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fernandavdc@ufrrj.br

2 Universidade Federal Fluminense, Niterói, Brazil
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Abstract. A tree t-spanner of a graph G is a spanning subtree T in
which the distance between any two adjacent vertices of G is at most t.
The smallest t for which G has a tree t-spanner is the tree stretch index.
The problem of determining the tree stretch index has been studied by:
establishing lower and upper bounds, based, for instance, on the girth
value and on the minimum diameter spanning tree problem, respectively;
and presenting some classes for which t is a tight value. Moreover, in
1995, the computational complexities of determining whether t = 2 or
t ≥ 4 were settled to be polynomially time solvable and NP-complete,
respectively, while deciding if t = 3 still remains an open problem.

With respect to the computational complexity aspect of this problem,
we present an inconsistence on the sufficient condition of tree 2-spanner
admissible graphs. Moreover, while dealing with operations in graphs, we
provide optimum tree t-spanners for 2 cycle-power graphs and for prism
graphs, which are obtained from 2 cycle-power graphs after removing a
perfect matching. Specifically, the stretch indexes for both classes are far
from their girth’s natural lower bounds, and surprisingly, the parameter
does not change after such a matching removal. We also present effi-
cient strategies to obtain optimum tree t-spanners considering threshold
graphs, split graphs, and generalized octahedral graphs. With this last
result in addition to vertices addition operations and the tree decompo-
sition of a cograph, we are able to present the stretch index for cographs.

Keywords: Tree t-spanner · Stretch index · Lower bounds
Generalized octahedral graph · Cycle-power graph · Prism graph
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1 Introduction

The problems of obtaining subgraphs with special restrictions have been consid-
ered in several papers, with many motivations and applications in different fields,
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as message routing, computational geometry, and phylogenetic analysis [1–3]. In
addition to the inherent difficulty of these problems, another challenge arises
when we look for a spanning tree with constraints on the vertices’ distances.

A tree t-spanner of a graph G is defined as a spanning subtree T of G in which
the distance between every pair of vertices is at most t times their distance in G
or, equivalently, as the subtree T in which the distance between two adjacent
vertices of G is at most t (cf. [4]). If a graph has a tree t-spanner, then it is called
a tree t-spanner admissible graph. The parameter t of a tree t-spanner is called
the tree stretch factor, and the smallest t for which a graph G is tree t-spanner
admissible is called the tree stretch index of G, denoted by σT (G).

Note that the problem of determining the tree stretch index of G, called
the minimum stretch spanning tree problem (MSST), is one of the interesting
min-max problems, which are studied not only in graphs, but in several other
combinatorial problems, in such a way that bounds, algorithms and computa-
tional complexity studies are widely developed [5,6].

An intriguing aspect comes when we want to determine if a graph is tree
3-spanner admissible. In terms of the computational complexity, this task is still
the greatest breakthrough we aim to solve, since deciding if σT (G) ≥ 4 is NP-
complete, whereas for σT (G) = 2 it is polynomially time solvable [4]. There are
also some classes for which this problem was settled to be NP-complete, as planar
and chordal graphs [7,8], or classes for which the stretch index was proved to
be bounded by specific values, as split and cographs (cf. [9]). Hence, it is also a
great challenge to determine the stretch index even restricted to graph classes.
Still in the computational complexity approach, in this work, we can observe
that Cai and Corneil’s characterization for tree 2-spanner admissible graphs [4],
which deals with triconnected components of a graph, is not consistent with
the usual definition of k-connected graphs, considering, for instance, complete
graphs. In this sense, we present infinite families of split graphs that do not
admit tree 2-spanners, but satisfy their sufficient condition, considering either,
the convention for Kn graphs connectivity (see [10,11]) or that the connectivity
concept does not apply to complete graphs (see [12]).

Studying bounds is an ordinary kind of approach for MSST. A natural lower
bound arises when we consider the girth g(G) of a graph G, i.e. the length
of its minimum cycle. We have that, if G is a tree t-spanner admissible, then
t ≥ g(G)−1. Regarding this bound, it is possible to observe some optimum tree t-
spanners for some families or classes, for instance complete graphs, cycle graphs,
wheel graphs, or complete k-partite graphs, for k ≥ 2. However, establishing
lower bounds is challenging in general, and so it remains when we deal with the
MSST problem restricted to graph classes, since the results on it often present
tree t-admissible graphs (cf. [4]). Another kind of approach considers variant
problems, for instance the minimum diameter spanning tree. In this problem,
the solution tree minimizes the maximum distances between all pairs of vertices,
which is polynomially time solvable, and the solution parameter is an upper
bound for the MSST problem [13].
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We focus on obtaining the stretch index for some graph classes and, although
there are already known upper bounds for some of them, in this work we present
minimum t = σT (G) values considering these classes. We also present the stretch
index for 2 cycle-power graphs, which is far from the girth’s natural lower bound.
Furthermore, we are also interested in the stretch index after vertices/edges
operations, particularly for generalized octahedral graphs (complete graphs after
removing a perfect matching), generalized octahedral graphs after non-universal
vertices additions, and for prism graphs (2 cycle-power graphs after removing a
perfect matching). Surprisingly, in this last case, the matching removal does not
modify the stretch index of 2 cycle-power graphs.

