
An Efficient Algorithm for Enumerating
Induced Subgraphs with Bounded

Degeneracy

Kunihiro Wasa(B) and Takeaki Uno

National Institute of Informatics, Tokyo, Japan
{wasa,uno}@nii.ac.jp

Abstract. We propose a polynomial delay and polynomial space algo-
rithm for the enumeration of k-degenerate induced subgraphs in a given
graph. A graph G is k-degenerate if each of its induced subgraphs has a
vertex of degree at most k. The degeneracy is considered as an indicator
of the sparseness of the graph. Real-world graphs such as road networks,
social networks and internet networks often have small degeneracy. Com-
pared to other kinds of graph classes, bounded degeneracy does not give
many structural properties such as induced subgraph free, or minor free.
From this, using bounded degeneracy to reduce the time complexity is
often not trivial. In this paper, we investigate ways of handling the degen-
eracy and propose an efficient algorithm for the k-degenerate induced
subgraph enumeration. The time complexity is O (

min
{
Δ + kk′, (k′)2

})

time per solution with polynomial preprocessing time and the space com-
plexity is linear in the input graph size, where Δ and k′ are the maximum
degree and the degeneracy of the input graph.

Keywords: Graph algorithms · Enumeration algorithms
Polynomial delay · k-degenerate graphs

1 Introduction

The subgraph enumeration is to output all the subgraphs of the given graph
satisfying a certain structural condition such as being a tree and the density is
no less than a threshold. It is one of the fundamental problems widely studied in
the theoretical computer science for more than 40 years ([12] gives the overview
of this area). The complexity analysis of subgraph enumeration algorithms has
two main streams. One is of a usual style, that is evaluating the time complexity
in the input size. Generally speaking, the number of solutions is exponential
in the input size, thus the studies are done to reduce the constant factor c of
the time complexity of O (cn). This has an advantage that at the same time we
can often obtain a combinatorial result of bounding the number of subgraphs.
On the other hand, considering the practice, enumeration problems have less

This work was supported by JST CREST, Grant Number JPMJCR1401, Japan.

c© Springer Nature Switzerland AG 2018
D. Kim et al. (Eds.): COCOA 2018, LNCS 11346, pp. 35–45, 2018.
https://doi.org/10.1007/978-3-030-04651-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04651-4_3&domain=pdf
http://orcid.org/0000-0001-9822-6283
https://doi.org/10.1007/978-3-030-04651-4_3

36 K. Wasa and T. Uno

solutions, say polynomially many, thus evaluation only by the input size is too
much overestimating. In such cases, output polynomial time is considered. The
time complexity is evaluated by the input size n and the output size N that
is the number of solutions. An algorithm is called an output polynomial time
algorithm if it terminates in a time polynomial in the input size and the output
size. Further, we say it runs in poly(n) time for each solution if an algorithm
runs in O (poly(n)N) time plus polynomial time preprocessing. Further, we say
the algorithm runs in polynomial delay time if the computation time between
any two consecutive output solutions is polynomial in the input size.

A graph G is said to be k-degenerate [10] if any of its induced subgraphs
has at least one vertex of degree at most k. The degeneracy of G is the small-
est k such that G is k-degenerate. Intuitively speaking, if a graph has a small
degeneracy, then the graph is relatively sparse. It is said that real world graphs
often have small degeneracies [6,8]. Particularly, some graph classes have con-
stant degeneracies, e.g., trees, grid graphs, outer planar graphs, planar graphs,
bounded treewidth graphs, and H-minor-free graphs for fixed H. Bounded-size
degenerate graphs have received much attention. However, bounded degeneracy
does not give many structural properties such as minor free, compared to other
graph classes such as chordal graphs. Thus, despite its importance, there are not
so many studies on algorithms that utilize degeneracy. In this paper, we address
the problem of enumerating all induced k-degenerate subgraphs. We investigate
efficient search strategies that have characterization of irredundant moves, and
the way of checking the degeneracy in short time. These yield an efficient enu-
meration algorithm. There have been several studies on enumeration problems in
a bounded degenerate graph [4,6,9], for cliques, dominating sets, induced trees,
etc. To the best of our knowledge, there has been little research on the enumera-
tion of k-degenerate subgraphs, or k-degenerate induced subgraphs. The case of
k = 1 corresponds to the forest enumeration, thus there have been many stud-
ies, especially its connected version, that is, trees. Ferreira et al. proposed an
enumeration algorithm for subtrees of size exactly h in an undirected graph [7].
Wasa et al. improved their result to optimal [14], that is, their algorithm runs
in O (1) delay, when the input graphs are trees. For the induced version, the
authors proposed an algorithm [13] that enumerates all the vertex subsets that
induce a tree. Conte et al. proposed an enumeration algorithm for maximal k-
degenerate induced subgraphs in a chordal graph that runs in polynomial delay
and space [5]. On the other hand, Bauer et al. [2] studied the enumeration of all
k-degenerate induced graphs having n vertices and m edges.

