm that finds a sequence of at most
(2d + 1)δ(G,H) flips transforming G into H, where d is the height of the nested
partition and δ(G,H) is the size of the symmetric difference (see paragraph
Notations for a formal definition). Since the length of a minimum transformation
between G and H is at least δ(G,H)/4 (a flip decreases by at most four the size
of the symmetric difference), we get an (8d + 4)-approximation of the shortest
sequence. Note that it also provides as an immediate corollary a polynomial
delay algorithm to enumerate all the graph in G(S, CC).

Theorem 2. Let CC be a nested collection of subsets that contains V . The graph
G(S, CC) is connected and the distance between any pair of graphs G and H in
G(S, CC) is at most (2d + 1)δ(G,H).

Moreover, there is a polynomial time algorithm that, given G,H ∈ G(S, CC),
computes a sequence of flips transforming G into H in G(S, CC) of length at most
(8d + 4)OPT where OPT denotes the length of a shortest sequence.

We moreover show that finding a shortest sequence of flips between two
graphs in G(S,C ) is NP-complete. It in particular implies as an immediate corol-
lary that it is NP-complete for two graphs in G(S, CC). Due to space restriction,
the proof of this result is not included in this short version. The proof follows
the scheme of the NP-hardness proof of Will [14] in the case of simple graphs.

In order to prove Theorem2, we need as a black-box an approximation algo-
rithm of the shortest transformation between two graphs in G(S,C ). In Sect. 2,
we give an algorithm that provides a transformation from G into H in G(S,C ) of
size at most four times the optimal one for any pair of graphs G,H in G(S,C ).
This result also provides an alternative proof of the result of Taylor [13]. Most
of the proofs are not included in this extended abstract, we refer the reader to
a complete version for all the details2.

Notations.
All along the paper, we consider unoriented loop-free multigraphs. Given two
graphs G and H on the same vertex set V , we denote by GΔH their symmetric

2 Available online at https://arxiv.org/abs/1809.05443.

https://arxiv.org/abs/1809.05443
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difference i.e. the (multi)set of edges such that e appears in GΔH with multi-
plicity r > 0 if the difference between the multiplicities of e in G and in H is
equal to r or −r. We denote by δ(G,H) the size of GΔH. By abuse of notations,
we often assimilate GΔH to the graph G = (V,GΔH). We denote by G − H
the (multi)set of edges such that e appears in G − H with multiplicity r > 0 if
the difference between the multiplicities of e in G and in H is equal to r. For
simple graphs it simply corresponds to the edges which are in G and not in H.
We also assimilate G − H to the graph (V,G − H). Note that δ(G,H) is twice
the number of edges in G − H. Finally let G ∩ H be the set of edges containing
e is an edge with multiplicity r if the minimum multiplicity of e in G and H is
exactly r. As for G − H and GΔH, we assimilate G ∩ H to (V,G ∩ H). Note
that E(G) = E(G ∩ H) ∪ E(G − H).

2 4-Approximation for Connected Graphs

Let S be a non-increasing degree sequence. In [13], Taylor proved that G(S,C ) is
connected. However, his proof does not immediately provide an approximation
algorithm of the shortest transformation between pairs of graphs in G(S,C ). In
this section we give an alternative proof of the result of Taylor that provides a
4-approximation algorithm of the shortest transformation between any pair of
graphs in G(S,C ).

Theorem 3. Let S be a non-increasing degree sequence and G and H in
G(S,C ). We can find in polynomial time a sequence of at most δ(G,H) flips
transforming G into H in G(S,C ).

Moreover this transformation never flips any edge that is already in both G
and H3.

The size of a shortest transformation is at least δ(G,H)/4 since at most two
edges of G can be flipped on edges of H at every step. So Theorem 3 provides a
4-approximation algorithm. The remaining of this section is devoted to prove the
following lemma whose iterated application immediately implies Theorem3. We
say that a flip maintains connectivity (of a connected graph G) if the resulting
graph after the flip is still connected. A sequence of flips maintains connectivity
if all intermediate graphs are connected.

Lemma 1. Let S be a non-increasing degree sequence and G and H in G(S,C ).
There exists a sequence of at most two flips in maintaining connectivity that
decreases by at least two the size of the symmetric difference. Moreover the
sequence never flips any edge that is already in both G and H.

Proof. In order to prove it, let us first prove that there exist cases where we can
easily decrease the symmetric difference in one step. Due to space restriction the
proof of the next claim is omitted.
3 We say that an edge e in G ∩ H is never flipped if the multiplicity of e at any

intermediate step never goes below the multiplicity of e in G ∩ H.
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Claim. If an edge of G − H is contained in a cycle of G4, then there exists a
flip maintaining the connectivity that decreases by at least two the size of the
symmetric difference.

If the claim can be applied, Lemma 1 holds. So we can assume that all the
edges of G−H do not belong to a cycle of G, i.e. all of them are bridges. Let G′

be the graph obtained from G by contracting all the connected components of
G ∩ H into a single vertex. And there is an edge S1S2 in G′ if there is an edge
u1u2 of G with u1 in S1 and u2 in S2. We say that v1v2 corresponds to S1S2 in
G′. Note that the claim ensures that there is a bijection between the edges of
G − H and the edges of G′. Since no edge of G − H is contained in a cycle of
G, the graph G′ is a tree (without multiedges). In that case, we can prove that
it is always possible to find a sequence of at most two flips that decreases the
symmetric difference by at least 2. A formal proof of this fact is proposed in the
full version of the paper.

3 Tree of the Fragments

Let V be a vertex set and S be a degree sequence of size |V |. Let CC be a
nested collection of subsets of V such that V and all the singletons belong to
CC. Singletons are included in CC for convenience since their addition does not
change the graph G(S, CC). Indeed, a single vertex induces a connected subgraph.

Fig. 1. A graph G, a nested partition CC and the tree of the fragments of CC.

4 Two parallel edges form a cycle of length 2.
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Let G and H be two graphs in G(S, CC). Let e = uv be an edge with multi-
plicity r1 in G and r2 in H and let r = min(r1, r2). Then r copies of e are good
and the others are bad. (In case of simple graph an edge e of G is good if it is
also an edge of H and it is bad otherwise). A flip in G is correct if it maintains
the connectivity of G[C] for any C ∈ CC. A flip does not modify a good edge e if
the multiplicity of e after the flip is still at least the multiplicity of e in G ∩ H.

Let CC be a nested collection. The tree of the fragments T is the tree whose
nodes are labeled by elements of CC and there is an arc from C1 to C2 if C2 ⊆ C1

and there does not exist C ∈ CC distinct from C1 and C2 such that C2 ⊆ C ⊆ C1.
In other words, T is the tree rooted at V corresponding to the nested partition
of CC (see Fig. 1 for an illustration). By abuse of notation and when no confusion
is possible, C will denote both the node of T and the corresponding set in CC.
Since CC contains all the sets of size one, the leaves of T are the vertices of V .
Since CC is nested, T is well-defined and is a tree. Given a node C of the tree of
the fragments and v ∈ V , v ∈ C if and only if the leaf labeled with v is a leaf of
the subtree rooted at C. We denote by G[C] the subgraph of G induced by the
vertices in C.

Fig. 2. The graph Gch(C3)

Given a node C, we denote by ch(C) the children of C in T . Let C be an
internal node of T and G ∈ G(S, CC). We denote by Gch(C), the graph with
vertex set ch(C) where C ′ and C ′′ in V (Gch(C)) are adjacent with multiplicity
k if there exist exactly k edges with one endpoint in C ′ and one endpoint in C ′′

in G. See Fig. 2 for an illustration.
Note that there is a natural bijection between edges of G and edges of Gch(C).

Indeed, for any edge e of G, there exists a unique C ∈ CC in which an edge is
created in Gch(C) because of e. The following remark follows from that obser-
vation.

Remark 1. Let G be a graph in G(S, CC).

1. For every C ∈ T , |E(G[C])| =
⋃

C′⊆C |E(Gch(C ′))|;
2. Let C ∈ T and let e ∈ E(Gch(C)), then Gch(C ′) − e is connected for every

C ′ ∈ T , C ′ 
= C.

The second point holds since e has no impact on Gch(C ′) for C ′ 
= C. Let us
first prove the following lemma that will be used all along the proof.

Lemma 2. Let G be a graph in G(S).
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– If G[C] is connected, then Gch(C) is connected.
– Let C be a node of T and T ′ be the subtree rooted at C. If Gch(C ′) is connected

for every node C ′ of T ′ then G[C ′] is connected for every node C ′ of T ′.

The second point will be applied in several situations since manipulating
Gch(C) is often simpler than manipulating G[C]. Note that when C is the root,
the conclusion of the second point ensures that G is in G(S, CC).

Let V1, V2 be a partition of V . Then EG(V1, V2) denotes the set of edges of
G with one endpoint in V1 and one endpoint in V2.

Lemma 3. Let G,H be two graphs of G(S, CC) and let C ∈ CC. If |EG(C, V \
C)| < |EH(C, V \ C)|, then there exists e ∈ G[C] − H[C] such that G[C ′] − e is
connected for every node C ′ of T .

Note that when we say “there exists e ∈ G[C] − H[C]” in the statement
of Lemma 3, the edge e might exist in both G and H, but in that case the
multiplicity of e in H has to be strictly smaller than the multiplicity of e in G.

4 Realizability

Let V = {v1, . . . , vn} be a set of vertices and let CC be a nested partition
containing V and all the singletons. Let T be the tree of the fragments of CC.
In this section, we provide a necessary and sufficient condition on the degree
sequence S = {d1, . . . , dn} to be realizable by a loop-free multigraph such that C
induces a connected subgraph for every C ∈ CC. This characterization generalizes
the ones of [5] and [12] for loop-free multigraphs since in this case CC = {V }.
We end the section by explaining how this characterization can be turned into
a polynomial time algorithm.

Let C be a node of T . A graph G′ is coherent on C if it is defined on C and:

– for every vi ∈ C, dG′(vi) ≤ di and,
– for every C ′ ∈ CC such that C ′ ⊆ C, G′[C ′] is connected.

Let G′ be a graph coherent on C. The degree-deficit of C (for G′) is equal to∑
vi∈C(di −dG′(vi)). In other words, the degree-deficit represents the amount of

endpoints of edges “missing” to complete the degree of the vertices of C. Note
that if a graph G defined on V realizes T , then the degree-deficit of C is the
number of edges with one endpoint in C and one endpoint in V \C. Moreover for
any node C, the graph G[C] is coherent on C. Let us start with a straightforward
remark.

Remark 2. Let C ′ and C ′′ be two disjoint sets in CC. Let G′ be a graph defined
on C ′ ∪ C ′′. If the degree-deficits of both C ′ and C ′′ are positive, then there
exists u ∈ C ′ and v ∈ C ′′ such that the edge uv can be added in G′ without
violating any degree constraint.



Reconfiguration of Graphs with Connectivity Constraints 303

We now define �(C) and u(C). We will then prove that, given a graph G
in G(S, CC), they correspond to respectively the minimum and the maximum
degree-deficit of C for any graph G′ coherent on C. For any node C in CC, we
define

u(C) :=
∑

vi∈C

di − (2|C| − 2)

and �(C) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

di if C is the leaf vi

ϕ(C) if ϕ(C) ≥ 0
0 if ϕ(C) < 0 and ϕ(C) is even
1 if ϕ(C) < 0 and ϕ(C) is odd

where ϕ(C) = max
Cj∈ch(C)

(
�(Cj) −

∑

Ci∈ch(C)
Ci �=argmax{�(Cj)}

u(Ci)
)
.

Lemma 4. Let S be a degree sequence and CC be a nested partition. Let G in
G(S, CC). Then for every node C of the tree of the fragments, the degree-deficit
s(C) of C satisfies:

�(C) ≤ s(C) ≤ u(C)

Moreover, �(C) and u(C) are even if and only if
∑

vi∈C di is even.

Proof. The number of edges of a connected subgraph on n vertices is at least
n−1. Since G[C] is connected, there are at least |C|−1 edges with both endpoints
in C and then we have s(C) ≤ u(C) =

∑

vi∈C

di − (2|C| − 2). Since we removed

an even value from
∑

vi∈C

di, u(C) is even if and only if
∑

vi∈C

di is even.

Let us now prove that s(C) ≥ �(C). We prove it by induction bottom-up
from the leaves. If C is a leaf, then C = {vi} and there are exactly di edges
between vi and its complement in G. Thus s(C) = E(C, V \ C) = �(C) and the
parity of s(C) is indeed the one of �(C).

Now, let C be an internal node. By induction hypothesis, for every child Ci of
C, the parities of �(Ci) and u(Ci) are the parity of

∑

vi∈Ci

di. Thus, by definition of

�(C), the parity of �(C) is the parity of
∑

vi∈C

di. So, in particular, if ϕ(C) ≤ 1, the

conclusion holds since the degree-deficit cannot be negative. So we can assume
that ϕ(C) ≥ 2. Let us denote by C1, . . . , Cr the children of C and we can
assume w.l.o.g. that C1 is the child of C satisfying ϕ(C) = �(C1) − ∑

i≥2 u(Ci).
Let N :=

∑
i≥2 u(Ci). The first part of the proof ensures that the degree-deficit

of ∪i≥2Ci is at most N . Moreover, by induction, the degree-deficit of C1 is at
least �(C1). So the maximum number of edges between C1 and ∪i≥2Ci in a graph
satisfying all the constraints is N (since �(C1) > N). So the degree-deficit of C
is at least �(C1) − N which completes the proof. �
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The goal of this section consists in proving the following theorem that ensures
that it suffices to look at the values u(C) and �(V ) to determine if a graph is
realizable.

Theorem 4. Let S be a degree sequence and CC be a nested partition containing
V . There exists a graph in G(S, CC) if and only if:

1. For every internal node C of the tree of the fragments, u(C) ≥ 1.
2. �(V ) = 0 and u(V ) ≥ 0.

Let G be a graph in G(S, CC). Then the degree-deficit of V equals 0. So by
Lemma 4 applied on V , �(V ) = 0 and u(V ) ≥ 0 is necessary. Moreover, since G
is connected, at least one edge has to have one endpoint in C and one endpoint
in V \ C for every C � V . Thus the degree-deficit of C is at least one for every
C ∈ CC, C 
= V , and then Lemma4 ensures that the first condition is necessary.
To prove Theorem 4, we have to show that these two conditions are sufficient.
The sufficiency is an immediate corollary of the next lemma applied to V with
s = �(V ) = 0.

Lemma 5. Let S be a degree sequence and CC be a nested partition. Let C be a
node of the tree of the fragments T such that u(C) ≥ 0 and, for every C ′

� C,
u(C ′) ≥ 1. For every s such that �(C) ≤ s ≤ u(C) and such that s has the same
parity as �(C) and u(C), there exists a graph G′ coherent on C with degree-
deficit s.