This paper is organized as follows: In Sect. 2, we present basic definitions,
considerations about Cai and Corneil’s characterization for tree 2-spanner admis-
sible graphs, and previous results. In Sect. 3, we present optimum tree t-spanner
for some graph classes, such as 2 cycle-power graphs, prism graphs, general-
ized octahedral graphs, threshold graphs and their minimal superclasses, split
graphs and cographs; In Sect. 4, we present final remarks by considering further
investigation on other classes and their properties.

2 Preliminaries

Given a graph G = (V,E), dG(x, y) denotes the distance between x and y in G
and dG(v), the degree of v in G. We say that a non-edge of a spanning tree T is
an edge of G \ T . A p-path is a path of length p.

A tree t-spanner of a graph G is a spanning subtree T of G in which the
distance between every pair of vertices is at most t times their distance in G.
Cai and Corneil proved that this problem is equivalent to the one that considers
only adjacent vertices of G [4]. Moreover, they showed what follows.

Theorem 1. A spanning tree T is a tree t-spanner of G if and only if for every
edge xy ∈ E(G)\E(T ) we have dT (x, y) ≤ t.

The minimum stretch spanning tree of G (MSST) is an optimization problem
of finding a tree t-spanner of G with minimum t. In this case, we say that
σT (G) = t, and σT (G) is called the stretch index of G. Upper bounds for σT (G)
can be obtained considering, for instance, the minimum diameter spanning tree,
whose smallest parameter is DT (G), and some other problems [4,14]. In opposite,
a natural lower bound can be obtained accordingly to the girth of G, i.e., the
length of its minimum induced cycle. Therefore, Theorem 2 states the range of
the stretch index of a given graph G.

Theorem 2 [4,13]. Given g(G) the girth of G, we have that g(G)−1 ≤ σT (G) ≤
DT (G).

Consider, for instance, a tree (n − 1)-spanner of the cycle graph Cn, i.e. a
path Pn, and a tree 2-spanner of the complete graph Kn, i.e. a star Sn−1. Both
spanning trees are optimum, and their associated stretch factors are tight with
respect to Theorem 2.
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On Cai and Corneil Tree 2-Spanner Characterization. Cai and Corneil [4] pro-
posed a characterization to decide if σT (G) = 2, formulated as follows: a non-
separable graph G has a 2-spanner if and only if G contains a spanning tree T
such that for each triconnected component H of G, T ∩ H is a spanning star
of H.

Indeed, the statement above gives a necessary condition for a graph having
a 2-spanner. However, we show in Fig. 1 a nonseparable graph G and a spanning
tree T of G such that the intersection of T with the unique triconnected compo-
nent of G (H = K4) is a spanning star of H, but there is no tree 2-spanner for
the split graph in Fig. 1, as a consequence of Proposition 3. Observe that, since
the connectivity of a complete graph with n vertices is n − 1 [10,11], a K4 is
triconnected and, once this is the unique triconnected component of G, H = K4.
Thus, in order that G is tree 2-spanner admissible it must exist a spanning tree
T of G such that T ∩ H is a star. Figure 1(b) exhibits such a tree. This exam-
ple can be generalized, for instance, to a graph obtained from a K2k adding k
vertices adjacent to two vertices of K2k with no common adjacent vertex. k-sun
(see [15]) are also an example of split graphs that satisfy the sufficient condi-
tion mentioned above, and thus would be tree 2-spanner admissible graphs, but,
accordingly to Proposition 3, they do not admit a tree 2-spanner.

Thus, the Cai and Corneil’s sufficient condition for tree 2-spanner admissible
graphs is not consistent with the usual definition of the connectivity for complete
graphs. Even if we consider that the connectivity concept does not apply for such
graphs, the condition does not hold in these families of examples.

(a) (b)

Fig. 1. (a) A split graph G with only one triconnected component H = K4. (b) A span-
ning tree T of G such that T ∩H is a spanning star of H, but G is not a tree 2-spanner
admissible graph (see Proposition 3, since there is no vertex of the set {1, 2, 3, 4} adja-
cent to both vertices 5 and 6, then the stretch index of G is equal to 3).

3 Stretch Index for Graph Classes

Next we consider some related graph classes, for which we are able to obtain
optimum tree t-spanners even when, in some cases, the lower bound of Theo-
rem 2 is far from the stretch index we obtain. Moreover, seeing whether and how
vertices/edges operations affect the stretch index is another goal of this section.