We propose an efficient algorithm for enumerating k-degenerate induced
subgraphs in a given graph G = (V,E). Our algorithm runs in
O (

min
{
Δ + kk′, (k′)2

})
time per solution and uses O (|V | + |E|) space, where

Δ and k′ are the maximum degree and the degeneracy of an input graph. Note
that the algorithm outputs also disconnected subgraphs. In the enumeration
of k-degenerate subgraphs, the time consuming part is the computation of the
degeneracy of a newly generated subgraph. It takes O (|V | + |E|) time with
straightforward ways. Further, if we follow the usual binary partition algorithm,

k-degenerate Induced Subgraph Enumeration 37

an iteration has to have up to O (|V |) trials for finding a vertex whose addition to
the current solution yields a k-degenerate induced subgraph. Thus, an iteration
has to spend O (|V |(|V | + |E|)) time or more in this way. Instead of that, we
developed a reverse search algorithm [1]. We define a parent-child relationship
that defines a tree shaped traversal route spanning all k-degenerate induced sub-
graphs. By generating the child solutions of the current visiting solution recur-
sively, we can traverse the tree in a depth-first manner whilst using polynomial
time and polynomial space. We further developed a data structure that enables
us to check the degeneracy in short time, that can be updated quickly along the
movement on the traversal tree.

The organization of this paper is as follows: In Sect. 2, we give the basic
notations and terminologies that are used in this paper. Section 3 shows the
reverse search strategy, and Sect. 4 describes the data structure for checking the
degeneracy. In Sect. 5, we conclude this paper.

2 Preliminaries

Let G = (V,E) be an undirected graph with vertex set V = {1, . . . , n} and edge
set E ⊆ V × V . Let u, v ∈ V be two distinct vertices in G. Vertices u and v
are mutually adjacent if (u, v) ∈ E. N(u) denotes the set of vertices that are
adjacent to u. We call d(u) = |N(u)| the degree of u. Let Δ(G) = maxu∈V d(u)
and δ(G) = minu∈V d(u). For a vertex set S, let dS(u) = |N(u) ∩ S| be the
number of neighbors of u that are in S. For any edge e = (u, v) ∈ E, we say that
u and v are the endpoints of e. G is connected if any pair of vertices u and v, there
is a path between them. For any vertex subset S of V , the subgraph induced
by S is the graph whose vertex set is S and edge set is the edges connecting
two vertices in S, i.e., {(u, v) ∈ E | u, v ∈ S}. For conciseness, for a set S and an
element v, we denote S ∪ {v} by S ∪ v and S \ {v} by S \ v. In what follows, we
assume that G is connected and G has no self loops and multi edges.

2.1 k-degenerate Graphs

A graph is k-degenerate [10] if any of its induced subgraphs has a vertex of
degree at most k, and the degeneracy of G is the smallest k such that G is k-

5 2 13746

1

2
3

4

5

6

7G1

Fig. 1. G1 is a 2-degenerate graph. A degeneracy ordering of G1 is shown in the right
part of the figure. In the figure, the leftmost vertex 6 is the smallest and the rightmost
vertex 1 is the largest. For any vertex v in G1, the number of larger adjacent vertices
of v is at two.

