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Sparse Relevance Kernel Machine-Based
Performance Dependency Analysis of
Analog and Mixed-Signal Circuits

Honghuang Lin, Asad Khan, and Peng Li

15.1 Introduction

As the complexity of analog/mixed-signal (AMS) circuits keeps increasing at a
rapid pace, the tasks of design, verification, and test have become significant
challenges. Nevertheless, it is essential to characterize the dependencies of circuit
performances/specifications on various circuit and device parameters or test sig-
natures for purposes such as design, verification, and test optimization. However,
doing so is not trivial since the targeted dependencies are usually complex and
nonlinear with deep-rooted correlations, making it arduous to reliably quantify the
importance of numerous parameters.

For characterizing sophisticated circuit systems, machine learning techniques
based on circuit simulations or measurements have been proven to be effective
and produced promising outcomes. For example, support vector machines (SVMs)
[34] are used as nonlinear classifiers in [19] to capture the mapping from input
parameters to circuit performance. A regression extension to SVM is employed in
[1] to rank circuit parameters based on their correlations with unexpected timing
deviations. Additionally, Bayesian inference is often used to build statistical circuit
models. For instance, a co-learning Bayesian model is proposed in [36] to efficiently
model the performance of AMS circuits.

However, building machine learning-based circuit models faces two key chal-
lenges: (1) the availability of training data is limited, since circuit simulations or
silicon measurements are usually expensive for sophisticated AMS systems; and
(2) to describe an AMS system, it needs a huge number of analog signals and
design/device parameters, leading to an extremely high dimensional problem. Since
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the sensitivities of circuit performances to various parameters may vary vastly, it is
instrumental to reliably analyze circuit parameter criticality during the extraction of
accurate circuit models. While traditional feature selection or importance ranking
techniques may help to identify and select some important parameters out of a large
parameter set, building models only with the selected parameters usually degrades
the model performance and few of those techniques can guide the model to achieve
higher accuracy. These difficulties present important roadblocks to analog/mixed-
signal circuit characterization and performance dependency analysis with machine
learning techniques.

In the machine learning domain, traditionally, feature selection [3, 5, 9] may
be performed by combinatorial search [27, 35] to incrementally add or remove
features from the selected subset, which is evaluated by the performance of its
resulting predictor. Another kind of method [2, 24, 29] trims the feature space with
regularization-based methods, like introducing new regularization terms into the
cost function, to perform the feature selection. All these techniques are considered
as linear feature selection methods since they handle or formulate the features in a
linear manner, such as combinatorial search or L1 norm regularization. To capture
the nonlinear dependencies among features and their nonlinear “relevancy” to the
targets, some other methods [6, 10, 17] switch the roles of features and samples
in their learning models and apply the kernel method to the features instead of
samples. These kinds of methods also belong to the category of regularization-based
methods since their optimization models using Euclidean inner product as their
kernel functions are equivalent to Lasso regression [29] based on the conclusion
provided by Li et al. [17]. A drawback of such methods is that their results usually
only improve the regularization of the learning model but not the accuracy, since
they work independently as preceding filters of the training process.

Moreover, in complex scenarios, especially in complex circuit applications,
where features’ relevancy may vary in a large range, proper weighting of the
features may improve the learning quality by balancing the impact of features on
target. In this sense, feature selection is just a 0–1 binary weighting scheme, whose
capability is limited when it comes to these scenarios. The task of assigning weights
directly to the features and embed the weighted samples into a learning model is
extremely computationally challenging, since most commonly used learning models
are nonlinear, making weights difficult to manipulate and costly to optimize in the
training process.

To address the above challenges, this work proposes a novel Bayesian learn-
ing framework for characterizing analog circuits with sparse statistical regres-
sion/classification models. The proposed framework is named sparse relevance
kernel machine (SRKM) and can be considered as a significant extension to the
SVM [34] and relevance vector machine (RVM) [30]. Instead of directly manipu-
lating the features in a traditional way, the original kernel function is “atomized”
into bilinear terms with weighting factors that obliquely reflect the relevancy of
the features, leading to the newly defined feature kernel described in the next
section. Then, the training model of the SRKM is developed following the RVM
framework to achieve a sparse model for both regression and classification. The
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SRKM simultaneously seeks relevant training samples (i.e., vectors) and parameters
(i.e., features) to derive a sparse model in both the vector and parameter spaces. As
a result, the SRKM not only produces accurate models learned from a moderate
amount of simulation or measurement data, but also computes a probabilistically
inferred weighting factor quantifying the criticality of each parameter as part of
the overall learning framework, hence offering a powerful enabler for variability
modeling, failure diagnosis, and test development. In addition, an iterative algorithm
is developed for efficient training of the proposed SRKM.

The proposed SRKM is capable of solving both classification and regression
problems. Compared to other popular kernel-based learning techniques, the SRKM
produces more accurate models, requires less amount of training data, and extracts
more reliable parametric ranking. The effectiveness of SRKM is demonstrated
in examples including statistical variability modeling of a low-dropout regulator
(LDO), built-in self-test (BIST) development of a charge-pump phase-locked loop
(PLL), and applications of building statistical variability models for a commercial
automotive interface design.

