
Chapter 12
Fast Statistical Analysis of Rare Circuit
Failure Events

Jun Tao, Shupeng Sun, Xin Li, Hongzhou Liu, Kangsheng Luo, Ben Gu,
and Xuan Zeng

12.1 Introduction

As integrated circuit (IC) technology advances, the ever increasing process variation
has become a growing concern [5]. A complex IC, containing numerous memory
components, is required to meet the design specification not only at the nominal
process corner, but also under large-scale process variations. To achieve sufficiently
high yield, the failure rate of each individual memory component must be extremely
small. For instance, the failure rate of an SRAM bit-cell must be less than

J. Tao (�) · X. Zeng (�)
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University,
Shanghai, China
e-mail: taojun@fudan.edu.cn; xzeng@fudan.edu.cn

S. Sun
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA,
USA
e-mail: shupengs@ece.cmu.edu

X. Li (�)
Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
e-mail: xinli.ece@duke.edu

H. Liu · K. Luo
Cadence Design Systems, Inc., Pittsburgh, PA, USA
e-mail: hliu@cadence.com; ksluo@cadence.com

B. Gu
Cadence Design Systems, Inc., Austin, TX, USA
e-mail: gxin@cadence.com

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_12

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_12&domain=pdf
mailto:taojun@fudan.edu.cn
mailto:xzeng@fudan.edu.cn
mailto:shupengs@ece.cmu.edu
mailto:xinli.ece@duke.edu
mailto:hliu@cadence.com
mailto:ksluo@cadence.com
mailto:gxin@cadence.com
https://doi.org/10.1007/978-3-030-04666-8_12

350 J. Tao et al.

10−8∼10−6 for a typical SRAM design [2, 12]. Due to this reason, efficiently
analyzing the rare failure event for the individual memory component becomes an
important task for the IC design community.

The simple way to estimate the failure probability is to apply the well-known
crude Monte Carlo (CMC) technique [3]. CMC directly draws random samples
from the probability density function (PDF) that models device-level variations,
and performs a transistor-level simulation to evaluate the performance value for
each sample. When CMC is applied to estimate an extremely small failure rate
(e.g., 10−8∼10−6), most random samples do not fall into the failure region. Hence,
a large number of (e.g., 107∼109) samples are needed to accurately estimate the
small failure probability, which implies that CMC can be extremely expensive for
our application of rare failure rate estimation.

To improve the sampling efficiency, importance sampling (IS) methods have been
proposed in the literature [7, 13, 15, 17, 20]. Instead of sampling the original PDF,
IS samples a distorted PDF to get more samples in the important failure region. The
efficiency achieved by IS highly depends on the choice of the distorted PDF. The
traditional IS methods apply several heuristics to construct a distorted PDF that can
capture the most important failure region in the variation space. Such a goal, though
easy to achieve in a low-dimensional variation space, is extremely difficult to fulfill
when a large number of random variables are used to model process variations.

Another approach to improving the sampling efficiency, referred to as statistical
blockade, has recently been proposed [18]. This approach first builds a classifier
with a number of transistor-level simulations, and then draws random samples from
the original PDF. Unlike CMC where all the samples are evaluated by transistor-
level simulations, statistical blockade only simulates the samples that are likely to
fall into the failure region or close to the failure boundary based on the classifier.
The efficiency achieved by this approach highly depends on the accuracy of the
classifier. If the variation space is high-dimensional, a large number of transistor-
level simulations are needed to build an accurate classifier, which makes the
statistical blockade method quickly intractable.

In addition to the aforementioned statistical methods, several deterministic
approaches have also been proposed to efficiently estimate the rare failure prob-
ability [10, 14]. These methods first find the failure boundary, and then calculate
the failure probability by integrating the PDF over the failure region in the
variation space. Though efficient in a low-dimensional variation space, it is often
computationally expensive to accurately determine the failure boundary in a high-
dimensional space especially if the boundary has a complicated shape (e.g.,
non-convex or even discontinuous).

Most of these traditional methods [7, 9, 10, 13–15, 17, 18, 20, 22, 23] have been
successfully applied to SRAM bit-cells to estimate their rare failure rates where
only a small number of (e.g., 6∼20) independent random variables are used to model
process variations and, hence, the corresponding variation space is low-dimensional.
It has been demonstrated in the literature that estimating the rare failure probability

12 Fast Statistical Analysis of Rare Circuit Failure Events 351

in a high-dimensional space (e.g., hundreds of independent random variables to
model the device-level variations for SRAM) becomes increasingly important [21].
Unfortunately, such a high-dimensional problem cannot be efficiently handled by
most traditional methods. It, in turn, poses an immediate need of developing a
new CAD tool to accurately capture the rare failure events in a high-dimensional
variation space with low computational cost.

To address this technical challenge, we first describe a novel subset simulation
(SUS) technique. The key idea of SUS, borrowed from the statistics community
[1, 6, 11], is to express the rare failure probability as the product of several large
conditional probabilities by introducing a number of intermediate failure events.
As such, the original problem of rare failure probability estimation is cast to
an equivalent problem of estimating a sequence of conditional probabilities via
multiple phases. Since these conditional probabilities are relatively large, they are
substantially easier to estimate than the original rare failure rate.

When implementing the SUS method, it is difficult, if not impossible, to directly
draw random samples from the conditional PDFs and estimate the conditional
probabilities, since these conditional PDFs are unknown in advance. To address
this issue, a modified Metropolis (MM) algorithm is adopted from the literature
[1] to generate random samples by constructing a number of Markov chains. The
conditional probabilities of interest are then estimated from these random samples.
Unlike most traditional techniques [7, 9, 10, 13–15, 17, 18, 20, 22, 23] that suffer
from the dimensionality issue, SUS can be efficiently applied to high-dimensional
problems, which will be demonstrated by the experimental results in Sect. 12.2.

To define the intermediate failure events required by SUS, the performance
of interest (PoI) must be continuous. In other words, SUS can only analyze a
continuous PoI. For many rare failure events, however, PoIs are discrete (e.g., the
output of a voltage-mode sense amplifier). Realizing this limitation, we further
describe a scaled-sigma sampling (SSS) approach to efficiently estimate the rare
failure rates for discrete PoIs in a high-dimensional space. SSS is particularly
developed to address the following two fundamental questions: (1) how to efficiently
draw random samples from the rare failure region, and (2) how to estimate the rare
failure rate based on these random samples. Unlike CMC that directly samples the
variation space and therefore only few samples fall into the failure region, SSS draws
random samples from a distorted PDF for which the standard deviation (i.e., sigma)
is scaled up. Conceptually, it is equivalent to increasing the magnitude of process
variations. As a result, a large number of samples can now fall into the failure region.
Once the distorted random samples are generated, an analytical model derived from
the theorem of “soft maximum” is optimally fitted by applying maximum likelihood
estimation (MLE). Next, the failure rate can be efficiently estimated from the fitted
model.

The remainder of this chapter is organized as follows. In Sect. 12.2, we will
summarize the SUS approach and, next, the SSS approach will be presented in
Sect. 12.3. Finally, we conclude in Sect. 12.4.