38 K. Wasa and T. Uno

degenerate. We call a vertex set S ⊆ V a k-degenerate vertex set if G[S] is an
induced subgraph whose degeneracy is k. It is known that G is k-degenerate if
and only if it admits a vertex ordering >∗, called a degeneracy ordering, such
that for any vertex v in G, |{u ∈ N(v) | u >∗ v}| ≤ k (See Fig. 1). That is, for
each vertex, the number of larger neighbors is at most k. A degeneracy ordering
of a graph can be obtained in linear time in the size of a graph [11], by recursively
removing the smallest degree vertex from the graph. It is also known that graphs
in some graph classes have a constant degeneracy. For example, the degeneracy
of trees, grid graphs, outerplanar graphs [3], and planar graphs are respectively
at most 1, 2, 2, and 5 [10]. In what follows, we assume the vertices of G are
labeled according to some degeneracy ordering of G, and we write > for >∗ if
no confusion can arise.

We here describe the k-degenerate induced subgraphs enumeration problem.

Problem 1. Given a graph G = (V,E) and positive integer k, enumerate all
k-degenerate vertex subsets of G.

Note that those vertex sets may induce disconnected graphs, and are allowed to
be solutions.

3 Reverse Search Algorithm

Our algorithm enumerates the solutions by traversing on a tree structure on
the solution space, called a family tree, in a DFS manner. The basic idea of
this strategy is proposed by Avis and Fukuda [1]. In this section, we give an
algorithm for k-degenerate induced subgraphs. We first define the tree structure
mentioned above. Let R = (∅, ∅) be the empty graph, that is a k-degenerate
graph. We call R the root. The parent vertex pv(S) of a k-degenerate vertex set
S is defined as the smallest vertex v in S such that v is adjacent to at most k
vertices of S. We define the parent of k-degenerate induced subgraphs of G as
follows:

Definition 1 (The parent). Let G be a graph and k be a positive integer.
We define the parent P (S) of a non-empty k-degenerate vertex set S ⊆ V as
S \ pv(S).

For any k-degenerate vertex set S′, we say that S′ is a child of S if P (S′) = S.
Let Ck(S) be the set of children of S. In what follows, we omit the subscript k
of Ck if no confusion arises. A vertex u is called a child generator of S if S ∪ u
is a child of S. It holds that |P (S)| = |S| − 1, thus by repeatedly applying the
parent function, we can reach the root R from any k-degenerate vertex set S
since every k-degenerate vertex set has a parent vertex pv(S).

The family tree is a tree whose node set is all the k-degenerate vertex sets
of G, and an edge connect two nodes if one is the parent of the other. From
the above, we can see that the family tree contains no cycle and spans all k-
degenerate vertex subsets, thereby is a tree rooted at R. The algorithm traverses

k-degenerate Induced Subgraph Enumeration 39

Algorithm 1. Reverse search algorithm
1 Procedure Main(G = (V, E), k)
2 R ← (∅, ∅);
3 Rec(G, R, k);

4 Subprocedure Rec(G, S, k)
5 Output S;
6 foreach S′ ∈ C(S) do
7 Rec(G, S′, k);

the tree by recursively moving to the children of the current visiting k-degenerate
vertex subset. We can then see the correctness of the algorithm; the algorithm
completely outputs the k-degenerate vertex sets without duplication. The algo-
rithm is described in Algorithm1.

4 Generating Children

The bottle neck part of Algorithm1 is the computation of the children a current
solution in line 6. A näıve way to generate all the children of a k-degenerate vertex
set S is as follows: For every vertex u /∈ S, check whether S ∪ u is k-degenerate
or not, and P (S ∪ u) is S or not; if the answers of the both checking are yes,
then add u to the set of child generators. This actually needs O (|V |(|V | + |E|))
time. In this section, we propose an efficient method that avoids the above trial-
and-error approach. We first consider the sufficient and necessary condition for
a vertex u to be a child generator of S. Let k′ be the degeneracy of G. In what
follows, we assume k < k′. Otherwise, our problem can be solved in O (1) time
per solution outputting all subgraphs in G. Let N>(u) be the set of vertices that
are adjacent to u and larger than u. We assume that the graph is stored in the
memory by the adjacency lists of its vertices, and the adjacency list is sorted in
the degeneracy ordering. N>(u) is also stored in the memory and sorted in the
degeneracy ordering.