3.1 Cycle-Power Graphs

Any graph is a tree (n − 1)-spanner admissible, but, in general, such a bound is
far from the stretch index. However, for cycle graphs, n−1 is a tight value, since
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it reaches the lower bound of Theorem 2. Next, we present classes with extremal
bounds, in such a way that σT (G) is large and far from the lower bound given
by Theorem 2.

A cycle-power graph [16], Ck
n, is obtained from a Cn by adding edges between

two vertices with distance at most k in Cn. We call external edges the edges of
the external cycle Cn, and internal edges the added edges. Since g(Ck

n) = 3,
then σT (Ck

n) ≥ 2. We restrict ourselves to k = 2 and show an optimum tree
�n
2 �-spanner.

Given a graph G = C2
n, we define an �-come-go path with respect to a pair

of vertices ui, ui+j , for j ∈ {1, 2}, by a path of length � from ui to ui+j , for � ∈
{2, · · · , n−1}, following one of two directions, either: clockwise/counterclockwise
direction; or counterclockwise/clockwise direction. When we are not interested
in the length, we suppress such a value and refer an �-come-go path by a come-go
path.

A spot edge of a come-go path is an external edge that either: changes the
way of the path, i.e. from clockwise to counterclockwise or from counterclockwise
to clockwise; or immediately precedes an internal edge that changes the way of
the path. Figure 2 illustrates the two 7-come-go paths with respect to u1 and u2.

(a) (b)

Fig. 2. Bold edges belong to 7-come-go paths with respect to u1 and u2, such that: (a)
path using the counterclockwise/clockwise direction, where u7u8 is the spot edge; (b)
path using the clockwise/counterclockwise direction, where u5u6 is the spot edge.

Lemma 1. Given a graph G = C2
n and a come-go path P with respect to uiui+j,

for j ∈ {1, 2}, then P contains a unique spot edge.

Proof. Once P is a come-go path, P must contain a spot edge. Suppose there
are more than one of such edges. Following the path P from ui to ui+j , consider
ufuf+1 as the first reachable spot edge of P . After reaching the last spot edge
of P , the unique way to achieve ui+j is by crossing again uf or uf+1, once it is
not possible to bypass two consecutive vertices of the external cycle. Since uf

and uf+1 already belong to P , then there is a cycle in the come-go path P . �	
A path between ui, ui+j , for j ∈ {1, 2}, of length greater than 2 which is not

a come-go is called a turn around path, which is depicted in Fig. 3(a). If j = 1,
then the length of a turn around path is at least �n

2 �. If j = 2, then the length is



Tree t-Spanners of a Graph: Minimizing Maximum Distances Efficiently 51

(a) (b)

Fig. 3. (a) Bold edges belong to a turn around path with respect to u1 and u2. (b) An
example of vertices ux and uy.

at least �n
2 � for n odd, and at least n

2 − 1 for n even. Note that, when j = 2, we
have between ui and ui+j either a turn around path or the 2-path uiui+1ui+2.

For any non-edge of a spanning tree T of a graph G, there is a path which
is either: a come-go path, or a turn around path, or the 2-path uiui+1ui+2, for
the non-edge uiui+2.

Proposition 1. Given an �-come-go path with respect to ui and ui+j, for j ∈
{1, 2}, if j = 1, then there is a unique external edge, otherwise there are exactly
two external edge.

Proof. Considering j = 1, since the spot edge is external, let us suppose that
there is at least one more external edge ufuf+1, for i+1 < f < � in an �-come-go
path P . In this case, following the path from ui to ui+1, at least one of uf and
uf+1 will be reached, and after crossing the spot edge, it is necessary to reach uf

or uf+1 again, which implies that P is not a path. Similarly, considering j = 2,
the unique external edges are uiui+1 and the spot edge. �	
Lemma 2. Given a graph G = C2

n and an �-come-go path P , with respect to
uiui+j, for j ∈ {1, 2}, then P is the unique �-come-go path with respect to uiui+j

following the same direction of P .

Proof. Suppose there are at least two �-come-go paths P1 and P2 following, w.l.g.,
the counterclockwise/clockwise direction with respect to uiui+j , for j ∈ {1, 2}.
In this case, there is a non-edge in P1 which is external edge of P2, and then it
is a spot edge of P2, by Proposition 1. Hence, the length of P2 is distinct of �. �	
Lemma 3. For any spanning tree T of G = C2

n, there is at least a non-edge
uiui+j, for j ∈ {1, 2}, such that the unique path between ui and ui+j in T is a
turn around path.

Proof. Suppose the path between any pair of vertices of a non-edge of T is not a
turn around path. Hence, if the non-edge is external, then the path is a come-go
path. If the non-edge is internal, then the path between them is either a 2-path,
or it is a come-go path.