352 J. Tao et al.

12.2 Subset Simulation

Suppose that the vector

x =
[

x1 x2 · · · xM

]T
(12.1)

is an M-dimensional random variable modeling device-level process variations. In
a process design kit, the random variables {xm;m = 1, 2, . . . ,M} in (12.1) are
typically modeled as a jointly Normal distribution [7, 9, 10, 13–15, 17, 18, 20, 22,
23]. Without loss of generality, we further assume that {xm;m = 1, 2, . . . ,M} are
mutually independent and standard Normal (i.e., with zero mean and unit variance)
and its joint PDF is

f (x) =
M∏

m=1

pm (xm) =
M∏

m=1

⎡
⎣ 1√

2π
· exp

(
−x2

m

2

)⎤
⎦ =

exp

(
− ‖x‖2

2

/
2

)

(√
2π
)M

,

(12.2)
where pm (xm) is the 1-D PDF for xm, and ‖ • ‖2 denotes the L2-norm of a vector.
Any correlated random variables that are jointly Normal can be transformed to
the independent random variables {xm;m = 1, 2, . . . , M} by principal component
analysis [3]. Then, the failure rate of a circuit can be mathematically represented as:

PF = Pr (x ∈ �) =
∫

x∈�

f (x) · dx, (12.3)

where � denotes the failure region, i.e., the subset of the variation space where the
PoI does not meet the specification.

Instead of directly estimating the rare failure probability PF , SUS expresses PF

as the product of several large conditional probabilities by introducing a number
of intermediate failure events in the variation space. Without loss of generality, we
define K intermediate failure events {�k; k = 1, 2, . . . , K} as:

�1 ⊃ �2 ⊃ · · · ⊃ �K−1 ⊃ �K = �. (12.4)

Based on (12.4), we can express PF in (12.3) as:

PF = Pr (x ∈ �) = Pr
(
x ∈ �K, x ∈ �K−1

)
. (12.5)

Equation (12.5) can be re-written as:

PF = Pr
(

x ∈ �K

∣∣x ∈ �K−1

)
· Pr
(
x ∈ �K−1

)
. (12.6)

12 Fast Statistical Analysis of Rare Circuit Failure Events 353

Similarly, we can express Pr
(
x ∈ �K−1

)
as:

Pr
(
x ∈ �K−1

) = Pr
(

x ∈ �K−1
∣∣x ∈ �K−2

)
· Pr
(
x ∈ �K−2

)
. (12.7)

From (12.4), (12.6), and (12.7), we can easily derive:

PF = Pr (x ∈ �1) ·
K∏

k=2

Pr
(

x ∈ �k

∣∣x ∈ �k−1

)
=

K∏
k=1

Pk, (12.8)

where

P1 = Pr (x ∈ �1) , (12.9)

Pk = Pr
(

x ∈ �k

∣∣x ∈ �k−1

)
(k = 2, 3, . . . , K) . (12.10)

If {�k; k = 1, 2, . . . , K} are properly chosen, all the probabilities {Pk; k =
1, 2, . . . , K} are large and can be efficiently estimated. Once {Pk; k = 1, 2, . . . , K}
are known, the rare failure probability PF can be easily calculated by (12.8).

Note that the failure events {�k; k = 1, 2, . . . , K} are extremely difficult to
specify in a high-dimensional variation space. For this reason, we do not directly
define {�k; k = 1, 2, . . . , K} in the variation space. Instead, we utilize their
corresponding subsets {Fk; k = 1, 2, . . . , K} in the performance space:

Fk = {y(x); x ∈ �k

}
(k = 1, 2, . . . , K) , (12.11)

where y(x) denotes the PoI as a function of x. Since y(x) is typically a scalar,
{Fk; k = 1, 2, . . . , K} are just one-dimensional subsets of R and, therefore, easy
to be specified. Once {Fk; k = 1, 2, . . . , K} are determined, {�k; k = 1, 2, . . . , K}
are implicitly known. For instance, to know whether a given x belongs to �k , we
first run a transistor-level simulation to evaluate y(x). If y(x) belongs to Fk , x is
inside �k . Otherwise, x is outside �k .

In what follows, we will use a simple 2-D example to intuitively illustrate the
basic flow of SUS. Figure 12.1 shows this 2-D example where two random variables
x = [x1 x2]T are used to model the device-level process variations, and �1 and
�2 denote the first two subsets in (12.4). Note that �1 and �2 are depicted for
illustration purposes in this example. In practice, we do not need to explicitly know
�1 and �2, as previously explained.

Our objective is to estimate the probabilities {Pk; k = 1, 2, . . . , K} via multiple
phases. Starting from the 1st phase, we simply draw L1 independent random
samples {x(1,l); l = 1, 2, . . . , L1} from the PDF f (x) to estimate P1. Here, the
superscript “1” of the symbol x(1,l) refers to the 1st phase. Among these L1 samples,
we identify a subset of samples {x(1,t)

F ; t = 1, 2, . . . , T1} that fall into �1, where T1
denotes the total number of samples in this subset. As shown in Fig. 12.1(a), the red

354 J. Tao et al.

Fig. 12.1 A 2-D example is
used to illustrate the
procedure of probability
estimation via multiple
phases by using SUS: (a)
generating MC samples and
estimating P1 in the 1st
phase, and (b) generating
MCMC samples and
estimating P2 in the 2nd
phase

0 x1

x2 Ω1

x1

x2 Ω1

0

Ω2

(a)

(b)

points represent the samples that belong to �1 and the green points represent the
samples that are out of �1. In this case, P1 can be estimated as:

P SUS
1 = 1

L1
·

L1∑
l=1

I�1

[
x(1,l)

]
= T1

L1
, (12.12)

where P SUS
1 denotes the estimated value of P1, and I�1(x) represents the indicator

function

I�1(x) =
{

1 x ∈ �1

0 x /∈ �1
. (12.13)

If P1 is large, it can be accurately estimated with a small number of random samples
(e.g., L1 is around 102∼103).

12 Fast Statistical Analysis of Rare Circuit Failure Events 355

Next, in the 2nd phase, we need to estimate the conditional probability P2 =
Pr(x ∈ �2|x ∈ �1). Towards this goal, one simple idea is to directly draw random
samples from the conditional PDF f (x|x ∈ �1) and then compute the mean of the
indicator function I�2(x)

I�2(x) =
{

1 x ∈ �2

0 x /∈ �2
. (12.14)

This approach, however, is practically infeasible since f (x|x ∈ �1) is unknown in
advance. To address this issue, we apply a modified Metropolis (MM) algorithm [1]
to generate a set of random samples that follow the conditional PDF f (x|x ∈ �1).