In order to prove Lemma 5, we need to show the following lemma as an
intermediate step. Its proof is not included in the extended abstract.

Lemma 6. Let S be a degree sequence and CC be a nested partition. Let C be
a node of the tree of the fragments T such that u(C) ≥ 0 and such that, for
every C ′

� C we have u(C ′) ≥ 1. Then there exists graph G′ coherent on C with
degree-deficit u(C).

Using Lemma 6, we can now prove Lemma 5 via decreasing induction. Due to
space restriction, the proof is not included in this extended abstract. The proof
consists in proving that if no edge can be added to decrease the degree-deficit
of C, then the graph structure is constrained. The core of the proof consists
in showing that we can slightly modify this structure, either immediately or by
induction (on subsets of C) in such a way an edge can be added in the subgraph
induced by C without violating any constraint.

Lemma 7. The proof of Theorem4 can be turned into a polynomial time algo-
rithm.

5 Connectivity of G(S, CC) and Approximation Algorithm

Well-Structured Subtrees and Extensions. A subtree T ′ of the tree of the frag-
ment T is well-structured if
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(i) it contains the root, and
(ii) if u, v are two children of w ∈ T ′ then either both u and v are in T ′ or none

of them is in T ′ (see Fig. 3 for an illustration).

A set C ∈ CC is in a well-structured subtree T ′ if the node labeled by C is
in T ′. Given a well-structured subtree T ′, we denote by CCT ′ the subset of CC
corresponding to the inner nodes of T ′, i.e. all the nodes of T ′ but the leaves.
Note that the root of T and the whole tree T are well-structured.

Fig. 3. The graph Gs(T ′) where the leaves of the well-structured subtree T ′ are
a, b, c, C4, C5, C6, C7. The graph G and the tree T are the ones of Fig. 1.

The graph inherited from a well-structured subtree T ′ ⊆ T denoted by Gs(T ′)
is the graph where the vertex set is the set of leaves of T ′ and where there is
an edge between X and Y with multiplicity α if there are α edges with one
endpoint in X and one endpoint in Y in G. Note that Gs(T ) is the graph G. Let
C ∈ CCT ′ . We denote by Gs(T ′)[C] the subgraph of Gs(T ′) induced by the leaves
of the subtree of T ′ rooted at C. A flip in Gs(T ′) is T ′-correct if it maintains
the connectivity of Gs(T ′)[C] for any C ∈ CCT ′ . Note that a correct flip is a
T -correct flip.

For the sake of readability, vertices of Gs(T ′) will be denoted with capital
letters and vertices of the original graph G will be denoted with lower case letters.
Due to space restriction, the proof of the following lemma is not included in this
extended abstract.

Lemma 8. Let S be a degree sequence and CC be a nested partition. Let G and
H be two graphs in G(S, CC). Let T ′ be a well-structured subtree of the tree of
the fragments T and let (AB,CD) → (AC,BD) be a T ′-correct flip.

We can find in polynomial time a flip (ab, cd) → (ac, bd) of G where a, b, c and
d are respectively in G[A], G[B], G[C] and G[D] which is correct for G. Moreover
if AB and CD are in Gs(T ′) − Hs(T ′) then we can assume that ab and cd are
in G − H.

Lemma 8 permits to work with the graphs Gs(T ′) and Hs(T ′) and ensures
that if we make a flip on one of these graphs, it can be simulated by a flip in the
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original graph. A natural question immediately arises, how can we ensure that
the graph G obtained after the flip still satisfies all the constraints? The next
lemma will permit to answer this question.

Let G and H be two graphs in G(S, CC). Let T ′ be a well-structured subtree
of the tree of the fragments T . We can extend the notion of good and bad edges
to the graphs Gs(T ′) and Hs(T ′). (It is good if it is in both graphs and bad
otherwise).

Let T be the tree of the fragments and T1 be a well-structured subtree. The
tree T2 is an extension of T1 on extension node C if C is a leaf of T1 and T2 is
T1 plus all the children of C in T . The set of children X of C is then called the
set of special vertices of Gs(T2). Any flip between two edges of Gs(T2) with at
least one endpoint in X which:

– maintains the connectivity of Gs(T2)[X ] and,
– does not create any edge in Gs(T2) \ X .

is called a special flip.

Lemma 9. Let S be a degree sequence and CC be a nested partition. Let G in
G(S, CC). Let T2 be an extension of a well-structured subtree T1. Any special flip
is T2-correct.

Two graphs G and H agree on well-structured subtree T ′ if Gs(T ′) = Hs(T ′).
Note that if G and H agree on T then G = H.

The connectivity of G(S, CC) and the approximation algorithm will follow
from the next two lemmas. Before stating them formally, let us briefly describe
the ideas of the proof. We will start with a graph the well-structured subtree T ′

reduced to the root. This well-structured subtree will grow little by little during
the proof until T ′ = T . Our goal consists in transforming Gs(T ′) into Hs(T ′)
via special flips. Lemma 9 ensures that this sequence of flips is T ′-correct and
Lemma 8 ensures that this sequence can be adapted into a sequence of flips for
G that are correct. However, in order to be able to find such a transformation
we first need to transform the graphs in such a way the two graphs Gs(T ′) and
Hs(T ′) have the same degree sequence. Lemma 10 will ensure that it is possible
to assume it. Then Lemma 11 will guarantee that a sequence of special flips
permits to transform Gs(T ′) into Hs(T ′). So we finally obtain two graphs (still
denoted by G and H for convenience) such that Gs(T ′) = Hs(T ′). In that case,
we perform an extension on a leaf of the subtree T ′ and repeat the process until
T ′ = T . At the end of this last step, we get G = H since G = Gs(T ′) = Hs(T ′) =
H.

Lemma 10. Let S be a degree sequence and CC be a nested partition. Let T2 be
an extension of a well-structured subtree T1 on extension node C. Let G,H be
two graphs of G(S, CC) that agree on T1.

We can find in polynomial time a sequence of correct flips that transform G
into G′ and H into H ′ in such a way G′s(T2) and H ′s(T2) have the same degree
sequence and G′,H ′ still agree on T1. The number of flips in the sequence is at
most δ(Gs(T2),Hs(T2))/2 and no flip modifies a good edge. Moreover we have
δ(G′s(T2),H ′s(T2)) ≤ δ(Gs(T2),Hs(T2)).
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The proof, not included in this extended abstract, is based on applications of
Lemma 3 which permits to equilibrate degrees. The most technical part consists
in proving that all the constraints are still satisfied and that the symmetric
difference is not increasing.

Lemma 11. Let T2 be an extension of a well-structured subtree T1 on extension
node C. Let G,H be two graphs of G(S, CC) that agree on T1 and such that
Gs(T2) and Hs(T2) have the same degree sequence.

We can find in polynomial time a sequence of at most δ(Gs(T2),Hs(T2))
special flips transforming Gs(T2) into Hs(T2) which only flips bad edges.

Note that Lemma 9 then ensures that this sequence of special flips is a
sequence of correct flips. The proof of Lemma 11 consists in creating an aux-
iliary graph such that all the possible flips maintaining connectivity correspond
to special flips. The construction of such a graph is possible since G and H agree
on T1. We can finally use Theorem 3 to conclude that there exists a transforma-
tion from Gs(T2) to Hs(T2)).

The algorithm. Let us now present the algorithm to compute a sequence of
correct flips that transform G into H:

Procedure 1. Find a sequence of flip that transforms G into H

1: Compute the tree of the fragments T rooted at r.
2: T − 1 ← Root of T .
3: G1 ← G,H1 ← H.
4: while T1 �= T do
5: Let C be a leaf of T1 which is an internal node of T .
6: Let 2 be well-structured subtree inherited from T ′ on extension node C.
7: Transform G1 and H1 into G2 and H2 via a sequence of T2-correct flips in such

a way they have the same degree sequence on V (Gs(T2)) using Lemma 10.
8: Transform G2 into G3 via a sequence of T2-correct flips in such a way the two

graphs G3 and H2 agree on T2 using Lemma 11.
9: G1 ← G3, H1 ← H2, T1 ← T2.

10: end while

Let us first prove the correctness of the algorithm. Lemma 10 ensures that it
is possible to transform in polynomial time the graph the graphs G1 and H1 in
such a way all the connectivity constraints are still satisfied and the two resultats
graphs G2 and H2 have the same degree sequence on T2. Moreover G2 and H2

still agree on T1. So the step of line 7 can be performed in polynomial time.
Moreover, Lemma 11 ensures that there exists a transformation using only T2-
correct flips that transform Gs

2(T2) into Hs
2(T2). Lemmas 8 and 9 ensure that this

sequence can be transformed into a sequence of correct flips that transforms G2

into G3 and such that Gs
2(T2) = Hs

2(T2). So the step of line 8 can be performed
(in polynomial time). When the algorithm stops, the graph G1 and H1 agree on
T and then the two graphs are the same.
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Theorem 5. Algorithm 1 provides a sequence of flips of length at most (2d +
1)δ(G,H) transforming G into H in G(S, CC). In particular, it provides a (8d +
4)-approximation algorithm of the shortest sequence.

6 Conclusion and Open Problems

In Sect. 2, we provide a 4-approximation algorithm to transform a connected
multigraph into another. In this paper, we were simply interested in the exis-
tence of a constant approximation algorithm in order to obtain an approxima-
tion algorithm for the generalized problem. We did not make any attempts to
optimize our bound. It is likely that a more careful analysis provides a better
approximation ratio. In particular, if one can prove that there always exists
a flip that creates a good edge (without breaking ones) that does not discon-
nect the graph, then we would immediately obtain a 2-approximation algorithm.
Recently, Bereg and Ito [1] provide a 3/2-approximation algorithm to transform
a multigraph into another based on the symmetric circuit partition, beating the
trivial 2-approximation algorithm in that case. A similar technique might be
useful for significantly improve the approximation ratio for connected graphs.

The approximation ratio of Theorem2 depends on the depth of the tree of
the fragment. Can we avoid this dependency and simply find an approximation
algorithm that does not depend of the depth? Note that we did not try to
optimize the constant in front of the linear function of d in the approximation
ratio that is probably easily improvable.

Fig. 4. It is impossible to transform the left graph into the right graph when the set of
subsets that have to induce connected subgraphs is the set of thick edges plus the sets
{a1, b1, d1, x}, {a1, b1, e1, x}, {b1, c1, f1, x}, {b1, c1, e1, x}, {a2, b2, d2, x}, {a2, b2, e2, x},
{b2, c2, f2, x} and {b2, c2, e2, x}.

In practice, instead of one tree of the fragments, we are often given a collection
of trees of the fragments instead of one. It means that subsets of vertices that
have to be connected might intersect and not be contained one in the other. One
can wonder if it is still true that the reconfiguration graph is connected in this



Reconfiguration of Graphs with Connectivity Constraints 309

setting? Unfortunately the answer to this question is negative, for instance in
the graph provided in Fig. 4.

If yes, does it always exist a transformation that is linear in the size of the
symmetric difference and can we approximate it in polynomial time?

Acknowledgments. The authors want to thank the anonymous reviewers of WAOA
for their careful reading of the paper which permits to significantly improve its quality.
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Abstract. We introduce the itinerant list update problem (ILU), which
is a relaxation of the classic list update problem in which the pointer no
longer has to return to a home location after each request. The motiva-
tion to introduce ILU arises from the fact that it naturally models the
problem of track memory management in Domain Wall Memory. Both
online and offline versions of ILU arise, depending on specifics of this
application.

First, we show that ILU is essentially equivalent to a dynamic varia-
tion of the classical minimum linear arrangement problem (MLA), which
we call DMLA. Both ILU and DMLA are very natural, but do not appear
to have been studied before. In this work, we focus on the offline ILU and
DMLA problems. We then give an O(log2 n)-approximation algorithm for
these problems. While the approach is based on well-known divide-and-
conquer approaches for the standard MLA problem, the dynamic nature
of these problems introduces substantial new difficulties. We also show
an Ω(log n) lower bound on the competitive ratio for any randomized
online algorithm for ILU. This shows that online ILU is harder than
online LU, for which O(1)-competitive algorithms, like Move-To-Front,
are known.

1 Introduction

We introduce a variation of the classical list update problem, which we call the
itinerant list update problem (ILU). The setting consists of n (data) items, that
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without loss of generality we will assume are the integers [n] = {1, . . . , n}, stored
linearly in n locations on a track (tape). The track has a single read/write head.
Requests for these items arrive over time. In response to the arrival of a request
for an item x, the algorithm can perform an arbitrary sequence of the following
unit cost operations:

Move: Move the head to the left, or to the right, one position.
Swap: Swap the item pointed to by the head with the adjacent item on the
left, or the adjacent item on the right.

In order to be a feasible response, at some point in this response sequence, the
tape head must point to the position holding x. The objective is to minimize the
total cost over all requests. In the offline version of ILU, the request sequence
is known in advance, and in the online problem, only after the previous request
has been serviced.

Our motivation for introducing ILU is that it captures the problem of
dynamic memory management of a single track of Domain Wall Memory
(DWM). Here, dynamic means that the physical memory location where a data
item is stored may change over the execution of the application. DWM tech-
nology is discussed in more detail in the full version of the paper, but for our
algorithmic purposes it is sufficient to know that conceptually, a track of DWM
can be viewed as a tape with a read/write head. At least in the near term, it
is envisioned that DWM will be deployed close to the processor in the mem-
ory hierarchy, and used as scratchpad memory instead of cache memory, so the
stored data there would not have a copy in a lower level of the memory hier-
archy [6,7,10,13,14,16]. If the application is an embedded application, where
the sequence of memory accesses is (essentially) known before execution, then
dynamic memory management can be handled at compile time, and thus is an
offline problem [7]. If the sequence of memory accesses is not known before exe-
cution, then dynamic memory management would be handled by the operating
system at run time, and the problem is online. Additionally in this case, at run
time there would need to be an auxiliary data structure translating virtual mem-
ory addresses to physical memory addresses. We abstract away this issue (which
is independent of the memory technology), and model these two settings by the
offline and online ILU problems.

1.1 Relationship of ILU to List Update and Minimum Linear
Arrangement

The main difference between ILU and the standard list update problem (LU)
is that in LU there is an additional feasibility constraint. At the end of each
response sequence, the head has to return to a fixed home position. If the head
has a home position, there is a simple O(1)-approximation, which is also online:
The Move-To-Front (MTF) policy, which moves the last-accessed item to the
home position (and moves intermediate items one position further from the
home) can be shown to be O(1)-competitive by simple modifications to the
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analysis of MTF in [19]. There, the home position is the first position, and costs
are defined somewhat differently.