This chapter is organized as follows: In Sect. 15.2, we propose the feature kernel
weighting scheme and learning model based on the kernel methods adopted in other
SVM-related techniques. Then, in Sect. 15.3, the learning model of the SRKM is
developed following the sparse Bayesian learning framework. An iterative efficient
algorithm is developed to remedy the additional complexity that stems from the
inclusion of more variables. Lastly, to illustrate the aforementioned advantages of
the SRKM, details and results of three experiments are provided in Sect. 15.4.

15.2 Feature Kernel Weighting

Learning models of circuits are usually defined as: assuming that there are F circuit
parameters of interest with which the circuit is described by a parameter (feature)
vector x, a sample of the circuit is defined by a pair {xi , ti} where ti is the circuit
performance under the configuration xi . By collecting a number of N samples,
the objective of the learning task is to capture the mapping Ψ : x → t with a
function y(x) whose output can be used as a prediction of the performance t . If the
performance t is a quantified value, this falls into the regression category in machine
learning. If t is a binary label, for example, pass or fail in the context of verification
or test, then the learning is a binary classification task. Both regression and
classification can be solved by kernel machines such as support vector machines.

15.2.1 Kernel Methods

Support vector machines (SVMs) [25, 33] have been widely used in the EDA
domain as a powerful supervised learning toolbox solving classification and regres-
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sion problems. According to a recent experiment conducted by Fernández-Delgado
et al. [8], the comparison of 179 classifiers evaluated on 121 data sets shows that
SVM is still among the top learning methods.

The excellence of SVM mainly relies on two portions of its model: the cost
function and the famous “kernel trick.” Similar to some other learning methods, the
cost function of SVM is composed of a fitting loss term and a smoothing penalty
term. By using different formulas for losses and penalties, several variants of SVM
[12, 13, 26, 28] are derived from the original quadratic optimization problem. Such
composition of cost functions provides exceptional robustness and regularization
[39]. On the other hand, kernel trick or kernel method has shown great success in
handling nonlinear problems.

By using the Lagrange multipliers, the exploration of the optimal separating
hyperplane in the mapped higher dimensional space can be expressed as the
following optimization problem:

minimize
α

fSVM(α) = 1

2

N∑

i=1

N∑

j=1

yiyjαiαj 〈x̂i, x̂j〉 −
N∑

i=1

αi,

subject to
N∑

i=1

yiαi = 0,

0 ≤ αi ≤ C,∀i.

(15.1)

where yi denotes the binary label of the training sample xi, and x̂i represents a
projection of xi in a higher dimensional space.

In SVM, the idea of solving nonlinear problems is to map the original input
vectors from the input space, which are not linearly solvable, into a higher
dimensional space and explore a linear solution in that space. It is clearly shown
in (15.1) that the optimization problem can be solved by merely knowing the inner
product of any pair of the mapped input vectors 〈x̂i, x̂j〉, without explicitly defining
the mapping x → x̂. Therefore, defining a kernel function K that satisfies or
represents K(xi, xj) = 〈x̂i, x̂j〉 and substituting it into the optimization problem
should achieve the same results as what is produced by making the mapping x → x̂.
As long as the kernel function K satisfies Mercer’s condition [33], there exists a
feature space where the inner product is generated by K . In this light, a kernel
function can be considered as an implicit definition of a certain mapping.

15.2.2 Weighting via Atomized Kernel

Although the implicit mapping defined by kernel methods is very powerful in
solving nonlinear problems, similar to other learning techniques, it may easily be
confused by irrelevant or redundant features, which are commonly seen in circuit
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Fig. 15.1 Examples that
cannot be linearly solved by
the kernel function
corresponding to the mapping
(x1, x2) → (x1, x2, x

2
1 + x2

2 ),
where blue circles and red
stars denote two different
classes, respectively. (a) x2 is
the only relevant feature
while x1 is purely irrelevant.
(b) x1 is the dominant feature
while x2 provides subtle
information to reflect the
classes
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applications. For example, in Fig. 15.1, if we only sample the center and the four
corners, all the samples can be linearly separated by using the mapping (x1, x2) →
(x1, x2, x

2
1 + x2

2), which is equivalent to using kernel function K(xa, xb) = xT
a xb +

xT
a xaxT

b xb. But if we keep sampling more evenly in the 2-D input space to include
those small circles and asterisks in the training set, it’s possible that, as Fig. 15.1
shows, one of the two features is actually irrelevant to the target, or features may
have quite different relevancy. In both scenarios, by using the same kernel function
or its equivalent mapping, the mapped input vectors can no longer be linearly solved
in the 3-D feature space.

From another perspective, kernel function K(xi , xj ) is usually viewed as a
representation of the covariance or similarity between xi and xj . If xi and xj

contain notable amount of noise or redundant features, the kernel function may
not be able to correctly reflect the covariance or similarity. For example, Gaussian
kernel, also known as radial basis function (RBF) and defined as K(xi , xj ) =
exp(−γ ‖xi − xj‖2), is a commonly used kernel function. Any noisy redundant
feature included in xi and xj will directly affect the term ‖xi − xj‖2, leading to a
kernel function value that cannot truly reflect the similarity of the two samples. Such
vulnerability is critical and a flexible weighting scheme is needed especially when
there are only limited number of samples.