MM is a Markov chain Monte Carlo (MCMC) technique [3]. Starting from each
of the samples {x(1,t)

F ; t = 1, 2, . . . , T1} that fall into �1 in the 1st phase, MM
generates a sequence of samples that form a Markov chain. In other words, there are
T1 independently generated Markov chains in total and x(1,t)

F is the 1st sample of
the t-th Markov chain. To clearly explain the MM algorithm, we define the symbol
x(2,t,1) = x(1,t)

F , where t ∈ {1, 2, . . . , T1}. The superscripts “2” and “1” of x(2,t,1)

refer to the 2nd phase and the 1st sample of the Markov chain, respectively.
For our 2-D example, we start from x(2,1,1) = [x(2,1,1)

1 x
(2,1,1)
2]T to form the 1st

Markov chain. To generate the 2nd sample x(2,1,2) from x(2,1,1), we first randomly
sample a new value xNEW

1 from a 1-D transition PDF q1[xNEW
1 |x(2,1,1)

1] that must
satisfy the following condition [1]:

q1

[
xNEW

1

∣∣∣x(2,1,1)
1

]
= q1

[
x

(2,1,1)
1

∣∣∣xNEW
1

]
(12.15)

There are many possible ways to define q1[xNEW
1 |x(2,1,1)

1] in (12.15) [1]. For
example, a 1-D Normal PDF can be used

q1

[
xNEW

1

∣∣∣x(2,1,1)
1

]
= 1√

2π · σ1
· exp

⎧⎪⎪⎨
⎪⎪⎩

−
[
xNEW

1 − x
(2,1,1)
1

]2

2 · σ 2
1

⎫⎪⎪⎬
⎪⎪⎭

. (12.16)

where x
(2,1,1)
1 and σ1 are the mean and standard deviation of the distribution,

respectively. Here, σ1 is a parameter that usually be empirically chosen[19].
Next, we compute the ratio

r =
p1

(
xNEW

1

)

p1

(
x

(2,1,1)
1

) , (12.17)

356 J. Tao et al.

where p1(x1) is the original PDF of the random variable x1 shown in (12.2). A
random sample u is then drawn from a 1-D uniform distribution with the following
PDF:

f (u) =
{

1 0 ≤ u ≤ 1
0 Otherwise

, (12.18)

and the value of x
(2,1,2)
1 is set as

x
(2,1,2)
1 =

{
xNEW

1 u ≤ min(1, r)

x
(2,1,1)
1 u > min(1, r)

. (12.19)

A similar procedure is applied to generate x
(2,1,2)
2 . Once x

(2,1,2)
1 and x

(2,1,2)
2 are

determined, we form a candidate xNEW = [x(2,1,2)
1 x

(2,1,2)
2]T and use it to create the

sample x(2,1,2)

x(2,1,2) =
{

xNEW xNEW ∈ �1

x(2,1,1) xNEW /∈ �1
. (12.20)

By repeating the aforementioned steps, we can create other samples to complete
the Markov chain {x(2,1,l); l = 1, 2, . . . , L2}, where L2 denotes the length of the
Markov chain in the 2nd phase. In addition, all other Markov chains can be similarly
formed. Since there are T1 Markov chains and each Markov chain contains L2
samples, the total number of the MCMC samples is T1 · L2 for the 2nd phase.
Figure 12.1(b) shows the sampling results in the 2nd phase for our 2-D example. In
Fig. 12.1(b), the red points represent the initial samples {x(2,t,1); t = 1, 2, . . . , T1}
of the Markov chains and they are obtained from the 1st phase. The yellow points
represent the MCMC samples created via the MM algorithm in the 2nd phase. It
has been proved in [1] that all these MCMC samples {x(2,t,l); t = 1, 2, . . . , T1; l =
1, 2, . . . , L2} in Fig. 12.1(b) approximately follow f (x|x ∈ �1). In other words, we
have successfully generated a number of random samples that follow our desired
distribution for the 2nd phase.

Among all the MCMC samples {x(2,t,l); t = 1, 2, . . . , T1; l = 1, 2, . . . , L2},
we further identify a subset of samples {x(2,t)

F ; t = 1, 2, . . . , T2} that fall into �2,
where T2 denotes the total number of the samples in this subset. The conditional
probability P2 can be estimated as:

P SUS
2 = 1

T1 · L2
·

T1∑
t=1

L2∑
l=1

I�2

[
x(2,t,l)

]
= T2

T1 · L2
, (12.21)

where P SUS
2 denotes the estimated value of P2.

12 Fast Statistical Analysis of Rare Circuit Failure Events 357

By following the aforementioned idea, we can estimate all the probabilities
{Pk; k = 1, 2, . . . , K}. Once the values of {Pk; k = 1, 2, . . . , K} are estimated,
the rare failure rate PF is calculated by

P SUS
F =

K∏
k=1

P SUS
k , (12.22)

where P SUS
F represents the estimated value of PF by using SUS. If we have more

than two random variables, estimating the probabilities {Pk; k = 1, 2, . . . , K} can
be pursued in a similar way [19].

To efficiently apply SUS, we must carefully choose the subset {Fk; k =
1, 2, . . . , K} so that the probability Pk will be close to 0.1, where k ∈ {1, 2, . . . , K}.
In this case, even if the failure rate PF is extremely small (e.g., 10−8

∼10−6), SUS
only needs a small number of (e.g., K = 6∼8) phases to complete. Furthermore, it
only requires a few hundred samples during each phase to accurately estimate the
probability Pk .

In addition, to quantitatively assess the accuracy of the proposed SUS estimator,
we must estimate its confidence interval (CI). To this end, we need to know the
distribution of P SUS

F . Since P SUS
F is equal to the multiplication of {P SUS

k ; k =
1, 2, . . . , K}, we must carefully study the statistical property of P SUS

k in order to
derive the distribution for P SUS

F .
To be specific, P SUS

1 is calculated by using (12.12) with L1 independent and
identically distributed (i.i.d.) samples drawn from f (x). Hence, according to the
central limit theorem (CLT) [16], P SUS

1 approximately follows a Normal distribution

P SUS
1 ∼ N (P1, v1) , (12.23)

where the mean value P1 is defined in (12.9) and the variance value v1 can be
approximated as [16]

v1 ≈ 1

L1
· P SUS

1 ·
(

1 − P SUS
1

)
. (12.24)

On the other hand, the conditional probability P SUS
k , where k ∈ {2, 3, . . . , K},

can be estimated by using the MCMC samples {x(k,t,l); t = 1, 2, . . . , Tk−1; l =
1, 2, . . . , Lk} created by MM:

P SUS
k = 1

Tk−1 · Lk

·
Tk−1∑
t=1

Lk∑
l=1

I�k

[
x(k,t,l)

]
, (12.25)

where I�k [x] represents the indicator function

I�k
(x) =

{
1 x ∈ �k

0 x /∈ �k
. (12.26)

358 J. Tao et al.

Since the MCMC samples {x(k,t,l); l = 1, 2, . . . , Lk}, where t ∈ {1, 2, . . . , Tk−1},
are strongly correlated, they cannot be considered as i.i.d. samples. For this reason,
we cannot directly apply CLT to derive the distribution for the estimator P SUS

k

in (12.25).
To address this issue, we define a set of new random variables

s(k,t) = 1

Lk

·
Lk∑
l=1

I�k

[
x(k,t,l)

]
, (12.27)

where t ∈ {1, 2, . . . , Tk−1}. Studying (12.27) reveals two important observations.
First, s(k,t) only depends on the t-th Markov chain {x(k,t,l); l = 1, 2, . . . , Lk}.
Since different Markov chains are created from different initial samples {x(k,t,1); t =
1, 2, . . . , Tk−1}, the random variables {s(k,t); t = 1, 2, . . . , Tk−1} are almost statis-
tically independent. Second, since all initial samples {x(k,t,1); t = 1, 2, . . . , Tk−1}
follow the same conditional PDF p(x

∣∣x ∈ �k−1) and all the Markov chains are
generated by following the same procedure, the random variables {s(k,t); t =
1, 2, . . . , Tk−1} must be identically distributed. For these reasons, we can consider
{s(k,t); t = 1, 2, . . . , Tk−1} as a set of i.i.d. random variables.