However, the natural adaptations of MTF for online ILU are all Ω̃(n)-
competitive, see the full version of the paper. These lower bounds hint at an
additional difficulty of online ILU relative to the standard list update problem.
In both problems it seems natural for the online algorithm to aggregate recently
accessed items together. However, in the standard list update problem it is obvi-
ous where to aggregate these items, near the home location, while in ILU, it
seems unclear where these items should be aggregated.

In the standard formulation of the list update problem [2,19], MTF is 2-
competitive, which is optimal for deterministic algorithms [19]. The optimal
competitive ratio for randomized algorithms (against an oblivious adversary) is
between 1.5 [20] and 1.6 [1]. The offline version of the list update problem is
shown to be NP-hard in [3,4], and there is an exact algorithm with running
time O(2nn!m), where m is the number of requests [18]. For a survey of many
further results related to the list update problem, see [2,12].

If items can only be reordered once at the beginning (so the memory manage-
ment is not allowed to be dynamic), then offline ILU is essentially the classical
minimum linear arrangement problem (MLA) [11]. In MLA, the input is an edge-
weighted graph G with n vertices. The output is an embedding of the vertices
of G into a track with n locations. The objective is to minimize the sum over
the edges of the weight of the edge times the distance between the endpoints of
the edge in the track. Here in the ILU application, the weight of an edge (x, y)
roughly corresponds to the number of times that item y is requested immediately
after item x is requested. We will make the connection between ILU and MLA
more precise shortly.

Hansen [11] gave a polynomial-time O(log2 n)-approximation algorithm for
MLA. This algorithm is a divide-and-conquer algorithm where the divide step
computes a balanced cut (say using [15]) to determine a partition of the items
into two sets, where all the items in the first set will eventually be embedded to
the left of all the items in the second set. As noted by Rao and Richa [17], this
same algorithmic design technique can be used to obtain approximation algo-
rithms with similar approximation ratios for the minimum containing interval
graph problem, and the minimum storage-time product problem. The algorithm
by Feige and Lee [9], which achieves the currently best known approximation
guarantee of O(

√
log n log log n) for these problems, combines rounding tech-

niques for semidefinite programs [5] and spreading-metric techniques [17].

1.2 Our Results

We have already mentioned the connection of ILU to the minimum linear
arrangement problem; we now make the connection more precise by defining
the dynamic minimum linear arrangement (DMLA) problem. The setting for
DMLA is the same as the setting for ILU: a linear track of items [n]. A sequence
of graphs H1,H2, . . . arrives over time, with the vertex set V (Ht) = [n] for each
time t. In response to the graph Ht, the algorithm can first perform an arbitrary
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sequence of swaps of adjacent items on the track; each such swap has a cost of
1. After this, the service cost for Ht is (as in MLA) the sum over the edges of
the distance between the current positions of the endpoints in the track. The
objective is to minimize the overall cost due to both swaps and service costs.
Note that in DMLA there is no concept of a track head, and swaps can be
made anywhere on the track. Once again, DMLA has both an online and offline
version. The standard MLA problem is essentially a special case of the offline
DMLA problem in which all of the many arriving graphs are identical (so there
is nothing to be gained from reordering the track).

We use DMLA1 to refer to the DMLA problem restricted to instances where
each request graph Ht has a single edge. We show the following.

Theorem 1. Consider offline ILU, DMLA, and DMLA1. If there is a
polynomial-time f(n)-approximation algorithm for one of these problems, there
are polynomial-time O(f(n))-approximation algorithms for the two other prob-
lems as well, as long as f(n) = O(polylog n).

The proof will be provided in the full version of the paper. It involves a somewhat
intricate sequence of reductions.

As our aim is a polylogarithmic approximation to ILU, we can henceforth
restrict our attention to DMLA1. Our main theorem is the following.

Theorem 2. There is a polynomial-time O(log2 n)-approximation algorithm for
offline DMLA1, implying the same for DMLA and ILU.

As the DMLA problem generalizes the standard MLA problem, it is natural
to suspect that the divide and conquer algorithmic design approaches used in,
e.g., [9,11], might be applicable. It turns out that the dynamic nature of the
problem introduces major new difficulties. We discuss these difficulties, and how
we succeed in bypassing them, in Sect. 2.1. We believe that our more sophisti-
cated algorithm design and analysis techniques may also be useful for other linear
arrangement problems, where the simpler techniques used for MLA, the mini-
mum containing interval graph problem and the minimum storage-time product
problem are also not sufficient [9,11,17].

We now turn to online ILU. We have already seen that it seems much harder
than the classical list update problem. This is confirmed by the following theo-
rem, proved in Sect. 3.

Theorem 3. The competitive ratio of any randomized online ILU algorithm
against an oblivious adversary is Ω(log n).

In the construction, the algorithm only gradually “learns” that certain items
should be close to each other to handle the requests cheaply. To profitably aggre-
gate these items, however, the algorithm would need to know where to aggregate
them, which requires more global information. This manifests the difficulties
encountered when trying to adapt MTF.

It remains a very interesting and challenging open problem to give a polylog-
competitive algorithm for online ILU. The reductions in the full version of the
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paper show that online ILU, DMLA and DMLA1 are also equivalent, and it
suffices to give a polylog-competitive algorithm for online DMLA1. We anticipate
that the insights obtained in the analysis of the approximation algorithm will
be crucial in making progress.

2 Approximation Algorithm

We now prove Theorem 2, by giving an O(log2 n)-approximation algorithm for
DMLA1; by Theorem 1 this implies the same for ILU and DMLA. The design of
our algorithm is described in Sect. 2.2, and its analysis in Sect. 2.3. We first give
a technical overview of our algorithm and analysis.

2.1 Overview

As the starting point for our algorithm for DMLA1 was the divide-and-conquer
algorithm for MLA by Hansen [11], we start by discussing this algorithm. The
MLA algorithm finds an approximate minimum balanced cut of the input graph
G into a “left” side and a “right” side (the balance is randomly selected). The
algorithm then recurses on the subgraph of G induced by the “left” vertices,
and on the subgraph of G induced by the “right” vertices, This recursion is
“simple”, in the sense that the subproblems are just smaller instances of the
MLA problem. This recursive process constructs a laminar family1 of subsets of
the vertices of G, with each set labeled left or right, and from which the ordering
can be obtained in the natural way. One issue that must be addressed in the
analysis is ruling out the possibility that choosing a high-cost balanced cut at the
root can drastically reduce costs at lower levels of the recursion, so that taking
a low-cost balanced cut at the root is already an unfixable mistake. In [11] this
is handled by showing that the MLA problem has the following subadditivity
property : the optimal cost for the left subinstance plus the optimal cost for
the right subinstance is at most the optimal cost for the original instance. This
subadditivity property makes it straightforward to observe that a c-approximate
algorithm for minimum balanced cut implies a c · h-approximate algorithm for
MLA, where h = Θ(log n) is the height of the recursion tree.

In order to adapt this algorithm and analysis from MLA to DMLA1, the
first question is to determine what should play the role of the input graph. Our
algorithm operates on a time-expanded graph G, defined in Definition 1 (see
Fig. 1), that contains a vertex (x, t) for every item x and time t. A cut in G
can again be interpreted as dividing the nodes into a left and right part, but
now in a dynamic way: an item x might be in the left side of the cut at some
time t1, but on the right side at another time t2. “Consistency edges” of the
form {(x, t − 1), (x, t)} play a role in encoding swap costs; the edge contributes
to the cut if item x switches sides between times t − 1 and t. However, we now

1 A family F ⊆ 2S of sets over some ground set S is called laminar if, for all F1, F2 ∈ F ,
we have F1 ∩ F2 = ∅, F1 ⊆ F2, or F1 ⊇ F2.
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encounter a significant complication: a balanced cut of G does not suffice. One
instead needs a cut that is balanced at each time; in other words, a constant
fraction of the items should be to the “left” at any given time t. This is crucial for
the same reason as in MLA; to ensure, in essence, that the expected distortion
between the original line metric and the random tree metric described by the
laminar family is not too large.

Before describing how our algorithm finds per-time balanced cuts, we note a
major hurdle. Firstly, we cannot hope for a “simple” recursion. Consider the left
side of some per-time balanced cut; this will typically have some items that enter
and leave this set over time. So from the left subproblem’s point of view, items
are arriving and leaving over time. It is tempting to try to define a generalization
of DMLA1 in which items are allowed to enter and leave. However, we failed to
find a formulation of such a problem that (a) we could approximately solve in an
efficient manner, and (b) has the subadditivity property which is so critical to
the MLA analysis. Rather than surmounting this hurdle, we more or less bypass
it, as we will now describe.

Let us return to the issue of finding per-time balanced cuts. Our algorithm
proceeds as follows. First, compute a balanced cut of G; if this is sufficiently
cheap, it is easily argued (by virtue of the consistency edges) that the cut is
in fact per-time balanced. Otherwise, we find a balanced cut of the subgraph
corresponding to those vertices up to some time r, where r is chosen as large as
possible but such that the balanced cut is cheap, and hence per-time balanced.
Again our algorithm then recurses on the left and right subgraphs of the vertices
of G up to time r, but then also recurses on the subgraph consisting of vertices
with times after r. This however means that we make no effort whatsoever to
prevent a complete reordering between times r and r+1; there may be a complete
“reshuffle” of the items, and this is not captured in the cost of any of the balanced
cuts.

So the final major hurdle is to bound the cost of these reshufflings, which
can occur in all levels of the recursion. Because we don’t know how to show
that DMLA1 has an appropriate subadditivity property, we cannot charge these
reshuffling costs locally. This is unlike in the analysis of the MLA algorithm,
where all charging is done locally. Instead, we charge, in a somewhat delicate
way, the cost of reshuffling at a given level to cuts higher up in the laminar
family.

Finally we have to relate the expected reduced cost of the algorithm to the
cost of the optimum. This is broadly similar to the MLA algorithm analysis, with
some extra technical work to handle the dynamic aspect. In the end we obtain
an O(log2 n) approximation factor. As in the analysis of the MLA algorithm, we
lose one log factor in the approximation of the balanced cut, and one log factor
that is really the height of the recursion tree.

2.2 Algorithm Design

We begin by introducing some needed notation.
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For a graph G = (V,E) and a subset W ⊆ V , G[W ] denotes the subgraph
induced by W , and E[W ] the set of edges in G[W ]. For a set S ⊆ V , δ(S)
denotes the set of edges crossing the cut S. We also use the less standard notation
δW (S) to denote δ(S) ∩ E[W ]. The balance of a cut S in G is simply |S|/|V |.
Furthermore, by T we refer to the total number of requests. The following “time-
expanded graph” will be used throughout the algorithm.

Definition 1. G = (V,E) is defined as follows:

– There is a vertex (x, t) for each item x ∈ [n] and each time t, where t ∈
{0, 1, 2, . . . , T}. We call the set of nodes at time t layer t, and denote it by Lt.

– For each time t ∈ [T ], and the single edge {x, y} ∈ Ht, there is an edge
et := {(x, t), (y, t)}. We call these request edges.

– For each item x and t ∈ [T ] there is an edge {(x, t − 1), (x, t)}. We will call
these consistency edges.

Let Er and Ec denote the set of request and consistency edges respectively.

Note that the cost of any solution is certainly at least T , since each request
incurs a cost of at least 1. Thus we can afford to return the items to their
original order after every n2 requests, at only a constant-factor increase in cost.
This splits up the instance into completely independent sub-instances with at
most n2 requests each, and so we may assume that T ≤ n2. Next, we prove this
formally.

Lemma 1. If there is a polynomial-time f(n)-approximation algorithm A for
DMLA1 with T ≤ n2, then there is a polynomial-time O(f(n))-approximation
algorithm B for DMLA1 in general.

Proof. Given some DMLA1 instance I with one edge at a time and with-
out restrictions on T , Algorithm B first cuts I into contiguous sub-instances
I ′
1, I

′
2, . . . , I

′
k of n2 requests each (possibly except for the last one). Then B calls

A on each of these sub-instances and then connects these solutions up by moving
back to the initial order before each new sub-instance, at a total additional cost
of at most (k − 1)n2.

Then we have

costB(I) ≤
k∑

i=1

costA(I ′
i) + (k − 1)n2

≤ f(n) ·
k∑

i=1

costOPT(I ′
i) + (k − 1)n2

≤ f(n) · (costOPT(I) + (k − 1)n2) + (k − 1)n2,

≤ O(f(n)) · costOPT(I).

In the second-to-last step we use that the optimal solution for I can be trans-
formed into optimal solutions for I ′

1, I
′
2, . . . , I

′
k by moving to the identical orders,

again at a total additional cost of at most (k − 1)n2. In the last step, we use
that costOPT(I) is at least the number of requests in I and f(n) ≥ 1. �	



The Itinerant List Update Problem 317

This is important when applying approximation algorithms to G (or sub-
graphs of it) whose approximation guarantees depend on the size of the input
graph. We proceed with further definitions.

Definition 2. For any W ⊆ V , let

tmin(W ) := min{t : (x, t) ∈ W for some x ∈ [n]},

tmax(W ) := max{t : (x, t) ∈ W for some x ∈ [n]}.

We say an item x is present in W if (x, t) ∈ W for some t ∈ {0, 1, . . . , T}.
We say x is permanent in W if (x, t) ∈ W for all tmin(W ) ≤ t ≤ tmax(W ); all
other items present in W are called temporary in W . Let α(W ) be the number
of items present in W , and β(W ) the number of temporary items in W . For any
tmin(W ) ≤ r ≤ tmax(W ), let W(r) = {(x, t) ∈ W : t ≤ r}. By layer t of W , we
refer to the set Lt ∩ W .

Algorithm Description. The first stage of the algorithm will recursively
and randomly hierarchically partition G. The output of this first stage will be
described by a laminar family L on V , with each set S ∈ L labeled either left or
right.

So let W be a subset of V , representing the vertex set of a subproblem.
Throughout, c will denote a positive constant chosen sufficiently small; c = 1/100
suffices. We assume that

β(W ) ≤ cα(W ); (1)

this is of course true when W = V (because β(V ) = 0), and we will ensure that
it holds for each subproblem that we create. If α(W ) < 16/c, we will terminate,
and this subproblem will be a leaf of the laminar family constructed. So asume
α(W ) ≥ 16/c from now on. The algorithm chooses κ uniformly from the interval
[12 − c, 1

2 + c], which is used as the balance parameter for a certain balanced cut
problem. The problem differs depending on whether tmin(W ) = 0 or tmin(W ) >
0, since the initial ordering is fixed. If tmin(W ) > 0, define Ḡ(r) = G[W(r)]. If
tmin(W ) = 0, define Ḡ(r) as the graph obtained from G[W(r)] by choosing z
so that the set A = {(x, 0) ∈ W : x ≤ z} has cardinality κα(W ), and then
contracting A into single node s, and the nodes {(x, 0) ∈ W : x > z} into a
single node t. Let W̄(r) be the vertex set of Ḡ(r).