Since T must contain an external non-edge, let uiui+1 be such an external
non-edge of T and thus, by hypothesis, there is a come-go path P1 between ui
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and ui+1, in which uf uf+1 is the spot edge. The paths between all pairs of
vertices in P1 consisting of non-edges in T are induced paths of P1, hence, let us
analyze the neighbors of uf and uf+1 outside P1.

If there is a vertex of G outside of P1, at least one of the vertices uf and
uf+1 has a neighbor outside P1 consisting of a non-edge in T , because if there
were all edges from uf and uf+1 to their neighbors outside P1, it would have
in T the cycle uf uf+1 uy, uf , for uy ∈ {N(uf )\P1, N(uf+1)\P1}. Let uxuy be
a non-edge of T , for x ∈ {f, f + 1}, Fig. 3(b).

If uxuy is an internal non-edge, then we have two options of a path between
ux and uy in T :

i. by the 2-path uxux+1uy. In this case, go to a non-edge where one of the
vertices belongs to the 2-path. This non-edge belongs to: a 2-path, and in
this case, we go to a non-edge and the analysis continues; a come-go path
with respect to its extremities, and in this case, as it was done with P1, go to
its spot edge and continue the analysis; or ux+1uy is the spot edge of a come-
go path, P2, following the opposite direction of P1, with respect to vertices
that do not belong to P1, nor to the 2-path, either. Hence, go to the extremity
vertices of P2 and analyze a non-edge whose vertices are an extremity vertex
of P2 and a vertex that does not belong to P2 nor to P1;

ii. by a come-go path with respect to uxuy, which we call P3. Note that P3 must
have the same direction of P1, otherwise, we would visit vertices already in
P1, implying in a cycle. Hence, go to the spot edge of P3 and consider it
similarly as done considering P1.

If uxuy is an external non-edge, then ux and uy must be connected by come-
go path in T . In this case, proceed as in the previous case ii.

Note that the procedures considered in i and ii. must be finished when
we reach either the vertex ui−1 (whenever P1 follows anticlockwise/clockwise
direction), or the vertex ui+j+1, for j ∈ {1, 2} (whenever P1 follows clock-
wise/anticlockwise direction). Let uw be the last visited vertex, which is neighbor
of ui or ui+j . In T , we have three possible paths between uw and ui or ui+j :
there is an edge; there is a come and go path; there is a 2-path. For any of such
cases, we have created a cycle, because, by P1, there is a path between ui and
ui+j , which does not include uw. Therefore, there is path, distinct of P1, starting
from either ui or ui+j passing through uw. Thus, there is a turn around path
between ui and ui+j . �	
Lemma 4. For any cycle-power graph C2

n, σT (C2
n) ≥ �n

2 �.
Proof. Since there is at least a turn around path in any spanning tree T of
G = C2

n (Lemma 3), and if n is odd, then there is a non-edge in T whose
corresponding vertices’ distance is at least �n

2 �. Therefore, σT (C2
n) ≥ �n

2 �, for n
odd.

Since when n is even, a turn around path has length at least: n
2 − 1, for an

internal non-edge ui ui+2; or n
2 , for an external non-edge. Hence, it remains to

analyze the former case. Note that G contains two disjoint internal cycles I1 and
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I2, each one of length n
2 . Consider that ui and ui+2 belong to I1 and the distance

between them in T is n
2 − 1. Since the unique turn around path of length n

2 − 1
between ui and ui+2 in G includes each edge of the cycle I1, all internal edges of
I1 must belong to T , except ui ui+2. On the other hand, at least one of ui ui+1

and ui+1 ui+2 must be non-edge of T . Otherwise, if both edges belong to T ,
then there would be the 2-path ui ui+1 ui+2 in T , contradicting the assumption
of the path between ui ui+2 is turn around.

1. If ui ui+1 is non-edge of T and ui+1 ui+2 is edge of T (which is similar to
the case of ui ui+1 being edge of T and ui+1 ui+2 non-edge of T ), then the
path between ui and ui+1 has length at least n

2 considering the path between
ui and ui+2, and the edge ui+2 ui+1. Otherwise, if there is a distinct path P
between ui and ui+1, we would have another path between ui and ui+2, say
P ∪ {ui+1ui+2}.