Based on (12.27), P SUS
k in (12.25), where k ∈ {2, 3, . . . , K}, can be re-written as

P SUS
k = 1

Tk−1
·
Tk−1∑
t=1

s(k,t) (12.28)

and, as a result, approximately follows a Normal distribution according to CLT:

P SUS
k ∼ N (Pk, vk) , (12.29)

where Pk is defined in (12.10) and

vk ≈ 1(
Tk−1 − 1

) · Tk−1
·
Tk−1∑
t=1

[
s(k,t) − P SUS

k

]2
. (12.30)

To further derive the distribution for P SUS
F in (12.22) based on (12.23) and

(12.29), we take logarithm on both sides of (12.22) because it is much easier to
handle summation than multiplication

log
(
P SUS

F

)
=

K∑
k=1

log
(
P SUS

k

)
. (12.31)

To derive the distribution of {log(P SUS
k); k = 1, 2, . . . , K}, we approximate the

nonlinear function log(•) by the first-order Taylor expansion around the mean value

12 Fast Statistical Analysis of Rare Circuit Failure Events 359

Pk of the random variable P SUS
k :

log
(
P SUS

k

)
≈ log (Pk) + P SUS

k − Pk

Pk

≈ log (Pk) + P SUS
k − Pk

P SUS
k

. (12.32)

According to the linear approximation in (12.32), log(P SUS
k) follows a Normal

distribution

log
(
P SUS

k

)
∼ N

[
log (Pk) , vlog,k

]
, (12.33)

where

vlog,k = vk(
P SUS

k

)2 , (12.34)

and k ∈ {1, 2, . . . , K}.
Since log(P SUS

F) is the summation of several “approximately” Normal random
variables {log(P SUS

k); k = 1, 2, . . . , K}, log(P SUS
F) also approximately follows a

Normal distribution [16]

log
(
P SUS

F

)
∼ N

{
MEAN

[
log
(
P SUS

F

)]
, VAR

[
log
(
P SUS

F

)]}
(12.35)

Based on (12.8), (12.31), and (12.33), MEAN[log(P SUS
F)] can be expressed as

MEAN

[
log
(
P SUS

F

)]
=

K∑
k=1

log (Pk) = log

⎛
⎝

K∏
k=1

Pk

⎞
⎠ = log (PF) , (12.36)

and VAR[log(P SUS
F)] can be calculated as

VAR

[
log
(
P SUS

F

)]
= VAR

⎡
⎣

K∑
k=1

log
(
P SUS

k

)⎤
⎦

=
K∑

k=1

vlog,k + 2 ·
K−1∑
i=1

K∑
j=i+1

COV

[
log
(
P SUS

i

)
, log

(
P SUS

j

)]
, (12.37)

where COV(•, •) denotes the covariance of two random variables.
When applying MCMC, we often observe that an MCMC sample is strongly

correlated to its adjacent sample. However, the correlation quickly decreases as the
distance between two MCMC samples increases. Therefore, we can assume that the

360 J. Tao et al.

samples used to estimate log(P SUS
i) are weakly correlated to the samples used to

estimate log(P SUS
j), if the distance between i and j is greater than 1 (i.e., |i − j | >

1). Based on this assumption, (12.37) can be approximated as

VAR

[
log
(
P SUS

F

)]
≈

K∑
k=1

vlog,k + 2 ·
K−1∑
k=1

COV

[
log
(
P SUS

k

)
, log

(
P SUS

k+1

)]
.

(12.38)

Accurately estimating the covariance between log(P SUS
k) and log(P SUS

k+1) is
nontrivial. Here, we derive an upper bound for COV[log(P SUS

k), log(P SUS
k+1)] [16]:

COV

[
log
(
P SUS

k

)
, log

(
P SUS

k+1

)]
≤ √

vlog,k · vlog,k+1, (12.39)

where k ∈ {1, 2, . . . , K − 1}. Substituting (12.39) into (12.38) yields

VAR

[
log
(
P SUS

F

)]
≤

K∑
k=1

vlog,k +2 ·
K−1∑
k=1

√
vlog,k · vlog,k+1 = vlog,SUS. (12.40)

In this chapter, we approximate VAR[log(P SUS
F)] by its upper bound vlog,SUS

defined in (12.40) to provide a conservative estimation for the CI. Based on (12.36)
and (12.40), (12.35) can be re-written as

log
(
P SUS

F

)
∼ N

[
log (PF) , vlog,SUS

]
. (12.41)

According to (12.41), we can derive the CI for any given confidence level. For
instance, the 95% CI is expressed as
[

exp
(

log(P SUS
F) − 1.96 · √

vlog,SUS

)
, exp

(
log(P SUS

F) + 1.96 · √
vlog,SUS

)]
.

(12.42)

To demonstrate the efficacy of SUS, we consider an SRAM column example
designed in a 45 nm CMOS process, as shown in Fig. 12.2. In this example, our PoI
is the read current IREAD, which is defined as the difference between the bit-line
currents IBL and IBL_ (i.e., IREAD = IBL − IBL_) when we start to read CELL <0>.
If IREAD is greater than a pre-defined specification, we consider the SRAM circuit as
“PASS”. For process variation modeling, the local VT H mismatch of each transistor
is considered as an independent Normal random variable. In total, we have 384
independent random variables (i.e., 64 bit-cells × 6 transistors per bit-cell = 384).

We first run CMC with 109 random samples, and the estimated failure rate is
1.1 × 10−6, which is considered as the “golden” failure rate in this example. Next,
we compare SUS with the traditional importance sampling technique: MNIS [17],
where 2000 simulations are used to construct the distorted PDF. We repeatedly run

12 Fast Statistical Analysis of Rare Circuit Failure Events 361

0 1

BL_
WL<0>

1 0

1 0

BL

WL<1>

WL<63>

IBL_IBL

CELL<0>

CELL<1>

CELL<63> BL_

VDD

WL<0>

BL

Fig. 12.2 The simplified schematic is shown for an SRAM column consisting of 64 bit-cells
designed in a 45 nm CMOS process

0 20 40
(a)

(b)

60 80 100
-10

-8

-6

-4

-2

gol
10
(P

F
)

0 20 40 60 80 100-10

-8

-6

-4

-2

gol
10
(P

F
)

Fig. 12.3 The 95% confidence intervals (blue bars) of the SRAM read current example are
estimated from 100 repeated runs with 6000 transistor-level simulations in each run for: (a) MNIS
and (b) SUS. The red line represents the “golden” failure rate

MNIS and SUS for 100 times with 6000 transistor-level simulations in each run.
Figure 12.3 shows the 100 estimated 95% CIs for each method, where each blue
bar represents the CI of a single run, and the red line represents the “golden” failure
rate.