We now compute a cut Sr in Ḡ(r) with

|Sr| ∈ [(κ − 8c)|W̄(r)|, (κ + 8c)|W̄(r)|], (2)

in such a way that |δW(r)(Sr)| = O(log |W̄(r)| · |δW̄(r)
(S∗

r )|), where S∗
r is the

minimum cut with

|S∗
r | ∈ [

(κ − 4c)|W̄(r)|, (κ + 4c)|W̄(r)|
]
. (3)

Note that the intervals in (2) and (3) are non-empty because α(W ) ≥ 16/c,
implying that both S∗

r and Sr exist; further O(log |W̄(r)|) ⊆ O(log n) because
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T ≤ n2. Bicriteria approximation algorithms to balanced cut required to com-
pute some |Sr| as above are well known [15,21]. In the case tmin(W ) = 0, we
ensure that Sr is chosen so that s ∈ Sr, by replacing Sr with W(r)\Sr if nec-
essary. Note that if |δW̄(r)

(Sr)| ≤ cα(W ) (which will be the case of interest),
Sr will separate s and t. This is because, if s, t ∈ Sr (s, t /∈ Sr analogously),
|δW̄(r)

(Sr)| is at least the number of items x permanent in W for which there is
a (x, τ) ∈ W(r)\Sr. Using the balance requirement (2), we can lower bound this
quantity by (12 − 9 · c)α(W ) − β(W ) ≥ (12 − 10 · c)α(W ), which exceeds cα(W )
for c sufficiently small. We can interpret Sr as a cut in G[W(r)] by uncontracting
s and t.

Roughly, the plan now is to pick r∗ as large as possible such that |δW(r∗)(Sr∗)|
is not too big; small enough so that we can be sure that at each time t between
tmin(W ) and r∗, Sr∗ ∩ Lt has size roughly κα(W ). However, some additional
care is needed, since we also would like that |δW(r∗)(Sr∗)| is not too small—
unless r∗ = tmax(W ). This is needed so that the edges in δW(r∗)(Sr∗) can be
charged to later.

Thus, we proceed as follows. We define the cuts S̄r inductively by: S̄tmin(W ) =
Stmin(W ), and for r > tmin(W ), S̄r is either Sr, or an extension S′ of S̄r−1 to
layer r, whichever is cheaper. This extension is obtained, roughly speaking, by
duplicating the layer r−1 nodes of S̄r−1, i.e., taking all (x, r) for which (x, r−1)
is in S̄r−1. But in order to ensure that S′ is sufficiently balanced, we adjust this
so that |S′ ∩ Lr| ∈ [(κ − 8c)|W ∩ Lr|, (κ + 8c)|W ∩ Lr|], by adding or removing
an arbitrary set of items of minimum cardinality that is sufficient to satisfy
this requirement. Then clearly S′ satisfies (2), since inductively S̄r−1 satisfied
it for W̄(r−1). Note that if q items are added or removed, then |δW(r)(S

′)| ≤
|δW(r−1)(S̄r−1)| + q + 1; here we use that Hr consists of only a single edge.

Our algorithm sets r∗ to be the maximum r ≤ tmax(W ) such that

β(W(r)) + |δW(r)(S̄r)| ≤ 1
4cα(W ). (4)

We argue that r = tmin(W ) always fulfills this inequality, so that r∗ does always
exist: In this case, β(W(r)) = 0 and |δW(r)(S̄r)| ≤ 1. To see the latter, distinguish
two cases. If tmin(W ) = 0, then the corresponding layer has been contracted into
two nodes, there is only one possible balanced cut, and it can be cut only by a
single request edge. If on the other hand tmin(W ) > 0, then there is a balanced
cut of cost 0. Since α(W ) ≥ 16/c by assumption, the inequality holds.

For convenience let S∗ := S̄r∗ and W ∗ := W(r∗). We illustrate this in Fig. 1.
We now note a property that will be required later in the analysis.

Property 1. If r∗ < tmax(W ), then β(W ) + |δW ∗(S∗)| = Ω(α(W )).

Proof. Let S′ be the extension of S∗ that was considered by the algorithm at
time r∗ + 1, and let q be the number of items that needed to be added to or
removed from the duplication of layer r∗ of S∗ in order to ensure |S′ ∩ Lr∗+1| ∈
[(κ − 8c)|W ∩ Lr∗+1|, (κ + 8c)|W ∩ Lr∗+1|]. We bound q: Since S∗ fulfills (2),
there is a layer r′ such that |S∗ ∩ Lr′ | ∈ [(κ − 8c)|W ∩ Lr′ |, (κ + 8c)|W ∩ Lr′ |].
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tmin(W )

r∗

tmin(W ) + 8

S∗ W ∗ \ S∗

α(W )− β(W ) β(W )

Fig. 1. An example of G[W ], S∗, and W ∗\S∗. For the sake of illustration, we do not
require S∗ to satisfy the inequalities with the same constants as in our algorithm.

Now note that, when going from layer r′ of S∗ to layer r∗ +1, each item that we
need to add or remove in order to restore the balance requirement is due to an
edge in E[W ∗] being cut by S∗ or an item temporary in W leaving or entering.
So we have q ≤ |δW ∗(S∗)| + β(W ).

Then |δW(r∗+1)(S
′)| ≤ |δW ∗(S∗)| + q + 1 ≤ 2|δW ∗(S∗)| + β(W ) + 1. Since the

Condition (4) was not satisfied by r∗ + 1, we deduce that 1
4cα(W ) − β(W ∗) <

|δW(r∗+1)(S
′)|. Combining these inequalities and using that β(W ∗) ≤ β(W ) yields

β(W ) + |δW ∗(S∗)| ≥ 1
8cα(W ) − 1. Since α(W ) ≥ 16/c, the claim follows. �	

Furthermore, we have the following lemma.

Lemma 2. α(S∗) and α(W ∗\S∗) are both at least 1
4α(W ).

Proof. Let ρ = r∗ − tmin(W )+1. Observe that ρ ·α(S∗) ≥ |S∗| ≥ (κ−8c)|W ∗| ≥
(12 − 9c)|W ∗|. These inequalities follow by the definition of ρ and α(·), Inequal-
ity (2), and the choice of κ and c, respectively. Since |W ∗| is at least ρ times
the number of permanent items in W , α(S∗) ≥ ( 12 − 9c)(α(W ) − β(W )) ≥
(12 − 9c)(1 − c)α(W ) ≥ 1

4α(W ), where the last inequality follows by our choice
of c. A symmetric argument holds for W ∗\S∗. �	
Since the number of temporary items in S∗ is at most the number of temporary
items in W ∗ plus the size of the cut δW ∗(S∗), (4) yields that β(S∗) ≤ 1

4cα(W ),
and so β(S∗) ≤ cα(S∗) by the lemma. Similarly, β(W ∗\S) ≤ cα(W ∗\S∗). This
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shows that the algorithm may recurse in S∗ and W ∗\S∗. Eventually this recur-
sion yields labeled families Lleft and Lright on S∗ and W ∗\S∗, respectively. If
W\W ∗ 
= ∅, the algorithm also iterates on W\W ∗, obtaining Lrest. The result-
ing labeled laminar family L is Lleft ∪ Lright ∪ Lrest ∪ {S∗,W ∗\S∗}, where S∗ is
labeled left and W ∗\S∗ is labeled right. We call S∗ and W ∗\S∗ siblings. Note
that W may have many direct children in L, but each layer intersects precisely
one sibling pair. Also note that since |S∗| ∈ [

( 12 − 9c)|W ∗|, ( 12 + 9c)|W ∗|],L has
logarithmic depth.

Once L has been constructed, the ordering ≺t of the algorithm’s list At at
time t is determined in the following manner. If there exists a set in L containing
(x, t) but not (y, t), and the maximal such set S is labeled left, then x is to the
left of y in At, that is, x ≺t y; if S is labeled right, x is to the right of y, that
is, y ≺t x. If there is no set in L containing (x, t) but not (y, t), we let x ≺t y
if and only if x < y, i.e., we order x and y according to the initial ordering. In
the latter case, we say x ≺t y by default. Note that this rule yields the correct
ordering for A0, since for any x < y, at the moment where they are separated,
we ensure that (x, 0) ∈ S∗ and (y, 0) /∈ S∗.

2.3 Algorithm Analysis

Definition 3. Given two orderings A, B of the items, and any two distinct
items x, y, we say that (x, y) is a discordant pair (for A and B) if x and y have
a different relative order in A and in B.

Note that the number of discordant pairs for A and B is precisely the permuta-
tion distance between A and B, i.e., the minimum number of swaps of adjacent
items required to obtain order B starting from order A.

Definition 4. For S ∈ L, define cost(S) to be α(S) · |δ(S)| and cost(L) to
be

∑
S∈L cost(S). Let parent(S) be the parent of S, meaning the minimal set

S′ ∈ L∪{V } with S′ � S (which is unique by the laminarity of L). (By including
V here, we ensure that every set in L has a parent.) Let pair(S) be the union of
S and its sibling (i.e., the other child of parent(S) in L which covers the same
layers as S). Note that S � pair(S) ⊆ parent(S).

Lemma 3. The cost of the algorithm is at most 8 · cost(L)+O(OPT) (irrespec-
tive of the random choices made in the algorithm).

Proof. We argue separately for each time t. First consider the swap costs, so let
t ≥ 1, and define Ec

t = {{(x, t − 1), (x, t)} : x ∈ [n]
}
. The proof strategy for this

part is to consider discordant pairs for At−1 and At, assigning them to certain
sets S ∈ L, and later counting the number of discordant pairs assigned to each
set S ∈ L. Hence suppose x ≺t−1 y and y ≺t x (so (x, y) is a discordant pair for
At−1 and At).

First consider the case that x ≺t−1 y by default; the case where y ≺t x by
default is analogous. As x ≺t−1 y by default, there is a set T minimal in L with
(x, t − 1), (y, t − 1) ∈ T . Since (x, y) is a discordant pair, however y ≺t x not
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by default. Hence, the construction of At from L tells us that there is a unique
left-labeled set U ∈ L with (y, t) ∈ U , (x, t) ∈ parent(U)\U . We say that U
certifies that y ≺t x. Note that U ∩ T = ∅ or (parent(U)\U) ∩ T = ∅ (or both).
Assign discordant pair (x, y) to the corresponding set out of U,parent(U)\U .

Now consider the case that neither x ≺t−1 y by default nor y ≺t x by default.
Again we know that there is a left-labeled set U ∈ L certifying y ≺t x. Similarly,
there is a left-labeled set T certifying that x ≺t−1 y. We prove the following
claim.

Claim. (x, t) /∈ T or (y, t − 1) /∈ U (or both).

Proof (Claim). Suppose not. Then T contains (x, t−1) and (x, t), and U contains
(y, t − 1) and (y, t). Moreover T is a maximal set in L containing (x, t − 1) and
not (y, t − 1), and U is a maximal set containing (y, t) and not (x, t); we deduce
that T ′ := parent(T ) = parent(U). But this contradicts the assumption that T
and U are both labeled left; within the subproblem induced by T ′, the algorithm
produces only one set labeled left containing nodes at time t. �	

So in this case assign discordant pair (x, y) to T if (x, t) /∈ T , and to U if
(y, t − 1) /∈ U (if both occur, the assignment can be arbitrary). Now consider
the assignment of discordant pairs (in both cases) from the perspective of a set
S ∈ L. If (x, y) is assigned to S, then for (z, z̄) ∈ {(x, y), (y, x)} we have

– (z, t − 1) ∈ S, (z̄, t − 1) ∈ parent(S)\S, and (z, t) /∈ S,
– or (z, t) ∈ S, (z̄, t) ∈ parent(S)\S, and (z, t − 1) /∈ S.

Thus we can bound the total number of discordant pairs assigned to S by

2 · (|{z : (z, t − 1) ∈ S, (z, t) /∈ S}|
+ |{z : (z, t) ∈ S, (z, t − 1) /∈ S}|) · α(parent(S))

= 2 · |δ(S) ∩ Ec
t | · α(parent(S))

≤ 8 · |δ(S) ∩ Ec
t | · α(S),

where the last inequality follows by Lemma2. So the cost to optimally reorder
At−1 to At, being exactly the number of discordant pairs, is at most 8 ·∑

S∈L α(S) · |δ(S) ∩ Ec
t |.

We now consider the service cost at time t. The request pair is an edge
et = {(x, t), (y, t)} in G; assume that x ≺t y, otherwise relabel x and y. The
algorithm pays the distance between x and y in At. If x ≺t y by default, the
distance between x and y in At is at most 16/c by construction, and the cost
is taken care of by the O(OPT) term in the cost bound, because OPT pays
at least one for the considered request. Otherwise consider the set S certifying
that x ≺t y. Then S′ := parent(S) contains both (x, t) and (y, t), and α(S′)
clearly bounds the distance between x and y in At (because any item outside of
S′ is either to the left of both x and y or to the right of both). Since α(S′) ≤
4 · α(S) (again Lemma 2), we conclude that the service cost at time t is at most
4 · ∑

S∈L α(S) · 1et∈δ(S). Combining the swap and service costs at all times, we
obtain the lemma. �	
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Before we state the next lemma, we note that for any S ∈ L, pair(S) is
exactly the set within which S was a good balanced cut, and |δpair(S)(S)| is
exactly the cost of S in this balanced cut problem.

Definition 5. We define costcore(S) to be α(S) · |δpair(S)(S)|, and costcore(L) to
be

∑
S∈L costcore(S).

Lemma 4. Irrespective of the random choices made by the algorithm, we have
costcore(L) = Ω(cost(L)).

Proof. Begin by assigning to each pair (e, S), where S ∈ L and e ∈ δ(S), a
charge of α(S). Our goal is to redistribute this charge to pairs (e, S) where
e ∈ δpair(S)(S), and where each such pair gets a total charge of O(α(S)). This
clearly implies the lemma.

For a set S ∈ L, we call an edge of the form {(x, tmax(S)), (x, tmax(S) + 1)}
that crosses S a top shuffle edge for S, and similarly an edge of the form
{(x, tmin(S) − 1), (x, tmin(S))} a bottom shuffle edge for S. Let Q(S) denote
the set of shuffle edges (either top or bottom) for S. Note that Q(S) ⊆
δ(S)\δpair(S)(S). Now notice that we have the following downward-closed prop-
erty.

Claim. If e is a shuffle edge for some S ∈ L, and e ∈ δ(T ) for some T ∈ L with
T ⊂ S, then e is a shuffle edge for T as well.