To approach such problems, based on the implicit mapping mechanism, we
propose to construct a new kernel by atomizing the existing kernel functions to
achieve implicit feature weighting. Considering the examples shown in Fig. 15.1,
to get rid of the interference from the redundant or much less relevant feature, the
mapping can be further extended into a 6-dimensional space:

x̂ = (x1, εx1, x2, εx2, x
2
1 + εx2

2 , εx2
1 + x2

2)T ,
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Fig. 15.2 3-D projections of the new 6-D mapping where the two examples in Fig. 15.1 are
linearly solved by the purple planes: (a) x̃1 = x2 + εx1, x̃2 = 0, and x̃3 = x2

2 + ε2x2
1 ; (b)

x̃1 = x1 + εx2, x̃2 = υ(x2 + εx1), and x̃3 = (x2
1 + ε2x2

2 ) + υ(x2
2 + ε2x2

1 ), where υ is a small
positive weight

where a small ε can weaken the interference of one feature to the other in the last
two dimensions of x̂. As shown in Fig. 15.2a and b respectively corresponding to
Fig. 15.1a and b, the 6-D space is linearly projected to 3-D spaces for the purpose
of illustration, and the mapped samples are linearly solvable in the new 3-D spaces,
meaning linear solutions exist in spaces which are linearly transformed from the
6-D space defined by x̂.

Since implicit mappings defined by kernel functions are more favorable, for the
exact mapping x → x̃ defined above, its corresponding kernel function is:

K̃(xa, xb) =(xa
(1))T xb

(1) + (xa
(1))T xa

(1)(xb
(1))T xb

(1)

+ (xa
(2))T xb

(2) + (xa
(2))T xa

(2)(xb
(2))T xb

(2),

where x(1) = diag(1, ε) · x and x(2) = diag(ε, 1) · x. By substituting the original
kernel function K into the new kernel, it can be re-written as:

K̃(xa, xb) =K(diag(1, ε) · xa, diag(1, ε) · xb)

+ K(diag(ε, 1) · xa, diag(ε, 1) · xb),

where the first term and second term are original kernels with vectors scaled by
diag(1, ε) and diag(ε, 1), respectively. In other words, each terms scale down one
feature with a small ε and map x to a portion of the dimensions in x̃ which are
insensitive to that feature.

More generally, we define a scaling diagonal matrix Si(ε) with:

Si(ε) = diag(si) (15.2)
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and

si(j) =
⎧
⎨

⎩
1, j = i,

ε, j �= i,

where ε ∈ [0, 1]. For any existing kernel function K(xa, xb), we define a new
feature kernel function as:

Ki(xa, xb; ε) = K(Si(ε) · xa, Si(ε) · xb). (15.3)

Such feature kernel mainly maintains the sensitivity to the i-th feature in both xa
and xb, with other features scaled by ε. If ε = 1, such feature kernel is identical
to the original kernel. If ε = 0, the i-th feature is completely isolated since all the
other features are zero out from the original kernel.

Assuming that kernel K maps samples from an F -dimensional input space to a
d-dimensional space, which may be vulnerable to irrelevant or nonlinearly relevant
features, we now atomize K into the sum of F weighted feature kernels by assigning
one for each feature:

K̃(xa, xb; ε) =
F∑

i=1

viKi(xa, xb; ε). (15.4)

It will result in a mapping from the F -dimensional input space to another (d · F)-
dimensional space. In this much higher dimensional space, we are expecting that the
inner product of any pair of vectors can be expressed or approximated by a linear
combination of the feature kernels.

In addition, for the i-th feature kernel Ki , it mainly represents the information
provided by the i-th feature since the influence of other features in the corresponding
“axes” of the mapped space is scaled down if ε < 1 or completely removed if ε = 0.
Therefore, we propose to perform feature weighting via the weighting parameters
vi as demonstrated in (15.4). Larger |vi | means the i-th kernel is more important
in the kernel model. For example, by using ε = 0.1 as the scaling parameter, in
Fig. 15.2a, the kernel function corresponding to the projection is K̃ = 0 · K1 + K2
while in Fig. 15.2b, it is K̃ = K1 + υ · K2 where υ = 3/8. These two atomized
kernel functions clearly reflect the relevancy of the two features.

One of the advantages of this weighting scheme is that the weighting parameters
are much easier to manipulate compared to the schemes that directly apply
weighting parameters to the input vectors. Secondly, the parameter ε makes the
model more flexible by smoothly morphing from regular kernels (ε = 1) to feature
selection (ε = 0). Moreover, similar to the original kernel method, this weighting
scheme actually avoids defining explicit feature weighting by instead weighting the
linear combination of the feature kernels, which can be considered as an implicitly
defined nonlinear weighting scheme.
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For an existing kernel function K that satisfies Mercer’s condition [33], the newly
defined feature kernel Ki should also satisfy Mercer’s condition. As a result, after x
is normalized, for all square integrable g(x) we have:

∫

χ×χ

K̃(xa, xb; ε)g(xa)g(xb)dxadxa

=
F∑

i=1

∫

χ×χ

viKi(xa, xb; ε)g(xa)g(xb)dxadxa ≥ 0,

for all xa, xb ∈ χ as long as vi ≥ 0,∀i.

15.2.3 Learning Model with Feature Kernels

In SVM, the training model is often solved in its dual form and, by leveraging
Karush–Kuhn–Tucker (KKT) conditions, the prediction model is based upon the
following decision function:

y(x; w) =
N∑

i=1

wiK(x, xi), (15.5)

where {xi}Ni=1 are the training examples and wi are actually the Lagrange multipliers
referred to as αi in (15.1). The training process of learning methods using (15.5)
as their decision function is to infer all the parameters wi in (15.5) given the
corresponding targets {ti}Ni=1 of the training examples {xi}Ni=1.