In this example, only a single CI estimated from 100 repeated runs by MNIS
can cover the “golden” failure rate, implying that MNIS fails to estimate the CIs
accurately. This is an important limitation of MNIS, and generally most of the
importance sampling techniques, since the user cannot reliably know the actual
“confidence” of the estimator in practice. For the SUS approach, however, there are
95 CIs out of 100 runs that cover the “golden” failure rate. More importantly, the CIs

362 J. Tao et al.

estimated by SUS are relatively tight, which implies that SUS achieves substantially
better accuracy than the traditional MNIS approach in this example.

Before ending this section, we would like to emphasize that to define the
subsets {Fk; k = 1, 2, . . . , K} required by SUS, PoI must be continuous. Realizing
this limitation, we further describe a scaled-sigma sampling (SSS) approach to
efficiently estimate the rare failure rates for discrete PoIs in a high-dimensional
space, which will be presented in the next section.

12.3 Scaled-Sigma Sampling

Unlike the traditional importance sampling methods that must explicitly identify the
high-probability failure region, SSS takes a completely different strategy to address
the following questions: (1) how to efficiently draw random samples from the high-
probability failure region, and (2) how to estimate the failure rate based on these
random samples. In what follows, we will derive the mathematical formulation of
SSS and highlight its novelties.

For the application of rare failure rate estimation, a failure event often occurs at
the tail of the PDF f (x). Given (12.2), it implies that the failure region � is far away
from the origin x = 0, as shown in Fig. 12.4(a). Since the failure rate is extremely
small, the traditional CMC analysis cannot efficiently draw random samples from
the failure region. Namely, many samples cannot reach the tail of f (x).

To address the aforementioned sampling issue, SSS applies a simple idea. Given
f (x) in (12.2), we scale up the standard deviation of x by a scaling factor s (s > 1),
yielding the following distribution:

g(x) =
M∏

m=1

⎡
⎢⎢⎢⎣

exp

(
− x2

m

/
2s2
)

√
2πs

⎤
⎥⎥⎥⎦ =

exp

(
− ‖x‖2

2

/
2s2
)

(√
2π · s

)M
. (12.43)

Once the standard deviation of x is increased by a factor of s, we conceptually
increase the magnitude of process variations. Hence, the PDF g(x) widely spreads
over a large region and the probability for a random sample to reach the far-away
failure region increases, as shown in Fig. 12.4(b).

It is important to note that the mean of the scaled PDF g(x) remains 0, which is
identical to the mean of the original PDF f (x). Hence, for a given sampling location
x, the likelihood defined by the scaled PDF g(x) remains inversely proportional to
the length of the vector x (i.e., ‖x‖2). Namely, it is more (or less) likely to reach the
sampling location x, if the distance between the location x and the origin 0 is smaller
(or larger). It, in turn, implies that the high-probability failure region associated with
the original PDF f (x) remains the high-probability failure region after the PDF is
scaled to g(x), as shown in Fig. 12.4(a) and (b). Scaling the PDF from f (x) to g(x)

12 Fast Statistical Analysis of Rare Circuit Failure Events 363

Fig. 12.4 The proposed SSS
is illustrated by a 2-D
example where the grey area
� denotes the failure region
and the circles represent the
contour lines of the PDF. (a)
Rare failure events occur at
the tail of the original PDF
f (x) and the failure region is
far away from the origin
x = 0. (b) The scaled PDF
g(x) widely spreads over a
large region and the scaled
samples are likely to reach
the far-away failure region

x1

x2

Ω

High-
probability

Low-
probability

x1

x2

Ω

Low-
probabilityHigh-

probability

(a)

(b)

does not change the location of the high-probability failure region; instead, it only
makes the failure region easy to sample.

Once the scaled random samples are drawn from g(x) in (12.43), we need to
further estimate the failure rate PF defined in (12.3). To this end, one straightforward
way is to apply the importance sampling method [3]. Such a simple approach,
however, has been proved to be intractable when the dimensionality (i.e., M) of
the variation space is high [21]. Namely, it does not fit the need of high-dimensional
failure rate estimation in this chapter.

Instead of relying on the theory of importance sampling, SSS attempts to estimate
the failure rate PF from a completely different avenue. We first take a look at the
“scaled” failure rate PG corresponding to g(x):

PG =
∫

x∈�

g(x) · dx =
∫ +∞

−∞
I�(x) · g(x) · dx, (12.44)

364 J. Tao et al.

where I�(x) represents the indicator function:

I�(x) =
{

1 x ∈ �

0 x /∈ �
. (12.45)

Our objective is to study the relation between the scaled failure rate PG in (12.44)
and the original failure rate PF in (12.3). Towards this goal, we partition the M-
dimensional variation space into a large number of identical hyper-rectangles with
the same volume and the scaled failure rate PG in (12.44) can be approximated as:

PG ≈
∑

k

I�

[
x(k)
]

· g
[
x(k)
]

· �x, (12.46)

where �x denotes the volume of a hyper-rectangle. The approximation in (12.46) is
accurate, if each hyper-rectangle is sufficiently small. Given the definition of I�(x)

in (12.45), Eq. (12.46) can be re-written as:

PG ≈
∑
k∈�

g
[
x(k)
]

· �x, (12.47)

where {k; k ∈ �} represents the set of all hyper-rectangles that fall into the failure
region.

Substituting (12.43) into (12.47), we have

PG ≈ �x(√
2π · s

)M
·
∑
k∈�

exp

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2s2

⎤
⎥⎥⎦ . (12.48)

Taking the logarithm on both sides of (12.48) yields:

log PG ≈ log
�x

(2π)M/2
− M · log s + lse

k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2s2

⎤
⎥⎥⎦ , (12.49)

where

lse
k∈�

⎡
⎢⎢⎣

−
∥∥∥x(k)

∥∥∥
2

2

2s2

⎤
⎥⎥⎦ = log

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k∈�

exp

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2s2

⎤
⎥⎥⎦

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(12.50)

12 Fast Statistical Analysis of Rare Circuit Failure Events 365

stands for the log-sum-exp function. The function lse(•) in (12.50) is also known as
the “soft maximum” from the mathematics [4]. It can be bounded by

max
k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2s2

⎤
⎥⎥⎦+ log (T) ≥ lse

k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2s2

⎤
⎥⎥⎦ ≥ max

k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2s2

⎤
⎥⎥⎦ ,

(12.51)
where T denotes the total number of hyper-rectangles in �.