We reassign the charge in stages. In the first stage, we reassign all the charges
involving an edge e to a maximal S ∈ L with e ∈ δ(S). Note that there are two
possible choices for S. If e ∈ Ec, choose the S containing the earlier endpoint
of e and not the later one; if e ∈ Er, make any choice. Now consider any (e, S).
It may receive charge from multiple consistency edges, whose initial charges are
geometrically decreasing starting from α(S), and a single request edge with initial
charge α(S). So (e, S) has charge O(α(S)) after this reassignment. Moreover, by
the above choice of S, no bottom shuffle edges have any charge remaining.

For the next stage, we prove the following statement.

Claim. For any S ∈ L, the total charge in Q(S) is O
(
α(S) · |δ(S)\Q(S)|).

Proof (Claim). Let W = parent(S) and U = pair(S). There are two cases. The
first case is if tmax(S) = tmax(W ). In this case, all top shuffle edges for S cross
W as well, and so have no charge. The second case is if tmax(S) < tmax(W ).
In this case, since each shuffle edge of S currently has charge at most O(α(S)),
it suffices to show that |Q(S)| = O(|δ(S)\Q(S)|). Notice that |δ(S)\Q(S)| ≥
|δU (S)| + β(W ), because every non-shuffle edge crossing S is either contained in
U , or crosses W , meaning it was a temporary node in W . But since tmax(S) <
tmax(W ), we know from Property 1 that |δU (S)|+β(W ) = Ω(α(W )). The claim
follows since |Q(S)| ≤ α(S) and α(S) ≤ 4 · α(W ), by Lemma 2. �	

It follows that, in the next stage, we can now redistribute all charge on the
shuffle edges of a set S ∈ L to other edges, maintaining that no edge of δ(S) has
a charge more than O(α(S)).
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In the final stage, we again reassign all charge of an edge to a maximal
set that it crosses; each pair (e, S) still has a charge O(α(S)). It remains true
that no pair (e, S) with e ∈ Q(S) gets any charge, because of Claim 2.3. So all
charge for a set S is on edges that are not shuffle edges, and which do not cross
parent(S); these are precisely the edges of δpair(S)(S). This completes the proof of
Lemma 4. �	
Lemma 5. E[costcore(L)] = O(log2 n) · OPT.

Proof. Let A∗
t denote the ordering in the optimum solution after responding to

request t. Let S1, . . . Sk be the left elements of L that are of some depth d in
this laminar family. Let Wi = parent(Si) and Ui = pair(Si). (Note that the
Ui’s are disjoint, but many of the Wi’s may be the same.) We fix the random
choices made by the algorithm above level d (thus we may consider Wi to be
deterministic for each i, although Ui is random). Define, for any i ∈ [k] and S ⊆
pair(Si), costcore(S) = α(S) · |δpair(Si)(S)|. Then for each Si, we will show how to
derive from OPT a (random) balanced cut Ci of G[Ui], such that costcore(Si) =
O(log n) · costcore(Ci) and

k∑

i=1

E[costcore(Ci)] = O(OPT). (5)

The expectation is over the random choices made by the algorithm at layer d.
The result then follows, since L has depth O(log n).

Now fix some i ∈ [k]. Note that we can assume α(Wi) ≥ 16/c. We define
Ci as follows. Let κi denote the random choice made by the algorithm for the
subproblem Ui. and let mi = �κiα(Wi)�. Now consider the permanent items of
Wi as they appear in A∗

t , and let pi,t be the position of the mi’th such item, for
any i ∈ [k] and tmin(Ui) ≤ t ≤ tmax(Ui). Note that the probability that pi,t takes
any specific value is O(1/α(Wi)). Then define

Ci = {(x, t) ∈ Ui : x is at or to the left of position pi,t in A∗
t }.

Note that the Ci’s are obviously disjoint sets, since the Ui’s are disjoint.
We first prove that costcore(Si) = O(log n) · costcore(Ci) (irrespective of the

random choice of κi). To see this, consider some layer of Ui, and observe that
the number of nodes in it is in [α(Wi)−β(Wi), α(Wi)] ⊆ [(1− c) ·α(Wi), α(Wi)]
(using (1)). On the other hand, the number of nodes contained in any layer of
Ci is in [�κi · α(Wi)�, �κi · α(Wi)� + β(Wi)] ⊆ [κi · α(Wi) − 1, (κi + c) · α(Wi)]
(again using (1)). Putting the two observations together and using α(Wi) ≥ 16/c
yields that any layer of Ci contains a fraction in [κi − c, κi + 3c] of the nodes of
the corresponding layer of Ui. Summing over all layers shows that the balance
of Ci in Ui is in [κi − c, κi + 3c] ⊆ [12 − 2c, 1

2 + 4c]. Therefore, α(Ci) = Θ(α(Si)).
Applying this to |δUi

(Si)| = O(log n) · |δUi
(Ci)|, which follows from the fact that

Ci fulfills (3) in the definition of the algorithm, yields costcore(Si) = O(log n) ·
costcore(Ci).
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Next, we show (5). Look at any request edge et. If it is not contained within
Ui for some i, then it does not contribute to the left hand side of (5), so suppose
it is contained in Ui. Let q1 < q2 be the positions of the endpoints of et in A∗

t ; so
OPT pays q2 − q1. Then the probability that et crosses Ci is P(q1 ≤ pi,t < q2),
which is O((q2−q1)/α(Wi)). If et does cross Ci, it contributes α(Ci) = Ω(α(Si)),
and so its expected contribution is O(q2 − q1).

Now consider the swap cost. The swap cost in the optimal solution at time t
is the number of discordant pairs for A∗

t−1 and A∗
t . So assign the swap cost to an

item x at time t to be equal to the number of such discordant pairs that include
x. The sum of the costs assigned to all items over all times is then exactly twice
the swap cost of OPT.

So fix some item x and time t. Suppose {(x, t − 1), (x, t)} ∈ E[Ui] for some i
(otherwise again, it does not contribute to (5)). Let q1 and q2 be the number of
permanent items in Wi to the left of x in A∗

t−1 and A∗
t , respectively. Once again,

the probability that {(x, t − 1), (x, t)} ∈ δUi
(Ci) is at most O(|q2 − q1|/α(Wi)),

yielding an expected contribution to (5) of O(|q2 − q1|). But |q2 − q1| is at most
the number of discordant pairs involving x. Summing over all x and t completes
the proof. �	
Combining Lemmas 3, 4 and 5 yields that the cost of the algorithm is O(log2 n ·
OPT), as desired.

3 Lower Bound for ILU

We now prove that there is no randomized o(log n)-competitive online algorithm
for ILU.

Proof (Theorem 3). We apply Yao’s principle: For a particular input distribu-
tion, we show that the expected cost for every deterministic online algorithm
is a Ω(log n) factor more than the expected optimal cost [8]. Conceptually,
underlying the lower bound construction is a complete binary tree T , of depth
q = Θ(log n), with n leaves. We think of each internal node of T as having a
left and right subtree; thus the leaves of T can be associated with the positions
on the track. We begin by choosing an uniformly random initial assignment δ of
items to leaves. The adversary initially orders the items in the track to match
this assignment, and will not move the items after this.

The sequence of requests consists of q rounds. Each round i, 0 ≤ i ≤ q − 1,
the request sequence πi is a permutation of [n]. We define a depth-d subtree to
be a subtree rooted at a node of depth d in T . Here we assume the root of T has
depth 0. To obtain πi, the depth-(q − i) subtrees, of which there are 2q−i, are
first ordered uniformly at random (and independent of all other random choices).
Then, while maintaining the order of the subtrees, the 2i leaves within each of
the depth-(q − i) subtrees are uniformly randomly ordered (again independent
of all other random choices). To make this more precise, let vσ(1), . . . , vσ(2q−i) be
a random permutation of the vertices of depth q − i in T . For each 1 ≤ j ≤ 2q−i,
let vρj(1), . . . , vρj(2i) be a random permutation of the leaves of the subtree of T
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rooted at vσ(j). Then vρj(k) precedes vρj′ (k′) in πi if and only if j occurs before
j′ in σ, or j = j′ and k occurs before k′ in ρj .

We now bound the costs for the optimum. The only swap cost is incurred
initially and is no more than n2. During πi, movement between two items in the
same depth-(q − i) subtree costs at most 2i. Thus the total movement between
items in the same depth-(q − i) subtrees costs at most n2i. Movement between
two such items costs at most n.

The movement cost for the first item is at most n. Also, movement between
two items in different depth-(q − i) subtrees costs at most n. There are exactly
2q−i − 1 consecutive accesses to items in different depth-(q − i) subtrees. Thus
the total movement cost between items in different depth-(q − i) subtrees is
at most n2q−i. Summing over i, we get that the adversary’s cost is at most∑q

i=1 n2i + n2q−i = O(n2).
We now bound the expected cost for the online algorithm. We can generously

assume that the online algorithm knows the adversary’s strategy for constructing
the sequences πi and that it sees πi just before round i. Before seeing πi, the
online player knows the depth-(q− i+1) subtrees of T , but it has no information
at all on how depth-(q − i + 1) subtrees are paired to form the depth-(q − i)
subtrees. So an alternative equivalent way to randomly generate δ would be to
at this time randomly pair the depth-(q − i + 1) subtrees.

For the moment assume that the online algorithm does not reorder the items
during round i. Then consider the 2i consecutive requests to the leaves in some
depth-(q − i) subtree in πi. In expectation, at least a constant fraction of these
consecutive accesses will be to items in different depth-(q−i+1) subtrees. As the
depth-(q− i+1) subtrees are paired up randomly, any online algorithm will have
to move in expectation Ω(n) positions in response to the requests in the different
depth-(q − i + 1) subtrees. Hence, the expected cost for the algorithm for each
round is Ω(n2) if the online algorithm makes no swaps after seeing permutation
πi. But note that any swap made after seeing πi can reduce the movement cost
in round i by at most 2 since each item is requested only once in πi. Hence, the
cost for the online algorithm is Ω(n2) per round, and Ω(n2 log n) in total.

Note that this construction can be repeated to rule out the possibility of a
o(log n)-competitive algorithm with an additive error term.
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In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data
Structures, Streams, and Algorithms. LNCS, vol. 8066, pp. 251–266. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40273-9 17

13. Kandemir, M., Ramanujam, J., Choudhary, A.: Exploiting shared scratch pad
memory space in embedded multiprocessor systems. In: Design Automation Con-
ference, pp. 219–224 (2002)

14. Kandemir, M., Ramanujam, J., Irwin, J., Vijaykrishnan, N., Kadayif, I., Parikh,
A.: Dynamic management of scratch-pad memory space. In: Proceedings of the
38th Annual Design Automation Conference, pp. 690–695 (2001)

15. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

16. Panda, P.R., Dutt, N.D., Nicolau, A.: Efficient utilization of scratch-pad memory in
embedded processor applications. In: European Design and Test Conference (1997)

17. Rao, S., Richa, A.W.: New approximation techniques for some linear ordering
problems. SIAM J. Comput. 34(2), 388–404 (2004)

18. Reingold, N., Westbrook, J.: Off-line algorithms for the list update problem. Inf.
Process. Lett. 60(2), 75–80 (1996)

19. Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
CACM 28(2), 202–208 (1985)

20. Teia, B.: A lower bound for randomized list update algorithms. Inf. Process. Lett.
47, 5–9 (1993)

21. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, Cambridge (2011)

https://doi.org/10.1007/3-540-45253-2_5
https://doi.org/10.1007/3-540-45253-2_5
https://doi.org/10.1007/978-3-642-40273-9_17


The Price of Fixed Assignments in
Stochastic Extensible Bin Packing

Guillaume Sagnol1,2(B), Daniel Schmidt genannt Waldschmidt1,
and Alexander Tesch2

1 Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136,
10623 Berlin, Germany

{sagnol,dschmidt}@math.tu-berlin.de
2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

tesch@zib.de

Abstract. We consider the stochastic extensible bin packing problem
(SEBP) in which n items of stochastic size are packed into m bins of
unit capacity. In contrast to the classical bin packing problem, the num-
ber of bins is fixed and they can be extended at extra cost. This problem
plays an important role in stochastic environments such as in surgery
scheduling: Patients must be assigned to operating rooms beforehand,
such that the regular capacity is fully utilized while the amount of over-
time is as small as possible.

This paper focuses on essential ratios between different classes of poli-
cies: First, we consider the price of non-splittability, in which we com-
pare the optimal non-anticipatory policy against the optimal fractional
assignment policy. We show that this ratio has a tight upper bound of
2. Moreover, we develop an analysis of a fixed assignment variant of the
LEPT rule yielding a tight approximation ratio of (1 + e−1) ≈ 1.368
under a reasonable assumption on the distributions of job durations.

Furthermore, we prove that the price of fixed assignments, related to
the benefit of adaptivity, which describes the loss when restricting to
fixed assignment policies, is within the same factor. This shows that in
some sense, LEPT is the best fixed assignment policy we can hope for.

Keywords: Approximation algorithms · Stochastic scheduling
extensible bin packing

1 Stochastic Extensible Bin Packing

In the extensible bin packing problem (EBP), we must put n items of size
(p1, . . . , pn) in m bins, where the bins can be extended to hold more than the
regular unit capacity. The cost of a bin is its regular capacity together with its
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extension costs: Specifically, a bin holding the items I ⊆ {1, . . . , n} has a cost of
max

(∑
i∈I pi, 1

)
. The goal is to minimize the total cost of the m bins.

The model of extensible bin packing naturally arises in scheduling problems
with machines available for some amount of time at a fixed cost, and an addi-
tional cost for extra-time. So we stick to the scheduling terminology in this
article (bins are machines, items are jobs, and item sizes are processing times).
Recently, the model of EBP was adopted to handle surgery scheduling prob-
lems [3,11,23]: here, the machines are operating rooms, and the jobs are opera-
tions to be performed on elective patients. The extension of the regular working
time of a machine corresponds to overtime for the medical staff. This application
to surgery scheduling motivates the present paper: in practice, the duration of a
surgical operation on a given patient is not known with certainty. Therefore, we
want to study the stochastic counterpart of the extensible bin packing problem,
in which the processing durations pj ’s are only known probabilistically, and the
expected cost of the machines is to be minimized.

Related Work. EBP is closely related to another scheduling problem, where
each job j has a due date dj and the goal is to minimize the total tardiness∑

j Tj , where Tj is the positive part of the difference of its completion time and
its due date. This problem can not be approximated within any constant factor in
polynomial time, unless P = NP [17]. It relies on the fact that an approximation
algorithm could differentiate YES and NO instances of PARTITION, since for
YES instances the objective is equal to 0. Therefore, several articles studied
approximation algorithms for a modified tardiness criterion,

∑
Tj + dj ; see [16,

19]. The situation is very similar for extensible bin packing: the problem of
minimizing the amount by which bins have to be extended is not approximable,
and the criterion of EBP is obtained by adding the constant m to the objective.