2. If ui ui+1 and ui+1 ui+2 are both non-edges of T , then at least one of the
edges ui−1 ui+1 and ui+1 ui+3 must belong to T , otherwise ui+1 would be
isolated of T . Hence, we analyze the two cases:

– ui−1 ui+1 is an edge of T and ui+1 ui+3 is a non-edge of T . In this case,
note that the path between ui+1 and ui+2 must be a turn around, because
ui+1 ui+2 and ui+1 ui+3 are non-edges of T , Fig. 4(a). Since ui+1 ui+2 is
an external non-edge of T , then, the distance between ui+1 and ui+2 is
at least n

2 .
– ui−1 ui+1 and ui+1 ui+3 are edges of T . Let us consider the distance

between ui+1 and ui+2 in T . If it is given by a turn around path, then its
length is at least n

2 . Otherwise, it is an come-go path P 1. If P 1 follows
the clockwise/anticlockwise direction, then the edge ui ui+2 must exist
in T , but it contradicts the hypothesis. Hence, P 1 follows the anticlock-
wise/clockwise direction. Similarly, the path between ui and ui+1 is a
turn around path, implying that the distance between ui and ui+1 is at
least n

2 , or it is a come-go path P 2 following the clockwise/anticlockwise
direction. In this case, we have that:

• if there is any path in T between the spot edges of the two come-go
paths without passing through ui+1, then we have created a cycle,
since ui+1 belongs to the two come-go paths just settled;

• Suppose there is no path in T between the spot edges of the two
come-go paths without passing through ui+1, and let P be the path
composed by external edges in G that links the P 1 spot edge to the P 2

spot edge following the anticlockwise direction, Fig. 4(b). Note that
P has at least one edge, because, otherwise, T would have a cycle.
Clearly, there is an edge in P which is a non-edge in T . Thus, there
is a path of length at least n

2 .

Hence, we have that there is a pair of neighbors in G whose distance is at
least �n

2 � in T . �	

Lemma 5. For any cycle-power graph C2
n, σT (C2

n) ≤ �n
2 �.
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(a) (b)

Fig. 4. (a) Turn around path between ui+1, ui+2 in T . Note that uiui+2, ui+1ui+2 and
ui+1ui+3 are non-edges of T . (b) Bold edges compose two come-go paths P 1 and P 2,
where the bold external edges are their spot edges. The path P is inside the dotted
diagram.

Proof. We obtain a spanning tree T of C2
n with vertex set {u1, u2, . . . , un} as

follows: add to T the vertex u1 and its neighbors u2, u3, un and un−1. Now,
follow the direction in which the next vertex is u2, set i = 3, and: (i) take the
vertex ui; (ii) Add to T the vertices adjacent to ui which are not in T yet,
following the same direction as established initially, i.e., u4, u5 in the first step.
Increment i+1 and return to step (i) until reaching the last vertices not in T yet.
It is easy to see that, between two adjacent vertices of C2

n, the distance between
them in T is either 1, 2, 3 or n

2 . Hence, σT (C2
n) ≤ �n

2 �. �	
Figure 5 depicts a tree �n

2 �-spanner for C2
10.

Fig. 5. Bold edges form the tree �n
2
�-spanner T for C2

10. There are: three turn around
paths in T , with respect to the internal non-edges u7u9 and u8u10, and the external
non-edge u8u9; a 2-path between the internal non-edge u2u10; 3-come-go paths with
respect to the internal non-edges u2u4, u4u6, u6u8 and u8u10; and 2-come-go paths with
respect to the external non-edges u2u3, u4u5, u6u7 and u9u10.

Theorem 3 follows from Lemmas 4 and 5.

Theorem 3. For any cycle-power C2
n with n > 5, σT (C2

n) = �n
2 �.

3.2 Stretch Index After Edges Removal

For several graph classes, we are able to determine the stretch index. But obtain-
ing the stretch index after we consider operations on the vertex/edge sets regard-
ing those classes is a challenge. In this section, we are particularly interested on a
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perfect matching removal considering 2 cycle-power and complete graphs, which
are prism and generalized octahedral graphs, respectively. With this last result,
in Sect. 3.3 we obtain the stretch index for cographs.

Removing a Perfect Matching of Cycle-Power Graphs. Considering 2
cycle-power graphs of even order after removing a perfect matching M with
respect to external edges, one can note that a C2

2p\M is the prism graph with
bases Cp. Lemma 6 presents a lower bound which is far from its girth’s lower
bound. Moreover, in Lemma 7 we prove that the stretch index is not affected by
a perfect matching removal, differently from what happens with the complete
graph and the octahedral graph, as proved in Theorem 5.

As in 2 cycle-power graphs, in prism graphs, we also have come-go and turn
around paths.

Lemma 6. Given G = C2
2p\M , a cycle-power graph C2

2p after removing a perfect
matching M with respect to the external edges, we have that σT (G) ≥ n

2 .

Proof. Considering any tree t-spanner of G, we analyze two cases: all external
edges belong to T ; and there is at least an external non-edge in T .