In general, there exist a number of (say, T0) dominant hyper-rectangles that are
much closer to the origin 0 than other hyper-rectangles in the set {x(k); k ∈ �}.
Without loss of generality, we assume that the first T0 hyper-rectangles {x(k); k =
1, 2, . . . , T0} are dominant. Hence, we can approximate the function lse(•) in
(12.50) as

lse
k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2s2

⎤
⎥⎥⎦ ≈ log

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T0∑
k=1

exp

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2s2

⎤
⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (12.52)

We further assume that these dominant hyper-rectangles {x(k); k = 1, 2, . . . , T0}
have similar distances to the origin 0. Thus, Eq. (12.52) can be approximated by

lse
k∈�

⎡
⎢⎢⎣

−
∥∥∥x(k)

∥∥∥
2

2

2s2

⎤
⎥⎥⎦ ≈ max

k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2s2

⎤
⎥⎥⎦+ log (T0) . (12.53)

Substituting (12.53) into (12.49) yields

log PG ≈ α + β · log s + γ

s2 , (12.54)

where

α = log
Δx

(2π)M/2
+ log (T0)

β = −M

γ = max
k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥

2

2

2

⎤
⎥⎥⎦

. (12.55)

Equation (12.54) reveals the important relation between the scaled failure rate PG

and the scaling factor s. The approximation in (12.54) does not rely on any specific
assumption of the failure region. It is valid, even if the failure region is non-convex
or discontinuous.

366 J. Tao et al.

While (12.55) shows the theoretical definition of the model coefficients α, β

and γ , finding their exact values is not trivial. For instance, the coefficient γ is
determined by the hyper-rectangle that falls into the failure region � and is closest
to the origin x = 0. In practice, without knowing the failure region �, we cannot
directly find out the value of γ . For this reason, we fit the analytical model in
(12.54) by linear regression. Namely, we first estimate the scaled failure rates
{PG,q; q = 1, 2, . . . , Q} by setting the scaling factor s to a number of different
values {sq; q = 1, 2, . . . , Q}. As long as the scaling factors {sq; q = 1, 2, . . . , Q}
are sufficiently large, the scaled failure rates {PG,q; q = 1, 2, . . . , Q} are large and
can be accurately estimated with a small number of random samples. Next, the
model coefficients α, β, and γ are fitted by linear regression based on the values
of {(sq, PG,q); q = 1, 2, . . . ,Q}. Once α, β, and γ are known, the original failure
rate PF in (12.3) can be predicted by extrapolation. Namely, we substitute s = 1
into the analytical model in (12.54):

log P SSS
F = α + γ, (12.56)

where P SSS
F denotes the estimated value of PF by SSS. Apply the exponential

function to both sides of (12.56) and we have

P SSS
F = exp

(
α + γ

)
. (12.57)

To make the SSS method of practical utility, maximum likelihood estimation is
applied to fit the model coefficients in (12.54). The MLE solution can be solved
from an optimization problem and it is considered to be statistically optimal for a
given set of random samples.

Without loss of generality, we assume that Nq scaled random samples {x(n); n =
1, 2, . . . , Nq} are collected for the scaling factor sq . The scaled failure rate PG,q can
be estimated by MC

P MC
G,q = 1

Nq

·
Nq∑
n=1

I�

(
x(n)
)

, (12.58)

where I�(x) is the indicator function defined in (12.45). The variance of the
estimator P MC

G,q in (12.58) can be approximated as [16]

vMC
G,q = P MC

G,q · 1 − P MC
G,p

Nq

. (12.59)

If the number of samples Nq is sufficiently large, the estimator P MC
G,q in (12.58)

follows a Gaussian distribution according to CLT [16]

P MC
G,q ∼ Gauss

(
PG,q, vMC

G,p

)
, (12.60)

where PG,q denotes the actual failure rate corresponding to the scaling factor sq .

12 Fast Statistical Analysis of Rare Circuit Failure Events 367

Note that the model template in (12.54) is expressed for log PG, instead of PG. To
further derive the probability distribution for log P MC

G,q , we adopt the first-order delta
method from the statistics community [16]. Namely, we approximate the nonlinear
function log(•) by the first-order Taylor expansion around the mean value log PG,q

of the random variable log P MC
G,q

log P MC
G,q ≈ log PG,q + P MC

G,q − PG,q

PG,q

≈ log PG,q + P MC
G,q − PG,q

P MC
G,q

. (12.61)

Based on the linear approximation in (12.61), log P MC
G,q follows the Gaussian

distribution

log P MC
G,q ∼ Gauss

⎡
⎢⎢⎣log PG,q,

vMC
G,q(

P MC
G,q

)2

⎤
⎥⎥⎦ . (12.62)

Equation (12.62) is valid for all scaling factors {sq; q = 1, 2, . . . ,Q}. In
addition, since the scaled failure rates corresponding to different scaling factors
are estimated by independent Monte Carlo simulations, the estimated failure rates
{P MC

G,q ; q = 1, 2, . . . , Q} are mutually independent. Therefore, the Q-dimensional
random variable

log PMC
G =

[
log P MC

G,1 log P MC
G,2 · · · log P MC

G,Q

]T
(12.63)

satisfies the following jointly Gaussian distribution:

log PMC
G ∼ Gauss

(
µG,�G

)
, (12.64)

where the mean vector µG and the covariance matrix �G are equal to

µG =
[

log PG,1 log PG,2 · · · log PG,Q

]T
(12.65)

�G = diag

⎡
⎢⎢⎣

vMC
G,1(

P MC
G,1

)2 ,
vMC
G,2(

P MC
G,2

)2 , · · · ,
vMC
G,Q(

P MC
G,Q

)2

⎤
⎥⎥⎦ , (12.66)

where diag(•) denotes a diagonal matrix.
The diagonal elements of the covariance matrix �G in (12.66) can be sub-

stantially different. In other words, the accuracy of {log P MC
G,q ; q = 1, 2, . . . , Q}

associated with different scaling factors {sq; q = 1, 2, . . . ,Q} can be different,
because the scaled failure rates {PG,q; q = 1, 2, . . . ,Q} strongly depend on the

368 J. Tao et al.

scaling factors. In general, we can expect that if the scaling factor sq is small, the
scaled failure rate PG,q is small and, hence, it is difficult to accurately estimate
log PG,q from a small number of random samples. For this reason, instead of equally
“trusting” the estimators {log P MC

G,q ; q = 1, 2, . . . , Q}, we must carefully model

the “confidence” for each estimator log P MC
G,q , as encoded by the covariance matrix

�G in (12.66). Such “confidence” information will be fully exploited by the MLE
framework to fit a statistically optimal model.

Since the scaled failure rates {PG,q; q = 1, 2, . . . , Q} follow the analytical
model in (12.54), the mean vector µG in (12.65) can be re-written as

µG = α + β ·

⎡
⎢⎢⎢⎢⎣

log s1

log s2
...

log sQ

⎤
⎥⎥⎥⎥⎦

+ γ ·

⎡
⎢⎢⎢⎢⎣

s−2
1

s−2
2
...

s−2
Q

⎤
⎥⎥⎥⎥⎦

= A · �, (12.67)

where

A =

⎡
⎢⎢⎢⎢⎣

1 log s1 s−2
1

1 log s2 s−2
2

...
...