The (deterministic version of) EBP was introduced by [9], who showed that
the problem is strongly NP-hard, by reducing from 3–PARTITION; cf. [13].
Moreover, they prove that the longest processing time first (LPT) algorithm
–which considers the jobs sorted in nonincreasing order of their processing
time and assigns them sequentially to the machine with the largest remain-
ing capacity– is a 13

12−approximation algorithm. For equal bins, LPT can also
be interpreted as iteratively assigning the jobs to the machine with the cur-
rently smallest load. In [10] the LPT algorithm was shown to be a 2(2 − √

2) �
1.1716−approximation algorithm for the case of unequal bin sizes. In a more gen-
eral framework, Alon et. al. present a polynomial time approximation scheme [1].

The online version of the problem also attracted attention. Here, the jobs
arrive one at a time and they must be assigned to a machine irrevocably. The
list scheduling algorithm LS that assigns an incoming job to the machine with
the largest remaining capacity was shown to have a competitive ratio of 5

4 for
equal bin sizes in [10] and was generalized in [27] for the case with unequal bin
sizes. Furthermore, it was proven that no algorithm can achieve a performance
of 7

6 or smaller compared to the offline optimum. An improved online algorithm
with a competitive ratio of 1.228 was also presented in [27].
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In the context of surgery scheduling, a slightly more general framework has
been introduced in [11]: the decision maker also chooses the number of bins of
size S to open, at a fixed cost cf , and there is a variable cost cv for each minute
of overtime. It is observed in [3] that every (1 + ρ)−approximation algorithm
for EBP yields a (1 + ρScv

cf )-approximation algorithm in this more general set-
ting. They also consider a two-stage stochastic variant of the problem, in which
emergency patients should be allocated to operating rooms with pre-allocated
elective patients. For this problem (in the case S = cv = cf = 1), a partic-
ular fixed assignment policy was shown to be a 5θ

4 -approximation algorithm,
when each job has a duration with bounded support Pj ∈ [0, pmax

j ] such that
pmax

j ≤ θE[Pj ]. To the best of our knowledge, this has been the only attempt to
consider stochastic jobs in the literature on EBP.

When considering stochastic optimization problems adaptive and non-
adaptive policies are the solution concepts of matter. Especially, the greatest
ratio between the cost of an optimal non-adaptive and the cost of an optimal
adaptive policy over all instances is a quantity of interest. This so-called bene-
fit of adaptivity or adaptivity gap has drawn attention dating back to the work
in [8] and is getting popular, see e.g. [2,7,14]. In this work, we will work with
another slightly different ratio closely related to it, since in the field of stochastic
scheduling we are concerned with non-anticipatory policies that can make time-
dependent decisions, such as idling. This can make a difference in the setting of
parallel machines.

In the remaining of this section, we introduce the stochastic extensible bin
packing problem (SEBP). Throughout, we consider the (offline) problem of
scheduling n stochastic jobs on m parallel identical machines non-preemptively.
We will assume that the distribution of the processing times are given before-
hand and that their expectation is finite and computable1. The set of machines
and jobs are denoted by M = {1, . . . , m} and J = {1, . . . , n}, respectively.

Stochastic Scheduling. Now, we want to give the intuition and main ideas
of the required background in the field of stochastic scheduling. Precise def-
initions are given in [22]. The processing times are represented by a vector
P = (P1, . . . , Pn) of random variables. We denote by p = (p1, . . . , pn) ∈ R

n
≥0 a

particular realization of P . We assume that the Pj ’s are mutually independent,
and that each processing time has a finite expected value. Unlike the deter-
ministic case, a scheduling strategy can take more general forms than just an
allocation of jobs to machines, as information is gained during the execution of
the schedule. Indeed, job durations become known upon completion, and adap-
tive policies can react to the processing times observed so far.

We define a schedule as a pair S = (s,a) ∈ R
n
≥0 × Mn, where sj ≥ 0 is the

starting time of job j and aj ∈ M is the machine to which job j is assigned. A
1 We do not specify how the processing time distributions should be represented in

the input of the problem, as the policies we study only require the expected value
of the processing times. In fact, we could even assume a setting in which the input
consists only of the mean processing times μj = E[Pj ] (∀j ∈ J ), and an adversary
chooses some distributions of the Pj ’s matching the vector µ of first moments.
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schedule S is said to be feasible for the realization p if each machine processes
at most one job at a time:

∀i ∈ M, ∀t ≥ 0,
∣
∣
∣{j ∈ J : aj = i, sj ≤ t < sj + pj}

∣
∣
∣ ≤ 1.

We denote by S(p) the set of all feasible schedules for the realization p. A
planning rule is a function Π that maps a vector p ∈ R

n
≥0 of processing times

to a schedule S ∈ S(p). A planning rule is called a scheduling policy if it is
non-anticipatory, which intuitively means that decisions taken at time t (if any)
may only depend on the observed durations of jobs completed before t, and
the probability distribution of the other processing times (conditioned by the
knowledge that ongoing jobs have not completed before t).

Stochastic Extensible Bin Packing (SEBP). For a scheduling policy Π,
we denote by SΠ

j and AΠ
j the random variables for the starting time of job j,

and the machine to which j is assigned, respectively. The completion time of
job j is CΠ

j = SΠ
j + Pj . We further introduce the random variable WΠ

i for the
completion time of machine i, which is defined as the latest completion time of
a job on machine i:

WΠ
i := max{CΠ

j | j ∈ J , AΠ
j = i}.

It is easy to see that when Π is non-idling, i.e., if the starting time of any job
is either 0 or equal to the completion time of the previous job assigned to the
same machine, then

WΠ
i =

∑

{j∈J : AΠ
j =i}

Pj .

The realizations of the random vectors SΠ , AΠ , CΠ and WΠ for a vector of
processing times p are denoted by appending p as an argument. For example,
the workload of machine i for a non-idling policy Π in the scenario p ∈ R

n
≥0 is

WΠ
i (p) =

∑

j
Π(p)−−−→i

pj ,

where j
Π(p)−−−→ i means that Π(p) assigns job j to machine i, i.e., we sum over

indices {j ∈ J : AΠ
j (p) = i}.

Remark 1. We want to point out that other authors (e.g., in [1]) use the notation
Ci for the machine completion times. We prefer to use the symbol Wi (which
stands for workload in the non-idling case) to avoid the risk of confusion with
the job completion times Cj .

We assume that jobs are scheduled on machines with an extendable working
time, each machine having a unit regular working time. The cost incurred on
machine i is equal to max(WΠ

i , 1), which accounts for the fixed costs, plus the
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amount by which the regular working time has to be extended. We are inter-
ested in strategies that minimize the expected value of the sum of costs over all
machines:

Φ(Π) := E

[ ∑

i∈M
max(WΠ

i , 1)
]
.

The criterion can also be defined realization-wise: we define φ
(
Π,p

)
:=∑

i∈M max(WΠ
i (p), 1), so that Φ(Π) := EP [φ

(
Π,P

)
].

Classes of Scheduling Policies. We define the following classes of scheduling
policies:

– P denotes the class of all scheduling policies (non-anticipatory planning rules).
– F denotes the set of all non-idling fixed-assignment policies. Such policies are

characterized by a vector of job-to-machine assignments a ∈ Mn, so that
AΠ(p) = a does not depend on the realization of processing times.
For such a policy Π, it holds

Φ(Π) =
∑

i∈M
E

[
max

( ∑

j
Π−→i

Pj , 1
)]

,

where the sum indexed by “ j
Π−→ i ” goes over all jobs j such that AΠ

j = i.

The distinction between fixed assignment policies and other, more sophisti-
cated adaptive policies plays a central role in this article. Indeed, in the context
of surgery scheduling, committing to a fixed assignment policy is a common prac-
tice [3,11,23], because fixed assignments yield simple schedules, that are easier
to apprehend for both the medical staff and the patients. Hence, they cause less
stress and are better suited to handle the human resources of an operating the-
atre [12]. Nonetheless, there is currently active research on the use of reactive
policies for operating room scheduling [29]. As “fully adaptive scheduling models
and policies are infeasible in operating room scheduling practice”, the focus is
now on hybrid scheduling policies with a large amount of static decisions, and
a limited amount of adaptivity [28]. While more flexible policies could arguably
lead to an important gain of efficiency over static policies, there are still many
obstacles for their introduction in the operating theatre. In particular, it must
be ensured that adaptive policies do not harm the quality of health care [30], and
computer-assisted scheduling techniques need to gain acceptance among practi-
tioners [15]. In this context, one goal of the present paper is to study the gap
between fixed assignment and adaptive policies from a theoretical perspective.

In addition, we define the following class of fractional policies, which is related
to scheduling problems concerning moldable work preserving tasks (see [18]). It
cannot be considered as non-anticipatory planning rules, but will be useful to
derive bounds:

– R denotes the class of fractional assignment policies, in which a fraction
aij ∈ [0, 1] of job j is to be executed on machine i, with

∑
i∈M aij = 1, for all
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j ∈ J . For a “policy” Π ∈ R, the different fractions of a job can be executed
simultaneously on different machines, so

Φ(Π) :=
∑

i∈M
E

[
max

( ∑

j∈J
aΠ

ij Pj , 1
)]

.

LEPT Policies. There is no unique way to generalize the LPT algorithm used
in the deterministic case. We distinguish two variants of the “longest expected
processing time first” (LEPT) policy. The policy LEPTF is the fixed assign-
ment policy that results in the same assignments as the LPT algorithm for the
deterministic processing times pj = E[Pj ]. In other words, job to machine assign-
ments are precomputed offline, as follows: jobs are considered in decreasing order
of E[Pj ], and sequentially assigned to the least loaded machine (in expectation).
An example of LEPTF is depicted in Fig. 1. The second policy, which we denote
by LEPTP , is the priority list policy which considers jobs in the order of decreas-
ing E[Pj ]’s, and start them (in this order) as early as possible. Unlike LEPTF ,
the job to machine assignments of the list policy LEPTP depend on the realiza-
tion p of the processing times. By [27] it immediately follows that LEPTP is a
5
4 -approximation with respect to OPTP , since in every realization the schedule
produced by LEPTP is obtained by list scheduling.

As discussed earlier, given the prominence of fixed assignment policies in the
context of surgery scheduling, we focus on the policy LEPTF in the remaining
of this article.

Performance Ratios. For a given instance I = (P,m) of the SEBP, we denote
the optimum value in the class C of scheduling policies by

OPTC(I) = inf
Π∈C

Φ(Π).

Whenever the instance is clear from the context, or when I = (P,m) is an arbi-
trary instance, we will drop I from the argument, so we simply write OPTC . We
also denote by OPT (p) the optimal value of the criterion for the deterministic
problem with processing times p. In this case, it is clear that we can restrict our
attention to fixed assignment policies Π ∈ F :

OPT (p) = inf
Π∈F

φ(Π,p).

We now define various performance ratios. We say that Π ∈ C is an α-
approximation in the class C if the inequality Φ(Π) ≤ α OPTC holds for
all instances of SEBP. The price of fixed assignments and the price of non-
splittability are respectively defined by

PoFA = sup
I

OPTF (I)
OPTP(I)

and PoNS = sup
I

OPTP(I)
OPTR(I)

,

where the suprema go over all instances I = (P,m) of SEBP.
The first ratio (PoFA) describes the loss if we restrict our attention to fixed

assignment policies. In other words, it is a measure of what can be gained by
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Fig. 1. Example of a fixed assignment policy: assume machines M = {1, 2} and jobs
J = {1, 2, 3} with processing time distributions p1 ∈ {0.4, 1.2}, p2 ∈ {0.5, 0.7}, p3 =
0.4 where the duration of each stochastic job is attained with probability 1

2
. Since

E[P1] = 0.8 ≥ E[P2] = 0.6 ≥ p3 = 0.4, LEPTF assigns the jobs in order 1 → 2 → 3
to the machines before their realization is known. The figure on the top depicts the
resulting job to machine assignments with the average durations. For the realization
p1 = (1.2, 0.5, 0.4) (lower left), LEPTF is optimal with cost 2.2. For the realization
p2 = (0.4, 0.7, 0.4) (lower right), LEPTF yields cost 2.1. In contrast, note that LEPTP
would have started job 3 on the first machine after completion of job 1, giving a cost
of 2.

allowing the use of more flexible, adaptive policies. This quantity gained atten-
tion in classical scheduling problems, e.g., in [21] and [25], whereby the latter
shows that it can be arbitrarily large for the objective of minimizing the expected
sum of completion times on parallel identical machines as the coefficient of vari-
ation grows.

The second ratio (PoNS) is related to the power of preemption, see e.g. [5,6,
24,26], but should not be mixed up with it, because the class R allows different
parts of a job to be processed simultaneously on several machines for fractional
assignment policies. However, this quantity has a simple interpretation in the
context of surgery scheduling. Consider a hospital that assigns patients to a
particular day until the total expected duration of the booked surgeries exceeds
a certain threshold, but ignores the actual allocation of patients to operating
rooms. The precise assignment of patients to operating rooms is deferred to a
later stage, typically one week to one day before the day of surgery, when the
set of all elective patients will be known. In fact, this simplification amounts
to assuming that jobs of a particular day are placed in a single bin of size m
(rather than in m bins of unit size). We will see in Proposition 1 that this can be
interpreted as splitting the patient durations arbitrarily, and hence, evaluating
the costs within this simplified one-bin model can yield a multiplicative error of
up to PoNS.
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Organization and Main Results. Our paper is organized as follows. Section 2
deals with the price of non-splittability. We show that the expected cost of an
optimal non-anticipatory policy is at most twice the expected cost of an optimal
fractional assignment policy. Moreover, we present instances that achieve a lower
bound arbitrarily close to 2, showing that PoNS = 2. In Sect. 3, we consider
the case of short jobs (Pj ∈ [0, 1] almost surely) and we obtain a performance
guarantee of 1 + e−1 for LEPTF compared to the stochastic optimum. This
result is used in Sect. 4 to show that the price of fixed assignments is at most
1 + e−1, even without the restriction to instances with short jobs. We also give
a family of instances where this bound is attained at the limit, which proves
that PoFA = 1 + e−1. This shows that LEPTF is –in a certain sense– the best
possible fixed assignment policy for a natural assumption on the processing time
distribution. Finally, we show in Sect. 5 that the performance of LEPTF can not
be better than 4

3 in the class F .

2 The Price of Non-splittability

Proposition 1. Let (P,m) be an instance of SEBP and let ρ := 1
m

∑
j∈J E[Pj ]

be the expected workload averaged over all machines. Then the following holds:

OPTF ≥ OPTP ≥ EP [OPT (P )] ≥ OPTR = E

[
max(

∑

j∈J
Pj ,m)

]
≥ m max(ρ, 1).

Proof. The first inequality follows immediately since F ⊆ P.
Next, for all policies Π ∈ P and all realizations p it holds φ(Π,p) ≥ OPT (p),

by definition of an optimal policy for the deterministic processing times p. Taking
the expectation on both sides yields the second inequality.