4.1 Characterization of a Child Generator

We say that v is black if dS(v) > k, v is gray if dS(v) = k, and v is white
otherwise. We also say that v is non-black if v is not black, that is, v is gray or
white. Note that pv(S) is the smallest non-black vertex in S. Let sw∗(S) be the
smallest white vertex in S, and GS(S) be the set of the gray vertices in S that
are smaller than sw∗(S). Let hS(u) be the number of vertices in GS(S) that are
smaller than u, and h′

S(u) be the number of vertices in GS(S) ∩ N(u) that are
smaller than u. A vertex u is a child generator of S if and only if u = pv(S ∪ u)
holds. This condition is characterized as follows.

Lemma 1. A vertex u /∈ S is a child generator of a k-degenerate vertex subset
S, i.e., u = pv(S ∪ u) if and only if u is non-black in S ∪ {u} and either one of
the followings holds.

40 K. Wasa and T. Uno

(1) u < pv(S)
(2) pv(S) < u < sw∗(S) and u is connected to all vertices in

{v ∈ GS(S) | v < u}, i.e., hS(u) = h′
S(u).

Proof. Suppose that S is a k-degenerate vertex subset and u /∈ S is a non-black
vertex. Note that S ∪ u is k-degenerate. We consider the following three cases.

Case (A): Suppose that (1) holds. We observe that (i) any black vertex in
S is also black in S ∪ u, and (ii) u < u′ holds for any non-black vertex u′ ∈ S
because u < pv(S). It implies that u = pv(S ∪ {u}).

Case (B): Suppose that (2) holds. Any non-black vertex u′ of S ∪ u is either
gray or white in S. If u′ is white in S, then u < u′ holds from the condition of
(2). If u′ is gray in S, then u′ is not connected to u. Thus, from the condition of
(2), u < u′ holds. Therefore, u < u′ always holds, and u = pv(S ∪ {u}).

Case (C): Both (1) and (2) do not hold implies that (i) u > pv(S) and (ii)
u > sw∗(S) or u is not connected to a gray vertex v ∈ GS(S) such that v < u. If
u > sw∗(S) holds, then pv(S ∪ {u}) ≤ sw∗(S) < u holds since sw∗(S) increases
its degree by at most one in S ∪ u, and thereby it is non-black. If u is not
connected to a gray vertex v ∈ S smaller than u, then pv(S ∪{u}) ≤ v < u holds
since v is a non-black vertex of S ∪ {u}. Hence, the statement holds. �	

4.2 Data Structure for Finding Child Generators

Lemma 1 shows that we can find child generators by finding the non-black ver-
tices satisfying the condition (1) or (2). Let L(S) (resp., L′(S)) be the list of all
the non-black vertices not in S (resp., in S) that are sorted by the degeneracy
ordering. The non-black vertices satisfying (1) are efficiently found by tracing
L(S) from the head. All vertices u in L(S) that satisfy u < pv(S) are actually
child generators of S. Hence, it takes O (1) time for each child generator. From
above discussion, we can immediately obtain the following lema:

Lemma 2. For any k-degenerate vertex subset S, the child generators smaller
than pv(S) are found in O (|C(S)| + 1) time by using L(S).

For finding those satisfying (2), we construct the list A composed of the
first k vertices of GS(S) by tracing the first k elements of L′(S). By using
A, we compute hS(u) and h′

S(u). We observe that any vertex larger than the
(k + 1)st vertex of GS(S) cannot satisfy (2) since to satisfy (2) the vertex has
to be adjacent to at least k + 1 vertices of S that means the vertex is not a
child generator. We then trace N>(v) for all vertices v in A. While tracing these
larger neighbors, for all such neighbors u, we compute h′

S(u). We first initialize
h′
S(u) to zero, and then increase the value by one while tracing. Since the total

number of the neighbors is at most kk′, this takes O (kk′) time. For any v ∈ A,
the computation of h′

S(u) for all vertices u in N>(v) can be done in O (kk′)
time in total by tracing N>(v) and A, simultaneously. Thus, the computation of
hS(u) and h′

S(u) for all vertices u that are adjacent to at least one vertex of A
is done in O (kk′) time. Therefore, child generators satisfying (2) can be found
in O (kk′) time.

k-degenerate Induced Subgraph Enumeration 41

Lemma 3. For any k-degenerate vertex subset S, the child generators larger
than pv(S) are found in O (kk′) time by using L′(S).