...

1 log sQ s−2
Q

⎤
⎥⎥⎥⎥⎦

(12.68)

� =
[
α β γ

]T
. (12.69)

Equation (12.68) implies that the mean value of the Q-dimensional random variable
log PMC

G depends on the model coefficients α, β, and γ . Given {P MC
G,q ; q =

1, 2, . . . ,Q}, the key idea of MLE is to find the optimal values of α, β, and γ

so that the likelihood of observing {P MC
G,q ; q = 1, 2, . . . ,Q} is maximized.

Because the random variable log PMC
G follows the jointly Gaussian distribution

in (12.64), the likelihood associated with the estimated failure rates {P MC
G,q ; q =

1, 2, . . . ,Q} is proportional to

L ∼ exp

[
−1

2

(
log PMC

G − µG

)T · �−1
G ·

(
log PMC

G − µG

)]
. (12.70)

Taking the logarithm for (12.70) yields

log L ∼ −
(

log PMC
G − µG

)T · �−1
G ·

(
log PMC

G − µG

)
. (12.71)

Substitute (12.67) into (12.71), and we have

log L ∼ −
(

log PMC
G − A · �

)T · �−1
G ·

(
log PMC

G − A · �
)

. (12.72)

12 Fast Statistical Analysis of Rare Circuit Failure Events 369

Note that the log-likelihood log L in (12.72) depends on the model coefficients α, β,
and γ , because the vector � is composed of these coefficients as shown in (12.69).
Therefore, the MLE solution of α, β, and γ can be determined by maximizing the
log-likelihood function

max
�

−
(

log PMC
G − A · �

)T · �−1
G ·

(
log PMC

G − A · �
)

. (12.73)

Since the covariance matrix �G is positive definite, the optimization in (12.73)
is convex. In addition, since the log-likelihood log L is simply a quadratic function
of �, the unconstrained optimization in (12.73) can be directly solved by inspecting
the first-order optimality condition [4]

∂

∂�

[
−
(

log PMC
G − A · �

)T · �−1
G ·

(
log PMC

G − A · �
)]

= 2 · AT · �−1
G ·

(
log PMC

G − A · �
)

= 0

. (12.74)

Based on the linear equation in (12.74), the optimal value of � can be determined
by

� =
(

AT · �−1
G · A

)−1 · AT · �−1
G · log PMC

G . (12.75)

Studying (12.75) reveals an important fact that the estimators {log P MC
G,q ; q =

1, 2, . . . ,Q} are weighted by the inverse of the covariance matrix �G. Namely, if
the variance of the estimator log P MC

G,q is large, log P MC
G,q becomes non-critical when

determining the optimal values of α, β, and γ . In other words, the MLE framework
has optimally weighted the importance of {log P MC

G,q ; q = 1, 2, . . . ,Q} based on the
“confidence” level of these estimators. Once α, β, and γ are solved by MLE, the
original failure rate PF can be estimated by (12.57).

To apply MLE, we need a set of pre-selected scaling factors {sq; q =
1, 2, . . . ,Q}. In practice, appropriately choosing these scaling factors is a critical
task due to several reasons. First, if these scaling factors are too large, the
estimator P SSS

F based on extrapolation in (12.57) would not be accurate, since
the extrapolation point s = 1 is far away from the selected scaling factors. Second,
if the scaling factors are too small, the scaled failure rates {PG,q; q = 1, 2, . . . , Q}
are extremely small and they cannot be accurately estimated from a small number
of scaled random samples. Third, the failure rates for different performances
and/or specifications can be quite different. To estimate them both accurately
and efficiently, we should choose small scaling factors for the performance metrics
with large failure rates, but large scaling factors for the performance metrics with
small failure rates. Hence, finding an appropriate set of scaling factors for all
performances and/or specifications can be extremely challenging.

370 J. Tao et al.

In this chapter, a number of evenly distributed scaling factors covering a
relatively large range are empirically selected. For the performance metrics with
large failure rates, the scaled failure rates corresponding to a number of small
scaling factors can be used to fit the model template in (12.54). On the other hand,
the scaled failure rates corresponding to a number of large scaling factors can be
used for the performance metrics with small failure rates. As such, a broad range of
performances and/or specifications can be accurately analyzed by the SSS method.

While the MLE algorithm is able to optimally estimate the model coefficients α,
β, and γ and then predict the failure rate PF , it remains an open question how we
can quantitatively assess the accuracy of our SSS method. Since SSS is based upon
Monte Carlo simulation, a natural way for accuracy assessment is to calculate the
confidence interval of the estimator P SSS

F . However, unlike the traditional estimator
where a statistical metric is estimated by the average of multiple random samples
and, hence, the confidence interval can be derived as a closed-form expression, our
proposed estimator P SSS

F is calculated by linear regression with nonlinear expo-
nential/logarithmic transformation. Accurately estimating the confidence interval of
P SSS

F is not a trivial task.
To address the aforementioned challenge, a bootstrapping based technique [8]

is developed to accurately estimate the CI of the SSS estimator. The key idea
of bootstrap is to re-generate a large number of random samples based on a
statistical model without running additional transistor-level simulations. These
random samples are then used to repeatedly calculate the value of P SSS

F in (12.57)
for multiple times. Based on these repeated runs, the statistics (hence, the confidence
interval) of the estimator P SSS

F can be accurately estimated.
In particular, we start from the estimated failure rates {P MC

G,q ; q = 1, 2, . . . ,Q}.
Each estimator P MC

G,q follows the Gaussian distribution in (12.60). The actual
mean PG,q in (12.60) is unknown; however, we can approximate its value by the
estimated failure rate P MC

G,q . Once we know the statistical distribution of P MC
G,q , we

can re-sample its distribution and generate NRS sampled values {P MC(n)
G,q ; n =

1, 2, . . . , NRS}. This re-sampling idea is applied to all scaling factors {sq; q =
1, 2, . . . ,Q}, thereby resulting in a large data set {P MC(n)

G,q ; q = 1, 2, . . . ,Q; n =
1, 2, . . . , NRS}. Next, we repeatedly run SSS for NRS times and get NRS different
failure rates {P SSS(n)

F ; n = 1, 2, . . . , NRS}. The confidence interval of P SSS
F can

then be estimated from the statistics of these failure rate values.
Note that to apply SSS, we only need a set of scaling factors and their

corresponding scaled failure rates: {(sq, PG,q); q = 1, 2, . . . , Q}. As long as
{sq; q = 1, 2, . . . , Q} are sufficiently large, {PG,q; q = 1, 2, . . . , Q} are not
small probability values and, therefore, can be efficiently estimated by CMC. When
applying CMC, we only need to determine whether the random samples belong
to the failure region. Namely, the PoI does not have to be continuous. Due to this
reason, SSS can be applied to estimate the rare failure rates for both continuous
and discrete PoIs. However, since SUS explores additional information from the
continuous performance values, SUS is often preferred over SSS when we handle
continuous PoIs.