1. All external edges belong to T : In this case, between two consecutive external
edges ui ui+1 and ui+2 ui+3 it is not possible to exist both internal edges
ui ui+2 and ui+1 ui+3 in T , otherwise the C4, ui, ui+1, ui+3, ui+2, ui, would
belong to T . Next, we analyze two possible subcases: ui ui+2 and ui+1 ui+3

are both non-edges of T ; only one of such edges belongs to T .
1.1. ui ui+2 and ui+1 ui+3 are both non-edges of T : Considering the edge

ui+4 ui+5, it must exist in T either ui+2 ui+4, or ui+3 ui+5, because
otherwise, the edge ui+2 ui+3 would be isolated in T .
Consider, w.l.g., ui+2 ui+4 is in T (and so, ui+3 ui+5 is a non-edge).
Although a turn around for an internal non-edge is at least n

2 − 1, the
distance between ui+1 and ui+3 is at least n

2 + 1 by a turn around path
with respect such an internal non-edge. Note that the length of the turn
around path between ui+1 and ui+3 is equal to n

2 − 1 only when all edges
of I1\{ui+1ui+3} are in T , where I1 is the internal cycle of G that contains
vertices ui+1, ui+3 and ui+5. However, ui+3 ui+5 is a non-edge in T , which
implies in a exchange of ui+3 ui+5 by the path ui+5, ui+4, ui+2, ui+3 in
T . Hence, the length of the turn around path is at least n

2 + 1 after the
edges’ exchange.

1.2. Suppose, w.l.g., ui ui+2 is an edge of T and ui+1 ui+3 is a non-edge
of T . Now, we prove that in T it must exist a pair of non-edges uj uj+2

and uj+1 uj+3 for some j, similarly to Case 1.1. Assume that one of
such edges is in T and belongs to the internal cycle I2 of G. Hence, we
create a path starting by the edge ui ui+2, and after that we choose one
of the two ways of reaching the external edge ui+4 ui+5, by ui+2 ui+4

or ui+3 ui+5. If ui+2 ui+4 is an edge of T , then we are making a path
through I2, otherwise, the path is ui, ui+2, ui+3, ui+5. Therefore, it is
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always possible to reach two consecutive external edges by using I1 or I2
edges. So, if there is not a pair of non-edges similar to Case 1.1, we can
continue this path through external edges of I1 and I2, creating then a
cycle. Once it is necessary to have non-edges of Case 1.1, then we have
the existence of vertices with distance at least n

2 + 1 in T .
2. There is at least an external non-edge in T : Suppose ui ui+1 is a non-edge

of T . If the path between ui and ui+1 in T is a turn around, then its length
is at least n

2 + 1, because ui belongs to I2 and ui+1 belongs to I1. Hence,
assume that the path in T between ui and ui+1 is a come-go.
Note that we have at least one non-edge of I1 and of I2 in T , and similarly
to Lemma 3 and Case 1.2 above, there is a turn around path between the
corresponding vertices of an internal non-edge of I1 and I2.
So, each turn around has length at least n

2 −1, and such a path with respect to
an internal non-edge in T is unique in G. Moreover, in T , a turn around with
respect to a non-edge of I2 (or I1) has length n

2 − 1 or any greater value with
the same parity, because the path between such vertices does not go through
all edges of the corresponding internal cycle, and then we must move to the
other internal cycle and return, increasing the path in at least two edges.
Hence, in order to keep in T the distances equal to n

2 −1 between the vertices
of non-edges e2 of I2 and e1 of I1, all other edges of both internal cycles of G
must belong to T . Let P 2 be the path I2\e2 and P 1 be the path I1\e1.
Now, P 1 must be linked to P 2. The unique way to do that is by using only
one external edge, otherwise, there would be a cycle in T by at least two ways
to go through P 2 to P 1, each one using a distinct external edge. Therefore,
in T , there is only one external edge of G.
Since there is a come-go path between ui, ui+1, as well between all other
n
2 − 2 external non-edges, all come-go paths between corresponding vertices
of external non-edges must be composed by the same spot edge, say, the
external edge we have used to link P 1 and P 2.
Furthermore, the unique way to exist only come-go paths between corre-
sponding vertices of external non-edges in T is by considering uk−1uk+1 and
uk−2uk internal non-edges of T . Otherwise, if the non-edges of T were ujuj+2

and uj+2s+1 uj+2s+3, there would be a turn around path with respect to the
external edges uj uj+1 and uj+2s+1 uj+2s+2.
In this way, we have that the distances between the vertices of the non-edge
uk−1 and uk, and between the vertices of the non-edge uk+1 and uk+2 are
n
2 −x and n

2 +x, respectively, according to the place we have chosen the spot
edge. Therefore, when x = 0, we have that σT (G) ≥ n

2 . �	
Accordingly to the arguments of Lemma 6, we are able to build a tree n

2 -
spanner as follows.