Taking the error ei between ti and y(xi; w) into consideration, the kernel-based
machine can be written as:

t = Φw · w + e, (15.6)

where Φw is an N ×N matrix defined by Φw(i, j) = K(xi, xj), t is simply the target
vector with t(i) = ti , and e is the error vector for the N training samples. Learning
methods like SVM aim at minimizing e with fitting loss term and regularizing w
with smoothing regularization term simultaneously.

As previously mentioned, most popular kernel functions such as Gaussian kernel
(also known as radial basis function) and polynomial kernel are vulnerable to
features with complicated relevancy. For training data with F features, we define
a new learning model by embedding the sum of weighted feature kernels as a new
kernel function into (15.6) to handle feature relevancy:

t = Φwv
(ε) · (w ⊗ v) + e, (15.7)
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where Φwv
(ε) is an N × (NF) matrix defined by Φwv

(ε)(i, (j − 1)F + k) =
Kk(xi, xj; ε) with i, j ∈ [1, N ] and k ∈ [1, F ]. Besides, w ⊗ v in (15.7) is the
tensor product of vector w and v which yields an (NF) × 1 row vector with the
definition (w ⊗ v)((j − 1)F + k) = wjvk where j ∈ [1, N ] and k ∈ [1, F ].

A useful property of this new kernel machine is that the roles of w and v in the
model (15.7) are relatively symmetric and transposable. Model (15.6) can be derived
from model (15.7) by moving v from the tensor product to the design matrix defined
by Φw

(ε)(i, j) = ∑F
k=1 vkKk(xi, xj; ε) with i, j ∈ [1, N]. Similarly, the following

model can be derived from (15.7) by instead moving w to the design matrix:

t = Φv
(ε) · v + e, (15.8)

where Φv
(ε) is an N × F matrix defined by Φv

(ε)(i, k) = ∑N
j=1 wjKk(xi, xj; ε)

with i ∈ [1, N] and k ∈ [1, F ]. This property indicates that the exploration process
of w and v may be unified, which will be discussed in detail in the next section.

15.3 Sparse Relevance Kernel Machine

While the new kernel machine is capable of solving feature weighting during the
training process, the searching space of the solution is inflated by the number of
features. A sparse treatment is highly appealing since the sparsity may help to reduce
the complexity. And in the scenario of feature selection, that is, in the cases of ε = 0,
it may help to filter out irrelevant or redundant features as much as possible if v tends
to be sparse. Since Bayesian learning frameworks with sparse prior [30, 37, 38] are
capable of producing highly sparse models, we develop a sparse relevance kernel
machine under the Bayesian learning framework in this section.

15.3.1 Relevance Vector Machine

The relevance vector machine (RVM)[30] is a sparse Bayesian model providing
a viable probabilistic framework, whose Bayesian network model is shown in
Fig. 15.3.

Fig. 15.3 The network
model of the RVM where
Kij = K(xi, xj ). Circles
denote random variables and
squares denote deterministic
model parameters

it2σ

Nw

......
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2w
1α

2α

Nα

i j ij j it K w e= +Σ

2( | , )p t α σMaximize
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Given the input vectors {xn}Nn=1 and their corresponding targets {tn}Nn=1, the RVM
is used to probabilistically determine the model (15.6). The given target values are
modeled as independent Bernoulli random variables with the following probability
distribution:

P(t|w) =
N∏

i=1

σ [y(xi; w)]ti · σ [1 − y(xi; w)]1−ti , (15.9)

where σ is the sigmoid link function σ(y) = (1 + e−y)−1.
Different from deterministic learning models (e.g., the SVM) that compute w

directly, the RVM defines the prior distribution of w as independent zero-mean
Gaussian random variables with variance α, and compute α instead of w in the
training process:

p(w|α) =
N∏

n=1

N (0, α−1
n ). (15.10)

If αi < ∞, wi is called a relevance vector since it has a variance greater than
zero, allowing xi making contributions to the decision function. Note that the RVM
performs prediction with the posterior probability of the internal variables (i.e., the
weights). Via convolution of Gaussian distributions, the covariance and mean of the
posterior p(w|t,α) can be shown to be respectively:

Σ = (ΦT Γ Φ + A)−1 (15.11)

μ = ΣΦT Γ t, (15.12)

where A = diag(α), Γ = diag(γ ), and γ (i) = σ [y(xi; w)] · σ [1 − y(xi; w)].
The objective of the Bayesian network is to find the most probable model param-

eters with the given training samples, i.e., to maximize the posterior probability
p(w,α|t). Based on the Bayes’ rule, such objective is equivalent to:

arg max
α

p(t|α). (15.13)

A training algorithm is proposed in [32] to compute the optimal α. After the training,
for any x̂, its predicted probability of being labeled 1 is:

σ(ŷ) = σ(μT φ(x̂)) (15.14)

where φ(x̂) is a vector of size N whose i-th entry is defined by φ(x̂)(i) = K(x̂, xi).
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15.3.2 Bayesian Learning Model for SRKM

The RVM is a learning model based on the decision function (15.5) focus-
ing on producing a sparse w. Under the same framework, a feature selection
technique called relevance feature vector machine (RFVM) [6] is proposed to
exchange the roles of samples and features by defining the “feature vector” fi =
(x1(i), x2(i), . . . , xF (i))T and a new design matrix Φ ′(i, j) = K(fi , fj ). This is
a regularization-based feature selection method, which focuses on building a filter
method [5] by ranking the features.