4.3 Efficiently Updating the Data Structure

The key to efficient computation in a recursive call, called an iteration, is the
efficiency of the update process of the data structure described above. Suppose
that u is a child generator of S and we are going to compute L(S ∪ u) and
L′(S ∪ u) from L(S) and L′(S).

Lemma 4. For any k-degenerate vertex subset S, L′(S ∪ {u}) is obtained from
L′(S) in O (k) time, where S ∪ {u} is a child of S.

Proof. Let denote by S′ = S ∪ {u}. To obtain L′(S′), we compute dS′(v) from
dS(v) for each v in L′(S) that is adjacent to u. Since pv(S′) = u, all vertices in
L′(S′)\{u} is larger than u. Hence, if a vertex v in L′(S) is still in L′(S′), u < v
and dS′(v) ≤ k. Thus, we first remove all vertices v from L′(S) that satisfies
dS∪u(v) > k. Since the number of such vertices v is at most k, this needs O (k)
time. Finally, we insert u to the head of L′(S), and then we obtain L′(S ∪ u).
Hence, the statement holds. �	

The computation of L(S ∪u) is done in the same way as the above, in O (Δ)
time.

Lemma 5. For any k-degenerate vertex subset S, L(S ∪ u) is obtained from
L(S) in O (Δ) time.

From Lemmas 4 and 5, the computation of L′(S) and L(S) needs O (Δ) time
since k < Δ. By recording the operations of these update, we can easily restore
L′(S′) and L(S′) from L′(S) and L(S) in O (Δ) time.

When Δ is large and k′ is small, the following algorithm for updating L(S) is
more efficient. The algorithm deals with the former and latter parts of L(S ∪u),
where the former part is of vertices smaller than u and the latter part is of the
other.

Lemma 6. For any k-degenerate vertex subset S, the part of L(S ∪u) composed
of vertices larger than u is obtained from L(S) in O (k′) time.

Proof. Removed vertices from the latter part are adjacent to u. Since G is k′-
degenerate, the number of removed vertices is at most k′. Hence, by checking k′

larger neighbors of u, the latter part is updated in O (k′) time. �	
For the update of the former part, we prepare another data structure called

an island. An island of a vertex w is a maximal segment of L(S) composed only
of gray vertices v such that w ∈ N>(v) and v /∈ S. An island is stored in the
memory by a doubly linked cyclic list of the segment in that the head and the
tail of the list are linked (See Fig. 2).

Lemma 7. For any k-degenerate vertex subset S, the accumulated size of the
islands of all vertices in G is O (|V | + |E|).

42 K. Wasa and T. Uno

Fig. 2. Example of islands used in the update algorithm. Suppose that |S ∩ N(u1)| < k
and |S ∩ N(ui)| = k for i = 2, . . . , 8. Dotted arrows and dashed arrows imply the island
of z1 and z2, respectively. The island of z2 consists of two connected doubly linked lists.

Proof. Since each vertex u belongs to at most |N(u)| islands, the sum of the
members of islands of all vertices in G is at most |E|. Since the doubly cyclic
linked list representing an island requires memory linear in the number of its
members, the statement holds. �	

We remove the vertices from L(S) that are not in L(S ∪ u) by tracing L(S)
from its head. When we encounter a vertex to be removed, that is, gray in S
and adjacent to u, the vertex is the head of an island of u. We then go to its tail
by using the cyclic link, and remove the island from the list by cutting off its
head and tail from L(S). We can find the tail of a head in constant time by an
array of at most k′ pointers. That is, we can remove the island from the list in
constant time. Note that the vertices in the island are all adjacent to u, and thus
become black by S ∪ u. In this way, we can update the former part of L(S) in
time linear in the number of vertices of L(S ∪ u) that are smaller than u. Since
u = pv(S ∪ u), the computation time is O (|C(S ∪ u)| + 1). Hence, the following
lema holds.

Lemma 8. For any k-degenerate vertex subset S, the part of L(S ∪u) composed
of vertices smaller than u is obtained from L(S) in O (|C(S ∪ u)| + 1) time.

The computation of dS∪u(v) for each vertex v of the former part of L(S ∪ u)
is done by tracing N>(v) to check whether u is adjacent to v or not. This is done
in O (k′) time per vertex, and thus computation for all the vertices in former
part is done in O (k′(|C(S ∪ u)| + 1)) time.