Lemma 7. Given G = C2
2p\M , a cycle-power graph C2

2p after removing a perfect
matching with respect to the external edges M , we have that σT (G) ≤ n

2 .
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Proof. Consider I1 and I2 the internal cycles of G, in such a way
that I1 = u1, u3, u5, . . . , un−1, u1, I2 = u2, u4, u6, . . . , un, u2 and M =
{{u2u3}, {u4u5}, {u6u7}, . . . , {unu1}}. We create the spanning tree T by the
edge set {{u3u5}, {u5u7}, . . . , {un−3un−1} ∪{u2u4}, {u4u6}, . . . , {un−2un}∪
{un

2
un

2 +1}}. Note that the unique external edge of G in T is {un
2
un

2 +1}. The
paths between the external non-edges of T have length at most n

2 , which is equal
to this value for the non-edges u1 u2 and un−1 un. Furthermore, there are only
two internal non-edges in T , which are unu2 and un−1u1, with distances equal
to n

2 − 1, because all other edges of I2 and I2 belong to T . �	
Theorem 4 follows from Lemmas 6 and 7.

Theorem 4. Given G = C2
2p\M , a cycle-power graph C2

2p after removing a
perfect matching with respect to the external edges M , we have that σT (G) = n

2 .

Generalized Octahedral Graphs. Generalized octahedral graphs figure in
several well studied problems [17] because of their regularity and symmetry. A
generalized octahedral graph, or simply octahedral graph Ok, is the (2k − 2)-
regular graph, which is exactly a complete graph K2k after removing a perfect
matching. This class sounds interesting in here when we deal with cographs in
Sect. 3.3, even considering Ok after vertices addition, in Lemma 10.

Theorem 5. Given an octahedral graph Ok, then σT (Ok) = 3, for k > 2.

Proof. Consider the vertex set {u1, v1, . . . , uk, vk} in such a way that ui and vi
are not neighbors, but they are adjacent to all other vertices of Ok. A tree T can
be built by first considering two stars, with centers in u1 and v2, such that u1

is adjacent to all ui’s and v2 is adjacent to all vi’s. Now, we add to T the
edge u1v2. The distances in T of two vertices of ui’s or of vi’s are equal to 2,
and from distinct side are equal to 3, hence σT (Ok) ≤ 3. In order to prove
that σT (Ok) = 3, suppose we have an optimum tree spanner T for Ok that can
be partitioned into two rooted trees, T1 and T2, each one with more than two
vertices, such that at least one of them is not a star. Suppose, w.l.g., that T1

is not a star. Let l ∈ T1 and c be two vertices of T such that lc /∈ E(Ok). If
c ∈ T1, then l and c are adjacent to each vertex of T2. Since T1 is linked to
T2, there is an edge with one extreme in T1 and another in T2. If l is such an
extreme, then dT (c, v) ≥ 3,∀v ∈ T2. Otherwise, there is a vertex v ∈ T2 such
that dT (l, v) ≥ 3. �	

3.3 Threshold Graphs and Their Superclasses

Next, we establish the stretch index for three classes whose graphs are tree 3-
spanner admissible (cf. [4]).
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Threshold Graphs. Threshold graphs [18] can be defined as the intersection
of two very well studied classes: split graphs and cographs. Thus, threshold
graphs are {2K2, P4, C4}-free graphs. Moreover, G is a threshold graph if G
can constructed from the empty graph by repeatedly adding either an isolated
vertex or a universal vertex.

Since to obtain spanning trees we only consider connected graphs, the last
vertex of a threshold graph construction must be universal. Hence, a tree can
be built as a star whose center is such a universal vertex. Thus we can state the
following proposition.

Proposition 2. If G is a threshold graph, then σT (G) = 2.

Split Graphs. As just mentioned, split graphs are a superclass of threshold
graphs. Formally, a graph G = (X,Y ) is a split graph, also called a (1, 1)-graph,
if and only if it can be partitioned into a clique X and a stable set Y . In terms
of forbidden subgraphs, they are {2K2, C4, C5}-free graphs.

Lemma 8. If G is a split graph, then σT (G) ≤ 3.

Proof. We obtain a spanning tree T for a split graph G = (X,Y ) as follows. Set
any vertex x in X to be the center of a star which includes each other vertex
of X. Next, for each vertex y ∈ Y , choose an edge incident to y, arbitrarily,
and make y a pendant in T . It remains to show that the distance between two
adjacent vertices v, w in G is at most 3 in T . (i) v, w ∈ X: since we have a star
in T with respect to X, then d(v, w) = 2. (ii) v ∈ X, w ∈ Y : the worst case
occurs when dG(w) ≥ 2 and v is a leaf of the star in T . In this case, d(v, w) = 3
by the path vxx′w, where x′w belongs to T . �	

Now, we characterize split graphs whose stretch indexes are 2 or 3.

Proposition 3. Let G = (X,Y ) be a split graph which is not a tree. Thus,
σT (G)=2 iff either: (i) dG(y) = 1,∀ y ∈ Y , or (ii) ∃ x ∈ ⋂

y∈Y NG(y), x ∈ X
such that dG(y) ≥ 2.