To achieve high model accuracy and high quality feature weighting with the
new kernel machine (15.7), we propose a sparse relevance kernel machine (SRKM)
whose conceptual structure is shown in Fig. 15.4.

Without using the new kernel machine model (15.7), learning method with
embedded feature weighting is often realized by directly assigning weights v to
the parameters. However, as we discussed previously, since most kernel functions
are nonlinear, it is extremely difficult to develop the models in the Bayesian learning
contexts. For example, by assigning Gaussian prior to v in a similar way p(v|β) =∏F

n=1 N (0, β−1
n ), the Bayesian network described in Fig. 15.3 is extended to derive

the new model on the left of Fig. 15.5. Assuming Gaussian kernel with linear direct
feature weighting

α

β

β

α

u w v= ·

RRVM

RFVM

w Feature

Vector

v

SRKM

Fig. 15.4 The conceptual SRKM model. Small black dots denote training data, with each row
representing a vector and each column representing a feature. Circles denote random variables and
squares denote deterministic model parameters
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Fig. 15.5 Development of
SRKM Bayesian network
where Kijk = Kk(xi , xj ; ε).
Circles denote random
variables and squares denote
deterministic model
parameters it

2σjwjα

kvkβ
Non-linear

2( | , , )p t α β σNo analytical expression

F

N

K
Bilinear

it

2σ

jku

jα

kβ
N F·

F

N

jk j ku w v=

Linear

Analytically computable

∼
∼∼

K(xi, xj) = e−γ ‖diag(v)·(xi−xj)‖2
,

is employed, the deterministic relationship from w and v to t is highly nonlinear. As
a result, the following optimization objective of the Bayesian training process is not
analytically computable and hence hinders the optimization-based training process:

p(t|α,β, σ 2) =
∫∫

p(t|w, v, σ 2) · p(w|α) · p(v|β)dwdv. (15.15)

As the first step towards developing the SRKM, we embed the new kernel
machine (15.7) into the Bayesian learning framework to handle the feature weight-
ing problem. Here we treat ε in the feature kernel as a kernel parameter pre-defined
before the training process, similar to the γ parameter in the Gaussian kernel, which
can be selected by standard processes like cross validation. Leveraging the relevance
kernel machine in the Bayesian network helps to simplify the highly nonlinear
deterministic relationships into a bilinear form. As described in (15.7), t can be
expressed as linear combinations of a series of w(j)v(k) terms.

However, inference in Bayesian networks with nonlinear or even bilinear deter-
ministic relationships requires great effort like piece-wise linearization [7] or
dynamic discretization [23] to deal with the nonlinearity, which may greatly boost
the complexity of the learning model. To address this problem, instead of defining w
and v as separate Gaussian random variables, we replace the term w(j)v(k) with a
single random variable ujk for all j ∈ [1, N] and k ∈ [1, F ], which results in linear
deterministic relationships from ujk to t. If we define a new vector u of size (N ·F)

whose entry u((j − 1)N + k) = ujk = w(j) · v(j), the model becomes:

t = Φu
(ε) · u + e, (15.16)

where the design matrix Φu
(ε) is identical to Φwv

(ε) in (15.7).
In the RVM, the zero-mean Gaussian prior distribution of w tends to help the

model converge to a sparse w since the resulting marginal prior distribution over w
is the product of Student-t distributions. Similarly, to achieve sparsity in u, we also
define their prior distributions as independent zero-mean Gaussian distributions.
Considering the nature of u, if uj,k is irrelevant, meaning the distribution of uj,k



15 Performance Dependency Analysis of AMS Circuits 435

is infinitely peaked at zero, either the i-th sample ({uj,k}Fk=1) or the j -th parameter
({uj,k}Nj=1) should be irrelevant as well. To reflect this, we define a proper prior
for u as:

p(u|α,β) =
N∏

j=1

F∏

k=1

N (0, α−1
j β−1

k ), (15.17)

which leads to our proposed computable linear Bayesian network shown on the right
of Fig. 15.5 and our conceptual model described in Fig. 15.4. An infinite αjβk =
∞ means ujk = 0 and the corresponding feature kernel is irrelevant to the final
decision function. In addition, if αj → ∞, all the {uj,k}Fk=1 are zero, meaning the
j -th sample is discarded from the set of relevance vectors. Likewise, if βk < ∞,
the k-th parameter is relevant and there should be at least one non-zero ui,j for
i ∈ [1, N ].

Under the same Bayesian inference framework, the posterior covariance and
mean of p(u|t,α,β, σ 2) in the proposed Bayesian network are found to be:

Σu = (σ−2(Φu
(ε))T Φu

(ε) + Au)−1, (15.18)

μu = σ−2Σu(Φu
(ε))T t, (15.19)

where Au = diag(α1β1, α1β2, . . . , αNβF ) and Φu
(ε) is the new design matrix

defined in (15.16). The formulas (15.18) and (15.19) are in the same form as the
posterior covariance and mean of w in the RVM, and consequently solvable with
the existing RVM algorithms.