Lemma 9. For any k-degenerate vertex subset S, dS∪u(v) for all vertices v in
L(S ∪ u) are obtained from N(v) ∩ S in O (k + k′(|C(S ∪ u)| + 1)) time.

Lemma 10. For any k-degenerate vertex subset S, all the islands in the
part of L(S ∪ u) composed of vertices smaller than u are constructed in
O (k′(|C(S ∪ u)| + 1)) time by using L(S ∪ u).

Proof. All the islands in the part of L(S ∪ u) composed of vertices smaller than
u are built from the scratch by tracing L(S ∪ u). This is done by tracing all
vertices in N>(v) for all vertices in L(S∪u), thus is done in O (k′(|C(S ∪ u)| + 1))
time. �	

k-degenerate Induced Subgraph Enumeration 43

Algorithm 2. Island update algorithm
1 Procedure UpdateIsland(S, u)
2 foreach v ∈ N(u) ∩ L(S ∪ u) do
3 if dS∪u(v) = k then
4 foreach Island I including the smaller neighbor of v on L(S ∪ u)

do
5 Put together I and v into a new island I ′ = I + v ;
6 Link the head of I and v;

7 foreach Island J including the larger neighbor of v on L(S ∪u) do
8 Put together v and J into a new island J ′ = v + J ;
9 Link v and the tail of I;

10 foreach Pair of islands I ′ and J ′ including v of the same vertex
do

11 Put together I ′ and J ′ into a new island I ′′ = I ′ + J ′;
12 Link the head of I ′ and the tail of J ′;
13 return island(S ∪ u);

Lemma 11. For any k-degenerate vertex subset S, all the islands in the part
of L(S ∪ u) composed of vertices larger than u are obtained from the islands of
L(S) in O (

(k′)2
)
time.

Proof. An island will change by the addition of u to S when a vertex of the
island or a vertex neighboring to its head or its tail becomes gray, or becomes
black. We observe that at most k′ vertices larger than u become gray or black
by adding u to S. By the change of a vertex v, at most 3k′ islands, that include
v or a vertex neighboring to v in L(S), will change. Concatenating two islands,
splitting an island and appending a vertex to an island are all done in O (1)
time, thus the update of the islands in the part of L(S ∪u) composed of vertices
larger than u are obtained from the islands of L(S) in O (

(k′)2
)

time. �	
Algorithm 2 shows the pseudo code for concatenating islands or appending

a vertex to an island. We can also implement splitting an island in a similar
way. We consider that the update of data structure is done in the iteration with
respect to S ∪ u, as an initialization. Then, an iteration of the algorithm takes
O (

min
{
Δ + kk′, (k′)2

}
+ k′|C(S ∪ u)|) time.

Theorem 1. The vertex subsets of a graph G = (V,E) inducing k-degenerate
graphs can be enumerated in O (

min
{
Δ + kk′, (k′)2

})
time for each solution

with O (|V | + |E|) space and O (|V | + |E|) preprocessing time, where Δ and k′

denote the maximum degree and the degeneracy of G.

Proof. An iteration of our algorithm takes O (
min

{
Δ + kk′, (k′)2

}
+ k′|C(S)|)

time. By assigning O (k′) to each child, it will be O (
min

{
Δ + kk′, (k′)2

})
. Our

algorithm outputs a solution in each iteration. It implies that the computa-
tion time is O (

min
{
Δ + kk′, (k′)2

})
time for each solution. In the preprocess-

ing phase, the algorithm needs to sort the vertices in the degeneracy ordering.

44 K. Wasa and T. Uno

This takes O (|E| + |V |) time. We also sort the adjacency list of each vertex in
O (|V | + |E|) time by using bucket sort. The sizes of L(S), L′(S) and the mem-
ory for remembering dS(·) are all O (|V |). Since the total size of all islands is
O (|E|), the statement holds. �	
Corollary 1. Let G = (V,E) be a graph with constant degeneracy and k be a
positive integer. Then, all k-degenerate induced subgraphs in G can be enumer-
ated in constant time for each solution with O (|V | + |E|) space and O (|V | + |E|)
preprocessing time.