Before we go on to the next inequality, we first show that OPTR =
E

[
max(

∑
j∈J Pj ,m)

]
. To do so we show that for any realization p an optimal

fractional assignment policy assigns all jobs uniformly to all machines. More
precisely, we show that aij = 1

m for all i ∈ M and j ∈ J solves the following
problem of finding the optimal fractional assignment:

minimize
0≤aij≤1

∑

i∈M
max(

∑

j∈J
aijpj , 1), such that

∑

i∈M
aij = 1, ∀j ∈ J .

(1)
A trivial lower bound on the optimal value of Problem (1) is max(

∑
j∈J pj ,m).

This is true since for any feasible fractional assignment (aij)i∈M,j∈J ,∑
i∈M max(

∑
j∈J aijpj , 1) ≥ ∑

i∈M
∑

j∈J aijpj =
∑

j∈J pj , and similarly,
∑

i∈M max(
∑

j∈J aijpj , 1) ≥ ∑
i∈M 1 = m. Choosing all fractions to be 1

m we
obtain

∑
i∈M max(

∑
j∈J

1
mpj , 1) = m · max(

∑
j∈J

1
mpj , 1) = max(

∑
j∈J pj ,m)

which exactly matches the lower bound and hence, it must be optimal. Since
this holds for any realization we can take the expected value resulting into the
desired identity.

In order to show EP [OPT (P )] ≥ OPTR, we observe that for any realization
p, Problem (1) is the continuous relaxation of the problem with binary variables
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for finding the optimal assignments for the deterministic problem with processing
times p. Hence, by again taking expectations this yields the inequality.

Finally, the last inequality is Jensen’s inequality applied to the convex func-
tion x 
→ max(x,m).

In the next proposition, which we prove in the appendix, we show the intuitive
fact that among non-idling policies, the worst case is to assign all jobs to the
same machine.

Proposition 2. Let Π ∈ P be non-idling and let Π1 be the fixed assignment
policy that schedules all jobs on machine 1. Then, Φ(Π) ≤ Φ(Π1).

We show that any non-idling policy is a 2-approximation in the class of non-
anticipatory policies (and hence in the class of fixed-assignment policies).

Proposition 3. Let Π be any non-idling policy. Then,

Φ(Π) ≤ 2OPTR.

Proof. Let Π be a non-idling policy and Π1 be the naive fixed assignment policy
in which all jobs are scheduled on one machine without idle time. Proposition 2
yields that Φ(Π) ≤ Φ(Π1), and we have

Φ(Π1) = E[max(
∑

j∈J
Pj , 1)] + (m − 1) ≤ E[max(

∑

j∈J
Pj ,m)] + m − 1.

We know that m ≤ E[max(
∑

j∈J Pj ,m)] = OPTR from Proposition 1, so we
have

Φ(Π) ≤ Φ(Π1) ≤ 2OPTR − 1 ≤ 2OPTR.

Consequently, we are only interested in finding α−approximation algorithms
for α < 2, since a 2−approximation algorithm performs no better (in the worst
case) than the naive policy that puts all jobs on a single machine.

The last proposition also shows that the price of non-splittability is upper
bounded by 2. In fact, this bound is tight:

Theorem 1. The price of non-splittability of SEBP is PoNS = 2.

The proof relies on a technical lemma which is proved in the appendix:

Lemma 1. Let Y ∼ Poisson(λ) for some λ ∈ N. Then,

1
λ
E

[
max(Y, λ)

]
= 1 +

e−λλλ

λ!
.

Proof (of Theorem 1). It follows from Propositions 1 and 3 that OPTP ≤
OPTF ≤ 2OPTR.

Let λ ∈ N and consider the instance I with n = m ≥ λ independent and
identically distributed jobs in which the processing time of each job j takes the
value m

λ with probability λ
m and 0 otherwise. In other words, for all j ∈ J
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we have Pj ∼ m
λ Bernoulli( λ

m ). As n = m, an optimal non-idling policy clearly
assigns each job to a different machine. This yields

OPTP(I) = m · E[max(P1, 1)] = m ·
(
(1 − λ

m
) · 1 +

λ

m
· m

λ

)
= 2m − λ.

For the objective value of an optimal fractional assignment policy we can use
Proposition 1. We will also use the fact that the sum of i.i.d. Bernoulli random
variables is binomially distributed, i.e., X := λ

m · ∑
j∈J Pj ∼ Binomial(m, λ

m ).
Moreover, it is folklore that X converges in distribution to Y ∼ Poisson(λ) as
m → ∞.

Therefore, we have λ
mOPTR(I) = λ

mE

[
max

(∑
j∈J Pj ,m

)]
= E[max(X,λ)],

which converges in distribution to 1+ e−λλλ

λ! as m → ∞ by Lemma 1. Putting all
together, the ratio OPTP(I)/OPTR(I) converges to 2(1+ e−λλλ

λ! )−1 as m → ∞,
and this quantity can be made arbitrarily close to 2 by choosing λ large enough.

3 Approximation Ratio of LEPT: The Case of Short Jobs

In this section, we show that LEPTF is an (1 + e−1)-approximation algorithm
when the instance only contains short jobs.

Definition 1. We say job j is short if its processing time Pj is less than or
equal to 1 almost surely, i.e.,

P[0 ≤ Pj ≤ 1] = 1.

It is reasonable to assume that jobs are short: In real world applications, such as
in surgery scheduling, the duration of a single operation rarely exceeds the regu-
lar capacity of an operating room. Moreover, this assumption is not uncommon;
cf. [10,27]. The proof of the performance guarantee of LEPTF relies on three
lemmas which we prove in the appendix. The first lemma gives a tight bound
on the expected cost incurred on one machine.

Lemma 2. Let k be some positive integer and let all jobs j ∈ [k] be short. Then,

E

[
max

( k∑

j=1

Pj , 1
)]

≤
k∑

j=1

E[Pj ] +
k∏

j=1

(1 − E[Pj ]).

Moreover, this bound is tight, and attained for the two point distributions P ∗
j ∼

Bernoulli(E[Pj ]).

The second lemma gives bounds on the expected workload of any machine in
an LEPTF schedule. Interestingly, the gap between the lower and upper bounds
becomes smaller when the number of jobs scheduled on a machine grows.
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Lemma 3. Let xi denote the expected load of machine i ∈ M produced by
LEPTF , i.e., xi := E[WLEPTF

i ] =
∑

j
LEPTF−−−−−→i

E[Pj ]. Then, there exists 	 ≥ 0

such that for all i ∈ M,
	 ≤ xi ≤ ni

ni − 1
	,

where ni :=
∣
∣{j ∈ J : j

LEPTF−−−−−→ i}∣∣ denotes the number of jobs assigned to
machine i, and we use the convention ni

ni−1 = 1
0 := +∞ whenever ni = 1.

We need a third lemma with a technical result:

Lemma 4. Let 	 ≥ 0 and ρ ≥ 	. We define the function h : [0, 1] → R, y 
→
(1 − y)1+

�
y , which is defined by continuity at y = 0 with h(0) = e−�. Let y ∈

[0, 1]m be any vector satisfying the equality
∑

i∈M yi = m(ρ − 	). Then,

∑

i∈M
h(yi) ≤ me−ρ.

We are now ready to prove the main result of this section:

Theorem 2. Consider an instance (P,m) with only short jobs. Let ρ :=
1
m

∑
j∈J E[Pj ] denote the expected workload averaged over all machines. Then it

holds
Φ(LEPTF )
m max(ρ, 1)

≤ ρ + e−ρ

max(ρ, 1)
≤ 1 + e−1.

Proof. Let Ji denote the subset of jobs that LEPTF assigns to machine i ∈ M
and let ni := |Ji|. As in Lemma 3, let LEPTF produce an expected workload of
xi =

∑
j∈Ji

E[Pj ] on machine i. Then, by Lemma 2 we can bound the expected
cost incurred on machine i as

E[max(WLEPTF
i , 1)] ≤

∑

j∈Ji

E[Pj ] +
∏

j∈Ji

(1 − E[Pj ]) ≤ xi +
(

1 − xi

ni

)ni

(2)

where the last inequality follows from the Schur-concavity of µ 
→ ∏
j∈Ji

(1−μj)
over [0, 1]ni ; cf. [20, Proposition 3.E.1]. Next, we apply Lemma 3, so there exists
an 	 ≥ 0 such that 	 ≤ xi ≤ ni

ni−1	. Let yi := xi − 	 ≥ 0. The second inequality
can be rewritten as

ni ≤ xi

xi − 	
= 1 +

	

yi
, (3)

which remains valid for yi = 0 if we define 	/0 := +∞. We know that Pj ∈ [0, 1]
almost surely, in particular E[Pj ] ≤ 1, and hence, xi ≤ ni. For this reason, the
above inequality implies xi ≤ xi

xi−� and therefore, yi ≤ 1. By combining (2)
and (3), and using the fact that (1 − xi

ni
)ni is a nondecreasing function of ni, we

obtain

E[max(WLEPTF
i , 1)] ≤ xi + (1 − (xi − 	))

xi
xi−� = 	 + yi + h(yi), (4)
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where h is the function defined in Lemma 4, and the yi’s satisfy yi ∈ [0, 1].
Moreover, we have

∑
i∈M yi = m(ρ − 	) ⇐⇒ ∑

i∈M(	 + yi) =
∑

i∈M xi = ρm.
Summing up the inequalities (4) over all i ∈ M and using Lemma 4 yields

Φ(LEPTF ) =
∑

i∈M
E[max(WLEPTF

i , 1)] ≤ ρm +
∑

i∈M
h(yi) ≤ m(ρ + e−ρ).

As a consequence, we obtain

Φ(LEPTF )
m max(ρ, 1)

≤ ρ + e−ρ

max(ρ, 1)
.

Finally, the second inequality of the theorem follows from the fact that the above
ratio is maximized for ρ = 1. This is true because ρ+e−ρ

max(ρ,1) = ρ + e−ρ on [0, 1],

hence increasing, and ρ+e−ρ

max(ρ,1) = 1 + e−ρ

ρ on [1,+∞], hence decreasing.

Combining this result with the inequality OPTP ≥ m max(1, ρ) from Propo-
sition 1 yields the following

Corollary 1. The LEPTF policy is an (1 + e−1)-approximation algorithm in
the class P, over the set of instances with short jobs only.

As we will see in the next section, our analysis of LEPTF is tight.

4 The Price of Fixed Assignments

In this section, we are going to show that the price of fixed assignments is equal
to 1+e−1. To do this, we require a lemma that will allow us to focus on instances
with short jobs. Our analysis relies on a parameter α ≥ 0 which quantifies the
length excess of jobs (for an instance with only short jobs, it holds α = 0).

Lemma 5. Let I = (P,m) be an instance of SEBP, and let I ′ = (P ′,m) denote
the instance in which the processing time Pj of all jobs is replaced by P ′

j =
min(Pj , 1). Let α =

∑
j∈J αj, where we define αj := E[max(Pj − 1, 0)] ≥ 0. The

new P ′
js are short jobs, and we have

OPTF (I ′) = OPTF (I) − α and EP ′ [OPT (P ′)] = EP [OPT (P )] − α.

Proof. Let Ji and J ′
i denote the subsets of jobs assigned to machine i in an opti-

mal fixed assignment policy Π for instance I, and in an optimal fixed assignment
policy Π ′ for instance I ′, respectively. Let p be a realization of the processing
times for instance I, and let p ′ denote the vector with elements p′

j = min(pj , 1).
We compute the difference between the costs incurred by Π(p) and Π(p ′) on
machine i:

max(WΠ
i (p), 1)−max(WΠ

i (p ′), 1) = max
( ∑

j∈Ji

pj , 1
)
−max

( ∑

j∈Ji

min(pj , 1), 1
)
.

(5)
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It is easy to see that
∑

j∈Ji
pj ≤ 1 ⇐⇒ ∑

j∈Ji
min(pj , 1) ≤ 1. Hence, we

distinguish two cases. If
∑

j∈Ji
pj ≤ 1, then the right hand side of (5) van-

ishes. Otherwise, the right hand side of (5) becomes
∑

j∈Ji
pj − min(pj , 1) =

∑
j∈Ji

max(pj−1, 0). In both cases, it holds max(WΠ
i (p), 1)−max(WΠ

i (p ′), 1) =∑
j∈Ji

max(pj −1, 0). Taking the expectation and summing up over all machines
yields

ΦI(Π) − ΦI′(Π) =
∑

i∈M

∑

j∈Ji

αj =
∑

j∈J
αj = α,

where the symbol ΦI(Π) emphasizes that the expected value in the criterion is
taken with respect to the processing time distributions of instance I.

Since Π is optimal in the class F for instance I, we have ΦI(Π) = OPTF (I)
and ΦI′(Π) ≥ OPTF (I ′). Hence,

ΦI′(Π) = OPTF (I) − α ≥ OPTF (I ′). (6)

Similarly, the comparison of the costs incurred by Π ′(p) and Π ′(p ′) on
machine i yields max(WΠ′

i (p), 1) − max(WΠ′
i (p ′), 1) =

∑
j∈J ′

i
max(pj − 1, 0).

Again, by taking the expectation and summing over all machines we obtain
ΦI(Π ′) − ΦI′(Π ′) =

∑
j∈J αj = α. Now, we observe that ΦI′(Π ′) = OPTF (I ′)

and ΦI(Π ′) ≥ OPTF (I), so we have

ΦI(Π ′) = OPTF (I ′) + α ≥ OPTF (I). (7)

Finally, by combining (6) and (7) we obtain OPTF (I) − α ≥ OPTF (I ′) ≥
OPTF (I) − α, which shows the desired equality:

OPTF (I) − α = OPTF (I ′).

The proof of the equality EP ′ [OPT (P ′)] = EP [OPT (P )] − α works in a
similar manner, but we must take sums over a different subset of jobs Ji(p)
for each scenario p, corresponding to the jobs that an optimal policy assigns to
machine i for the deterministic problem with processing times p.

We can now prove the main result of this section:

Theorem 3. The price of fixed assignments for SEBP is equal to (1 + e−1):

PoFA = 1 + e−1.

Proof. Let I = (P,m) denote an instance of SEBP and I ′ = (P ′,m) the reduced
instance as in Lemma 5. We have:

OPTF (I)
OPTP(I)

≤ OPTF (I)
EP [OPT (P )]

=
OPTF (I ′) + α

EP ′ [OPT (P ′)] + α
≤ OPTF (I ′)

EP ′ [OPT (P ′)]
≤ 1 + e−1,

where the first inequality follows from Proposition 1, the equality is a conse-
quence of Lemma 5, the second inequality follows from α ≥ 0, and the last
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inequality results from Proposition 1 and Theorem 2. Therefore, it remains to
show that for all ε > 0 there exists an instance I in which we have

OPTF (I)
OPTP(I)

≥ 1 + e−1 − ε.