The SRKM classification model behaves analogously to the regression model but
using a Bernoulli likelihood instead of Gaussian for the target with the following
sigmoid link function:

(y) = 1

1 + e−y
. (15.20)

As a result, the Bernoulli likelihood is:

P(t|u) =
N∏

i=1

[y(xi; u)]ti · [1 − y(xi; u)]1−ti , (15.21)

where the targets ti ∈ {0, 1} are for binary classifications. With likelihood in the
form of (15.21), there is no closed-form expressions for u and hence the Laplace
approximation procedure [21, 32] should be utilized and nested in each iteration of
the training.
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15.3.3 Efficient Training Algorithm

The marginal likelihood maximization [32] required in training the RVM model is
solved in an iterative process similar to the well-known expectation maximization
(EM) algorithm. Due to the required matrix operations, the worst case computa-
tional complexity in each iteration is O(N2F +N2M) [14] if there are M relevance
vectors in that iteration and F features in total. By performing one-time pre-
computation of the full N × N design matrix Φ with the complexity of O(N2F)

and pre-computing (ΦT Φ) (or normalizing Φ as the implementation of [31]), the
complexity of each iteration can be reduced to O(NM2) by using O(N2) memory
instead of O(NM).

For the SRKM, by solving (15.16) with this algorithm, since the size of the vector
u is (N · F), a large number of features F will blow the worst case computational
complexity for each iteration from O(NM2) to O(NFM2E2) if there are M

relevance vectors and E relevance features in that iteration.
To address this computational challenge, our proposed efficient algorithm lever-

ages the property that w and v are interchangeable in the bilinear Bayesian
network (15.7), and that either vectors can be merged into the design matrix to
reduce our model to (15.6) or (15.8). As Fig. 15.6 shows, fixing α and moving the
resulting expectation of w into the design matrix (i.e., converting Φ

(ε)
u in (15.16) to

Φ
(ε)
v in (15.8)) will reduce every column in Fig. 15.6 to a single weight vj with its

prior βj . Similarly, row-wise reduction by fixing β converts the proposed network
to another RVM network with w and α.

The above discussion suggests an efficient two-level iterative training process. In
each iteration of the top level, we reduce the model either row-wise or column-wise,
and update α or β subsequently. In the second level, the original algorithm [32] can
be employed to solve either Model (15.6) or Model (15.8). The complexity in each
iteration is now reduced to either O(NM2) or O(FE2).
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Fig. 15.6 Efficient SRKM model with network reduction. Circles denote random variables and
squares denote deterministic model parameters
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15.4 Experiments

To demonstrate the superiority of the proposed SRKM, we compare its performance
with popular learning-based techniques including the SVM [34] and the RVM [30].
We also compare the SRKM with the RFVM [6] in terms of parameter (feature)
ranking. For the purposes of parameter ranking and selection, we use feature kernel
with ε = 0 in all the experiments.

15.4.1 Variability Analysis of an LDO

Building an accurate regression model for a given analog performance and per-
forming feature ranking among all sorts of process parameters are key to the
understanding of the impacts of process variabilities on analog circuits. Since
simulations or measurements are usually expensive, it is of great significance to
build an accurate regression model and obtain reliable parameter weighting with
a moderate amount of samples, which turns out to be a task well handled by the
proposed method.

We investigate the process variations in a realistic low-dropout regulator (LDO)
design (Fig. 15.7) proposed in [16]. We build SRKMs to analyze the impact of
process variations on LDO specifications including its quiescent current, undershoot
of the output voltage Vout, and load regulation. Channel length variations of all
transistors in the LDO are modeled at the SPICE level using a commercial 90 nm
CMOS technology design kit. We use various numbers of simulation samples to
build a regression model relating the model process parameters with each targeted
specification and test the accuracies of these models using a testing set of 1000
simulation samples. The results are shown in Fig. 15.8.
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Fig. 15.7 Low-dropout regulator (LDO)
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Fig. 15.8 Regression
performance comparison
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In this experiment, normalized mean square error (NMSE) is used as the metric
to evaluate the performance of the predictors trained with different techniques. As
Fig. 15.8 shows, the SRKM out-performs the popular SVM and RVM in all cases
by achieving one order of magnitude lower NMSEs.

We compare the ranking produced by the SRKM and the RFVM on feature
ranking in Fig. 15.10. To evaluate the quality of the ranking, for each design
specification, we train two RVMs only in the process parameters selected by SRKM
and RFVM, respectively. A parameter is selected by SRKM or RFVM if its expected
weight is greater than 0.01. Such procedure is firstly applied to the regression
model with 20 channel length variations, i.e., the three columns on the left of
Fig. 15.9. Then, the same procedure is applied to an expanded full parameter set
of 60 parameters involving variations of each transistor’s channel length, oxide
thickness, and threshold voltage (on the right of Fig. 15.9). The resulting NMSEs
and the numbers of parameters selected indicate that the SRKM produces more
reliable parameter weighting and reaches similar sparsity compared to the RFVM.

We use design knowledge to provide further insights and validation for the
parameter rankings of the 20 channel length variations computed by the SRKM. For
example, based on the analysis in [15] a majority portion of the multi-loop LDO’s
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Fig. 15.10 Weights of
transistor’s channel length
variation in the model of: (a)
quiescent current; (b)
undershoot; (c) load
regulation. Red lines
represent the 95% confidence
intervals estimated by SRKM
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quiescent current is consumed by the fastest two loops in the output stage and hence
the variation on M2 has significant impact on the quiescent current. Moreover,
variations on M3, M7, M8, and M9 may lead to mismatches and considerable
changes at the two output nodes of the error amplifier, one of which is Vg of M2.
This analysis matches the ranking shown in Fig. 15.10a.