12 Fast Statistical Analysis of Rare Circuit Failure Events 371

Fig. 12.5 The simplified
schematic is shown for an
SRAM column consisting of
64 bit-cells and a sense
amplifier (SA) designed in a
45 nm CMOS process

BL_

VDD

WL<0>

BL

CELL<0>

BL

CELL<63>

SA

OUT

BL_

CELL<1>

0 20 40 60
(a)

(b)

80 100
-10

-8

-6

-4

-2

0 20 40 60 80 100
-10

-8

-6

-4

-2

gol
10
(P

F
)

gol
10
(P

F
)

Fig. 12.6 The 95% confidence intervals (blue bars) of the SRAM example are estimated from 100
repeated runs with 6000 transistor-level simulations in each run for: (a) MNIS and (b) SSS. The
red line represents the “golden” failure rate

To demonstrate the efficacy of SSS, we consider an SRAM column consisting
of 64 bit-cells and a sense amplifier (SA) designed in a 45 nm CMOS process.
Figure 12.5 shows the simplified circuit schematic of this SRAM column example.
Similar to the SRAM read current example shown in Fig. 12.2, we consider the
local VT H mismatch of each transistor as an independent Normal random variable.
In total, we have 384 independent random variables. In this example, the output
of SA is considered as the PoI. If the output is correct, we consider the circuit
as “PASS”. Hence, the PoI is binary, and we cannot apply SUS in this example.
For comparison purposes, we run MNIS [17] and SSS for 100 times with 6000
transistor-level simulations in each run. As shown in Fig. 12.6, there are 3 and 97 CIs
out of 100 runs that cover the “golden” failure rate for MNIS and SSS, respectively.
Here, the “golden” failure rate is estimated by CMC with 109 random samples.
MNIS, again, fails to accurately estimate the corresponding CIs. SSS, however,

372 J. Tao et al.

successfully estimates the CIs. These results demonstrate that SSS is superior to
the traditional MNIS method in this SRAM example, where the dimensionality of
the variation space is more than a few hundred.

12.4 Conclusions

Rare failure event analysis in a high-dimensional variation space has attracted more
and more attention due to aggressive technology scaling. To address this technical
challenge, we summarize two novel approaches: SUS and SSS. Several SRAM
examples are used to demonstrate the efficacy of SUS and SSS. More experimental
results of SUS and SSS can be found in the recent publications [19, 21]. Both SUS
and SSS are based upon solid mathematical background and do not pose any specific
assumption on the failure region. Hence, they can be generally applied to estimate
the rare failure rates of a broad range of other circuits, e.g., DFF.

References

1. S. Au, J. Beck, Estimation of small failure probabilities in high dimensions by subset
simulation. Probab. Eng. Mech. 16(4), 263–277 (2001)

2. A. Bhavnagarwala, X. Tang, J. Meindl, The impact of intrinsic device fluctuations on CMOS
SRAM cell stability. IEEE J. Solid-State Circuits 36(4), 658–665 (2001)

3. C. Bishop, Pattern Recognition and Machine Learning (Prentice Hall, Upper Saddle River,
2007)

4. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2009)

5. B. Calhoun, Y. Cao, X. Li, K. Mai, L. Pileggi, R. Rutenbar, K. Shepard, Digital circuit design
challenges and opportunities in the era of nanoscale CMOS. Proc. IEEE 96(2), 343–365 (2008)

6. F. Cérou, P. Moral, T. Furon, A. Guyader, Sequential Monte Carlo for rare event estimation.
Stat. Comput. 22(3), 795–808 (2012)

7. L. Dolecek, M. Qazi, D. Shah, A. Chandrakasan, Breaking the simulation barrier: SRAM
evaluation through norm minimization, in International Conference on Computer-Aided
Design (2008), pp. 322–329

8. B. Efron, R. Tibshirnani, An Introduction to the Bootstrap (Chapman & Hall/CRC, London,
1993)

9. R. Fonseca, L. Dilillo, A. Bosio, P. Girard, S. Pravossoudovitch, A. Virazel, N. Badereddine, A
statistical simulation method for reliability analysis of SRAM core-cells, in Design Automation
Conference (2010), pp. 853–856

10. C. Gu, J. Roychowdhury, An efficient, fully nonlinear, variability aware non-Monte-Carlo yield
estimation procedure with applications to SRAM cells and ring oscillators, in IEEE Asia and
South Pacific Design Automation Conference (2008), pp. 754–761

11. A. Guyader, N. Hengartner, E. Matzner-Løber, Simulation and estimation of extreme quantiles
and extreme probabilities. Appl. Math. Optim. 64(2), 171–196 (2011)

12. R. Heald, P. Wang, Variability in sub-100nm SRAM designs, in International Conference on
Computer-Aided Design (2004), pp. 347–352

12 Fast Statistical Analysis of Rare Circuit Failure Events 373

13. R. Kanj, R. Joshi, S. Nassif, Mixture importance sampling and its application to the analysis of
SRAM designs in the presence of rare failure events, in Design Automation Conference (2006),
pp. 69–72

14. R. Kanj, R. Joshi, Z. Li, J. Hayes, S. Nassif, Yield estimation via multi-cones, in Design
Automation Conference (2012), pp. 1107–1112

15. K. Katayama, S. Hagiwara, H. Tsutsui, H. Ochi, T. Sato, Sequential importance sampling for
low-probability and high-dimensional SRAM yield analysis, in International Conference on
Computer-Aided Design (2010), pp. 703–708

16. A. Papoulis, S. Pillai, Probability, Random Variables and Stochastic Process (McGraw-Hill,
New York, 2001)

17. M. Qazi, M. Tikekar, L. Dolecek, D. Shah, A. Chandrakasan, Loop flattening and spherical
sampling: highly efficient model reduction techniques for SRAM yield analysis, in Design,
Automation & Test in Europe (2010), pp. 801–806

18. A. Singhee, R. Rutenbar, Statistical blockade: very fast statistical simulation and modeling of
rare circuit events, and its application to memory design. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 28(8), 1176–1189 (2009)

19. S. Sun, X. Li, Fast statistical analysis of rare circuit failure events via subset simulation in high-
dimensional variation space, in International Conference on Computer-Aided Design (2014),
pp. 324–331

20. S. Sun, Y. Feng, C. Dong, X. Li, Efficient SRAM failure rate prediction via Gibbs sampling.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(12), 1831–1844 (2012)

21. S. Sun, X. Li, H. Liu, K. Luo, B. Gu, Fast statistical analysis of rare circuit failure events via
scaled-sigma sampling for high-dimensional variation space, in International Conference on
Computer-Aided Design (2013), pp. 478–485

22. R. Topaloglu, Early, accurate and fast yield estimation through Monte Carlo-alternative
probabilistic behavioral analog system simulations, in IEEE VLSI Test Symposium (2006), pp.
137–142

23. J. Wang, S. Yaldiz, X. Li, L. Pileggi, SRAM parametric failure analysis, in Design Automation
Conference (2009), pp. 496–501

	12 Fast Statistical Analysis of Rare Circuit Failure Events
	12.1 Introduction
	12.2 Subset Simulation
	12.3 Scaled-Sigma Sampling
	12.4 Conclusions
	References