5 Conclusion

In this paper, we addressed the k-degenerate induced subgraph enumeration
problem. As the main result, we proposed an efficient enumeration algorithm
that runs in O (

min
{
Δ + kk′, (k′)2

})
time per solution with polynomial prepro-

cessing time and linear space. In this paper, we did not consider the connectivity
since when we consider it, the parent-child relation in this paper does not work.
Investigating other efficient enumeration strategies for connected k-degenerate
subgraph is an interesting future research. The variant of the problem, in some
graph classes, non-induced version and fixed size are also interesting.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math. 65(1–
3), 21–46 (1996). https://doi.org/10.1016/0166-218X(95)00026-N

2. Bauer, R., Krug, M., Wagner, D.: Enumerating and generating labeled k-
degenerate Graphs. In: ANALCO 2010, pp. 90–98. Society for Industrial and
Applied Mathematics (2010). https://doi.org/10.1137/1.9781611973006.12

3. Chartrand, G., Harary, F.: Planar permutation graphs. Annales de l’institut Henri
Poincaré (B) Probabilités et Statistiques 3(4), 433–438 (1967)

4. Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-space bounded-delay enu-
meration for massive network analytics: maximal cliques. In: ICALP 2016, pp.
148:1–148:15 (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.148

5. Conte, A., Kanté, M.M., Otachi, Y., Uno, T., Wasa, K.: Efficient enumeration of
maximal k -degenerate subgraphs in a chordal graph. In: Cao, Y., Chen, J. (eds.)
COCOON 2017. LNCS, vol. 10392, pp. 150–161. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62389-4 13

6. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world
graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
364–375. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20662-
7 31

7. Ferreira, R., Grossi, R., Rizzi, R.: Output-sensitive listing of bounded-size trees in
undirected graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 275–286. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23719-5 24

8. Goel, G., Gustedt, J.: Bounded arboricity to determine the local structure of sparse
graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 159–167. Springer,
Heidelberg (2006). https://doi.org/10.1007/11917496 15

https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1137/1.9781611973006.12
https://doi.org/10.4230/LIPIcs.ICALP.2016.148
https://doi.org/10.1007/978-3-319-62389-4_13
https://doi.org/10.1007/978-3-319-62389-4_13
https://doi.org/10.1007/978-3-642-20662-7_31
https://doi.org/10.1007/978-3-642-20662-7_31
https://doi.org/10.1007/978-3-642-23719-5_24
https://doi.org/10.1007/978-3-642-23719-5_24
https://doi.org/10.1007/11917496_15

k-degenerate Induced Subgraph Enumeration 45

9. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of minimal dom-
inating sets and variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011.
LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22953-4 26

10. Lick, D.R., White, A.T.: k-degenerate graphs. Can. J. Math. 22(5), 1082–1096
(1970). https://doi.org/10.4153/CJM-1970-125-1

11. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983). https://doi.org/10.1145/2402.322385

12. Wasa, K.: Enumeration of enumeration algorithms. CoRR abs/1605.05102 (2016),
http://arxiv.org/abs/1605.05102

13. Wasa, K., Arimura, H., Uno, T.: Efficient enumeration of induced subtrees in a K-
degenerate graph. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889,
pp. 94–102. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0 8

14. Wasa, K., Kaneta, Y., Uno, T., Arimura, H.: Constant time enumeration of
bounded-size subtrees in trees and its application. In: Gudmundsson, J., Mestre,
J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 347–359. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32241-9 30

https://doi.org/10.1007/978-3-642-22953-4_26
https://doi.org/10.1007/978-3-642-22953-4_26
https://doi.org/10.4153/CJM-1970-125-1
https://doi.org/10.1145/2402.322385
http://arxiv.org/abs/1605.05102
https://doi.org/10.1007/978-3-319-13075-0_8
https://doi.org/10.1007/978-3-642-32241-9_30

	An Efficient Algorithm for Enumerating Induced Subgraphs with Bounded Degeneracy
	1 Introduction
	2 Preliminaries
	2.1 k-degenerate Graphs

	3 Reverse Search Algorithm
	4 Generating Children
	4.1 Characterization of a Child Generator
	4.2 Data Structure for Finding Child Generators
	4.3 Efficiently Updating the Data Structure

	5 Conclusion
	References