Proof. If G satisfies (i) or (ii), then G contains a tree 2-spanner which can be
constructed following Lemma 8, and, particularly in case (ii), consider any vertex
x satisfying conditions required in (ii) to be center of the star. Conversely, by
contradiction, since σT (G) = 2, for each pair of vertices in X there is in T either
an edge or a P3 centered in a vertex v of G. If v ∈ X, then the minimum stretch
spanning subtree with respect to X is a star. Otherwise, v ∈ Y and each vertex
of the clique would be a leaf of the star centered in v. Once there are two vertices
in Y with degree at least 2 without an adjacent vertex in common, in the first
case, for any center of the star we have chosen regarding the clique’s vertices,
there is a vertex of the stable set such that all its neighbors are leaves of the
star, which implies σT (G) ≥ 3. In the second case, σT (G) ≥ 3 anyway, because,
by hypothesis, there exist at least two more vertices in Y with degree at least 2,
and they will be adjacent only to the leaves of the star centered in v. �	
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Figure 1 exhibits a split graph G with σT (G) = 3. Another example of split
graphs that have stretch index equal to 3 are the k-sun. Such graphs do not
satisfy conditions of Proposition 3 either.

Cograph. A cograph is a P4-free graph. A trivial graph is a cograph, and any
other can be obtained by disjoint union or join operations of cographs. We can
represent the union and join operations of a cograph by a tree decomposition,
called cotree [19].

Theorem 6. If G is a cograph, then σT (G) ≤ 3.

Proof. Since G must be connected, its cotree root’s label is 1, implying that
any vertex of G represented as a leaf node of a root’s subtree is adjacent to all
vertices of the other root’s subtrees. We build a spanning tree T of G as follows.
Let f be a leaf node of the leftmost root’s subtree, F1. Since f is adjacent to all
vertices of the other root’s subtrees, set T as a star with center f and make f
adjacent to each vertex of all root’s subtrees on F1’s right. Let lf be an edge of
the star just obtained. Once the vertex l in G is adjacent to all vertices of F1,
hence we add to T each edge corresponding to a neighbor of l in F1, except to
the edge lf . Therefore, σT (G) ≤ 3. �	
Lemma 9. Given a graph G, let k be the number of its cotree root’s subtrees.
If G does not contain a universal vertex, then G contains an octahedral Ok as
an induced subgraph.

Proof. Since G does not contain a universal vertex, then each root’s son of its
cotree has label 0. Hence, in each subtree there are at least two leaves corre-
sponding to non-adjacent vertices in G, but these two vertices are adjacent to
all vertices of the other cotree root’s subtrees. So, the union of each two non-
adjacent vertices per subtree induces an Ok in G. �	

If a cograph G contains a universal vertex and there exist k′ subtrees of the
root with more than one leaf each, then there is an octahedral Ok′ as an induced
subgraph of G. Moreover, if there were a universal vertex u with respect to Ok′ ,
then σT (Ok′ ∪ {u}) = 2. However, such a vertex does not exist in a cograph
without a universal vertex, because, in this case, all root’s subtrees have label 0,
and considering two Ok′ non-adjacent vertices, it does not exist a vertex of a
same subtree adjacent to both vertices, otherwise their lowest common ancestor
would be 1.

Lemma 10. Let H be a cograph obtained from Ok by non-isolated vertices addi-
tion. If there is not a universal vertex in H with respect to Ok, then σT (H) = 3.

Proof. Since Ok is an induced subgraph of H, by construction H is a triconnected
component. If σT (H) = 2, then the tree 2-spanner of H would be a star. However,
it is not possible since H does not have a universal vertex. �	
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Since a cograph without universal vertex does not contain a universal vertex
with respect to some octahedral, then we have that, for cographs, containing a
universal vertex is also a necessary condition so that σT (G) = 2.

Theorem 7. Let G be a cograph. σT (G) = 2 iff G has a universal vertex.

Proof. If G contains a universal vertex, then σT (G) = 2. Let us prove the con-
verse by contrapositive. If there is no universal vertex in G, then by Lemma 9 we
have that G contains an octahedral Ok as induced subgraph, and by Lemma 10
we have that the unique case for decreasing σT from 3 to 2 is when there is a
universal vertex with respect to Ok, but in a cograph with no universal vertex,
there is no universal vertex with respect to an Ok. �	

4 Concluding Remarks and Further Work

In this work, we present an inconsistence on a well known sufficient condition
for tree 2-spanner admissible graphs. Moreover, we establish optimum tree t-
spanners for some graph classes by considering their characteristics, decomposi-
tions and by vertex/edges operations. Following the strategies proposed in this
work, we intend to obtain optimum tree t-spanners for generalized split graphs,
say (k, �)-graphs, and also for graphs obtained by vertex/edges operations.
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