The undershoot of the LDO is mainly determined by the load capacitor and
the loop bandwidth, which is further determined by the error amplifier (involving
M3 ∼ M10), the fast loop in the output stage (M12), and the in-band zeros locations
defined as:
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ωLCZ ≈
√

gm1gm11ga

gm2CC2(CC1 + CC3)
, (15.22)

where ga is the output admittance of the error amplifier defined by the gm of M7 ∼
M10. The ranking of the SRKM in Fig. 15.10b is reliable since it captures all these
relevant variations.

Load regulation of the LDO is mainly determined by the DC loop gain, which is
the product of the gains of all stages in the loop. The gain of the EA stage is inversely
proportional to the gm of M7 ∼ M10 and the second stage is comprised of M17
and M11. Again, the ranking of the SRKM as shown in Fig. 15.10c successfully
identifies all these important variations.

15.4.2 PLL BIST Scheme Optimization

Built-in-self-test (BIST) is very effective in detecting operational failures of
deployed analog/mixed-signal circuits. Based on the concept of alternative test,
efficient BIST solutions can be formed by collecting low-cost test signatures
and relating the signatures to targeted performance specifications using statistical
prediction models. The effectiveness of BIST heavily depends on the quality of
the selected signatures and the tradeoffs between accuracy, overhead, and test
time. We apply the RFVM to the BIST of a charge-pump PLL targeting three
key specifications: lock-time (LT), frequency overshoot (OVS), and jitter (JT)
(Table 15.1).

Figure 15.11 shows the PLL along with three BIST schemes using various test
signatures. Jitter, frequency overshoot, and lock-time are important specifications
but cannot be easily measured directly on the chip. To capture failures in those
specifications, the first candidate BIST scheme [40] collects the readouts of the
counter in the divider as its test signature, while the second scheme [11] collects
the accumulated up and dn phase detector outputs via integrators and time-to-digital
converters (TDCs). The third scheme is an example of IDDQ testing, measuring
the quiescent currents of the charge-pump (CP) and the voltage control oscillator
(VCO) as test signatures similar to the approach of [22].

The first two schemes operate in a special test mode which instead of feeding
back the divider output, it first feeds the one-buffer delayed reference clock to the
phase detector for 8 reference cycles with a cycle time of 0.1 µs. Then, the reference

Table 15.1 BIST scheme synthesis

Original best Synthesized signatures Test time (µs) Test time Optimized
Spec. accuracy Sch.1 Sch.2 Sch.3 Sch.1&2 Sch.3 Total reduction accuracy

JT 97.22% 1–3 1 VCO 0.3 0.6 0.9 43.75% 99.98%

OVS 98.00% 1–3 1–7 CP 0.4 0.6 1.0 37.50% 99.88%

LT 96.40% 1–4 1–2 VCO 0.4 0.6 1.0 37.50% 99.95%
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clock input is replaced by the double delayed reference clock for another 8 cycles.
Each cycle generates one signature for Scheme 1 and two for Scheme 2, making a
total of 16 and 32 signatures for Scheme 1 and 2, respectively. Scheme 3 reads out
two signatures, i.e., the CP and VCO quiescent currents, in the quiescent mode.

Recently, learning-based classifiers like the SVM have been trained to perform
the failure detection in BIST [4, 40]. To make better usage of the collected
test signatures, we apply the proposed SRKM in each scheme. We fit the target
specification into a sigmoid function before we employ the SRKM as a classier for
failure detection. Three classification techniques, the SVM, RVM, and SRKM, are
trained with 200 simulation samples and tested with 4000 samples. The classifying
errors are compared in Fig. 15.12 which shows the superior BIST classifier accuracy
of the proposed SRKM.
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In addition, the SRKM also produces reliable ranking among test signatures,
which can be further leveraged to improve the efficiency of BIST schemes. For
example, the SRKM ranks the 16 test signatures in Scheme 1 as shown in Fig. 15.13
when building the classifier for jitter failure detection. The tenth signature is the
last one with a significant weight. After that, the remaining six signatures are of
little importance and can be considered as redundant. Using the same procedure, we
reduce the test time for each of the three specifications for Scheme 1 as reported in
Table 15.2.

Assuming that realizing all three schemes on-chip does not lead to significant
overhead, we seek to improve BIST accuracy by leveraging the signatures of all the
schemes. While combing all the signatures can offer the best accuracy, it may not be
completely efficient due to the existence of redundant signatures. For this, we train
an SRKM on all the signatures across the three schemes to predict the jitter. Based
on the signature ranking shown in Fig. 15.14, we collect the first three signatures
in Scheme 1 and the first signature in Scheme 2. Although the third last signature
in Scheme 2 also possesses a notable weight, collecting such signature is not cost-
effective in terms of test time, and thus it is discarded. For Scheme 3, only the quies-
cent current of VCO is selected, which can be measured in 0.6µs according to [22].

Fig. 15.13 Signature ranking
for jitter prediction with
Scheme 1

Shorter test time Pruned

Table 15.2 Test time optimization of Scheme 1

Spec. Original accuracy Selected readouts Resulting accuracy Test time reduction

JT 97.22% 1–10 96.20% 37.5%

OVS 95.78% 1–12 94.89% 25.0%

LT 96.20% 1–6 97.00% 62.5%

Fig. 15.14 Signature ranking
for jitter prediction with all
three schemes

Selected
Pruned

Scheme 1 Scheme 2 3

Pruned

Selected IDDQ of VCO
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Based on these five selected signatures, we synthesize an optimized combined
BIST scheme for each specification and show the results in Table 15.1. As can be
been, by using the proposed SRKM, the BIST accuracy can be boosted to over
99.88% with a test time reduction of about 40%.