For this purpose, we consider an instance I = (P,m) in which we have n = km
jobs for some k ∈ N, where Pj ∼ Bernoulli( 1

k ) for all j ∈ J . An optimal fixed
assignment policy assigns each machine the same number of jobs, in this case
k. The cost on one machine is hence the expected value of max (Z, 1), where
Z :=

∑k
j=1 Pj ∼ Binomial(k, 1

k ). So,

OPTF (I) = m · E[max(Z, 1)] = m ·
(
E

[
Z|Z ≥ 1

]
P[Z ≥ 1] + E

[
1|Z < 1

]
P[Z < 1]

)

= m · (
E[Z] + P[Z = 0]

)
= m ·

(
1 +

(
1 − 1

k

)k
)

,

which converges to m(1 + e−1) as k → ∞. On the other hand, an optimal
policy in P lets a job run whenever a machine becomes idle. The cost of an
optimal policy is hence m whenever less than m jobs have duration 1, and is
equal to

∑km
j=1 pj otherwise. This shows that OPTP(I) = E[max(U,m)], where

U :=
∑km

j=1 Pj ∼ Binomial
(
km, 1

k

)
. Now, we can argue as in Theorem 2 that U

converges in distribution to Y ∼ Poisson(m) as k → ∞. So, by Lemma 1, we
have

OPTP(I) → m · (
1 +

e−mmm

m!
)

as k → ∞.

Finally, we have shown that the ratio of OPTF (I) to OPTP(I) can be made
arbitrarily close to (1 + e−1) · (

1 + e−mmm

m!

)−1 by choosing k large enough. We
conclude by observing that limm→∞ mme−m

m! = 0, so this ratio can be arbitrarily
close to 1 + e−1.

This proves that our analysis of LEPTF is tight. It even shows that LEPTF
is the best fixed assignment policy in the following sense: Since there exists
instances for which the ratio of an optimal fixed assignment policy to an optimal
non-anticipatory policy is arbitrarily close to 1+e−1 and the fact that LEPTF is
a 1+e−1-approximation (for short jobs), we cannot hope to find a policy Π ∈ F
with a better approximation guarantee in the class P.

5 Performance of LEPT in the Class of Fixed
Assignment Policies

It would also be interesting to characterize the approximation guarantee of
LEPTF in the class of fixed assignment policies. The next proposition gives
a lower bound:
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Proposition 4. For all ε > 0, there exists an instance I of SEBP such that
Φ(LEPTF )
OPTF (I) = 4−ε

3 .

Proof. We construct an instance with m = 2 machines and n = 3 jobs. The first
two jobs are deterministic and have duration P1 = P2 = 1. The distribution of
the third job is P3 = 1

ε X, where X ∼ Bernoulli(ε), so E[P3] = 1. We assume that
the LEPTF policy assigns both deterministic jobs to the first machine and the
stochastic job to the other machine, which gives Φ(LEPTF ) = 2 + (1 − ε) + ε

ε =
4 − ε. In contrast, for any policy Π∗ which assigns the two deterministic jobs on
different machines, we have Φ(Π∗) = 1 + (1 − ε) + (1 + 1

ε )ε = 3. The policy Π∗

reaches the lower bound m max(ρ, 1) of Proposition 1, hence it is optimal.

As will be discussed below, we believe that the performance guarantee of
1 + e−1 of LEPTF can be extended for all instances (even when some jobs are
not short). In this case, this would show that the best approximation factor for
LEPTF in the class of fixed assignment policies lies between 4

3 ≈ 1.333 and
1 + e−1 ≈ 1.368.

6 Conclusion and Future Work

We showed that LEPTF is, in some sense, the best algorithm among the class of
fixed assignment policies we can hope for. This result might inspire future work
to consider the same or similar and related ratios for other scheduling problems,
in which we compare within or against several subclasses of policies, in order to
obtain more interesting and precise results on the performance of algorithms.

We believe that the (1 + e−1)-approximation guarantee of LEPTF can be
extended for instances containing long jobs, i.e., jobs whose duration may exceed
1. It can be shown –using a similar approach as in Theorem2– that Φ(LEPTF )

OPTR
≤

1 + e− 1
dmax for instances where each job satisfies Pj ∈ [0, dmax] almost surely for

some dmax ≥ 1, and that this bound is tight. Letting dmax → ∞ just gives the
trivial approximation guarantee of 2, so we have to use a better lower bound on
OPTP in order to prove that LEPTF is a (1 + e−1)-approximation algorithm.
Our next candidate is the bound OPTP ≥ EP [OPT (P )], cf. Proposition 1. We
think that an analysis relying on the parameters ρ = 1

m

∑
j E[Pj ] and α =∑

j E[max(0, Pj − 1)] introduced in Lemma5 could lead to the desired result. So
far, we obtained encouraging intermediate results that support our claim, but
we did not obtain an analytical proof.

An interesting direction for future work on SEBP is the study of the case
of unequal bins, which is relevant for the application to surgery scheduling,
where operating rooms may have different opening hours. Since the class of fixed
assignment policies is relevant for surgery scheduling, another interesting open
question is whether there exists a policy Π ∈ F with a performance guarantee
< 4

3 in the class F . A good candidate could be the variant of LEPT that considers
more than just first moment information on the Pj ’s, and inserts sequentially the
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job j on the machine minimizing E[max(Xi + Pj , 1)], where Xi is the random
variable for the load already assigned to machine i. We also observe that the
coefficient of variation of the jobs tend to infinity in all our tight examples,
so it is natural to ask if we can obtain better bounds when these coefficients
are upper bounded by a constant Δ. Last but not least, a two-stage stochastic
online extension of the EBP could yield a better understanding of policies for
the surgery scheduling problem with add-on cases (emergencies).

A Proofs of Intermediate Results

Proof (of Proposition 2). To prove this result, we examine the change in the
objective value of Π when we move one job to the machine with highest load in
Π, for a realization p of the processing times. W.l.o.g. let machine 1 be the one
with highest workload in Π(p). Consider another machine i ∈ M\{1} on which
at least one job is scheduled. Let k be the last job on machine i, i.e., CΠ

k (p) =

WΠ
i (p). For the sake of simplicity, we define A := {j ∈ J |j Π(p)−−−→ i} \ {k} and

B := {j ∈ J |j Π(p)−−−→ 1}. We consider another schedule Π ′(p) which coincides
with Π(p) except that job k is scheduled on machine 1 right after all jobs in B.
We obtain

φ(Π,p) − φ(Π ′,p)

= max
(∑
j∈A

pj + pk, 1
)
+max

(∑
j∈B

pj , 1
)

−
(
max

(∑
j∈A

pj , 1
)

+ max
(∑
j∈B

pj + pk, 1
))

=

⎧
⎪⎪⎨
⎪⎪⎩

1 + max
(∑
j∈B

pj , 1
)

−
(
1 + max

(∑
j∈B

pj + pk, 1
))

if
∑
j∈A

pj + pk ≤ 1

∑
j∈A

pj + pk +
∑
j∈B

pj −
(
max

(∑
j∈A

pj , 1
)

+
∑
j∈B

pj + pk

)
otherwise

≤ 0.

Hence, iteratively moving some job k to the fullest machine yields φ(Π,p) ≤
φ(Π1,p). Finally, the result follows by taking the expectation.

Proof (of Lemma 1). The proof simply works by exploiting the analytical form
of Poisson probabilities:

1
λ
E

[
max(Y, λ)

]
=

1
λ

∞∑

k=0

max(k, λ) · e−λλk

k!

=
1
λ

∞∑

k=0

k · e−λλk

k!
+

1
λ

∞∑

k=0

max(0, λ − k) · e−λλk

k!

= 1 +
λ∑

k=0

(
1 − k

λ

)
· e−λλk

k!
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= 1 + e−λ ·
( λ∑

k=0

λk

k!
−

λ∑

k=1

λk−1

(k − 1)!

)

= 1 +
e−λλλ

λ!
,

where the last step follows from the property of a telescoping sum.

Proof (of Lemma 2).
Let X and Y be random variables with P[0 ≤ X ≤ 1] = 1. Observe that

0 ≤ E[X] ≤ 1. We are going to show that E[max(X +Y, 1)] can be bounded from
above by choosing the two point distribution X∗ ∼ Bernoulli(E[X]), such that
P[X∗ = 0] = (1−E[X]) and P[X∗ = 1] = E[X]. To do so, we define the function
g : [0, 1] → R, x 
→ EY [max(x + Y, 1)]. This function is convex, since it is the
expectation of a pointwise maximum of two affine functions [4]. Therefore, for
all x ∈ [0, 1] we have g(x) ≤ g(0) + x(g(1) − g(0)). Then, by definition of g,

E[max(X + Y, 1)] = EX [g(X)] ≤ g(0) + EX [X] · (g(1) − g(0))
= EX∗ [g(X∗)] = E[max(X∗ + Y, 1)].

Using this bound for all j ∈ [k], we obtain E

[
max

(∑k
j=1 Pj , 1

)]
≤

E

[
max

(∑k
j=1 P ∗

j , 1
)]

, where P ∗
j ∼ Bernoulli(E[Pj ]). Then, by the law of total

expectation, we have:

E

[
max

( k∑

j=1

P ∗
j , 1

)]
= E

[ k∑

j=1

P ∗
j

∣
∣
∣

k∑

j=1

P ∗
j ≥ 1

]
P[

k∑

j=1

P ∗
j ≥ 1] + E[1] P[

k∑

j=1

P ∗
j < 1].

Since the random variable
∑k

j=1 P ∗
j is a nonnegative integer, it cannot lie in

the interval (0, 1), so the first term in the above sum is equal to E

[∑k
j=1 P ∗

j

]
=

∑k
j=1 E

[
Pj

]
, and the second term is equal to P[P ∗

1 = . . . = P ∗
k = 0] =

∏k
j=1(1−

E[Pj ]).

Proof (of Lemma 3). We set 	 := min{xi : i ∈ M}. Then, the first inequality
follows immediately. Next, we will show that in each step that LEPTF assigns
a job to a machine the second inequality is fulfilled. Let j denote the job which
is put on machine i in the current step. Furthermore, let 	′ and 	 denote the
minimum expected load among all machines before and after the allocation,
respectively. Trivially, 	′ ≤ 	 is true. Moreover, let x′

i and xi denote the expected
workload of i before and after assigning j to it, respectively. Clearly, we have

xi = x′
i + E[Pj ].

Observe, that 	′ = x′
i, because LEPTF assigns j to the machine with the smallest

expected load. In addition, let ni denote the number of jobs running on machine
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i after the insertion of j. Since LEPTF sorts jobs in decreasing order of their
expected processing times, it holds

E[Pj ] ≤ x′
i

ni − 1
=

	′

ni − 1
.

Consider a machine other than i. If the inequality of the statement was fulfilled
in an earlier step, then by setting the new 	 it still is true. In the beginning,
when we have no job at all, the inequality is true, so we only have to take care
of machine i.
Finally, we obtain on machine i

xi

	
=

x′
i + E[Pj ]

	
≤ x′

i + E[Pj ]
	′ ≤ 1 +

E[Pj ]
	′ ≤ 1 +

	′

	′(ni − 1)
=

ni

(ni − 1)
.

Proof (of Lemma 4). First, we argue that h : y 
→ (1−y)1+
�
y is convex over [0, 1].

To see this, we compute its second derivative:

h′′(y) =
	(1 − y)

�
y −1

y4
h2(y),

where h2(y) := y2(	 − y + 2) + 	(y − 1)2 log2(1 − y) − 2(	 + 1)(y − 1)y log(1 − y).
Now, we use the fact that log(1 − y) = −∑∞

k=1
yk

k for all y ∈ [0, 1). Hence,
log2(1 − y) =

∑∞
k=2 γkyk, where γk :=

∑k−1
i=1

1
i(k−i) . After some calculus, the

terms of order 2 and 3 vanish and we obtain the following series representation
of h2 over [0, 1):

h2(y) = (
	

4
+

1
3
)y4 +

∞∑

k=5

(
2(	 + 1)

(k − 1)(k − 2)
+ 	(γk + γk−2 − 2γk−1))yk.

We are going to show that γk + γk−2 − 2γk−1 ≥ 0 for k ≥ 5 implying that
h′′(y) ≥ 0 for all y ∈ [0, 1). To do so, we rewrite the sums using the partial
fraction decomposition. As a consequence, we obtain

γk + γk−2 − 2γk−1 =
2

k

k−1∑

i=1

1

i
+

2

k − 2

k−3∑

i=1

1

i
− 4

k − 1

k−2∑

i=1

1

i

=
2

k

(
1

k − 2
+

1

k − 1

)
− 4

(k − 1)(k − 2)
+

(
2

k
+

2

k − 2
− 4

k − 1

) k−3∑

i=1

1

i

= − 6

k(k − 1)(k − 2)
+

4

k(k − 1)(k − 2)

k−3∑

i=1

1

i

≥ 0.

The last inequality results from the fact that for all k ≥ 5 we have 4
∑k−3

i=1
1
i ≥ 6.

Hence, h is convex on [0, 1), and even on [0, 1] by continuity. Now, let v∗(ρ, 	)
denote the optimal value of the problem
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maximize
y∈Rm

∑

i∈M
h(yi) (8a)

s.t.
∑

i∈M
yi = m(ρ − 	) (8b)

0 ≤ yi ≤ 1, (∀i ∈ M). (8c)

As h is convex, a maximizer of the optimization problem above is an extreme
point of the polytope induced by the constraints (8b) and (8c). Let k := �m(ρ−
	)� and u := m(ρ − 	) − k, where �.� denotes the floor function, that is, �x� is
the largest integer less than or equal to x. By construction, it holds 0 ≤ u ≤ 1,
and u + k = m(ρ − 	). At an extreme point, at least m − 1 inequalities of (8c)
must be tight. Hence, one coordinate of y must be u, k coordinates must be 1
and the remaining (m − k − 1) coordinates must be 0.

It follows that v∗(ρ, 	) = (m−k−1)h(0)+h(u) = (m−k−1)e−�+(1−u)1+�/u.
Now, we observe that (1 − u)�/u ≤ e−�, so

(1 − u)1+�/u ≤ (1 − u)e−�

⇐⇒ (1 − u)1+�/u ≤ (1 + k − m(ρ − 	))e−�

⇐⇒ (m − k − 1)e−� + (1 − u)1+�/u

︸ ︷︷ ︸
v∗(ρ,�)

≤ m(1 − ρ + 	)e−�,

where the first equivalence is due to the decomposition m(ρ − 	) = k + u.
Finally, the inequality of the proposition follows from the fact that (1 + 	 −

ρ)e−� is a nondecreasing function of 	 over [0, ρ].
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