15.4.3 Binary Classification for Functional Check

The above two examples illustrate the effectiveness of the regression version of
SRKM. This experiment demonstrates the superiority of the proposed SRKM
algorithm for classification by applying it to analyzing a commercial dual-lane
data communication AMS system shown in Fig. 15.15. As a product designed for
automotive applications, functional safety is a key requirement. One of the safety
features, the thermal shutdown (TSD) function, is investigated in this experiment to
analyze the impact of process variations on this feature.

Figure 15.15 shows the functional blocks that are electrically related to the TSD
feature. The BG block is a bandgap reference that provides temperature independent
voltage reference to the IREF block. The IREF block provides reference currents to
multiple blocks, including the TX, RX, and TSD blocks. The Lane 1 and Lane 2 in
the system share the same design, including the TSD implementation. The shutdown
temperature threshold is designed to be 190 ◦C, meaning both Lane 1 and Lane 2
should turn off their driver to the bus when the temperature exceeds 190 ◦C.

We collected results from 1000 Monte Carlo simulations, and label them as 1 or
0 according to whether the lane can turn off the driver (TX block) at 190 ◦C or not.
We use half of the simulations as the training data to build an SRKM classification
model for each lane, and use the other half to test the performance of the trained
classifier. Based on the process design kit (PDK) we use, there are 15,015 process
parameters involved in each simulation. In other words, our goal is to build 15,015-
dimensional classifiers with merely 500 samples.

As shown in Table. 15.3, the widely used SVM can only produce a classifier
with an accuracy of about 60%, while the proposed SRKM can achieve an accuracy
of around 85%. For the trained SVM model, all 500 samples become the support
vectors, indicating that the SVM cannot find the regularity from the given training

Fig. 15.15 Block diagram of
a dual-lane data
communication AMS system

TX

RX
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LOGIC

BG
Lane 1

Lane 2(Same as Lane 1)



444 H. Lin et al.

data. On the contrary, the SRKM successfully achieves sparsity in the vector space
(2 relevance vectors for Lane 1 and 23 for Lane 2 out of 500 samples) and the feature
space (38 relevance features for Lane 1 and 45 relevance features for Lane 2 out of
15,015 process parameters).

In Fig. 15.16, we sum up the produced SRKM feature weights in each functional
blocks and lanes to reflect the block-wise impact of process variations. For the
SRKM trained for the Lane 1 TSD, relatively small feature weights have been
assigned to the process parameters from Lane 2, which matches the structure of the
system, where Lane 2 is indeed not directly connected to Lane 1 and hence should
have minimal impact on the Lane 1 TSD. Similarly, in the SRKM trained for Lane
2 TSD, the impact of process parameters from Lane 1 is also minimal.

Based on the block-wise break-down of the sum of feature weights, it implies
that the process parameters from the BG and IREF blocks, which determine the
reference current of the TSD block, are more critical than the process parameters
from the TSD block, which is the implementation of the TSD function. This
also matches with the design intuition since the TSD block mainly involves
components such as comparators whose performances are more resilient with
respect to process variations, while currents are usually more vulnerable to process
variations. Therefore, it can be anticipated that the feature weighting results are
reliable.

Table 15.3 Learning model
performance comparison
(SV/RV support
vectors/relevance vectors; RF
relevance features)

Model Accuracy # SV/RV # RF

Lane 1 SVM 56.4% 500 –

SRKM 85.8% 2 38

Lane 2 SVM 61.0% 500 –

SRKM 84.6% 23 45

Fig. 15.16 Process variation
impacts on TSD of various
blocks
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15.5 Conclusions

This paper proposes a novel sparse Bayesian learning framework named sparse
relevance kernel machine to capture circuit characteristics and analyze circuit
performance dependencies on assorted parameters or signatures via a statistical
model. The advantages of the proposed framework are demonstrated in examples
including statistical variability modeling of an LDO, a BIST scheme optimization
of a charge-pump PLL, and building statistical variability models for a commercial
automotive interface design.

The framework of the learning model was originally developed in our earlier
works [18, 20]. Since then, we have extended the framework to handle both
regression and classification problems, and have explored potentials of the new
learning model in practical circuit applications. One major limitation of the current
learning model is the computational complexity. Although we developed an iterative
algorithm to remedy the complexity increased by the feature kernel weighting
mechanism, based on the discussion in Sect. 15.3.3, the computational complexity
of SRKM is one order higher than the widely used SVM in each iteration. And the
overall convergence is also slower since SRKM has two levels of iterations. As a
result, to solve applications with huge amount of data, the training algorithm needs
to be further optimized for better efficiency.

Moreover, the feature kernel weighting mechanism proposed in Sect. 15.2 is
very flexible. Since sparsity is very useful in our applications, we developed the
learning model of SRKM in the Bayesian learning framework, but the feature kernel
weighting mechanism can definitely fit into other kernel-based learning framework
such as sequential minimal optimization (SMO), which poses potentials in other
application scenarios where sparsity is not in need.

Acknowledgements This material is based upon work supported by the Semiconductor Research
Corporation (SRC) through Texas Analog Center of Excellence at the University of Texas at Dallas
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